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ABSTRACT 

The probabilistic analysis of geotechnical structures involving spatially varying soil properties is 

generally performed using Monte Carlo Simulation methodology. This method is not suitable for 

the computation of the small failure probabilities encountered in practice because it becomes very 

time-expensive in such cases due to the large number of simulations required to calculate 

accurate values of the failure probability. Three probabilistic approaches (named AK-MCS, AK-

IS and AK-SS) based on Active learning and combining Kriging and one of the three simulation 

techniques (i.e. Monte Carlo Simulation MCS, Importance Sampling IS or Subset Simulation SS) 

were developed. Within AK-MCS, a Monte Carlo simulation without evaluating the whole 

population is performed. Indeed, the population is predicted using a kriging meta-model which is 

defined using only a few points of the population, thus significantly reducing the computation 

time with respect to the crude MCS. In AK-IS, a more efficient sampling technique ‘IS’ is used 

instead of ‘MCS’. In the framework of this approach, the small failure probability is estimated 

with a similar accuracy as AK-MCS but using a much smaller size of the initial population, thus 

significantly reducing the computation time. Finally, in AK-SS, a more efficient sampling 

technique ‘SS’ is proposed. This technique overcomes the search of the design points and thus it 

can deal with arbitrary shapes of the limit state surfaces. All the three methods were applied to 

the case of a vertically loaded strip footing resting on a spatially varying soil. The obtained 

results are presented and discussed. 

 

KEY WORDS: spatial variability, Kriging metamodeling, probability of failure, Monte Carlo 

Simulation, Importance Sampling, Subset Simulation. 
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RÉSUMÉ 

L’analyse probabiliste des ouvrages géotechniques est généralement réalisée en utilisant la 

méthode de simulation de Monte Carlo. Cette méthode n’est pas adaptée pour le calcul des faibles 

probabilités de rupture rencontrées dans la pratique car elle devient très coûteuse dans ces cas en 

raison du grand nombre de simulations requises pour obtenir la probabilité de rupture. Dans cette 

thèse, nous avons développé trois méthodes probabilistes (appelées AK-MCS, AK-IS et AK-SS) 

basées sur une méthode d’apprentissage (Active learning) et combinant la technique de Krigeage 

et l’une des trois méthodes de simulation (i.e. Monte Carlo Simulation MCS, Importance 

Sampling IS ou Subset Simulation SS). Dans AK-MCS, la population est prédite en utilisant un 

méta-modèle de krigeage qui est défini en utilisant seulement quelques points de la population, ce 

qui réduit considérablement le temps de calcul par rapport à la méthode MCS. Dans AK-IS, une 

technique d'échantillonnage plus efficace 'IS' est utilisée. Dans le cadre de cette approche, la 

faible probabilité de rupture est estimée avec une précision similaire à celle de AK-MCS, mais en 

utilisant une taille beaucoup plus petite de la population initiale, ce qui réduit considérablement le 

temps de calcul. Enfin, dans AK-SS, une technique d'échantillonnage plus efficace 'SS' est 

proposée. Cette technique ne nécessite pas la recherche de points de conception et par 

conséquent, elle peut traiter des surfaces d’état limite de forme arbitraire. Toutes les trois 

méthodes ont été appliquées au cas d'une fondation filante chargée verticalement et reposant sur 

un sol spatialement variable. Les résultats obtenus sont présentés et discutés. 

 

MOTS-CLÉS : Varabilité spatiale, krigeage, probabilité de ruine, Simulation de Monte Carlo, 

importance sampling, Subset Simulation. 
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RÉSUMÉ ÉTENDU 

Traditionnellement, l'analyse et le dimensionnement des ouvrages géotechniques reposent sur des 

approches déterministes. Dans ces approches, les paramètres d'entrée du sol sont représentés par 

des valeurs conservatrices sans prendre en compte rigoureusement les incertitudes de ces 

paramètres et sans tenir compte de leur variabilité spatiale. Dans ces approches, un facteur de 

sécurité global basé sur l’expérience de l’ingénieur est utilisé pour tenir compte des différentes 

incertitudes. 

 

Ces dernières années, de nombreux efforts ont été consacrés à l'analyse probabiliste des ouvrages 

géotechniques. Les méthodes probabilistes simplifiées décrivent les différents paramètres 

incertains du sol par des variables aléatoires où le sol est considéré comme un matériau uniforme. 

Cependant, dans la nature, les paramètres du sol varient spatialement dans les directions 

horizontale et verticale en raison des processus de dépôt et post-dépôt. Cela conduit à la nécessité 

de représenter les paramètres du sol par des champs aléatoires. À cet égard, des approches 

probabilistes plus avancées ont été proposées dans la littérature. Ces approches sont généralement 

basées sur la méthode des éléments finis ou la méthode des différences finies. 

 

L'analyse probabiliste des ouvrages géotechniques présentant une variabilité spatiale des 

propriétés du sol est généralement réalisée à l'aide de la méthode de simulation de Monte Carlo 

(Monte Carlo Simulation MCS). Cette méthode n'est pas adaptée au calcul des faibles 

probabilités de rupture rencontrées dans la pratique en raison du grand nombre de simulations 

nécessaires pour calculer la probabilité de rupture avec une faible valeur du coefficient de 

variation sur cette probabilité de rupture. 

 

Afin de surmonter les difficultés liées au grand nombre d'appels au modèle mécanique par la 

méthodologie de Monte Carlo, des techniques d'échantillonnage plus efficaces connues sous le 

nom de techniques de réduction de variance ont été proposées dans la littérature. On peut citer, 

entre autres, l'Importance Sampling (IS) et le Subset Simulation (SS). La caractéristique la plus 

attrayante de ces techniques est que l'on peut obtenir le même niveau de précision que celui de 

MCS, mais en utilisant un nombre plus réduit d'évaluations de la fonction de performance.  

 

Bien que les techniques de réduction de variance soient remarquablement plus efficaces que 

MCS, elles ne sont toujours pas pertinentes pour des problèmes où des modèles d’éléments 
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finis/différences finies sont utilisés pour évaluer la fonction de performance. Par conséquent, un 

effort considérable a été consacré au développement des techniques dites de metamodeling.  

 

Les techniques de metamodeling permettent de remplacer le modèle mécanique coûteux par un 

méta-modèle (c'est-à-dire une équation analytique simple). Plusieurs types de techniques de 

metamodeling peuvent être trouvées dans la littérature, telles que les surfaces de réponse 

quadratique, les expansions de chaos polynomiales, les réseaux de neurones, le support vector 

machines et le krigeage. L'idée commune de base de ces méthodes est de construire un méta-

modèle en utilisant un certain nombre d'évaluations de la fonction de performance (basé sur le 

modèle mécanique coûteux) pour un certain nombre d'échantillons désignés comme plan 

d’expérience (i.e. Design of Experiments DoE). Une fois que le méta-modèle est construit, on 

peut facilement évaluer la fonction de performance pour n'importe quel échantillon en employant 

ce méta-modèle au lieu d'utiliser le modèle mécanique coûteux.  

 

Cette thèse vise à développer des approches probabilistes pour l'analyse probabiliste des ouvrages 

géotechniques en considérant la variabilité spatiale des propriétés de sol. Trois approches 

probabilistes (AK-MCS, AK-IS et AK-SS) combinant la technique de krigeage et l'une des trois 

techniques de simulation (comme MCS, IS ou SS) ont été présentées et discutées. L'objectif est 

de tirer profit des avantages des deux techniques (i.e. metamodeling et réduction de variance) afin 

d’aboutir à des approches probabilistes plus efficaces nécessitant un temps de calcul réduit. 

Notons que le but de cette thèse est le calcul de la probabilité de rupture vis-à-vis du 

poinçonnement d'une fondation superficielle filante reposant sur un sol spatialement variable et 

soumise à une charge verticale centrée où les paramètres de résistance au cisaillement du sol sont 

considérés comme deux champs aléatoires anisotropes et non gaussiens. Le modèle mécanique 

est basé sur des simulations numériques utilisant le code de différences finies FLAC3D.  

Nous présentons ci-après un bref aperçu des différents chapitres présentés dans cette thèse sans se 

préoccuper des résultats obtenus. Puis, nous présenterons dans un dernier paragraphe une 

synthèse des résultats numériques obtenus par les différentes méthodes probabilistes présentées 

dans cette thèse. 

 

Chapitre 2: 

Avant la présentation des différentes approches probabilistes développées dans cette thèse (voir 

chapitres 3, 4 et 5), une revue de la littérature est présentée au chapitre 2. Ce chapitre fournit les 
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types d'incertitudes rencontrées en géotechnique en mettant l'accent sur la variabilité spatiale 

(caractérisation et discrétisation des champs aléatoires). Il décrit également les principales 

méthodes probabilistes utilisées dans la littérature pour la propagation de l'incertitude. Les trois 

méthodes de simulation (Monte Carlo Simulation MCS, Importance Sampling IS et Subset 

Simulation SS) ainsi que la technique de krigeage sont présentées en détail car elles constituent la 

base des approches probabilistes développées dans les chapitres suivants. Les principales 

conclusions du chapitre I sont : 

 

- La combinaison d'une technique de metamodeling et d'une technique de réduction de 

variance peut conduire à une alternative plus efficace que chacune des méthodes utilisée 

individuellement. Le krigeage a été choisi dans cette thèse comme technique de 

metamodeling en raison de l'utilité de ses résultats (moyenne de la prédiction et variance 

de la prédiction) pour le processus d'apprentissage. En ce qui concerne la technique de 

réduction de variance, trois types de techniques d'échantillonnage (MCS, IS et SS) ont été 

utilisés et vérifiés pour leur performance au sein de cette thèse. Ceci fait l’objet des 

chapitres 3, 4 et 5 respectivement. 

- Les méthodes d'expansion en série sont les plus performantes pour la discrétisation des 

champs aléatoires. La raison est liée au fait que ces méthodes fournissent le nombre 

optimal de variables aléatoires nécessaires pour discrétiser le champ aléatoire, les autres 

méthodes étant dépendantes du maillage. Dans cette thèse, la méthode EOLE a été 

adoptée pour la discrétisation des champs aléatoires. Outre le fait qu'il s'agit d'une 

méthode d'expansion en série, cette méthode permet de déterminer le nombre minimal de 

variables aléatoires pour une valeur prescrite de la variance de l'erreur. 

 

Chapitre 3: 

Le chapitre 3 a été consacré à la méthode AK-MCS qui est une méthode d'apprentissage alliant 

krigeage et simulation de Monte Carlo pour évaluer efficacement la probabilité de rupture Pf 

[Echard et al. (2011)]. La méthode consiste d’abord à générer une population de Monte Carlo de 

grande dimension suivant les distributions des variables aléatoires. Ensuite, on sélectionne 

arbitrairement un nombre initial de points parmi les points générés pour être évalués par le 

modèle mécanique. Le plan, d’expérience et les réponses correspondantes obtenus par le modèle 

mécanique permettent de construire un modèle de krigeage approximatif moyennant l’outil 

DACE du logiciel Matlab. Ce modèle de krigeage servira à estimer la prédiction de la fonction de 
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performance Ǧ(x) ainsi que sa variance σǦ
2(x) en tous les points de la population de Monte Carlo. 

Grâce au calcul des Ǧ(x) et des σǦ
2(x) associées, il est possible de construire un critère permettant 

de classer les points de la population de Monte Carlo par ordre de pertinence pour 

l’enrichissement du plan d’expérience. Ce critère est défini pour un point donné comme le 

rapport entre la valeur absolue de la prédiction et son écart-type [i.e. U (x) =   |Ǧ(x)| /σǦ (x)]. 

Notons que U(x) représente le nombre d’écart-types qui séparent l’estimateur au point x de la 

surface d’état limite. Les points dont la valeur de U est petite (typiquement inférieures à 2), se 

trouvent dans une zone très incertaine où le signe du point x est très incertain (i.e. les points très 

proches de la surface d’état limite). Le point qui minore la fonction U(x) est donc ajouté au plan 

d’expérience pour être évalué par le modèle mécanique et utilisé pour la construction d’un 

nouveau modèle de krigeage. L’enrichissement du plan d’expérience se poursuit jusqu’à ce que la 

valeur de U(x) soit suffisamment grande, c’est à dire que les points restants soient en dehors de la 

zone incertaine. Dans ce chapitre, le critère d’arrêt du processus d’enrichissement est [min 

(U)>2]. A la fin du processus d’enrichissement, la probabilité de rupture fP et le coefficient de 

variation  fCOV P  peuvent être estimées. Si le coefficient de variation obtenu n’est pas 

satisfaisant, le nombre de points de la population de Monte Carlo est augmenté, et la procédure 

est reprise en partant du dernier plan d’expérience utilisé. 

 

La méthode AK-MCS est très efficace car la probabilité de rupture obtenue est très précise 

(puisqu’elle correspond à un faible coefficient de variation sur la valeur calculée de la probabilité 

de rupture) nécessitant un nombre d'appels au modèle mécanique beaucoup plus petit (et donc un 

temps de calcul réduit) par rapport à la méthodologie de Monte Carlo. Notons cependant que le 

temps de calcul de l'approche AK-MCS reste important dans le cas des faibles valeurs de la 

probabilité de rupture (bien que dans cette méthode on utilise les prédictions calculées à l'aide du 

méta-modèle de krigeage) car une grande population est requise par MCS pour conduire à une 

petite valeur du coefficient de variation de la probabilité de rupture. 

 

Chapitre 4: 

Le chapitre 4 a été consacré à la méthode AK-IS qui est une technique d'apprentissage alliant 

krigeage et tirage d’importance (Importance Sampling IS). Dans le cadre de cette méthode, 

l’inconvénient majeur de la procédure AK-MCS impliquant la grande population nécessaire pour 

évaluer les faibles probabilités de rupture a été surmonté en utilisant une technique 
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d'échantillonnage plus efficace. En effet, le tirage d'importance a été employé à la place de la 

technique d'échantillonnage de Monte Carlo. Notons que la procédure AK-IS a été proposée par 

Echard et al. (2013) dans le cas simple d’une fonction de performance analytique. Dans cette 

thèse, une extension de la méthode AK-IS au cas d’un sol spatialement variable est présentée. 

Cette méthode se compose de deux étapes principales. Tout d'abord, le point de rupture le plus 

probable (point de conception) est déterminé suivant une procédure itérative à l'aide d'un méta-

modèle de krigeage approximatif basé sur un petit nombre d'échantillons. Ensuite, le méta-

modèle approximatif de krigeage obtenu précédemment est successivement amélioré par un 

processus d'enrichissement en ajoutant chaque fois un nouvel échantillon sélectionné à partir 

d'une fonction de densité de probabilité centrée au point de conception. Lorsque l'apprentissage 

s'arrête, les valeurs estimées de la probabilité de ruine fP et du coefficient de variation sont 

déterminées. Notons que la méthode AK-IS utilise l’avantage du krigeage (moyenne et variance 

de la prédiction) pour le choix du meilleur nouveau point à calculer par le modèle mécanique. 

Elle utilise aussi l’avantage de l’importance sampling pour générer des points dans la zone de 

défaillance. Il convient de noter ici que le critère d'arrêt d’apprentissage est similaire à celui 

présenté dans la procédure AK-MCS [i.e. min (U)>2]. Il convient aussi de souligner que le temps 

de calcul des prédictions est significativement plus petit que ce qui serait nécessaire si l'on 

utilisait l'approche AK-MCS où un échantillonnage MCS aurait été utilisé pour déterminer les 

échantillons candidats. En effet, le nombre d'échantillons candidats utilisés dans AK-IS est 

beaucoup plus faible pour la même valeur du coefficient de variation sur fP conduisant ainsi à 

une réduction considérable du temps de calcul. 

 

Chapitre 5: 

La méthode AK-SS est une méthode d’apprentissage alliant krigeage et subset simulation (SS) 

pour évaluer efficacement la probabilité de ruine fP . Ce travail a été motivé par le fait que 

certaines surfaces d'état limite peuvent présenter plusieurs points de conception et par 

conséquent, l'application de la procédure AK-IS n'est pas simple pour ces cas. Dans l’approche 

AK-SS, une technique d'échantillonnage plus efficace (Subset Simulation SS) a été utilisée à la 

place de la technique d’échantillonnage par Importance Sampling. Cette technique permet de 

surmonter la recherche des points de conception (comme c'est le cas dans AK-IS). Par 

conséquent, elle peut traiter des surfaces d'état limite de forme arbitraire. La procédure AK-SS se 

compose de deux étapes principales. Dans la première étape, un méta-modèle approximatif est 
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construit par krigeage en utilisant un faible nombre d'échantillons appelés plan d’expérience 

initial (Initial Design of Experimnts (DoE)). Ces échantillons sont choisis arbitrairement parmi 

une grande population générée par MCS. Dans la deuxième étape, l'approche de Subset 

Simulation est utilisée pour générer des échantillons qui sont dirigés vers la surface d'état limite 

en employant le méta-modèle de krigeage approximatif obtenu précédemment. Le méta-modèle 

approximatif est successivement amélioré par un processus d'enrichissement en ajoutant à chaque 

fois un échantillon supplémentaire au DoE initial. Le nouvel échantillon est sélectionné (en 

utilisant la fonction d’apprentissage U) parmi les échantillons obtenus au dernier niveau d'un 

échantillonnage par Subset Simulation appliqué sur le méta-modèle mis à jour. Le processus 

d'ajout d'un nouvel échantillon (processus d'enrichissement) est répété jusqu'à ce qu'un critère 

prescrit sur la valeur de la probabilité de rupture soit obtenu. Dans ce chapitre, le critère d’arrêt 

récemment proposé par Schöbi et al. (2015) est utilisé. Ce critère se base non pas sur la précision 

du méta-modèle mais plutôt sur la précision du paramètre de sortie (la probabilité de rupture dans 

le cas présent). À la fin du processus d'enrichissement, le nombre d'échantillons ajoutés est 

considéré comme suffisant pour pouvoir calculer la valeur finale de la probabilité de rupture et la 

valeur correspondante du coefficient de variation en utilisant le méta-modèle final.  

 

La méthode AK-SS proposée dans ce chapitre utilise les avantages de la méthode SS pour 

l'évaluation de petites probabilités de défaillance (moyennant un temps de calcul plus faible que 

la méthode MCS) et du modèle de krigeage (qui fournit la moyenne et la variance de la prédiction 

pour l'approximation de la fonction de performance). Le principal avantage de AK-SS sur AK-

MCS devient visible en cas de faibles probabilités de défaillance. Comme il a été mentionné 

précédemment, l'effort de calcul de la procédure AK-MCS augmente considérablement dans le 

cas où des grandes populations sont nécessaires pour évaluer des faibles probabilités de ruine. 

AK-SS résout ce problème en exprimant la faible probabilité de ruine en tant que produit de 

probabilités de ruine conditionnelles plus importantes de plusieurs événements de défaillance 

intermédiaires. 

 

 Résultats numériques: 

Cette section vise à présenter l’effet de la variabilité spatiale du sol sur la probabilité de ruine vis-

à-vis du poinçonnement et ce, pour une fondation superficielle filante soumise à une charge 

verticale centrée. La fonction de performance utilisée dans l'analyse est donnée par l'équation 

suivante:  
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 1
q
uG

q
s

   

(1) 

où uq est la capacité portante ultime calculée en utilisant le logiciel FLAC3D et sq est la charge 

appliquée à la fondation.  La cohésion c et l'angle de frottement interne φ sont considérés comme 

deux champs aléatoires anisotropes non-Gaussiens. L'angle de frottement interne φ est supposé 

suivre une loi bêta, et la cohésion c est supposée lognormale. Les valeurs moyennes et les 

coefficients de variation des deux champs aléatoires sont donnés comme suit: 

20 , 25%; 30 , 10%o

c ckPa Cov Cov      . La fondation superficielle filante de largeur 

B=1m et de 0.25m de hauteur est supposée non pesante et élastique. Le domaine du sol adopté 

dans l'analyse est de 13B de large par 5B de profondeur. Nous présentons ci-dessous une 

comparaison entre les résultats obtenus par les trois méthodes AK-MCS, AK-IS et AK-SS. 

 

a. Effet des distances d’autocorrélation des deux champs aléatoires sur fP  et  fCOV P  

La figure 1 présente l'effet de la distance d'autocorrélation isotrope (ax = ay) sur la probabilité de 

défaillance obtenue à partir des trois méthodes AK-MCS, AK-IS et AK-SS. D’autre part, la 

figure 2 et la figure 3 présentent respectivement l'effet de la distance d'autocorrélation verticale et 

horizontale sur la probabilité de défaillance calculée par les trois méthodes.  

Les figures 1, 2 et 3 montrent qu'il existe un bon accord entre les résultats obtenus à partir des 

trois méthodes. Pour la quasi majorité des configurations traitées, l’écart maximum par rapport à 

la méthode AK-MCS (considérée comme une référence) reste inférieur à 7%. Comme on peut le 

voir dans ces figures, la probabilité de ruine est maximale pour un sol homogène. Ceci montre 

l’intérêt de calculer la probabilité de ruine en prenant en compte la variabilité spatiale des 

propriétés du sol.  

Les figures 4, 5 et 6 montrent les valeurs du coefficient de variation obtenues à partir des trois 

méthodes AK-MCS, AK-IS et AK-SS pour les différentes variabilités du sol. A partir de ces 

figures, on peut observer que les valeurs obtenues à partir de la méthode AK-SS sont inférieures à 

4% pour tous les cas traités. Notons cependant que, pour les deux autres méthodes (i.e. AK-MCS 

et AK-IS), les valeurs du coefficient de variation restent inférieures à 7% pour la majorité des cas 

considérés. En conclusion, les petites valeurs du coefficient de variation obtenues (<7%) 

indiquent que les valeurs de fP calculées dans cette thèse sont fiables et peuvent être utilisées 

dans la pratique. 
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Figure 1. Effet de la distance d’autocorrélation isotrope ax=ay sur fP  

 

Figure 2.   Effet de la distance d’autocorrélation verticale ay sur fP  pour ax =10 m 

 

Figure 3.  Effet de la distance d’autocorrélation horizontale ax sur fP  pour ay=2 m 
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Figure 4. Valeurs de  fCOV P  pour différentes valeurs de la distance d’autocorrélation isotrope ax=ay    

 

Figure 5. Valeurs de  fCOV P pour différentes valeurs de la distance d'autocorrélation verticale ay   

pour ax =10 m 

 

Figure 6. Valeurs de  fCOV P  Pour différentes valeurs de la distance d'autocorrélation horizontale ax  

pour ay=2 m 
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b. Réalisation critique au point de conception 

 

La figure 7 montre les réalisations critiques des champs aléatoires au point de conception pour 

deux valeurs de la distance d'autocorrélation isotrope. Cette figure montre une répartition 

symétrique des paramètres de résistance au cisaillement du sol et ce par rapport à l’axe vertical 

central de la fondation. La zone de sol de faibles caractéristiques mécaniques est concentrée 

autour de la fondation, le sol de plus fortes valeurs de caractéristiques mécaniques étant loin de la 

fondation. Comme on peut le constater à partir de la figure 7, la taille de la zone de sol de faibles 

caractéristiques mécaniques augmente avec l'augmentation de la longueur d'autocorrélation 

conduisant à une plus grande probabilité de défaillance.  

 

 

 

 

 

 

(a) ax=ay=2m 

 

 

 

 

 

 

(b) ax=ay=5m 

Figure 7. Réalisations critiques pour deux valeurs de la distance d'autocorrélation isotrope 

 

c. Synthèse critique des différentes méthodes probabilistes 
 

Trois méthodes probabilistes (AK-MCS, AK-IS et AK-SS) basées sur le krigeage ont été 

présentées dans cette thèse pour l'analyse probabiliste d'une fondation superficielle filante 

reposant sur un sol spatialement variable. Ces méthodes sont très efficaces car la probabilité de 

défaillance obtenue est très précise, nécessitant un nombre d'appels réduit au modèle mécanique 

par rapport à une technique de simulation utilisée individuellement telles que Monte Carlo 

Simulations (MCS), Importance Sampling (IS) et Subset Simulation (SS). 
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Les trois méthodes AK-MCS, AK-IS et AK-SS ont été comparées en termes de temps de calcul 

et du nombre total d'appels au modèle mécanique et ce, dans le cas pratique où la distance 

d’autocorrélation horizontale est égale à 10m et la distance d’autocorrélation verticale est égale à 

2m. Les trois méthodes ont fourni des valeurs quasi similaires pour les sorties probabilistes. 

Notez cependant que la méthode AK-IS était la plus avantageuse en termes de temps de calcul 

(environ un jour) suivie d'AK-SS (environ deux jours) puis de AK-MCS (environ 4 jours).  

 

En conclusion, la méthode AK-IS devrait être utilisée en cas de présence d’un seul et unique 

point de conception. Pour les problèmes présentant des surfaces d'état limite ayant plus d'un point 

de conception, la méthode AK-IS perd son intérêt et, par conséquent, on peut surmonter cet 

inconvénient en utilisant l'approche AK-SS qui est légèrement plus chère en temps de calcul. 
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NOTATION 

The following acronyms and symbols are used in this thesis:   

ACRONYMS 

ACF Autocorrelation Function 

AK-IS Active learning reliability method combining Kriging and Importance Sampling 

AK-MCS Active learning reliability method combining Kriging and Monte Carlo Simulation 

AK-SS Active learning reliability method combining Kriging and Subset Simulation 

ANN Artificial Neural Networks 

BLUP Best Linear Unbiased Predictor 

CDF Cumulative Density Function 

CIUC Consolidated Isotropic Undrained triaxial Compression test 

COV Coefficient Of Variation 

CPT Cone Penetration Test 

DMT Dilatometer Test 

DoE Design of Experiments 

DST Direct Shear Test 

EOLE Expansion Optimal Linear Estimation method 

FORM First Order Reliability Method 

IP Integration Point method 

IS Importance Sampling 

ISD Importance Sampling Density 

KL Karhunen-Loeve expansion method 

LAS Local Average Subdivision 

LH Latin Hypercube 

LSS Limit State Surface 

MCS Monte Carlo Simulation 

MP Midpoint method 

OLE Optimal Linear Estimation method 

OSE Orthogonal Series Expansion method 

PCE Polynomial Chaos Expansion 

PDF Probability Density Function 
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fP  Probability of failure 

PMT Pressuremeter Test 

RSM Response Surface Methodology 

SA Spatial Average method 

SF Shape Function method 

SORM Second Order Reliability Method 

SPCE Sparse Polynomial Chaos Expansion 

SPT Standard Penetration Test 

SS Subset Simulation 

SVM Support Vector Machine 

UC Unconfined Compression test 

UCS Unconfined Compression Strength 

ULS Ultimate Limit State 

UU, TUU Unconsolidated–Undrained triaxial compression test 

VST Vane Shear Test 

Latin letters 

a Autocorrelation distance (m) 

ax Horizontal autocorrelation distance (m) 

ay vertical autocorrelation distance (m) 

a unknown PCE coefficients  

ai,bi coefficients obtained by the least squares method used in the RSM method 

B width of footing (m) 

c Soil cohesion (kPa) 

Cc Compression index 

Cv Coefficient of consolidation 

Cj intermediate failure threshold, chapter 2 

Dr relative density, Table (2.2), chapter 2  

e initial void ratio 

E Young’s modulus (kPa) 

ED Dilatometer modulus 

F deterministic part defined by a regression model, Eq. (2.27), chapter 2 

fs friction of sleeve measured  by CPT (kN/m2) 
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FR normalized friction ratio 
0

.100s

c v

f

q 



 

Fs safety factor     

G Performance function 

G non-Gaussian marginal cumulative density function, Eq. (2.6), chapter 2 

G
  

realization of a random function, Eq. (2.27), chapter 2 

hx optimal probability density function Eq. (2.16), chapter 2 

Δh
 

separation distance between the data pairs, Eq. (2.1), chapter 2 

ID Dilatometer material index 

I(X) indicator function of the failure domain, Eq. (2.14), chapter 2 

k constant sets the confidence level, Eqs. (5.3) and (5.4), chapter 5 

K maximum number of lags, Eq. (2.1); number of samples, Eq. (2.13), chapter 2 

KD Dilatometer horizontal stress index 

Ks Shear stiffness of the interface (GPa) 

Kn Normal stiffness of the interface (GPa) 

m Number of levels in subset simulation method  

M Number of terms (expansion order) retained in the EOLE method 

n Porosity of soil 

N Number of SPT blows 

N Total number of data samples, chapter 2 

N1 initial Design of Experiment 

N2 number of iterations, chapter 4 

Nγ, Nq , Nc Bearing capacity factors 

NMC Number of Monte Carlo samples 

NIS Number of samples used in chapter 4 

NSS Number of samples per level used in chapter 5 

P0 intermediate failure probability, chapter 5 

fP  Probability of failure 

0

fP
 

original failure probability based on the kriging predictor values, chapter 5 

fP 

 
upper boundary of the failure probability, chapter 5 

fP 

 
lower boundary of the failure probability, chapter 5 
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mp  maximum past pressure (kN/m2) 

qc 
cone tip resistance measured  by CPT (kN/m2) 

qs applied footing load (kN/m2) 

qT corrected cone tip resistance measured  by CPT (kN/m2) 

uq  ultimate bearing capacity (kN/m2) 

qc1N normalized cone tip resistance 

RD Relative Density, Table (2.3), chapter 2 

R square matrix of dimension N N , Eqs. (2.31) and (2.32), chapter 2  

s total number of grid points in the EOLE method. 

Su undrained shear strength (kPa) 

U learning function    

u1, u2 two standard normal random variables 

uc Standard Gaussian random variable for random field c 

u Standard Gaussian random variable for random field  

w water content 

wl liquid limit 

wP plastic limit 

X vector that represents the location in chapter 2 

X vector that represents random variables, chapter 2 

Z The property of interest, chapter 2 

Z (Xi) value of the property Z at location Xi , chapter 2 

Z (Xi+k) value of the property Z at the location Xi+k , chapter 2 

Z(X) fluctuation around the mean value, Eq. (2.27), chapter 2 

 

Greek letters 

HL  Reliability index 

β scalar deterministic part, Eq. (2.31), chapter 2  

γ unit weight of soil (kN/m3) 

 Scale of fluctuation (m) 

fP  tolerance for two consecutive iteration steps, Eq. (5.2), chapter 5 

θ correlation parameter vector, Eq. (2.30), chapter 2 
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λ eigenvalues of the autocorrelation matrix 

µ  Mean value of the random field 

μZ The mean of the property Z , chapter 2 

 G X
  Kriging mean prediction 

ν Poisson’s ratio 

ξ Standard normal random variable 

 Coefficient of correlation 

σ  Standard deviation value of the random field 

0v  total vertical stress (kN/m2) 

 

2

G X


 Kriging prediction variances 

2

Z
 

Random field variance, Eq. (2.32), chapter 2 

 Angle of internal friction of soil (°) 

φ' Effective angle of internal friction of soil (°) 

j  eigenvector of the autocorrelation matrix 

(.)  standard normal cumulative density function 

χ vector data samples represents the values of the  property Z in chapter 2 

 soil dilation angle (°) 

;

G

 
  Gaussian autocorrelation matrix 

;

NG

 
  non-Gaussian autocorrelation matrix 
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CHAPTER 1. GENERAL INTRODUCTION 

Traditionally, the analysis and design of geotechnical structures is based on deterministic 

approaches. In these approaches, the soil input parameters are represented by conservative values 

without rigorously taking into account the uncertainties of these parameters and without 

considering their spatial variability. Indeed, within these approaches, a global safety factor based 

on engineering judgment is used to take into account the different uncertainties.  

In recent years, much effort has been paid to the probabilistic analysis of geotechnical structures. 

Simplified probabilistic methods describe the different soil uncertain parameters by random 

variables where the soil is considered as a uniform material. However, in nature, the soil 

parameters vary spatially in both the horizontal and vertical directions as a result of depositional 

and post-depositional processes. This leads to the necessity of representing the soil parameters by 

random fields. In this regard, more advanced probabilistic approaches were proposed in the 

literature. These approaches are generally based on the finite element or the finite difference 

method.       

The probabilistic analysis of geotechnical structures presenting spatial variability in the soil 

properties is generally performed using Monte Carlo Simulation (MCS) methodology. This 

method is not suitable for the computation of the small failure probabilities encountered in 

practice. This is because it is very time-expensive in such cases due to the large number of 

simulations required to calculate the failure probability to within a small value of the coefficient 

of variation of this failure probability.  

In order to overcome the shortcoming related to the excessive number of calls of the mechanical 

model by MCS methodology, more efficient sampling techniques known as variance reduction 

techniques were proposed in literature. One may cite among others the Importance Sampling (IS) 
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and Subset Simulation (SS) techniques. The most attractive feature of these techniques is that one 

can obtain the same accuracy level as that of MCS but using a significantly smaller number of 

evaluations of the performance function. Although the variance reduction techniques are 

remarkably more efficient than MCS, they are still impractical to be used in problems where 

computationally expensive finite element/finite difference models are employed to evaluate the 

performance function. Therefore, a considerable amount of effort has been devoted to developing 

so-called meta-modeling techniques. These techniques allow one to substitute the 

computationally expensive mechanical model by a meta-model (i.e. a simple analytical equation). 

Several kinds of meta-modeling techniques can be found in literature such as quadratic response 

surfaces, polynomial chaos expansions, neural networks, support vector machines and kriging. 

The basic common idea of these methods is to build a meta-model by using a certain number of 

evaluations of the performance function (based on the computationally expensive mechanical 

model) for a number of samples designated as Design of Experiments DoE. Once the meta-model 

is constructed, one may easily evaluate the performance function for any sample by employing 

this meta-model instead of using the computationally expensive mechanical model.  

In this thesis, the kriging metamodeling technique is used in combination with a simulation 

method (e.g. MCS, IS or SS) to perform the probabilistic analysis. The aim is to take benefit from 

the advantages of both techniques in order to lead to more efficient probabilistic approaches 

needing a reduced computation time as compared to each technique employed individually. 

Notice that the aim of this thesis is the computation of the probability of failure against soil 

punching of a strip footing resting on a spatially varying soil and subjected to a vertical load 

where the soil shear strength parameters were considered as two anisotropic non-Gaussian 

random fields.     
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Before the presentation of the different probabilistic approaches developed in this thesis (cf. 

chapters 3, 4 and 5), a literature review is presented in chapter 2. This chapter provides the types 

of uncertainties encountered in geotechnical engineering with an emphasis on the soil spatial 

variability (characterization and discretization of random fields). It also describes the principal 

probabilistic methods used in literature for the uncertainty propagation. The three simulation 

methods (Monte Carlo Simulation MCS, Importance Sampling IS and Subset Simulation SS) 

together with the kriging metamodeling technique are presented in some detail because they 

constitute the basis of the probabilistic approaches developed in the following chapters.  

Chapter 3 presents an Active learning reliability method combining Kriging and Monte Carlo 

Simulation (called AK-MCS) for the probabilistic analysis of geotechnical structures involving 

spatially varying soil properties. This method is an extension to the case of random fields, of the 

AK-MCS approach proposed by Echard et al. (2011) in the case where the uncertain parameters 

are modeled by random variables. Within this method, one performs a Monte Carlo simulation 

without evaluating the whole population using the original computationally expensive mechanical 

model. Indeed, the population is predicted using a kriging meta-model which is defined using 

only a few points of the population that are evaluated employing the mechanical model. As a 

result, AK-MCS significantly reduces the number of calls of the mechanical model (and thus the 

computation time) with respect to MCS. The approach proposed in this chapter and the two other 

approaches developed in the two following chapters are applied to a strip footing resting on a 

spatially varying soil and subjected to a prescribed vertical load. The objective is the computation 

of the probability of failure of the footing against soil punching. The ultimate aim of the thesis is 

to test the performance of the different probabilistic approaches in terms of computation time.  

Chapter 4 presents an Active learning reliability method combining Kriging and Importance 

Sampling (called AK-IS) for the probabilistic analysis of geotechnical structures involving 
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spatially varying soil properties. This method is an extension to the case of random fields, of the 

AK-IS approach proposed by Echard et al. (2013). In this approach, a more efficient sampling 

technique (Importance Sampling) is used instead of the Monte Carlo sampling technique 

employed in Chapter 3. Indeed, the computation time of AK-MCS remains important when 

computing the small failure probabilities encountered in practice (although in this method, one 

makes use of the predictions computed using the kriging meta-model) since a large population is 

required by MCS to lead to a small value of the coefficient of variation on the failure probability. 

In the framework of the present AK-IS approach, the small failure probability can be estimated 

with a similar accuracy as AK-MCS but using a much smaller size of the initial population, thus 

significantly reducing the computation time with respect to AK-MCS.   

Chapter 5 presents an Active learning reliability method combining Kriging and Subset 

Simulation (called AK-SS). This work was motivated by the fact that certain limit state surfaces 

may present several design points and thus, the application of AK-IS is not straightforward for 

those cases. Within this approach, a more efficient sampling technique (Subset Simulation SS) is 

used instead of Importance Sampling. This technique allows one to overcome the search of the 

design points within AK-IS and thus it can deal with arbitrary shapes of the limit state surface.  

The thesis ends by a general conclusion of the principal results obtained from the analyses. 
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CHAPTER 2. LITERATURE REVIEW 

2.1 INTRODUCTION 

The analysis and design of geotechnical structures are generally based on deterministic 

approaches. In these approaches, the mean values of the input soil properties are used without 

considering the uncertainties of these parameters and their spatial variability. Also, the output 

parameter (ultimate load, safety factor, displacement, etc.) is given by a single mean value 

without any information on the uncertainty level associated with this parameter. Engineers try to 

solve these problems using the concept of the global safety factor, but this factor cannot explicitly 

deal with uncertainty.  

In recent years, reliability analyses and probabilistic methods have been applied in order to 

provide a rational mathematical framework to incorporate the different types of uncertainties into 

a geotechnical design. They aim at rigorously evaluating the system response in the form of a 

PDF taking into account the uncertainties in the soil parameters together with their spatial 

variability. Addressing uncertainty in the system response does not in itself increase the level of 

safety, but it allows the engineer to rationally evaluate the performance level of the geotechnical 

system. Being able to rigorously determine the performance level and reduce the undesired 

conservatism is generally beneficial in the economic sense. 

In traditional probabilistic analyses, the uncertain parameter is interpreted as a random variable 

defined only by its probability density function (PDF). In other words, the soil is considered as a 

homogeneous material having the same random value of the uncertain parameter in the entire soil 

domain. However, in nature, the soil parameters (shear strength parameters, elastic properties, 

etc.) vary spatially in both the horizontal and vertical directions as a result of depositional and 

post-depositional processes. This leads to the necessity of modeling soil parameters by random 

fields characterized not only by their marginal PDFs, but also by their autocorrelation functions.  



CHAPTER 2 

 

35 

After the input uncertainties have been appropriately modeled by random variables or random 

fields, the task remains to quantify the influence of these uncertainties on the output of the model. 

This task is referred to as the uncertainty propagation. In other words, the uncertainty propagation 

aims to study the impact of the input uncertainty on the probabilistic outputs. The probabilistic 

outputs may be the statistical moments (mean and standard deviation) of the system response or 

the failure probability (or the reliability index) against a given threshold of this response. In this 

thesis, our focus is to compute the failure probability against a given threshold.  

During recent years, different approaches (especially the meta-modeling techniques) were 

developed for the uncertainty propagation. These approaches allow one to substitute the 

computationally expensive mechanical model by a meta-model (i.e. a simple analytical equation). 

The meta-modeling approaches are detailed later in this chapter. Of particular interest is kriging 

metamodeling. The kriging metamodeling technique was used in this thesis in combination with 

different simulation techniques (i.e. Monte Carlo Simulation MCS, Importance Sampling IS or 

Subset Simulation SS). The objective was to perform a probabilistic analysis with a reduced 

computation time as compared to each technique employed individually.  

The aim of this thesis is to investigate the effect of the soil spatial variability on the failure 

probability against soil punching of a strip footing resting on a spatially varying soil and 

subjected to a vertical load.  

This chapter aims at first presenting the different sources of uncertainties related to the 

geotechnical parameters with an emphasis on the soil spatial variability. Then, some probabilistic 

methods that are used in the upcoming chapters for the computation of the failure probability are 

presented and discussed. The chapter ends with a conclusion.  
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2.2 UNCERTAINTY IN GEOTECHNICAL ENGINEERING 

Uncertainty is common in almost every field of engineering, and geotechnical engineering is no 

exception. Natural soils are heterogeneous and anisotropic in physical properties due to their 

composition and complex depositional processes. 

It is generally agreed that the uncertainty in geotechnical engineering can be divided into two 

main categories. These are aleatory uncertainty and epistemic uncertainty [Vanmarcke (1977); 

Baecher et al. (1983); Tang (1984); Phoon and Kulhawy (1999); Der Kiureghian and Ditlevsen 

(2009)].  

In geotechnical engineering, two types of epistemic uncertainties can be faced: The 

measurements and the transformation uncertainties. The first one is due to the sampling error that 

results from limited amount of information. The second one is introduced when field or 

laboratory measurements are transformed into design soil properties using empirical or other 

correlation models. As for the aleatory (inherent) uncertainty, it primarily results from the natural 

geologic processes. In this thesis, only aleatory uncertainty which is the spatial variability of the 

soil properties is considered. 

2.3 SPATIAL VARIABILITY OF THE SOIL PROPERTIES  

Soils are geological materials formed by weathering, erosion and sedimentation processes. When 

transported by physical means to their present locations [Baecher and Christian (2003)], soils 

have been subjected to various stresses, and physical and chemical changes. Thus, it is hardly 

surprising that the physical properties of soils vary from place to place within resulting deposits. 

It should be mentioned that the spatial variability of the soil properties occurs at different scales 

of variability depending on the type of problem. Several authors [Vanmarcke (1978); Burrough 

(1983); Jaksa (1995); Fenton (1999); Borja (2011); Christakos (2012); Chen et al. (2012) among 

others] have recognized the multiple scales of soil variability ranging from the microstructure 
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scale to the regional scale (i.e. from the micro level at the grain size scale to the geological scale 

of several tens and hundreds of meters as shown in Figure (2.1)). In this context, heterogeneity 

can be defined as the opposite of homogeneity and is further used as a synonym of spatial 

variability. The geotechnical level is between the specimen scale and the geological scale; 

therefore, it is important to keep in mind that there is not a single spatial scale, but multiple 

spatial scales contributing to soil variability. Of course, this plays a role in the evaluation of 

spatial variability of soil properties as well in the evaluation of its effects on the system response. 

 

 

Figure 2.1. Illustration of the multi-scale nature of soil spatial variability [after Borja (2011), Chen et al. 

(2012), and Christakos (2012)] 

 

When dealing with geotechnical structures, the inherent spatial variability has been considered as 

a major source of uncertainties in soil properties [Phoon and Kulhawy (1999); Baecher and 

Christian (2003)]. It significantly affects the performance of geotechnical structures that, under a 

probabilistic framework, is commonly measured by the probability of failure fP  (or reliability 

index HL ). Note that the determination of the mean and standard deviation of the soil property is 

performed using conventional statistical analysis. This analysis provides the variability of the soil 

property; however, it does not provide the spatial variability of this property. Thus; to 

characterize the spatial variation of the soil property, one needs to determine the autocorrelation 
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function and the corresponding value of the autocorrelation distance (a). For this purpose, two 

mathematical techniques can be found in literature to identify the autocorrelation structure of a 

soil property. These are the random field theory and the geostatistical tools. In this chapter, only 

the random field theory is presented. For the geostatistical tools, the reader may refer to [Journel 

and Huijbregts (1978)]. 

2.3.1 Random field theory  

Soil properties at each location within the soil mass are considered to be random variables and 

typically exhibit considerable variation from point to point. Therefore, it is essential to consider 

the spatial variability of the soil domain. Vanmarcke (1977,1983) provided a major contribution 

to the study of spatial variability of geotechnical materials using random field theory. In order to 

describe a soil property stochastically, Vanmarcke (1983) stated that three statistical parameters 

need to be described: (i) the mean; (ii) the variance (or standard deviation or coefficient of 

variation); and (iii) the autocorrelation distance (a) (or the scale of fluctuation). The scale of 

fluctuation accounts for the distance within which the soil property shows relatively strong 

correlation from one point to another. When the soil property is plotted as a function of the 

distance, the scale of fluctuation is related to the distance between the intersections of the trend 

and the fluctuating soil property [i.e. the distance 
v  in Figure (2.2.a) where a typical spatially 

variable soil profile showing the trend, the fluctuating component and the vertical scale of 

fluctuation is presented]. Small values of scale of fluctuation imply rapid fluctuations about the 

mean (i.e. a highly heterogeneous soil mass), whereas large values suggest a slowly varying 

property, with respect to the average. Vanmarcke (1977) demonstrated a simple procedure to 

evaluate an approximate value of the vertical scale of fluctuation (which is approximately equal 

to 0.8 times the average distance between the intersections of the trend and the fluctuating soil 

property), as shown in Figure (2.2.b). 
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 Figure 2.2. (a) Definition of various statistical parameters of a soil property [Phoon and Kulhawy (1996)];         

(b) approximate definition of the scale of fluctuation [Vanmarcke (1977)] 

 

As a conclusion, a random field is a conceivable model to characterize the continuous spatial 

fluctuations of a soil property within a soil unit. It is fully described by the autocorrelation 

function (ACF) together with the PDF of the uncertain parameter. The ACF is introduced in 

addition to the classical statistical parameters (i.e. the mean and standard deviation or coefficient 

of variation). It is used to identify the autocorrelation distance (a) or the scale of fluctuation (δ).  

2.3.1.1 Identification of the autocorrelation function and the corresponding values of the 

autocorrelation distances  

The autocorrelation function (ACF) is often used to determine the distance over which a property 

exhibits strong correlation. Two measures of this distance which are the autocorrelation distance 

(a) or the scale of fluctuation (δ) may be evaluated. In practice, the ACF must be estimated from 

some available data samples gathered in a vector     1 ,..., NZ X Z X   where N is the 

number of these data samples and Z is the property of interest. The sample autocorrelation 

function is given as follows:  
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where X is a vector that represents the location; Z (Xi) is the value of the property Z at location Xi; 

Z (Xi+k) is the value of the property Z at the location, Xi+k; Δh is the separation distance between 

the data pairs and μZ is the mean of the property Z. The sample ACF is thus the graph of ρk for 

lags k = 0, 1, 2, ... K, where K is the maximum number of lags (data intervals) that k  should not 

be calculated beyond. While the sample autocorrelation function can be evaluated for all lags up 

to N-1, it is not advisable since, as  k tends towards N, the number of pairs reduces and, as a 

consequence, the reliability of the estimate of the true autocorrelation function k also decreases. 

Generally, K = N/4 [Box and Jenkins (1970)], where N is the total number of data samples. 

The accuracy of the autocorrelation function ACF depends on the number N of data samples. 

Referring to Jaksa (1995), the minimum number of data samples (observations) has received a 

little effort in literature. Box and Jenkins (1970), Anderson (1976), and Davis (1986) 

recommended at least 50 observations. Lumb (1975) suggested that, for a full three-dimensional 

analysis, the minimum number of observations is of order 104. On the other hand, this author 

recommended that the best that can be achieved in practice is to study the one-dimensional 

variability, either vertically or horizontally, using a number of observations that ranges from 20 to 

100 observations.   

The autocorrelation distance (a) is defined as the distance required for the autocorrelation 

function to decay from 1 to e-1 (0.3679) [Diaz Padilla and Vanmarcke (1974)]. On the other hand, 

the scale of fluctuation is defined as the area under the ACF [Fenton (1999)].  

The determination of the autocorrelation distance (a) is done (i) by first fitting the sample ACF to 

several theoretical ACFs (e.g. the ACFs given in Table 2.1) where kΔh is the lag distance and (a) 

is the autocorrelation distance and (ii) by choosing the theoretical ACF that best fits the data 

samples. The value of the scale of fluctuation may be determined by using the corresponding 

formula given in the third column of Table 2.1. 
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Table 2.1. Theoretical ACF used to determine the autocorrelation distance (a) [Vanmarcke (1983)]   

 

Finally, it should be mentioned that the modeling of the spatial variability is greatly facilitated by 

the data being stationary [Uzielli  et al. ( 2005)]. Stationarity is insured if (i) the mean is constant 

with distance (i.e. no trend exists in the data); (ii) the variance is constant with distance. In 

random field theory, it is common practice to transform a non-stationary data set to a stationary 

one by removing a low-order polynomial trend (i.e. a first or a second order polynomial) using 

the ordinary least square method.  

2.3.1.2  Typical values of the soil statistical parameters 

Various researchers have worked on the description and quantification of the spatial variability of 

soil properties [i.e. quantification of the statistical parameters of the soil properties which are the 

mean, the variance (or standard deviation or coefficient of variation) and the autocorrelation 

distance (or the scale of fluctuation)]. 

This section aims at presenting the commonly encountered values of the autocorrelation distances 

and the coefficients of variation COV of different soil types. It also provides some information 

regarding the type of the probability density function (PDF) encountered in geotechnical 

engineering and the coefficient of correlation that may exist between some soil parameters. 
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2.3.1.2.1  Autocorrelation distances 

Several authors have provided horizontal and vertical autocorrelation distances for some soil 

properties from laboratory and in-situ test measurements. The most commonly used test data are 

Cone Penetration Test (CPT) measurements [Jaksa et al. (1999); Liu and Chen (2010)]. Other 

tests were also used such as the Standard Penetration Test (SPT) [Zhang and Chen (2012)], the 

Vane Shear Test (VST) [Asaoka and Grivas (1982)] and other laboratory tests [Diaz Padilla and 

Vanmarcke (1974)]. A literature review showing the autocorrelation functions and the 

corresponding values of the autocorrelation distances of different soil types is presented in Table 

2.2. The database contains the type of the test carried out, the considered soil property, the type of 

soil (sand, clay, silt ...), the type of the autocorrelation function and the corresponding values of 

the vertical and horizontal autocorrelation distances (or the corresponding values of the scale of 

fluctuation if these values are given between parentheses). From these tables, one may conclude 

that the exponential and the square exponential autocorrelation functions are the most suitable 

forms of the autocorrelation function that fit most of the soil properties. The autocorrelation 

distances in the vertical and horizontal directions are never the same, but in general, differ by an 

order of magnitude, with the horizontal scale of fluctuation being higher than that in the vertical 

direction as was stated by Uzielli et al. (2005). 
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Table 2.2. Autocorrelation function and the corresponding values of the autocorrelation distance (or scale of fluctuation) of certain soil properties obtained from 

different tests  

Test 

type 

Soil 

property 
Soil type 

Autocorrelation function 

Autocorrelation distance 

(or scale of fluctuation 

when the value is given 

between parentheses) [m] 
Author 

Vertical Horizontal Vertical Horizontal 

- e 
soft organic 

silty clay 
Exponential - 1.2 - 1.8 - Diaz Padilla and Vanmarcke (1974) 

- w 
soft organic 

silty clay 
Exponential - 1.2 - 1.8 - Diaz Padilla and Vanmarcke (1974) 

- mp  
soft organic 

silty clay 
Exponential Exponential 0.3 - 0.6 122 Diaz Padilla and Vanmarcke (1974) 

- e soft silty loam Exponential sine decaying Exponential sine decaying 0 – 4.5 16.8 – 22 Alonso and Krizek (1975) 

- γ soft silty loam  Exponential sine decaying Exponential sine decaying 0 – 3.0 17 – 22  Alonso and Krizek (1975) 

- n          gravelly sand Exponential sine decaying Exponential sine decaying 0 – 2.2 8.5 – 12 Alonso and Krizek (1975) 

- w soft silty loam Exponential sine decaying - 0 – 5  - Alonso and Krizek (1975) 

CPT FR clean sand Exponential - 0 - 2 - Alonso and Krizek (1975) 

CPT qc Clay Exponential sine decaying - 0 – 0.6 - Alonso and Krizek (1975) 

SPT N clean sand  Exponential  - 0 – 4  - Alonso and Krizek (1975) 

UCS Su clay of Mexico - Exponential - 0 – 0.9 Alonso and Krizek (1975) 

VST Su soft clay  - Exponential sine decaying - 0 - 0.5 Alonso and Krizek (1975) 

TUU Su marine clay Exponential  - 1.5 - Matsuo and Asaoka (1977) 

CPT qc Clay Exponential - (1.3) - Vanmarcke (1977) 

- w Clay Exponential - (2.7) - Vanmarcke (1977) 

- e Clay Exponential - (3.0) - Vanmarcke (1977) 

CPT qc North sea clay - Square exponential  - 30 Tang (1979) 

SPT ln Dr sand deposit  Exponential  Exponential  1.8 33.5  Fardis and Veneziano (1981) 

VST Su organic soft clay Exponential  - 1.2 – 3.1  - Asaoka and Grivas (1982) 

UU Su offshore soil Exponential - 3.6 - Keaveny et al. (1989) 

CPT qc North sea clay - Exponential - 13.9 – 37.5 Keaveny et al. (1989) 

UCS Su soft clay  Exponential Exponential 2 40 Honjo and Kuroda (1991) 

VST Su very soft clay Square exponential  Square exponential  1.1 22.1 Bergado et al. (1994) 

CPT qc sand, clay  Exponential Exponential (0.1 – 2.2) (3.0 – 80.0) Phoon and Kulhawy (1996) 

CPT qT clay  Exponential Exponential (0.2 – 0.5) (23.0 – 66.0) Phoon and Kulhawy (1996) 

VST Su Clay Exponential Exponential (2.0 – 6.2) (46.0 – 60.0) Phoon and Kulhawy (1996) 
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Test 

type 

Soil 

property 
Soil type 

Autocorrelation function 

Autocorrelation distance 

(or scale of fluctuation 

when the value is given 

between parentheses) [m] 
Author 

Vertical Horizontal Vertical Horizontal 
CPT qc Clay Exponential Exponential - 9.6 – 37.5 Lacasse and Nadim (1997) 

CPT qc Clay Exponential - (0.06 – 0.24) - Jaksa et al. (1999) 

CPT Su Clay - Exponential - (1.0 – 2.0) Jaksa et al. (1999) 

CPT qc Clay Exponential - (1.24 – 3.3)  - Fenton 1999 

CPT qt Clay Exponential - (0.2 – 0.5) - Phoon and Kulhawy (1999) 

VST Su clay  Exponential - (2.0 – 6.0) - Phoon and Kulhawy (1999) 

SPT N Sand Exponential - (2.4) - Phoon and Kulhawy (1999) 

Lab.Test  Su clay  Exponential - (1.0 – 2.0) - Phoon and Kulhawy (1999) 

CPT qc Clay Exponential - (0.2 – 0.4) - Cafaro and Cherubini (2002) 

CPT qc Sand Two Peak Two Peak 0.95 12.1 Assimaki et al. (2003) 

CPT qnet clay and silt Two Peak Exponential 2.62 16.0 Assimaki et al. (2003) 

CPT FR clay, silty clay Exponential - (0.1 – 0.5) - Uzielli et al. (2005) 

CPT FR 
clean sand, silty 

sand 
Exponential - (0.2 – 0.6) - Uzielli et al. (2005) 

CPT qc1N clay, silty clay Exponential - (0.1 – 0.8) - Uzielli et al. (2005) 

CPT qc1N 
clean sand, silty 

sand 
Exponential  - (0.3 – 1) - Uzielli et al. (2005) 

CPT fs organic soft clay Exponential - (0.127–0.415) - Dyminski et al. (2006) 

CPT qt organic soft clay Exponential  - (0.077– 0.38) - Dyminski et al. ( 2006) 

SPT N organic soft clay  Exponential  - (0.8857) - Dyminski et al. (2006) 

CPT qc granular soil Exponential  Exponential  (0.1–  2.2) (3 – 80) Babu and Dasaka (2008) 

- w Gravel Exponential  - (0.2 – 0.4) - Tillmann et al. (2008) 

CPT qc Sand Exponential Exponential (1.72 – 2.53) (286 – 597) Liu and Chen (2010) 

CPT fs Sand Exponential Exponential (0.78 – 0.81) (287 – 555) Liu and Chen (2010) 

Lab.Test  Sand Exponential Exponential 5.1 242 Suchomel and Mašín (2010) 

SPT N sand  Exponential  - (1.36 – 3.01) - Zhang and Chen (2012) 

SPT N sand  Square exponential  - (0.92 – 1.63) - Zhang and Chen (2012) 

CPT qc1N Sand Exponential Exponential (0.45 – 0.5) (1.2 – 2) Firouzianbandpey et al. (2014) 

CPT FR Sand Exponential Exponential ( 0.2 ) (1.2 – 1.4) Firouzianbandpey et al. (2014) 
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1.3.1.2.2. Coefficients of variation COV  

The coefficient of variation COV, which is obtained by dividing the standard deviation by the 

mean value of the random variable, is commonly used in quantifying the geotechnical uncertainty 

because of its advantage of being dimensionless as well as providing a significant measure of the 

relative dispersion of data around the mean. Table 2.3 presents the COVs of several soil 

properties for different soil types.  

Studies reported in the literature have shown that each soil property can follow a different 

probability distribution function PDF and a different coefficient of variation depending on the site 

(type of test, soil type ...). For example, Phoon and Kulhawy (1999) carried out an extensive 

investigation to determine the range of variation of the coefficient of variation (COV) for soil 

parameters from in-situ tests (CPT, SPT, Vane Shear Test ...) and laboratory tests (triaxial tests 

CD, UU, CU) and found that for clay the COV of su varies between 10% and 60%. The COV of 

the friction angle φ for sand and clay soil was found to be between 5% and 20%. Also, the COV 

of the cone tip resistance (qc) of sand varies between 10% and 81% and that of clay between 5% 

and 40%. Notice however that the corrected cone tip resistance (qT) of the CPT varies between 

5% and 15%. 

Regarding the Young modulus, Srivastava and Babu (2009) proposed a COV value of 34% from 

CPT tests, while Duncan (2000) proposed values that ranges between 15% and 70%. Other 

authors such as Nour et al. (2002) and Baecher and Christian (2003) proposed values that ranges 

between 2% and 50%. Finally, notice that Kulhawy et al. (1991) have estimated the COVs of 

some physical properties of the soil (water content w, liquid limit wl, plastic limit wp, density γ, 

void ratio e) and some mechanical properties of the soil (effective friction angle, shear strength, 

and compression index). These authors have concluded that the average COVs of the mechanical 

properties of the soil are larger than those of the physical properties of the soil. Kulhawy et al. 

(1992), Phoon and Kulhawy (1996) and Dyminski et al. (2006) provided a COV value for N (the 
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number of blows) obtained from the in-situ SPT measurements. The COV values obtained vary 

between 15% and 150% depending on the studied sites. 

Table 2.3. Coefficients of variation of certain soil properties obtained from in-situ and laboratory tests 

Test type Soil property Soil type COV (%) Authors 
UC c - 39 – 49 Fredlund and Dahlman (1972) 

UC c - 30 – 50 Lumb (1972) 

Laboratory test RD sand 11 – 36 Haldar and Tang (1979) 

VST Su clay 18 – 30 Asaoka and Grivas (1982) 

Laboratory test Cc different types of soils 26 – 48 Kulhawy et al. (1991) 

Laboratory test E different types of soils 13 – 26 Kulhawy et al. (1991) 

Laboratory test γ different types of soils 2 – 12 Kulhawy et al. (1991) 

Laboratory test Su different types of soils 16 – 61 Kulhawy et al. (1991) 

Laboratory test W different types of soils 9 – 32 Kulhawy et al. (1991) 

Laboratory test Wl different types of soils 3 – 19 Kulhawy et al. (1991) 

Laboratory test Wp different types of soils 7 – 17 Kulhawy et al. (1991) 

Laboratory test ’ different types of soils 6 – 21 Kulhawy et al. (1991) 

CPT qc - 15 – 37 Kulhawy et al. (1992) 

VST Su - 10 – 20 Kulhawy et al. (1992) 

DMT q sand 5 – 15 Kulhawy et al. (1992) 

SPT N - 15 – 45 Kulhawy et al. (1992) 

CPT qc clay 20 – 40 Phoon and Kulhawy (1996) 

CPT qc sand 20 – 60 Phoon and Kulhawy (1996) 

SPT N clay and sand 25 – 50 Phoon and Kulhawy (1996) 

VST Su clay 10 – 40 Phoon and Kulhawy (1996) 

DMT ID sand 20 – 60 Phoon and Kulhawy (1996) 

DMT KD sand 20 – 60 Phoon and Kulhawy (1996) 

DMT ED sand 15 – 65 Phoon and Kulhawy (1996) 

PMT PL clay 10 – 35 Phoon and Kulhawy (1996) 

PMT PL sand 20 – 50 Phoon and Kulhawy (1996) 

CPT qc sand 10 – 81 Phoon and Kulhawy (1999) 

CPT qc clay,silt 5 – 40 Phoon and Kulhawy (1999) 

CPT qT clay 5 -15 Phoon and Kulhawy (1999) 

VST Su clay 14 – 47 Phoon and Kulhawy (1999) 

CIUC Su clay  21 – 43 Phoon and Kulhawy (1999) 

UC Su fine grains 21 – 57 Phoon and Kulhawy (1999) 

UU Su clay,silt 11 – 34 Phoon and Kulhawy (1999) 

Laboratory test  sand and clay 5 – 20 Phoon and Kulhawy (1999) 

- E - 15 – 70 Duncan (2000) 

- Su - 13 – 40 Duncan (2000) 

- Cc clay 10 – 37 Duncan (2000) 

- Cv clay 33 – 68 Duncan (2000) 

DST  clay 28 El-Ramly et al. (2003) 

Piezometer  sand 5.6 El-Ramly et al. (2003) 

VST Su - 42.9 - 63.4 Dyminski et al. (2006) 

UU Su - 48.5 - 94.6 Dyminski et al. (2006) 

SPT N - 47 – 150 Dyminski et al. (2006) 

CPT Su - 39 Srivastava and Babu (2009) 

CPT E - 34 Srivastava and Babu (2009) 

CPT φ' - 11 Srivastava and Babu (2009) 
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2.3.1.3 Types of the probability distribution function PDF 

Several authors have investigated the type of probability density function PDF of some 

geotechnical parameters. One may cite among others El-Ramly et al. (2003) who found that the 

internal friction angle of the sand obtained from the DST (Dynamic shear test) follows a 

Lognormal distribution with a COV of 28%. Assimaki et al. (2003) found that qc and qnet of the 

CPT follows the Beta distribution. 

2.3.1.4 Coefficient of correlation () 

The coefficient of correlation between two soil parameters represents the degree of dependence 

between these parameters. For the shear strength parameters c and φ, Lumb (1970) noted that the 

correlation coefficient ,c 
 
ranges from -0.7 to -0.37. Yucemen et al. (1973) proposed values in a 

range between -0.49 and -0.24, while Wolff (1985) reported that ,c  =-0.47. Finally, Cherubini 

(2000) proposed that ,c  =-0.61.  

2.3.2 Methods of discretization of random fields 

In order to introduce the soil spatial variability in the analysis of geotechnical structures, the 

random field Z which may be represented by an infinite number of random variables has to be 

discretized in order to yield a finite number of random variables  , 1,...,j j s  . If the finite 

element/finite difference method is the method used in the mechanical analysis, it is convenient 

to evaluate the random field values in the same way as the finite element/finite difference model 

(i.e. at the nodes of the deterministic mesh or at the elements’ mid points of this deterministic 

mesh). The discretization methods can be divided into three main groups which are [Sudret and 

Der Kiureghian (2000)]: 

1- the point discretization methods  
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2- the average discretization methods 

3- the series expansions methods 

Each group involves a number of discretization methods. Among the point discretization 

methods, one may cite: the Midpoint (MP) method, the Shape Function (SF) method, the 

Integration Point (IP) method, and the Optimal Linear Estimation (OLE) method. Concerning the 

average discretization methods, one may cite: the Spatial Average (SA) method and the Local 

Average Subdivision (LAS) method. In the group of series expansion methods, one may cite the 

Karhunen-Loeve (KL) expansion method, the Orthogonal Series Expansion (OSE) method and 

the Expansion Optimal Linear Estimation (EOLE) method. The EOLE method is used in this 

thesis and it will be presented in more details in the following section. For a detailed description 

on all the other discretization methods cited above, the reader may refer to Appendix A. 

As was stated by Sudret and Der Kiureghian (2000); in the MP, SF, IP, and SA methods, the 

discretized random field can be expressed as a finite summation as follows:  

where N is the number of terms retained in the discretization procedure, ( )j X  are deterministic 

functions and j  are random variables obtained from the discretization procedure. They can be 

expressed as weighed integrals of the real random field Z over the volume Ω of the system as 

follows: 

1

( ) ( )
N

j j

j

Z X X 


  (2.2) 

   j Z X X d 


   (2.3) 
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where  X  is the weight function. The values of the weight functions and the deterministic 

functions for all the above mentioned methods are given in Sudret and Der Kiureghian (2000) 

and they are reported in Appendix A of this thesis.  

Sudret and Der Kiureghian (2000) have stated that the deterministic functions j  given in 

Equation (2.2) are not optimal in the case of midpoint (MP), Spatial Average (SA), Shape 

Function (SF) and Integration Point (IP) methods. This is also true for the Local Average 

Subdivision LAS method by Fenton and Vanmarcke (1990). This means that the number of 

random variables involved in the discretization scheme is not minimal. Thus, of particular interest 

are the series expansion methods. In all these methods, the number of the deterministic functions 

j  is optimal and thus, the number of random variables involved is minimal. 

As a conclusion, all the discretization methods presented in the first two groups provide non 

optimal solution which makes them unattractive tools for random field discretization. This is 

because the number of random variables needed to discretize the random fields using these 

methods is mesh depending. Thus, one obtains a large number of random variables for large finite 

element/finite difference models. The series expansion methods solve this problem. They provide 

the optimal number of random variables needed to accurately discretize the random field which 

makes them powerful tools for random field discretization. From this group, the eigenvalue 

problem of the KL method given in Equation (A. 2) can be solved analytically only for few types 

of autocorrelation functions and geometries. As for the OSE method, it avoids solving the 

eigenvalue problem of the KL method given in Equation (A. 2). On the other hand, this method is 

less attractive in terms of accuracy when compared to the KL and the EOLE method [cf. Sudret 

and Der Kiureghian (2000)]. For this reason, the EOLE method which uses the concept of OLE 

method is selected herein to perform the random field discretization. This method is described in 

some details in the following section. 
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2.3.2.1 Expansion Optimal Linear Estimation (EOLE) method  

This method was originally proposed by Li and Der Kiureghian (1993) for the case of 

uncorrelated Gaussian random fields. It was then extended by Vořechovský (2008) to cover the 

case of cross-correlated non-Gaussian random fields. This method is presented herein in the case 

of non-Gaussian and uncorrelated random fields.  

A non-Gaussian random field ( )NGZ X is described by: (i) constant mean and standard deviation 

(μZ, σZ), (ii) non-Gaussian marginal cumulative density function G, and (iii) an autocorrelation 

function NG

Z [(X), (X')] which gives the values of the correlation between two arbitrary points (x, 

y) and (x', y'). It should be mentioned here that the most suitable form of autocorrelation function 

that fits most of the soil properties is the square exponential autocorrelation function (see Table 

2.2). This function is given as follows: 

22

' '
[( , ), ( ', ')] exp

Z

NG

x y

x x y y
x y x y

a a


     
            

 (2.4) 

where ax and ay are respectively the horizontal and vertical autocorrelation distances. In order to 

discretize the random field using the EOLE method, one should first define a stochastic grid 

composed of s grid points (or nodes) and determine the non-Gaussian autocorrelation matrix NG  

which gives the correlation between each grid point of the stochastic mesh and the other grid 

points of this mesh using Equation (2.4). The non-Gaussian autocorrelation matrix NG  should 

then be transformed into the Gaussian space using the Nataf transformation (Nataf 1962). 

 As a result, one obtains a Gaussian autocorrelation matrix G  that can be used to discretize the 

Gaussian random field Z as follows: 

  ( );

1

( ) . .
s

TjG

Z Z j Z X

j j

Z X µ 


 



     (2.5) 
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where μZ and σZ are the mean and standard deviation values of the random field Z; ( ,j j  ) are 

the eigenvalues and eigenvectors of the Gaussian autocorrelation matrix G ; ( );Z X   is the 

correlation vector between the value of the field at an arbitrary point (x, y) and its values at the 

different grid points and 
j is a standard normal random variable, and s is the total number of 

grid points.  

Once the Gaussian random field is obtained, it should be transformed to the non-Gaussian space 

by applying the following formula: 

where (.)  is the standard normal cumulative density function. It should be mentioned here that 

the series given by Equation (2.5) is truncated for a number of terms M (expansion order) smaller 

than the number of grid points s, after sorting the eigenvalues ( j ; j=1, …, s) in a descending 

order. This number should assure that the variance of the error is smaller than a prescribed 

tolerance. Notice that the variance of the error for EOLE is given by Sudret and Der Kiureghian 

(2000) as follows: 

  
2

2

( );

1

1
( ) ( ) 1

M
T

Z j Z X

j j

Var Z X Z X  


  
      

  
   (2.7) 

where ( )Z X and ( )Z X are respectively the exact and the approximate values of the random 

field at a given point X and  
T

j is the transpose of the eigenvector j . 

2.4 PROBABILISTIC METHODS FOR UNCERTAINTY PROPAGATION 

Development of efficient methods for uncertainty propagation in order to perform probabilistic 

analyses has gained much attention in recent years due to the importance of introducing 

uncertainties in the model parameters. The uncertainty propagation aims to study the impact of 

 1( ) ( )NG GZ X G Z X       (2.6) 
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input uncertainty on the probabilistic outputs. Three steps are involved in the probabilistic 

analysis. The first step consists in identifying the uncertain input parameters and modeling them 

by random variables or random fields (Step A in Figure 2.3). The second step (Step B in Figure 

2.3) consists in the computation of the system response for different realizations using the 

mechanical model. The final step consists in the post-treatment of the obtained results to provide 

the probabilistic outputs (Step C in Figure 2.3).  

In the probabilistic framework, all of the relevant information regarding the model output is 

contained in its PDF. Thus, determining the PDF of the system response is the main goal in all 

uncertainty propagation methods. However, the fact that we are considering numerical models 

implies that the relation between the model uncertain inputs and the system response cannot be 

represented by an analytical expression. Consequently, it is impossible to obtain a simple 

analytical expression of the PDF of the system response. However, for practical purposes, not all 

the information contained in the PDF is necessary. Thus, depending on the type of study that is 

carried out, only a set of probabilistic outputs can be used. These probabilistic outputs may be the 

statistical moments (mean and standard deviation) of the system response or the probability of 

failure (i.e. the probability of exceeding a given threshold value of this system response). In this 

thesis, the probabilistic output of interest is the probability of failure fP . Several methods exist 

for its computation. These methods can be divided into three main categories which are the 

approximate methods, the simulation methods and the metamodeling techniques.  

In the following, one will first present some basic reliability concepts. This is followed by a 

presentation of the probabilistic methods used for the estimation of fP  (i.e. the approximate 

methods, the simulations methods and the metamodeling techniques).   
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2.4.1  Some basic reliability concepts 

2.4.1.1 Performance function and limit state surface 

The performance function G is a function by which one can distinguish if a given set of values of 

the random variables leads to system failure or to system safety. The performance function can be 

expressed, for a given problem, in different ways. For example, for vertically loaded footings, 

there are two different forms of the performance function with respect to soil punching: (i) 

G=(Pu/Ps)-1 or (ii) G=Pu-Ps where Pu and Ps are respectively the ultimate vertical load and the 

footing applied vertical load. In this example, if the random variables are the soil shear strength 

parameters (c and ) and the applied load Ps is assumed to be deterministic; then, all pairs (c, ) 

that make G<0 (i.e. Pu<Ps) lead to failure. However, all pairs (c,) that make G>0 (i.e. Pu>Ps) 

lead to system safety (cf. Figure 2.4a).    

The limit state surface of a given mechanical system is defined as the surface that joins the set of 

values of the random variables (c and φ in the present case) for which failure just occurs (i.e. for 

which G=0). As shown in Figure (2.4a), the limit state surface divides the space of random 

variables into two zones: (i) a safe zone (characterized by G>0) for which all combinations of 

Step A

Quantification of 

sources of uncertainty

Step B

Computation of the 

system response

Step C

Uncertainty 

propagation

Pu

ModelRandom 

variables/fields

Materials 

properties

Loading

Response variability

Probability of failure

…

Step A

Quantification of 

sources of uncertainty

Step B

Computation of the 

system response

Step C

Uncertainty 

propagation

PuPu

ModelRandom 

variables/fields

Materials 

properties

Loading

Response variability

Probability of failure

…

 

Figure 2.3. General sketch for the probabilistic analyses [Al-Bittar (2012)] 

 



CHAPTER 2 

54 

random variables (c, φ) lead to safety and (ii) failure zone (characterized by G<0) for which all 

combinations of random variables (c, φ) lead to failure. 

 

 

 

 

 

 

 

2.4.1.2 The reliability index HL   

The reliability index of a given structure is a measure of the safety that takes into account the 

inherent uncertainties of the input variables. A widely used reliability index is the Hasofer-Lind 

reliability index HL [Hasofer and Lind (1974)]. This index is defined as the shortest distance that 

separates the limit state surface expressed in the space of standard normal uncorrelated random 

variables and the origin of this space (Figure 2.4b).  

In the case where the limit state surface is known analytically, HL can be easily calculated by 

minimization of the following formula: 

2

0
1

min
M

HL i
G

i

 




 
  

 
 
  

(2.8) 

where ξi (i=1, 2, …, M) are M standard normal uncorrelated random variables corresponding to 

the M physical uncertain parameters. The computation of HL  may be described by the two 

following steps:  

Figure 2.4a. Limit state surface in the space of 

random variables 

Figure 2.4b. Hasofer-Lind reliability index in the  

                     standard space of random variables 
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 In the first step, the physical (original) random variables should be transformed to the 

standard normal random variables. In this step, isoprobabilistic transformation is used to 

transform the physical random variables to standard normal random variables as follows:  

in which, Xi is a physical random variable, 
iX

F  is the cumulative density function (CDF) of 

the physical random variable Xi  and  1
  is the inverse of the CDF of the standard normal 

random variable. Notice that, if the original random variables are correlated, they should be 

transformed into uncorrelated random variables.  

 In the second step, it is required to search for the minimal distance between the limit state 

surface and the origin in the standard space of uncorrelated random variables. The point 

corresponding to the minimal value of the reliability index is commonly referred to as the 

design point. This point corresponds to the most probable point leading to failure. In our case 

of a vertically loaded footing, this point corresponds to the pair of values of c and  that is the 

most critical in a probabilistic framework (i.e. the one corresponding to the maximal value of 

the failure probability). 

 

2.4.2 Probabilistic methods for the estimation of the failure probability Pf 

If the random vector X that represents the uncertain parameters of a given mechanical system is 

described by a joint probability density function ( )Xf X , then one can define the failure 

probability fP
 
of this mechanical system as: 

1
( )

ii X i
F X

   
 

  (2.9) 

 

( (  )  0)  f GP P X   
 

(2.10) 
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where G(X) is the performance function. The failure probability fP  given by Equation (2.10) 

may be calculated as the integral of the joint probability density function in the failure domain as 

follows: 

The integral in Equation (2.11) represents the volume between the joint probability density 

function ( )Xf X and the limit state surface G(X) = 0 (see Figure 2.5 in the case of two random 

variables). Note that the calculation of the integration in Equation (2.11) is practically impossible 

in the general case. For this reason, several numerical methods were proposed in literature to 

calculate the failure probability fP . The following subsections are devoted for the presentation of 

the three main categories of methods for the computation of fP
 
which are the approximate 

methods, the simulation methods and the metamodeling techniques. 

  

 

 

Figure 2.5. Joint probability density function and limit state surface in case of two random variables R and S 

[after Melchers (1999)] 

( ) 0

( )f X
G X

P f X dX


   
 

(2.11) 
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2.4.2.1 The approximate methods 

These methods are based on approximating the limit state surface locally at a reference point. 

This class of methods can be very efficient (in that only a relatively small number of model 

evaluations is needed to calculate fP ), but it tends to become unreliable in the presence of 

complex, non-linear limit state surfaces. These methods can be broadly grouped into First-Order 

Reliability Method (FORM) and Second-Order Reliability Method (SORM). A detailed 

discussion of these methods for application to geotechnical problems is presented by many 

authors [Ang and Tang (1975); Harr (1987); Haldar and Mahadevan (2000); Baecher and 

Christian (2003)]. 

2.4.2.1.1 First Order Reliability Method (FORM) 

The Hasofer-Lind reliability index presented previously in this chapter can be used to calculate an 

approximate value of the failure probability using the First Order Reliability Method (FORM) as 

follows: 

where    is the standard normal cumulative density function (CDF) and HL is the Hasofer-

Lind reliability index. Within this method, the estimation of fP  is based on the approximation of 

the limit state surface by an hyperplane tangent to this limit state surface at the most probable 

failure point called "design point" (see Figure 2.4b). 

2.4.2.1.2 Second Order Reliability Method (SORM) 

The second-order reliability method (SORM) is a second-order refinement of the FORM fP  

estimate. The computational costs associated to this refinement increase rapidly with the number 

of input random variables. After the design point is identified by FORM, the failure probability is 

 HLfP    
 

(2.12) 
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approximated by a tangent hyper parabolic defined by the second order Taylor expansion (see 

Figure 2.6). 

 

 

Figure 2.6. Comparison between FORM and SORM approximations of the failure domain for 

a simple 2-dimensional case [after Marelli et al. (2016)] 

2.4.2.2 The simulation methods 

This section is devoted to the presentation of the simulation methods used for the computation of 

the failure probability. This category regroups the universal Monte Carlo simulation (MCS) 

methodology and other more advanced simulation techniques (i.e. the Importance sampling (IS) 

and the Subset simulation (SS)). In spite of being rigorous and robust, the crude MCS is well-

known to be very time-expensive especially when dealing with finite element or finite difference 

models which do not offer an analytical solution of the involved problem. Also, this method 

shows a low efficiency when considering the small failure probabilities encountered in practice. 

Indeed, MCS is very time-expensive due to (i) the long time required per simulation to calculate 

the system response when finite element or finite difference codes are involved and (ii) because 

one needs a large number of simulations to calculate a small failure probability with a small value 

of its coefficient of variation. The advanced simulation techniques (i.e. the IS and the SS) are all 

based on a modification of the MCS method in order to simulate more points in a particular zone 
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of interest and thus they are very attractive for the computation of the failure probability. 

Consequently, the MCS methodology remains the origin of all the advanced simulation 

techniques and deserves to be firstly presented. This is followed by a brief presentation of the 

more advanced simulation techniques (i.e. IS and SS) which are extensively employed in this 

thesis in combination with other probabilistic techniques (kriging meta-modeling) for the 

computation of the probability of failure. 

2.4.2.2.1 Monte Carlo Simulation (MCS) method 

The Monte Carlo simulation is a universal method to evaluate complex integrals. It consists of 

generating K samples which respect the joint probability density function fX(X) of the M random 

variables (X1, …, XM) gathered in a vector X. For each sample, the performance function is 

calculated. Thus; for the K samples, one obtains K values of the performance function gathered in 

a vector     (1) ( ),..., KG G X G X  which may be used to determine the estimator of the 

probability of failure as follows:  

where I(X) is an indicator function of the failure domain given by: 

In this equation, I(X) = 1 when the random input vector X causes the system to fail and I (X) = 0 

otherwise. As may be seen from Equation (2.13), the estimation of the failure probability by MCS 

methodology consists of computing the ratio between the number of samples that belong to the 

failure domain and the total number of samples. An important measure for assessing the accuracy 

of a MCS estimator is given by the coefficient of variation COV defined as:  

1

1
( )

K

f j

j

P I X
K 

   
 

(2.13) 

 

1 ( ) 0
( )

0 ( ) 0

if G X
I X

if G X


 


 

 

(2.14) 
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1
( ) f

f

f

P
COV P

K P





    (2.15) 

 

As may be seen from Equation (2.15), the coefficient of variation of the failure probability 

decreases with the number of samples and it increases with decreasing fP . To give an example, to 

estimate a fP  = 10-3 with 10% accuracy, 105 samples are needed. The COV is often used as a 

convergence criterion to adaptively increase the MC sample size until some desired COV is 

reached. 

2.4.2.2.2 Importance sampling (IS) 

In MCS methodology, a very large number of samples is required to reach the failure region and 

hence to accurately calculate the failure probability especially when computing small values of 

this failure probability. To overcome this shortcoming, the importance sampling (IS) technique 

was proposed in literature [Schuëller and Stix (1987); Ibrahim (1991)]. In the IS technique, the 

sampling is shifted towards the region of interest (failure region) and the random variables should 

be sampled from the ‘optimal’ probability density function ( )xh X . Notice that the optimal 

importance sampling density (ISD) is unknown since it requires knowledge of the failure 

probability as a priori. One popular choice for ISD is to move the sampling center to the design 

point (which should thus be determined beforehand) and to use a standard Gaussian PDF ( )xh X  

centered at this design point. By making use of this ISD, the computation of the failure 

probability is given by:  

 in which, fP is the failure probability estimate and K is the number of samples. It is to be 

emphasized here that a much smaller number of samples (as compared to MCS methodology) is 

required by the IS technique to reach the failure region and thus to accurately calculate the failure 

1

( ) ( )1
( ) ( ) ( )

( ) ( )

K
x X i

f F X F i

ix X i

f X f X
P I X h X dX I X

h X K h X 

    
 

(2.16) 
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probability estimate
fP . The accuracy of 

fP is measured by its coefficient of variation  fCOV P . 

This coefficient of variation is calculated as follows: 

where fP  is the value of the failure probability estimate and ( )fVar P  is the variance of this 

estimate. The variance ( )fVar P  is calculated by the following equation:  

2.4.2.2.3  Subset Simulation (SS) approach  

The subset simulation (SS) approach was proposed by Au and Beck (2001) as an alternative to 

MCS methodology to compute the small failure probabilities. Its aim is to reduce the number of 

calls of the mechanical model as compared to MCS methodology. This method was used by 

several authors [Au and Beck (2003); Schuëller et al. (2004); Au et al. (2007); Au et al. (2010); 

Ahmed and Soubra (2011, 2012a, 2012b ); Thajeel et al. (2015) among others]. The basic idea of 

subset simulation is that the small failure probability in the original probability space can be 

expressed as a product of larger conditional failure probabilities.  

Consider a failure region F defined by the condition G<0 where G is the performance function 

and let  (1) ( ),..., KX X  be a sample of K realizations of the vector X composed of M random 

variables (X1, …, XM). It is possible to define a sequence of nested failure regions F1, …, Fj, ..., Fm 

of decreasing size where 1 ... ...j mF F F F      (Figure 1.7). An intermediate failure region Fj can 

be defined by G<Cj where Cj is an intermediate failure threshold whose value is larger than zero. 

Thus, there is a decreasing sequence of positive failure thresholds C1, …, Cj, ..., Cm corresponding 

respectively to F1, …, Fj,…, Fm where C1>…>Cj>...> Cm=0.  
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Figure 2.7. Nested Failure domain 

 

In the SS approach, the space of uncertain parameters is divided into a number m of levels with 

equal number K of realizations  (1) ( ),..., KX X . An intermediate level j contains a safe region and 

a failure region defined with respect to a given failure threshold Cj. The failure probability 

corresponding to this intermediate level j is calculated as follows: 

where 
   1

j

k

F
I X   if 

 k

jX F  and 
   0

j

k

F
I X   otherwise. Notice that in the SS approach, the 

first K realizations are generated using MCS methodology according to a target joint probability 

density function PDF (Pt). The next realizations of each subsequent level are obtained using a 

Markov chain method based on the Metropolis-Hastings (M-H) algorithm according to a proposal 

PDF (Pp).  
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The failure probability    mP F P F  of the failure region F can be calculated from the 

sequence of conditional failure probabilities as follows [Au and Beck (2001)]:  

It should be mentioned that the intermediate failure probability  1|j jP F F 
 of a given level j 

(j=1, 2,. . ., m) was chosen equal to 0.1 [Au and Beck (2001)].  

The coefficient of variation  fCOV P of the failure probability estimator is given by: 

 

where jCOV  is the coefficient of variation for a given level j (j=1, 2,. . ., m). It should be 

mentioned that the coefficient of variation 1COV (the first level using MCS methodology) is 

given according to Equation (2.15) as follows:  

 
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As for the coefficient of variation, for next level j (j=2, 3,. . ., m), it is given by Au and Beck 

(2001) as follows: 
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where j  is a factor accounting for the correlation between the K realizations. Its expression is 

given by Au and Beck (2001).  
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2.4.2.3 The metamodeling techniques 

Although IS and SS approaches allow one to significantly reduce the number of calls to the 

mechanical model with respect to MCS methodology, these techniques remain very time-

consuming. In order to overcome the inconvenience of the simulation methods related to the 

computation time, the metamodeling techniques were proposed in this regard. The aim of these 

techniques is to replace the original computationally-expensive mechanical model by a meta-

model (i.e. an analytical equation) using a smaller number of calls of the mechanical model (as 

compared to IS or SS techniques).  

Various types of metamodeling techniques can be found in literature such as Response Surface 

Methodology (RSM) [Box et al. (1978); Bucher and Bourgund (1990); Myers and Montgomery 

(1995)], Polynomial Chaos Expansion (PCE) and its extension the Sparse Polynomial Chaos 

Expansion (SPCE) [Spanos and Ghanem (1989); Isukapalli et al. (1998); Xiu and Karniadakis 

(2002); Berveiller et al. (2006); Sudret et al. (2006); Sudret and Berveiller (2008); Huang et al. 

(2009); Blatman and Sudret (2010); Mao et al. (2012); Al-Bittar and Soubra (2013, 2014a, 2014b, 

2016)], Artificial Neural Networks (ANN) [Papadrakakis and Lagaros (2002)], the Support 

Vector Machine (SVM) [Hurtado (2004) ; Zhou et al. (2013)] and the Kriging method [Sacks et 

al. (1989); Booker et al. (1999); Santner et al. (2003); Kaymaz (2005); Bichon et al. (2008)].  

The basic common idea of the metamodeling techniques is to use a certain number of evaluations 

of the performance function to build a meta-model. Once this meta-model is built, it is used to 

evaluate the performance function instead of using the computationally-expensive mechanical 

model.  

In this thesis, the kriging metamodeling technique is used in combination with a simulation 

method (e.g. MCS, IS or SS) to perform the probabilistic analysis. The combination between a 

metamodeling technique and a simulation approach takes the advantages of each technique used 
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individually and has been employed by several authors. Bourinet et al. (2011) proposed a method 

combining Subset Simulation and Support Vector Machines. Papadopoulos et al. (2012) proposed 

a methodology incorporating Neural Network and Subset Simulation. Finally, Balesdent et al. 

(2013) developed a kriging adaptive importance sampling approach.  

The next subsections aim to briefly present commonly used metamodeling techniques (e.g. RSM 

and PCE/SPCE). This is followed by a more detailed presentation of the kriging methodology 

which is the metamodeling technique employed in this thesis. As will be shown in the following 

sections, kriging metamodeling provides not only the predicted value at an unknown sample but 

also an uncertainty indication of the meta-model at this sample. This advantage becomes visible 

in the upcoming chapters.   

2.4.2.3.1 The Response Surface Methodology (RSM)  

The Response Surface Methodology (RSM) aims at approximating the performance function 

G(X) by an explicit function of the random variables. The most popular form of this function is a 

second order polynomial model, which can be expressed as: 

where Xi (i=1, …, M) are the random variables, M is the number of random variables and  
ii

b,a  

are coefficients obtained by the least squares method, which minimizes the sum of the squares of 

the differences between the predicted values and the model values. It should be emphasized here 

that the second order polynomial used in the RSM method has limited capability to accurately 

model highly nonlinear response surfaces. Higher-order polynomial models can be used to model 

highly nonlinear response surfaces; however, instabilities may arise [cf. Barton (1992)]. 

Furthermore, this requires a large number of sample points. This enormously increases the 

computation time and make the RSM solution inadequate in this case. 

  2
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1 1

M M
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     (2.24) 
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2.4.2.3.2 The Polynomial Chaos Expansion (PCE) and its extension the (SPCE) 

The polynomial chaos expansion (PCE) aims at replacing a complex mechanical model (i.e. finite 

element/finite difference numerical model) by a meta-model. This allows one to calculate the 

system response (when performing MCS) using an approximate simple analytical equation.  

Consider a mechanical model with M input uncertain parameters gathered in a vector 

 1 MX= X , ..., X . The system response can be expanded onto an orthogonal polynomial 

basis as follows: 

where   is the vector resulting from the transformation of the random vector X into an 

independent standard normal space, P is the number of terms retained in the truncation scheme, 

a are the unknown PCE coefficients to be computed and   are multivariate (or 

multidimensional) Hermite polynomials which are orthogonal with respect to the joint probability 

density function of the standard normal random vector ξ.  

In practice, one should truncate the PCE representation by retaining only the multivariate 

polynomials of degree less than or equal to the PCE order p. Using this method of truncation, the 

number P of unknown PCE coefficients is given by: 

As may be seen from Equation (2.26), the number P of the PCE coefficients which is the number 

of terms retained in Equation (2.25) dramatically increases with the number M of random 

variables and the order p of the PCE. This number becomes very high in the case of random 

fields where the number of random variables is significant.  
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Note that unknown coefficients a  are computed using the regression approach. In this approach, 

one needs to generate a DoE using the Monte Carlo simulation methodology or any other 

sampling scheme (e.g. Latin Hypercube (LH)). Note that the size K of the DoE must insure the 

stability of the regression problem. This implies that the size of DoE should be larger than the 

number of unknown coefficients.  

Once the coefficients a of the PCE given by Equation (2.25) have been computed, the statistical 

moments (mean, standard deviation, skewness, and kurtosis) can be calculated with no additional 

cost. This can be done by performing Monte Carlo simulations on the meta-model and not on the 

original computationally-expensive finite element/finite difference numerical model. 

The sparse polynomial chaos expansion (SPCE) which is an extension of the PCE methodology 

was proposed by Blatman and Sudret (2009, 2010) to deal with high dimensional stochastic 

problems (i.e. when a large number of random variables is involved). The idea behind the SPCE 

came from the fact that the number of significant terms in a PCE is relatively small [see Blatman 

(2009)] since the multidimensional polynomials   corresponding to high-order interaction are 

associated with very small values of coefficients a. Based on these observations, a new 

truncation strategy was proposed by Blatman and Sudret (2009, 2010) in which the 

multidimensional polynomials   corresponding to high-order interaction were penalized. The 

proposed SPCE methodology leads to a sparse polynomial chaos expansion that contains a small 

number of unknown coefficients. These coefficients can be calculated from a reduced number of 

calls of the mechanical model with respect to the classical PCE methodology.  

It should be mentioned here that using the PCE/SPCE will lead to an accurate estimation of the 

first two statistical moments of the system response. However, the probability of failure which is 

the output of interest in this thesis is generally not well estimated with this approach because the 

generated samples are usually located around the mean values of the different random variables. 
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2.4.2.3.3 Kriging metamodeling technique  

The kriging metamodeling technique is employed in this thesis to predict the response of a given 

model at any sample, provided that the responses at a few other samples (called Design of 

Experiments DoE) are known. With this kind of metamodeling, one can approximate arbitrary 

functions with high accuracy. The kriging meta-model does not assume an underlying global 

functional form. However, it is based on the assumption that there is a spatial correlation between 

the values of the function to be approximated.  

In this thesis, the aim is to determine a meta-model for the performance function based on some 

performance function values  G X  obtained from the FLAC3D software. Within the kriging 

theory, the value of the performance function  G X  at an unknown sample X is considered as a 

realization  G X  of a random function, which includes a regression part and a centered 

stochastic process as follows [cf. Sacks et al. (1989)]: 

where  ,F X   is a deterministic part defined by a regression model that gives an approximation 

to  G X  in the mean and  Z X  represents the fluctuation around the mean value. It is given by 

a stationary Gaussian random process with zero mean and covariance COVAR that interpolates 

the errors between the regression model prediction and the true performance function values at 

the different N  samples of the DoE. This covariance is given by:  

where 2

z  is the random field variance; Xi, Xj are two arbitrary samples from the whole design of 

experiments and  ,i jR X X  is the spatial correlation function between these two samples with a 

correlation parameter vector  . Notice that in this thesis, ordinary kriging is used which means 

     ,G X F X Z X   (2.27) 

     2, ,i j Z i jCOVAR Z X Z X R X X  
 

     ( , 1, 2, 3, ..., )i j N    (2.28) 
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that  ,F X   is a scalar [i.e.  ,F X   ] to be determined. So, the estimated performance 

function  G X  can be simplified as: 

Notice also that the most widely used correlation function for reliability analysis is the 

anisotropic square exponential function. This function is employed in this thesis. It is given by: 

where M is the number of random variables and i  is a scalar which is equal to the inverse of 

the correlation length in the thi  direction. 

As may be seen from Equation (2.27) or Equation (2.29), the kriging meta-model consists of two 

parts. The first part is a regression model which approximates the performance function over the 

whole design space. The second part is a stochastic process which creates localized deviations 

from the regression model. This meta-model is completely defined by the scalar  , the 

correlation parameter vector   and the process variance 2

z . These parameters may be estimated 

by fitting the kriging meta-model to the design of experiments and the corresponding 

performance function values. Notice that the correlation parameter vector   can be obtained 

through the maximum likelihood estimation using DACE toolbox in Matlab [Lophaven et al. 

(2002)]. Once   is determined,   and 
2

Z  can also be estimated using the DACE toolbox.  Their 

expressions are given by: 

       ,G X F X Z X Z X      (2.29) 
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where R  is a square matrix of dimension N N ,  i.e.  ,i j
NxN

R R X X 
   and F  is a unit 

vector of dimension N. At this stage, all the three parameters of Equation (2.29) are completely 

determined.  

The Best Linear Unbiased Predictor (BLUP) of the performance function  G X  at an unknown 

sample X  is shown to be a Gaussian random variate       ~ ,
G X G X

G X N     [see Santner et 

al. (2003)] where: 

in which        1 2, , , ,..., , Nr X R X X R X X R X X     is the correlation vector between the 

arbitrary sample X and all the samples iX  ( 1, 2, 3, ..., )i N in the DoE, and ( )u X  is given by: 

The computation of the mean prediction 
 G X

  and the prediction variance 
 

2

G X
  as given by 

Equations (2.33) and (2.34) can be obtained by the DACE toolbox in Matlab making use of the 

already obtained values of  , 
2

Z  and θ.  

It should be emphasized here that contrary to other types of meta-models, the kriging meta-model 

provides not only a predicted value at an unknown sample but also an estimate of the prediction 

variance which gives an uncertainty indication on the kriging meta-model at this sample.  

Notice finally that the prediction variance 
 

2

G X
 is defined as the minimum of the mean squared 

error between  G X and  G X . The variances of samples in the initial DoE are zero, but the 

variances of the other samples are always different from zero. A large value of 
 

2

G X
 means that 

     1

G X
r X R G F      (2.33) 

 
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   1 1Tu X F R r X   (2.35) 
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the prediction is not exact. Therefore, the prediction variance 
 

2

G X
  is an important indicator in 

the unexplored areas and presents a good index to improve the initial DoE as will be shown later 

in this thesis. 

2.5 CONCLUSION 

In this chapter, a literature review on the different types of soil uncertainties encountered in 

geotechnical engineering (with an emphasis on the soil spatial variability) was firstly presented. 

This was followed by the methods of characterization and modeling of the soil spatial variability. 

In this thesis, the soil spatial variability was modeled by random fields described by their 

probability density functions and their autocorrelation functions. The review on the existing 

literature allows one to determine the frequently encountered values of the different soil statistical 

parameters (coefficient of variation of the different soil parameters, correlation between 

parameters, autocorrelation functions, etc.). 

The review on the methods of discretization of random fields has shown that the series expansion 

methods are the best ones to be employed for random field discretization. This is because these 

methods provide the optimal number of random variables needed to discretize the random field, 

the other methods being mesh-dependent. In this thesis, EOLE method was adopted for the 

discretization of the random fields. Besides the fact that it is a series expansion method, EOLE 

allows one to determine the minimal number of random variables for a prescribed value of the 

variance of the error.  

This chapter was also devoted to the principal existing methods used for uncertainty propagation. 

The different classical methods of computation of the failure probability were briefly presented. 

These methods were divided into three main categories which are the approximation methods, the 

simulation methods and the metamodeling techniques. The approximation methods include the 

First Order Reliability Method (FORM) and the Second Order Reliability Method (SORM). The 

simulation methods involve the Monte Carlo Simulation (MCS) methodology, Importance 
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Sampling (IS) and Subset Simulation (SS). Finally, the metamodeling techniques include, among 

others, Response Surface Method (RSM), Polynomial Chaos Expansion (PCE) and its extension 

Sparse Polynomial Chaos Expansion (SPCE), and kriging.  

The literature review on different methods of uncertainty propagation has shown that the 

combination between a metamodeling technique and a simulation approach takes advantages of 

each technique used individually. The kriging metamodeling technique was suggested as being a 

relevant approach because of its powerful outputs (prediction mean and prediction variance) and 

it is retained as the meta-modelling approach within this thesis. This technique will be employed 

in combination with one of the three simulation techniques (MCS, IS or SS) to lead to more 

efficient probabilistic approaches with a reduced computation time as compared to each method 

employed individually.  
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CHAPTER 3. PROBABILISTIC ANALYSIS OF STRIP FOOTINGS 

RESTING ON SPATIALLY VARYING SOILS USING KRIGING AND 

MONTE CARLO SIMULATION 

3.1 INTRODUCTION 

As is well known, the spatial variability of the soil properties has a significant impact on the 

probabilistic outputs of geotechnical structures [Hicks and Samy (2002a, 2002b, 2004)]. Several 

authors have considered the effect of the spatial variability of the soil properties on the statistical 

moments (mean and standard deviation) of their system response or on the failure probability 

against a prescribed threshold of this response. For the probabilistic analysis of shallow 

foundations, which is the subject of the present thesis, one may cite among others [Fenton and 

Griffiths (2001); Griffiths et al. (2002); Fenton and Griffiths (2003); Popescu et al. (2005); Cho 

and Park (2010); Ching et al. (2011); Al-Bittar and Soubra (2013, 2014a, 2014b, 2016); Li et al. 

(2015)]. 

When dealing with the computation of the failure probability of geotechnical structures involving 

spatially varying soils, the classical Monte Carlo Simulation (MCS) methodology is generally 

used. This method is known to be very time-consuming. This is because (i) it usually makes use 

of finite element or finite difference models which are generally time-expensive and more 

importantly (ii) it requires a large number of calls of the mechanical model for the computation of 

the small failure probabilities encountered in practice. The computation time becomes excessive 

when considering a small target value of the coefficient of variation on the failure probability. 

Thus, one needs a method that keeps to a minimum the number of calls to the mechanical model 

when performing a probabilistic analysis.  

In order to overcome the shortcoming related to the excessive number of calls of the mechanical 

model when performing a probabilistic analysis, Echard et al. (2011) proposed an Active learning 

reliability method combining Kriging and Monte Carlo Simulation (called AK-MCS). This 
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method consists in constructing a meta-model (i.e. an analytical equation which substitutes the 

original mechanical model). The computation of the failure probability may thus be easily 

performed using this meta-model.  

The AK-MCS approach is based on kriging theory and makes use of a powerful learning 

function. In this method, an initial approximate kriging meta-model is constructed based on a 

small number of samples (called Design of Experiments DoE) computed using the mechanical 

model. This meta-model is then successively updated by adding each time a new sample chosen 

according to a powerful learning function. It should be emphasized here that since the 

computation of the failure probability requires only the sign of the performance function values, 

the objective of the learning function is to choose samples that have a high uncertainty on the 

sign of their performance function values (i.e. those that are close to the limit state surface).  

The AK-MCS approach has been validated by Echard et al. (2011) by considering several 

academic examples involving non-linear limit state surfaces and high-dimensional stochastic 

problems, where the performance function was given by an analytical equation. This method was 

shown to be very efficient as the obtained probability of failure is very accurate needing a smaller 

number of calls to the mechanical model as compared to the crude MCS methodology. 

The aim of this chapter is to extend the AK-MCS approach by Echard et al. (2011) to the study of 

geotechnical structures involving spatially varying soil properties. More specifically, this chapter 

presents a probabilistic analysis at the ultimate limit state, of a strip footing resting on a spatially 

varying soil and subjected to a vertical load. The objective is the computation of the probability 

of failure of the footing against soil punching. The soil cohesion and angle of internal friction (c 

and φ) were considered as two anisotropic non-Gaussian random fields. They are characterized 

by two specified marginal distribution functions and a common autocorrelation function. The 

Expansion Optimal Linear Estimation (EOLE) methodology proposed by Li and Der Kiureghian 

(1993) was used to generate these two random fields. The mechanical model used to calculate the 
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system response (i.e. the ultimate bearing capacity) was based on numerical simulations using the 

finite difference code FLAC3D.  

This chapter is organized as follows: The next two sections aim at presenting the EOLE method 

used for the discretization of the two anisotropic non-Gaussian random fields and the AK-MCS 

methodology as it may be employed for the probabilistic analysis of geotechnical structures 

involving a spatially varying soil. This is followed by an illustration of the AK-MCS approach 

via a simple bearing capacity problem (without spatial variability). Then, a probabilistic analysis 

of a strip footing resting on a spatially varying soil and the corresponding numerical results are 

presented and discussed. The chapter ends by a conclusion of the main findings.  

3.2 THE EXPANSION OPTIMAL LINEAR ESTIMATION (EOLE) METHOD  

Assume that the soil cohesion and friction angle are two non-Gaussian random fields that share 

the same autocorrelation function. These two random fields will be denoted by 

( , )NG

iZ x y ( ,i c  ) and they will be described by two non-Gaussian marginal cumulative 

density functions Gi ( ,i c  ) and a common autocorrelation function NG

Z [(x, y), (x', y')] which 

gives the value of the correlation between two arbitrary points (x, y) and (x', y').   

In this thesis, an anisotropic square exponential autocorrelation function was used. It is given as 

follows: 

where ax and ay are the autocorrelation distances along x and y respectively.  

The discretization of the two random fields via EOLE may be described as follows (Li and Der 

Kiureghian 1993): one should first define a stochastic grid composed of s  grid points (or nodes) 

and determine the common non-Gaussian autocorrelation matrix
;

NG

 
 . Then, this matrix should 

be transformed into the Gaussian space using the Nataf correction functions proposed by Nataf 

22

' '
[( , ), ( ', ')] exp

Z

NG

x y

x x y y
x y x y

a a


     
            

  (3.1) 
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(1962) since the discretization of the random fields using EOLE is performed in Gaussian space. 

As a result, one obtains two Gaussian autocorrelation matrices ;

c

   and ;



   that can be used to 

discretize the two Gaussian random fields at any point using the following equations: 

where iµ  and i  ( ,i c  ) are respectively the mean and standard deviation values of the two 

random fields, 
i

j  ( ,i c  ) are two blocks of independent standard normal random variables, 

j

i , 
i

j  ( ,i c  ) are the eigenvalues and eigenvectors of the two Gaussian autocorrelation 

matrices ;

c

   and ;



   respectively, 
( , );Z x y

i


  is the correlation vector between the values of the 

random field at the different nodes of the stochastic grid and its value at the arbitrary point (x, y) 

as obtained using Equation (3.1), and finally M is the number of terms (expansion order) 

retained in the EOLE method. This number will be determined later in this section.  

Once the two Gaussian random fields [Equation (3.2)] are obtained, they should be transformed 

to non-Gaussian space by applying the following formula: 

where (.)  is the standard normal cumulative density function.  

It should be mentioned that the series given by Equation (3.2) is truncated for a number of terms 

M (expansion order) smaller than the number of grid points s , after sorting the eigenvalues 
j

c  

and 
j

   1,  ,j M   in a descending order. This number should assure that the variance of the 

error is smaller than a prescribed tolerance. Remember that the variance of the error for EOLE is 

given by Li and Der Kiureghian (1993) as follows:  

 
( , );

1

( , ) . . ,
Z x y

j

iM
Tj i i

i i i j
i

j

Z x y µ i c



  



       (3.2) 

 

 1( , ) ( , ) ,NG

i i iZ x y G Z x y i c         (3.3) 
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where ( , )iZ x y and ( , )iZ x y  are respectively the exact and the approximate values of the 

random fields at a given point (x, y).  

3.3 AK-MCS METHODOLOGY FOR GEOTECHNICAL STRUCTURES INVOLVING 

SPATIALLY VARYING SOIL PROPERTIES 

The basic idea of AK-MCS approach may be described as follows: In the AK-MCS method, one 

randomly selects a small Design of Experiments (DoE) from a large Monte Carlo population. 

Then, the kriging metamodeling technique is used to construct an approximate kriging meta-

model based on the responses of this DoE (as computed using the mechanical model). This 

approximate kriging meta-model is successively improved (i.e. updated) by considering each 

time a new ‘best’ sample that is computed using the mechanical model. This process (called 

enrichment process) is repeated until one obtains a sufficiently accurate kriging meta-model that 

can be used for the computation of the failure probability.  

Notice that the 'best' new sample is chosen using a powerful learning function that makes use of 

the prediction mean 
 G X

  and the prediction variance 
 

2

G X
 of the already-obtained kriging meta-

model. As will be shown later, the chosen ‘best’ new samples are those that are close to the limit 

state surface since our interest is not to determine the accurate values of the performance function 

for the different samples but rather to accurately determine the signs of the performance function 

values for these samples. This is because the computation of the failure probability only requires 

the knowledge of the signs of the performance function values for the different samples. For more 

details on the AK-MCS approach as presented by Echard et al. (2011) in the case where the 

uncertain parameters are modeled by random variables, the reader may refer to Appendix B.    

As was stated in the introduction, the aim in this chapter is to show the application of AK-MCS 

approach for the probabilistic analysis of geotechnical structures involving spatially varying soil 

  
2

2

( , );

1

1
( , ) ( , ) ( , )

j

M
T

i i

i i Z j Z x yi
j

Var Z x y Z x y i c  


          (3.4) 
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properties. This is achieved in this section by presenting a comprehensive step-by-step procedure 

describing the implementation of the AK-MCS methodology for the specific case of a strip 

footing resting on a spatially varying soil (where c and   
are two random fields) and the 

numerical software used for the mechanical analysis is FLAC3D.  

This procedure was implemented in Matlab software. It includes the random field discretization 

by EOLE and the construction of a kriging meta-model (for the computation of the failure 

probability) using the DACE toolbox. The implemented Matlab procedure makes several calls to 

the FLAC3D code for the computation of the system response (i.e. ultimate bearing capacity on a 

spatially varying soil) or the corresponding performance function value for the different soil 

realizations. It may be described as follows (see also the flowchart presented in Figure 2.1):      

1. Generate a population S of McN  (say McN = 500,000) samples of M standard Gaussian 

random variables       
1 1 1

1 1 2 2,..., , ,..., ,..., ,..., MC

M

MCN

M M

N       where M is the number of 

random variables needed by EOLE methodology to discretize the two random fields c and  . It 

should be emphasized here that each sample of standard Gaussian random variables provides 

(when substituted into Equations 3.2 and 3.3) typical spatial variations of c and   that respect the 

correlation structure of these fields, i.e. the so-called ‘realizations’ of c and  . This is performed 

by computing, for this sample, the values of c and φ at the centroids of the different elements of 

the FLAC3D mesh. Notice that the difference between the different realizations lies in the position 

of the weak and strong soil zones although all realizations respect the correlation structure of the 

corresponding random fields. It should be emphasized here that the computation of the 

performance function values for the generated samples (based on FLAC3D software) is not 

required at this stage. These samples will be denoted as candidate samples in this chapter.  

2. Randomly select from the population S a small number of samples, i.e. a small DoE of size N1 

(say N1 = 20). Then, use EOLE methodology to transform each sample into realizations of c and 
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φ that provide the spatial distribution of the soil cohesion and angle of internal friction 

respectively. For the N1 samples, evaluate the performance function values using the following 

equation: 

where uq  is the ultimate bearing capacity computed based on FLAC3D software and qs is the 

vertical loading applied to the footing. 

3. Based on the DoE and the corresponding performance function values, construct an 

approximate kriging meta-model in the standard space of random variables using the DACE 

toolbox.  

4. Use again the DACE toolbox in order to compute (for the whole population S containing the 

NMC samples) both the kriging predictor values 
G

  and their corresponding kriging variance 

values 
2

G


 
using the meta-model. From the obtained values of the kriging predictors 

G
 , obtain 

an estimation of the probability of failure fP
 
by counting the number of negative predictors 

0G
N


 

and dividing it by the total number of samples in S as follows:  

Also, compute the coefficient of variation of fP
 
as follows: 

5. Identify the ‘best’ next candidate sample in S for which one will compute the performance 

function value using FLAC3D. This is performed by evaluating a learning function U for each 

sample in S. The learning function U is given by:   

1u

s

q
G

q
   (3.5) 

0G
f

MC

N
P

N

  (3.6) 

 
1 f

f

f MC

P
COV P

P N





 (3.7) 
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The ‘best’ next sample is the one with minimum value of U (more details on this criterion for the 

choice of the ‘best’ sample will be given later on in this section).  

6. If this minimum value of U is smaller than 2, the performance function value based on 

FLAC3D is evaluated for this ‘best’ candidate and the initial DoE is updated. Then, one should go 

back to step 3 and evaluate a new kriging model based on the updated DoE. Steps (3), (4) and (5), 

which constitute the enrichment process, are repeated until the minimum value of U becomes 

larger than 2. More details on this stopping criterion will be given later on in this section.  

At this stage, the learning stops and the meta-model is considered accurate enough for the 

computation of the estimated values of both the probability of failure fP  and the coefficient of 

variation  fCOV P .  

It should be emphasized herein that a small initial DoE is chosen within the present approach (see 

step 2) in order to keep to a minimum the number of calls to the computationally expensive 

mechanical model. This initial DoE is successively increased by a single sample at each time (see 

step 5). The chosen sample is the one that mostly improves the meta-model because Equation 

(3.8) searches for the sample that has a small kriging predictor (i.e. a sample that is close to the 

limit state surface) and/or a high kriging variance (i.e. a high uncertainty in the sign of its 

performance function value). Notice that the samples with high uncertainties in the sign of their 

performance function values (positive or negative) are those that are close to the limit state 

surface. Finally, notice that the stopping criterion [min(U)]>2 corresponds to a maximal 

probability of making a mistake on the sign of the performance function value of (-2) =0.023 

[see Echard et al. (2011)]. This means that the stopping criterion is relevant. It makes use of the 

 
 

 

i

i

G X

i

G X

U X



                   i= 1, …, MCN  (3.8) 
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samples with a small probability of making a mistake in the signs of their performance function 

values.  

At the end, it should be emphasized that the number of predictions by kriging can be important as 

the whole Monte Carlo population is estimated. Notice however that the computation time of the 

predictions is much smaller than that required to evaluate the performance function values using 

the computationally expensive mechanical model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1. AK-MCS flowchart 
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G
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G
 .  
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and use EOLE methodology to transform each sample into 
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Generation of a Monte Carlo population S of NMC samples 

(NMC =500,000) 

 

Construction of the approximate kriging meta-model according 

to the DoE and the corresponding G values 
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3.4  ILLUSTRATION OF AK-MCS PROCEDURE VIA AN ANALYTICAL EXAMPLE 

This section aims at illustrating the performance of the AK-MCS procedure via a simple bearing 

capacity problem (i.e. without considering the soil spatial variability) where the system response 

is given by a simple analytical equation with a quasi-negligible computation time. The 

performance of AK-MCS approach was illustrated by comparison of its results to those given by 

the crude MCS methodology.  

The probabilistic analysis presented in this section involves the computation of the failure 

probability against soil punching of a shallow strip footing of breadth B=2m resting on a 

homogeneous (c, φ) soil and subjected to a surcharge loading q=10 kN/m2. The soil unit weight 

was taken equal to γ=18 kN/m3. The applied footing load was equal to qs=400 kN/m. The 

uncertain parameters considered in the analysis are the soil shear strength parameters c and φ. 

The illustrative statistical parameters of these two random variables, as used in the present 

analysis, are those commonly encountered in practice [cf. Phoon and Kulhawy (1999) among 

others] and they are presented in Table 3.1. No cross-correlation between c and φ is considered in 

this analysis. 

Table 3.1. Statistical characteristics of the random variables 

Random 

variable 

Mean 

µ 

Coefficient of 

variation COV (%) 

Type of the probability 

density function (PDF) 

C 20 kPa 25 Log-normal 

Φ 30o 10 Beta 

 

The performance function used to calculate the failure probability is given by the following 

equation: 

where uq  is the ultimate bearing capacity and it is given by: 

1u

s

q
G

q
   (3.9) 
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In this equation, Nγ, Nq and Nc are the bearing capacity factors due to the soil weight, surcharge 

loading and cohesion, respectively. The adopted factors employed in this section are those 

suggested by Vesic (1973). These factors are widely used in routine foundation design. They are 

functions of only the soil angle of internal friction φ. 

Notice that the reference values adopted for both the failure probability fP
 
and the coefficient of 

variation  fCOV P
 
are those obtained by the crude MCS runs with McN = 106 samples. As may 

be seen from Table 3.2, both methods (MCS and AK-MCS) provide the same values for the 

probabilistic outputs (i.e. fP  and  fCOV P ) although AK-MCS method needs only 30 calls of 

the mechanical model (which correspond to 20 samples from the initial DoE plus 10 added 

samples during the enrichment process). This number of calls to the mechanical model is to be 

compared to that required by MCS that needs 106 samples to lead to the same value of 

 fCOV P . This clearly illustrates the benefit of using the AK-MCS approach instead of the 

crude MCS methodology. It should be mentioned here that the deterministic safety factor for the 

studied configuration was equal to / 1190 / 400 3.0s u sF q q   .  

In order to better understand the impact of the number of added samples (during the enrichment 

process) on the probabilistic outputs, Figure 3.2(a) and Figure 3.2(b) present the plots of fP and 

 fCOV P versus the number of added samples. On the other hand, Figure 3.2(c) presents the 

value of the learning function U that was obtained each time a new added sample with index i 

(i=1, …, 10 in this example) was computed using the mechanical model.  

As may be seen from Figure 3.2(c), the new samples chosen during the enrichment process for 

the computation by the mechanical model have increasing values of U. The process of adding 

new samples has stopped (as required by the algorithm of the AK-MCS approach) when the value 

1

2
u c qq BN cN qN    (3.10) 
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of U became greater than 2. In the present analytical problem, 10 added samples were necessary 

to achieve this goal. On the other hand, one may observe from Figure 3.2(a) and Figure 3.2(b) 

that fP
 
and  fCOV P

 
attain an asymptote when the number of added samples becomes greater 

than 5. This means that this number of added samples could be used to obtain the values of fP
 

and  fCOV P
 
corresponding to convergence. For this number of added samples, the meta-model 

becomes sufficiently accurate (i.e. with no bias) to compute fP
 
and  fCOV P .  

It should be emphasized here that in the subsequent computations within this chapter, the process 

of adding new samples has stopped only when one obtains a value of U greater than 2. This 

criterion was shown to provide convergence of fP and  fCOV P for all the soil configurations 

studied in this chapter as may be seen from Appendix D.  

Table 3.2. Probability of failure fP , coefficient of variation  fCOV P , and number of calls of the 

mechanical model Ncalls as obtained by MCS and AK-MCS 

Method 
fP  × 10-4  fCOV P  (%) Ncalls 

MCS 6.530 3.912 106 

AK-MCS 6.530 3.910 20 samples for the initial DoE + 

10 added samples = 30 samples 
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       (a) fP versus the number of added samples           (b)  fCOV P versus the number of added samples 
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(c) Value of U for the different added samples (i=1,…,10) 

 

Figure 3.2.  AK-MCS results of the analytical example 

3.5 PROBABILISTIC ANALYSIS OF A STRIP FOOTING RESTING ON A 

SPATIALLY VARYING SOIL MASS 

This section aims at presenting the impact of the soil spatial variability on the probability of 

failure against soil punching of a strip footing subjected to a vertical load. Thus, the system 

response involves the ultimate bearing capacity (qu) of a vertically loaded strip footing resting on 

a spatially varying soil. The performance function employed in the analysis was the one defined 

by Equation (3.9) where qu was based on numerical simulations using FLAC3D model.  
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The soil cohesion c and angle of internal friction φ were modeled as two anisotropic non-

Gaussian random fields. The EOLE methodology was used to discretize the two random fields 

(i.e. to obtain realizations of the soil cohesion c and angle of internal friction φ that respect the 

correlation structure of those fields). The illustrative statistical parameters of these two random 

fields as used in the present analysis are those presented in Table 3.1. Recall here that the same 

autocorrelation function (square exponential) was used for both c and φ. Notice also that the soil 

dilation angle ψ was considered to be related to the soil angle of internal friction φ by 2/ 3. 

This means that the soil dilation angle was implicitly assumed as a random field that is perfectly 

correlated to the soil angle of internal friction random field. All the other parameters of the soil, 

footing and interface were assumed to be deterministic.  

Notice finally that the number of Monte Carlo samples McN  used in all subsequent computations 

was equal to 500,000. 

3.5.1 The mechanical model 

The mechanical model was based on numerical simulations using the finite difference code 

FLAC3D. The soil behavior was modeled using a conventional elastic-perfectly plastic model 

based on Mohr-Coulomb failure criterion. The soil Young modulus E and Poisson ratio υ were 

assumed as follows: 60E MPa  and 0.3 . Concerning the footing, a weightless strip 

foundation of 1m width and 0.25m height was used. It was assumed to follow an elastic linear 

model ( 25E GPa , 0.4  ). The connection between the footing and the soil mass was modeled 

by interface elements having the same mean values of the soil shear strength parameters in order 

to simulate a perfectly rough soil-footing interface. Concerning the elastic properties of the 

interface, their values were as follows: 1sK GPa , 1nK GPa  where Ks and Kn are respectively 

the shear and normal stiffness of the interface.  
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As shown in Figure 3.3, a strip footing of width B that rests on a soil domain of width 13B and 

depth 5B was considered in the analysis. For the displacement boundary conditions, the bottom 

boundary was assumed to be fixed and the vertical boundaries were constrained in motion in the 

horizontal direction. For the computation of the ultimate bearing capacity of the rigid rough strip 

footing subjected to a central vertical load using FLAC3D, the following method was adopted:  

An optimal controlled downward vertical velocity of 5 ×10-6 m/time step (i.e. displacement per 

time step) was applied to the bottom central nodes of the footing. Damping of the system is 

introduced by running several cycles until a steady state of plastic flow is developed in the soil 

underneath the footing. At each cycle, the vertical footing load is obtained by using a FISH 

function that calculates the integral of the normal stress components for all elements in contact 

with the footing. The value of the vertical footing load at the plastic steady state is the ultimate 

footing load. For more details on FLAC3D software and its application to the computation of the 

ultimate bearing capacity of a strip footing, the reader may refer to Appendix C. 

 

Figure 3.3. Soil domain and the corresponding mesh in the FLAC3D mechanical model 

 

3.5.2 Probabilistic numerical results 

For the considered soil domain, and for the different values of the autocorrelation distances (ax, 

ay) used in the analysis, the adopted number N of eigenmodes (or random variables) that is used 

to discretize the two random fields c and φ is chosen in such a manner that the variance of the 

error is smaller than 5% for most of the studied configurations (see columns 2 and 3 of Table 
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3.5). Only for some configurations with small values of the autocorrelation distances, a greater 

value of the variance of the error was adopted in the analysis. Indeed, these configurations with 

big fluctuations require a larger number of eigenmodes or random variables (greater than 50) to 

lead to a smaller variance of the error. For this high number of random variables, the meta-

modeling technique by AK-MCS becomes very time-expensive. More advanced probabilistic 

approaches are needed for these configurations.  

It should be mentioned here that a much greater value of the variance of the error (of 10%) was 

found sufficient to accurately approximate the first two statistical moments (mean and standard 

deviation) of the same bearing capacity problem treated herein [cf. Al-Bittar and Soubra (2013, 

2014b, 2016)].  This is to be expected since the small fluctuations of the random fields have no 

significant effect on the first two statistical moments of the system response. 

3.5.2.1 Probability of failure fP  and  fCOV P versus the number of added realizations 

during the enrichment process  

Figure 3.4 presents the probability of failure fP  and the coefficient of variation  fCOV P versus 

the number of added realizations during the enrichment process in the case where ax=10m and 

ay=1m. The number of random variables adopted for this configuration was equal to 32 as may be 

seen from Table 3.5(b). Figure 3.4 also provides the learning function values for the different 

added realizations. It should be mentioned here that 752 realizations were needed during the 

enrichment process in addition to the initial DoE before the algorithm stops [min(U)]>2. The 

final obtained values of fP and  fCOV P are respectively 1.656×10-3 and 3.47%. Figure 3.4 

shows that the probability of failure starts to converge at about 727 calls to the mechanical model. 

This means that there is no bias in the meta-model beyond this number of calls of the mechanical 

model.  
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Figure 3.4. AK-MCS results for a spatially varying soil (ax=10 m, ay=1 m) 

3.5.2.2 Effect of number of added realizations on the limit state surface   

Figure 3.5 shows the evolution of the limit state surface (LSS) corresponding to G=0, with the 

number of added realizations (from 5 to 35 realizations where the number of needed realizations 

was equal to 37) in the case where ax= ay=10,000m. The number of random variables adopted for 

this configuration was equal to 2 as may be seen from Table 3.5(a). This small number of random 

variables allows one to visualize the evolution of the LSS since only a two-dimensional space is 

needed.  

As may be easily seen from Figure 3.5, the increase in the number of added realizations improves 

the limit state surface in the zone that has an impact on the value of the failure probability (i.e. in 

the zone corresponding to the high values of the probability density which is close to the origin of 

the standard space); the other zones (far from the origin) being with a non-significant effect on 
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the value of the failure probability. It should be mentioned that the LSS starts to converge after 30 

added samples. 

3.5.2.3 Effect of the variance of the error of EOLE methodology on the probabilistic              

outputs 

In order to reduce the effect of the error of discretization of random fields on the estimated value 

of the failure probability, the variance of the error of EOLE methodology must be sufficiently 

small. Table 3.3 provides the effect of the number of random variables used in the discretization 

scheme (and the corresponding value of the variance of the error of EOLE methodology) on the 

value of fP  in the case where ax=10m and ay=5m.  

As may be seen from this table, the percent difference on fP (with respect to the ‘accurate’ 

solution corresponding to 24 variables) is equal to 19.51% when adopting 6 random variables and 

it decreases to 7.3% if one adopts 12 random variables. Notice however that a significant number 

 

Figure 3.5. Effect of the number of added realizations on the limit state surface when ax = ay = 10,000 m 
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of added realizations (406 realizations) is needed to achieve such accuracy. The small value of 

error increases the stochastic dimension of the problem and thus a larger number of added 

realizations will be needed to achieve such accuracy. In this thesis, a threshold of 5% may be 

adopted as an acceptable value for the variance of the error within EOLE. This value may be 

expected to lead to an acceptable value of the failure probability.  

Table 3.3. Effect of the number of random variables on 
fP and  fCOV P when ax =10 m and ay =5 m  

Number of random 

variables for the two 

random fields (c, φ) 

Variance of 

the error % 
fP × 10-3  fCOV P

% 

Pf %  Number of  

added 

realizations 

6 9.876 2.822 2.66 19.51 115 

12 1.682 3.25 2.48 7.3 406 

24 0.0811 3.506 2.38 - 695 

 

3.5.2.4 Effect of the safety factor on the probabilistic outputs 

Table 3.4 provides the values of fP and  fCOV P  for three values of the safety factor Fs when 

ax=ay=10,000m. This table also provides the number of added realizations which was needed for 

each case. This number is smaller for the configurations corresponding to the higher values of the 

safety factor (i.e. those corresponding to the smaller values of the failure probability or the 

greater values of the reliability index). This may be explained by the fact that for a higher value 

of the safety factor, the limit state surface becomes farther away from the origin of the standard 

space (as may be easily seen from Figure 3.6). Thus, the probability density becomes much lower 

along the limit state surface in the case Fs=3.5 leading to a smaller number of available samples 

for the prescribed number of Monte Carlo simulations. Notice that the smaller number of 

available samples leads to a larger value of  fCOV P . Consequently, a larger number of Monte 

Carlo simulations is needed in the case of larger values of the safety factor to lead to smaller 

values of  fCOV P .   
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Table 3.4. Effect of the safety factor 
sF on

fP
,
  fCOV P  and 

HL
 
for the case ax=ay=10,000 m  

sF   fP  × 10-3  fCOV P % HL  Number of  added realizations  

2.5 3.806 2.2879 36.28 37 

3 0.748 5.1689 26.36 20 

3.5 0.138 12.037 265.3 12 
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Figure 3.6. Effect of the safety factor on the limit state surface when ax=ay= 10,000 m for two values of Fs 

 

3.5.3 Probabilistic parametric study  

Columns 2 and 3 of Table 3.5 provide the number of eigenmodes and the corresponding variance 

of the error of EOLE methodology for different values of the autocorrelation distances. Columns 

4, 5 and 6 of the same table provide the failure probabilities, the corresponding values of the 

coefficient of variation together with the number of added realizations. As may be seen from this 

table, the number of random variables is small for the very large values of the autocorrelation 

distances and significantly increases for the small values of the autocorrelation distances.  
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In order to show that no bias in the meta-model exists at the end of the enrichment process for all 

the configurations presented in Table 3.5, Appendix D presents the plots of fP
 
for the different 

values of the autocorrelation distances considered in this table. For completeness, this appendix 

also provides the plots of  fCOV P and U for these configurations. 

3.5.3.1 Effect of the autocorrelation distances on fP   and HL   

For the case of isotropic random fields, Table 3.5(a) presents the effect of the isotropic 

autocorrelation distance (ax = ay) on the failure probability fP  and the corresponding value of the 

coefficient of variation  fCOV P . As may be seen from Figure 3.7, fP increases with the 

increase in the isotropic autocorrelation distance. However, the rate of increase gets smaller for 

the large values of the autocorrelation lengths (when ax = ay > 10 m) to attain an asymptote 

corresponding to the case of a homogeneous soil [see also Thajeel et al. (2016)]. Indeed, for the 

small values of the isotropic autocorrelation distance, the soil heterogeneity leads (for most 

realizations) to relatively high values of the ultimate bearing capacity due to the averaging 

phenomenon. This means that the number of realizations leading to failure is very small in this 

case. On the contrary, the number of realizations leading to failure is higher in the case of a 

homogeneous soil due to the fact that the realizations are homogeneous in this case with either 

small or high values of the soil resistance.  

For the case of anisotropic random fields, Table 3.5(b) presents the effect of the vertical 

autocorrelation distance (ay) on the failure probability fP when ax=10m. Similarly, Table 3.5(c) 

presents the effect of the horizontal autocorrelation distance (ax) on the failure probability when 

ay=2m. For the very large values of the horizontal or vertical autocorrelation distance, the failure 

probability tends to a constant maximal value corresponding to the case of a 1D random field as 

may be seen from Figure 3.8 and Figure 3.9. The reason is similar to that of the isotropic case. 
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Indeed, the increase in the soil heterogeneity leads (for most realizations) to relatively higher 

values of the ultimate bearing capacity due to the averaging phenomenon. This means that the 

number of realizations leading to failure is very small in this case and becomes higher for a lesser 

degree of heterogeneity in the soil mass. 

For both cases of isotropic and anisotropic random fields, Figures 3.7, 3.8 and 3.9 show that the 

Hasofer Lind reliability index (as obtained from optimization and making use of the final kriging 

meta-model) decreases as expected with the increase in the autocorrelation distances. Also, one 

may observe from Table 3.5 that a small value of the coefficient of variation of the failure 

probability (smaller than about 5% for most cases) was obtained for the adopted value of NMC 

which indicates that the obtained results are sufficiently accurate for practical use. The number of 

added realizations required to lead to a good approximation of the kriging model seems to be 

larger for the smaller values of the autocorrelation distance (because of the increasing 

fluctuations of the highly heterogeneous soils), although there is no regular increase in the 

number of added realizations with the decrease in the autocorrelation distance. Indeed, this 

number depends on the evolution of the kriging meta-model during the enrichment process. 
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Table 3.5. Adopted number of random variables and the corresponding value of the variance of error of 

EOLE together with the values of  fP  ,  fCOV P and number of added realizations for various soil 

variabilities  

a. Case of an isotropic case (ax=ay) 

ax=ay 

(m) 

Adopted number of 

random variables 

Variance of 

the error % 
fP  ×10-3  fCOV P

% 

Number of  added 

realizations 

2 48 9.447 0.730 5.23 742 

3 32 4.647 1.846 3.29 995 

5 24 0.953 2.762 2.69 870 

10 10 0.815 3.444 2.41 286 

20 8 0.170 3.648 2.34 210 

50 6 0.016 3.736 2.31 105 

100 6 0.001 3.772 2.29 100 

10000 2 0.000048 3.806 2.28 37 

 

b. Case of an anisotropic case (ax=10 m with varying ay) 

ay (m) Adopted number of 

random variables 

Variance of 

the error % 
fP  ×10-3  fCOV P

% 

Number of  added 

realizations 

0.5 44 9.119 0.318 7.93 427 

0.8 38 4.798 1.178 4.12 790 

1 32 4.212 1.656 3.47 752 

2 24 1.437 2.818 2.66 672 

5 12 1.682 3.250 2.48 406 

10 10 0.815 3.444 2.41 286 

20 8 0.855 3.502 2.39 190 

50 8 0.297 3.570 2.36 239 

100 8 0.099 3.616 2.35 232 

10000 8 0.033 3.690 2.32 227 
 

c. Case of an anisotropic case (ay=2 m with varying ax) 

ax (m) Adopted number of 

random variables 

Variance of 

the error % 
fP ×10-3  fCOV P

% 

Number of  added 

realizations 

2 48 9.447 0.730 5.23 742 

5 30 4.101 2.116 3.07 824 

10 24 1.437 2.818 2.66 672 

20 16 1.415 3.060 2.55 494 

50 12 1.272 3.166 2.51 357 

100 10 0.842 3.202 2.49 256 

10000 10 0.432 3.208 2.49 257 
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Figure 3.7. Effect of the isotropic autocorrelation distance ax=ay on fP  and HL  

 

Figure 3.8. Effect of the vertical autocorrelation distance ay on fP  and HL when ax =10 m 

 

Figure 3.9. Effect of the horizontal autocorrelation distance ax on fP and HL when ay =2 m 
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3.5.3.2 Effect of the autocorrelation distances on the critical realizations 

Figure 3.10 provides the realizations corresponding to the design point (i.e. those corresponding 

to the minimal value of the Hasofer-Lind reliability index) in the case where ax=10m and for 

various values of ay. Only the realizations of the soil cohesion are presented; those of the soil 

angle of internal friction being of similar trend. These realizations show a symmetrical pattern 

with respect to the vertical symmetrical axis of the foundation, whatever are the values of the 

autocorrelation distances for both cases of isotropic and anisotropic random fields. Furthermore, 

the small values of the soil cohesion and angle of internal friction are located in the neighborhood 

of the foundation, the higher values of the soil resistance being far from the footing.  

The symmetrical pattern with respect to the central vertical axis of the foundation naturally leads 

to a failure mechanism that develops symmetrically within the weak soil zone near the foundation 

as may be seen from Figure 3.11 in the case where ax=10 m and ay=1 m.  

Finally, it should be noted that the critical realizations presented in this section are those that are 

the most probable ones (i.e. those corresponding to the maximal value of the probability density) 

for a soil punching under a vertical load. This explains the symmetrical pattern of the soil 

parameters with the smallest values near the foundation. 

 

 

(a) ax=10m and ay=1m  
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(b) ax=10m and ay=2m 

 

(c) ax=10m and ay=5m 

 

(d) ax=10m and ay=10m 

Figure 3.10. Realizations of the cohesion random field as obtained at the design point for different values of 

the autocorrelation distances 

 

  

 

(a) ax=10 m and ay=1 m 

Figure 3.11. Realization of the cohesion random field as obtained at the design point and the 

superimposed failure mechanisms for the case where ax=10 m and ay=1 m  
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3.6 CONCLUSION 

The probabilistic analysis of shallow foundations resting on spatially varying soils was generally 

performed in literature using Monte Carlo Simulation (MCS) methodology. The mean value and 

the standard deviation of the system response were extensively investigated. This was not the 

case for the failure probability because MCS methodology requires a large number of calls of the 

mechanical model to accurately calculate the small failure probabilities encountered in practice. 

This chapter presented a probabilistic analysis at the ultimate limit state of a strip footing resting 

on a spatially varying soil using an Active learning reliability method combining Kriging and 

Monte Carlo Simulation (called AK-MCS). Within this method, one performs a Monte Carlo 

simulation without evaluating the whole population using the original computationally expensive 

mechanical model. Indeed, the population is predicted using a kriging meta-model which is 

defined using only a few points of the population that are evaluated employing the mechanical 

model. The main findings of this study can be summarized as follows: 

1. The present AK-MCS method was shown to be very efficient as the obtained probability 

of failure is very accurate (i.e. with a small value of the coefficient of variation on this 

failure probability of about 5% maximum for most configurations) needing a smaller 

number of calls to the mechanical model (and thus, a smaller computation time) as 

compared to the crude MCS methodology. Indeed, for a target coefficient of variation on 

fP of 5% and a value of the failure probability of 10-3, the crude MCS requires about 

800,000 simulations; however, the present AK-MCS approach requires (for the same 

accuracy) a maximal number of simulations of about 1000 simulations.   

2. The computation time of AK-MCS remains important for the small values of the failure 

probabilities encountered in practice (although in this method one makes use of the 

predictions computed using the kriging meta-model) since a large population is required 
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by MCS in these cases to lead to a small value of the coefficient of variation on the failure 

probability.   

3. The failure probability fP increases with the increase in the autocorrelation distances. 

Notice however that the rate of increase gets smaller for the large values of the 

autocorrelation lengths (when ax=ay >10 m, ax>10m, ay>5m). Indeed, these cases closely 

resemble to the limit cases corresponding to a homogeneous soil or a 1D random field. 

4. The numerical results have shown that the number of added realizations required to lead 

to a good approximation of the kriging model seems to be larger for the smaller values of 

the autocorrelation distance (because of the increasing fluctuations of the highly 

heterogeneous soils), although there is no regular increase in the number of added 

realizations with the decrease in the autocorrelation distance. Indeed, this number depends 

on the evolution of the kriging meta-model during the enrichment process. 

5. The realizations corresponding to the design point have shown a symmetrical pattern with 

respect to the vertical symmetrical axis of the foundation, whatever are the values of the 

autocorrelation distances for both cases of isotropic and anisotropic random fields. 

Furthermore, the small values of the soil cohesion and angle of internal friction are 

located in the neighborhood of the foundation, the higher values of the soil resistance 

being far from the footing. This naturally leads to a failure mechanism that develops 

symmetrically within the weak soil zone near the foundation. 

6. The prescribed value of the variance of the error of EOLE methodology was shown to 

have a significant influence on the value of the failure probability. A threshold of 5% may 

be adopted to obtain accurate values of the failure probability. Consequently, the results 

of the few configurations corresponding to a greater value of the variance of the error may 

be used with caution. Indeed, these configurations need a significant number of random 

variables (about 60 random variables) to lead to a variance of the error that is smaller than 
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5%. This number of random variables cannot be used within the AK-MCS approach 

because of the huge time necessary for those cases. A more advanced probabilistic 

method is needed to handle such configurations. 

7. The numerical results have shown that the meta-model does not exhibit any bias beyond a 

number of added realizations that is smaller than the one required by the stopping 

criterion. This means that the present stopping criterion is not optimal and another more 

advanced stopping criterion may lead to a smaller number of calls of the mechanical 

model and thus to a smaller computation time.  
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CHAPTER 4. PROBABILISTIC ANALYSIS OF STRIP FOOTINGS 

RESTING ON SPATIALLY VARYING SOILS USING IMPORTANCE 

SAMPLING AND KRIGING METAMODELING 

4.1 INTRODUCTION 

In the previous chapter, an efficient approach was proposed for the computation of the failure 

probability against soil punching of a strip footing resting on a spatially varying soil. An active 

learning reliability method combining kriging and Monte Carlo simulation (called AK-MCS) was 

presented. This method consists in constructing a meta-model (i.e. an analytical equation which 

substitutes the original mechanical model). The computation of the failure probability may thus 

be easily performed using this meta-model. Notice that AK-MCS is based on the kriging theory 

and it makes use of a powerful learning function for the selection of the ‘best’ samples to be 

computed by the computationally expensive mechanical model. Thus, it overcomes the 

shortcoming of the crude MCS related to the excessive number of calls of the mechanical model 

when performing a probabilistic analysis.  

When dealing with the small failure probabilities encountered in practice, the computation time 

of AK–MCS remains important (although in this method, one makes use of the predictions 

computed using the kriging meta-model) since a large population with a very high number of 

samples is required by MCS to lead to a small value of the coefficient of variation on the failure 

probability. For instance, 1,000,000 samples are required for the computation of fP values in the 

order of 10-4 for a coefficient of variation on fP of 10%. Consequently, a method that can reduce 

the computation time of the probabilistic analysis (as compared to AK-MCS) by reducing the size 

of the sampling population is needed.  

In order to overcome the shortcoming of AK-MCS involving the large population needed to 

assess the small failure probabilities, Echard et al. (2013) suggested the use of importance 

sampling instead of Monte Carlo sampling. The method by Echard et al. (2013) is called AK-IS. 
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It is an Active learning method combining Kriging and Importance Sampling. In the framework 

of this approach, the small failure probability can be estimated with a similar accuracy as AK-

MCS but using a much smaller size of the population. 

 The AK-IS approach has been validated by Echard et al. (2013) by considering several academic 

examples where the performance function was given by an analytical equation. This method was 

shown to be very efficient as the obtained probability of failure is very accurate needing a smaller 

number of calls to the kriging meta-model as compared to AK-MCS methodology.  

The aim of the present chapter is to extend the AK-IS approach by Echard et al. (2013) to the 

probabilistic analysis at the ultimate limit state of a strip footing resting on a spatially varying soil 

and subjected to a vertical load. The mechanical model considered in the analysis is the one used 

in the previous chapter. The same deterministic and uncertain parameters considered in the 

previous chapter are also conserved in this chapter for comparison purposes. As will be shown 

later on, the proposed AK-IS approach allows one to accurately compute the small failure 

probability (i.e. with a small value of the coefficient of variation on fP ) with a reduced 

computation time as compared to AK-MCS methodology.   

The chapter is organized as follows: The next section aims at presenting the proposed 

combination between the kriging meta-modeling technique and the importance sampling (i.e. 

AK-IS procedure) in the case of geotechnical structures involving spatially varying soil 

properties. This is followed by a validation of the present AK-IS approach via a simple academic 

example. Then, some probabilistic results involving a strip footing resting on a spatially varying 

soil are presented and discussed. The chapter ends with a conclusion. 

4.2 THE PROPOSED AK-IS PROCEDURE FOR GEOTECHNICAL STRUCTURES 

INVOLVING SPATIALLY VARYING SOIL 

A brief description of the AK-IS approach as presented by Echard et al. (2013) in the case where 

the uncertain parameters are modeled by random variables is provided in Appendix E. As 
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previously mentioned in the introduction, this chapter aims at extending the AK-IS approach by 

Echard et al. (2013) to the case of a spatially varying soil where the computationally expensive 

mechanical model based on FLAC3D software is used in the analysis.  

The present AK-IS procedure consists of two main stages. First, the most probable failure point 

(design point) is determined using an approximate kriging meta-model based on a small number 

of samples called Design of Experiments DoE. Second, the obtained approximate kriging meta-

model is successively improved via an enrichment process (by adding each time a new sample 

selected from a probability density function ( )xh X centered at the design point) until reaching a 

sufficiently accurate meta-model for the computation of the failure probability. These two stages 

are described in more detail in the next subsections. 

 

4.2.1 Determination of the design point 

When dealing with problems that are characterized by an explicit performance function, the 

design point may be easily determined by minimizing the Hasofer-Lind reliability index 

subjected to the constraint that the performance function equal to zero [see Echard et al. (2013)]. 

Notice however that when dealing with analytically-unknown performance functions as is the 

case in the present work, the determination of the design point is less straightforward. The 

problem is even more difficult when a high-dimensional stochastic problem is involved [cf. 

Tandjiria et al. (2000)] as is the case in this chapter where a spatially varying soil mass is 

considered in the analysis. Indeed, the discretization of the two random fields of c and φ leads to 

a significant number of random variables (between 2 and 50 random variables) as was shown in 

the previous chapter. The large number of random variables requires a significant number of calls 

of the mechanical model for the determination of the design point.  
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In order to determine the design point in the present work using a relatively small number of calls 

to the mechanical model, an iterative procedure based on kriging metamodeling was proposed. 

This procedure may be described as follows (see also the flowchart presented in Figure 4.1): 

1. Generate a large MCS population of McN  samples (say McN =500,000 samples) of 

M standard Gaussian random variables       
1 1 1

1 1 2 2,..., , ,..., ,..., ,...,Mc Mc

M

N N

M M      where 

M is the number of random variables adopted in EOLE methodology for the discretization 

of both c and . It should be emphasized here that each sample of M standard Gaussian 

random variables provides (when substituted into Equations 3.2 and 3.3) typical spatial 

variations of c and   that respect the correlation structure of these fields, i.e. the so-called 

‘realizations’ of c and . The difference between the different realizations lies in the position 

of the weak and strong soil zones although all realizations respect the correlation structure of 

the corresponding random fields.  

2. From this population, randomly select a small number of samples (say N1=20 samples) of 

M standard Gaussian random variables. Then, use EOLE methodology to transform each 

sample into realizations of c and φ that provide the spatial distribution of the soil cohesion 

and angle of internal friction respectively. These realizations are obtained through the 

computation of the values of c and   at the centroids of the different elements of the 

FLAC3D mesh using Equations (3.2 and 3.3). 

3. Use the software FLAC3D to calculate the performance function value corresponding to each 

sample. Based on DACE toolbox, construct an initial approximate kriging meta-model in the 

standard space using the N1 samples and the corresponding performance function values.  

4. Find the minimum value of the Hasofer-Lind reliability index and the corresponding value of 

the design point by making use of the already-obtained kriging meta-model and by employing 
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the optimization toolbox available in Matlab. This procedure gives an approximate value of 

the reliability index and its corresponding design point. 

5. Generate a small number of samples of M standard Gaussian random variables (5 samples 

are used in this work) so that they are centered at the design point obtained in the previous 

step. Then, transform each sample into realizations of c and   that provide the spatial 

distribution of the soil cohesion and angle of internal friction respectively and finally compute 

for the five samples, the corresponding values of the performance function using FLAC3D. 

6. Construct a new kriging meta-model in the standard space using all samples of standard 

Gaussian random variables generated so far (i.e from steps (2) to step (5)).  

7. Compute an updated Hasofer-Lind reliability index and its corresponding design point using 

the obtained kriging meta-model. 

8. Steps 5 to 7 are repeated several times until the absolute difference between two successive 

values of the Hasofer-Lind reliability index becomes smaller than a given tolerance. The 

number of iterations is denoted hereafter as N2. Consequently, the DoE which is considered to 

represent the number of samples needed to obtain the design point is given by DoE = N1 + 5 × 

N2.  

The aforementioned procedure does not intend to accurately determine the performance function 

over the entire design space but it focuses on the computation of the design point using a 

relatively small number of evaluations of the computationally expensive mechanical model. 

4.2.2 Enrichment process 

Further improvement of the already-obtained kriging meta-model is achieved in this stage via an 

enrichment process according to the following steps (see also the flowchart presented in Figure 

4.2): 

1. Generate a population of ISN samples (say ISN =10,000 samples) of M standard Gaussian 

random variables according to a probability density function ( )xh X  centered at the obtained 
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design point. These samples are called candidate samples hereafter. Remember that M is the 

number of random variables needed by EOLE methodology to discretize the two random 

fields c and . Notice also that the population size ISN
 

is relatively small herein as 

compared to the one generated in the AK-MCS procedure where McN =500,000 samples. 

2. Use the DACE toolbox in order to compute (for the whole population containing the 

ISN samples) both the kriging predictor values 
G

  and their corresponding kriging variance 

values 
2

G
  using the obtained meta-model. From the obtained values of the kriging predictors 

G
 , obtain an estimation of the probability of failure and the corresponding value of the 

coefficient of variation using Equations (2.16 to 2.18). 

3. Identify the ‘best’ next candidate sample among the whole population for which one will 

compute the performance function value using FLAC3D. This is performed by evaluating a 

learning function U for each sample in the population. The learning function U is given by:  

  
 

 

i

i

G X

i

G X

U X



                   1,  , ISi N    (4.1) 

The 'best' next sample is the one that has the smallest U value (the details on this criterion for 

the choice of the ‘best’ sample were given in the second chapter of this thesis).  

4. If the obtained minimum value of U is smaller than 2, evaluate the performance function 

value based on FLAC3D for this ‘best’ candidate and update the DoE by adding the new 

‘best’ sample. Also, re-construct the kriging meta-model again with the updated DoE.  

5. Repeat the steps 2 to 4 several times until the smallest U value becomes larger than 2 (the 

details on this stopping criterion were given in the second chapter of this thesis). 

At this stage, the learning stops and the meta-model is considered sufficiently accurate for the 

computation of the failure probability. When the learning stops, one must compute the estimated 
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values of both the probability of failure 
fP  and its corresponding coefficient of variation 

 fCOV P .  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1. Flowchart of the proposed AK-IS procedure (Stage 1: Determination of the design point)  
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Figure 4.2. Flowchart of the proposed AK-IS procedure (Stage 2: Enrichment process) 

 

4.2.3 Numerical implementation and computational issue 

The comprehensive step-by-step procedure described above involves the probabilistic analysis at 

the ultimate limit state of a strip footing resting on a spatially varying soil (where c and   
are 

two random fields). However, it may be easily applied to other mechanical problems by 

substituting the present mechanical model with that required for the analysis.    

This procedure was implemented in Matlab software. It includes the random field discretization 

by EOLE, the determination of the design point by an iterative procedure and the construction of 

a kriging meta-model for the computation of the failure probability. The implemented Matlab 

procedure makes several calls to the FLAC3D code for the computation of the system response 
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(i.e. ultimate bearing capacity on a spatially varying soil) or the corresponding performance 

function value for the different soil realizations.   

It should be emphasized herein that the number of predictions by kriging can be important as the 

whole importance sampling population (i.e. ISN  samples) is estimated. Notice however that the 

computation time of the predictions is significantly smaller than the one required by the AK-MCS 

approach presented in the previous chapter where a MCS sampling was employed to determine 

the candidate samples. Indeed, the number of candidate samples used in AK-IS is much smaller 

for the same value of the coefficient of variation on fP
 
thus leading to a considerable reduction 

in the computation time. 

4.3 PROBABILISTIC NUMERICAL RESULTS   

Before the presentation of the probabilistic results of a spatially varying soil, it seems necessary 

to validate the present AK-IS procedure by comparison of its results with those obtained by 

Echard et al. (2013) when considering a simple analytical equation. This is the aim of the next 

subsection. 

4.3.1 Validation of the present AK-IS procedure via a simple analytical equation 

This section focuses on the validation of the present AK-IS procedure through an analytical 

example. The corresponding performance function is given as follows: 

where 1u  and 2u  are two standard normal random variables. A comparison between the results 

obtained by the present AK-IS procedure and those provided by Echard et al. (2013) was 

presented in Table 4.1.  

Notice that in Echard et al. (2013), the design point was simply determined by minimizing the 

reliability index using the optimization toolbox in Matlab and making use of the analytical 

performance function. However; in the present AK-IS procedure, this design point is determined 

   
2 3

1 2 1 2 2( , ) 0.5 1.5 5 3G u u u u u      (4.2) 
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by employing the iterative procedure proposed in the previous section. The aim is to check and 

validate the proposed iterative procedure which will be employed hereafter in the complex case 

of the spatially varying soil properties.  

As may be seen from Table 4.1, the approximate kriging meta-model (which was needed for the 

determination of the design point) was constructed using an initial DoE of 15 samples and five 

iterations with 2 samples per iteration. The enrichment process required 4 additional samples. 

Thus, the total number of samples needed in our procedure is equal to 29 samples. This number is 

close to that needed by the classical FORM analysis by Echard et al. (2013) (i.e. 26 samples) with 

the advantage that the present approach may be applied to analytically-unknown performance 

functions.  

As a conclusion, the iterative procedure proposed in this chapter for the computation of the 

design point can be considered as a powerful tool and may be used for more complex cases 

involving spatially varying soil properties.   

Table 4.1. Probabilistic outputs and the corresponding number of used samples Ncall as obtained from the two 

AK-IS methods 

 

4.3.2 Probabilistic results in the case of a spatially varying soil 

This section aims at presenting the impact of the soil spatial variability on the failure probability 

against soil punching of a strip footing subjected to a vertical loading. The mechanical model 

considered in the analysis is the one used in the previous chapter and it was presented in section 

3.5. The same deterministic and uncertain parameters described in the previous chapter are 

Method Ncall 
fP   10-5  fCOV P  (%) HL

  
Design point  

(u1, u2) 

AK-IS by 

Echard et al. 

(2013) 

19 (DoE) + 7  

(enrichment)= 

26 samples 

2.86 2.39 3.93 (0.788, 3.853) 

Present AK-IS 

approach 
15 + (2  5) + 4 

=29 samples 

2.83 2.40 3.93 (0.786, 3.853) 
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considered in this section. Also, the input data employed in chapter 3 for both the deterministic 

and the uncertain parameters remain the same herein. The objective is to compare the results from 

the two approaches in terms of computational effort. The performance function used in the 

analysis is given by Equation (3.5) of the previous chapter. Notice finally that the number of 

samples ISN used in all subsequent computations was equal to 10,000 samples. The small size of 

the sampling population may be explained by the fact that the sampling is performed using a 

probability density that is centered at the design point leading to a much larger number of 

samples lying in the failure domain as compared to MCS methodology. 

4.3.2.1 Evolution of the limit state surface during the computational process   

As was previously mentioned in this chapter, the AK-IS procedure consists of two main stages: 

The first stage (called stage 1) consists in computing the design point from an approximate 

kriging meta-model constructed using a small number of samples. In the second stage (called 

stage 2), the approximate meta-model is successively improved through an enrichment process. 

In this section, the evolution of the limit state surface with the addition of new samples (or 

realizations) during the two stages (i.e. stage 1 and stage 2) was investigated (see Figures 4.3 and 

4.4). A typical case where ax=10,000m and ay=10,000m was considered in these figures. This 

configuration was chosen because it requires only two random variables and thus, the limit state 

surface can be easily visualized since only a two-dimensional space is needed in this case.   

Figure 4.3 presents the evolution of the limit state surface with the addition of new samples 

during the different iterations of stage 1. Also, Table 4.2 presents the evolution of the reliability 

index HL
 
for the different iterations. This table shows that the accurate value of the reliability 

index was obtained since the first iteration in the present case of a quasi-homogeneous soil where 

ax=ay=10,000m. Notice however that a greater number of iterations (between 2 and 13) were 
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found necessary for moderately to highly heterogeneous soil mediums as may be seen from the 

sixth column of Table 4.4.  

It should be emphasized here that the addition of new samples during Stage 1 does not intend to 

accurately determine the limit state surface over the entire range of random variables, but rather 

to accurately determine the reliability index and the corresponding design point. Thus, only the 

point of the limit state surface which is the closest one to the origin of the limit state surface is 

expected to be correct at the end of the first stage of AK-IS; the other points of this limit state 

being in general not correctly estimated within this stage.    
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Figure 4.3. Effect of the number of iterations of stage 1 on the limit state surface when ax = ay = 10,000 m  
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Table 4.2. The evolution of the reliability index for the different iterations 

Case 
HL  δ 

Initial DoE = 20 samples 2.6205 - 

Initial DoE + 5 samples of 

iteration 1 = 25 samples 

2.6345 0.014 

Initial DoE + 5 samples of 

iteration 1 + 5 samples of 

iteration 2 = 30 samples 

2.6340 0.0005  

 

Figure 4.4 presents the evolution of the limit state surface with the addition of new samples (from 

zero to 28 samples) during stage 2; the number 28 being the needed number of added realizations. 

From this figure, one may notice that the limit state surface is successively improved with the 

addition of new samples. Notice however that for the last two iterations, the two curves 

representing the limit state surface are superimposed. Thus, the limit state surface cannot be 

further improved beyond 24 samples. This means that there is no bias in the meta-model beyond 

24 samples.  
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Figure 4.4. Effect of the number of added samples during the enrichment process on the limit state surface 

when ax=ay=10,000 m  
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Table 4.3 presents the evolution of the probability of failure 
fP and its corresponding coefficient 

of variation  fCOV P  as function of the added samples. This Table shows that the values of 

fP and  fCOV P
 
converge after the addition of 24 samples. This is in conformity with Figure 

4.4 in which no further improvement in the limit state function was obtained in the last two 

iterations.  

Table 4.3. The evolution of the probability of failure and its corresponding coefficient of variation as a 

function of the added samples during the enrichment process 

Number of  added samples 
fP × 10-3  fCOV P % 

0 3.606 1.957 

4 4.589 1.736 

8 4.171 1.763 

12 4.111 1.878 

16 3.919 1.772 

20 3.828 1.772 

24 3.830 1.771 

28 3.830 1.771 

4.3.2.2 Evolution of the probabilistic outputs during the enrichment process 

First of all, recall here that the failure probability is computed each time a new sample is added 

during the enrichment process. Figure 4.5 shows the effect of the number of added samples in the 

enrichment process on fP
 
and  fCOV P

 
values for a typical case where ax=10m and ay=1m [see 

also Al-Bittar et al. (2017)]. This figure also provides the learning function values for the 

different added samples. The configuration (ax=10m and ay=1m) was studied because it 

represents a practical case requiring a significant number of random variables (32 random 

variables in the present case). 

Figure 4.5 shows that for the small number of added samples, both fP and  fCOV P
 
are not 

constant. This is due to the inaccuracy of the kriging meta-model when only a small number of 

realizations were considered. Notice however that both fP and  fCOV P
 
tend to be constant as 

the number of added samples increases. It should be mentioned here that 921 samples were 
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needed in the enrichment process in addition to the DoE before the algorithm stops [min(U)]>2. 

The final obtained values of fP and  fCOV P are respectively 1.628×10-3 and 2.99%. As may be 

shown from Figure 4.5 the values of fP and  fCOV P reach an asymptote when the number of 

added samples is equal to 823. An additional increase in the number of added samples does not 

lead to a significant change in the values of fP and
 

 fCOV P . This means that when the number 

of added samples becomes equal to 823, the kriging meta-model is accurate enough (i.e. with no 

bias) and it can be used to calculate a rigorous value of the failure probability. 

In order to show that no bias in the meta-model exists at the end of the enrichment process for all 

the configurations presented in Table 4.4, Appendix F presents the plots of fP
 
for the different 

values of the autocorrelation distances considered in this table. For completeness, this appendix 

also provides the plots of  fCOV P and U for these configurations. 
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Figure 4.5. AK-IS results for a spatially varying soil (ax=10 m, ay=1 m) 
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4.3.2.3 Parametric study    

This section aims at presenting the effect of (i) the autocorrelation distances of the random fields, 

(ii) the coefficients of variation of these fields, and (iii) the type of the probability distribution 

function of these fields, on the probabilistic outputs. 

4.3.2.3.1. Effect of the autocorrelation distances of the random fields 

Figure 4.6 presents the effect of the isotropic autocorrelation distance on fP  and 
HL  as obtained 

from AK-MCS and AK-IS methodologies. Also, Figure 4.7 and Figure 4.8 present the effect of 

the autocorrelation distance (ay or ax) on fP  and HL  as obtained from the same two 

methodologies. The values of the probabilistic outputs corresponding to the different soil 

variabilities were given in Table 4.4. 

As may be easily seen from Table 4.4, the N1 value was taken equal to 20 (as mentioned in the 

flowchart of Figure 4.1) for all configurations except for two configurations corresponding to a 

high number of random variables (or eigenmodes). Indeed, these two configurations correspond 

to very heterogeneous soils and require a greater number of samples for the construction of the 

meta-model. In this chapter, the N1 value adopted for these configurations was arbitrarily taken 

equal to the number of eigenmodes (i.e. 48 and 44 samples respectively).   

From Figures 4.6, 4.7 and 4.8, one may observe that the two methods lead to similar results. 

Except for the very heterogeneous case where ax=10m and ay=0.5m, the maximal percent 

difference between the two approaches for all the other configurations is smaller than 7 %. 

It should be emphasized here that although the sampling population adopted in AK-IS (i.e. 

10,000 samples) is much smaller than that adopted in AK-MCS (i.e. 500 000 samples), the 

coefficient of variation on the failure probability obtained from AK-IS is small (smaller than 7% 

for most configurations) and it is quite close to that obtained by AK-MCS (see Figures 4.9, 4.10 

and 4.11) which means that both methods lead to accurate results. 
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The AK-IS procedure used herein is more efficient than AK-MCS. It provides an accurate value 

of the failure probability (i.e. with small values of the coefficient of variation on the failure 

probability) using a much smaller number of calls to the meta-model as compared to AK-MCS 

(10,000 calls instead of 500,000 calls). This significantly reduces the computation time. For 

instance; when considering the typical case where ax=10m and ay=2m, 12 days (in average) were 

necessary to complete the AK-MCS computation, whereas only 3 days were needed in average to 

perform a complete calculation using the AK-IS method. 

 

 

 

 

 

 

 

 

 

 



CHAPTER 4 

121 

 
Figure 4.6. Effect of the isotropic autocorrelation distance ax=ay on fP and HL  

 
Figure 4.7. Effect of the vertical autocorrelation distance ay on fP and HL when ax =10 m 

 
 Figure 4.8. Effect of the horizontal autocorrelation distance ax on fP and HL  when ay=2 m 
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 Table 4.4. Adopted number of random variables and the corresponding value of the variance of error of 

EOLE together with the values of  fP  ,  fCOV P , size of DoE and number of added realizations for various 

soil variabilities  

a. Case of an isotropic case (ax=ay) 

ax=ay 

(m) 

No. of random 

variables 

Variance of 

the error % fP  × 10-3  fCOV P

% 

Size of DoE   

= N1 +5× N2  

 

No. of  added 

realizations 

2 48 9.447 0.777 6.69 48+5×3 1363 

3 32 4.647 1.718 5.38 20+5×6 1076 

5 24 0.953 2.738 2.42 20+5×10 812 

10 10 0.815 3.404 1.91 20+5×10 243 

20 8 0.170 3.745 1.91 20+5×3 200 

50 6 0.016 3.831 1.82 20+5×6 74 

100 6 0.001 3.933 1.82 20+5×6 90 

 

b. Case of an anisotropic case (ax=10 m with varying ay) 

ay (m) 
No. of random 

variables 

Variance of 

the error % fP  × 10-3 
 fCOV P

% 

Size of DoE   

= N1 +5× N2  

No. of  added 

realizations 

0.5 44 9.119 0.199 15.34 44+5×2 1237 

0.8 38 4.798 1.234 3.51 20+5×8 1192 

1 32 4.212 1.628 2.99 20+5×8 921 

2 24 1.437 2.755 2.68 20+5×5 644 

5 12 1.682 3.172 2.06 20+5×8 354 

10 10 0.815 3.404 1.91 20+5×10 243 

20 8 0.855 3.425 1.98 20+5×5 228 

50 8 0.297 3.434 1.99 20+5×4 210 

100 8 0.099 3.595 1.78 20+5×10 194 

 

c. Case of an anisotropic case (ay=2 m with varying ax) 

ax (m) 
No. of random 

variables 

Variance of 

the error (%) fP  × 10-3 
 fCOV P

% 

Size of DoE   

= N1 +5× N2 

No. of  added 

realizations 

2 48 9.447 0.777 6.69 48+5×3 1363 

5 30 4.101 2.221 2.65 20+5×13 988 

10 24 1.437 2.755 2.68 20+5×5 644 

20 16 1.415 3.023 2.07 20+5×9 437 

50 12 1.272 3.180 1.87 20+5×12 313 

100 10 0.842 3.191 1.82 20+5×12 244 
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Figure 4.9. Values of  fCOV P for different values of the isotropic autocorrelation distance ax=ay   

 
Figure 4.10. Values of  fCOV P for different values of the vertical autocorrelation distance ay when ax=10 m 

 
Figure 4.11. Values of  fCOV P for different values of the horizontal autocorrelation distance ax               

when ay=2 m  
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Figure 4.12 shows the critical realizations of the random fields at the design point (i.e. the most 

probable failure point) for two values of the isotropic autocorrelation distance. This figure shows, 

as in chapter 3, that a symmetrical distribution of the soil shear strength parameters was obtained. 

The weaker soil zone is concentrated around the foundation, the stronger soil being far from the 

foundation. As may be observed from Figure 4.12, the size of the weaker soil zone under the 

footing increases with an increase in the autocorrelation length leading to a greater failure 

probability. The weak soil zone under the foundation allows the failure mechanism to develop 

through this zone reflecting the most prone soil to punching. 

Figure 4.13 shows the critical realizations of the random fields at the design point for non-

isotropic soils. Two values of ay (with ax=10m) were considered in the analysis. As in the 

isotropic case, the critical realizations at the design point exhibit a symmetrical pattern. From 

Figure 4.13, one may observe an increase in the depth of the weaker soil zone with the increase in 

the vertical autocorrelation distance leading naturally to a greater failure probability. 

 

 

 

 

 

(a) ax=ay=2m 

 

 

 

 

(b) ax=ay=5m 

 

Figure 4.12. Critical realizations for two values of the isotropic autocorrelation distance 
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(a) ax=10m and ay=1m 

 

 

  

 

 

(b) ax=10m and ay=5m 

 

Figure 4.13. Critical realizations for two values of ay when ax=10m 

 

4.3.2.3.2 Effect of the coefficients of variation of the random fields 

Table 4.5 presents the impact of the coefficients of variation of the random fields 

(
cCOV and COV ) on the values of fP  and  fCOV P . As expected, this table shows that 

fP increases with the increase in the coefficient of variation of a random field. From this table, it 

can be observed that the effect of COV  is significant compared to that of cCOV . For instance, 

increasing cCOV  by 50% of its reference value ( cCOV = 25%) increases fP  by 228.17 %. 

However, an increase in COV  by 50 % of its reference value (COV = 10%) increases fP  by 

741.34 %.  
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Table 4.5. Effect of the coefficients of variation of the random fields c and φ on fP ,  fCOV P , the size of the 

DoE and the number of added realizations in case of anisotropic random fields where ax=10m and ay=2m 

COVc % COV  % fP × 10-3  fCOV P  

% 

Size of DoE 

= N1 + 5 × N2 

Number of  added 

realizations 

12.5 10 0.708 6.61 20+5×3 678 

25 10 2.755 2.68 20+5×5 644 

37.5 10 9.041 1.94 20+5×8 637 

25 5 0.0129 2.83 20+5×10 547 

25 15 23.179 2.09 20+5×5 885 

 

4.3.2.3.3 Effect of the type of the probability density functions (PDFs) of the random fields 

The effect of the type of PDF of the random fields is presented in Table 4.6. Two cases were 

considered (normal and non-normal random fields). For the case of normal random fields, both 

the soil cohesion and friction angle were considered to follow a normal distribution. However, for 

the case of non-normal random fields, the soil cohesion was considered to follow a lognormal 

distribution while the internal friction angle was considered to follow a beta distribution. Table 

4.6 shows that the fP value corresponding to the normal random fields is larger than that 

corresponding to the non-normal random fields. This may be explained by the fact that, in the 

case of non-normal random fields, the limited range of variation of the soil shear strength 

parameters may led to quasi similar responses for the different realization and thus, to a smaller 

variability of the system response. The opposite occurs in the case where the random fields 

follow a normal distribution. As a result, a higher value of the failure probability was obtained in 

case of normal random fields.    

Table 4.6.  Effect of the type of the probability density function of the random fields c and φ on fP , 

 fCOV P , the size of the DoE and the number of added realizations in case of anisotropic random fields 

where ax=10 m and ay=2 m 

Type of the 

probability density 

function 

fP × 10-3  fCOV P % Size of DoE 

= N1 + 5 × N2 

Number of  added 

realizations  

Normal fields 5.042 2.53 20+5×7 756 

Non-normal fields 2.755 2.68 20+5×5 643 
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4.4 CONCLUSION 

This chapter was devoted to the AK-IS method which is an active learning reliability procedure 

combining kriging and importance sampling. Within this approach, the shortcoming of AK-MCS 

involving the large population needed to assess the small failure probabilities was addressed by 

providing a more efficient sampling technique. Indeed, importance sampling was used instead of 

Monte Carlo sampling technique. Furthermore, the AK-IS procedure makes use of the advantages 

of both kriging (by using the prediction mean and prediction variance for the determination of the 

‘best’ new candidate point) and importance sampling (for the generation of samples about the 

most probable point). 

AK-IS procedure consists of two main stages. First, the most probable failure point (design point) 

is determined via an iterative procedure using an approximate kriging meta-model based on a 

small number of samples. Second, the obtained approximate kriging meta-model is successively 

improved via an enrichment process by adding each time a new sample selected from a 

probability density function centered at the design point. This dramatically reduces the size of the 

population needed to assess the small failure probability via the meta-model and thus, this 

significantly reduces the computation time with respect to AK-MCS approach.    

After the presentation of the probabilistic AK-IS approach, this chapter presented (as in chapter 

3) a probabilistic analysis at the ultimate limit state of a strip footing resting on a spatially 

varying soil using the same deterministic and uncertain parameters. The main findings of this 

study can be summarized as follows: 

1. The iterative procedure proposed in this chapter for the computation of the design point 

was shown to be a powerful tool and it has been used successfully in the complex cases 

involving very heterogeneous soil media.   
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2. Although the sampling population adopted in AK-IS (i.e. 10,000 samples) is much 

smaller than that adopted in AK-MCS (i.e. 500,000 samples), the coefficient of variation 

on the failure probability obtained from AK-IS is small (smaller than 7% for most 

configurations) and it is quite close to that obtained by AK-MCS which means that both 

methods lead to accurate results. 

3. The comparison between the results of the failure probability obtained using the AK-MCS 

and the AK-IS methodologies has shown good agreement. Except for the very 

heterogeneous case where ax=10m and ay=0.5m, the maximal percent difference between 

the two approaches for all the other configurations is smaller than 7 %. 

4. The present AK-IS procedure was shown to be more efficient than AK-MCS. It provides 

an accurate value of the failure probability (i.e. with a small value of the coefficient of 

variation on this failure probability) using a much smaller number of calls to the meta-

model as compared to AK-MCS (10,000 calls instead of 500,000 calls). This significantly 

reduces the computation time. For instance; when considering the typical case where 

ax=10m and ay=2m, 12 days (in average) were necessary to complete the AK-MCS 

computation, whereas only 3 days were needed in average to perform a complete 

calculation using the AK-IS method. 

5. The critical realizations at the design point have shown a symmetrical distribution of the 

soil shear strength parameters with respect to the central vertical axis of the foundation 

with a weak soil zone near the footing. The weak soil zone increases with an increase the 

autocorrelation length leading to a greater failure probability.  

6. The study of the effect of the coefficient of variation of a random field on the failure 

probability has shown as expected that the increase in the coefficient of variation of a 

random field increases the fP value, the coefficient of variation of the internal friction 

angle being of more impact on the failure probability than that of the soil cohesion. 
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7. The fP value corresponding to the normal random fields was found to be larger than that 

corresponding to non-normal random fields. This was explained by the limited range of 

variation of the shear strength parameters within a given realization in case of non-normal 

random fields. 
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CHAPTER 5. PROBABILISTIC ANALYSIS OF STRIP FOOTINGS 

RESTING ON SPATIALLY VARYING SOILS USING KRIGING META-

MODELLING AND SUBSET SIMULATION 

5.1 INTRODUCTION 

In the previous chapter, the shortcoming of AK-MCS procedure involving the large population 

needed to assess the small failure probabilities was addressed by providing a more efficient 

sampling technique. Indeed, importance sampling was used instead of the Monte Carlo sampling 

technique. As a result, a combined use of kriging metamodeling and importance sampling (called 

AK-IS) was proposed. In the framework of this approach, the small failure probability can be 

estimated with a similar accuracy as AK-MCS but using a much smaller size of the initial 

population. Notice that the AK-IS procedure consists of two main stages. First, the most probable 

failure point (design point) is determined using an approximate kriging meta-model based on a 

small number of samples. Second, the obtained approximate kriging meta-model is successively 

improved via an enrichment process by adding each time a new sample selected from a 

probability density function centered at the design point. This dramatically reduces the size of the 

population needed to assess the small failure probability.  

Since the AK-IS method requires the computation of the design point, it may not be suitable 

when dealing with limit state surfaces that possess more than one design point. Consequently, a 

method that overcomes such shortcoming is needed. In this chapter, a more efficient method was 

proposed. Within this  approach, a combined use of kriging metamodeling and subset simulation 

(called AK-SS) was employed. This method makes use of a more efficient sampling technique 

than AK-IS and thus, it is more suitable for problems involving several design points.   

The aim of this chapter is to describe the present AK-SS procedure and to perform a probabilistic 

analysis at the ultimate limit state of a strip footing resting on a spatially varying soil and 

subjected to a vertical load. As in chapter 4, the mechanical model and the corresponding input 
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data considered in the analysis are the ones used in chapter 3. Indeed, the ultimate aim of this 

thesis is to compare the results from the three approaches AK-MCS, AK-IS and AK-SS in terms 

of computation time.  

The chapter is organized as follows: The next section aims at presenting the proposed 

combination between the kriging meta-modeling technique and the subset simulation (i.e. AK-SS 

procedure). This is followed by a validation of the AK-SS approach via an academic example 

involving several design points. Then, some probabilistic results involving a strip footing resting 

on a spatially varying soil (although a single design point exists in this case) are presented and 

discussed. The chapter ends with a conclusion of the main findings. 

5.2 PROPOSED AK-SS PROCEDURE 

In this section, we propose a technique that combines the kriging meta-modeling and the subset 

simulation approach (i.e. the AK-SS procedure). The present AK-SS procedure consists of two 

main steps.  

In the first step, an approximate kriging meta-model is constructed using a small number of 

samples called initial Design of Experiments (DoE). These samples are randomly selected from a 

large population generated by MCS. In the second step, the subset simulation approach is used to 

generate samples which are directed towards the limit state surface by employing the obtained 

approximate kriging meta-model. Then, the approximate kriging meta-model is improved by 

adding a ‘best’ new sample to the initial DoE. The new sample is selected among the samples 

obtained in the final level of the subset simulation and making use of a powerful learning 

function. This learning function allows one to select the sample that is the closest one to the limit 

state surface G=0. The process of adding a new sample (process of enrichment) is repeated until a 

prescribed criterion on the value of the failure probability is obtained. At the end of the 

enrichment process, the number of added samples is considered sufficient to compute the final 
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value of the failure probability fP and the corresponding value of the coefficient of 

variation  fCOV P
 
making use of the classical subset simulation approach on the final meta-

model.  

It should be emphasized here that the initial approximate kriging meta-model constructed based 

on the initial DoE should be sufficiently accurate within AK-SS, since it is used by subset 

simulation to locate the points that are close to the limit state surface for the selection of the best 

one to be computed by the mechanical model. For this reason, the DoE was selected from a large 

Mote Carlo population of 1,000,000 simulations. Furthermore the size of this DoE was arbitrarily 

taken equal to 20 samples for all the configurations corresponding to a number of eigenmodes 

smaller than or equal to 20. However, this DoE was arbitrarily taken equal to the number of  

eigenmodes for the other configurations corresponding to a very heterogeneous soil. These 

suggestions were found suitable to build an initial kriging meta-model that was easily improved 

by the added realizations.         

A step by step description of the AK-SS procedure is given as follows (see also the flowchart 

presented in Figure 5.1):   

1. Generate by Monte Carlo Simulation (MCS) a large population composed of McN samples 

(say 1000,000 samples) where each sample is composed of M standard normal random variables, 

M being the number of eigenmodes required by EOLE methodology for the discretization of 

both c and  . 

2. Randomly select from the McN samples generated in step 1, a small number of 1N
 
samples 

( 1N =20 samples at least as was explained before). The 1N  samples are called hereafter the initial 

Design of Experiment (DoE). 
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3. For each selected sample of the initial DoE, obtain realizations of the two random fields using 

the EOLE method. Then, calculate the system response value corresponding to each sample 

based on FLAC3D software. 

4. Construct an approximate kriging meta-model using the samples of the initial DoE and the 

corresponding values of the system response. It should be mentioned here that the kriging meta-

model is constructed using the DACE toolbox in Matlab software.   

5. Apply the subset simulation approach to the approximate kriging meta-model obtained in the 

previous step. This provides a number of samples (vectors of standard normal random variables) 

which are directed towards the limit state surface. Notice that in the SS approach, the space of 

uncertain parameters is divided into a number m of levels with equal number SSN of samples. 

The first SSN samples are generated using MCS methodology and the next samples of each 

subsequent level are obtained using a Markov chain method based on Metropolis-Hastings (M-H) 

algorithm. It should be emphasized here that the number of samples SSN  to be used per level of 

the SS approach should be sufficient to accurately calculate the fP value. Therefore, 

SSN =100,000 samples will be considered in the subsequent probabilistic calculations. Notice 

finally that the samples of the final level of subset simulation are expected to be close to the limit 

state surface G=0. Therefore, they represent candidate samples to improve the kriging meta-

model.    

6. For the samples of the final level of subset simulation, identify the ‘best’ sample to be used in 

the enrichment processes to improve the approximate kriging meta-model. Notice that the 'best' 

sample is the one that has the smallest value of the learning function U.  This learning function is 

given by the following equation: 
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 

 
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i

i

G X

i

G X

U X



            i= 1, …, SSN                (5.1) 

 

7. If the stopping condition by Schöbi et al. (2015) is not satisfied, evaluate the performance 

function value based on FLAC3D software for this best candidate. Then, add this sample to the 

initial DoE and reconstruct the kriging meta-model using the updated DoE to obtain an updated 

kriging meta-model. Steps (5), (6) and (7) are repeated until the process of adding a new sample 

stops (i.e. until the stopping criterion by Schöbi et al. (2015) is satisfied).  

8. If the stopping condition is satisfied, the learning stops and the final kriging meta-model 

becomes sufficiently accurate for the computation of the failure probability. Finally, the subset 

simulation approach is applied on the obtained final meta-model to calculate the final value of the 

failure probability fP (SS) and the coefficient of variation  fCOV P (SS). It should be mentioned 

that the intermediate failure probability P0 of a given level j (j=1, 2, …, m) was chosen equal to 

0.1 in this chapter.  

 

5.2.1 Sample selection and stopping condition  

In the two previous chapters, the stopping condition for both AK-MCS and AK-IS procedures 

was based on the accuracy of the meta-model around the limit state surface rather than on the 

estimation of the statistics of interest. Thus, the ‘best’ chosen sample was the one that mostly 

improves the meta-model.  

In this chapter, use is made of a recent stopping criterion by Schöbi et al. (2015) for the 

estimation of failure probabilities. The aim of this criterion is to maximize the accuracy of the 

statistics of interest while minimizing the computational costs rather than improving the accuracy 

of the meta-model. This stopping condition is very interesting in the present AK-SS procedure 

since the majority of the samples are very close to the limit state function, the use of the stopping 
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criterion min (U)>2 would add a large number of samples that will not necessarily lead to a 

significant improvement in the estimated values of fP .  

According to Schöbi et al. (2015), the stability of the estimate of the statistics of interest can be 

measured by the size of the limit state margin and consequently by the associated values of the 

upper and lower boundaries of the limit state surface. When the boundaries are close to each 

other (i.e. a small limit state margin), the estimate of the statistics of interest is accurate. 

Therefore, the stopping criterion for estimating the failure probability fP is given as follows: 

0 f

f f
P

f

P P

P


 
                           (5.2) 

 

where 0

fP  is the original failure probability based on the kriging predictor values ( ( ) 0)
G

P x   

and fP   and fP   are respectively the upper and lower boundaries of the failure probability. The 

upper and lower bound failure probabilities are defined as: 

( ( ) . ( ) 0)f G G
P P x k x                             

(5.3) 

( ( ) . ( ) 0)f G G
P P x k x                                

(5.4) 

where ( ) . ( ) 0
G G

x k x    and ( ) . ( ) 0
G G

x k x    are respectively the upper and lower 

boundary of the limit state surface defined by ( ) 0
G

x   and k is a constant that sets the 

confidence level typically equal to 1.96 = −1 (97.5%). In this chapter, a value of k=2 was 

adopted. Finally, 
fP  in Equation (5.2) is a given tolerance for two consecutive iteration steps.  
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Figure 5.1. The flowchart of the proposed AK-SS method 

 

5.3 VALIDATION OF THE PRESENT AK-SS PROCEDURE VIA AN ANALYTICAL 

EXAMPLE 

In order to check the performance of the present AK-SS procedure, an academic example 

involving an explicit non-linear limit state function is considered. It consists of a series system 

with four branches. This example exhibits four design points. It has been studied by Schueremans 

and Van Gemert (2005), Echard et al. (2011), Bourinet et al. (2011), Balesdent et al. (2013) and 

Huang et al. (2016) among others. The validation of the present AK-SS procedure was performed 

by comparison of the results of the present example with those of AK-MCS and the crude MCS 

and SS methods. 

1 G evaluation 

(8) 
(7) 

Evaluation of x* on G and update 

of the DoE to obtain an updated 

kriging meta-model 

Compute 
fP and  fCOV P  by SS 

 

No Yes 

Stopping condition 

proposed by Schöbi et 

al. (2015) 
 

(6) 

Apply SS approach on the approximate kriging meta-model by 

generation of NSS samples (NSS = 100,000) at each level of SS 

samples)  

  
 

(5) 

Identification by the learning function U of the next 'best' 

sample x* in the last level of subset simulation generated in 

step 5  

Definition of the initial DoE 

Random selection of N1 samples (N1 ≥ 20) from population S   
 

Generation of a large Monte Carlo population S of NMC 

samples (NMC = 1000,000 samples) 

 
 

(1) 

(2) 

Construction of the approximate kriging meta-model according 

to the DoE and the corresponding G values 

 

(3) Use EOLE methodology to transform each selected sample 

into realizations of c and  to evaluate G 

(4) 

N1 G evaluations 

N1= N1+1 
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The performance function G of the series system with four branches is defined as follows:  
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                          (5.5) 

 

where x1 and x2 are two standard normal random variables.  

The approximate kriging meta-model was constructed herein using an initial DoE of 80 samples. 

It should be emphasized that the large number of samples required in stage 1 (i.e. 80 samples) 

may be explained by the high non-linearity of the limit state surface; a smaller number of samples 

led to difficulties in constructing the initial kriging meta-model. Notice that the process of adding 

new samples has stopped according to the stopping condition proposed by Schöbi et al. (2015).  

Table 5.1 provides the value of the failure probability fP
 
and the corresponding value of the 

coefficient of variation  fCOV P  together with the total number of calls of the performance 

function for different values of the tolerance 
fP . As may be seen from this table, one obtains 

convergence of the failure probability for 
fP =5% which corresponds to 130 added samples. This 

means that the meta-model does not present any bias beyond this number of samples in the zone 

of interest for the computation of the failure probability (i.e. around the four design points, which 

are the closest ones to the origin of the standard normal space) as may be seen from Figures 5.2 to 

5.9.  

Figure 5.10 presents the plots of fP and  fCOV P
 
versus the number of added samples for the 

adopted value of 5% for 
fP . Although the enrichment process required 130 samples, Figure 5.10 

shows that the convergence of the failure probability was achieved at about 100 samples and that 

at this number of samples, the meta-model does not present a significant bias. The use of 

additional samples beyond 100 samples ensures the accuracy of the statistics as required by the 
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adopted criterion. Finally, notice that the small fluctuations observed beyond 100 samples may be 

explained by the fact that the different values of the failure probability are computed from 

different subset simulations with different random samples for each subset. 

Table 5.1. Results of present AK-SS approach for the four- branches series system when using different values 

of 
fP  

fP % 
fP × 10-3  fCOV P  (%) Ncall = DoE + number of 

added samples 

50 9.973 2.33 80 +7= 87 

10 4.719 2.38 80 +27= 107 

7 3.236 2.47 80 +82= 162 

6 2.725 2.48 80 +97= 177 

5 2.236 2.58 80 +130= 210 

1 2.259 2.53 80 +193= 273 

0.5 2.237 2.54 80 +236= 316 
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Figure 5.2. Results of present AK-SS approach for the four- branches series system (using DoE only) 
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Figure 5.3. Results of present AK-SS approach for the four- branches series system (with 
fP = 50%) 
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Figure 5.4. Results of present AK-SS approach for the four- branches series system (with 
fP = 10%) 
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Figure 5.5. Results of present AK-SS approach for the four- branches series system (with 
fP =7%) 
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Figure 5.6. Results of present AK-SS approach for the four- branches series system (with 
fP = 6%) 
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Figure 5.7. Results of present AK-SS approach for the four- branches series system (with 
fP = 5%) 
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Figure 5.8. Results of present AK-SS approach for the four- branches series system (with 
fP = 1%) 
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Figure 5.9. Results of present AK-SS approach for the four- branches series system (with 
fP = 0.5%) 
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Figure  5.10. fP and   fCOV P values as function of the added points for the four- branches series system 

 

Table 5.2 provides a comparison between the results obtained by the present AK-SS approach 

and those given by AK-MCS and the crude MCS and SS methods in terms of the failure 

probability and the number of calls of the performance function. It should be noted here that the 

results of AK-MCS are presented for both criteria (or stopping conditions)  [i.e. (min U>2) and 
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the one proposed by Schöbi et al. (2015)] and using the same initial DoE as AK-SS (i.e. 80 

samples) as may be seen from Figures 5.11 and 5.12 and Table 5.2. Notice also that the reference 

values adopted for both the failure probability fP  and the coefficient of variation  fCOV P  are 

those obtained by the crude MCS runs with 
McN = 106 samples. This table shows that there is 

quite good agreement between the results of the present AK-SS approach and those of the other 

approaches, the AK-SS being less time-consuming than AK-MCS in terms of the number of calls 

of the performance function. Indeed, the present AK-SS approach requires 50 less samples than 

the AK-MCS approach using the stopping condition proposed by Schöbi et al. (2015)). Finally, it 

should be noted here that the adopted value of 
fP used in Table 5.2 when using Schöbi's criterion 

was equal to 1%. 

Table 5.2. Results of the failure probability 
fP , the corresponding coefficient of variation  fCOV P  and the 

number of calls Ncall for different methods 

Method 
fP × 10-3  fCOV P  (%) Ncall = DoE + number 

of added samples 

MCS 2.233 2.11 106 

SS 2.233 8.87 3×104 

Present AK-MCS (U criterion) 2.262 2.10 80 + 409 = 489 

Present AK-MCS (criterion of 

Schöbi et al. (2015)) 

2.268 2.10 80 + 243 = 323 

Present AK-SS  2.259 2.53 80 + 193 = 273 
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Figure 5.11. Results of present AK-MCS approach (U criterion) for the four- branches series system  
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Figure 5.12. Results of present AK-MCS approach (criterion of Schöbi et al. (2015)) for the four- branches 

series system 
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5.4 PROBABILISTIC RESULTS IN THE CASE OF A SPATIALLY VARYING SOIL 

This section aims at presenting the impact of the soil spatial variability on the failure probability 

against soil punching of the same strip footing presented in the two previous chapters. The same 

deterministic and uncertain parameters are considered in this section. Also, the input data 

employed in chapters 3 and 4 for both the deterministic and the uncertain parameters remain the 

same herein.  

In this section, a value of 1% was adopted for 
fP  

except for the configurations corresponding to 

smaller values of the autocorrelation distances (i.e. where the number of eigenmodes was larger 

than 20) as may be seen from Table 5.4. Indeed; for these configurations, the 
fP  

value was taken 

equal to 5% because these configurations correspond to a very heterogeneous soil and thus, they 

require a much greater computation time to achieve a better accuracy. 

5.4.1  Evolution of the limit state surface during the enrichment process   

Figure 5.13 presents the evolution of the limit state surface (LSS) with the number of added 

realizations for a typical case where ax=10,000m and ay=10,000m. This LSS was obtained using 

the present AK-SS approach. The adopted DoE was equal to 20 samples and the needed number 

of added samples during the enrichment process was equal to 27 samples. As may be seen from 

this figure, the limit state surface is successively improved with the addition of new samples 

during the enrichment process. The final obtained LSS was similar to that provided in the two 

previous chapters.  

It should be emphasized here that the adopted value of 
fP was taken equal to 0.1% in the present 

section (not 1% as mentioned above). This small value was necessary to lead to an accurate LSS 

over the entire range of variation of the random variables. A greater value of 
fP  (

fP =1%) 

would also be acceptable if only the computation of fP value was required. Using Schöbi 

criterion with 
fP =1%, the needed number of added samples for the computation of the failure 

probability would be equal to only 8 samples instead of 27 samples. 
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Figure 5.13. Effect of number of added realizations on the limit state surface when ax = ay = 10,000 m 

 

5.4.2 Evolution of the probabilistic outputs during the enrichment process 

Figure 5.14 presents the evolution of 0

fP  , fP   and fP   as function of the number of added 

samples in the case where ax=10m and ay=1m. As mentioned above (see also Table 5.4), the 

adopted value of 
fP  

was equal to 5% in the present case. From Figure 5.14, one may observe 

that 511 calls to the mechanical model were necessary to achieve such accuracy. The final 

obtained values of fP
 
and  fCOV P

 
were respectively 1.658×10-3 and 2.75%.  

It should be emphasized here that although the stopping condition by Schöbi is less severe than 

the U criterion (and thus, it significantly reduces the needed number of added samples), the 

Schöbi criterion remains quite severe. The reason is due to the fact that one continues to add new 

samples until the marge between the upper and lower boundaries of the failure probability attains 

a prescribed tolerance, although the value of fP  could vary only very slightly with the addition of 

new samples (as may be shown from Figure 5.14 and Table 5.3). 

uc 

 

uφ 
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Figure 5.14. AK-SS results for a spatially varying soil (ax=10 m, ay=1 m) with 
fP = 5%  

Table 5.3. Results of present AK-SS approach for a spatially varying soil (ax=10 m, ay=1 m) when using 

different values of 
fP  

fP % 
fP × 10-3  fCOV P  (%)  number of added samples 

90 1.5735 2.77 89 

80 1.608 2.77 100 

70 1.461 2.79 110 

60 1.535 2.77 123 

50 1.561 2.77 145 

40 1.624 2.77 173 

30 1.554 2.79 216 

20 1.624 2.77 276 

10 1.666 2.76 398 

5 1.658 2.75 511 

 

5.5 PROBABILISTIC PARAMETRIC STUDY 

Similarly to the two previous chapters, a parametric study is performed in this section using the 

present AK-SS approach to investigate the effect of the autocorrelation distances of the two 

random fields on the fP value. A comparison between the results obtained by the three methods 

AK-MCS, AK-IS and AK-SS is presented and discussed. 
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5.5.1 Effect of the autocorrelation distances of the random fields on 
fP  and  fCOV P  

The values of the probabilistic outputs given by AK-SS and corresponding to the different soil 

variabilities were given in Table 5.4. In order to show that no bias in the meta-model exists at the 

end of the enrichment process for all configurations presented in Table 5.4, Appendix G presents 

the plots of fP  for different values of the autocorrelation distances considered in this table. For 

completeness, also the values of  fCOV P  are also given in this appendix. 

Figure 5.15 presents the effect of the isotropic autocorrelation distance (ax=ay) on the failure 

probability fP  as obtained from AK-MCS, AK-IS and AK-SS methodologies. Also, Figure 5.16 

and Figure 5.17 present the effect of the vertical or horizontal autocorrelation distance on the 

failure probability fP  as computed by the three methods. Figure 5.15, 5.16 and 5.17 show that 

there is a good agreement between the results of fP obtained from the three methods. Except for 

the case where a very heterogeneous soil case was considered (i.e. ax =10m and ay=0.5m), the 

maximum percentage difference with respect to the AK-MCS method (considered as a reference) 

does not exceed 7%.  

Figures 5.18, 5.19 and 5.20 show the values of  fCOV P
 
as obtained from the three methods 

AK-MCS, AK-IS and AK-SS for the different soil variabilities. From these figures, one may 

observe that the values of  fCOV P  obtained from the present AK-SS are smaller than 4% for 

all the treated cases. Notice however that for the two other methods (i.e. AK-MCS and AK-IS), 

the values of  fCOV P are smaller than 7% for all the treated cases expect for the case of very 

heterogeneous soil (i.e. ax=10m, ay=0.5m) where  fCOV P  is equal to 15% in AK-IS method. In 

this case, a larger number of IS samples is required in order to reduce the obtained value 

of  fCOV P . As a conclusion, the small values of  fCOV P
 
(<7%) obtained from the different 
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methods indicate that the values of fP
 
computed in this thesis can be used with confidence in 

practice. 
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Figure 5.15. Effect of the isotropic autocorrelation distance ax=ay on fP  

 

Figure 5.16. Effect of the vertical autocorrelation distance ay on fP  when ax =10 m 

 

Figure 5.17. Effect of the horizontal autocorrelation distance ax on fP  when ay=2 m 
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Table 5.4. Adopted number of random variables and the corresponding value of the variance of error of 

EOLE together with the values of  
fP , fP ,  fCOV P and number of added realizations for various soil 

variabilities  

a. Case of an isotropic case (ax=ay) 

ax=ay 

(m) 

Adopted 

number of 

random 

variables 

Variance of 

the error % 
fP %

 fP × 10-3 ( )fCOV P
% 

Number of 

added 

realizations 

2 48 9.447 5 0.684 3.11 >584 

3 32 4.647 5 1.722 2.74 383 

5 24 0.953 5 2.772 2.56 247 

10 10 0.815 1 3.424 2.50 84 

20 8 0.170 1 3.658 2.48 57  

50 6 0.016 1 3.735 2.48 44 

100 6 0.001 1 3.761 2.49 46 

 

b. Case of an anisotropic case (ax=10 m with varying ay) 

ay (m) Adopted number 

of random 

variables 

Variance 

of the 

error % 

fP %
 fP × 10-3 ( )fCOV P

 
% 

Number of  

added 

realizations 

0.5 44 9.119 5 0.278 3.18 >601 

0.8 38 4.798 5 1.163 3.01 546 

1 32 4.212 5 1.658 2.75 511 

2 24 1.437 5 2.783 2.53 256 

5 12 1.682 1 3.175 2.51 136 

10 10 0.815 1 3.424 2.50 84 

20 8 0.855 1 3.495 2.49 83  

50 8 0.297 1 3.552 2.49 72 

100 8 0.099 1 3.582 2.52 74  

 

c. Case of an anisotropic case (ay=2 m with varying ax) 

ax (m) Adopted number 

of random 

variables 

Variance of 

the error % 
fP % 

fP ×10-3 ( )fCOV P

% 

Number of  

added 

realizations 

2 48 9.447 5 0.684 3.11 >584 

5 30 4.101 5 2.039 2.63 471 

10 24 1.437 5 2.783 2.53 256 

20 16 1.415 1 2.995 2.54 169 

50 12 1.272 1 3.116 2.53 106 

100 10 0.842 1 3.164 2.53 95 
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Figure 5.18.  Values of  fCOV P for different values of the isotropic autocorrelation distance ax=ay   

 

Figure 5.19. Values of  fCOV P for different values of the vertical autocorrelation distance ay when ax=10m 

 

Figure 5.20. Values of  fCOV P for different values of the horizontal autocorrelation distance ax when ay=2m 
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5.6 CONCLUDING REMARKS REGARDING THE DIFFERENT PROBABILISTIC 

METHODS  

The kriging-based reliability methods AK-MCS, AK-IS and AK-SS have been presented in this 

thesis for the probabilistic analysis of a strip footing resting on a spatially varying soil. These 

methods are very efficient as the obtained probability of failure is very accurate needing a smaller 

number of calls to the mechanical model as compared to the corresponding simulation technique 

used individually such as Monte Carlo Simulations (MCS), Importance Sampling (IS) and Subset 

Simulation (SS).  

Table 5.5 presents a comparison between these methods in terms of computational time and total 

number of calls to the computationally expensive mechanical model in the case where ax=10m 

and ay=2m. It should be mentioned here that for the present case, the AK-MCS and AK-IS 

methodologies were repeated in this section using the stopping condition proposed by Schöbi et 

al. (2015) with 
fP =5% as may be seen from Figures 5.21 and 5.22.  Thus; for those two methods 

(i.e. AK-MCS and AK-IS), the results are presented for both stopping conditions [i.e. (min U>2) 

and the one proposed by Schöbi et al. (2015)].  

As may be seen from Table 5.5, the three methods AK-MCS (with U criterion), AK-IS (with U 

criterion) and AK-SS have provided quasi-similar values for the probabilistic outputs (i.e. fP  and
 

 fCOV P ). Notice however that there is some discrepancy with the solutions given by both AK-

MCS and AK-IS when the Schöbi criterion is used with 
fP =5%. For a value of 

fP =1%, the fP  

values given by AK-MCS (Schöbi) and AK-IS (Schöbi) become equal to 2.66 and 2.73 

respectively. 

From Table 5.5, one may observe that the AK-IS method with Schöbi criterion was the most 

advantageous in terms of computation time (about one day) followed by AK-SS (about two days) 

and then by AK-MCS with Schöbi criterion (about 4 days).  
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As a conclusion, the AK-IS with Schöbi criterion should be used in case of a single design point. 

When dealing with limit state surfaces that possess more than one design point, the AK-IS 

method loses its interest and thus, one can overcome this shortcoming by using the slightly more 

expensive AK-SS approach. 

Method 
Candidate 

population 

fP × 10-3  fCOV P % Total number. 

of calls to the 

mechanical 

model 

Computation 

time (days) 

AK-MCS_U 5 × 105 2.818 2.66 692 12 

AK-MCS based on 

Schöbi criterion 
5 × 105 2.348 2.92 

221 
4 

AK-IS based on U 

criterion 
1× 104 2.755 2.68 

689 
3 

AK-IS based on 

Schöbi criterion 
1× 104 2.666 2.32 200 1 

AK-SS 1× 105 2.783 2.53 280 2 

 

 

 

Figure 5.21. AK-MCS results based on Schöbi criterion  for a spatially varying soil (ax=10 m, ay=2 m) with 

fP = 5%  

Table 5.5. Comparison of the results of the different methods when ax =10 m and ay =2 m 
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Figure 5.22. AK-IS results based on Schöbi criterion for a spatially varying soil (ax=10 m, ay=2 m) with
fP = 

5%  

 

5.7 CONCLUSION  

This chapter mainly presented a probabilistic analysis at the ultimate limit state of a strip footing 

resting on a spatially varying soil using an active learning reliability method combining kriging 

and Subset Simulation (called AK-SS). The new method AK–SS takes advantages of subset 

simulation for evaluating the small failure probabilities and the Kriging model with active 

learning and updating characteristic for approximating performance function.  

Within AK-SS, an efficient sampling technique (Subset Simulation SS) is used instead of Monte 

Carlo or Importance Sampling employed in Chapters 3 and 4 respectively. The present AK-SS 

procedure consists of two main steps. In the first step, an approximate kriging meta-model is 

constructed using a small DoE. These samples are randomly selected from a large population 

generated by MCS. In the second step, the subset simulation approach is first used to generate 

samples which are directed towards the limit state surface by employing the obtained 

approximate kriging meta-model. Then, the approximate kriging meta-model is improved by 

adding a ‘best’ new sample to the initial DoE. The new best sample is selected among the 
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samples obtained in the final level of the subset simulation making use of the learning function U. 

The process of adding a new sample (process of enrichment) is repeated until a prescribed 

criterion on the value of the failure probability is obtained. The AK-SS technique allows one to 

overcome the search of the design points (as is the case in AK-IS) and thus, it can deal with 

arbitrary limit state surfaces.   

The objective of this chapter was the computation of the probability of failure against soil 

punching of a strip footing resting on a spatially varying soil and subjected to a prescribed 

vertical load. The soil cohesion and angle of internal friction were considered as two non-

isotropic non-Gaussian random fields. The deterministic model was based on numerical 

simulations using the finite difference code FLAC3D. The main findings of this study can be 

summarized as follows: 

1. The main advantage of AK-SS over AK-MCS is visible when dealing with small failure 

probabilities. In fact, the computational effort of AK-MCS increases dramatically due to 

the large populations required for the assessment of small probabilities while AK–SS 

solves this problem by expressing the small failure probability as a product of larger 

conditional failure probabilities of several intermediate failure events.  

2. AK-SS approach is not based on any assumption about the shape of the limit state surface 

like AK-IS. Thus, this method can handle complex problems with several design points as 

was shown in the analytical academic example.  

3. The new stopping criterion adopted in the AK-SS method (i.e. Schöbi criterion) which 

monitors the convergence of the statistics of interest is better than the stopping criterion 

which was based on the accuracy of the meta-model (i.e. the U criterion). This result in a 

significant reduction in the computation time needed because this stopping criterion leads 

to the smallest number of calls to the mechanical model. 
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4. Although the stopping condition by Schöbi is less severe than the U criterion, this 

stopping condition remains quite severe. The reason is due to the fact that one continues 

to add new samples until the marge between the upper and lower boundaries of the failure 

probability attains a prescribed tolerance. 

5. The values of  fCOV P  obtained from the present AK-SS are smaller than 4% for all the 

treated cases. Notice however that for the two other methods (i.e. AK-MCS and AK-IS), 

the values of  fCOV P
 
are smaller than 7% for all the treated cases expect for the case of 

very heterogeneous soil (i.e. ax=10m, ay=0.5m) where   fCOV P
 
is equal to 15% in AK-

IS method. In this case, a larger number of IS samples is required in order to reduce the 

obtained value of  fCOV P . As a conclusion, the small values of   fCOV P  (<7%) 

obtained for most configurations indicate that the values of fP  obtained in this thesis can 

be used with confidence in practice. 

6. A comparison between the results of fP
 
obtained using the different methods AK-MCS, 

AK-IS and AK-SS has shown good agreement. The AK-IS is the most advantageous 

method concerning the computation time followed by the AK-SS method and then by the 

AK-MCS method. Thus, AK-IS is the most suitable method in case of a single design 

point. AK-SS may be considered as an excellent alternative for problems involving 

several design points since it overcomes the shortcoming of AK-IS involving the 

necessity of computation of the design points.  
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CHAPTER 6. GENERAL CONCLUSIONS 

6.1 INTRODUCTION 

The aim of this thesis is to investigate the effect of the soil spatial variability on the failure 

probability against soil punching of a strip footing resting on a spatially varying soil and 

subjected to a vertical load. When dealing with the computation of the failure probability of 

geotechnical structures involving spatially varying soils, the classical Monte Carlo Simulation 

(MCS) methodology is generally used. This method is known to be very time-consuming. This is 

because it usually makes use of finite element or finite difference models which are generally 

time-expensive and more importantly it requires a large number of calls of the mechanical model 

for the computation of the small failure probabilities encountered in practice. For this reason, 

only the two first statistical moments (i.e. the mean and the standard deviation) of the system 

response were extensively investigated in literature using this approach. 

In order to overcome the shortcoming related to the excessive number of calls of the mechanical 

model when performing a probabilistic analysis, this thesis investigates the efficiency of three 

new metamodeling approaches (AK-MCS, AK-IS and AK-SS). These approaches consist in 

combining the kriging metamodeling and one of the three simulation techniques (i.e. MCS, IS or 

SS). The computation of the failure probability may thus be easily performed using a meta-

model.  

The three methods were applied to the computation of the probability of failure against soil 

punching of a strip footing resting on a spatially varying soil and subjected to a vertical load. The 

system response involves the ultimate bearing capacity (qu) of the vertically loaded strip footing. 

The soil cohesion and angle of internal friction were considered as anisotropic non-Gaussian 

random fields. The mechanical model employed for the computation of the system response was 

based on numerical simulations using the finite difference code FLAC3D.  
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6.2 REASERCH CONCLUSIONS 

 The main findings of this study can be summarized as follows: 

1. Kriging-based approaches (AK-MCS, AK-IS and AK-SS) were found to significantly reduce 

the number of calls to the mechanical model with respect to the corresponding classical 

simulation methods (i.e. MCS, IS and SS).  

2. The values of the probability of failure fP  obtained from the three methods AK-MCS, AK-IS 

and AK-SS are very accurate because the maximum obtained value of the coefficient of 

variation  fCOV P  (for most configurations) is about 7%. Thus, these values of fP
 
may be 

used with confidence in practice. 

3. The prescribed value of the variance of the error of EOLE methodology has a significant 

influence on the value of the failure probability. A threshold of 5% may be adopted to obtain 

accurate values of the failure probability. Consequently, the results of the few configurations 

corresponding to a greater value of the variance of the error may be used with caution. 

Indeed, these configurations need a significant number of random variables. This large 

number of random variables cannot be used within the present approaches because of the 

significant computation time needed for those cases. A more advanced probabilistic method is 

needed to handle such configurations. 

4. The iterative procedure proposed in AK-IS approach for the determination of the design point 

is a powerful tool that has been shown to perform successfully even in complex cases 

involving very heterogeneous soil media. 

5. The three approaches (AK-MCS, AK-IS and AK-SS) have shown similar patterns. The 

probability of failure fP increases with the increase in the isotropic autocorrelation distance 

and then, it attains an asymptote in the case of a homogeneous soil. Also, the failure 



CHAPTER 6 

160 

probability 
fP

 
increases with the increase in the vertical or horizontal autocorrelation 

distance and then, it attains an asymptote corresponding to the case of a 1D random field.  

6. There is a good agreement between the results of fP  obtained from the three approaches AK-

MCS, AK-IS and AK-SS. In case of a single design point, AK-IS is the most advantageous 

method concerning the computation time followed by AK-SS and then by AK-MCS. AK-SS 

may be an excellent alternative for problems involving several design points.  

7. For the two cases of isotropic and anisotropic random fields, the critical realizations at the 

design point exhibit a symmetrical distribution of the soil shear strength parameters with 

respect to the central vertical axis of the foundation. In addition, the small values of the soil 

cohesion and angle of internal friction are located in the vicinity of the foundation, the higher 

values of the soil resistance being far from the footing. This naturally leads to a failure 

mechanism that develops symmetrically within the weak soil zone near the foundation. The 

soft soil zone increases with the increase of the autocorrelation distances leading to a larger 

failure probability. 

8. The new stopping condition by Schöbi et al. (2015) which controls the convergence of the 

statistics of interest is better than the stopping criterion based on the accuracy of the meta-

model (i.e. the U criterion). It leads to a significant reduction in the calculation time. 

9. Although the stopping condition by Schöbi is less severe than the U criterion, this stopping 

condition remains quite severe. The reason is due to the fact that one continues to add new 

samples until the marge between the upper and lower boundaries of the failure probability 

attains a prescribed tolerance. 

6.3 RECOMMENDATIONS FOR FUTURE WORK 

Based on the work that was performed in this thesis, the following directions for future work can 

be proposed as follows: 
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1. Apply the probabilistic approaches used in this thesis in the case of a multilayer soil 

medium (i.e. soft over stiff soil or stiff over soft soil) that exhibits spatial variability 

because the foundations are mostly supported by multi-layered soil profiles. 

2. Consider the case of a rectangular or a circular footing resting on a soil with three-

dimensional spatial variability of the soil properties. This problem is challenging since (i) 

the three-dimensional deterministic problems are known to be very time-consuming and 

(ii) the three-dimensional variation of the soil properties significantly increases the 

number of random variables needed in the discretization of random fields and this leads to 

a significant number of calls to the mechanical model. 

3. Try to combine the Kriging meta-modeling technique with other simulation methods (i.e. 

directional simulation or Markov Chain Monte Carlo MCMC) that may lead to additional 

reduction in the computation time.  

4. Extend the presented methods (AK-MCS, AK-IS and AK-IS) to the cases of multiple 

performance functions. This may be of practical use for some geotechnical problems 

involving more than a single mode of failure (e.g. retaining wall problem). 

5. Try to improve the efficiency of adaptive Kriging, by considering a new stopping criterion 

and a new manner of selecting new training points. This may be performed by introducing 

the Global Sensitivity Analysis enhanced Surrogate (GSAS) modeling method. 
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APPENDIX A 

Random field discretization methods  

The most commonly used methods of random field discretization in geotechnical engineering can 

be divided into three main categories [Sudret and Kiureghian (2000)]. Each category involves a 

number of discretization methods as may be seen below. 

A.1. Point discretization methods 

In these methods, the random variables used in the analysis are selected values of Z at some given 

points Xj. This group involves the following methods: 

a) Midpoint (MP) method  

This method was introduced by Der Kiureghian and Ke (1988). In this method, the random field 

is discretized by associating to each element of the finite element/finite difference mesh, a single 

random variable defined as the value of the field at the centroid of that element. 

b) Shape Function (SF) method  

This method was presented by Liu et al. (1986a, b). It is similar to the MP method, with the 

difference being that the random field is discretized by associating a single random variable to 

each node of the finite element/finite difference mesh. Thus, the value of the random field within 

an element is described in terms of these nodal values and the corresponding shape functions. 

c) Integration Point (IP) method 

This method was proposed by Matthies et al. (1997). In this method, the random field is 

discretized by associating a single random variable to each of the integration points appearing in 

the finite element resolution scheme. 

d) Optimal Linear Estimation (OLE) method 

This method was presented by Li and Der Kiureghian (1993). It is sometimes referred to as the 

kriging method. It is a special case of the regression method on a linear function [Ditlevsen 
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(1996)]. The fact of knowing the values of the soil property Z at some given points may allow 

one to approximate the value of Z at an arbitrary point X using the optimal linear estimation 

method OLE. Indeed, OLE makes use of the experimental data samples to estimate the values of 

a soil property at unsampled locations. It should be noted that the concepts used in OLE method 

were employed for the discretization of a random field by the expansion optimal linear estimation 

EOLE method which was used in this thesis. 

A.2. Average discretization methods 

a) Spatial Average (SA) method  

This method was proposed by Vanmarcke and Grigoriu (1983). It consists in approximating the 

random field in each element of the finite element/finite difference mesh by a constant computed 

as the average of the original field over that element.  

b) Local Average Subdivision (LAS) method 

This method was developed by Fenton and Vanmarcke (1990) in order to produce data with 

specified statistical parameters, which are simultaneously spatially correlated. LAS theory 

follows a recursive fashion, where a global average is created in stage zero. In stage one, the field 

is divided into two equal parts for 1D (and four equal parts for 2D) whose local average equals to 

the parent global value. In stage two, two absolute normally distributed values are generated 

whose means and variances are selected so as to satisfy three criteria: (a) they show the correct 

variance according to local averaging theory, (b) they are properly correlated with one another, 

and (c) they average to the parent value. It should be mentioned here that this method is widely 

used by the geotechnical committee as in [Fenton and Griffiths (2002, 2005) and Fenton et al. 

(2003) among others].  

  A.3. Series expansion methods 

In the series expansion discretization methods, the random field is approximated by an expansion 

that involves deterministic and stochastic functions. The deterministic functions depend on the 
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coordinates of the point at which the value of the random field is to be calculated. This group 

involves the following methods: 

a) Karhunen-Loeve (KL) expansion method 

This method was presented by Spanos and Ghanem (1989). In this method, the random field is 

expressed as follows: 

1

( ) ( )
M

Z Z j j j

j

Z X X    


    (A.1) 

where 
Z

  and 
Z

  are the mean and standard deviation of the random field Z, ( ,
j j

  ) are the 

eigenvalues and eigenfunctions of the autocorrelation function 
Z

  of the random field Z, ξj is a 

vector of uncorrelated standard normal random variables and M is the number of terms retained 

in the KL expansion. It should be noticed here that ξj are stochastic variables that represent the 

random nature of the uncertain soil parameter. However, the eigenfunctions  j
X are the 

deterministic functions of the KL expansion. They can be evaluated as the solution of the 

following integral equation: 

      , ' ' 'Z j j jX X f X dX f X 


  (A.2) 

This integral can be solved analytically only for few types of the autocorrelation functions 

(triangular and first order exponential functions) and for simple geometries. Otherwise, it has to 

be solved numerically. 

b) Orthogonal series expansion (OSE) method 

This method was proposed by Zhang and Ellingwood (1994). It was introduced to avoid solving 

the eigenvalue integral of Equation (A.2) using a complete set of orthogonal functions  jh X  
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(i.e. Legendre or Hermite polynomials). Thus, in this method, the random field is expressed as 

follows:  

where 
j  are zero mean random variables with unit variance and M is the number of terms 

retained in the expansion.  

c) Expansion optimal linear estimation (EOLE) method 

This method was introduced by Li and Der Kiureghian (1993). It makes use of the (OLE) or the 

kriging method concept in the special case of a Gaussian random field. This method uses a 

spectral representation of the autocorrelation matrix of the Gaussian random field and it is used in 

this thesis. Thus, it was presented in more detail. 

Weight functions and deterministic basis of the MP, SF, SA and OLE methods 

Table A.1 represent the weight functions and deterministic basis of the MP, SF, SA and OLE 

methods: 

Table A.1. Weight functions and deterministic basis of the MP, SF, SA and OLE methods 

Method Weight function ω(X) Deterministic basis φj(X) 

MP  cX X    1
e

X  

SF  jX X    1
e

X  

SA 
 1

e

e

X


 

Polynomial shape function 

Nj(X) 

OLE  jX X     1

; ;
.

Z X
j

  

   

 

In Table A.1, X is the vector of the coordinates of an arbitrary point, Xc is the vector of the 

coordinates at the centroid element of the finite element/finite difference mesh, Xj is the vector of 

1

( ) ( )
M

Z Z j j

j

Z X h X  


    (A.3) 
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the coordinates at a node j in the SF method and at a the sample point j in the OLE method,  .  

denotes the Dirac function,  
1

1
0e

eX

otherwise



 


   and e  is the mesh element. 
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APPENDIX B  

AK-MCS: An active learning reliability method combining Kriging and Monte 

Carlo Simulation 

The AK-MCS approach as described by Echard et al. (2011) is given in Figure B.1. It consists of 

10 stages: 

 

 

 

 

 

 

 

 

 

 

 

 

Figure B.1. AK-MCS flowchart from Echard et al. (2011) 

 

1. Generation of a large Monte Carlo population S in the design space. This population is 

composed of nMC samples (the terms samples and points are used interchangeably within 

this thesis). At this stage, none of these samples is evaluated on the real performance 
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function (i.e. using the mechanical model). They represent candidate samples to be 

evaluated by the mechanical model if the active learning requires it. This population 

remains the same during the whole process of learning in AK-MCS unless Stage 9 is 

reached. 

2. Definition of the initial design of experiments (DoE): To perform kriging, a design of 

experiments is required. Here, it consists of a random selection of N1 samples among the 

population S. These samples are evaluated on the real performance function and are used 

to construct the kriging meta-model. The initial design of experiments is preferred to be 

small at the beginning and to be successively enriched by adding each time the next ‘best’ 

sample that best improves the meta-model. The aim of this procedure is to reduce to a 

minimum the number of calls of the mechanical model. Notice that although a small 

design of experiments is preferred, a greater DoE is needed for problems involving higher 

stochastic dimension (i.e. where each sample is composed of more than about 10 random 

variables). 

3. Computation of the kriging meta-model according to the design of experiments: This 

stage is performed using the DACE toolbox in MATLAB. It should be mentioned that 

ordinary kriging is used where the regression function is considered constant. As for the 

correlation model, a Gaussian correlation function is selected.  

4. Prediction by kriging and estimation of the probability of failure: First, use DACE to 

compute the Kriging predictions 
G


 
and their corresponding kriging variance values 

2

G


 

for the whole population S (i.e. for i = 1,. . . ,nMC) making use of Equations (1.33) and 

(1.34). The probability of failure is then estimated with the signs of the predictions. It is 

obtained as the ratio of the points (or samples) in the population S with a negative or null 

Kriging prediction and the total number of points in S using the following equation: 
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0G
f

MC

n
P

n

  (B.1) 

5. Identification of the best next point in S to evaluate on the real performance function: This 

is performed by evaluating a learning function U for each point in S. The learning 

function value U is obtained as the ratio of the absolute value of the prediction and its 

corresponding kriging variance value using the following equation: 

 
 

 

i

i

G X

i

G X

U X



                   i= 1, …, MCn  (B.2) 

The criterion to identify the best next point consists in choosing the point with minimum 

value of U. 

6. Stopping condition on learning: The learning stops if the minimum value of U is greater 

than 2. 

7. Update of the previous design of experiments with the best point: If the stopping 

condition given in Stage 6 is not satisfied, the learning carries on and the best point x* in S 

is evaluated on the real performance function. This best point x* is then added to the 

design of experiments: Ni+1 = Ni+1. The method, then, goes back to Stage 3 to compute 

the new kriging model with the updated design of experiments composed of Ni+1 points. 

This process of learning is repeated until the stopping condition is satisfied. 

8. Computation of the coefficient of variation of the probability of failure: If the stopping 

condition given in Stage 6 is satisfied, the learning stops and the metamodel is said to be 

accurate enough for the computation of the estimated values of both the probability of 

failure fP  and the coefficient of variation  fCOV P . It should be mentioned here that a 

value of the coefficient of variation below 5% is seen as acceptable. It is calculated based 

on the following equation using the final kriging metamodel: 
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 
1 f

f

f MC

P
COV P

P n





 (B.3) 

9. Update of the population S: If the coefficient of variation is found to be larger than 5%, 

the population S is increased by adding new points generated using Monte Carlo 

simulation (similar to Stage 1). The AK-MCS procedure goes back to Stage 4 to compute 

the predictions using the updated population and the active learning method carries on 

until the stopping condition is met again.  

10. End of AK-MCS procedure: If the coefficient of variation of  fCOV P is low enough (i.e. 

smaller than 5%), AK-MCS stops and the last estimation of the probability of failure is 

considered as the result of the procedure.  



APPENDICES 

182 

APPENDIX C 

Description of the software FLAC3D 

FLAC3D (Fast Lagrangian Analysis of Continua) is a computer code which allows one to perform 

three dimensional (3D) numerical simulations. It should be mentioned that FLAC3D allows the 

application of stresses (stress control method) or velocities (displacement control method) on the 

geotechnical system. The application of stresses or velocities creates unbalanced forces in this 

system. The solution of a given problem in FLAC3D is obtained by damping these forces to 

reduce them to very small values compared to the initial ones. The stresses and strains are 

calculated at several time intervals (called cycles) until a steady state of static equilibrium or a 

steady state of plastic flow is achieved in the soil mass.  

It should be mentioned here that the programming language FISH in FLAC3D allows one to 

create functions that calculates the stresses, displacements, etc. at any point in the soil mass.  

Computation of the ultimate load of a vertically loaded footing  

For the computation of the ultimate footing load using FLAC3D, the displacement control method 

was used. In this method, a small vertical velocity (510-6 m/time step in this thesis) is applied to 

the lower nodes of the footing and then, several cycles are run until reaching a steady state of 

plastic flow. The steady state of plastic flow is assumed to be reached when the two following 

conditions are satisfied: 

- The load becomes constant with the increase in the number of cycles. In other words, 

increasing the number of cycles no longer changes the footing load (see Figure C.1). 

- The unbalanced forces tend to a very small value as shown in Figure (C.2). 

At each cycle, the footing load is obtained by using a FISH function that computes the 

summation of stresses of all elements of the soil-footing interface. The value of the footing load 

when reaching the steady state of plastic flow is the ultimate failure load of the footing. 
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Figure C.1. Load versus the number of cycles 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure C.2. Unbalanced forces versus the number of cycles 
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APPENDIX D 

Failure probability fP  and  fCOV P versus the number of added realizations obtained 

using AK-MCS method 

The figures below present the failure probability fP  and the coefficient of variation 

 fCOV P versus the number of added realizations for the different values of the autocorrelation 

distances (ax, ay) used in the analysis (see Table 3.5). These figures also provide the learning 

function values for the different added realizations. 

Case of an isotropic soil (ax=ay) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure D.1. AK-MCS results for a spatially varying soil for the case (ax=ay=2m) 
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Figure D.2. AK-MCS results for a spatially varying soil for the case (ax=ay=3m) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure D.3. AK-MCS results for a spatially varying soil for the case (ax=ay=5m) 
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Figure D.4. AK-MCS results for a spatially varying soil for the case (ax=ay=10m) 

 

 

 

 

 

 

 

 

 

 

Figure D.5. AK-MCS results for a spatially varying soil for the case (ax=ay=20m) 
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Figure D.6. AK-MCS results for a spatially varying soil for the case (ax=ay=50m) 

 

 

 

 

 

 

 

 

 

 

Figure D.7. AK-MCS results for a spatially varying soil for the case (ax=ay=100m) 
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Figure D.8. AK-MCS results for a spatially varying soil for the case (ax=ay=10000m) 

 

Case of an anisotropic soil (ax=10 m with varying ay) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure D.9. AK-MCS results for a spatially varying soil for the case (ax=10m, ay=0.5m) 
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Figure D.10. AK-MCS results for a spatially varying soil for the case (ax=10m, ay=0.8m) 

 

 

 

 

 

 

 

 

Figure D.11. AK-MCS results for a spatially varying soil for the case (ax=10m, ay=2m) 
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Figure D.12. AK-MCS results for a spatially varying soil for the case (ax=10m, ay=5m) 

 

 

 

 

 

 

 

 

 

Figure D.13. AK-MCS results for a spatially varying soil for the case (ax=10m, ay=20m) 
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Figure D.14. AK-MCS results for a spatially varying soil for the case (ax=10m, ay=50m) 

 

 

 

 

 

 

 

Figure D.15. AK-MCS results for a spatially varying soil for the case (ax=10m, ay=100m) 
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Figure D.16. AK-MCS results for a spatially varying soil for the case (ax=10m, ay=10000m) 

Case of an anisotropic soil (ay=2 m with varying ax) 

 

 

 

 

 

 

 

Figure D.17. AK-MCS results for a spatially varying soil for the case (ax=5m, ay=2m) 
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Figure D.18. AK-MCS results for a spatially varying soil for the case (ax=20m, ay=2m) 

 

 

 

 

 

 

 

Figure D.19. AK-MCS results for a spatially varying soil for the case (ax=50m, ay=2m) 
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Figure D.20. AK-MCS results for a spatially varying soil for the case (ax=100m, ay=2m) 

 

 

 

 

 

 

 

Figure D.21. AK-MCS results for a spatially varying soil for the case (ax=10000m, ay=2m) 
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APPENDIX E 

AK-IS: An active learning reliability method combining Kriging and Importance Sampling  

 

The AK-IS approach as described by Echard et al. (2013) is composed of two main steps:  

In a first step, the FORM approximation is performed and the most probable failure point P* is 

computed using the Hasofer–Lind–Rackwitz–Fiessler algorithm or other. The aim of determining 

the failure point is to shift the sampling distribution from the center of the standard space of 

random variables so that it is centered at this failure point. Notice that the determination of the 

failure point is a rather time-demanding step as it is performed on the real performance function 

G. Notice however that an accurate most probable failure point is not required and thus a few 

iterations are enough to shift the center of the sampling population towards the failure domain.  

In a second step, the classification by Kriging of a population PIS was performed. The population 

PIS of NIS samples is simulated using a sampling PDF centered at the approximated most probable 

failure point found in the first step of the AK-IS procedure. The classification into the safe and 

failure groups is performed using the technique developed in AK-MCS [Echard et al. (2011)]. 

The second step of the IK-IS procedure may be described in more details as follows: 

1. Generation of a population PIS: PIS is generated using a sampling PDF centered at the 

approximated most probable failure point determined in the first step of the AK-IS 

procedure. The generated samples represent candidate samples at which the performance 

function may be computed if the active learning requires it. 

2. Definition of the initial DoE: The initial DoE is composed of the samples at which the 

performance function has already been computed during FORM approximation at the first 

stage of AK-IS procedure. These samples are called FORM DoE and are considered to be 

sufficient to start the procedure. Note here that no other sample is computed at this stage. 
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3. Computation of the kriging meta-model according to the DoE: This stage is performed 

using the DACE toolbox of Matlab.  

4. Prediction by kriging and estimation of the probability of failure: First, kriging  

predictions 
G

  and their corresponding kriging variance values 
2

G
  for i = 1,. . . ,NIS  are 

computed using DACE toolbox. Then, the probability of failure is estimated with the 

signs of predictions 
G

  using Equation (2.16). 

5. Identification of the best next sample x* in PIS: The identification of this sample is 

performed according to the learning function U proposed by Echard et al. (2011). The 

learning function U is given by Equation (3.8). The criterion to identify the best next point 

is the one with minimum value of U.  

6. Stopping condition on learning: The learning stops if the minimum value of U is greater 

than 2. 

7. Update of the previous design of experiments with the identified sample: If the stopping 

condition of Stage 6 is not satisfied, the learning continues and the performance function 

is computed at the best sample x*. Following this, it is added to the design of experiments. 

The method, then, goes back to Stage 3 to compute the new kriging model with the 

updated design of experiments. This process of learning is repeated until the stopping 

condition is satisfied. 

8. Computation of the coefficient of variation of the probability of failure: If the stopping 

condition of Stage 6 is satisfied, the learning stops. The population PIS is then checked to 

be large enough to provide an accurate failure probability prediction. To do so, the 

coefficient of variation of the probability of failure is calculated by IS on the kriging 

results using Equation (2.17). Here, a coefficient of variation is compared to a limit value 

seen as acceptable by the user. It should be mentioned here that a value of the coefficient 

of variation below 5% is seen as acceptable. 
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9. Update of the population: If the coefficient of variation is found to be too high, PIS is 

enlarged with new samples and AK-IS goes back to Stage 4 to predict the new population. 

The active learning method continues until the stopping condition is met again.  

10. End of AK-IS procedure: If the coefficient of variation of fP is small enough, AK-IS 

stops and the last estimation of the probability of failure is considered as the result of the 

method. 
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APPENDIX F 

Failure probability fP  and  fCOV P versus the number of added realizations obtained 

using AK-IS method 

The figures below present the failure probability
 fP  and the coefficient of variation 

 fCOV P versus the number of added realizations for the different values of the autocorrelation 

distances (ax, ay) used in the analysis (see Table 4.4). These figures also provide the learning 

function values for the different added realizations. 

 Case of an isotropic soil (ax=ay) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure F.1. AK-IS results for a spatially varying soil for the case (ax=ay=2m) 
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Figure F.2. AK-IS results for a spatially varying soil for the case (ax=ay=3m) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure F.3. AK-IS results for a spatially varying soil for the case (ax=ay=5m) 
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Figure F.4. AK-IS results for a spatially varying soil for the case (ax=ay=10m) 

 

 

 

 

 

 

 

 

 

 

Figure F.5. AK-IS results for a spatially varying soil for the case (ax=ay=20m) 
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Figure F.6. AK-IS results for a spatially varying soil for the case (ax=ay=50m) 

 

 

 

 

 

 

 

 

 

 

Figure F.7. AK-IS results for a spatially varying soil for the case (ax=ay=100m) 
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Case of an anisotropic soil (ax=10 m with varying ay) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure F.8. AK IS results for a spatially varying soil for the case (ax=10m, ay=0.5m) 

 

-IS results for a spatially varying soil for the case (ax=10m, ay=0.5m) 

 

 

 

 

 

 

 

 

 

 

 

Figure F.9. AK-IS results for a spatially varying soil for the case (ax=10m, ay=0.8m) 
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Figure F.10. AK-IS results for a spatially varying soil for the case (ax=10m, ay=2m) 

 

 

 

 

 

 

 

 

 

Figure F.11. AK-IS results for a spatially varying soil for the case (ax=10m, ay=5m) 
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Figure F.12. AK-IS results for a spatially varying soil for the case (ax=10m, ay=20m) 

 

 

 

 

 

 

 

 

Figure F.13. AK-IS results for a spatially varying soil for the case (ax=10m, ay=50m) 
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Figure F.14. AK-IS results for a spatially varying soil for the case (ax=10m, ay=100m) 

Case of an anisotropic soil (ay=2 m with varying ax) 

 

 

 

 

 

 

 

Figure F.15. AK-IS results for a spatially varying soil for the case (ax=5m, ay=2m) 
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Figure F.16. AK-IS results for a spatially varying soil for the case (ax=20m, ay=2m) 

 

 

 

 

 

 

 

Figure F.17. AK-IS results for a spatially varying soil for the case (ax=50m, ay=2m) 
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Figure F.18. AK-IS results for a spatially varying soil for the case (ax=100m, ay=2m) 
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APPENDIX G 

Failure probability fP  and  fCOV P versus the number of added realizations obtained 

using AK-SS method 

The figures below present the failure probability
 fP  and the coefficient of variation 

 fCOV P versus the number of added realizations for the different values of the autocorrelation 

distances (ax, ay) used in the analysis (see Table 5.4).  

Case of an isotropic soil (ax=ay) 

 

 

 

 

 

 

 

 

Figure G.1. AK-SS results for a spatially varying soil for the case (ax=ay=3m) 
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Figure G.2. AK-SS results for a spatially varying soil for the case (ax=ay=5m) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure G.3. AK-SS results for a spatially varying soil for the case (ax=ay=10m) 

 

 

 

 

 

 

Figure G.4. AK-SS results for a spatially varying soil for the case (ax=ay=20m) 
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Figure G.5. AK-SS results for a spatially varying soil for the case (ax=ay=50m) 

 

 

 

 

 

 

Figure G.6. AK-SS results for a spatially varying soil for the case (ax=ay=100m) 

 

Case of an anisotropic soil (ax=10 m with varying ay) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure G.7. AK-SS results for a spatially varying soil for the case (ax=10m, ay=0.5m) 
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Figure G.8. AK-SS results for a spatially varying soil for the case (ax=10m, ay=0.8m) 

 

 

 

 

 

Figure G.9. AK-SS results for a spatially varying soil for the case (ax=10m, ay=1m) 

 

 

 

 

 

 

Figure G.10. AK-SS results for a spatially varying soil for the case (ax=10m, ay=2m) 
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Figure G.11. AK-SS results for a spatially varying soil for the case (ax=10m, ay=5m) 

 

  

 

 

 

 

Figure G.12. AK-SS results for a spatially varying soil for the case (ax=10m, ay=20m) 

 

 

 

 

 

Figure G.13. AK-SS results for a spatially varying soil for the case (ax=10m, ay=50m) 
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Figure G.14. AK-SS results for a spatially varying soil for the case (ax=10m, ay=100m) 

Case of an anisotropic case (ay=2 m with varying ax) 

 

 

 

 

Figure G.15. AK-SS results for a spatially varying soil for the case (ax=5m, ay=2m) 

 

 

 

 

 

Figure G.16. AK-SS results for a spatially varying soil for the case (ax=20m, ay=2m) 
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Figure G.17. AK-SS results for a spatially varying soil for the case (ax=50m, ay=2m) 

 

 

 

 

 

 

Figure G.18. AK-SS results for a spatially varying soil for the case (ax=100m, ay=2m) 
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Kriging-based Approaches for the Probabilistic Analysis of Strip 

Footings Resting on Spatially Varying Soils 

 

 

Résumé 

L’analyse probabiliste des ouvrages géotechniques est 
généralement réalisée en utilisant la méthode de 
simulation de Monte Carlo. Cette méthode n’est pas 
adaptée pour le calcul des faibles probabilités de 
rupture rencontrées dans la pratique car elle devient 
très coûteuse dans ces cas en raison du grand nombre 
de simulations requises pour obtenir la probabilité de 
rupture. Dans cette thèse, nous avons développé trois 
méthodes probabilistes (appelées AK-MCS, AK-IS et 
AK-SS) basées sur une méthode d’apprentissage 
(Active learning) et combinant la technique de Krigeage 
et l’une des trois méthodes de simulation (i.e. Monte 
Carlo Simulation MCS, Importance Sampling IS ou 
Subset Simulation SS). Dans AK-MCS, la population est 
prédite en utilisant un méta-modèle de krigeage qui est 
défini en utilisant seulement quelques points de la 
population, ce qui réduit considérablement le temps de 
calcul par rapport à la méthode MCS. Dans AK-IS, une 
technique d'échantillonnage plus efficace 'IS' est 
utilisée. Dans le cadre de cette approche, la faible 
probabilité de rupture est estimée avec une précision 
similaire à celle de AK-MCS, mais en utilisant une taille 
beaucoup plus petite de la population initiale, ce qui 
réduit considérablement le temps de calcul. Enfin, dans 
AK-SS, une technique d'échantillonnage plus efficace 
'SS' est proposée. Cette technique ne nécessite pas la 
recherche de points de conception et par conséquent, 
elle peut traiter des surfaces d’état limite de forme 
arbitraire. Toutes les trois méthodes ont été appliquées 
au cas d'une fondation filante chargée verticalement et 
reposant sur un sol spatialement variable. Les résultats 
obtenus sont présentés et discutés. 
 
Mots clés 

Varabilité spatiale, krigeage, probabilité de ruine, 
Simulation de Monte Carlo, importance sampling, 
Subset Simulation. 

Abstract 

The probabilistic analysis of geotechnical structures 
involving spatially varying soil properties is generally 
performed using Monte Carlo Simulation methodology. 
This method is not suitable for the computation of the 
small failure probabilities encountered in practice 
because it becomes very time-expensive in such cases 
due to the large number of simulations required to 
calculate accurate values of the failure probability. 
Three probabilistic approaches (named AK-MCS, AK-IS 
and AK-SS) based on an Active learning and combining 
Kriging and one of the three simulation techniques (i.e. 
Monte Carlo Simulation MCS, Importance Sampling IS 
or Subset Simulation SS) were developed. Within AK-
MCS, a Monte Carlo simulation without evaluating the 
whole population is performed. Indeed, the population is 
predicted using a kriging meta-model which is defined 
using only a few points of the population thus 
significantly reducing the computation time with respect 
to the crude MCS. In AK-IS, a more efficient sampling 
technique ‘IS’ is used instead of ‘MCS’. In the 
framework of this approach, the small failure probability 
is estimated with a similar accuracy as AK-MCS but 
using a much smaller size of the initial population, thus 
significantly reducing the computation time. Finally, in 
AK-SS, a more efficient sampling technique ‘SS’ is 
proposed. This technique overcomes the search of the 
design points and thus it can deal with arbitrary shapes 
of the limit state surfaces. All the three methods were 
applied to the case of a vertically loaded strip footing 
resting on a spatially varying soil. The obtained results 
are presented and discussed. 
 

Key Words 

spatial variability, Kriging metamodeling, probability of 
failure, Monte Carlo Simulation, Importance Sampling, 
Subset Simulation. 
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