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1
Introduction

1.1 Context

The Semantic Web is an extension of the Web, where information has precise meaning, and

machines are able to understand the information and perform sophisticated tasks for the users [12].

In order to achieve the potential of the Semantic Web, the World Wide Web Consortium (W3C) has

defined standards [75]: (i) for the representation of information on the Semantic Web, the Resource

Description Framework (RDF) [52]; (ii) for querying the Semantic Web, the SPARQL language [66];

and (iii) for defining richer representations that contemplate intrinsic aspects of the reality, it has

defined the Web Ontology Language (OWL) [63]. The number of sources has greatly increased in the

last years, e.g., from 2011 to 2014 the increase was of 271% [72], and different actors of the society

have published semantic data: scientific publications, e.g. the DBLP Bibliography Database 1, media,

e.g., the Jamendo music repository 2, geography, e.g. the Norwegian geo-divisions 3, government, e.g.,

the UK transport dataset 4, life science, e.g., the UniProt dataset 5, and social networking, e.g., foaf

1. http://dblp.l3s.de/d2r/, November, 2015.
2. http://dbtune.org/jamendo/sparql/, November, 2015.
3. http://data.lenka.no/sparql, November, 2015.
4. http://openuplabs.tso.co.uk/sparql/gov-transport, November, 2015.
5. http://sparql.uniprot.org/, November, 2015.
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profiles 6.

The Linked Data is a set of best practices for publishing and connecting structured data on

the Web [13]. More than one thousand sources with semantic data have been crawled. 7 For many

of these sources, there are infrastructures to execute SPARQL queries called SPARQL endpoints. 8

These endpoints allow users to explore datasets, and existing federated SPARQL query engines, such

as FedX [74], ANAPSID [2] and SPLENDID [32], can use these endpoints to process SPARQL queries

that require data from several endpoints to produce answers, i.e., federated queries, without having

to move the data.

Some exemplar Semantic Web applications are the Linked Data Search Engines such as Swoogle [25],

Sindice [61], and Watson [23]. These engines allow applications to traverse the Semantic Web, and

retrieve meaningful and relevant data. Other exemplar Semantic Web application is service match-

making [51], where semantic annotations are used in an e-commerce scenario where seekers search

advertisers that satisfy a given set of characteristics. Another exemplar Semantic Web application

is link prediction [78], where existing links among entities are used to propose new potential links,

and focus the expert efforts on testing these potential links. Some other examples of Semantic Web

applications are the analysis of governmental reforms [16], and health monitoring in smart houses [67].

The advantages that the Semantic Web and Linked Data have, with respect to Databases and the

traditional Web, are the openness and meaningfulness of data. Openness because, as in the Web for

documents, any piece of data can be linked to existing data, and links among data can be followed

to discover new data. Meaningfulness because, as in Databases for entities, if two pieces of data

are linked, their link has a precise meaning, and several types of links are possible to appropriately

represent different kinds of relations.

We are interested by two issues in the context of Semantic Web. First, even if there is a large

number of Linked Data sources, many sources from the Web [37] cannot be queried in conjunction

with Linked Data sources using SPARQL, and this significantly reduces the space of queries that can

be answered. Second, the low data availability provided by SPARQL endpoints [81] that prevents

Semantic Web applications from relying on these infrastructures.

To address our first issue, integration of Deep Web sources with Linked Data to answer

6. e.g., http://www.w3.org/People/Berners-Lee/card.rdf, November, 2015.
7. According to the 2014 report about the state of Linking Data Cloud available at http://

linkeddatacatalog.dws.informatik.uni-mannheim.de/state/
8. 615 SPARQL endpoints are registered at http://datahub.io/ (July, 2015)

http://www.w3.org/People/Berners-Lee/card.rdf
http://linkeddatacatalog.dws.informatik.uni-mannheim.de/state/
http://linkeddatacatalog.dws.informatik.uni-mannheim.de/state/
http://datahub.io/


1.1. CONTEXT 7

SPARQL queries, there are two approaches. In the Data Warehousing approach [77], sources

available in the Web can be transformed into RDF data using platforms such as Datalift [71], and

their data can be linked with Linked Data sources using frameworks such as Silk [84]. However,

this strategy to transform the Web sources into RDF has some limitations: (i) this transformation

and linking should be done for all the known sources before executing any query; (ii) each time a

source changes, transformation and linking of the whole source needs to be repeated to avoid stale

answers. In the Mediators and Wrappers approach [85], mediators can be used to integrate data

without having to move it from sources to the clients, therefore up to date data is queried. Among

the mediator paradigms, the best suited for dynamic contexts, such as the Web, is the Local-as-View

(LAV) paradigm [1]. Nevertheless, LAV traditional techniques used to produce query answers, query

rewritings, may be too expensive in the context of SPARQL queries and numerous sources [56]. We

are interested by strategies that are able to produce query answers against a set of LAV views, but

without using query rewritings, i.e., strategies that load the data available through these views into

an RDF graph, and execute the query against this RDF graph. These strategies do move data from

sources to the mediator, but only the data from the selected views and only during query execution.

In this thesis, we address this issue, and in particular the following research question:

Research Question 1. In which order should the query relevant views be loaded into a graph, built

during query execution, in order to use this graph to answer the query, and outperform the traditional

LAV query rewriting techniques in terms of number of answers produced by time unit?

To answer this research question, we propose the SemLAV approach. SemLAV integrates hetero-

geneous data from Linked Data and Deep Web, following the Local-as-View (LAV) paradigm [1] to

describe the setup. Relevant views are ranked according to their possible contribution to the answers,

and they are loaded into a graph instance, built during query execution, to answer SPARQL queries.

We have two contributions that address this first issue. Our first contribution is the formalization

of the Maximal Coverage problem (MaxCov), it consists in selecting the k views to load in order

to cover the greater number of rewritings. Our second contribution is the SemLAV relevant view

selection and ranking algorithm, this algorithm sorts views according to the number of query subgoals

that they cover, and ranks first the views that cover more query subgoals. It allows to load sources

that may contribute more to the query answer first, and consequently to produce answers as soon

as possible. Experimental results suggest that SemLAV outperforms traditional query rewriting
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strategies. These contributions have been published in [56].

To address our second issue, the SPARQL endpoints poor availability, several strategies

may be used. The Linked Data Fragments (LDF) [81] have been proposed to exploit client resources

to relieve server resources and improve data availability. However, as each client has to perform most

of the query processing, this strategy decreases the query performance in terms of number of answers

produced by time unit, and amount of transferred data from servers to clients. A distributed query

processing strategy to improve data availability is to give data consumers a more active role, and

use their resources to replicate data, and consequently increase the data availability [45]. However,

as Linked Data consumers are autonomous participants, the replication cannot closely follow the

techniques used in distributed query processing, and new strategies to select and localize sources are

needed. In this thesis, we are interested in improving data availability by using replication, and in

particular the use of fragment replication. Replicating fragments leads to concerns about performance

of query processing. For instance, if replicated fragments from popular sources are available through

many endpoints, how are these endpoints going to be used to execute a federated query? A very

simple solution may be to declare all these endpoints as part of the federation used by the federated

query engine. However, this simple solution may incur in high execution time because redundant data

would be transferred from endpoints to the federated query engine, and the federated query engine

would have to execute the query joins. For example, executing a DBpedia query against a federation

with one or two copies of DBpedia, leads to an increase of two orders of magnitude in the execution

time for federated query engines FedX [74] and ANAPSID [2] as shown in Section 8.1. In order to

properly exploit the benefits of replicated fragments, we propose a source selection strategy that is

aware of fragment replication, and is able to enhance federated query processing engines. This idea

of exposing replicated fragments through Linked Data endpoints is new, and so there are no existing

techniques that are able to perform a source selection aware of data replication. Even if techniques

to detect data overlapping based on data summaries exist [38, 70], applying them to scenarios with

data replication will incur in expensive computations that are unnecessary in a replication scenario.

In this thesis, we address this issue, and want to answer the following research questions:

Research Question 2. Can the knowledge about fragment replication be used to reduce the number

of selected sources by federated query engines while producing the same answers?

Research Question 3. Does considering groups of triple patterns to be executed together, instead
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of individual triple patterns, produce source selections that lead to transfer less data from endpoints

to the federated query engine?

To answer these research questions, we propose the Fedra approach. Fedra selects the sources

to be contacted to evaluate each triple pattern in order to produce the query answers, this selection

aims to improve the query performance in terms of the number of transferred tuples during query

execution.

We have two contributions that address this second issue. Our first contribution is the formal-

ization of the Source Selection Problem with Fragment Replication (SSP-FR). Given a federation of

SPARQL endpoints that have replicated fragments, and a SPARQL query, it consists in selecting the

sources that have to be contacted to retrieve data for each query triple pattern, such that the num-

ber of transferred tuples from sources to the federated query engine is reduced, and all the answers

obtainable using the federation data are produced. Our second contribution is the Fedra source

selection algorithm, this algorithm approximates the SSP-FR problem. It uses query containment

and equivalence among the fragment definitions to prune sources that provide redundant data, and

an heuristic for set covering [41] to reduce the number of different endpoints used to retrieve data for

the triple patterns of a basic graph pattern. State-of-the-art federated query engines, ANAPSID [2]

and FedX [74], have been extended with Fedra source selection strategy, and empirical results show

that Fedra enhances the federated query engines, and mostly reduces the number of selected sources

and number of transferred tuples. These contributions have been published in [59].

1.2 Outline

This thesis is composed of two parts. Part I presents our contributions to address the issue of

integration of Deep Web sources with Linked Data to answer SPARQL queries, while

Part II presents our contributions to address the issue of the SPARQL endpoints poor avail-

ability. Chapter 2 presents background concepts related to the Semantic Web, and conjunctive

queries, that are used through the thesis. Readers familiar with the Semantic Web technologies and

conjunctive queries terminology may want to skip Chapter 2. In addition to this background chapter,

each part has its own background sections: Section 5.1 for Part I and Section 8.1 for Part II.
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1.2.1 Part I: Answering SPARQL queries using Linked Data and Deep

Web sources

— Chapter 3 gives an introduction to the Answering SPARQL queries using Linked Data and

Deep Web sources part.

— Chapter 4 presents state of the art for querying the Web of Data, Data Integration, and Query

Rewriting.

— Chapter 5 defines the MaxCov problem, SemLAV query execution approach, algorithms, and

experimental results.

1.2.2 Part II: Answering SPARQL Queries against Federations with

Replicated Fragments

— Chapter 6 gives an introduction to the Answering SPARQL Queries against Federations with

Replicated Fragments part.

— Chapter 7 presents state of the art for Distributed Databases and Linked Data query process-

ing, source selection strategies for federated queries, and strategies to overcome availability

limitations in Linked Data.

— Chapter 8 defines the SSP-FR problem, the Fedra source selection algorithm, and some

experimental results.

1.3 Publications list

This work led to the following publications:

1. Gabriela Montoya, Hala Skaf-Molli, Pascal Molli, and Maria-Esther Vidal. Federated SPARQL

Queries Processing with Replicated Fragments. In The Semantic Web - ISWC 2015 - 14th

International Semantic Web Conference, pages 36–51, Bethlehem, United States, October 2015

2. Gabriela Montoya, Luis Daniel Ibáñez, Hala Skaf-Molli, Pascal Molli, and Maria-Esther Vidal.

SemLAV: Local-As-View Mediation for SPARQL Queries. Transactions on Large-Scale Data-

and Knowledge-Centered Systems XIII, pages 33–58, 2014



1.3. PUBLICATIONS LIST 11
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Querying Deep Web and Linked Open Data with SPARQL. In ESWC: Extended Semantic Web

Conference, volume 476 of The Semantic Web: ESWC 2014 Satellite Events, pages 332 – 337,

Anissaras/Hersonissou, Greece, May 2014. This work is a demonstration of the work in [56].

4. Pauline Folz, Gabriela Montoya, Hala Skaf-Molli, Pascal Molli, and Maria-Esther Vidal. Par-

allel data loading during querying deep web and linked open data with SPARQL. In Thorsten

Liebig and Achille Fokoue, editors, Proceedings of the 11th International Workshop on Scal-

able Semantic Web Knowledge Base Systems co-located with 14th International Semantic Web

Conference (ISWC 2015), Bethlehem, PA, USA, October 11, 2015., volume 1457 of CEUR

Workshop Proceedings, pages 63–74. CEUR-WS.org, 2015. This work proposes an optimization

of [56].

I also collaborated in two other papers that are not detailed in this dissertation:

— Gabriela Montoya, Luis Daniel Ibáñez, Hala Skaf-Molli, Pascal Molli, and Maria-Esther Vidal.

Gun: An efficient execution strategy for querying the web of data. In Hendrik Decker, Lenka

Lhotská, Sebastian Link, Josef Basl, and A Min Tjoa, editors, DEXA (1), volume 8055 of

Lecture Notes in Computer Science, pages 180–194. Springer, 2013. This work leaded to the

work in [56].

— Maria-Esther Vidal, Simon Castillo, Maribel Acosta, Gabriela Montoya, and Guillermo Palma.

On the Selection of SPARQL Endpoints to Efficiently Execute Federated SPARQL Queries.

Transactions on Large-Scale Data- and Knowledge-Centered Systems, 2015. This paper extends

the source selection work done before starting this PhD thesis [60].

And presented this thesis work at the doctoral consortium paper:

— Gabriela Montoya. Answering SPARQL Queries using Views. ISWC-DC 2015 The ISWC 2015

Doctoral Consortium, pages 33–40, 2015.





2
Background

In this chapter we present background concepts related to the Semantic Web and conjunctive

queries. In the following section, standards used to represent data in the Semantic Web, and query

these data are presented.

2.1 Semantic Web

The World Wide Web Consortium (W3C) 1 has developed standards to allow machines to under-

stand the semantics behind the data published on the Web, increasing their possible interactions, and

enhancing their data processing capabilities. Data enhanced with semantics, Linked Data, rely on Se-

mantic Web technologies such as RDF, SPARQL, OWL and SKOS. Data is stored using the common

format RDF, queries are posed using the standard language SPARQL, and vocabularies can be built

using ontologies (e.g., using OWL). The Resource Description Framework (RDF) [52] is a framework

for representing information in the Web. The basic unit of information are RDF triples, henceforth

called triples. Each triple consists of a subject, a predicate and an object. The predicate describes

the subject with a given characteristic whose value is given by the object. For example, in Listing 2.1,

a film is described with two characteristics, first, its director, and second its name. Each resource

1. http://www.w3.org, July 2015.
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is identified using IRIs, e.g., the director is identified by IRI http://dbpedia.org/resource/

The_Rules_of_the_Game, also the predicates or properties are identified by IRIs, e.g., the film

director is identified by the IRI http://dbpedia.org/ontology/director. Objects may be

IRIs, e.g., http://dbpedia.org/resource/Jean_Renoir, or literals, e.g., “The Rules of the

Game”@en. Literals may be strings, numbers, dates, etc. Strings may be annotated using language

tags, e.g., ’@en’ indicates that the string language is English.

Listing 2.1 – Two RDF triples that describe a film
<http :// dbped ia . org / r e s o u r c e /The_Rules_of_the_Game>

<ht tp :// dbped ia . org / o n t o l o g y / d i r e c t o r > <ht tp :// dbped ia . org / r e s o u r c e / Jean_Renoir> .

<ht tp : // dbped ia . org / r e s o u r c e /The_Rules_of_the_Game>

<ht tp :// dbped ia . org / p r o p e r t y /name> "The Ru l e s o f the Game"@en .

IRIs in Listing 2.1 are part of DBpedia vocabularies 2. DBpedia resources have IRIs that start with

“http://dbpedia.org/resource/”, this common prefix is called namespace IRI, and it may be associated

with a namespace prefix, for “http://dbpedia.org/resource/” we have the namespace prefix “dbr”, and

the resource <http://dbpedia.org/resource/Jean_Renoir> may be written as dbr:Jean_Renoir using

the namespace prefix. Listing 2.2 shows the same triples of Listing 2.1 using namespace prefixes.

Listing 2.2 – Two RDF triples that describe a film, with prefixes
PREFIX dbr :< ht tp : // dbped ia . org / r e s o u r c e />

PREFIX dbo:< ht tp :// dbped ia . org / o n t o l o g y/>

PREFIX dbp:< ht tp : // dbped ia . org / p r o p e r t y/>

dbr : The_Rules_of_the_Game dbo : d i r e c t o r dbr : Jean_Renoi r .

dbr : The_Rules_of_the_Game dbp : name "The Ru l e s o f the Game"@en .

When the prefixes are well-known or clear from the context, their declaration may be omitted.

A RDF graph is defined as a set of RDF triples. And a RDF dataset is composed by a set of RDF

graphs.

Once data is represented using the RDF framework, it may be queried using the SPARQL lan-

guage. For instance, if we want to know who is the director of “The Rules of the Game” film, we

may obtain it using the query in Listing 2.3. This query is composed of two triple patterns. Each

triple pattern is composed of a subject, a predicate and an object as an RDF triple is, but each of

these components may be a variable. For example, the first triple pattern has as subject the variable

?film, and as object the variable ?director. Variables are denoted by strings that start with character

2. http://wiki.dbpedia.org/, October 2015.

http://dbpedia.org/resource/The_Rules_of_the_Game
http://dbpedia.org/resource/The_Rules_of_the_Game
http://dbpedia.org/ontology/director
http://dbpedia.org/resource/Jean_Renoir
http://wiki.dbpedia.org/
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‘?’ or ‘$’, in this thesis we will use variables starting with character ‘?’. The two triple patterns in

Listing 2.3 compose a basic graph pattern. A basic graph pattern is a group of triple patterns, with

no other operator between than ‘.’, this operator represents the conjunction, i.e., both triple patterns

should be satisfied, and common variables among the triples represent a join condition of equality.

Listing 2.3 – SPARQL SELECT query that retrieves the director of a film
SELECT ? d i r e c t o r WHERE {

? f i l m dbo : d i r e c t o r ? d i r e c t o r .

? f i l m dbp : name "The Ru l e s o f the Game"@en

}

The answer to a SELECT query, as the one given in Listing 2.3, is a set of mappings. A mapping is

a pair (variable, value). This set of mappings indicates the values that the variables in the WHERE

should be instantiated to in order to obtain triples that belong to queried dataset. For example,

the query in Listing 2.3, evaluated against the dataset in Listing 2.1, has as answer { (director,

http://dbpedia.org/resource/Jean_Renoir) }.

Listing 2.4 – SPARQL ASK query that checks if there are triples with the director of a given film
ASK {

? f i l m dbo : d i r e c t o r ? d i r e c t o r .

? f i l m dbp : name "The Ru l e s o f the Game"@en

}

Besides SELECT queries, there are three other query types in SPARQL: ASK, CONSTRUCT

and DESCRIBE queries. ASK queries have a query pattern, like the one included in the WHERE

clause of SELECT queries, and its answer is a boolean value. Its answer is true if and only if there

is a set of mappings such that the query triple patterns with their variables instantiated to the values

in the set of mappings correspond to triples that belong to the queried dataset. For example, the

query given in Listing 2.4, evaluated against the dataset in Listing 2.1, has as answer true.

Listing 2.5 – SPARQL CONSTRUCT query that returns a graph with the directed films
CONSTRUCT {

? d i r e c t o r <ht tp : // example . org / d i r e c t s > ? f i l m

} WHERE {

? f i l m dbo : d i r e c t o r ? d i r e c t o r .

}

Listing 2.6 – Answer to the SPARQL query in Listing 2.5, evaluated against the dataset in Listing 2.1
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@ p r e f i x ns0 : <ht tp : // example . org/> .

@ p r e f i x dbr : <ht tp : // dbped ia . org / r e s o u r c e /> .

dbr : Jean_Renoi r ns0 : d i r e c t s dbr : The_Rules_of_the_Game .

Listing 2.7 – SPARQL CONSTRUCT query that returns a graph with the film directors
CONSTRUCT {

? f i l m dbo : d i r e c t o r ? d i r e c t o r

} WHERE {

? f i l m dbo : d i r e c t o r ? d i r e c t o r

}

Listing 2.8 – SPARQL CONSTRUCT query that returns a graph with the film directors, using

abbreviation for CONSTRUCT queries with graph template and pattern that are equal
CONSTRUCT WHERE {

? f i l m dbo : d i r e c t o r ? d i r e c t o r

}

Listing 2.9 – Answer to the SPARQL queries in Listings 2.7 and 2.8, evaluated against the dataset

in Listing 2.1
@ p r e f i x dbo:< ht tp : // dbped ia . org / o n t o l o g y/> .

@ p r e f i x dbr : <ht tp : // dbped ia . org / r e s o u r c e /> .

dbr : The_Rules_of_the_Game dbo : d i r e c t o r dbr : Jean_Renoi r .

CONSTRUCT queries have a graph template and a graph pattern, the graph pattern as in

SELECT queries is introduced after the WHERE keyword. CONSTRUCT queries return a RDF

graph. The variables instantiations obtained from the graph pattern are used to instantiate the

variables in the graph template, and the ground triples, i.e., triples with only IRIs or literals, obtained

from the graph template are combined in a single RDF graph. Listing 2.5 presents an example of a

CONSTRUCT query with graph template and pattern that are different, its answer is presented in

Listing 2.6. Notice that the variables used in the graph template are also used in the graph pattern.

Listing 2.7 shows an example where the graph template and pattern are equal, in such cases the

query may be abbreviated as in Listing 2.8, the answer to this query, evaluated against the dataset

in Listing 2.1, is presented in Listing 2.9.

Listing 2.10 – SPARQL DESCRIBE query that returns a graph with a film description
DESCRIBE <ht tp :// dbped ia . org / r e s o u r c e /The_Rules_of_the_Game>
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Listing 2.11 – SPARQL DESCRIBE query that returns a graph with films and directors description
DESCRIBE ? f i l m ? d i r e c t o r

WHERE {

? f i l m dbo : d i r e c t o r ? d i r e c t o r

}

Listing 2.12 – Answer to the SPARQL queries in Listings 2.10 and 2.11, evaluated against the dataset

in Listing 2.1
@ p r e f i x dbo:< ht tp : // dbped ia . org / o n t o l o g y/> .

@ p r e f i x dbp:< ht tp :// dbped ia . org / p r o p e r t y/> .

@ p r e f i x dbr : <ht tp : // dbped ia . org / r e s o u r c e /> .

dbr : The_Rules_of_the_Game dbo : d i r e c t o r dbr : Jean_Renoi r .

dbr : The_Rules_of_the_Game dbp : name "The Ru l e s o f the Game"@en .

Finally, DESCRIBE queries return a single RDF graph that contains triples that describe one

or more resources. The exact triples to be used for the description depend on the SPARQL query

processor used. Some examples of DESCRIBE queries are given in Listings 2.10 and 2.11, they have

the same answer when evaluated against the dataset in Listing 2.1, and their answer is presented in

Listing 2.12.

Besides joins, other operators may be present in SPARQL queries, e.g., UNION or OPTIONAL.

Comprehensive descriptions of the SPARQL language are presented in [66] and [64].

For the first issue that we address in this thesis, the integration of Deep Web sources with Linked

Data to answer SPARQL queries, many of the approaches and algorithms presented in the Chapter 4

have been proposed for Conjunctive Queries. In the next section, basic notions about Conjunctive

Queries are introduced in order to provide a common terminology to be used in Chapters 4 and 5.

2.2 Conjunctive Queries

A conjunctive query has the form: Q(X̄) :- p1(X̄1), . . . , pn(X̄n), where pi is a predicate, X̄i is

a list of variables and constants, X̄ is a list of variables, Q is the query name, Q(X̄) is the head

of the query, p1(X̄1), . . . , pn(X̄n) is the body of the query, and each element of the body, pi(X̄i),

is a query subgoal. In a conjunctive query, distinguished variables are variables that appear in the

head. A conjunctive query is safe if all the distinguished variables also appear in the body of the

query. Variables that appear in the body, but not in the head are existential variables. Variables are

denoted by strings that start with a uppercase letter as X1 and constants by strings starting with
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a lowercase letter as a1. An answer to a conjunctive query is a tuple < v1, ..., vm > with a value

for each Xi ∈ X̄ for 1 ≤ i ≤ m, such that every pj(X̄j), 1 ≤ j ≤ n, evaluates to true when Xi is

replaced by vi.

Listing 2.13 – Conjunctive Query
q (X, Y) :− a r c (X, Z) , a r c (Z , Y)

Listing 2.14 – Database
a r c ( a1 , a2 )

a r c ( a2 , a3 )

a r c ( a1 , a4 )

Listing 2.13 shows a conjunctive query that finds the paths of size two, and when it is executed

against database in Listing 2.14, it produces <a1, a3>. Because arc(a1, a2) and arc(a2, a3) hold,

then <a1, a3> is an answer to q, where the value a1 is associated to the variable X, and the value

a3 is associated to the variable Y.

2.3 Summary

Standards have been developed by the Semantic Web community, in order to allow applications,

to understand and perform tasks over the semantic data available on the Web. The standard for

representing data, RDF, represents data using triples, i.e., subject predicate object. The predicate

describes the subject with a given characteristic whose value is given by the object. The standard

for querying data, the SPARQL language, is based on graph matching, and its basic components are

the triple patterns. The triple patterns, differently from triples, allow the use of variables as subject,

predicate or object. The evaluation of a graph pattern consists in finding values for the variables

in the graph pattern, such that the resulting triples, after replacing variables by values, are actual

triples in the queried set of RDF triples.

A conjunctive query is composed of a head and a body. The head has the form q(X1, ..., Xn),

with q the query name, and X1, ..., Xn a list of variables. The body is composed of query subgoals,

each subgoal is composed of a predicate and a list of arguments, and each argument may be a

variable or a constant. The evaluation of a conjunctive query is a set of tuples < v1, ..., vn >, such

that v1, .., vn are constants that make the query subgoals, when variables X1, ..., Xn are replaced by

these constants, facts in the database.
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3
Introduction

Processing queries over a set of autonomous and semantically heterogeneous data sources is a

challenging problem. Particularly, a great effort has been made by the Semantic Web community

to integrate datasets into the Linking Open Data (LOD) cloud [13] and make these data accessible

through SPARQL endpoints which can be queried by federated query engines. However, there

are still a large number of data sources and Web APIs that are not part of the LOD cloud. As

consequence, existing federated query engines cannot be used to integrate these data sources and

Web APIs. Supporting SPARQL query processing over these environments would extend federated

query engines into the Deep Web.

Two main approaches exist for data integration: data warehousing and mediators. In data ware-

housing, data are transformed and loaded into a repository; this approach may suffer from the fresh-

ness problem [1], i.e., loaded data may produce stale answers to the queries if the source data have

been updated. In the mediator approach, there is a global schema over which the queries are posed,

and views that describe the relation between the global and source schema. Three main paradigms

are proposed: Global-As-View (GAV), Local-As-View (LAV) and Global-Local-As-View (GLAV). In

GAV mediators, relations of the global schema are described using views over the sources’ schema,

and including or updating sources may require the modification of a large number of views [79].
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Whereas, in LAV mediators, the sources are described as views over the global schema, and adding

new data sources can be easily done [79]. Finally, GLAV is a hybrid approach that combines both

LAV and GAV approaches. GAV is appropriate for query processing in stable environments. A

LAV mediator relies on a query rewriter to translate a mediator query into the union of conjunctive

queries against the views. Therefore, it is more suitable for environments where data sources fre-

quently change. Despite of its expressiveness and flexibility, LAV suffers from well-known drawbacks:

(i) existing LAV query rewriters only manage conjunctive queries, (ii) the query rewriting problem

is NP-complete for conjunctive queries, and (iii) the number of conjunctive queries that compose the

query rewriting may be exponential.

SPARQL queries exacerbate LAV limitations, even in presence of conjunctions of triple patterns.

For example, in a traditional database system, a LAV mediator with 140 conjunctive views can

generate rewritings composed of 10,000 conjunctive queries for a conjunctive queries with eight

subgoals [44]. In contrast, the number of queries that compose rewritings for a SPARQL query can be

much larger. SPARQL queries are commonly comprised of a large number of triple patterns and some

may be bound to general predicates of the RDFS or OWL vocabularies, e.g., rdf:type, owl:sameAs

or rdfs:label, which are usually used in the majority of the data sources. Additionally, queries

can be comprised of several star-shaped sub-queries [83]. Finally, a large number of variables can

be projected out. All these properties emphasize the exponential complexity of the query rewriting

problem, even enumerating the conjunctive queries in the rewritings can be unfeasible. For example, a

SPARQL query with 12 triple patterns that comprises three star-shaped sub-queries can be rewritten

using 476 views in rewritings that composed of billions of conjunctive queries. This problem is even

more challenging considering that statistics may be unavailable, and there are no clear criteria to

rank or prune the queries that compose the generated rewritings [74]. It is important to note that

for conjunctive queries, GLAV query processing tasks are at least as complex as LAV tasks [20].

In this work, we focus on the LAV approach, and propose SemLAV, the first scalable LAV-

based approach for SPARQL query processing. Given a SPARQL query Q on a set M of LAV

views, SemLAV selects relevant views for Q and ranks them in order to maximize query results.

Next, data collected from selected views are included into a partial instance of the global schema,

where Q can be executed whenever new data is included; and thus, SemLAV incrementally produces

query answers. Compared to a traditional LAV approach, SemLAV avoids generating rewritings
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which is the main cause of the combinatorial explosion in traditional rewriting-based approaches;

SemLAV also supports the execution of SPARQL queries. The performance of SemLAV is no more

dependent on the number of conjunctive queries that compose the rewritings, but it does depend on

the number and size of relevant views. Space required to temporarily include relevant views in the

global schema instance may be considerably larger than the space required to execute all the queries

that compose the query rewriting one by one. Nevertheless, executing the query once on the partial

instance of the global schema could produce the answers obtained by executing all the queries that

compose the query rewriting. Overall SemLAV should provide better performance than traditional

LAV approaches in terms of number of answers produced by time unit (throughput), and time of

the first answer. Moreover, SemLAV is capable of answering queries with UNIONs or OPTIONALs

while traditional LAV approaches are not. Furthermore, SemLAV performance will be negatively

impacted in terms of memory usage only if the selected views are not selective, as in that case, it

risks to fill up the available memory.

To empirically evaluate the properties of SemLAV, we conducted an experimental study using

the Berlin Benchmark [14] and queries and views designed by Castillo-Espinola [21]. Results suggest

that SemLAV outperforms traditional LAV-based approaches with respect to answers produced per

time unit, and provides a scalable LAV-based solution to the problem of executing SPARQL queries

over heterogeneous and autonomous data sources.

The contributions of this part are the following:

— Formalization of the problem of finding the set of relevant LAV views that maximize query

results; we call this problem MaxCov.

— A solution to the MaxCov problem.

— A scalable and effective LAV-based query processing engine to execute SPARQL queries, and

to produce answers incrementally.

3.1 Outline of this part

Chapter 4 presents state of the art for querying the Web of Data, Data Integration, and Query

Rewriting. Chapter 5 defines the MaxCov problem, SemLAV query execution approach, algorithms,

and experimental results. Experimental results suggest that SemLAV outperform traditional query
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rewriting strategies.



4
State of the Art

4.1 Querying the Web of Data

In recent years, several approaches have been proposed for querying the Web of Data [2, 11,

35, 36, 46]. Some tools address the problem of choosing the sources that can be used to execute a

query [36, 46]; others have developed techniques to adapt query processing to source availability [2,

36]. Finally, frameworks to retrieve and manage Linked Data have been defined [11, 36], as well

as strategies for decomposing SPARQL queries against federations of endpoints [74]. All these

approaches assume that queries are expressed in terms of RDF vocabularies used to describe the

data in the RDF sources; thus, their main challenge is to effectively select the sources from a catalog

of known sources (or discover and select in the case of [36, 46]), and efficiently execute the queries

on the data retrieved from the selected sources.

4.2 Data Integration

A data integration system, can be defined in terms of the mediated schema, henceforth global

schema, the sources, and the mappings between sources and the global schema.

25
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Definition 1 (Data Integration System [19]). A data integration system I is a triple <G, S, M>

where

— G is the global schema, expressed in the relational model, possibly with constraints

— S is the source schema, also expressed in the relational model.

— M is the mapping between G and S, constituted by a set of assertions of the form qS ⊆ qG,

where qS , qG are two queries of the same arity, over the source schema S and global schema G

respectively.

Querying heterogeneous data sources has been performed in Databases using two main ap-

proaches: Data Warehousing [77], and Mediators and Wrappers [85].

4.2.1 Data Warehousing

In Data Warehousing the data is retrieved from the sources, transformed into the warehouse

schema, and stored in a repository before executing any query. In this context, query optimization

relies on materialized views that allow to speed up the execution time. Selecting the best set of

views to be materialized is a complex problem that has been deeply studied in the literature [21,

33, 22, 42, 30]. Commonly approaches attempt to select this set of views according to an expected

workload and available resources. These approaches exhibit good performance for the queries that

can be rewritten using the materialized views, but not necessarily for the other queries. Further, the

cost of the view maintainability process can be very high if the data frequently change, and it needs

to be kept up-to-date to ensure answer correctness.

4.2.2 Mediators and Wrappers

In Mediators and Wrappers, the data do not have to be moved from the sources. Queries are

posed using the global schema, independently of how data is really stored in the sources. Wrappers

transform data from the source schemas into instances of the global schema, and mediators produce

the query answers.

Mappings between source and the global schemas are used to rewrite the user query into source

queries. Some approaches have been proposed to write the descriptions and associated rewriting

algorithms, the three main mediator paradigms that have been proposed to integrate dissimilar
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data sources are: Global-As-View (GAV) [49], Local-As-View (LAV) [49], and Global-Local-As-View

(GLAV) [29].

Sources may provide sound, complete or exact information with respect to the global schema

instances obtainable from their data [48]. If their data correspond to a subset of the global schema,

they are sound. If their data correspond to a superset, they are complete. And if their data correspond

to both a subset and superset, they are exact. In the context of autonomous sources, like the Web,

the sources are only assumed to be sound.

To illustrate the different approaches, consider an integration system that provides information

about books. First, the system uses only two sources. Source s1, gives book titles and authors, while

source s2 provides reviewers and reviews from the read books.

The global schema is composed by the relations: book(title), author(title, author), hasRead(person,

author), bookCategory(title, category), authorCategory(author, category), and reviews(document, re-

view).

The query in Listing 4.1 asks for authors of books in the same category that they have read

books.

Listing 4.1 – Conjunctive query that asks for authors who have written and read books of the same

category
q (A1) :− hasRead (A1 , A2 ) , au tho r (T1 , A1 ) , au tho r (T2 , A2 ) , bookCategory (T1 , C) , bookCategory (T2 , C)

GAV mediators

Definition 2 (Global As View (GAV) approach [49]). In the GAV approach, for each relation R in

the mediated schema, we write a query over the source relations specifying how to obtain R’s tuples

from the sources

In terms of Definition 1, each element g in G is associated to a query qS over S by one assertion

in mappingM, i.e., qS ⊆ g.

Listing 4.2 – GAV mappings when only s1 and s2 have been included in the system
book (T) ⊇ s1 (T, A)

autho r (T, A) ⊇ s1 (T, A)

hasRead (P , A) ⊇ s1 (T, A) , s2 (P , R , T)

r e v i e w s (D, R) ⊇ s2 (P , R , D)
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In the example, the book, author, hasRead, and reviews relations may be written as views over the

sources as in Listing 4.2. If a third source with the category of the books is added to the system,

then it has to be considered that these new sources may have some common data with the sources

that already belong to the system, and that new mappings, or modifications of existing mappings

may have to be made. In the example, s3 can be used with s1 to make the new mappings given in

Listing 4.3

Listing 4.3 – GAV mappings added after s3 is included in the system
bookCategory (T, C) ⊇ s3 (T, C)

au tho rCa tego ry (A, C) ⊇ s1 (T, A) , s3 (T, C)

Moreover, if a new source, s4, with book information is included, the mappings given in Listing 4.2

and 4.3 have to be modified, as shown in Listing 4.4. Multiple assertions for the same global schema

element are included to provide alternative source queries, instead of only one assertion with a more

complex query.

Listing 4.4 – GAV mappings after s4 is included in the system
book (T) ⊇ s1 (T, A)

book (T) ⊇ s4 (T, A)

autho r (T, A) ⊇ s1 (T, A)

autho r (T, A) ⊇ s4 (T, A)

r e v i e w s (D, Review ) ⊇ s2 (P , Review , D)

hasRead (P , A) ⊇ s1 (T, A) , s2 (P , Review , T)

hasRead (P , A) ⊇ s4 (T, A) , s2 (P , Review , T)

bookCategory (T, C) ⊇ s3 (T, C)

au tho rCa tego ry (A, C) ⊇ s1 (T, A) , s3 (T, C)

au tho rCa tego ry (A, C) ⊇ s4 (T, A) , s3 (T, C)

Including or updating data sources may require the modification of a large number of map-

pings [79], but answering query q is naturally done by unfolding the global schema relations present

in the query, and substituting them by the source views.

Definition 3 (Query Unfolding [26]). Given a query Q and a query subgoal gi(X̄i), gi(X̄i) ∈

body(Q), where gi corresponds to a mapping: gi(Ȳ ) :- s1(Ȳ1), . . . , sn(Ȳn), the unfolding of gi in Q

is done using a variable mapping τ from variables in Ȳ to variables in X̄i, replacing gi(X̄i) by

s1(τ(Ȳ1)), . . . , sn(τ(Ȳn)) in Q. Variables that occur in the body of gi but not in X̄i are replaced by

fresh (unused) variables by mapping τ .
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For instance, the query in Listing 4.1, q, can be rewritten, using the mappings in Listings 4.2

and 4.3, as shown in Listing 4.5. For query subgoal hasRead(A1,A2) and mapping hasRead(P, A) ⊇

s1(T, A), s2(P, R, T), the variable mapping τ is defined as: τ(P ) = A1, τ(A) = A2, τ(T ) = T ′,

τ(R) = R′, with T’ and R’ two fresh variables.

Listing 4.5 – Conjunctive query q and its rewriting, r, in terms of the sources from Listings 4.2

and 4.3
q (A1) :− hasRead (A1 , A2 ) , au tho r (T1 , A1 ) , au tho r (T2 , A2 ) , bookCategory (T1 , C) , bookCategory (T2 , C)

r (A1) :− s1 (T’ , A2 ) , s2 (A1 , R ’ , T’ ) , s1 (T1 , A1 ) , s1 (T2 , A2 ) , s3 (T1 , C) , s3 (T2 , C)

LAV mediators

Definition 4 (Local As View (LAV) approach [49]). In the LAV approach, the contents of a source

are described as a query over the mediated schema relations.

In terms of Definition 1, each element s in S is associated to a query qG over G by one assertion

in mappingM, i.e., s ⊆ qG.

Listing 4.6 – LAV mappings when only s1 and s2 have been included in the system
s1 (T, A) ⊆ book (T) , au tho r (T, A)

s2 (P , Review , D) ⊆ book (D) , hasRead (P , A) , au tho r (D, A) , r e v i e w s (D, Review )

In the example, views s1 and s2 are defined in Listing 4.6. If s3 and s4 are added as before,

only mappings involving s3 or s4 need to be added, and the existing mappings remain unchanged

as shown in Listing 4.7.

Listing 4.7 – LAV mappings after s3 and s4 have been included in the system
s1 (T, A) ⊆ book (T) , au tho r (T, A)

s2 (P , Review , D) ⊆ book (D) , hasRead (P , A) , au tho r (D, A) , r e v i e w s (D, Review )

s3 (T, C) ⊆ book (T) , bookCategory (T, C) , au tho r (T, A) , au tho rCa tego ry (A, C)

s4 (T, A) ⊆ book (T) , au tho r (T, A)

In the LAV approach, new data sources can be easily integrated [79]; further, data sources that

publish entities of several concepts in the global schema, can be naturally defined as LAV views.

Answering q using the LAV mappings may be more complex, as they do not provide for each

relation in q a source view to replace it. Instead of unfolding as it is the case for GAV mappings,

query rewritings are used for LAV mappings. The following definitions about query containment and

equivalence are used to formalize the notion of query rewriting.
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Definition 5 (Query Containment and Equivalence [26] [34]). Given two queries Q1 and Q2 with

the same number of arguments in their heads, Q1 is contained in Q2, Q1 v Q2, if for any database

instance D the answer of Q1 over D is contained in the answer to Q2 over D, Q1(D) ⊆ Q2(D). Q1

is equivalent to Q2 if Q1 v Q2 and Q2 v Q1.

However, it is not practical to check the containment condition for any database instance D, and

instead of that, the containment check is based on the existence of a containment mapping between

the queries and a theorem that establishes the equivalence of containment and the existence of a

containment mapping.

Definition 6 (Containment Mapping [26]). Given two queries Q1 and Q2, X̄ and Ȳ the head

variables of Q1 and Q2 respectively, and ψ a variable mapping from Q1 to Q2, ψ is a containment

mapping if ψ(X̄) = Ȳ and for every query subgoal g(X̄i) in the body of Q1, ψ(g(X̄i)) is a subgoal of

Q2.

Theorem 4.2.1 (Containment [26]). Let Q1 and Q2 be two conjunctive queries, then there is a

containment mapping from Q1 to Q2 if and only if Q2 v Q1.

Using the notions of containment and equivalence, the definitions of equivalent and maximally-

contained rewritings are formalized. Notice that it is not always possible to find an equivalent

rewriting, in particular given the assumption that sources are sound but not necessarily complete.

Existing algorithms presented in Section 4.2.3 aim to find the maximally-contained rewriting.

Definition 7 (Equivalent Rewriting [34]). Let Q be a query and M = {v1, . . . , vm} be a set of views

definitions. The query Q′ is an equivalent rewriting of Q using M if:

— Q′ refers only to views in M , and

— Q′ is equivalent to Q.

Definition 8 (Maximally-Contained Rewriting [34]). Let Q be a query, M = {v1, . . . , vm} be a set

of views definitions, and L be a query language 1. The query Q′ is a maximally-contained rewriting

of Q using M with respect to L if:

— Q′ is a query in L that refers only to the views in M ,

— Q′ is contained in Q, and

1. L is a query language defined over the alphabet composed of the global and source schema
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— there is no rewriting Q1 ∈ L, such that Q′ v Q1 v Q and Q1 is not equivalent to Q′.

Listing 4.8 presents the two queries, r1 and r2, that rewrite q. The containment mapping ψ that

can be used to show the containments r1 v q and r2 v q is defined as ψ(A1) = A1, ψ(A2) = A′,

ψ(T1) = T1, ψ(T2) = T2, ψ(C) = C. r1 and r2 are contained rewritings of q, but they are

not maximally-contained rewritings as they can be combined to produce the maximally contained

rewriting of q: r1 ⋃ r2.

Listing 4.8 – Conjunctive query q and its two contained rewritings in terms of the sources from

Listing 4.7
q (A1) :− hasRead (A1 , A2 ) , au tho r (T1 , A1 ) , au tho r (T2 , A2 ) , bookCategory (T1 , C) , bookCategory (T2 , C)

r1 (A1) :− s2 (A1 , R ’ , T2 ) , s1 (T1 , A1 ) , s3 (T1 , C) , s3 (T2 , C)

r2 (A1) :− s2 (A1 , R ’ , T2 ) , s4 (T1 , A1 ) , s3 (T1 , C) , s3 (T2 , C)

GLAV mediators

Global-Local-As-View (GLAV), a generalization of LAV and GAV, has been proposed in [29].

GLAV allows the definition of mappings where views on the global schema are mapped to views of

the data sources.

In terms of Definition 1, queries qS over S are associated to queries qG over G by assertions in

mappingM, i.e., qS ⊆ qG.

Listing 4.9 – Mappings in the Global Local As View approach
s1 (T, A) , s2 (P , Review , T) ⊆ hasRead (P , A) , r e v i e w s (T, Review )

s4 (T, A) , s2 (P , Review , T) ⊆ hasRead (P , A) , r e v i e w s (T, Review )

The mappings given in the previous sections are also GLAV mappings because they are GAV or

LAV mappings. Moreover, mappings in Listing 4.9 are GLAV mappings, but they are neither LAV

nor GAV mappings.

Recently, Knoblock et al. [43] and Taheriyan et al. [76] proposed Karma, a system to semi-

automatically generate source descriptions as GLAV views on a given ontology. Karma makes GLAV

views a solution to consume open data as well as to integrate and publish these sources into the LOD

cloud. GLAV views are suitable not only to describe sources, but also to provide the basis for the

dynamic integration of open data and Web APIs into the LOD cloud. Further, theoretical results

presented by Calvanese et al. [20] establish that for conjunctive queries against relational schemas,
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GLAV query processing techniques can be implemented as the combination of the resolution of the

query processing tasks with respect to the LAV component of the GLAV views followed by query

unfolding tasks on the GAV component.

4.2.3 LAV Query Rewriting Techniques

The problem of rewriting a query into queries over the data sources is a relevant problem in

integration systems [50]. A great effort has been made to provide solutions able to produce query

rewritings in the least time possible and to scale up to a large number of views. Several approaches

have been defined, e.g., the Bucket algorithm [50], the MiniCon algorithm [65, 34], MCDSAT [10],

and GQR [44].

The Bucket Algorithm

The Bucket algorithm [50, 34] is comprised of two parts. In the first part, for each query subgoal

a bucket is created, and each bucket is filled with the views such that one of its view subgoals can

cover the bucket query subgoal. Then, in the second part, the buckets are used to build contained

rewritings. These rewritings are created by taking one view from each bucket. Then, their validity as

rewriting is checked. A query is a valid rewriting if it is contained in the query, or may be contained

in the query by adding predicates. A view subgoal sgv is said to cover one query subgoal sgq if the

following conditions are satisfied:

— There is a variable mapping ψ such that ψ(sgv) = ψ(sgq)

— The mapping ψ applied to the variables in the view head makes the predicates appearing in

the query and the view mutually satisfiable. If a query variable is in the position i of sgq, and

it is distinguishable, then if there is a variable in the position i of sgv, it is also distinguishable.

Algorithm 1 presents the first part of the Bucket algorithm. In this algorithm, the functions

head(Q) and body(Q) are used to retrieve the head and body of a conjunctive query Q; the predicate

distinguishable(var, Q) is used to indicate that the variable var appears in head(Q); the function

predicate(p(X)) returns the predicate p in the query subgoal p(X); the function argument(i, q) returns

the i-th argument in subgoal q; and the function newVariable(Q, V) returns a new variable name

unused in the query Q or the set of views V.
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Algorithm 1 CreateBuckets Algorithm [50, 34]
Require: V : set of View; m : integer; Q: ConjunctiveQuery (with m subgoals)
1: procedure createBuckets(V, Q)
2: for all i ∈ 1 ≤ i ≤ m do
3: Bucketi ← ∅
4: end for
5: for all q ∈ body(Q) do
6: for all v ∈ V do
7: for all w ∈ body(v) do
8: if predicate(q) = predicate(w) then
9: if y = argument(k, w) ∧ distinguishable(y, v) then
10: ψ(y) = argument(k, q)
11: else
12: ψ(y) = newVariable(Q, V)
13: end if
14: if satisfiable(body(Q) ∧ (∀ p : p ∈ body(v) : ψ(p))) then
15: if (∀ a, i : distinguishable(a, Q) ∧ a = argument(i, q) : distinguishable(argument(i, w),v)) then
16: Bucketi ← Bucketi

⋃
{ ψ(head(v)) }

17: end if
18: end if
19: end if
20: end for
21: end for
22: end for
23: end procedure

First, a bucket for each query subgoal is initialized as empty (lines 2-4). Then, the views that

may be used to cover a query subgoal are added in the query subgoal bucket (lines 5-22). For each

query subgoal, each view subgoal is considered if they share the same predicate (line 8), and the

mapping is built according to the condition of distinguishable of the variable in the view subgoal. If

it is distinguishable, then the variable in the view subgoal is mapped to it, but if it is not, a new

variable is mapped (lines 9-13). Then if the query subgoals and the view subgoals, with the variable

replacement induced by the mapping, are mutually satisfiable (line 14), 2 and the distinguishable

variables in the query are mapped to distinguishable variables in the view (line 15), then the view

head with the variable replacement induced by the mapping is included in the bucket (line 16).

Proposition 1. The time complexity of Algorithm 1 is O(n×m× k × l), where n is the number of

query subgoals, m is the number of views, k is the maximum number of view goals, l is the maximum

number of arguments per query or view subgoal

Listing 4.10 – Conjunctive query that asks for authors that have read books from authors that write

books in the same category than they do
q (A1) :− hasRead (A1 , A2 ) , au tho r (T1 , A1 ) , au tho r (T2 , A2 ) , bookCategory (T1 , C) , bookCategory (T2 , C)

Listing 4.11 – LAV mappings
s1 (T, A) ⊆ book (T) , au tho r (T, A)

2. For conjunctive queries as defined in Section 2.2 without inferences, these expressions are always mutually
satisfiable, but the inclusion of constraints like Var > value may made them not mutually satisfiable.
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s2 (P , R , D) ⊆ book (D) , hasRead (P , A) , au tho r (D, A) , r e v i e w s (D, R)

s3 (T, C) ⊆ book (T) , bookCategory (T, C) , au tho r (T, A) , au tho rCa tego ry (A, C)

s4 (T, A) ⊆ book (T) , au tho r (T, A)

For query given in Listing 4.10, and views in Listing 4.11, the algorithm builds five buckets, one

for each query subgoal as in Table 4.1.

For the second subgoal, author(T1, A1), the view s1(T1, A1) has been included as the mapping

ψ(A) = A1, ψ(T ) = T1, makes s1 second subgoal author(T, A), equal to the query subgoal, and

distinguishable variable A1 in the query corresponds to distinguishable variable A in the view. But

view s3(T1, X7) has not been included in this bucket because the variable A, distinguishable in the

query, can only correspond to an existential variable in the view.

Table 4.1 – Buckets for query in Listing 4.10, and views in Listing 4.11

hasRead(A1, A2) author(T1, A1) author(T2, A2) bookCategory(T1, C) bookCategory(T2, C)
s2(A1, X1, X2) s1(T1, A1) s1(T2, A2) s3(T1, C) s3(T2, C)

s4(T1, A1) s2(X5, X6, T2)
s3(T2, X8)
s4(T2, A2)

In the second part of the Bucket algorithm [50, 34], the Cartesian product of the built buckets

is considered. Each element of this Cartesian product is a possibly contained rewriting, having one

element from each bucket to cover the corresponding query subgoal. Each possibly contained rewrit-

ing should satisfy two conditions to be a valid contained rewriting: (i) they should be satisfiable;

(ii) they should be contained in the query. Join predicates can be added to the possible rewritings

in order to make them contained in the query.

Listing 4.12 gives the eight possible contained rewritings. Rewriting r1 includes the first element

of each bucket to cover the query subgoals, rewriting r2 includes the second element of the bucket

for the third query subgoal, and the first element for all the other buckets. In r2 the same view (s2 )

is used to cover the first and third subgoals, while the r1 two different views, s2 and s1, are used to

cover the first and third subgoals.

Listing 4.12 – Cartesian product of the buckets in Table 4.1, these queries are the possibly contained

query rewritings
r1 (A1) :− s2 (A1 , X1 , X2 ) , s1 (T1 , A1 ) , s1 (T2 , A2 ) , s3 (T1 , C) , s3 (T2 , C)

r2 (A1) :− s2 (A1 , X1 , X2 ) , s1 (T1 , A1 ) , s2 (X5 , X6 , T2 ) , s3 (T1 , C) , s3 (T2 , C)

r3 (A1) :− s2 (A1 , X1 , X2 ) , s1 (T1 , A1 ) , s3 (T2 , X8 ) , s3 (T1 , C) , s3 (T2 , C)

r4 (A1) :− s2 (A1 , X1 , X2 ) , s1 (T1 , A1 ) , s4 (T2 , A2 ) , s3 (T1 , C) , s3 (T2 , C)
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r5 (A1) :− s2 (A1 , X1 , X2 ) , s4 (T1 , A1 ) , s1 (T2 , A2 ) , s3 (T1 , C) , s3 (T2 , C)

r6 (A1) :− s2 (A1 , X1 , X2 ) , s4 (T1 , A1 ) , s2 (X5 , X6 , T2 ) , s3 (T1 , C) , s3 (T2 , C)

r7 (A1) :− s2 (A1 , X1 , X2 ) , s4 (T1 , A1 ) , s3 (T2 , X8 ) , s3 (T1 , C) , s3 (T2 , C)

r8 (A1) :− s2 (A1 , X1 , X2 ) , s4 (T1 , A1 ) , s4 (T2 , A2 ) , s3 (T1 , C) , s3 (T2 , C)

All the possibly contained rewritings given in Listing 4.12 are satisfiable as there are no two

predicates in the same query that can produce any contradiction. However, not all of them are

contained in the query. The first query in Listing 4.12, r1, that uses view s2 to cover the first

subgoal and view s1 to cover the third subgoal, is not contained in the query, q, given in Listing 4.10.

The condition imposed on the first and third query subgoals with the shared variable A2, cannot

be satisfied by view subgoals in s2 and s1, because query variable A2 has been mapped to a non

distinguishable variable in s2. On the other hand, r2, that uses s2 to cover the first and third query

subgoals, can be contained in the query if the join predicates X2 = T2 and A1 = X5 are added to

s2. Adding the constraints imposed by these join predicates can be also done by replacing variables

X2 and X5 by T2 and A1, furthermore, after replacing the variables one of the occurrences of view

s2 can be safely removed. Notice that the difference among the queries given in Listing 4.12, may

be subtle, as it is the case for r1 and r2. s2 is already present in r1 and it is only used to cover the

first query subgoal, while in r2 it is used to cover both the first and third query subgoals.

From the eight possible contained rewritings given in Listing 4.12, only the queries r2 and r6 are

contained in q. Valid rewritings, after variable replacing and simplification, are given in Listing 4.13.

The maximally contained rewriting is r2 ⋃ r6.

Listing 4.13 – q’s valid contained rewritings, r2 and r6, obtained from the queries given in Listing 4.12
q (A1) :− hasRead (A1 , A2 ) , au tho r (T1 , A1 ) , au tho r (T2 , A2 ) , bookCategory (T1 , C) , bookCategory (T2 , C)

r2 (A1) :− s2 (A1 , X1 , T2 ) , s1 (T1 , A1 ) , s3 (T1 , C) , s3 (T2 , C)

r6 (A1) :− s2 (A1 , X1 , T2 ) , s4 (T1 , A1 ) , s3 (T1 , C) , s3 (T2 , C)

The MiniCon Algorithm

The MiniCon algorithm [65, 34] is an optimization of the Bucket algorithm that avoids the last

verification step by a more complex first step. The MiniCon algorithm uses MiniCon Descriptors

(MCDs) instead of buckets. The number of combinations of MCDs is considerably lower than for the

buckets, and all the resulting rewritings are contained in the query by construction. For each query

subgoal, if a view subgoal sgv covers a query subgoal sgq, all the query subgoals that share variables
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with sgq are considered together, and further checking is done to assess that these query subgoals

may be covered by view subgoals in a compatible way. Then, a MCD is created and it includes the

view head with the proper mapping, and the covered subgoals. To formally define MCDs, the term

head homomorphism is used. A head homomorphish h for view V is a variable mapping from the

variables in V to the variables in V , that is the identity on existential variables, but may make two

distinguished variables equal.

Definition 9 (MiniCon descriptions [65]). An MCD C for a query Q over a view V is a tuple of the

form (hC, V (Ȳ )C, ϕC, GC) where hC is a head homomorphism on V, V (Ȳ )C is the result of applying

hC to V, i.e., Ȳ=hC(Ā), where Ā are the head variables of V, ϕC is a partial mapping from Vars(Q)

to hC(Vars(V)), GC is a subset of the subgoals in Q which are covered by some subgoal in hC(V)

using the mapping ϕC (note: not all such subgoals are necessarily included in GC).

If GC has the minimum size such that the conditions are satisfied, then a set of MCDs with

disjoint subgoals can be built, and the combination of MCDs is straightforward. Query rewritings

are obtained by combining MCDs such that all the query subgoals are covered. In order to reduce

the number of MCDs combinations, the MiniCon algorithm obtains MCDs that satisfy Property 1.

Property 1 (Property 1 [65]). Let C be an MCD for Q over V. Then C can only be used in a

non-redundant rewriting of Q if the following conditions hold:

C1 For each head variable x of Q which is in the domain of ϕC, ϕC(x) is a head variable in hC(V).

C2 If ϕC(x) is an existential variable in hC(V), then for every g, subgoal of Q, that includes x: (1)

all the variables in g are in the domain of ϕC ; and (2) ϕC(g) ∈ hC(V )

When Property 1 is ensured, then rewriting construction is easily done thanks to Property 2.

Property 2 (Property 2 [65]). Given a query Q, a set of views V, and the set of MCDs C for Q

over the views in V, the only combinations of MCDs that can result in non-redundant rewritings of

Q are of the form C1,...,Cl, where:

D1 GC1

⋃ . . . ⋃
GCl

= Subgoals(Q), and

D2 for every i 6= j, GCi

⋂
GCj

= ∅

Algorithm 2 presents the first part of the MCD algorithm. Similarly to the Bucket algorithm, for

each query subgoal, each view and its goals are considered to cover the query subgoal (lines 3-12).
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Algorithm 2 MiniCon first part: form MCDs [65]
Require: Q : ConjunctiveQuery; V : set of View (defined as ConjunctiveQuery)
Ensure: C: set of MCD
1: function formMCDs(Q, V)
2: C ← ∅
3: for all q ∈ body(Q) do
4: for all v ∈ V do
5: for all w ∈ body(v) do
6: if There is a mapping ϕ and head homomorphism on V, h, such that ϕ(q) = h(w) then
7: h ← the least restrictive homomorphism h such that ϕ(q) = h(w)
8: C ← C

⋃
{ (hC , V (Ȳ )C , ϕC , GC) : h ⊆ hC ∧ ϕ ⊆ ϕC ∧ (hC , V (Ȳ )C , ϕC , GC) is minimal for Property 1 }

9: end if
10: end for
11: end for
12: end for
13: return C
14: end function

Head homomorphism h and mapping ϕ are looked up (line 6), and their extensions that satisfying

Property 1 cover the least number of query subgoals, are used to form the MCDs (line 8).

Proposition 2. The time complexity of Algorithm 2 is O(nn×m×kn× ln), where n is the number of

query subgoals, m is the number of views, k is the maximum number of view goals, l is the maximum

number of arguments per query or view subgoal.

The first part of the MiniCon algorithm has higher time complexity than the first part of the

Bucket algorithm, as the variables from the set of query subgoals that share existential variables

should be mapped to a set of view subgoal variables to satisfy C2 from Property 1. But the overall

complexity for both algorithms is the same: O((n×m×k)n), where n is the number of query subgoals,

m is the number of views, k is the maximum number of view goals, l is the maximum number of

arguments per query or view subgoal (and l is dominated by k) [65].

Table 4.2 – MCDs for query in Listing 4.10 and views in Listing 4.11, for h and ϕ identity part has
been omitted, i.e., h(X) = X (ϕ(X)=X) for any other variable in the domain of h (ϕ)

V(Ȳ ) h ϕ G
s1(T, A) T1→ T, A1 → A 2
s1(T, A) T2→ T, A2 → A 3
s2(P, R, D) A1→ P, A2 → A, T2→ D 1, 3
s3(T, C) T1→ T 4
s3(T, C) T2→ T 5
s4(T, A) T1→ T, A1 → A 2
s4(T, A) T2→ T, A2 → A 3

For the query given in Listing 4.10, and the views in Listing 4.11, the MiniCon algorithm builds

four MCDs, as depicted in Table 4.2. For view s4, two MCDs have been built, one for the fourth

subgoal and another for the fifth subgoal, as variable C in view s4 is distinguishable and joins on
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that variable can be enforced without having to cover both subgoals in the same MCD. Notice that

no MDC has been built for view s3 and the third subgoal. View s3 is not included for the third

subgoal because variable A2 is existential in the view and the view does not cover all the query

subgoals that involve the variable A2.

Listing 4.14 – Valid contained rewritings, r1 and r2, obtained from the combination of MCDs in

Table 4.2
q (A1) :− hasRead (A1 , A2 ) , au tho r (T1 , A1 ) , au tho r (T2 , A2 ) , bookCategory (T1 , C) , bookCategory (T2 , C)

r1 (A1) :− s2 (A1 , X1 , T2 ) , s1 (T1 , A1 ) , s3 (T1 , C) , s3 (T2 , C)

r2 (A1) :− s2 (A1 , X1 , T2 ) , s4 (T1 , A1 ) , s3 (T1 , C) , s3 (T2 , C)

Listing 4.14 presents the only two valid contained rewritings obtainable from the MCDs in Ta-

ble 4.2, these rewritings are equivalent to the rewritings given in Listing 4.13, and obtained using

the Bucket algorithm.

MCDSAT and SSD-SAT

MCDSAT [10] is a logic based method to produce MiniCon Descriptors (MCDs) and rewritings

as translations of models for logical theories. These theories, called MCD theory and extended

theory, model the rules that any MCD or rewriting must satisfy. These theories are compiled into

d-DNNFs [24], i.e., deterministic, decomposable negation normal form, for which model counting

can be done in polynomial time. This query rewriter benefits from existing d-DNNFs compilers to

produce rewritings faster than the traditional MiniCon implementation [10].

Izquierdo et al [40] extend the MCDSAT rewriter with constants and preferences to identify the

combination of semantic services that rewrite a user request. The expressive power of this extension

is greater but also is the complexity of the logical theories.

Graph-based Query Rewriting (GQR)

Graph-based Query Rewriting (GQR) [44] models query and view subgoals as graphs. These

graphs abstract from variable names, and a preprocessing step is performed over the views to com-

pactly represent all the views with few graphs. Then, when a query is posed, for each query subgoal

relevant graphs are selected, and graphs are incrementally combined in order to produce larger graphs

that cover more query subgoals. The view graphs correspond to partial rewritings, and differently

from previous rewriters, rewritings may be produced incrementally as the partial rewritings are ex-
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tended to cover all the query subgoals. Additionally, GQR prunes the partial rewritings that cannot

cover all the query joins in order to keep only the partial rewritings that can actually be extended

to become valid rewritings. This is another advantage with respect to other rewriters, as bucket

elements or MCDs may be produced even if they are not used in any valid rewriting.

4.2.4 GUN

GUN [55] is a strategy to maximize the number of answers obtained from a given set of k

rewritings; GUN aggregates the data obtained from the relevant views present in those k rewritings

and executes the query over it. Even if GUN can maximize the number of obtained answers, it still

depends on query rewritings as input, and has no criteria to order the relevant views.

4.3 Summary

Answering SPARQL queries using RDF sources has been the object of several studies [2, 11, 35,

36, 46]. Data integration has been done in databases following two main approaches: data warehous-

ing [77], and mediators and wrappers [85]. Data warehousing allows for the local optimization of

queries, but data needs to be frequently updated to avoid stale answers, and it provides optimization

for a limited set of queries. Local-as-View (LAV) is the best suited mediator approach for dynamic

contexts as the Web [1]. Algorithms to answer queries using LAV views have a high complexity [65],

and as in the Semantic Web context the queries may have a larger number of subgoals and the

number of views may be huge, then its usability is limited.





5
SemLAV

5.1 Preliminaries

Mediators are components of the mediator-wrapper architecture [85]. They provide a uniform

interface to autonomous and heterogeneous data sources. Mediators also rewrite an input query into

queries against the data sources, and merge data collected from the selected sources. Wrappers are

software components that assure the interoperability between sources and mediators by translating

data collected from the sources into the schema and format understood by the mediators; the schema

exposed by the wrappers is part of the schema exposed by its corresponding mediator.

The problem of processing a query Q over a set of heterogeneous data sources corresponds to

answer Q using the instances of these sources. Although this problem has been extensively studied by

the Database community [34], it has not been addressed for SPARQL queries. The following defini-

tions are taken from Database existing solutions. Read the Section 2.2 if background on conjunctive

queries is needed, and Section 4.2 if background on Data Integration is needed.

Definition 10 (LAV Integration System [48]). A LAV integration system is a triple IS=< G,S,M >

where G is a global schema, S is a set of sources or source schema, and M is a set of views that map

sources in S into the global schema G.

41
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For the rest of this part, we assume that views in M are limited to conjunctive queries. Both

views and mediator queries are defined over predicates in G.

Theorem 5.1.1 (Number of Candidate Rewritings [1]). Let N , O and M be the number of query

subgoals, the maximal number of views subgoals, and the set of views, respectively. The number of

candidate rewritings in the worst case is: (O × |M |)N .

Theorem 5.1.2 (Complexity of Finding Rewritings [34]). The problem of finding an equivalent

rewriting is NP-complete.

Consider the maximally-contained rewriting of a query Q (Definition 8, Section 4.2.2), Q′, that

uses as language, L, the union of conjunctive queries. View v can be used to answer query Q if there

is one conjunctive query r ∈ Q′ such that v appears as the relation of one of r query subgoals. As

Q′ v Q, then r v Q. View v is called a relevant view atom. The next definition formalizes this

notion.

Definition 11 (Relevant View Atom [26]). A view atom v is relevant for a query atom g if one of

its subgoals can play the role of g in the rewriting. To do that, several conditions must be satisfied:

(1) the view subgoal should be over the same predicate as g, and (2) if g includes a distinguished

variable of the query, then the corresponding variable in v must be a distinguished variable in the

view definition.

The concepts of relevant view and coverage have been widely used in the literature [26, 34];

nevertheless, they have been introduced in an informal way. The following definitions precise the

properties that are assumed in this chapter.

Definition 12 (Relevant Views). Let Q be a conjunctive query, M = {v1, . . . , vm} be a set of view

definitions, and q be a query subgoal, i.e., q ∈ body(Q). The set of relevant views for q corresponds

to the set of relevant view atoms for the query subgoal q, i.e., RV (M, q) = {τ(v) : v ∈ M ∧ w ∈

body(v) ∧ ψ(q) = τ(w) ∧ (∀x : x ∈ V ars(q) ∧ distinguished(x,Q) : distinguished(x, v))} 1. The

set of relevant views for Q corresponds to the views that are relevant for at least one query subgoal,

i.e., RV (M,Q) = {τ(v) : q ∈ body(Q) ∧ v ∈ M ∧ w ∈ body(v) ∧ ψ(q) = τ(w) ∧ (∀x : x ∈

V ars(q) ∧ distinguished(x,Q) : distinguished(x, v))}.

1. ψ(q) corresponds to the application of ψ to the variables of q (idem for τ(w)).
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Definition 13 (Coverage). Let Q be a conjunctive query, v be a view definition, q be a query subgoal,

and w be a view subgoal. The predicate covers(w, q) holds if and only if w can play the role of q in

a query rewriting.

We illustrate some of the given definitions for the LAV-based query rewriting approach using

SPARQL queries. This will provide evidence of the approach limitations even for simple queries. In

the following example, the global schema G is defined over the Berlin Benchmark [14] vocabulary.

Consider a SPARQL query Q on G; Q has seven subgoals and returns information about products

as shown in Listing 5.1. Listing 5.3 presents Q as a conjunctive query, where triple patterns are

represented as query subgoals.

Listing 5.1 – SPARQL query Q
SELECT *

WHERE {

?X1 rdfs:label ?X2 .

?X1 rdfs:comment ?X3 .

?X1 bsbm:productPropertyTextual1 ?X8 .

?X1 bsbm:productPropertyTextual2 ?X9 .

?X1 bsbm:productPropertyTextual3 ?X10 .

?X1 bsbm:productPropertyNumeric1 ?X11 .

?X1 bsbm:productPropertyNumeric2 ?X12 .

}

Listing 5.2 – SPARQL View s1
SELECT *

WHERE {

?X1 rdfs:label ?X2 .

?X1 rdf:type ?X3 .

?X1 bsbm:productFeature ?X4 .

}

Listing 5.3 – Q expressed as a conjunctive query
Q(X1, X2, X3, X8, X9, X10, X11, X12) :- label(X1, X2), comment(X1, X3),

productPropertyTextual1(X1, X8), productPropertyTextual2(X1, X9),

productPropertyTextual3(X1, X10), productPropertyNumeric1(X1, X11),

productPropertyNumeric2(X1, X12)
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Listing 5.4 – Views s1-s10 from [21]
s1(X1,X2,X3,X4):-label(X1,X2),type(X1,X3),productfeature(X1,X4)

s2(X1,X2,X3):-type(X1,X2),productfeature(X1,X3)

s3(X1,X2,X3,X4):-producer(X1,X2),label(X2,X3),publisher(X1,X2),

productfeature(X1,X4)

s4(X1,X2,X3):-productfeature(X1,X2),label(X2,X3)

s5(X1,X2,X3,X4,X5,X6,X7):-label(X1,X2),comment(X1,X3),producer(X1,X4),

label(X4,X5),publisher(X1,X4),productpropertytextual1(X1,X6),

productpropertynumeric1(X1,X7)

s6(X1,X2,X3,X4,X5):-label(X1,X2),product(X3,X1),price(X3,X4),vendor(X3,X5)

s7(X1,X2,X3,X4,X5,X6):-label(X1,X2),reviewfor(X3,X1),reviewer(X3,X4),

name(X4,X5),title(X3,X6)

s9(X1,X2,X3,X4):-reviewfor(X1,X2),title(X1,X3),text(X1,X4)

s10(X1,X2,X3):-reviewfor(X1,X2),rating1(X1,X3)

s11(X1,X2,X3,X4,X5,X6,X7):-label(X1,X2),comment(X1,X3),producer(X1,X4),

label(X4,X5),publisher(X1,X4),productpropertytextual2(X1,X6),

productpropertynumeric2(X1,X7)

s12(X1,X2,X3,X4,X5,X6,X7):-label(X1,X2),comment(X1,X3),producer(X1,X4),

label(X4,X5),publisher(X1,X4),productpropertytextual3(X1,X6),

productpropertynumeric3(X1,X7)

s13(X1,X2,X3,X4,X5,X6,X7):-label(X1,X2),product(X3,X1),price(X3,X4),

vendor(X3,X5),offerwebpage(X3,X6),homepage(X5,X7)

s14(X1,X2,X3,X4,X5,X6,X7):-label(X1,X2),product(X3,X1),price(X3,X4),

vendor(X3,X5),deliverydays(X3,X6),validto(X3,X7)

s15(X1,X2,X3,X4,X5,X6,X7,X8,X9):-product(X1,X2),price(X1,X3),vendor(X1,X4),

label(X4,X5),country(X4,X6),publisher(X1,X4),reviewfor(X7,X2),

reviewer(X7,X8),name(X8,X9)

Consider M composed of 14 data sources defined as conjunctive views over the global schema G

as in Listing 5.4; the Berlin Benchmark [14] vocabulary terms are represented as binary predicates in

the conjunctive queries that define the data sources. Source s1 can be defined as in Listing 5.2; note

that we have done just a syntactic translation from this SPARQL query to the conjunctive query

presented in Listing 5.4.

For instance, s1 retrieves information about product type, label and product feature. The

rdfs:label predicate is a general predicate. Commonly, general predicates are part of the defi-

nition of many data sources, and the number of rewritings of SPARQL queries that comprise triple

patterns bound to general predicates can be very large. The general predicate rdfs:label in query

Q can be mapped to views s1, s3-s7, s11-s15.
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Listing 5.5 – A query rewriting for Q
r(X1,X2,X3,X8,X9,X10,X11,X12) :- s6(X1,X2,_0,_1,_2),

s5(X1,_3,X3,_4,_5,_6,_7), s5(X1,_8,_9,_10,_11,X8,_12),

s11(X1,_13,_14,_15,_16,X9,_17), s12(X1,_18,_19,_20,_21,X10,_22),

s5(X1,_23,_24,_25,_26,_27,X11), s11(X1,_28,_29,_30,_31,_32,X12)

Listing 5.5 presents a query rewriting for Q, its subgoals cover each of the query subgoals of Q,

e.g., s6(X1, X2,_0,_1,_2) covers the first query subgoal of Q, label(X1, X2). ψ(label(X1, X2)) =

τ(label(X1, X2)); the mapping τ from view variables to rewriting variables is: τ(X1) = X1, τ(X2) =

X2, τ(X3) = _0, τ(X4) = _1, τ(X5) = _2, and the mapping ψ from query variables to rewriting

variables is: ψ(Xi) = Xi, for all Xi in the query head. Then, view s6(X1, X2,_0,_1,_2) is relevant

for answering the first query subgoal of Q. Notice that the third, fourth and fifth projected variables

of s6 correspond to existential variables because they are not relevant to cover the first query subgoal

of Q with s6.

To illustrate how the number of rewritings for Q can be affected by the number of data sources

that use the general predicate rdfs:label, we run the LAV query rewriter MCDSAT [10]. 2 First,

if 14 data sources are considered, Q can be rewritten in 42 rewritings. For 28 data sources, there

are 5,376 rewritings, and 1.12743e+10 rewritings are generated for 224 sources. 3 With one simple

query, we can illustrate that the number of rewritings can be extremely large, being in the worst case

exponential in the number of query subgoals and polynomial on the number of views. In addition

to the problem of enumerating this large number of query rewritings, the time needed to evaluate

them may be excessively large. Even using reasonable timeouts, only a small number of rewritings

may be produced.

Table 5.1 shows the number of rewritings obtained by the state-of-the-art LAV rewriters GQR[44],

MCDSAT[10] and MiniCon[65], when 224 views are considered for Q and timeouts are set up to 5,

10 and 20 minutes. Note that all these rewriters are able to produce only empty results or a small

number of rewritings (up to 898,766 out of 1.12743e+10 ≈ 0.008 %).

In summary, even if the LAV approach constitutes a flexible approach to integrate data from

heterogeneous data sources, query rewriting and processing tasks may be unfeasible in the context of

SPARQL queries. Either the number of query rewritings is too large to be enumerated or executed in

2. MCDSAT [10] is the only query rewriting tool publicly available that counts the number of rewritings without
having to enumerate all of them.

3. The 14 data sources setup is defined as in Listing 5.4, the one with 28 data sources has two views for each of
the views in Listing 5.4, and the one with 224 sources has 16 views for each of the views in Listing 5.4
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Table 5.1 – Number of rewritings obtained from the rewriters GQR, MCDSAT and MiniCon with
timeouts of 5, 10 and 20 minutes. Using 224 views and query Q

Rewriter 5 minutes 10 minutes 20 minutes
GQR 0 0 0

MCDSAT 211,125 440,308 898,766
MiniCon 0 0 0

a reasonable time. To overcome these limitations and make feasible the LAV approach for SPARQL

queries, we propose a novel approach named SemLAV. SemLAV identifies and ranks the relevant

views of a query, and executes the query over the data collected from the relevant views; thus,

SemLAV is able to output a high proportion of the answer in a short time.

5.2 The SemLAV Approach

SemLAV is a scalable LAV-based approach for processing SPARQL queries. It is able to produce

answers even for SPARQL queries and integration systems with a large number of views and no

statistics. SemLAV follows the traditional mediator-wrapper architecture [85]. Schemas exposed by

the mediators and wrappers are expressed as RDF vocabularies. Given a SPARQL query Q over a

global schema G and a set of sound viewsM = {v1, . . . , vm }, SemLAV executes the original query Q

rather than generating and executing rewritings as in traditional LAV approaches. SemLAV builds

an instance of the global schema on-the-fly with data collected from the relevant views. The relevant

views are considered in an order that enables to produce results as soon as the query Q is executed

against this instance.

Contrary to traditional wrappers which populate structures that represent the heads of the cor-

responding views, SemLAV wrappers return RDF Graphs composed of the triples that match the

triple patterns in the definition of the views. SemLAV wrappers could be more expensive in space

than the traditional ones. Moreover, contrarily to existing mediator approaches, data is extracted

from the sources and stored in the mediator, but only during query execution. However, they ensure

that original queries are executable even for full SPARQL queries, and they make query execution

dependent on the number of views rather than on the number of rewritings.

To illustrate the SemLAV approach, consider a SPARQL query Q with four subgoals given in

Listing 5.6, and a set M of five views given in Listing 5.7.
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Listing 5.6 – Products, features, and vendor of the offers
SELECT * WHERE {

?Offer bsbm:vendor ?Vendor .

?Vendor rdfs:label ?Label .

?Offer bsbm:product ?Product .

?Product bsbm:productFeature ?ProductFeature .

}

Listing 5.7 – Views that describe contents of five sources having data about products
v1(P,L,T,F):-label(P,L),type(P,T),productfeature(P,F)

v2(P,R,L,B,F):-producer(P,R),label(R,L),publisher(P,B),productfeature(P,F)

v3(P,L,O,R,V):-label(P,L),product(O,P),price(O,R),vendor(O,V)

v4(P,O,R,V,L,U,H):-product(O,P),price(O,R),vendor(O,V),label(V,L),offerwebpage(O,U),homepage(V,H)

v5(O,V,L,C):-vendor(O,V),label(V,L),country(V,C)

In the traditional LAV approach, 60 rewritings are generated, and the execution of these 60

rewritings produces all possible answers. 4 However, the generation and execution of the rewritings

is time-consuming, and uses a non-negligible amount of memory to store data collected from views

present in the rewritings. If there are not enough resources to execute all these rewritings, as many

rewritings as possible will be executed. We apply a similar idea in SemLAV, if it is not possible to

build the whole global schema instance to ensure a complete answer, then a partial instance will be

built. The partial instance will include data collected from as many relevant views as the available

resources allow, and if the relevant views are selective, the size of the partial instance should remain

small and fit in memory.

The execution of the query over this partial schema instance will cover the results of executing

a number of rewritings. The number of rewritings covered by the execution of Q over the partial

schema instance could be exponential in the number of views included in the instance. Therefore, the

size of the set of covered rewritings may be even greater than the number of rewritings executable

in the same amount of time.

The order in which views are included in the partial global schema instance impacts the number of

covered rewritings. Consider two different orders for including the views of the above example: v5, v1,

v3, v2, v4 and v4, v2, v3, v1, v5. Table 5.2 considers partial global schema instances of different sizes.

For each partial global schema instance, the included views and the number of covered rewritings are

4. Rewritings can be obtained with the Bucket algorithm given in Section 4.2.3, in this case all the queries in the
Cartesian product of the buckets are valid rewritings because no contradictions among the predicates are attainable
and all the variables in the views are distinguishable.



48 CHAPTER 5. SEMLAV

Table 5.2 – Impact of the different views ordering on the number of covered rewritings

# Included Order One Order Two
views (k) Included views (Vk) # Covered Included views (Vk) # Covered

rewritings rewritings
1 v5 0 v4 0
2 v5, v1 0 v4, v2 2
3 v5, v1, v3 6 v4, v2, v3 12
4 v5, v1, v3, v2 8 v4, v2, v3, v1 32
5 v5, v1, v3, v2, v4 60 v4, v2, v3, v1, v5 60

presented. Executing Q over the growing instances corresponds to the execution of a quite different

number of rewritings. For instance, if only four views are included, one order corresponds to the

execution of 32 rewritings while the another one corresponds to the execution of only eight rewritings.

If all relevant views for query Q are included, then a complete answer is produced. However, if the

number of relevant views is considerably large, it might be only possible to include k relevant views,

Vk, in the global schema instance. As it has been shown in the previous example, the actual set of

views, to be included in the global schema instance, determines the number of covered rewritings.

With no knowledge about data distribution, we can only suppose that each rewriting has nearly

the same chances of producing answers. Therefore, in order to increase the chances of obtaining

answers from the global schema instance, we should include the set of k views that cover more query

rewritings.

Maximal Coverage Problem (MaxCov). Given an integer k > 0, a query Q on a global schema

G, a set M of sound views over G, and a set R of conjunctive queries whose union is a maximally-

contained rewriting of Q inM . The Maximal Coverage Problem is to find a subset Vk ofM comprised

of k relevant views for Q, Vk ⊆ M ∧ (∀v : v ∈ Vk : v ∈ RV (Q,M)) ∧ |Vk| = k, such that the set of

rewritings covered by Vk, Coverage(Vk, R), is maximal for all subsets of M of size k, i.e., there is

no other set of k views that can cover more rewritings than Vk. Coverage(Vk, R) is defined as:

Coverage(Vk, R) = {r : r ∈ R ∧ (∀p : p ∈ body(r) : p ∈ Vk)} (5.1)

The MaxCov problem has as input a solution to the Maximally-Contained Rewriting problem.

Nevertheless, using this for building a MaxCov solution would be unreasonable since it makes the

MaxCov solution at least as expensive as the rewriting generation. Instead of generating the rewrit-
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ings, we define a formula that estimates the number of covered rewritings when Q is executed over

a global schema instance that includes a set of views. It is the product of the number of ways each

query subgoal can be covered by the set of views. For a query Q(X̄) :- p1(X̄1), . . . pn(X̄n) using only

views in Vk this formula is expressed as:

NumberOfCoveredRewritings(Q, Vk) = Π1≤i≤n|Use(Vk, pi(X̄i))|, (5.2)

where Use(Vk, p) = Σv∈Vk
Σw∈body(v)∧covers(w,p)1. This formula computes the number of candidate

rewritings, and it is also the exact number of covered rewritings when all the view variables are

distinguished; this is because the coverage of each query subgoal by a given view can be considered in

isolation, and queries composed by views that cover all the query subgoals are valid query rewritings.

Otherwise, this expression is only an upper bound of the number of covered rewritings of Q with

respect to Vk.

Consider the second proposed ordering of the views in the above example, the numbers of views

in V4 that cover each query subgoal are:

— two for the first query subgoal (v4 and v3),

— four for the second query subgoal (v4, v2, v3 and v1),

— two for the third query subgoal (v4 and v3), and

— two for the fourth query subgoal (v2 and v1).

Thus, the number of covered rewritings is 32 (2 × 4 × 2 × 2).

Next, we detail a solution to the MaxCov problem under the assumption that views only contain

distinguished variables.

5.2.1 The SemLAV Relevant View Selection and Ranking Algorithm

The relevant view selection and ranking algorithm is defined in Algorithm 3. This algorithm

finds the views that cover each query subgoal (lines 2-13). This algorithm creates a bucket for each

query subgoal q, where a bucket is a set of relevant views; this resembles the first step of the Bucket

algorithm [50, 34] (lines 2-13). Additionally, the algorithm sorts the buckets views according to the

number of covered subgoals (lines 14-17). Hence, the views that are more likely to contribute to the

answer will be considered first.
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Algorithm 3 The Relevant View Selection and Ranking
Require: Q : SPARQLQuery; M : set of View (defined as ConjunctiveQuery)
Ensure: Buckets: Predicate → list of View
1: function relevantViewSelectionAndRanking(Q, M)
2: for all q ∈ body(Q) do
3: b← ∅
4: for all v ∈M do
5: for all w ∈ body(v) do
6: if There are mappings τ , ψ, such that ψ(q) = τ(w) then
7: vi ← λ(v) . λ(v) replaces all variables ai in the head of v by τ(ai)
8: insert(b, vi) . add vi to the bucket if it is not redundant
9: end if
10: end for
11: end for
12: Buckets(q) ← b
13: end for
14: for all q ∈ body(Q) do
15: b← Buckets(q)
16: sortBucket(Buckets,b) . MergeSort with key (#covered buckets,#view subgoals)
17: end for
18: return Buckets
19: end function

The mapping τ (line 6) relates view variables to query variables as stated in Definition 12.

The sortBucket(buckets, b, q) procedure (line 16) decreasingly sorts the views of bucket b ac-

cording to the number of covered subgoals. Views covering the same number of subgoals are sorted

decreasingly according to their number of subgoals. Intuitively, this second sort criterion prioritizes

the more selective views, reducing the size of the global schema instance. The sorting is implemented

as a classical MergeSort algorithm with a complexity of O(|M| × log(|M|)).

Proposition 3. The complexity of Algorithm 3 is Max(O(N × |M| × P),O(N × |M| × log(|M|)))

where N is the number of query subgoals, M is the set of views and P is the maximal number of view

subgoals.

To illustrate Algorithm 3, consider the SPARQL query Q and the previously defined views v1-v5.

Algorithm 3 creates a bucket for each subgoal in Q as shown in Table 5.3a. For instance, the bucket of

subgoal vendor(O, V ) contains v3, v4 and v5: all the views having a subgoal covering vendor(O, V ).

The final output after executing the sortBucket procedure is described in Table 5.3b. Views v3 and

v4 cover three subgoals, but since v4 definition has more subgoals, i.e., it is more selective, v4 is

placed before v3 in all the buckets.

5.2.2 Global Schema Instance Construction and Query Execution

The global schema instance is constructed as described in Algorithm 4. Each bucket is considered

as a stack of views, having on the top the view that covers more query subgoals (line 25). Iteratively,

one view is popped from each bucket and its data is loaded into the instance (lines 28-42).
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Table 5.3 – Buckets produced by Algorithm 3, included views (Vk) obtained by Algorithm 4, and the
number of covered rewritings by Vk, for the query given in Listing 5.6

(a) Unsorted buckets

vendor(O,V) label(V,L) product(O,P) productfeature(P,F)
v3(P,L,O,R,V) v1(P,L,T,F) v3(P,L,O,R,V) v1(P,L,T,F)
v4(P,O,R,V,L,U,H) v2(P,R,L,B,F) v4(P,O,R,V,L,U,H) v2(P,R,L,B,F)
v5(O,V,L,C) v3(P,L,O,R,V)

v4(P,O,R,V,L,U,H)
v5(O,V,L,C)

(b) Sorted buckets

vendor(O,V) label(V,L) product(O,P) productfeature(P,F)
v4(P,O,R,V,L,U,H) v4(P,O,R,V,L,U,H) v4(P,O,R,V,L,U,H) v2(P,R,L,B,F)
v3(P,L,O,R,V) v3(P,L,O,R,V) v3(P,L,O,R,V) v1(P,L,T,F)
v5(O,V,L,C) v2(P,R,L,B,F)

v1(P,L,T,F)
v5(O,V,L,C)

(c) Included views

# Included views (k) Included views (Vk) # Covered rewritings
1 v4 1 × 1 × 1 × 0 = 0
2 v4, v2 1 × 2 × 1 × 1 = 2
3 v4, v2, v3 2 × 3 × 2 × 1 = 12
4 v4, v2, v3, v1 2 × 4 × 2 × 2 = 32
5 v4, v2, v3, v1, v5 3 × 5 × 2 × 2 = 60

Table 5.3c shows how the number of covered rewritings increases as views are included into

the global schema instance. Each Vk in this table is a solution to the MaxCov problem, i.e., the

number of covered rewritings for each Vk is maximal. There are two possible options regarding query

execution. Query can be executed each time a new view is included into the schema instance and

partial results will be produced incrementally (line 34); or, it can be executed after including the k

views (line 43). The first option prioritizes the time for obtaining the first answer, while the second

one favors the total time to receive all the answers of Q over Vk. The first option produces results

as soon as possible; however, in case of non-monotonic queries, i.e., queries where partial results

may not be part of the query answer, this query processing approach should not be applied. Among

non-monotonic queries, there are queries with modifiers like ORDER BY or constraints like a FILTER

that includes the negation of a bound expression. The processing of non-monotonic queries requires

all the relevant views to be included in the global schema instance in order to produce the same

answer as it is produced using all the data accessible through the views.
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Algorithm 4 The Global Schema Instance Construction and Query Execution
Require: Q : SPARQLQuery
Require: Buckets: Predicate → list of View . The buckets produced by Algorithm 3
Require: k : int
Ensure: A: set of Answer
20: function graphInstanceConstructionAndQueryExecution(Q, Buckets, k)
21: Stacks : Predicate → stack of View
22: Vk : set of View
23: G : RDFGraph
24: for all p ∈ domain(Buckets) do
25: Stacks(p) ← toStack(Buckets(p))
26: end for
27: Vk, G← ∅, ∅
28: while (∃p| : ¬empty(Stacks(p))) ∧ |Vk| < k do
29: for all p ∈ domain(Stacks) do
30: if ¬empty(Stacks(p)) then
31: v ← pop(Stack(p))
32: if v /∈ Vk then
33: load v into G . only if is not redundant
34: A← A ∪ exec(Q,G) . Option 1: Execute Q after each successful load
35: Vk ← Vk ∪ {v}
36: if |Vk| = k then
37: break
38: end if
39: end if
40: end if
41: end for
42: end while
43: A← exec(Q,G) . Option 2: execute before exit
44: return A
45: end function

Proposition 4. Considering conjunctive queries, the time complexity of Algorithm 4 in option 1 is

O(k×N × I), while the time complexity is O(N × I) for option 2. Where k is the number of relevant

views included in the instance, N the number of query subgoals, and I is the size of the constructed

global schema instance.

5.2.3 The SemLAV Properties

Given a SPARQL query Q over a global schema G, a set M of views over G, the set RV of views

in M relevant for Q, a set R of conjunctive queries whose union is a maximally-contained rewriting

of Q using M , and Vk a solution to the MaxCov problem produced by SemLAV.

— Answer Completeness: If SemLAV executes Q over a global schema instance I that includes

all the data collected from views in RV , it produces the complete answer. SemLAV outputs

the same answers as a traditional rewriting-based query processing approach:

⋃
r∈R

r(I(M)) = Q(
⋃

v∈RV
I(v)). (5.3)

— Effectiveness: if SemLAV executes Q over a global schema instance that includes all the data

collected from views in RV , it produces the complete answer, i.e., it is effective, and its effec-
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tiveness is defined to be 1. If there are some constraints in time or space, Vk might be smaller

than RV , and SemLAV effectiveness is defined as:

Effectiveness(Vk) = |Coverage(Vk, R)|
|R|

. (5.4)

The value of effectiveness is a real number between 0 and 1. With no statistics about data

distribution, it can be only supposed that each rewriting has nearly the same chances of pro-

ducing answers. Therefore, this expression computes the chances of obtaining answers when Q

is executed against a (partial) global schema instance that contains the data available through

views in Vk. In order to answer Q as fast as possible, and reduce its evaluation cost, it is

desirable for the effectiveness of Vk to be as high as possible, for all k.

— Execution Time depends on |RV |: The load and execution time of SemLAV linearly depends

on the size of the views included in the global schema instance.

— No memory blocking: SemLAV guarantees to obtain a complete answer when ⋃
v∈RV I(v) fits

into memory. If not, it is necessary to divide the set RV of relevant views into several subsets

RVi, such that each subset fits into memory and for any rewriting r ∈ R all views v ∈ body(r)

are contained in one of these subsets.

5.3 Experimental Evaluation

We compare the SemLAV approach with a traditional rewriting-based approach and analyze the

SemLAV effectiveness, memory consumption, and throughput. In order to decide which rewriting

engine will be used to compare with SemLAV, we run some preliminary experiments to compare

existing state-of-the-art rewriting engines. We consider GQR [44], MCDSAT [10], MiniCon [65],

and SSDSAT [40]. We execute these engines for 10 minutes and measure execution time in sec-

onds and the number of rewritings generated by each engine. Additionally, we use these values

to compute the throughput; throughput corresponds to the number of rewritings obtained per sec-

ond. Figures 5.1a, 5.1b and 5.1c present the execution time, number of obtained rewriting and the

throughput respectively. The GQR performance is good when the number of query rewritings is

low and the views cover few query subgoals, and it outperforms some of the other engines. That is,

this situation allows to speed up the preprocessing time consumed by GQR to build the structures
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Figure 5.1 – Comparison of state-of-the-art LAV rewriting engines for 16 queries without existential
variables and 476 views from our experimental setup. Studied engines are: GQR ( ), MCDSAT
( ), MiniCon ( ) and SSDSAT ( )
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Table 5.4 – Queries and their answer size, number of subgoals, number of rewritings, and views size

(a) Query information

Query Answer Size # Subgoals # Rewritings
Q1 6.68E+07 5 2.04E+10
Q2 5.99E+05 12 1.57E+24
Q4 2.87E+02 2 1.62E+04
Q5 5.64E+05 4 7.48E+07
Q6 1.97E+05 3 3.14E+05
Q8 5.64E+05 3 1.57E+05
Q9 2.82E+04 1 3.40E+01
Q10 2.99E+06 3 4.40E+06
Q11 2.99E+06 2 9.25E+03
Q12 5.99E+05 4 1.50E+09
Q13 5.99E+05 2 6.47E+04
Q14 5.64E+05 3 2.52E+06
Q15 2.82E+05 5 2.04E+10
Q16 2.82E+05 3 3.14E+05
Q17 1.97E+05 2 4.62E+03
Q18 5.64E+05 4 1.20E+09

(b) Views size

Views # Triples
V1-V34 201,250
V35-V68 153,523
V69-V102 53,370
V103-V136 26,572
V137-V170 5,402
V171-V204 66,047
V205-V238 40,146
V239-V272 113,756
V273-V306 24,891
V307-V340 11,594
V341-V374 5,402
V375-V408 5,402
V409-V442 78,594
V443-V476 99,237
V477-V510 1,087,281

required to generate the query rewritings. The MCDSAT performance is good in a larger number

of queries; it can produce rewritings for more queries than the other engines, particularly in queries

with a large number of triple patterns and in presence of general predicates. However, MCDSAT

does not outperform the other engines when they are able to produce rewritings. This is because

of the overhead incurred by MCDSAT by translating the problem into a logical theory to be solved

by a SAT solver. The MiniCon performance is pretty good in general, but it only produces query

rewritings when the number of rewritings is relatively small. Finally, SSDSAT is able to handle

constants; however, this feature severely impacts its performance, being able to produce rewritings

only for simple cases.

5.3.1 Experimental Hypotheses

The hypotheses of our experiments are:

— SemLAV loads the more relevant views of a query first, the SemLAV effectiveness should be

considerably high and should produce more answers than the rest of the engines in the same

amount of time.

— SemLAV builds a global schema instance using data collected from the relevant views, SemLAV
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may consume more space than a traditional rewriting-based approach.

— SemLAV produces results incrementally, it is able to produce answers sooner than a traditional

rewriting-based approach.

5.3.2 Experimental Configuration

The Berlin SPARQL Benchmark (BSBM) [14] is used to generate a dataset of 10,000,736 triples

using a scale factor of 28,211 products. Additionally, third-party queries and views are used to

provide an unbiased evaluation of our approach. In our experiments, the goal is to study SemLAV

as a solution to the MaxCov problem, and we compute the number of rewritings generated by three

state-of-the-art query rewriters. From the 18 queries and 10 views defined in [21], we leave out

the ones using constants (literals) because the state-of-the-art query rewriters are unable to handle

constants either in the query or in the views. In total, we use 16 out of 18 queries and nine out of 10

the defined views. The query triple patterns can be grouped into chained connected star-shaped sub-

queries, that have between one and twelve subgoals with only distinguished variables, i.e., queries are

free of existential variable. We define five additional views to cover all the predicates in the queries.

From these 14 views, we produce 476 views by horizontally partitioning each original view into 34

parts, such that each part produces 1/34 of the answers given by the original view.

Queries and views are described in Tables 5.4a and 5.4b. The size of the complete answer is

computed by including all the views into an RDF-Store (Jena) and executing the queries against this

centralized RDF dataset.

We implement wrappers as simple file readers. For executing rewritings, we use one named

graph per subgoal as done in [47]. The Jena 2.7.4 5 library with main memory setup is used to

store and query the graphs. The SemLAV algorithms are implemented in Java, using different

threads for bucket construction, view inclusion and query execution to improve performance. The

implementation is available in the project website 6.

5.3.3 Experimental Results

The analysis of our results focus on three main aspects: the SemLAV effectiveness, memory

consumption and throughput.
5. http://jena.apache.org/
6. https://sites.google.com/site/semanticlav/

https://sites.google.com/site/semanticlav/


5.3. EXPERIMENTAL EVALUATION 57

Table 5.5 – The SemLAV Effectiveness. For 10 minutes of execution, we report the number of
relevant views included in the global schema instance, the number of covered rewritings and the
achieved effectiveness. Effectiveness values higher than 0.5 are shown in bold

Query Included Views / # Relevant Views # Covered rewritings / # Rewritings Effectiveness
Q1 30 / 408 2.28E+06 / 2.04E+10 0.000112
Q2 194 / 408 2.05E+23 / 1.57E+24 0.130135
Q4 156 / 374 8.77E+03 / 1.62E+04 0.542017
Q5 52 / 374 3.13E+06 / 7.48E+07 0.041770
Q6 44 / 136 2.13E+04 / 3.14E+05 0.067728
Q8 81 / 136 9.36E+04 / 1.57E+05 0.595588
Q9 34 / 34 3.40E+01 / 3.40E+01 1.000000
Q10 88 / 408 3.20E+05 / 4.40E+06 0.072766
Q11 77 / 136 5.24E+03 / 9.25E+03 0.566176
Q12 238 / 408 7.70E+08 / 1.50E+09 0.514286
Q13 245 / 408 4.26E+04 / 6.47E+04 0.657563
Q14 46 / 272 1.22E+04 / 2.52E+06 0.004837
Q15 70 / 442 5.12E+08 / 2.04E+10 0.025144
Q16 82 / 136 1.90E+05 / 3.14E+05 0.602941
Q17 56 / 136 1.90E+03 / 4.62E+03 0.411765
Q18 23 / 374 2.80E+05 / 1.20E+09 0.000234
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Figure 5.2 – Maximal Graph Size during query execution for SemLAV ( ), MCDSAT ( ), GQR
( ) and MiniCon ( ) approaches

To demonstrate the SemLAV effectiveness, we execute SemLAV with a timeout of 10 minutes.

During this execution, the SemLAV algorithms select and include a subset of the relevant views; this

set corresponds to Vk as a solution to the MaxCov problem. Then, we use these views to compute

the number of covered rewritings using the formula given in Section 5.2. Table 5.5 shows the number

of relevant views considered by SemLAV, the covered rewritings and the achieved effectiveness.

Effectiveness is greater than or equal to 0.5 (out of 1) for almost half of the queries. SemLAV

maximizes the number of covered rewritings by considering views that cover more subgoals first.

The observed results confirm that the SemLAV effectiveness is considerably high. Effectiveness

depends on the number of relevant views, but this number is bounded to the number of relevant views
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Figure 5.3 – Answer Percentage obtained by SemLAV ( ), MCDSAT ( ), GQR ( ) and MiniCon
( )

that can be stored in memory. As expected, the SemLAV approach could require more space than

the traditional rewriting-based approach. SemLAV builds a global schema instance that includes all

the relevant views in Vk, whereas a traditional rewriting-based approach includes only the views in

one rewriting at the time. Figure 5.2 shows the maximal graph size in both approaches. SemLAV can

use up to 129 times more memory than the traditional rewriting-based approach (for Q17). SemLAV

can use less memory than the traditional rewriting-based approach (for Q1) for relevant views with

overlapped data.

We calculate the throughput as the number of obtained answers divided by the total execution

time. For SemLAV, this time includes view selection and ranking, contacting data sources using

the wrappers, including data into the global schema instance, and query execution time. For the

traditional rewriting-based approach, this time includes rewriting time, instead of view selection and

ranking. Table A.1 in Appendix A.1 presents the complete results of the experiments, they include

the number of answers, execution time, number of times the query is executed and throughput.

Notice that SemLAV executes the query whenever a new relevant view has been included in the

global schema instance and the query execution thread is active.

Figures 5.3 and 5.4 show an impressive difference in the answer percentage and throughput,

e.g., for Q1 SemLAV produces 37,350.1 answers/sec, while the other approach produces up to 0.5

answers/sec. This huge difference is caused by the differences between the complexity of the rewriting

generation and the SemLAV view selection and ranking algorithm, and between the number of
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Figure 5.4 – Throughput of SemLAV ( ), MCDSAT ( ), GQR ( ) and MiniCon ( )
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Figure 5.5 – Time of the First Answer (msec) of SemLAV ( ), MCDSAT ( ), GQR ( ) and
MiniCon ( ). “NA” indicates that the approach did not produce answers for that query

rewritings and number of relevant views. This makes possible to generate answers sooner.

Figure 5.5 shows the time for the first answer (TFA); TFA is impacted by executing the query as

soon as possible, according to option 1 given in Algorithm 4. Only for query Q18 SemLAV does not

produce any answer in 10 minutes. This is because the views included in the global schema instance

are large (around one million triples per view) and do not contribute to the answer; consequently,

almost all the execution time is spent in transferring data from the relevant views. SemLAV produces

answers sooner in all the other cases. Moreover, SemLAV also achieves complete answer in 11 of 16

queries in only 10 minutes.

In summary, the results show that SemLAV is effective and efficient and produces more answers
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sooner than a traditional rewriting-based approach. SemLAV makes the LAV approach feasible for

processing SPARQL queries.

5.4 Conclusions and Future Work

We have presented SemLAV, a Local-As-View mediation technique that allows to perform SPARQL

queries over views without facing problems of NP-completeness, exponential number of rewritings or

restriction to conjunctive SPARQL queries. This is obtained at the price of including relevant views

into a global schema instance which is space consuming. However, we demonstrated that, even if

only a subset of relevant views is included, we obtain more results than traditional rewriting-based

techniques. Chances of producing results are higher, if the number of covered rewritings is maximized

as defined in the MaxCov problem. We proved that our ranking strategy maximizes the number of

covered rewritings.

SemLAV opens a new way to execute SPARQL queries for LAV mediators that is tractable. As

perspectives, the performance of SemLAV can be greatly improved by parallelizing the inclusion

of views. Currently, SemLAV includes views sequentially due to Jena restrictions. If views were

included in parallel, time to get first results may be greatly improved. This perspective work has

been partially addressed in [28], in this work parallel loading of views has been simulated by loading

views in blocks, and loading blocks of different views. Nevertheless, a real parallel implementation

of view loading may provide even better results.

Additionally, the strategy of producing results as soon as possible, can deteriorate the overall

throughput. If users want to improve overall throughput, then the query should be executed once

after all the views in Vk have been included. Moreover, query execution may be done in an incremental

way, saving intermediate results for future query executions, and reducing the overheat of executing

the same query several times. It could be also interesting to design an execution strategy where

SemLAV would execute under constrained space. In this case, the problem would be to find the

minimum set of relevant views that would fit in the available space and produce the maximal number

of answers.
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6
Introduction

SPARQL endpoints enable to consume RDF data exploiting the expressiveness of the SPARQL

query language. Nevertheless, recent studies reveal that existing public SPARQL endpoints main

limitation is availability [8].

In distributed databases [62], a common practice to overcome availability problems is to replicate

data near data consumers. Replication can be achieved by complete dataset replication, e.g., the LOD

cloud cache endpoint 1 exposes data from several datasets present in the LOD cloud. But replication

can be also achieved with a finer granularity, i.e., replication of the portions of the datasets that are

relevant, e.g., in [39] users replicate only the fragments of data that they want to modify to improve

their data quality.

RDF data consumers can replicate subsets of RDF datasets or replicated fragments, and make

them accessible through SPARQL endpoints. This will provide the support for an efficient RDF

data re-organization according to the needs and computational resource capacity of data consumers,

while these data can be still accessed using SPARQL endpoints. Unfortunately, although SPARQL

endpoints can transparently access replicated fragments, as well as maintain their consistency [39],

federated query engines are not tailored to exploit the benefits of replicated fragments.

Federated SPARQL engines [2], [11], [32], [68], [74] allow data consumers to execute SPARQL

1. http://lod2.openlinksw.com/sparql, November, 2015.
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queries against a federation of SPARQL endpoints. However, these engines are just designed to select

the SPARQL endpoints that ensure both answer production and an efficient execution of the query.

In presence of replication, existing federated query engines may retrieve data from every relevant

endpoint, and transfer a large number of tuples that trigger many requests to the endpoints. Thus,

federated query engines may exhibit poor performance while availability of the selected SPARQL

endpoints is negatively impacted.

Although the problem of managing RDF data overlapping during federated query processing has

been addressed in [38], [70], the problem of managing replication in a federation of RDF datasets

still remains open. DAW [70] is able to detect overlapping between datasets and optimize source

selection based on that. However, because DAW is not designed to manage data replication, there

is no support for explicitly define and use replicated fragments. In consequence, DAW may select

redundant data sources and generate a high number of transferred tuples as we will report in our

experiments.

We build a replication-aware SPARQL federated query engine by integrating into state-of-the

art federated query engines FedX [74] and ANAPSID [2], a source selection strategy called Fedra

that solves the source selection problem with fragment replication (SSP-FR). For a given set of

SPARQL endpoints with replicated fragments and a SPARQL query, the problem is to minimize the

transferred data from endpoints to the federated query engines, while preserving answer completeness

and reducing data redundancy.

We empirically study federated query engines FedX and ANAPSID extended with Fedra and

DAW on synthetic and real datasets. The results suggest that Fedra efficiently reduces the number

of transferred tuples and data redundancy.

This part is organized as follows. Chapter 7 presents related works, while chapter 8 presents

Fedra. First, Section 8.1 describes background and motivations. Section 8.2 defines replicated

fragments and presents the source selection problem for fragment replication. Section 8.3 presents the

Fedra source selection algorithm. Section 8.4 reports our experimental results. Finally, conclusions

and future works are outlined in Section 8.5.



7
State of the Art

7.1 Distributed Database Query Processing

Distributed query processing has been widely studied in databases [45]. A generic layering schema

of distributed query processing is presented by Özsu and Valduriez in [62]. Figure 7.1 presents this

schema. It is composed by four layers: query decomposition, data localization, global optimization

and distributed execution. The query decomposition layer translates the calculus query into an

algebraic query that corresponds to a "good" translation, this mean that rules that been applied to

avoid typical bad algebraic queries. The data localization layer transforms the query on relations

into a query on fragments. Fragments are disjoint subsets of relations whose precise location is

stored at the fragment schema, if possible any further transformation to avoid bad algebraic plans is

performed. The global optimization layer transforms the query on fragments into an optimized query

on fragments or distributed query execution plan. This transformation explores possible operator

orders and uses fragment sizes and allocation to choose the "best". Actual explorations consider only

a subset of possible orders to keep their complexity low. And allocation depends on the possible

multiple replicas that may exist for each fragment. The distributed execution layer is performed

by each site having fragments in the distributed query execution plan. They may perform local
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Figure 7.1 – Distributed Query Processing, Figure 6.3 at [62]

optimizations to the plan they receive and choose the physical operators to use. Fragmentation and

replication contribute to improve the database availability, scalability and reliability; but it incurs

in some additional cost to keep the replicas up to date. Data may be fragmented horizontally or

vertically. Horizontal fragmentation distributes the tuples of a relation in different tables, while

vertical fragmentation splits the tuples of a relation by attribute and places subtuples in different

tables. Fragmentation contributes to decrease the cost of replication, copying only a subset of the

relation tuples or attributes. If the database has been fragmented, fragments should be allocated

near the final users in order to obtain better performance, i.e., reductions on stored data and network

delays may be achieved if data is stored where it is needed. Data allocation requires knowledge about

the queries that are going to be posed in the different sites or a way to predict them. Distributed

database fragments are disjoint portions of the database, even if one fragment may be replicated

in several sites it is clear and easy to determine which fragments are required in order to execute

a query. Objects stored in a distributed database should converge to the same state. This can be

achieved using locks that prevent databases of reaching inconsistent states, or using timestamps that

contribute to roll the database back to the last consistent state. Data fragmentation is tailored for

representative queries; fragments are smartly allocated and replicated across servers for balancing
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workload and reducing size of intermediate results.

Linked Data [13] is intrinsically a federation of autonomous participants where federated queries

are unknown to a single participant, and a tight coordination of data providers is difficult to achieve.

Consequently, federated query engines cannot rely on properties ensured by a distributed database

allocation algorithm. The challenge faced in this second part of the thesis is given a set of fragments

replicated in a federation of SPARQL endpoints, that may or not overlap, make the best use of these

fragments to evaluate subqueries locally, and consequently reduce the number of transferred tuples

from the endpoints to the federated query engine.

7.2 Linked Data Query Processing

Görlitz and Staab summarize in [31] the three main approaches to query Linked Open Data:

— Central repository: all data are retrieved and stored in a central data store. Central indexes

are used, and contact with original data sources is lost. Then, query execution can be properly

optimized, but it may be needed to retrieve data periodically to ensure that the data is up to

date. Data retrieving may be done using a dump file if available or crawling the RDF data.

— Explorative query processing: links present in the query are used to retrieve data and links to

other sources that may have relevant data for the query. The query execution is done on the

actual data, then it is always up to date, but it may produce incomplete answers, and the order

in which links are explored may lead to different answers.

— Data source federation: query execution is performed at the sources, but indexes are keep in

the federation to optimize query execution. Then, data is up to date, storage space for indexes

is limited, and indexes information, if they are out of date, may lead to less efficient plans

rather than to incomplete answers.

This last approach, federated query processing, is the one that presents more advantages, however

there are many challenges to consider as keeping up to date indexes that can be used to optimize

query processing with a bounded size and complexity of computation, and producing optimized plans

that reduce the number of sources used, and the size of transferred data. This approach, and some

of its exemplars are presented in the next sections.
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Figure 7.2 – Generic Federation Infrastructure, Figure 3 at [31]

7.3 Federated Query Processing

Linked open data sources share links between them. These links allow users to formulate queries

that potentially use several data sources. Integrating sources from several sources can be done using

Mediators andWrappers architecture as discussed in Chapter 4. In the case of federations of SPARQL

endpoints, the mediator may be simplified as many sources share ontologies and links among sources

are already provided by them.

Figure 7.2 presents the main components in federated query processing. Each source provides

access to data through a SPARQL endpoint, i.e., RESTful services that accept SPARQL queries over

HTTP [7]. User queries, written in SPARQL, are decomposed into subqueries that are sent to the

sources and the query executor is in charge of using source answers to produce the query answers.

Indexes are used to determine the sources where subqueries should be evaluated, and the order of

subqueries in the execution plan. Joins may be executed at the sources using SERVICE clauses, but

it may require user privileges. Federated query engines may provide different join implementations,

like hash joins, nested loop joins or bind joins.

7.4 Federated Query Processing Engines

Federated query engines are query processing engines, that given a query, are capable of retrieving

data from (several) relevant sources, and producing the query answers. Federated query engines may

use the SPARQL federation extension [6] and allow the user to specify which sources should be used
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to execute subqueries, or may use a catalog of sources, and decompose the query into subqueries and

assign to each subquery the endpoints where it should be executed as introduced in Section 7.3.

ARQ 1 and SPARQL-DQP [7] are examples of engines that use SERVICE clauses from the

SPARQL federation extension. SPLENDID [32], and DARQ [68] are examples of engines that are

able to decompose queries into subqueries and assign to these subqueries the endpoints where they

should be executed. Finally, FedX [74] and ANAPSID [2] are both able to process queries with SER-

VICE clauses, and able to decompose queries into subqueries and determine the endpoints where

these subqueries are to be evaluated.

Consider the query Find French directors and their film genres, as in query Q (Listing 7.1).

Listing 7.1 – SPARQL query Q
s e l e c t d i s t i n c t ? d i r e c t o r ? gen re where {

? d i r e c t o r dbo : n a t i o n a l i t y dbr : France .

? f i l m dbo : d i r e c t o r ? d i r e c t o r .

? movie owl : sameAs ? f i l m .

? movie l inkedmdb : gen re ? gen re }

Table 7.1 – Federation1 and Federation2 endpoints that have triples with predicates in the query Q
(Listing 7.1)

Q triple pattern Federation1 Federation2
tp1 ?director dbo:nationality dbr:France E1 E3
tp2 ?film dbo:director ?director E1 E4
tp3 ?movie owl:sameAs ?film E1, E2 E3
tp4 ?movie linkedmdb:genre ?genre E2 E4

And two different federations, Federation1 and Federation2. Each federation has two SPARQL

endpoints, Federation1 has endpoints E1 and E2, and Federation2 has endpoints E3 and E4. Ta-

ble 7.1 presents the endpoints that have triples with predicates in each of the query triple patterns.

An important difference among these federations is that while in Federation1 the same endpoint, E1,

has triples relevant for the triple patterns tp1 and tp2, connected by variable ?director, in Federation2

no endpoint has triples relevant for two triple patterns connected by a variable.

Listing 7.2 – SPARQL query Q to be executed against Federation1 (Table 7.1)
s e l e c t d i s t i n c t ? d i r e c t o r ? gen re where {

SERVICE <ht tp :// E1/ s p a r q l > {

? d i r e c t o r dbo : n a t i o n a l i t y dbr : France .

? f i l m dbo : d i r e c t o r ? d i r e c t o r

1. https://jena.apache.org/documentation/query/index.html
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} .

SERVICE <ht tp :// E2/ s p a r q l > {

? movie owl : sameAs ? f i l m .

? movie l inkedmdb : gen re ? gen re

}

}

To execute this query using the SPARQL federation extension [6], the user should specify where

to execute each triple pattern using SERVICE clauses as depicted in Listing 7.2. Advanced users that

know quite well the data sources, may be able to write this kind of query, but for users less familiar

with the data sources or federations with a high number of data sources or dynamic federations, it

may be too challenging for the user to choose where to execute each triple pattern. Asking queries

like the one given in Listing 7.1 promotes Linked Data flexibility [31].

FedX [74] and ANAPSID [2, 60], state-of-art query engines for federations of SPARQL endpoints,

are detailed in the following sections.

7.4.1 FedX

FedX [74] is a federated query engine built on top of the Sesame framework [18]. FedX keeps a

catalog with the available sources, and the mappings between RDF terms and sources are built during

query execution when they are needed. FedX source selection depends solely on ASK queries that are

sent during query execution to the sources to determine if the can provide triples for a given query

triple pattern. ASK query results can be stored in a cache for future use. For each triple pattern, it is

determined if its relevant data is available in one or several sources. If data is available in exactly one

endpoint, it is said that the triple pattern can be exclusively evaluated in that source. All the triple

patterns that can be exclusively evaluated in one source can be group together in an exclusive group.

Triple patterns that do not belong to an exclusive group are sent individually to all the endpoints

that provide data for them. For query Q (Listing 7.1) and Federation1 (Table 7.1), FedX builds an

exclusive group composed of tp1 and tp2 to be sent to E1, and sends tp3 individually to both E1

and E2. Triple patterns are sorted in joins using a cost estimation heuristic, that takes into account

their number of unbound variables. Triple patterns with the least number of unbound variables are

evaluated first, because they are likely to incur in the smallest number of transferred tuples from

endpoints to the query engine. Joins are combined in left-linear plans. Joins are evaluated in a

block nested loop fashion, i.e., as distributed semi-joins, and intermediate results from inner to outer
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Figure 7.3 – FedX execution plans for query Q (Listing 7.1) and federations Federation1 and Feder-
ation2 (Table 7.1)

operands are passed in blocks, and this reduces the number of requests sent to the endpoints by a

factor equal to the block size.

Table 7.2 – Positive impact of the use of exclusive groups (EG) on the number of transferred tuples
(TT) in Federation1 (Table 7.1) and Q (Listing 7.1)

With EG Without EG
Executed Subquery # TT Executed Subquery # TT

tp1 . tp2 141 tp1 1,700
tp1 . tp2 . tp3 144 tp1 . tp2 1,841

tp1 . tp2 . tp3 . tp4 145 tp1 . tp2 . tp3 1,844
tp1 . tp2 . tp3 . tp4 1,845

For Q and Federation1, FedX builds the plan given in Figure 7.3a. Exclusive group composed

of tp1 and tp2 is to be evaluated first, then tp3 and finally tp4. tp3 should be evaluated in second

place because having evaluated the exclusive group, values for variable ?film are available when

tp3 shall be evaluated, then tp3 is likely to be less expensive than tp4. To show the positive impact

of the exclusive groups on the number of transferred tuples during FedX execution 2, we setup two

Virtuoso7.2.1 endpoints, and populate them using data from DBpedia 3 and LinkedMDB 4. The

number of transferred tuples using exclusive group and without exclusive groups are presented in

Table 7.2, using exclusive groups reduces the number of transferred tuples by one order of magnitude.

It is important to notice that FedX will group triple patterns that do not have any variable in

common into an exclusive group, if they are exclusively provided by one endpoint in order to reduce

the number of requests, but doing so can highly increase the number of transferred tuples. Moreover

2. FedX3.1 was used for the execution
3. DBpedia3.9 subset as in FedBench [73]
4. Version from January 19th, 2010



72 CHAPTER 7. STATE OF THE ART

Table 7.3 – Negative impact of the use of exclusive groups (EG) on the number of transferred tuples
(TT) in Federation2 (Table 7.1) and Q (Listing 7.1)

With EG Without EG
Executed Subquery # TT Executed Subquery # TT

tp1 . tp3 299,978,600 tp1 1,700
tp1 . tp3 . tp2 . tp4 299,978,601 tp1 . tp2 1,841

tp1 . tp2 . tp3 1,844
tp1 . tp2 . tp3 . tp4 1,845

FedX join ordering heuristics do not take into account overlap with previously bounded variables to

promote joins and and avoid Cartesian products between different subqueries.

For Q and Federation2, FedX builds the plan given in Figure 7.3b. Exclusive group composed of

tp1 and tp3 is to be evaluated first, then exclusive group composed of tp2 and tp4. Both exclusive

groups are Cartesian products, and the number of transferred tuples may be seriously increased by

the use of these two exclusive groups. Populating Federation2 with the same data as Federation1,

the number of transferred tuples increases five orders of magnitude when exclusive groups are used

(Table 7.3).

7.4.2 ANAPSID

ANAPSID [2] is an adaptive federated query engine that hides network delays during query exe-

cution. ANAPSID source selection depends on SELECT queries that provide the different predicates

in the triples that each endpoint stores. These queries can be sent to the federation members once

before the execution of a set of queries, and re-sent if any source update is suspected. For each triple

pattern, the most probable sources to provide relevant data are determined using heuristics [60]. 5 If

these heuristics lead to select more than one source, then the triple pattern is sent individually to

the sources to retrieve data from. The other triple patterns, are grouped into star-shaped groups, i.e.,

triple patterns that share a variable, that are to be sent to the endpoints together in order to reduce

the size of intermediate results, and the number of transferred from endpoints to the query engine.

For query Q and Federation1, ANAPSID builds two star-shaped groups, one composed of tp1 and

tp2 to be sent to E1, and one composed of tp3 and tp4 to be sent to E2. ANAPSID heuristic, that

chooses the endpoints where other triple patterns that share the subject variable, makes the choice

to send tp3 only to E2 (instead of E1 and E2 ). In order to increase the parallelism, joins are com-

5. In practice, these heuristics have been shown to be accurate for most queries, but they could prune relevant
sources needed to provide a complete answer.
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Figure 7.4 – ANAPSID execution plans for query Q (Listing 7.1) and federations Federation1 and
Federation2 (Table 7.1)

bined into bushy tree plans, and joins are sorted according to their estimated selectivity. Adaptive

implementations of joins are used to hide source delays and produce answers incrementally. Current

version 6 uses xgjoin and nested hash join implementations for symmetric joins and dependent joins

respectively. The choice between both implementations depend on the estimated selectivity of their

operands.

Table 7.4 – Positive impact of the use of star-shaped groups (SSG) on the number of transferred
tuples (TT) in Federation1 (Table 7.1) and Q (Listing 7.1)

With SSG Without SSG
Executed Subquery # TT Executed Subquery # TT

tp1 . tp2 141 tp1 1,700
tp1 . tp2 . tp3 . tp4 142 tp1 . tp2 1,841

tp1 . tp2 . tp3 178,299
tp1 . tp2 . tp3 . tp4 191,317

For Q and Federation1, ANAPSID builds the plan given in Figure 7.4a. This plan is evaluated

using a nested hash join, as an heuristic determines that tp1 is selective enough to choose this physical

operator. Using the same Virtuoso endpoints as in the previous section, we executed the query using

ANAPSID 7, and the number of transferred tuples with and without star-shaped groups are presented

in Table 7.4, we can observe a reduction of two orders of magnitude due to the star-shaped groups.

The number of transferred tuples, by the execution without star-shaped groups, is clearly different

from the one given in Table 7.2, for FedX without exclusive group as both engines use different

implementations of join.

ANAPSID does not group triple patterns without variables in common in star-shaped groups,

thus it avoids expensive evaluation of Cartesian products by the endpoints, and large amounts of
6. Version of May 14th, 2014
7. Version of May 14th, 2015
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Figure 7.5 – HiBISCuS labelled hypergraph for query Q (Listing 7.1) and Federation1 (Table 7.1).
Sources selected by HiBISCuS appear in bold.

transferred data. For Q and Federation2, ANAPSID builds the plan given in Figure 7.4b, where no

star-shaped groups were built. The left-most join is evaluated using a nested hash join, because an

heuristic determines that tp1 is selective enough to choose this physical operator, and the two other

joins are evaluated using xgjoin implementation as the heuristic does not consider these operands as

selective enough. The number of tuples transferred by this plan is the same as in Table 7.4 without

star-shaped groups.

7.5 Source Selection Strategies for SPARQL endpoints

Recently, strategies to improve the source selection performed by federated query engines like

FedX have been proposed. A first approach is to prune the sources that cannot contribute to a query

answer [69], join-aware approaches, and a second approach is to prune sources that can only provide

redundant data [38, 70], duplicate-aware approaches.

7.5.1 Join-Aware Source Selection Strategies

HiBISCuS [69] source selection approach has been proposed to reduce the number of selected

sources. The reduction is achieved by annotating sources with the authority of their resource URIs.

The authority of a URI is defined (in [69]) by the first two components of the URI 8. For instance, in

the URI http://dbpedia.org/resource/Jean_Renoir, the authority is http://dbpedia.org. HiBISCuS is

based on the idea that when there is a join between two triple patterns, then these triple patterns

should be only evaluated in sources that have authorities in common. In other words, its goal is to

avoid empty joins by pruning sources that do not have authorities in common.

Basic graph patterns in queries are represented as directed labeled hypergraphs. Each query triple

pattern is represented as a directed hyperedge, the hyperedge connects the vertex that represents the

8. Internet standard about URIs is available at http://tools.ietf.org/html/rfc3986

http://tools.ietf.org/html/rfc3986
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subject with an hypervertex that contains the vertexes that represent the predicate and the object.

Hyperedges are labeled with the set of sources that should be contacted in order to retrieve data for

the triple pattern. Joins are represented as multiple arcs incident in the same vertex. A join can

produce a non empty answer if the incident arcs have sources with at least one common authority.

Therefore, if a source has no common authority with the sources present in the other incident arcs,

such source can be safely pruned from the hypergraph label, i.e., such source cannot contribute to

produce any query answer.

Table 7.5 – HiBISCuS summaries for Federation1 (Table 7.1)

(a) Endpoint E1
Predicate Subject Authority Object Authority

http://dbpedia.org/ontology/director http://dbpedia.org http://dbpedia.org
http://www.w3.org/2002/07/owl#sameAs http://dbpedia.org http://linkedgeodata.org

http://data.nytimes.com http://dbpedia.org
http://dbpedia.org/ontology/nationality http://dbpedia.org http://dbpedia.org

(b) Endpoint E2
Predicate Subject Authority Object Authority

http://www.w3.org/2002/07/owl#sameAs http://data.linkedmdb.org http://dbpedia.org, http://mpii.de,
http://sws.geonames.org, http://zitgist.com

http://data.linkedmdb.org/resource/movie/genre http://data.linkedmdb.org http://data.linkedmdb.org

For Federation1 (Table 7.1) annotations are summarized in Table 7.5. These annotations can

be used to determine the set of endpoints that can have data to evaluate a triple pattern. For

example, the triples with predicate owl:sameAs, if they are available through the endpoint E1,

then their subject URIs start with http://dbpedia.org or http://data.nytimes.com, while if they

are available through endpoint E2, then their subject URIs start with http://linkedgeodata.org or

http://dbpedia.org. Therefore, for triple pattern <http://data.nytimes.com/47452218948077706853>

owl:sameAs ?o, there is not doubt that E2 does not have triples that match this triple pattern.

Consider query Q (Listing 7.1) and Federation1 (Table 7.1). Its directed labeled hypergraph

representation is shown in Figure 7.5. The initial labeling of the hyperedges is straightforward,

first and second triple patterns can only be evaluated by E1, the fourth triple pattern can only be

evaluated by E2, and the third triple pattern can be evaluated by both E1 and E2. Then for each

vertex with multiple incident arcs of the same type (in or out), the authority annotations of the

sources present in the labels of the arcs are intersected to obtain the common authorities. Sources

with no common authorities are pruned from the labels. In the example, the vertex ?movie has

two outgoing arcs, the authorities associated to these arcs are { http://data.linkedmdb.org } and {

http://data.linkedmdb.org, http://dbpedia.org, http://data.nytimes.com}, and their intersection is {
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http://data.linkedmdb.org }. Endpoint E1 is pruned from the label of the outgoing arc of vertex

?movie because its set of authorities { http://dbpedia.org, http://data.nytimes.com} does not include

http://data.linkedmdb.org.

7.5.2 Duplicate-Aware Source Selection Strategies

Recently, BBQ [38] and DAW [70] propose duplicate-aware strategies for selecting sources for

federated query engines. Both approaches use sketches to estimate the overlapping among sources.

Benefit-Based Query routing (BBQ) extends ASK queries with Bloom filters [15] that provide a

summary of the results, in order to prune sources that provide low benefits. DAW uses a combination

of Min-Wise Independent Permutations (MIPs) [17], and triple selectivity information to estimate the

overlap between the results of different sources. Based on how many new query results are expected

to be found, sources that are below predefined benefits, are discarded and not selected.

For Federation1 (Table 7.1) and tp3 of query Q (Listing 7.1), both DAW and BBQ select both

sources as they have no triple patterns in common for owl:sameAs, then only selecting both it is

possible to be sure that all the answers will be produced.

DAW duplicate-aware source selection strategy is detailed in the following section.

7.5.3 DAW

DAW [70] duplicate-aware source selection strategy has as input the set of sources that can provide

data for each of the query triple patterns, and as output the set of sources that should be contacted

by the federated query engine.

DAW is comprised of two parts, in its first part, it ranks the capable sources according to how

much new data they can provide. Then, in the second part the sources that provide less than a

predefined among of data are pruned.

Table 7.6 – Federation3 endpoints that have triples with predicates in the query Q (Listing 7.1)

Q triple pattern Federation3
tp1 ?director dbo:nationality dbr:France E1, E3
tp2 ?film dbo:director ?director E1, E4
tp3 ?movie owl:sameAs ?film E1, E2, E3
tp4 ?movie linkedmdb:genre ?genre E2, E4
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Table 7.7 – DAW’s input and output for query Q (Listing 7.1) and Federation3 (Table 7.6)

Triple Pattern input output
tp1 { E1, E3 } { E1 }
tp2 { E1, E4 } { E1 }
tp3 { E1, E2 , E3 } { E1, E3 }
tp4 { E2, E4 } { E2 }

Consider the query Q (Listing 7.1), Federation3 (Table 7.6) comprised of endpoints E1 -E4 from

Federation1 and Federation2 (Table 7.1), and endpoints populated with data from DBpedia 9 and

LinkedMDB 10, and a threshold of zero, i.e., only sources estimated to return no new data are pruned.

Endpoints E1 and E3 have all the triples of DBpedia with predicate dbo:nationality, endpoints E1

and E4 have all the triples of DBpedia with predicate dbo:director, endpoints E2 and E4 have all

the triples of LinkedMDB with predicate linkedmdb:genre, endpoints E1 and E3 have all the triples

of DBpedia with predicate owl:sameAs, and endpoints E2 and E3 have all the triples of LinkedMDB

with predicate owl:sameAs.

Table 7.7 shows the input and output of DAW 11 for query Q (Listing 7.1), and Federation3 (Ta-

ble 7.6). Because both E1 and E3 have all the triple patterns with predicate dbo:nationality available

in the federation, then any of them may be ranked first by DAW’s first part. And consequently, the

one that has been ranked second has been pruned by the second part of DAW, because having exactly

the same triples than the first, it does not provide any new data. For tp3, only E3 can be ranked first,

and it is the only one that has all the triples with predicate owl:sameAs available in the federation.

Even if E1 does not provide any new data for tp3, the overlapping detection used by DAW fails to

assess this fact, and it also selects E1 for tp3.

DAW uses Min-Wise Independent Permutations (MIPs) [17] to compute summaries of the data

accessible through the endpoints, and use these summaries to approximate the overlap among triples

accessible through different endpoints. The set of triples accessible through an endpoint with a

given predicate is represented using a vector of integer identifiers, with each identifier being the hash

code of a triple subject and object string representation concatenated. From this vector, k random

permutations are generated. Each random permutation is generated using a linear hash function of

the form: hi(x) := (ai ∗ x+ bi)modU , with U a big prime number, and ai, bi fixed random numbers

per function. Finally, the minimum element of each permutation is included in the MIP vector that

9. DBpedia3.9 subset as in FedBench [73]
10. Version from January 19th, 2010
11. We implemented DAW ourselves because its authors cannot provide its code
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summarizes the set of triples. The principle of MIPs is that each set element has the same probability

of becoming the minimum in a given random permutation. Thus, the resemblance of two sets, S1 and

S2, can be approximated using their two MIP vectors, V1 and V2, as the number of positions where

the vectors have the same value divided by the number of permutations 12. The union of two MIP

vectors can be computed by taking the minimum element in each position. And the approximate

overlap of two sets can be computed as:

Overlap(S1, S2) ≈ Resemblance(V1, V2)× (|S1|+ |S2|)
Resemblance(V1, V2) + 1

Listing 7.3 – Triples accessible through E2
<http :// dbped ia . org / r e s o u r c e /Wymore , _Nebraska> <ht tp ://www. w3 . org /2002/07/ owl#sameAs>

<ht tp :// l i n k e d g e o d a t a . org / t r i p l i f y / node151438039> .

<ht tp : // dbped ia . org / r e s o u r c e / Car ra ra > <ht tp ://www. w3 . org /2002/07/ owl#sameAs>

<ht tp :// l i n k e d g e o d a t a . org / t r i p l i f y / node61753614> .

<ht tp : // data . ny t imes . com/ N48490752132683526173> <ht tp ://www. w3 . org /2002/07/ owl#sameAs>

<ht tp :// dbped ia . org / r e s o u r c e / Magg ie_Gy l l enhaa l > .

<ht tp : // dbped ia . org / r e s o u r c e /Gimingham> <ht tp ://www. w3 . org /2002/07/ owl#sameAs>

<ht tp :// l i n k e d g e o d a t a . org / t r i p l i f y / node29829116> .

<ht tp : // dbped ia . org / r e s o u r c e /Enborne_Row> <ht tp ://www. w3 . org /2002/07/ owl#sameAs>

<ht tp :// l i n k e d g e o d a t a . org / t r i p l i f y / node309083295> .

Listing 7.4 – Triples accessible through E1
<http :// data . l inkedmdb . org / r e s o u r c e / f i l m /34726> <ht tp ://www. w3 . org /2002/07/ owl#sameAs>

<ht tp :// dbped ia . org / r e s o u r c e / The_Conversat ion> .

<ht tp : // data . l inkedmdb . org / r e s o u r c e / f i l m /22058> <ht tp ://www. w3 . org /2002/07/ owl#sameAs>

<ht tp :// dbped ia . org / r e s o u r c e /The_Bad_Lands> .

To illustrate how DAW indexes are computed and used to state overlapping among set of triples,

suppose that E1 has only the five triples given in Listing 7.3, E2 has only the two triples given in

Listing 7.4, and E3 has only the seven triples Listings 7.3 and 7.4.

MIP vectors for the five triples in Listing 7.3, and seven triples in Listings 7.3 and 7.4 are shown in

Tables 7.9 and 7.10. These tables also show the random permutations of the set of integer identifiers

that represent the set of triples, and Table 7.8 present the values of ai and bi used to generate the

permutations. These two MIP vectors have three common elements, and they are highlighted in

bold. Therefore, their resemblance is 3
5 , and the overlap between their set of triples is approximated

12. If the vectors where computed using different number of permutations, then their minimum is used, at the price
of a precision loss [70]
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Table 7.8 – Values of ai and bi used to compute the random permutations hi(x) := (ai∗x+bi)modU ,
the value of U is set to 991205981

i ai bi

1 -1286082570 -1558221506
2 -1343278692 1858951374
3 -390706926 1793532194
4 -488269753 950550283
5 1355994690 -2014772492
6 -1870576674 -1059013661
7 893439232 -588725372

Table 7.9 – Random permutations hi(x) := (ai ∗ x + bi)modU , using values given in Table 7.8 for
the triple set given in Listing 7.3

set h1 h2 h3 h4 h5
-811800833 841080043 -206443726 320345616 -243051999 697245781
275212389 172427596 -181672521 -826325700 -222313109 731627681
-712626126 888787181 761638633 176958537 589476492 -372294696
247982479 -690004568 -134332500 439964720 800189876 -149725649
-902440067 960825948 406875037 370186895 -121940298 -875555026
MIP vector -690004568 -206443726 -826325700 -243051999 -875555026

as 4.5.

In the federation of our example, with the endpoints populated with the triples from DBpedia

and LinkedMDB, computing the DAW index takes 109.75 secs, and such index weights 837K. A

first limitation of DAW is the index computation; if the user that wants to execute the query has

to compute it, then she should have access to all the federation triples, in which case she could

do better than computing these summaries to choose where to execute each triple pattern; if the

data publisher is to provide the summaries, the summaries are to be transferred and be kept up to

date in order to avoid stale data, and the selection the wrong set of sources. A second limitation of

DAW is the accuracy of overlap detection. In order to produce good quality overlap assessment the

endpoints should have similar number of triples per predicate, and this restriction is quite strong.

A third limitation of DAW is the source selection time. Computing set overlap, vector resemblance

and union, are operations that take a non-negligible amount of time. In any case, the computation

and transfer of indexes to compute approximate overlapping, is too expensive in the context of data

replication, where more concise descriptions of the replicated fragments can be used to produce a

better quality overlap assessment.
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Table 7.10 – Random permutations hi(x) := (ai ∗ x + bi)modU , using values given in Table 7.8 for
the triple set comprised of triples given in Listings 7.3 and 7.4

set h1 h2 h3 h4 h5 h6 h7
1686545447 -33385544 614022453 -320353568 356864895 -673845502 -767538507 -887357820
-1075019727 -355732047 -734799958 -454287980 -852368222 775751062 52502276 901473831
-811800833 841080043 -206443726 320345616 -243051999 697245781 -319200158 212006532
275212389 172427596 -181672521 -826325700 -222313109 731627681 984619036 -388612383
-712626126 888787181 761638633 176958537 589476492 -372294696 939066082 -216700959
247982479 -690004568 -134332500 439964720 800189876 -149725649 91009765 -240105852
-902440067 960825948 406875037 370186895 -121940298 -875555026 503564617 -117410079
MIP vector -690004568 -734799958 -826325700 -852368222 -875555026 -767538507 -887357820

7.6 Strategies to overcome availability limitations in Linked

Data

Public SPARQL endpoints are typically provided by organizations with limited amount of re-

sources available, and their intensive use for query processing compromises their reliability, availabil-

ity, and performance.

Linked Data fragments approach (LDF) [80, 81] proposes to improve Linked Data availability by

moving query execution load from servers to clients. A client is able to execute locally a restricted

SPARQL query by downloading fragments required to execute the query from an LDF server through

a simple HTTP request.

Moreover, some optimizations and a local data store to improve LDF client performance have

also been proposed [? ], these optimizations allow clients to cache fragments locally and decreases

the load on the LDF server. LDF chooses a clear tradeoff by shifting query processing to clients, at

the cost of slower query execution.

7.7 Summary

In distributed databases, data fragmentation and replication improve data availability and query

performance [62]. Data fragmentation is tailored for representative queries; fragments are smartly

allocated and replicated across servers for balancing workload and reducing size of intermediate

results. Linked Data [13] is intrinsically a federation of autonomous participants where federated

queries are unknown to a single participant, and a tight coordination of data providers is difficult to

achieve. Consequently, federated query engines cannot rely on properties ensured by an allocation

algorithm, and new strategies to perform source selection are needed.
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Fedra

8.1 Motivations

Existing SPARQL federated query engines do not support replicated data. To illustrate, we

replicated the DBpedia dataset 1 and defined two federations. The first is composed of one mirror

of DBpedia, and the second of two identical mirrors of DBpedia. We used FedX [74] (Section 7.4.1)

and ANAPSID [2] (Section 7.4.2) to execute the query in Figure 8.1a against both federations. In

the first federation, both engines produced all the query answers in less than 5 seconds.

On the other hand, for the second federation, the query engines, having no knowledge about the

relationships among the mirrors of DBpedia, contact both data sources. In this way, performance

in terms of execution time and number of transferred tuples, is seriously degraded as depicted in

Figure 8.1b. For both engines the execution time and number of transferred tuples increase more

than 250 times when a second replica of DBpedia is added to the federation. Having no knowledge

about the relationships among the mirrors of DBpedia, both query engines have to retrieve twice all

the triples that match each of the triple patterns of the query, instead of evaluating the joins in the

endpoints and retrieving only the query answers. For the first triple pattern, the number of triples

is greater than 4 millions. This number is likely to be higher than the maximum number of result

1. DBpedia2015, http://wiki.dbpedia.org/Downloads2015-04

81

http://wiki.dbpedia.org/Downloads2015-04
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s e l e c t d i s t i n c t ?p ?m ?n ?d where {
?p dbprop : name ?m .
?p dbprop : n a t i o n a l i t y ?n .
?p dbprop : d o c t o r a l A d v i s o r ?d

}

(a) DBpedia Query

#DBpedia FedX ANAPSID
Replicas ET (s) NTT ET (s) NTT

1 4.80 8,230 2.61 8,229
2 2,678.10 2,260,006 3,415.24 8,337,702

(b) Query Execution

Figure 8.1 – DBpedia query and its Execution Time (ET) and Number of Transferred Tuples (NTT)
during query execution against federations with one and two replicas of DBpedia

rows that the endpoint is allowed to send, in consequence it risks to produce incomplete answers.

Furthermore, if the DAW [70] or BBQ [38] approaches (Section 7.5.2) were used, data providers

and consumers resources would be used to compute and download data summaries. These approaches

could select different DBpedia endpoints per triple pattern, and execute the join between retrieved

data at the federated engine level.

Of course, if federated query engines would know that both endpoints are mirrors of DBpedia,

the source selection pruning could be done more efficiently, i.e., only one source would be selected

to execute the query. This problem is even more challenging if we consider that one endpoint

can partially replicate data from several RDF datasets, i.e., only fragments of several datasets are

replicated, e.g., to speed up query execution of some queries.

DBpedia Tuples to
transfer

s1 s2 s3 s4 s5

DBpedia 166,177 3,229 3,229 0 0
LinkedMDB 76,180 13,430 0 13,430 0
Consumer1 242,357 0 13,430 3,229 48

LinkedMDB

C1

select distinct * where {
?director dbo : nationality ?nat .
?film dbo : director ?director .
?movie owl : sameAs ?film .
?movie linkedmdb : genre ?genre }

client

f1:?director dbo : nationality ?nat
f2:?film dbo : director ?director

f3:?movie owl : sameAs ?film
f4:?movie linkedmdb : genre ?genre

Figure 8.2 – Client defines a federation composed of DBpedia, LinkedMDB, and C1 endpoints with
four replicated fragments

Suppose a Web application poses federated queries against endpoints DBpedia and LinkedMDB.

In order to speed up the queries, a data consumer endpoint C1 with replicated fragments has been
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installed as in Figure 8.2. Fragments are defined as simple CONSTRUCT SPARQL queries with one

triple pattern. Fragments allow for the re-organization of RDF data on C1 to better address needs

of data consumers.

Even in this simple setup, processing our running query against a federation including DBpedia,

LinkedMDB, and C1 raises the problem of source selection with fragment replication (SSP-FR).

There are at least five options to select sources for executing this query; these choices produce

different number of transferred tuples as shown in Figure 8.2:

(i) If no information about replicated fragments is available, all sources may be selected to retrieve

data for all the triple patterns. The number of transferred tuples is given in the solution s1. This

will be the behavior of a federated query engine like FedX that ensures answer completeness. 2

(ii) Endpoints DBpedia and LinkedMDB could be chosen, in this case the number of transferred

tuples is given in s2. The number of transferred tuples in s2 is less than s1 since some joins

could be executed at DBpedia and LinkedMDB.

(iii) Another choice may be to use the C1 endpoint in combination with either DBpedia or Linked-

MDB (s3, s4). This produces the same number of transferred tuples as in s2, but they have

the advantage of accessing less public endpoints.

(iv) A last choice could be to use the C1 endpoint to retrieve data for all the triple patterns (s5).

This solution profits from replicated fragments to execute opportunistic joins at C1; thus, it is

able to achieve the best performance in terms of the number of transferred tuples.

As the number of transferred tuples increases, the availability of the contacted SPARQL endpoints

can be affected. A replication aware federated query engine could select the best sources to reduce

the number of transferred tuples while preserving answer completeness. In this thesis, we formally

address the following problem: Given a SPARQL query and a set of relevant SPARQL endpoints

with replicated fragments, choose the SPARQL endpoints to contact in order to produce a complete

query answer and transfer the minimum amount of data. We aim to develop an algorithm that

produces solution s5 whenever possible, providing as output the sources to be used by a federated

query engine.

2. In order to preserve joins between different endpoints, each triple pattern should be posed to each endpoint
individually.
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DBpedia

F %s% in CONSTRUCT WHERE { %s% }
f2 ?film dbo:director ?director
f3 ?movie owl:sameAs ?film
f4 ?movie linkedmdb:genre ?genre
f5 ?movie linkedmdb:genre film_genre:14
f6 ?director dbo:nationality dbr:France
f7 ?director dbo:nationality dbr:United_Kingdom

LinkedMDB

C1 C2 C3

select distinct ?director ?nat ?genre where {
?director dbo : nationality ?nat . (tp1)
?film dbo : director ?director . (tp2)
?movie owl : sameAs ?film . (tp3)
?movie linkedmdb : genre ?genre } (tp4)

Client

f2, f6

f4

f2, f7 f3, f5 f3, f4

f2

tp1, tp2, tp4
tp1, tp2, tp3, tp4

tp2, tp3, tp4

Figure 8.3 – Client defines a federation composed of C1,C2, and C3 that replicates fragments f2−f7

8.2 Definitions and Problem Description

This section introduces definitions and the source selection problem with fragment replication

(SSP-FR).

8.2.1 Definitions

Fragments are set used to replicate RDF data. The data of a fragment is defined by means of the

dataset public endpoint, or authoritative endpoint, and a CONSTRUCT query with one triple pattern.

Definition 14 (Fragment). A fragment is a tuple f = 〈u, s〉

— u is the non-null URI of the authoritative endpoint where f is available;

— s is a CONSTRUCT query with one triple pattern.

Without loss of generality, s is limited to one triple pattern as in [39], [80]; this reduces the

complexity of fragment containment problem as described in Definition 15. Additionally, we assume

replicated fragments comprise RDF data accessible from public endpoints, i.e., the authoritative

endpoints of the replicated fragments are disjoint with data consumer endpoints. This will allow

data consumers to re-organize RDF data replicated from different public endpoints to fit in this way,
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their needs and requirements.

In this work, we make the following assumptions:

(i) Fragments are replicated from public endpoints, and there is just one level of replication.

(ii) Fragments are read-only and perfectly synchronized; the fragment synchronization problem is

studied in [39], while querying fragments with divergence may be addressed as in [57].

(iii) For the sake of simplicity, we suppose that RDF data accessible through the endpoints are

described as fragments.

To illustrate, consider the federation given in Figure 8.3. This federation extends the setup in

Figure 8.2. Suppose three Web applications pose queries against DBpedia and LinkedMDB. To speed

up query processing, data consumer endpoints: C1, C2, and C3 with replicated fragments have been

configured.

At startup, the federated query engine loads the fragment descriptions for each of the federation

endpoints, and computes both the fragment and containment mappings. The fragment mappings

is a function that maps fragments to a set of endpoints; the containment mapping is based on

containment relation (fl v fk) described in the Definition 15.

Two fragments loaded from two different endpoints, that have the same authoritative endpoint and

equivalent CONSTRUCT queries, are concatenated in the fragment mapping. For example, the feder-

ated engine loads fragments 〈http://dbpedia.org/sparql, ?film db:director ?director〉 from C1, C2, C3,

computes equivalence, and adds in its fragment mapping 〈http://dbpedia.org/sparql, ?film db:director

?director〉 → {C1,C2,C3}.

We adapt definitions of containment and equivalence [26], [34] for the case of triple pattern queries.

Definition 15 (Triple Pattern Containment and Equivalence). Let TP (D) denote the result of

execution of the triple pattern TP against an RDF dataset D. Let TP1 and TP2 be two triple

patterns. We say that TP1 is contained in TP2, denoted by TP1 v TP2, if for any RDF dataset D,

TP1(D) ⊆ TP2(D). We say that TP1 is equivalent to TP2, denoted by TP1 ≡ TP2, if TP1 v TP2

and TP2 v TP1.

As stated in Theorem 4.2.1 [26], containment testing can be achieved using a containment mapping

(Definition 6 [26]). It amounts to finding a substitution of the variables in the triple patterns. 3

3. The substitution operator preserves URIs and literals, only variables are substituted.
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TP1 v TP2, iff there is a substitution θ such that applying θ to TP2 returns the triple pattern

TP1. Solving the decision problem of triple pattern containment between TP1 and TP2, TP1 v TP2,

requires to check if TP1 imposes at least the same restrictions as TP2 on the subject, predicate, and

object positions, i.e., TP1 should have at most the same number of unbounded variables as TP2.

Hence, testing triple pattern containment has a complexity of O(1).

For the federation in Figure 8.3, f5 v f4 because f4 and f5 share the same authoritative

endpoint and there is a substitution θ defined as θ(?genre) = film_genre : 14, θ(?movie) =?movie,

and applying θ to f4 returns f5. After identifying a substitution θ for all pair-wise fragments, it is

straightforward to compute a containment mapping for a federation of SPARQL endpoints.

We can rely on fragment descriptions and the containment property to determine relevant frag-

ments to a query. Relevant fragments contain relevant RDF data to each of the triple patterns of

the query. A fragment is relevant to a query Q, if it is relevant to at least one triple pattern of the

query.

We adapt Definitions 11 and 12 to triple pattern fragments in the following definition:

Definition 16 (Fragment relevance). Let f be a fragment defined by a triple pattern TP1. Let TP2

be a triple pattern of a query Q. f is relevant to Q if TP2 v TP1 or TP1 v TP2.

Table 8.1a shows the relevant fragments to the triple patterns in query Q, and the endpoints that

provide these fragments. For example, the triple pattern tp1 has two relevant fragments: f6 and

f7, and triple pattern tp4 has two relevant fragments: f4 and f5. Fragment f4 can produce the

complete answer of tp4 because f5 v f4, while both f6 and f7 are required to answer tp1. Even if

none of f6 nor f7 contains tp1, and some other triple patterns in the DBpedia endpoint may have

the same predicate as tp1, in the given federation composed by C1, C2, and C3, where no other

fragment can provide data for tp1, retrieving data from both f6 and f7 leads to a complete answer

wrt tp1 and the given federation.

8.2.2 Source Selection Problem with Fragment Replication (SSP-FR)

Given a SPARQL query Q, a set of SPARQL endpoints E, the set of fragments F that have been

replicated by at least one endpoint in E, a fragment mapping endpoints(), a containment mapping

v. The Source Selection Problem with Fragment Replication (SSP-FR) is to assign to each triple
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Table 8.1 – Q Relevant fragments, and source selections that lead to produce all the obtainable
answers for the federation given in Figure 8.3

(a) Relevant Fragments
Q triple pattern RF Endpoints

tp1 ?director dbo:nationality ?nat f6 C1
f7 C2

tp2 ?film dbo:director ?director f2 C1,C2,C3
tp3 ?movie owl:sameAs ?film f3 C2,C3
tp4 ?movie linkedmdb:genre ?genre f4 C1,C3

f5 C2

(b) Source selections
TP D0(tp) D1(tp) D2(tp)
tp1 {C1,C2} {C1,C2} {C1,C2}
tp2 {C1,C2,C3} {C1} {C3}
tp3 {C2,C3} {C2} {C3}
tp4 {C1,C2,C3} {C3} {C3}

Tuples
to

transfer

421,675 170,078 8,953

pattern in Q, the set of endpoints from E that need to be contacted to answer Q. A solution of

SSP-FR corresponds to a mapping D that satisfies the following properties:

1. Answer completeness: sources selected in D lead engines to produce complete query answers.

2. Data redundancy minimization: cardinality(D(tp)) is minimized for all triple pattern tp in

Q, i.e., redundant data is minimized.

3. Data transfer minimization: executing the query using the sources selected in D minimizes

the transferred data.

We illustrate SSP-FR on running query Q of Figure 8.3. Table 8.1a presents relevant fragments

for each triple pattern. Table 8.1b shows three D(tp) that ensure the answer completeness property.

It may seem counterintuitive that these three D(tp) do ensure the answer completeness property, as

they do not include existing DBpedia triples for dbo:nationality predicate with object different from

dbr:France and dbr:United_Kingdom, but as they are not included in endpoints in E, these triples

are inaccessible to the federation. Even if D1 and D2 minimize the number of selected endpoints

per triple pattern, only D2 minimizes the transferred data. Indeed, executing tp1, tp2, tp3 against

replicated fragments that are located in the same data consumer endpoint will greatly reduce the

number of transferred tuples.

The DAW [70] and BBQ [38] approaches (Section 7.5.2) are not designed for solving SSP-FR.

Indeed, they do not take into account replicated data, and may produce a solution as D1. The

Fedra algorithm exploits properties of the replicated fragments and is able to find solution D2.

8.3 Fedra: an Algorithm for SSP-FR

The goal of Fedra is to reduce data transfer by taking advantage of the replication of relevant

fragments for several triple patterns on the same endpoint. Algorithm 5 proceeds in four main steps:
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Algorithm 5 Fedra Source Selection algorithm
Require: Q: SPARQL Query; F: set of Fragment; endpoints : Fragment→ set of Endpoint; v : TriplePattern × TriplePattern→ boolean
Ensure: selectedEndpoints: TriplePattern → set of Endpoint.
1: function sourceSelection(Q,F,endpoints,v)
2: triplePatterns ← get triple patterns in Q
3: R, E ← ∅, ∅
4: for all tp ∈ triplePatterns do
5: R(tp) ← relevantFragments(tp, F) . Relevant fragments as in Definition 16
6: R(tp) ← {{f : f ∈ R(tp) : tp v f}}

⋃
{{f} : f ∈ R(tp) : f v tp ∧ ¬(∃g : g ∈ R(tp) : f @ g v tp)}

7: E(tp) ← { (
⋃

endpoints(f) : f ∈ fs) : fs ∈ R(tp) }
8: end for
9: bgps ← get basic graph patterns in Q
10: for all bgp ∈ bgps do
11: unionReduction(bgp, E) . endpoints reduction for multiple fragment triples
12: bgpReduction(bgp, E) . endpoints reduction for the bgp triples
13: end for
14: for all (tp, E(tp)) ∈ E do
15: selectedEndpoints(tp) ← for each set in E(tp) include one element
16: end for
17: return selectedEndpoints
18: end function

Algorithm 6 Union reduction algorithm
Require: tps : set of TriplePattern; E : TriplePattern → set of set of Endpoint
19: procedure unionReduction(tps, E)
20: triplesWithMultipleFragments ← { tp : tp ∈ tps ∧ cardinality(E(tp)) > 1 }
21: for all tp ∈ triplesWithMultipleFragments do
22: commonSources ← (

⋂
f : f ∈ E(tp)) . get sources in all the subsets in E(tp)

23: if commonSources 6= ∅ then
24: E(tp) ← { commonSources }
25: end if
26: end for
27: end procedure

Algorithm 7 Basic graph pattern reduction algorithm
Require: tps : set of TriplePattern; E : TriplePattern → set of set of Endpoint
28: procedure bgpReduction(tps, E)
29: triplesWithOneFragment ← { tp : tp ∈ tps ∧ cardinality(E(tp)) = 1 }
30: (S, C) ← minimal set covering instance using triplesWithOneFragmentCE
31: C’ ← minimalSetCovering(S, C)
32: selected ← get endpoints encoded by C’
33: for all tp ∈ triplesWithOneFragment do
34: E(tp) ← E(tp)

⋂
selected

35: end for
36: end procedure

./

./

./

∪
tp1{f6} tp1{f7}

tp2{f2}

tp3{f3}

tp4{f4}

./

./

./

∪
tp1{C1} tp1{C2}

tp2{C1,C2,C3}

tp3{C2,C3}

tp4{C1,C3}

Figure 8.4 – Execution plan encoded in data structures R (left) and E (right); multiple subsets
represent union of different fragments (ex. {f6}, {f7}); elements of the subset represent alternative
location of fragments (ex. {C1,C3}); bold sources are the selected sources after set covering is used
to reduce number of selected sources
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Triple Patterns (Tps) E(tp) S

tp2: ?film dbo : director ?director {{C1,C2,C3}} { s2

tp3: ?movie owl : sameAs ?film {{C2,C3}} s3

tp4: ?movie linkedmdb : genre ?genre {{C1,C3}} s4}

(a) S instances

{{s2,s4},{s2,s3},{s2,s3,s4}}

C1 C2 C3

(b) C instance

Figure 8.5 – S and C instances obtained from the set covering reduction (used by Algorithm 7) for
the query Q and federation given in Figure 8.3

I. Identify relevant fragments for triple patterns, a Basic Graph Pattern (BGP) triple pattern can

be contained in one fragment or a union of fragments (lines 5-6).

II. Localize relevant replicated fragments on the endpoints, e.g., Figure 8.4 (line 7).

III. Prune endpoints for the unions (line 11).

IV. Prune endpoints for the BGPs using a set covering heuristic (line 12).

Next, we illustrate how Algorithm 5 works on our running query Q and data consumer endpoints

C1, C2, C3 from Figure 8.3. 4

First, for each triple pattern, Fedra computes relevant fragments in R(tp), and groups them if

they provide the same relevant data. For tp1, R(tp1) → {{f6}, {f7}}. For tp4, as f5 v f4, f5 is

safely removed at line 6, and R(tp4) → {{f4}}. Second, Fedra localizes fragments on endpoints

in E(tp). For tp1, E(tp1) → {{C1}, {C2}}. For tp4, E(tp4) → {{C1, C3}}. Figure 8.4 shows the

execution plans encoded in R(tp) and E(tp). Triple patterns like tp1, with more than one relevant

fragment, represent unions in the execution plan.

Procedure unionReduction (cf. Algorithm 6) prunes non common endpoints, if possible, to

access triple patterns from as few endpoints as possible. In our running example, it is not possible

because there is no common endpoint that replicates both f6 and f7. However, if, for example, f7

were also replicated at C1, then only C1 would be selected to execute tp1.

Procedure bgpReduction (cf. Algorithm 7) transforms the join part of E(tp) (cf. Figure 8.4)

into a set covering problem (cf. line 30). Each triple pattern is an element of the set to cover, e.g.,

tp2, tp3, tp4 correspond to s2, s3, s4 (cf. Figure 8.5a). And for each endpoint in E(tp), we include

the subset of triple patterns associated with that endpoint, e.g., for endpoint C1 we include the

subset {s2,s4} as relevant fragments tp2 and tp4 are replicated by C1 (cf. Figure 8.5b). Line 31

4. As DBpedia is not included in the federation for processing Q, only fragments f6 and f7 are available to retrieve
data for tp1 and the engine will not produce all the answers that would be produced using DBpedia.
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relies on an existing heuristic [41] to find the minimum set covering. In our example, it computes

C’={{s2,s3,s4}}. Line 32 computes the selected endpoints, in our example, selected={ C3 }.

Finally, (Algorithm 5, line 15) chooses among endpoints that provide the same fragment and

reduces data redundancy. For query Q, the whole algorithm returns D2 of Table 8.1b.

Proposition 5. Algorithm 5 has a time complexity of O(n.m2), with n the number of triple patterns

in the query, m the number of fragments, k the number of endpoints, l the number of basic graph

patterns in the query, and m� k ∧ k � l holds.

The upper bound given in Proposition 5 is unlikely to be reached, as it requires for all fragments

to be relevant for each of the triple patterns. In practice (e.g., experiments from Section 8.4), even for

high number of fragments (> 450), the source selection time remains low (Appendix B, section B.1).

Theorem 1. If all the RDF data accessible through the endpoints of a federation are described as

replicated fragments, Fedra source selection leads query engine to produce complete answers wrt the

federation data.

Proof. We assume that all the RDF data accessible through the endpoints are actually described as

replicated fragments. By contradiction, we suppose that for a query Q, Fedra source selection leads

the query engine to produce incomplete answers wrt the federation data, then there is at least one

answer a that is a sound answer to Q using the federation data, that cannot be produced by the query

engine using the sources selected by Fedra. Because it is Fedra source selection that prevents the

query engine to produce a, then Fedra should have failed to include a source as relevant source for

a query triple pattern. Without losing generality, suppose it is source s that Fedra has not included

as relevant for triple pattern tp. But Fedra only prunes sources that provide redundant data for

the triple patterns, if Fedra pruned s then its data is redundant, and if it is redundant the the

sources selected by Fedra do lead to produce answer a.

8.4 Experimental Study

The goal of the experimental study is to evaluate the effectiveness of Fedra. We compare the

performance of federated SPARQL queries using FedX, DAW+FedX, Fedra+FedX, ANAPSID,

DAW+ANAPSID, and Fedra+ANAPSID.
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Table 8.2 – Dataset characteristics: version, number of different triples (#DT) and predicates (#P)

Dataset Version date #DT #P
Diseasome 19/10/2012 72,445 19

Semantic Web Dog Food 08/11/2012 198,797 147
DBpedia Geo-coordinates 06/2012 1,900,004 4

LinkedMDB 18/05/2009 3,579,610 148
WatDiv1 _ 104,532 86

WatDiv100 _ 10,934,518 86

We expect to see that Fedra selects less sources than the engines and DAW, and transfers less

data from endpoints to the query engines.

Datasets: We use the real datasets: Diseasome, Semantic Web Dog Food, LinkedMDB, and DBpedia

Geo-coordinates. Further, we consider two instances of the Waterloo SPARQL Diversity Test Suite

(WatDiv) synthetic dataset [3, 4] with 105 and 107 triples. Table 8.2 shows the characteristics of

these datasets.

Queries: We generate 50,000 queries (500 templates) for the WatDiv federation. We remove the

queries that caused engines to abort execution, and queries that returned zero results. For the queries

that return zero results, any source selection is good, and we are interested in queries where non

trivial source selections are required. For the real datasets, we generate more than 10,000 queries

using PATH and STAR shaped templates with two to eight triple patterns, that are instantiated

with random values from the datasets. We include the DISTINCT modifier in all the queries, in

order to make them susceptible to a reduction in the set of selected sources without changing the

query answer.

Federations and random replication of fragments: For each dataset, we setup a ten consumer

SPARQL endpoint federation (ten as in [70]). In order to produce federations where several op-

portunities to execute joins in the endpoints, and challenge Fedra to find them, fragments were

randomly replicated, and random queries were used to achieve it. For each federation endpoint, 100

random queries were selected. Each query triple pattern is executed as a SPARQL construct query

with an LDF client 5 against an LDF server that exposes the whole dataset. The results are stored

locally if not present in at least three consumer endpoints and a fragment definition is created. This

replication factor of three was set to avoid federations with trivial solutions for Fedra where all the

fragments were replicated by one endpoint. In order to measure the number of transferred tuples,

the federated query engine accesses data consumer endpoints through a proxy.

5. https://github.com/LinkedDataFragments, March 2015.



92 CHAPTER 8. FEDRA

Statistical tests: The Wilcoxon signed rank test [86] for non-uniform paired data is used to study

the statistical significance of the obtained results.

Implementations: FedX 3.1 6 and ANAPSID 7 have been modified to replace their source selection

strategies by Fedra and DAW [70]. Thus, each engine can use the selected sources to perform

its own optimization strategies. Fedra and DAW 8 are implemented in both Java 1.7 and Python

2.7.3. Thus, Fedra and DAW are integrated in FedX (Java) and ANAPSID (Python), reducing the

performance impact of including these new source selection strategies. Proxies are implemented in

Java 1.7. using the Apache HttpComponents Client library 4.3.5 9. We used R 10 to compute the

Wilcoxon signed rank test [86].

Hardware and configuration details: The Grid’5000 testbed 11 is used to run the experiments.

In total 11 machines Intel Xeon E5520 2.27 GHz, with 24GB of RAM in the grenoble site are used

for each execution. Ten machines are used to host the consumer SPARQL endpoints, and one to run

the federated query engines. Federated query engines use up to 7GB of RAM. Consumer SPARQL

endpoints are deployed using Virtuoso 7.2.1 12. Virtuoso parameters number of buffers and maximum

number of dirty buffers are set up to 1,360,000 and 1,000,000 respectively. Virtuoso maximum number

of result rows is setup to 100,000, and the maximum query execution time and maximum query cost

estimation are set up to 600 (seconds).

Evaluation Metrics: i) Number of Selected Sources (NSS): is the sum of the number of sources

that have been selected per triple pattern. If the same source is selected for two triple patterns, it is

counted twice by this metric. This metric measures the performance at source selection level inde-

pendently of how the triple patterns are combined by the engines query decomposition. ii) Number

of Transferred Tuples (NTT): is the sum of the number of tuples transferred from all the endpoints

to the query engine during a query execution.

Additional metrics like the source selection time, execution time, answer completeness were also

measured, their results are presented in Appendix B for the interested reader. Further informations

(implementation, results, setups details) are available at https://sites.google.com/site/

fedrasourceselection.

6. http://www.fluidops.com/fedx/, June 2015.
7. https://github.com/anapsid/anapsid, September 2014.
8. We had to implement DAW as its code is not available.
9. https://hc.apache.org/, October 2014.
10. http://www.r-project.org/
11. https://www.grid5000.fr
12. https://github.com/openlink/virtuoso-opensource/releases/tag/v7.2.1, June 2015.

https://sites.google.com/site/fedrasourceselection
https://sites.google.com/site/fedrasourceselection
http://www.fluidops.com/fedx/
https://github.com/anapsid/anapsid
https://hc.apache.org/
https://www.grid5000.fr
https://github.com/openlink/virtuoso-opensource/releases/tag/v7.2.1
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Figure 8.6 – Number of Selected Sources for execution of Fedra+ANAPSID ( ), DAW+ANAPSID
( ) and ANAPSID ( )

8.4.1 Data Redundancy Minimization

To measure the reduction of the number of selected sources, 100 queries were randomly chosen,

and the source selection was performed for these queries for each federation using ANAPSID and

FedX with and without Fedra or DAW. For each query, the sum of the number of selected sources

per triple pattern was computed. Boxplots are used to present the results (Figures 8.6 and 8.7).

Both Fedra and DAW significantly reduce the number of selected sources, however, the reduction

achieved by Fedra is greater than the achieved by DAW.

To confirm it, a Wilcoxon signed rank test was run with the hypotheses:

H0: Fedra selects the same number of sources as DAW does

Ha: Fedra selects less sources than DAW

Table 8.3 – Wilcoxon signed rank test p-values for testing if Fedra and DAW select the same number
of sources or if Fedra selects less sources. Bold p-values allow to accept that Fedra selects less
sources than DAW

Federation p-value
ANAPSID FedX

Diseasome < 2.2e-16 8.371e-09
SWDF < 2.2e-16 5.386e-11

LinkedMDB < 2.2e-16 5.254e-11
Geocoordinates < 2.2e-16 1.301e-05

WatDiv1 2.728e-13 1.006e-07
WatDiv100 4.794e-14 1.873e-05
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Figure 8.7 – Number of Selected Sources for execution of Fedra+FedX ( ), DAW+FedX ( ) and
FedX ( )

For all the federations and engines, p-values are inferior to 0.05. These low p-values (Table 8.3)

allow for rejecting the null hypothesis that DAW and Fedra achieved reductions are similar, and

accepting the alternative hypothesis that Fedra reduction is greater than the one achieved by

DAW. Fedra source selection strategy identifies the relevant fragments and endpoints that provide

the same data. Only one of them is actually selected; in consequence, a huge reduction on the number

of selected sources of up to 400% per query is achieved.

8.4.2 Data Transfer Minimization

To measure the reduction in the number of transferred tuples, queries were executed using proxies

that measure the number of transmitted tuples from endpoints to the engines. Because queries that

timed out have no significance on number of transferred tuples, we removed all these queries from

the study. 13 Results (Figures 8.8 and 8.9) show that Fedra source selection strategy leads to execu-

tions with considerably less transferred tuples in all the federations except in the SWDF federation

and the Geocoordinates federation. In some queries of the SWDF federation, Fedra+FedX sends

exclusive groups that include BGPs with triple patterns that do not share a variable, i.e., BGPs

with Cartesian products; in presence of Cartesian product, large number of transferred tuples may

be generated. Queries with Cartesian products counters Fedra positive impact over other queries.

13. Up to six queries out of 100 queries did not successfully finish in 1,800 seconds, details available at the web page.
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Figure 8.8 – Number of Transferred Tuples during execution with Fedra+ANAPSID ( ),
DAW+ANAPSID ( ) and ANAPSID ( )
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Figure 8.9 – Number of Transferred Tuples during execution with Fedra+FedX ( ), DAW+FedX
( ) and FedX ( )
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In the Geocoordinates federation the setup offers too few opportunities to execute joins in the end-

points, i.e., the different predicate combinations in the random queries considered to replicate the

fragments was very narrow.

Despite that, globally Fedra shows an effective reduction of the number of transferred tuples.

To confirm it, a Wilcoxon signed rank test was run with the hypotheses:

H0: using sources selected by Fedra leads to transfer the same number of tuples as using sources

selected by DAW

Ha: using sources selected by Fedra leads to transfer less tuples than using sources selected by

DAW

Table 8.4 – Wilcoxon signed rank test p-values for testing if Fedra and DAW transfer the same
amount of data or if Fedra transfers less data. Bold p-values allow to accept that Fedra transfers
less data than DAW

Federation p-value
ANAPSID FedX

Diseasome < 2.2e-16 6.334e-09
SWDF 2.198e-11 0.6855

LinkedMDB 1.296e-14 3.427e-05
Geocoordinates 1.29e-12 0.5

WatDiv1 1.188e-07 1.494e-07
WatDiv100 2.488e-05 1.293e-07

P-values (Table 8.4) are inferior to 0.05 for all federations and engines except SWDF federation

+ FedX engine, and Geocoordinates federation + FedX engine. In consequence, for all combinations

of federation and engines except SWDF+FedX and Geocoordinates+FedX, we can reject the null

hypothesis DAW and Fedra number of transferred tuples are similar and accept the alternative

hypothesis that Fedra achieves a greater reduction of the number of transferred tuples than DAW.

The reduction of the number of transferred tuples is mainly due to Fedra source selection strategy

that aims to find opportunities to execute joins in the endpoints, and mostly, it leads to a significant

reduction of the number of transferred tuples of up to four orders of magnitude.

8.5 Conclusions

We illustrated how replicating fragments allow for data re-organization from different data sources

to better fit query needs of data consumers. Then, we proposed a replication-aware federated query
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engine by extending state-of-art federated query engine ANAPSID and FedX with Fedra, a source

selection strategy that approximates SSP-FR.

Fedra exploits fragment localities to reduce the number of transferred tuples. Experimental

results demonstrate that Fedra achieves significant reduction of number of transferred tuples while

leading to produce complete answers.

This work opens several perspectives. First, we made the assumption that replicated fragments

are perfectly synchronized and cannot be updated. We can leverage this assumption and manage

the problem of federated query processing with divergence [57].

Several variants of SSP-FR can also be developed. SSP-FR does not differentiate between end-

points, and the cost of accessing endpoints is considered the same. Finally, SSP-FR and Fedra can

be extended to solve the source selection problem where the number of public endpoint accesses is

minimized [57].
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9
Conclusions and Perspectives.

In this thesis, we have addressed two important Semantic Web issues. First, the integration of

heterogeneous sources from the Deep Web to boost the number of domains and queries that can

be answered using SPARQL and Linked Data. Second, replicated data handling in the context of

federated query processing against endpoint federations to improve endpoints availability.

To integrate heterogeneous sources, we have proposed SemLAV, the first scalable LAV approach

that does not depend on query rewritings generation and evaluation. For querying Linked Data,

query rewriting approaches are too stressed by the large number of triple patterns in SPARQL

queries and the high number of sources in the Web, these characteristics prevents query rewriters

to offer a practical query evaluation strategy for Linked Data. SemLAV uses query rewriters most

basic information, buckets, to select relevant views, and ranks sources in a way that when k views

have been loaded, they cover the maximal number of rewriting that can be covered with k views.

In particular, our research question in which order should the query relevant views be loaded into a

graph, built during query execution, in order to use this graph to answer the query, and outperform

the traditional LAV query rewriting techniques in terms of number of answers produced by time unit?

has been answered. In Chapter 5 we proposed a ranking over the views that allowed to produce

answers as soon as possible, and that mostly outperforms existing query rewriting-based approaches
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as shown in Section 5.3.

To handle replicated data, we have proposed Fedra, a source selection strategy able to prune

sources with replicated data in order to reduce the number of transferred tuples from the endpoints

to the federated query engine. The strategy used by Fedra gets excellent results when used in

combination with ANAPSID, but results are less good when used with FedX because FedX sends

Cartesian products to the endpoints. In particular, our research questions have been answered. Can

the knowledge about fragment replication be used to reduce the number of selected sources by federated

query engines while producing the same answers? In Chapter 8.2, we showed how the replicated

fragments may be described, and how these descriptions can be used to find containments among

the replicated fragments. These containments are used to safely prune redundant data and produce

complete answers even if the number of selected sources has been highly reduced. Does considering

groups of triple patterns to be executed together, instead of individual triple patterns, produce source

selections that lead to transfer less data from endpoints to the federated query engine? In Section 8.3

we presented an algorithm that uses a set covering heuristic to evaluate as many query triple patterns

as possible in the same source. This strategy allows federated query engines like ANAPSID, that

reduce the number of Cartesian products sent to the endpoints, produce less transferred tuples.

However, if the query engine does send Cartesian products to the endpoints, more complex strategies

are needed in order to effectively reduce the number of transferred tuples.

9.1 Perspectives

The approaches presented in this thesis, and their implementations can be improved in several

directions. In this section, our work perspectives are detailed.

9.1.1 Answering SPARQL queries using Linked data and Deep Web

sources

The SemLAV approach implementation can be improved by loading views in parallel, and this

perspective work has been partially addressed in [28], in this work parallel loading of views has been

simulated loading views in blocks, and loading blocks of different views. Nevertheless, a real parallel

implementation of view loading may provide even better results. Another limitation of SemLAV
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approach implementation is its lack of strategies to handle memory constraints. If the memory

available is not enough to store the partial RDF graph, efficient strategies should be implemented to

produce a complete query using limited memory.

9.1.2 Answering SPARQL Queries against Federations with Replicated

Fragments

Limitations of implementing Fedra in FedX may be overcome with a stand-alone implementation

of the Fedra approach that transforms a plain query into a query with query decomposition and

source localization represented as SERVICE clauses that avoids Cartesian products. Unfortunately,

federated query engines are not yet ready to efficiently execute queries with SERVICE clauses. In

this direction, we are currently working in an extended version of Fedra that in addition to source

selection also performs query decomposition, and we are also implementing new planning heuristics

inside FedX that avoid Cartesian products.

Other perspective work is to use the replicated fragments hosted by various endpoints to improve

federated queries performance by using them to perform parallel tasks during query execution.

Additionally, Fedra may be extended to consider cost functions. Cost functions may be used to

select the endpoints that satisfy the user criteria, e.g., in [58] public endpoint usage was reduced.

Finally, if the assumption that all the endpoints fragments are perfectly synchronized is removed,

then endpoints may offer data with different values of divergence with respect the latest dataset

version, in the same direction as in [57], and for instance Fedra would have to choose the endpoints

that keep the answer divergence under a certain threshold.





A
Results of the SemLAV experiments

A.1 Experimental study results
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Table A.1 – Execution of Queries Q1, Q2, Q4-Q6, Q8-Q18 using SemLAV, MCDSAT, GQR and
MiniCon, using 20GB of RAM and a timeout of 10 minutes. It is reported the number of answers
obtained, wrapper time (WT), graph creation time (GCT), plan execution time (PET), total time
(TT), time of first answer (TFA), number of times original query is executed (#EQ), maximal
graph size (MGS) in terms of number of triples and throughput (number of answers obtained per
millisecond)

Query Approach Answer Time (msecs) #EQ MGS Throughput
Size % WT GCT PET TT TFA (answers / msec)

Q1 SemLAV 22,660,216 33 45,434 8,322 547,310 606,697 6,370 15 810,638 37.3501
MCDSAT 290 0 13,688 202 299,546 609,381 309,952 810,409 0.0005

GQR 0 0 0 0 0 600,415 >600,000 0 0.0000
MiniCon 0 0 0 0 0 600,136 >600,000 0 0.0000

Q2 SemLAV 590,000 98 177,020 30,676 392,439 600,656 260,333 66 1,040,373 0.9823
MCDSAT 0 0 15,519 105 7,058 681,246 >600,000 848,276 0.0000

GQR 0 0 0 0 0 654,483 >600,000 0 0.0000
MiniCon 0 0 0 0 0 600,054 >600,000 0 0.0000

Q4 SemLAV 287 100 555,528 73,771 327 660,938 104,501 47 3,659,707 0.0004
MCDSAT 0 0 154,451 371 181,387 601,590 >600,000 279,896 0.0000

GQR 0 0 557,125 1,181 11,784 600,665 >600,000 84,046 0.0000
MiniCon 0 0 413,871 650 91,136 601,750 >600,000 177,838 0.0000

Q5 SemLAV 564,220 100 523,084 65,333 44,102 632,809 116,037 28 3,396,134 0.8916
MCDSAT 0 0 398,517 384 26,287 601,731 >600,000 424,431 0.0000

GQR 0 0 0 0 0 600,481 >600,000 0 0.0000
MiniCon 0 0 0 0 0 600,132 >600,000 0 0.0000

Q6 SemLAV 118,258 59 547,763 62,896 13,291 625,173 43,306 24 2,931,316 0.1892
MCDSAT 5,776 2 401,026 1,029 55,684 601,678 105,752 91,900 0.0096

GQR 0 0 0 0 0 600,510 >600,000 0 0.0000
MiniCon 3,697 1 193,817 248 51,300 637,514 418,169 2,184,680 0.0058

Q8 SemLAV 564,220 100 428,745 66,383 132,373 627,612 5,393 42 4,489,016 0.8990
MCDSAT 16,595 2 403,133 576 65,935 603,297 113,211 256,382 0.0275

GQR 1,706 0 330,065 194 31,587 607,594 272,737 1,264,385 0.0028
MiniCon 467 0 198,384 349 271,398 616,114 166,776 1,265,295 0.0008

Q9 SemLAV 28,211 100 2,938 697 1,338 5,107 1,235 18 169,839 5.5240
MCDSAT 28,211 100 5,609 445 1,643 41,505 34,392 5,417 0.6797

GQR 28,211 100 3,310 132 1,281 5,709 1,435 5,417 4.9415
MiniCon 28,211 100 3,086 129 1,362 5,004 862 5,417 5.6377

Q10 SemLAV 2,993,175 100 161,047 25,659 417,234 607,841 9,810 44 869,340 4.9243
MCDSAT 332,488 11 19,801 67 383,421 600,000 207,191 603,769 0.5541

GQR 0 0 0 0 0 600,639 >600,000 0 0.0000
MiniCon 0 0 0 0 0 600,138 >600,000 0 0.0000

Q11 SemLAV 2,993,175 100 195,950 27,442 377,255 601,042 8,352 43 816,308 4.9800
MCDSAT 1,943,141 64 141,876 389 391,852 600,000 72,939 402,528 3.2386

GQR 1,442,134 48 248,275 689 340,937 600,000 14,435 307,089 2.4036
MiniCon 1,956,539 65 217,321 415 385,019 605,021 6,832 402,539 3.2338

Q12 SemLAV 598,635 100 258,097 41,062 303,023 609,509 5,784 121 1,041,369 0.9822
MCDSAT 0 0 424,369 498 15,271 607,408 >600,000 509,271 0.0000

GQR 0 0 0 0 0 600,418 >600,000 0 0.0000
MiniCon 0 0 0 0 0 600,189 >600,000 0 0.0000

Q13 SemLAV 598,635 100 452,288 65,043 126,345 671,893 183,844 124 3,509,975 0.8910
MCDSAT 0 0 250,542 312 141,728 610,452 >600,000 402,531 0.0000

GQR 0 0 36,563 344 19,757 600,376 >600,000 31,948 0.0000
MiniCon 0 0 143,879 625 219,882 605,727 >600,000 206,689 0.0000

Q14 SemLAV 344,885 61 544,919 58,563 32,752 636,387 29,201 24 2,921,646 0.5419
MCDSAT 10,308 1 382,674 587 63,689 614,123 133,200 1,206,075 0.0168

GQR 0 0 0 0 0 600,714 >600,000 0 0.0000
MiniCon 0 0 0 0 0 600,319 >600,000 0 0.0000

Q15 SemLAV 282,110 100 471,609 63,548 109,762 645,172 2,911 37 3,255,223 0.4373
MCDSAT 8,298 2 90,061 271 168,041 622,474 217,445 361,882 0.0133

GQR 0 0 0 0 0 819,679 >600,000 0 0.0000
MiniCon 0 0 0 0 0 600,171 >600,000 0 0.0000

Q16 SemLAV 282,110 100 407,107 53,611 187,986 648,826 2,531 46 3,356,755 0.4348
MCDSAT 8,298 2 437,590 852 32,015 601,584 103,641 74,682 0.0138

GQR 1 0 26,460 79 94 619,761 619,702 1,136,305 0.0000
MiniCon 252 0 110,366 181 122,022 603,821 400,416 1,151,769 0.0004

Q17 SemLAV 197,112 100 547,255 67,857 28,783 644,090 1,504 32 3,002,144 0.3060
MCDSAT 156,533 79 412,525 1,727 60,858 600,067 70,476 23,192 0.2609

GQR 45,037 22 245,953 177 350,406 600,000 27,178 1,098,117 0.0751
MiniCon 5,779 2 262,608 361 334,810 600,001 26,952 1,099,508 0.0096

Q18 SemLAV 0 0 582,334 65,083 3,543 651,094 >600,000 12 2,806,533 0.0000
MCDSAT 0 0 256,304 257 100,820 607,091 >600,000 411,901 0.0000

GQR 0 0 0 0 0 600,791 >600,000 0 0.0000
MiniCon 0 0 0 0 0 600,186 >600,000 0 0.0000



B
Fedra Experimental Study Results

B.1 Source Selection Time

To measure the source selection time, the FedX option "-planOnly" and the ANAPSID option "-p

d" were used to produce only the query plan instead of executing the query. Source selection time

(Figures B.1 and B.2) is the elapsed time between posing the query and obtaining the query plan,

and it is measured in seconds using the system command time.

B.2 Execution Time

Execution time (Figures B.3 and B.4) is the elapsed time between posing the query and obtaining

the query answers, it is measured in seconds using the system command time. A timeout of 1,800

seconds was enforced.

B.3 Answer Completeness

Answer Completeness (Figures B.5 and B.6) is the proportion of the real answers that are retrieved

by the engine. Its value is comprised between 0 and 1. The real query answer is obtained executing
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Figure B.1 – Source Selection Time (secs) for execution of Fedra+ANAPSID ( ),
DAW+ANAPSID ( ) and ANAPSID ( )
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Figure B.2 – Source Selection Time (secs) for execution of Fedra+FedX ( ), DAW+FedX ( )
and FedX ( )
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Figure B.3 – Execution Time (secs) for Fedra+ANAPSID ( ), DAW+ANAPSID ( ) and ANAP-
SID ( )
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Figure B.4 – Execution Time (secs) for Fedra+FedX ( ), DAW+FedX ( ) and FedX ( )
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Figure B.5 – Answer Completeness for execution of Fedra+ANAPSID (F+A, ),
DAW+ANAPSID (D+A, ) and ANAPSID (A, ) with a timeout of 1,800 secs
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Figure B.6 – Answer Completeness for execution of Fedra+FedX (F+F, ), DAW+FedX (D+F,
) and FedX (F, ) with a timeout of 1,800 secs

the query against one endpoint that has all the federation data. Notice that FedX and Fedra

theoretically produce complete answers with respect to the federation data, however if there is a

large number of transferred tuples during query execution, then Virtuoso endpoints may reach their

maximum number of rows (100,000), and only send a partial answer to the federated query engine,

and consequently the federated query engines may produce incomplete answers.
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Résumé en Langue Française

Le web sémantique permet à des fournisseurs de données de mettre en ligne un nombre toujours
croissant de jeux de données concernant l’ensemble de la société. Ces données peuvent être en-
suite consommées en écrivant des requêtes SPARQL. Dans ce cadre, l’exécution efficace de requêtes
SPARQL sur l’ensemble des données pertinentes est un enjeu crucial. Malheureusement, même si il
y a un grand nombre de jeux de données dans le web sémantique, le nombre de jeux de données dans
le web profond est supérieur, et SPARQL ne permet pas d’accéder aux données du web profond, re-
streignant considérablement les requêtes que peuvent être répondues. De plus, l’infrastructure pour
exécuter les requêtes SPARQL n’assure pas une bonne disponibilité des données. Afin de traiter ces
deux problèmes, nous nous sommes intéressés à l’utilisation des vues [34] dans le web sémantique afin
d’optimiser l’exécution des requêtes ainsi que l’accès au web profond. Les contributions scientifiques
de cette thèse sont les suivantes :
— SemLAV est un médiateur permettant d’exécuter des requêtes SPARQL sur le web profond.

SemLAV s’appuie sur de vues liant les données externes au schéma global du médiateur.
SemLAV évite le problème de l’explosion combinatoire de la réécriture des requêtes en cal-
culant un ordre de matérialisation des vues concernées.

— Fedra considère une fédération de serveurs SPARQL ayant répliqués partiellement des données
afin d’en améliorer la disponibilité. Cette réplication partielle peut-être considérée comme des
vues. Fedra optimise l’exécution des requêtes fédérées en sélectionnant les sources de données
tel que les données transférées soient minimisés.

B.4 SemLAV: requêtes SPARQL sur le web profond
La question de recherche est la suivante: comment intégrer des sources du web des données ( linked

data) avec des sources du web profond (deep web) afin de répondre à des requêtes en utilisant des
vues décrivant les sources comme des requêtes SPARQL conjonctives ?

Ce problème s’inscrit pleinement dans le problème général d’intégration de données [34] avec
deux approches classiques: entrepôt de données et médiateurs. Afin de ne pas bouger les données et
d’avoir une plus grande fraicheur des résultats, nous privilégions l’approche basée sur les médiateurs
de type Local-As-View (LAV) plus à même de gérer la dynamicité de nos sources [79].

Dans cette approche, les données dans les sources sont décrites en utilisant des vues du schéma
global. La requête est posée en utilisant le schéma global, et elle est réécrite en utilisant les vues
qui décrivent les sources. Le problème de réécriture des requêtes conjonctives est NP-Complet, et le
nombre de réécritures peut-être exponentiel en fonction du nombre de sous-objectifs de la requête.

Le problème scientifique est le suivant: Peut-on obtenir de meilleures performances en chargeant
les vues dans une instance du schéma global et en exécutant la requête sur cette instance plutôt qu’en
utilisant des techniques traditionnelles basées sur des réécritures de requêtes?

SemLAV fait l’hypothèse d’absence de statistiques sur les données présentes dans les sources.
Les données des sources sont décrites selon des vues basées sur requêtes SPARQL conjonctives. Le
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médiateur accède aux sources du web profond par l’intermédiaire d’adaptateurs (wrappers). Les vues
pertinentes pour une requête sont classées selon leur utilité pour la requête de telle façon que les
vues les plus pertinentes sont chargées en premier. Ainsi, les chances d’obtenir des réponses très
rapidement sont augmentées.

Pour illustrer l’approche SemLAV, on utilise la requête Q avec les quatre sous-objectifs présentés
dans le listing 1, et un ensemble M avec cinq vues donné dans le Listing 2.

Listing 1 – Les produits, les caractéristiques et les vendeur des offres
SELECT * WHERE {

?Offer bsbm:vendor ?Vendor .
?Vendor rdfs:label ?Label .
?Offer bsbm:product ?Product .
?Product bsbm:productFeature ?ProductFeature .

}

Listing 2 – Des vues qui décrivent le contenu de cinq sources ayant des données sur des produits
v1(P,L,T,F):-label(P,L),type(P,T),productfeature(P,F)
v2(P,R,L,B,F):-producer(P,R),label(R,L),publisher(P,B),productfeature(P,F)
v3(P,L,O,R,V):-label(P,L),product(O,P),price(O,R),vendor(O,V)
v4(P,O,R,V,L,U,H):-product(O,P),price(O,R),vendor(O,V),label(V,L),offerwebpage(O,U),homepage(V,H)
v5(O,V,L,C):-vendor(O,V),label(V,L),country(V,C)

Dans l’approche traditionnelle d’une médiateur LAV, un moteur de réécriture comme Minicon [65,
34] ou MCDSAT [10] transforme Q sous la forme d’une union de 60 requêtes conjonctives définies
sur la tête des vues de M . Un moteur d’exécution est ensuite chargé d’exécuter les réécritures
afin d’obtenir les résultats. Dans le cas où il n’y a pas assez de ressources pour exécuter tous ces
réécritures, on en exécute autant que possible avec des résultats incomplets.

SemLAV sélectionne les vues pertinentes pour Q, les classe par nombre de réécritures équiva-
lentes puis les matérialise dans la limite des ressources disponibles. L’exécution de la requête Q sur
l’instance partielle du schéma global donne des résultats équivalent à l’exécution d’un certain nombre
de réécritures.

Table 1 – L’impact des différents ordres des vues sur le nombre de réécritures couvertes

# de vues Ordre 1 Ordre 2
incluses (k) Les vues incluses (Vk) # réécritures Les vues incluses (Vk) # réécritures

couvertes couvertes
1 v5 0 v4 0
2 v5, v1 0 v4, v2 2
3 v5, v1, v3 6 v4, v2, v3 12
4 v5, v1, v3, v2 8 v4, v2, v3, v1 32
5 v5, v1, v3, v2, v4 60 v4, v2, v3, v1, v5 60

L’ordre dans lequel les vues sont incluses dans l’instance partielle du schéma global a un effet sur
le nombre de réécritures couvertes.

Considérons deux ordres différents pour inclure les vues de l’exemple ci-dessus. Ordre1: v5,
v1, v3, v2, v4 et v4, v2, v3, v1, v5. La Table 1 considère des instances partielles du schéma
global faites à partir de différent nombre des vues. L’exécution de Q sur les différentes instances
partielles du schéma global correspond à l’exécution d’un nombre équivalent de réécritures. Par
exemple, si seulement quatre vues pourraient être incluses, Ordre2 correspond à l’exécution de 32
réécritures tandis que Ordre1 correspond à l’exécution de huit réécritures seulement. Si toutes les
vues pertinentes pour la requête Q sont matérialisées alors une réponse complète sera produite. Si
le nombre des vues pertinentes est grand, et que nous avons seulement des ressources pour inclure k
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vues pertinentes Vk, alors nous devons inclure en premier celles qui augmentent les chances d’obtenir
des réponses. En l’absence de connaissances sur la distribution de données, nous pouvons seulement
supposer que chaque réécriture a les mêmes chances de produire des réponses. Ainsi, les chances
d’obtenir des réponses sont proportionnelles au nombre de réécritures couvertes par l’exécution de
Q sur une instance qui comprend les vues en Vk.

Nous avons comparé l’exécution des requêtes en utilisant SemLAV avec des exécutions tradition-
nelles utilisant les moteurs de réécriture MiniCon [65, 34], MCDSAT [10] et GQR [44]. Les résultats
montrent que SemLAV améliore considérablement le temps pour obtenir les premières réponses ainsi
que le débit des réponses produites par seconde (throughput).

En perspective, la mise en œuvre de notre approche SemLAV peut être améliorée en chargeant
les vues en parallèle. Cette perspective de travail a été partiellement adressée en [28]. Dans ce travail
le chargement des vues en parallèle a été simulé en chargeant les vues en blocs, et en alternant le
changement de blocs de vues différentes. Néanmoins, une vrai mise en œuvre de chargement des vues
en parallèle peut donner encore des meilleurs résultats. Une autre limitation de la mise en œuvre de
l’approche SemLAV est la manque de bonnes stratégies pour gérer des limitations de mémoire. Si la
taille de mémoire disponible n’est pas suffisante pour charger l’instance partielle du schéma global,
des stratégies de gestion de mémoire efficaces peuvent être mise en place pour produire une réponse
complète même avec les limitations de mémoire existantes.

B.5 Fedra: réplication des données dans le web des données
liées

Le web des données liées souffre d’un problème récurrent de disponibilité des données. Les
techniques de réplication de données sont traditionnellement utilisées pour pallier à ce problème.
Malheureusement, nous avons observé que la réplication de données sur plusieurs serveurs détériore
les performances des moteurs de requêtes fédérées. Par exemple, supposons 2 fédérations: l’une
composée d’un seul serveur hébergeant les données de DBpedia 1, l’autre composée de 2 serveurs
hébergeant chacun les données de DBpedia. Les temps d’exécution des moteurs de requêtes fédérées
ANAPSID [2] et FedX [74] sont plus de 100 fois plus élevés pour la fédération avec deux copies
par rapport à la fédération avec une seule copie. Effectivement, en l’absence de connaissances sur
le schéma de réplication des données, les moteurs de requêtes fédérées n’ont d’autre choix que de
contacter l’ensemble des participants pour fournir des résultats complets.

La question de recherche est la suivante: comment exécuter des requêtes fédérées SPARQL sur
des fédérations de services SPARQL avec des fragments répliqués ?

Nous proposons de définir les fragments répliqués comme des vues enregistrées chez chacun des
participants. Les moteurs de requêtes fédérés peuvent alors charger dynamiquement la définition
de ces vues, reconstituer dynamiquement un schéma de réplication pour la fédération considérée
et procéder à l’optimisation des requêtes fédérées dans ce cadre. La connaissance du schéma de
réplication pour une fédération permet de supprimer certaines sources et de profiter éventuellement
de la localité des données en fonction de requêtes.

Fedra définit des fragments répliqués comme des vues avec un serveur d’origine. Par example,
un serveur C1 peut répliquer un fragment de DBpedia de la manière suivante:

<http://dbpedia.org/sparql,
CONSTRUCT WHERE { ?p dbprop:doctoralAdvisor ?a }>

Cela signifie que C1 a répliqué localement tous les encadrants de thèse depuis le serveur SPARQL
http://dbpedia.org/sparql. Comme C1 peut également répliquer des fragments en prove-

1. http://wiki.dbpedia.org/, octobre 2015

http://wiki.dbpedia.org/
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nance d’autres serveurs, il recrée sur C1 une localité des données qui n’existe pas sur les serveurs
d’origine.

Le problème scientifique est alors le suivant: étant donné une requête SPARQL et un ensemble de
serveurs SPARQL hébergeant des fragment répliqués, quels sont les serveurs à contacter pour sous-
objectifs de la requête afin de produire une réponse complète avec un minimum de données transférées
?

Fedra résout ce problème en trois étapes :
1. pour chaque sous-objectif de la requête, il sélectionne les fragments pertinents et élimine les

fragments redondants en utilisant les relations d’inclusion entre vues.
2. Si un sous-objectif nécessite plusieurs fragments mais qu’ils sont disponibles sur un seul serveur,

alors Fedra réduit ces fragments à un fragment virtuel.
3. Pour l’ensemble des sous-objectifs n’ayant plus qu’un seul fragment (réel ou virtuel), Fedra

sélectionne le moins de serveurs possibles en réduisant le problème en un problème de couverture
par ensemble.

Table 2 – Les motifs de triplet de la requête Q1, et les fragments et les services qui sont pertinents
pour répondre Q1

(a) Définitions des fragments pertinents pour Q1
F %s% dans CONSTRUCT WHERE { %s% }
f2 ?film dbo :director ?director
f3 ?movie owl :sameAs ?film
f4 ?movie linkedmdb :genre ?genre
f5 ?movie linkedmdb :genre film_genre :14
f6 ?director dbo :nationality dbr :France
f7 ?director dbo :nationality dbr :United_Kingdom

(b) Localisation des fragments pertinents pour Q1
Les motifs de triplet LFP Serveurs

tp1 ?director dbo :nationality ?nat f6 C1
f7 C2

tp2 ?film dbo :director ?director f2 C1,C2,C3
tp3 ?movie owl :sameAs ?film f3 C2,C3
tp4 ?movie linkedmdb :genre ?genre f4 C1,C3

f5 C2

(c) Sélection des sources pertinentes par sous-objectif de
la requête.

LMT D0(tp) D1(tp) D2(tp)
tp1 {C1,C2} {C1,C2} {C1,C2}
tp2 {C1,C2,C3} {C1} {C3}
tp3 {C2,C3} {C2} {C3}
tp4 {C1,C2,C3} {C3} {C3}

Le nombre de
triplets à transférer 421.675 170.078 8.953

Considérons une requête Q1 composée des quatre motifs de triplet et une fédération avec trois
serveurs SPARQL C1, C2 et C3.

La Table 2a montre les définitions des fragments répliqués dans la fédération, et la Table 2b
montre pour chaque motif de triplet, les fragments répliqués pertinents ainsi que les serveurs qui les
ont répliqués. Le motif de triplet tp1 a deux fragments pertinents : f6 et f7. Le motif de triplet tp4
a aussi deux fragments pertinents : f4 et f5 mais les données du fragment f5 sont contenus dans le
fragment f4. Après l’étape 1 de Fedra, seuls les fragments en gras sont candidats pour la deuxième
étape.

La seconde étape de Fedra s’intéresse à tp1; comme f6 et f7 sont hébergés sur 2 serveurs
différents, Fedra ne réduit pas ces fragments.

La dernière étape considère donc seulement tp2, tp3, tp4. Fedra construit un instance du problème
de couverture par ensemble en essayant de couvrir l’ensemble S = {tp1, tp2, tp3} avec les sous-
ensembles suivants:

1. CC1 = {tp1, tp4},
2. CC2 = {tp2, tp4}
3. CC3 = {tp2, tp3, tp4}



B.5. FEDRA: RÉPLICATION DES DONNÉES DANS LE WEB DES DONNÉES LIÉES 125

Dans ce cas, Cc3 couvre complètement S. La sélection finale des serveurs par sous-objectif est
donc la solution D2(tp) présentée dans la 2c. Cette solution offre l’opportunité au moteur de requêtes
de déléguer les jointures entre tp2, tp3, tp4 sur le serveur C3, ce qui réduit considérablement le nombre
de données transférées face aux autres solutions possibles D0(tp) et D1(tp) .

Le premier choix, D0, correspond à choisir tous les serveurs qui ont répliqué les fragments perti-
nents, ce choix produit un large nombre de données transférées. Le deuxième choix, D1, correspond
à choisir un seul serveur par fragment, ce choix produit moins de données transférées que D0, mais
ne tient pas compte de la localité des données sur C3. Finalement, le troisième choix, D2, prend en
compte les jointures entre les sous-objectifs de la requête, Fedra recherche donc une sélection de
serveur en tenant compte de la forme de la requête.

Nous avons implanté Fedra, dans les moteurs de requêtes fédérées FedX [74] et ANAPSID [2],
nous avons utilisé une réduction au problème de couverture par ensemble (set covering problem),
et une heuristique existante [41] pour choisir les serveurs à sélectionner par fragment. Nous avons
obtenu très bons résultats avec ANAPSID [2] et FedX [74]. Dans le cas de FedX, il existe quelques
cas où les heuristiques de FedX [74] produisent des plans d’exécution avec des produits cartésiens.
En conséquence, le nombre de données transférées peut être plus grand avec notre approche quand
il est utilisé à l’intérieur de FedX.

Les limitations de la mise en œuvre de Fedra à l’intérieur de FedX [74] peuvent être surmontées
avec une mise en œuvre de Fedra indépendamment du moteur de requête fédérées. Cette mise en
œuvre pourrait, pour exemple, avoir comme entrée une requête simple en SPARQL 1.0 2, et faire
une transformation qui produise une requête en SPARQL 1.1 3 avec la décomposition de la requête
en sous-requêtes, et des clauses SERVICE 4 qui ’indiquent sur quel serveur chaque sous-requête doit
être évaluée.

Malheureusement, les moteurs de requêtes fédérées ne sont pas encore prêts à exécuter efficace-
ment des requêtes avec des clauses SERVICE. Dans ce sens, nous travaillons sur une extension de Fe-
dra qui est capable de faire la sélection de sources et la décomposition des requêtes en sous-requêtes
à l’intérieur de moteurs de requêtes fédérées ANAPSID [2] et FedX [74]. Des autres perspectives de
travail sont l’amélioration d’exécution des requêtes en utilisant les fragments répliqués pour réaliser
des tâches en parallèle, l’utilisation des préférences de l’utilisateur comme par exemple quels sont les
services qu’il préfère choisir, et incorporer des fragments qui ne sont pas parfaitement synchronises,
et que pourtant ces fragments ont des divergences par rapport à la dernière version de la source.

2. http://www.w3.org/TR/rdf-sparql-query/, octobre 2015
3. http://www.w3.org/TR/sparql11-query/, octobre 2015
4. http://www.w3.org/TR/sparql11-federated-query/, octobre 2015

http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/TR/sparql11-query/
http://www.w3.org/TR/sparql11-federated-query/
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Répondre aux Requêtes SPARQL grâce aux Vues

Answering SPARQL Queries using Views

Résumé
Le web sémantique permet à des fournisseurs de données de
mettre en ligne un nombre toujours croissant de jeux données
concernant l’ensemble de la société. Ces données peuvent être
ensuite consommées en écrivant des requêtes SPARQL. Dans ce
cadre, l’exécution efficace de requêtes SPARQL sur l’ensemble des
données pertinentes est un enjeu crucial. Malheureusement,
SPARQL ne permet pas d’accéder aux données du web profond,
réduisant considérablement l’espace de recherche. De plus,
l’infrastructure pour exécuter les requêtes SPARQL n’assure pas
une bonne disponibilité des données. Afin de traiter ces deux
problèmes, nous nous sommes intéressés à l’utilisation des vues
dans le web sémantique afin d’optimiser l’exécution des requêtes
ainsi que l’accès au web profond. SemLAV est un médiateur
permettant d’exécuter des requêtes SPARQL sur des sources de
données sur le WEB. SemLAV s’appuie sur de vues liant les
données externes au schéma global du médiateur. SemLAV évite le
problème de l’explosion combinatoire de la réécriture de requêtes
en calculant un ordre de matérialisation des vues incriminées.
FEDRA considère une fédération de serveurs SPARQL ayant
répliqués partiellement des données. FEDRA optimise l’exécution de
requêtes fédérées en sélectionnant les sources de données tel que
les données transférées soient minimisés.

Abstract
The Semantic Web allows data publishers to make available an
increasing number of datasets concerning the whole society.
SPARQL queries can be written to consume the datasets data. In
this context, the effective execution of SPARQL queries on the
relevant datasets is a critical issue. Unfortunately, SPARQL does
not allow to access data from the Deep Web, and this significantly
reduces the search space. In addition, the existing infrastructures to
execute the SPARQL queries do not provide good data availability.
To address these two problems, we have used views in the
Semantic Web context to optimize the query execution and also the
access to the Deep Web. SemLAV is a mediator that allows for
executing SPARQL queries over data sources on the Web. SemLAV
is based on views that relate external data to the mediator global
schema. SemLAV avoids generating and executing an exponential
number of query rewritings by computing the materialization order
for the selected views. FEDRA considers a federation of SPARQL
endpoints that have partially replicated datasets. FEDRA optimizes
the execution of federated queries by selecting the endpoints in a
way that the transferred data are minimized.

Mots clés
web sémantique, données liées, intégration de données, requêtes

fédérées, sélection de sources, réplication de fragments.

Key Words
Semantic Web, Linked Data, Data Integration, Federated Query

Processing, Source Selection, Fragment Replication.

L’UNIVERSITÉ NANTES ANGERS LE MANS


	Introduction
	Context
	Outline
	Part I: Answering SPARQL queries using Linked Data and Deep Web sources
	Part II: Answering SPARQL Queries against Federations with Replicated Fragments

	Publications list

	Background
	Semantic Web
	Conjunctive Queries
	Summary

	I Answering SPARQL queries using Linked data and Deep Web sources
	Introduction
	Outline of this part

	State of the Art
	Querying the Web of Data
	Data Integration
	Data Warehousing
	Mediators and Wrappers
	LAV Query Rewriting Techniques
	GUN

	Summary

	SemLAV
	Preliminaries
	The SemLAV Approach
	The SemLAV Relevant View Selection and Ranking Algorithm
	Global Schema Instance Construction and Query Execution
	The SemLAV Properties

	Experimental Evaluation
	Experimental Hypotheses
	Experimental Configuration
	Experimental Results

	Conclusions and Future Work


	II Answering SPARQL Queries against Federations with Replicated Fragments
	Introduction
	State of the Art
	Distributed Database Query Processing
	Linked Data Query Processing
	Federated Query Processing
	Federated Query Processing Engines
	FedX
	ANAPSID

	Source Selection Strategies for SPARQL endpoints
	Join-Aware Source Selection Strategies
	Duplicate-Aware Source Selection Strategies
	DAW

	Strategies to overcome availability limitations in Linked Data
	Summary

	Fedra
	Motivations
	Definitions and Problem Description
	Definitions
	Source Selection Problem with Fragment Replication (SSP-FR)

	Fedra: an Algorithm for SSP-FR
	Experimental Study
	Data Redundancy Minimization
	Data Transfer Minimization

	Conclusions


	III Overall Conclusion and Perspectives
	Conclusions and Perspectives.
	Perspectives
	Answering SPARQL queries using Linked data and Deep Web sources
	Answering SPARQL Queries against Federations with Replicated Fragments


	Results of the SemLAV experiments
	Experimental study results

	Fedra Experimental Study Results
	Source Selection Time
	Execution Time
	Answer Completeness

	Résumé en Langue Française
	SemLAV: requêtes SPARQL sur le web profond
	Fedra: réplication des données dans le web des données liées



