UNIVERSITE

BRETAGNE
LOIRE

These de Doctorat

&

UNIVERSITE DE NANTES

IME-USP

Frank D. JULCA-AGUILAR

Meémoire présente en vue de l'obtention du

grade de Docteur de I'Universidade de Sdo Paulo et
Docteur de I'Université de Nantes

sous le sceau de I'Université Bretagne Loire

Ecole doctorale : STIM (503)

Discipline : Informatique et applications

Spécialité : Informatique

Unité de recherche : Institut de Recherche en Communications et Cybernétique de Nantes
(IRCCyN) et Instituto de Matematica e Estatistica da Universidade de Sao Paulo (IME-USP)

Soutenue le 29 avril 2016

Recognition of Online Handwritten
Mathematical Expressions using Contextual
Information

JURY

Rapporteurs :
M. Jean-Yves RAMEL, Professeur, Université de Tours
M. Ricardo da Silva TORRES, Professeur, Universidade de Campinas

Examinateur :
M. Bertrand COUASNON, Maitre de conférences, HDR, INSA de Rennes

Co-directrice de These :
M™ Nina S. T. HIRATA, Professeur, Universidade de S&o Paulo

Co-directeur de Thése :
M. Christian VIARD-GAUDIN, Professeur, Université de Nantes

Co-encadrant (membre invité) : .
M. Harold MOUCHERE, Maitre de conférences, Université de Nantes

Aknowledgments

This thesis would not have been possible without the support of many people. First, I would
like to thank my advisors Nina S. T. Hirata, Christian Viard-Gaudin and Harold Mouchére. Nina,
thank you for sharing countless hours of discussions, for your advice and support, and for being also
a good friend along these last years. Christian and Harold, thank you for sharing your knowledge
and experience with me. Thank you all for reading my drafts of reports and papers, and giving me
many helpful comments. You provided me with an ideal balance of guidance and freedom.

I am also thankful to my co-authors Willian Y. Honda and Alexandre Noma, for your collabo-
ration during the development of this work. I am grateful to the members of the Computer Vision
Group of the Institute of Mathematics and Statistics of University of Sao Paulo, and members of
the Institut de Recherche en Communications et Cybernétique de Nantes of University of Nantes.
Thanks for providing me a friendly working environment.

I also want to thank my amazing friends Anthony Mendez, Karina Espinoza, Rosario Medina,
Jorge Guevara, Leissi Castaneda, Leandro Ticlia, Alfonso Phocco, Juan Gutierrez, Renzo Gomez,
Edwin Delgado, Sofiane Medjkoune, Alejandra Rios, Luis Céspedes. Thank you Vanessa Valdiviezo
for the wonderful years on my side. Thank you Rosangela Camargo for such lovely moments you
gave me. | am really lucky for finding so great people as all of you.

I also acknowledge the financial support of my studies by FAPESP, through a Masters schol-
arship, Grant number 2010/04491-0; a Direct Doctorate scholarship, Grant number 2012/08389-1;
and a Research Internships Abroad (BEPE) scholarship, Grant number 2013,/13535-0.

Finally, I would like to thank my parents, Isabel Aguilar and Paulino Julca; my sisters, Car-
men, Sonia, Manuela; and my brothers, Samir, Ivan, and Julio. Thanks for the amazing support,
encouragement, and love you provide me. The passion for exploring, learning, and hard work that

you taught me led me through my studies.

ii

Contents

List of Figures vii
List of Tables xiii
1 Introduction 1
1.1 Motivation oL 1
1.2 The recognition problem L L oo 2
1.3 This thesis o e 5
1.3.1 Objectives 5

1.3.2 Key ideas explored in this thesis 6

1.3.3 Major contributions 9

1.4 Thesis organization e 9

2 Previous work 11
2.1 Background on parsing e 11
2.1.1 CYKalgorithm 13

2.2 Sequential Approaches L 15
2.3 Integrated approaches 18
2.4 DiISCuSSION e 22

3 The proposed recognition framework 25
3.1 Graph Grammar to model Mathematical Expressions 25
3.1.1 A context-free graph grammar for mathematical expressions 25

3.1.2 Comparison with other mathematical expression grammars 27

3.2 Parse tree and forest 30
3.3 The proposed approach L 31
3.3.1 Hypotheses graph generator L. 31

3.3.2 Graph Parser 35

3.4 Discussion 36

4 Symbol hypothesis classification 39
4.1 Generation of stroke groups Lo 39
4.2 Symbol hypothesis classification oo 40
4.2.1 Preprocessing 40

4.2.2 Oanline symbol features 40

4.2.3 Offline symbol featureso 44

iii

iv

CONTENTS
4.3 Experimentation L
4.3.1 Experimental setup oL
4.3.2 Results e
4.4 DiIiscussSion e e e

Relation classification

5.1 Problem overview and state of theart
5.2 Featureset e
5.2.1 Relation image Lo e
5.2.2 Geometric features
5.2.3 Category vectorso
5.3 Experimentation
5.3.1 Experimental setup
5.3.2 Results e
5.4 Discussion e e

Mathematical expressions parsing technique

6.1 Parse Forest Construction
6.1.1 Top-down parsing algorithm 0.
6.1.2 Valid stroke partitionso

6.2 Optimal parse tree extraction oo
6.2.1 Ranking functions L

Experimentation

7.1 Experimental setup

7.2 Parameter setting
7.2.1 Hypotheses graph generation L.
7.2.2 Graph parsing

7.3 Results.

7.4 DiIscussion e

A framework to build online handwritten mathematical expression datasets

8.1 Imtroduction
8.2 Desired qualities of mathematical expression datasets
8.3 The dataset creation procedure Lo
8.4 The EzpressMatch system L

8.4.1 ExpressMatch architectureo
8.5 Results. e

Conclusions and future work

9.1 Symbol segmentation and classificationo
9.2 Relation classification
9.3 Graph parsing

9.4 Automatic annotation of mathematical expression datasets

51
51
93
53
o4
55
95
55
o6
o7

61
61
63
65
66
67

71
71
73
73
75
76
80

83
83
84
84
85
86
90

CONTENTS v

10 Résumé étendu en frangais 97
A CROHME-2014 Symbol hypothesis classification 105
B Hypothesis graph labels per symbol and relation 107
Bibliography 111

Publications 117

vi CONTENTS

List of Figures

1.1

1.2

1.3

14

2.1

2.2
2.3

24

2.5
2.6

Online handwritten mathematical expression sample of the CROHME-2014

k
dataset (Mouchére et al., 2014). The sample represents the expression Y x,zy,. It
n=1
is composed of a sequence of strokes str = {stry,...,str;3}, where str; is the ¥

stroke, considering the input order. Each stroke is composed of a sequence of two-
dimensional coordinates, represented as a sequence of points, where green and red
points indicate the first and last point of each stroke, respectively.
Ambiguous handwritten symbols. They could be interpreted as (a) “+” or “¢”, (b)
“6” or “G”, (¢) “9” or “q” and (d) “P” or “p”. Extracted from CROHME-2014
dataset (Mouchére et al., 2014).
Ambiguous mathematical expression. The expression is composed of five strokes, that
is (stry, ..., strs). Strokes {str4, strs} could be interpreted as the symbol “4” or as a
subexpression “< 17, {stry, stra} could be interpreted as symbol “p” or “P” and the
relation between {stry, stro} and {strs} could be horizontal or superscript.
The recognition scheme of the technique proposed in this thesis. Gray rectangles

represent the main modules that compose the approach.

(a) A Grammar and (b) a parse tree built with the grammar. The elements of the
grammar are N = {Name, Sentences, List}, T = {tom,dick, harry,and,,}, R is
composed of the seven rules (“|” separates rules with the same non-terminal in the
left hand side), and I = Sentences. Extracted from Grune and J.H (2008).
CYK parsing example. Extracted from Yamamoto et al. (2006)
Example of grammar used in Yamamoto et al. (2006). Rules marked with * cannot
be applied iteratively. ** means that the writing order of the 2 symbols can change
and that the rules with permutation of the order are included. Abbreviated names of
expression elements are as follows: EXP: expression, SYM: symbol, FUNC: function,
LINE: fraction line, DLINE: fraction line with denominator, NLINE: fraction line
with numerator, ROOT: root sign, ACC: accent, RPAR: right parenthesis, LPAR:
left parenthesis, XRPAR: expression with right parenthesis, XLPAR: expression with
left parenthesis, HS: handwritten stroke.
(a) Input expression and (b) symbol hypotheses net. Extracted from Koschinski et al.
(1995) . o o v e
Spatial regions relative to symbols. Extracted from Zanibbi et al. (2002)
Fuzzy regions associated with a symbol. Intersection of the fuzzy regions define as

ambiguity zones. L e

vil

15

viii

LIST OF FIGURES

2.7 Fuzzy 1-CFG example. Extracted from MacLean and Labahn (2013)
2.8 An expression violating the horizontal ordering assumption. The summation and its
arguments must start before Y, but the letter C— in the argument of the summation
—begins after Y.
2.9 Sample rules of Celik and Yanikoglu (2011), The symbol “|” indicates that any of the
symbols at their sides may be a label of the vertex.
2.10 Parse algorithm of Celik and Yanikoglu (2011)

3.1 Graph Grammar example. Black arrows separate the replaced and replacing graphs
of the rules and gray arrows represent the edges of each graph. The elements of the
grammar are: non-terminals N={ME, TRM, OP, CHARY}, terminals T = {+,-, <, >,
a,...,z, A, ..., 7,0, ..., 9}, initial graph I corresponds to the left hand side graph
of rule r-1, and rules R = {r-1, ..., r-73}.

3.2 Graph generation through rule applications. At each rule application, the replaced
graph nodes are depicted in dark gray nodes and the embedding edges with dashed
arrows. Rule applications after r-7 are omitted (dotted arrow).

3.3 Graphs generated with the grammar implemented for experimentation. The graphs
correspond to expessions (a) P* < 1, (b) a7+bd and (c) a/x + y. Vertices and edges
are labeled with their symbol and relation classes , respectively.

3.4 Integration rule example used in MacLean and Labahn (2013) (a) and its correspond-
ing representation using graph grammar (b). o Lo L

3.5 Graph grammar rule examples proposed in Celik and Yanikoglu (2011). Each rule
defines the replacement of a single vertex graph in the RHS with a graph that has a
central node, and surrounding nodes connected only to the central node (star graph).

The symbol “|” indicates that the symbol at its left or right may be a label of the

3.6 Parse tree example for the expression P’ < 1, considering the grammar of Figure 3.1.
The root of the tree (inside the top-most rectangle) corresponds to the initial graph of
the grammar. The applied rules are depicted as arrows from a vertex (or single vertex
graph) to a rectangle that contains the transformed graph. Each rule is identified
using the codes defined in the grammar.

3.7 A parse parse forest (b) representing multiple interpretations of a mathematical ex-
pression (a). Labels on arrows indicate the grammar rules. Red arrows represent a
parse tree that corresponds to the interpretation “P°4”.

3.8 The recognition scheme of the technique proposed in this thesis. Gray rectangles
represent the main modules that compose the approach.

3.9 Hypotheses graph example. Vertices represent symbol hypotheses and edges represent
relations between symbols. The labels associated to symbols and relations indicate

their most likely interpretations.

4.1 (a), (b), and (c) show raw symbol samples and (d), (e) and (f) their corresponding

preprocessed results. L L

4.2

4.3

4.4

4.5

4.6

4.7
4.8

5.1

5.2

5.3

5.4

5.5

5.6
5.7
5.8

6.1

6.2

LIST OF FIGURES

Shape context of two points of a symbol “2™: (a) and (c) show the sampled points and
the log polar histogram bins used to calculate shape context. (b) and (d) show the

shape context histogram relative to (a) and (c) respectively; dark cells mean higher

Fuzzy bins in the (a) radial and (b) angular coordinates. The arrows in the angular
coordinate represent its circular nature.
Four different positions in a bin Bin;;. Regions between dotted lines indicate transi-
tion areas between bins L L
Shape context extraction for artificial neural networks. (a) Shape context is extracted
only at some sampled points. (b) The extracted shape context vectors are concate-
nated to form a feature vector that is used as input to a neural network.
Bidimensional (20 x 20 cells) histograms calculated from samples of symbols “3”, .”,
“I7and “S7. L L L e
Symbol hypotheses examples and their corresponding contextual histograms.

Symbol classes with lowest recognition rates

Mathematical expressions with ambiguous relations between subexpressions in blue
and red. The relation in (a) may be considered as horizontal or subscript and in (2)
it can be interpreted as horizontal or superscript. L.
Crisp regions that define relations relative to a symbol. Regions are defined ac-
cording to the symbol category, that is indicated below each symbol. Extracted
from Zanibbi et al. (2002).o

Fuzzy regions that define relations relative to a symbol. Extracted from Zhang et al.

Geometric features. F' is defined as the distance between the centers of the bounding
boxes of the subexpressions. ceny, and cen,, represent the coordinates, in x and y axis

respectively, of the centroid of its parameter. Extracted from Alvaro and Zanibbi

Relation image examples calculated from relations of the expression of Figure (a).
Relation images correspond to relations: (b) above(—, axo + byo + ¢), (¢) below(—,
VaZ +b2) , (d) inside(,/ ", a? + b?), (e) horizontal(+, ¢), (f) subscript(z, 0) (g)
SUPErSCrIPE(@, 2). .« v v o o e
Normalized (values between 0 and 1) base position and height.
Number of relation samples per class in the (a) training and (b) test sets.
Misclassification examples. Each image label indicates the true relation class followed

by the classifier’s output, that is: true relation—output.

The parse forest construction step receives a set of strokes as input (a) and uses a
graph grammar (b) to build a parse forest structure (c). A parse forest stores multiple
interpretations of the input as parse trees. Red arrows of the parse forest represent
a a parse tree that corresponds to the interpretation “P4".
Two partitions of a stroke set according to a production rules’s graph. Blue lines

indicate a right partition and red lines indicate a wrong one.

X

45

51

o4

X

LIST OF FIGURES

6.3

6.4

7.1

7.2

7.3

7.4

7.5

7.6

7.7

8.1
8.2
8.3
8.4
8.5

8.6

8.7

B.1

A hypotheses graph and vertices formed by contracting edges. The dashed arrows of
the vertex composed of strokes PP represent inherited edge.
Parse tree of expression P’ < 1, extracted from the parse forest of Figure 6.1(c).
Nodes are indexed as x;, for i = 1,...,9. Similarly, vertices and edges of the instanti-
ated graphs are respectively indexed as v;, for j = 1,...,12, and ey, for k =1,...,3.

Nodes with terminal symbols are depicted with double line borders.

Symbol, relation and expression level recall of the hypotheses graph generation step,
for thresholds in the range [0.1 — 1.0]. For each symbol threshold value, values for
the relation threshold are varied from 0.1 to 1.0.
Mean of symbol and relation hypothesis labels per symbol and relation, respectively.
The left hand axis indicates the number of labels per symbol and relation. The right
hand axis indicates the percentage of recognized expressions.
Symbol, relation and expression recall obtained at graph parsing and hypotheses
graph generation stages, for different symbol and relations thresholds values.
Symbol, relation and expression level recall of the hypotheses graph generation step,
for thresholds in the range [0.1 — 1.0]. This results are calculated over the test set
EXPIESSIONS. . o v v v v v e e e e e e e e e e e e e e e e e e
Mean of symbol and relation hypothesis labels per symbol and relation, respectively,
over the test set expressions. The left hand axis indicates the number of labels per
symbol and relation. The right hand axis indicates the percentage of recognized
EXPIESSIONS. .+« v v v o e e e e e e e e
Examples of handwritten mathematical expressions that have been correctly recog-
nized by our method. L
Expressions recognized with a few errors. For each expression, its ground truth and

the system’s output is showed as: ground truth — system’s output.

Expression matching example. Vertical lines indicate the matched symbols.
ExpressMatch architecture.

—bEvb%2—4ac
2a

Model collector: expression x = is being defined as a model.
Model expression of Figure 8.3 with all its symbols labeled.
Instance capturer: model expression is shown at the top, to indicate users what
instance they have to write. L
Labeling editor: labeling result is shown as a matching between labeled symbols of
model expression (at the top) and unlabeled symbols of the instance expression (at
the bottom).
Example of matching with many line segments: (a) with all segments, (b) and (c)

two groups of non intersecting segments. Lo

Mean of symbol and relation hypothesis labels per symbol and relation, respectively;
calculates over the test set. The left hand axis indicates the number of labels per
symbol and relation. The right hand axis indicates the percentage of recognized

EXPIESSIONS. . v v v v v e e e e e e e e e e e e e e e e e e e

LIST OF FIGURES xi

B.2 Mean of symbol and relation hypothesis labels per symbol and relation, respectively;
calculates over the test set. The left hand axis indicates the number of labels per
symbol and relation. The right hand axis indicates the percentage of recognized

EXPIESSIONS. « « v v v e e e e e e 109

xii LIST OF FIGURES

List of Tables

2.1

4.1
4.2
4.3

4.4

5.1

5.2

7.1
7.2

7.3

7.4

7.5

Horizontal partitions

Symbol hypotheses classifier outcomes.
Symbol Classification results using the training-validations sets.
Symbol hypothesis classification results using the CROHME-2014 test set and com-

parison of our method with the top three results of the CROHME-2014 competition.

Percentage of symbols missclassified with others with similar shape.

Relation classification rates (%) using the CROHME-2014 train-validation sets. CV
= category vectors.o e
Confusion matrix for relations classification of CROHME-2014 test set. The actual

relations at rows and the predicted ones at columns.

Comparison of scoring function using the validation set of CROHME-2014.
Expression level comparison of our method with systems of the CROHME-2014 com-
petition. L e e e e e e e
Object level comparison of our method with systems of the CROHME-2014 compe-
tIbon. e
Comparison of our method and System III for symbol hypothesis classification, using
the CROHME-2014 test set. e
Spatial relations between symbols (of the test set) that presented more errors. Each
relation is identified with a printed representation. The relation identity is implicit

by the relative symbol positions.

xiii

Xiv LIST OF TABLES

Chapter 1

Introduction

In this thesis, we study the online handwritten mathematical expressions recognition problem
and propose a new technique to automatize the recognition of these type of data.

This chapter introduces the recognition problem and presents an overview of the thesis. Sec-
tion 1.1 gives practical and scientific motivations. Section 1.2 introduces the recognition problem
and its main challenges. Section 1.3 then defines the main goals, outlines the proposed recognition
techniques, and lists the main contributions of this thesis. Finally, Section 1.4 describes the thesis

organization.

1.1 Motivation

Common ways to enter mathematical expressions into computers are inefficient. They are based
on special typesetting commands (such as TEX) or symbol selection tools (as the one of MS-Word).
Those methods require from users some expertise in managing the input mechanics: in the first case,
the user must be able to memorize or have access to a large number of codes and syntactic rules; in
the second case, symbols and structures must be selected one by one, using keyboards and mouses
as interfaces. Writing complex expressions using such methods is far from being an easy task.

Automatic recognition of mathematical expressions would provide more efficient means to enter
these data into computers: expressions could be drawn on a touch screen device using an electronic
pen or a finger, and a system would recognize the expression and convert it to a desirable format,
TgX , for instance.

Other applications of automatic recognition of mathematical expressions include:

e digitalization of mathematical expressions in scientific documents: handwritten or printed

documents could be digitalized, edited, and recorded in a database;

e document readers: software programs could read books, articles or even handwritten notes

with a speech synthesizer or braille display;

e simplification of inputting data into mobile devices: mathematical expressions could be drawn

directly on smartphones or tablets.

From a general point of view, mathematical expressions are not much different from other two-

dimensional languages. Mathematical expressions may be represented as groups of symbols placed

2 INTRODUCTION 1.2

over a two-dimensional space and a set of relations among the symbols. Chemical equations, music
notation, and flowcharts, for example, could also be represented in a similar way. This suggests
that a recognition technique for mathematical expressions should not be much different from others
used for those languages. Thus, in an ideal case, an effective recognition technique for mathematical
expressions should also be adaptable to the automatic recognition of a variety of two-dimensional
languages.

From a scientific point of view, the mathematical expression recognition problem comprises
several pattern recognition challenges: segmentation, classification, parsing, and machine learning.
The difficulties of the problem are not only related to solving those issues separately, but also
in the integration of them. In this regard, Zanibbi and Blostein (2012) describes the problem as
an excellent vehicle for studying methods of integrating patter recognition algorithms to improve
performance.

Both practical applications and research challenges have been appealing to the pattern
recognition community, specially during the last decade. This is evidenced by the variety
of published works devoted to propose new recognition techniques (Alvaro and Zanibbi, 2013;
MacLean and Labahn, 2013; Simistira et al., 2015; Yamamoto et al., 2006), to build publicly avail-
able datasets (Aguilar and Hirata, 2012; Hirata and Julca-Aguilar, 2015; MacLean et al., 2011;
Quiniou et al., 2011), and to create new techniques for performance evaluation (Awal et al., 2010a;
Lapointe, 2008; Zanibbi et al., 2013). Along with those efforts, several competitions on recognition
of mathematical expressions have been organized, with the aim of providing an effective framework
to determine the state of the art in this problem (Mouchére et al., 2012, 2013, 2014, 2011).

1.2 The recognition problem

Research on recognition of mathematical expressions began in the 1960s (Anderson, 1968);
but, compared to text recognition, it is still considered as being in early stages of re-
search (Zanibbi and Blostein, 2012).

Handwritten mathematical expressions can be offfine or online. In the first case, the expres-
sions are written on paper and then they are digitalized by scanning the paper; in the second case,
the expressions are written with an electronic pen on a touch screen device. In online data, the
two-dimensional coordinates of the writing as a function of time are recorded. The input data then
consists of a sequence (ordered set) of strokes — being a stroke a sequence of coordinates collected
from pen down to pen up — ordered by the input time. Figure 1.1 shows an online handwrit-
ten mathematical expression example. As shown in that Figure, the stroke coordinates may not
be homogeneously sampled. In addition, they often present abrupt changes of direction or other
characteristics that may decrease the recognition performance. Therefore, before the mathematical
recognition process itself is done, a preprocessing step is usually applied in order to obtain data
invariant to those characteristics.

Recognition of online handwritten mathematical expressions requires solving three tasks: (1)
symbol segmentation, (2) symbol classification, and (3) structural analysis. The first task consists
in grouping strokes that form a same symbol; the second consists in identifying which mathematical
symbol represents each group of strokes; and the third aims to identify spatial relations between

symbols — as the superscript relation between symbols “a” and “0” and the horizontal relation

1.2 THE RECOGNITION PROBLEM 3

strs
stri
stro
Sth StT‘g striy
?éw StrlQ i
StT’lo ﬂ St7“13

str
5 str
str
strﬁ
Figure 1.1: Online handwritten mathematical expression sample of the CROHME-201/
k

dataset (Mouchere et al., 2014). The sample represents the expression Y, Tpzn. It is composed of a
n=1

sequence of strokes str = {stry,...,stri3}, where str; is the it" stroke, considering the input order. Each

stroke is composed of a sequence of two-dimensional coordinates, represented as a sequence of points, where

green and red points indicate the first and last point of each stroke, respectively.

between “a” and “c” in the expression “abc’. Each of the tasks involves several issues that make the
recognition problem challenging.

In symbol segmentation, evaluating all possible stroke partitions has an exponential cost. A
symbol may consists of strokes that are not consecutive according to their input order. For example,
in the expression of Figure 1.1, someone could write the stroke stry; (part of symbol “z”), then write
the stroke str3 (symbol “n”), and, finally, add the stroke str12 (the rest of symbol “z”). This lack
of consecutiveness makes possible that, given a sequence of strokes str = (stry, ..., stry,), a symbol
could be formed by any non empty subset of str. Evaluating all symbol segmentations of str would

correspond to evaluate the B,, partitions of str, where B,, (Bell number) satisfies the recursion:

n
Bup1=Y <Z> By, (1.1)
k=0
with By = 1.

In symbol recognition, the major issues include the large number of symbol classes and ambigu-
ity. To cover a considerable domain of mathematics, for example, Awal et al. (2010b) suggest that
about two hundred symbol classes should be considered. Among all the classes, those with similar
shape are specially difficult to differentiate. Figure 1.2 shows some ambiguous handwritten symbols.
It is important to note that this ambiguity is mainly present in handwritten data. In printed data,

most of those cases may be solved using symbols’ size or relative positions.

+ ¢ 9 P

(a) (b)

Figure 1.2: Ambiguous handwritten symbols. They could be interpreted as (a) “+7 or “t”, (b) “6” or “G”,
(c) “97 or “q” and (d) “P” or “p”. Extracted from CROHME-201/ dataset (Mouchere et al., 2014).

4 INTRODUCTION 1.2

Structural analysis of mathematical expressions is challenging due to ambiguity in the identifi-
cation of the different relation types and the need for syntax validation. While in textual data only
horizontal relations link consecutive symbols (that is, a symbol is related only to another one at
its left or right), in mathematical expressions not only horizontal relations, but also vertical and

oblique relations (as in expressions “> 7 and “a¥”, respectively) link any pair of symbols. Among
xr

the relation types, specially difficult recognition cases arise when trying to differentiate superscript
and subscript relations from horizontal relations. The variety of relations invalidate the left to right
order of symbols assumed in text recognition. The lack of that order disallows the direct application
of text recognition algorithms to mathematical expression recognition. On the other hand, syntax
validation is required to generate a coherent interpretation of a given input. For instance, if an open
parenthesis has been identified at some part of an expression, to have a wvalid expression, a closing
parenthesis should also be identified at some other part, and, the closing parenthesis should be in
the same baseline of the open parenthesis.

As a result of the above issues, even the recognition of a small expression, as the one of Figure 1.3,
may be difficult. The expression in the figure presents ambiguous cases at the three recognition
tasks. Given those ambiguities, a system could generate equally likely interpretations as “Pb < 17,
“pb < 17, “ P47 or “pb4”.

strs

strsy

< |

stro

stry stra

Figure 1.3: Ambiguous mathematical expression. The expression is composed of five strokes, that is

(strq,...,strs). Strokes {stry,strs} could be interpreted as the symbol “4” or as a subexpression “< 17,

{stry, stra} could be interpreted as symbol “p” or “P” and the relation between {stry, stra} and {strz} could
be horizontal or superscript.

An important observation in this problem is that the interpretation of an expression varies
according to the context. For instance, in Figure 1.3, if the strokes {stry, strs} are interpreted as
a symbol “4” it would be more likely that strokes {stry, stra} represent a symbol “P”, rather than
“p”. In fact, contextual information could be used to solve ambiguities. In Figure 1.3, for example,
even though the isolated strokes {stry, strs} seem to represent the symbol “4” if we consider the
whole strokes structure, specifically distances between strokes, it is most probable that the stroke
“<” alone represents a comparator and the other strokes represent the compared subexpressions.

In order to exploit contextual information into a mathematical expression recognition process, a
technique should be able to integrate information related to each of the three subprocesses (symbol
segmentation, classification, and structural analysis) in order to generate a best interpretation of a
given input. The development of a global optimal solution is a main challenge in this problem.

Mathematical notation is formed by a variety of structural organization of its elements (fraction,
subscripting, matrix, case equations, etc). Since being able to deal with all of them at once is a too
complex task, recognizers are often developed restricting structure types. For instance, only recently
matrix-like structures started to be considered in some recognition algorithms (Mouchéere et al.,

2014). In this regard, an ideal recognition method is one that is not tied to particular structures

1.3 THIS THESIS)

or does not impose strong constraints on the recognizable expressions. Such method could then be
applied on new structures without need of modifications.

One of the main difficulties of the evaluation of handwritten mathematical expression recog-
nition techniques has been the lack of publicly available datasets (Lapointe and Blostein, 2009;
MacLean et al., 2011). Although some datasets have been built along the last years (MacLean et al.,
2011; Moucheére et al., 2014; Quiniou et al., 2011), larger datasets are still needed. For instance,
MNIST! is a well-known dataset of handwritten digits, that has been used to evaluate and com-
pare a number of classification techniques. The dataset has about 70,000 samples, for 10 symbol
classes (isolated numbers from zero to nine), having about 7,000 samples per class. In contrast,
the CROHME-2014 dataset (Moucheére et al., 2014) has about 100,000 symbol samples for 101
classes, being the samples per class highly unbalanced (some symbol classes have about 5% of the
samples and others less than 0.1%). The need for more data is also motivated by the wide variety
of structures that should be covered. As an example of this variety, we can consider the different
relative positions between symbols in the expressions “pb”, “pq”, “Pb”’, and “Pq’. Although all the
expressions present an horizontal relation between symbols, the relative positions vary according to
the symbol class. The larger the number of symbol classes and relation types, the larger the dataset
is needed to cover the variety of structures.

One of the main difficulties for the creation of mathematical expression datasets is the task of
attaching ground-truth at different levels of the expressions, that is, stroke, symbol and relation
levels (Lapointe, 2008; Lapointe and Blostein, 2009). Manually attaching symbol labels, and rela-
tions into the expressions is a long time-consuming process. Building a consistent dataset is by
itself a complex problem, which requires addressing issues related to relevance, completeness, and

correctness of the data.

1.3 This thesis

1.3.1 Objectives

In this thesis we study the online handwritten mathematical expressions recognition problem. We
aim to develop an effective and extensible online handwritten mathematical expression recognition
technique.

In order to evaluate the effectiveness of the technique, we measure its performance at different
levels, including symbol segmentation and classification, relation classification and complete expres-
sion recognition. We report a detailed analysis of our technique’s performance and compare it with
state-of-the-art techniques. In addition to the practical analysis, we also analyze our technique,
and compare it with previous works, at an abstract level, considering aspects as the formulation of
the problem, constraints, and limitations. As a secondary goal, we aim to implement a complete
recognition system and release it as open-source.

Part of our work in this thesis is devoted to develop a framework to automatize the creation of
handwritten mathematical expression datasets. We addressed this problem by developing a system
that manages the dataset creation process and a technique to automatically attaches ground-truth
into mathematical expressions. The development of the last technique is a based on a previous work

proposed to labeling handwritten mathematical symbols (Hirata and Honda, 2011).

"http://yann.lecun.com/exdb/mnist/ (visited on 05/05/2016).

http://yann.lecun.com/exdb/mnist/

6 INTRODUCTION 1.3

1.3.2 Key ideas explored in this thesis

In this thesis, we formulate the mathematical expression recognition problem as a parsing prob-
lem. In this formulation, a stroke set str is parsed to generate a parse tree? ¢t that defines a particular
interpretation of str as a mathematical expression. To cope with ambiguities at symbol segmenta-
tion, classification, and structural analysis, the parsing technique generates multiple interpretations
when ambiguous cases arise. We denote the set of all possible interpretations of str as T'(str).
In addition, we define a function cost(t, str) that measures the cost of considering a tree t as an

interpretation of str. The parsing problem then becomes a search for a tree tp.s(str), such that:

tpest(str) = arg min cost(t, str) (1.2)
teT(str)

The recognition process is illustrated in Figure 1.4. The process is composed of two main com-
ponents: (1) hypotheses graph generator and (2) graph parser. The hypotheses graph generator
builds a graph that defines the search space of the parsing algorithm and the graph parser does the

parsing itself.

Symbol segmentation and classification

Stroke groups that are likely to represent symbols are calculated considering distance infor-
mation between the input strokes. This method does not impose time-related constraints, as
in Huang and Kechadi (2007); Lehmberg et al. (1996); Tapia and Rojas (2004).

The classification of symbols of mathematical expressions involves issues not included in the
isolated symbol classification problem. In the first case, classifiers must deal with the identification
of stroke groups that do not represent actual symbols, which does not happen in the isolated case.
Also, when recognizing symbols of mathematical expressions, the neighborhood of an evaluated
symbol may provide additional information to solve ambiguities. This information includes strokes
that do not belong to the evaluated symbol, but that are placed close to it or even crossing over it;
and the relative sizes of symbols of a same expression. For instance, the symbol “.” in an expression
“2.3” could look like a “0”, or “0” if we had a close-up of it, but it would almost always look as a
point if we have a view of the complete expression.

While most approaches treat the classification problem considering symbols as isolated objects,
we make use of the existent information of the context of each symbol. We developed features that
capture this kind of information. Furthermore, in our training scheme, we use those features to
train classifiers to filter out stroke groups that do not represent actual symbols. A main advantage
of the these classifiers is that they enable the development of a more efficient recognition method,

as more wrong symbol interpretations are filtered out at an early stage.

Relation classification

Once symbol hypotheses have been calculated, a relation classifier identifies relations between
each pair of symbols. Similarly to the symbol classification method, we also train relation classifiers

to filter out false spatial relations.

2In an informal way, we could say that a parse tree defines how a grammar generates a specific object.

1.3 THIS THESIS 7

Stroke set: 7:) bL |

<= -

Symbol Segmenter

<L+
e ®O O

@O0 @ -
Hypotheses
‘ graph

™ generator

> Symbol classifier
‘ Symbol
- 4 1 hypotheses

P,p

® ©
!

Ground —> Relation classifier
Truth
) b 4 1 i
Symbol (D Hypotheses
level graph
P,p
— &)
Relation ‘ —
level Graph
\ J Parse forest generator | grammar
Parse forest
[Graph
parser
> Parse tree extractor

Parse tree

Figure 1.4: The recognition scheme of the technique proposed in this thesis. Gray rectangles represent the
main modules that compose the approach.

8 INTRODUCTION 1.3

A main advantage of our filtering approach for symbols and relations is that the filter is
learned from training data, instead of being defined through time order and stroke intersection
constraints (Huang and Kechadi, 2007; Lehmberg et al., 1996; Tapia and Rojas, 2004), nor defining
specific rules for each relation type (MacLean and Labahn, 2013; Zanibbi et al., 2002; Zhang et al.,
2005).

Modeling expressions as productions of a graph grammar

Graphs can model a broad range of two-dimensional structures. Structure components can be
represented as vertices and relations among the components as edges. Vertices can encode attributes
of the corresponding components and, similarly, edges can encode the type of relation between the
two linked components together with relevant attributes of the relation.

In this work, symbols in an expression are represented as vertices and relations among symbols
as edges. For instance, the expression a + b can be represented as a graph vy LA Vo LS vg, where
v1, Vg, V3 are vertices representing a, 4+, and ¢ respectively, and the arrows are edges representing
horizontal relations.

A general model of expressions with similar structures can be written as NT Mop n NT,
where NT means a non-terminal symbol (it could be a subexpression). In a+b, OP would be +,
but other expressions with OP as —, x or / would also be valid expressions.

Thus, a graph grammar describes families of expression structures and any expression that
conforms to the structures are valid expressions under the grammar. Since graphs are flexible enough
to model arbitrary two-dimensional structures, graph grammars are able to model any structures

present in general mathematical notation.

Graph grammar parsing

Graph parsing should be modeled in such a way as to not depend on the particular object being
modeled by the graph. In our case, application independence is achieved by representing elements,
such as vertices and edges, by sets of labels. Thus, for parsing, labels in the graph grammar are
compared to labels previously assigned to the input data, that is also modeled as a graph. Depending
on the grammar restrictions and on the application domain, the labels may vary, but the graph
matching algorithm (that takes into consideration coherence of the labels) does not need to be
changed.

The last point is a useful property of the proposed technique. Since parsing is independent of the
application domain and of particular structures being modeled, extension of the set of structures to
be recognized, or adaptation of the technique to other application domain structures, can be done
by just rewriting the grammar and the set of labels.

A problematic issue in graph parsing is the computational cost (Flasinski and Jurek, 2014).
To mitigate this problem, we propose an input pre-processing step that aims to reduce the search
space in the parsing process. The pre-processing step consists on building a graph, called hypotheses
graph, that defines the structures that can be evaluated by the parsing algorithm. In this graph,
we represent all stroke groups that are likely to represent a symbol as vertices with a set of labels
indicating possible symbol identities. Additionally, for some pair of candidate symbols, we associate
likely relation type labels. If this pre-processing is accurate, then the resulting hypotheses graph

will be the expression graph itself. However, since there may be ambiguous interpretations, both

1.4 THESIS ORGANIZATION 9

in symbol and relation recognition, the graph will likely contain false symbols and relations, and

possibly multiple labels for symbol and relation labels.

1.3.3 Major contributions
The major contributions of this work are:

e A new mathematical expression recognition technique that integrates symbol segmentation

and recognition and structural information into a single process.

— We developed new symbol and relations features that obtain state-of-the-art perfor-
mance. Part of these features aim to capture contextual information. The contextual
features obtain better rejection rates of false symbols and relations, and keep as good
accuracy as state-of-the-art features. Much of our work relative to this contributions has

been originally described in Julca-Aguilar et al. (2014a,b).

— We proposed a graph grammar model for mathematical expressions and a graph
parsing technique that integrates symbol and structure level information. This in-
tegration allows to exploit contextual information within the recognition process.
The proposed technique obtained state-of-the-art performance on the CROHME-2014
dataset (Mouchére et al., 2014). Our work relative to the parsing technique was origi-
nally described in Julca-Aguilar et al. (2015).

— The graph-based representation and the application independence of the parsing method
makes the recognition framework general, in the sense that it can be easily extended to
recognize new structures and also be applied to two-dimensional languages other than

mathematical expressions.

e Empirical evaluation of our proposed techniques on a publicly available dataset and compar-
ison of our results with other approaches. We report a detailed analysis of our results that
help to understand better the recognition achievements and suggest possible paths for further

improvements.

e A gystem for automatic ground-truth annotation of handwritten mathematical expressions.
Using this system, a dataset with 966 handwritten expressions, which contain a total of
20,010 symbols, has been built and released as open source. Our dataset has been joined
to the CROHME-2014 dataset (Mouchére et al., 2014), in order to provide a larger pub-
licly available dataset. Our work relative to these contributions was originally described
in Aguilar and Hirata (2012); Hirata and Julca-Aguilar (2015)

1.4 Thesis organization

In Chapter 2, we review previous works on the recognition problem, dividing them into sequential
approaches, that perform, first, symbol segmentation and classification and then structural analysis;
and integrated approaches, that integrate the three processes into a single process.

Chapter 3 describes the formalization and architecture of our proposed recognition technique.
This chapter focuses on the integration of the modules and gives only a brief description of each of

them. Next chapters give more details of the modules.

10 INTRODUCTION 1.4

Chapters 4 and 5 detail our symbol and relation classification methods, respectively. We de-
scribe the proposed features, training schemes, and report the corresponding experimental results
at symbol and relation recognition levels.

In Chapter 6, we focus on the graph parsing method. The parsing method is divided into two
steps: (1) Parse forest construction and (2) Optimal parse tree extraction. The first step aims to
determine all possible interpretations of the input. The interpretations are stored in a parse forest,
in which an alternative interpretation is represented by a parse tree. The second step traverses the
parse forest to extract a best tree according to a ranking function. We propose a ranking function
that linearly combines costs assigned to symbol and relations that compose the parse trees.

Chapter 7 analyses the experimental results relative to the mathematical expression recognition
method. To comprehensively evaluate the method, we consider performance metrics at symbol,
relation, and complete expression levels.

We describe our work on a framework to build mathematical expressions datasets in Chapter 8.
It includes an analysis of desired qualities that a dataset must have in order to allow effective
performance evaluation; and a description of our proposed framework, a system that implements
the framework, and a dataset built using such system.

Finally, Chapter 9 gives the conclusions and some thoughts on future work; and Chapter 10

presents an extended French abstract of the thesis.

Chapter 2

Previous work

Research on recognition of handwritten mathematical expressions dates back to the end of the
60’s (Anderson, 1968). Although there was relatively less research in the following thirty years, since
the 90’s, active research has been carried out, probably due to the widespread availability of touch
screen devices and more powerful computing resources.

In this chapter, we review the previous works on recognition of handwritten mathematical

expressions, dividing them into:

e sequential approaches: that perform the three recognition processes sequentially, that is, first

symbol segmentation and classification, and then structural analysis; and
e integrated approaches: that integrate the three processes into a single process.

This review does not aim to give an exhaustive description of all the proposed tech-
niques, but to give an overview of previous works that served as basis to this work, and
with emphasis on open problems. Additional details about previous works can be found in
the surveys Blostein and Grbavec (1997); Chan and Yeung (2000); Plamondon and Srihari (2000);
Tapia and Rojas (2007); Zanibbi and Blostein (2012).

A number of the proposed methods for recognition of mathematical expressions are based on
parsing techniques. To support the explanation of those methods, we overview some basic concepts

on parsing.

2.1 Background on parsing

A linear representation is a sequence of objects or events, as a string (or sentence), a computer
program, actions on a ritual behavior, etc. A language of linear representations may be defined by a
grammar. We will refer to those kinds of grammars as string grammars. Parsing is generally defined
as the process of structuring a linear representation in accordance with a grammar.

A grammar is a 4-tuple (N, T, I, R) such that:

e N is a finite set of symbols, called non-terminals;
e T is a finite set of symbols, called terminals;

e NNT = 0;

11

12 PREVIOUS WORK 2.1

e R is a set of pairs (P,Q), called production or rewriting rules, such that P € (NUT)* and
Q € (NUT)* and

e I, I € N, is called start or initial symbol.

Figure 2.1(a) shows a grammar example. The grammar is composed of seven production rules
and defines a language of lists of names separated by “,” or “and”. Each rule (P, @) of the grammar
is denoted as P — @. In any rule P — @, we refer to P and @ as the left-hand side (LHS) and
right hand side (RHS) of the rule, respectively. The symbol “|” in a RHS of a rule separates symbols
of different rules that have a same symbol in the RHS. For instance, the notation “Name — tom |
dick | harry” represents three rules: “Name — tom”, “Name — dick”, and “Name — harry”.

The structure of a linear representation, that is in accordance with a grammar, can be repre-
sented by a parse tree. Figure 2.1(b) shows a parse tree of the string “tom, dick and harry”, consider-
ing the grammar of Figure 2.1(a). The structure defines hierarchical partitions of the string. These
partitions are defined by grouping adjacent elements of the string into substrings or subexpres-
sions. In the example, a first level partition (derived from the node labeled with the start symbol
“Sentence”) divides the input into three parts: “List”, that includes the substring “tom, dick”; “and”,
that includes “and”; and “Name”, that includes “harry”. The substring that corresponds to the sym-
bol “List” is further divided until obtaining substrings that correspond to terminal symbols of the
grammar. To build a parse tree, a parse algorithm must determine which partitions of the string

may match with the grammar rules.

0. Hame — tom | dick | harry
l. Sentence. —> Name | List and Name
2. List == HName , List | Name

(a)

Sentence;|

1
dic}' an}'- arr?}

(b)

Figure 2.1: (a) A Grammar and (b) a parse tree built with the grammar. The elements of the gram-
mar are N = {Name, Sentences, List}, T = {tom,dick, harry,and,,}, R is composed of the seven rules
(“I” separates rules with the same non-terminal in the left hand side), and I = Sentences. Extracted
from Grune and J.H (2008).

2.1 BACKGROUND ON PARSING 13

Grammars are generally classified according to the Chomsky Hierarchy (Chomsky, 1956). Among
the classes in that hierarchy, context-free grammars are probably the most commonly used gram-
mars Grune and J.H (2008). Context-free grammars contain only rules that have a single non-
terminal on their LHS. The grammar of Figure 2.1(a) belongs to the context-free grammar class.

Some reasons that justify the use of context-free grammars include:

e Production independence. The production of each parse tree node does not depend on what
its neighbors produce. For instance, in Figure 2.1, the node “List”, child of “Sentence”, does
not depend on the string “and harry”. Thus, a parsing algorithm can be applied to different

parts of a string, and the resulting subtrees can be joined into a single tree.
e Large types of languages covered.

e Efficient parsing is possible (O(n3), where n is the number of elements of the linear repre-
sentation). Some algorithms that achieve such efficiency use grammars in a Chomsky Normal
Form (CNF). In such grammars, all rules either have the form A — a, or A — BC, where a

is a terminal and A, B, and C are non-terminals.

Parsing techniques provide a number of benefits when processing a linear representation. First,
the result of the parsing (generally a parse tree) allows to process the input further, considering
the structure found. Second, a grammar allows to represent our understanding or knowledge of the
representation. Prior knowledge could then be introduced through the grammar. Third, parsers can
provide completion of missing information (Grune and J.H, 2008).

Parsing techniques have also been proposed to recognize handwritten mathematical expressions.
However, before applying these techniques, the grammar or the input data should be adapted to
cope with the two-dimensional nature of the expressions. While in a linear representation each of
its elements is adjacent only with another one horizontally (at left or right), in a mathematical
expression elements can be adjacent to others horizontally, vertically, or diagonally. The multiple
adjacency types (relation types) of mathematical expressions break the typical left to right order of
elements of a string, and, as a result, increment the number of possible partitions of the elements

into subexpressions.

2.1.1 CYK algorithm

Most of the parsing algorithms for mathematical expression recognition are based on the CYK
algorithm, attributed to J. Cocke, D.H. Younger, and T. Kasami. An original description of the
algorithm is given in (Younger, 1967).

The CYK parsing is a dynamic programming method that consists on building a parse tree
starting with the bottom nodes (being the leaves the bottom-most nodes) and combining the partial
subtrees until obtaining the complete parse tree. The algorithm has been widely used to parse
linear representations, specially when parsing ambiguous languages, that is, when a same input
may generate several parse trees through parsing.

The CYK algorithm involves two steps. In the first step, a table that indicates which non-
terminals derive specific parts of the input (terminals) is constructed. In the second step, the non-
terminals of the table are recursively combined to form all possible parse trees that can be derived

by the grammar. Figure 2.2 shows an example of the CYK algorithm proposed in Yamamoto et al.

14 PREVIOUS WORK 2.2

(2006) for recognition of mathematical expressions. The example uses the grammar shown in Fig-
ure 2.3. The input is an ordered set of strokes (considering input time). The input time is used to
define an order of the strokes, so that this order allows the partitions to be calculated as in the case
of a linear representation. The algorithm calculates the parsing of subexpressions (sets of strokes)
from the smallest to the largest ones: first subexpressions of length 1 (at the bottom part of the
table or matrix), then subexpressions of length 2 (second line starting from the bottom part of the

table), and so on.

Matrix(1,6)

[EXP] XY+2 :0.0000001
[SYM] x¥-12 : 0.00000005
[EXP] xy+2 : 0.00000001

Matrix(1,5) Matrix(2,6)

XOPlx%+ :0.000001 | (EXP1C¥%2 :0.000001
XOP|xy+ :0.0000005 | (EXP)CYT2 :0.0000005
[EXPlxy-1 :0.0000001 | 1symjC*™ :0.0000001

Matrix(1,4) Matrix(2,5) Matrix(3,6)

[XoP]x¥- :0.00003 | (xoP1C"+ :0.00001 | (EXP)y+2 :0.00001
[XoP] xy- : 0.00001 | (EXPICYT :0.000005 | (SYM]y,, :0.000005
(ExP] C* :0.000001

Matrix(1,3) Matrix(2,4) Matrix(3,5) Matrix(4,6)

sYM]xY :0.0003 | XoP]C¥- :0.0005 | xoPjy+ :0.0001 | [Num]-12 :0.0001
[EXPlxy :0.0001 | XoP]Cy- :0.0003 | [SvMiy, :0.0001 | 1SYmiTz :0.0001

[EXP] y-1 : 0.0001
Matrix(1,2) Matrix(2,3) Matrix(3,4) Matrix(4,5) Matrix(5,6)
isYymix :0.005 |isymC’ :0.005| xorjy-:0.01 [oP) + :0.005 | (Num112 :0.01

[symjCy :0.003 isymiT :0.002

[XRPAR] (y : 0.003 [NUM] -1 : 0.001
Matrix(1,1) Matrix(2,2) Matrix(3,3) Matrix(4,4) Matrix(5,5) Matrix(6,6)
[RPAR]) :0.2 [RPALI(:0.1 sYm) v : 0.1 oprp- :0.2 (NuM)1 :0.2 INUmM] 2 :0.2
x 101 X, :0.1 + 101 +, 101 isymz :0.1

[sYMjC :0.1 Ty :0.1 T, :0.1

Figure 2.2: CYK parsing example. Extracted from Yamamoto et al. (2006)

The CYK algorithm applied to an arbitrary grammar is exponential in the maximum number of
elements of the RHS of the production rules. This complexity is cubic if the grammar is transformed
to a Chomsky Normal Form (CNF), as it has no more than two elements in the RHS. Although any
context free grammar can be transformed into a CNF, this transformation increments the number

of production rules, which may be not desirable in some applications (Lange and Leifs, 2009).

2.2 SEQUENTIAL APPROACHES 15

No. Generation rule Logical Relationship ‘ Notes

1 EXP — SYM

2 EXP — EXP SYM Right

3 SYM - SYM EXP Upper Right *
4 SYM - SYM EXP Lower Right *

5 FUNC — FUNC EXP Upper

6 FUNC — FUNC EXP Lower

7 DLINE — LINE EXP Lower

8 NLINE — LINE EXP Upper *x
9 SYM — DLINE EXP Upper o
10 SYM — NLINE EXP Lower

11 SYM — ROOT EXP Inside

12 SYM — ACC EXP Accent * e
13 SYM — ACC SYM Accent wr
14 XRPAR - EXP RPAR Right o
15 XLPAR — EXP LPAR Left

16 SYM — XRPAR LPAR Left

17 SYM — XLPAR RPAR Right

18 SYM - alble|---

19 FUNC — lim| Y, |max|---

20 LPAR — -

21 RPAR — YITIY] e

22 f - h f2 Same Symbol

23 X — X1 X2 Same Symbol

24

25 a — HS

26 f — HS

27 FranLine — HS

28

Figure 2.3: Ezample of grammar used in Yamamoto et al. (2006). Rules marked with * cannot be applied
iteratively. ** means that the writing order of the 2 symbols can change and that the rules with permutation
of the order are included. Abbreviated names of expression elements are as follows: EXP: expression, SYM:
symbol, FUNC: function, LINE: fraction line, DLINE: fraction line with denominator, NLINE: fraction line
with numerator, ROOT: root sign, ACC: accent, RPAR: right parenthesis, LPAR: left parenthesis, XRPAR:
expression with right parenthesis, XLPAR: expression with left parenthesis, HS: handwritten stroke.

2.2 Sequential Approaches

In Chou (1989), the author proposed a two-dimensional stochastic context-free grammar and a
parsing technique for recognition of printed mathematical expressions. The grammar is assumed
to be in CNF. Each production rule of the form A — BC' includes a flag that indicates if there is
a vertical or horizontal relation between B and C'. The probability distributions of the rules are
calculated from training data, using a technique called Inside/Outside algorithm. The probability
of a parse tree is given by the product of the probability values of its rules.

The parsing technique proposed in Chou (1989) is an adaptation of the CYK algorithm. The

algorithm consists in evaluating horizontal and vertical partitions of the input. For example, for the
o0

[o¢]

. . T2 1 oL . . . T2 1

input expression & = > lp, it is first horizontally decomposed into factors %-, =, > X and -5
n= n—=

(considering a factor as as subexpression that can not be divided horizontally). These factors form

1
2

oo
the basis of the recognition table. Factors, %2, > and can still be divided vertically and the

n=1
corresponding vertical production rules are applied to get the parsing results for each factor. The

parsing results of the factors are joined to get the result of the complete expression.

16 PREVIOUS WORK 2.2

In Koschinski et al. (1995) and Winkler et al. (1995), the probability of grouping strokes into
symbols (segmentation) is calculated by using the minimum distance between the strokes, the
portion of the intersection of their corresponding bounding boxes and also shape features. Different
segmentations are stored in a symbol hypotheses net, in which a node represents a stroke group
and a path from the first node to the last one represents a complete segmentation (Figure 2.4 shows
a symbol hypotheses net). The probability of each stroke group being a specific symbol (symbol
classification) is given by a Hidden Markov Model classifier. The probabilities given by the classifier
and the segmentation step are combined to select the best segmentation and classification. The
structural analysis process starts by aligning the symbols from left to right, to create a directed
graph with linear structure. The edges are then classified as vertical, subscript, or superscript
relations, using relative position of the symbol bounding boxes. The syntactic validation of the
resulting graphs, that represent the mathematical structure, is performed by the Mathematica
system (Buchberger, 1993).

Figure 2.4: (a) Input expression and (b) symbol hypotheses net. Extracted from Koschinski et al. (1995)

In Matsakis (1999), symbol segmentation and classification is formulated as a constrained search
for a stroke partition with a minimum cost. The proposed constraint aims to avoid evaluating all
possible stroke partitions. A minimum spanning tree is built using the strokes of the input expression
as vertices and the distances between the strokes centers as edge costs. The search algorithm then
considers only parts (stroke groups) that consist of strokes that form a connected component in
the tree. Using an artificial neural network classifier, a cost is assigned to each part. This cost
represents the likelihood of the part being a specific symbol and the cost of a partition is defined as
the sum of the costs of all its parts. Then, the symbol classification and segmentation is determined
by selecting the partition with the lowest cost. The structural analysis begins by selecting a “key”
symbol — a symbol that is neither a superscript or subscript of another, nor an argument of any
operator — from the symbols given by the stroke partition. The selection is based on hand-made
rules, like picking the widest symbol in case of several options. Once the key symbol is chosen, all
the other symbols are grouped according to their relations relative to the key symbol. The relations
are calculated using relative positions between the symbols bounding boxes. The process is repeated

in each group of symbols.

2.2 SEQUENTIAL APPROACHES 17

The work of Zanibbi et al. (2002) considers that symbols are already segmented and classified
and focus only on the structural analysis task. The proposed approach builds the mathematical
structure by recursively extracting baselines, where a baseline is a linear horizontal arrangement of
symbols perceived as adjacent each other. The process is divided into three steps. In the first step,
symbols are sorted by their minimum x coordinate, and scanned from left to right to determine the
relations between each pair of consecutive symbols. This step determines a sequence of symbols that
are linked by horizontal relations, that is a baseline. Symbols that do not belong to the baseline are
grouped into regions (for instance, those that form superscript and subscript regions) relative to
symbols in the baseline. Thus, the baseline extraction process is recursively applied to symbols in
each region. The second step identifies composed symbols (symbols composed of other symbols in
the same baseline, for instance, “sin” and “cos”) and structural symbols (symbols defined in different
baselines, for example, a fraction symbol). The final step determines the order of the application of
the mathematical operations.

In Tapia and Rojas (2004) and Tapia (2004) a visual approach is used to segment symbols: two
strokes are considered as belonging to the same symbol if there is intersection between them. The
structural analysis is based on the recursive baseline extraction method of Zanibbi et al. (2002),
but includes a minimum spanning tree of symbols to cope with ambiguous relations.

To identify the relations between pairs of symbols, the approaches described above calculate
regions specific to each relation type. That is, given a pair of symbols A and B, the relation of B
relative to A is determined by the region relative to A in which B belongs. Figure 2.5 illustrates
regions relative to a symbol. The limits of the regions were determined by hand. A main problem of
the approach is that (given the handwritten nature of the data) some symbols may lie in ambiguous
regions or even in a region that does not correspond to the real relation. In addition, the manual
definition of the regions makes difficult to scale the approach to recognize new structures.

To cope with symbols that lie in ambiguous regions, in Zhang et al. (2005), the authors pro-
posed to calculate fuzzy regions around symbols. Figure 2.6 illustrates the calculation of fuzzy
regions around a symbol. The fuzzy regions are used to assign a confidence value to each possible
relation. This technique is integrated into a structural analysis algorithm based on the baseline
extraction approach of Zanibbi et al. (2002). In this case, when comparing the relation of a symbol
B relative to A, if B belongs to an intercepting region of A, two baselines are created, one per each
corresponding relation. As multiple structures may be considered, this method is able to generate
several interpretations of the input. The best interpretation corresponds to the one that has a high-
est confidence value, where the confidence value of an interpretation is computed as the product of
the confidence values of the spatial relations used in the interpretation.

Although the work of Zhang et al. (2005) helps to cope with the ambiguity in relations, it
still assumes that symbols are correctly segmented and classified. This is a main drawback of
the approaches that perform recognition as a pipeline process, as the errors in segmentation and
classification are propagated to the structural analysis step.

A first way to get rid of the pipeline limitation is to select several possible segmentations and
classifications, build expression structures for each segmentation and select the most probable result
based on a probability associated with the three processes. Another approach consists of doing the
search for segmentations at the same time of building the structure: a set of symbol hypotheses may

be generated and a structural analysis algorithm may select the best hypotheses while building the

18 PREVIOUS WORK 2.3

ABOVE
. HOR
BELOW

Open Bracket Non-Scripted

UPPER

LOWER

Variable Range Plain: Ascender Plain: Descender

ABOVE BUPER _____\.: sUPER
Plain: Centered Plain: Centered

(Close Bracket)

Figure 2.5: Spatial regions relative to symbols. Extracted from Zanibbi et al. (2002)

structure. This process can be aided by syntactic information to prune segmentations or classifi-
cations that may generate wrong expressions from the syntactical point of view. Some techniques

proposed to integrate the three processes are discussed in the next section.

2.3 Integrated approaches

Integrated approaches for recognition of mathematical expressions generally use string pars-
ing techniques (Alvaro et al., 2011, 2012; Awal et al., 2009, 2010b; MacLean and Labahn, 2013;
Yamamoto et al., 2006). In these approaches, mathematical expressions are considered as objects
generated by a grammar. The main goal of these approaches is to solve the ambiguity in symbol seg-
mentation and recognition using the grammatical structure of the whole expression. As the elements
in mathematical expressions do not necessarily follow the linear structure of strings, constraints are
introduced to make possible the application of the string parsing methods. However, the constraints
and the linear structure of the grammars make difficult to extend them to include new expression
structures.

In Yamamoto et al. (2006), a production rule defines a structural relation between symbols or
a composition of two sets of strokes to form a symbol. A probability value is associated with each
rule application. Then, the search for the most probable expression that can be generated by the
grammar is done through a CYK algorithm. By keeping the most probable subexpressions in each
CYK iteration, the algorithm is able to obtain several possible results. A main drawback of this
method is the assumption that symbols are composed only of consecutive (in time) strokes.

In Awal et al. (2009, 2012), the recognition problem is formulated as a joint optimization of sym-

bol segmentation, recognition, and structural analysis, considering grammar restrictions. A symbol

2.3 INTEGRATED APPROACHES 19

i sl
ABOVE SUFER
sp
TLEFT:
SUPER/ |
HOR .
L
S ub
HO n
HOR - 13w
I~
SUBSC/ N N
HOR : e
BLEFT ; ~
pas sh
TBELOW SUBSC
0 L0
-------- Membership Function of super set
Membership Function of inline set

= === Membership Function of subsc set
Thresholds

Figure 2.6: Fuzzy regions associated with a symbol. Intersection of the fuzzy regions define as ambiguity
zones.

hypotheses generator defines stroke groups that might represent symbols (symbol hypotheses). A
symbol classifier is used to assign a recognition cost to each symbol hypothesis. Then, a 2D parsing
(CYK adaptation) is applied over the symbol hypotheses to form several possible mathematical
interpretations. The grammar proposed in their approach consists of a set of one dimensional rules
on both vertical and horizontal axes. Those rules are applied until elementary symbols are reached,
resulting in a top-down approach. The relation between subexpressions are calculated using Gaus-
sian models derived from training data. A baseline coordinate y and hypothesis height h of each
symbol hypothesis is used to perform contextual evaluation. Those features are calculated differ-
ently, depending on the type of symbol (a symbol a has different baseline coordinate than a symbol
y). Using the baseline coordinates and the hypotheses height, they define a normalized position
(dy) and size difference (dh) for each element of a relation (for example, subscript has two ele-
ments/subexpressions, base and power). Two gaussian models, one for dh and other for dy, are then
constructed for each element of a relation. For each relation R, 2N Gaussian models are constructed,
where N is the number of elements of the relation, that can be 2 (as in a subscript relation), 3 (as
in a binary operator) or 4 (as in an integration f; c).

In MacLean and Labahn (2013), the authors propose a fuzzy relational context free grammar
(fuzzy -CFG) and a top-down algorithm to parse mathematical expressions. The grammar defines
production rules of the form: A - A;As... Ay, where r indicates a relation between adjacent

elements of the RHS of the rule. For example, an integration is defined with two rules:
[INTEGRAL] = [ILIMITS|[EXPR]d[V AR,

[ILIMITS] % [EXPR] [[EXPR],

where the arrows over the symbol — indicate an horizontal relation in the first rule and vertical
relation in the second. Figure 2.7 shows a simple grammar example of MacLean and Labahn (2013).

The parsing technique of MacLean and Labahn (2013) is based on the Unger’s algorithm (Unger,
1968). The algorithm consists on recursively calculating stroke partitions according to the grammar
rules, starting from the rule derived from the start symbol until the rules that generate terminals.

An advantage of this algorithm is that it does not constrain the grammar to be in a CNF.

20 PREVIOUS WORK 2.3

[ST] = [ADD] | [TRM]

[ADD] => [TRM] + [ST]

[TRM] = [MUL] | [SUP] | [CHR]
[MUL] = [SUP] [TRM] | [CHR] [TRM]
[SUP] % [CHR] [ST]

[CHR] = [VAR] | [NUM]

[VAR] = a | b|---| 2

[NUM] = 0| 1]---]9

Figure 2.7: Fuzzy r-CFG example. Extracted from MacLean and Labahn (2013)

To limit the number of stroke partitions, MacLean and Labahn (2013) associated either a ver-
tical or horizontal ordering constraint with each production rule. These constraints require that all
elements of a stroke set associated with an element A; in the RHS of a rule begin — vertically or
horizontally, depending on the rule’s order — before any element of a stroke set associated with A;y1.
According to the authors, a problem of this constraint is that it might prevent from evaluating some

valid partitions. Figure 2.8 shows an expression violating the ordering assumption.

Z‘fhb—‘b
07C

Figure 2.8: An expression violating the horizontal ordering assumption. The summation and its arguments
must start before Y, but the letter C'— in the argument of the summation — begins after Y .

Considering the grammar of Figure 2.7, and an input expression A* + b, the parsing algorithm

would work as follows:

1. From each production rule with the initial non-terminal [ST] in the LHS, all right hand sides
are evaluated, that is, [ADD| and [TRM].

2. Considering that the rule with LHS [ADD] is associated with a horizontal order, the valid

horizontal partitions to that order are:

Table 2.1: Horizontal partitions

Part 1 ‘ Part 2 | Part 3

Ax + b
A X+ b
A X +b

Fach partition is then evaluated as in step 1, but considering rules that have its corresponding
non-terminal ([TRM] for part 1, + for part 2, and [ST] for part 3) in the left hand side,

2.3 INTEGRATED APPROACHES 21

instead of [ST]. For each partition, if one part fails, then the whole partition fails. The process

is similarly applied for [TRM].

To determine the likelihood of applying a production rule, MacLean and Labahn (2013) in-
troduced scores based on fuzzy sets. Fuzzy binary functions determine the degree in which two
adjacent elements of the RHS of a rule are compatible with the relation associated with the rule.
Then, the compatibility of the application of a rule is given by the multiplication of the compatibil-
ity of each adjacent pair of elements of the RHS. For a parse tree result, the compatibility is given
by a normalized product of the compatibility scores of its production rules.

The algorithm of MacLean and Labahn (2013) follows a top-down technique because it builds
a parse tree from the start symbol (non-terminal) to the leafs. According to Anderson (1968), top-
down techniques provide a natural way of hypothesizing the global properties of a configuration at
an early stage (when analyzing rules that derive from the start symbol) of the recognition procedure.
This allows to avoid generating tree nodes that can not be reached from the start symbol, which
are nodes that will not be part any valid parsing tree. In addition, MacLean and Labahn (2013)
argue that, in practice, when comparing their top-down implementation with a bottom-up (CYK),
they obtained better results, in terms of efficiency, using the first approach.

Alvaro et al. (2012) propose a stochastic context-free grammar and a CYK-based algorithm.
The grammar is defined similarly to MacLean and Labahn (2013), but, as a constraint imposed
by the CYK algorithm, rules have only up to two elements in the RHS. The approach assumes
that symbols are formed only by strokes that intersect each other (in an image rendered from the
strokes). To recognize symbols that do not have intersecting strokes, like “i” and “j”, the authors add
grammar rules to model those symbols. For instance, in the case of ‘i, they add rules that define

73
1

a vertical relation between the body of “©” and the point. To calculate the likelihood of applying a
rule, geometric features were extracted from the bounding boxes of the two stroke groups associated
with the two elements of the RHS of the rule. These features were used to train Support Vector
Machine classifiers and the output of these classifiers were then expressed as posterior probabilities.

In Celik and Yanikoglu (2011), the authors proposed a recognition framework that uses a graph
grammar to model mathematical expressions. Although the technique provides a more flexible
model than string grammars (thanks to the graph-based representation that does not assume a
linear structure of the elements in a RHS of a rule), the technique was limited to recognize only
some constrained structures due to efficiency issues.

The grammar of Celik and Yanikoglu (2011) consists of production rules of the form: r =
(9r,91,C) where g; is a pattern graph, g, is a single node graph that will replace g; and C is
an applicability predicate. The predicate defines angle and distance constraints that must be sat-
isfied for the application of the rule. A rule r is then applied if a graph g¢,,, which matches g; and
satisfies, C is found. The patterns g; are defined as star graphs: a graph that has a central node, and
surrounding nodes connected only to the central node. Figure 2.9 shows sample rules. A side effect
of the constraint imposed in the rules’ structure is that it prevents the grammar from modeling
relations between subexpressions; as in expression (a + b)(xﬂ’), that contains a superscript relation
between the subexpressions (a + b) and (z + y).

Celik and Yanikoglu (2011) assume that symbols are correctly segmented, with alternative labels
for each segmented symbol. Once symbols are segmented, an initial graph is created by constructing

edges between the symbols. The edges are created considering distances and adjacency constraints,

22 PREVIOUS WORK 24

re [ala™ H+Ha|a™]—[a+a]

Figure 2.9: Sample rules of Celik and Yanikoglu (2011), The symbol “|” indicates that any of the symbols
at their sides may be a label of the vertex.

and do not define specific relations, like superscripts or vertical relations. Those relations are defined
when the production rules are applied.

The parsing algorithm follows a bottom-up approach: at each iteration, all possible rules are
evaluated, and for each applied rule, a new node is created. After evaluating all production rules,
new edges between the new nodes are created. In addition, the new nodes inherit edges from their

component nodes. Figure 2.10 shows iterations of the parse algorithm.

2" round:

Figure 2.10: Parse algorithm of Celik and Yanikoglu (2011)

For experimentation, Celik and Yanikoglu (2011) built a grammar with 17 production rules, as

2

well as additional rules to represent symbols written with non-overlapping strokes, like “=" and

[13

=", The dataset included up to 30 symbols per expression. Although the grammar was relatively

small in terms of structure and symbol classes, the authors reported time out problems.

2.4 Discussion

To the best of our knowledge, until about five years ago there was no large publicly available
datasets of online handwritten mathematical expressions. The approaches developed before that
(most of the sequential approaches) were then evaluated on small sets of expressions, created by
their own authors. This prevented the comparison between more recent approaches, that gener-
ally consider an integrated process, and the sequential approaches. However, taking into account
the ambiguity issues inherent to handwritten data, integrated approaches seem to be more natural
techniques to treat the recognition problem. While the sequential approaches take isolated deci-
sions in the segmentation and classification steps, the integrated methods keep a list of probable
segmentations and classifications and determine the best of them considering the whole expression

structure.

24 DISCUSSION 23

Grammars provide effective models to integrate contextual information into the recognition pro-
cess and to formally define the language that can be recognized by a technique. Parsing algorithms
allow to restrict the recognition process to interpretations that are valid according to a grammar.
For instance, they allow to easily express that if an open parenthesis has been recognized, a closing
parentheses should be recognized too. If no strong constraints are imposed to a grammar and its
corresponding parsing algorithm, a technique could recognize new structures by adding grammar
rules that model those structures.

Most grammars used to represent mathematical expressions are based on grammars to
parse strings (Alvaro et al., 2012; Anderson, 1968; Chou, 1989; MacLean and Labahn, 2013;
Yamamoto et al., 2006). However, as these grammars were originally designed to represent only
horizontal relations between symbols, it is difficult to extend the model to represent languages with
multiple relation types. With regard to parsing algorithms, most of them follow a pure bottom-up
approach; for instance, different adaptations of the CYK algorithm can be seen in Alvaro et al.
(2012); Awal et al. (2009, 2010b); Simistira et al. (2015); Yamamoto et al. (2006).

The disadvantages of pure bottom-up algorithms have been deeply studied in the problem of
parsing of linear representations. In that problem, instead of using pure bottom-up algorithms,
the parsers usually incorporate a top-down component to avoid the generation of unnecessary
nodes (Grune and J.H, 2008). The Earley algorithm is a well-known algorithm that follows this
approach. The top-down component of that algorithm uses the grammar rules to determine which
nodes are not needed to build a valid parse tree, according to the already parsed elements. The
algorithm has shown to be experimentally more efficient than the CYK (Grune and J.H, 2008) and
does not constrain the grammar to be in CNF. Developing a 2D parsing algorithm considering the
key ideas of the Earley algorithm could improve the efficiency of current CYK parsers of math-
ematical expressions. Another alternative to the CYK that avoids the generation of unnecessary
nodes is the top-down Unger’s algorithm (Unger, 1968). When considering parsing two-dimensional
data, Unger’s algorithm seems to be a more adequate option than Early algorithm. While the first
processes the input elements in an arbitrary order (non-directional parsing), the second processes
each input element following a specific order (directional parsing), which is possible in the case of
strings, but is not (directly) in the case of mathematical expressions.

Graph grammars (Pflatz and A., 1969) provide a natural model to represent mathematical ex-
pressions: sentences (mathematical expressions) can be represented as labeled graphs, where vertices
represent (terminal) symbols and edges represent relations among symbols. As arbitrary relations
can be expressed as edges, the model provides a flexible representation, so that it is easy to extend
a particular grammar to define new structures. On the other hand, if no strong constraints are
imposed, a similar parsing technique can be used to recognize different two-dimensional languages,
as handwritten chemical expressions and diagrams. However, the general representation of graph
grammars comes with a considerable increase on the computational cost of the parse algorithm. This
has been shown experimentally in Celik and Yanikoglu (2011), where a small application presented
time out failures.

Although graph grammars have been successfully used in a number of small-scale applications,
it remains as an open problem to see if they scale up (Flasinski and Jurek, 2014). As a parsing
algorithm may introduce restrictions on the grammar, both the algorithm and the grammar should

be designed in such a way to obtain an efficient parsing, but without reducing the power of repre-

24 PREVIOUS WORK

sentation or generalization of the grammar.

24

Chapter 3
The proposed recognition framework

This chapter describes the formalization and architecture of the proposed approach for online
handwritten mathematical expression recognition.

The proposed approach integrates the three recognition processes — symbol segmentation and
recognition and structural analysis— into a graph parsing technique. This technique models mathe-
matical expressions as directed graphs generated by a graph grammar. Given an input set of strokes,
the parsing technique then determines a parse tree that represents an interpretation of the input
as a mathematical expression graph.

The proposed approach integrates several modules that aim to solve specific aspects of the
recognition. To make the explanation clear, this chapter focuses on the integration of the mod-
ules and gives only a brief description of each of them. Further chapters give more details of the
modules. We will refer to those chapters accordingly. Before we explain the recognition technique
itself (Section 3.3), we introduce the graph grammar formalization (Section 3.1), and the parse tree
structure (Section 3.2). At the end of the chapter, we discuss the differences between our technique

and those previously proposed in the literature (Section 3.4).

3.1 Graph Grammar to model Mathematical Expressions

Graph grammars were proposed as a method to define languages whose sentences are digraphs
(or directed graphs) with symbols (labels) at their vertices (Pflatz and A., 1969). In this Section,
we define a context-free graph grammar to generate mathematical expression graphs. To clarify the

explanation, we illustrate the general model with a small grammar example.

3.1.1 A context-free graph grammar for mathematical expressions

Similarly to string grammars, a context-free graph grammar is defined by a tuple M =
(N,T,I,R), where:

e N is a set of non-terminal symbols (or non-terminals);
e T is a set of terminal symbols (or terminals), such that N N T = (;
e [is a graph, called initial or start graph; and

e R is a set of production, or rewriting, rules.

25

26 THE PROPOSED RECOGNITION FRAMEWORK 3.1

While in string grammars a production rule defines the replacement of a string by another
string, in graph grammars a production rule defines the replacement of a graph by another graph.
We denote the left hand side (LHS) graph of a rule r as LHS(r), and the right hand side graph
of r as RHS(r). A graph grammar is context-free if for each rule r, LHS(r) is a single vertex
graph (Pflatz and A., 1969).

Figure 3.1 shows a small context-free graph grammar to model mathematical expressions. The
terminals of the grammar correspond to mathematical symbols. The vertices of each graph represent
subexpressions, which are labeled with terminal or non-terminal symbols, and the edges represent

the spatial relations between the subexpressions.

ME TRM |, OP L TRM opP + <
r1 Q —» O >0O0——=0 r7..r10 QO —_— O ‘ O
TRM > -
r-2 O o | O
TRM TRM | CHAR
rr3 O —p CHAR a z
TRM , CHAR r11.r73 Q =——p O .. O
r-4 (H) A 2
TRM CHAR
523 6.6
CHAR
r-6 O " O

Figure 3.1: Graph Grammar example. Black arrows separate the replaced and replacing graphs of the rules
and gray arrows represent the edges of each graph. The elements of the grammar are: non-terminals N={ME,
TRM, OP, CHAR}, terminals T = {+,-, <, >, a, ...,z, A, ..., Z, 0, ..., 9}, initial graph I corresponds
to the left hand side graph of rule r-1, and rules R = {r-1, ..., r-73}.

As it can be seen in Figure 3.1, vertices and edges of all graphs are labeled. For each rule’s graph
G = (Vg, Eg), we define its vertex labels by a mapping function a: Vg — N UT, and edge labels by
a mapping function 8: Eq — SR, where SR is a set of structural relation labels. In the grammar
of Figure 3.1, SR only includes the following labels: superscript (sp), subscript (sb) and horizontal
(h). We say that a graph G’ = (Vr, E¢r) is generated by a graph grammar M = (N, T, I, R) if G’
can be derived from the initial graph I, by applying a sequence of rewriting rules, and labels of Vi
all belong to T

In string grammars, rewriting rules of the form A — B are used to define the replacement of
a string A by another string B. This replacement is defined by a concatenation of substrings: the
replacement of B by A in a string of the form w = aAf (that is, a string that contains A as a
substring) produces another string w’ = aBj.

As mentioned above, in graph grammars, a rewriting rule defines a replacement of a graph by
another. In this case, a concatenation becomes an operation that connects the replacing graph with
a host graph and the way in which the concatenation is done must be specified for each rule. Thus,
given a graph A that is a subgraph of a host graph w, a rule that defines the replacement of A by
another graph B must specify how B is attached to the difference w — A. This attachment could
be done, for example, by inserting edges between some vertices of B and others in w — A. Such
specification is called embedding.

The embedding specification depends on the language to be generated. To define the embedding

rule for our mathematical expressions graph grammar, we introduce the following definitions over

3.1 GRAPH GRAMMAR TO MODEL MATHEMATICAL EXPRESSIONS 27

the digraphs of production rules:

e Baseline. A baseline of a digraph is a path whose vertices are connected by edges that
only have horizontal (h) labels (this definition can be seen as a graph version of the baseline
definition of Zanibbi et al. (2002)).

e Nested baseline. A baseline is nested to a vertex v if the baseline is connected to v by an

edge (v,?'), where v’ is the first vertex ! of the baseline.

e Dominant baseline. The dominant baseline of a digraph is a baseline that is nested to no

vertex.

We then define the following embedding for all rules of a grammar of mathematical expression.
Let r = X9 — X1 ... X} be a rule, where X denotes the vertex of LSH(r) and X ... X} denote
the vertices of RHS(r); and w = (V,,, E,,) be a graph that contains a vertex Xy. The embedding
function of r, denoted as €, defines the edges that connect w to RHS(r) — Xy as:

e={(Y,X;),Yi=1...,k|(Y,Xo) € E, and X; is the first vertex
of the dominant baseline of RHS(r)}U
{(X3,Y),Vi=1...,k|(X0,Y) € E, and X; is the last vertex
of the dominant baseline of RHS(r)} (3.1)

Figure 3.2 illustrates the generation of a graph that represents the mathematical expression
a’ + ¢4, using the grammar of Figure 3.1 and the proposed embedding. The rule 1-1 is first applied
to transform the initial graph into a graph with three vertices linked by an horizontal relation. The
rule r-4 is then applied to transform the left-most vertex of the new three vertices into a graph that
is composed of two vertices linked by a superscript relation. Similarly, the graph transformations are
applied to all the vertices labeled with non-terminals, until obtaining a graph with vertices labeled
only with terminals.

Using the embedding of Equation 3.1, the graph grammar model allows to represent a wide range
of mathematical expressions. For the experimental part of this work, we built a graph grammar with
205 production rules and the proposed embedding (as described in Chapter 7). The grammar covers
the mathematical expressions language defined on the CROHME-2014 dataset (Mouchére et al.,
2014). Figure 3.3 shows some mathematical expressions (and their graphs) that may be generated
using the proposed grammar.

It is important to note that we do not assume specific forms for the RHS graphs of the rules, as
in Celik and Yanikoglu (2011), neither constrain the grammar to be in the Chomsky Normal Form,
as in Alvaro et al. (2012); Simistira et al. (2015). A main assumption of our model is that there
exists a dominant baseline in each graph, which is not a strong constraint and allows to model a

variety of two-dimensional languages as flowcharts, music scripts and chemical expressions.

3.1.2 Comparison with other mathematical expression grammars

Graph grammars provide a more expressive way to represent mathematical expressions than

models used in previous approaches. As mentioned in Chapter 2, most approaches for recognition

IThe first vertex of the baseline path.

28 THE PROPOSED RECOGNITION FRAMEWORK 3.1

r-1
CTRAD— 0Py <TRMD
r-4

Sp, Sp,

Figure 3.2: Graph generation through rule applications. At each rule application, the replaced graph nodes
are depicted in dark gray nodes and the embedding edges with dashed arrows. Rule applications after r-7 are
omitted (dotted arrow).

Figure 3.3: Graphs generated with the grammar implemented for experimentation. The graphs correspond
to expessions (a) P*° < 1, (b) “t2d and (c) a/z +y. Vertices and edges are labeled with their symbol and
relation classes , respectively.

3.1 GRAPH GRAMMAR TO MODEL MATHEMATICAL EXPRESSIONS 29

of mathematical expressions extend the grammars used for strings. Figure 3.4 shows a comparison of
grammar rules generally used by other approaches (as in Alvaro et al. (2012); MacLean and Labahn
(2013)) and the corresponding rule using our approach. The grammars used by other approaches
adapt grammars used to parse strings and define rules of the form: X - X;Xs... X}, where r
indicates the relation between consecutive elements in the RHS 2. As the model defines a unique
relation type between elements of the RHS, rules that include different relation types must be split
into several rules (as illustrated in Figure 3.4). Furthermore, when a CYK parse algorithm is used
(as in Alvaro et al. (2012); Simistira et al. (2015); Yamamoto et al. (2006)), the grammar needs to
be transformed to a Chomsky Normal Form, which limits the number of elements in the RHS of
a rule to two. As a result, grammar rules with more than two elements in the RHS must be split,
incrementing the total number of rules. These restrictions make difficult to extend string grammars

to model two-dimensional languages.

EXPR

INTEGRAL
. O —»
[ILIMITS] = [EXPR] / [EXPR]

[INTEGRAL] = [ILIMITS] [EXPR]d [VAR]
(a)

Figure 3.4: Integration rule example used in MacLean and Labahn (2013) (a) and its corresponding repre-
sentation using graph grammar (b).

The graph-based representation of graph grammars provides flexibility to represent a variety
of two-dimensional languages. This powerful representation has inspired applications in syntactic
pattern recognition problems, such as image or diagram interpretation (Bunke, 1982; Han and Zhu,
2009; Lin et al., 2009), recognition of tessellated image regions (Sanchez and Llados, 2001) and
recognition of mathematical expressions (Celik and Yanikoglu, 2011; Lavirotte and Pottier, 1997).

The flexibility of graph grammars and its powerful representativeness have, however, a downside,
which is a high computational cost of the parsing. The cost is mainly due to the search of all
matchings between a set of input strokes and the RHS graph of a rule (more details on this are
given in Section 6.1). The more complex the RHS graph of a rule (in terms of number of edges and
vertices and allowed structures), the more expensive the search cost. The creation of graph grammar
models that combine generality with efficient parsing techniques is an interesting and important
problem in syntactic pattern recognition (Flasinski and Jurek, 2014).

To improve the parsing efficiency, previous works based on graph grammars introduced some
constraints or defined relatively simple grammars. However, these constraints make difficult the
application of the same technique to model different languages. In recognition of mathematical
expressions, for instance, Celik and Yanikoglu (2011) proposed graph grammars to model math-
ematical expressions and restricted the production rules to have only star like graphs. In these
graphs, a central vertex must be labeled with a terminal symbol and other vertices (if exist) are

only adjacent to this central vertex. The constraint aims to improve the search for rules to be ap-

?In this context, X;, X; are consecutive if j =4 — 1 or j =4 + 1.

30 THE PROPOSED RECOGNITION FRAMEWORK 3.2

plied, by starting the search with strokes labeled with the central vertex symbol and pruning other
possibilities. Figure 3.5 shows examples of those rules. A side effect of this constraint is that it pre-
vents the grammar from modeling relations between subexpressions, as in expression (a + b)(z+y),
that contains a superscript relation between the subexpressions (a + b) and (z + y). Even with a
small grammar (17 production rules), the authors of Celik and Yanikoglu (2011) reported time out

problems.

Figure 3.5: Graph grammar rule examples proposed in Celik and Yanikoglu (2011). Each rule defines the
replacement of a single vertex graph in the RHS with a graph that has a central node, and surrounding nodes
connected only to the central node (star graph). The symbol “|” indicates that the symbol at its left or right
may be a label of the vertex.

An approach for recognition of printed mathematical expressions using graph grammars was
proposed in Lavirotte and Pottier (1997). In that approach, during the parsing step, only one pro-
duction rule is applied, to avoid evaluation of multiple interpretations (only one result is generated).
When dealing with printed expressions, considering only one interpretation is often enough to find
the right result. Nonetheless, when dealing with recognizing handwritten expressions, ambiguous

cases usually require the evaluation of multiple interpretations to determine the right result.

3.2 Parse tree and forest

Given a graph generated by a graph grammar, a parse tree defines which and how the rewriting
rules are used to generate the graph. For instance, Figure 3.6 shows a parse tree for a graph that
represents the expression P’ < 1, using the grammar of Figure 3.1. Each rectangle contains a graph
generated by the application of a production rule, starting from the initial graph of the grammar.

Different interpretations of a mathematical expression correspond to different parse trees. To
deal with ambiguous expressions, the proposed parsing technique generates multiple interpretations
of a same input. However, enumerating all the trees corresponding to the interpretations may be
infeasible. Parse forest are used to efficiently store all the generated parse trees. This technique has
been used by several approaches for parsing of strings (Grune and J.H, 2008).

Figure 3.7 illustrates an ambiguous mathematical expression and a parse forest calculated using
the graph grammar of Figure 3.1. For easy visualization, strokes are depicted inside each grammar
vertex. At the top of the structure, the set of strokes is partitioned according to the rules derived by
the non-terminal ME (the start symbol of the grammar). A partition of a set of strokes according
to a rule r, consists of a mapping of the strokes to the vertices of the graph RH S(r). We call a graph
that defines a partition instantiated graph. In the case of rules for ME, two partition candidates
are represented, one using rule r-1 and the other using rule r-2. New partitions are recursively
stored for each vertex of each instantiated graph, until a vertex labeled with a terminal symbol is

found. The parse forest example stores a total of eight parse trees, where a tree can be generated

3.3 THE PROPOSED APPROACH 31

Figure 3.6: Parse tree example for the expression P < 1, considering the grammar of Figure 3.1. The root
of the tree (inside the top-most rectangle) corresponds to the initial graph of the grammar. The applied rules
are depicted as arrows from a vertex (or single vertex graph) to a rectangle that contains the transformed
graph. Each rule is identified using the codes defined in the grammar.

by following the rules from the top node to nodes that contain terminal symbols, and by choosing

one rule out of each instantiated graph node.

3.3 The proposed approach

The proposed recognition technique is illustrated in figure 3.8. The input is a sequence of strokes
and the output is a parse tree that is an interpretation of the input as a mathematical expression
graph. The approach is composed of two main components: the hypotheses graph generator and

the graph parser.

3.3.1 Hypotheses graph generator

The hypothesis graph generator aims to identify all possible groups of strokes that might rep-
resent symbols and relations among them. Both the identified symbol and relation hypotheses are
stored in a hypothesis graph.

Formally, a symbol hypothesis is a set of strokes that can be interpreted as a terminal symbol.
Each symbol hypothesis has a label set as an attribute. The label set is defined by a function
~v: SH — P(T), where SH is a set of symbol hypotheses, and P(T) is the power set of T' (the
set of terminal symbols of a predefined grammar). A hypotheses graph is a digraph H = (V, Exr),
where Vy is a set of symbol hypotheses and Eg is a set of relation hypotheses, defined over pairs
of compatible symbol hypotheses 3. As in the case of symbol hypotheses, a label set is assigned to
each relation hypothesis. In this case, the label set is defined by a function § : E — P(SR), where
SR is a set of relation labels (defined by a grammar), and P(SR) is the power set of SR. Figure 3.9

shows a handwritten mathematical expression example and a hypotheses graph calculated from it.

3Two symbol hypotheses sh;, sh; are compatible if sh; N sh; = 0.

32 THE PROPOSED RECOGNITION FRAMEWORK 3.3

stra
stra | stra
1 1 J' Stl's.
stry \ & J o

r-2

TREM

Instantiated
graph

< CHAR
r-64
1

(b)

Figure 3.7: A parse parse forest (b) representing multiple interpretations of a mathematical expression
(a). Labels on arrows indicate the grammar rules. Red arrows represent a parse tree that corresponds to the
interpretation “Pt4”,

3.3

THE PROPOSED APPROACH

Stroke set: 7:) bL |

<= -

Symbol Segmenter

<L+
e ®O O

@O0 @ -
Hypotheses
‘ graph

™ generator

> Symbol classifier

Ground
Truth

—> Relation classifier

! R
Symbol

level
-/

[
Relation

level

~—

Symbol
hypotheses

L

OO OO
!

S _
b

1
Hypotheses
@ graph

S
L+ -

Graph
Parse forest generator | grammar
Parse forest
[Graph
parser
> Parse tree extractor

Parse tree

33

Figure 3.8: The recognition scheme of the technique proposed in this thesis. Gray rectangles represent the
main modules that compose the approach.

34 THE PROPOSED RECOGNITION FRAMEWORK 3.3

Hypotheses
graph

Figure 3.9: Hypotheses graph example. Vertices represent symbol hypotheses and edges represent relations
between symbols. The labels associated to symbols and relations indicate their most likely interpretations.

Symbol hypotheses generation

Symbol hypotheses generation involves (1) the generation of stroke groups and (2) the classifi-
cation of each stroke group as a true symbol hypothesis, with its corresponding label set, or as a
false symbol hypothesis, that is, a group of strokes that do not represent any symbol.

Given a set of n strokes, str = {stry, ..., str,}, the total number of groups of strokes that can
be generated from str is equivalent to the number of non empty subsets of str, that is, 2" — 1. As
evaluating all possible groups is infeasible, several constraints have been introduced in the literature;
for example, limiting the number of strokes (between 4 or 5) that form a symbol (Awal et al., 2012;
Matsakis, 1999), considering only groups of consecutive (in time order) strokes (Huang and Kechadi,
2007; Lehmberg et al., 1996), and considering only groups of intersecting strokes (Tapia, 2004). In
this work, the stroke groups are generated by grouping strokes that are close enough, considering
a graph-based distance, but not time order neither intersection constraints are considered. This
technique is explained in Section 4.1.

Once the stroke groups are computed, each of them is processed to assign it a label set or reject
it. To do that, we propose new symbol features, combine them with state of the art features and
train neural network classifiers. The classifiers are trained over a mathematical expression recog-
nition scenario, where groups of strokes that do not represent actual symbols are also considered.
This approach differs from previous works (Alvaro and Zanibbi, 2013; MacLean and Labahn, 2013;
Tapia, 2004; Zanibbi et al., 2002) that extracted only the true symbols and trained classifiers on
those isolated symbols. The proposed features and the training scheme is detailed in Chapter 4.
The proposed features take advantage of contextual information to improve the rejection of false
symbol hypotheses, keeping state of the art recognition rates of true symbol hypotheses. The im-
provement in rejection of false hypotheses is translated into an improvement in the parsing process
(less irrelevant stroke groups are evaluated during the parsing).

The neural network classifiers described in Chapter 4 calculate, for each symbol class ¢, the
likelihood of a stroke group representing c. In addition, the classifiers include a special class, called
junk, to measure the likelihood of the stroke group be a false symbol hypotheses. As mentioned
above, a label set (that may include different symbol classes) is assigned to each symbol hypothesis.
This configuration aims to capture all likely interpretations of ambiguous symbols. The calculation
of a label set is based on scores given by a classifier: given a symbol hypothesis sh and a set of

labels (ly,...,ly), sorted in descending order by their likelihood scores score(l;), for i = 1,...,m,

3.3 THE PROPOSED APPROACH 35

a set of k labels is assigned to sh, such that:

k
k pu— 1 y .
arg min Z score(l;) > tr, (3.2)
i=1
where tr is a threshold calculated experimentally.
The threshold ¢r defines a minimum confidence value to select a label set and to reject a stroke

group. A stroke group is rejected if its junk label score is the biggest one and it is greater than the
threshold.

Relation hypotheses generation

To calculate relation hypotheses, we built a Neural Network classifier that uses our proposed
contextual relation features, combined with geometric features proposed in Alvaro and Zanibbi
(2013). The feature set, classifiers and the training scheme is detailed in Chapter 5.

Given a pair of symbol hypotheses (sh;, shj), for each relation class ¢, the relation classifier
calculates a likelihood score for the existence of a relation ¢ between sh; and sh;. As in the case
of the symbol hypothesis classifier, a junk class is included to score the likelihood of no relation
between the symbols. When calculating the relations set, we evaluate all pairs of compatible symbol
hypotheses, that is, all pairs (sh;, sh;) such that, sh; N sh; = 0.

As in the case of symbol hypotheses, we selected the label sets or rejected relations using their

corresponding classifier scores, according to equation 3.2.

3.3.2 Graph Parser

The graph parser uses a hypotheses graph and a graph grammar to generate a parse tree that
represents an interpretation of the input strokes as a mathematical expression. As explained in
Section 3.3.1, to cope with ambiguity, a hypotheses graph may include multiple interpretations
for both symbols and relations. The parsing technique, evaluates the different symbol and relation
classes to build a parse forest. This parse forest then stores all possible mathematical expression
interpretations that can be derived by combining the symbol and relation interpretations. After
that, a best tree, according to a ranking function, is extracted from the parse forest and returned
as a result. The selection of the best tree after several trees have been generated aims to select a
most probable interpretation by considering the whole structure of the expressions.

Given an input set of strokes str, the parsing technique assigns a score cost(t, str) to each
t € T(str), where T'(str) is a parse forest calculated from str. The parsing problem then is a search

for a tree tpesi(str), such that:

tpest (str) = arg min cost(t, str) (3.3)
teT(str)

To build a parse forest, we propose an algorithm based on the Unger’s algorithm to parse
strings (Unger, 1968). The algorithm is considered a top-down approach because it parses the input
by calculating recursive partitions of it, starting from the rules derived by the start graph until
obtaining stroke groups that represent terminal symbols. In other words, the parse forest is built

from the top vertex (root) to the bottom vertices.

36 THE PROPOSED RECOGNITION FRAMEWORK 3.4

A partition of a stroke set str = {strq,...,str,} according to a graph grammar rule r, with
LHS(r) = A and RHS(r) = B, consists on calculating a matching between the strokes str and
the vertices of B = (Vp, Eg). Without any constraint, this problem is exponential in the number
of strokes, that is, O(|Vz|").

The above analysis suggests that evaluating all possible partitions is infeasible. In order to prune
non valid partitions, we consider only stroke partitions that can be derived from subgraphs of the
hypotheses graph. For instance, considering the hypotheses graph of Figure 3.9, no rule matches the
strokes of hypotheses P and 1 to any vertex because they do not form a connected subgraph. This
approach makes the search space of the parsing algorithm to be defined by the hypotheses graph.
As the hypotheses graph is calculated using classifiers optimized over a training data, the parsing
algorithm can be extended to parse other two-dimensional languages by defining a grammar accord-
ing to the language and re-training the classifiers. This extension could be difficult if we considered
hand-made constraints as those proposed in MacLean and Labahn (2013); Yamamoto et al. (2006);
Zanibbi et al. (2002).

Chapter 6 details the parsing algorithms to generate the parse forest and extract the best tree,

and the proposed models to calculate scores.

3.4 Discussion

According to Flasiniski and Jurek (2014), constructing a parsing algorithm for graph languages

is a much more difficult task than for string languages because:

1. A graph structure is unordered by its nature, whereas a linear order is defined in a string
structure. During parsing, succeeding pieces of an analyzed structure (sub-words in case of
strings, subgraphs in case of graphs) are teared off repetitively in order to be matched with
predefined structures of right-hand sides of production rules. Determining what is a succeeding
piece in the structure is easy when there is an ordering among the pieces. In the absence of an

ordering, this is equivalent to the problem of subgraph isomorphism, which is NP-complete.

2. For string grammars, we know how to embed the right hand-side of a rule in a structure
transformed during the application of the rule (it is just a concatenation of strings). However,
for graph grammars, we have to explicitly specify how to embed the right-hand side graph in
the host graph (embedding). The embedding allows one to modify a derived graph structure.
On the other hand, it acts at the border between both sides of the rule and their context, i.e.

its behavior is context sensitive-like.

The arbitrary structures represented by graphs and the possibility of embedding graphs accord-
ing to their application give graph grammars a big representation power. Nevertheless, this feature
also makes the grammar parsing problem NP-complete for classes of graph grammars interesting
from the application point of view, as shown in Turan (1982).

Our mathematical expression recognition technique has three main differences in relation to

previous approaches:

e Symbol and relation classification methods of previous approaches are based on features ex-

tracted only from isolated symbols and relations. To filter false symbols and relations, previous

3.4

DISCUSSION 37

techniques introduced constraints that make difficult their application to other data. In our
work, we propose contextual features extracted from a neighborhood of the evaluated sym-
bols and relations. We then train classifiers with both real and false hypotheses (symbol and
relations) so that classifiers learn to filter false hypotheses. The trained classifiers are able
to effectively filter false hypotheses. This filtering technique does not assume specific symbol

classes or relations and then may be applied to objects of other two-dimensional languages.

The proposed graph grammar-based approach provides a more general recognition frame-
work than approaches based on string grammars (e.g. Alvaro et al., 2012; Simistira et al.,
2015; Yamamoto et al., 2006). String grammars have a limited representativeness due to the
assumption of a unique type of relation and are usually constrained to be in a CNF. The
proposed graph grammar model allows to represent arbitrary structures through graphs. The
proposed parsing algorithm is based on a search for isomorphisms between structures of the
grammar and structures of a hypotheses graph. This algorithm does not introduce constraints
into the grammar (as the CYK, that requires the grammar to be in a CNF). The general
formulation of the grammar and the parsing algorithm then facilitate the application of the

technique to other two-dimensional languages.

Previous works that proposed graph grammars for mathematical expression recognition re-
duced the parsing complexity by defining specific structures for production rules and limited
the number of rules (Celik and Yanikoglu, 2011), or considered only a unique interpretation
of the input (Lavirotte and Pottier, 1997). In our approach, we reduce the parsing complexity
by pruning not likely interpretations, according to classifiers optimized over training data.
The extension of this technique to other data is then possible by retraining the classifiers.
Our experimental results show that the proposed parsing technique is efficient enough to be

used in an online context.

38

THE PROPOSED RECOGNITION FRAMEWORK

3.4

Chapter 4
Symbol hypothesis classification

The mathematical expressions recognition method proposed in this thesis starts with the iden-
tification of groups of strokes that may represent symbols. This process involves two tasks: (1)
generation of stroke groups and (2) classification of a each stroke group as a true symbol, with its
corresponding symbol class, or as a false symbol.

Those tasks must be performed at some part of any mathematical expression recognition method.
The importance of this problem has recently been emphasized in a competition that considers a
symbol classification problem that includes false symbol instances (Mouchére et al., 2014).

In this chapter, we describe our stroke grouping method, the feature set used to classify each

stroke group, and compare our results with those of Mouchére et al. (2014).

4.1 Generation of stroke groups

Given a set of n strokes, str = {stry, ..., str,}, the total number of groups of strokes that can
be generated from str is equivalent to the number of non empty subsets of str, that is, 2" — 1. As
evaluating all possible groups is infeasible, several constraints have been introduced in the literature,
for example, limiting the number of strokes (between 4 or 5) that form a symbol (Awal et al., 2012;
Matsakis, 1999), considering only groups of consecutive (in time order) strokes (Huang and Kechadi,
2007; Lehmberg et al., 1996), and considering only groups of intersecting strokes Tapia (2004).

Our strokes grouping method assumes that symbols are composed of at most k strokes. Thus, we
determine symbol hypotheses by calculating groups of strokes that are close enough, considering a
k-nearest neighbor graph. To do that, given a stroke set str = {stri, ..., str,}, we build a k-nearest
neighbor graph from a complete graph that has the n strokes as vertices and the euclidean distances
between the bounding box centers of strokes as edge weights. For each stroke, we then generate all
combinations of the stroke with its adjacent strokes given by the k-nearest neighbor graph. The
resulting stroke groups are filtered to avoid repeated stroke combinations, and, after that, each
combination goes to the second step, that determines if the stroke group is a true symbol.

It is important to note that the stroke grouping method assumes that each stroke belongs to only
one symbol. That is, an expression like "cos §” is assumed to have more than one stroke (it should be
written with at least two strokes, one for each symbol). This assumption is not a strong constraint,
as handwritten mathematical expressions are generally printed rather than cursive. The constraint
has been used in most of the previous approaches, like Alvaro et al. (2012); MacLean and Labahn
(2013); Matsakis (1999); Tapia (2004); Yamamoto et al. (2006). On the other hand, preprocessing

39

40 SYMBOL HYPOTHESIS CLASSIFICATION 4.2

techniques could be applied to divide strokes that belong to several symbols, if an application

requires to deal with those cases.

4.2 Symbol hypothesis classification

This process aims to classify a stroke group as a true mathematical symbol (with its correspond-
ing label) or as a false symbol, that is, a stroke group that does not represent any mathematical
symbol. To identify instances of stroke groups that do not represent symbols, we introduce an ad-
ditional class called junk. In short, the classification problem has as input a set of strokes and as
output a mathematical symbol label or junk. It is important to note that the junk class does not
have a specific shape or configuration, but has an infinite number of configurations.

While most works focus on using feature sets previously proposed for isolated symbol classifica-
tion, and evaluate them on different kinds of classifiers (Alvaro et al., 2014; Tapia, 2004), we focus
on the development and evaluation of histogram based features that, in addition to the symbol
features, capture contextual information. The goal of this work is to generate features that capture

the raw shape of the symbols and their neighborhood and let Neural Networks to learn the patterns.

4.2.1 Preprocessing

When considering online data, noise appears in the form of different sampling scales (for example,
expressions collected through small devices may have different patterns from those collected through
electronic boards), velocity, and abrupt changes of coordinates. To reduce the impact of noise, we
apply smoothing and resampling processes (in that order) to the raw data.

To reduce the impact of abrupt trajectory changes, each stroke coordinate, except the first
and the last one, is recalculated as the weighted sum of the coordinate itself, its predecessor and
successor. Formally, a smoothed coordinate of p; = (x;,y;) is another coordinate p; = (af, y}) such
that:

x; =xi—1%0.25 +2; 0.5 4+ ;41 *0.25 (4.1)
Yl = yi1 *0.25 4 y; % 0.5+ yisq * 0.25 '
Each symbol hypothesis was resampled by replacing all its points, except the first and the last
of each stroke, with points that are equally distributed along the writing trajectory (that is, almost
all the consecutive points of the resampled symbol, considering time order, have the same distance).
As symbols are sampled over different scales, we define the distance between consecutive points as a
fraction (1/40) of the largest dimension (between width and height) of the symbol. This resampling
method is based on Delaye and Anquetil (2013).

Figure 4.1 shows some raw symbol samples and their corresponding preprocessing results.

4.2.2 Online symbol features

Online features aim to capture patterns related to the writing process, as the starting and end
points of a symbol, angles between consecutive points and direction of the trajectory.
Our online feature set is composed of shape context-based (Belongie et al., 2002) features and

a pair of stroke related features.

4.2 SYMBOL HYPOTHESIS CLASSIFICATION 41

o o

o

o
R 40 %
a 9 e # H

o0 o
% a o & ®
= o e H
© o F % @
o,]
o F. 3
o o
%o o o
o OWD
1 o @
L) é o
-] o g o
o o d
B o
4 o
o

(d) (e) ()

Figure 4.1: (a), (b), and (c) show raw symbol samples and (d), (e) and (f) their corresponding preprocessed
results.

Shape Context

Shape context was proposed as a shape descriptor in Belongie et al. (2002) and has been applied
in several offline symbol recognition problems with outstanding results. Applications include recog-
nition of handwritten digits and 3D objects Belongie et al. (2002), handwritten Tamil scripts with
156 symbol classes Prasanth et al. (2007) and leaf image classification (220 leaf classes) Wang et al.
(2011).

Given a set of points P = {p1,pa,...,pn}, the shape context of a point p; in P is a log polar
histogram that represents the distribution of the remaining points relative to p; (Belongie et al.,
2002). Figure 4.2 illustrates the shape context calculation for two points of a symbol. In that
example, the surrounding region of a point is divided into 8 angular bins and 3 radial bins (giving
a total of 24 log polar bins). A shape context consists of an histogram that stores the number of
points placed in each bin.

Given that a shape context histogram is defined over a log polar space, the shape context relative
to a point p; is more sensitive to nearby points (local features) than points that are far away from
pi (global features) Belongie et al. (2002).

Fuzzy shape context

The shape context descriptor was originally defined over crisp bins, that is, it considers that a
point belongs only to one bin.

During the sampling process or due to handwritten variability, small changes in sampled points
may be generated. These changes may affect points falling near to the limits of bins: small displace-
ments near to the end of a bin may change the total of number of points in that bin. To reduce the
effect of those small displacements on points, we modify the shape context definition by considering
bins as fuzzy sets, as shown in figure 4.3.

Let a shape context histogram be denoted H = {Bin;;}, where i indexes the bins relative to

42 SYMBOL HYPOTHESIS CLASSIFICATION 4.2

C1
A —

H}Q

o

C =column

() (d)

Figure 4.2: Shape context of two points of a symbol “2”: (a) and (c) show the sampled points and the log
polar histogram bins used to calculate shape context. (b) and (d) show the shape context histogram relative

to (a) and (c) respectively; dark cells mean higher values.

P Binu
,° '\ A‘.":: ‘: " B‘
0 L/4 L/2 L
(a)
P Bini
0 /2 1L 3m/2 2m

Figure 4.3: Fuzzy bins in the (a) radial and (b) angular coordinates. The arrows in the angular coordinate

represent its circular nature.

4.2 SYMBOL HYPOTHESIS CLASSIFICATION 43

radial coordinate and j indexes bins in the angular coordinate. For a point P = (P, Fy), that lies

in a bin Bin;j, the membership value of point P is given by:

where o; and 3; are between 0 and 1 and indicate the confidence value of P lying in Bin;; relative to
the radial and angular coordinates, respectively. When P lies in an intercepting region, the values «ay;
and ; are calculated according to its position relative to the corresponding coordinate, otherwise

they take the value 1. For example, for the point P in figure 4.3, the confidence values will be:

P — A
;= . 4.
o B A, (4.3)
Py Ay
B = B, A, (4.4)

Note that with these new membership definitions a point may belong up to four bins, depending

on its position. Figure 4.4 shows the four positions that generate different membership cases:
e P position, only bin B;; gets a non-zero value (one),
e R position, bin B;; and a radial-connected bin get non-zero values,
e S position, bin B;; and an angular-connected bin get non-zero values,

e (Q position, bin B;; and three connected bins get non-zero values.

Figure 4.4: Four different positions in a bin Bin;;. Regions between dotted lines indicate transition areas
between bins

Shape contexts as feature vectores

Most shape context applications use a k—nearest neighbor approach for classification. In this
configuration, the training symbols are used as prototypes and the classification of an input symbol
consists on selecting a class that has the most similar prototypes to the input, according to a shape
context matching measure. Given two sets of points P = {p1, ..., pp} and Q = {q1, ..., @n},
to calculate a similarity between P and (), shape context is calculated at each point and a best
matching between points of P and @ is calculated using the y? metric and the Hungarian algo-
rithm Belongie et al. (2002). Two drawbacks of this method are the computational load to find the
nearest neighbor(s) and store the class prototypes (Hastie et al., 2009).

44 SYMBOL HYPOTHESIS CLASSIFICATION 4.2

Regarding to the nearest neighbors search, given a query, classification implies a comparison
of the query with all prototypes, to select the most similar prototype(s). By using the Hungarian
algorithm, the cost to determine the similarity between an input symbol and a prototype is O(n?)
(where n is the number of sampled points). So, the cost of classifying an input symbol using m
prototypes is O(mn?).

The computational space to store prototypes is directly related to the number of classes and
variability of each class — for example, we can expect that prototypes of a symbol “4” presents more
variability those of “0”, so we could need more prototypes for fours than for zeros Belongie et al.
(2002). Although several methods have been proposed to reduce the set of prototypes without
reducing accuracy, the scalability of the method is still a weak point (Hastie et al., 2009).

An alternative to the nearest neighbor approach is to use shape contexts as input features
for neural networks. Results of Julca-Aguilar et al. (2014b) have shown that a neural network
configuration can obtain a performance comparable to the matching based approach, but with a
considerable efficiency improvement.

When converting shape context histograms to input vectors, a main concern is the vector size.
Considering reported applications (Belongie et al., 2002; Mori et al., 2005; Prasanth et al., 2007),
we can see that the number of sampled points and bins for shape context calculation vary around
30 and 40, respectively. Using such parameters, the number of input features for neural networks
could reach values of 1200 features.

To reduce the number of features, we maintain the rate of sampled points, but extract shape
contexts of only a subset of points. For instance, with the parameters mentioned above, we could
calculate only the shape context of points at positions 1, 15 and 30, and get a total of 120 features
(3 shape contexts, each containing 40 bins). This method is based on the fact that shape contexts
of near points of a same symbol may be similar, thus, it allows us to reduce redundancy on features.

Figure 4.5 illustrates the shape context-neural networks configuration.

Number of strokes and stroke jumps

The number of strokes of a symbol introduces important information that may not be captured
by shape based features. Symbols are generally written with a fixed number of strokes, for example,

99399
1

a symbol is usually written with two strokes, while “0” is written with one. When dealing

@
1

with hypotheses classification, a hypotheses composed of a body of a symbol may receive high

W
1

probability of being interpreted as a symbol “i”. This may happen because the ”point” of the symbol
does not represent a substancial part of its shape. However, it can have low probability of being a
symbol if we consider its number of strokes (1).

When writing a symbol, one can write part of the symbol, stop to write other symbols, and then
back to write the rest of the initial symbol. That process is called a jump. Although some symbols
may present jumps, it is a pattern that is more likely to be present in false symbol hypotheses.

Thus, we also consider the number of jumps of a symbol hypothesis as an input feature.

4.2.3 OfHline symbol features

While online features introduce important information regarding the witting process, they can

be misleading: for instance, the extracted features of a line written from left to right are different

4.2 SYMBOL HYPOTHESIS CLASSIFICATION 45

Points in time order

® ® ® o>
P1 Pz P3 Pi Pi P3o

L G

Feature vector = {SC(p1) U SC(pi) U SC(pj) U SC(p30)}

SC = shape context

(a)

Feature vector Class
= =

= . a

- b

Input symbol | .

X - T

8

o 9
| J

|
Artificial Neural Network

(b)

Figure 4.5: Shape context extraction for artificial neural networks. (a) Shape context is extracted only at
some sampled points. (b) The extracted shape context vectors are concatenated to form a feature vector that
18 used as input to a neural network.

46 SYMBOL HYPOTHESIS CLASSIFICATION 4.3

from those of a line written from right to left, even if the shapes are the same. Offline features are
intended to capture symbol shape patterns disregarding the writing process.

Our offline features include 2D histograms calculated over a square box that encloses the symbol.
The square box side is defined as the biggest value between the width and height of the symbol. We
place the enclosing box so that its center corresponds to the symbol’s bounding box center. Thus,
the enclosing box is partitioned into k& x k cells, and the histogram is calculated by counting the
fuzzy weighted contribution of each symbol’s point to its four closest cells (Almazan et al., 2011).

Among the symbol classes, those similar to “.” (dot) can be difficult to differentiate. The his-
togram corresponding to those symbols may have a single point or a small circle that covers the
whole enclosing box. To overcome this problem, we keep the enclosing box side bigger than a pre-
defined value. As expressions can be written over different resolutions, defining a fixed value can be
difficult. Instead, we calculate the minimum side, for each expression, as follows. First, a complete
graph is created with the centers of the strokes of the expression as vertices and the distances
between vertices as edge weights. Second, a minimum spanning tree is calculated over that graph.
Finally, the minimum side value is calculated as two times the mean of the edge weights of the tree.
Figure 4.6 shows some examples of symbol histograms.

In addition to the bidimensional histogram of a symbol, we calculate a second histogram that
aims to capture contextual information of the symbol. This contextual histogram is calculated using
the bounding box of the symbol as enclosing box, and counting points of the expression that do not
belong to the symbol. Figure 4.7 illustrates the calculation of the contextual histogram for some
symbol hypotheses of a mathematical expression. These features are able to capture information
useful to solve ambiguities. For instance, a vertical line that is part of a symbol 4+ may be similar
to the symbol 1 or to one line of a symbol ||. Nonetheless, the corresponding contextual histograms

would probably be different.

i : .
il - f'.-l
| |

(a) (b) (c) (d)

Figure 4.6: Bidimensional (20 x 20 cells) histograms calculated from samples of symbols “387, “.”, “1” and

“S”.

We also computed an offline version of shape context as features. The offline shape context
histograms are defined as in the online case. However, to obtain time independence, we calculate
the shape context relative to some parts of the symbol bounding box, not to points of the symbol.
That is, for a given symbol, we divide the symbol’s bounding box into k& x k regions, and calculate

a shape context histogram centered at the center of each region.

4.3 EXPERIMENTATION 47

Hypotheses ‘ ’ Contextual histograms

|

& # e}

Figure 4.7: Symbol hypotheses examples and their corresponding contextual histograms.

4.3 Experimentation

4.3.1 Experimental setup

To evaluate the proposed methods, we used the CROHME-2014 dataset! (Mouchére et al.,
2014). This dataset includes expressions collected from several laboratories around different coun-
tries, and using a variety of input devices, as digital pen technologies, white-boards and tablets.
Given this variety of devices, symbols were sampled in different scales and resolutions.

The dataset is divided into a training part with 9,507 mathematical expressions and 91,670
symbols and a test part with 986 expressions and 10,061 symbols. The number of symbol classes
is 101. We generated 91,401 false symbol hypothesis from the training expressions and 9,994 from
the test expressions (we keep the ratio between true and false hypothesis close to 1 in both training
and test sets). For each mathematical expression, the generation of false symbols was done by
randomly selecting 9 false hypotheses from those generated by the k-nearest neighbor graph method
(9 corresponds to the rounded mean of the number of symbols of the expressions).

In our online shape context implementation, we used 3 radial regions and 8 angular regions, for
a total of 24 bins. We calculated shape contexts of 6 equally distributed (in time order) points. By
including the number of strokes and jumps, this configuration gives a feature vector of size 6 x 24
+ 2 = 192. The 2D Histogram features consisted of 9x9 cells for symbols and 3x3 for contextual
histograms. The offline shape context vector was calculated with 3 radial regions and 6 angular
regions, for a total of 18 bins. We extracted 9 (offline) shape contexts centered at each cell center
of a 3x3 partition of its bounding box. Note that for our evaluation, we consider five feature sets:
(1) online, (2) 2d histograms (3) offline shape context, (4) online combined with 2D histograms,
and (5) online combined with shape context. All cases include contextual histograms (as previous
experimentations showed that including such features improved the recognition performance).

We used a Multi Layer Perceptron neural network with one hidden layer containing a number
of units equivalent to the mean between the number of input and output units (102). We used

sigmoid activation functions in the input and hidden layers and softmaz functions in the output.

!The CROHME 2014 dataset will be publicly available at: http://www.iapr-tcll.org/mediawiki/index.php/
Datasets List.

http://www.iapr-tc11.org/mediawiki/index.php/Datasets_List
http://www.iapr-tc11.org/mediawiki/index.php/Datasets_List

48 SYMBOL HYPOTHESIS CLASSIFICATION 4.3

All parameters were determined using validation data extracted from the training set, as described
in Section 7.1. Although other architectures were evaluated, no considerable improvements were
found.

We evaluated our proposed methods in two tasks: (1) binary classification, that is, given a
symbol hypothesis, the goal is to determine if it is a true symbol or a false symbol and (2) among
true symbols, determine which is the symbol class (from the total of 101 symbol classes of CROHME
dataset). To do that, we use symbol recognition rate (SRR), false acceptance rate (FAR) and true
acceptance rate (TAR) metrics. Considering Table 4.1, FAR and TAR are calculated as (note that

these rates do not depend of the ratio between the number of symbol and junk samples):

#{Accepted junk}
= 4.
FAR #{{Accepted junk} U {Rejected junk}} (45)
TAR — #{Accepted symbol} (4.6)

#{{Accepted symbol} U {Rejected symbol}}

Table 4.1: Symbol hypotheses classifier outcomes.

System Actual class
output Symbol Junk

Accepted | Accepted symbol | Accepted junk

Rejected | Rejected symbol | Rejected junk

In the context of a mathematical recognition system, the lower the FAR rate of a classifier, the
more false symbols are rejected, which reduces the search space of the whole recognition process.
On the other hand, the higher TAR rate of a classifier, the more true symbols are detected, which

allows us to keep more true hypotheses. TAR values also correspond to the recall rate of symbols.

4.3.2 Results

Our first experiment aimed to select a best model using the training and validation data. Ta-
ble 4.2 shows results relative to this experiment. According to the results, the best recognition rates,
with and without junk class, were achieved combining online and offline S.C. features — although
the combination of online and 2D histogram features achieved almost as good results. On the other
hand, the offline features seem to discriminate the junk class better than the online features: while
the first have better results without the junk class, the second have better results when the junk class
is included. The combinations of both types of features achieve better results in all the evaluated
metrics, with and without junk.

After selecting our best model, we evaluated the generalization of the selected model using the
test part of CROHME-2014 dataset and compared our results with the top three results (out of
eight) of the CROHME-2014 competition. Results of this evaluation are shown in Table 4.3.

Results of Table 4.3 show that while our method performs almost as good as the best results
(with a difference of less than 1%) without the junk class, our method performs considerably better
than the others when the junk class is included. A main explanation of this behavior may be the

fact that we include contextual features, while the other methods use only features that belong to

4.3 EXPERIMENTATION 49

Table 4.2: Symbol Classification results using the training-validations sets.

Without Junk With Junk
Feature set Rec. rate Rec. rate TAR FRR
Online 91.27 90.14 94.54 7.88
Histogram 2D 86.50 88.00 92.50 6.40
S.C. offline 88.72 89.86 93.69 5.55
Online + Histogram 2D 92.43 93.06 95.65 3.60
Online + S.C. offline 92.87 93.34 95.83 3.66

Table 4.3: Symbol hypothesis classification results using the CROHME-2014 test set and comparison of our
method with the top three results of the CROHME-2014 competition.

Without Junk With Junk
System Rec. rate Rec. rate TAR FAR
Ours 89.21 90.50 92.53 3.93
11 91.04 85.54 87.12 10.39
I 89.79 84.14 80.29 6.44
v 88.66 83.61 83.52 9.03

the evaluated symbols.

To determine the main sources of wrong classification (in the test set), we analyzed the symbol
classes that got the worst recognition rates. Figure 4.8 shows part of those classes (those that got

recognition rates lower than or equal to 60%).

s
5]

o
!

NoWw

Recognition rate (%)
o

[
o
I

(=]
I

Symbol class (latex code)

Figure 4.8: Symbol classes with lowest recognition rates

Main sources of recognition errors are related to:

e Low samples per class. As each person has a particular writing style, there is a large
variability in the shape and time related data of each symbol class. Thus the training data
must have enough symbol samples per class, so that they represent the different writing
patterns. In our dataset, thirteen symbol classes, like 3, A and €, have low number of samples
(less than one hundred samples).

50 SYMBOL HYPOTHESIS CLASSIFICATION 4.4

e Similar symbol classes. By analyzing the confusion matrix (see Appendix A), it can be
seen that high error rates are due to the misclassification of symbols with others with similar
shapes. Table 4.4 shows some misclassification rates for those cases. Most of those cases are
difficult to solve by considering only shape information. However, in the context of recognition
of mathematical expressions, the ambiguity may be solved by considering the location of the

symbols (for instance, to differentiate a symbol “)” from “)”), relations or relative sizes.

Table 4.4: Percentage of symbols missclassified with others with similar shape.

Class Missclassified as %

X (\times) X 86
X X 87
\Y A\ 47
C c 61

COMMA) 16
0 0 100
P p 59
3 3 50
Y y 69

4.4 Discussion

This chapter described new techniques to generate and classify symbol hypotheses from a set of
input strokes. We proposed and evaluated a fuzzy version of shape context, contextual histograms
and their combination with other previously defined online and offline features. The performance of
the proposed techniques were compared with those described in the CROHME-2014 competition.

When considering only true symbol hypotheses, the proposed features obtained state of the art
recognition rates. On the other hand, when false symbol hypotheses are included, the proposed
features overcame other approaches. This difference seems to be explained by the use of contextual
information as part of the features.

It is important to consider that our work was focused mainly in features development and chose
Multilayer Perceptron neural networks to evaluate the proposed features. We did not explore other
more complex classifiers, like Convolution neural networks or Deep SVMs, etc. The use of those
deep learning techniques could improve the current results, as they deal better with histogram-based
features.

As described above, ambiguity between similar shape symbols is difficult to solve using only
shape information. Those cases may be solved, if possible, by using the context of the symbol. To
deal with those cases, the mathematical expression recognition technique of this thesis uses the
best classifier described in this chapter to generate a set of symbol hypotheses, assigns a set of
alternative labels to each hypothesis, but leaves the final classification decision to be taken during

a parsing process (see Chapter 3).

Chapter 5

Relation classification

The relation classification problem consists on determining a mathematical relation (such as
superscript) between a pair of subexpressions. In contrast to the symbol classification problem,
that has been studied for years and several published works can be found, there are only a few
recent works that focus on the relation classification problem, for instance Alvaro and Zanibbi
(2013); Simistira et al. (2014).

In this chapter, we describe the relation classification problem issues, our proposed feature sets
and techniques to treat the problem and their corresponding evaluation on the CROHME-2014

dataset.

5.1 Problem overview and state of the art

As mentioned above, the relation classification problem consists on determining relations be-
tween pairs of subexpressions. In this context, a subexpression is a set of strokes that form a set of
symbols. It is assumed that we know when the subexpression is composed of a unique symbol or
it is composed of several ones. In the first case, it is also assumed that the symbol class is known.
Hereafter, we denote a relation R between a pair of expressions (SE, SE2) as R(SE1, SEs).

A main characteristic of handwritten mathematical expressions is that they present irregular
arrangements of subexpressions. This irregularity introduces ambiguity to the recognition problem.

Figure 5.1 shows ambiguous relation examples.

o ok

(a) (b)

Figure 5.1: Mathematical expressions with ambiguous relations between suberpressions in blue and red. The
relation in (a) may be considered as horizontal or subscript and in (2) it can be interpreted as horizontal or
superscript.

Early works on relation classification defined crisp regions relative to symbols and determined
relations according to the region that other symbols lie (Anderson, 1968; Tapia, 2004; Zanibbi et al.,

2002). The regions were defined according to the symbol category. This categorization is motivated

o1

52 RELATION CLASSIFICATION 5.1

by the fact that different symbols may be vertically located at different positions over a same
baseline. See, for instance, the different relative positions of a subscript relation in A, and y,. Al-
though they represent the same relation, the relative positions between subexpressions are different.

Figure 5.2 shows different region definitions relative to some symbols.

e
< |
------ BELOW BELOW | SUBSC

Open Bracket Non-Scripted Root

UPPER

Variable Range Plain: Ascender Plain: Descender

smow | mmsc - suBsC

Plain: Centered Plain: Centered
(Close Bracket)

Figure 5.2: Crisp regions that define relations relative to a symbol. Regions are defined according to the
symbol category, that is indicated below each symbol. Extracted from Zanibbi et al. (2002).

A problem of the method of relation classification based on crisp regions is that they do not
consider ambiguous cases that may arise in handwritten data. At this regard, it may be specially
difficult to distinguish horizontal relations from subscripts or superscripts (a couple of examples
is shown in Figure 5.1). To cope with this problem, Zhang et al. (2005) proposed a method based
on fuzzy regions that allowed to consider up to two possible classification results with their corre-

sponding score of confidence. Figure 5.3 illustrates the fuzzy regions definition.

iz
ABOVE SUPER ;

TLEFT:

SUPER/
HOR

HOR

SUBSCAY 1 s
HOR :
BLEF TSN : .

FFBELOW 7 e RS C

-------- Membership Function of super set

Membership Function of infine set
----- Membership Function of subsc set
Thresholds

Figure 5.3: Fuzzy regions that define relations relative to a symbol. Extracted from Zhang et al. (2005).

A main drawback of the methods described above is that the region limits were still defined

5.2 FEATURE SET 53

manually and not from a training set. In Alvaro and Zanibbi (2013), the authors proposed nine
geometric features calculated from the evaluated subexpression bounding boxes and trained Sup-
port Vector Machine classifiers using the MathBrush dataset (MacLean et al., 2011). Given a pair
of subexpressions (A, B), the geometric features were calculated as illustrated in Figure 5.4. To
capture the different vertical positions of symbols, the authors grouped the symbols into four ty-
pographic categories (similar to the aproaches described above): ascendant (e.g., “d”), descendant
(e.g. “p”), normal (e.g. “z”) and middle (e.g. “7”). Then, the y coordinate of a symbol’s centroid
was shifted down or up, according to its category. Additionally, the authors also proposed polar
histograms as features, similar to Shape Context (Belongie et al., 2002). According to their results,
best performance was obtained using geometric features and with categories (the use of categories

reduced 0.64% the recognition error in comparison to the geometric features without considering

categories).
dry B 14 dy
ti;t' d*r,r
dra D B
A dyz

dhc
i Ty Y — CE Tl [— e W]
H = hr_.lg,l;_‘t[B}; D — cenv fA,Fct_.m (B - dhe = cc'n].lA}Fct_.uhLB,

‘o5 = . do dzy dvp dy dyy dyg
features = [H, D, dhe, 5, 55, 52, F, 54, 4]

Figure 5.4: Geometric features. I is defined as the distance between the centers of the bounding bozes of
the subexpressions. ceny and cen, represent the coordinates, in x and y axis respectively, of the centroid of
its parameter. Extracted from Alvaro and Zanibbi (2013).

5.2 Feature set

In this work, we introduce two complementary feature sets: relation images and category
vectors. As a baseline for comparison, we also implemented geometric features based on the work

of Alvaro and Zanibbi (2013). The next sections describe each of these feature sets.

5.2.1 Relation image

As described in Section 5.1, relation features proposed in the literature (Alvaro and Zanibbi,
2013; Simistira et al., 2014) are computed using the subexpressions bounding boxes. However, this
method of computing features has the drawback of requiring manual design and selection of the
best feature set, and thus, the possibility of missing important information.

Instead of manually defining relation features from the bounding boxes, we generate images that
capture the complete subexpressions bounding boxes and their relative positions. The idea is to use
these images and allow a classifier to learn the useful features.

To compute the image, we, first, define a square region with side length equal to the maximum
value between the width and height of the bounding box of both subexpressions. The region is
centered at the subexpressions bounding box center. Then, the region is split into k x k rectangular

bins that define two images, Isp, and Igg,, of size k X k, one for each subexpression’s bounding

o4 RELATION CLASSIFICATION 5.2

box, as follows:

area(intersection(bin(i, j),b(SEy)))

_ i< ‘
area(bin(i.) ,I=1,2and 1<4,j <k, (5.1)

ISE[(Z’ .7) =

where area(A) is the area of a rectangle A, bin(i,7) is the bin at (i, 7), intersection(A, B) is the
intersection between rectangles A and B and b(SE)) is the bounding box of subexpression SE;.
Due to the division by the area of the bin, the values of Igg, are in the range [0, 1].

Finally, we compute the relation image as a weighted sum of the two subexpression’s images:

ISEl,SEz =Oz*ISE1 —i—(l—a) *ISE2 (5.2)

The weights are used to distinguish between the pizels of each subexpression’s bounding box («
different from 0.5) and keep the sum of values in the range [0, 1]. Figure 5.5 shows some relation

histogram examples for o« = 0.7.

1
OX, + bljo—l— C

o2 b2

(a)

(e) () (8)

Figure 5.5: Relation image examples calculated from relations of the expression of Figure (a). Relation
images correspond to relations: (b) above(—, axo+byo+c), (c) below(—, Va® +b?) , (d) inside(,/—, a?+b?),
(e) horizontal(+, ¢), (f) subscript(x, 0) (g) superscript(a, 2).

5.2.2 Geometric features

In this thesis, we implement the features described in Alvaro and Zanibbi (2013) to compare
the performance of the relation image features. However, as it was not possible to get a division of

all the subexpression into the categories defined in Alvaro and Zanibbi (2013), the y coordinates of

5.3 EXPERIMENTATION 99

the symbols centroids are not shifted. To cope with the problematic cases related to categories, we

introduce category vectors, as described in the next section.

5.2.3 Category vectors

We propose category vectors as a means to introduce prior knowledge of the symbol types. To
do that, we define a four dimensional vector that indicates the baseline relative positions of the
subexpressions and wether it corresponds to a single symbol or not.

The first and the second dimensions indicate the normalized position and height of a printed

symbol relative to a baseline. Figure 5.6 illustrates these dimensions calculation.

P

>limcC9q pP,.(Yy

1

02 .Y |height=09-02=07

I:l —
Figure 5.6: Normalized (values between 0 and 1) base position and height.

The third and fourth dimensions are binary. The third dimension indicates if the subexpression is
a composed symbol (like cos and sin) or a single symbol (as z and a). The fourth dimension indicates
if the subexpression is composed of several symbols (as a+b) or it is a one symbol (composed or

single) subexpression.

5.3 Experimentation

5.3.1 Experimental setup

To evaluate the proposed features, we extracted subexpression relations from the CROHME-
2014 dataset. As a result, we got 89, 363 relations from the training part of the dataset and 9,481
relations from the test part. The dataset includes six relation classes: Right (horizontal), Below,
Above, Superscript, Subscript, Inside. Figure 5.7 shows the number of extracted relation samples
per class. In both training and test sets, the Right relation has a considerable larger number of
samples — it represents 74.49% and 75.28% of the total number of samples of the training and test
sets, respectively. However, it can be seen that both sets present similar proportions of samples per
class.

To find the best parameters for the relation images and select the best feature set, we divided
the training part into training and validation parts (as described in Section 7.1). Using those parts,
we found that the best relation image size was 10 x 10.

We used Multilayer Perceptron Neural networks as classifiers, with one hidden layer containing
a number of units equivalent to the mean of the number of input features and the number of output
units. We used sigmoid activation functions in the input and hidden layers and softmaz functions

in the output layers.

56 RELATION CLASSIFICATION 5.3

o
)
)
)

=z
)
=)
=)

number of samples
~
o
)
)

number of samples
S
o
o
(@]

Figure 5.7: Number of relation samples per class in the (a) training and (b) test sets.

5.3.2 Results

Table 5.1 compares results obtained with the evaluated features, using the training and valida-
tion sets. According to those results, the best recognition rates were obtained for the combination
of geometric features and category vectors (CV). Also, it shows an increment of about 3% in com-
parison to the use of the geometric features alone.

We also evaluated the combination of geometric and histogram features, but no considerable
improvement was found.

Table 5.1: Relation classification rates (%) using the CROHME-2014 train-validation sets. CV = category
vectors.

Relations
Feature set Right Below Superscript Above Subscript Inside Total
Histogram 98.01 95.32 90.68 96.35 64.14 98.51 95.36
Geometric 97.43 99.15 91.24 97.95 62.03 99.00 95.16
Histogram + CV 99.42 98.30 94.63 97.49 89.66 99.50 98.35
Geometric + CV 99.58 99.15 94.92 99.32 91.35 100.00 98.73

To evaluate the generalization performance of the best features (geometric + CV), we evaluated
them on the CROHME-2014 test set. Recognition rates on this set was 96.89%. Although a high
percentage of the data corresponds to the Right relation (about 75%), the recognition rate is
considerably higher than that. This means that our classifier is much better than a classifier that
only considers likelihood information.

Table 5.2 represents the confusion matrix obtained from the test set results. According to the
matrix, misclassification of Subscript as Right or Below and misclassification of Superscript as Right
or Above are the most common errors.

After analyzing the misclassified relations, we identified the most frequent types of errors and
grouped them into three categories. These categories are illustrated in Figure 5.8.

The first category consists of errors that can be solved by using information from the analyzed

5.4 DISCUSSION 57

Table 5.2: Confusion matrixz for relations classification of CROHME-2014 test set. The actual relations at
rows and the predicted ones at columns.

Right Below Sup Above Sub Inside

Right 0.01 1.01 0.00 0.36 0.08
Below 0.46 pEeRESE (.00 0.00 0.68 0.46
Sup 5.18 0.00 5.33 0.30 0.00

Above 0.65 0.22 0.22
Sub 8.33 8.51 0.69 0.00
Inside 1.90 0.00 0.00 0.48

0.00 0.22
0.00

0.00

subexpressions. Figures 5.8(a), 5.8(b), and 5.8(c) show examples of this category. In those cases, the
bounding boxes alone are not enough to determine the relation. Subexpressions that contain several
symbols are specially difficult to recognize: as symbols take arbitrary arrangements, the bounding
boxes do not have an specific size or relative position. Having information about the structure of
the pair of subexpressions might solve this problem. For instance, the relative positions between
symbols of one subexpression that are close to symbols of the other subexpression might be a more
robust feature in cases where the subexpressions have many symbols. For our experimentations
on mathematical expression recognition (Section 7.1), we take advantage of the fact that we can
extract that information after the parse forest is built. Then, the relations classifiers described there
also include features extracted from adjacent dominant symbols of the pair of subexpressions.

The second category includes relations that would probably not be solved by considering only
information from the analyzed subexpressions. Instead, it would be necessary to look at the rest
of the expression to solve the ambiguity (if possible). Examples of these category are shown in
Figures 5.8(d), 5.8(e), and 5.8(f). In Figure 5.8(d), for instance, it would be useful to detect the
writing direction of the symbols adjacent to the considered subexpressions. In Figure 5.8(e), the
subscript relation may be inferred by looking at the index in the summation and in Figure 5.8(f) the
ambiguity is solved by realizing that there are no other elements that could be used as numerator
of the fraction.

In the third category, we included the relation errors generated by inconsistency of the ground-
truth. Some of these cases are illustrated in Figures 5.8(g), 5.8(h), and 5.8(i). In those cases, the
ground truth specified that the relations were Above or Below, but they actually look like Sup or
Sub, respectively.

5.4 Discussion

In this chapter, we described the relation classification problem, proposed category vec-
tor and relation image features and compared them with the geometric features proposed
in Alvaro and Zanibbi (2013). Results showed a comparable performance (with difference of less
than 1%) between the relation image and geometric features alone. When combined with category
vectors, both geometric and image features increased their rates about 3%. The best recognition rate
obtained on the CROHME-2014 test set was 96.89%, combining geometric features with category
vectors.

The misclassified relations included three main cases: relations solvable using local information,

relations that need contextual information and relations with inconsistent ground-truth. The first

o8 RELATION CLASSIFICATION 0.4

A+ ,;f
>+ Eﬁ i

(a) Right—Sup (b) Sub—Right

71‘\?13(; [, °

(c¢) Right—Sub (d) Right—Sup
#
Oy

(e) Sub—Right (f) Above—Right

Loom
oLy Q m=)

(g) Sub—Below (h) Sub—Below

X

(i) Sub—Above

Figure 5.8: Misclassification examples. Fach image label indicates the true relation class followed by the
classifier’s output, that is: true relation— output.

5.4 DISCUSSION 59

category suggests that using only local features might improve the state of the art recognition rates.
With respect to the second category, the introduction of contextual information could be done while
performing the recognition of the whole expression. These results recall the need for integrated
techniques that allow to take context dependent decisions during the recognition process.

While the relation images combined with category vectors generated results almost as good as
the best ones, they still have potential for improvement. In our work, we used Multilayer Perceptron
Neural Networks due to their easy configuration. However, other techniques, specially those based
on Deep-learning, might capture better the image patterns. Experimentation with those techniques

is out of the scope of this thesis, but will be considered on future work.

60

RELATION CLASSIFICATION

5.4

Chapter 6

Mathematical expressions parsing

technique

As described in Chapter 1, ambiguity is a main problem in recognition of online handwritten
mathematical expressions. Ambiguity in the recognition process appears at symbol (segmentation
and classification) or relations levels. Different choices at any of those levels generate different
interpretations of the input.

The parsing technique proposed in this thesis is divided into two steps: (1) Parse forest con-
struction (Section 6.1) and (2) Optimal parse tree extraction (Section 6.2). The first step aims to
determine all possible interpretations of the input. As a large number of interpretations may be
generated, a parse forest is built in order to efficiently store such interpretations. The parse forest
construction is based on a top-down approach (Section 6.1.1), but also integrates bottom-up infor-
mation to solve a key issue of the technique: given a production rule r, how to partition a stroke
set according to r? (Section 6.1.2). The second step traverses the parse forest to extract a best
tree according to a ranking function (Section 6.2.1). We propose a ranking function that linearly
combines costs assigned to symbol and relations that compose a parse tree. In addition, we adapt

a ranking function based on fuzzy sets, proposed in MacLean and Labahn (2013).

6.1 Parse Forest Construction

Given an input consisting of a set of strokes, denoted as str = {stry,...,str,}, and a graph
grammar, denoted as M, this process builds a parse forest that contains all possible parse trees
that can be generated from the input. To recall the data involved in this process, Figure 6.1 shows
the stroke set, grammar and parse forest examples described in Chapter 3.

The parse forest is built by calculating recursive partitions of the input strokes, according to
the grammar rules and a set of valid stroke partitions. First, we describe the complete algorithm to
build the parse forest (Section 6.1.1), then, we describe which stroke partitions are considered as
valid (Section 6.1.2).

As mentioned in Section 3.2, a parse forest defines different interpretations of a stroke set
through multiple partitions. Each partition is defined by an instantiated graph. A parse tree is then
composed of instantiated graphs that define a unique interpretation of the stroke set. Given a parse

tree t and a node x € t, with instantiated graph g(z) = (Vy(), Eg(z)), we introduce the following

61

62

stra
A\

strq

LY
Y
LY

‘t
d
L'|.
1

MATHEMATICAL EXPRESSIONS PARSING TECHNIQUE

stra
E strs
1 ! stre
.{', ‘l o

2

(a)

()

ME TRM OF | TRM OP + <
1 O —» 7.r0 O —p O | O
TRM -]
O Ol o
TRM TRM |, CHAR
3 O — CHAR a 2
TBM o CHAR r-11.. 173 () s O .0
r-4
TRM CHAR 5 é
sb
r-5
0 9
CHAR
0.0
(b)
ME
r-2 r-1
Instantiated TRM TEM OF TRM
V -8 6
-3
TRM CHAR r
@e '/ oé
w3 r-8 r-67 r-64
TRM hCHAR| |TRM CHAR| | 4 1
26| |

6.1

Figure 6.1: The parse forest construction step receives a set of strokes as input (a) and uses a graph
grammar (b) to build a parse forest structure (c). A parse forest stores multiple interpretations of the input
as parse trees. Red arrows of the parse forest represent a a parse tree that corresponds to the interpretation

zsz4 "

6.1 PARSE FOREST CONSTRUCTION 63

notation to help the further explanations:

e Vv € Vi, label(v) is the terminal or non-terminal symbol assigned to the vertex v, str(v) is
the set of strokes assigned to v, and child(v) is the node of ¢ that defines a partition of str(v)
(if label(v) is terminal, child(v) is 0).

e symb(x) is the set of all symbols generated by the subtree of ¢ with root in x.

e rel(x) is the set of all subexpression relations generated by the subtree of ¢ with root in x.

6.1.1 Top-down parsing algorithm

Algorithms 1, 2, 3 summarize the parse forest construction. The technique follows a top-down
parsing approach. To simplify the explanation, we assume that a grammar is defined only with two
types of rules: terminal and non-terminal. In a terminal rule, denoted as A — b, the RHS graph is a
single vertex graph, whose unique vertex is denoted as b and it is labeled with a terminal symbol —
rules from r-7 to r-73 of the grammar of Figure 6.1 for instance. A non-terminal rule refers to a rule
whose RHS graph contains one or more vertices, all of them labeled only with non-terminal symbols
— as rules r-1 to r-6 of the grammar of Figure 6.1. In addition, we will refer to the non-terminal of
the start graph as the start symbol.

The parsing process starts with a call to the method described in Algorithm 1. The input to this
method is a stroke set, denoted as str = {str1,...,str,} 1. The output is a set of pairs composed
of instantiated graphs and rules that “generate” such graphs (parsingResult). All generated results
are recorded in a table denoted as T'. This table is indexed by a pair of strokes and non terminal

symbol, that is:

T(str = {stry,...,strn}, NT) = {(g91,71)s---,(9q:7¢) }, (6.1)

where g; is an instantiated graph and r; is the rule that “generated” g;. The parse table T stores
parsing results in order to avoid recomputation 2. This is done by table lookup in Lines 2-3 of
Algorithm 1: if results for a pair (str, NT) have already been calculated, the results are retrieved
from the table. On the other hand, if results have not been calculated yet, the rules that have NT in
its LHS graph are selected (line 5 of Algorithm 1). For each selected rule, all partitions that can be
derived using the rule are then calculated and encapsulated as new parsing results (lines 6-17). This
is done according to the type of rule being analyzed. If the rule is terminal, Algorithm 2 is called
with the stroke set and the rule as arguments. In this case, it suffices to check if the RHS vertex
label of the rule (which is a terminal symbol) is contained on a set of labels attributed to the stroke
set. This verification is made by checking if the hypothesis graph contains a symbol hypothesis
whose stroke set corresponds to the evaluated strokes and contains a label set that includes the
vertex label.

If the rule is non-terminal, the instantiated Graphs method is called, with the stroke set and the
rule as arguments. This method calculates multiple stroke set partitions according to the rule. The

results of this method are stored as instantiated graphs. After that, for each instantiated graph,

la set is denoted as a braced list of elements, that is set = {elementq,...,element,} and a sequence (ordered
set) as a bracketed list of elements, that is sequence = (element, ..., element,), where element; is the i*" element
considering a particular order.

2This technique has originally been proposed in strings parsing (Grune and J.H, 2008)

64 MATHEMATICAL EXPRESSIONS PARSING TECHNIQUE 6.1

Algorithm 3 is called, with the instantiated graph and the rule as parameters. This algorithm iterates
over each vertex of the graph to parse the vertex’s stroke set with its corresponding non-terminal
symbol. In this case, if the parsing fails for one stroke set—non-terminal pair, the parsing for the
whole graph fails, and an empty set is returned. Otherwise, the instantiated graph and the rule are

returned as a result.

Algorithm 1: parseMathExpression. Parses a set of strokes over a non-terminal, fol-
lowing a top-down approach.

Input : (str = {strq,...,str,},nonTerminal).
Output: parsingResult = {(g1,71),...,(9¢,7¢) }

1 parsingResult < 0;
2 if parsed(str, nonTerminal) then
3 ‘ parsingResult < T'(str,nonTerminal) ; // Result is already in T

4 else

5 rulesO f NonTerminal + rulesWithLHS (nonTerminal) ;

6 foreach rule € rulesO f NonTerminal do

7 if rule is terminal then

8 ‘ parsingResult = parsingResult U parseTerminalRule (str, rule) ;
9 else

; // Rule is non-terminal

10 instantiatedGraphs < instantiateGraph (str, RHS(rule))
11 foreach G € instantiatedGraphs do
12 ‘ parsingResult = parsingResult U parseNonTerminalRule (iG, rule) ;
13 end
14 end
15 end
16 T'(str,nonTerminal) < parsingResult;
17 parsed(str,nonTerminal) < True;
18 end

19 return parsingResult;

Algorithm 2: parseTerminalRule. Parses a set of strokes over a terminal rule.
Input : (str = {stry,...,strp},rule = A —b).
Output: parsingResult = {(g1,71),...,(94,7¢)}-

parsingResult < 0 ;

if a(b) € v(str) then
; // The instantiated graph has only one vertex (b)
; // and the parsingResult only one element

3 instantiatedGraph < buildGraph (str, a(b));

4 parsingResult < {(instantiatedGraph,rule)}

5

6

N =

end
return parsingResult;

Turan (1982) showed that the graph grammar parsing is a NP-complete problem. This com-
plexity is dominated by the isomorphism search between the RHS graph of a rule and a graph
derived from the input (in this thesis, the graph is derived from the hypotheses graph). Some
previous approaches proposed small or constrained grammars to reduce the parsing complex-
ity (Celik and Yanikoglu, 2011; Han and Zhu, 2009; Lavirotte and Pottier, 1997). In this work, we

6.1 PARSE FOREST CONSTRUCTION 65

Algorithm 3: parseNonTerminalRule. Parses a set of strokes over a non-terminal rule.
input : (iG = (Vig, Eig), rule).
output: parsingResult = {(g1,71),...,(gq,7¢) }-

foreach v € Vi do
partial Result < parseMathExpression (str(v), label(v));
if partialResult = () then
‘ return (;
end
end
return {(iG, rule)};

N O Ok W =

keep the grammar and the parsing methods general, and manage the complexity through the hy-
potheses graph. Although this makes the parsing algorithm to have an exponential cost in the worst
case, results described in Chapter 7 show that the proposed algorithms are efficient enough to be

applied in an online context.

6.1.2 Valid stroke partitions

A key step of the proposed parsing algorithm is to determine a set of stroke partitions that match
the RHS graph of a production rule. Given a stroke set str = strq, ..., str, and a production rule r,
a partition of str that matches RHS(r) = B = (Vp, Eg) consists on assigning a non-empty subset
of str to each vertex of RHS(r). Without any constraint, the total number of stroke partitions is
O(|Va[").

Among all the partitions of a stroke set, most of them may not be worth evaluating. For instance,
in Figure 6.2, it would not be useful to evaluate the partition indicated by red lines. Furthermore,
it would not be useful to evaluate any partition where the stroke “b" is mapped to the vertex with
label OP.

Figure 6.2: Two partitions of a stroke set according to a production rules’s graph. Blue lines indicate a
right partition and red lines indicate a wrong one.

To improve the search for stroke partitions, some previous approaches that used string grammars
proposed different ways to introduce an order in the strokes set. For instance, Yamamoto et al.
(2006) sorted the strokes according to the input time, and MacLean and Labahn (2013) sorted the
strokes horizontally or vertically, using the minimum (z,y) coordinates of each stroke. Having an

order in the stroke set and in the production rules (in string grammars the elements of a production

66 MATHEMATICAL EXPRESSIONS PARSING TECHNIQUE 6.2

rule are sorted from left to right), the total number of partitions is exponential in the number of
elements of the right hand side of the rule (not in the number of elements of the stroke set).

The approach proposed in this thesis does not constrain the stroke set to have a specific order.
Instead, the search space for partitions is derived from the hypotheses graph of the stroke set. As
described in Section 3.3.1, a hypotheses graph is composed of a set of symbol hypotheses and a
set of relation hypotheses. The symbol hypotheses set represents groups of strokes that may be
interpreted as symbols, and the relation hypotheses set represents possible relations between those
symbols. Given a rule r, and a stroke set str, the set of partitions P of str according to r is given
by all the minor graphs of the hypotheses graph of str 3 that are isomorphic to RHS(r). This means
that a group of strokes are mapped to a vertex of RHS(r) only if the strokes belong to a vertez
formed by contracting edges of the hypotheses graph. The vertices formed by contracting edges
(partition vertices) inherit the relation labels of their children. The isomorphism search requires
that the relation labels of the RHS(r) match those of the partition vertices. Figure 6.3 shows an

example of a hypotheses graph and a set of vertices formed by contracting their edges.

Partition —
vertices

SHRG

Figure 6.3: A hypotheses graph and vertices formed by contracting edges. The dashed arrows of the vertex
composed of strokes P® represent inherited edge.

6.2 Optimal parse tree extraction

Once the parse forest is built, the final step consists on extracting a tree that is more likely
to represent an interpretation of the input. To do that, we need a ranking function over the trees

of the parse forest. In this thesis, we propose a cost-based ranking function and compare it with

3A graph H is a minor of a graph G if H can be obtained from a subgraph of G by contracting edges Wagner
(1937).

6.2 OPTIMAL PARSE TREE EXTRACTION 67

a geometric averaging function based on the work of MacLean and Labahn (2013); Zhang et al.
(2005).

From an application point of view, it is better to have a general and efficient method to extract a
k-best tree, so that if the best tree does not correspond to a correct interpretation, the following best
trees could be retrieved. The best tree extraction technique proposed in this thesis is based on the
work of Boullier et al. (2009). The technique consists of two processes. The first process traverses
the parse forest in a bottom-up way, calculating, for each pair (str, NT'), a table that contains
alternative partitions of str sorted in descending order by their likelihood score. Each row of a table
stores a single partition of str. As each part of a partition may be subsequently partitioned, for each
part, a row also stores the position of a row that defines the subsequent partition of the part on its
corresponding table. Once the bottom-up process calculates the tables for each pair (str, NT') of the
parse forest, the k-best tree is extracted by a top-down process. This process begins by extracting
the partition of the row at position k of the table of the start symbol and the complete set of strokes
pair. Then, the subsequent partitions are extracted recursively from the tables corresponding to each
part. The last step is repeated until obtaining partitions that correspond to terminal symbols.

In the case of recognition of mathematical expressions, evaluating all parse trees for complex
expressions is infeasible. We then propose a pruning strategy applied in the bottom-up step of the
k-best tree extraction method. The pruning technique consists on avoiding parse subtrees that have
low likelihood scores: for each table of a pair (str, NT'), only rows whose partitions have a likelihood

score above a predefined threshold are considered. The threshold is calculated experimentally.

6.2.1 Ranking functions
Geometric averaging

In MacLean and Labahn (2013); Zhang et al. (2005) the authors proposed fuzzy-based score
functions. The set of all possible interpretations is defined as a fuzzy set and a ranking function
is interpreted as a membership function. The membership function is defined recursively as the
geometric mean of the stroke partitions and relations of a parse tree.

Considering graph grammars, the membership score of a parse tree node x is given by:

I S
WVo(a) I H1Eg(a)]

mScore,(x) = H mScoreyert(v) H mScoreedge(€i,;) ’
UEVQ(I) ei,j:(’L)i,U]‘)GEg(m)
(6.2)

where mScoreyeri(v) and mScorecqqe(e; ;) give the membership score of vertex v; and edge e; ;,

respectively. The score mScore, e +(v;) is calculated as:

mScore.(label(v), str(v)), if label(v) € T

. . (6.3)
mScorey(child(v)), if label(v) € N,

mScoreyert(v) = {

where mScore.(label(v), str(v)) gives the confidence value of the strokes str(v) representing a ter-
minal symbol label(v). This value is given by the best symbol classifier described in Section 4.3.2.

The score mScorecqqge(€; ;) gives the confidence value of having a relation e; ; between subex-
pressions composed of strokes str(v;) and str(v;). The value is calculated using the best relation

classifier described in Section 5.3.2.

68 MATHEMATICAL EXPRESSIONS PARSING TECHNIQUE 6.2

Using the above equations, the membership score or confidence value of a parse tree t is given
by mScore,(x,), where x, is the root of ¢.

The calculation of the confidence value of a parse tree is illustrated using the tree of Figure 6.4.
The elements of the three are indexed in order to identify the cost at each tree part. Then, the

fuzzy membership score for the tree is calculated as:

mScorey,(x1) = mScoreyer(v1)
= mScorey(child(vy))
= mScorey,(x2)
= ((mScoreyert(va) X mScoreyert(vs) X mScoreyert(vs))

X (mScoreeqge(e1) X mScoreedge(eg)))ﬁ, (6.4)
where the score mScore,e,(ve) is given by:

mScoreyert(vy) = mScorey,(x3)
= ((mScoreyert(vs) X mScoreyert(ve)) X mScoreedge(eg))Wll

= ((mScore.(“P”, str(vg)) X mScore.(“P”, str(vg))) X mScoreedge(eg))%, (6.5)

similarly, the score mScoreyeyt(vs) and mScoreyert(vy) are calculated as:

mScoreyert(v3) = mScore.(“ <7, str(vig)), (6.6)

mScoreyert(vy) = mScore.(“17, str(vi2)), (6.7)

From the above equations, we can see that while the scores of vertices v3 and vy are given by
the score of the classification of two symbols, the score of vertex vs is given by the score of the
classification of two symbols and one relation. As the score of vy is calculated as a geometric average,
a variance in a factor its score (mScore.(“P”, str(vg)), mScore.(“P”, str(vg)), or mScoreeqge(€3))
is not as influential as one variance in a factor of the score of vz (mScore.(“ < 7, str(vip))) or
v4 (mScore.(“1”, str(vi2))). Similarly, a variance in a factor of score v is not as influential as a
variance in the score of relations e or es. The cost-based score described in the next section assigns

equal influence or weight to each symbol or relation classification score.

Energy minimization

The energy minimization score assigns costs to symbols and subexpression relations that com-
pose a parse tree and combines both costs with a linear function. This score does not define a
recursive function, but considers all relations and symbols that are generated by a subtree rooted
at a particular tree node.

Formally, the cost of a parse tree node x is defined as:

>> coste(label(v), str(v)) > cost,(e)
veterm(t’,) e€rel(x)
t = 1— B S A
coste) = e term(@,)] e\ T)

(6.8)

6.2 OPTIMAL PARSE TREE EXTRACTION 69

U2 Vs V4

| o)" ERiD

U5 U6 V10 V11

3| TR (GraR M| |

g V9 V12

X s X
‘@ | @ L@

L@

Figure 6.4: Parse tree of expression P® < 1, extracted from the parse forest of Figure 6.1(c). Nodes are
indexed as x;, fori =1,...,9. Similarly, vertices and edges of the instantiated graphs are respectively indexed
asvj, for j=1,...,12, and ey, for k =1,...,3. Nodes with terminal symbols are depicted with double line
borders.

where t/, is the subtree of ¢ that has x as root, term(t},) is the set of all vertices of ¢/, that have
terminal symbols as labels, cost.(label(v), str(v)) is the cost of considering str(v) as a symbol
label(v), and cost,(e) is the cost of considering e as a relation. The cost scores are calculated by
applying a logarithm function to the symbol and relation classifier outputs. That is, given a symbol
or relation classifier output z, the corresponding cost score is given by —log(z).

Similarly to the geometric averaging score, the cost of a parse tree ¢ is given by cost(z,), where

x, 18 the root of £. In the case of the tree of Figure 6.4, the cost is calculated as:

> costc(label(v), str(v)) > cost,(e)

vEterm(ty,) (1) ecrel(ty,)
+ (11—«
[term(t;,)| [rel(t;,)]

cost(x1) = «

(costc(“P”, str(vg)) + cost.(“D”, str(vg)) + cost.(“ <7, str(vig)) + costc(“l”,str(vlg))>
=a
4

costr(e1) + cost,(e2) + costr(eg))

- 3

(6.9)

70

MATHEMATICAL EXPRESSIONS PARSING TECHNIQUE

6.2

Chapter 7
Experimentation

In this chapter, we evaluate the performance of the complete recognition system. The evaluation
is done over the CROHME-2014 dataset (Moucheére et al., 2014).

7.1 Experimental setup

The CROHME-2014 dataset consists of mathematical expressions that have been handwritten
by hundreds of people from different countries. It is divided into training and test sets, with 9, 507
and 986 mathematical expressions, respectively. From the training set, we randomly selected 950
expressions (about 10%) to optimize our system parameters (validation set).

The organizers of the CROHME competition provided a string grammar that defines a language
of the mathematical expressions included in the dataset !. In order to evaluate our system on the
dataset, we implemented a graph grammar version of the string grammar. Our graph grammar is
formally defined as described in Chapter 3, and is composed of 205 production rules, including rules
to generate the 101 symbol classes (terminals) considered in the competition.

To comprehensively evaluate a mathematical expression recognition system, performance met-
rics should measure recognition rates at different levels (Lapointe, 2008; Lapointe and Blostein,
2009). One of the most common metrics is the expression recognition rate (expression level). This
metric measures the percentage of correctly recognized expressions from the total ones, where an
expression is considered correctly recognized when all its symbols are correctly segmented and clas-
sified and all spatial relations between its symbols have been correctly identified. However, this
metric does not provide an insight about how much of an expression has not been correctly rec-
ognized, neither distinguish between symbol and relation errors. For example, according to this
metric, it does not matter if an expression E?:O x' is missrecognized as Z?:O z! or Y icomX; in
both cases the result would be counted as one error, although the second one contains more symbol
and relations missrecognized.

In the CROHME competition (Mouchére et al., 2014), to complement the expression recognition
rate, the systems have also been evaluated using object level metrics. These metrics include recall
and precision of symbol segmentation and recognition and spatial relation detection. Recall and
precision of symbol segmentation and recognition are defined as usual. Spatial relation detection

measures the percentage of correctly identified relations between pairs of symbols, where a relation

"http://www.iapr-tcll.org/dataset/ CROHME/CROHME _full v2.zip

71

http://www.iapr-tc11.org/dataset/CROHME/CROHME_full_v2.zip

72 EXPERIMENTATION 7.1

is considered well identified if the symbols at both sides of the relation are correctly segmented and
the right relation class is identified. In our evaluation, we consider both object and expression level
metrics, and report results using the evaluation tools provided by the organizers of the competition?.

Seven systems participated in the CROHME-2014 competition. We identify the systems as:
System I, System II, ... , System VII. These names correspond to those given in the competi-
tion. The systems implement a variety of approaches, including parsing techniques with string
grammars, baseline extraction, and statistical models. A brief description of each system is given
in Mouchere et al. (2014).

As explained in Chapter 3, our recognition method comprises two stages: hypotheses graph
generation and graph parsing. To optimize our recognition method, we need to set the values of
parameters in both stages in such a way that the method provides high accuracy and is efficient
enough to be used in a real scenario.

The hypotheses graph generation stage is configured according to a pair of symbol and relation
classifier thresholds. Recall that to compute a hypotheses graph, we train symbol and relation
classifiers (described in Chapters 4 and 5, respectively) to identify symbol and relation hypotheses
with their corresponding label sets. The label set of a particular hypothesis (symbol or relation)
is calculated using likelihood scores given by the classifiers. Given a hypothesis h and a label set
(l1,...,lmn), sorted in descending order by their likelihood scores score(l;), for i = 1,...,m, a set

of k labels is assigned to h, such that:

k

k = arg mkln; score(l;) > tr, (7.1)
where tr defines a minimum confidence value to select a label set or to reject a hypothesis. A hy-
pothesis is rejected if its junk label score is the biggest one and it is greater than the threshold.
Thus, the higher a symbol/relation threshold value, the more symbol/relation hypotheses are ac-
cepted (stored in the graph), and the more labels are assigned to them. It is important to note
that for a symbol classifier threshold value 1, all the stroke groups generated by the stroke grouping
algorithm (described in Chapter 4) are accepted as symbol hypotheses and all possible labels are
attributed to each of them. In the case of relations, for a threshold value of 1, a relation hypothesis,
attributed with all relation labels, is created for each pair of symbol hypotheses.

The graph parsing stage is configured through a threshold that defines a minimum cost that a
tree should have in order to be considered as a possible result. When using the cost function, an
additional parameter is a weighting a between symbol and relation costs (value in the range [0-1]).
The larger the value of «, the more weight is given to the symbol cost and the less to the relation
cost (see Section 6.2.1 for more details).

To select the optimal parameter values, we used the training and validation sets as follows. We
trained the symbol and relation classifiers with symbols and relations extracted from the training set.
We evaluated several feature sets for each classifier and selected the best ones using the validation
set. The results regarding the symbol and relation classifiers’ performance are detailed in Chapters 4
and 5, respectively. Once the classifiers were optimized, we used them to select the hypotheses
graph generation and graph parsing parameter values. First, we selected the best symbol and

relation classifier threshold values. Then, using the selected values, we determined the tree extraction

*https://www.cs.rit.edu/~dprl/CROHMELib_LgEval Doc.html

https://www.cs.rit.edu/~dprl/CROHMELib_LgEval_Doc.html

7.2 PARAMETER SETTING 73

threshold and the weighting between symbol and relation costs. This evaluation was also done over
the validation set, and the corresponding results are described in Section 7.2.

After setting the optimal parameter values, we evaluated the resulting system in the test set
and compared its performance with systems that participated in the CROHME-2014 competition.

The corresponding results are described in Section 7.3.

7.2 Parameter setting

This section describes the selection of parameter values for the hypotheses graph generation and

the graph parsing techniques. This evaluation is done using the validation set.

7.2.1 Hypotheses graph generation

To evaluate the hypotheses graph generation step over a combination of symbol and relation
threshold values, we calculate the recall of symbols, relations and complete expressions contained in
the hypotheses graphs generated for such combination. Figure 7.1 shows the results relative to this
evaluation, over symbol and relation threshold values in the range [0-1]. Note that these results also
indicate the maximum recognition rates achievable by the parsing technique (or the missrecognition

rates induced by the hypotheses graph generation stage).

100
N P N M

80

70

60

Recall (%)

50
40
30

B EEEEREEEE R R R R R R PR EEERE EEE R E R R EEEERE

0.9 1 ‘

Symbol (below) and relation (above) classifier thresholds

===Symbol ===Relation Expression

Figure 7.1: Symbol, relation and expression level recall of the hypotheses graph generation step, for thresh-
olds in the range [0.1 — 1.0]. For each symbol threshold value, values for the relation threshold are varied
from 0.1 to 1.0.

We can see in Figure 7.1 that even for the lowest threshold values about 90% of symbols and
relations, and 40% of expressions are detected. We can also see that no considerable improvement is
obtained, neither at symbol nor relation levels, for threshold values below 0.5. Using the maximum
threshold values, almost 100% of the symbols are correctly identified (specifically, 99, 75%). As for
a symbol threshold value of 1 no stroke group is rejected, that recall value also corresponds to
the percentage of symbols identified by the stroke grouping method. Similarly, for the maximum
threshold values, almost all relations and expressions are identified (99,45% and 98.11%, respec-
tively). This means that the expected symbols and relations of each expression are mostly present

in its corresponding hypotheses graph. In an ideal case, we would like to set threshold values as

74 EXPERIMENTATION 7.2

high as possible to guarantee the highest possible recall values. However, higher threshold values
also mean a more complex parsing process. The best threshold values are then selected considering
their applicability during parsing.

To gain insight about the size of the hypotheses graph relative to an input expression, we
measured the ratio between the number of symbol and relation hypothesis labels and the number
of symbols and relations of the expression, respectively. For instance, for an expression composed of
5 symbols and 4 relations, a ratio of 2 for both symbols and relations means that its corresponding
hypotheses graph contains about 5 x 2 = 10 symbol labels and 4 x 2 = 8 relation labels. Figure 7.2
shows the mean of the ratios calculated over threshold values in the range [0.1-0.9]. We avoid
showing the ratios for threshold values of 1, as they are so high that make difficult the analysis of
the ratios for lower values. Nonetheless, a chart that includes the ratios relative to threshold values

of 1 can be seen in Appendix B.

30 90
r 80
25
[70
20 ¢ 60

50

15 —
| A A
10 A 30
[20
5
J— 10

B R e N e e e

o2 o | |
Symbol (below) and relation (above) classifier thresholds

Recall(%)

Labels / symbol or relation

===| abels/Symbol ==Labels/Relation Expression recall

Figure 7.2: Mean of symbol and relation hypothesis labels per symbol and relation, respectively. The left
hand axis indicates the number of labels per symbol and relation. The right hand axis indicates the percentage
of recognized expressions.

We can see in Figure 7.2 that for thresholds in the range [0.1 — 0.4] the number of symbol and
relation labels is almost constant. This indicates that, for that range of values, the hypotheses graphs
contain almost the same hypotheses, which also explains the almost constant symbol and relation
recall (see Figure 7.1) for that range of values. For thresholds above 0.4, we see a slow increment in
the Labels/Symbol ratio, but a high increment in the Labels/Relation ratio. This difference in
the ratio increments is natural, as in the relation hypotheses generation step we evaluate all pairs
of symbol hypotheses to determine the existence of relations between them (generating a potential
quadratic relation between the number of relations and symbols of the graph).

Figure 7.2 also gives hints about how to select the best threshold configuration. For instance,
we see that for symbol threshold t,,,, = 0.7 and relation threshold ¢,,; = 0.9, the recall is about
65%. We also see that a similar recall is obtained for ¢,y = 0.9 and t,¢ = 0.5. A comparison of
the two configurations suggests that the second configuration would often produce a more efficient
recognition method because, in average, it generates less labels per expression. In general, we could
say that configurations with high relation thresholds can be replaced with configurations with lower
relation thresholds and higher symbol thresholds to obtain similar recall rates but more efficient

parsing.

7.3 PARAMETER SETTING 75

7.2.2 Graph parsing

Similarly to the hypotheses graph evaluation, we used the validation set to analyze the parsing
algorithm recall rates over a range of symbol and relation thresholds. We defined the maximum
symbol and relation thresholds as 0.98 and 0.85, respectively; as parsing large expressions with
thresholds larger than those takes much time to be considered in a real application. Along this
evaluation, we set the same weight for the symbol and relation costs, that is, a = 0.5 and the tree
extraction threshold to 0.1. Figure 7.3 shows the expression recall obtained by the graph parsing
method and the corresponding recall obtained by the hypotheses graph generation step (recall
that they indicate the maximum recall rates that the parsing algorithm could achieve). The figure
shows that for thresholds higher than ,,,;, = 0.9 and ¢, = 0.8, no considerable improvements are
obtained. For experimentations on the test set, we nonetheless set tgy,,;, = 0.98 and ¢, = 0.85, as
those threshold values allow to keep more hypotheses that could be useful during parsing of unseen
data (better generalization). We can also see that for the best threshold values there is a gap of
about 40% between the hypotheses graph and the graph parsing recall. This difference indicate
that the current recognition technique has potential to obtain much better recognition rates just
by improving the graph parsing technique.

100
90

80 _—
70 — —

. /\/ N—"
50

40 ,M
30
20

10
0

Expresion recall (%)

D T S B I B T - O I T T et - T o T A e B =T L B O B T - S B I I O
/o o|d|cc/oco|c|d/c o|lco/c/ococ|lc|lco o oc|loc/lco/ oo o R oo 2R o 2 X
S SIS [SERS]

0.5 ‘ 0.6 0.7 ‘ 0.8 ‘ 0.9 ‘ 0.95 0.98

Symbol (below) and relation (above) classifier thresholds

===Graph Parsing ===Hypotheses graph

Figure 7.3: Symbol, relation and expression recall obtained at graph parsing and hypotheses graph generation
stages, for different symbol and relations thresholds values.

Using the best symbol and relation thresholds, we evaluated the cost function with different tree
extraction threshold and cost weighting values (the higher the symbol cost weight, the higher the
influence of symbol classification interpretations). Through this evaluation, we set the tree extraction
threshold to 0.1. For the cost weighting, we compared the obtained cost function rates with the rates
obtained by the fuzzy score. Table 7.1 shows the results regarding this experimentation. Results
show that to obtain the best recall rates, both costs should be considered (avoiding weights of zero
or one). We set the cost wighting value to o = 0.4, as the best expression recall was obtained for
such value. We can see that recall rates at symbol level are stable for symbol cost weights above
0.2. The relation recall presents a variation similar to the symbols, probably because it depends

directly on the symbol segmentation recall.

76 EXPERIMENTATION 7.3

Table 7.1: Comparison of scoring function using the validation set of CROHME-201/.

Score function | segmentation | classification | tree rel. | expr. recognition
recall recall recall recall
cost (a = 0.0) 48.21 37.47 17.84 6.11
cost (v =0.2) 91.75 86.21 74.22 46.42
cost (o =0.4) 92.96 87.37 76.69 47.68
cost (v =0.5) 93.83 88.17 77.27 47.58
cost (a = 0.6) 93.36 87.66 76.84 46.84
cost (v =0.8) 93.26 87.49 76.19 46.32
cost (= 1.0) 92.69 86.94 38.36 17.89
fuzzy 91.96 85.82 64.54 40.63

7.3 Results

For better understanding of the recognition performance over the test set, we measure the
hypotheses graph generation performance using the same range of threshold values used for the
validation set. Figures 7.4 and 7.5 show the results regarding that evaluation. As the symbol and
relation classifiers were optimized using the validation set, it is natural that the recall rates obtained
on the test set are lower than the recall rates obtained on the validation set. Specifically, we see
that for the lowest threshold values, the recall rates decreased about 5% for symbol and relation
levels and 12% for expression level. This difference is less significant as the threshold values increase.
Regarding the number of labels per symbols and relations, the ratios obtained on the test set do not
present considerable differences in relation to those obtained in the validation set, which suggests

stable graph complexities on these data.

100

80 E—

70 7

60

Recall (%)

50 7

40 .

30

20 7
—
a

03]

PR PR R P PR R P E R L PR P E R P R R P E R E R EE:
0.7 0.

0.4 0.5 0.6
Symbol (below) and relation (above) classifier thresholds

38

45
b

0.1 0.2 0.3 0.8 9

===Symbol ===Relation Expression

Figure 7.4: Symbol, relation and expression level recall of the hypotheses graph generation step, for thresh-
olds in the range [0.1 — 1.0]. This results are calculated over the test set expressions.

Table 7.2 compares the expression level recognition rates of our system and systems that partic-
ipated in the CROHME competition. It includes the percentage of expressions that were recognized
with up to three errors (in symbol or relation levels). Considering that for the selected parameter
values the hypotheses graph generation method identified 78.40% of the expressions correctly, much
better recognition rates are still possible by improving the graph parsing method (this observation

is coherent with the comparison of the corresponding hypotheses graph and graph parsing rates

7.3 RESULTS 7

%15; A A f40§
A A /\ /\ /\—J 20
“dlaaid \d\i ﬁ”iﬁoi EEEEERE \ﬁ\oﬁ\i Mé’igﬁﬁdﬁ;go

Symbol (below) and relation (above) cla55|ﬁer thresholds

===_abels/Symbol ===Labels/Relation Expression recall

Figure 7.5: Mean of symbol and relation hypothesis labels per symbol and relation, respectively, over the test
set expressions. The left hand axis indicates the number of labels per symbol and relation. The right hand
axis indicates the percentage of recognized expressions.

obtained for the validation set).

Table 7.2: Expression level comparison of our method with systems of the CROHME-2014 competition.

System | correct | #errors < 1 | #errors < 2 | #errors < 3
I 37.22 44.22 47.26 50.20
1I 15.01 22.31 26.57 27.69
111 62.68 72.31 75.15 76.88
v 18.97 28.19 32.35 33.37
\Y% 18.97 26.37 30.83 32.96
VI 25.66 33.16 35.90 37.32
VII 26.06 33.87 38.54 39.96
ours 33.98 43.10 47.56 49.29

To have a better understanding of the potential of our method, we analyzed the expressions
that have been recognized correctly. The expressions include samples that have up to 39 strokes,
including all the six relation types. Figure 7.6 shows examples of those expressions. It can be
seen that even expressions that have ambiguous symbols and irregular arrangements of symbols
are correctly recognized. We also found that some symbols or relations that were missrecognized
in isolated experiments, were correctly recognized at expression level. For instance, in isolated
relations classification (Section 5.3), the relation between the subexpressions “” and “sin?(1)” of
Figure 7.6(c) was missclassified as superscript, but when recognizing the whole expression, the best
interpretation includes the right relation (horizontal).

Table 7.2 indicates that 15% of the expressions would be correctly recognized if we disregard
up to three errors. Figure 7.7 shows some of those expressions. Most of the error could probably
be corrected by optimizing the symbol and relation classifiers as described in Sections 4.4 and 5.4,
respectively. However, some cases are difficult to solve, even for humans. For instance, in the ex-
pression of Figure 7.7, the system interprets the relation between p and —1 as horizontal, that is,
p — 1, but the relation is rotulated as subscript in the ground-truth, that is p_;. Given the hand-

written expression, we could consider that the system’s output is a more likely interpretation than

78 EXPERIMENTATION 7.3

1080 arer 6

Figure 7.6: Examples of handwritten mathematical expressions that have been correctly recognized by our
method.

the ground-truth’s.

U 2 ‘22-1,-7_ '|"2.9| + b

w2 w—2 (b) 22ba + 2b1 + by — 2%ba + 2b1 + b0
et 0=
(¢) mn—mn1— —MNp_; >N —N1— ... Np_1 d) w=qu —qc - v=qu —qC
(e) bagi — bayl (f) ao + 3a1 + 9az + 27a3 = 0 — ao + 3a1 + gaz + 27a3 =0

Figure 7.7: Expressions recognized with a few errors. For each expression, its ground truth and the system’s
output is showed as: ground truth — system’s output.

Table 7.3 compares our system’s symbol segmentation and classification recall and spatial rela-
tion detection rates with those of the CROHME competition. At symbol classification, we make a
parallel between our system’s performance and the best system of the competition. For this purpose,
we show the symbol hypotheses classification results of both systems in table Table 7.4 (this results
were introduced in Section 4.3.2). It is interesting to note that while in the symbol hypotheses

classification task our system performed almost as good as System III, in the expression recognition

7.4 RESULTS 79

task, System III outperforms our system by about 13%. Furthermore, System III outperforms all

the systems with a considerable difference when recognizing complete expressions.

Table 7.3: Object level comparison of our method with systems of the CROHME-201/ competition.

segmentation classification tree rel.

System | recall | precision | recall | precision | recall | precision

I 93.31 90.72 86.59 84.18 84.23 81.96

II 76.63 80.28 66.97 70.16 60.31 63.74
111 98.42 98.13 93.91 93.63 94.26 94.01
v 85.52 86.09 76.64 77.15 70.78 71.51
\Y 88.23 84.20 78.45 74.87 61.38 72.70
VI 83.05 85.36 69.72 71.66 66.83 74.81
VII 89.43 86.13 76.53 73.71 T1.77 71.65
ours | 88.04 | 92.91 |80.92 | 85.39 | 61.20| 65.18

Table 7.4: Comparison of our method and System III for symbol hypothesis classification, using the
CROHME-201} test set.

Without Junk With Junk
System Rec. rate Rec. rate TAR FAR
Ours 89.21 90.50 92.53 3.93
System III 91.04 85.54 87.12 10.39

From the systems that participated in the competition, two of the best, System I and System
III, use parsing techniques as part of the recognition process. System I corresponds to the work
of Alvaro et al. (2012), described in Section 2.3 of this thesis. It uses a string grammar and a
CYK-based parsing algorithm. The best system, System III, corresponds to the commercial system
MyScript3. According to Mouchére et al. (2014), MySecript has been optimized over hundreds of
thousands of equations, property of the company and not publicly available. The optimization of
the whole system using such dataset should explain part of the difference between the MyScript’s
performance and the rest of the systems. Additional information that System I and III included in
their systems, and that our system did not considered, consists of statistics about the application
of the rules of their grammar.

To gain insight about the most difficult structures, we extracted the spatial relations for which
our system obtained more recognition errors. In this case, we consider symbol-to-symbol spatial
relations, where a relation is identified by the relation identity, and the identity of symbols at both
ends. Table 7.5 shows the ten relations that presented more errors, sorted by the number of errors, in
decreasing order. The table also includes the corresponding total number of samples of each relation
and the percentage of the samples that were missrecognized. Some of the structures are particularly
difficult due to the ambiguity at symbol level. For instance, our system often missrecognizes “x” as
g

“2” and the trigonometric function “sin” as tree letters, like and “n”, related by an horizontal

relation.

Shttp://www.myscript.com/

80 EXPERIMENTATION 7.4

Table 7.5: Spatial relations between symbols (of the test set) that presented more errors. Each relation is
identified with a printed representation. The relation identity is implicit by the relative symbol positions.

Relation | # errors | # samples | % errors
1 28 133 21.05
=— 26 91 28.57
T+ 26 120 21.67
X 24 24 100
X T 24 24 100
(z 21 108 19.44
sin(20 42 47.62
3 19 81 23.46
v 19 29 65.52
- 18 37 48.65

7.4 Discussion

The similar ratios between the number of hypotheses graph labels and symbol and relations of
the test and validation sets suggest that the proposed method maintains a consistent computational
cost on both sets. Furthermore, in terms of computational cost, the method is flexible as the
stroke partitions search space can be tuned through the symbol and relation thresholds. In terms
of effectiveness, the method obtained 4% less segmentation recall in the test set, relative to the
validation set. That difference is propagated to the symbol classification, relation and complete
expression recall values. This explains, at some extent, the 14% decrease in terms of complete
expression recall in the test set (a single error at symbol or relation levels is translated into a
missrecognized expression).

The proposed recognition technique obtained better recognition rates than several state of the
art techniques, but it still has room for improvement. The hypotheses graph generation method
detected 78% of the expressions. The current parsing algorithm was able to correctly recognize
33.98% of the expressions, which leaves a gap of almost 45% in relation to the hypotheses graph
rate. This suggests that further work should be directed to improve the parsing method.

A main limitation of the current graph parsing method is the lack of a statistical model. Sta-
tistical models have been successfully applied for strings parsing (Collins, 2003). They basically
associate probabilities (calculated from parameters optimized over training data) to the application
of production rules and rank trees according to the combination of the probabilities of their compo-
nent rules. In the case of mathematical expression recognition, statistical models could indicate the
probability of recognizing certain symbols or structures in particular subexpressions. Such informa-
tion may help to solve ambiguities when handwritten data (like shape of symbols, relative positions
between symbols or time related information) is not enough. For instance, statistical models could
help to solve the problems of missrecognizing a symbol “x” as “x” and the trigonometric function
“sin” as tree letters, like “s”, “4” and “n”, related by an horizontal relation. In the first case, the sym-
bol “x” probably appears more frequently between a pair of numbers (or letters) and almost never
alone; in the second case, the three symbols would probably appear more often as the trigonometric

function “sin”, rather than as three different letters. The statistical models of System III, optimized

7.4 DISCUSSION 81

over hundreds of thousands of expressions, and System I, optimized over the CROHME dataset,
should partially explain the difference between the performance of those systems and ours.
Machine learning techniques work best when there is large quantities of data for parameter
optimization. Having 101 symbol classes, and six relation types, the possible symbol-to-symbol
relation types is O(1012 % 6). Although not all possible relations between symbols are allowed (for
example, a symbol + hardly ever would be related with another symbol by a superscript relation),
this number gives an idea of the large quantity of data required for training. The availability of
larger publicly available datasets would allow to better optimize academic systems and have a more

homogeneous comparison between them and commercial systems.

82

EXPERIMENTATION

7.4

Chapter 8

A framework to build online handwritten

mathematical expression datasets

8.1 Introduction

It is generally acknowledged that publicly available datasets with ground-truth data are essen-
tial when evaluating the performance of pattern recognition methods. First, weakness and strengths
of different methods can be determined by testing them on a common dataset (Valveny et al.,
2007). Second, public datasets allow reproduction of experiments to validate or negate the re-
sults (Lapointe, 2008). Third, the accessibility to such data enables contests which have proven
useful for several fields (MacLean et al., 2011).

In the domain of recognition of handwritten mathematical expressions, the lack of pub-
licly available datasets has been a main issue (Lapointe, 2008). Most of the systems developed
to solve this problem have been evaluated on private expression sets (e.g. Awal et al., 2009;
Matsakis, 1999; Rhee and Kim, 2009; Vuong et al., 2010). To cope with this problem, the CROHME
dataset (Mouchere et al., 2014) has recently been built by merging parts of six datasets from dif-
ferent research groups. Although this dataset has about 10,000 expressions, larger datasets are still
needed.

The process of building handwritten mathematical expression datasets with ground-truth data
is labor-intensive and error-prone (Wenyin and Dori, 1998). A large and expressive dataset should
comprise a large variety and number of sample expressions, and ground-truthing them implies
labeling thousands of symbols as well as their relationships individually. To avoid manual labeling
of thousands of individual symbols in the sample expressions, part of the dataset creation process
should be automated. A possible approach is to consider a set of model expressions annotated with
ground-truth data and then automatically annotate samples that are obtained by transcribing the
models. Such approach is used, for instance, in Hirata and Honda (2011); MacLean et al. (2011).

Part of the work of this project was devoted to develop techniques to automatize the creation
of mathematical expression datasets. This chapter describes this effort and their corresponding
results. Section 8.2 describes the main qualities a dataset must have in order to allow an effec-
tive evaluation. Section 8.3 outlines our framework to build mathematical expression datasets. The
framework is based on an expression matching technique to automatically label mathematical sym-

bols (Hirata and Honda, 2011). We also developed a system, called EzpressMatch, that implements

83

84 A FRAMEWORK TO BUILD ONLINE HANDWRITTEN MATHEMATICAL EXPRESSION DATASFI'3

the proposed framework and manages the creation process. The system is described in Section 8.4.
We used the implemented ExzpressMatch system to built a dataset and released it as open-source.

The results regarding such experimentation are given in Section 8.5.

8.2 Desired qualities of mathematical expression datasets

Several important qualities that should be fulfilled by testing datasets in order to allow effective
performance evaluation of mathematical expression recognition methods are pointed out in the
literature (Awal et al., 2010a; Lapointe, 2008; Lapointe and Blostein, 2009):

e different levels of labeling (Awal et al., 2010a): datasets should have labelings at stroke,
symbol and expression levels, in order to allow evaluation of different faces of systems. For
example, to evaluate symbol recognition rate (number of correctly recognized symbols over
the total number of symbols), ground-truth of each symbol in the expression is needed, while

for evaluating segmentation techniques, labeling at stroke level is needed;

e multiple ground-truths at expression level (Lapointe, 2008; Lapointe and Blostein,
2009): in some cases there are several equivalent ways to represent a given mathematical
expression within a computer mathematical format. For example, considering I TEX, 23 can
be represented as “x"2_0",“x 02" “x"{2} {0}", and “x_{0}"{2}"; all these representations

should be accepted as correct;

e subsets of mathematical expressions that meet some constraints: many systems are
designed to work within specific constraints (limited number of symbol classes, limited number
of symbols in each mathematical expression, specific field of mathematics, and so on). Thus,
mathematical expressions should be organized and classified under some established criteria.
For each set of constraints, selecting only mathematical expressions satisfying the constraints

should be possible;

e statistical representativity (Lapointe, 2008; Lapointe and Blostein, 2009): distribution of
mathematical expression types within a specific domain should be considered in a dataset, in

order to allow a good approximation of the performance of systems in real scenarios;

e public availability Lapointe (2008); Lapointe and Blostein (2009): evaluation and compar-
ison of different methods on a common dataset would facilitate assessment of weakness and

strengths of each system.

These qualities were considered to define our framework and the ExpressMatch functionalities.

8.3 The dataset creation procedure

Hirata and Honda (2011) proposed an expression matching technique to automatically label
handwritten mathematical symbols. In this technique, the labels (ground-truth) of symbols of a
mathematical expression (model) is transferred to their corresponding symbols on a second expres-

sion (transcribed expression). Figure 8.1 shows an expression matching example.

8.4

THE EXPRESSMATCH SYSTEM 85

xX +

N QU= Q&
oL a =

Figure 8.1: FExpression matching example. Vertical lines indicate the matched symbols.

In this thesis, we improved the expression matching technique proposed in Hirata and Honda

(2011) by including new features to calculate the matching cost, and by making a thorough analysis

of the matching results on a larger dataset. With these improvements, we increased the correct sym-

bol assignment rate from 92% to 99%. A detailed description of the improved expression matching

method is given in Hirata and Julca-Aguilar (2015).

Considering the expression matching technique, we propose the following general procedure to

build mathematical expression datasets:

Creation of model expressions. This step consists on handwriting mathematical expressions
and attaching their corresponding ground-truth. In this process, all symbols of each expression

must be segmented.

Transcription of model expressions. In this step, volunteers are invited to transcribe the model

expressions. As a result, we have a number of expression samples of each model expression.

Symbol segmentation of the transcribed expressions. As in the case of model expressions, all

symbols of the transcribed expressions must be segmented.

Expression matching. Symbols of each transcribed expression are mapped to their correspond-

ing symbols on the model.

Ground truth transferring. Once the symbols are matched, the ground-truth may be trans-
ferred from the model expressions to the transcribed ones. This transferring process may

include ground-truth at different levels of granularity.

8.4 The FExpressMatch system

The EzpressMatch system implements the methodology described in Section 8.3. The main

features of this system are highlighted next:

e the set of model expressions define a corpus. Since models are input manually, the system is

very flexible with respect to types of corpora that can be created;

e at expression level, more than one ground-truth can be attached to each model expression,

via textual input;

86 A FRAMEWORK TO BUILD ONLINE HANDWRITTEN MATHEMATICAL EXPRESSION DATASEI4

e expressions can be associated to user-defined categories. This feature is useful to select only

expressions of a given category;

e user registration and management controls which and how many times a model expression

has been transcribed by each writer;

e time gap between strokes is taken into consideration to perform segmentation at writing
time. Whenever the time gap between two strokes is larger than a given threshold, the system
considers that a new symbols is being written. Although this mechanism adds some restriction
to the writing style, it has been observed empirically that writers have no difficult to adapt

themselves to the rule;

e symbols in transcribed expressions are automatically labeled by assigning them to the cor-
responding symbols in the model expression, based on the expression matching approach

proposed in Hirata and Julca-Aguilar (2015);

e matching between symbols in model and transcribed expressions can be visually verified and

interactively corrected if necessary;

e both model and transcribed expressions can be added incrementally. In addition, data gathered
in different machines can be combined into a same database. These features make possible an

incremental creation of large datasets;

e subsets of expressions can be selected and exported as XML format files. For instance, it is
possible to select only expressions of a specific category, or expressions with the number of

symbols within a given interval, or expressions written by a specific group of writers;

e it is possible to extract symbol samples in order to create symbol datasets. The set of symbols
obtained from the expressions will better resemble the way they are naturally written within
mathematical expressions than when they are written in a isolated way, and this fact may be

relevant for the development of symbol recognizers for mathematical expression recognizers.

8.4.1 FEzxpressMatch architecture

EzpressMatch consists of six main components, as shown in Fig. 8.2: (1) time-based segmentator
(TBS) for segmentation of symbols at writing time; (2) model expression capturer (MC) for cap-
turing model expressions and annotating them with ground-truth data; (3) instance capturer (IC)
for capturing transcribed expression (instances); (4) expression matching-based labeler (EMBL)
for labeling of instance expressions by matching them to the respective model expression; (5) label-
ing editor (LE) for interactive verification and correction of labelings; and (6) importer/exporter
of dataset (IED) for importing/exporting data.

Two kinds of users are allowed: administrators and writers. Administrators can
define models, evaluate labeling results and use the import/export functionality by interacting
respectively with the MC, LE, and IED user interfaces. Writers can only write instance expressions

by interacting with the IC interface. Administrators are also writers.

8.4 THE EXPRESSMATCH SYSTEM 87

Time-based Expression Matching-
Segmentator(TBS) based Labeler (EMBL) MEs file
Strokes/ | Strokes Model + 5
v instance’
/Strokes Strokes Mathematical
{ / grouped © grouped ; ‘Matching expressions (MEs);
Jinsymbols ° ijnsymbels/ i
\ Y/ Userinterface !
y . BT 4 Y
Model Instance Labeling Importer/ Exporter
Capturer (MC) Capturer (IC) Editor (LE) of Dataset (IED)
" R R
™ Y% Model | |
odel+ - Model ;. instancet f WModels/
ground-truth - v matchlng _.-"instances

' I"nlslan:e+ :-' U_"pdahed F
. matching : n;_tatching__.-'

—_—

Database

Figure 8.2: ExpressMatch architecture.

Time based segmentator (TBS)

Given a pair of consecutive strokes, TBS considers them as being part of the same symbol if
the temporal gap between the end of the first and the beginning of the second stroke is no longer
than a predefined threshold.

Model capturer (MC)

Model expressions and their corresponding ground-truth data can be input through the MC
interface. Figure 8.3 shows a snapshot of the interface when the model expression z = =bdvb—dac V2l;2_4‘w is
being input. Symbols are segmented during writing: MC sends strokes and their timing information
to TBS that returns the strokes grouped as symbols (see Section 8.4.1). MC indicates which strokes
are being considered as belonging to a particular symbol by displaying a bounding box around the set
of strokes. The undo and delete functionality allow correction of possible wrong segmentations.
Undo eliminates the last written stroke, while delete removes an entire symbol (any set of strokes
related to a bounding box).

To help organization of mathematical expressions, expression classes can be defined and each
model expression can be assigned to any of those classes. Figure 8.3 shows that the written model
is being assigned to Arithmetic category.

Ground-truth data at expression level can be input as textual information through the text
area above the written expression. Figure 8.3 shows ground-truth data in IATEX format. Additional
ground-truth can be assigned using the append button, placed below the text area. At symbol

level, the m button allows assignment of ground-truth data: labels for each of the symbols can be

88 A FRAMEWORK TO BUILD ONLINE HANDWRITTEN MATHEMATICAL EXPRESSION DATASEI4

800
Writing configuration
Textual representation(s)
T $x=\frac{- b \pm \sqrt{bA2 - 4 a c} } {2a}$
@
2]
Category: | Arithmetic S | Append |
N L o -
1
-
~
= IV
X
Al =
L=y
23881 @)~ &
£ (8T R Rany .
| All models | | Save |
s . _ /b2 — . .
Figure 8.3: Model collector: expression © = W 1s being defined as a model.
\sqrt
——= ——

. -bHbYuac
o ob Bl Ha;
2

Figure 8.4: Model expression of Figure 8.3 with all its symbols labeled.

manually entered, being subsequently shown in the superior corner of each symbol, as shown in
Figure 8.4.

Instance capturer (IC)

This module is the interface used to capture instances of model expressions. Model expressions
are randomly selected from the set of predefined model expressions and displayed in the superior

part of the interface. The system controls which expressions have already been transcribed by each

registered user. Figure 8.5 shows the interface displaying the model expression cost) = \/;Tyi) and
its transcription below it. As the MC component, IC also interacts with the TBS component to get
the symbols segmented at writing time. Segmentation is indicated with a bounding box around each
symbol and can be corrected with undo and delete buttons in a similar way to MC interface. The
system issues a warning message if the number of symbols in the model and transcribed expressions

differs.

8.4 THE EXPRESSMATCH SYSTEM 89

ExpressMatch

Configuration

| Writing test

Model 70

coOSg8 =

£ %] KGay s

Written expressions: 39 of 56 | My expressions | | Save |

Figure 8.5: Instance capturer: model expression is shown at the top, to indicate users what instance they
have to write.

Expression matching based labeler (EMBL)

Symbols of an instance expression are labeled automatically, based on the method described
in Hirata and Honda (2011). Each time an instance expression is input, EMBL computes a matching
between that instance and its corresponding model, finding a one-to-one correspondence between
unlabeled symbols in the instance and labeled symbols in the model expression. The correspondence

determines the label of the symbols in the instance expression.

Labeling editor (LE)

This interface allows administrators to interactively evaluate and correct symbol labeling.
Model expressions and the list of instances for the selected model are shown on the left side of
the interface, and the matching between the selected model-instance pair is displayed on the main
panel (see Figure 8.6). The computed correspondence between symbols in a model and instance
expressions are displayed graphically by line segments linking them. To correct a matching, an
extremity of the line segment can be interactively placed over the correct matching symbol.

For expressions with a large number of symbols, line segments may appear cluttered, making
visual verification difficult. To facilitate visual inspection in such cases, it is possible to display

groups of non intersecting line segments (see Figure 8.7).

Importer/exporter (IED)

This component allows model and instance expressions to be imported /exported. Thus, expres-

sions collected in different machines can be joined into a single central dataset. In addition, the

90 A FRAMEWORK TO BUILD ONLINE HANDWRITTEN MATHEMATICAL EXPRESSION DATASFI'S

Writing configuration

]
» | Hide | | Evaluated expressions |
Model expressions V\

Y fop (g gl g=o)

Model 117
i) .
Pedy= 2. &y =
=0

Model 118

el (e o)

Database expressions

Fabricio_228
lucelia_300
caue_334
rosario_443
david_511
leissi_598
leo_633
alfonso_656 View
miguel_742

() Complete matching () By groups: 13 Evaluated ‘

Figure 8.6: Labeling editor: labeling result is shown as a matching between labeled symbols of model expres-
sion (at the top) and unlabeled symbols of the instance expression (at the bottom).

whole dataset or a subset of it can be exported as XML format files. Subsets with expressions
belonging to specific categories, or written by specific users, or having a specific number of symbols
or classes of symbols can be selected for exportation. Datasets with isolated symbol samples can

also be exported.

8.5 Results

A large dataset consisting of fifty six model expressions has been created in order to evaluate
the functionalities and usability of ExpressMatch. A total of 25 writers, with background in En-
gineering or Computer Science, volunteered to transcribe the expressions. Since writing may be a
time consuming task, users were asked to write as many instances as their time constraint allowed.
For inputting the expressions, an HP tablet PC was used. The average time spent by a user to
enter all 56 expressions was about one hour. Through all the collecting process, the threshold used
in TBS (for segmentation of symbols) was set to 500 milliseconds, a value that was determined
experimentally.

A total of 926 instances were collected. From these, 16 (or 1.7%) were discarded due to seg-
mentation or semantic error. After automatic matching between each of the 910 instances and
respective models, they have been visually verified, and incorrect symbol assignments have been
manually corrected. The verification and label correction process took about 5 hours.

In addition, writers were asked to give feedback on how much writing is affected by using the
rule described in Section 8.4.1. Overall, the evaluation is that users had rapidly adapted themselves

to the writing rules, which was not considered a severe restriction.

8.5 RESULTS 91

i —
%

E"“?H 12 444:/>

(c)

Figure 8.7: Example of matching with many line segments: (a) with all segments, (b) and (c) two groups
of non intersecting segments.

92 A FRAMEWORK TO BUILD ONLINE HANDWRITTEN MATHEMATICAL EXPRESSION DATASFI'S

Chapter 9

Conclusions and future work

In this thesis, we have studied the online handwritten mathematical expressions recognition
problem and proposed a new recognition technique. The problem involves three main tasks: symbol
segmentation, symbol classification and structural analysis. We have developed techniques to treat
each of the tasks and integrated the techniques into a single parsing process. We evaluated our
approach over the CROHME-2014 dataset (Mouchére et al., 2014).

In addition to the new recognition technique, we developed a framework to automatize the
creation of handwritten mathematical expression datasets. We have developed a system that im-
plements the framework and built a dataset using such system. Both the system and the dataset

have been released as open source.

9.1 Symbol segmentation and classification

Chapter 4 describes our work devoted to treat the symbol segmentation and classification prob-
lems. In our mathematical expression recognition approach, we do not compute an explicit symbol
segmentation, nor symbol classification. Instead, we compute a set of stroke groups that may repre-
sent symbols and attach labels that indicate likely identities to each group. The calculated symbol
hypotheses are then used by our parsing algorithm to compute the final segmentation and classifi-
cation result.

We proposed a method to generate the stroke groups based on the proximity of strokes. A limi-
tation of the method is the assumption that symbols contain a maximum number of strokes. Future
work could include taking off that constraint without decreasing the current recall and precision
rates. Also, it would be interesting to apply machine learning techniques that allow to extract scores
to measure the likelihood of considering a stroke group as a symbol (without considering a specific
class) based on spatial and time features. The scores could be combined with those generated by
symbol and relation classifiers during the parsing process.

When recognizing symbols of mathematical expressions, the neighborhood of an evaluated sym-
bol provides useful information to solve ambiguities. Symbols of an expression are not isolated,
which means that strokes that do not belong to an evaluated symbol may cross over it, or be placed
close to it. The sizes of symbols of a same expression generally maintain a relative scale that help
to solve ambiguities. For instance, the symbol “.” in an expression “2.3” could look like a “0”, or
“0” if we had a close-up of it, but it would almost always look as a point if we have a view of the

complete expression. While most approaches treat the classification problem considering symbols

93

94 CONCLUSIONS AND FUTURE WORK 9.3

as isolated objects, we make use of the existent information of the context of each symbol:

e We proposed features that capture relative scale information and neighboring strokes infor-
mation of an evaluated symbol hypothesis. The features help to differentiate symbols with

similar shape as well as to filter out false symbols.

e When considering only true symbol hypotheses, the proposed features obtained recognition
rates comparable to the best results of the CROHME competition. These results suggest that,
although the features extracted from a symbol’s neighborhood have a high variance (as they

depend on where the symbol is placed), the variance does not affect the effectiveness.

e When true and false symbol hypotheses are considered, the proposed features overcame other
approaches. A main advantage of the good discrimination between true and false symbol
hypotheses is that it enables the development of a more efficient parsing, as more wrong

interpretations are filtered out by the classifier.

9.2 Relation classification

Chapter 5 described our work related to the relation classification problem:

e Category vectors, that describe the position of symbols relative to a baseline, increment the
recognition rate of geometric and histogram features in about 3% in both cases. Although we
calculated the category vectors manually, they could also be calculated using machine learning
techniques. For instance, a mathematical expression could be divided into baselines, and, for
each baseline, the positions of the symbols relative to its baseline could be extracted. Using
the extracted positions, the maximum-likelihood estimation could then be used to calculate
the mean of the position of each symbol class relative to a baseline. The automatic calculation

of category vectors is an interesting topic for future work.

e A subexpression may consists of a single symbol or several symbols arranged in arbitrary
structures. Most previous works used only bounding boxes of subexpressions to classify rela-
tions. We showed that including features extracted from adjacent dominant symbols of the
subexpressions improves the recognition rate. Further work will include exploring other ways

to exploit information extracted from the evaluated subexpressions.

In the symbol and relation classification problems we have proposed features that aim to capture
the shape of symbols and relations, respectively, as images (or histograms). We have seen that
these features obtained performance comparable to other features proposed in the literature. An
advantage of the image-based features is the fact that they provide complete shape descriptions of
objects, which may provide information not captured by handcrafted features®. At this regard, deep
learning techniques, as convolutional neural networks, have shown to take more advantage of those
features than other types of neural networks (Bengio et al., 2013; Lecun et al., 1998). The use of
deep learning techniques to process the image-based features proposed in this thesis may provide

considerable improvements on the symbol and relation classification problems.

! This point is also a motivation of deep learning approaches for patter recognition (Bengio et al., 2013;
Lecun et al., 1998)

94 GRAPH PARSING 95

9.3 Graph parsing

A parsing technique is composed of a grammar, that defines a language to be recognized and a
parsing algorithm that determines whether a given input belongs to the language. Constraints on
the grammar often allows more efficient parsing, but reduce its generality. Chapter 6 described our
graph parsing technique for recognition of mathematical expressions and Chapter 7 reported the
evaluation of the technique.

The graph grammar proposed in this thesis provides a more natural model to represent mathe-
matical expressions than other grammars reported in the literature. Structures that include multiple
relation types are represented as labeled edges, without the need of defining compositions of rules,
as it is done in string grammars. Our graph grammar does not assume specific structures on graphs
of its production rules (as it is the case in the approach of Celik and Yanikoglu (2011)) which allows
the grammar to be easily extended to recognize a variety of structures.

The main problem of wusing graph parsing techniques is the computational
cost (Flasinski and Jurek, 2014). This issue has made several authors to introduce constraints into
their proposed grammars and parsing algorithms (Flasinski and Jurek, 2014). To cope with the
parsing complexity, our parsing algorithm only considers stroke partitions derived by a hypotheses
graph calculated using symbol and relation classifiers optimized over training data. In Chapter 7,
we saw that the hypotheses graph generation method identifies 78% of the test set expressions.
Better rates can be obtained by improving the symbol and relation classifiers as described above.

A major topic for future research is how to improve the parsing algorithm effectiveness. The
expression recall obtained by the current parsing algorithm is 33.98%, which leaves a gap of almost
45% in relation to the recall obtained by the hypotheses graph generation stage. Introducing a
statistical model is a first method to explore in order to improve the parsing algorithm effectiveness.
An additional topic for future research is the optimization of the system through a global learning
scheme. The current system has been optimized by training the symbol and relation classifiers
independently and then integrating them into a cost function. However, the literature suggests that
for systems that are composed of several recognition modules, a training scheme that optimizes all
modules over a single loss function provides better results (Lecun et al., 1998).

The proposed graph grammar and parsing algorithm are general enough to be adapted to
other two-dimensional object recognition problems. An eventual adaptation would involve to retrain
the symbol and relation classifiers and to write on a graph grammar according to the recognized
language. As the parsing algorithm finds stroke partitions by searching for an isomorphism between
a graph of a production rule and another derived by the hypotheses graph, the parsing algorithm

would remain applicable.

9.4 Automatic annotation of mathematical expression datasets

The need for large ground truthed datasets of two-dimensional handwritten data has been em-
phasized in the literature (Lapointe, 2008; Lapointe and Blostein, 2009). In the case of mathematical
expressions, although the CROHME dataset has helped to establish a common framework to eval-
uate different recognition methods, more data is still required. Let’s consider that, for instance, for
digit classification (only 10 symbol classes), the MNIST dataset has about 70,000 samples; and, for
string parsing, the Wall Street Journal portion of the Penn Treebank has about 40,000 sentences.

96 CONCLUSIONS AND FUTURE WORK 9.4

In contrast, the CROHME dataset has about 10,000 mathematical expressions with 101 symbol
classes, that combined by the 6 spatial relation classes defined in the dataset, form O(101? x 6)
symbol-to-symbol relation types.

Future work will include the improvement of the technique for annotating ground-truth into
mathematical expressions, as described in Chapter 8. This improvement will include taking off the
constraint of writing symbols with consecutive strokes and the integration of recognition techniques
developed in this thesis. The method will be eventually used to build a publicly available large

dataset for further experimentations.

Chapter 10

Résumé étendu en francais

Reconnaissance d’Expressions Mathématiques Manuscrites Guidée
par le Contexte

Contexte de I'étude
Cette these s’attaque au probléme de la reconnaissance d’expressions mathématiques manuscrites
en proposant de nouvelles approches pour aborder ce type de langage.

Les méthodes traditionnelles permettant la saisie d’expressions mathématiques dans un document
numérique sont relativement complexes et peu efficaces. Elles sont basées soit sur la maitrise d’un
langage de mise en forme, tel que LATEX, ou bien alors sur une navigation dans des menus
déroulants, tel que I'outil MathType associé a I'environnement de MS-Word. Dans le premier cas,
I'utilisateur doit mémoriser un grand nombre de codes spécifiques qui permettent la mise en forme
de I'expression. Un exemple de tel langage est donné ci-dessous. Dans le second cas, I'usage de la
souris et du clavier permet de composer son expression au prix de beaucoup d’allers et retours dans
tous les sous-menus.

S x_{1,2} = \frac{-b\pm\sqrt{b”2 — 4ac}}{2a} S

—b+vb2—4ac
2a

L1,2 =
Fig. 1 : Chaine Latex et son rendu sous forme image

La reconnaissance automatique de l'expression donnée directement sous forme manuscrite par
I'utilisateur est une solution tres intéressante pour faciliter I'intégration d’une telle expression dans
un document numérique. On distinguera deux types de modalité pour enregistrer la forme
manuscrite, soit une image provenant d’un scan de la formule déja écrite (domaine hors-ligne), soit
une trajectoire temporelle résultant d’une acquisition en temps-réel a I'aide d’une interface tactile
(domaine en-ligne).

Les expressions mathématiques font partie des langages bidimensionnels au méme titre que les
formules chimiques, les partitions musicales ou encore les diagrammes. |l s’agit dans ces langages de
positionner dans le plan des symboles de telle sorte que la nature du symbole et sa position sont
porteurs de sens. Par exemple, I'expression 2* n’a pas le méme sens que |'expression 2x. Les
symboles sont les mémes, mais les relations spatiales sont différentes. Il est légitime d’espérer que

97

I'approche que I'on pourra proposer pour les expressions mathématiques puisse étre facilement
transposable pour les autres langages bidimensionnels.

D’un point de vue scientifique, beaucoup de verrous sont a lever. Les difficultés se situent au niveau
des taches de segmentation, de classification, d’analyse de structures, d’apprentissage automatique.
De plus, il ne s’agit pas de résoudre ces taches indépendamment les unes des autres mais de concert.
Ce probleme général est considéré comme un excellent sujet d’intérét pour la communauté de
reconnaissance des formes qui a consacré de nombreux travaux pour I'attaquer de multiples facons,
Zanibbi and Blostein (2012). En particulier, il est intéressant de mentionner |'existence d’une
compétition internationale depuis 2011 qui fait le point régulierement sur les avancées dans ce
domaine (Moucheére et al., 2011, 2012, 2013, 2014).

Nous considérerons dans ce travail des données d’entrée en-ligne captées a I'aide d’un stylo
électronique ou de toutes surfaces tactiles permettant d’enregistrer la trajectoire de l'instrument
d’écriture, celui-ci pouvant se limiter a I'extrémité du doigt. Dans ce cas, les données en-ligne
constituées des coordonnées (x, y) des points échantillonnées le long de la trajectoire forment des
séquences temporelles regroupées en traits (stroke). Un trait étant délimité par un posé et un levé.

Sf’f’3
°
H
'._q',s
™
str
sff‘z'—".gt.rﬂ —
'..' ’..
. o ‘St{E o stro stryy
- g Wi |
o)‘ strig e ¥ il
0000 9 9,440 ‘;rlﬂ"‘ Qooeets
stris g
str SUT13 {‘o
£ »)—.-.5 st?:;.-" L
é:'lLT'_1 i *00_g ¢
° strg i

Fig. 2 : Exemple d’expression manuscrite extraite de la base CROHME-2014

k

XnZn

L'exemple représenté sur la Figure 2 correspond a I'expression 5 . Elle est composée d’une
séquence de 13 traits, noté str = {str,, ..., str,, }, ou str, représente le i®™ trait en considérant
I'ordre temporel de tracé des traits. Chaque trait est lui-méme composé d’une séquence de points
2-D. Sur la figure, le premier point (posé) est affiché en vert, tandis que le dernier point (levé) est
représenté en rouge. Comme on peut le voir sur cette figure, le pas d’échantillonnage spatial n’est
pas constant, il est lié a la vitesse d’écriture. Il sera donc plus distant lorsque le tracé est rapide et
plus serré lorsque celui-ci est lent. On cherche en général a s’affranchir de ces variations non

significatives pour la reconnaissance en appliquant des prétraitements pour normaliser I'écriture.

98

Structure générale d’'un systeme de reconnaissance d’expressions
mathématiques

Trois taches fondamentales sont a mettre en place. Elles consistent en 1) la segmentation du tracé, 2)
la classification des symboles et 3) I'analyse structurelle.

1. Lasegmentation du tracé

Cette premiére tache cherche a regrouper les traits élémentaires formant un méme symbole. Il s’agit
de réaliser une partition de I'ensemble des traits. Avec I'exemple de la Figure 2, la segmentation
attendue devrait fournir la partition contenant 8 sous-ensembles, telle que P = {{str,, str,}, {str,},

{str,}, {str,, str}, {str,}, {str, str,}, {str,,}, {str,,, str,,}, {str }}.

Le nombre de partitions possibles croit trés rapidement avec le nombre de traits. Il est défini par le
nombre de Bell qui satisfait la regle suivante :

8.3} B.

avecB =B, =1.

En considérant 'exemple précédent ol n = 13 traits, nous obtenons une valeur de B,, = 27 644 437
partitions distinctes. Dés lors, il n’est pas envisageable de toutes les considérer, il faudra introduire
des contraintes spatiales et temporelles pour limiter cette explosion combinatoire. Certains travaux
imposent la continuité temporelle dans la production des traits a I'intérieur des symboles. Dans ce
cas, il est possible de représenter toutes les partitions de I'ensemble des traits par un graphe de
segmentation sous la forme d’un treillis tel que celui représenté sur la figure 3. Le nombre de
chemins dans ce treillis, soit le nombre de partitions, n’est plus alors que de 2", soit avec I'exemple
précédent 4 096 partitions distinctes. Le chemin affiché en rouge sur la figure 3 représente la
partition P = {{str,, str,}, {str, str,}, {str.}}. Dans nos travaux, nous avons relaché cette contrainte en
acceptant des traits retardés. Cela donne a I'utilisateur la possibilité de corriger des symboles aprées la
saisie des symboles suivants, par exemple changer I'expression « x - 1 » en I'expression « x + 1 » en
rajoutant une barre verticale pour transformer le symbole -* en ‘+’. La gestion des hypotheses de
segmentation devient alors beaucoup plus complexe.

O

"/O
s

T 9

Fig. 3 : Treillis de segmentation avec contrainte temporelle.

99

2. Laclassification des symboles

La difficulté de cette tache réside pour partie dans le nombre élevé de classes de symboles a
considérer et a la confusion naturelle existant entre un certain nombre de ces classes. Ainsi, la
compétition CROHME définit 101 classes de symboles mathématiques. La figure 4 présente quelques
cas d’ambiglités dans la reconnaissance des formes. L’échantillon (a) peut étre interprété comme le
symbole ‘+’ ou ‘t’, pour la forme (b), on peut hésiter entre ‘6’, ‘G’ ou ‘0’ (sigma), la forme (c) peut
étre un ‘9’ ou un ‘q’, tandis que la forme (d) peut représenter un ‘p’, un ‘', un ‘p’ (rho) ou un ‘P’. Ces
ambiguités devront étre levées en utilisant autant que possible le contexte.

+ ¢ 9 P

(a) (b) (c) (d)
Fig. 4 : Formes manuscrites ambigies. Symboles provenant de la base CROHME-2014.

Pour cette tache, un classifieur de formes est utilisé. Dans une grande majorité des cas, on trouvera
un systéme par apprentissage automatique de type réseau de neurones (NN : Neural Network), ou
systémes a vastes marges (SVM : Support Vector Machine). Un des points clés, outre le choix des
caractéristiques et la dimension de I'espace de représentation, réside dans la stratégie
d’apprentissage de ces machines. En effet, ce classifieur interagit avec les hypothéses de
segmentation résultant de I'étape précédente. Il est donc important qu’il puisse réagir efficacement
qguelque soit la situation proposée, y compris vis-a-vis d’'une segmentation invalide. Dans notre
travail, nous avons privilégié un réseau de neurones de type perceptron multicouches (1 couche
cachée), utilisant des caractéristiques d’histogrammes de contextes de formes (Shape context).

3. L'analyse structurelle
Cette étape d’analyse structurelle est spécifique au cas des langages graphiques tels que les
expressions mathématiques et ne se pose pas en reconnaissance de |'écriture standard ou les
symboles sont simplement alignés de gauche a droite pour former du texte. Ici, il s’agit d’identifier
les différentes relations spatiales existant entre les symboles ou les sous-expressions pour permettre
de donner son sens a lI'expression. Il est utile de guider cette analyse en s’appuyant sur une
grammaire qui permet de controler ou de faciliter I'interprétation d’'une expression. Par exemple, il
est possible d’imposer la présence d’une parenthése fermante si une parenthése ouvrante a été
préalablement reconnue. Dans le cadre de ces travaux, six relations spatiales sont considérées. En
plus de la relation élémentaire gauche-droite, on distinguera: exposant, indice, au-dessus,
en-dessous, et a l'intérieur (typiguement pour une racine).
Ainsi, méme des expressions tres courtes comme celle illustrée sur la figure 5, peuvent étre difficiles
a traiter a chacun des trois niveaux évoqués ci-dessus. Par exemple, il est possible de regrouper les
traits str, et str, et alors reconnaitre un seul symbole, par exemple un ‘4’. A l'inverse, s’ils sont
séparés, il s’agirait alors de la séquence « <1 ». De méme la relation spatiale entre les traits (str,+str,)
et str, est difficilement décidable entre gauche-droite et exposant.

100

stry

strs
stro

str stry

Fig. 5 : Une expression mathématique manuscrite difficile a interpréter.

Il en résulte toutes ces interprétations possibles : « P° <1 », « p° < 1 », « P’4 » ou encore « p°4 ».

Les points-clés de notre approche

Notre approche est fondée sur une méthode d’analyse de I'ensemble des traits contenus dans
I’expression pour produire comme résultat un arbre d’analyse qui correspond a une interprétation
particulieére de I'expression. Pour gérer les ambiglités évoquées, la technique d’analyse va produire
de multiples interprétations qui seront mises en concurrence. Nous appelons T(str) I'ensemble de
tous les arbres d’analyse produits a partir de I'ensemble str des traits. De plus, nous définissons une
fonction de colt cost(t, str) qui évalue la qualité de l'interprétation d’un arbre t élément de T. Le
probléme posé peut alors s’exprimer comme la recherche de I'arbre t,, (str) tel que :
thest (str) = argmin cost(t, str)
te T(str)

Le systeme global que I'on propose est résumé par la figure 6. Il est composé de deux fonctions
principales : 1) un générateur de graphe des hypotheses et 2) un analyseur de graphe. Le générateur
construit I'espace de recherche sous la forme d’un graphe dont I'exploration est contrdlée par I'outil
d’analyse.

101

Strokes set: ,J?'-T" ":__-_ |

Symbeaol Segmenter

Hypntheses

* graph

. Symbol classifier P
_-.r Symibwal
- y . hypotheses
raund —3 Halation classifier
I'ruth ‘.r
0 It 4 -
Symbol Hypotheses
lirwed raph
| J Fp p
F — 1
Helatinn "." —
loved Graph
. ¥, Parse EI]I:'-I.":I-E,E,EH-EI‘J.I.I:'F I‘— Erammar
Paiae Mapest
- tiraph

parser

< >

_—_pl :rﬂ-tTmr)

Parse tree

Fig. 6 : Schéma général du systéme de reconnaissance proposée.

En premier lieu, I'étape de segmentation propose les regroupements de traits qui peuvent
représenter des symboles. Ces regroupements sont soumis a des contraintes de nombre de traits et
de distance entre traits, ce qui interdit la fusion de traits trop éloignés. lls sont ensuite soumis au
classifieur de symbole (NN) qui produit pour chague hypothése de symbole, une distribution de
probabilités sur I'ensemble des classes de symboles. A partir de ces groupements étiquetés au niveau
symbole, un classifieur de relations identifie les relations existant entre une paire donnée de ces
groupements. Ces résultats sont stockés dans le graphe des hypothéses dont les nceuds sont
étiquetés par les labels des symboles et les arcs par les labels des relations.

102

Ainsi que le montre la figure 6, le graphe des hypotheses contient plusieurs alternatives
concurrentes. L'outil d’analyse du graphe va générer plusieurs arbres correspondants a différentes
interprétations de I'ensemble des traits d’entrée. Par ailleurs, une grammaire définit les régles de
construction des graphes correspondants a des interprétations possibles des expressions. La
construction des arbres est faite par recherche de structures dans le graphe qui correspondent aux
motifs admissibles par la grammaire de graphes. Tous les arbres valides poussent dans une forét
permettant une gestion efficace de I'espace de stockage. Pour finir, la sélection du plus beau sujet de
la forét est réalisée. Celle-ci utilise la fonction de colt évoquée précédemment et une technique de
recherche sous-optimale qui évite un examen exhaustif de toute le forét en évitant I'évaluation
d’arbres dont le co(t est prohibitif.

Cette stratégie basée sur une grammaire de graphes fournit une approche générale pour modéliser
des langages bidimensionnels. Les phrases (dans ce cas, les expressions mathématiques) de notre
grammaire sont représentées par des graphes étiquetés dont les no2uds sont les terminaux
(symboles) et les arcs les relations entre les symboles. Dans la mesure ou les arcs représentent des
relations quelconques et ou les nocuds sont dans un ordre quelconque, une structure 2D quelconque
peut étre générée par ce formalisme.

L'inconvénient d’une telle approche en reconnaissance des formes réside dans la complexité
calculatoire (Flasifiski and Jurek, 2014). Pour pallier cet inconvénient, nous limitons I'exploration de
I’espace de recherche a la fois dans la construction du graphes des hypothéses et dans I’exploration
de la forét.

Résultats expérimentaux

Nous présentons ici a la fois des résultats quantitatifs et qualitatifs obtenus sur la base de test de
CROHME-2014. Le tableau I, montre les taux de reconnaissance au niveau expression compléete des 7
systémes ayant participé a la compétition et les nétres en derniére ligne. Nous sommes classés 3°™
sans erreur et 2™ en acceptant 2 erreurs par expression. Les exemples présentés sur la figure 7
montrent un ensemble d’expressions complétement bien reconnues.

Tableau I. Pourcentages de reconnaissance au niveau expression compléte

Svstem | correct | #errors < 1 | #errors < 2 | #errors < 3
I 37.22 44.22 47.26 50.20
I1 15.01 22.31 26.57 27.69
[11 62.68 72.31 75.15 T6.88
IV 18.97 28.19 32.35 33.37
V 18.97 26.37 30.83 32.96
VI 25.66 33.16 35.90 37.32
VI 26.06 33.87 38.54 39.96
ours 33.98 43.10 47.56 49.29

103

A Il
(a) (b)
_ T
-) —I T | R @ -~ | K
Tu A0 ‘) | L s (O) | 2 & 2
\ ry | | L o 7t KA(- _n X ol

ﬁCET J«D(O) . £(1>[O) gf@(@ ale * c® :Q@i—f)ﬁ

Fig. 7 : Exemples d’expressions bien reconnues.

U 2 '22-1”_ '|"29| + &

l:el wr = — 2 “J 2 ba + 20y + g — 22 ba + 20y + B0
-—
ﬂ_nl— “re “')., ﬁ (Z/H %C
(Cln—n1—...—np_, =+ —11 —...—Tp_1 (d) w=qg —qgc —v=qg — gl

quf c1,°+3a.4+3a.3_ +l:l'ﬁ-5=0

(e) bagy — bayl (f) ap + 3a; 4+ 9az + 2Taz =0 — ag + 3a1 + gaz + 2Taz =0

Fig. 8 : Exemples d’expressions avec quelques erreurs de reconnaissance Vérité terrain -> Expression
reconnue.

104

Appendix A

CROHME-2014 Symbol hypothesis

classification

105

APPENDIX A

106

CROHME-

0 0
0 6 o

2014 Symbol hypothesis

classification confusion matrix

Appendix B

Hypothesis graph labels per symbol and
relation

107

APPENDIX B

108

labels / symbol or relation

4500

4000
A \

3500 \/ \ | W 4

3000 \/ \ | —_—

2500 \/ \/I\)I\

N

o

o

o
]

1500

1000

500

o &tiiii%&iﬁii& Ettu&ii %m:

m<3_uo_ ?m_os; and qm_mmo: Am_oo<m_ n_mmmmmmq ﬂ:qmm:o_gm

===|abels/Symbol ==Labels/Relation =Expression recall

nq

100

90

80

70

60

50

40

30

20

10

Recall (%)

Figure B.1: Mean of symbol and relation hypothesis labels per symbol and relation, respectively; calculates over the test set. The left hand axis indicates

the number of labels per symbol and relation. The right hand azis indicates the percentage of recognized expressions.

109

HYPOTHESIS GRAPH LABELS PER SYMBOL AND RELATION

'sU01852.4dxa paziubooou fo abvjugosad oY) $9302UPUL SITD PUDY JybLL Y [U0YDIAL puD joQuUifis uad $)aqD] [0 4QUINU 1)
§2100PUL SITD PUDY) Y], 195 1597 Y} 4200 §2ID)NIIVI [fi)a0109dsas ‘U0YD)AL pup joquufis uad $19qD] s159Y0dfiYy UYL puD Joquifis fo uvapy g g 9INII g

(%) 11es9y

01

0¢

(013

o

0s

09

0L

08

06

00T

[|e9J UOISSRUdX T UOLIR|DY/S|O0E T [OGUIAS /S|P T o

sploysaJy) Jayisse)d (anoqe) uonejal pue (mojaq) joquAs

mﬂw_w_lm_w_mw_ BN R B e RE R NG R ENENRERERARRERRERERARE
V V VvV \"4 \"4 \ "4 \"4 v

PN VA V=l V=

S\ Y
/\/ vV

/

—/

/

00s

0001

00sT

000¢

00s¢

0[0]0}3

00sg

0010} 7

00sv¥

0009

uonejaJ Jo joquiAs / sjaqe|

110 APPENDIX B

Bibliography

Frank D. J. Aguilar and Nina S. T. Hirata. Expressmatch: A system for creating ground-truthed
datasets of online mathematical expressions. In Proceedings of the 2012 10th IAPR International
Workshop on Document Analysis Systems, DAS 12, pages 155-159, Washington, DC, USA, 2012.
IEEE Computer Society. ISBN 978-0-7695-4661-2. doi: 10.1109/DAS.2012.38. 2, 9

J. Almazan, A. Fornes, and E. Valveny. A non-rigid feature extraction method for shape recognition.
In Document Analysis and Recognition (ICDAR), 2011 International Conference on, pages 987—
991, Sept 2011. doi: 10.1109/ICDAR.2011.200. 46

F. Alvaro, J-A. Sanchez, and J.-M. Benedi. Recognition of printed mathematical expressions
using two-dimensional stochastic context-free grammars. In Document Analysis and Recognition
(ICDAR), 2011 International Conference on, pages 1225-1229, Sept 2011. doi: 10.1109/ICDAR.
2011.247. 18

F. Alvaro, J.-A. Sanchez, and J.-M. Benedi. Offline features for classifying handwritten math
symbols with recurrent neural networks. In Pattern Recognition (ICPR), 2014 22nd International
Conference on, pages 2944-2949, Aug 2014. doi: 10.1109/ICPR.2014.507. 40

Francisco Alvaro and Richard Zanibbi. A shape-based layout descriptor for classifying spatial
relationships in handwritten math. In Proceedings of the 2013 ACM Symposium on Document
Engineering, DocEng 13, pages 123-126, New York, NY, USA, 2013. ACM. ISBN 978-1-4503-
1789-4. doi: 10.1145/2494266.2494315. URL http://doi.acm.org/10.1145/2494266.2494315. ix,
2, 34, 35, 51, 53, 54, 57

Francisco Alvaro, Joan-Andreu Sanchez, and José-Miguel Benedi. Recognition of on-line hand-
written mathematical expressions using 2d stochastic context-free grammars and hidden markov
models. Pattern Recognition Letters, 2012. 18, 21, 23, 27, 29, 37, 39, 79

Robert H. Anderson. Syntax-directed recognition of hand-printed two-dimensional mathematics.
PhD thesis, Dept. Eng. Appl. Phys., Harvard University, 1968. 2, 11, 21, 23, 51

Ahmad-Montaser Awal, Harold Mouchére, and Christian Viard-Gaudin. Towards handwritten
mathematical expression recognition. In Proceedings of the 10th International Conference on
Document Analysis and Recognition, pages 1046-1050, 2009. 18, 23, 83

Ahmad-Montaser Awal, Harold Mouchére, and Christian Viard-Gaudin. The problem of hand-
written mathematical expression recognition evaluation. In Proceedings of the 12th International
Conference on Frontiers in Handwriting Recognition, pages 646651, 2010a. 2, 84

Ahmad-Montaser Awal, Harold Mouchére, and Christian Viard-Gaudin. Improving online hand-
written mathematical expressions recognition with contextual modeling. In Proceedings of the
12th International Conference on Frontiers in Handwriting Recognition, pages 427-432, 2010b.
3, 18, 23

111

http://doi.acm.org/10.1145/2494266.2494315

112 BIBLIOGRAPHY

Ahmad-Montaser Awal, Harold Mouchére, and Christian Viard-Gaudin. A global learning approach
for an online handwritten mathematical expression recognition system. Pattern Recognition Let-
ters, 35(0):68 — 77, 2012. ISSN 0167-8655. doi: http://dx.doi.org/10.1016/j.patrec.2012.10.024.
18, 34, 39

S. Belongie, J. Malik, and J. Puzicha. Shape matching and object recognition using shape contexts.
IEEE Trans. Pattern Anal. Mach. Intell., 24:509-522, April 2002. 40, 41, 43, 44, 53

Y. Bengio, A. Courville, and P. Vincent. Representation learning: A review and new perspectives.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(8):1798-1828, 2013. ISSN
0162-8828. doi: http://doi.ieeecomputersociety.org/10.1109/ TPAMI.2013.50. 94

D. Blostein and A. Grbavec. Recognition of mathematical notation. In H. Bunke and P. Wang,
editors, Handbook of Character Recognition and Document Image Analysis, pages 557-582. World
Scientific, 1997. 11

Pierre Boullier, Alexis Nasr, and Benoit Sagot. Constructing parse forests that include exactly
the n-best pcfg trees. In Proceedings of the 11th International Conference on Parsing Technolo-
gies, IWPT ’09, pages 117-128, Stroudsburg, PA, USA, 2009. Association for Computational
Linguistics. URL http://dl.acm.org/citation.cfm?id=1697236.1697259. 67

Bruno Buchberger. Mathematica: A system for doing mathematics by computer? In Alfonso Miola,
editor, Design and Implementation of Symbolic Computation Systems, volume 722 of Lecture
Notes in Computer Science, pages 1-1. Springer Berlin Heidelberg, 1993. ISBN 978-3-540-57235-
0. 16

H. Bunke. Attributed programmed graph grammars and their application to schematic diagram
interpretation. Pattern Analysis and Machine Intelligence, IEEE Transactions on, PAMI-4(6):
574-582, Nov 1982. ISSN 0162-8828. doi: 10.1109/TPAMI.1982.4767310. 29

M. Celik and B. Yanikoglu. Probabilistic mathematical formula recognition using a 2d context-free
graph grammar. In Document Analysis and Recognition (ICDAR), 2011 International Conference
on, pages 161-166, Sept 2011. doi: 10.1109/ICDAR.2011.41. viii, 21, 22, 23, 27, 29, 30, 37, 64, 95

Kam-Fai Chan and Dit-Yan Yeung. Mathematical expression recognition: a survey. International
Journal on Document Analysis and Recognition, 3:3—15, 2000. 11

N. Chomsky. Three models for the description of language. Information Theory, IRE Transactions
on, 2(3):113-124, September 1956. ISSN 0096-1000. doi: 10.1109/TIT.1956.1056813. 13

P. A. Chou. Recognition of equations using a two-dimensional stochastic context-free grammar.
Proc. SPIE 1199, Visual Communications and Image Processing IV, vol. 1199, pages 852-865,
1989. doi: 10.1117/12.970095. 15, 23

Michael Collins. Head-driven statistical models for natural language parsing. Comput. Linguist.,
29(4):589-637, December 2003. ISSN 0891-2017. doi: 10.1162/089120103322753356. URL http:
//dx.doi.org/10.1162/089120103322753356. 80

Adrien Delaye and Eric Anquetil. Hbf49 feature set: A first unified baseline for online symbol
recognition. Pattern Recogn., 46(1):117-130, January 2013. ISSN 0031-3203. 40

Mariusz Flasinski and Janusz Jurek. Fundamental methodological issues of syntactic pattern
recognition. Pattern Analysis and Applications, 17(3):465-480, 2014. ISSN 1433-7541. doi:
10.1007/s10044-013-0322-1. URL http://dx.doi.org/10.1007 /s10044-013-0322-1. 8, 23, 29, 36, 95

Dick Grune and Jacobs Ceriel J.H. Parsing Techniques: A Practical Guide. Springer, 2ed edition,
2008. vii, 12, 13, 23, 30, 63

http://dl.acm.org/citation.cfm?id=1697236.1697259
http://dx.doi.org/10.1162/089120103322753356
http://dx.doi.org/10.1162/089120103322753356
http://dx.doi.org/10.1007/s10044-013-0322-1

BIBLIOGRAPHY 113

Feng Han and Song-Chun Zhu. Bottom-up/top-down image parsing with attribute grammar. Pat-
tern Analysis and Machine Intelligence, IEEE Transactions on, 31(1):59-73, Jan 2009. ISSN
0162-8828. doi: 10.1109/TPAMI.2008.65. 29, 64

Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The FElements of Statistical Learning.
Springer Series in Statistics. Springer New York Inc., New York, NY, USA, 2009. 43, 44

Nina S. T. Hirata and Willian Y. Honda. Automatic labeling of handwritten mathematical symbols
via expression matching. In Proceedings of the 8th International Conference on Graph-based
Representations in Pattern Recognition, pages 295-304, 2011. 5, 83, 84, 85, 89

Nina S.T. Hirata and Frank D. Julca-Aguilar. Matching based ground-truth annotation for online
handwritten mathematical expressions. Pattern Recognition, 48(3):837 — 848, 2015. ISSN 0031-
3203. doi: http://dx.doi.org/10.1016 /j.patcog.2014.09.015. URL http://www.sciencedirect.com/
science/article /pii/S0031320314003768. 2, 9, 85, 86

B.Q Huang and M-T Kechadi. A structural analysis approach for online handwritten mathematical
expressions. In International Journal of Computer Science and Network Security,, 2007. 6, 8, 34,

39

Frank Julca-Aguilar, Christian Viard-Gaudin, Harold Mouchére, Sofiane Medjkoune, and Nina Hi-
rata. Mathematical symbol hypothesis recognition with rejection option. In 14th International
Conference on Frontiers in Handwriting Recognition, 2014a. 9

Frank Julca-Aguilar, Christian Viard-Gaudin, Harold Mouchére, Sofiane Medjkoune, and Nina Hi-
rata. Integration of shape context and neural networks for symbol recognition. In Semaine du
Document Numérique et de la Recherche d’Information 2014 (SDNRI), 2014b. 9, 44

Frank Julca-Aguilar, Harold Moucheére, Christian Viard-Gaudin, and Nina S. T. Hirata. Progress
in Pattern Recognition, Image Analysis, Computer Vision, and Applications: 20th Iberoamerican
Congress, CIARP 2015, Montevideo, Uruguay, November 9-12, 2015, Proceedings, chapter Top-
Down Online Handwritten Mathematical Expression Parsing with Graph Grammar, pages 444—
451. Springer International Publishing, Cham, 2015. ISBN 978-3-319-25751-8. doi: 10.1007/
978-3-319-25751-8 53. URL http://dx.doi.org/10.1007/978-3-319-25751-8 53. 9

M. Koschinski, H.-J. Winkler, and M. Lang. Segmentation and recognition of symbols within
handwritten mathematical expressions. In Proc. IEEE Int. Conf. on Acoustics, Speech, and
Signal Process., volume 4, pages 2439-2442, 1995. vii, 16

Martin Lange and Hans Leifs. To cnf or not to cnf? an efficient yet presentable version of the cyk
algorithm. Informatica Didactica, 8, 2009. 14

Adrien Lapointe. Issues in performance evaluation of mathematical notation recognition systems.
Master’s thesis, Queen’s Univ., 2008. 2, 5, 71, 83, 84, 95

Adrien Lapointe and Dorothea Blostein. Issues in performance evaluation: A case study of math
recognition. In Proceedings of the 10th International Conference on Document Analysis and
Recognition, pages 1355-1359, 2009. 5, 71, 84, 95

S. Lavirotte and L. Pottier. Optical formula recognition. In Document Analysis and Recognition,
1997., Proceedings of the Fourth International Conference on, volume 1, pages 357-361 vol.1, Aug
1997. doi: 10.1109/ICDAR.1997.619871. 29, 30, 37, 64

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11):2278-2324, Nov 1998. ISSN 0018-9219. doi: 10.
1109/5.726791. 94, 95

http://www.sciencedirect.com/science/article/pii/S0031320314003768
http://www.sciencedirect.com/science/article/pii/S0031320314003768
http://dx.doi.org/10.1007/978-3-319-25751-8_53

114 BIBLIOGRAPHY

S. Lehmberg, H.-J. Winkler, and M. Lang. A soft-decision approach for symbol segmentation
within handwritten mathematical expressions. In International Conference on Acoustics, Speech,
and Signal Processing, 1996. ICASSP-96. Conference Proceedings, 1996 IEEE, volume 6, pages
3434-3437 vol. 6, May 1996. 6, 8, 34, 39

Liang Lin, Tianfu Wu, Jake Porway, and Zijian Xu. A stochastic graph grammar for compositional
object representation and recognition. Pattern Recognition, 42(7):1297 — 1307, 2009. ISSN 0031-
3203. doi: http://dx.doi.org/10.1016/j.patcog.2008.10.033. URL http://www.sciencedirect.com/
science/article/pii/S0031320308004603. 29

Scott MacLean and George Labahn. A new approach for recognizing handwritten mathematics
using relational grammars and fuzzy sets. International Journal on Document Analysis and
Recognition (IJDAR), 16(2):139-163, 2013. ISSN 1433-2833. viii, 2, 8, 18, 19, 20, 21, 23, 29, 34,
36, 39, 61, 65, 67

Scott MacLean, George Labahn, Edward Lank, Mirette Marzouk, and David Tausky. Grammar-
based techniques for creating ground-truthed sketch corpora. Int. J. Doc. Anal. Recognit., 14:
65-74, 2011. 2, 5, 53, 83

Nicholas E Matsakis. Recognition of handwritten mathematical expressions. Master’s thesis, Mas-
sachusetts Institute of Technology, Cambridge, 1999. 16, 34, 39, 83

G. Mori, S. Belongie, and J. Malik. Efficient shape matching using shape contexts. Pattern Analysis
and Machine Intelligence, IEEE Transactions on, 27(11):1832-1837, 2005. ISSN 0162-8828. 44

H. Mouchére, C. Viard-Gaudin, D.H. Kim, J.H. Kim, and U. Garain. Icthr 2012 competition on
recognition of on-line mathematical expressions (crohme 2012). In Frontiers in Handwriting
Recognition (ICFHR), 2012 International Conference on, pages 811-816, 2012. 2

H. Mouchere, C. Viard-Gaudin, U. Garain, D. H. Kim, Kim J. H., and Zanibbi R. Icdar 2013 crohme:
Third international competition on recognition of online handwritten mathematical expressions.
In Document Analysis and Recognition (ICDAR), 2013 12th International Conference on, pages
1428-1432, Aug 2013. doi: 10.1109/ICDAR.2013.288. 2

H. Moucheére, C. Viard-Gaudin, R. Zanibbi, and U. Garain. Icfhr 2014 competition on recognition
of on-line handwritten mathematical expressions (crohme 2014). In Frontiers in Handwriting
Recognition (ICFHR), 2014 14th International Conference on, pages 791-796, Sept 2014. doi:
10.1109/ICFHR.2014.138. vii, 2, 3, 4, 5, 9, 27, 39, 47, 71, 72, 79, 83, 93

Harold Mouchére, Christian Viard-Gaudin, Dae Hwan Kim, Jin Hyung Kim, and Utpal Garain.
Crohme2011: Competition on recognition of online handwritten mathematical expressions. In
ICDAR’11, pages 1497-1500, 2011. 2

J. Pflatz and Rosenfeld A. Web grammars. In Proc. First International Joint Conference on
Artificial Intelligence, pages 193-220, 1969. 23, 25, 26

Réjean Plamondon and Sargur N. Srihari. On-line and off-line handwriting recognition: A com-
prehensive survey. [IEEE Trans. Pattern Anal. Mach. Intell., 22:63-84, January 2000. ISSN
0162-8828. 11

L. Prasanth, V. Babu, R. Sharma, G. V. Rao, and Dinesh M. Elastic Matching of Online Hand-
written Tamil and Telugu Scripts Using Local Features. In Proceedings of the Ninth International
Conference on Document Analysis and Recognition - Volume 02, pages 1028-1032, 2007. 41, 44

S. Quiniou, H. Mouchére, S.P. Saldarriaga, C. Viard-Gaudin, E. Morin, S. Petitrenaud, and S. Med-
jkoune. Hamex - a handwritten and audio dataset of mathematical expressions. In Document
Analysis and Recognition (ICDAR), 2011 International Conference on, pages 452-456, Sept 2011.
doi: 10.1109/ICDAR.2011.97. 2, 5

http://www.sciencedirect.com/science/article/pii/S0031320308004603
http://www.sciencedirect.com/science/article/pii/S0031320308004603

BIBLIOGRAPHY 115

Taik Heon Rhee and Jin Hyung Kim. Efficient search strategy in structural analysis for handwritten
mathematical expression recognition. Pattern Recognition, 42:3192-3201, 2009. 83

G. Sanchez and J. Llados. A graph grammar to recognize textured symbols. In Document Analysis
and Recognition, 2001. Proceedings. Sixth International Conference on, pages 465-469, 2001. doi:
10.1109/ICDAR.2001.953833. 29

F. Simistira, V. Papavassiliou, V. Katsouros, and G. Carayannis. Recognition of spatial relations
in mathematical formulas. In Frontiers in Handwriting Recognition (ICFHR), 2014 14th Inter-
national Conference on, pages 164-168, Sept 2014. doi: 10.1109/ICFHR.2014.35. 51, 53

Fotini Simistira, Vassilis Katsouros, and George Carayannis. Recognition of online handwritten
mathematical formulas using probabilistic {SVMs} and stochastic context free grammars. Pattern
Recognition Letters, 53(0):85 — 92, 2015. ISSN 0167-8655. doi: http://dx.doi.org/10.1016/j.patrec.
2014.11.015. URL http://www.sciencedirect.com/science/article/pii/S0167865514003651. 2, 23,
27, 29, 37

Ernesto Tapia. Understanding Mathematics: A System for the Recognition of On-Line Handwritten
Mathematical FExpression. PhD thesis, Freie Universitat Berlin, 2004. 17, 34, 39, 40, 51

Ernesto Tapia and Raul Rojas. Recognition of on-line handwritten mathematical expressions using
a minimum spanning tree construction and symbol dominance. In Graphics Recognition. Recent
Advances and Perspectives, volume 3088, pages 329-340. 2004. 6, 8, 17

Ernesto Tapia and Ratl Rojas. A survey on recognition of on-line handwritten mathematical
notation, 2007. 11

Gy Turan. On the complexity of graph grammars. Rep. Automata theory Research Group, 1982.
36, 64

Stephen H. Unger. A global parser for context-free phrase structure grammars. Commun. ACM,
11(4):240-247, April 1968. ISSN 0001-0782. doi: 10.1145/362991.363001. 19, 23, 35

E. Valveny, P. Dosch, Adam Winstanley, Yu Zhou, Su Yang, Luo Yan, Liu Wenyin, Dave Elliman,
Mathieu Delalandre, Eric Trupin, Sébastien Adam, and Jean-Marc Ogier. A general
framework for the evaluation of symbol recognition methods. Int. J. Doc. Anal. Recognit., 9:
59-74, February 2007. 83

Ba-Quy Vuong, Yulan He, and Siu Cheung Hui. Towards a web-based progressive handwriting
recognition environment for mathematical problem solving. Expert Systems with Applications, 37
(1):886-893, January 2010. 83

K. Wagner. Uber eine eigenschaft der ebenen komplexe. Mathematische Annalen, 114(1):570-590,
1937. ISSN 0025-5831. URL http://dx.doi.org/10.1007/BF01594196. 66

Zhiyong Wang, Bin Lu, Zheru Chi, and Dagan Feng. Leaf image classification with shape context
and sift descriptors. In Digital Image Computing Techniques and Applications (DICTA), 2011
International Conference on, pages 650-654, 2011. doi: 10.1109/DICTA.2011.115. 41

Liu Wenyin and D. Dori. Performance evaluation of graphics recognition algorithms: principles and
applications. In Pattern Recognition, 1998. Proceedings. Fourteenth International Conference on,
volume 2, pages 1180-1182 vol.2, Aug 1998. doi: 10.1109/ICPR.1998.711907. 83

H.-J. Winkler, H. Fahrner, and M. Lang. A soft-decision approach for structural analysis of hand-
written mathematical expressions. In Acoustics, Speech, and Signal Processing, 1995. ICASSP-
95., 1995 International Conference on, volume 4, pages 2459-2462 vol.4, 1995. 16

http://www.sciencedirect.com/science/article/pii/S0167865514003651
http://dx.doi.org/10.1007/BF01594196

116 BIBLIOGRAPHY

Ryo Yamamoto, Shinji Sako, Takuya Nishimoto, and Shigeki Sagayama. On-line recognition of
handwritten mathematical expressions based on stroke-based stochastic context-free grammar.
In International Workshop on Frontiers in Handwriting Recognition, 2006. vii, 2, 13, 14, 15, 18,
23, 29, 36, 37, 39, 65

Daniel H. Younger. Recognition and parsing of context-free languages in time n3. Information and
Control, 10(2):189 — 208, 1967. ISSN 0019-9958. doi: http://dx.doi.org/10.1016,/S0019-9958(67)
80007-X. URL http://www.sciencedirect.com/science/article /pii/S001999586780007X. 13

Richard Zanibbi and Dorothea Blostein. Recognition and retrieval of mathematical expressions.
International Journal on Document Analysis and Recognition (IJDAR), 2012. ISSN 1433-2833.
2, 11

Richard Zanibbi, Dorothea Blostein, and James R. Cordy. Recognizing mathematical expressions
using tree transformation. IEEE Trans. Pattern Anal. Mach. Intell., 24:1455-1467, 2002. vii, ix,
8, 17, 18, 27, 34, 36, 51, 52

Richard Zanibbi, Harold Mouchére, and Christian Viard-Gaudin. Evaluating structural pattern
recognition for handwritten math via primitive label graphs. In Proceeding of Document Recog-
nition and Retrieval XX, DRR 2013, USA, 2013. 2

Ling Zhang, Dorothea Blostein, and Richard Zanibbi. Using fuzzy logic to analyze superscript
and subscript relations in handwritten mathematical expressions. In Proceedings of the Eighth
International Conference on Document Analysis and Recognition, pages 972-976, 2005. ix, 8, 17,
52, 67

http://www.sciencedirect.com/science/article/pii/S001999586780007X

Publications

1. Frank Julca-Aguilar, Harold Mouchére, Christian Viard-Gaudin, and Nina S. T. Hirata.
Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications: 20th
Iberoamerican Congress, CIARP 2015, Montevideo, Uruguay, November 9-12, 2015, Proceed-
ings, chapter Top-Down Online Handwritten Mathematical Expression Parsing with Graph
Grammar, pages 444-451.

2. Nina S.T. Hirata and Frank D. Julca-Aguilar. Matching based ground-truth annotation for
online handwritten mathematical expressions. Pattern Recognition, 48(3):837 - 848, 2015.

3. Frank Julca-Aguilar, Christian Viard-Gaudin, Harold Moucheére, Sofiane Medjkoune, and Nina
Hirata. Mathematical symbol hypothesis recognition with rejection option. In 14th Interna-
tional Conference on Frontiers in Handwriting Recognition.

4. Frank Julca-Aguilar, Christian Viard-Gaudin, Harold Mouchére, Sofiane Medjkoune, and Nina
Hirata. Integration of shape context and neural networks for symbol recognition. In Semaine
du Document Numérique et de la Recherche d’Information (SDNRI) 2014 .

5. Alexandre Noma, Frank D. Julca-Aguilar, Nina S. T. Hirata. Matching Expressions by using
Structural Belief Propagation: First Results. 26th Conference on Graphics, Patterns, and
Images, 2013 (SIBGRAPI 2013).

6. Frank D. J. Aguilar and Nina S. T. Hirata. Expressmatch: A system for creating ground-
truthed datasets of online mathematical expressions. In Proceedings of the 2012 10th IAPR
International Workshop on Document Analysis Systems, DAS’12, pages 155-159, Washington,
DC, USA, 2012. IEEE Computer Society.

117

UNIVERSITE
BRETAGNE
LOIRE

These de Doctorat

Frank D. JULCA-AGUILAR

IME-USP UNIVERSITE DE NANTES

Recognition of Online Handwritten Mathematical Expressions using Contextual

Information

Résumé

Les expressions mathématiques manuscrites en-ligne
sont constituées d'une séquence de traces. Leur
reconnaissance necessite de résoudre trois problemes
fondamentaux: la segmentation de ses symboles, leur
reconnaissance et I'analyse structurelle de I'expression
(i.e. l'identification des relations spatiales inter-
symboles). La nature ambigué des expressions
manuscrites et leur structure spatiale sont les
problémes principaux du processus de
reconnaissance. Dans cette thése, nous proposons une
modélisation du probléme par une analyse syntaxique
de graphes. La description des régles de production
grammaticales par des graphes permet de modéliser
directement la nature non linéaire des structures. Notre
algorithme d'analyse détermine récursivement les
partitions des traces en respectant les graphes des
régles de production. Pour diminuer le colt de calcul,
graphes issus des partitions sont limitées a un
ensemble d'hypothéses de symboles et de relations pré-
calculées grace a classifieur entrainé. Ce classifieur
donne a chaque hypothése un ensemble d'étiquettes
associées a leur vraisemblance. C'est I'analyse
syntaxique qui sélectionnera la meilleure interprétation
globale. Cette analyse produit de plusieurs arbres
syntaxiques pour représenter plusieurs interprétations,
leur associe un colt et choisit I'arbre avec le colt le plus
faible pour l'interprétation finale. Les évaluations
effectuées sur une base d'expressions conséquente et
publique ont permis de montrer que notre approche est
plus performantes que plusieurs méthodes de I'état de
I'art et que l'utilisation du graphe d'hypothéeses de
symboles et de relations permet de contrdler la
complexité de I'analyse. L'adaptation a d'autres
langages graphiques est possible.

Mots clés

Reconnaissance d'expressions mathématiques,
reconnaissance de symboles, reconnaissance de
relations spatiales, analyse syntaxique de graphes.

Abstract

Online handwritten mathematical expressions consist of
sequences of strokes. Automatic recognition these data
requires solving three subproblems: symbol
segmentation, symbol classification, and structural
analysis (i.e. identification of spatial relations between
symbols). Ambiguity, that often leads to several likely
interpretations, and the non-linear structure of the
expressions are main issues of the recognition process.
In this thesis, we model the recognition problem as a
graph parsing problem. The graph-based description of
relations in production rules allows direct modeling of
non-linear structures. Our parsing algorithm determines
recursive partitions of the input strokes that induce
graphs matching the production rule graphs. To mitigate
the computational cost, we constrain the partitions to
graphs derived from sets of symbol and relation
hypotheses, calculated using previously trained
classifiers. A set of labels that indicate likely
interpretations is associated to each hypothesis, and the
selection of the best interpretation is driven by the
parsing algorithm. The parsing method computes
multiple parse trees to represent alternative
interpretations, assigns a cost to each tree and selects a
tree with minimum cost as result. The evaluations show
that the proposed method is more accurate than several
state of the art methods; the use of symbol and relation
hypotheses to constrain the search space effectively
reduces the parsing complexity; and adaptation to other
two-dimensional object recognition problems is possible.
As a secondary contribution, we developed a framework
to automatize the handwritten mathematical expression
datasets building process.

Key Words

Mathematical expression recognition, symbol
classification, spatial relation classification, graph
parsing.

	List of Figures
	List of Tables
	Introduction
	Motivation
	The recognition problem
	This thesis
	Objectives
	Key ideas explored in this thesis
	Major contributions

	Thesis organization

	Previous work
	Background on parsing
	CYK algorithm

	Sequential Approaches
	Integrated approaches
	Discussion

	The proposed recognition framework
	Graph Grammar to model Mathematical Expressions
	A context-free graph grammar for mathematical expressions
	Comparison with other mathematical expression grammars

	Parse tree and forest
	The proposed approach
	Hypotheses graph generator
	Graph Parser

	Discussion

	Symbol hypothesis classification
	Generation of stroke groups
	Symbol hypothesis classification
	Preprocessing
	Online symbol features
	Offline symbol features

	Experimentation
	Experimental setup
	Results

	Discussion

	Relation classification
	Problem overview and state of the art
	Feature set
	Relation image
	Geometric features
	Category vectors

	Experimentation
	Experimental setup
	Results

	Discussion

	Mathematical expressions parsing technique
	Parse Forest Construction
	Top-down parsing algorithm
	Valid stroke partitions

	Optimal parse tree extraction
	Ranking functions

	Experimentation
	Experimental setup
	Parameter setting
	Hypotheses graph generation
	Graph parsing

	Results
	Discussion

	A framework to build online handwritten mathematical expression datasets
	Introduction
	Desired qualities of mathematical expression datasets
	The dataset creation procedure
	The ExpressMatch system
	ExpressMatch architecture

	Results

	Conclusions and future work
	Symbol segmentation and classification
	Relation classification
	Graph parsing
	Automatic annotation of mathematical expression datasets

	Résumé étendu en français
	CROHME-2014 Symbol hypothesis classification
	Hypothesis graph labels per symbol and relation
	Bibliography
	Publications

