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Résumé

Dans le processus de conception d’un système MPSoC hétérogène (MPSoC : Multi Processor System
on Chip), un large espace de solutions de conception émerge de différentes solutions alternatives.
La fiabilité est la probabilité qu’un système ou un composant remplisse les fonctions requises sans
défaillance dans les conditions spécifiées pendant une période donnée. Par conséquent, la fiabilité est
devenue l’une des propriétés les plus importantes des systèmes embarqués. Outre les efforts visant à
améliorer la fiabilité du matériel, il est nécessaire d’utiliser des stratégies de tolérance aux fautes afin
de réduire l’impact des fautes au niveau du système. La tolérance aux fautes est la capacité d’une
unité fonctionnelle à continuer à exécuter une fonction requise en présence de fautes ou d’erreurs. Il
existe plusieurs stratégies de tolérance aux fautes développées dans la littérature comme redondance
triple modulaire, checkpoiting, code de correction d’erreur. Par conséquent, les concepteurs ont besoin
d’une méthodologie qui intègre l’évaluation de la fiabilité dans le processus d’exploration de l’espace
de conception (DSE: Design Space Exploration). Notre objectif est d’établir un cadre permettant de
trouver la meilleure solution pour une application donnée dans des contraintes de tolérance aux fautes.
Cet objectif s’inscrit dans le contexte de la prise en compte de l’impact des stratégies de tolérance aux
fautes (permanentes et transitoires) sur la fiabilité et le temps d’exécution du système et le coût de la
plate-forme. De plus, le mapping des composants, le mapping des données et le mapping des fonctions
sont des aspects importants qui affectent la fiabilité du système. Nos contributions et travaux en cours
peuvent être résumés par les points suivants:

1) Nouveau méta-modèle intégrant la tolérance aux fautes pour les systèmes embarqués. Le méta-
modèle est au cœur de la méthode d’ingénierie dirigée par les modèles. Ceci propose de couvrir la
tolérance de fautes; sert de pont entre les différents outils, entre les différents langages de programma-
tion et les différentes étapes de conception, permettant ainsi aux concepteurs de disposer d’une vue
cohérente et unifiée d’une plateforme MPSoC. Avec des modèles, les concepteurs peuvent configurer
l’exploration en fonction de leur propre niveau d’expertise, tout en faisant abstraction de la complexité
et des spécificités de l’architecture cible. Cela favorise la portabilité et la réutilisation des conceptions
en fournissant des modèles tout en résumant les détails de bas niveau du système considéré.

2) La nouvelle méthode DSE comprend la génération, l’évaluation et l’optimisation d’espaces de
conception de la tolérance aux fautes. Dans la spécification utilisateur, les dimensions explorées incluent
le choix du matériel, le mapping des tâches, le mapping des données et le choix de la stratégie de
tolérance aux fautes. Une nouvelle solution est générée et évaluée en matière de temps d’exécution, de
coût et de niveau de fiabilité. Ensuite, un processus d’optimisation explore la meilleure solution parmi
les espaces de conception.

3) Evaluation de la plate-forme MPSoC hétérogène sous l’impact des fautes transitoires et perma-
nentes. Cette évaluation est une partie très importante de la DSE pour aider les concepteurs à choisir
la stratégie de tolérance aux fautes appropriée en ce qui concerne un compromis avec les exigences de
l’application.

17



Résumé

4) Un nouvel outil avec une interface utilisateur graphique permet de modéliser et d’exécuter le
processus DSE. Il simplifie le processus en interagissant avec l’utilisateur via l’interface graphique et
en automatisant le processus d’exploration de l’espace de conception.

L’ingénierie dirigée par les modèles (MDE: Model Driven Engineering) peut fournir des moyens
efficaces pour résoudre les besoins de la DSE. Un modèle représente une abstraction d’un système ainsi
que des éléments de ce système d’un point de vue de la conception. Les mécanismes de construction
de modèles valides sont spécifiés dans des méta-modèles. De nombreux travaux ont fourni des méta-
modèles pour les structures et le comportement des plates-formes MPSoC. Cependant, ces méta-
modèles sont conçus pour des objectifs spécifiques tels que les architectures avec paradigme d’exécution
déclenché par le temps, l’estimation des performances ou la génération de codes pour la simulation
ou à un niveau d’abstraction bas, ce qui les rend difficiles à réutiliser. Dans tous les cas, les méta-
modèles présentés dans la littérature ne sont pas développés pour l’évaluation de la fiabilité. En outre,
dans l’exploration de l’espace de conception, il y a de nombreux efforts de recherche qui combinent le
mapping des composants, des fonctions ou des données avec l’évaluation de la fiabilité. Cependant,
ces travaux considèrent souvent ces objectifs individuellement ou sont conçus pour des architectures
spécifiques (processeurs homogènes ou uniquement).

Il existe de nombreuses études DSE basées sur la fiabilité. L’objectif commun est d’améliorer la
fiabilité d’une plate-forme face aux exigences d’une application multifonction. Différentes approches
à différents niveaux du système ont été étudiées. Ces études utilisent des modèles d’application et
de plate-forme en tant qu’entrée de leur processus DSE, puis fournissent une solution optimale avec
la cartographie. Plusieurs stratégies de tolérance aux fautes sont utilisées, telles que la réplication
de ressources, la réplication de tâches, le point de contrôle, la réexécution. Différentes stratégies de
recherche ont été utilisées (Recuit Simulé, Algorithme Génétique). Cependant, il reste des points dans
le processus d’exploration qui n’ont pas été examinés ou considérés séparément, telles que l’impact
des deux types de faute, l’impact de différents types de composants et l’impact de la tâche ou de la
fonction et la cartographie des données sur la fiabilité globale.

Nous avons développé un nouveau méta-modèle de plateforme intégrant la tolérance aux fautes. Le
méta-modèle est construit en utilisant la syntaxe UML. Un niveau de représentation intermédiaire est
créé appelé "sous-système". Par le biais des "sous-systèmes", les parties de tolérance aux fautes sont
connectées à la partie architecturale dans le méta-modèle. Dans la partie architecturale, une plate-
forme MPSoC hétérogène est composée de composants (matériels et logiciels) configurés pour fournir
un ensemble de services (mémorisation, exécution, etc.). Un composant peut être une mémoire, un
composant d’interconnexion ou un processeur. La plate-forme peut contenir plus d’un type de pro-
cesseur ou d’unité de traitement (terme: hétérogène). La partie de la tolérance aux fautes déclare des
stratégies de tolérance aux fautes comme la redondance de temps, la redondance de composants. Un
sous-système est composé d’un type de composant matériel et éventuellement de plusieurs versions
de composants logiciels. La description des sous-systèmes prend en charge la modélisation de la re-
dondance utilisée dans les stratégies de tolérance. Sur une plate-forme, si des composants individuels
sont observés séparément, il sera difficile d’évaluer la fiabilité d’une fonction et, par conséquent, il est
difficile d’évaluer la fiabilité d’une plate-forme pour une application. En attendant, l’utilisation du
concept de sous-système n’affecte pas l’unité de la plate-forme entière. Ainsi, le "sous-système" con-
stitue non seulement le niveau intermédiaire entre le niveau de la plate-forme et celui des composants,
mais également un pont entre un modèle de plate-forme et un modèle d’application. Évaluer une
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plate-forme sans tenir compte d’une application n’est pas utile, mais si le modèle de plate-forme et le
modèle d’application sont trop étroitement liés, la capacité de réutilisation et l’extensibilité de la plate-
forme ne sont que considérablement limitées dans la cadre de l’application. Le niveau de sous-système
garantit à la fois la liaison du modèle de plate-forme avec le modèle d’application, mais également une
indépendance par rapport au modèle de plate-forme, notamment en termes d’évaluation de la fiabilité.

Les trois parties principales du flux DSE sont composées des processus d’initialisation, de mapping
et d’évaluation de la solution. L’initialisation est l’étape de préparation d’un processus DSE. À cette
étape, une application considérée, une plate-forme et les composants disponibles sont initialisés avec
leurs paramètres. Les méta-modèles de plate-forme sont la base du processus DSE.

À partir des modèles d’entrée, un processus de mapping est effectué pour trouver une solution de
mapping. Le problème peut être transformé en un problème de programmation linéaire entier. Le
mapping comprend un ensemble de règles, des contraintes pour allouer des ressources et pour mapper
les fonctions requises, des données sur les ressources. Une règle est un guide pour définir la relation
entre les éléments (application, plate-forme) dans un système MPSoC, qui est stricte et impossible
à modifier dans un cadre DSE spécifique. Une contrainte est une limitation pour une ou plusieurs
fonctionnalités (quantité ou qualité) d’un système MPSoC qui peut être modifiée ou définie par les
concepteurs dans un cadre DSE spécifique. Dans la deuxième étape (processus de mapping), il y a
quatre règles: mapping de composant, mapping de fonction, mapping de données, choix des stratégies
de la tolérance aux fautes. Ces règles sont implémentées sous forme d’algorithmes permettant de
créer une conception dans la forme la plus élémentaire sans aucune contrainte. Ensuite, la conception
est vérifiée sous contraintes. Les contraintes sont moins obligatoires que les règles et peuvent être
modifiées et remplacées en fonction des objectifs des concepteurs, tels que la limitation des ressources,
de la technologie et du temps. Dans nos travaux, il existe quatre contraintes: limitation de la capacité
(de l’élément de traitement), limitation de la taille des données, limitation de la quantité et limitation
du chemin de connexion entre les composants d’une plate-forme. S’il répond aux contraintes (solution
valable), la solution passe à la troisième partie (processus d’évaluation de la solution); sinon (une
solution non valide), nous devons revenir en arrière pour créer un autre design.

Ensuite, il est possible de passer par une série d’évaluations. Le processus d’évaluation permet aux
concepteurs d’examiner la solution de manière quantitative, ce qui constitue la base du choix de la
meilleure solution lors des prochaines étapes de la DSE. Il y a trois évaluations en matière de temps
d’exécution, de fiabilité et de coût. Avec l’évaluation du temps d’exécution d’une application, tout
d’abord, le temps d’exécution de chaque fonction est estimé. Ensuite, une stratégie de planification est
appliquée à l’application et enfin, le temps d’exécution de l’application donnée est estimé. La fiabilité
d’un système pendant une exécution est la probabilité qu’aucune défaillance ne survienne sur le résultat
du système pendant toute la durée.

L’évaluation de la fiabilité est réalisée à partir d’un modèle de fautes permanentes et transitoires.
Une faute est un événement qui cause un défaut dans le composant, tel qu’un bogue logiciel, un
blocage, un circuit cassé. Une erreur fait référence à une différence entre la sortie réelle et la sortie
attendue lorsqu’une opération requise est exécutée. Une défaillance apparaît lorsqu’un système ou
un sous-système ne parvient pas à exécuter une fonction requise conformément à ses spécifications.
Il y a deux catégories de la faute dérivées de ses conséquences pour des composants: permanente et
transitoire. Les fautes permanentes découlent d’une destruction matérielle telle que le vieillissement,
des circuits électroniques cassés ou bloqués. Une faute permanente reste active jusqu’à ce qu’une
intervention de correction soit effectuée. Les fautes transitoires peuvent être causées par une seule
particule ionisante frappant un nœud sensible ou une interconnexion d’un circuit. Contrairement aux
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fautes permanentes, une faute transitoire ne reste active que pendant une courte duration et disparaît
à la prochaine duration de fonctionnement. Taux de défaillance (FIT : Failure In Time) est l’inverse du
temps moyen de fonctionnement avant une défaillance. Cette valeur représente la possibilité d’une faute
entraînant une défaillance lors de l’opération d’un composant. Ces paramètres reflètent les expériences
existantes des processus d’injection, de simulation, de prévision des défauts et d’expérimentation sur
les composants utilisés. Avec le taux de défaillance, nous avons utilisé des distributions de probabilité
pour modéliser l’impact des fautes permanentes et transitoires sur le système. Dans cette thèse, deux
stratégies de tolérance aux fautes sont considérées: Redondance Triple Modulaire (TMR), Redondance
Triple Ré-exécutions (TReR). Sur la base du modèle de probabilité des fautes, nous proposons des
équations mathématiques pour évaluer la fiabilité de chaque sous-système, puis la fiabilité globale
d’une plate-forme.

Le coût d’une plate-forme est le coût total de tous les composants actifs utilisés dans cette plate-
forme. L’évaluation des coûts vise à assurer l’équilibre entre les ressources matérielles et les objectifs
de performance et de fiabilité lors de la conception d’un système. Chaque composant a une valeur de
coût.

Il y a trois critères de performance d’une solution de mapping: temps d’exécution, niveau de fiabilité
et coût. L’objectif est de maximiser le niveau de fiabilité (maximum = 1), de minimiser les coûts et de
minimiser le temps d’exécution. Fondamentalement, avec l’optimisation d’un problème multi-objectifs,
une formule est configurée pour comparer deux solutions basées sur la méthode de métriques pondérée.
Une fonction mathématique objectif est proposée et elle permet d’évaluer simultanément trois sous-
objectifs d’une solution de mapping. La stratégie la plus classique de l’optimisation est la recherche
exhaustive (CS: Comprehensive Search). Trois stratégies de recherche telles que la recherche complète,
le recuit simulé et l’algorithme génétique consistent à trouver la meilleure solution parmi l’espace de
conception possible. Nous allons calculer à partir de la première solution jusqu’à la solution finale,
sans manquer aucune solution possible dans l’espace de conception. Le recuit simulé est un algorithme
d’optimisation basé sur la simulation d’un processus de refroidissement du métal, du verre ou du cristal.
L’algorithme génétique est basé sur le paradigme néo-darwinien de simulation de l’évolution naturelle
des systèmes biologiques.

Deux cas d’étude sont présentés, le filtre Sobel et le détecteur de coin Harris. Le filtre Sobel est
une application simple et très répandue qui permet de détecter les contours des images. De plus, le
détecteur de coin Harris est utilisé dans le traitement d’image pour extraire les coins d’une image, qui
s’appuie sur le filtre Sobel. Le détecteur de coin Harris contient plus de fonctions que le filtre Sobel
et est appliqué pour augmenter la complexité des études de cas pour notre framework. Les résultats
expérimentaux ont montré que le cadre DSE permet une exploration efficace d’un grand espace de
conception et des résultats proches ou équivalents d’une approche de la recherche complète. De plus,
la fiabilité des solutions trouvées est supérieure à celle des solutions construites sans notre Framework.

Les modèles construits par notre framework sont basés sur le méta-modèle proposé. L’outil est
construit sur l’environnement Sirius avec l’espace de travail appelé PolarSys, qui est un projet Eclipse.
Il simplifie le processus en interagissant avec l’utilisateur via l’interface graphique et en automatisant
le processus d’exploration de l’espace de conception.

20



Chapter 1

Introduction

Contents
1.1 Embedded system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.2 Fault model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
1.3 Tolerance strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

1.3.1 Spatial redundancy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
1.3.2 Temporal redundancy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
1.3.3 Check-pointing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
1.3.4 Error correction code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

1.4 Problem statement and contributions . . . . . . . . . . . . . . . . . . . . . . 30

21



1.1. EMBEDDED SYSTEM CHAPTER 1. INTRODUCTION

1.1 Embedded system

Nowadays, embedded systems become a integral part of most domains such as vehicle, airplane, in-
dustrial machines. An embedded system is composed of two parts: an embedded application and a
platform. Embedded applications can take many forms as signal processing, distributed control
system, etc. An application is composed of multi functions/tasks. The complexity of an application is
increasing with different requirements such as performance, power consumption, cost, and reliability.
Any application need to be executed on hardware and software components. This set of components
is called a platform.

Embedded applications

The DAG is very widely used in the DSE literature to describe an application with functions or tasks.
It describes effectively the characteristics of applications and is easy to use for modeling, mapping
objectives as well as programming [1]. Therefore, we introduce the following concept to describe an
application (Definition 1.1) used in this thesis:

Definition 1.1. An application G is represented by a DAG G = (V,E,D), where: each node in V =
{F1, F2, ..., Fk|k ∈ N} represents a function of G; E is the set of directed arcs that represent precedence
constraints and connect the functions with each other as well as indicate their data dependencies;
D = {d1_2, d1_3, ..., dj_k|j, k ∈ N} specifies the amount of communicated data associated to each link.
dj_k represents the data block which is sent from Fj to Fk. These functions have to be executed in a
given order to produce desired outputs from the input functions to the output ones. An input function
is a function where no arc goes in and an output function is a function where no arc goes out. A
period is an execution duration from the earliest start time of input functions to the latest ending
time of output functions that gives expected results in the output functions. An application can be
executed iteratively through many periods.

Figure 1.1 illustrates an example of an application with four functions and only four data blocks
between these functions. In this application, there is one input function (F1) and one output function
(F4). The pre-defined size corresponds to a number of operations of each function. The number of
operations is obtained from the algorithm of the application. An operation can be an addition (+), a
subtraction (−), a multiplication (×), a division (÷), or an assignment (=). Besides, the data size is
also predefined in the 2 rightmost columns. The data is the variables shared between 2 functions.

Function size
(operations) Data size (MBytes)

F1 80× 103 d1_2 2
F2 250× 103 d1_3 1
F3 32× 103 d2_4 3
F4 192× 103 d3_5 1

Figure 1.1: An example of target application with 4 functions and their properties.
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Heterogeneous MPSoC platforms

A heterogeneous/homogeneous MPSoC (Multi-Processor System-on-Chip) is a system in which all
components as processing units, memories, buses are put on a same chip. The term "homogeneous"
means that all processing elements are identical and interconnected through a dedicated communication
infrastructure. Meanwhile, the term "heterogeneous" means that there are different types of processing
elements, such as general purpose processors, digital processors, accelerators, that are interconnected
through a communication infrastructure as shown on Figure 1.2. The homogeneous architectures are
commonly used for certain architectures such as servers, desktop computers, video game consoles. The
heterogeneous Multi-Processor System-on-Chips (MPSoCs) are used for embedded systems as they use
heterogeneity for optimisation purpose [2, 3].

Increasing the complexity of applications and platforms makes many potential solutions appearing,
especially for heterogeneous systems, because the different properties of components can make more
difficult to designers to choose an optimal solution. In that context, exploration of the design space
and optimization of design solutions are practical needs.

The exploration process evaluates design points in a design space and gives a set of best solutions
in terms of execution time of an application, reliability of a platform, cost of a system, energy under
design constraints. At different levels of abstraction, the exploration strategies corresponds to different
accuracy levels (Figure 1.3). An accuracy approach is often used at a low level and the system-level
architecture features are fully defined. At this level, designers can use precise simulators (instruction,
Register Transfer Level (RTL) levels) or implement prototypes to accurately evaluate a solution. The
exact approach is suitable for exhaustive exploration when a several design points are already char-
acterized. However, design spaces are often large (> 1010 design points - a point represents a design
solution) and the exhaustive exploration is impossible. Moreover, the exploration in low level also
takes a lot of time to evaluate a solution. If there has not been an optimal process and evaluation on
the whole design space before, it is likely that designers are wasting time evaluating solutions that are
not good.

Meanwhile, the higher the abstraction level (cycle-approximate estimation) is, more design solutions
can be explored, and more design alternatives can be chosen to satisfy design constraints or achieve
a better performance. The higher abstraction level often takes place at the system level. The DSE
(Design Space Exploration) focuses on the the application and platform models. If the application
model is given and fixed, the exploration process is mainly on the platform building process and
mapping process. The platform building defines the resource allocation, the interconnection, etc. The

Figure 1.2: Overview of a heterogeneous MPSoC.
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1.1. EMBEDDED SYSTEM CHAPTER 1. INTRODUCTION

Figure 1.3: Abstraction levels of design space exploration [4].

mapping process defines the function/task allocation. After these processes, designers can find several
solutions and they can bring them into the next design steps at a lower abstraction level to evaluate
them pore accurately. Definitions 1.2, 1.3, 1.4 describe concepts of an MPSoC platform.

Definition 1.2. A heterogeneous MPSoC platform is composed of (hardware and software) compo-
nents configured to provide a set of services (memorization, execution, etc.). The platform contains
more than one type of processor or processing unit (term: heterogeneous). The connections between
components form the platform topology.

Definition 1.3. A hardware component can be:

• a PE (Processing Element) that can be hardwired (such as an IP̧, an Application-Specific Inte-
grated Circuit (ASIC)), thus called a Dedicated PE (DPE) (no software can be executed on it)
or a general purpose processor (it can execute software as a hard-core or a soft-core), called a
Programmable PE (PPE). PE components are used to execute functions of a given application;

• a Memory (ME) component used to store data and source codes;

• a Communication (COMM) component used to transfer data, signals between others hardware
components.

Each component provides at least one service to implement requirements of a given function. A
service is a component-specific capability. A service is represented by metrics such as delay, cost,
computing capacity and will be discussed in more details in the next Section.

Definition 1.4. A Software (SOFT) component is a software implementation of a function. Its source
code is stored in a memory and a SOFT component runs on top of a PPE [5].
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Table 1.1: Targets for the probabilistic metric for random hardware failure [9].

ASIL Random hardware failure rate values
D < 10−8 per hour
C < 10−7 per hour
B < 10−7 per hour
A < 10−6 per hour

Reliability and system safety

In the process of exploration, a special concern can be the fault tolerance to ensure system safety.
Fault tolerance of a system can be assessed through its reliability level in the range from 0% to 100%.
Higher is better. The analysis of the predictive reliability of the electronic components is studied and
standardized in FIDES [6] and MIL-HDBK-217 [7].

However, the comprehensive evaluation of reliability of an embedded system requires the oversight
of all behaviors of the system such as the time to perform functions/tasks, the time of receiving/sending
data, the interconnection time, etc. Besides, many designers want to use fault-tolerance strategies in
their design. Assessing reliability needs them to consider the impact of these strategies on the system
performance and cost. And, the DSE process also need to explore solutions with different fault-tolerance
strategies.

Reliability and the safety are not the same, but the probabilistic risk for a random failure has created
a relationship between these two aspects [8]. For example, Table 1.1 shows the failure rate used in
the quantitative safety assessment in the safety standard ISO26262. ISO26262 is a safety standard
released in November 2011 to measure and document the safety level of automotive electronic systems
[9]. A designer can use this standard to build their system as a constraint. Each safety goal is given as
Automotive Safety Integrity Level (ASIL) that determines what ISO 26262 safety requirements that
apply to the goal.

The evaluation and optimization of reliability of a heterogeneous MPSoC also need to be relevant
in relation to other needs of the system such as processing time, system construction costs, energy etc.

Thus, in this whole context, designer will have to solve the problems for embedded systems such as:
modeling the heterogeneous MPSoC architecture, exploring mapping solutions, exploring fault-tolerant
strategies, evaluating system and eventually finding optimal solutions.

1.2 Fault model

In order to tolerate faults, we need to understand the object that we need to resist: that is the fault
consequence, fault kind, and fault model.

A fault is an event that causes a defect within the component such as a software bug, a bit stuck,
a broken circuit, etc. An error refers to a difference between the actual output and the expected
output when a required operation is executed. A failure appears when a system or a subsystem fails
to perform a required function according to its specification. The relation between fault, error, and
failure is depicted in Figure 1.4. A fault may lead to an error, and an error might cause a failure in
the whole system or a subsystem, or a component [10] [11]. A goal of safety-critical systems is that
errors should not lead to any failure. More generally, designers expect that the system should not have
a fault that results in failure.

A fault can be divided into two categories derived from its consequences for components: perma-
nent and transient. Permanent faults are derived from a hardware destruction such as aging, broken
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Figure 1.4: Relation between fault, error and failure.

electronic circuits, stuck-at-bit [10]. A permanent fault remains active until there is an intervention
for correction. Transient faults can be caused by a single ionizing particle striking a sensitive node or
an interconnection of a circuit [10]. Unlike permanent faults, a transient fault only remains active in
a short period and disappears on the next operating period. For example in Figure 1.5, a transient
fault appears in the execution duration of F2 but it disappears in the execution duration of F3. As
consequences of faults, the effects of errors and failures on the component are also either temporary or
permanent.

The failure rate is often expressed in Failure In Time (FIT), which is the number of failures that can
be expected in one 109 device-hours of operation. This value represents the possibility of a fault causing
a failure during the operation of a component. The failure-rate evaluation of transient and permanent
faults in every single component is not trivial. These parameters reflect the existing experiences from
complex and time-consuming processes of injection, simulation, prediction of faults, and experiment on
components [12, 13, 14, 15, 16]. This work uses the failure rates as the inputs of the design exploration
in order to evaluate the reliability of components. The reliability is the probability that the component
or system will not cause a failure for a specified time under specific conditions.

Permanent fault There are four main wear-out effects for integrated circuit components: electro-
migration, time-dependent dielectric breakdown, stress migration, and thermal cycling [17]. For this
work, electromigration related wear-out failures are assumed, however, any other effects can be in-
cluded either standalone or using sum-of-failure-rate model for any combination of the above failure
effects. We use a Weibull distribution to describe the wear-out effects, Equation 1.1 gives the evalu-
ation of the probability that permanent faults cannot cause any failure on the component during the
interval between 0 and the time moment τ , where alpha(T ) is the scale parameter, that is a function
of temperature depending to the wear-out failure model, β is the slope parameter shown to be nearly
independent of temperature [18].

RPF
(
τ
)
= e
−
(

τ
α(T )

)β
(1.1)

Figure 1.5: A transient fault appears and disappears on a PE component.
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To model the useful life of the product, we choose β = 1 as in [19]. So, in that case, Equation 1.1
becomes Equation 1.2:

RPF
(
τ
)
= e
− τ
α(T ) (1.2)

We have Equation 1.3, where λcompPF = 1
α(T ) =

1
MTTF is the failure rate of the component caused

by permanent faults, MTTF is Mean Time To Failure, as following:

RPF
(
τ
)
= e−λcompTF .τ (1.3)

For example, 1 component has a lifetime of 10 years, so it means that the average time for a permanent
error to appear is 10 years (MTTF = 10 years). So, λcompPF = 1

α(T ) =
1

MTTF = 1
10×365×24 failure/hour

= 109

10×365×24 failure/(109 hours) = 11415 FIT.

Transient fault Assuming the failure from transient faults arrival on a component follows Poisson
distribution [20], Equation 1.4 gives the evaluation of the probability that transient faults cannot cause
any failure on the component during the interval between 0 and the time moment τ , where λcompTF is
the failure rate of the component caused by transient faults.

RTF
(
τ
)
= e−λcompTF .τ (1.4)

Given that the events of the permanent faults and the transient faults are independent, we have
the reliability of a component during the interval between 0 and the time moment τ as Equation 1.5,
where RPF

(
τ
)
and RTF

(
τ
)
is the reliability considering the permanent fault and the transient fault,

respectively.

Rcomp
(
τ
)
= RPF

(
τ
)
×RTF

(
τ
)

(1.5)

1.3 Tolerance strategies

There are several fault-tolerance strategies developed in the literature [10]. Herein, we describe the
strategies that are popular and effective strategies.

1.3.1 Spatial redundancy

The k-out-of-n (also known as N-modular redundancy) is one of the most popular strategies of the
passive redundancy [10]. The passive redundancy strategies have no need to detect faults but mask
them. With the spatial redundancy, designers use multiple hardware components in the same sub-
system. The components are multiplied to perform the same computation in parallel. The majority
voting is used to determine the correct output from these components, except for N < 3.

Figure 1.6 gives the concept of a popular instance of the spatial k-out-of-n with k = 2 and n = 3.
In the TMR subsystem, if one of the components fails, the voter masks the fault by comparing the
outputs among the faulty module and the remaining two fault-free modules. In addition to the time
that the component implements the function (τ), the system has to take into account the time that
the voter handles the outputs (τv). Depending on the purpose, the redundant components can be
processors, memories, buses, network connections, etc. This strategy can mask both permanent and
transient faults. However, it requires high overheads in terms of area, price, energy, etc.
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Figure 1.6: An instance of spatial redundancy: TMR (Triple Modular Redundancy).

1.3.2 Temporal redundancy

If the size, weight, power consumption and cost of a system is a big constraint, designers can use extra
time rather than extra hardware to tolerate faults. The temporal redundancy includes the repetition of
the computation between two or more times and compares the results with the previous computations
[10]. This repetition is usually performed on only one hardware component.

The Figure 1.7 describes the TReR strategy as an instance of the temporal redundancy. The
execution time in this concept is 3 times longer than the no-redundancy. It assumes that the function
F1 is mapped to the subsystem, at each computing cycle, this subsystem executes F1 three times. If a
permanent fault occurs and causes an error on this component, all the computations on this component
are faulty and the resultant output is wrong. Therefore, this strategy can not mask permanent faults.
However, if a transient fault occurs in one of three occurs and disappears in the remaining two times,
this strategy can produce the correct output. A TReR subsystem can mask only one transient fault
among 3 executions. The temporal redundancy is suitable for processors.

1.3.3 Check-pointing

The check-pointing technique is a recovery mechanism that is based on check-points and restart mech-
anisms [10, 21]. Most software faults are design faults that resemble hardware intermittent faults:
they appear in a period and disappear, then appear again. Hence, simply restarting the subsystem is
usually sufficient to successfully complete its execution, it also masks transient faults or software bugs.

Figure 1.7: An instance of temporal redundancy: TReR (Triple Re-execution Redundancy).
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Figure 1.8: Subsystem without/with checkpoint.

Figure 1.9: Memory with correction code.

The Figure 1.8 describes the concept of this strategy. In a normal period, the subsystem that
is composed of a component executes a mapped function without checkpoints during τ - the total
execution time of the mapped function on the subsystem. If designers apply the strategy with N
checkpoints, checkpoints are created between N points during the execution. Tc is the execution time
of the function in each check-point, Tc = τ

N+1 . At each checkpoint, the subsystem saves the current
state. τo is the time for checkpoint capture and storage. If a fault is detected, the subsystem returns
to the last checkpoint state and resumes the execution. The time for recovery from a checkpoint is
τr. Fault-detection checks need to be embedded in the code and executed before the checkpoints are
saved. This strategy is usually applied to processors by the ability to save theirs states, and rebooting
can be easily done through programming in the code.

1.3.4 Error correction code

The code correction is a famous technique to tolerate faults for the memory [22]. The main idea is that
some redundant bits are used to detect whether errors in the bits are stored in the memory and/or
correct the errors.

Figure 1.9 shows a typical model of a memory with correction code. A data word stored in the
memory owns initially N bits. Depending on the error correction requirements (capacity), there are
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Nadd encode bits to be added to data words. A single error can appear in any bit on N +Nadd bits.
In order to correct at least one error in a data word, the number of additional bits must satisfy the
inequality N +Nadd + 1 < 2Nadd .

1.4 Problem statement and contributions

In this thesis, we present a framework that explores the design space of embedded systems that incor-
porates fault-tolerance strategies. The main contributions are:

1. New meta-model integrating the fault tolerance for embedded systems. The meta-model is the
core of the Model-Driven Engineering method. This proposes to cover the fault tolerance; serves
as a bridge between the different tools, between different programming languages, and different
design stages, allowing designers to have a unified and coherent view of an MPSoC platform.
With the model, designers can configure the exploration according to their own level of expertise,
while also abstracting the complex and the specifics of the target architecture. This favors design
portability and reuse by providing models while abstracting low-level details of the considered
system.

2. New DSE method is composed of fault-tolerance design space generation, evaluation and opti-
mization. From the user specification, explored dimensions include hardware choice, task map-
ping, data mapping, and fault-tolerance-strategy choice. A new solution is generated and eval-
uated in terms of execution time, cost and, reliability level. Then, an optimization process will
explore the best solution among the design space.

3. Evaluation of heterogeneous MPSoC platform under the impact of transient and permanent
faults. This evaluation is a very important part of the DSE to help designers choosing the
appropriate strategy fault tolerance in regard to a compromise with the requirements of the
application.

4. New tool with a graphical user interface allows to model and run the DSE process. It simplifies
the process by interacting with the user through the graphical interface and automating the
process of exploring design space.

The remains of this manuscript is as follows:

• Chapter 2 gives an overview of the state-of-the-art, classification of existing approaches of Model-
Driven Engineering and Design Space Exploration;

• Chapter 3 introduces the meta-model of the MPSoC platform integrating the fault-tolerance and
the modeling tool with graphical user interface;

• Chapter 4 introduces our DSE algorithms;

• Chapter 5 presents the evaluation and validation of the method through the use of three case-
studies;

• Chapter 6 concludes this thesis by summarizing its contributions and providing perspectives and
future work.
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Chapter 2

Literature reviews

Abstract: In the previous chapter, we introduce the context of MPSoCs. Design space exploration
must meet the needs for fault tolerance of embedded applications. In addition, modeling of high-level
system components helps reuse existing modules and can reveal many potential solutions. Therefore,
in this chapter, we present the works that are related to the same context. In order to clarify the
high-level model-based designs, we review existing MDE (Model Driven Engineering) studies for the
MPSoCs as well as platform meta-models in the first Section. Next, we will have a deeper look into
different approaches of the DSE (Design Space Exploration). It should be noted that in this section
we will devote most of the time to analyzing the DSE studies related to the use of fault tolerance or
the reliability-awareness.
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2.1 Model driven engineering

MDE (Model-Driven Engineering) addresses the application and platform complexity and expresses
domain concepts effectively to alleviate this complexity.

A model is a structure that represents a design artifact as a relation schema, an interface definition,
a domain specific language (such as Extensible Markup Language (XML), Unified Modeling Language
(UML)) or a hypermedia document) [23]. In [24], George E. P. Box wrote: "All models are wrong
but some are useful". A model is not the considered entity and does not carry all characteristics of
an entity. Designers just choose which properties of an entity are important and put them into their
models to reduce the complexity of the interest entities (herein such as application, platform, and
components). Each model has to conform to a meta-model. A meta-model describes the various types
of model elements and how they are connected, arranged and constrained.

Figure 2.1 describes the relationship between the systems, models and technical space. A technical
space [25] is an environment with associated concepts, tools, required skills based on some algebraic
structures (tree, graphs, categories, etc.). Each technical space is based on a meta-meta-model and a
set of meta-models. Several companies and organizations (Object Management Group (OMG), IBM,
and Microsoft) are proposing several environments to support MDE.

For instance, OMG proposed Model Driven Architecture (MDA) as one of vision of MDE with
a set of OMG standards like Meta-Object Facility (MOF), XML Model Interchange (XMI), Object
Constraint Language (OCL), UML, etc [27]. In OMG MDA, the MOF and the collections of standard
meta-models and UML profiles play the role of a technical space.

A meta-model is the core of an MDE methodology. As such, there are many supports for the
model/meta-model building. The demand is to have a mechanism for the construction of valid models
i.e. the meta-model needs to be defined in a suitable way and abstraction level to be easily reused,
maintained and operated.

Figure 2.2 describes the classification of MDE. We classify according to the general purpose of
applying MDE according to literature studies [27, 28, 29]. However, this classification is not really
clear due to the overlap between the classes. But this classification makes it easier to see the MDE
application in the literature.

Accordingly, MDE is classified into two main categories: Model-Based Testing (MBT) and Model-

Figure 2.1: System, models and technical space [26].
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Figure 2.2: MDE classification.

Driven Development (MDD). In MDD, two classes were identified. One is called Model-Driven Software
Development (MDSD) and the other is Domain Specific Development Engineering (DSDE). After that,
the MDE methodologies can serve different purposes such as design exploration, simulation, code
generation.

2.1.1 Model-Based Testing

MBT (Model-Based Testing) is a technique for automatic generation of test cases using models [30].
MBT is defined as the automation of the design of black-box tests. Testing models are used to
represent the considered domain for the test input data, the desired behavior, testing strategies, and
the testing environment of the System Under Test (SUT). A testing model is usually an abstract, partial
representation of the desired behavior of the SUT. These models capture some of the requirements.
Then model-based testing tools are used to automatically generate test-cases from that model. Test
cases are functional tests and might then be mapped into executable tests that can communicate
directly with the SUT by the specific testing tools and frameworks.

As such, we can see that MBT is an interesting area of MDE but not in the goal we are aiming at
in the context of this thesis. Therefore, we will not continue to discuss this issue.

2.1.2 Model-driven development

The second category of MDE is Model-Driven Development. MDD focuses on the requirements, anal-
ysis, design, and implementation disciplines [31, 32]. The MDD approach’s problems are around the
System Under Study (SUS) at different levels of abstraction. The underlying motivation for MDD is
to improve the productivity and quality of the design process and of the final design. There are two
ways to achieve this goal: in the short-term, designers try to increase a product’s value in terms of
how much functionality it delivers; and in long-term, they try to reduce the obsolescence rate of the
product. As such, MDD uses the modeling and models for the design, development, and optimization
of products.
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MDD is used extensively in software design, called MDSD, where a typical representative of it is
Model-Driven Architecture. MDA [32] is a standard proposed by OMG and aims at software design,
development, and implementation. It provides guidelines and tools for structuring software specifica-
tions, models, and model transformations. MDA provides tools for defining and processing models,
namely Computational Independent Modes (CIM), Platform Independent Model (PIM), and Platform
Specific Model (PSM). CIM is built as a business or domain model that presents the required features
of the SUS and in the environment where it must operate. It hide all information technology specifi-
cation to remain independent from the system implementation or the system deployment. PIM is the
model of the functionality and behavior, which enables the mapping to one or more platforms. PSM,
as its name, suggests a model that combines the specification in the PIM with platform-specific detail
to determine how a SUS is deployed on a particular platform.

DSDE (Domain Specific Development Engineering) is another class of MDD, which supports
domain-specific knowledge to define relations between models and how these models could be re-
fined. Basically, the way the DSDE works is quite similar to MDSD, and even some of the MDA
techniques have been applied to DSDE studies. However, unlike MDSD, DSDE does not rely on stan-
dards and DSDE can be used not only for softwares, but also for hardware, electrical, mechanics parts,
and embedded systems. At a more detailed level, DSDE studies can be used for purposes such as
design exploration, simulation, code generation, which corresponds to the research objectives of this
thesis. A meta-model plays a crucial role in any MDE method. Therefore, the meta-model review,
especially platform meta-models, of the following research is one of our priorities. This subsection
presents some DSDE studies for MPSoC development. These works produced different meta-models
suitable for different objectives on different MPSoC architectures.

Metropolis [33] is an environment for electronic system design, in which tools are integrated through
an API and a common meta-model. The meta-model of Metropolis represents the function of a system
being designed at levels of abstraction, represent the architectural targets, allow mapping between
different platforms. The Metropolis infrastructure captures application, architecture, and mapping
that supports the simulation and the synthesis manually. The meta-model allows a unified view
of both functional and platform aspects. This can be an advantage when integrating and mapping
functionalities into the platform but is also a barrier to develop these two distinct aspects.

Within the GASPARD framework [34, 35], the authors propose hardware meta-models correspond-
ing to several design abstraction levels. The first one describes the hardware architecture at the
Cycle-Accurate Bit-Accurate (CABA) level (Figure 2.3a) and the second is at the Timed Program-
mer’s View (TPV) level (Figure 2.3b). The CABA level meta-model is described at the clock cycle
level. In this meta-model, a given architecture is composed of hardware components from the appro-
priate library. These hardware components communicate with the others through initiator and target
interfaces. These interfaces are described at the signal level and define a communication protocol. This
model allows for high-precision simulation. A micro-architectural simulator gives a number of cycles
for the performance estimation of a given platform. The TPV meta-model is at an higher abstraction
level. Details related to the computation resources (such as cache, processor control unit) and to the
communication are omitted. At this level, the performance simulation is implemented by counting
each component activity such as the number and types of executed instructions for the processors; hits
and misses for the caches; the number of transmitted/received packets for the interconnection network;
the number of read and write operations for the shared memory modules, etc. The execution time
estimation in this level needs to count from the execution time of each activity. The execution time
of each activity is estimated from the CABA platform. Therefore, the meta-models are quite detailed
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a) at the cycle-accurate bit-accurate level. b) at the timed programmer’s view level.

Figure 2.3: Hardware architecture meta-model proposed by GASPARD [34] describes the hardware
architecture at a) the clock cycle level and b) the timed programmer’s view level.
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Figure 2.4: Application and platform meta-model for the heterogeneous multiprocessor architectures
with time-triggered execution paradigm [38].

and effective for the performance simulation of a hardware architecture. The proposed meta-models
are oriented towards SystemC code generation and simulation. This MDA-based study has some
similarities with our approach in terms of modeling. However, due to their meta-models defined at the
signal level and the instruction level, models may be quite complex and time-consuming to evaluate a
solution for exploration purposes.

COMPLEX [36] is another methodology using MDE for the design space exploration of embed-
ded systems. This methodology models applications, platform architecture, scenarios, environments,
physical information by the UML/MARTE models. Then the SCoPE+ simulation infrastructure [37]
in SystemC environment supports the solution evaluation. Finally, an optimization process is deployed
on the Multi-Objective System Tune (MOST) tool, which enables discrete optimization specifically de-
signed. This methodology does not propose its own meta-model for modeling but uses UML/MARTE
modeling. This is on advantage because it reduces the development time of the modeling process.
They build a graphical tool that allows to produce models of the system. Their methodology did not
mention the fault tolerance in the embedded system development. However, this work also gave an
idea on integrating the exploration process into a search engine available in the literature and building
a modeling graphical tool.

In [38], the authors present a framework that provides a design flow for fault-tolerant embedded sys-
tem design. Their approach focuses on heterogeneous multiprocessor architectures with time-triggered
execution paradigm. A merged class-diagram of application and platform meta-models is described
and shown in Figure 2.4. Resource classes in the bottom provide services to other components in the
system. The access policy to a resource is defined on an arbitration object. There are 3 types of
arbitration: design-time assignment, design-time scheduler, run-time scheduler. The Allocation class
describes the fraction of a resource that is used to satisfy a given request (such as a time slot on a
time-triggered bus or a storage amount in a memory component). Request class represents the en-
tities that need to use services from the resources. The principle of the considered system is based
on a time-triggered bus. They also propose a meta-model used for the design exploration and
code-generation objectives. Thus, the meta-model focus on the communication description through
CommunicationEndPoint, CommunicationTransport, and many classes derived from these two classes.

In a global perspective, this study shares our concerns, but their implementation way is relatively
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Figure 2.5: PAM metamodel [40].

different. Firstly, the combination of application and platform into one meta-model allows building
mechanisms for mapping and linking between application elements and platform components. It is
useful for modeling the dependencies between the application and the execution platform, but this
limits the reuse of platform models for other applications. Especially, if designers want to have an
in-depth look at the platform aspect, this meta-model can be difficult to reuse because it is strongly
dependent on the application model. Secondly, the fault-tolerance aspect is not integrated into their
meta-model, which is difficult to extend to many other strategies.

The HIPAO2 [39], stands for Hardware Image Processing system based on model-driven engineering
and Aspect-Oriented modeling version 2, is a methodology that performs hardware/software partition-
ing and generates PSMs. The HIPAO2 methodology takes advantage of MDE for the development
of image processing algorithms. However, due to limitations in the considered application, reusing
HIPAO2 to different types of applications is not easy. In addition, HIPAO2 does not handle the fault
tolerance. This study shows the advantages of MDE in an embedded system discovery, nevertheless it
is not really our concerns.

In [40], authors proposed a model-driven hardware-software co-design framework that allows map-
ping a Synchronous Dataflow (SDF) application on a multiprocessor hardware platform. The frame-
work proposes a meta-model for PAM (Platform Application Model) as described in Figure 2.5. The
PlatformApplicationModelRoot class on top represents a platform as a whole. A platform is composed
of a set of Processors. The processors are partitioned into groups of voltage/frequency islands. In a
same voltage/frequency island group, processors run at a common voltage/frequency. Moreover, the
characteristics of a processor are associated with its type (ProcessorType class). A processor is associ-
ated with the working or idle states (ProcessorState class). From the processor state and its frequency,
the roof can estimate the power consumption. ProcessorStateChange class describes the transition
overhead between frequencies for each processor i.e. the transition between a pair of source and target
of processor state. This framework focuses on energy-optimal scheduling objective and the meta-model
is used in the model-checking simulation. The processor’s state is suitable for simulations, but it is
not necessary to explore the space of mapping solutions. Moreover, it lacks information about memory
and communication components.
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Figure 2.6: Meta-model proposed by ModES [41].

The ModES design framework [41] provides high abstraction meta-models representing MPSoC sys-
tem concerns in specific aspects – application, platform, mapping, and implementation. The framework
aims at design exploration and code generation. Figure 2.6 shows one of the platform meta-models
proposed by ModES. They have several variants of this meta-model depending on the specific purpose
of the discovery. There are available hardware and software components in a Platform. The software
component characterization is obtained when the component code is compiled for a target architecture.
The hardware component specification is obtained from the synthesis process and execution cycles. A
Hardware type is classified as Communication, Memory or Processing corresponding to communication,
storage, and processing resources respectively. Moreover, a Processing component can be a dedicated
component (no software can be executed on), or a programmable component (needs a software). These
components offer Services for an application through a set of interfaces. In general, these meta-models
can partially fit into our goals because they are used to move towards the goal of exploring design
space. Especially, these meta-models are built to allow the reuse of components and hardware, and
are abstract enough to explore as many alternatives as possible. They also try to create platform-
independent models of applications. As a consequence, this platform meta-model has a certain degree
of independence, suitable for expansion or reuse. However, we can see in Figure 2.6, that they look at
the system up to the Instruction and DataType levels. This results in their evaluation process on a
solution being more accurate but longer lasting. In fact, the DSE process ran 3 hours for 5000 solutions
meanwhile there is an estimate of 5.89× 1041 solutions. So, to explore all this space, it takes a lot of
time. This can be a disadvantage as we can miss the good solution while spending too much time on
less attractive solutions. Moreover, no fault-tolerance is proposed in the ModES framework.
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Table 2.1: MDE studies for embedded system development.

Name/authors Objectives Meta-model Level Fault-tolerance Ref

Metropolis simulation, synthesis Yes Multi No [33]
GASPARD code generation, simulation Yes Multi No [34]

J. Huang et al. DSE Yes data-transmission Yes [38]
COMPLEX simulation, DSE No data-transmission No [36]

PAM simulation Yes state, voltage No [40]
HIPAO2 DSE, code generation Yes system No [39]
ModES DSE, code generation Yes instruction, system No [41]

This Section presented the existing MDE proposals in the literature. It can be seen that works have
been developed for a variety of purposes. Table 2.1 summarizes the interesting studies of MDE in the
literature. However, none of them proposed a meta-model integrating the fault tolerance to develop a
highly reliable MPSoC platform. These MDE frameworks mainly focus on building software systems
or software products. Elements in these frameworks on the platform or hardware architecture play
only a role on the execution, almost fixed, or make them as independent of the software as possible.
The primary goal is the code generation or the simulation of the system. Not many studies use MDE
for the purpose of developing the architecture aspect in an MPSoC system.

2.2 Static and dynamic exploration

In this section, we discuss the existing works of design space exploration for MPSoCs. The MPSoC
exploration process starts with a given application, available resources and it ends when a solution is
found. The solution points out how an application is mapped to a platform such as the mission of each
component in the system, assignment and ordering of tasks or functions of the given application and
their communications onto the platform resources with regard to some optimization criteria (energy
consumption, compute performance, reliability or combination of the criteria (hybrid) ).

Figure 2.7: Classification of exploration methodology.
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Based on the workload scenarios, the mapping can be classified in design-time or run-time method-
ology [1, 42, 43]. As the mapping process is the core of the DSE process, this classification can also be
generalized to the DSE as the second level (from the top) of Figure 2.7. These methodologies target
either homogeneous or heterogeneous multi-processor systems.

The design-time methodologies are suitable for pre-defined applications and static platforms. They
do not allow the insertion of new elements into the system at run-time. The resources on which the
given application is executed is decided before its execution and is not changed thereafter. As the
approach is performed with known computation and communication behaviors and a static platform;
makes it easy to analyze, explore, and select a design solution; thus optimizing the overall exploration
time of the solution space. But this approach is not flexible in case of applications that presents many
fluctuations in the execution process.

Conversely, a run-time methodology maps a task or functions of an application on resources by
observing the workload of a system at run-time. The assignment of tasks on a platform can be changed
anytime during execution of the application if the user requirements change or a new application has
entered into the system. This kind of methodology can satisfy the performance requirements incurred
at the run-time. The methodology can use system information to make decisions as compared to
the design-time mapping methodologies. However, this advantage becomes a barrier to the overall
execution time of the system because it takes time to make a decision. In some scenarios, some run-
time decisions force to move some tasks/functions from one processor to another. This may require
to reconfigure processors and/or the whole system. The reconfiguration depends on a reconfiguration
module that can cause errors and reduce the overall reliability of the system.

The main objectives of the exploration are usually energy consumption, temperature management,
performance (execution time), resource utilization and reliability. In particular, the studies on the
reliability as well as the fault tolerance of the system account for only a small portion of the MPSoCs’
DSE research. In the two next subsections, we discuss some exploration studies of design-time and
run-time with the popular-objective studies and then in the Subsection 2.2.3, a state of the art of fault
tolerance DSE is presented. We briefly describe the literature studies of interest with regard to our
work. At the end of each section, we will highlight results and strategies proposed by the literature
studies and we provide comments about their applicability to our work and how we position this thesis
in the field.

2.2.1 Design-time exploration

In the last decade, the static exploration works account for a large proportion of DSE’s research. This
shows that this technique is still effective in looking at the characteristics of the system as well as
allowing for finding and exploring potential design solutions. It has a global view of system at the
early-design phase which does not take much time to make a decision.

Figure 2.8 describes the general processing flow of the design-time exploration. All the system
settings are ready before the system is implemented and runs. The dashed line from the Optimization
block to the Mapping block indicates that the mapping, evaluation and optimization processes can be
performed simultaneously or separately i.e. designers can place the mapping and the evaluation into the
optimization process, then each mapping solution is evaluated, improved and optimized immediately;
or they can give a set of output solutions from Mapping and use them as inputs of the Optimization.

One of the optimization goals is about energy consumption. Various indirect or direct means are
used to achieve this goal. In [44], the minimization of energy consumption on a 2D Network on Chip
(NoC) architecture needs to meet the real-time requirements for a given embedded application. The
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Figure 2.8: Design-time exploration chart.

system energy can be estimated directly through the predefined energy consumption of a task running
on a PE, the predefined energy consumption of communication. The exploration method considers the
mapping (a PE on a NoC tile, a task on a PE) and the scheduling under a time constraint. They use
SA (Simulated Annealing) for solving their combinatorial optimization problems.

S. Cao et al. considered the thermal problem in the design space [45]. They proposed a multi-
application task mapping scheme to balance workloads in order to reduce peak temperature on homo-
geneous NoC many-core systems. The temperature and energy model is based on the mechanism of
frequency and voltage scaling of each core. The mapping is then improved by repeatedly scaling tasks
to lower voltage/frequency levels and migrating tasks.

Besides, Dawei et al. [46] also proposed a method in which the voltage scaling and the frequency
tuning of a processor are combined to manage overall system power consumption with a two-step
approach. The application mapping is done in the first step to minimize the total energy consump-
tion for communications. With the mapping achieved, the second step derives a scheduling for the
mapped application and simultaneously set the voltage levels for tasks, set the link frequencies for
communications and satisfy the precedence constraints of the given application.

Thus, we can see that energy consumption depends on the power consumption per component. The
power consumption per component is predetermined and the studies can minimize the overall energy
consumption by optimizing the component utilization or reducing connections/messages exchanging
inside a system. Besides, the energy is also a mathematical function of frequency and voltage. The
studies can reduce the energy consumption by looking for a solution with a best configuration of
frequency or voltage.

The popular criteria in the DSE are the performance and resource utilization. J. Gonzalez-
Dominguez et al. [47] used Servet which is a suite of benchmarks to obtain the important hardware
parameters to support the automatic optimization of parallel applications on multi-core clusters. A set
of parameters (message-passing, shared memory, and partitioned global address space) is detected by
the Servet benchmarks. Then, the impact of the information on the mapping is analyzed to minimize
the communication cost and maximize the memory access throughput.

Z.J. Jia et al. [4] examined the impact of mapping of a DAG-formalized application on a variety of
issues of heterogeneous MPSoC such as: efficiency in the utilization of Processing Elements (PEs), the
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Table 2.2: summary of design-time exploration studies on multicore/multiprocessor architecture.

Authors Ref Architecture Objective Optimization Year
Y.-J. Chen et al. [44] 2D NoC

Energy

SA 2009

J. Huang et al. [49] 2D NoC Timing Adjustment
heuristic 2011

Haytham et al. [50] 3D NoC GA 2014
Ke Pang et al. [51] 2D NoC Not used 2015
Amin et al. [52] 3D NoC Not used 2016
S. Cao et al. [45] NoC Heuristic algorithm 2016
Dawei et al. [46] NoC-based MPSoC Earliest Task First & GA 2016
P. Mehrvarzy et al. [53] 2D NoC Not used 2016

B. Ouni et al. [54] MPSoC Dynamic Slack
Reclamation 2017

J. Gonzalez-Dominguez et al. [47] Multi-core

Performance
and

Resource
utilization

Not used 2012

ASAM project [55] Heterogeneous
MPSoC Not defined 2013

M. Arjomand et al. [56] NoC MOGA 2013
A. Bonfietti et al. [57] MPSoC Tree search 2013

Z.J. Jia et al. [4] Heterogeneous
MPSoC GA 2014

A. Cilardo et al. [58] Heterogeneous
MPSoC Answer Set Programming 2014

X. An et al. [48] MPSoC Exhaustive & NSGA-II 2015

M. Norazizi et al. [59] Homogeneous
2D NoC GA 2015

R. Brillu [60] MPSoC Tabu search 2015
A. Aravindhan et al. [61] cluster-based NoC Depth First Search (DFS) 2016

load unbalancing in PEs, the number of memory accesses and/or the system load in network elements.
Their two separated phases are: the first one is the pruning phase which uses genetic algorithms to
explore the design space associated to the sub-problems of partitioning, scheduling and mapping; and
the second one is the simulation phase in which a simulator evaluates more accurately each potential
solution of mapping obtained by the first step. To the best of our knowledge, this is one of the few
studies considering the effect of mapping of data into memory on the system behavior.

X. An et al. [48] presented a high-level DSE framework for the design of adaptive data-intensive
applications on MPSoCs to find out a set of design points optimizing the time and energy consump-
tion. Exhaustive and Non-dominated Sorting Genetic Algorithm-II (NSGA-II) techniques are used to
support the exploration. A multiclock modeling of both software and hardware has been considered
by exploiting the notion of abstract clocks. An application is represented according to its event oc-
currences with their precedence relations. A set of parameters is used to evaluate a design such as
execution time of a task, usage ratio of a PE (ratio of the number of busy and idle cycles of clock),
energy consumption, and used local memory space communicating between tasks.

In literature, the performance and resource utilization are often considered together when exploring
a multi-core system. Designers often want to use the least resources but achieve the highest performance
in terms of time, throughput, or communication cost. Therefore, we had a brief look at the design-time
exploration studies with the popular objectives except reliability (which we discuss in more detail in
the last Section). Table 2.2 summarizes the design-time studies on multi-core architecture. These
studies are very interesting to give us ideas in terms of characteristics to explore a design solution in
the design-time:

• many different platform structures are considered such as 2D-Mesh NoC, 3D-Mesh NoC, homo-
geneous/heterogeneous MPSoCs. However, by solving problems in 2D Heterogeneous MPSoC,
we can all expand to the other types of architecture;
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• several objectives are primarily considered such as energy, performance, resource utilization. To
evaluate these objectives, designers need to qualifies these objectives This quantification process
is mostly deployed indirectly through parameters such as: temperature, voltage, frequency, time,
failure rate, resource quantity, workload;

• many supporting optimization algorithms are used for the exploration process such as heuristic
algorithm, branch and bound, exhaustive, SA, etc;

• almost problems are described as Integer Linear Programming (ILP).

2.2.2 Run-time exploration

Unlike the static exploration, the run-time exploration has an online viewpoint which allows the system
to be sensitive to the real-time requirements of the given application but it is time-consuming to make
decisions as well as uncertainty as compared to the static exploration. Figure 2.9 describes the general
view about the run-time exploration. A static Mapping solution can be initial; then the system starts
running the application (solid line). The dynamic evaluation and the optimization/re-mapping are
performed to modify parameters of a running application. The dashed line describes that the dynamic
evaluation and the mapping can be performed from the first phase of the design and then wait for a
new application into the system, and reconfigure the system; so each decision on the system operation
is made online.

The performance is one of the issues that are of great interest in dynamic exploration. This is
understandable because this aspect is necessary when performance requirements of applications often
change in real time.

There are four communication-aware mapping algorithms based on the packing strategy presented
in [62, 63], A.K. Singh et al. performs a task mapping and the four run-time task mapping heuristics
for a heterogeneous MPSoC with an application modeled as a DAG. The initial tasks are implemented
with software tasks (static aspect) so these are mapped onto software processing elements which are
Instruction Set Processors (ISPs). The run-time upcoming tasks may be hardware tasks that need to
be in re-configurable areas or in dedicated Intellectual Property cores (IP-cores).

Figure 2.9: Run-time exploration flow.
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Table 2.3: Summary of run-time & hybrid exploration studies on multicore/multiprocessor architecture.

Authors Ref Architecture Objective Mapping/optimization
algorithms Year

A.K. Singh et al. [63] Heterogeneous MPSoC

Performance

Heuristic algorithm 2010
A.J. Page et al. [64] Heterogeneous processor Heuristic algorithm 2010
T. Maqsood et al. [69] NoC-based MPSoC Nearest neighbor heuristic 2015
X. Zhou et al. [70] NoC 2 level task mapping 2017

C.-H. Huang et al. [71] NoC-based
re-configurable system

Elastic Superposition
Mapping 2017

G. Castilhos et al. [65] NoC
Energy

Hierarchical heuristic
algorithm 2016

Navonil C. [72] NoC heuristic algorithm 2017
M.F. Reza et al. [73] Heterogeneous NoC heuristic algorithm 2018
Giovanni M. et al. [66] Multi-core Combination of

run-time and
design-time

NSGA-II 2013

B. Khodabandeloo et al. [68] MPSoC Robust optimization
stochastic optimization 2014

W.Quan et al. [74] MPSoC Probability distribution
prediction 2016

A.J. Page et al. [64] proposed a GA-based methodology to schedule a set of heterogeneous tasks
on to a set of heterogeneous processors in an effort to minimize the total execution time. To reduce
the probability of processors becoming idle while waiting for a schedule to be generated, they use
8 heuristics such as max-min, min-min, max lightest loaded, min lightest loaded and four variants of
the four previous heuristics. Each of them is suitable for different situations decides how a task is
mapped on a PE.

Energy is also a concern in dynamic exploration. With [65], G. Castilhos et al. proposed a
hierarchical heuristic to make a task mapping decision at run-time for NoC-based many-core systems.
The hierarchical task mapping is similar to the cluster-based mapping technique in static exploration.
It consists of 3 steps: 1) define a cluster to map a required application; 2) select processing elements to
map the application initial tasks inside the cluster, initial tasks do not have dependencies on other tasks
to start the execution; 3) select processing elements to map non-initial tasks. This hierarchical task
mapping makes a trade-off between the energy consumption and the communication volume between
tasks.

Some studies combined the static and dynamic methodologies to solve the exploration prob-
lems, as in [66], Giovanni M. et al. proposed a combined design-time/run-time framework. The design-
time methodology uses NSGA-II to determine a set of Pareto optimal configurations representing the
best trade-offs in terms of power consumption and throughput then a geometric average function is
used to choose the final hardware configuration. The run-time methodology manages the resource uti-
lization to maximize the performance under a specified power constraint by the a resource-allocation
policy derived from [67], which is done on a periodic-basis. It means that allocated resources are
reserved to applications within a time window with a defined size and the resource are not reallocated
to other applications within the window.

Unlike Giovanni M. et al. with two quite independent design-time and run-time parts, B. Khoda-
bandeloo et al. [68] presented a temperature-aware quasi-static task mapping-scheduling framework for
the performance maximization and temperature peak minimization. In the quasi-static methodology,
more than one mapping-scheduling candidates are generated at design time and then one of them is
selected based on online parameters at runtime. Robust optimization algorithm is used to generate
the candidates.
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Thus, we have looked at the main points of the dynamic DSE in the last decade. Table 2.3
summarizes the DSE studies of run-time and hybrid mapping on multi-core/processor architectures.
The foundation of dynamic exploration is based on predictive models to make decisions at run-time.
Evolutionary and heuristic algorithms for making decisions are widely used in this field. Similar to the
static DSE side, applications are modeled with familiar tools such as DAG, Application Characteristic
Graph (ACG), Synchronous Data-Flow Graph (SDFG), etc. However, these dynamic DSE studies have
a limit about guarantee to find a solution at the run-time. For example, when a problem occurs on
a platform, run-time mapping strategies may be overwhelmed when problems exceed the expectations
of conventional heuristics. This is quite worrying that the application requires a high reliability.

2.2.3 Fault-tolerance and reliability-based exploration

After having a comprehensive view of static and dynamic DSE studies with various common goals, this
subsection is devoted to reviewing studies on the fault-tolerance and reliability-based exploration. This
kind of DSE is just one of the exploration purposes as shown in Figure 2.7 but we want to dedicate
this section to take a closer look at the field onto which our works will focus hereafter.

Lin Huang et al. in [75] introduced a task allocation and scheduling process methodology for
the lifetime (aging problem) maximization during a number of application periods under a timing
constraint. To determine a periodical task allocation and schedule that is able to optimize the execution
time of tasks on processors and therefore, maximize the lifetime of the MPSoC embedded system. The
lifetime is measure by Mean Time To Failure (MTTF). SA is used to perform the optimization process.
The mapping is implemented at design-time. Moreover, each task must be finished before a predefined
deadline. The deadlines can be relaxed by 0%, 5%, 10% respectively. Their MPSoC platforms are
composed of the number of processor cores ranging from 2 to 8. Relaxing the deadline by 5%, the
MTTF improvement on heterogeneous 6-processor platform is maximum 63.31%. With relaxing by
10%, the MTTF improvement on the same platform is up to 81.81%. This result is really meaningful,
but it does not mention the reliability of memory components. To take an example, suppose we have
an MPSoC platform containing one processor and one memory. Suppose MTTF of the processor is 10
years, MTTF of the memory is 1 year. That is, even if we are able to improve the reliability of the
processor, the memory will be the lifetime bottleneck of the MPSoC because it ages much faster than
processor. Moreover, the transient faults are not mentioned. A platform can have a very long lifetime,
but during its operation it is constantly experiencing transient errors, the system outputs are also less
reliable. However, the use of SA in this research showed the effectiveness to explore a large solution
space (up to 1010 solution).

The failure recovery mechanism used in [76] states that the tasks on a permanently faulty processor
is moved to any other available processor. The study consider streaming applications with a processor-
pool based multi-core system. Dynamic Programming (DP) is used to find the optimal solution in terms
of throughput performance at compile-time. All possible scenarios of remapping are stored in memory
at compile-time. When a permanent fault occurs on a processor at run-time, a new task mapping
among the stored mapping scenarios is chosen by a specific migration-cost function. The study used
an interesting fault tolerance mechanism. However, if a temporary fault is present, this mechanism can
be disturbed and ineffective and the storage overhead of the proposed technique is significant. As they
mentioned, the numbers of tasks and processors in the system, T and N respectively, there are a total
of T × (N !) fault scenarios. if T = 30 and N = 10, there are about 108 × 106 solutions, the storage
requirement is really big. In fact, as they showed in the research, the algorithm fails for more than a
23-processor platform since the memory requirement outgrow the physical limit of the host machine.
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In the scope of the context we have introduced, these study does not have much in common with our
objectives except for the idea of permanent fault.

R.A. Shafik et al. [77] proposed an optimization technique which is composed of 3 step: 1) power
minimization; 2) soft error-aware application task mapping; 3) and iterative assessment. Firstly, they
use the Dynamic Voltage/Frequency Scaling (DVFS) technique [78] to find a minimization solution for
a given Soft Error Rate (SER) and real-time constraint. As mentioned in the researches, soft errors
have been observed that the rate of these faults increases exponentially as supply voltage decreases,
because the number of particles with low energy, which can cause error in small critical charges, is
much more than the number of particles with relatively higher energy. Reliability is a function of the
supply voltage. Therefore, a proposed task mapping technique minimizes transient faults experienced
for the chosen voltage scaling solutions. Finally, the resulting power consumption and Single-Event
Upsets (SEUs) experienced are iteratively assessed until an optimized design in terms of minimized
power consumption and improved reliability meeting the real-time constraint. These studies explore
the design space at design-time. Their technique is evaluated by a case study of MPEG-2 video
decoder (11 tasks) with four processing cores. The design produced in a task mapping algorithm gave
24.7% less number of SEUs experienced than the design produced in a soft error-unaware optimization.
This reduction of SEUs is achieved at the expense of 5% higher power consumption compared to the
design produced in in the soft error-unaware optimization. The results proved the impact of task
mapping on reliability of an MPSoC application. These studies share the same objectives with us
about the impact of task mapping on the overall reliability of a system. But their direction is the
reliability improvement by voltage modification without using any fault tolerance strategy on a NoC
platform. Changing the voltage of a system is not easy, and sometimes it is only possible to apply
voltage of components at the manufacturing stage. The reliability of memory is not considered in these
studies. Furthermore, just considering transient faults may not be comprehensive in the context in
which we are looking.

In [79], Bolchini and Miele present a transient-fault tolerance DSE approach that allows meeting
fault management requirements. The given application is composed of a set of tasks with different
types of fault management constraints: fault tolerance, fault detection, and fault ignore. Their DSE
methodology uses multiple fault detection and tolerance techniques and tries to achieve the optimal
execution time. In the general context, this study wants to improve reliability by using fault tolerance
strategies on an architecture at design-time. A reliability level is not considered, but they care about
performance of an application when applying fault-tolerance strategies to tasks with different scenarios
such as 100%, 75%, and 50% of tasks tolerated faults. The case-studies are invested such as 20, 40,
60, or 80 tasks mapped on maximum 6 processing units. The execution time of the 70% scenario
improves 4 to 17 percent than the 100% scenario; and the execution time of the 50% scenario improves
8 to 33 percent than the 100% scenario. Clearly, the more fault-tolerance strategies we use, the more
performance we have to lost. Therefore, the performance, especially the time execution, needs to be
considered in the exploration process. However, in this study, to choose which strategy, the application
needs to provide fault-management requirements. It implies that each task in the application must
have a label that states the type of fault tolerance. This is not impossible, but in the early stages of
design, the designer does not have much information. In addition, such limits may miss out potential
solutions that meet the requirements of the application.

Shin-Haeng et al.’s study [80, 81] looks for the optimal solution minimizing the average power
consumption under bandwidth, schedulability, and reliability constraints. The considered fault tol-
erance strategies are the re-execution and the replication (active and passive) that address the case
of transient faults. The active replication always forces all replicated tasks executed simultaneously
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at runtime, in passive replication, on voter requests, the cloned tasks are activated. These passive
techniques may cause uncertain behaviors due to the accidental occurrence of incidents, thus this may
cause reducing the accuracy of the DSE and optimization process. The study adopts an Evolutionary
Algorithm (EA) based optimization. The static mapping is applied at design-time. This study use
the Safety Integrity Level (SIL) standard as a constraint. SIL are defined in IEC 61508 [82], is used
to specify the criticality levels of an application. In case-studies, the different level of SIL are applied.
When the system is maximally enhanced for reliability with all applications having SIL 4, the power
dissipation increased by 17% compared to different SIL levels. It is very significant to apply critical
standards to evaluate an application and this is a suggestion for our research. However, in [81], the
low-criticality tasks are dropped to give place to the high-criticality ones during the mapping process.
This can never be allowed in real life when the application requires the full implementation of the
functions, especially for critical applications. Moreover, this work focuses on implementing the fault
tolerance of processors but not memory nor interconnections.

The work in [83] focuses on the fault tolerance DSE on Time-trigger NoC-bus multi-processor
architectures. The DSE is employed at design-time. The processors directly exchange messages,
so the data mapping process is not considered. Memory is set by default within each PE. That
means the fault tolerance is not considered on memories, nor interconnections. Redundancy replicates
tasks into multiple copies (replicas). The replicas can be executed on the same component (temporal
redundancy) or distributed to several components (spatial redundancy). The reliability analysis focuses
on computing the system-level reliability of a given design under the impact of transient faults. The
estimation of the overall reliability is summarized as the occurrence probability of all transient fault
scenarios. It can take a lot of time to find a solution if the number of tasks and processors in the
system increases. The permanent faults are tolerated by migrating a task to another processor if its
initial processor fails. The study considers the permanent fault tolerance as a hard constraint instead
of an extra optimization objective. Their DSE mainly revolves around setting up scenarios for moving
tasks on microprocessors.

There is a serie of studies of A. Das et al. that present a fault-tolerance task-mapping DSE process
on MPSoCs at design-time. In [84, 85], the application remapping is considered. When one or more
cores fail, the system restarts and a mapping with a reduced set of resources is fetched in such a
way that the MTTF is maximized. All fault-scenarios mappings are pre-stored in memory at design-
time. If it is acceptable, one can have a very large memory space to store all of these scenarios,
this approach may not be suitable for applications that require continuity because the reboot phase
for remapping can cause critical interruptions. The study in [21] is among the few studies examining
the effects of both types of fault on a homogeneous MPSoC accompanied a shared re-configurable
area. The check-pointing approach is used to eliminate the impact of transient faults for the software
tasks (software tasks run on General Purpose Processors (GPPs), while hardware tasks run on Field
Programmable Gate Array (FPGA)). No tolerance strategy is applied for permanent faults on General
Purpose Processor (GPP) processors. Moreover, the re-configurable area is indicated to manage the
fault by replicating the hardware implementation. However, there is no evaluation on the area to show
how to use this technique and how it affects the system. The role of the re-configurable area in this
study involves only the task mapping. A Gradient-based Design Space Exploration (GDSE) algorithm
is proposed to solve the optimization problem. For experimentation, ten different applications on
a homogeneous multiprocessor systems consisting of four cores with a fixed reconfigurable area are
explored in terms of the mean time to permanent failure. At each application, the permanent fault
aware mapping and transient fault aware mapping are used for comparison. The result showed that
the transient fault-tolerant technique (checkpointing) lead to a reduction in mean time to failure
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(permanent) as compared to the permanent fault preventive technique (task migration). This confirm
the tradeoff between two type of faults. Because the reliability considering transient faults increases
with an increase in the number of checkpoints, that is predicted by Equation in Equation 1.4 and
Subsection 1.3.3. But, the reliability considering permanent faults decreases due to an increase in the
expected execution time which increases processor aging, as predicted in Equation 1.3. The relation
between permanent and transient faults is used as a reference in our experiments. In the studies, many
fault-tolerance strategies are taken into consideration. Both types of faults (transient and permanent)
were taken into account. However, the studies focus on PE have not mentioned other types of elements
in the system such as memory, bus. And so, the impact of data allocation on the overall reliability has
not yet been evaluated.

In [86], the authors proposed a DSE methodology to analyze three transient fault tolerance strate-
gies (active and passive replication, and check-pointing with replication) in terms of execution time,
deadline and energy consumption. In active replication, the replicas are executed along with the origi-
nal task. After the completion of the tasks, the outputs from all the tasks are fed into a voter to check
errors. With passive replication, the replicas are not executed at the same time. First the original
task and one of its replica task are executed, then a checker is used for error detection. If any error
is detected, another replica is executed. This study focuses on the specified NoC architecture which
has a communication infrastructure containing routers and links that helps in transmitting messages
between the source and destination PEs. Each PE owns a fault-detection sensor. There is a manager
core that hosts the real-time operating system and manages the fault events from the general PEs.
For experimentation, applications with different topologies and number of tasks varying between 5
and 20 are mapped in a target platform of 8 × 8 2D Mesh NoC. As shown in the results, with the
active replication, number of tasks meeting their deadline is very high (almost 100%). Meanwhile,
the fault-tolerance strategy integrated check-pointing has ≈ 70% of tasks satisfying the deadline. It is
because, the execution time increases by checkpoiting a task. And in the event of occurrence of faults,
the execution segments affected by faults are re-executed. This study does not evaluate reliability level
however it does give us a view into the dealine satisfaction of fault tolerant strategies in presence of
transient faults.

2.2.4 Analysis

In Section 2.2.3, we looked at each specific study related to improving reliability and fault tolerance.
Now, herein, we will analyze the overall trend in this field.

Figure 2.10a describes the ratio of DSE types of studies among the reliability-aware studies we
reviewed. The run-time accounts for only 4% of all considered DSE studies. Although this direction
has certain benefits (such as sensitivity to real-world situations), the barrier of time and effectiveness
makes it less applicable. It is easy to see that the Design-time has always dominated the field of
system-level DSE because of the flexibility, the less-time-consuming and the acceptable accuracy.

Figure 2.10b describes the ratio of different types of fault models among the reliability-aware studies
we reviewed. There is a small note here that "N/A" means that some authors do not specify the fault
type they focus on in their study. It can be seen that there are not too many differences between the
numbers of studied fault models. Each type of fault affects different behaviors on the system. However,
in our view, evaluating the reliability of a system should pay attention to both types to have a more
comprehensive view.

Figure 2.10c describes the using of fault tolerance strategies among the reliability-aware studies we
reviewed. There are two general trends for improving reliability: the use of intermediate parameters
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(a) Types of exploration. (b) Considered types of fault.

(c) Fault tolerance strategy.

Figure 2.10: Review the reliability-aware DSE studies.

and the use of fault tolerance strategies. The reliability of a processor/processing units is a function
of some intermediate parameters such as temperature, voltage, frequency, execution/communication
time. The functions can be found in FIDES [6] and MIL-HDBK-217 [7]. 38% of the studies tries to
configure, set up these parameters in the design phase to maximize the reliability of an MPSoC system.
More than 60% of studies use at least one fault-tolerance strategy to increase reliability, but almost
studies concern only one of the two fault types. Exploring a design space with different fault-tolerance
strategies for different fault types will be integrated in our DSE methodology.

Table 2.4 summarizes the reliability-based DSE studies in the last decade. To the best of our
knowledge, no DSE study has addressed the comprehensive effect of the mapping (task to process,
data to memory) on the reliability of a heterogeneous MPSoC system. And no one has consider the
fault tolerance for memory and connection components in the MPSoC DSE process.
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Table 2.4: Summary of reliability-based application mapping studies on multiprocessors architectures.

Authors Ref Platform type DSE Application
Model Fault Fault tolerance Optimization

technique Mapping Year

Lin Huang et al. [75, 87]
Homogeneous/
heterogeneous

MPSoC
Design-time DAG Permanent

(aging) No SA Task into PE 2009
2010

Chanhee Lee et al. [76]
Heterogeneous

processor-pool based
multi-core system

Design-time and
quasi-dynamic

Streaming
application

DAG
Permanent Task remapping DP Only one task

into one PE 2010

Onur Derin et al. [88] Heterogeneous NoC
multiprocessor

Design- and
run-time

Kahn Process
Network Permanent Remapping ε-constraint method At most one task

onto each tile 2011

Brett H. et al. [89]
Homogeneous
NoC-based
MPSoC

Design-time Directed graph Permanent Task remapping Critical Quantity
Slack Allocation

Only one task
into one resource 2010

[90]
Homogeneous
NoC-based
MPSoC

Design-time Directed graph Permanent No Ant Colony
Optimization

Only one task
into one resource 2010

Chen-Ling C. et al. [91]
Homogeneous
NoC-based

multiprocessor
Run-time ACG Permanent

and transient Task migration N/A At most one task
onto each tile 2011

Philip A. et al. [92] MPSoC Design-time
Set of

independent
tasks

Transient Check-pointing N/A Replicating tasks
into cores 2011

Cristinel A. et al. [93]
Homogeneous
NoC-based
multicore

Design-time ACG N/A No Branch and bound Task into tile 2011

Ivan Ukhov et al. [94] Heterogeneous
multicore Design-time

data
dependencies
task graph

Permanent No GA Task into core 2012

R.A. Shafik et al. [77]
Homogeneous
NoC-based
MPSoC

Design-time DAG Transient No DVFS Task into core 2012

Suleyman T. [95] Heterogeneous
MPSoC Design-time

Set of
independent

tasks
N/A Task duplication DVFS and EDF Task into core 2012

Hamid R. et al. [96]
Heterogeneous
Distributed

Computing System
Design-time

Set of
dependent

tasks
N/A No SA & Tabu Search Task into processor 2012

Fatemeh K. et al. [97, 98]
Homogeneous
NoC-based

multiprocessor
Design-time Directed core

graph
Permanent

and transient Task migration Ant Colony
Optimization

Core (of task)
into tile

2012
2013

F. Bolanos et al. [99] Heterogeneous
NoC Hybrid ADAG N/A Task relocation Population-based

Incremental Learning
Task to core &
core to network 2013

Cristiana B. et al. [79] Heterogeneous
MPSoC Design-time DAG Transient Multiple techniques GA Task into processor 2013

A. Mahabadi et al. [100] Heterogeneous
NoC-based MPSoC Design-time Task Graph Transient No Heuristic

algorithms Multiple mapping 2013
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Authors Ref Platform type DSE Application
Model Fault Fault tolerance Optimization

technique Mapping Year

Shin-Haeng K et al. [80, 81] NoC-based
MPSoC Design-time Kahn Process

Network Transient Re-execution
Replication EA Task into processor 2014

Jia Huang et al. [83]

Heterogeneous
time-triggered

execution
paradigm NoC-based

MPSoC

Design-time Kahn Process
Network

Transient &
permanent

temporal & spatial
redundancy EA Task into processor 2014

Anup Das et al.

[101] Homogeneous
MPSoC

Design-time
run-time SDFG Permanent Task migration

Matlab
optimization

toolbox
Task into processor 2012

[84, 85]
Homogeneous/
Heterogeneous

MPSoC
Design-time DAG

SDFG Permanent Application
remapping

CVX solver
Matlab/

heuristic algorithms
Task into processor 2013

[21]

Homogeneous
MPSoC with
a shared

reconfigurable
area

Design-time DAG
SDFG

Transient &
permanent Check-pointing GDSE SW task into GPP

HW task into FPGA 2013

[102] Homogeneous
MPSoC Design-time DAG Transient &

permanent Replication NSGA-II DVFS &
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2.3 Summary

This chapter 2 has reviewed the literature studies related to our research: the MDE approach and the
fault-tolerance DSE for the MPSoCs.

There are many MDE studies using meta-models as well as models for many different purposes such
as simulation, code generation, DSE. Several MDE studies propose meta-models at different design
levels as CABA, TPV, frequency, RTL etc. However, the application of MDE to explore solutions
for MPSoC platform is very limited. Furthermore, there is a lack of a meta-model that could enable
designers to model an MPSoC platform integrating fault tolerance strategies.

There are a lot of studies which look for the optimal designs for systems of multi-task applications
and multi-core platforms in both dynamic and static aspects. Many algorithms are used to support this
DSE processes such as mapping algorithms, optimization algorithms. These studies use application
and platform models as the input of their DSE process and then return an optimal solution with the
mapping. The principal optimization objectives of these processes are the energy consumption, the
resource management, the temperature management, the reliability, etc. Reliability is a very important
issue in critical applications, but it does not have adequate proportions in this field yet.

We have also reviewed the studies that referred to the reliability-awareness or/and the fault-
tolerance consideration. There are a lot of existing reliability-based DSE studies. The common goal is
to improve the reliability of a platform under the requirements of a multi-function application. Differ-
ent approaches at different levels of the system have been studied. There are two types of techniques
that can be used to increase reliability: (1) through some intermediate parameters and (2) fault tol-
erance strategy. The intermediate parameters may be voltage, frequency, execution/communication
time, temperature, which affect failure rate through a mathematical function. There are several fault-
tolerance strategies used such as resource replication, task replication, checkpointing, re-execution.
Different search strategies have been used (SA, GA, EA, DVFS, etc). However, there remain gaps in
the exploration process that have not been considered or considered separately, such as the impact of
the two types of errors, the impact of different component types and the impact of the task/function
and data mapping on the overall reliability.

In summary, there are five main conclusions of this review: 1) a model-driven DSE methodology for
an MPSoC system with the fault-tolerance is very rare in literature; 2) there is a lack of a platform
meta-model that can capture the fault-tolerance; 3) the design-time DSE still predominates and is
effective in the studies; 4) no DSE study addresses the comprehensive effect of the mapping (task
to processor, data to memory) on the reliability and the fault tolerance for memory/communication
component of a heterogeneous MPSoC system; 5) a lack of exploration that examines the effects of
both types of faults (permanent and transient) and provides tolerance strategies for these two types of
faults. We intend to address these five points in the rest of this work.
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Chapter 3

Fault-tolerant platform meta-model

Abstract: As presented in the previous chapter, the prerequisite to implement automated support
for DSE is an appropriate models to represent problems and solutions. Meanwhile, there is a lack of a
meta-model that combines performance exploration with the fault-tolerance problem. In this chapter,
we first propose a new meta-model and discuss the issues surrounding the proposed meta-model. The
meta-model provides the basis of models used in the DSE process in the following chapters. In the first
Section, a meta-model enabling the construction of a heterogeneous MPSoC platform with support
features for fault tolerance is presented. The next Section describes a Graphical User Interface (GUI)
that allows modeling an MPSoC platform according to our proposed meta-model.
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3.1 Platform meta-model

In this section, we present a platform meta-model integrated the fault-tolerance which is built on the
UML syntax. Finally, we introduce the fault-tolerance aspect in our meta-model.

3.1.1 Proposed meta-model

The platform meta-model of the ModES [41] framework partially matches our objectives as well as our
definitions. However, their MPSoC platform meta-model does not consider fault tolerance. Therefore,
we develop our new platform meta-model derived from the proposition of the ModES meta-models.

The Figure 3.1 depicts the architectural part of the proposed meta-model described below. In
ModES, two basic classes are used to build an MPSoC platform meta-model: platform, and component.
A platform contains many components.

Components are classified as hardware (compHardware) (Definition 1.3) and software (compSoftware)
(Definition 1.4). compHardware can be a communication component (compCommunication), a mem-
ory component (compMemory) or a processing component (processingElement). processingElement
may be a comDPE (dedicated, an accelerator, an Intellectual Property (IP) on FPGA or ASIC) or a
compPPE (programmable, a GPP (General Purpose Processor)). In our proposed model, we add the
element portWire to describe the interface of these component to the external environment. All of
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Figure 3.1: architectural part related to the component. Gray elements refer to the ModES platform
meta-model [41]. White elements are defined in this thesis.

54



Table 3.1: quality of service and properties specializations.

Component type Service
Metric (quality of service)

Delay Capacity

compCommunication data transfer interconnection delay N/P

compMemory storage read/write delay
memory size

(KB, GB...)

compPPE
Computation

(Instruction set)

mean inst.

execution time
inst. set size (number)

compDPE
Computation

(logic block (LB))

mean LB

execution time

number of

logic blocks

the different component types inherit the common features described in the component. A component
can offer services.

For each service provided by a compHardware, delay and capacity are generic properties defined
in the ModES meta-model qualityOfService (bottom-right elements in Figure 3.1). A service is
characterized by qualityOfService (QoS) which carries some metrics that are useful for the system
evaluation:

• a compMemory provides a storage service with a read/write delay; the capacity of a compMemory
is defined by the memory size;

• a compCommunication (interconnection) provides a communication service with an intercon-
nection delay;

• a GPP (in compPPE) provides a computation service by its instruction set with a mean exe-
cution time of an instruction;

• a dedicated processor (in compDPE) also provide a computation service through a logic block
matrix with a mean execution delay of a logic block;

• a PE component can offer a service with a computing capacity (capacity) which corresponds to
a number of operations it can execute;

• as presented in Chapter 1, the failure rates (λPF and λTF) are used to estimate the reliability of
the component.

Table 3.1 represents a general description of the component in an MPSoC according to our meta-model.
Each component owns a value of "cost". The "cost" term here is used as a constraint on the quantity
of required components. In the most basic way, each component has a cost value of 1. It implies that
the total cost of the system is the total number of components used. But in another term, the "cost"
value can be the volume of a component if designers are interested in optimizing the volume of the
whole system. In that context, the values of the elements are different and the optimal solution may
differ from the above. Thus, the concept of "cost" here is used in a broad sense depending on the
demand explored by designers such as volume, area (if 2D circuit), quantity, financial cost. But there
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Figure 3.2: an example of an MPSoC platform.

is a common feature that the total cost of the whole system at the platform level is calculated as the
sum of all costs of all components used.

As such, on a basic view, we have described elements (platform, component) of meta-model that
allows building a relatively complete platform. However, if observing the components separately,
the evaluation of components and platforms will be fragmented. Definition 3.1 is to connect these
components and allow to create a complete meta-model.

Definition 3.1. A subsystem is composed of one type of hardware component and possibly several
versions of software components.

The description of subsystems supports the redundancy modeling used in tolerance strategies.
Subsystem model is used in many works about redundancy allocation for the fault tolerance and
reliability evaluation [115].

For better understanding, we consider an example of an MPSoC platform in Figure 3.2. This
platform is composed of 8 components: 2 ME components, 4 DPE components, 1 PPE component
and, 1 COMM component. These components communicate with others through a link. As mentioned
earlier, these links shape the topology of the platform. Each component can operate independently
but the group of the three components (DPE3, DPE4, DPE5) creates a subsystem that executes a
same function.

In the point of reliability view, if 3 PEs execute one function, the reliability of the result for
the function is increased (TMR strategy). If the individual components are observed separately, it
will make it difficult to evaluate the reliability for a function and therefore it is difficult to evaluate
the reliability of a platform for an application. Meanwhile, using the subsystem concept still does
not affect the unity of an entire platform. Thus, the subsystem is not only the intermediate level
between the platform level and the component level but also a bridge between a platform model and
an application model. Evaluating a platform without the companion of an application is not useful
but, if the platform model and application model are intertwined too much, then the re-usability, the
extensibility of the platform is greatly limited. The subsystem level both ensures the platform model’s
linkage with the application model, but also creates independence to the platform model, especially in
terms of evaluation of the reliability.

In our work, a supplementary architectural level is added namely the subsystem level. Indeed eval-
uating whether requirements of a function are met may rely on the evaluation of several components
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Figure 3.3: proposed meta-model of subsystem. Gray and bold elements refer to Figure 3.1. Violet
and italic elements represents the subsystem level.

as a whole. For example, a software component always runs on a GPP component for a given function.
To know whether the requirements of the function are met, we must evaluate both the software com-
ponent and the PPE component in their common viewpoint. Furthermore, applying fault tolerance
strategies like redundancy implies to evaluate the reliability of "group" of components.

The subsystem is defined (Definition 3.1, top-middle violet elements in Figure 3.3) in the scope of
our platform meta-model as follow:

• a platform may contain several different subsystems;

• a subsystem may be one of the four types corresponding to components: subPPE, subDPE,
subCommunication, subMemory;

• a subsystem contains at least one component; all hardware components in a subsystem are of
the same type;

• however, there is an exception when a subPE executes 2 consecutive functions for which these
two functions have data exchange, the data does not need to be stored on another subMemory
that can be stored on a local memory right inside that subPE; this is to reduce latency for the
execution and is also consistent with the reality;

• portInterface represents the bounding of a subsystem.
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Figure 3.4: an example: a compCommunication in a subPPE.

portInterface reference defines connection wires between subsystems, which is required to calculate
the connection delay between subsystems. Moreover, for a given function, portInterface block allows
to define the relationship between elements of a platform upon which the function relies. For example,
when a subPPE computes a function, we need to know in which subMemory the data required by
the execution is saved. Thus, components connect to each other within a subsystem via portWire,
and subsystems connect together within a platform via portInterface. Herein, a problem is that it
may be necessary to have a compCommunication inside a subsystem to connect components in that
subsystem as shown in Figure 3.4. However, for simplicity, we only consider a subsystem containing
only one component type and then portInterface and portWire can represent compCommunication
in terms of delay and reliability.

Behaviors of a compSoftware depends on its supporting hardware components. For this reason,
the relation between a compSoftware and a compHardware needs to be defined. In the ModES,
authors admit this but it is not defined on their platform meta-model. To evaluate the subsystem
reliability and performances, we need to know all of the component relationships in a subsystem.
Therefore, subPPE is composed of compPPE and compSoftware.

3.1.2 Fault tolerance in the meta-model

After having presented the architecture part of the meta-model, now we can introduce the tolerance
strategy part (faultTolerance). Several fault tolerance strategies can be applied to a subsystem
(redundancies, re-execution, correction codes etc.) [116] as shown in Figure 3.5. The figure describes
the fault-tolerance aspect of the meta-model.

A tolerance strategy performance is evaluated by computing the estimation() method of a given
subsystem. This method computes the reliability of the subsystem through a set of probability formulas
taking into account each of the subsystem’s component reliability. Of course, the estimation() method
is also composed of the cost and time evaluations of the considered strategies. Each strategy has its
own typical parameters. For example, there are typical strategies presented in Chapter 1:

• the errorCodeCorrection strategy supports the fault tolerance for a memory with redundant
bits (redundantBits) (see Section 1.3.4);

• with the k-out-of-n strategy, a subsystem is functional when there are equal to or greater than k
working components (n being the number of redundant components in the subsystem). There are
two types of redundancy: spatial and temporal. Spatial redundancy is when several components
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Figure 3.5: fault tolerance strategies on the proposed platform meta-model.

are used in the same subsystem (a typical representative is TMR). Temporal redundancy is
when a function is re-executed several times in only one component in a subsystem (a typical
representative is TReR) (see Section 1.3.1 and 1.3.2);

• the Checkpoint strategy saves the function’s states by several check-points during the execution
of that function on subPPE or subDPE, so that it can restart from that point in case of failure
(see Section 1.3.3).

In the tolerance strategies, there are additional dedicated hardware components required by each
specific strategy such as voter, decoder, checker_recovery. These components also inherit the features
of componentHardware. These components can affect the reliability and cost of subsystems as well
as the entire platform. Therefore, we can apply the redundancy tolerance strategy also for these
components (toleranceDecoder, toleranceV oter, toleranceTester).

The use of any other strategy depends on the designers and therefore they can update the strategy
into the meta-model. Each new strategy can be added through a class (eg. like New_Strategy). Also
as the other strategies, inside the class, we can define required attributes of the new strategy. Of course,
any strategy should be quantified through a method estimation(). The class additional_component
represents the required specific hardware of the new strategy.

Thus, such strategies are ready to use and evaluate. The meta-model in Figure 3.5 can be considered
as an available library of fault-tolerance strategies that designers can use for their systems.

Figure 3.6 describes the relationship between the fault tolerance and the elements of a platform.
For easy viewing, Figure 3.6 is cut into two images including Figure 3.8 and Figure 3.7, respectively,
the right and left parts of Figure 3.6.
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Figure 3.6: relation between the simplified architectural part and the fault tolerance part of the proposed platform meta-model.
The left part (Architectural part) refers to Figure 3.8. The right part (Fault-tolerance part) refers to Figure 3.7.

60



The right part (Figure 3.7) represents the tolerance aspect of the meta-model that also is presented
earlier in Figure 3.5.

The left part represents the architectural part shown in Figure 3.8. To recall, the architectural
part always includes elements shown in Figures 3.1 and 3.3. However, to make better to follow, we
obscure elements that do not have direct connection to the fault tolerant part. A DPE subsystem is
composed of DPE components and a corresponding fault-tolerance strategy. It means that only one
fault-tolerance strategy is chosen to apply on a subsystem and the strategy will affect all DPE compo-
nents of the subsystem. The strategy must be selected from the library and must be compatible with
the DPE subsystem. The class appliedToleranceDPE represents a fault-tolerance strategy applied
on a DPE subsystem. The appliedToleranceDPE consequently can be the Spatial_kOutOfn, the
Temporal_kOutOfn, or the Checkpoiting (green class in Figure 3.6).

Similarly, the appliedTolerancePPE, appliedToleranceCommunication and appliedTolerance−
Memory classes represent the tolerance strategy applied to a PPE subsystem, a COMM subsys-
tem, and a ME subsystem respectively. Appropriate strategies corresponding to each subsystem type
also are linked to the library. For example, a tolerance strategy applied to a memory subsystem
(appliedToleranceMemory) can be errorCodeCorrection or kOutOfn.
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Figure 3.7: fault tolerance part of the proposed platform meta-model.
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Figure 3.8: the simplified architectural part related to the fault tolerant. The platform, subDPE,
subPPE, subCommunication, subMemory and compHardware elements refer to Figure 3.3.

The whole UML view of the meta-model is given in Figure 3.9. This figure refers to Figure 3.1, 3.3
and 3.8 for the architectural part, and Figure 3.5 for the fault-tolerance part. The meta-model that is
presented in [117] allows designers to build a platform taking into account the fault tolerance problem
.
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Figure 3.9: overall view of the platform meta-model. The left part (Architectural part) refers to Figure 3.1, 3.3 and 3.8.
The right part (Fault-tolerance part) refers to Figure 3.5.
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3.2 Supporting tool

Models built by our framework are based on the meta-model defined in the previous section. The
tool is built on the Sirius environment with the workspace called PolarSys [118], which is an Eclipse
project allowing the creation of graphical modeling workbench. We created a workbench which allows
designers to describe their platform through a graphical user interface.

Figure 3.10 illustrates an example of such a platform "Example" composed of six subsystems which
hold different component types: 3 PE subsystems (in blue), 2 memory subsystems (in white) and 1
communication subsystem (in green). The whole platform is placed in the center of the workspace
with an underlined label (EXAMPLE), which is the name of the platform. The palette on the
right (Figure 3.10) is composed of basis elements that allow the user to "drag and drop" to create
the desired architecture. The subsystems connect together through ports and wires. Components and
their parameters are declared inside corresponding subsystems. Herein the connection between the two
subsystems is bi-directional, but the mono-directional connection is entirely possible at the designer’s
discretion. In the left side, there are four gray buttons. These buttons are designed to perform the
DSE process automatically, details of this process will be described in the next Chapter. The function
of each node and the overall relationship of this thesis are:

• VALIDATE: to execute the validation process on the platform to check if the input settings
are correct. Note that before starting a DSE process, some parameters need to be set up from
the designer (these parameters will be mentioned in the next Chapter). This button allows the
evaluation if these input parameters are valid or not. If there is no error, the color of this button
will turn to purple with "VALIDATED" status as in Figure 3.11. If not, there is a notification
box of the problem/cause for the error. The button color is red with "INVALIDATED" status.

• GENERATE: to execute the generation process. Based on the platform model, this process
will translate this model into programming language and include it in a DSE process. The
programming language we use for the core of the DSE process is python. This process ends with
a notification box and this button turns to purple with "GENERATED" status (Figure 3.11).

• RUN DSE: to execute the DSE process. The process finishes and then the button turns to purple
with "DSE FINISHED" status (Figure 3.11). It means that an optimal solution has been found.

• SHOW: to show graphically the solution onto the workbench (Figure 3.11).

Figure 3.10: illustration of the workbench for the modeling of a 6-subsystem platform.
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Figure 3.11: four big buttons in the left have changed from the gray to pink, meaning the DSE
process is complete and the result has been found. The best solution is found shown in the

workbench.

The white box under the four buttons indicates the search strategy used in the DSE process. In this
tool, three search strategies can be used: Simulated Annealing, Genetic Algorithm, and Comprehensive
Search. Details of these strategies will be presented in the next Chapter. Users can choose which search
strategy option to apply to their DSE process before clicking the button VALIDATE. The search
strategies can be executed in several parallel threads to increase the search speed (Parallel DSE
threads). The number of threads depends on the capacity (core quantity) of the user’s computer.
The parameters Alpha, Beta, Gamma are used in the optimization process that will be explained
in detail in the next Chapter.

When the button SHOW is clicked, the solution is updated to the graphical interface. The gray
label on each subsystem icon indicates the used tolerance strategy. The white label on each subsystem
icon indicates the component used in the subsystem. The subsystems pe1, me2, bus1, and pe3 are
Standard, which means that no tolerance strategy is applied onto these subsystems. The subsystems
pe2, me1 imply the TMR to reach the reliability requirement.

The name of functions of the considered application is indicated inside each PE subsystem. For
example, the subsystem pe1 executes a function named F1. The subsystem pe2 executes two functions
named F3 and F4. The subsystem pe3 executes a function named F2.

Data communications between functions on the application are mapped on the memory subsystems.
The white box inside each memory subsystem indicates the data. For example, the data exchanged
from F3 to F4, denoted as (F3, F4), is stored in the subsystemme2. (F1, F2), (F1, F3), and (F2, F4)
are stored in the subsystem me1.

The button RESET in the right palette allows resetting all from the beginning as shown in Fig-
ure 3.10 if users wants to perform a new DSE process.

By double-clicking into each subsystem icon on the Platform Diagram, the tool automatically gen-
erates and navigates into the corresponding Subsystem Diagram as shown in Figure 3.12. There are
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Figure 3.12: workbench inside a subsystem diagram; the centre is the Subsystem Diagram; the
palette on the right is composed of the tools that allow to modify, customize the subsystem, the box

in the bottom shows parameters of the Subsystem.

2 main boxes. The one with the title «subME» (or «subPE» or «subCOMM» of other types) de-
scribes the components inside the subsystem. The red one with the title «tolerance» describes which
fault-tolerance strategy can be used for the subsystem.

Users can optionally customize the architecture within the subsystem according to their intents such
as the number of components, the fault-tolerance strategy, or the input parameters of a component.
The strategies available for selection are within the strategies defined in the meta-model. Similar to the
Platform Diagram, the Subsystem Diagram also has a palette (in the right) that allows the creation
of components. There are some input parameters of a components that needs to be defined such as
Name, Cost to be used in the DSE process.

When the DSE process finishes, this tool automatically generates a statistics table as shown in
Figure 3.13. The first column indicates the names of subsystems. Each line concerns a subsystem

Figure 3.13: table generated automatically in terms of fault tolerance and cost of the platform
according to the best solution found in a DSE process.
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of the platform. The last line of this table concerns the whole platform. The column "Subsystem
Tolerance" indicates the fault tolerance strategy applied on the corresponding subsystems. The cost
of each subsystem is displayed on the column: "Subsystem cost" (in terms of the number of used
components). Finally, in the bottom line, the reliability and the cost overall of the platform are shown.

3.3 Summary

This chapter 3 presented the meta-model derived from ModES that allows building heterogeneous
MPSoC platforms with fault-tolerance features. An intermediate level is created called "subsystem".
Through the "subsystems", the fault tolerance parts are connected to the architectural part in the
meta-model. The fault tolerance part is composed of fault-tolerance strategies. Finally, a supporting
tool based on the proposed meta-model is introduced with its interface graphic workstation. We have
built this tool on the Eclipse-based environment (Sirius) that allows to integrate the platform model
into the DSE process. Moreover, this tool executes automatically the DSE process.

In that way, this chapter addresses the three following key points: 1) a meta-model is proposed
to cover the deficiency of fault tolerance in literature; 2) the meta-model serves as a bridge between
the different tools, between different programming languages, and different design stages, allowing
designers to have a unified and coherent view of an MPSoC platform. 3) the meta-model, the fault
model, and the tolerant strategies are the premises we use for the DSE process in the next chapter.
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Chapter 4

Design space exploration

Abstract: In the previous chapter, we proposed a meta-model for heterogeneous MPSoC platform
models, which is the core of our DSE framework. This chapter presents the details of the exploration
process in the framework. Firstly, we figure out how to step into the design space; more clearly, what
are the inputs of the process, how to generate a solution, and how to evaluate the solution. Secondly,
an optimization process is presented to find the efficient solution according to reliability, cost, and
execution time.
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4.1. DESIGN SPACE CHAPTER 4. DESIGN SPACE EXPLORATION

4.1 Design space

This section provides the way to generate and explore a design solution. Figure 4.1 describes the design
solution generator. The three main parts in this flow correspond to the subsections 4.1.1 (Initialization),
4.1.2 (Mapping process), and 4.1.3 (Solution evaluation process).

Initialization is the preparation step for a DSE process. In this step, an input application, a
platform and available components are initialized with their parameters. The platform meta-model
and the definitions we presented in the previous chapter are the basis of the architectural DSE process.
From the input models, a mapping process is performed to find a mapping solution. Definition 4.1
gives necessary notions of a mapping process:

Definition 4.1. The mapping includes a set of rules, constraints to allocate resources and to map
required functions and data on the resources.

Definition 4.1.1. A rule is a guide to define the relation between elements (application, platform)
in an MPSoC system, that is strict and impossible to change in a specific DSE framework.

Definition 4.1.2. A constraint is a limitation for one or more features (quantity or quality) of an
MPSoC system that can be changed or set by designers in a specific DSE framework.
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Figure 4.1: proposed design solution generator flow.
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More specifically, without respect to constraints, a system may still be operated but does not
produce the desired results or give wrong results. Besides, if rules are not respected then the design is
considered as meaningless, cannot be operated.

As shown in Figure 4.1, in the second step (Mapping process), there are four rules (Rule 4.1 to
4.4). These rules are implemented as algorithms that allow creating a design in the most basic form
without any constraints. Then, the design is verified under constraints (herein Constraint 4.1 to 4.4).
If it satisfies the constraints (a valid solution), it is passed to the third step (Solution evaluation
process); otherwise (an invalid solution), we need to go back to create another design. The rules and
constraints are presented in the second Subsection.

Then, one solution would be to go through a set of assessments. The evaluation process (in
Definition 4.2) allows designers to review the solution quantitatively and this is the basis for selecting
the best solution in the next steps of the DSE.

Definition 4.2. The solution evaluation is composed of mathematical models, equations, and al-
gorithms to quantify the performance of the considered solutions. The data used for the calculations
are derived from the available input parameters.

In that way, this solution-generator process is carried out repeatedly helping the designer to reach
a solution point in the design space.

4.1.1 Initialization

The models of application, platform, and components are used as input to this process. An application
is modeled as a DAG as defined by Definition 1.1. As reviewed in Chapter 2, the DAG is used in a lot
of studies due to its ability to model different application structures and application types. In addition,
there are other variants based on the DAG core such as directed graphs, Annotated Directed Acyclic
Graph (ADAG), data dependencies task graphs, etc. Thus, for reasons of a wider compatibility and ease
of expansion, the DAG is selected for application modeling in this thesis. Listing 4.1 gives an instance
of the model building for the application in Python. The object Function owns two attributes: _name
and _size. The object Data is exchanged between functions on the edges. Designers can build an
application with two methods add_funcNode (create a function) and add_edge (create the connection
between functions).

1 c l a s s Function ( ob j e c t ) :
2 _name = " i n i t "
3 _size = 0 #number o f opera t i on
4 c l a s s Data ( ob j e c t ) :
5 _name = " i n i t "
6 _size = 0 #bytes
7 c l a s s App( ob j e c t ) :
8 de f __init__( s e l f ) :
9 s e l f . f un c_ l i s t = [ ]

10 s e l f . edges = c o l l e c t i o n s . d e f a u l t d i c t ( l i s t )
11 s e l f . da ta_l i s t = {}
12 de f add_funcNode ( s e l f , func ) :
13 s e l f . f un c_ l i s t . append ( func )
14 de f add_edge ( s e l f , from_function , to_function , dataBlock ) :
15 s e l f . edges [ from_function ] . append ( to_funct ion )
16 s e l f . data [ ( from_function , to_funct ion ) , dataBlock ._ID ] = dataBlock #modeled by

ob j e c t Data

Listing 4.1: Application model building in Python code
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If you only consider the mapping of functions of a given application to a fixed available platform,
the solution space is really small. And so the discovery of new platform designs is also very limited.

For example, an application with 3 functions; and a platform with 3 DPE subsystems. One or
more functions can be mapped on a DPE subsystem. The different order of the functions on the
same sub-system will also give a different solution. As such, we have a maximum of 60 solutions
(C1

3 × P 3
3 + 3 × C1

3 × C1
2 × P 2

2 + C1
3 × C1

2 × C1
1 ) where Cji is j-combinations from a given set of i

elements and P ji is j-permutations from a given set of i elements. However, at the positions of the DPE
subsystems, if we can choose either DPE or PPE, the number of solutions will be 60×33 = 1620. Thus,
to expand the design space, an input platform is considered as a template defined in Definition 4.3.

Definition 4.3. A platform template is a platform model that designers consider but where the
subsystems are empty. Each of these empty subsystems is only defined by its type and wait to be filled
by components.

Definition 4.3 means a platform template includes ME subsystems, COMM subsystems, and PE
subsystems. A PE subsystem can be specified as DPE or PPE depending on which component type
is assigned to the PE subsystem. This also helps to generate more solutions than predetermining
strictly PPE subsystems and DPE subsystems. A component is modeled according to the platform
meta-model defined in the previous Chapter with all its pre-defined parameters.

Definition 4.4. All components that can be provided for use during design are on a list of compo-
nents, called: component list cL. cL = {compE1, compE2, ...compEk|k ∈ N}.

Figure 4.2a presents an example of a platform template. There are 6 empty subsystems. We can
select component elements from a component list cL (Figure 4.2b) to fill this template and create a
finished platform. Each line in cL presents a component and its input parameters such as:

• type: type of component;

• λcompPF and λcompTF ): failure rates by permanent and transient faults;

• capacity: number of functions can be executed of a compDPE or a compPPE, memory size of
a compMemory;

• delay/Speed: speed factor for a compDPE or a compPPE (number of operations per second),
delay of a compMemory or a compCommunication (ms);

• cost.

Listing 4.2 presents an instance of a model building for the platform template in Python. An object
Subsystem is characterized by three attributes. 1) _ID is the identifier of a subsystem: 2) _type
is the type of subsystem (PE, ME, COMM) and must be declared at the time of creation of the
subsystem. and 3) assigned_comp is initialized as None (empty subsystem) but will be filled with a
pre-defined object Component during the mapping process. A platform template owns two methods 1)
add_subNode (add a new subsystem into the template) and 2) add_connect (create a new connection
between subsystems). There is a small note here that the connection delay between two subsystems
can be weighted by a variable distance.
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a) a platform template. b) a list of component.

Figure 4.2: a platform template and a component list prepared before a DSE process.

1 c l a s s Subsystem ( ob j e c t ) :
2 _ID = " i n i t "
3 _type = 0 # 1 : PE
4 # 2 : ME
5 # 3 : COMM
6 assigned_comp = None # ob j e c t component
7

8

9 c l a s s Platform_template ( ob j e c t ) :
10 de f __init__( s e l f ) :
11 s e l f . sub_l i s t = [ ]
12 s e l f . connec t i ons = c o l l e c t i o n s . d e f a u l t d i c t ( l i s t )
13 s e l f . d i s t an c e s = {}
14

15 de f add_subNode ( s e l f , subsystem ) :
16 s e l f . sub_l i s t . append ( subsystem )
17

18 de f add_connect ( s e l f , _from_subID , _to_subID) :
19 s e l f . connec t i ons [ _from_subID ] . append (_to_subID)
20 s e l f . d i s t an c e s [ ( _from_subID , _to_subID) ] = 0

Listing 4.2: platform-template model building in Python code

4.1.2 Mapping process

This subsection shows how a valid solution is built, which corresponds to the second step in Figure 4.1.
Firstly, the problem is standardized under an ILP formulation. Secondly, a platform solution is estab-
lished based on fixed rules. And finnally, a set of constraints is presented to prune the design space
and to eliminate invalid solutions.

4.1.2.1 Integer Linear Programming formulation

From the definitions, the mapping problem can be transformed into an integer linear programming
problem, they are formulated by the four types of ILP variables: A mapping solution is characterized
by 4 points: component, function, data, fault tolerance strategy. Parameters and variables used in the
ILP formulation are shown in Table 4.1.

73



4.1. DESIGN SPACE CHAPTER 4. DESIGN SPACE EXPLORATION

Table 4.1: Description and notation of parameters and variables used in ILP formulation.

Name Type Definition

V The set of function in the given application
nfunc Constant The number of functions in the given application
Fj The function j of the given application
Fj .size Constant The size of Fj (operations)
E The set of edges in the application
ej_k The directed edge from Fj to Fk in the given application
D The set of data in the application
ndata Constant The number of data blocks in the application
dj_k The data block from Fj to Fk in the given application
dj_k.size The size of dj_k (bytes)
subL The set of subsystems in the given platform
nsub Constant The number of subsystem in the given platform
subi The subsystem i in the given platform
subi.type The type of subi DPE, PPE, PE, ME, COMM

PE = {DPE, PPE}
Vsubi The set of functions mapped in the subsystem i

Dsubi The set of data mapped in the subsystem i

cL The set of available components in library (component list)
ncompE Constant The number of elements in the component list
compEj The component element j in cL
compEj .type The type of compEj (DPE, PPE, ME, COMM)
compEj .speed_factor Constant The speed factor of the PE component compEj (operations/s)
compEj .λcompPF

Constant The failure rate of permanent faults of compEj (FIT )
compEj .λcompPF

Constant The failure rate of transient faults of compEj (FIT )

compEj .capacity Constant

The capacity of compEj
For PE components, the maximum number of operations
that the component can perform (operations)
For ME components, the maximum size of the component (bytes)

compEj .delay Constant
The delay to access compEj
For ME components, the delay of the read/write access (seconds)
For COMM components, the delay to transfer a data block (seconds)

compEj .quantity Constant The maximum quantity of compEj is available for use
cM

compEj

subi
Variable compEj is allocated to subi

fMsubi
Fj

Variable Fj is mapped to subi
dMsubi

dj_k
Variable dj_k is mapped to subi

tMk
subi

Variable subi supports the fault-tolerance strategy k
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Figure 4.3: Description of cM compEj
subi

. Figure 4.4: Description of fM subi
Fj

.

Figure 4.5: Description of dM subi
dj_k

. Figure 4.6: Description of tMk
subi

.

• cM compEj
subi

represents a component mapping in terms that a component element is chosen to
be mapped on a subsystem, where: compEj ∈ cL, subi ∈ subL, i, j ∈ N. Figure 4.3 visually
describes the notion of cM compEj

subi
;

• fM subi
Fj

represents a function mapping in terms that a PE subsystem handle a function, where:

subi ∈ subL, Fj ∈ V , i, j ∈ N. Figure 4.4 visually describes the notion of fM subi
Fj

;

• dM subi
dj_k

represents a data mapping in terms that a ME subsystem stores a data block, where:

subi ∈ subL, dj_k ∈ D, i, j, k ∈ N Figure 4.5 visually describes the notion of dM subi
dj_k

;

• tMk
subi

represents a tolerance mapping in terms that a fault tolerance strategy is chosen for a
subsystem

(
k ∈ N

)
. In the scope of this thesis, we consider: 0 - no tolerance, 1 - TMR, 2 - TReR.

So, we have k ∈ {0, 1, 2}. Figure 4.6 visually describes the notion of tMk
subi

.

As we can see, each instance of an above variable type is created by combining the input elements
of the Initialization step. For example, fM sub3

F2
is the combination of the subsystem 3 with the

function 2. Clearly, an instance of the complete mapping (xsol) is represented by a set of 4 vectors as
in Equation 4.1 where:

• the first vector represents the component mapping that is composed of nsub variables;

• the second vector represents the function mapping that is composed of nfunc variables;

• the third vector represents the data mapping that is composed of ndata variables;
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Figure 4.7: Illustration of component list, platform template, and component mapping.

• the fourth vector represents the tolerance strategy mapping that is composed of nsub variables;

• nsub, nfunc, ndata, nsub ∈ N; p1, p2, ...p′ ∈ {1, 2, ...ncompE};
i1, i2, ...i

′ ∈ {1, 2, ...nsub}; j1, j2, ...j′ ∈ {1, 2, ...nsub};
k1, k2, ...k

′ ∈ {0, 1, 2}; d1, d2, ...dndata ∈ D.

Each variable in xsol has value "1". Any other variable is created by the combination that not listed
in xsol has a value "0".

xsol =
{{
cM

compEp1
sub1

, cM
compEp2
sub2

, ...cM
compEp′
subnsub

}
,{

fM
subi1
F1

, fM
subi2
F2

, ...fM
subi′
Fnfunc

}
,{

dM
subj1
d1

, dM
subj2
d2

, ...dM
subj′
dndata

}
,{

tMk1
sub1

, tMk2
sub2

, ...tMk′
subnsub

}}
(4.1)

Figure 4.7 shows the relation between a component, a component list and a platform. In the platform,
a component is a real and unique entity, denoted as compi - the component i in the platform. There
may be many identical components in the platform. These components are selected from the component
list (through the mapping process), in other words, compi is an instance of compEj . Each component
in the platform has a reference from a component element in the component list. Each component
element i in the list, denoted as compEi, describes the properties of a specific components such as ID,
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Type, Failure rate, etc. Thus, it must not have 2 identical compE in component list, as described in
Equation 4.2.

compEi = compEj ∀compEi, compEi ∈ cL if and only if i = j. (4.2)

4.1.2.2 Rules

As presented in Definition 4.1, the rules allow to generate a mapping solution for the platform. Hence,
these rules must be fully coherent with the proposed meta-model. In our DSE framework, they are
strict.

The structure of each rule is presented in the following 3 points:

• content of the rule;

• description in ILP formulation;

• algorithm implementation.

Rule 4.1. (Component) (1) A subsystem is only composed of one hardware-component element from
the available component list which corresponds to the type of the subsystem. (2) All empty subsystems
must be filled by component element of the component list. (3) A PPE component elements is always
accompanied by a SOFT component elements.

Rule 4.1 provides an instruction for filling empty subsystems within the platform template. The
combination of different components in the component list can be created on different platforms.
Equation 4.3 corresponds to the first sentence in Rule 4.1 (compEj ∈ cL, subi ∈ subL, i, j ∈ N):

cM
compEj
subi

=


1, compEj is mapped on (selected for) subi

and compEj .type ∈ subi.type
0, otherwise

(4.3)

Obviously, subi can be assigned exactly only one hardware component element of the component list,
as defined in Equation 4.4: ∑

compEj∈cL∧ hardware

cM
compEj
subi

= 1 (4.4)

Synthesizing from Equation 4.3, 4.4 and Rule 4.1 is that there are two component elements on the
same subsystem if and only if they are 1 PPE and 1 SOFT.∑

compEj∈cL
cM

compEj
subi

6 2 (4.5)

with Equation 4.6, ( ∑
compEj∈cL

cM
compEj
subi

= 2

⇐⇒ ∃! compEj , cM
compEj
subi

= 1 ∧ compEj .type = PPE

and ∃! compEk, cM compEk
subi

= 1 ∧ compEk.type = SOFT
) (4.6)
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Algorithm 4.1 deploys Rule 4.1. Firstly, we select a subsystem from the subsystem list of the given
platform template (line 1-2). Then, a component element (selected_compE) is selected from the com-
ponent list (cL) (line 3). If the selected component element is the same type of the selected subsystem,
the component element is allocated to the subsystem. Otherwise, the component-element selection is
repeated until the component type matches the subsystem type (line 4-6). If the selected_compE is
PPE, a SOFT component element must be selected to accompany the PPE component (line 8-14). The
whole process is repeated until all subsystems are filled by a component. method.choice is the method
to select an element from a list/set. This method depends on the exploration strategy of designers
such as random, sequential, hybrid etc. Finally, the platform.template is filled by components, and
from now on is can be used as a platform (line 15).

Algorithm 4.1 map a component into a subsystem
Require: platform_template, component_list
Ensure: platform_template.filled = TRUE (is mapped components)

//Repeat this algorithm until all subsystems are filled by components
1: subs_list← platform_template.subsystem_list;
2: selected_sub← method.choice(subs_list);

//Select a subsystem in the subsystem list of the platform template
3: selected_compE ← method.choice(component_list); //Select a component element of the com-

ponent list
4: while selected_compE.type not in selected_sub.type do
5: selected_compE ← method.choice(component_list);
6: end while
7: selected_sub.assigned_comp← selected_compE;
8: if selected_compE = "PPE" then
9: selected_softE ← method.choice(comp_list);

//Look for a SOFT component element from the component list to map onto the selected PPE
component

10: while selected_softE.type 6= "SOFT" do
11: selected_softE ← method.choice(comp_list);
12: end while
13: selected_sub.assigned_comp.assigned_soft← selected_softE;
14: end if
15: platform ← platform_template

Rule 4.2. (Function) (1) A function is mapped on only one PE subsystem. (2) But a PE subsystem
can handle several functions. (3) In a full mapping, every functions must be mapped.

Rule 4.2 provides an instruction to map the functions onto the executive subsystem (PE subsystems)
and ensure that all functions are mapped. The first sentence in Rule 4.1 is formulated in ILP as
Equation 4.7:

fM subi
Fj

=

{
1, Fj is mapped on subi ∧ subi.type = PE

0, otherwise
(4.7)

Obviously, a function is only mapped to a maximum of 1 PE subsystem (this equation goes with the
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Figure 4.8: Application graph, platform, and function mapping.

second and the third sentences of Rule 4.2):

|subL|∑
i=1

fM subi
Fj

= 1 (4.8)

Algorithm 4.2 describes the mapping of a function to a PE subsystem. A function is selected from
the list of functions in the given application (line 1-2). Then we select a PE subsystem from the
platform (line 3-7). If the selected function is already mapped to the selected subsystem (line 15-16),
the selected will be removed from the selected subsystem and wait to be mapped on another subsystem.
If the selected function is not mapped to the selected subsystem (line 8), we will check whether this
function has been mapped on any other subsystem (line 9). If yes, the function is removed from the
current PE subsystem (line 10-12) and we map the selected function to the selected subsystem (line
14). As with Rule 4.1, method.choice is set up by the designer’s DSE strategy. Finally, the whole
process is repeated until all functions are mapped. The remove actions (line 11 and line 16) are
to ensure that a function is not mapped on two different PE subsystems. Moreover, this also helps
that the two solutions found consecutively are not the same if the generation process is a chain of
inheritance. A chain of inheritance is a chain that starts with a solution, new solutions are derived
from the original initialization and grows up as a tree. The remove actions maybe not necessary if
method.choice ensures that each function is only checked only once time.

Figure 4.8 illustrates a mapping process. F1 and F3 are mapped onto the subsystem PE1 and F2

is mapped onto PE2. Algorithm 4.2 allows to map all functions of the given application to subsystems
on the platform.

The execution order of functions on the same PE depends on the order in which the functions are
mapped onto that PE. For example, in Figure 4.8, F1 is mapped onto PE1 before the mapping of
F3, thus, the execution order in PE1 is F1 → F3. However, if F3 is mapped before F1, the order of
execution is F3 → F1. Of course, the second order could cause errors and is an invalid solution.
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Algorithm 4.2 map a function into a PE subsystem
Require: platform, app_graph
Ensure: app_graph.function_list.mapped = TRUE (all functions are mapped)

//Repeat this algorithm until all functions are mapped
1: func_list← app_graph.function_list; //Get the list of all functions
2: selected_func← method.choice(func_list); //Select a function in the application
3: subs_list← platform.subsystem_list;
4: selected_sub← method.choice(subs_list);

//Select a PE subsystem in the subsystem list of the platform
5: while selected_sub.type 6= "PE" do
6: selected_sub← method.choice(subs_list);
7: end while
8: if selected_func not in selected_sub.assigned_funcs then
9: for sub in subs_list do

10: if selected_func in sub.assigned_funcs then
11: sub.assigned_funcs.remove(selected_func);

//Remove the selected function in the current PE subsystem
12: end if
13: end for
14: selected_sub.assigned_funcs.add(selected_func);
15: else
16: selected_sub.assigned_funcs.remove(selected_func);
17: end if
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Algorithm 4.3 map a data block into a Memory subsystem
Require: platform, app_graph
Ensure: app_graph.data_list.mapped = TRUE (all data blocks are mapped)

//Repeat this algorithm until all data blocks are mapped
1: da_list← app_graph.data_list //Get the list of all functions
2: for data in da_list do
3: if producer(data), consumer(data) are mapped on the same PE subsystem then
4: if producer(data), consumer(data) are executed sequentially and consecutively on the PE subsystem

then
5: da_list.remove(data); //There is no need to consider the mapping of this data block
6: end if
7: end if
8: end for
9: selected_data← method.choice(da_list); //Select a data block in the application

10: subs_list← platform.subsystem_list;
11: selected_sub← method.choice(subs_list);

//Select a ME subsystem in the subsystem list of the platform
12: while selected_sub.type 6= "ME" do
13: selected_sub← method.choice(subs_list);
14: end while
15: if selected_data not in selected_sub.assigned_data then
16: for sub in subs_list do
17: if selected_data in sub.assigned_data then
18: sub.assigned_data.remove(selected_data); //Remove the selected data block from the cur-

rent ME subsystem
19: end if
20: end for
21: selected_sub.assigned_data.add(selected_data);
22: else
23: selected_sub.assigned_data.remove(selected_data);
24: end if
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Rule 4.3. (Data) (1) A data block is stored on only one ME subsystem. (2) But an ME subsystem
can store several data blocks. (3) A data block is not stored on any ME subsystem if it satisfies
simultaneously the following conditions: 1/ two functions that exchange the data block are mapped on
the same PE subsystem; 2/ the order to execute the two functions on the PE subsystem is the same as
the execution order described on the application DAG; 3/ the two functions are executed consecutively
on that PE subsystem. (4) If all of the above conditions are not satisfied, a data block must be stored
on an ME subsystem.

Rule 4.3 provides a guideline to allocate the data blocks onto the memory subsystem. Equation 4.9
formulates the first sentence of Rule 4.3:

dM subi
dj_k

=

{
1, the data block from Fj to Fk is stored in subi ∧ subi.type =ME

0, otherwise
(4.9)

So, a data block is only stored on a maximum of 1 ME subsystem and it does not always need to be
stored in 1 ME subsystem (based on all sentences of Rule 4.3), what gives Equation 4.10:

|subL|∑
i=1

dM subi
dj_k

{
= 0, fM subm

Fj
= fM subm

Fk
= 1, and Fk is executed immediately after Fj

= 1, otherwise.
(4.10)

Algorithm 4.3 describes a way to implement Rule 4.3. Firstly, a data block is selected among data
blocks of the given application (line 1-2). Then, an ME subsystem is selected from the subsystem list
of the platform (line 3). Next, a process of checking whether any blocks of data do not need to be
mapped (from line 2 to line 8). producer(data) and consumer(data) are respectively the functions of
which data block data is the input and the output. The lines from 9 to 23 are similar to the function-
mapping process, we remove the selected data block from its current ME subsystem. This is to ensure
that a data block is not allocated to two different ME subsystems. The whole process is repeated until
all data blocks are mapped to ME subsystems.

Rule 4.4. (Tolerance strategy) (1) A subsystem can support a fault-tolerance strategy which is available
in the library for its type. (2) For a specific architecture solution, a subsystem can apply only one
tolerance strategy.

Rule 4.4 provides an instruction to assign a fault-tolerance strategy to a subsystem. Equation 4.11
describes the first sentence of Rule 4.4, where k ∈ {0, 1, 2}.

tMk
subi

=

{
1, subi support the fault tolerance strategy k
0, otherwise.

(4.11)

In the scope of this thesis, we consider the value of k: 0 – no tolerance, 1 – TMR, 2 – TReR. This
needs to be updated if we add others fault-tolerance strategies. The strategy with the index "0" and
"1" can be used for all type of subsystem, "2" is only used for PE subsystems. Each subsystem just
applies only one fault-tolerance strategy, described in Equation 4.12:

∀i < ||subL||
∑
k

(tMk
subi

) = 1 (4.12)
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Algorithm 4.4 describes an implementation of the rule. We select suitable strategies for each selected
subsystem. method.choice (line 2) chooses a subsystem for the mapping. Then, if the subsystem is
PE, it may be applied a fault-tolerance strategy (TMR or TReR) or no tolerance (line 3-4). Otherwise,
the other type of subsystem my be applied TMR or no tolerance (line 6). The process stops when all
subsytems are checked.

Algorithm 4.4 select a fault tolerance strategy for a subsystem
Require: platform
Ensure: platform.tolerance = TRUE (is set fault tolerance)

//Repeat this algorithm until all subsystems are checked
1: subs_list← platform.subsystem_list;

//Select a subsystem in the subsystem list of the platform
2: selected_sub← method.choice(subs_list);
3: if selected_sub = "PE" then
4: selected_sub.tolerance_strategy ← method.choice(0, 1, 2)
5: else
6: selected_sub.tolerance_strategy ← method.choice(0, 1)
7: end if

4.1.2.3 Constraints

When we have generated a mapping solution, some constraints point out whether this solution is valid
or not. Constraints are less mandatory than the rules and can be changed and replaced depending on
the purposes of designers such as limitation of resource, technology, application time. These constraints
can be applied during the mapping but we put them separately for better understanding because they
depend on the purpose of designers so that our framework users just need to change the constraint here
without changing the algorithms introduced above. In this thesis, we use the four following constraints
(Constraint 4.1, 4.2, 4.3, 4.4) to identify a valid solution.

Constraint 4.1. (Capacity) the total size of functions is mapped to a PE subsystem must not exceed
the capability of the PE component element of that subsystem.

Constraint 4.1 is expressed by Equation 4.13, where subi ∈ subL, i, j, k ∈ N; Fj .size is the size of
Fj (operation); (compEk.capacity) is the capacity of a PE component of compEk, as following:∑

Fj∈V
(fM subi

Fj
× Fj .size) ≤

∑
compEk∈cL

(cM compEk
subi

× compEk.capacity) (4.13)

Constraint 4.2. (Size) the total size of data blocks is mapped to an ME subsystem must not exceed
the capacity of the ME component element of that subsystem.

Constraint 4.2 is expressed by Equation 4.14, where subi ∈ subL, i, j, k, q ∈ N; dj_k.size is the size
of dj_k; (compEq.capacity) is the capacity of an ME component of compEq, as following:∑

dj_k∈D
dM subi

dj_k
× dj_k.size ≤

∑
compEq∈cL

(cM
compEq
subi

× compEq.capacity) (4.14)
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Figure 4.9: An example of the component mapping does not respect Constraint 4.3.

Constraint 4.3. (Quantity) the number of components used on the entire platform must not exceed
the pre-indicated "quantity" of the corresponding component element in the component list. (This is
the resource limitation).

Constraint 4.3 is expressed by Equation 4.15, where (compEj .quantity) is the maximum number
of the type compEj indicated in the component list; (number_of_used_componentscompEjsubi

) is the
number of used components of the type compEj in the subsystem subi, with subi ∈ subL, i, j ∈ N, as
following:∑

subi∈subL
(cM

compEj
subi

)× (number_of_used_componentscompEjsubi
) ≤ compEj .quantity (4.15)

To be clearer, for example in Figure 4.9, (compE3.number) = 6, designers can only use up to
6 components (of the type compE3) on the entire platform. (number_of_used_componentscompEjsubi

)
depends on the fault tolerance strategy applied on the subsystem subi. Figure 4.9 shows an example
that does not respect Constraint 4.3. The predefined quantity of the component element 1 is 3 (as
defined in the red square) but 4 components of type compE1 are used on the whole platform.

Constraint 4.4. (Path) a PE subsystem can only send data to or receive data from an ME subsystem
or another PE subsystem if and only if there is a direct link between them or a path via COMM
subsystems.

For example, when a function Fj is mapped on a subsystem subi1 , an input (or output) data of Fj
is mapped on subi2 (j ∈ {1, 2, ...nfunc}; i1, i2 ∈ {1, 2, ...nsub}). It needs to have a valid path between
subi1 and subi2 to allow the data transfer for Fj . To evaluate this, we consider each subsystem on the
platform template as a node and the platform template is a graph of connected nodes. The Dijkstra’s
algorithm [119] is used to find the shortest path between 2 subsystems on a platform. The shortest path
(called Dijk_path(platform_template, subi1 , subi2)) that is a list of nodes in order from subi1 to subi2
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does not include the start node (subi1) and the end node (subi2). Then, we apply the Constraint 4.4
to calculate the real distance between subi and subk: real_distance(subi1 , subi2).

Algorithm 4.5 describes how to calculate the real distance. Firstly, we obtain the chain of nodes
that is the shortest path between subi1 and subi2 by method Dijk_path (line 1). If the number of
nodes in the path is infinite (line 2), it means that there is no connection between the two subsystems.
If there is no node in the path (line 4), it means that 2 subsystems are connected directly. So, the
real distance between 2 subsystems is 0 (line 5). Otherwise, we consider each node in the path
(line 6-14). If the path passes through a COMM subsystem (line 8), the distance is increased by 1
unit (line 9). If there is any node of other types (PE, ME) (line 10), the connection is blocked at
that node and the distance is also considered infinite (line 11). Finally, we can obtain a value of
real_distance(subi1 , subi2).

So, we can see that real_distance(subi1 , subi2) will always come with a real_path(subi1 , subi2);
where real_path(subi1 , subi2) is a set containing a sequence of subsystems from subi1 to subi2 .

Thus, Constraint 4.4 is formulated in ILP by Equation 4.16, where j, k ∈ {1, 2, ...nfunc}; i1, i2 ∈
{1, 2, ...nsub}:  real_distance(subi1 , subi2)× dM

subi1
dj_k

× fM subi2
Fk

< ∞

real_distance(subi1 , subi2)× fM
subi1
Fj

× dM subi2
dj_k

< ∞
(4.16)

Algorithm 4.5 distance between 2 subsystems
Require: platform_template, subi1 , subi2
Ensure: real_distance(subi1 , subi2)
1: path = Dijk_path(platform_template, subi1 , subi2);

//the shortest path between subi1 and subi2
//list of nodes in order from subi1 to subi2 real_distance(subi1 , subi2) = 0

2: if path.length = ∞ then
3: real_distance(subi1 , subi2) =∞

//no connection between 2 subsystems
4: else if path.length = 0 then
5: real_distance(subi1 , subi2) = 0

//direct connection
6: else
7: for sub in path do
8: if sub.type = COMM then
9: real_distance(subi1 , subi2) += 1;

//connection through a COMM subsystem
10: else
11: real_distance(subi1 , subi2) =∞
12: break;
13: end if
14: end for
15: end if

Thus, we can now create a valid solution including component mapping, function mapping, data
mapping, and fault tolerance mapping that satisfy the rules and constraints. With such a solution,
our system can be implemented but it may not be the best solution.
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4.1.3 Solution evaluation

This subsection details how to evaluate a complete solution, which corresponds to the third part in
Figure 4.1. Three values are taken into account such as performance (execution time), fault tolerance
(reliability), resource usage (cost). Corresponding to each type of evaluation, Definitions 4.5, 4.6 and
4.7 introduce the concepts of execution time, reliability and cost, respectively.

4.1.3.1 Execution time evaluation of an application

Definition 4.5. the execution time of an application mapped on a platform is the longest duration
to finish the output functions and is counted from the earliest beginning time of the input functions.

The aim is to estimate the execution time of the given application. However, firstly, we need to
estimate the execution time of each function. Then, we consider applying a scheduling strategy to the
application.

Execution time of a function The execution time of a function τFj is composed of the dura-
tion of data reading, data receiving, processing function, data sending and data writing as given by
Equation 4.17 where: Fj ∈ V , j ∈ N;

τmein(Fj) is the delay to access a ME subsystem that stores an input data of Fj (called the input
ME subsystem);

∑
τmeout is the total time to access all ME subsystems that store the output data of

Fj (called the output ME subsystems);
τpe(Fj) is the duration of Fj performed on its assigned PE subsystem;

∑
τmein(Fj) is the total time

to access all ME subsystems that store the input data of Fj ;∑
τpathin(Fj) is the total time to transfer all data on the paths between all the input ME subsystems

and the PE subsystem on which Fj is mapped;∑
τpathout is the total time to transfer the data on the paths between the output ME subsystems

and the mapped PE subsystem of the function j.

τFj =
∑

τmein +
∑

τpathin + τpe +
∑

τpathout +
∑

τmeout (4.17)

The latency of each ME subsystem (τmein(Fj)) can be calculated by the equations 2 and 4 in
Table 4.2. The latency is the product of the delay of writing / reading 1 byte and the size of a data
block. For example, a memory has a read delay 0.84 us/byte, so, the latency to read a block of 10
bytes is 0.84× 10 = 8.4 us.

The duration of a function on a PE subsystem (τpe(Fj)) depends on the fault tolerance strategy
applied to the subsystem. Thus, we can calculate the duration by the corresponding equations (1, 4
and 5) in Table 4.2.

If the connection between a PE subsystem and an ME subsystem is direct, the latency is zero.
If a PE subsystem has to access an ME subsystem through COMM subsystems, the latency of a
COMM subsystem can be calculated by the equations (3 and 4) in Table 4.2. The delay evaluation
of a COMM subsystem is proportional to a factor, called δsubi . This path-contention delay model is
derived from the work in [4]. δsubi of a COMM subsystem is the total number of links of PE and
COMM subsystems that "really" share the same COMM subsystem. The term "really" means that
δsubi only counts links that really used that COMM subi to transmit data/signals when the platform
executes the application. Besides, real_path(subi1 , subi2) mentioned previously in Constraint 4.4 is
the set of all COMM between two considered subsystems. Based on the equations in Table 4.2 and
this set, we can obtain

∑
τpathin(Fj) and

∑
τpathout .
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Table 4.2: List of equations to calculate the execution time for each subsystem type depending fault
tolerance strategy.

No Name Type Equation

1
No

τpe τnoTol = (fMsubi
Fj

)× (cM compEk

subi
)× (Fj .size)/(compEk.speed_factor)

2 tolerance τme τnoTol = (cM
compEj

subi
)× (compEj .delay)× (dMsubi

dk
)× (size(dk))

3 τcomm τnoTol = (cM
compEj

subi
)× (compEj .delay)× δsubi

4 TMR all types τTMR = τnoTol + τvoter

5 TReR τpe τTReR = 3× τnoTol + τvoter

Figure 4.10 illustrates an example case to calculate the execution time of F2. F1 is mapped onto
PE1; F2 and F3 are mapped onto PE2. Because F2 and F3 are mapped onto the same PE subsystem,
the data block d2_3 is not assigned into any ME subsystem. Thus, there is also no output data path
for F2. The data blocks d1_2 is mapped onto ME2 (the input ME subsystem of F2), this data block
is transferred through the COMM1. Note that

∑
τpathin = delay(COMM1) × 2 because there are

two connections with the COMM subsystem (PE1 and PE2). Therefore, the execution time of F2 is
calculated as τF2 in Figure 4.10.

Thus, if startFj represents the time at which the execution process of Fj begins, the time at which
the function Fj is completed is given by finishFj , by Equation 4.18, where j ∈ {1, 2, ...nfunc}:

finishFj = startFj + τFj (4.18)

Figure 4.10: Connection between two functions.
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Figure 4.11: An example of function mapping and scheduling.

Scheduling When we have computed the execution time of each function, we use these results to
estimate the execution time of an application. Scheduling is the process that determines the order
in which each function is executed. Herein, the function scheduling for the MPSoC can be regarded
as "schedule order sequence; resource mapping sequence" presented in [120]. Therefore, there are two
scheduling constraints that we need to rely on to calculate the execution time of the application:
1) functions dependencies in the application DAG; 2) order of functions in the PE subsystem of a
mapping solution.

For example, in Figure 4.11, with the first scheduling constraint, F2 and F3 can only start when
F1 finishes. F5 can only start if both of F4 and F3 are ended. For the second scheduling constraint, we
need a mapping solution to evaluate the sequential execution of the functions. A mapping example of
the application as: {F1} is mapped on subPE1; {F2, F3} is mapped on subPE2; {F4, F5} is mapped
on subPE3. In this mapping solution, {F1, F2, F4, F5} and {F1, F3, F5} are executed in the order of
the application DAG. Besides, F2 and F3 are executed in the order mapped in subPE2. It means that
F3 can only start when F2 finishes. All functions have to comply with both of these rules in which the
first has a higher priority than the second one. Therefore, the sequence of functions in the example
solution is given by F1 → F2 → {F3 // F4} → F5.

Therefore, the scheduling can be generalized by the following two Constraints 4.5 and 4.6:

Constraint 4.5. (schedule order sequence) for two functions on an edge of the application, the end
function of the edge only begins when the begin function ends.

Constraint 4.5 is expressed by Equation 4.19, where j, k ∈ {1, 2, ...nfunc}:

ej_k =⇒ startFk > finishFj (4.19)
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Constraint 4.6. (resource mapping sequence) if two functions are mapped on the same PE subsystem,
these two functions cannot be executed at the same time.

Constraint 4.6 is expressed by Equation 4.20, where: j1, j2 ∈ {1, 2, ...nfunc}, i ∈ {1, 2, ...nsub} :

fM subi
Fj1

= 1, fM subi
Fj2

= 1 =⇒ startFj2 > finishFj1 ∨ startFj1 > finishFj2 (4.20)

Obviously, according to Definition 4.5 (about the execution time of an application), the execution
time of a solution mapping (xsol) is given by Equation 4.21 where:
∀j, k ∈ {1, 2, ...nfunc}, finishsystem = max

(
finishFj |@ej_k

)
;

∀j, k ∈ {1, 2, ...nfunc}, startsystem = min
(
startFj |@ek_j

)
.

Tsys(xsol) = finishsystem − startsystem (4.21)

For example, in the case of Figure 4.11, the execution time of the system for this mapping solution
is express in Equation 4.22:

Tsys(xsol4.11) = finishF5 − startF1

= τF1 + τF2 + τF3 + τF5

(4.22)

4.1.3.2 Reliability evaluation

Definition 4.6. the reliability of an MPSoC system during an execution is the probability that no
failure occurs on the result of the system for the whole duration.

If the subsystems are independent, the reliability of a platform is the product of the reliability of
all subsystems. Therefore, we need to consider how to estimate the reliability of each subsystem with
and without fault-tolerance strategies. The transient fault and the permanent fault are presented in
Chapter 1. Herein we use the fault models to estimate the reliability of an MPSoC system. Hereafter,
we present the estimation of the reliability of each type of subsystem (PE, ME and COMM) and their
corresponding fault strategies.

PE subsystems Multi-functions can be mapped on one PE component. The transient fault can
disappear after a PE component terminates a function and starts executing a new function. For
example in Figure 4.12, at the component level, a transient fault occurred in the duration of F2 then it
disappears while executing F3 because a new activities override and erase the previous transient fault.
However, this does not happen with the permanent fault. Once a permanent fault occurs, a component
is considered as unusable.

Figure 4.12: A transient fault appears and disappears on a PE component.

89



4.1. DESIGN SPACE CHAPTER 4. DESIGN SPACE EXPLORATION

No tolerance: if a PE subsystem does not support fault tolerance mechanism, the reliability of the
subsystem i containing the component k after m periods of the application is given by Equation 4.23
(the definition of a period is presented in Definition 1.1) which describes the probability that no
permanent failure occurs during the operation duration and also no transient failure occurs on any
function duration, where: j ∈ {1, 2, ...nfunc}; i ∈ {1, 2, ...nsub}; k ∈ {1, 2, ...ncompE};

Vsubi is the set of functions mapped on the subsystem i (Vsubi = {Fj |fM
subi
Fj

= 1, j ∈ {1, 2, ...nfunc}});
τFi is the duration that the PE subsystem performs the function Fj , is calculated as τnoTol - the

equation 1 in Table 4.2;

τpfi =
∑

Fj∈Vsubi
τFj is the total operation time of the PE subsystem in a period of the application

(or in another word, the considered duration that the permanent failure may appear in a period of the
application);

RPF(τpfi , compEk) is the no-permanent-failure probability of the component k during τpfi estimated
from Equation 1.3;

RTFj (τFj , compEk) is the no-transient-failure probability of the component k during τFj estimated
from Equation 1.4.

Rsubi(m)(cM
compEk
subi

= 1; tM0
subi

= 1)

= RmPF(τpfi , compEk)×
∏

Fj∈Vsubi

RmTFj (τFj , compEk)
(4.23)

For sake of clarity, we use RPF(τpfi) instead of RPF(τpfi , compEk), and RTFj (τFj ) instead of
RTFj (τFj , compEk) to shorten formulas with the same meaning.

Triple Modular Redundancy: In Figure 4.13, a PE subsystem is composed of three processors that
execute a function in parallel. The result is correct if at least 2-out-of-3 processors have the same
result. So, Equation 4.24 gives the reliability estimation of the TMR subsystem after the first period
of the application, where Rmv (τvoter) is the reliability of the voter during the operation duration τvoter:

Figure 4.13: Multi functions are mapped on the same PE subsystem with TMR.
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Rsubi(1)(cM
compEk
subi

= 1; tM1
subi

= 1)

=
(
RPF(τpfi)

)3 × ∏
Fj∈Vsubi

(
(RTFj (τFj ))

3 + 3(1−RTFj (τFj ))(RTFj (τFj ))
2
)
×Rv(τvoter)

+ 3
(
RPF(τpfi)

)2(
1−RPF(τpfi)

)
×

∏
Fj∈Vsubi

(
(RTFj (τFj ))

3 + (1−RTFj (τFj ))(RTFj (τFj ))
2
)
×Rv(τvoter)

(4.24)

Note: As described in our meta-model, the voter can be considered as a PE component with the
pre-defined parameters such as its voter reliability Rv(τvoter), its delay τvoter and its cost cvoter.

Equation 4.24 is composed of two terms. The first one describes that no permanent failure in the
whole execution time and, at most there is only one transiently faulty component in the execution of
each function. The second one indicates that there is only one permanently faulty component in the
whole execution and, if there is transient failure, the transient failure only appears on the permanently
faulty component. In any case, the voter must have no failure because no strategy is considered on
the voter for now. As the events are independent, the reliability after m periods of the application is
given by Equation 4.25.

Rsubi(m)(cM
compEk
subi

= 1; tM1
subi

= 1)

=
(
RmPF(τpfi)

)3 × ∏
Fj∈Vsubi

(
(RTFj (τFj ))

3 + 3(1−RTFj (τFj ))(RTFj (τFj ))
2
)m
×Rmv (τvoter)

+ 3
(
RmPF(τpfi)

)2(
1−RmPF(τpfi)

)
×

∏
Fj∈Vsubi

(
(RTFj (τFj ))

3 + (1−RTFj (τFj ))(RTFj (τFj ))
2
)m
×Rmv (τvoter)

(4.25)

Elements in Equation 4.25 are clarified as following:

•
(
RmPF(τpfi)

)3 implies that no permanent fault appears on the 3 components during m periods;

•
(
(RTFj (τFj ))

3 + 3(1 − RTFj (τFj ))(RTFj (τFj ))
2
)

implies that al most only one transient fault
appears in an execution of Fj on the 3 components. So, after m periods, the reliability is(
(RTFj (τFj ))

3 + 3(1−RTFj (τFj ))(RTFj (τFj ))
2
)m

;

• Rmv (τvoter) implies that no fault appears during m periods on the voter;

• 3
(
RmPF(τpfi)

)2(
1 − RmPF(τpfi)

)
implies that at most only one permanent fault appear during m

periods on the 3 components;

•
(
(RTFj (τFj ))

3 + (1−RTFj (τFj ))(RTFj (τFj ))
2
)
implies that a transient fault can only appear on

the permanently faulty component, no fault appears on the 2 others. So, after m periods, the
reliability is

(
(RTFj (τFj ))

3 + (1−RTFj (τFj ))(RTFj (τFj ))
2
)m

.
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Figure 4.14: Multi functions are mapped on the same PE subsystem with TReR.

Triple Re-execution Redundancy: Figure 4.14 describes the TReR strategy. A PE subsystem that is
composed of one processor. The processor performs any mapped function 3 times. The result is correct
if at least 2-out-of-3 execution are correct. However, since permanent faults cannot be recovered and
transient faults disappear after each execution, it should be noted that the reliability of the subsystem
is the probability that there is no permanent fault and at most only one execution time fails by the
transient fault. So, the reliability of the TReR subsystem is given by Equation 4.26 after m periods of
the application.

Rsubi(m)(cM
compEk
subi

= 1; tM2
subi

= 1)

= (RPF(3τpfi)
)m × ∏

Fj∈Vsubi

(
(RTFj (τFj ))

3 + 3(1−RTFj (τFj ))(RTFj (τFj ))
2
)m
×Rmv (τvoter)

(4.26)

Elements in Equation 4.26 are clarified as following:

• (RPF(3τpfi)
)m implies that there is no permanent fault in the whole m periods;

•
(
(RTFj (τFj ))

3 + 3(1 − RTFj (τFj ))(RTFj (τFj ))
2
)

implies that during the triple times of the
execution of Fj , there is at most only one execution time fails by the transient fault. So,(
(RTFj (τFj ))

3 + 3(1 − RTFj (τFj ))(RTFj (τFj ))
2
)m

implies that the execution of Fj is correct
during m periods;

• Rmv (τvoter) implies that no faults in the voter during m periods.

ME subsystems As mentioned earlier, we establish the equations for No-tolerance and TMR for
ME subsystem.

No Tolerance: The reliability of a ME subsystem after m periods of the application is given by the
Equation 4.27:

Rsubi(m)(cM
compEk
subi

= 1; tM0
subi

= 1) = RmPF(τpfi)×R
m
TFj (τFj ) (4.27)

Triple Modular Redundancy for a ME subsystem after m periods of the application is given by the
Equation 4.28, where:

τpf is the whole operation time of the considered ME subsystem in a period of the application; in
other words, τpf is the considered duration that permanent faults can occur;
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τtf is the duration that transient faults can appear on the considered ME subsystem.

Rsubi(m)(cM
compEk
subi

= 1; tM1
subi

= 1)

=
(
RmPF(τpf)

)3 × ((RTF(τtf))
3 + 3(1−RTF(τtf))(RTF(τtf))

2
)m
×Rmv (τvoter)

+ 3
(
RmPF(τpf)

)2(
1−RmPF(τpf)

)
×
(
(RTF(τtf))

3 + (1−RTF(τtf))(RTF(τtf))
2
)m
×Rmv (τvoter)

(4.28)

It is assumed that the data stored in an ME subsystem (First In, First Out (FIFO) type) has
to exist at least through one period of the application. After that, new data arrives and overrides
completely the old data. At the component level, if there is a transient fault, it can disappear when
a new period comes. Therefore, within the scope of one application execution, for ME subsystems,
τtf = τpf = τop, is the whole operation time of the considered ME subsystem in a period of the
application. For a ME subsystem, all durations of memory accesses into the ME subsystem i in a
period of the application are given Equation 4.29, where: Dsubi is the set of all data mapped in the
subsystem i (Dsubi = {dj_k|dM

subi
dj_k

= 1; dj_k ∈ D; subi is ME; j, k ∈ N}); τmeop are obtained through
the process of calculating the execution time of the application.

τmeop (subi) =
∑

dj_k∈Dsubi

(
τmein(Fj)

)
+

∑
dj_k∈Dsubi

(
τmeout(Fk)

)
(4.29)

COMM subsystems Herein we establish the equations of the No-tolerance and the TMR for COMM
subsystems.

No Tolerance: The reliability of a COMM subsystem after m periods of the application is given by
the Equation 4.30:

Rsubi(m)(cM
compEk
subi

= 1; tM0
subi

= 1) = RmPF(τpfi)×R
m
TFj (τFj ) (4.30)

Triple Modular Redundancy for a COMM subsystem after m periods of the application is given by
the Equation 4.31, where: τpf is the whole operation time of the considered COMM subsystem in a
period of the application; τtf is the duration that transient faults can appear on the considered COMM
subsystem.

Rsubi(m)(cM
compEk
subi

= 1; tM1
subi

= 1)

=
(
RmPF(τpf)

)3 × ((RTF(τtf))
3 + 3(1−RTF(τtf))(RTF(τtf))

2
)m
×Rmv (τvoter)

+ 3
(
RmPF(τpf)

)2(
1−RmPF(τpf)

)
×
(
(RTF(τtf))

3 + (1−RTF(τtf))(RTF(τtf))
2
)m
×Rmv (τvoter)

(4.31)

For COMM, when the new period begins, the transient failures in the previous periods are com-
pletely eradicated. It implies that at the component level, if there is a transient fault, it can disappear
when a new period comes. Therefore, within the scope of one application execution, for COMM subsys-
tems, such as for ME, τtf = τpf = τop is the whole operation time of the considered COMM subsystem
in a period of the application. All duration of data transfer through the COMM subsystem in a period
of the application is given by Equation 4.32, where τ commop is obtained through the process of calculating
the time to transfer the data between ME subsystems and PE subsystems, by Equation 4.32 where
j ∈ {1, 2, ..., nfunc}.

τ commop (subi) =
∑

(operation_time_of_subi) (4.32)
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Platform Once the reliability of all subsystem calculated, the platform reliability of a solution (xsol)
after m periods of execution of the application is given by Equation 4.33, where Rsubi(m) is the indi-
vidual reliability of all subsystems, as following:

Rplatf(m)(xsol) =

nsub∏
i=1

Rsubi(m) (4.33)

4.1.3.3 Cost evaluation

Definition 4.7. The cost of a platform is the total cost of all the active components used in that
platform.

The cost evaluation is intended to ensure the balance of hardware resources with goals of perfor-
mance and reliability when designing a system. Each component has a cost value. When a component
is mapped to a subsystem, depending on the fault-tolerance strategy applied to the subsystem, the
cost of that subsystem is calculated according to the equations given in Table 4.3. Therefore, the
platform cost of a mapping solution (xsol) defined in Definition 4.7, is given by the Equation 4.34,
where "subi in use" means that the cost of a subsystem is only counted for the equation if and only
if the subsystem is used (the PE subsystem is mapped functions, the ME subsystem is mapped data,
the COMM subsystem actually has the data transmission).

Cplatf(xsol) =

nsub∑
i=1

Csubi where: subi in use (4.34)

In Table 4.3, the first row show the equations to calculate the cost of a subPPE when no tolerance is
applied. The cost is the sum the cost of its compPPE and compSoftware. With the other types of
subsystem (the second row), the cost (no tolerance) is the cost of its component. The cost of a subPPE
applied TMR (third row) includes the cost of 3 compPPE and 1 compSoftware and 1 voter. With
the other types of subsystem (the fourth row), the cost with TMR includes the cost of 3 components
and 1 voter. The cost of a subsystem applied TReR equals the cost of the subsystem without tolerance
plus the cost of a voter.

Table 4.3: List of equations used to calculate the cost of fault tolerance strategies of a subsystem Csubi .

Name Type Equation

1
No

PPE CnoTol = (cM compEk
subi

)× (compEk.cost) + compEsoft.cost

2 tolerance
DPE or ME

or COMM
CnoTol = (cM compEk

subi
)× (compEk.cost)

3
TMR

PPE CTMR = 3× (cM compEk
subi

)× (compEk.cost) + compEsoft.cost + cvoter

4
DPE or ME

or COMM
CTMR = 3× CnoTol + cvoter

5 TReR PE CTReR = CnoTol + cvoter
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4.2 Optimization process

We can generate solutions in a design space. Now, there are two questions need to be answered:

• for two different solutions, which one is better?

• which solution is best in the design space and how to find that point?

For the first question, we need to define a method for comparing two solutions. In other words, we
try to scalarize the set of objectives (time, reliability, cost) into a single objective. Then, to answer the
second question, we need to integrate the whole process (from the mapping process to the optimum
function) into a search strategy that allows finding the best solution.

4.2.1 Objective function

There are three performance criteria of a mapping solution: execution time, reliability level and cost.
The objective is to a) maximize the reliability level (maximum is 1), b) to minimize the cost and c) to
minimize the execution time. There are several methods to solve this problem [121]. Basically, with
the optimization of a multi-objective problem, we try to set up formulas to compare the two solutions,
or try to find the best set of solutions instead of just one solution. Using a method depends on the
needs of designers. However, the availability of the criteria of each solution such as the proposition
of this thesis makes it less difficult to apply the optimal methods. Within this manuscript, we choose
the Weighted Metric Method [122]. This is an easily-implement for method, if it is ideal, it will give a
single optimal solution. This also helps us easily verify our framework. This method uses a weighted
distance metric of any solution from the ideal solution. It is thus necessary to know the minimum and
the maximum objective values and then to define the ideal solution.

Thus, from the idea of the method, the objective function to evaluate simultaneously three sub-
objective values of a mapping solution xsol, is proposed as the Equation 4.35. α, β, γ in the Equa-
tion 4.35 are factors that can be set by designers to give more weight to the parameters they wish
to favor where: α + β + γ = 1, α, β, γ ≥ 0,; Rplatf(m), Tsys and Cplatf are respectively the platform
reliability, the application execution time and the cost of a mapping solution that are calculated from
the Section 4.1.3.

func(xsol) = α× (Rplatf(m) − 0) + β × Tmax − Tsys
Tmax

+ γ ∗
Cmax − Cplatf

Cmax
(4.35)

• (Rplatf(m) − 0) means that the minimum value of the reliability is 0, "the bigger the better".

• (Tmax − Tsys) means "the bigger the better". Tmax is the possible longest value of the execution
time estimated from the worst case. The worst execution time Tmax is given by the Equation 4.36.

Tmax =

nfunc∑
j

Fj
max(τTReR) +

nsub∑
j,COMM

(2× ndata × max
subj(cL)

(τTMR)) + 2× ndata ×
nsub
max

submej (cL)
(τTMR)

(4.36)
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• (Cmax − Cplatf) means "the bigger the better". Respectively, Cmax is the possible biggest value
of the cost estimated from the worst case. The most expensive cost Cmax is estimated by the
Equation 4.37.

Cmax =

nsub∑
j

max
subj(cL)

(CTMR) (4.37)

Undoubtedly, our objective problem is is expressed as Equation 4.38:{
maximize func(xsol) from Equation 4.35
subject to xsol from the design-solution generator (4.38)

4.2.2 Search strategies

We can now distinguish 2 points in the design space to know which one is better. So, hereafter, we will
use three very popular strategies in literature to find the best solution and indicate how to integrate
these strategies into our DSE.

4.2.2.1 Comprehensive search (CS)

The first one, the "simplest" and most classic strategy of the optimization is the Comprehensive Search
(CS). We will calculate from the first solution until the final solution, without missing any possible
solutions in the design space.

The terms "simplest" implies that the strategy is easy to understand and to implement. However,
this strategy may face time problems if the solution space is extremely large. Its advantage is only
that the found solution (if possible) is definitely the best solution.

4.2.2.2 Simulated annealing (SA)

The second one is the SA [123]. This strategy is based on the simulation of a cooling process of metal,
glass, or crystal. The process is that heating above its melting point, holding its temperature, and
then cooling it very slowly until it solidifies into a perfect crystalline structure.

SA is composed of two processes: 1) one for the solution generation and 2) the other for the solution
acceptance. It chooses a random move (a move = a solution generation) from the neighborhood. Then,
if the move is evaluated better than its current position, the move is definitely accepted to become the
current position. If the move is worse (i.e. lesser quality), it can be accepted based on a probability
model. Choosing a move is the solution acceptance. The probability model can be as Boltzmann
distribution, Cauchy distribution, Markov chain Monte Carlo, etc. Thereby, we can integrate SA into
our DSE framework as:

• the solution generation is equivalent to our "mapping process".

• the solution acceptance is equivalent to our "solution evaluation" and our "objective function"
(Equation 4.35).

There are many efforts that provide some open-source tools to simulate this SA process. We only
need to integrate our modeling codes, evaluation functions into these tools. This greatly reduces
development time and is easy to contribute to the community. For this work, we used an available
library in Python: simanneal. According to the authors in this library, the temperature model is an
exponential algorithm.
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4.2.2.3 Genetic algorithm (GA)

The third possible approach is the GA [123]. Basically, GA is based on the neo-Darwinian paradigm
for simulating the natural evolution of biological systems. GA starts with a set of individuals called
a population. An individual in a population is represented by a chromosome, that competes and
exchanges information with the others in the population. A population is usually initiated randomly,
then the population is evolved by generating from some selection/reproduction procedure to produce
the next generation. Normally, the population size is preserved throughout each generation. At
each generation, the fitness of each individual is evaluated. Then, based on their fitness, individuals
are probabilistically selected to mate and produce offspring. At this moment, the crossover and the
mutation randomly occurs. An individual with a high fitness has a high probability of being selected,
and therefore, its chromosome has many opportunities to be inherited in next generations. The process
will be repeated over many generations until a termination criterion is met. The termination criterion
can be set as a maximum number of generations, or the convergence of the gene-types of the individuals.

Thereby, we integrate the GA algorithm into our DSE framework as:

• an individual is a solution in our DSE framework.

• a chromosome is the string of a solution encoded in Equation 4.1.

• the fitness of each individual (solution) is evaluated by Equation 4.35

As with SA, we use an open-source library for GA in Python: sklearn-deap was developed based
on the DEAP [124].

4.3 Summary

This chapter presented the entire fault-tolerance DSE part of our framework. The part is composed of
2 principal problems: fault-tolerance design space generation, and optimization.

We proposed some contributions for the fault-tolerance design space generation. The first one is the
mapping process that consists of the component mapping, the function mapping, the data mapping,
and the fault-tolerance strategy mapping. The second one is the set of evaluation algorithms that
consists of the time evaluation, the reliability evaluation, and the cost evaluation.

The optimization process proposed an objective function and the integration of search strategies into
our DSE process. The objective function allows the comparison of solutions and indicates which one
is better. Then, three search strategies such as the Comprehensive Search, the Simulated Annealing,
and the Genetic Algorithm are to find the best solution among the possible design space.
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Chapter 5

Experimental evaluation

Abstract: The DSE framework is proposed in the previous chapters with all its tools, which allows
modeling, mapping, evaluating, optimizing the design of reliable MPSoCs. Now, in this chapter, we
applied this framework for some case-studies and to give some discussions on this and show the
effectiveness of the approach.

Contents
5.1 Case-study description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.1.1 Sobel filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.1.2 Harris detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.2 DSE results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
5.2.1 Sobel filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
5.2.2 Harris detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

99



5.1. CASE-STUDY DESCRIPTION CHAPTER 5. EXPERIMENTAL EVALUATION

5.1 Case-study description

In this section, we describe case-studies to test our DSE framework.

5.1.1 Sobel filter

On this case study, the application model of Case-study 1 is presented. Then, the platform template
and the list of component.

5.1.1.1 Application

The Sobel filter is a simple and very popular application that is an edge-detection for image processing.
Figure 5.1 and Table 5.1 describes the details of functions in the application. There are four main
functions: get Pixels, Gx, Gy (measurements of the gradient component of each orientation), and
Abs (gradient magnitude). The code implementation of the functions is described in Listing A.1, A.2,
A.3, A.4 in Appendices.

These functions are executed on Microblaze processors (Zedboard) [125] to find the worst-case
execution time (wcet) shown in Table 5.1. At each time, this application processes a 9x9-pixel frame.
So, the sizes of the data exchanged between functions are described in the table.

5.1.1.2 Platform

The platform template is composed of 4 PE subsystems, 1 COMM subsystem, and 1 ME subsystem.
Figure 5.2 describes the platform template used for this case study. To fill out the empty subsystems
of the platform template, there are available components described in Table 5.2.

The failure rates of "Microblaze" are assumed following the worst-case parameters of the device
Xilinx 7-serie FPGA [126]. A Microblaze has 1089 Look-Up Table (LUT)’s and 969 registers, LUTs
are typically built as 32x2 bits, a register has 32-bit [127]. The transient failure rate is 75 FIT/Mb
[128], so λTF of the Microblaze can be estimated as 7.6 FIT. Assuming that an unlimited number of
functions can be mapped on one Microblaze (Capacity: multi-functions).

The software component is considered as having no permanent fault and has a transient failure
rate as shown in the table.

It is noted that in the general model of an application, the size of a function is represented by its
number of operations. Then, the execution time of a function on PE is calculated by the product of

Figure 5.1: the DAG of the Sobel-filter
application

Table 5.1: details of functions and data in the Sobel
application.

Function wcet running on Data size (Bytes)
Microblaze (µs)

Get Pixels 85 d1_2 324
Gx 1009 d1_3 324
Gy 1009 d2_4 4
Abs 86 d3_5 4
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Figure 5.2: platform template for the case study-1 is composed of 6 subsystems: 4 subPEs (in blue),
1 subCommunication (in green), and 1 subMemory (in white)

Table 5.2: component parameter list in the case study-1.

ID Type λPF (FIT) λTF (FIT) Capacity
Cost

(component
unit)

Quantity

Microblaze PPE 10 7.7 multi-functions speed factor:
predifined 1 10

softComp SOFT 0 15 1 unlimited

BRAM ME 10 72.7 up to 128 KBytes delay:
0.8 µs/byte 1 5

AXI
interconnection COMM 10 1.18 NA delay:

0.6 µs 1 3

the size of the function and the inverse of the speed factor of that PE. The overall purpose is only
to calculate the execution time of the functions. If the designers have obtained already time value of
the function execution as in this example, we can always use that input regardless of the number of
operations.

With the size of 128KBytes, the transient-failure rates of a "BRAM" component can be estimated
as 72.7 FIT (because the transient failure rate is 70 FIT/Mb for BRAM [128]). The transient-failure
rates of "AXI" component (182 LUTs and 130 registers) is 1.18 FIT .

The delay of BRAM is measured by sending a byte from the processor to a BRAM without AXI bus
interconnection. Thus, the delay of AXI bus is the difference between sending 1 byte from 1 processor
to a BRAM with and without the AXI bus. The code implementation is presented in Appendix A.3.

Assuming that the whole system operates in the environment as the test High-temperature oper-
ating life [128], so the permanent failure rate of every components is 10 FIT.

Cost of each component is 1 unit. When setting the value of each component as such, we want to
minimize the number overall of components used for the system.

The fault-tolerance strategies considered in this example are the TMR and the TReR. In the
two strategies, the voter can be considered as a PE component. The voter component in Zynq is
build on AXI protocol [129]. Therefore, for simplicity, the parameters of the voter are assumed with
Rv(τvoter) = 1, τvoter = delay of "AXI" bus, cvoter = 1 and no tolerance is applied on the voter.
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Figure 5.3: the DAG of the 10-function application in the case study-3.

Table 5.3: functions and data in the Harris application.

Function Detail wcet running on (µs) Data size (Bytes)
Microblaze ARM

F1 Get pixel 83 22 d1 324
F2 Gradient x 8685 302 d2 324
F3 Gradient y 8685 302 d3 324
F4 Product x 3300 123 d4 324
F5 Product x & y 685 45 d5 324
F6 Product y 3300 123 d6 324
F7 Sum x 470 21 d7 324
F8 Sum x & y 470 21 d8 324
F9 Sum y 470 21 d9 324
F10 Corner response 111 5 d10 4

d11 4
d12 4

5.1.2 Harris detector

To increase complexity, Case-study 2 is composed of a 10-function application and a 15-subsystem
platform template.

5.1.2.1 Application

The application model in Figure 5.3 is the Harris Corner Detector [130] that is used in the image
processing to extracting corners of an image. The worst case execution time (wcet) of these functions
running on Microblaze and ARM processors (Zedboard) is given in Table 5.3. Note that herein to
be brief, we used the data formalism di instead of di_j . The position of each data is indicated in
Figure 5.3. This application processes 9x9-pixel frames (36 bytes). So, the sizes of the data exchanged
between functions are described in the table accordingly. The code implementation of the functions is
described in Listing A.5 to A.11 in Appendices.
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Figure 5.4: platform template in the case study-2 is composed of 15 subsystems.

Table 5.4: component parameter list in the case study-2.

ID Type λPF (FIT) λTF (FIT) Capacity
Cost

(component
unit)

Quantity

Microblaze PPE 10 7.7 multi-functions speed factor:
predifined 1 10

ARM A9 PPE 1000 150 multi-functions speed factor:
predifined 1 2

softComp SOFT 0 15 1 unlimited

BRAM ME 10 76.8 up to 128 KBytes delay:
0.8 µs/byte 1 5

AXI
interconnection COMM 10 1.18 NA delay:

0.6 µs 1 3

5.1.2.2 Platform

The platform template and the component list are described respectively in Figure 5.4 and Table 5.4.
Because the application has 10 functions, the platform template is composed of up to 10 PE subsystems
(in blue). There are four ME subsystems (in white). The subsystems communicates through a COMM
subsystem (in green).

In assuming that our platform is built on Xilinx Zed-board. Therefore, the parameters of compo-
nents are defined in Table 5.4. Note that there are only maximally 2 ARM processors. The failure
rates of ARM processor are declared from [131].
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5.2 DSE results

This section describes the results of our DSE framework with the two previously described case-studies.
Each case study is considered with 3 search strategies GA, SA, and CS. These DSE experiments are
executed on a machine: Intel Core 4-core i7-5600U running at 2.6 GHz with 16 Gbytes RAM.

It should be noted that all three strategies run in Python. Each strategy is programmed in parallel
to maximize the capabilities of the machine and reduce the DSE duration. This means that in each
strategy, there are four independent jobs to run in parallel (by using the open-source library multipro-
cessing of Python). Each job is responsible for the mapping process and the solution evaluation. In
each case-study, there are three main parts:

• search strategies - parameter setup: setting parameters of search strategies using in the
DSE framework;

• results: show the configuration of found design solutions, the reliability, the execution time, and
cost of these solutions;

• discussion: analysis of the results and remarks.

5.2.1 Sobel filter

Before going into the details of each search strategy, some common parameters in the objective function
need to be established as in Table 5.5.

Tmax and Cmax are fixed in each case study and estimated by the inputs described in Subsec-
tion 5.1.1. The system moves a 9 × 9-pixel window of filter through every pixels. Therefore, in each
period, the window stays at a pixel to process a 9 × 9-pixel frame. It is assumed that the system
executes 100000 photos, in which each photo has a size of 1080× 720 pixels. Therefore, the number of
periods (m) is 105 × 1080× 720 = 7776× 107.

In this case study, the optimization process is implemented with each pair of 2 objectives: (reliability
vs time), and (cost vs reliability). Assuming the importance of objectives is the same, the weighting
factors are given as in the bottom line of Table 5.5.

5.2.1.1 Search strategies - parameter setup

In the search strategies, there are some parameters that need to be set up.

Genetic algorithm (GA) The GA parameters needed to be set before running are:

• population_size is the size of the population;

• generation_number is the number of generation. This number should be chosen so that the
average fitness of the population converges;

Table 5.5: parameters in the objective function of Case-study 1.

Name Definition Value
m number of periods 7776× 107

Tmax longest execution time 7952 µs
Cmax most expensive cost 28

{α, β, γ} weighting factors {0.5, 0.0, 0.5}; {0.5, 0.5, 0.0}
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Table 5.6: GA parameters in Case-study 1.

Name Value
population_size 150

generation_number 100
tournament_size 3
gene_mutation 0.03
gene_crossover 0.4

• tournament_size is the number of running tournaments among a few individuals to choose
randomly from the population;

• gene_mutation is the probability of gene mutation in a chromosome;

• gene_crossover is the probability of gene swap between two chromosomes.

There is no "free lunch" so it is difficult to select good parameter sets from the beginning. Therefore,
to start, the parameters are chosen as being commonly observed in the literature [132] for simple and
small case-studies. Table 5.6 gives the parameters used in this case study.

Simulated Annealing (SA) The SA parameters also need to be set before executing, the parame-
ters used for the SA strategy are provided in Table 5.7.

• Tmax is the initial temperature that should be set to accept roughly 98% of the moves [133].
After 20 times of test runs, we observe that Tmax > 50 allows achieving the desired acceptance;

• Tmin is the stopping temperature. Normally, the simulation process stops when the temperature
reaches a value as close as possible to zero;

• num_steps is the number of iterations in the whole cooling process. The bigger the value is, the
slower the process is, and therefore, the probability to find the optimal global solution increased.
num_steps is proportional to the size of the problem instance. The default number of steps
recommended by the authors of simanneal is 50000; However, we tried with several values to
find a good number of steps at {α, β, γ} = {0.5, 0.5, 0.0}. At each value of num_step, we ran the
SA search 10 times. The goal is to fins a solution with the highest value of the objective function
in Equation 4.35. The best solution that is found on all these runs is considered as the best
global solution. Figure 5.5 shows the impact of num_steps on the probability to find the best
solution. The probability to find the best solution is represented by the number of times among
10 runs that the best solution appears. We can see that the greater the number of steps is, the
higher the probability of finding the best solution is. So, from the figure, num_steps > 70000
helps to achieve a percentage of 100%.

Table 5.7: SA parameters in Case-study 1.

Name Value
Tmax 55
Tmin 0.0001

num_steps 70000
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Figure 5.5: Impact of the number of steps on the probability to find the best solution.

Comprehensive search (CS) This strategy goes through each one solution in the whole space and
then perform an exhaustive search. No parameters need to be set. The total number of solutions
to be explored is more than 1990656 solutions (1 configuration for the component mapping; 6144
permutation configurations for the function mapping; 1 configuration for the data mapping; 34 × 22

configurations for the fault-tolerance mapping). This value was given after CS ended its execution.

5.2.1.2 Results

GA and SA are used for all instances of Case-study 1. At each instance of Case-study 1, we ran the
GA (SA) search 10 times. The best solution that is found among all these runs is considered the best
solution. All three search strategies give the same results.

Figure 5.6a and 5.6b describe the optimal solutions found in Case-study 1. As we presented in
Chapter 3, the blue blocks are PE subsystems, the green blocks are COMM subsystems and the white
blocks are ME subsystems. On these all blocks, the bordered gray node shows the fault-tolerance
strategy applied in the corresponding subsystem and the bordered white nodes shows the component
used in the corresponding subsystem. The blue block (PE subsystem) indicates which function is
mapped on the PE subsystem or it shows that the subsystem is "not used". The white block (ME
subsystem) indicates which data is stored on the ME subsystem. For example, in Figure 5.6a, (’F1’,
’F3’) represents d1_3 and (’F2’, ’F4’) represents d2_4, both are stored on the ME subsystem me1.

Table 5.8 shows the execution time, the cost and the reliability level of these found solutions.
The second column is composed of the sets of values of {α, β, γ}. Tsys and Cplatf are respectively
the execution time and cost of the system. The third column show the reliability of the solution
corresponding to each value of m (number of periods). It should be noted that since the unit of
the failure rate is a failure per 109 hours, the value of the reliability here with exactly 9 decimal
digits is acceptable. From the reliability, we estimate the number of failed period among m periods:
Pfail = m×Rplatf.
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(a)

(b)

Figure 5.6: result found and shown on the DSE tool by all three search strategies (a) with {α = 0.5,
β = 0.5, γ = 0.0}. (b) with {α = 0.5, β = 0.0, γ = 0.5}.
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Table 5.8: reliability, execution time and cost of found solutions in the case study-1.

No {α, β, γ} Rplatf Tsys Cplatf

1
{0.5, 0.5, 0.0} 0.99726007 1737 µs 9.0

Number of failed period (Pfail1) among m periods 213056956 N/A N/A

2
{0.5, 0.0, 0.5} 0.99649173 2742 µs 4.0

Number of failed period (Pfail2) among m periods 272803075 N/A N/A

Improvement of No.1 compared to No.2
Pfail2−Pfail1

Pfail2

Tsys2−Tsys1
Tsys2

Cplatf2−Cplatf1
Cplatf2

21.9% 36.65% −125%

Table 5.9: failure rate of the system.

Solution λplatf Equivalent ASIL
No.1 ∼ 7.3× 10−8 failure per hour ASIL B or C
No.2 ∼ 6.0× 10−7 failure per hour ASIL A

Analysis and comments In the solution No.2, we do not see the d1_2 because the F1 and F2 are
mapped on the same PE subsystem and they are executed successively. Therefore, d1_2 does not need
to be mapped on any ME subsystem. This is similar for d3_4.

Besides, with {0.5, 0.0, 0.5} of {α, β, γ}, all four functions are mapped on only one PE subsystem,
called the solution No.2. This solution gives a favorable cost (number of used components) compared to
the solution No.1 (125%). We try to compare the improvement of the solution No.1 above the solution
No.2 in the bottom line of Table 5.8. The better timing is achieved with the solution No.1 (36.65%).
Although the No.2 uses fewer subsystem numbers, its overall system reliability is still lower than that
of the No.1. And, in all values of m, the number of faults of the solution No.1 is only about 21.9%
of the fault number of No.2. As such, the correlation between these two solutions can prove partially
the rationality in choosing the solution of our DSE framework. As we know, Tsys is considered as the
execution time of the first period of the application. Thus, after m periods, the worst case execution
time of the system can be estimated as in Equation 5.1, where: λplatf and T respectively are the failure
rate and the execution time of the system.

T ≈ m× Tsys (5.1)

Then, assuming that the failure from faults arrival on the whole system follows a Poisson distribution,
the reliability of a platform is given by Equation 5.2, where: λplatf and T respectively are the failure
rate and the execution time of the system.

Rplatf
(
T
)
= e−λplatf.T (5.2)

Therefore, from the value of m, Tsys, and Rplatf, we can estimate the failure rate as the second
column in Table 5.9. In comparison to the ASIL standard (mentioned in Chapter 1), we can recognize
that the solution No.2 corresponds to Level A. Level A is the lowest level in the 4 safety level of ASIL.
If designers need to achieve a higher level of safety, the weight of the system reliability needs to be
greater. For example, we try {0.99, 0.0, 0.01} for {α, β, γ}. The best solution is shown in Table 5.10.
As we can see, some subsystems now require a fault tolerance strategy. If using the same the method
above to calculate the ASIL level, this solution is at the level D.
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Table 5.10: found solutions in the case study-1 with {α = 0.99, β = 0.0, γ = 0.01}.

Sub ID Mapped
component

Mapped
element Tolerance Rplatf Tsys Cplatf

PE1 Microblaze &
softComp F1, F2, F3, F4 TMR

0.99999302 2790 µs 10
ME1 BRAM d1_3, d2_4 TMR

COMM1 AXI 0
PE2 Not used Not used Not used
PE3 Not used Not used Not used
PE4 Not used Not used Not used

Table 5.11: three search strategies in the DSE process of Case-study 1.

Name GA SA CS
Probability to find the optimal solution 100% 100% 100%

{α = 0.5, β = 0.5, γ = 0.0}
Average exploration duration 99.8 seconds 1498.7 seconds 3 hours
Improvement compared to CS 108 times 7 times 1 times

{α = 0.5, β = 0.0, γ = 0.5}
Average exploration duration 275 seconds 1538.0 seconds 3 hours
Improvement compared to CS 39 times 7 times 1 times

Total potential solutions 1990656

Explored solutions ≈ 15000 ≈ 70000 1990656

Explored valid solutions Unknown Unknown 1029024 (51.7%)

5.2.1.3 Discussion

Table 5.11 shows the index of three strategies integrated with the mapping and evaluation process.
In this case study, all three strategies allow to find the optimal solution at a rate of 100%. If using
the exhaustive exploration in design space, we need 3 hours to browse through all possible solutions.
However, by allowing the integration of different search strategies, our DSE framework greatly reduces
the search time.

With SA, the exploration duration is reduced to 7 times that of CS. In particular, the duration by
GA is improved more than 39 times compared to CS when GA is used in our framework. In particular,
with {0.5, 0.5, 0.0}, GA is faster than CS 10866 times. However, CS gives a solid assurance when
exploring all 1990656 solutions (51.7% of them are valid solutions) while SA only explore up to about
3.5% (70000) of solutions and GA only 0.75% (15000) of them.

Compared to other methods in the literature, our DSE framework allows us to open up a broader
solution space. As in the literature (Chapter 2, Subsection 2.2.3), the existed studies are only focused
on the fault tolerance of PE components. As such, in Case-study 1, the number of potential solutions
is only 497664, that only accounts for 25% of the number of potential solutions compared to our
framework. It implies that our DSE framework not only helps to spot more potential solutions but
also makes the assessment more comprehensive and the solution found better.

5.2.2 Harris detector

The common parameters in the objective function need to be established as in Table 5.12. In assuming
that the considered application processes 100000 photos, in which each photo sizes is 1080×720. Thus,
the number of periods of this system (m) is 105 × 1080× 720 = 7776× 107. We try the optimization

109



5.2. DSE RESULTS CHAPTER 5. EXPERIMENTAL EVALUATION

Figure 5.7: initial solution in which each PE subsystem only performs one function, "INITIAL 1",
(Rplatf = 0.93206171, Tsys = 14.91 ms, Cplatf = 23.0).

with 2 different sets of weighting factors. With the objective to improve the reliability, the value of α
is always greatest.

Table 5.12: parameters in the objective function of Case-study 2.

Name Def Value
m number of periods 7776× 107

Tmax longest execution time 85.48 ms
Cmax most expensive cost 70

{α, β, γ} weighting factors {1.0, 0.0, 0.0}
{0.5, 0.25, 0.25}

Initial solution without using the DSE process

An initial solution is defined as a solution created through the designer’s knowledge without using
any DSE tool. Depending on the level of different knowledge of the designer, the effectiveness of the
initialization solution may vary. In this case, to create an initialization solution without using the DSE
process, it’s assumed that a designer thinks in a very "naive" way:

• in the first initial state, each PE subsystem only performs one function (as Figure 5.7);

• in the second initial state, all functions are mapped into a single processor (as Figure 5.8).

Reliability, execution time and cost of the initial solutions are calculated according to our method and
shown in the caption of each corresponding figure. In the case-study 1, we don’t consider an initial
solution because that is a simple case. If with the "naive" way, designers can still create an optimal-like
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Figure 5.8: initial solution in which all functions are mapped into a single processor, "INITIAL 2",
(Rplatf = 0.90795063, Tsys = 30.64 ms, Cplatf = 4.0).

solution without using our DSE process. Therefore, considering an initial solution and comparing with
the optimal results in the previous case-study does not make much sense.

5.2.2.1 Search strategies - parameter setup

In this case-study, the number of solutions is very large:

• 210 configurations for the component mapping (each subPE has 2 possibilities to choose compPE);

• > 1010 configurations for the function mapping (each function has 10 possibilities to be mapped
in a subPE);

• 412 configurations for the data mapping (each data has 4 possibilities to be mapped into a
subMemory);

• 310×25 configurations for the tolerance strategy (each subPE has 3 possibilities to choose a fault-
tolerance strategy and each submemory or subCommunication has 2 possibilities to choose a
fault-tolerance strategy);

• so, there are more than 3× 1026 potential solutions in the design space for this case study.

With such a very large design space, finding solutions by CS is very time consuming, so in this case,
we only used GA and SA. Large design space has a large number of potential good solutions but at the
same time the number of invalid solutions is also great. So, pruning the design space is necessary to
reduce exploration time. It’s easy to see that we cannot change anything in the application model or
the list of components, the only thing that can be changed is the platform template. The initialization
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Figure 5.9: good platform found with {α = 1.0, β = 0.0, γ = 0.0} by SA,
(Rplatf = 0.97406249, Tsys = 14.33 ms, Cplatf = 20.0).

template may not be a good template with a lot of unnecessary subsystems. Therefore, we can prune
the design space through finding a good template first. We will combine these two search strategies (
GA and SA) to explore the design space of the case study. Thus, we try to explore the design space
according to the following:

• use SA to find the good platform template from the initial platform template;

• remove all unused subsystems;

• use GA to find the optimal solution with the good platform template.

SA is chosen for the first step because it generally gives a "good" solution (not the "best"). SA is
specially suitable for problems where finding an approximate global optimum is more important than
finding a precise optimum in finite time [134]. As such, with SA we can find a solution with a "good"
template that is close to the "best" template without spending too much time. Then, based on the
found template, GA is used to look for the optimal solution. The advantage of GA is to find good
quality solutions from a population of points. Therefore, it has the ability to avoid being trapped in
local optimal solution better than SA which searches from a single point [134]. So, we choose GA for
this second step.

Find the good platform template with SA In this step, the DSE process runs 50 times with
SA with the same SA parameters as Case-study 1. Among 50 found results, the result with the best
value of the objective function (Equation 4.35) is as to make the platform template.

Figure 5.9 show the solution found by SA with {α, β, γ} = {1.0, 0.0, 0.0}. We can see that the
solution has only four PE subsystems and two ME subsystems. Based on it, Figure 5.11 presents the
template used in the DSE process with {1.0, 0.0, 0.0} in the next step.
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Figure 5.10: good platform found with{α = 0.5, β = 0.25, γ = 0.25} by SA.
(Rplatf = 0.90381600, Tsys = 8.2 ms, Cplatf = 16.0).

Figure 5.10 show the solution found by SA with {α, β, γ} = {0.5, 0.25, 0.25}. We can see that the
solution has only five PE subsystems and two ME subsystems. Based on it, Figure 5.12 presents the
template used in the DSE process with {0.5, 0.25, 0.25} in the next step.

Find the optimal solution with GA The DSE process runs 10 times with GA with the same GA
parameters in Case-study 1 (Table 5.6). The best result among 10 found results is considered as the
best solution. The platform templates that are used in this step are presented in Figure 5.11 and 5.12
comes from the previous step.

Figure 5.11: platform template used in the DSE process with {α = 1.0, β = 0.0, γ = 0.0} by GA.
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Figure 5.12: platform template used in the DSE process with {α = 0.5, β = 0.25, γ = 0.25} by GA.

5.2.2.2 Results

Herein, we consider results found with the two sets of values of {α, β, γ}.

The first set is {α = 1.0, β = 0.0, γ = 0.0}

Figure 5.13 shows the best solution found by GA with {α = 1.0, β = 0.0, γ = 0.0}. We can see
that all subsystems support TMR. Because the weights of the execution time and the cost are zero, it
implies that there is no restriction on the cost or time of implementation, the DSE process seeks only
the most reliable solution. Therefore, applying TMR on the entire platform is reasonable. In addition,
the ARM processor has a high processing speed but is not used because it can be use only 2 times so
TMR cannot be applied on the ARM processor. Thus, there are no PE subsystems that use ARM in
this case. Only three PE subsystems are used to execute the functions and only one ME subsystem is
used to store the data. Microblaze processors are used in the PE subsystems. The time to find this

Figure 5.13: result found and shown on the DSE tool with {α = 1.0, β = 0.0, γ = 0.0},
(Rplatf = 0.99964876, Tsys = 1.79 ms, Cplatf = 23.0). Exploration time: 11148 s.
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Figure 5.14: result found and shown on the DSE tool with {α = 0.5, β = 0.25, γ = 0.25},
(Rplatf = 0.95287649, Tsys = 13.66 ms, Cplatf = 6.0). Exploration time: 2 days.

solution is 11148 seconds (≈ 3 hours). Two rightmost columns shows the reliability, execution time
and cost of the two "naive" initial solutions. The reliability, execution time and cost of the solution
found by DSE process are compared with the initial solutions in Table 5.13.

The second set is {α = 0.5, β = 0.25, γ = 0.25}

Figure 5.14 shows the best solution found by GA with {α = 0.5, β = 0.25, γ = 0.25}. We can see that
no fault-tolerance strategy is applied in the platform . Only two PE subsystems with ARM processors
are used to execute the functions and only one ME subsystem is used to store the data. The time to
find this optimal solution is 2 days. The reliability, execution time and cost of the solution found by
DSE process are compared with the initial solutions in Table 5.14.

5.2.2.3 Discussion

From the two result table (Table 5.13 and 5.14), we can see the effectiveness of our DSE framework.
With {α = 1.0, β = 0.0, γ = 0.0} (Table 5.13), the optimization process finds the solution with the

highest reliability. Table 5.15 shows the improvement of the optimal solution compared to the initial
solutions. Considering the reliability of the initial solutions is 100%, the reliability of the optimal
solution improves 7% compared to INITIAL 1 and 10% compared to INITIAL 2. The INITIAL 1

Table 5.13: reliability, execution time and cost of solutions found by DSE process with {α = 1.0,
β = 0.0, γ = 0.0}.

Name Solution found by DSE without DSE
INITIAL 1 INITIAL 2

Reliability 0.99964876 0.93206171 0.90795063

Execution time 13.66 ms 14.91 ms 30.64

Cost 23.0 23.0 4.0

Objective value 0.99964876 0.93206171 0.90795063

Exploration duration 3 hours N/A N/A
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Table 5.14: reliability, execution time and cost of solutions found by DSE process with {α = 0.5,
β = 0.25, γ = 0.25}.

Name Solution found by DSE without DSE
INITIAL 1 INITIAL 2

Reliability 0.95287649 0.93206171 0.90795063

Execution time 1.79 ms 14.91 ms 30.64 ms
Cost 6.0 23.0 4.0

Objective value 0.93059472 0.76661198 0.83650077

Exploration duration 2 days N/A N/A

Table 5.15: improvement of the solution found by DSE process compared to the "naive" initial solutions
with {α = 1.0, β = 0.0, γ = 0.0}.

Name INITIAL 1 Improvement percentage
solution found by DSE INITIAL 2 Improvement percentage

solution found by DSE
Reliability 0% 7.25% 0% 10.09%

Execution time 0% 8.38% 0% 55.41%

Cost 0% 0% 0% −475%
Objective value 0% 7.25% 0% 10.09%

uses too much PE subsystems so its reliability is lower than INITIAL 2. Both initial solutions have
a lowest level of reliability than the optimal solution due to the absence of fault-tolerance strategies.
Similarly, in terms of execution time, the found solution improves 8% compared to INITIAL 1 and
55% compared to INITIAL 2. INITIAL 2 has an advantage in terms of cost but in this case, there is
no cost and time constraint, so the found solution is still a better solution.

With {α = 0.5, β = 0.25, γ = 0.25} (Table 5.14), the research process find solutions that have
a constraint between all three quantities: reliability, execution time, and cost. Table 5.16 shows the
improvement of of the optimal solution compared to the initial solutions. The reliability of the solution
improves 2.23% compared to INITIAL 1 and 4.94% compared to INITIAL 2. The improvement of the
reliability of the found solution in this case is not as good as the previous case because it has constraints
on cost and execution time. That is why no fault-tolerance strategy is used in the solution for this
case (as shown on Figure 5.14). In terms of execution time, the best solution improves up-to 87%
compared to INITIAL 1 and 94% compared to INITIAL 2. In terms of cost, the solution improves
21% compared to INITIAL 1 but its cost is 50% higher than INITIAL 2. Finally, the improvement of
the objective function of the optimal solution is better than both initial solutions. Therefore, it can
be concluded that our DSE framework really allows finding good solutions even in very complex cases
and very large design spaces (more than 3 × 1026). We can see that TReR does not appear in the

Table 5.16: improvement of the solution found by DSE process compared to the initial solutions with
{α = 0.5, β = 0.25, γ = 0.25}.

Name INITIAL 1 Improvement percentage
of solution found by DSE INITIAL 2 Improvement percentage

of solution found by DSE
Reliability 0% 2.23% 100% 4.94%

Execution time 0% 87.99% 100% 94.15%

Cost 0% 73% 100% −50%
Objective value 0% 21.39% 100% 11.24%
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final results because the execution time increases very high meanwhile the reliability level increases
very small. Moreover, if we don’t consider the time constraint, the improvement of this fault-tolerance
strategy is also negligible compared to TMR in terms of the objective function with the considered
{α, β, γ} sets.

5.3 Summary

In this chapter, two case-studies were investigated. The experimental evaluation of our DSE framework
has been discussed. It shows the ability to integrate different search strategies into the framework.
Furthermore, it also shows the exploration time efficiency in using the framework compared to the
exhaustive search. In particular, a deeper design space with more potential solutions than those
already available in the literature.

117



5.3. SUMMARY CHAPTER 5. EXPERIMENTAL EVALUATION

118



Chapter 6

Conclusions and perspectives

Abstract: This chapter summarizes all the contributions presented in this manuscript and proposes
some perspectives to develop this work in the future.
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6.1 Conclusions

In the context of the rising computing need of embedded applications, increasing the complexity of
platforms makes the design space larger and contains many potential solutions. Moreover, demand
for fault tolerance has also emerged as an urgent problem in particularly important for systems such
as cars, airplanes, space, and nuclear operations. Indeed, designing such systems is still a challenge
due to the complexity of heterogeneous multiprocessor systems-on-chip architecture which combines
parallelism, heterogeneous programming and fault-tolerance integration. Because of the limit about
time, programming difficulties, and cost, the growing complexity of those systems is also a problem
for designing as the number of design solutions explodes and can no longer be evaluated manually.
Therefore, a new set of tools is needed at an higher-level of abstraction in order to abstract the lower-
level design complexity, explore, and evaluate automatically design solutions.

The evaluation of a design is strongly dependent on function/task mapping, data mapping, and the
choice of hardware/software components. In addition, to enhance fault tolerance, the designs need to
incorporate additional fault-tolerance strategies such as spatial redundancy or temporal redundancy.
At this time, evaluating a design also depends on the choice of the fault-tolerant strategy.

In this manuscript, we have presented a framework to make possible the design of Heterogeneous
Multiprocessor Systems-on-Chip supporting fault-tolerance. It provides designers with a design flow
that allows to choose a solution integrating fault tolerance strategies in the design based on their
system knowledge. Several contributions were presented to achieve this goal.

First, a platform meta-model is proposed to provide a unified definition as a bridge between the
different tools, between different programming languages, and different design stages. Based on it,
designers can specify a generic architecture description to cope with the lack of the underlying plat-
form model for MPSoC systems. Especially, this meta-model integrates fault-tolerance aspects with
an intermediate level called "subsystem". Through the "subsystems", the fault tolerance parts are
connected to the architectural part in the meta-model. This meta-model is like a backbone for the
design-tool flow. The multiple levels of the meta-model allow designers to involve in the design by
expressing the design constraints according to their levels of expertise.

Second, a mapping process allowing the generation of a design solution has been proposed. The
process focuses on four main points: 1) component mapping, 2) function mapping, 3) data mapping,
and 4) fault-tolerance strategy mapping. Especially, the fault tolerance strategies are the main means
to increase system reliability. To build a valid design space, every solution must respect rules and
constraints. The problem is standardized under the ILP formulations, that is convenient for expressing
in mathematical form the problem and also easier for programming of the algorithms.

Third, a set of mathematical equations is established to evaluate the performance criteria of a
solution as execution time, cost, and reliability. The evaluation is based on the configuration of a
solution obtained from the mapping process.

Fourth, these previous points creates an automated and scalable DSE framework that is composed
of a design space generation, an evaluation and an optimization phases. The optimization integrates
available methods such as Simulated Annealing, or Genetic Algorithm. The framework is integrated
into a Java tool. This tool, with a graphical user interface allows modeling, creates an MPSoC platform
and executes the exploration process.

Finally, two case-studies are introduced. Experimental results showed that the DSE framework
provides an effective exploration of large design space and results close or equal to comprehensive
approach. Moreover, the reliability of the found solutions are better than the solutions built without
the framework.
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6.2 Perspectives

From the review from Chapte 2, we observe that some steps still need to be considered. So to extend
further our work, we propose the followings:

• Extend the performance evaluation method with other criteria such as energy, area, temperature,
etc. Our DSE framework considers 3 aspects such as execution time, reliability and cost. However,
applying fault-tolerance strategies can affect other criteria. For example, energy and temperature
are two of the biggest concerns of the design space exploration studies as we pointed out in
Chapter 2. Reliability level is a mathematical function of temperature and so is energy. Therefore,
in a process of maximizing the reliability level, energy and temperature of a platform may be
affected. Thus, the more aspects that are considered, the more comprehensive the evaluation
of solutions is. And then, the objective function needs to be changed to match the designer’s
concerns;

• Implement optimal fault-tolerance results in a real working environment with real fault-injection
scenarios to measure their real reliability. Because of limitations on hardware resources and time
limits, this has not been completed within the scope of this thesis. The process of operating in a
real environment can provide actual data of the system. Doing so, we could compare the results
of this framework with real cases and verify the reliability level of components.

• Apply the presented DSE framework to larger case-study systems. On one hand, we could
obtain more information about the capacity, applicability, scalability of the DSE framework. On
the other hand, we could improve and update the framework for platforms, applications, and
systems including more subsystems, more communication structure and more requirements than
the case-studies invested;

• Input data. Parameters of used components greatly influence the quality of an exploration
process. Our work uses data from the catalogs of manufacturers like Xilinx. In initial steps
of design, this data is appropriate and our DSE process can give designers a view of possible
solutions of a platform. However, in order to make better and more accurate designs, input data
needs to be invested more carefully. If an input is good, an output may be good;

• Extend the list of fault-tolerance strategies. Our work has only considered two fault-tolerance
strategies, TMR and TReR. This is a limitation in our work because many other fault-tolerance
strategies are available in the literature and have also been mentioned in our proposed meta-
model. However, to integrate more strategies, performance model of newly proposed strategies
needs to be set up. Building these performance models requires a further study. The more fault-
tolerance strategies are added, the more flexible the framework is and so it meets more and more
needs of users. Based on our propsed meta-model, with the constraints and rules we have built,
the roadmap for integrating other strategies is possible

• Consider the compromise between time, cost and reliability. The relationship between these three
parameters is shown in the results of this manuscript, but it is necessary to look beyond their
influence on each other. This allows to build the target function more effectively and therefore
the solution given is more accurate. In addition, we can see that the selection of {α, β, γ} is also
the reason why TReR is less likely to appear in optimal solutions. This can be explained more
clearly if we have further research on the relationship of cost, reliability and execution time;
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• Add more optimization-searching methods. Our framework supports for arbitrary integration of
different optimization-searching methods. Since there is no perfect method, integrating many
different strategies into this framework both help to increase the capacity of the framework and
allows designers to choose the search engine they desire;

• Add the configuration of inputs (application and component list) into the graphical user interface
of the modeling tool described in Section 3.2. This would be helpful to set the input parameters
in the modeling tool;
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Appendix A

Code implementation

The code in this section is implemented in C language and run on Zedboard (Zynq Evaluation &
Development Board) ??. The tool flow that is used is composed of Vivado HLx 2016.3 and Vivado
SDK 2016.3.

A.1 Sobel filter code implementation

1 /∗ in_data i s the data matrix s to r ed in the DDRAM ∗/
2 /∗ [ y , x ] i s the coo rd ina t e s o f a p i x e l on the image ∗/
3 f l o a t sobel_GP( f l o a t ∗∗ indata , i n t x , i n t y ) {
4 i n t i , j ; /∗ Loop va r i ab l e ∗/
5 f l o a t get_pixe l [ 9 ] [ 9 ] ;
6 f o r ( i = −4; i < 5 ; i++) {
7 f o r ( j = −4; j < 5 ; j++) {
8 i f ( ( x < 4) | | ( y < 4) | | ( x > x_size1 − 4 ) | | ( y > y_size1 − 4) ) {
9 /∗ i f p i x e l with the coo rd ina t e s [ y+i ] [ x+j ] does not ex i s t , i t s va lue i s s e t to

0 by de f au l t ∗/
10 get_pixe l [ i +1] [ j +1] = 0 . 0 ;
11 }
12 e l s e {
13 get_pixe l [ i +1] [ j +1] = indata [ y+i ] [ x+j ] ;
14 }
15 }
16 }
17 re turn get_pixe l ;
18 }

Listing A.1: "Get pixel" function

1 f l o a t sobel_GX( f l o a t ∗p_block9x9 )
2 {
3 /∗ De f i n i t i o n o f Sobel f i l t e r in X d i r e c t i o n ∗/
4 f l o a t weight [ 9 ] [ 9 ] = {{ 1 , 6 , 14 , 14 , 0 , −14 , −14 , −6 , −1},
5 {8 , 48 , 112 , 112 , 0 , −112, −112, −48, −8},
6 {28 , 168 , 392 , 392 , 0 , −392, −392, −168, −28},
7 {56 , 336 , 784 , 784 , 0 , −784, −784, −336, −56},
8 {70 , 420 , 980 , 980 , 0 , −980 , −980, −420, −70},
9 {56 , 336 , 784 , 784 , 0 , −784 , −784, −336 , −56},

10 {28 , 168 , 392 , 392 , 0 , −392, −392, −168 , −28},
11 { 8 , 48 , 112 , 112 , 0 , −112, −112 , −48 , −8},

137



A.2. HARRIS CONNER DECTECTOR CODE IMPLEMENTATION APPENDIX A. CODE IMPLEMENTATION

12 { 1 , 6 , 14 , 14 , 0 , −14 , −14 , −6 , −1 }} ;
13 f l o a t value_gx = 0 ;
14 i n t i , j ; /∗ Loop va r i ab l e ∗/
15 /∗ Linear t rans fo rmat ion ∗/
16 f o r ( i = −4; i < 5 ; i++) {
17 f o r ( j = −4; j < 5 ; j++) {
18 // Ca l cu la t e GX
19 value_gx += ∗( p_block9x9 + ( i +4)∗8 + j + 4) ∗ weight [ i + 4 ] [ j + 4 ] ;
20 }
21 }
22 re turn value ;
23 }

Listing A.2: "Gradient in horizontal axis" function

1 f l o a t sobel_GY( f l o a t ∗p_block9x9 )
2 {
3 /∗ De f i n i t i o n o f Sobel f i l t e r in Y d i r e c t i o n ∗/
4 f l o a t weight [ 9 ] [ 9 ] = {{ 1 , 6 , 14 , 14 , 0 , −14 , −14 , −6 , −1},
5 {8 , 48 , 112 , 112 , 0 , −112, −112, −48, −8},
6 {28 , 168 , 392 , 392 , 0 , −392, −392, −168, −28},
7 {56 , 336 , 784 , 784 , 0 , −784, −784, −336, −56},
8 {70 , 420 , 980 , 980 , 0 , −980 , −980, −420, −70},
9 {56 , 336 , 784 , 784 , 0 , −784 , −784, −336 , −56},

10 {28 , 168 , 392 , 392 , 0 , −392, −392, −168 , −28},
11 { 8 , 48 , 112 , 112 , 0 , −112, −112 , −48 , −8},
12 { 1 , 6 , 14 , 14 , 0 , −14 , −14 , −6 , −1 }} ;
13 f l o a t value_gy = 0 ;
14 i n t i , j ; /∗ Loop va r i ab l e ∗/
15 /∗ Linear t rans fo rmt ion ∗/
16 f o r ( i = −4; i < 5 ; i++) {
17 f o r ( j = −4; j < 5 ; j++) {
18 // Ca l cu la t e GY
19 value_gy += ∗( p_block9x9 + ( i +4)∗8 + j + 4) ∗ weight [ j + 4 ] [ i + 4 ] ;
20 }
21 }
22 re turn value_gy ;
23 }

Listing A.3: "Gradient in vertical axis" function

1 i n t sobel_abs ( f l o a t valueX , f l o a t valueY )
2 {
3 f l o a t value_abs = 0 ;
4 value_abs = sq r t (pow( valueX , 2) + pow( valueY , 2) ) ;
5 re turn value_abs ;
6 }

Listing A.4: "Gradient magnitude" function

A.2 Harris conner dectector code implementation

1 /∗ in_data i s the data matrix s to r ed in the DDRAM ∗/
2 /∗ [ y , x ] i s the coo rd ina t e s o f a p i x e l on the image ∗/
3 f l o a t harris_GP ( f l o a t ∗∗ indata , i n t x , i n t y ) {
4 i n t i , j ; /∗ Loop va r i ab l e ∗/
5 f l o a t get_pixe l [ 9 ] [ 9 ] ;
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6 f o r ( i = −4; i < 5 ; i++) {
7 f o r ( j = −4; j < 5 ; j++) {
8 i f ( ( x < 4) | | ( y < 4) | | ( x > x_size1 − 4 ) | | ( y > y_size1 − 4) ) {
9 /∗ i f p i x e l with the coo rd ina t e s [ y+i ] [ x+j ] does not ex i s t , i t s va lue i s s e t to

0 by de f au l t ∗/
10 get_pixe l [ i +1] [ j +1] = 0 . 0 ;
11 }
12 e l s e {
13 get_pixe l [ i +1] [ j +1] = indata [ y+i ] [ x+j ] ;
14 }
15 }
16 }
17 re turn get_pixe l ;
18 }

Listing A.5: "Get pixel" function

1 f l o a t ∗∗ cal_GX( f l o a t ∗∗ p_block9x9 )
2 {
3 /∗ De f i n i t i o n o f f i l t e r in ho r i z on t a l d i r e c t i o n ∗/
4 f l o a t weight [ 9 ] [ 9 ] = {{ 1 , 6 , 14 , 14 , 0 , −14 , −14 , −6 , −1},
5 {8 , 48 , 112 , 112 , 0 , −112, −112, −48, −8},
6 {28 , 168 , 392 , 392 , 0 , −392, −392, −168, −28},
7 {56 , 336 , 784 , 784 , 0 , −784, −784, −336, −56},
8 {70 , 420 , 980 , 980 , 0 , −980 , −980, −420, −70},
9 {56 , 336 , 784 , 784 , 0 , −784 , −784, −336 , −56},

10 {28 , 168 , 392 , 392 , 0 , −392, −392, −168 , −28},
11 { 8 , 48 , 112 , 112 , 0 , −112, −112 , −48 , −8},
12 { 1 , 6 , 14 , 14 , 0 , −14 , −14 , −6 , −1 }} ;
13 f l o a t ∗ va lue s = c a l l o c (9∗9 , s i z e o f ( f l o a t ) ) ;
14 f l o a t ∗∗ Gx = malloc (9∗ s i z e o f ( f l o a t ∗) ) ;
15 i n t i , j , k ; /∗ Loop va r i ab l e ∗/
16 f o r ( i =0; i <9; ++i )
17 {
18 Gx[ i ] = va lue s + i ∗9 ;
19 }
20 f l o a t sum = 0 ;
21 /∗ l i n e a r t rans fo rmat ion ∗/
22 f o r ( i = 0 ; i < 9 ; i++) {
23 f o r ( j = 0 ; j < 9 ; j++) {
24 f o r ( k = 0 ; k < 9 ; k++) {
25 sum = sum + p_block9x9 [ i ] [ k ]∗ weight [ k ] [ j ] ;
26 }
27 Gx[ i ] [ j ] = sum ;
28 sum = 0 ;
29 }
30 }
31 re turn Gx;
32 }

Listing A.6: "Gradient in horizontal axis" - Gx function

1 f l o a t ∗∗ cal_GY( f l o a t ∗∗ p_block9x9 )
2 {
3 /∗ De f i n i t i o n o f f i l t e r in v e r t i c a l d i r e c t i o n ∗/
4 f l o a t weight [ 9 ] [ 9 ] = {{ 1 , 6 , 14 , 14 , 0 , −14 , −14 , −6 , −1},
5 {8 , 48 , 112 , 112 , 0 , −112, −112, −48, −8},
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6 {28 , 168 , 392 , 392 , 0 , −392, −392, −168, −28},
7 {56 , 336 , 784 , 784 , 0 , −784, −784, −336, −56},
8 {70 , 420 , 980 , 980 , 0 , −980 , −980, −420, −70},
9 {56 , 336 , 784 , 784 , 0 , −784 , −784, −336 , −56},

10 {28 , 168 , 392 , 392 , 0 , −392, −392, −168 , −28},
11 { 8 , 48 , 112 , 112 , 0 , −112, −112 , −48 , −8},
12 { 1 , 6 , 14 , 14 , 0 , −14 , −14 , −6 , −1 }} ;
13 f l o a t ∗ va lue s = c a l l o c (9∗9 , s i z e o f ( f l o a t ) ) ;
14 f l o a t ∗∗ Gy = malloc (9∗ s i z e o f ( f l o a t ∗) ) ;
15 i n t i , j , k ; /∗ Loop va r i ab l e ∗/
16 f o r ( i =0; i <9; ++i )
17 {
18 Gy[ i ] = va lue s + i ∗9 ;
19 }
20 f l o a t sum = 0 ;
21 /∗ l i n e a r t rans fo rmat ion ∗/
22 f o r ( i = 0 ; i < 9 ; i++) {
23 f o r ( j = 0 ; j < 9 ; j++) {
24 f o r ( k = 0 ; k < 9 ; k++) {
25 sum = sum + p_block9x9 [ i ] [ k ]∗ weight [ j ] [ k ] ;
26 }
27 Gy[ i ] [ j ] = sum ;
28 sum = 0 ;
29 }
30 }
31 re turn Gy;
32 }

Listing A.7: "Gradient in vertical axis" - Gy function

1 f l o a t ∗∗ ca l_IxI ( f l o a t ∗∗ p_block9x9 )
2 {
3 f l o a t ∗ va lue s = c a l l o c (9∗9 , s i z e o f ( f l o a t ) ) ;
4 f l o a t ∗∗ I x I = mal loc (9∗ s i z e o f ( f l o a t ∗) ) ;
5 i n t i , j ; /∗ Loop va r i ab l e ∗/
6 f o r ( i =0; i <9; ++i )
7 {
8 I x I [ i ] = va lue s + i ∗9 ;
9 }

10 /∗ Generation o f image2 a f t e r l i n e a r t rans fo rmt ion ∗/
11 f o r ( i = 0 ; i < 9 ; i++) {
12 f o r ( j = 0 ; j < 9 ; j++) {
13 // Ca l cu la t e I x I
14 I x I [ i ] [ j ] = pow( p_block9x9 [ i ] [ j ] , 2) ;
15 }
16 }
17 re turn Ix I ;
18 }

Listing A.8: "Matrix product X vs X" - Ixx and Iyy functions

1 f l o a t ∗∗ cal_IxJ ( f l o a t ∗∗ p1_block9x9 , f l o a t ∗∗ p2_block9x9 )
2 {
3 f l o a t ∗ va lue s = c a l l o c (9∗9 , s i z e o f ( f l o a t ) ) ;
4 f l o a t ∗∗ IxJ = mal loc (9∗ s i z e o f ( f l o a t ∗) ) ;
5 i n t i , j ; /∗ Loop va r i ab l e ∗/
6 f o r ( i =0; i <9; ++i )
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7 {
8 IxJ [ i ] = va lue s + i ∗9 ;
9 }

10 f o r ( i = 0 ; i < 9 ; i++) {
11 f o r ( j = 0 ; j < 9 ; j++) {
12 // Ca l cu la t e I x J
13 IxJ [ i ] [ j ] = p1_block9x9 [ i ] [ j ] ∗ p2_block9x9 [ i ] [ j ] ;
14 }
15 }
16 re turn IxJ ;
17 }

Listing A.9: "Matrix product X vs Y" - Ixy function

1 f l o a t cal_Sum( f l o a t ∗∗ p_block9x9 )
2 {
3 f l o a t va lue ;
4 i n t i , j ; /∗ Loop va r i ab l e ∗/
5 f o r ( i = 0 ; i < 9 ; i++) {
6 f o r ( j = 0 ; j < 9 ; j++) {
7 // Ca l cu la t e sum of a l l e lements o f matrix
8 value += p_block9x9 [ i ] [ j ] ;
9 }

10 }
11 re turn value ;
12 }

Listing A.10: "Matrix sum" - Sxx, Sxy and Syy functions

1 f l o a t ca l_response ( f l o a t ∗ xx , f l o a t ∗ xy , f l o a t ∗ yy )
2 {
3 f l o a t r = 0 ;
4 f l o a t det = (∗xx ) ∗(∗yy ) − pow(∗xy , 2) ;
5 f l o a t t r a c e = (∗xx ) + (∗yy ) ;
6 r = det − 0 .04∗ (pow( trace , 2) ) ;
7 re turn r ;
8 }

Listing A.11: "Harris response" - R function

A.3 Latency measurement on Microblaze and ARM

1 #inc lude "xtime_l . h"
2

3 i n t main ( )
4 {
5 XTime s ta r t , stop ;
6 i n t clk_number = 0 ;
7

8 XTime_GetTime(& s t a r t ) ; // s t a r t i n g time
9

10 /∗ code to measure the execut ion time i s p laced here ∗/
11

12 XTime_GetTime(&stop ) ; // end count
13 clk_number = stop − s t a r t ; // number o f c l o ck
14

15 re turn 0 ;
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16 }

Listing A.12: Code implementation for the execution-time measurement on ARM processor

1 #inc lude " xtmrctr . h"
2

3 i n t main ( )
4 {
5 XTmrCtr ∗ t imer ;
6 u32 s ta r t , stop ;
7 i n t TIMER_COUNTER = 0 ;
8 i n t clk_number = 0 ;
9 i n t i n i t_s t a tu s ;

10

11 i n i t_s t a tu s = XTmrCtr_Init ia l ize(&timer , XPAR_AXI_TIMER_0_BASEADDR) ;
12 XTmrCtr_SetResetValue(&timer , TIMER_COUNTER, 0) ;
13 XTmrCtr_Start(&timer , TIMER_COUNTER) ;
14 s t a r t = XTmrCtr_GetValue(&timer , TIMER_COUNTER) ; // s t a r t i n g time
15

16 /∗ code to measure the execut ion time i s p laced here ∗/
17

18 stop = XTmrCtr_GetValue(&timer , TIMER_COUNTER) ; // end count
19 clk_number = stop − s t a r t ; // number o f c l o ck
20

21 re turn 0 ;
22 }

Listing A.13: Code implementation for the execution-time measurement on Microblaze
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Titre : Exploration architecturale pour la tolérance aux fautes 

Mots clés : Ingénierie dirigée par les modèles, exploration de l'espace de conception, tolérance 
aux fautes, MPSoC 

Résumé : La fiabilité devient une caractéristique 
très importante du processus de conception d’un 
système embarqué. Par conséquent, 
l'élaboration de stratégies de tolérance aux 
fautes fait également partie des priorités lors des 
premières phases de conception des systèmes 
embarqués. Cette thèse vise à établir un cadre 
permettant de trouver la meilleure solution de 
plate-forme pour une application donnée dans 
des systèmes multiprocesseurs  hétérogènes. La 
solution trouvée doit être intégrée à la tolérance 
aux fautes. Un nouveau méta-modèle de plate-
forme intégrant la tolérance aux fautes est 
présenté qui joue le rôle d'infrastructure pour 
construire des modèles. Les modèles sont 
ensuite entrés dans un processus d'exploration 
de l'espace de conception. Dans la spécification 
utilisateur, les dimensions explorées incluent le 
choix du composant, le mapping des tâches, le 
mapping des données et le choix de la stratégie 
de tolérance aux fautes. 

Une nouvelle solution est générée et évaluée en  
matière de temps d'exécution, de coût et de 
niveau de fiabilité. Ensuite, un processus 
d'optimisation explore la meilleure solution 
parmi les espaces de conception. Un nouvel 
outil avec une interface utilisateur graphique 
permet de modéliser et d’exécuter le processus 
d’exploration. Il simplifie le processus en 
interagissant avec l'utilisateur via l'interface 
graphique et en automatisant le processus 
d'exploration de l'espace de conception. 
L'évaluation de la plate-forme MPSoC 
hétérogène sous l'impact de fautes transitoires 
et permanentes est une partie très importante 
de l’exploration pour aider des concepteurs à 
choisir la stratégie de tolérance aux fautes 
appropriée en ce qui concerne un compromis 
avec les exigences de l'application. Enfin, des 
études de cas sont investies. Les résultats 
expérimentaux ont montré que le cadre DSE 
fournit une exploration efficace de grands 
espaces de conception. 

 

Title : Model-driven architecture exploration for fault tolerance improvement 

Keywords :  Model Driven Engineering, Design Space Exploration, Fault Tolerance, MPSoC 

Abstract: Reliability becomes a very important 
feature in the design process of an embedded 
system. Therefore, the development of fault 
tolerance strategies is also among the priorities 
in the early design phases of embedded systems. 
This thesis aims to establish a framework that 
allows finding the best platform solution for a 
given application in heterogeneous Multi-
Processor System-on-Chip (MPSoC) systems. 
The found solution must be integrated the fault 
tolerance. 
A new platform meta-model integrated the fault 
tolerance is presented that roles an infrastructure 
to build models. The models are then inputs to a 
Design Space Exploration process. From the 
user specification, explored dimensions include 
hardware choice, task mapping, data mapping, 
and fault-tolerance-strategy choice.   

A new solution is generated and evaluated in 
terms of execution time, cost and, reliability 
level. Then, an optimization process will explore 
the best solution among the design space. A 
new tool with a graphical user interface allows 
to model and run the DSE process. It simplifies 
the process by interacting with the user through 
the graphical interface and automating the 
process of exploring design space. Evaluation of 
heterogeneous MPSoC platform under the 
impact of transient and permanent faults is a 
very important part of the DSE to help designers 
choose the appropriate strategy fault tolerance 
regarding a compromise with the requirements 
of the application. Finally, case-studies are 
invested. Experimental results showed that the 
DSE framework provides an effective 
exploration of large design space. 
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