UNIVERSITE DE NANTES

FACULTE DE MEDECINE

Année 2005 N°: 004

THESE

pour le

DIPLOME D'ETAT DE DOCTEUR EN MEDECINE

Qualification en Médecine Générale

par

Katy LAUNAY

Présentée et soutenue publiquement le 6 janvier 2005

HYPOVITAMINOSE C ET PRECARITE : ETUDE PROSPECTIVE A LA PERMANENCE D'ACCES AUX SOINS DE SANTE DU CHU DE NANTES

Président: Monsieur le Professeur J. BARRIER

Directeur de thèse : Monsieur le Docteur C. AGARD

"Heureux celui qui oublie ce qui ne peut être changé" La chauve-souris - J.Strauss

> À mon père, A ma filleule Coleen,

TABLE DES MATIERES

TABLE DES ILLUSTRATIONS

Introduction

Les pathologies liées aux carences vitaminiques sont connues depuis l'Antiquité [1]. De tout temps, la littérature médicale en a fait état. Ces dix dernières années, alors que l'on pensait ces maladies disparues dans nos pays développés, de nombreuses études relatant des manifestations liées à des carences vitaminiques ont été publiées. Le lien probable entre cet état de fait et l'altération des conditions économiques, marquée par une augmentation constante des sujets en situation de précarité, peut être évoqué [2] mais il faut souligner le manque de données épidémiologiques et la rareté des études disponibles concernant cette population précaire avec pour conséquence une probable sous-estimation de la fréquence de ces carences.

La vitamine C est, par ses propriétés anti-oxydantes, impliquée dans de nombreuses réactions biologiques et biochimiques. Des études ont suggéré qu'elle serait un facteur protecteur contre les maladies cardiovasculaires [3], la morbidité par infarctus du myocarde [4], ou encore certains cancers [5]. Dans chacune de ces études ressort une prévalence d'hypovitaminose C plus importante que celle à laquelle on aurait pu s'attendre. L'hypovitaminose C, lorsqu'elle est prolongée, peut entraîner une carence vraie ou scorbut, maladie que l'on croyait disparue dans notre société moderne mais qui, comme en témoignent les observations régulièrement publiées [6,7,8,9], reste une maladie d'actualité, avec probablement même une tendance à l'accentuation favorisée par l'augmentation des sujets concernés par la précarité.

La précarité, état d'instabilité sociale compromettant la santé, a augmenté en France ces 20 dernières années. Pour répondre à cette recrudescence, la législation a permis, par la création de la CMU (Couverture Maladie Universelle), un accès des plus démunis au régime de base et également incité à la création des permanences d'accès aux soins de santé (PASS) dans les établissements de santé participant au service public hospitalier [10,11,12]. Les PASS sont des dispositifs médico-sociaux intégrés à l'hôpital dont l'objectif est le repérage, l'accueil, la prise en charge médicale et sociale, la facilitation de l'accès effectif aux droits et l'intégration dans un réseau sanitaire et social des personnes en difficulté. Les PASS font maintenant l'objet de

travaux de recherche en santé publique, notamment au CHU de Nantes [13,14,15]. De récentes études ont montré la spécificité des pathologies de la misère et de la précarité [16,17,18], favorisées par la malnutrition, parfois l'alcoolisme mais surtout le déséquilibre de régime avec pour conséquence une (ou plusieurs) carence vitaminique.

La PASS du CHU de Nantes dont le pivot est la consultation médico-sociale baptisée Centre Jean Guillon accueille depuis maintenant 4 ans une population constamment croissante, plutôt jeune, avec un bas niveau de revenu et souvent une absence de couverture sociale, répondant aux critères de précarité. De récents travaux suggèrent que cette population "précaire", plus qu'une autre, serait exposée à des risques élevés de carence nutritionnelle (dont l'hypovitaminose C) avec pour conséquence la résurgence de pathologies oubliées [12]. L'objectif principal de notre étude a donc été d'évaluer la prévalence de l'hypovitaminose C au sein de la population dite "précaire" consultant à la PASS du CHU de Nantes.

Chapitre 1 : La vitamine C

1-1 Histoire

1-1-1 De la découverte

Les symptômes d'une carence en vitamine C étaient déjà connus en 1500 avant notre ère et furent décrits dans l'Antiquité par Aristote. La carence en vitamine C fut à l'origine du scorbut, maladie mortelle qui a longtemps sévi dans le passé, décimant pendant des siècles les équipages des bateaux au long cours (Magellan, Vasco de Gama, Jacques Cartier) et les populations pauvres lors des famines. Il a existé à l'état endémique, jusqu'au XVIIIème siècle dans toute l'Europe du Nord. Il se manifestait par des hémorragies, des pertes de dents, des blessures qui ne guérissaient pas et une faiblesse généralisée; elle était souvent mortelle au cours de longs voyages. Le scorbut a été identifié aux XVe et XVIe siècles comme une maladie affectant les marins au long cours qui n'avaient pas accès à des aliments frais, légumes ou fruits notamment, pendant leurs voyages [2,19].

Le scorbut est dû au déficit en acide ascorbique ou vitamine C, facteur vitaminique essentiel pour l'homme, contenu dans les fruits et les légumes frais, très sensible à l'action de la chaleur et à l'oxydation. En règle générale, la maladie se manifestait au cours du quatrième mois de haute mer, les gencives se mettaient à gonfler et à saigner, les dents se déchaussaient et tombaient, pendant que l'état général se dégradait rapidement : hématomes au niveau du périoste, des muscles et de la peau, jambes enflées et ulcérées, diarrhées sanglantes et asthénie intense aboutissaient invariablement à la mort.

C'est l'Écossais James Lind [1], médecin de la marine anglaise, qui le premier, démontra au milieu du XVIIIème siècle, en 1747, l'efficacité du jus de citron ou d'orange dans le traitement et la prévention du scorbut qui causait alors des ravages parmi les équipages des voiliers. La marine anglaise prit ainsi l'habitude de fournir des citrons et d'autres agrumes aux marins. La découverte de Lind établissait la notion de maladie de carence liée à un déséquilibre qualitatif de la ration alimentaire. Lorsque l'alimentation commença à s'améliorer et à se diversifier, au début du XIXème siècle, le scorbut régressa.

L'identification vers 1910 du cobaye comme animal développant très facilement des manifestations de type scorbutique a facilité l'isolement de la vitamine C. La vitamine C a été découverte, identifiée puis isolée en 1928 par le biochimiste Albert Szent Györgyi. Elle fut d'abord isolée à partir des surrénales, puis du paprika vert. Déjà en France, en Angleterre et aux États-Unis, des chercheurs étaient parvenus à obtenir des concentrés de ce facteur, mais c'est véritablement lui qui le premier l'isola en quantité importante à partir du paprika. L'expérience avait prouvé que la présence de ce corps dans l'alimentation prévenait le scorbut, Szent-Györgyi l'appela donc "acide antiscorbutique" ou acide ascorbique. Cette découverte lui vaudra un prix Nobel en 1938.

En 1938, elle fut la première vitamine synthétisée en laboratoire à des fins commerciales. La vitamine C est probablement le supplément le plus consommé en Occident, mais sa feuille de route comporte plusieurs controverses. C'est à Linus Pauling, double prix Nobel, que l'on doit l'essentiel de ce que l'on sait sur la vitamine C. Il publie en 1970 un ouvrage qui le rend célèbre auprès du grand public Vitamine C and the Common Cold dans lequel il soutient que l'absorption quotidienne de 1g de vitamine C peut constituer un traitement préventif du rhume Malgré les controverses que provoquent ses théories dans le milieu scientifique, il poursuit dans cette voie et publie en 1979 Cancer and Vitamine C.

1-1-2 A nos jours

Aujourd'hui le scorbut existe encore, rarement il est vrai, il est toujours le signe d'une dénutrition dramatique [8]. Rare dans les pays développés, à l'exception de quelques cas isolés touchant des nourrissons ou des vieillards dénutris, le scorbut peut atteindre les sujets dont le régime ne fait pas une part suffisante aux végétaux frais, il sévit encore dans les pays en voie de développement au même titre que les autres maladies liées à la malnutrition et au manque d'hygiène [1,20].

Les enquêtes nutritionnelles effectuées dans de nombreux pays d'Asie, d'Afrique et d'Amérique latine montrent qu'une grande partie de la population consomme beaucoup moins de vitamine C que ce qui est considéré comme nécessaire ou souhaitable. Cependant, le

scorbut, forme classique et grave de la carence majeure en vitamine C, est devenu très rare. Aucun pays ne le considère comme un problème de santé publique majeur, mais on voit quelques flambées dans les camps de réfugiés, lors de famines et parfois dans des prisons. Une petite étude faite auprès d'adolescents américains a démontré que certains d'entre eux, dont l'alimentation ne comportait ni fruits ni légumes, avaient contracté le scorbut. Les jeunes hommes qui participaient à l'étude ont affirmé ne manger ni fruits ni légumes; leur

d'eau et de boissons gazeuses. Leur bilan sanguin n'accusait aucune carence en vitamines ni en minéraux, exception faite de la vitamine C. Manger suffisamment ne signifie pas que l'on prenne assez de vitamine C [9].

alimentation, riche en calories, n'étant composée que de fromage, de biscuits, de chocolat,

Au cours des dernières décennies en France, des modifications considérables du régime alimentaire ont eu un retentissement sur l'apport en micronutriments. Une série de travaux conduits en Ile de France depuis les années 1980 montre que des franges importantes de cette population sont exposées à un risque de carence en un ou plusieurs micronutriments [26,27,28]. Les symptômes du scorbut apparaissent généralement après une période d'un à trois mois de faible apport quotidien en vitamine C, soit moins de 5 mg par jour. L'apport quotidien recommandé varie de 60 à 100 mg.

1-2 Sources et métabolisme

1-2-1 Sources

Parmi toutes les vitamines, la vitamine C est celle dont nous avons besoin en plus grande quantité. Elle est synthétisée par la plupart des végétaux et des animaux, sauf l'homme, le singe et le cobaye. Ils doivent donc se la procurer dans l'alimentation.

Les 4 sources principales de vitamine C (mg) sont:

L'Acérola ou cerise des Indes occidentales (1745mg/100g). 20 fois plus concentrée que l'orange ou le citron et qui contient également des minéraux et des bioflavonoïdes,

La Baie d'églantier (1250mg/100g),

Le Coriandre (570 mg/100g) et

Le Piment rouge (370 mg/100g).

La Vitamine C est très répandue dans la nature, on la trouve surtout dans les aliments d'origine végétale (le persil, le piment, le poivron et surtout dans les agrumes et dans de nombreux fruits et légumes qui, consommés crus, conservent au maximum cette vitamine en partie détruite par la chaleur lors de la cuisson) et en moindre quantité dans les aliments d'origine animale (les foies d'animaux et dans la chair de certains poissons comme le saumon, le thon ou l'anguille).

1-2-2 Métabolisme

1-2-2-1 Absorption digestive

La vitamine C est absorbée essentiellement au niveau du duodénum et du jéjunum proximal. Cette absorption est saturable et le pourcentage absorbé diminue avec la dose : ainsi après une prise de 1g et de 5 g, l'absorption est respectivement de 75% et de 20%. Elle est rapide, sodium-dépendante et peut être inhibée par des analogues structuraux. A fortes doses, l'aspirine réduit l'absorption digestive de vitamine C.

1-2-2-2 Distribution

Les proportions relatives dans le sang d'acide ascorbique et d'acide déhydro-ascorbique sont respectivement de 90% et 10%. Dans le plasma, l'acide ascorbique est lié réversiblement à l'albumine. Les leucocytes sont riches en vitamine C, ils en contiennent 80 fois plus que le plasma. Les tissus les plus riches en vitamine C sont le cortex surrénal et l'hypophyse et, à moindre degré, le foie, les reins, le muscle et l'humeur aqueuse de l'œil.

Le plasma sanguin contient à jeun environ 1 mg de vitamine C pour 100 millilitres, ce taux peut tomber à 0,1 mg après un à deux mois de carence et atteindre 1,5 mg lors de la saturation. Il n'y a pas de véritable forme de stockage de la vitamine C et, lorsque l'apport cesse, les réserves chutent en deux à trois semaines, la demie-vie corporelle de la vitamine C étant de dix à vingt jours. L'insuline favoriserait la pénétration intracellulaire de l'acide ascorbique.

1-2-2-3 Élimination

L'acide ascorbique s'élimine dans les urines lorsque sa concentration plasmatique atteint ou dépasse 12 mg/l (68 µmol/l). On trouve dans l'urine des métabolites comme l'acide dioxogulonique et l'oxalate. La vitamine non absorbée est évacuée dans les selles. La concentration urinaire demeure basse tant que l'organisme n'est pas saturé, ensuite, le surplus est évacué dans les urines.

1-3 Besoins et recommandations

1-3-1 Besoins

Le minimum compatible avec le maintien d'une santé normale consisterait en un apport quotidien de 6,5 mg, mais 30 mg par jour sont nécessaires pour éviter le scorbut [21]. En pratique, les besoins quotidiens sont beaucoup plus élevés à cause du rôle anti-oxydant de la vitamine C. 30 à 60 mg chez l'enfant et 60 à 90 mg chez l'adulte sont en principe suffisants. Chez l'adolescent, la femme enceinte ou allaitant, 90 mg quotidiens sont recommandés.

La concentration plasmatique optimale de vitamine C est estimée à 10,6 mg/l (60 µmol/l) chez le jeune adulte. En effet, celle-ci correspond à la concentration qui permet d'atteindre le pouvoir antioxydant maximal nécessaire d'après certains à la protection des individus vis à vis des risques de maladies cardiovasculaires et neurodégénératives, de cancers, de cataracte [3,4,5,22].

Les besoins en vitamine C sont accrus dans certaines situations pathologiques (fracture, infections, traitement anticancéreux) mais également en fonction des modes de vie (activité physique intense, consommation excessive d'alcool, tabagisme). Par exemple, un supplément de 20% de vitamine C est conseillé chez le fumeur de plus de 10 cigarettes par jour pour contrecarrer le stress oxydant lié au tabac (chaque cigarette consomme environ 10 mg de vitamine C).

1-3-2 Doses recommandées

Les apports recommandés sont de l'ordre de 100 mg/jour. Les doses quotidiennes recommandées :

30 à 60 mg chez les enfants

90 mg chez l'adolescent

60 à 90 mg chez les adultes

90 à 120 mg chez les femmes enceintes

90 à 130 mg chez les femmes allaitant

110 à 120 mg chez les fumeurs

Une ration alimentaire équilibrée apporte en général suffisamment de vitamine C pour satisfaire aux besoins de l'organisme. Généralement, la consommation d'au moins cinq portions (500 g) de fruits et de légumes frais permet de combler largement les apports nutritionnels recommandés en vitamine C.

1-4 Propriétés et rôles

1-4-1 Propriétés

1-4-1-1 Structure chimique

La vitamine C, ou acide ascorbique, peut être considérée comme un dérivé cyclique des hexoses (composé Carbone Hydrogène Oxygène C6H8O6). Sa caractéristique essentielle est d'exister sous trois degrés d'oxydoréduction différents :

- la forme réduite ou acide ascorbique (acide L-ascorbique),
- la forme semi réduite ou mono oxydée, appelée acide mono-déhydro-ascorbique et
- la forme oxydée ou acide déhydro-ascorbique (acide L-déhydro-ascorbique).

Acide ascorbique réduit — Acide mono-déhydro-ascorbique. Acide ascorbique oxydé

L'acide mono-déhydro-ascorbique est un radical anion relativement inerte, ne réagissant pas avec l'oxygène car il est stabilisé par résonnance (effet mésomère) et formation d'une liaison hydrogène intra-moléculaire. L'agent oxydant habituel est l'oxygène dont l'activité est catalysée par des traces de métaux comme le cuivre et le fer.

La structure moléculaire de l'acide L-ascorbique, est celle d'un sucre lactone diénol dont la propriété principale, son oxydation en acide dihydro-ascorbique, explique son intervention métabolique dans les phénomènes d'oxydoréduction.

1-4-1-2 Stabilité

La vitamine C est la plus fragile et la plus instable de toutes les vitamines : elle est sensible à l'eau, à la chaleur, à l'oxydation de l'air et à la lumière. Par exemple à température ambiante, la moitié de la teneur en vitamine C d'un aliment peut être perdue en 24 heures. Elle est sensible en outre aux oxydants, aux bases, aux acides forts (acide chlorhydrique). Elle se conserve longtemps en milieu acide (fruits) et s'altère rapidement en milieu alcalin.

Les modes de cuisson et de stockage doivent donc être adaptés de manière à limiter les pertes. La vitamine C est détruite par la chaleur (l'acide ascorbique se décompose vers 200°C) qui accélère son oxydation. Elle est de plus hydrosoluble et facilement emportée par l'eau de cuisson, mais les procédés de stérilisation laissent normalement subsister la vitamine C. Pour préserver la vitamine C dans les aliments, il est donc conseillé de cuire les légumes rapidement et avec aussi peu d'eau que possible (à la vapeur ou au four micro-ondes par exemple).

1-4-2 **Rôles**

La vitamine C est un puissant anti-oxydant qui intervient dans de multiples réactions biochimiques de l'organisme où elle n'agit pas en tant que coenzyme mais comme

oxydoréducteur par interconversion forme oxydée/forme réduite (annexe 3). Elle a d'ailleurs fait l'objet de nombreuse études thérapeutiques en diabétologie [30], cardio-angiologie [32,33], cancérologie [33,34,35] ou encore immunologie [36,37].

Elle joue ainsi un rôle essentiel dans de nombreux processus vitaux [21] :

- 1. Elle freine le vieillissement des cellules et prévient du cancer : par son action antioxydante, la vitamine C lutte contre l'oxydation en bloquant l'effet néfaste des radicaux libres, de plus elle a une action régénérante sur la vitamine E et s'associe à la vitamine E, les carotènes, la vitamine A, le sélénium et d'autres substances anti-oxydantes pour freiner le vieillissement des cellules et pour la détoxication de substances cancérigènes [5,7,22].
- 2. Elle favorise l'entretien des tissus et accélère la cicatrisation : en favorisant la formation des tissus de soutien (en particulier le collagène qui intervient dans la construction et l'entretien du tissu conjonctif), du cartilage, de l'osséine et de la dentine.
- 3. Elle intervient dans différentes fonctions hormonales : surrénales (synthèse des corticostéroïdes à partir du cholestérol) et sexuelles.
- 4. Elle intervient dans différents métabolismes: les métabolismes des glucides, des lipides (hydroxylation du cholestérol en acides biliaires) et des protéines (dont la formation du collagène) mais aussi les métabolismes musculaire et cérébral (elle active certains neurotransmetteurs).
- 5. **Elle combat l'anémie** : par son action sur le métabolisme du fer, en effet elle favorise et active son absorption par la membrane intestinale et prévient ainsi l'anémie par carence martiale en fer.
- 6. Elle augmente la résistance aux infections : en activant les mécanismes de défenses immunitaires (fabrication des anticorps des types IgG et IgM., augmentation de la production d'interféron, activité phagocytaire des lymphocytes), elle augmente la résistance aux infections virales et bactériennes.

7. **Elle détoxique l'organisme** : en favorisant l'élimination d'agents polluants néfastes au bon fonctionnement de l'organisme, tels que pesticides, métaux lourds, monoxydes de carbone, dioxyde de soufre ainsi que toutes les toxines produites par notre corps.

1-5 Carence

1-5-1 Données générales

Il est rare de constater une carence en vitamine C car celle-ci est présente hiver comme été dans de nombreux fruits et légumes. Cependant, du fait de sa solubilité dans l'eau et sa très grande fragilité, elle est facilement dégradée dans la préparation des aliments et d'autre part notre corps ne l'emmagasine pas ce qui nous oblige à en consommer quotidiennement.

Le diagnostic de carence peut être effectué par le dosage de la vitamine C dans le plasma où elle est normalement présente à la concentration d'environ 10 mg/l. La concentration plasmatique considérée comme normale chez l'adulte est supérieure à 4.6 mg/l (26 µmol/l), les valeurs inférieures traduisent une déplétion voire une carence vraie.

La carence en vitamine C peut survenir dans de nombreuses situations. Il peut s'agir d'une carence d'apport dans le cadre d'une dénutrition plus globale, mais également des certaines situations à risque.

On décrit donc des groupes à risque de carence en vitamine C [7]:

- les personnes vivant dans un environnement social défavorisé (hommes seuls, démunis ou exclus de la société),
- les alcooliques,
- les fumeurs,
- les personnes âgées,
- les personnes faisant un régime alimentaire volontairement restrictif (ni fruits ni légumes),
- les bébés nourris exclusivement au lait de vache,
- les personnes présentant un déficit d'absorption, une malabsorption,
- les personnes ayant une nutrition parentérale stricte,

- les personnes en dialyse péritonéale ou hémodialyse,
- les immunodéprimés (néoplasie, SIDA).

1-5-2 Diagnostic

Le diagnostic est établi grâce aux dosages sanguins. L'ascorburie, étant fonction de l'apport journalier, est moins intéressante que l'ascorbémie, mais le dosage plasmatique reflète plus les prises récentes que le stock réel de l'organisme en vitamine C.

La présentation clinique de l'hypovitaminose C est plus volontiers corrélée au taux de vitamine C intraleucocytaire (car il est le témoin de la concentration tissulaire) qu'à celui de la vitamine C sérique mais le dosage intraleucocytaire n'est pas réalisé en routine.

Le test de fragilité capillaire n'est pas spécifique du scorbut mais peut être utile et il est de réalisation facile. Il consiste à gonfler autour du bras du sujet le brassard d'un tensiomètre à une pression intermédiaire entre sa tension systolique et diastolique, soit autour de 100 mm Hg et de le laisser en place quatre à six minutes. Le test est positif si de nombreuses pétéchies apparaissent sur la peau de l'avant-bras.

1-5-3 Manifestations cliniques

1-5-3-1 L'hypovitaminose

L'hypovitaminose, plus discrète que la carence vraie, est beaucoup plus répandue que cette dernière. Elle se manifeste surtout par une asthénie inhabituelle associée à une anorexie, l'apparition de myalgies plus particulièrement des jambes, d'arthralgies dès le réveil, plus tard apparaissent un gonflement parfois un saignement des gencives si la carence se prolonge. Ce qui prédomine dans ce tableau infraclinique est l'asthénie majeure [19].

1-5-3-2 La carence vraie ou scorbut

Le scorbut représente la forme la plus grave de carence en vitamine C. Le tableau clinique se constitue en un à trois mois de carence absolue en acide ascorbique lorsque le pool de l'organisme chute en dessous de 350 mg (pour une normale de 1500 mg).

Il comprend sur le plan clinique [23]:

- des signes généraux : asthénie, anorexie, amaigrissement,
- des manifestations articulaires : arthralgies des genoux, des chevilles, des coudes des poignets et des épaules,
- des myalgies, des œdèmes des membres inférieurs, une pâleur (du fait de l'anémie fréquente),
- un syndrome hémorragique : d'abord un purpura pétéchial des membres et du tronc centré sur les follicules pileux, puis des ecchymoses, hématomes, hémorragies intramusculaires, hémarthroses, ces manifestations seraient en rapport avec une fragilité capillaire (trouble de la synthèse du collagène et altération de l'endothélium vasculaire),
- **des manifestations stomatologiques** : une gingivite hypertrophique et hémorragique, qui peut se compliquer ultérieurement d'une parodontolyse voire un déchaussement dentaire,
- des modifications de la peau et des phanères : outre le purpura, une hyperkératose folliculaire avec hémorragies périfolliculaires, pouvant donner un aspect d'ichtyose pigmentée, un enroulement des cheveux sur eux-mêmes (dit "en tire-bouchon") et une alopécie,
- **un syndrome sec** partiel ou complet associant xérostomie, xérophtalmie, kératoconjonctivite, hypertrophie des glandes salivaires,
- des troubles psychiatriques peuvent apparaître, il s'agit essentiellement de syndromes dépressifs,
- à l'extrême et si une supplémentation vitaminique n'est pas instaurée, on peut constater une majoration des hémorragies, une sensibilité accrue aux infections, une évolution vers la cachexie et le décès (des anomalies cardio-vasculaires avec modifications du segment ST et des ondes T sur l'ECG, hypotension et mort subite ont été décrites).

Sur le plan biologique, on peut constater :

- une anémie, pratiquement constante, hypochrome, normo ou macrocytaire liée aux hémorragies, à l'hémolyse intravasculaire et à la carence associée en fer et folates,
- une leucopénie modérée,
- une hypoalbuminémie qui est plus le reflet de la malnutrition,
- une hypocholestérolémie.

1-5-4 Traitement et prévention

Le traitement curatif est simple et peu coûteux : administration de 1000 à 2000 mg de vitamine C pendant 15 jours (fois 250 mg de vitamine C par jour) tout en faisant consommer au patient beaucoup de fruits et de légumes frais. L'injection de vitamine C est possible, elle ne s'impose que si le patient vomit La régression des signes cliniques notamment hémorragiques s'observe en 10 jours. Les œdèmes disparaissent du fait de l'action diurétique de la vitamine C [23].

Le traitement préventif, qui doit apporter entre 60 et 100 mg par jour de vitamine C est satisfait par un régime constitué quotidiennement de fruits et/ ou de légumes frais. Cependant, on rappelle que des apports supplémentaires sont nécessaires chez le fumeur, au cours de la grossesse et de l'allaitement et également au cours de certaines situations pathologiques (alimentation parentérale, hémodialyse, diabète, entérocolopathie).

1-5-5 Excès ou hypervitaminose

Il n'existe pas d'effets connus dus à une surdose de vitamine C, car notre organisme élimine par les urines l'excès de cette vitamine. La vitamine C même à fortes doses (2 grammes par jour et plus) donne peu d'effets indésirables.

Toutefois un excès de consommation peut entraîner :

quelques troubles digestifs à type de douleur abdominale, nausées ou diarrhée, un léger effet excitant responsable d'insomnie, d'agitation, une faible augmentation du risque de formation de calculs urinaires oxaliques.

Il est déconseillé aux malades qui ont une surcharge en fer la prise répétée de vitamine C qui augmente l'absorption du fer et pourrait interagir avec le fer "libre" et entraîner des manifestations toxiques. La prudence s'impose également chez les sujets lithiasiques ainsi que chez les utilisateurs de certains médicaments (comme les alcalinisants urinaires, l'allopurinol, les barbituriques, les agents chélateurs, les sulfamides, les dérivés de la primidone...), la

vitamine C pouvant, selon les cas, accentuer les effets secondaires ou inhiber les effets thérapeutiques recherchés.

Chapitre 2: La PASS

2-1 Les grands principes

2-1-1 Définition

La loi d'orientation relative à la lutte contre les exclusions du 29 juillet 1998 prévoit la création de permanences d'accès aux soins de santé (PASS) dans les établissements publics de santé et les établissements de santé privés participant au service public hospitalier [24].

Mises en places dans le cadre des programmes régionaux pour l'accès à la prévention et aux soins (PRAPS), les PASS sont des cellules de prise en charge médico-sociale destinées à faciliter l'accès des personnes démunies au système hospitalier ainsi qu'aux réseaux institutionnels ou associatifs de soins d'accueil et d'accompagnement social [11,12]. Elles ont également pour fonction d'accompagner les personnes en difficulté dans les démarches nécessaires à la reconnaissance de leurs droits sociaux notamment en matière de couverture sociale (régime de base ou complémentaire d'assurance maladie, accès à l'aide médicale).

Elles doivent également répondre à toutes les demandes des jeunes femmes démunies qui sont à la recherche de mesures de prévention en matière de contraception ou d'interruption volontaire de grossesse ou d'accueil pour leur enfant. Dans ce dernier cas, le rôle des PASS sera de faire le lien avec les services sociaux, notamment ceux des conseils généraux, compétents en matière d'aide sociale à l'enfance et de PMI depuis les lois de décentralisation.

Les PASS sont parfois situées à proximité des services d'urgence pour lesquels elles servent de relais. Il ne s'agit en aucun cas, de créer au sein de l'hôpital des filières spécifiques pour les plus démunis. Au contraire, ceux-ci doivent avoir accès aux soins dans les mêmes conditions que l'ensemble de la population. Pour ce faire, les établissements de santé ont mis en place des dispositifs permettant à ces malades une circulation facile au sein de l'hôpital entre les différents lieux de consultation, d'examens et de soins depuis leur accueil par la PASS.

Les PASS organisent elles-mêmes les modalités du partenariat avec les acteurs sociaux de terrain, notamment la liaison avec les CCAS et les services sociaux départementaux et les permanences au sein de l'hôpital des organismes de sécurité sociale, des travailleurs sociaux, des associations intervenant auprès des publics démunis, notamment les organismes agréés pour effectuer la domiciliation au titre de l'aide médicale.

"Les Permanences d'Accès aux Soins de Santé pour les personnes vulnérables ont une mission de repérage de personnes en difficultés, de prise en charge ambulatoire, de récupération des droits sociaux, et comme objectif la réintégration au plus tôt dans le système de soins de droit commun." Ces principes requièrent de mettre en place des dispositifs appropriés, de développer des savoir-faire qui ne sont pas encore communs dans nos hôpitaux et de s'adapter à des demandes parfois contradictoires avec l'organisation hospitalière traditionnelle.

2-1-2 La consultation médicale

Il s'agit d'une consultation de médecine générale si possible sans rendez-vous, ouverte à tous. C'est une consultation de premier recours en soin primaire, sans impératif de temps et permettant une approche globale du patient.

Elle a pour objectif:

- de répondre aux symptômes allégués par le patient,
- de repérer et dépister des pathologies graves ou urgentes,
- d'évaluer le risque lié à la situation économique du patient et à sa trajectoire de vie,
- de dépister des pathologies associées : dépendances (alcool, drogues illicites, psychotropes),
- de dépister des pathologies chroniques : VIH, hépatite C, hépatite B, tuberculose,
- d'identifier les situations de violence conjugale,
- d'évaluer les stratégies thérapeutiques à mettre en œuvre,
- de permettre au patient de s'impliquer dans une démarche de prévention et d'éducation pour la santé.

Il est souhaitable d'évaluer la capacité du patient à se prendre en charge, sa capacité à consulter, à comprendre la prise en charge et le recours aux spécialistes, à observer une thérapeutique et une prescription médicale.

"Cette consultation constitue une opportunité essentielle dans la trajectoire de la maladie mais également dans la trajectoire de vie du patient en situation de précarité".

2-1-3 La consultation sociale

Elle doit se faire le même jour que la consultation médicale, en parallèle. Elle comprend :

- une évaluation de la situation de précarité [25],
- une évaluation de la situation et de l'environnement en matière de logement, ressources, travail, réseaux familial, amical, culturel et social,
- une évaluation de la couverture sociale existante (obligatoire et complémentaire) en vue, le cas échéant, d'une réouverture des droits,
- une évaluation de la capacité de prise en charge par le patient de sa situation sociale,
- une définition d'un plan d'action en fonction de la personne, adapté tant à la ou aux pathologies qu'elle présente, qu'à sa situation de précarité et qu'au type de traitement nécessaire ainsi qu'à ses capacités de prise en charge; ce plan d'action doit nécessairement inclure les coordinations à établir avec les partenaires externes.

C'est au niveau du travailleur social que se fera la délivrance d'un bordereau de circulation permettant d'accéder aux examens complémentaires prescrits et à la pharmacie hospitalière.

2-2 La PASS de Nantes

2-2-1 La structure

Le Centre Jean Guillon, pivot de la PASS du CHU de Nantes, a été crée en 1999. Elle est rattachée au pôle médecine plus exactement le service de Médecine Interne B et est placée sous la responsabilité médicale des Pr BARRIER et Dr AGARD. Concernant les missions sociales, la responsabilité incombe à Mme PASQUIER, cadre socio-éducatif [13,14,15].

La consultation est située au sein du CHU de Nantes, à l'Hôtel-dieu, dans des locaux situés au 1^{er} étage, aile ouest. Les locaux actuels comprennent : un secrétariat, une salle de soins infirmiers, deux bureaux de consultation médicale, deux bureaux de consultation sociale, un espace douche et un couloir d'attente.

Note: Dans le souci d'améliorer l'accueil des patients et leur prise en charge, un projet de déménagement dans des locaux extérieurs à l'hôpital est programmé pour la fin de l'année 2005.

2-2-2 Le fonctionnement

L'équipe de la consultation Jean Guillon est pluridisciplinaire, elle est composée de :

- 1 praticien hospitalier (temps plein),
- 1 interne de médecine générale (temps plein),
- 2 infirmières (1 temps plein et 1 mi-temps),
- 2 assistantes sociales (temps-plein),
- 1 secrétaire (temps plein),
- 1ou 2 médecin(s) généraliste(s) pour les vacations de l'après-midi.

Les médecins généralistes se répartissent les vacations selon leurs disponibilités. Dans la mesure du possible, on prévoit 1 médecin généraliste présent chaque après-midi du mardi au vendredi et 2 médecins le lundi (pour répondre à une demande plus importante).

La consultation est ouverte du lundi au vendredi, toute la journée :

- les consultations du matin (de 9H30 à 12H00), sur rendez-vous, sont réservées aux patients déjà connus, elles permettent d'assurer un suivi médical par l'interne ou social par l'assistante sociale,
- les consultations de l'après-midi, sans rendez-vous, sont libres (hormis la limite du nombre), les primo-consultants sont accueillis par la secrétaire pour constituer le dossier administratif avant d'être reçus par l'assistante sociale puis le médecin.

Après la consultation, le patient peut, si son état de santé le nécessite, avoir accès au plateau technique et aux consultations spécialisées du CHU, accompagné parfois de l'infirmière. Lorsqu'un bilan biologique ou des soins sont nécessaires, ceux-ci peuvent également être faits

directement à la consultation par l'infirmière. Concernant la délivrance des médicaments, elle peut se faire gratuitement à la pharmacie de l'hôpital sous certaines conditions.

Afin d'assurer aux patients une prise en charge optimale, tant en terme de délai que d'efficacité, la PASS fonctionne dans une dynamique de réseau :

- des réseaux internes qui se sont crées entre la PASS et les différents services hospitaliers (hospitalisation, laboratoires, radiologie, administration...),
- des réseaux externes qui se sont mis en place au fil du temps avec les professionnels de santé externes à l'hôpital et les associations impliquées dans la lutte contre la précarité, et qu'il importe de préserver.

2-2-3 Quelques chiffres

Au cours des 5 années de fonctionnement de la PASS du CHU de Nantes, on a pu noter une activité croissante, avec une nette augmentation du nombre de patients accueillis, passant de 2415 en 2000 à 4733 en 2001, à 5807 en 2002 et à 6181 en 2003. Parmi ces accueils, le nombre de primo-consultants a beaucoup augmenté entre les 2 premières années (passant de 689 en 2000 à 869 en 2001) puis s'est stabilisé (802 en 2002) du fait de la meilleure connaissance de la structure par les patients et les partenaires. Chaque année, on note une proportion stable d'environ 30% de primo-consultants.

L'activité de la consultation, on le rappelle consiste en consultations médicales et/ou entretiens sociaux en particulier pour les premières consultations mais également en entretiens infirmiers aux vocations très diverses (soins infirmier ou d'hygiène, renseignements, accompagnements...). Après également une nette augmentation entre 2000 et 2001, le nombre de consultations médicales et d'entretiens sociaux s'est ensuite stabilisé passant pour les consultations médicales de 2136 en 2000 à 3074 en 2001 puis 2712 en 2002 et pour les entretiens sociaux de 1390 en 2000 à 1993 en 2001 puis 2075 en 2002.

Les caractéristiques démographiques des patients sont aussi relativement stables, chaque année en effet on retrouve une population consultante majoritairement masculine (en 2002 56% d'hommes et 44% de femmes et en 2003 60% d'hommes et 40% de femmes), jeune, la tranche d'âge majoritaire étant celle des 18 à 30 ans, et composée également majoritairement

d'étrangers (70% en 2002 et 77% en 2003), sans ressources dans 70 à 80% des cas, ne bénéficiant d'aucune couverture sociale dans 40% à 45% des cas, et dont une très faible minorité (entre 1 et 2%) signale l'existence d'un médecin traitant libéral identifiable.

Dans une proportion également stable, environ 75% des patients bénéficient d'une prescription suite à la consultation (prescription médicamenteuse pour 65%, bilan biologique pour 18%, imagerie pour 5% ou encore consultation spécialisée pour 10%). Les motifs de consultations sont globalement les mêmes qu'en médecine de ville (infections aiguës des VAS, gynécologie et obstétrique, rhumatologie, gastro-entérologie, demande d'examen et renouvellement de traitement) avec cependant une prévalence plus importante de pathologies liées à la précarité (infectieuses et dermatologiques entre autres).

De nombreux travaux sont réalisés à la PASS du CHU de Nantes en particulier des travaux de thèse, ce service constituant en effet un terrain idéal d'étude de l'état de santé des populations migrantes ou de la population précaire [13,14,15]. Concernant les problèmes nutritionnels ou de carence vitaminique, jusqu'ici, en dehors du dépistage isolé de quelques cas, aucune étude n'avait été menée dans le service de la PASS de Nantes pouvant apporter des éléments d'information sur ce sujet. Ce constat souligne une nouvelle fois la rareté des données épidémiologiques disponibles concernant la population précaire et amène la justification de notre travail.

Chapitre 3 : Etude prospective

3-1 Objectifs de l'étude

3-1-1 Objectif principal

Déterminer la prévalence des hypovitaminoses C dans une population dite "précaire" consultante à la PASS afin d'établir le possible lien entre le caractère précarité et l'hypovitaminose C.

3-1-2 Objectifs secondaires

- Rechercher une éventuelle corrélation entre l'hypovitaminose C et d'autres facteurs biologiques.
- Evaluer l'état nutritionnel global des patients consultants.
- Identifier des facteurs de risque de survenue d'hypovitaminose C, sociaux, cliniques ou biologiques.

3-2 Matériels et méthodes

3-2-1 Population étudiée

Il s'agit d'une enquête prospective ouverte portant sur une population "précaire" consultant à la PASS, de 30 patients choisis au hasard, qu'on suppose potentiellement plus exposés au risque carentiel (parce que, pour la grande majorité, leur repas sont irréguliers tant en qualité qu'en quantité) et qui, parce que leur état de santé l'a nécessité, ont bénéficié d'un bilan biologique sanguin.

Nous avons inclus consécutivement entre le 1^{er} août et le 15 octobre 2004 (soit sur une durée de 10 semaines) et au hasard, 30 patients adultes, primo-consultants ou déjà connus de la PASS, ayant donné leur consentement oral pour répondre à un questionnaire et bénéficier du

dosage de leur taux d'ascorbémie, en plus du bilan biologique programmé (on précise qu'aucun des patients auxquels l'étude a été proposé n'a opposé de refus).

En dehors de l'obligation d'être adulte, nous n'avions pas prévu de limite d'âge ni de répartition hommes/femmes, l'inclusion étant faite totalement au hasard. Sur la période d'étude, près de 140 patients ont bénéficié d'un bilan biologique, dont une grande majorité pour une sérologie de dépistage.

Etaient exclus de l'étude les patients refusant le principe de l'étude et les patients ne nécessitant pas de bilan biologique dans leur prise en charge. Dans le questionnaire étaient notées les données démographiques, les caractéristiques sociales, les habitus, les caractéristiques médicales, les caractéristiques d'alimentation, les données d'examen clinique, et enfin les données biologiques complétées dans un second temps (Annexe 5).

3-2-2 Dosage de la vitamine C

Les taux d'acide ascorbique sérique, une fois prélevés, ont été déterminés par la méthode HPLC (high-performance liquid chromatography). Ces échantillons de sang, prélevés non à jeun, étaient protégés de la lumière (recouverts de papier aluminium) et rapidement transférés (dans les 30 minutes) au laboratoire de biochimie de l'Hôtel-Dieu (CHU de Nantes) pour leur conditionnement (centrifugation et stockage à -80°) avant transport au laboratoire Mérieux de Lyon pour l'analyse HPLC.

3-2-3 Recueil des données

Les données ont été recueillies de manière prospective, par moi-même (supprimant ainsi le biais de l'opérateur) et systématiquement reportées sur le logiciel Excel, après codage. L'ensemble de ce travail a été effectué dans le souci du respect de l'anonymat.

Etaient rapportées 6 types de variables (Annexe 4) :

- **variables démographiques** : sexe, âge, zone géographique d'origine, date d'arrivée en France (durée de séjour),

- **variables sociales** : francophonie, situation familiale, logement, stabilité du logement, activité professionnelle, couverture sociale, situation administrative,
- **habitus** : consommation de tabac, d'alcool et de drogues, activité physique,
- variables médicales : principaux antécédents, motif de consultation,
- variables d'alimentation : nombre de repas, provenance des repas, rythme de consommation de fruits et légumes,
- variables d'examen clinique: poids, taille, IMC, recherche de signes cliniques de scorbut, test de fragilité capillaire,
- **variables biologiques** : NFS, TP, ionogramme, cholestérol, urée, créatinine, calcémie, protides, préalbumine, CRP, ferritine, folates, vitamine B12 et vitamine C.

Détermination des habitus :

- Les rythmes de consommation d'alcool et de drogues n'étaient notés que pour les patients déclarant en consommer (occasionnellement ou quotidiennement).
- La quantité d'alcool et le type de drogue(s) consommée(s) n'étaient notés que pour les patients déclarant une consommation quotidienne.
- La quantité de tabac consommée n'était notée que pour les patients déclarant un tabagisme actif, en paquets-années (quantité par jour × nombre d'années, par exemple : 1 paquet/jour pendant 20 ans = 20 paquets-années).

Détermination de la stabilité :

Etaient considérés comme ayant un logement instable les patients répondant oui à au moins 1 des critères suivant :

- Logement insalubre (appréciation de ce critère en binôme avec l'assistante sociale).
- Durée de séjour dans le logement inférieure à 6 mois.

Evaluation de la dénutrition :

- Détermination de l'IMC (Indice de Masse Corporelle) : IMC = Poids/Taille².
- Détermination de la perte de poids : 100 × (poids habituel poids actuel)/poids habituel.

Etaient considérés comme dénutris les patients ayant un IMC \leq 18 et/ou une perte de poids \geq 5% en 1 mois ou \geq 10% en 6 mois.

Test de fragilité capillaire

Il consiste à gonfler autour du bras du sujet le brassard d'un tensiomètre à une pression intermédiaire entre sa tension systolique et diastolique, soit autour de 100 mm Hg et de le laisser en place quatre à six minutes. Le test est déclaré positif si de nombreuses petites pétéchies apparaissent sur la peau de l'avant-bras au retrait du brassard.

3-2-4 Analyse statistique

L'analyse statistique a été réalisée sur le logiciel Systat 10.2 après importation à partir du logiciel Excel. Les données sont exprimées en moyenne et écart-type (m \pm sd) pour les variables quantitatives, en fréquence et pourcentage n (p) pour les variables qualitatives. La normalité des variables quantitatives a été évaluée par un test de Lielliefors. Dans l'étude univariée, les médianes, moyennes et écart-types ont été calculés pour les variables quantitatives (basic statistic), les fréquences et pourcentages pour les variables qualitatives (crosstab one way).

Dans l'étude bivariée, un test t 2 groupes a été utilisé pour les variables quantitatives et une crosstab two way pour les variables qualitatives (chi² de Pearson, test exact de Fisher, chi² du rapport de vraisemblance). Les comparaisons ont été faites selon le sexe puis selon le statut en vitamine C. Pour les variables quantitatives dont la normalité n'était pas acceptable, un test non-paramétrique de Mann et Whitney a été réalisé. L'ensemble des tests a été réalisé au seuil de significativité de 5% (une p-value inférieur à 0.05 était considérée comme significative statistiquement).

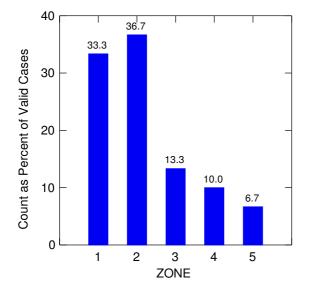
Dans l'étude multivariée, une régression logistique incluant différents facteurs prédictifs a été réalisée pour identifier des facteurs de risques de carence en vitamine C. La taille de l'échantillon ne permettait pas d'inclure dans notre modèle toutes les variables catégorielles, nous les avons donc limitées à 8, choisies en fonction soit de leur signification statistique (p value petite) soit de leur pertinence clinique. D'autre part les variables choisies pour ce modèle logistique ont été, pour celles qui ne l'étaient pas déjà, recodées en variables catégorielle à 2 modalités dont la pertinence nous semblait acceptable.

Voici donc les variables choisies :

- le sexe

- la situation familiale
- le nombre de repas
- le rythme de consommation de crudités
- les signes de scorbut
- la CRP
- la ferritine
- les folates

Le sexe et les signes de scorbut étaient déjà codés en mode binaire, nous les avons gardé tel quels. Les 3 variables biologiques gardées ont été incluses dans le modèle après leur transformation en variables catégorielles binaires normal/pathologique. La situation familiale a été recodée en isolement social (regroupant les items célibataire et personne isolée) versus absence d'isolement social (regroupant les items couple et enfants à charge). Le nombre de repas a été recodé en 3 repas par jour versus moins de 3 repas par jour. Enfin, le rythme de consommation de crudités a été recodé en au moins 1 crudité par jour (regroupant les items 1 crudité/repas et 1 crudité/jour) versus moins d'une crudité par jour (regroupant les items < 1 crudité par jour et < 1 crudité par semaine).

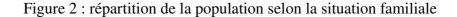

3-3 Résultats de l'étude

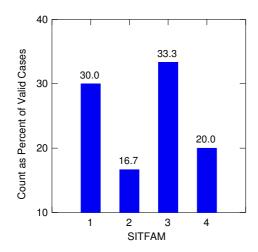
3-3-1 Etude descriptive de la population ou étude univariée

3-3-1-1 Données démographiques

Un total de 30 patients a été étudié dont 16 hommes (53,33%) et 14 femmes (46.67%), soit une répartition hommes/femmes quasiment équivalente. La population étudiée est plutôt jeune avec un âge moyen est de 36,5 ans \pm 15, d'origine étrangère (figure 1) pour 20 patients sur 30 (soit 67%) avec une majorité en provenance d'Afrique Equatoriale (37%) et d'Afrique du Nord (13%). Les patients originaires du continent européen sont moins représentés avec seulement 10% hors Union Européenne (UE) et 7% UE.

Figure 1 : répartition de la population selon l'origine géographique

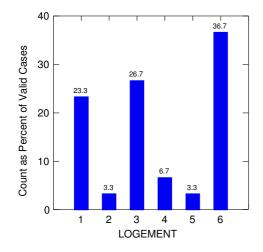

<u>Légende</u>:


- 1 = France
- 2 = Afrique Equatoriale
- 3 = Afrique du Nord
- 4 = Europe (hors UE)
- 5 = Europe UE (hors France)

Sur les 18 patients étrangers et hors UE (2 sont étrangers UE), la durée de séjour en France est courte puisqu'en moyenne inférieure à 1 an avec une moyenne de 11 mois \pm 12 mais une médiane de 6 mois (la moyenne est faussement élevée à cause de 2 patients résidant depuis 36 mois). Sur les 20 patients d'origine étrangère, une grande majorité est francophone (80%). Pour les autres, un traducteur a été requis. (Annexe 6-1-1)

3-3-1-2 Caractéristiques sociales

Près de la moitié des patients vivent seuls (figure 2) soit parce qu'ils sont célibataires (30%) soit parce qu'ils sont isolés en France (17%), cette dernière catégorie qualifiant les personnes ayant une famille (conjoint \pm enfants) ne résidant pas en France. L'autre moitié comporte les personnes en couple (33%) ou ayant des enfants à charge (20%).



Légende:
1 = célibataire
2 = personne isolée
3 = couple
4 = enfants à charge

Seuls 37% des patients (figure 3) occupent un logement personnel (qu'ils louent ou dont ils sont propriétaires), les autres étant SDF (23%), hébergés chez la famille ou les amis (27%), en CHRS (7%) ou encore en caravane ou à l'hôtel (3% respectivement). La moitié exactement de ces logements était définie comme non stable (insalubre et/ou < 6 mois).

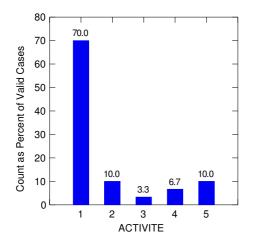
Figure 3 : répartition de la population selon le logement

Légende:

1 = SDF

2 = caravane

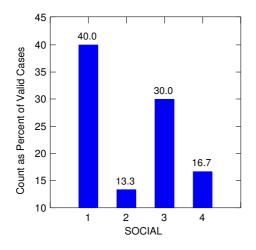
3 = famille, amis


4 = CHRS

5 = hôtel

6 = logement personnel

Plus des 2 tiers des patients (70%) sont sans activité professionnelle (figure 4), parmi lesquels les patients en situation irrégulière contraints à demeurer inactifs. Le dernier tiers est constitué de 10% de retraités (les 3 patients de plus de 65 ans), 10% d'étudiants, 7% d'actifs et 3% de chômeurs.


Figure 4 : répartition de la population selon l'activité

Légende:
1 = aucune activité
2 = étudiant
3 = chômage
4 = travail
5 = retraité

40% des patients n'ont aucune couverture sociale (figure 5), 30% ont une couverture de base seule, 17% ont la couverture de base avec Couverture Médicale Universelle (CMU) et 13% ont l'Aide Médicale d'Etat (AME). Il est à noté que parmi nos patients inclus, aucun n'a de mutuelle complémentaire ou d'assurance privée.

Figure 5 : répartition de la population selon la couverture sociale

<u>Légende</u>:

1 = aucune couverture

2 = AME

3 = base

4 = base + CMU

Sur les 18 patients étrangers et hors UE, les 2/3 sont en situation irrégulière sans aucun titre de séjour (12 patients soit 67%), les autres ayant soit un récépissé de demande de carte de séjour (22%) soit une carte de séjour (11%). (Annexe 6-1-2)

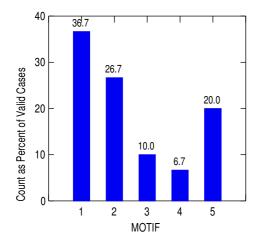
3-3-1-3 Habitus

La consommation d'alcool est retrouvée chez près de la moitié des patients (47%). 29% de ces derniers (soit 4 patients) déclarent une consommation quotidienne, supérieure à 40 g/jour pour 3 patients sur 4. La consommation de tabac est retrouvée également chez la moitié des patients (47%), avec une moyenne de 8,7 paquets-années. La consommation de drogues est par contre plus rare puisqu'elle concerne 27% des patients dont 37% seulement déclarent une consommation quotidienne (de cannabis uniquement).

Près de la moitié des personnes (47%) déclarent avoir une activité physique quotidienne (égale ou équivalente à 30 minutes de marche rapide par jour), seulement 2 patients ont cette activité au cours d'une séance de sport. (Annexe 6-1-3)

3-3-1-4 Caractéristiques médicales

Sur 30 patients, 19 (63%) sont des primo-consultants et 11 (37%) étaient connus antérieurement de la PASS.

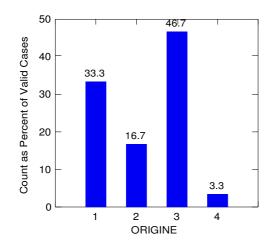

La moitié des patients (50%) déclarent avoir un ou des antécédents médicaux dont :

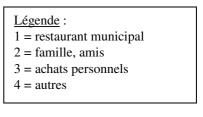
- 53% d'antécédents cardio-vasculaires (hypertension artérielle, insuffisance coronarienne, insuffisance cardiaque, artériopathie, troubles du rythme),
- 27% d'antécédents endocrino-métaboliques (diabète, dysthyroïdie, obésité),
- 33% d'antécédents infectieux (hépatite B, hépatite C, tuberculose, paludisme),
- 33% d'antécédents digestifs (RGO, ulcère gastro-duodénal, troubles du transit, douleurs),
- 33% d'antécédents psychiatriques ou de problèmes de dépendance (troubles de l'humeur, troubles des conduites, addiction simple ou multiple),
- 7% d'antécédents néoplasiques (il s'agit d'1 patient de 67 ans avec un antécédent de néoplasie ORL ancienne en rémission complète depuis plus de 20 ans).

Le motif de consultation le plus fréquent est la pathologie aiguë (infection des voies aériennes supérieures, syndrome fébrile, douleurs diverses y compris dentaires, prurit, éruption...) puisque 37% des patients ont eu recours à la consultation pour ce motif (figure 6). Viennent ensuite la pathologie chronique pour 27% (surveillance clinique ou biologique, renouvellement de traitement), la demande de dépistage, de bilan biologique ou d'imagerie

pour 20%, le diagnostic ou suivi de la grossesse pour 10% (uniquement des femmes bien évidemment) et enfin la demande de certificat pour 7% (prénuptial, coups et blessures, aptitude). (Annexe 6-1-4)

Figure 6 : répartition de la population selon le motif de consultation

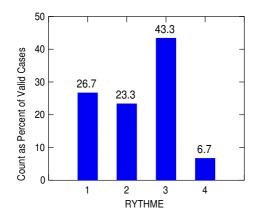



<u>Légende</u>: 1 = pathologie aiguë 2 = pathologie chronique 3 = grossesse 4 = certificat 5 = dépistage

3-3-1-5 Données d'alimentation

La majorité des patients (57%) déclarent prendre de façon régulière 2 repas/jour, 10% déclarent n'en prendre qu'1 par jour par impossibilité de s'en procurer d'avantage. Presque la moitié des patients (47%) déclarent s'alimenter de leurs achats personnels (figure 7), l'autre moitié s'alimente dans les restaurant municipaux et restaurant du cœur pour 33%, chez famille ou amis pour 17%, seule 1 patiente mange dans son foyer d'hébergement.

Figure 7 : répartition de la population selon la provenance des repas



Le questionnaire concernant le rythme de consommation des fruits et légumes a révélé que près de la moitié des patients (43%) consomment moins d'une crudité par jour (mais plus d'1 crudité par semaine) non par choix mais par impossibilité. Ces patients ont généralement recours à des structures sociales pour s'alimenter (figure 8).

Les autres patients consomment en moyenne 1 crudité par repas pour 27% ou 1 crudité par jour pour 23%, enfin 7% certains déclarent en consommer < 1 par semaine. (Annexe 6-1-5)

Figure 8 : répartition de la population selon le rythme de consommation de crudité

<u>Légende</u>: 1 = 1 crudité/repas

2 = 1 crudité/jour 3 = < 1 crudité/jour

4 = < 1 crudité/semaine

3-3-1-6 Données d'examen clinique

La normalité des variables quantitatives poids, taille et IMC a été confirmée par un test de Lielliefors. Pour chacune on retrouve des valeurs très proches entre moyenne et médiane, on peut donc garder les valeurs des moyennes. Notre population est comparable à la population générale avec un poids moyen de $68 \text{ kg} \pm 16$, une taille moyenne de $169 \text{ cm} \pm 10$ et un IMC moyen de $23,6 \pm 5$ (la normale d'IMC se situant entre 18 et 25).

On retrouve les critères définis de dénutrition (IMC < 18 ou perte de poids ≥ 5% en 1 mois ou ≥ 10% en 6 mois) chez 27% des patients. A l'examen, 63% des patients présentaient des signes retrouvés dans les tableaux d'hypovitaminose C et de scorbut, dont par ordre décroissant de fréquence : 68% d'arthralgies, 58% de pathologie gingivale (21% de gonflement et 47% de saignement), 42% de sécheresse oculaire, 37% de sécheresse buccale, 16% d'œdèmes des membres inférieurs (OMI) et 16% de cheveux cassants (notion établie sur l'interrogatoire). D'autres signes tels que purpura, hémorragies ou encore cataracte n'ont jamais été décrits. Le test de fragilité capillaire n'a été retrouvé positif que chez 1 seul patient sur 30 (soit 3%). (Annexe 6-1-6)

3-3-1-7 Données biologiques

Les données biologiques ont été étudiées dans un premier temps sur un plan quantitatif, puis dans un second temps sur un plan qualitatif après transformation en données binaires normale/pathologique. Cette transformation a été faite à partir des abaques de valeurs normales biologiques données par les laboratoires (hématologie, chimie, biochimie spécialisée et radio-immunologie) du CHU de Nantes.

Pour l'ensemble des variables biologiques recherchées (en dehors de la CRP et de la ferritine), la normalité testée par Lielliefors était acceptable et les moyennes calculées toujours approchées par les médianes. Pour la CRP et la ferritine dont la normalité n'était pas acceptable au test de Lielliefors, les moyennes étaient très éloignées des médianes, ces distributions non normales nous ont contraint à utiliser des tests non-paramétriques.

Dans notre population précaire, hommes et femmes confondus, nous avons retrouvé des variables biologiques comparables à celles de la population générale (Annexe 6-1-7) :

- Hémoglobine : taux moyen de 13,9 g/dl ± 1,8, avec 23% de valeurs pathologiques (7 valeurs inférieures à la normale entre 10,6 et 11,5 g/dl),
- V_{GM}: taux moyen de 87,5 fl ± 7, avec 10% de valeurs pathologiques
 (2 valeurs inférieures à 70 fl et 1 valeur très supérieure à la normale à 107 fl chez un patient éthylique chronique),
- Natrémie : taux moyen de 139,4 mmol/l ± 2,4, toutes les valeurs étaient normales,
- Kaliémie : taux moyen de 3,9 mmol/l \pm 0,3, toutes les valeurs étaient normales,
- Calcémie : taux moyen de 2,5 mmol/l ± 0,1, toutes les valeurs étaient normales,
- Protides : taux moyen de 77,1 g/l ± 6, avec 3% de valeurs pathologiques (1 valeur inférieure à la normale à 64 g/l),
- Urée : taux moyen de 4,6 mmol/l ± 1,5, avec 30% de valeurs pathologiques (7 valeurs entre 2,1 et 2,6 mmol/l) et 2 valeurs supérieure à la normale à 7,5 mmol/l),
- Créatinine : taux moyen de 77,5 μ mol/l \pm 18, avec 7% de valeurs pathologiques (1 valeur inférieure à 45 μ mol/l et 1 valeur supérieure à la normale à 117 μ mol/l),

- CRP: taux moyen de 7,3 mg/l ± 14, médiane plus parlante de 3,2, avec 20% de valeurs pathologiques (5 valeurs entre 11 et 20 mg/l, et 1 valeur à 81 mg/l chez une patiente hyperthyroïde mal traitée),
- FERRITINE: taux moyen de 111 μg/l ± 126, médiane plus parlante de 71,5, avec 23% de valeurs pathologiques (5 valeurs entre 6 et 11 μg/l, et 1 valeur très supérieure à la normale à 620 μg/l chez un patient éthylique chronique),
- Préalbumine : taux moyen de 0.25 g/l ± 0.05 , avec 13% de valeurs pathologiques (4 valeurs inférieures à la normale entre 0.13 et 0.18 g/l),
- Cholestérol : taux moyen de 5,4 mmol/l ± 1,3, avec 13% de valeurs pathologiques (4 valeurs supérieures à la normale entre 7,3 et 8,3 mmol/l),
- Folates : taux moyen de 4,5 ng/ml ± 1,9, avec 20% de valeurs pathologiques (6 valeurs inférieures à la normale entre 1,7 et 2,8 ng/ml),
- TP: taux moyen de 95 % \pm 10, toutes les valeurs étant normales,
- VITAMINE B12: taux moyen de 455 pg/ml ± 186, avec 7% de valeurs pathologiques
 (2 valeurs très inférieures à la normale à 190 pg/ml et 59 pg/ml ce dernier taux ayant été retrouvé chez un patient végétalien),
- VITAMINE C: taux moyen de 35,6 μmol/l ± 19,6, avec 37% de valeurs pathologiques
 (11 valeurs inférieures à 24 μmol/l dont 2 étaient inférieures à 5 μmol/l, ces 2 derniers taux ayant été retrouvés chez 2 patients éthyliques chroniques).

3-3-2 Etude bivariée

3-3-2-1 Données démographiques

• <u>Différences selon le sexe</u> (Annexe 6-2-1)

L'âge moyen chez les hommes de 38,8 ans \pm 16,4 n'est pas statistiquement différent de celui des femmes de $33,9 \pm 12,6$ (figure 9). La répartition selon la zone géographique ainsi que la durée moyenne de séjour en France ne sont pas non plus statistiquement différentes entre hommes et femmes.

70 60 50 50 30 20 12 10 8 6 4 2 0 2 4 6 8 10 12 Count Count SEXE

Figure 9 : distribution de l'âge en fonction du sexe

• <u>Différences selon le statut en vitamine C</u>

L'âge moyen chez les patients carencés en vitamine C de 36,9 ans \pm 18,1 n'est pas statistiquement différent de celui des patients non carencés de 36,3 ans \pm 12,9. La répartition selon la zone géographique ainsi que la durée moyenne de séjour en France ne sont pas non plus statistiquement différentes entre patients carencés et non carencés (tableau 1).

Tableau 1 : données démographiques selon le statut en vitamine C)
--	---

VARIABLES	TOTAL $(N = 30)$	HypoVitC Non (N = 19)	HypoVitC Oui (N = 11)	P VALUE
AGE - années	36.5 ± 15 [19-69]	36.3 ± 12.9	36.9 ± 18.1	0.910
SEXE Hommes	16 (53)	11 (58)	5 (45)	0.510
Femmes	14 (47)	8 (42)	6 (55)	
ZONE GEOGRAPHIQUE		•		
France	10 (33)	5 (26)	5 (45)	0.397
Etranger dont:	20 (67)	14 (74) dont:	6 (55) dont:	
 Afrique Equatoriale 	11 (37)	6 (32)	5 (45)	
- Afrique du Nord	4 (13)	4 (21)	0 (0)	
- Europe (hors UE)	3 (10)	2 (11)	1 (9)	
- Europe (hors France)	2 (7)	2 (11)	0 (0)	
ARRIVÉE France - mois	(N = 18)	(N = 12)	(N = 6)	

(patients hors UE) $11 \pm 12 [0.5-36]$ 10.8 ± 13 10.6 ± 10 0.887

3-3-2-2 Caractéristiques sociales

• <u>Différences selon le sexe</u> (Annexe 6-2-2)

2

3

LOGEMENT

1

Parmi les 20 patients étrangers, le taux de francophones chez les hommes n'est pas statistiquement différent de celui des femmes. De même, chez les 18 patients étrangers et hors union européenne, on ne note pas de différence en terme de statut administratif.

Parmi les 30 patients, les répartitions selon la situation familiale, le logement, l'activité et la couverture sociale ne sont pas statistiquement différentes entre hommes et femmes, de même que la stabilité du logement. On peut cependant noter, malgré l'absence de signification statistique, une différence dans le type de logement avec 81% d'hommes soit SDF soit occupant un logement personnel et à l'inverse 57% de femmes hébergées chez la famille ou des amis ou en CHRS (figure 10).

12 Légende pour logement : 10 1 = SDF2 = caravane3 = famille, amis8 4 = CHRSCount 5 = hôtel6 6 = logement personnelLégende pour sexe : 4 0 = hommes1 = femmesSEXE 2 0 0

5

6

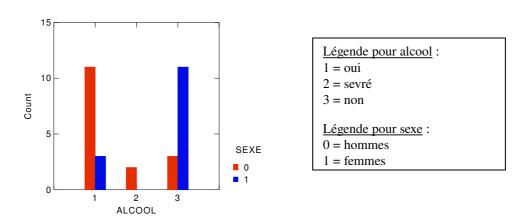
4

Figure 10 : répartition de la population selon le sexe et le logement

• <u>Différences selon le statut en vitamine C</u>

Parmi les 20 patients étrangers, le taux de francophones chez les patients carencés n'est pas statistiquement différent de celui des patients non carencés. De même, chez les 18 patients étrangers et hors union européenne, on ne note pas de différence en terme de statut administratif. Parmi les 30 patients, les répartitions selon la situation familiale, le logement, l'activité et la couverture sociale ne sont pas statistiquement différentes entre patients carencés et non carencés, de même que la stabilité du logement (tableau 2).

Tableau 2 : caractéristiques sociales selon le statut en vitamine C


VARIABLES	TOTAL	HypoVitC Non	HypoVitC Oui	P VALUE
	(N = 30)	(N = 19)	(N = 11)	
LANGUE (pour étrangers)	(N = 20)	(N = 14)	(N=6)	
Francophone	16 (80)	11 (79)	5 (83)	0.805
Non francophone	4 (20)	3 (21)	1 (17)	
SITUATION FAMILLE				
Célibataire	9 (30)	6 (32)	3 (27)	0.199
Personne isolée	5 (17)	1 (5)	4 (36)	
Couple	10 (33)	8 (42)	2 (18)	
Enfants à charge	6 (20)	4 (21)	2 (18)	
LOGEMENT				
SDF	7 (23)	5 (26)	2 (18)	0.729
Caravane	1 (3)	1 (5)	0 (0)	
Amis, famille	8 (27)	5 (26)	3 (27)	
CHRS	2 (7)	2 (11)	0 (0)	
Hôtel	1 (3)	0 (0)	1 (9)	
Logement perso	11 (37)	6 (32)	5 (45)	
STABILITÉ				
Oui	15 (50)	8 (42)	7 (64)	0.253
Non	15 (50)	11 (58)	4 (36)	
ACTIVITÉ				
Sans activité	21 (70)	14 (74)	7 (64)	0.885
Etudiant	3 (10)	2(11)	1 (9)	
Chômage	1 (3)	1(5)	0 (0)	
Travail	2 (7)	1 (5)	1 (9)	
Retraité	3 (10)	1 (5)	2 (18)	
SECU SOCIALE		· /	. ,	
Aucune	12 (40)	8 (42)	4 (36)	0.951
AME	4 (13)	3 (16)	1 (9)	
Base	9 (30)	5 (26)	4 (36)	
Base + CMU	5 (17)	3 (16)	2 (18)	
Base + Mutuelle	-	- (/	- (/	
ADMINISTRATIF	(N = 18)	(N = 12)	(N = 6)	
Pas de titre séjour	12 (67)	8 (67)	4 (67)	0.616
Récépissé carte	4 (22)	2 (17)	2 (33)	0.010
Carte de séjour	2 (11)	2 (17)	0 (0)	

3-3-2-3 Habitus

• <u>Différences selon le sexe</u> (Annexe 6-2-3)

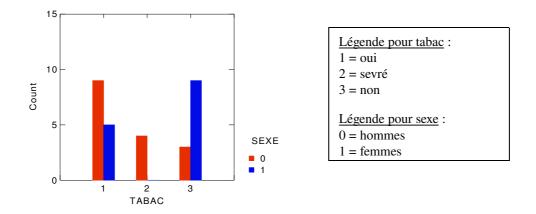

La consommation d'alcool est statistiquement différente entre hommes et femmes, en effet 69% d'hommes contre 21% de femmes déclarent en consommer (figure 11). De même, alors que 36% de ces derniers déclarent en consommer de façon quotidienne (> 40g/jour pour 3 hommes sur 4), aucune de ces dernières ne déclare une consommation quotidienne.

Figure 11 : répartition de la population selon le sexe et la consommation d'alcool

La consommation de tabac est aussi statistiquement différente entre hommes et femmes, 64% de femmes contre 19% d'hommes déclarent n'avoir jamais fumé (figure 12). Par contre, sur le pourcentage de fumeurs, on ne note pas de différence en terme de consommation totale (en paquets-années).

Figure 12 : répartition de la population selon le sexe et la consommation de tabac

La consommation de drogues des hommes n'est pas statistiquement différente de celle des femmes, de même que l'activité physique.

• <u>Différences selon le statut en vitamine C</u>

Les consommations d'alcool et de tabac ne sont pas statistiquement différentes entre patients carencés et non carencés en vitamine C. Cependant, même en l'absence de significativité statistique, on peut remarquer que 64% des patients carencés contre 37% des non carencés déclarent consommer de l'alcool. La consommation de drogues des patients carencés n'est pas statistiquement différente de celle des non carencés, de même que l'activité physique.

Tableau 3 : habitus selon le statut en vitamine C

VARIABLES	TOTAL (N = 30)	HypoVitC Non (N = 19)	HypoVitC Oui (N = 11)	P VALUE
CONSOMMATION D'ALCOOL				
Jamais	14 (47)	10 (53)	4 (36)	0.413
Sevré	2 (7)	2 (11)	0 (0)	
Oui dont :	14 (47)	7 (37)	7 (64)	
	(N = 14)	(N = 7)	(N = 7)	
- Occasionnelle	10 (71)	5 (71)	5 (71)	
- Quotidienne dont :	4 (29)	2 (29)	2 (29)	
	(N = 4)	(N=2)	(N=2)	
- < 40 g / 24 h	1 (25)	1 (50)	0 (0)	
- > 40 g / 24 h	3 (75)	1 (50)	2 (100)	
CONSOMMATION DE TABAC				
Jamais	12 (40)	8 (42)	4 (36)	0.884
Sevré	4 (13)	3 (16)	1 (9)	
Oui :	14 (47)	8 (42)	6 (55)	
- nombre de PA	8.7 ± 11.3	7.5 ± 7.6	10.3 ± 15.8	0.697
	[1-42]			
CONSOMMATION DE DROGUES	•			
Jamais	22 (73)	14 (74)	8 (73)	0.954
Oui dont :	8 (27)	5 (26)	3 (27)	
	(N = 8)	(N=5)	(N=3)	
- Occasionnelle	5 (62)	3 (60)	2 (67)	
- Quotidienne	3 (38)	2 (40)	1 (33)	
ACTIVITÉ PHYSIQUE				
Oui	14 (47)	8 (42)	6 (55)	0.510
Non	16 (53)	11 (58)	5 (45)	

3-3-2-4 Caractéristiques médicales

• <u>Différences selon le sexe</u> (Annexe 6-2-4)

Le pourcentage de femmes consultant pour la 1ère fois est le même que celui des hommes. De même la proportion de femmes déclarant avoir des antécédents n'est pas statistiquement différente de celle des hommes, on remarque cependant, lorsqu'on catégorise les antécédents, une différence significative pour les antécédents infectieux, en effet 67% des femmes contre 11% des hommes en déclarent. Enfin les motifs de consultation des hommes ne sont pas

statistiquement différents de ceux des femmes même si 21% des femmes ont consulté pour diagnostic ou suivi de grossesse.

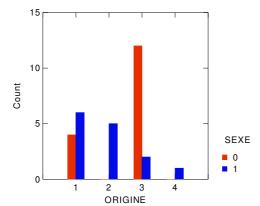
• Différences selon le statut en vitamine C

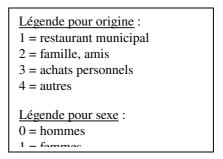
Le pourcentage de patients carencés consultant pour la 1ère fois est le même que celui des non carencés. De même la proportion de patients carencés déclarant avoir des antécédents n'est pas différente de celle des non carencés, on remarque cependant, lorsqu'on catégorise les antécédents, malgré l'absence de différence significative, une légère différence pour les antécédents psychiatriques ou de dépendance, en effet 50% des carencés contre 22% des non carencés en déclarent (tableau 4).

Enfin les motifs de consultation des patients carencés ne sont pas statistiquement différents de ceux des non carencés même si 16% des non carencés ont consulté pour diagnostic ou suivi de grossesse contre 0% des non carencés. Les carences ont donc toujours été de découverte fortuite. Rien dans les motifs de consultation ne permettait d'attirer plus particulièrement l'attention sur une éventuelle carence en vitamine C.

Tableau 4 : caractéristiques médicales selon le statut en vitamine C

VARIABLES	TOTAL $(N = 30)$	HypoVitC Non (N = 19)	HypoVitC Oui (N = 11)	P VALUE
CONSULTATION				
1 ^{ère} fois	19 (63)	12 (63)	7 (64)	0.979
patient connu	11 (37)	7 (37)	4 (36)	
ATCD MÉDICAUX				
Non	15 (50)	10 (53)	5 (45)	0.705
Oui dont	15 (50)	9 (47)	6 (55)	
	(N = 15)	(N = 9)	(N = 6)	
- cardio-vasculaires	8 (53)	4 (44)	4 (67)	0.395
 endocrino, métaboliq 	4 (27)	2 (22)	2 (33)	0.636
- infectieux	5 (33)	3 (33)	2 (33)	1.000
- digestifs	5 (33)	4 (44)	1 (17)	0.250
 néoplasiques 	1 (7)	1 (11)	0 (0)	0.301
 psy, dépendance 	5 (33)	2 (22)	3 (50)	0.265
MOTIF DE CONSULTATION				
Pathologie aiguë	11 (37)	7 (37)	4 (36)	0.708
Path chronique, RO	8 (27)	4 (21)	4 (36)	
Diag, suivi grosses	3 (10)	3 (16)	0 (0)	
Certificat	2 (7)	1 (5)	1 (9)	
Dépistage, examen	6 (20)	4 (21)	2 (18)	


3-3-2-5 Données d'alimentation


• <u>Différences selon le sexe</u> (Annexe 6-2-5)

Le nombre de repas pris par jour ainsi que le rythme de consommation de crudité ne sont pas statistiquement différent entre hommes et femmes, on peut cependant remarquer, même en l'absence de significativité statistique, que seuls des hommes (19%) déclarent 1 seul repas par jour, et également seuls des hommes (13%) déclarent consommer < 1 crudité par semaine.

On note par contre une différence significative dans la provenance des repas, en effet 75% des hommes déclarent s'alimenter de leurs achats personnels contre seulement 14% des femmes (figure 13), alors que 79% des femmes déclarent s'alimenter dans des structures sociales ou chez les personnes qui les hébergent contre 25% des hommes. Mais il faut rappeler que près de la moitié des femmes est hébergée chez amis ou famille contre 13% des hommes, également 50% des hommes occupent des logements personnels contre 21% des femmes.

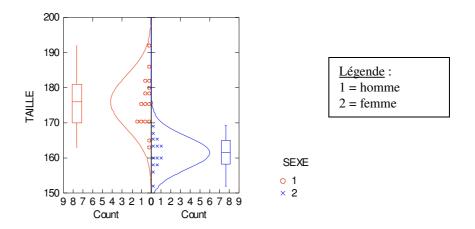
Figure 13 : répartition de la population selon le sexe et la provenance des repas

• Différences selon le statut en vitamine C

Le nombre de repas pris par jour, la provenance des repas ainsi que le rythme de consommation de crudité ne sont pas statistiquement différents entre patients carencés et patients non carencés.

Tableau 5 : données d'alimentation selon le statut en vitamine C

VARIABLES	TOTAL $(N = 30)$	HypoVitC Non $(N = 19)$	HypoVitC Oui $(N = 11)$	P VALUE
NOMBRE DE REPAS	(= : = =)	(= 1 - 2)	(=)	
1 repas :jour	3 (10)	2 (11)	1 (9)	0.416
2 repas :jour	17 (57)	9 (47)	8 (73)	
3 repas :jour	10 (33)	8 (42)	2 (18)	
PROVENANCE REPAS				
Resto cœur, munic	10 (33)	5 (26)	5 (45)	0.799
Famille, amis	5 (17)	4 (21)	1 (9)	
Achats personnels	14 (47)	9 (47)	5 (45)	
Autre	1 (3)	1 (5)	0 (0)	

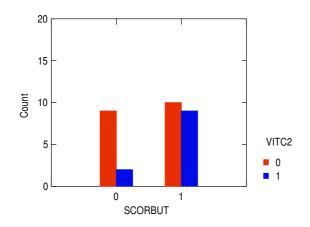

RYTHME CONSOMMATION				
- 1 crudité par repas	8 (27)	6 (32)	2 (18)	0.138
 1 crudité par jour 	7 (23)	2 (11)	5 (45)	
- < 1 crudité par jour	13 (43)	10 (53)	3 (27)	
- < 1 crudité / semaine	2 (7)	1 (5)	1 (9)	

3-3-2-6 Données d'examen clinique

• <u>Différences selon le sexe</u> (Annexe 6-2-6)

Le poids moyen des hommes de 72 kg \pm 14 n'est pas statistiquement différent de celui des femmes qui est de 63 kg \pm 18. De même l'IMC moyen des hommes de 23 \pm 4 n'est pas différent de celui des femmes de 24 \pm 7. Par contre la taille moyenne des hommes de 175 \pm 8 est différente de celle des femmes de 161 \pm 5 (figure 14).

Figure 14 : distribution de la taille en fonction du sexe


La proportion d'hommes (38%) présentant les critères définis de dénutrition n'est pas statistiquement différente de celle des femmes (14%) malgré une différence notable. De même, il n'y a pas de différence significative entre le pourcentage de femmes présentant des signes de scorbut (71%) et celui des hommes (57%) et ce probablement du fait de la taille de notre population. Par contre si on catégorise les signes cliniques, on remarque une différence statistiquement significative pour les cheveux, en effet 30% des femmes déclarent avoir des cheveux cassants contre 0% des hommes.

• <u>Différence selon le statut en vitamine C</u>

Le poids moyen, la taille moyenne et l'IMC moyen ne sont statistiquement différents entre patients carencés et patients non carencés. La proportion de patients carencés (36%)

présentant les critères définis de dénutrition n'est pas statistiquement différente de celle des patients non carencés (21%). De même, le pourcentage de patients carencés présentant des signes de scorbut (82%) bien que supérieur à celui des non carencés (53%) n'est pas statistiquement différent entre les 2 groupes (figure 15).

Figure 15 : répartition selon le statut en vitamine C et les signes de scorbut

Légende pour scorbut :

0 = pas de signes de scorbut

1 = signes de scorbut

Légende pour vitC :

0 = patients non carencés

1 = patients carencés

Si on catégorise les signes cliniques, on observe cette fois une différence statistiquement significative : 67% des patients carencés décrivent une sécheresse oculaire contre 20% des patients non carencés. Le test de fragilité capillaire retrouvé chez un seul patient carencé n'a pas de signification statistique (tableau 6).

Tableau 6 : examen clinique selon le statut en vitamine C

VARIABLES	TOTAL	HypoVitC Non	HypoVitC Oui	P VALUE
	(N = 30)	(N = 19)	(N = 11)	
POIDS - kg	68 ± 16	67 ± 16	69 ± 17	0.711
	[42-97]			
TAILLE - cm	169 ± 10	171 ± 11	167 ± 8	0.314
	[152-192]			
IMC – valeur absolue	24 ± 5	23 ± 5	25 ± 6	0.375
	[16-36]			
DÉNUTRITION				
Oui	8 (27)	4 (21)	4 (36)	0.366
Non	22 (73)	15 (79)	7 (64)	
SG CLINIQ SCORBUT				
Non	11 (37)	9 (47)	2 (18)	0.100
Oui dont :	19 (63)	10 (53)	9 (82)	
	(N = 19)	(N = 10)	(N = 9)	
- arthralgies	13 (68)	8 (80)	5 (56)	0.250
 oedèmes membres 	3 (16)	1 (10)	2 (22)	0.463
 sécheresse oculaire 	8 (42)	2 (20)	6 (67)	0.036
- cheveux cassants	3 (16)	1 (10)	2 (22)	0.463
 sécheresse buccale 	7 (37)	3 (30)	4 (44)	0.514
- path gingivale dont:	13 (68)	8 (80)	5 (56)	0.250
	(N = 13)	(N = 8)	(N = 5)	
- saignement	9 (69)	5 (62)	4 (80)	
- gonflement	4 (31)	3 (38)	1 (20)	
- purpura, hémorragies	0	-	-	-
- cataracte	0	<u>-</u>	-	-
TEST FRAGILITÉ CAP				
Positif	1 (3)	0 (0)	1 (9)	0.151
Négatif	29 (97)	19 (100)	10 (91)	

3-3-2-7 Données biologiques

• Différences selon le sexe (Annexe 6-2-7)

Le taux moyen d'hémoglobine chez les hommes (15,3 g/dl \pm 1) est statistiquement différent de celui des femmes (12,3 g/dl \pm 1). Cette donnée traduit la différence physiologique entre hommes et femmes et nous indique un échantillon bien représentatif de la population générale (figure 16).

On note également qu'après transformation des données en variables qualitatives binaires (normal/pathologique), la différence hommes-femmes est également significative. En effet alors que 50% des femmes ont une anémie, 100% des hommes ont une hémoglobine normale.

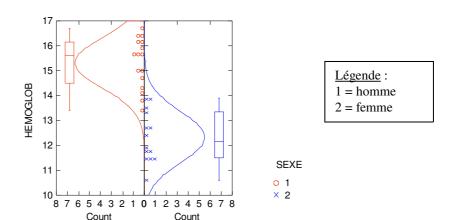
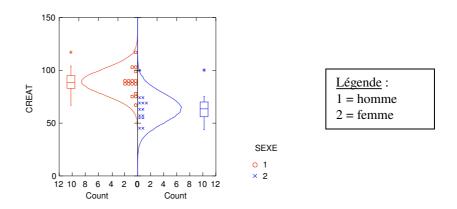


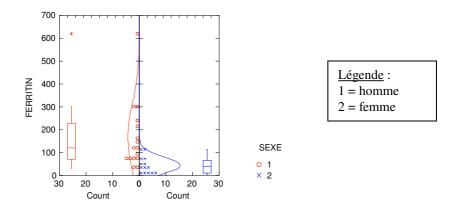
Figure 16 : distribution de l'hémoglobine en fonction du sexe


Le VGM moyen des hommes $(89,3f1 \pm 7)$ n'est pas statistiquement différent de celui des femmes $(85,3 \text{ fl} \pm 6,5)$. Après transformation des données en variables qualitatives binaires, la proportion d'hommes (13%) ayant un VGM pathologique n'est pas statistiquement différente de celle des femmes (7%).

Le taux moyen de protides des hommes (77,4 g/l \pm 6) n'est pas statistiquement différent de celui des femmes (76,7 g/l \pm 6). On ne note pas non plus de différence statistiquement significative après transformation des données en variables qualitatives binaires.

Le taux moyen d'urée des hommes $(4.8 \text{ mmol/l} \pm 1.5)$ n'est pas statistiquement différent de celui des femmes $(4.5 \text{ mmol/l} \pm 1.6)$. Après transformation des données en variables qualitatives binaires, la proportion d'hommes (31%) ayant une urée pathologique n'est pas statistiquement différente de celle des femmes (29%).

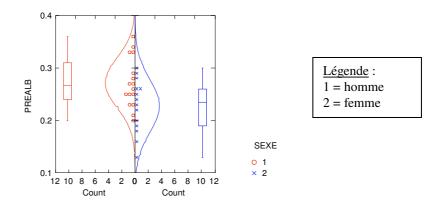
Le taux moyen de créatinine chez les hommes (89,1 μ mol/1 \pm 12,4) est statistiquement différent de celui des femmes (64,2 μ mol/1 \pm 14). Cette donnée traduit une différence physiologique entre hommes et femmes (figure 18). Après transformation des données en variables qualitatives, la proportion d'hommes (6%) ayant une créatinine pathologique n'est pas statistiquement différente de celle des femmes (7%).


Figure 18 : distribution de la créatininémie en fonction du sexe

Le taux moyen de CRP des hommes $(5,4 \text{ mg/l} \pm 4,5)$ n'est pas statistiquement différent de celui des femmes $(9,4 \text{ mg/l} \pm 20,1)$. Après transformation des données en variables qualitatives binaires, la proportion d'hommes (19%) ayant une CRP pathologique n'est pas statistiquement différente de celle des femmes (21%).

Le taux moyen de ferritine chez les hommes ($168 \mu g/l \pm 148$) est statistiquement différent de celui des femmes ($45 \mu g/l \pm 36,5$). Cette donnée traduit la différence physiologique entre hommes et femmes (figure 19). Par contre, après transformation des données en variables qualitatives binaires, la proportion d'hommes (13%) ayant une ferritine pathologique n'est pas statistiquement différente de celle des femmes (36%).

Figure 19 : distribution de la ferritine en fonction du sexe



Remarque:

On note sur la figure 19 que la courbe de distribution de la ferritine pour les hommes est aplatie, avec une grande étendue, ceci est dû à une valeur extrême (620 μ g/l), franchement pathologique, signalée plus haut.

Le taux moyen de préalbumine chez les hommes $(0,27 \text{ g/l} \pm 0,05)$ est statistiquement différent (figure 20) de celui des femmes $(0,23 \text{ g/l} \pm 0,05)$. Cette donnée traduit la différence physiologique entre hommes et femmes. Par contre, après transformation des données en variables qualitatives, la proportion d'hommes (6%) ayant une préalbumine pathologique n'est pas statistiquement différente de celle des femmes (21%).

Figure 20 : distribution de la préalbumine en fonction du sexe

Le taux moyen de cholestérol des hommes $(5,2 \text{ mmol/l} \pm 1,4)$ n'est pas statistiquement différent de celui des femmes $(5,6 \text{ mmol/l} \pm 1,2)$. Après transformation des données en variables qualitatives binaires, la proportion d'hommes (6%) ayant un cholestérol pathologique n'est pas statistiquement différente de celle des femmes (21%).

Le taux moyen de folates des hommes $(4,4 \text{ ng/ml} \pm 1,8)$ n'est pas statistiquement différent de celui des femmes $(4,6 \text{ ng/ml} \pm 2)$. Après transformation des données en variables qualitatives binaires, la proportion d'hommes (25%) ayant un taux de folates pathologique n'est pas statistiquement différente de celle des femmes (14%).

Le taux moyen de TP des hommes $(94,3 \% \pm 9,9)$ n'est pas statistiquement différent de celui des femmes $(95,4 \% \pm 10,5)$. Tous les TP sont normaux, on ne met donc pas en évidence de différence après transformation des données en variables qualitatives binaires.

Le taux moyen de vitamine B12 des hommes (412 pg/ml \pm 173) n'est pas statistiquement différent de celui des femmes (504 pg/ml \pm 194). Après transformation des données en variables qualitatives binaires, la proportion d'hommes (6%) ayant un taux de folates pathologique n'est pas statistiquement différente de celle des femmes (7%).

Le taux moyen de vitamine C des hommes $(37,7 \mu mol/l \pm 21,4)$ n'est pas statistiquement différent de celui des femmes $(33,3 \mu mol/l \pm 17,9)$. Après transformation des données en variables qualitatives binaires, la proportion d'hommes (31%) ayant un taux de folates pathologique n'est pas statistiquement différente de celle des femmes (43%).

Figure 21 : distribution de la vitamine C en fonction du sexe

• <u>Différences selon le statut en vitamine C</u>

Les taux moyens de l'ensemble des variables biologiques ne sont pas statistiquement différents entre les patients carencés et les patients non carencés en vitamine C. De même,

après transformation des données en variables qualitatives binaires (normal/pathologique), on ne met pas en évidence de différence statistiquement significative (tableau 7).

Remarques:

- Parmi les variables biologiques des 11 patients carencés en vitamine C on retrouve certaines valeurs extrêmes signalées plus haut (VGM à 107 fl, créatinine à 117 μmol/l, CRP à 81,3 mg/l, ferritine à 620 μg/l, préalbumine à 0,13 g/l et folates à 1,7ng/ml).
- Même en l'absence de signification statistique, les syndromes inflammatoires (CRP et ferritine augmentées) et les dénutritions biologiques (préalbumine et folates diminués) sont plus fréquents chez les patients carencés en vitamine C.
- Les 2 patients avec les carences les plus profondes (ascorbémies inférieures à 5 μmol/l) sont des patients éthyliques chroniques et déclarent une consommation quotidienne supérieure à 40 g/jour (souvent largement supérieure à cette valeur).

Tableau 7 : données biologiques selon le statut en vitamine C

VARIABLES	TOTAL (N = 30)	HypoVitC Non (N = 19)	HypoVitC Oui (N = 11)	P VALUE
HÉMOGLOBINE - g/dl	13.9 ± 1.8	14 ± 1.8	13.7 ± 1.7	0.701
TIEMOGLOBINE - g/di	[10.6-16.7]	14 ± 1.0	15./ ± 1./	0.701
Pathologique	7 (23)	5 (26)	2 (18)	0.607
VGM - fl	87.4 ± 7	86.6 ± 5	88.8 ± 9.7	0.409
	[68.5-107]	0010 = 0	00.0 = 7.7	*****
Pathologique	3 (10)	1 (5)	2 (18)	0.266
NATRÉMIE - mmol/l	139.4 ± 2.4	139.4 ± 2.6	139.3 ± 2.1	0.951
	[135-146]			
KALIÉMIE - mmol/l	3.9 ± 0.3	3.9 ± 0.3	3.9 ± 0.3	0.637
	[3.3-4.6]			
CALCÉMIE - mmol/l	2.5 ± 0.1	2.4 ± 0.1	2.5 ± 0.04	0.338
	[2.2-2.6]			
PROTIDES - g/l	77.1 ± 5.7	76.5 ± 6.4	78.1 ± 4.6	0.485
_	[64-88]			
Pathologique	1 (3)	1 (5)	0 (0)	0.334
URÉE - mmol/l	4.6 ± 1.6	4.8 ± 1.5	4.4 ± 1.7	0.464
	[2.1-7.5]			
Pathologique	9 (30)	4 (21)	5 (45)	0.164
CRÉATININE - μmol/l	77.5 ± 18	76.4 ± 18.9	79.5 ± 17.2	0.661
	[44-117]			
Pathologique	2 (7)	1 (5)	1 (9)	0.691
CRP - mg/l	7.3 ± 14.4	4.7 ± 3.9	11.7 ± 23.3	0.940
	[2-81]			
Pathologique	6 (20)	3 (16)	3 (27)	0.455
FERRITINE - μg/l	111 ± 126	88.2 ± 77.3	149.4 ± 180	0.491
	[6-620]			
Pathologique	7 (23)	4 (21)	3 (27)	0.700

PRÉALBUMINE - g/l	0.25 ± 0.05	0.26 ± 0.05	0.24 ± 0.06	0.382
	[0.1-0.4]			
Pathologique	4 (13)	2 (11)	2 (18)	0.558
CHOLESTÉROL - mmol/l	5.4 ± 1.3	5.5 ± 1.4	5.1 ± 1.2	0.380
	[3.4-8.3]			
Pathologique	4 (13)	3 (16)	1 (9)	0.594
FOLATES - ng/ml	4.5 ± 1.9	4.7 ± 2	4 ± 1.6	0.318
	[1.7-10]			
Pathologique	6 (20)	2 (11)	4 (36)	0.093
TP - %	95 ± 10	96.3 ± 10.8	92.3 ± 8.5	0.296
	[78-114]			
Pathologique	-	-	-	-
VITAMINE B12 - pg/ml	455 ± 186	432.3 ± 179.5	494.1 ± 198.6	0.389
	[59-964]			
Pathologique	2 (7)	2 (11)	0 (0)	0.167

3-3-3 Etude multivariée

Le détail de la régression est explicité en annexe (annexe 6-4). Nous n'exposons ici que l'étape finale, à partir de laquelle l'interprétation a été faite.

Parameter	Estimate	S.E.	t-ratio	p-value
1 CONSTANT	-2.873	1.245	-2.308	0.021
2 SITFAM2	1.356	0.911	1.489	0.136
3 SCORBUT	1.737	1.080	1.609	0.108
4 FOLATES2	1.797	1.055	1.704	0.088
				0.100

95.0 % bounds

Parameter	Odds Ratio	Upper	Lower
2 SITFAM2	3.883	23.149	0.651
3 SCORBUT	5.679	47.124	0.684
4 FOLATES2	6.032	47.676	0.763

Log Likelihood of constants only model = LL(0) = -19.715 2*[LL(N)-LL(0)] = 8.035 with 3 df Chi-sq p-value = 0.045 McFadden's Rho-Squared = 0.204

La régression logistique montre que l'isolement social, les signes cliniques de scorbut et la carence en folates augmentent probablement le risque d'hypovitaminose, on parle ici de tendance éventuelle et non pas de facteurs de risques réels significatifs. En effet, ces estimations sont peu précises pour 3 raisons :

- le petit effectif (30 patients),
- les intervalles de confiance très larges (donc estimations très peu précises des paramètres),
- enfin les "p-values" sont toutes > 0.05, donc les risques bêtas sont tous non significativement différent de zéro (problème de puissance, toujours pour des raisons d'effectif).

Chapitre 4: Analyse et discussion des résultats

Bien que le recrutement ait été fait au hasard, notre étude a inclus un échantillon représentatif de la population habituelle de la PASS du CHU de Nantes mais également des autres PASS de France qui accueillent de manière générale une population globalement jeune, majoritairement masculine et étrangère ; données que l'on retrouve respectivement d'une part dans les rapports d'activité et les études menées à la PASS de Nantes [13,14,15] et d'autre part dans l'étude de la Blanchardière et al.[10], sur 350 patients adultes, consultants à la PASS du CH d'Avignon, et qui révèle une population également comparable, jeune (37 ans en moyenne), majoritairement masculine (56%), étrangère extracommunautaire (73%), en situation irrégulière, sans revenus déclarés (77%), logée par des amis ou la famille (67%) et sans couverture sociale (48%).

Dans un récent article, Pascal et al.[25] explicitent l'élaboration d'un outil de repérage des usagers en situation de vulnérabilité sociale consultant à l'hôpital et exposent les 5 critères (définis par un groupe pluri-professionnel) d'identification des usagers des consultations de l'hôpital en situation de vulnérabilité sociale. Aux vues de cette définition, on admet que notre échantillon correspond bien aux critères définis de précarité, en effet, parmi les 5 caractéristiques, une était la réponse négative à la question "Avez-vous une mutuelle santé ou une assurance maladie complémentaire". Or aucun de nos patients inclus n'a de couverture complète (couverture de base + complémentaire). Les PASS ont vocation a accueillir cette population précaire pour lui faciliter l'accès aux soins.

Notre étude a montré une prévalence élevée d'hypovitaminose C (37%) chez les patients précaires consultant à la PASS du CHU de Nantes. Cette population est bien évidemment plus touchée par les problèmes de logement précaire voire insalubre, de revenus faibles voire inexistants ou encore de chômage (les personnes en situation irrégulière, par exemple, n'ont pas la possibilité légale de travailler ou de faire des études). Ce fait peut en partie expliquer l'importante prévalence de l'hypovitaminose par rapport à celle d'une population standard non hospitalisée évaluée entre 5 et 12% [28]. La prévalence est plus élevée chez les femmes

(43%) que chez les hommes (31%) contrairement aux résultats retrouvés dans différentes études en particulier celles d' Hercberg et al.[28] et de Loria et al.[3].

Notre étude bivariée selon le sexe retrouve des différences statistiquement significatives concernant les consommations d'alcool et de tabac, les antécédents infectieux, la provenance des repas, la taille, l'hémoglobine, la créatinine, la ferritine et la préalbumine. Les différences pour ces 4 variables biologiques sont le reflet d'une différence physiologique, elles n'introduisent donc pas de biais. Par contre, l'alcool et le tabac ont un rôle potentiel sur l'ascorbémie [6] et nous avons montré que les hommes en consomment plus que les femmes. On aurait donc pu s'attendre à une prévalence d'hypovitaminose C plus élevée chez les hommes que chez les femmes contrairement aux résultats retrouvés. La différence de provenance des repas entre hommes et femmes peut être expliquée par la différence dans le type de logement, en effet même si cette dernière n'a pas de signification statistique (dont le seuil était, on le rappelle, fixé à 0,05), elle semble être réelle.

Notre étude bivariée selon le statut (carencé ou non) en vitamine C retrouve une différence statistiquement significative uniquement pour le critère sécheresse oculaire. Cependant nous avons montré que certaines variables, malgré l'absence de différence statistiquement significative, sont plus fréquentes chez les patients carencés en vitamine C : il s'agit de la consommation d'alcool (les carences les plus profondes sont d'ailleurs retrouvées chez des patients éthyliques chroniques), les signes de dénutrition, les signes de scorbut, le syndrome inflammatoire biologique (CRP et/ou ferritine augmentées) et la dénutrition biologique (préalbumine et/ou folates diminués). Ces variables ont un degré de signification intéressant, non loin du seuil habituellement admis et on s'autorise à penser qu'en augmentant la puissance de notre étude (c'est à dire avec une population plus nombreuse), on pourrait probablement révéler une significativité. Enfin, l'étude multivariée a montré que l'isolement social, les signes cliniques de scorbut et la carence en folates augmentaient probablement le risque d'hypovitaminose.

La taille des échantillons est loin d'être comparable, et nous en expliciterons plus loin les raisons, mais nous avons confronté nos résultats à ceux de différentes études françaises et étrangères se rapportant à l'hypovitaminose C. La carence en vitamine C est loin d'avoir

disparue comme le soulignent Busseuil et al.[8]. Quelques études à large échelle effectuées en France ont été réalisées par Hercberg et Fain, dans différentes banlieues de Paris, différemment concernés par la précarité. Dans une étude de 1108 patients non hospitalisés dans le Val de Marne (région parisienne), Hercberg et al.[28] ont évalué les apports vitaminiques quotidiens et les taux sériques de certaines vitamines, ont en outre montré que pour la vitamine C, les taux sériques étaient inférieurs à la normale chez 12% des hommes et 5% des femmes, ces pourcentages montant jusqu'à 20% des hommes et 15% des femmes chez les plus de 65 ans.

En 1997, dans une étude de 184 patients , cette fois, hospitalisés dans une autre banlieue parisienne, dans un service de médecine interne à l'hôpital de Bondy (où l'incidence de chômage et de sans domicile fixe est plus importante que dans d'autres régions de France), Fain et al.[6] ont retrouvé une prévalence d'hypovitaminose C de 47,3% (avec pour 24,6% des patients une ascorbémie inférieure à 2 mg/l, les signes cliniques de scorbut apparaissant en dessous de cette valeur). Les taux les plus bas étaient retrouvés chez les patients éthylotabagiques. Ils ont mis en évidence notamment le rôle du syndrome inflammatoire dans les baisses temporaires de vitamine C circulante, ainsi que le rôle des conditions de vie précaires, du stress et des consommations excessives d'alcool et de tabac. Teixeira et al.[7], retrouvent une prévalence de 88% d'hypovitaminose C chez des patients de plus 65 ans hospitalisés à l'hôpital de la Pitié-Salpêtrière (Paris), et affirment qu'un taux élevé de vitamine C diminue le risque de maladies cardiovasculaires et de morbidité par infarctus du myocarde.

Quelques études à large échelle ont également été effectuées aux Etats-Unis, Johnston et al.[9] ont retrouvé sur une population de 494 patients d'Arizona une prévalence de 36 % d'hypovitaminose C, elle n'a pas mis en évidence de différence selon le sexe, la race, l'état nutritionnel ou le motif de consultation, la seule tendance était un taux plasmatique moyen de vitamine C légèrement inférieur chez les patients diabétiques. Simon et al.[22], dans une étude sur 4001 patients californiens de plus de 60 ans, soulignent que le rôle de l'acide ascorbique sur la survenue de cataracte est incertain, plusieurs études ayant montré que des taux bas de vitamine C circulante ou en réserve seraient un facteur de risque de cataracte, affirmation que d'autre études ont démentie [38,39,40].

Dans une étude sur la mortalité, également menée aux Etats-Unis, Loria et al.[3] ont mis en évidence des ascorbémies plus basses chez les hommes, un risque relatif de décès, toutes causes confondues, de 1,57 chez les hommes ayant une ascorbémie basse (par rapport à ceux ayant une ascorbémie normale) et également un risque relatif de décès par cancer de 1,62 chez les hommes ayant une ascorbémie basse. Par contre, aucune association n'a été retrouvée pour le risque de décès par cause cardio-vasculaire. Chez les femmes, aucune association n'a été mise en évidence entre vitamine C et mortalité.

Tableau 8 : quelques études portant sur l'hypovitaminose

Auteur [réf]	Nombre de patients	Prévalence hypovitC (étude de prévalence)	Autres conclusions
Hercberg et al.[28]	1039	12% hommes 5% femmes	Le risque d'hypovitaminose C est plus important chez les hommes que chez les femmes.
Fain et al.[6]	184	47,3%	 L'hypovitaminose est fréquente chez les patients hospitalisés. Les principaux facteurs de risque : conditions de vie et consommations excessives de tabac et d'alcool.
Teixera et al.[7]	Non renseigné	88%	 Le taux d'ascorbémie varie selon les conditions de vie avant l'hospitalisation. Pas de différence selon le statut fumeur ou non, ni selon ATCD ou non de coronaropathie, HTA ou athérosclérose.
Johnston et al.[9]	494	36%	Le taux d'hypovitaminose est étonnamment élevé chez les patients en bonne santé de classe moyenne consultant pour des examens de routine.
Simon et al.[22]	4001	Non renseigné	Le taux d'ascorbémie est inversement proportionnel à la prévalence de cataracte.
Loria et al.[3]	7071	Non renseigné	 Les hommes ayant des ascorbémies basses ont un risque de mortalité accru. Chez les femmes pas d'association révélée entre mortalité et ascorbémie.

Notre présente étude a été limitée dans le temps puisque réalisée au cours de mon semestre à la PASS. La recherche bibliographique, la mise en forme du questionnaire, les questions de faisabilité, et la présentation du projet au personnel du service (forcément impliqué pour le

bon fonctionnement) ont été abordés au cours de la première moitié du semestre nous laissant donc la deuxième moitié pour la réalisation pratique. Le facteur limitant principal a été la taille de l'échantillon, en effet celle-ci s'est vu limitée pour plusieurs raisons : d'abord le recrutement se faisait au cours ou au décours des consultations parfois très longue, ensuite l'idée première était de limiter l'invasivité (pour ne pas avoir l'obstacle du consentement) aussi nous avons choisi de recruter uniquement les patients devant bénéficier d'une prise de sang suite à leur consultation, et enfin surtout se posait le problème du coût du dosage de la vitamine C obligeant à limiter le nombre de patients.

On rappelle que la signification statistique doit toujours être à considérer en fonction de la signification clinique et par ailleurs un manque de signification statistique ne signifie pas absence de relation surtout quand l'échantillon est petit. Ainsi ces résultats préliminaires, loin d'être négatifs, sont à prendre en considération et appellent à une étude à plus grande échelle qui permettrait probablement, grâce à une plus grande puissance, de mettre en évidence de réels facteurs prédictifs. Ces prédicteurs sociaux, cliniques ou encore biologiques pourraient être utiles à la mise en place et à la diffusion d'un dépistage efficace.

Une étude à grande échelle pourrait également être comparative entre la population de la PASS et une population consultante en externe dans un service de médecine interne ou encore en médecine de ville avec la participation des acteurs concernés. Le but pourrait être, à l'aide d'un dosage de la vitamine C et d'une enquête diététique précise (restant à définir) de déterminer, tout comme ont été définis des critères de repérage des usagers en situation de vulnérabilité sociale consultant à l'hôpital, des critères de prédisposition aux carences vitaminiques et en particulier à la carence en vitamine C, constituant ainsi une sorte de dépistage simple. Car, on le rappelle, la carence en vitamine C, une fois qu'elle est diagnostiquée, est une des plus simples et des plus rapides à corriger et cela à peu de frais tant en terme de moyens diagnostiques que thérapeutiques.

Conclusion

Le scorbut ou plus généralement l'hypovitaminose C, que l'on pensait d'un autre âge, reste un diagnostic à évoquer en France en 2004. Sa persistance ou sa réapparition n'est pas étrangère à la paupérisation d'une partie de la société et l'apparition d'un plus grand nombre d'exclus et de démunis. Un défaut d'éducation sanitaire majore le risque de survenue de cette carence vitaminique. Certaines situations pathologiques sont des facteurs favorisants supplémentaires et il faut savoir évoquer cette maladie devant un certaines situations cliniques, notamment des anomalies stomatologiques, des anomalies des phanères, chez des patients vivant dans des conditions sociales précaires mais également au cours d'affections cachectisantes.

Notre étude a révélé une prévalence élevée d'hypovitaminose C à 37%. Mais probablement à cause de la petite taille de l'échantillon recruté, elle n'a pu mettre en évidence, qu'un seul facteur prédictif significatif à savoir la sécheresse oculaire. Aucune autre corrélation n'a été statistiquement établie entre l'hypovitaminose C et les différentes variables recherchées en particulier le motif de consultation, les signes cliniques de scorbut ou encore l'état nutritionnel. Les cas d'hypovitaminose C ont été découverts fortuitement résultant d'une constatation biologique à un moment donné sans motif ou point d'appel particulier. Cependant, outre devant une sécheresse oculaire, il convient d'être particulièrement vigilant devant certaines situations : isolement social, éthylisme chronique, signes cliniques de scorbut, dénutrition clinique ou biologique et syndrome inflammatoire.

Les carences vitaminiques (en vitamine C mais aussi toutes les autres vitamines) sont probablement assez fréquentes en France, sans qu'elles soient forcément symptomatiques. Toutefois, les états de carence asymptomatiques ne sont pas à négliger du fait de leurs effets délétères à long terme (risque vasculaire, risque néoplasique). Les études à grande échelle sont indispensables à la meilleure connaissance épidémiologique de ces carences et doivent être multipliées dans la population et en particulier dans les populations les plus démunies. Le rôle de la précarité dans un bon nombre de pathologies est important, c'est pourquoi les mesures sociales doivent être poursuivies et accentuées. De même l'éducation sanitaire est primordiale (équilibre alimentaire, alimentation diversifiée, consommation régulière de fruits

et légumes, voire supplémentation pour les personnes identifiées à risque de carence), elle doit être effectuée par les médecins, le milieu scolaire et également les médias.

Bibliographie

[1] Aubry P.

Le scorbut, une maladie des marins du XVè au XVIIIè siècle toujours d'actualité. Med Trop 2001;61(6):478-480.

[2] Fain O.

Le retour de carences vitaminiques.

Rev Med Interne 2000;21:941-942.

[3] Loria CM, Klag MJ, Caulfield LE, Whelton PK.

Vitamin C status and mortality in US adults.

Am J Clin Nutr. 2000 Jul;72(1):139-45.

[4] Nyyssönen K., Parviainen MT, Salonen R, Tuomilehto J, Salonen JT.

Vitamine C deficiency and risk of myocardial infarction: prospective population study of men from eastern Finland.

BMJ 1997 March;314(1):634.

[5] Fain O, Mathieu E, Thomas T.

Scurvy in patients with cancer.

BMJ 1998 May;316:1661-1662.

[6] Fain O, Paries J, Jacquart B, Le Moel G, Kettaneh A, Stirnemann J, Heron C, Sitbon M, Taleb C, Letellier E, Betari B, Gattegno L, Thomas M.

Hypovitaminosis C in hospitalized patients.

Eur J Intern Med. 2003 Nov;14(7):419-425.

[7] Teixeira A, Carrie AS, Genereau T, Herson S, Cherin P.

Vitamin C deficiency in elderly hospitalized patients.

Am J Med. 2001 Oct;111(6):502.

[8] Busseuil C, Bolvin N, Jeanton M, Delafosse B, Pibarot N, Harchaoui M, Ducluzeau R.

Scurvy, a still current diagnosis.

Rev Med Interne. 2000 Nov;21(11):1003-1004.

[9] Johnston CS, Thompson LL.

Vitamin C status of an outpatient population.

J Am Coll Nutr 1998;17(4):366-370.

[10] de la Blanchardiere A, Meouchy G, Brunel P, Olivier P.

Medical, psychological and social study in 350 patients in a precarious situation,

undertaken by a permanently maintained health care facility in 2002.

Rev Med Interne. 2004 Apr;25(4):264-270.

[11] Farge D.

A new age for internal medicine: toward primary care.

Rev Méd Interne 2004;25:261-263.

[12] Farge D.

Precariousness and internal medicine.

Rev Med Interne 1997;18(9):687-90.

[13] Agard C, Fillaudeau S, Coutant A, Placais C, Saupin C, Arnould M, Gicquel B, Pasquier V, Lombrail P, Barrier JH.

Etat de santé des populations immigrées : enquête à la consultation Jean Guillon (PASS) au CHU de Nantes.

Rev Med Interne 2003;24(5)127.

[14] Agard C, Roullier B, Fillaudeau S, Bacha D, Amelineau F, Gicquel B, Placais C, Coutant A, Saupin C, Pasquier V, Lombrail P, Barrier JH.

Le centre Jean Guillon au CHU de Nantes : exemple d'une PASS rattachée à un service de médecine interne.

Rev Med Interne 2002;23(5):625.

[15] Peslin N, Pasquier V, Placais C, Coutant A, Agard C, Barrier J, Lombrail P.

Evaluation of a new form of care: the permanently maintained health care facility at the university hospital center in Nantes.

Sante Publique. 2001 Dec;13(4):349-357.

[16] Blum L, Bourrat E.

Pathologie cutanée de la misère.

Rev Prat 1996;46:1839-1853.

[17] Declerck P, Henry P.

Street pathology.

Rev Prat. 1996 Oct;46(15):1844-1848.

[18] Arfi C, Dehen L, Benassaia E, Faure P, Farge D, Morel P, Dubertret L.

Dermatologic consultation in a precarious situation: a prospective medical and social study at the Hopital Saint-Louis in Paris.

Ann Dermatol Venereol. 1999 Oct;126(10):682-686.

[19] Pimentel L.

Scurvy: historical review and current diagnostic approach.

Am J Emerg Med 2003 Jul;21(4):328-332.

[20] Perlemuter G, Buffet C.

La carence en vitamine C est-elle une maladie d'actualité ?

Ann Dermatol Venereol 2001; 128:1179-1183.

[21] Bsoul SA, Terezhalmy GT.

Vitamin C in health and disease.

J Contemp Dent Pract 2004 May;5(2):001-013.

[22] Simon JA, Hudes ES.

Serum ascorbic acid and other correlates of self-reported cataract among older americans.

J Clin Epidemiol 1999;52(12):1207-1211.

[23] Fain O, Thomas M.

Le scorbut actuellement.

Cah Nutr Diet 1997;32:300-305.

[24] Lebas J.

Rapport Mission PASS - Permanence d'accès aux soins de santé.

[25] Pascal J, Abbey-Huguenin H, Agard C, Asseray N, Billaud E, Baron D, Lombrail P. Elaboration d'un outil de repérage des usagers en situation de vulnérabilité sociale consultant à l'hôpital.

Presse Med 2004;33(11):710-715.

[26] Kettaneh A, Stirnemann J, Fain O, Letellier E, Thomas M.

Micronutrients status of Ile-de-France inhabitants.

Rev Med Int 2004;25:507-513.

[27] Malmauret L, Leblanc JC, Cuvelier I, Verger P.

Dietary intakes and vitamin status of a sample of homeless people in Paris.

Eur J Clin Nutr 2002;56:313-320.

[28] Hercberg S, Preziosi P, Galan P, Deheeger M, Papoz L, Dupin H.

Vitamin status of healthy french population: dietary intakes and biochemical markers. Int J Vitam Nutr Res 1994;64:220-223.

[29] Fain O, Jacquart B, Lemoel G, Heron C, Taleb C, Betari B.

Evaluation de la carence en vitamine C dans un service de médecine interne en Seine-Saint-Denis en 1997.

Rev Med Int 1998;19(1):61.

[30] Levy AP, Friedenberg P, Lotan R, Ouyang P, Tripputi M, Higginson L, Cobb FR,

Tardif JC, Bittner V, Howard BV.

The effect of vitamin therapy on the progression of coronary artery atherosclerosis varies by haptoglobin type in postmenopausal women.

Diabetes Care 2004 Apr;27(4):925-30.

[31] Salonen RM, Nyyssonen K, Kaikkonen J, Porkkala-Sarataho E, Voutilainen S, Rissanen TH, Tuomainen TP, Valkonen VP, Ristonmaa U, Lakka HM, Vanharanta M, Salonen JT, Poulsen HE; Antioxidant Supplementation in Atherosclerosis Prevention Study. Six-year effect of combined vitamin C and E supplementation on

atherosclerotic progression: the Antioxidant Supplementation in Atherosclerosis Prevention (ASAP) Study.

Circulation 2003 Feb 25;107(7):947-53.

[32] Silvestro A, Scopacasa F, Oliva G, de Cristofaro T, Iuliano L, Brevetti G. Vitamin C prevents endothelial dysfunction induced by acute exercise in patients with intermittent claudication.

Atherosclerosis 2002 Dec;165(2):277-83.

- [33] Neuhouser ML, Patterson RE, Thornquist MD, Omenn GS, King IB, Goodman GE. Fruits and vegetables are associated with lower lung cancer risk only in the placebo arm of the beta-carotene and retinol efficacy trial (CARET).

 Cancer Epidemiol Biomarkers Prev. 2003 Apr;12(4):350-8.
- [34] Neuhouser ML, Kristal AR, Patterson RE, Goodman PJ, Thompson IM.

 Dietary supplement use in the Prostate Cancer Prevention Trial: implications for prevention trials.

 Nutr Cancer. 2001;39(1):12-8.
- [35] Jacobson JS, Begg MD, Wang LW, Wang Q, Agarwal M, Norkus E, Singh VN, Young TL, Yang D, Santella RM.
 Effects of a 6-month vitamin intervention on DNA damage in heavy smokers.
 Cancer Epidemiol Biomarkers Prev. 2000 Dec;9(12):1303-11.
- [36] McComsey G, Southwell H, Gripshover B, Salata R, Valdez H. Effect of antioxidants on glucose metabolism and plasma lipids in HIV-infected subjects with lipoatrophy. J Acquir Immune Defic Syndr. 2003 Aug 15;33(5):605-7.
- [37] Choi SW, Benzie IF, Collins AR, Hannigan BM, Strain JJ.
 C and E: acute interactive effects on biomarkers of antioxidant defence and oxidative stress.
 Mutat Res. 2004 Jul 13;551(1-2):109-17.
- [38] Wong L, Ho SC, Coggon D, Cruddas AM, Hwang CH, Ho CP, Robertshaw AM, MacDonald DM.
 Sunlight exposure, antioxidant status, and cataract in Hong Kong fishermen.
 J Epidemiol Community Health. 1993 Feb;47(1):46-49.
- [39] Vitale S, West S, Hallfrisch J, Alston C, Wang F, Moorman C, Muller D, Singh V, Taylor HR.
 Plasma antioxidants and risk of cortical and nuclear cataract.
 Epidemiology. 1993 May;4(3):195-203.
- [40] Mohan M, Sperduto RD, Angra SK, Milton RC, Mathur RL, Underwood BA, Jaffery N, Pandya CB, Chhabra VK, Vajpayee RB, et al.
 India-US case-control study of age-related cataracts. India-US Case-Control Study Group.
 Arch Ophthalmol. 1989 May;107(5):670-676.

Annexes

1- Sources alimentaires de vitamine C

1-1 Source : Ciqual, Tec & Doc Lavoisier 2000

Tableau 9 : apports en vitamine C de fruits et légumes crus

Produits	mg/100 g
cassis, persil frais, poivron rouge	160-200
poivron vert, radis noir	100-150
kiwi, poivron vert	70-100
fraise, litchi, cresson, ciboulette fraîche	60-70
orange et jus frais, citron, chou fleur, chou rouge	50-60
oseille, mangue, groseille, citron vert, clémentine, mandarine, épinard	40-50
pamplemousse et jus frais, mâche, jus de citron ou citron vert frais,	30-40
laitue, cerfeuil, ail, mûre noire	
melon, fruit de la passion, nectarine, mûre, framboise, myrtille, jus	20-30
d'orange ou de pamplemousse à base de concentré, jus de citron	
pasteurisé, radis, courgette	

Tableau 10: apports en vitamine C d'aliments cuits

Produits	mg/100 g
poivron rouge	100-150
poivron vert	70-100
chou de Bruxelles, brocoli, ris de veau	50-60
chou fleur, chou rouge, oseille, soupe aux légumes	30-40
chou vert, ratatouille niçoise, foie de veau, foie de génisse	20-30

1-2 Source : Valeur nutritive de qq aliments usuels, Santé Canada, 1999

Tableau 11 : teneur en vitamine C de quelques aliments usuels

Aliment	Portion	Teneur en vitamine C
Poivron rouge cru	164 g (1)	312 mg
Poivron vert	164 g (1)	146 mg
Jus d'orange congelé dilué*	250 ml	102 mg
Brocoli cuit	111 g (3 bouquets)	83 mg
Choux de Bruxelles cuits	128 g (6 choux)	78 mg
Orange	131 g (1)	70 mg
Fraises crues	120 g (10 moyennes)	68 mg
Kiwi cru	76 g (1 moyen)	57 mg
Cantaloup	113 g (1/4)	56 mg
Pamplemousse rose	123 g (1/2)	47 mg

Le jus d'orange réfrigéré contient un peu moins de vitamine C (87 mg/250 ml) que le jus congelé (102 mg/250 ml) ou en conserve (105 mg/250 ml). Le champion reste tout de même le jus d'oranges fraîchement pressées, avec 131 mg/250 ml.

2- Apport nutritionnel recommandé en vitamine C

2-1 Source : Ciqual, Tec & Doc Lavoisier 2000

Tableau 12 : apports recommandés en vitamine C

Tranche d'âge	Apports conseillés (mg/jour)
Nourrissons	50
Enfants 1-3 ans	60
Enfants 4-6 ans	75
Enfants 7-9 ans	90
Enfants 10-12 ans	100
Adolescents 13-19 ans	110
Adultes 20-60 ans	110
Femmes enceintes	120
Femmes allaitantes	130
Personnes âgées	120

Les besoins sont augmentés de 20 % au moins, par rapport aux AJR, chez les fumeurs de plus de 10 cigarettes par jour : la fumée contient beaucoup de radicaux libres toxiques. Ils sont également augmentés par le stress.

2-2 Source: Dietary Reference Intakes for Vitamin C, Vitamin E, Selenium, and Carotenoids, 2000. Food and Nutrition Board, Institute of Medicine.

Tableau 13 : apports recommandés selon age et sexe

Apport nutritionnel recommandé en vitamine C		
Âge	Hommes (mg/jour)	Femmes (mg/jour)
de 0 à 6 mois	40 mg*	40 mg*
de 7 à 12 mois	50 mg*	50 mg*
de 1 à 3 ans	15 mg	15 mg
de 4 à 8 ans	25 mg	25 mg
de 9 à 13 ans	45 mg	45 mg
de 14 à 18 ans	75 mg	65 mg
19 ans et plus	90 mg	75 mg
Fumeurs**	125 mg	110 mg
Femmes enceintes	-	80 mg (18 ans et moins)
		85 mg (19 ans et plus)
Femmes qui allaitent	-	115 mg (18 ans et moins)

En l'absence de données scientifiques suffisantes, les autorités ont fixé, non pas un apport nutritionnel recommandé (ANR), mais un apport suffisant (AS). L'apport suffisant en vitamine C repose sur les apports moyens observés chez les bébés nord-américains en bonne santé. Le tabagisme réduit le taux de vitamine C dans l'organisme.

Note: Particulièrement dans le cas de la vitamine C, plusieurs sources considèrent que les apports nutritionnels recommandés par les autorités sont trop faibles et devraient être d'au moins 200 mg pour assurer le maintien d'une santé optimale et la prévention de certaines maladies. En Europe, les apports quotidiens recommandés pour les adultes sont d'environ 100 mg.

2-3 Agence Française de Sécurité Sanitaire des Aliments

Tableau 14: apports recommandés selon l'AFSSAPS

Apports conseillés en vitamine C, en milligrammes par jour		
Nourrissons	50	
Enfants de 1 à 3 ans	60	
Enfants de 4 à 6 ans	75	
Enfants de 7 à 9 ans	90	
Enfants de 10 à 12 ans	100	
Adolescents de 13 à 15 ans	110	
Adolescentes de 13 à 15 ans	110	
Adolescents de 15 à 19 ans	110	
Adolescentes de 15 à 19 ans	110	
Homme adulte	110	
Femme adulte	110	
Personne âgée de plus de 75 ans	120	

Femme enceinte	120
Femme allaitante	130

Source : Apports nutritionnels conseillés pour la population Française, Agence Française de Sécurité Sanitaire des Aliments, 3^e édition, Ed. Tec & Doc.

3- Les effets de la vitamine C dans l'organisme

La vitamine C joue le rôle de transporteur d'électrons et participe à diverses hydroxylations.

Tableau 15 : effets de la vitamine C

Hydroxylation	Biosynthèse du collagène	L'acide ascorbique catalyse l'hydroxylation de la proline et de la lysine en hydroxyproline et hydroxylysine, constituants normaux du collagène. Le collagène forme 30% de la totalité des protéines de l'organisme et entre dans la composition de la peau, de l'os, des dents, du cartilage
	Biosynthèse de la carnitine	L'acide ascorbique favorise les réactions d'hydroxylation de la triméthyl-lysine et de la butyrobétaïne, précurseurs de la carnitine
	Hydroxylation de certains médiateurs	Hydroxylation de la dopamine en noradrénaline sous l'influence de la ß-dopamine hydroxylase. Cette réaction nécessite, en outre, la présence de cuivre. Hydroxylation du para-hydroxy-phényl-pyruvate en acide homogentisique
	Production d'acides biliaires	Transformation du cholestérol en acides biliaires, ceci explique le faible effet hypolipémiant de la vitamine C, surtout lorsqu'elle est associée à la pectine qui fixe les acides biliaires et empêche leur réabsorption digestive

Autres effets	La vitamine C interagit avec les radicaux libres	L'acide ascorbique peut agir comme anti-oxydant et parfois comme pro-oxydant. L'acide ascorbique est un donneur d'atome d'hydrogène H qui réagit avec les radicaux libres OH, O2-, les transforme en molécules non toxiques et est un anti-oxydant. En présence de cuivre et de fer, il favorise la formation de radicaux superoxyde et a un effet pro-oxydant. Acide ascorbique + Cu (II) ¾® Cu (I) + H+ + acide mono-déhydro-ascorbique Le cuivre I réagit ensuite avec l'eau l'oxygénée avec production d'un radical OH Cu (I) + H2O2 ¾® Cu (II) + OH + OH- L'association de vitamine C et de cuivre aurait un effet anticancéreux dans les mélanomes qui accumulent les ions cuivre
	Régénère la vitamine E	Elle régénère la vitamine E qui est le principal anti-oxydant membranaire
	Elle interagit avec le fer	La vitamine C favorise l'absorption digestive du fer non héminique en transformant le fer ferrique en fer ferreux et peut-être en chélatant le fer ferrique
	Elle réduit la méthémoglobin e en hémoglobine	Il n'y a qu'environ 1% de méthémoglobine pour 99% d'hémoglobine, car la méthémoglobine réductase transforme la méthémoglobine en hémoglobine. La vitamine C joue le même rôle
	Dans le tube digestif	Elle inhibe la formation de composés nitrés dans le tube digestif
	Dans le sang	Elle inhibe en outre l'agrégation plaquettaire

4- Les variables

4-1 La variable à expliquer (dépendante)

• CAS : carence en vitamine C (1 = cas / 2 = témoins)

4-2 Les variables explicatives (indépendantes)

4-2-1 Données démographiques

- SEXE: (1 = homme / 2 = femme)
- AGE: (années)NATIONALITE: (pays)
- PROVENANCE: (1 = Afrique Equat / 2 = Afrique Nord / 3 = Europe Est / 4 = Europe Ouest)
- COMMUNAUTAIRE: (1 = oui / 2 = non)
- ARRIVEE EN FRANCE: (mois)

4-2-2 Caractéristiques sociales

- FRANCOPHONIE: (1 = oui / 2 = non)
- SITUATION FAMILIALE : (1 = célibataire / 2 = personne isolée / 3 = couple/ 4 = enfants à charge)
- LOGEMENT: (1 = SDF / 2 = caravane / 3 = fam, amis / 4 = CHRS / 5 = hôtel / 6 = logement

pers)

- STABILITE DU LOGEMENT : (1 = oui / 2 = non)
- STATUT PROFESSIONNEL : (1 = sans activité / 2 = étudiant /

3 = chômage / 4 = travail / 5 = retraité)

• COUVERTURE SOCIALE: (1 = aucune / 2 = AME / 3 = base / 4 = base + CMU / 5 = base +

mutuelle)

• STATUT TERRITORIAL : (1 = pas de titre / 2 = récépissé demande / 3 = carte de séjour)

4-2-3 Habitus

- ALCOOL: (1 = oui / 2 = sevré / 3 = jamais)
- RYTHME ALCOOL: (1 = tous les jours / 2 = occasionnel)
- QUANTITE: (1 = > 40 g/2 = < 40 g)
- TABAC: (1 = oui / 2 = sevré / 3 = jamais)
- NOMBRE DE CIGARETTES : (paquets-années)
- DROGUES: (1 = oui / 2 = sevré / 3 = jamais)
- RYTHME DROGUE : (1 = tous les jours / 2 = occasionnel)

• ACTIVITE PHYSIQUE: (1 = oui / 2 = non)

4-2-4 Caractéristiques médicales

PREMIERE CONSULTATION: (1 = oui / 2 = non)
 ANTECEDENTS MEDICAUX: (1 = oui / 2 = non)
 PATHOLOGIE CARDIO: (1 = oui / 2 = non)
 PATHOLOGIE INFECTIEUSE: (1 = oui / 2 = non)
 PATHOLOGIE DIGESTIVE: (1 = oui / 2 = non)
 PATHOLOGIE LOCOMOTRICE: (1 = oui / 2 = non)
 PATHOLOGIE PSY, DEPENDANCE: (1 = oui / 2 = non)

• MOTIF DE CONSULTATION : (1 = path aigue / 2 = path chronique / 3 = grossesse / 4 = certificat / 5 dépistage)

4-2-5 Caractéristiques d'alimentation

• NOMBRE DE REPAS : (nombre)

• PROVENANCE: (1 = resto municipal / 2 = famille, amis / 3 = personnel / 4 = autre)

1 FRUIT CRU / REPAS : (1 = oui / 2 = non)1 LEGUME CRU / REPAS : (1 = oui / 2 = non)

• RYTHME: (1 = 1 fois/j / 2 = <1 fois/j / 3 = <1 fois/se)

4-2-6 Données d'examen clinique

POIDS: valeur en kg
POIDS HABITUEL: valeur en kg
PERTE DE POIDS: valeur en %
TAILLE: valeur en cm

• IMC : à partir de la formule : poids/taille²

Recherche de signes cliniques de scorbut :

LESIONS PURPURIQUES: 1 = oui / 2 = non
 SD HEMORRAGIQUE: 1 = oui / 2 = non
 ARTHRALGIES: 1 = oui / 2 = non
 OMI: 1 = oui / 2 = non

• CATARACTE: 1 = oui / 2 = non (ex clinique +/- ATCD)

SECHERESSE OCULAIRE: 1 = oui / 2 = non
 CHEVEUX CASSANTS: 1 = oui / 2 = non
 SECHERESSE BUCCALE: 1 = oui / 2 = non

• ASPECT DES GENCIVES : 1 = déchauss dentaire / 2 = saignement /

3 = gonflement / 4 = normal

• TEST FRAGILITE CAPILLAIRE : 1 = positif / 2 = négatif

4-2-7 Données biologiques

HEMOGLOBINE: (valeur en g/dl)VGM: (valeur en fl)

VolM : (valeur en m)
NATREMIE : (valeur en mmol/l)
KALIEMIE : (valeur en mmol/l)
CALCEMIE : (valeur en mmol/l)
PROTIDEMIE : (valeur en g/l)
UREMIE : (valeur en mmol/l)
CREATININEMIE : (valeur en mmol/l)
CRP : (valeur en mg/l)

CRP: (valeur en mg/l)
 FERRITINEMIE: (valeur en µg/l)
 PREALBUMINE: (valeur en g/l)
 CHOLESTEROL: (valeur en mmol/l)

FOLATES: (valeur en ng/ml)
TP: (valeur en %)

VITAMINE B12 : (valeur en pg/ml)
 ACIDE ASCORBIQUE : (valeur en μmol/l)

Tableau 16 : liste des variables de l'étude

		VARIABLES							
	NOM	TYPE	CODAGE	SIGNIFICATION	UNITÉ				
	CAS	qualitative binaire	1 2	cas témoin					
,	SEXE	qualitative binaire	1 2	homme femme					
DONNÉES	AGE	quantitative discrète		âge du patient	années				
DÉMOGRAPHIQUES	ZONE	qualitative à plusieurs modalités	1 2 3 4	Afrique Equatoriale Afrique du Nord Pays de l'Est Europe de l'Ouest					
	COMMUNAUT	qualitative binaire	1=oui / 2=non	communauté européenne					
	ARRIVEE	quantitative discrète		durée de séjour en	mois				
	FRANCOPHONIE	qualitative binaire	1=oui / 2=non	francophone ou non	111010				
	SITUATION FAMILIALE	qualitative à plusieurs modalités	1 2 3 4	célibataire personne isolée couple enfants à charge					
	LOGEMENT	qualitative à plusieurs modalités	1 2 3 4 5 6	SDF caravane amis, famille CHRS hôtel logement personnel					
CARACTÉRISTIQUES	STABILITE	qualitative binaire	1=oui / 2=non	logement stable					
SOCIALES	ACTIVITE	qualitative à plusieurs modalités	1 2 3 4 5	sans activité étudiant chômage travail retraité					
	COUVERTURE SOCIALE	qualitative à plusieurs modalités	1 2 3 4 5	aucune AME base base + CMU base + mutuelle					
	SITUATION ADMINISTRATIVE	qualitative à plusieurs modalités	1 2 3	pas de titre de séjour récépissé de demande carte de séjour					
HABITUS	CONSOMMATION D'ALCOOL	qualitative à plusieurs modalités	1 2 3	oui sevré jamais					
	RYTHME	qualitative binaire	1 2	tous les jours occasionnel					
	QUANTITE	qualitative binaire	1 2	> 40 g < 40 g					
	CONSOMMATION DE TABAC	qualitative à plusieurs modalités	1 2 3	oui sevré jamais					
	NOMBRE DE PA	quantitative discrète		paquets-années	valeur				
	CONSOMMATION DE DROGUES	qualitative à plusieurs modalités	1 2 3	oui sevré jamais					
	RYTHME	qualitative binaire	1 2	tous les jours occasionnel					
	TYPE DE DROGUES	qualitative binaire	1 2	cannabis autres					
	ACTIVITE	qualitative binaire	1=oui / 2=non	activité physique					

İ	PREMIERE CS	qualitativa hinaira	1=oui / 2=non	nramièra consultation	ı
	ANTECEDENTS	qualitative binaire qualitative binaire	1=oui / 2=non	première consultation antécédents médicaux	
			1=oui / 2=non		
	CARDIO-VASC ENDOC-METAB	qualitative binaire	1=oui / 2=non 1=oui / 2=non	ATCD cardio-vasculaires ATCD endoc-	
		qualitative binaire			
_	INFECTIEUX	qualitative binaire	1=oui / 2=non	ATCD infectieux	
CARACTÉRISTIQUES	DIGESTIFS	qualitative binaire	1=oui / 2=non	ATCD path digestive	
MÉDICALES	NEOPLASIQUES	qualitative binaire	1=oui / 2=non	ATCD path néoplasique	
	PSY, DEPENDANT	qualitative binaire	1=oui / 2=non	ATCD psy ou	
			1	pathologie aiguë	
	MOTTE DE CO	qualitative à plusieurs	2	pathologie chronique,	
	MOTIF DE CS	modalités	3	diagnostic ou suivi	
			4	certificat médical	
			5	demande d'exam,	
	NOMBRE REPAS	qualitative à plusieurs	1,2 ou3	nombre de repas par jour	
			1	resto du coeur ou	
	PROVENANCE	qualitative à plusieurs	2	amis, famille	
CARACTÉRISTIQUES	THO , ET WHITEE	modalités	3	achats personnels	
D'ALIMENTATION			4	autres	
DADIMENTATION	CONSOMMATION		1	2 fois/jour	
	DE FRUITS ET	qualitative à plusieurs	2	1 fois/jour	
	LEGUMES	modalités	3	< 1 fois/jour > 1	
			4	< 1 fois/semaine	
	POIDS	quantitative discrète		poids le jour de la	kg
	DENUTRITION	qualitative binaire	1=oui / 2=non	arguments de dénutrition	
	TAILLE	quantitative discrète		taille le jour de la consult	cm
	IMC	quantitative discrète		poids/taille²	valeur
	PURPURA	qualitative binaire	1=oui / 2=non	présence lésions	
	SD HEMORRAGIQ	qualitative binaire	1=oui / 2=non	existence d'un sd	
DONNÉES	ARTHRALGIES	qualitative binaire	1=oui / 2=non	existence d'arthralgies	
	OMI	qualitative binaire	1=oui / 2=non	présence d'oedèmes des	
D'EXAMEN	CATARACTE	qualitative binaire	1=oui / 2=non	notion de cataracte	
CLINIQUE	SECH OCULAIRE	qualitative binaire	1=oui / 2=non	sécheresse oculaire	
	CHEV CASSANTS	qualitative binaire	1=oui / 2=non	notion de cheveux	
	SECH BUCCALE	qualitative binaire	1=oui / 2=non	sécheresse buccale	
			1	déchaussement	
	GENCIVES	qualitative à plusieurs	2	saignement	
		modalités	3	gonflement	
			4	gencives normales	
	TEST FRAGILITE	qualitative binaire	1=oui / 2=non	test de fragilité capillaire	
	HEMOGLOBINE	quantitative continue		taux d'hémoglobine	g/dl
	VGM	quantitative continue		valeur du VGM	fl
	NATREMIE	quantitative discrète		valeur de la natrémie	mmol/l
	KALIEMIE	quantitative continue		valeur de la kaliémie	mmol/l
	CALCEMIE	quantitative continue		valeur de la calcémie	mmol/l
	PROTIDES	quantitative discrète		taux de protides totaux	g/l
DONNÉES	UREE	quantitative continue		valeur de l'urée	mmol/l
DONNÉES	CREATININE	quantitative discrète		valeur de la	μmol/l
BIOLOGIQUES	CRP	quantitative continue		valeur de la CRP	mg/l
	FERRITINE	quantitative discrète		valeur de la	μg/l
	PREALBUMINE	quantitative continue		valeur de la préalbumine	g/l
	CHOLESTEROL	quantitative continue		valeur du cholestérol	mmol/l
	FOLATES	quantitative continue		taux de folates	ng/ml
	TP	quantitative discrète		valeur du TP	%
	VITAMINE B12	quantitative discrète		taux de vitamine B12	pg/ml
	VITAMINE C	quantitative discrète		taux de vitamine C	µmol/l

5- Le questionnaire

Questionnaire					
	Date:				
I - <u>Données démographiques</u>	Code				
1 - Identité :					
2 - Sexe : □ homme □ femme	II				
3 - Age : ans	ans				
4 - Pays :					
5 - Zone :	II				
☐ Afrique équatoriale ☐ Afrique du Nord ☐ Europe de l'Est ☐ Europe de l'Ouest					
6 - Communautaire : ☐ oui ☐ non	II				
7 - Arrivée en France depuis : mois	ll mois				
II - <u>Caractéristiques sociales</u>					
1 - Francophone : □ oui □ non	II				
2 - Situation familiale en France :	l <u> </u>				
☐ célibataire ☐ personne isolée ☐ couple ☐ enfants à charge					
3 - Logement :	II				
☐ SDF (squat, rue)					

_	ent personne	el				
4 - Stabilité : Depuis : Insalubre :	□ oui □ > 6 □ oui	mois	□ nor □ < 6 □ nor	mois		<u> </u>
5 - Activité :						II
☐ sans a☐ étudia☐ chôma☐ travai☐ retrait	nt age					
6 - Prise en cha	rge sociale :					ll
□ aucun □ AME □ base □ base + □ base +		(AME / F (débiteur (débiteur	PASS / PAS PASS) 1 / PASS) 1 / CMU) 1 / débiteur			
7 - Situation ad	ministrative	e (pour étra	angers non	communau	taires):	ll
-	titre de séjo ssé de dema de séjour		_		urs)	
III - <u>Habitus</u>						
1 - Consommat	ion alcool :	□ oui	□ sev	ré 🗆	jamais	ll
Si oui, à que	l rythme :	☐ tous le	s jours	occasi	onnel	ll
Si ts les jour	s, quantité :	$\square > 40 \text{ g}$		□ < 40 g		lI
2 - Consommat			□ sev		jamais	ll
Si oui, nomb	_					
Si oui, depui	s combien d	'années : .	anné	ees		PA
3 - Consommat	ion drogue	:□ oui	□ sev	ré 🗆	jamais	
Si oui, à que	l rythme :	☐ tous le	s jours	occasi	onnel	ll

Si oui, quelle drogue :	☐ cannabis		autre		
4 - Activité physique :	☐ oui	non non	mida man iaya		
Pratiquez-vous au moins	30 minutes o	ie marche ra	ipide par jour	: <i>!</i>	
IV - Caractéristiques mo	<u>édicales</u>				
1 - Première consultation :	□ 01	ıi □	non		
2 - Antécédents médicaux	: 🗖 oı	ıi 🗆	non		II
3 - Si oui, principaux antéc	édents :				
 pathologie cardiovas 	culaire ou res	piratoire : 🗆	l oui	□ non	
 pathologie endocrini 	enne ou méta	bolique : 🗆	l oui	□ non	
 pathologie infectieus 	e:		oui	□ non	
• pathologie digestive	:		oui	□ non	
 pathologie néoplasiq 	ue:		oui	□ non	
 pathologie psychiatri 	que, dépenda	nce:	l oui	non	II
4 - Motif de consultation :					
□ symptôme ou path □ suivi pathologie se □ diagnostique ou su □ demande de certif □ demande de dépis	omatique chro nivi de grosse licat	onique, reno sse	ouvellement		
V - <u>Caractéristiques d'a</u>	<u>limentati</u>	<u>on</u>			
1 - Nombre de repas :	/jour				II
2 - Provenance des repas :					II
☐ restaurant du cœur ☐ famille / amis ☐ achats personnels ☐ autre :	-				
3 - 1 fruit cru par repas :	□ oui	□ non			1 1

4 - 1 légume cru par repas : □ oui	□ non	
5 - Si non, rythme de consommation	de fruits et/ou légumes :	ll
☐ 1 fois/jour		
\square < 1 fois/jour mais > 1 fois/se	maine	
\square < 1 fois/semaine		

VI - <u>Données d'examen clinique</u>

1 - Poids actu		ll kg		
Poids habi	ituel:kg			
Détermina	ation de la perte de poids : 100) × (PH - PA	A)/ PH =	%
En combie	ll mois			
2 - Taille :	cm			cm
3 - IMC : poi	ds/taille² =			<u></u>
4 - Signes clii	niques de scorbut :	□ oui	□ non	<u> </u>
5 - Si oui, lesc	quels :			
•	lésions purpuriques :	□ oui	□ non	II
•	syndrome hémorragique :	□ oui	□ non	ll
•	arthralgies:	□ oui	□ non	ll
•	oedèmes mb inférieurs :	□ oui	□ non	ll
•	cataracte (ATCD, examen):	□ oui	□ non	lI
•	sécheresse oculaire :	□ oui	□ non	lI
•	cheveux cassants:	u oui	□ non	II
•	sécheresse buccale :	u oui	□ non	II
•	aspect des gencives :			<u> </u>
	☐ déchaussement gir☐ saignement gir☐ gonflement gir☐ normal	ıgival		
6 - Test de fra	agilité capillaire :	itif	☐ négatif	l <u></u> l

VII - <u>Données biologiques</u>

1 - Hémoglobine :	ll g/dl	$(12 - 16 \text{ g/dl } \dagger)$ $(13,5 - 17,5 \text{ g/dl } \dagger)$
2 - VGM :	f1	(80 - 98 fl)
3 - Natrémie :	mmol/l	(137 – 145 mmol/l)
4 - Kaliémie :	mmol/l	(3,3-5,0 mmol/l)
5 - Calcémie :	mmol/l	(2,2-2,6 mmol/l)
6 - Protides :	g/l	(64 – 83 g/l)
7 - Urée :	mmol/l	$(3.0 - 6.5 \text{ mmol/l } \dagger)$ $(4.0 - 7.0 \text{ mmol/l } \dagger)$
8 - Créatinine :	ll μmol/l	$(45 - 90 \mu \text{mol/l} \ \ \ \ \ \)$ $(65 - 105 \mu \text{mol/l} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
9 - CRP :	mg/l	(0.0 - 5.0 mg/l)
10 - Ferritine :	ll μg/l	$(20 - 150 \mu\text{g/l} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
11 - Préalbumine :	ll g/l	$(0.19 - 0.33 \text{ g/l } \dagger)$ $(0.23 - 0.39 \text{ g/l } \dagger)$
12 - Cholestérol :	mmol/l	(3,1 – 6,2 mmol/l 16-26 ans) (3,4 – 7,0 mmol/l 26-46 ans) (3,6 – 7,2 mmol/l 46-56 ans) (4,0 – 7,5 mmol/l >56 ans)
13 - Folates :	ng/ml	(3-10 ng/ml)
14 - TP :	%	(80 – 120 %)
15 - Vitamine B12 :	ll pg/ml	(200 – 980 pg/ml)
16 - Acide ascorbique :	μmol/l	$(28 - 57 \mu mol/l)$

Valeurs normales

6- Traitement statistique

6-1 Etude descriptive de la population ou étude univariée

6-1-1 Données démographiques

• Variables quantitatives

Tableau 17 : étude descriptive des données démographiques quantitatives

VARIABLES	N	MINIMUM	MAXIMUM	MÉDIANE	MOYENNE	ECART-TYPE
AGE	30	19	69	34.5	36.5	14.724
ARRIVÉE	18	0.5	36	6	10.750	11.968

• Variables qualitatives

Tableau 18 : étude descriptive des données démographiques qualitatives

VARIABLES	N	OCCURRENCE		FRÉQUENCE	POURCENTAGE
SEXE	20	1	hommes	16	53.33 %
SEAE	30	2	femmes	14	46.67%
		1	France	10	33.33 %
ZONE	30	2	Afriq Equat	11	36.67 %
		3	Afriq Nord	4	13.33 %
		4	Europe hors UE	3	10.00 %
		5	Europe UE	2	6.67 %

6-1-2 Caractéristiques sociales

Tableau 19 : étude descriptive des caractéristiques sociales

VARIABLES	N		OCCURRENCE	FRÉQUENCE	POURCENTAGE
LANCHE	20	1	francophone	16	80.00 %
LANGUE	20	2	non francophone	4	20.00 %
		1	célibataire	9	30.00 %
SITUATION FAMILIALE	30	2	personne isolée	5	16.67 %
SHUATION FAMILIALE	30	3	couple	10	33.33 %
		4	enfants à charge	6	20.00 %
		1	SDF	7	23.33 %
		2	caravane	1	3.33 %
LOGEMENT	30	3	amis, famille	8	26.67 %
LOGEMENT	30	4	CHRS	2	6.67 %
		5	hôtel	1	3.33 %
		6	logement personnel	11	36.67 %
STABLE	20	1	stable	15	50.00 %
SIADLE	30	2	non stable	15	50.00 %
		1	sans activité	21	70.00 %
		2	étudiant	3	10.00 %
ACTIVITE	30	3	chômage	1	3.33 %
		4	travail	2	6.67 %
		5	retraité	3	10.00 %
		1	aucune	12	40.00 %
COUVERTURE SOCIALE	30	2	AME	4	13.33 %
COUVERTURE SOCIALE	30	3	base	9	30.00 %
		4	base + CMU	5	16.67 %

SITUATION		1	pas de titre	12	66.67 %
ADMINISTRATIVE	18	2	récépissé	4	22.22 %
ADMINISTRATIVE		3	carte de séiour	2	11.11 %

6-1-3 Habitus

• Variables quantitatives

Tableau 20 : étude descriptive des habitus quantitatifs

VARIABLES	N	MINIMUM	MAXIMUM	MÉDIANE	MOYENNE	ECART- TYPE
PA	14	1	42	5	8.714	11.391

• Variables qualitatives

Tableau 21 : étude descriptive des habitus qualitatifs

VARIABLES	N	О	CCURRENCE	FRÉQUENCE	POURCENTAGE
		1	oui	14	46.67 %
CONSOMMATION ALCOOL	30	2	sevré	2	6.67 %
		3	jamais	14	46.67 %
RYTHME CONSOMMATION	14	1	tous les jours	4	28.57 %
RT THME CONSOMMATION	14	2	occasionnel	10	71.43 %
OLIANTITE CONSOMMEE	4	1	> 40 g/j	3	75.00 %
QUANTITE CONSOMMEE	4	2	< 40 g/j	1	25.00 %
CONSOMMATION DE		1	oui	14	46.67 %
CONSOMMATION DE TABAC	30	2	sevré	4	13.33 %
IABAC		3	jamais	12	40.00 %
CONSOMMATION	30	1	oui	8	26.67 %
DROGUES	30	2	jamais	22	73.33 %
RYTHME CONSOMMATION	8	1	tous les jours	3	37.50 %
KI I THIME CONSOMINATION	0	2	occasionnel	5	62.50 %
ACTIVITE DUVIOUE	30	1	oui	14	46.67 %
ACTIVITE PHYSIQUE	30	2	non	16	53.33 %

6-1-4 Caractéristiques médicales

Tableau 22 : étude descriptive des caractéristiques médicales

VARIABLES	N	OC	CURRENCE	FRÉQUENCE	POURCENTAGE
PREMIÈRE CONSULTATION	30	1	oui	19	63.33 %
FREMIERE CONSULTATION	30	2	non	11	36.67 %
ANTECEDENTS MEDICAUX	30	1	oui	15	50.00 %
ANTECEDENTS MEDICAUX	30	2	non	15	50.00 %
ATCD CARDIO-	15	1	oui	8	53.33 %
VASCULAIRE	15	2	non	7	46.67 %
ATCD ENDOCRINO-	15	1	oui	4	26.67 %
MÉTABOLIQUES	13	2	non	11	73.33 %
ATCD INFECTIEUX	15	1	oui	5	33.33 %
AICDINFECTIEUX	13	2	non	10	66.67 %
ATCD DIGESTIFS	15	1	oui	5	33.33 %
AICD DIGESTIFS	13	2	non	10	66.67 %
ATCD NEODI A SIQUES	15	1	oui	1	6.67 %
ATCD NEOPLASIQUES	13	2	non	14	93.33 %

ATCD PSYCHIATRIQUES,	15	1	oui	5	33.33 %
DEPENDANCE	15	2	non	10	66.67 %
		1	path aiguë	11	36.67 %
		2	path chronique	8	26.67 %
MOTIF DE CONSULTATION	30	3	grossesse	3	10.00 %
		4	certificat	2	6.67 %
		5	dépistage	6	20.00 %

6-1-5 Données d'alimentation

• Variables qualitatives

Tableau 23 : étude descriptive des données d'alimentation

VARIABLES	N	C	OCCURRENCE	FRÉQUENCE	POURCENTAGE
	30	1	1 repas/jour	3	10.00 %
NOMBRE DE REPAS / JOUR		2	2 repas/jour	17	56.67 %
		3	3 repas/jour	10	33.33 %
		1	resto du coeur	10	33.33 %
PROVENANCE DES REPAS	30	2	famille, amis	5	16.67 %
PROVENANCE DES REPAS	30	3	achat personnel	14	46.67 %
		1 1 repas/jour 3 2 2 repas/jour 17 3 3 repas/jour 10 1 resto du coeur 10 2 famille, amis 5	3.33 %		
		1	1 crudité/repas	8	26.67 %
RYTHME CONSOMMATION	30	2	1 crudité/jour	7	23.33 %
FRUITS, LÉGUMES	30	3	< 1 crudité/jour	13	43.33 %
		4	< 1 crudité/sem	2	6.67 %

6-1-6 Données d'examen clinique

• Variables quantitatives

Tableau 24 : étude descriptive des données d'examen quantitatives

VARIABLES	N	MINIMUM	MAXIMUM	MÉDIANE	MOYENNE	ECART- TYPE
POIDS	30	42	97	66.5	67.967	16.33
TAILLE	30	152	192	168	169.2	9.683
IMC	30	16	36	23	23.6	5.190

Tableau 25 : étude descriptive des données d'examen qualitatives

VARIABLES	N	O	CCURRENCE	FRÉQUENCE	POURCENTAGE
DENUTRITION	20	1	oui	8	26.67 %
DENUIRIION	30	2	non	22	73.33 %
SIGNES DE SCORBUT	30	1	oui	19	63.33 %
SIGNES DE SCORBUT	30	2	non	11	36.67 %
ARTHRALGIES	19	1	oui	13	68.42 %
ARTIKALOIES	19	2	non	6	31.58 %
OEDEMES DES MEMBRES	19	1	oui	3	15.79 %
OEDEMES DES MEMBRES	19	2	non	16	84.21 %
SECHERESSE OCULAIRE	10	1	oui	8	42.11 %
SECHERESSE OCULAIRE	19	2	non	11	57.89 %
CHEVEUX CASSANTS	19	1	oui	3	15.79 %
CHEVEUX CASSANTS	19	2	non	16	84.21 %
SECHERESSE BUCCALE	19	1	oui	7	36.84 %
SECHERESSE BUCCALE	19	2	non	12	63.16 %
		1	normal	6	31.58 %
PATHOLOGIE GINGIVALE	19	2	gonflement	4	21.05 %
		3	saignement	9	47.37 %
TEST FRAGILITE	30	1	positif	1	3.33 %
CAPILLAIRE	30	2	négatif	29	96.67 %

6-1-7 Données biologiques

• Variables quantitatives

Tableau 26 : étude descriptive des données biologiques quantitatives

VARIABLES	N	MINIMUM	MAXIMUM	MÉDIANE	MOYENNE	ECART- TYPE
HÉMOGLOBINE	30	10.6	16.7	13.85	13.917	1.811
VGM	30	68.5	107	88.35	87.453	7.027
NATRÉMIE	30	135	146	139.5	139.4	2.401
KALIÉMIE	30	3.3	4.6	3.9	3.927	0.308
CALCÉMIE	30	2.20	2.59	2.48	2.455	0.094
PROTIDES	30	64	88	78	77.1	5.786
URÉE	30	2.1	7.5	4.3	4.633	1.553
CRÉATININE	30	44	117	76	77.5	18.095
CRP	30	2	81.3	3.2	7.273	14.423
FERRITINE	30	6	620	71.5	110.633	125.627
PRÉALBUMINE	30	0.13	0.36	0.25	0.251	0.053
CHOLESTÉROL	30	3.38	8.34	5.175	5.38	1.299
FOLATES	30	1.7	10	4.1	4.487	1.883
TP	30	78	114	96	94.833	10.052
VIT. B12	30	59	964	464	455	185.753
VITAMINE C	30	4	70	33	35.633	19.597

Tableau 27 : étude descriptive pour les données biologiques qualitatives

VARIABLES	N		OCCURRENCE	FRÉQUENCE	POURCENTAGE
HEMOGLOBINE	30	1	pathologique	7	23.33 %
HEMOGLOBINE	30	2	normale	23	76.67 %
VGM	30	1	pathologique	3	10.00 %
VGW	30	2	normale	27	90.00 %
NATREMIE	30	1	pathologique	0	0.00 %
NATREMIE	30	2	normale	30	100.00 %
KALIEMIE	30	1	pathologique	0	0.00 %
KALIEMIE	30	2	normale	30	100.00 %
CALCEMIE	30	1	pathologique	0	0.00 %
CALCEMIE	30	2	normale	30	100.00 %
PROTIDES	30	1	pathologique	1	3.33 %
PROTIDES	30	2	normale	29	96.67 %
UREE	30	1	pathologique	9	30.00 %
UREE	30	2	normale	21	70.00 %
CREATININE	30	1	pathologique	2	6.67 %
CREATININE	30	2	normale	28	93.33 %
CRP	30	1	pathologique	6	20.00 %
CKF	30	2	normale	24	80.00 %
FERRITINE	30	1	pathologique	7	23.33 %
FERRITINE	30	2	normale	23	76.67 %
PREALBUMINE	30	1	pathologique	4	13.33 %
PREALBUMINE	30	2	normale	26	86.67 %
CHOLESTERIOL	30	1	pathologique	4	13.33 %
CHOLESTERIOL	30	2	normale	26	86.67 %
FOLATES	30	1	pathologique	6	20.00 %
FULATES	30	2	normale	24	80.00 %
TP	30	1	pathologique	0	0.00 %
117	30	2	normale	30	100 %
VIITAMINE D12	20	1	pathologique	2	6.67 %
VITAMINE B12	30	2	normale	28	93.33 %

6-2 Etude bivariée en fonction du sexe

6-2-1 Données démographiques

Tableau 28 : données démographiques selon le sexe

VARIABLES	TOTAL (N = 30)	HOMMES (N = 16)	FEMMES (N = 14)	P VALUE
AGE - années	36.5 ± 15	36.5 ± 15 38.8 ± 16.4		0.380
	[19-69]			
ZONE GEOGRAPHIQUE				_
France	10 (33)	5 (31)	5 (36)	0.799
Etranger dont:	20 (67)	11 (69) dont:	9 (64) dont:	
 Afrique Equatoriale 	- 11 (37)	5 (31)	6 (43)	
- Afrique du Nord	- 4 (13)	2 (13)	2 (14)	
- Europe (hors UE)	- 3 (10)	2 (13)	1 (7)	
- Europe (hors France)	- 2 (7)	2 (13)	0 (0)	
	(N = 18)	(N = 9)	(N = 9)	
ARRIVÉE FRANCE - mois	11 ± 12	9.8 ± 14.9	11.7 ± 8.9	0.142
(patients hors UE)	[0.5-36]			

6-2-2 Caractéristiques sociales

Tableau 29 : caractéristiques sociales selon le sexe

VADIADIEC	TOTAL	HOMMES	FEMMES	DAVALUE
VARIABLES	(N = 30)	(N = 16)	(N = 14)	P VALUE
LANGUE (pour étrangers)	(N = 20)	(N = 11)	(N = 9)	•
Francophone	16 (80)	10 (91)	6 (67)	0.173
Non francophone	4 (20)	1 (9)	3 (33)	
SITUATION FAMILLE	•			
Célibataire	9 (30)	7 (44)	2 (14)	0.321
Personne isolée	5 (17)	2 (13)	3 (21)	
Couple	10 (33)	5 (31)	5 (36)	
Enfants à charge	6 (20)	2 (13)	4 (29)	
LOGEMENT				
SDF	7 (23)	5 (31)	2 (14)	0.062
Caravane	1 (3)	1 (6)	0 (0)	
Amis, famille	8 (27)	2 (13)	6 (43)	
CHRS	2 (7)	0 (0)	2 (14)	
Hôtel	1 (3)	0 (0)	1 (7)	
Logement perso	11 (37)	8 (50)	3 (21)	
STABILITÉ				
Oui	15 (50)	7 (44)	8 (57)	0.464
Non	15 (50)	9 (56)	6 (43)	
ACTIVITÉ				
Sans activité	21 (70)	9 (56)	12 (86)	0.322
Etudiant	3 (10)	2 (13)	1 (7)	
Chômage	1 (3)	1 (6)	0 (0)	
Travail	2 (7)	1 (6)	1 (7)	
Retraité	3 (10)	3 (19)	0 (0)	
SECU SOCIALE				
Aucune	12 (40)	6 (37)	6 (43)	0.870
AME	4 (13)	2 (13)	2 (14)	

Base	9 (30)	6 (37)	3 (21)	
Base + CMU	5 (17)	2 (13)	3 (21)	
Base + Mutuelle	-	-		
ADMINISTRATIF	(N = 18)	(N = 9)	(N = 9)	
Pas de titre séjour	12 (67)	5 (56)	7 (78)	0.511
Récépissé carte	4 (22)	2 (22)	2 (22)	
Carte de séjour	2 (11)	2 (22)	0 (0)	

6-2-3 Habitus

Tableau 30 : habitus selon le sexe

VARIABLES	TOTAL	HOMMES	FEMMES	P VALUE
VI IIII IBEES	(N = 30)	(N = 16)	(N = 14)	1 VILLE
CONSO D'ALCOOL				
Jamais	14 (47)	3 (19)	11 (79)	0.004
Sevré	2 (7)	2 (13)	0 (0)	
Oui dont :	14 (47)	11 (69)	3 (21)	
	(N = 14)	(N = 11)	(N = 3)	
- Occasionnelle	10 (71)	7 (64)	3 (100)	
- Quotidienne dont :	4 (29)	4 (36)	0 (0)	
	(N = 4)	(N = 4)		
- < 40 g / 24 h	1 (25)	1 (25)	-	
- > 40 g / 24 h	3 (75)	3 (75)	-	
CONSO DE TABAC	,			
Jamais	12 (40)	3 (19)	9 (64)	0.013
Sevré	4 (13)	4 (25)	0 (0)	
Oui :	14 (47)	9 (56)	5 (36)	
	(N = 14)	(N = 9)	(N = 5)	
- nombre de PA	8.7 ± 11.3	10.9 ± 13.9	4.8 ± 2.8	0.789
	[1-42]			
CONSO DE DROGUES				
Jamais	22 (73)	11 (69)	11 (79)	0.542
Oui dont :	8 (27)	5 (31)	3 (21)	
	(N = 8)	(N=5)	(N=3)	
- Occasionnelle	5 (62)	4 (80)	1 (33)	
- Quotidienne	3 (38)	1 (20)	2 (67)	
Activité physique				
Oui	14 (47)	7 (44)	7 (50)	0.732
Non	16 (53)	9 (56)	7 (50)	

6-2-4 Caractéristiques médicales

Tableau 31 : caractéristiques médicales selon le sexe

VARIABLES	TOTAL (N = 30)	HOMMES (N = 16)	FEMMES (N = 14)	P VALUE
CONSULTATION				
1 ^{ère} fois	19 (63)	10 (62)	9 (64)	0.919
patient connu	11 (37)	6 (38)	5 (36)	
ATCD MÉDICAUX				
Non	15 (50)	7 (44)	8 (57)	0.464
Oui dont	15 (50)	9 (56)	6 (43)	
	(N = 15)	(N = 9)	(N = 6)	
 cardio-vasculaires 	8 (53)	4 (44)	4 (67)	0.395
- endocrino, métaboliq	4 (27)	2 (22)	2 (33)	0.636

- infectieux	5 (33)	1 (11)	4 (67)	0.023
- digestifs	5 (33)	3 (33)	2 (33)	1.000
 néoplasiques 	1 (7)	1 (11)	0 (0)	0.301
 psy, dépendance 	5 (33)	4 (44)	1 (17)	0.250
MOTIF DE CONSULTATION				
Pathologie aiguë	11 (37)	7 (44)	4 (29)	0.404
Path chronique, RO	8 (27)	5 (31)	3 (21)	
Diag, suivi grosses	3 (10)	0 (0)	3 (21)	
Certificat	2 (7)	1 (6)	1 (9)	
Dépistage, examen	6 (20)	3 (19)	3 (21)	

6-2-5 Données d'alimentation

Tableau 32 : données d'alimentation selon le sexe

VARIABLES	TOTAL (N = 30)	HOMMES (N = 16)	FEMMES (N = 14)	P VALUE
NOMBRE DE REPAS				
1 repas :jour	3 (10)	3 (19)	0 (0)	0.316
2 repas :jour	17 (57)	8 (50)	9 (64)	
3 repas :jour	10 (33)	5 (31)	5 (36)	
PROVENANCE REPAS				
Resto cœur, munic	10 (33)	4 (25)	6 (43)	0.001
Famille, amis	5 (17)	0 (0)	5 (36)	
Achats personnels	14 (47)	12 (75)	2 (14)	
Autre	1 (3)	0 (0)	1 (7)	
RYTHME CONSOMMATION				
- 1 crudité par repas	8 (27)	4 (25)	4 (29)	0.737
- 1 crudité par jour	7 (23)	3 (19)	4 (29)	
- < 1 crudité par jour	13 (43)	7 (44)	6 (43)	
- < 1 crudité / semaine	2 (7)	2 (13)	0 (0)	

6-2-6 Données d'examen clinique

Tableau 33 : données d'examen clinique selon le sexe

VARIABLES	TOTAL	HOMMES	FEMMES	P VALUE
VARIABLES	(N = 30)	(N = 16)	(N = 14)	r value
POIDS - kg	68 ± 16	72 ± 14	63 ± 18	0.158
	[42-97]			
TAILLE - cm	169 ± 10	175 ± 8	161 ± 5	0.000
	[152-192]			
IMC – valeur absolue	24 ± 5	23 ± 4	24 ± 7	0.508
	[16-36]			
DÉNUTRITION				
Oui	8 (27)	6 (38)	2 (14)	0.143
Non	22 (73)	10 (62)	12 (86)	
SG CLINIQ SCORBUT				
Non	11 (37)	7 (43)	4 (29)	0.387
Oui dont :	19 (63)	9 (57)	10 (71)	
	(N = 19)	(N = 9)	(N = 10)	
- arthralgies	13 (68)	7 (78)	6 (60)	0.401
 oedèmes membres 	3 (16)	1 (11)	2 (20)	0.592
 sécheresse oculaire 	8 (42)	3 (33)	5 (50)	0.461
- cheveux cassants	3 (16)	0 (0)	3 (30)	0.037
 sécheresse buccale 	7 (37)	3 (33)	4 (40)	0.763
- path gingivale dont :	13 (68)	6 (67)	7 (70)	0.876
	(N = 13)	(N = 6)	(N = 7)	
- saignement	9 (69)	4 (67)	5 (71)	
- gonflement	4 (31)	2 (33)	2 (29)	
- purpura, hémorragies	0	-	-	-
- cataracte	0	-	-	-
TEST FRAGILITÉ CAP				
Positif	1 (3)	1 (6)	0 (0)	0.257
Négatif	29 (97)	15 (94)	14 (100)	

6-2-7 Données biologiques

Tableau 34 : données biologiques selon le sexe

VARIABLES	TOTAL	HOMMES	FEMMES	P VALUE
	(N = 30)	(N = 16)	(N = 14))	
HÉMOGLOBINE - g/dl	13.9 ± 1.8	15.3 ± 1.01	12.3 ± 1.02	0.000
	[10.6-16.7]			
Pathologique	7 (23)	0 (0)	7 (50)	0.000
VGM - fl	87.4 ± 7	89.3 ± 7.1	85.3 ± 6.5	0.125
D 4.1.	[68.5-107]	2 (12)	1 (7)	0.622
Pathologique	3 (10)	2 (13)	1 (7)	0.622
NATRÉMIE - mmol/l	139.4 ± 2.4	140.6 ± 2.2	138 ± 1.9	0.001
KALIÉMIE - mmol/l	[135-146]	20102	20102	0.752
KALIEMIE - mmoi/i	3.9 ± 0.3	3.9 ± 0.3	3.9 ± 0.3	0.752
CALCÉMIE - mmol/l	$[3.3-4.6] $ 2.5 ± 0.1	2.5 ± 0.1	2.4 ± 0.1	0.349
CALCEIVILE - IIIIII0I/I	[2.2-2.6]	2.3 ± 0.1	2.4 ± 0.1	0.549
PROTIDES - g/l	$\frac{[2.2-2.0]}{77.1 \pm 5.7}$	77.4 ± 6	76.7 ± 5.7	0.739
THOTIDES g,	[64-88]	77.4 ± 0	70.7 ± 3.7	0.737
Pathologique	1 (3)	1 (6)	0 (0)	0.257
URÉE - mmol/l	4.6 ± 1.6	4.8 ± 1.5	4.5 ± 1.6	0.586
	[2.1-7.5]			
Pathologique	9 (30)	5 (31)	4 (29)	0.873
CRÉATININE - µmol/l	77.5 ± 18	89.1 ± 12.4	64.2 ± 14	0.000
	[44-117]			
Pathologique	2 (7)	1 (6)	1 (7)	0.922
CRP - mg/l	7.3 ± 14.4	5.4 ± 4.5	9.4 ± 20.1	0.847
	[2-81]			
Pathologique	6 (20)	3 (19)	3 (21)	0.855
FERRITINE - μg/l	111 ± 126	168 ± 148	45 ± 36.5	0.000
Dedicted as	[6-620]	2 (12)	5 (26)	0.120
Pathologique #	7 (23)	2 (13)	5 (36)	0.130
PRÉALBUMINE - g/l	0.25 ± 0.05 [0.1-0.4]	0.27 ± 0.05	0.23 ± 0.05	0.020
Pathologique	4 (13)	1 (6)	3 (21)	0.216
CHOLESTÉROL - mmol/l	5.4 ± 1.3	5.2 ± 1.4	$\frac{5.6 \pm 1.2}{}$	0.507
CHOLLSTEROE IIIIIOI/I	[3.4-8.3]	J.2 ± 1. 4	3.0 ± 1.2	0.507
Pathologique	4 (13)	1 (6)	3 (21)	0.216
FOLATES - ng/ml	4.5 ± 1.9	4.4 ± 1.8	4.6 ± 2	0.735
	[1.7-10]			
Pathologique	6 (20)	4 (25)	2 (14)	0.460
TP - %	95 ± 10	94.3 ± 9.9	95.4 ± 10.5	0.767
	[78-114]			
VITAMINE B12 - pg/ml	455 ± 186	412 ± 173	504 ± 194	0.180
	[59-964]			
Pathologique	2 (7)	1 (6)	1 (7)	0.922
VITAMINE C - μmol/l	35.6 ± 19.6	37.7 ± 21.4	33.3 ± 17.9	0.549
	[4-70]			
Pathologique	11 (37)	5 (31)	6 (43)	0.510

6-3 Etude statistique des variables quantitatives non normales

6-3-1 Test de normalitéKolmogorov-Smirnov One Sample Test using Normal(0.00,1.00) distribution

Variable	N-of-Cases	MaxDif	Lilliefors Probability (2-tail)
AGE	30.000	0.129	0.225
ARRIVEE	18.000	0.321	0.000 normalité non acceptable
PA	14.000	0.312	0.001 normalité non acceptable
POIDS	30.000	0.129	0.221
TAILLE	30.000	0.101	0.604
IMC	30.000	0.136	0.164
HEMOGLOB	30.000	0.124	0.276
VGM	30.000	0.132	0.196
NATREMIE	30.000	0.135	0.174
KALIEMIE	30.000	0.107	0.499
CALCEMIE	30.000	0.137	0.156
PROTIDES	30.000	0.129	0.226
UREE	30.000	0.118	0.341
CREAT	30.000	0.114	0.398
CRP	30.000	0.388	0.000 normalité non acceptable
FERRITIN	30.000	0.218	0.001 normalité non acceptable
PREALB	30.000	0.090	0.814
CHOLEST	30.000	0.151	0.078
FOLATES	30.000	0.129	0.227
TP	30.000	0.126	0.252
VITB12	30.000	0.103	0.572
VITC	30.000	0.090	0.808

6-3-2- Etude bivariée

• Categorical values encountered during processing are: SEXE (2 levels) 1, 2

Kruskal-Wallis One-Way Analysis of Variance for 18 cases

Dependent variable is ARRIVEE

Grouping variable is SEXE

Group	Count	Rank Sum
1	9	69.000
2	9	102.000

Mann-Whitney U test statistic = 24.000

Probability is 0.142

Chi-square approximation = 2.161 with 1 df

Kruskal-Wallis One-Way Analysis of Variance for 14 cases

Dependent variable is PA

Grouping variable is SEXE

Group	Count	Rank Sum
1	9	69.500
2	5	35.500

Mann-Whitney U test statistic = 24.500

Probability is 0.789

Chi-square approximation = 0.072 with 1 df

Kruskal-Wallis One-Way Analysis of Variance for 30 cases

Dependent variable is CRP

Grouping variable is SEXE

Group	Count	Rank Sum
1	16	252.000
2	14	213.000

Mann-Whitney U test statistic = 116.000

Probability is 0.847

Chi-square approximation = 0.037 with 1 df

Kruskal-Wallis One-Way Analysis of Variance for 30 cases

Dependent variable is FERRITIN

Grouping variable is SEXE

Group	Count	Rank Sum
1	16	332.500
2	14	132.500

Mann-Whitney U test statistic = 196.500

Probability is 0.000

Chi-square approximation = 12.345 with 1 df

• Categorical values encountered during processing are: VITC2 (2 levels) 1, 2

Kruskal-Wallis One-Way Analysis of Variance for 18 cases

Dependent variable is ARRIVEE

Grouping variable is VITC2

Group	Count	Rank Sum
1	6	55.500
2	12	115.500

Mann-Whitney U test statistic = 34.500

Probability is 0.887

Chi-square approximation = 0.020 with 1 df

Kruskal-Wallis One-Way Analysis of Variance for 14 cases

Dependent variable is PA

Grouping variable is VITC2

Group	Count	Rank Sum
1	6	42.000
2	8	63.000

Mann-Whitney U test statistic = 21.000

Probability is 0.697

Chi-square approximation = 0.151 with 1 df

Kruskal-Wallis One-Way Analysis of Variance for 30 cases

Dependent variable is CRP

Grouping variable is VITC2

Group	Count	Rank Sum
1	11	172.000
2	19	293.000

Mann-Whitney U test statistic = 106.000

Probability is 0.940

Chi-square approximation = 0.006 with 1 df

Kruskal-Wallis One-Way Analysis of Variance for 30 cases

Dependent variable is FERRITIN

Grouping variable is VITC2

Group	Count	Rank Sum
1	11	186.500
2	19	278.500

Mann-Whitney U test statistic = 120.500 Probability is 0.491 Chi-square approximation = 0.474 with 1 df

6-4 Etude multivariée ou régression logistique

6-4-1 Estimation complète

```
Categorical values encountered during processing are:
VITC2 (2 levels)
             Ο,
Binary LOGIT Analysis.
Dependent variable: VITC2
Input records: 30
Records for analysis:
                                        30
Sample split
Category choices
   0 (REFERENCE)
   1
         (RESPONSE)
                                11
Total
                                3.0
L-L at iteration 1 is -20.794
L-L at iteration 2 is -14.325
L-L at iteration 3 is -13.481
L-L at iteration 4 is -13.368
L-L at iteration 5 is -13.363
L-L at iteration 6 is -13.363
L-L at iteration 7 is -13.363
Log Likelihood: -13.363
                                     Estimate S.E. t-ratio p-value -4.096 1.890 -2.168 0.030 1.421 1.355 1.049 0.294 2.182 1.524 1.432 0.152 1.111 1.448 0.767 0.443
                                   Estimate
     Parameter
  1 CONSTANT
   2 SEXE
                                                   1.432
0.767
2.107 -1.247
1.566 1.853
1.433 0.776
1.430 0.250
1.830 1 807
   3 SITFAM2
   4 NBREPAS2
   5 RYTHME2
                                      -2.627
                                                                                        0.212
                                       2.902
1.112
   6 SCORBUT
                                                                                        0.064
   7 CRP2
                                                                                        0.803
   8 FERRITI2
                                        0.357
   9 FOLATES2
                                        3.302
                                                                                        0.071
                                                              95.0 % bounds
                                Odds Ratio Upper
4.140 58.887
8.861 175.678
3.037 51.916
    Parameter
                                                                        Lower
   2 SEXE
                                                                        0.291
                                                                        0.447
   3 SITEAM2
                                                     51.916
   4 NBREPAS2
                                       0.072
                                                                        0.001
   5 RYTHME2
                                                        4.493
   6 SCORBUT
                                       18.219
                                                     392.591
                                                     50.483
                                       3.041
1.429
                                                                   0.183
0.087
0.753
   7 CRP2
   8 FERRITI2
                                                   980.695
                                      27.175
  9 FOLATES2
Log Likelihood of constants only model = LL(0) = -19.715
2*[LL(N)-LL(0)] = 12.703 with 8 df Chi-sq p-value = 0.123
McFadden's Rho-Squared = 0.322
```

6-4-2 Estimation pas à pas (stepwise)

Stepping parameters: Significance to include = Significance to remove = Number of effects to force = 0.150 0.150 1 10 Maximum number of steps = Categorical values encountered during processing are: VITC2 (2 levels) 0, Dependent variable: VITC2 Input records: 30 Records for analysis: 30 Category choices 0 (REFERENCE) (RESPONSE) 11 1 : 30 Total Step 0 Log Likelihood: -13.363
Parameter Estimate
 Estimate
 S.E.
 t-ratio
 p-value

 -4.096
 1.890
 -2.168
 0.030

 1.421
 1.355
 1.049
 0.294

 2.182
 1.524
 1.432
 0.152

 1.111
 1.448
 0.767
 0.443

 -2.627
 2.107
 -1.247
 0.212

 2.902
 1.566
 1.853
 0.064

 1.112
 1.433
 0.776
 0.438

 0.357
 1.430
 0.250
 0.803

 3.302
 1.830
 1.805
 0.071
 1 CONSTANT 2 SEXE 3 SITFAM2 4 NBREPAS2 5 RYTHME2 6 SCORBUT 7 CRP2 8 FERRITI2 9 FOLATES2
 Step 1
 Log Likelihood: Parameter
 Estimate
 S.E.
 t-ratio
 p-value

 1 CONSTANT
 -3.970
 1.799
 -2.207
 0.027

 2 SEXE
 1.527
 1.296
 1.178
 0.239

 3 SITFAM2
 2.230
 1.519
 1.469
 0.142

 4 NBREPAS2
 0.946
 1.277
 0.741
 0.459

 5 RYTHME2
 -2.581
 2.102
 -1.228
 0.219

 6 SCORBUT
 2.841
 1.544
 1.840
 0.066

 7 CRP2
 1.058
 1.409
 0.751
 0.453

 8 FOLATES2
 3.424
 1.784
 1.920
 0.055
 Score tests on effects not in model Score Chi-Sq
Statistic Signif df
0.062 0.803 1.000 Effect. 9 FERRITI2 Step Log Likelihood: -13.673
Parameter Estimate S.E. t-ratio p-value
-3.385 1.560 -2.170 0.030
1.491 1.224 1.218 0.223
2.318 1.430 1.621 0.105
-2.462 1.920 -1.282 0.200
2.519 1.377 1.829 0.067
1.482 1.310 1.131 0.258
3.593 1.682 2.137 0.033 1 CONSTANT 2 SEXE 3 SITFAM2 4 RYTHME2 5 SCORBUT 6 CRP2 7 FOLATES2 Score tests on effects not in model Score Chi-Sq
Statistic Signif df
0.013 0.910 1.000
0.563 0.453 1.000
0.621 0.733 2.000 8 FERRITI2 9 NBREPAS2 Joint Score Step 3 Log Likelihood: -14.340

Da				
Parameter	Estimate	S.E.	t-ratio	p-value
1 CONSTANT	-3.283	1.519	-2.162	0.031
2 SEXE	1.491	1.193	1.250	0.211
3 SITFAM2	2.452	1.381	1.776	0.076
4 RYTHME2	-1.835	1.758	-1.044	0.296
5 SCORBUT	2.310	1.348	1.714	0.087
6 FOLATES2	2.922	1.484	1.969	0.049
Caara taata an affaa	ta not in model			
Score tests on effec		Cla i C a		
Defe	Score	Chi-Sq	75	
Effect	Statistic	Signif	df	
7 FERRITI2	0.214	0.644	1.000	
8 NBREPAS2	1.299	0.254	1.000	
9 CRP2	1.344	0.246	1.000	
Joint Score	1.926	0.588	3.000	
Step 4				
Log Likelihood:	-14.993			_
Parameter	Estimate	S.E.	t-ratio	p-value
1 CONSTANT	-3.676	1.561	-2.356	0.018
2 SEXE	1.176	1.037	1.135	0.257
3 SITFAM2	1.735	1.030	1.685	0.092
4 SCORBUT	1.695	1.116	1.519	0.129
5 FOLATES2	2.203	1.195	1.843	0.065
Score tests on effec	ts not in model			
Score tests on errec	Score	Chi-Sq		
Effect	Statistic	Signif	df	
6 FERRITI2	0.299	0.585	1.000	
7 NBREPAS2	1.128	0.288	1.000	
8 CRP2	0.561	0.454	1.000	
9 RYTHME2	1.209	0.434	1.000	
Joint Score	2.909	0.573	4.000	
JOINE SCOLE	2.909	0.575	4.000	
Step 5 = modèle fi	nal			
Log Likelihood:	-15.697			
Parameter	Estimate	S.E.	+ ratio	p-value
1 CONSTANT	-2.873	1.245	t-ratio -2.308	0.021
2 SITFAM2	1.356	0.911	1.489	0.021
3 SCORBUT	1.737	1.080	1.609	0.130
4 FOLATES2	1.797	1.055	1.704	0.108
		1.033	1.704	0.000
Score tests on effec	ts not in model			
	Score	Chi-Sq		
Effect	Statistic	Signif	df	
5 FERRITI2	0.049	0.825	1.000	
6 NBREPAS2	1.352	0.245	1.000	
7 CDD2	0.690	0.406	1.000	
7 CRP2		0.400	±.000	
8 RYTHME2	0.804	0.370	1.000	
	0.804 1.352			
8 RYTHME2		0.370	1.000	
8 RYTHME2 9 SEXE	1.352	0.370 0.245	1.000	
8 RYTHME2 9 SEXE Joint Score	1.352	0.370 0.245	1.000	
8 RYTHME2 9 SEXE Joint Score	1.352 4.034	0.370 0.245	1.000	p-value
8 RYTHME2 9 SEXE Joint Score Log Likelihood:	1.352 4.034 -15.697	0.370 0.245 0.544	1.000 1.000 5.000	p-value 0.021
8 RYTHME2 9 SEXE Joint Score Log Likelihood: Parameter	1.352 4.034 -15.697 Estimate	0.370 0.245 0.544 S.E.	1.000 1.000 5.000 t-ratio	
8 RYTHME2 9 SEXE Joint Score Log Likelihood: Parameter 1 CONSTANT	1.352 4.034 -15.697 Estimate -2.873	0.370 0.245 0.544 S.E. 1.245 0.911	1.000 1.000 5.000 t-ratio -2.308	0.021
8 RYTHME2 9 SEXE Joint Score Log Likelihood: Parameter 1 CONSTANT 2 SITFAM2	1.352 4.034 -15.697 Estimate -2.873 1.356	0.370 0.245 0.544 S.E. 1.245	1.000 1.000 5.000 t-ratio -2.308 1.489	0.021 0.136
8 RYTHME2 9 SEXE Joint Score Log Likelihood: Parameter 1 CONSTANT 2 SITFAM2 3 SCORBUT	1.352 4.034 -15.697 Estimate -2.873 1.356 1.737	0.370 0.245 0.544 S.E. 1.245 0.911 1.080 1.055	1.000 1.000 5.000 t-ratio -2.308 1.489 1.609	0.021 0.136 0.108
8 RYTHME2 9 SEXE Joint Score Log Likelihood: Parameter 1 CONSTANT 2 SITFAM2 3 SCORBUT 4 FOLATES2	1.352 4.034 -15.697 Estimate -2.873 1.356 1.737 1.797	0.370 0.245 0.544 S.E. 1.245 0.911 1.080 1.055	1.000 1.000 5.000 t-ratio -2.308 1.489 1.609 1.704	0.021 0.136 0.108
8 RYTHME2 9 SEXE Joint Score Log Likelihood: Parameter 1 CONSTANT 2 SITFAM2 3 SCORBUT 4 FOLATES2 Parameter	1.352 4.034 -15.697 Estimate -2.873 1.356 1.737 1.797	0.370 0.245 0.544 S.E. 1.245 0.911 1.080 1.055 95. Upper	1.000 1.000 5.000 t-ratio -2.308 1.489 1.609 1.704 0 % bounds Lower	0.021 0.136 0.108
8 RYTHME2 9 SEXE Joint Score Log Likelihood: Parameter 1 CONSTANT 2 SITFAM2 3 SCORBUT 4 FOLATES2 Parameter 2 SITFAM2	1.352 4.034 -15.697 Estimate -2.873 1.356 1.737 1.797 Odds Ratio 3.883	0.370 0.245 0.544 S.E. 1.245 0.911 1.080 1.055 95. Upper 23.149	1.000 1.000 5.000 t-ratio -2.308 1.489 1.609 1.704 0 % bounds Lower 0.651	0.021 0.136 0.108
8 RYTHME2 9 SEXE Joint Score Log Likelihood: Parameter 1 CONSTANT 2 SITFAM2 3 SCORBUT 4 FOLATES2 Parameter 2 SITFAM2 3 SCORBUT	1.352 4.034 -15.697 Estimate -2.873 1.356 1.737 1.797 Odds Ratio 3.883 5.679	0.370 0.245 0.544 S.E. 1.245 0.911 1.080 1.055 95. Upper 23.149 47.124	1.000 1.000 5.000 t-ratio -2.308 1.489 1.609 1.704 0 % bounds Lower 0.651 0.684	0.021 0.136 0.108
8 RYTHME2 9 SEXE Joint Score Log Likelihood: Parameter 1 CONSTANT 2 SITFAM2 3 SCORBUT 4 FOLATES2 Parameter 2 SITFAM2	1.352 4.034 -15.697 Estimate -2.873 1.356 1.737 1.797 Odds Ratio 3.883	0.370 0.245 0.544 S.E. 1.245 0.911 1.080 1.055 95. Upper 23.149	1.000 1.000 5.000 t-ratio -2.308 1.489 1.609 1.704 0 % bounds Lower 0.651	0.021 0.136 0.108
8 RYTHME2 9 SEXE Joint Score Log Likelihood: Parameter 1 CONSTANT 2 SITFAM2 3 SCORBUT 4 FOLATES2 Parameter 2 SITFAM2 3 SCORBUT 4 FOLATES2	1.352 4.034 -15.697 Estimate -2.873 1.356 1.737 1.797 Odds Ratio 3.883 5.679	0.370 0.245 0.544 S.E. 1.245 0.911 1.080 1.055 95. Upper 23.149 47.124 47.676	1.000 1.000 5.000 t-ratio -2.308 1.489 1.609 1.704 0 % bounds Lower 0.651 0.684 0.763	0.021 0.136 0.108
8 RYTHME2 9 SEXE Joint Score Log Likelihood: Parameter 1 CONSTANT 2 SITFAM2 3 SCORBUT 4 FOLATES2 Parameter 2 SITFAM2 3 SCORBUT 4 FOLATES2	1.352 4.034 -15.697 Estimate -2.873 1.356 1.737 1.797 Odds Ratio 3.883 5.679 6.032	0.370 0.245 0.544 S.E. 1.245 0.911 1.080 1.055 95. Upper 23.149 47.124 47.676 LL(0) =	1.000 1.000 5.000 t-ratio -2.308 1.489 1.609 1.704 0 % bounds Lower 0.651 0.684 0.763	0.021 0.136 0.108

7-L'Union Européenne : rappels

Tableau 35 : l'Europe des 25

Années	1958	1973	1981	1986	1995	2004	200?
EUROPE des	6	9	10	12	15	25	28
Population (millions):	206	273	284	348	370	452	
France	1 €			ROPE de			
Allemagne	2€		et de	es 11 € (E	uro)		
Belgique	3 €						
Luxembourg	4 €						
Hollande	5€						
Italie	6€						
Royaume Uni		7					
Irlande		8€					
Danemark		9					
Grèce			10 €				
Portugal				11 €			
Espagne				12 €	15.0		
Autriche					13 €		
Suède					14		
Finlande					15		
Pologne						16	
Hongrie			DECO			17	
Rép. Tchèque		Dave d'I	PECO: Europe c	antrola		18	
Slovaquie			oriental			19	26
Bulgarie			orionia				26
Roumanie							27
Lituanie						20	
Estonie		Ét	ats Balte	es		21	
Lettonie						22	
Slovénie						23	
Chypre			Autres			24	
Malte			Autics			25	
Turquie							28
Albanie							
Bosnie							
Croatie							
Islande			8 nave	non me	mhres		
Macédoine			o pays	11011 1110			
Norvège							
Suisse							
Yougoslavie							

NOM : LAUNAY PRENOM : Katy

TITRE DE THESE: Hypovitaminose C et précarité: étude prospective à la Permanence d'Accès aux Soins de Santé du CHU de Nantes.

RESUME

Propos: Ces dernières années, des cas de scorbut ont été décrits principalement dans certaines populations à risque. La prévalence et les facteurs de risque d'hypovitaminose C parmi les patients répondant aux critères de précarité et consultant dans les PASS sont largement méconnus et probablement sous-estimés du fait du manque d'études disponibles concernant cette population. Méthode: Pendant une période de 10 semaines, nous avons réalisé un questionnaire, recherché les signes cliniques de scorbut et déterminé les taux d'ascorbémie et d'autres variables biologiques nutritionnelles chez 30 patients consultant à la PASS du CHU de Nantes, inclus au hasard, devant bénéficier d'un bilan biologique dans leur prise en charge. Objectif: L'objectif principal de l'étude était de déterminer la prévalence de l'hypovitaminose C dans la population précaire consultante à la PASS afin d'établir le possible lien entre le caractère précarité et l'hypovitaminose C. Résultats : Les patients inclus étaient représentatifs de la population habituelle de la PASS, jeune, majoritairement masculine et étrangère. La prévalence de l'hypovitaminose C (taux sérique inférieur à 26 µmol/l) était de 37%. A cause de la petite taille de l'échantillon, l'étude bivariée n'a pu mettre en évidence qu'un seul facteur prédictif significatif : la sécheresse oculaire. La régression logistique a montré que l'isolement social, les signes cliniques de scorbut et la carence en folates augmentaient probablement le risque d'hypovitaminose C. Aucune autre corrélation n'a été établie entre l'hypovitaminose et les différentes variables recherchées. Cependant certaines situations pourraient favoriser l'hypovitaminose C: isolement social, éthylisme chronique, signes cliniques de scorbut, dénutrition clinique et/ou biologique et syndrome inflammatoire. Conclusion: L'hypovitaminose C est fréquente chez les patients précaires consultant à la PASS. La taille de l'échantillon a limité la mise en évidence de facteurs prédictifs significatifs. Il convient d'être vigilant devant certaines situations : sécheresse oculaire, isolement social, éthylisme chronique, signes cliniques de scorbut, dénutrition clinique et/ou biologique et syndrome inflammatoire.

MOTS-CLEFS

Vitamine C, scorbut, hypovitaminose, précarité, dénutrition, PASS (permanence d'accès aux soins de santé), adultes.

Table des matières

Table des illustrations	5
Introduction	
Chapitre 1 · La vitamine C	8

1-1 Histoire	
1-1-1 De la découverte	
1-1-2 A nos jours	
1-2 Sources et métabolisme	10
1-2-1 Sources	10
1-2-2 Métabolisme	11
1-2-2-1 Absorption digestive	11
1-2-2-2 Distribution	
1-2-2-3 Élimination	12
1-3 Besoins et recommandations	
1-3-1 Besoins.	
1-3-2 Doses recommandées	13
1-4 Propriétés et rôles	13
1-4-1 Propriétés	13
1-4-1-1 Structure chimique	
1-4-1-2 Stabilité	
1-4-2 Rôles	
1-5 Carence	16
1-5-1 Données générales	
1-5-2 Diagnostic	
1-5-3 Manifestations cliniques	
1-5-3-1 L'hypovitaminose	
1-5-3-2 La carence vraie ou scorbut	
1-5-4 Traitement et prévention	
1-5-5 Excès ou hypervitaminose	
Chapitre 2 : La PASS	
2-1 Les grands principes	
2-1-1 Définition	
2-1-2 La consultation médicale	
2-1-3 La consultation sociale	
2-2 La PASS de Nantes	
2-2-1 La structure	
2-2-2 Le fonctionnement	
2-2-3 Quelques chiffres	
Chapitre 3 : Etude prospective	
3-1 Objectifs de l'étude	
3-1-1 Objectif principal	
3-1-2 Objectifs secondaires	
3-2 Matériels et méthodes	
3-2-1 Population étudiée	
3-2-2 Dosage de la vitamine C	
3-2-3 Recueil des données	
3-2-4 Analyse statistique	
3-3 Résultats de l'étude	
3-3-1 Etude descriptive de la population ou étude univariée	
3-3-1-1 Données démographiques	
3-3-1-2 Caractéristiques sociales	
3-3-1-3 Habitus	
3-3-1-4 Caractéristiques médicales	
3-3-1-5 Données d'alimentation	
3-3-1-6 Données d'examen clinique	
3-3-1-7 Données biologiques	
3-3-2 Etude bivariée	
3-3-2-1 Données démographiques	
3-3-2-2 Caractéristiques sociales	
3-3-2-3 Habitus	
3-3-2-4 Caractéristiques médicales	
3-3-2-5 Données d'alimentation	45

3-3-2-6 Données d'examen clinique	47
3-3-2-7 Données biologiques	
3-3-3 Etude multivariée	
Chapitre 4 : Analyse et discussion des résultats	57
Conclusion	62
Bibliographie	64
Annexes	68
1- Sources alimentaires de vitamine C	
1-1 Source : Ciqual, Tec & Doc Lavoisier 2000	68
1-2 Source : Valeur nutritive de qq aliments usuels, Santé Canada, 1999	68
2- Apport nutritionnel recommandé en vitamine C	
2-1 Source : Ciqual, Tec & Doc Lavoisier 2000	69
2-2 Source : Dietary Reference Intakes for Vitamin C, Vitamin E, Selenium, and Carotenoic	ls, 2000. Food
and Nutrition Board, Institute of Medicine	69
2-3 Agence Française de Sécurité Sanitaire des Aliments	70
3- Les effets de la vitamine C dans l'organisme	72
4- Les variables	74
4-1 La variable à expliquer (dépendante)	74
4-2 Les variables explicatives (indépendantes)	74
4-2-1 Données démographiques	
4-2-2 Caractéristiques sociales	
4-2-3 Habitus.	
4-2-4 Caractéristiques médicales	
4-2-5 Caractéristiques d'alimentation.	
4-2-6 Données d'examen clinique	
4-2-7 Données biologiques	
5- Le questionnaire	
6- Traitement statistique	
6-1 Etude descriptive de la population ou étude univariée	
6-1-1 Données démographiques	
6-1-2 Caractéristiques sociales	
6-1-3 Habitus.	
6-1-4 Caractéristiques médicales	
6-1-5 Données d'alimentation	
6-1-6 Données d'examen clinique	
6-1-7 Données biologiques	
6-2 Etude bivariée en fonction du sexe	
6-2-1 Données démographiques.	91
6-2-2 Caractéristiques sociales.	
6-2-3 Habitus.	
6-2-4 Caractéristiques médicales	
6-2-5 Données d'alimentation	
6-2-6 Données d'examen clinique	
6-2-7 Données biologiques	95
6-3 Etude statistique des variables quantitatives non normales	
6-3-1 Test de normalité	
6-3-2- Etude bivariée	
Kruskal-Wallis One-Way Analysis of Variance for 18 cases	98
Mann-Whitney U test statistic = 120.500	
6-4 Etude multivariée ou régression logistique	101
6-4-1 Estimation complète	
6-4-2 Estimation pas à pas (stepwise)	
Step 0	102
Step 1	
Step 2	102
Step 3	
Step 4	
Step 5 = modèle final	103

7-L'Union Européenne : rappels	104
RESUME	
MOTS-CLEFS	106