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INTRODUCTION

Un voyage de mille lieues commence toujours par un premier
pas; A journey of a thousand miles begins with a single step;
TEZIT, wWRET -

— Laozi, Tao Te Ching, Verse 64, the 4th century BC

Research Context

With the rapid development of technologies, a mass of distributed and dynamic
information result in difficulties of information interpretation. Knowledge representation
turns to be crucial in managing the information into knowledge, which helps decrease
the cost of searching and increase the possibilities of knowledge usage.

To organize the knowledge, Cimiano 2006 [1] mentioned that, "the foremost pro-
cedure is to represent the knowledge of massive information by giving information a
well-defined meaning". So that the knowledge can be processed by machines and ex-
changed between different parties in a semantically well-founded way, i.e. an ontology.
Guarino, Oberle et Staab 2009 [2] specified that "an ontology is an advanced know-
ledge representation technique that provides shared concept formations of a domain
and connects them by their relations with the corresponding commitments to the logical
theory". If an ontology is developed as a set of small modules and later composed to
form a complete ontology, this ontology turns to be a modular ontology, which is easy
to understand, extend and reuse. Each module could be derived by a predefined core
concept of a domain.

In computer science, learning an ontology is inherently multidisciplinary with regard
to artificial intelligence, i.e., machine learning, natural language processing (NLP), se-
mantic web, data mining, knowledge representation, philosophy, etc. Buitelaar, Cimiano
et Magnini 2005 [3] indicated that "ontology learning usually refers to the processes of
defining and instantiating a knowledge base with the (semi-)automatic support in onto-
logy development”. Especially, learning ontology from textual collections could be sim-
plified into learning concepts and relations from text. In the text documents, the context
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Introduction

could support terms to learn their linguistic information. According to Harris’ distribution
theory [4], "Terms sharing the same context would have a higher probability of holding
a similar semantic meaning, even further to become synonyms of each other". The
synonyms or similar terms, who represent the same concept, could be gathered and
assigned a label to represent a concrete concept (namely concept formation). In addi-
tion, the relation between concepts could be extracted or inferred from the originated
text, or even acquired from the external knowledge bases.

In the state of the art of ontology learning, the synonym identification task and
concept formation task could be performed by the use of statistical and/or probabilis-
tic based methods, e.g. clustering [5] and topic models [6], while the relations disco-
very tasks could be obtained by the use of linguistic-based methods, e.g. POS(Part
of Speech) tagging, noun modifier relationships [7] and seed words [8]. However, any
single type of method falls short of exploring the sufficient semantic features for on-
tology learning. The hybrid methods were proposed in most cases but applied in a
subjective and case-dependent scenario. In short, the proposed hybrid methods lack a
pivotal role to connect the sub-tasks throughout the learning of an ontology in a general
way.

Goal

To pervade large and unstructured collections of text documents, topic modeling al-
gorithms play significant roles in helping machines interpret text documents. The Latent
Dirichlet Allocation (LDA) [9] is one of the typical topic model techniques. We anticipate
enhancing the LDA model to provide a reliable estimate about terms’ semantic identity
so that the terms could be clustered for the purpose of synonym identification. Mo-
reover, we would like to explore LDA’s utilities in benefiting from the prior knowledge
embedding techniques, which could guarantee that term clusters are close to the pre-
defined core concepts of an ontology. This procedure aims to achieve the concept
formation task in the process of ontology learning. Besides, the taxonomic relations
between terms would be discovered to construct the main structure of the ontology,
internally from the linguistic features and externally from the knowledge bases.

In this manner, the topic model plays a pivotal role to tackle text information for
the clustering purpose, which effectively associates the sub-tasks towards ontology
learning.

16
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Challenges

Topic modeling is a technique that comes with many algorithms that reveal, dis-
cover, and annotate the thematic structure of the collection of documents and of the
occurred terms [6]. The topic model could act as a bridge to connect the plain corpus
to knowledge representation (semi-)automatically, by clustering together similar terms
with topical identity. However, making use of the topic model for clustering purpose is
a challenging work for three reasons :

| Although a cluster of similar terms prone to convey the same concept. It is dif-

ficult to determine which kind of clustering strategy conforms to the anticipated
concepts. Since the different clustering strategies take advantage of the different
linguistic features respectively, e.g., statistic features, syntactic features, or se-
mantic features.

The raw documents lack semantic annotations, external links, and structural in-
formation, but only contain enormous plain text depicting a certain domain. It
becomes rather complicated to resolve the text corpus into expressive elements.
Accordingly, we divide the issue into three sub-tasks :

— How to use topic models for the synonym identification and the concept for-

mation task ? The term clustering strategy could be employed to cluster terms
by topics. A topic works as the notion but not the intuitive concrete terms. To
break this constraint, each topic will be represented by a cluster of salient
terms, which have both statistical and linguistic significance of topics.

What are the possible operations to improve the utilities of topic clusters for
ontology learning ? Only the term clusters that are close to the core concepts
are helpful for the concept formation task. The operations might include cor-
pus pre-processing, prior knowledge embedding, or even the adjustments
over model training procedure.

How to match the numerous topics into the limited core concepts of an onto-
logy ? The favorable situation is to ensure that each topic cluster could cor-
rectly correspond to only one core concept. Once the topics could be instan-
tiated as term clusters, this sub-task could be regarded to interpret the term
clusters with limited terms(e.g. core concepts or the seeded terms related to
core concepts).

[II" After the concept formation task for the clustered terms, we have to learn more

17
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FIGURE 1 — The overview of the contributions in this thesis.

relations from the corpus. Except to discover the text’s intrinsic relations, it is pos-
sible to take advantage of the common knowledge bases to organize terms with
taxonomic relations. However, it is a complicated task to embed the external re-
lations in the most valuable manner. There are many possibilities for embedding
practices : in the phase of corpus reinforcement, in the semi-supervised training
of the topic model, or in the direct application of taxonomy on ontology construc-
tion.

Contributions

To avoid hard and expensive manual efforts to label terms required for ontology
construction, we resort to applying the clustering strategies for synonym identification
tasks. For the moment, it lacks the systematic work to critically study the possibilities
of applying topic models to cluster terms for the purpose of ontology learning. We draw
the Figure 1 to show overall contributions regarding the ontology learning layer cake
procedures [3]. The first contribution shows how to use the term clustering framework
to learn ontology automatically :

e We draw a framework of classic term clustering strategy to show the prac-

18
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tical approaches of automatically clustering similar terms. It describes the re-
quired components for term clustering and provides guidance about how to
combine the feature representations with the clustering algorithms as a way to
achieve better term clusters.

e We propose a term clustering strategy based on LDA. It introduces the term
clustering formation and thinning steps to solve many problems, e.g., the dif-
ferent term filtering techniques in different stages, the distinct impacts of para-
meters of LDA learning, and the various criteria to select terms into clusters.
With these techniques, this proposal could capture the semantic features of the
most salient terms to help aggregate the synonyms.

The classic clustering method is then compared to the term clustering strategy de-
rived by the topic model. The result shows that the topic features has a better perfor-
mance on the majority of clustering algorithms and the clustering strategy based on
LDA reached the best presentation of term clusters. In brief, it shows that the cluste-
red terms are capable of representing a comprehensive concept as a means towards
ontology learning.

The second central theme of this thesis is to explore diverse approaches to optimize
topic models’ performance by embedding prior knowledge, so as to semi-supervise
the terms clustering towards the core concepts. (The inclusion of the few labeled data
makes it 'semi-supervised’, it could work as the embedded prior knowledge in LDA, or
the seed terms used in other extensive LDA) :

o We examine the diverse employments of LDA with prior knowledge embed-
ding. There are many possible phases that affect LDA as a clustering strategy :
— We study the influence of terms’ syntactic features during corpus reconstruc-

tion.

— We explore the different approaches to embed the prior knowledge into the
reconstructed corpus and compare it to other extensive LDA models embed-
ded with the seed information.

e We experiment to acquire knowledge by internally using subcategories frames
between NPs and externally exploring the common knowledge bases. The
taxonomic relations play the role of the backbone of the related structure. Re-
garding this :

— We introduce the structural approach (i.e. subcategorization frame) to dis-
cover the taxonomic relations between the residual terms, by taking into ac-
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count the features of center terms in noun phrases.

— We also grasp the relations from the common knowledge bases to enrich the
taxonomic structure in the ontology, by mapping the terms from the corpus
to knowledge bases.

Thesis Structure

We start to introduce the fundamental notions of ontology constructions with ins-
tances and present the related works of ontology learning with specific targets in Chap-
ter 1.

The first contribution relies on the exploration of the unsupervised term clustering
strategies, which works for the synonym identification task of ontology learning. Chap-
ter 2 lists out the related works of the essential components for term clustering, i.e.
word representation techniques, the typical clustering algorithms, and the evaluation
metrics for term clusters. Then in Chapter 3, we discuss feature selection and feature
extraction techniques to construct feature space from the corpora. Based on those fea-
ture representations, we experiment term clustering with different classical clustering
algorithms, e.g. K-Means, k-medoids, DBscan, affinity propagation, and co-clustering.
Meanwhile, we also propose the term clustering strategy based on LDA. A compari-
son is made between these two different kinds of clustering strategies, with regard to
generating the more meaningful term clusters.

The second contribution talks about the semi-supervised modular ontology lear-
ning with topic modeling driven by core concepts. It expands our vision to topic models’
utilities for modular ontology learning. Chapter 4 shows the variations of topic models
from a simple statistic model to the basic LDA model, and even to the extensions of the
LDA model, which take advantage of seed information to acquire the desired topic fea-
tures. In Chapter 5, we describe the adaptations of the basic LDA, in which we apply
core concept replacement and sub-domain knowledge supplementation as the sup-
portive information embedding techniques over the corpus. Except for the knowledge
embedding techniques, we also study other impacts to a good performed LDA model,
e.g., the syntactic roles of NPs, the inclusion of verbs occurring with NPs, and the num-
ber of LDA training times. According to those explorations, we discover what is the best
manner to embed prior knowledge to LDA. Comparatively, we evaluate other extensive
LDA models with seed information, i.e. z-label LDA [10] and seeded LDA [11]. Besides,
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the taxonomic relations acquired from subcategories frames and external knowledge
bases also contribute to modular ontology building jointly.
At the end of this thesis, a summary and the expectation of future works are given.
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CHAPITRE 1

ONTOLOGY CONSTRUCTION AND
LEARNING

This chapter starts by introducing what an ontology is and exemplifying what the
ontology looks like by using two typical kinds of ontology (Section 1.1) : core onto-
logy and modular ontology. In order to address the ontology construction problems,
then we present the ontology construction layer cake in Section 1.2 by decomposing
an ontology into the different components. Subsequently, we summarize the ontology
construction works on two sides : with the consideration of prior knowledge and without
the consideration of prior knowledge. Finally, we go into the techniques of learning an
ontology from text in Section 1.3 and provide the concrete example to directly illustrate
the utilities for the techniques.

1.1 Ontology

In philosophy, an ontology is a systematic account of existence, which deals with
the nature and structure of "reality" [12]. For informatics, what ’exists’ is that which can
be represented ; for this reason, an ontology is considered a special kind of information
object or computational artifact [2]. In information systems, when a domain’s knowledge
is represented in a declarative formalism, it ought to follow the rules of the universe of
discourse, e.g., concepts, relations, functions, or other objects. For example, a system
could be instantiated by a company with all its employees and their interrelationships.
To represent this company, we organise its general beings into concepts and relations.
When we focus on the human resource of a company, then Person, Manager, and
Researcher might be relevant concepts, where the first holds subsumption relation
to the latter two, and persons hold cooperates with and reports_to relation between
them. A concrete person is treated as an instance of its corresponding concept.
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Given an example of this simplified representation, accordingly, we could go deep
into the more prevalent definitions of ontology in computer science. Originally, Gruber
et al. 1993 [13] defined an ontology as an "explicit specification of a conceptualization."
Based on Gruber’s description, Borst 1999 [14] defined this notion as a "formal specifi-
cation of a shared conceptualization," in which the shared view is posed expecting that
the knowledge becomes consensus rather than independent. Eventually, ontology can
be expressed by merging these two definitions, giving rise to the following statement
[15], "An ontology is a formal, explicit specification of a shared conceptualization.”

To specify the conceptualization, there are many concerns according to the means
of representation. First of all, we focus on one language in case of a communication gap
and intentionally constrain such a language’s interpretations. Then, we need to specify
what such possible extensions are to explicitly specify the implicit mind of people. In
this way, we can list those extensions in correspondence with selected stereotypical
world states [2]. Lastly, to guarantee that the expressions are machine-readable, the
formal language is distinguished from the natural language. Compared to the previous
conceptualization procedure, in this step, ontology engineers would try to find out the
explicit contents inside the conceptualization structure and depict its structure by the
formal language.

One may argue that it is impossible to share the whole conceptualization of one
individual with other individuals. What can be shared are approximations of concep-
tualizations based on the mutual agreement on the primitive terms in one domain.
Consequently, an ontology formally specifies a domain structure under the limitation
that the related users properly understand the primitive terms. The components of an
ontology are terms, synonyms, concepts, relations, axioms, and instances. Once the
basic primitives are well-chosen and axiomatized to be generally understood, the rela-
ted ontology has high probabilities to support large-scale interoperability in the future
[2]. Our work is started with the primitives of a domain to ensure that the ontology
structure would be stable and interoperable.

1.1.1 Core Ontology

To steer the learning process of a domain ontology, we benefit from a domain core
ontology. A core ontology of a domain is a basic ontology composed only of the minimal
concepts (i.e core concepts) and relations between them that allows defining the other
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FIGURE 1.1 — a core ontology of the music domain and its core concepts.

concepts of the domain [16]-[18]. Scherp [19] considers that a core ontology should
be characterized by a high degree of axiomatization and formal precision. Figure 1.1
shows a core ontology of the music domain.

Furthermore, in a core ontology, generally, each core concept refers to (conceptua-
lizes) a sub-domain of the ontology domain, and it could be related by core relations to
other core concepts (see Figure 1.1). A core ontology could be considered as an upper
ontology (i.e., top-level ontology or foundation ontology [16] ) of domain ontology, which
provides the high possibilities to be reused for extensive purpose. Therefore in most
cases, a core ontology is predefined by a domain expert, so as to provide guidelines in
terms of domain ontology construction.

1.1.2 Modular Ontology

concepts
IR [ D subconcepts

core concepts
taxonomic relation
---> non-taxonomic relation|

00

owl:Thing ‘

1 ( music_genre ! performance

musician

Module-1 Module-2 Module-3 Module-4 Module-5

FIGURE 1.2 — An excerpt of a modular music domain ontology.

Modular ontology is considered a major topic to facilitate and simplify the ontology
engineering process [20]. In the case that it is required to alter the structure of the on-
tology, we can remove, add, or enrich the target modules in modular ontology, without
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interference to other remaining parts of ontology. For ontology experts, the modular
representations are easier to understand, reason with, extend and reuse [21]. Thus it
reduces the complexity of designing and facilitates ontology reasoning, development,
and integration [22]. Actually, a modular ontology is inseparably intertwined with a core
ontology. Based on core ontology, it is interesting to obtain a well-structured taxonomy
where each sub-domain is defined by a separate module (Figure 1.2). It becomes ea-
sier to define a modular regarding each core concept that represents its sub-domain. In
this manner, inside each modular, a core concept could be extended to its sub-concepts
with the ’is-a’ relations. (seeing the bottom layer in Figure 1.2).

In brief, even though building a complete ontology seems to be complicated to do,
we are able to simplify it starting from a core ontology and ending with a modular
domain ontology.

1.2 Ontology Construction From Text

Along with the development of digital communications, more and more textual snip-
pets are generated, transmitted, and recorded through the network. The textual infor-
mation is easier to be accessed and be summarized into the knowledge. Thus we will
focus on how to construct ontology from the text.

1.2.1 Ontology Construction Approaches

Ontology construction from texts can be done manually or automatically. In both
cases, it needs to respect the structure of the ontology. The construction can be per-
formed following a top-down approach or a bottom-up approach. For the top-down
approach, the basic starting point is to consider several core concepts of an ontology
as the philosophical guidance for the prospective engineering artifact [23]. The resul-
ting ontology could be seen as the knowledge representation with rich semantics in
a specific domain [24], i.e. the CIDOC Conceptual Reference Model (CRM) [25] and
CORA ontology [26].

It facilitates interoperability among ontologies, but is considered to be too abstract
to understand. For the bottom-up approach, without starting with a blank slate, it reuses
exiting information or knowledge in order to capture experience from a group of indivi-
duals. The resulting ontology is less structured but dynamically close to the application.
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database, datum

FIGURE 1.3 — Ontology Construction Layer Cake.

This approach is applied in a ’'BRAINS’ system of crime investigation tool for Dutch po-
lice [24].

As we have illustrated, the development team could follow their own set of prin-
ciples, design criteria, and approaches in the ontology development process. Howe-
ver, the absence of structured guidelines causes some problems in the capabilities to
share, extend and reuse ontologies. Until now, few domain-independent methodologi-
cal approaches have been reported for building ontologies [27], where MethOntology
[28] is one of the most representative for ontology construction. MethOntology is a well-
structured methodology to build ontologies from scratch and prone to reuse the exis-
ting ontologies [28]. It seeks to build the ontology incrementally using a life cycle based
on evolving prototypes. The methodology centers on the process of building concep-
tual models by defining concepts, organizing taxonomies, defining relations, defining
concept axioms, and defining formulas. Also, it includes verification and validation of
the ontology at the knowledge level.

To address ontology construction, we need to learn about the relevant subtasks, ei-
ther manual or with any level of automatic support. Primarily, we center on the concepts
and relations between them and the axioms used to refer to them.

More specifically, ontology construction is composed of 6 subtasks allowing the
acquisition of ontology components. The latter are represented as a layer cake whose
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subtask complexity is roughly increasing from the bottom up, as displayed in Figure
1.3, which is adapted from Buitelaar, Cimiano et Magnini 2005 [3].

The right side of the figure represents the different ontology components acquired
following the sub-tasks of ontology construction :

i) Term extraction is the first step of ontology construction in a bottom up approach.

i) The acquisition of synonyms will gather the semantic similar terms with variant
linguistic expressions in the text corpus. The extraction of concepts can be speci-
fied in three ways : instances, terms that refer to it, and the list of its properties.
These ways assist to interpret or specify a concept. When we deal with ontology
from texts, we consider the second way : a concept as set of terms that refer to it,
which gives rise to concept formation.

iii) The is-a relations are extracted between concepts, which contribute to building the
concept hierarchies.

iv) Except for the is-a relations, it exits further more relations (i.e. ad-hoc relations) to
be discovered during the ontology construction process.

v) Eventually, the extraction of rules or axioms could address lexical entailments’
problems after the formation of concepts and their relations.

On the left side of this figure, we have databank, data, data mining, database, datum
as the extracted terms in the bottom layer. Then we recognize the two synonym groups
which are shown into the independent braces. One synonym group could be associa-
ted with the concept DATABASE, also it possesses a taxonomic relation between the
concept DATABASE with the concept DATA CONTAINER and a non-taxonomic relation
namely access between the concept ADMINISTRATOR and the concept DATABASE.
At the top level, an axiom could be induced in the case that, once y is taken in charged
by x, then it is apparent that x is able to access to y.

In order to achieve the construction of each sub-task, many proven techniques have
contributed to ontology construction, i.e. information retrieval, data mining, natural lan-
guage processing, and knowledge representation. Section 1.3 will use an example to
present the major combinations of those techniques, to provide a general overview of
constructing an ontology following the layer cake steps.
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FIGURE 1.4 — The practical procedure to build an ontology with seed knowledge, extract
from Medelyan, Witten, Divoli et al. 2013 [29]

1.2.2 Ontology Construction With/Without Prior Knowledge
With Prior Knowledge

To build an ontology, the researchers are confronted with corpus selection, seed
terms retrieval, concept formation, relation discovery, axioms induction, and instances
definition.

Several works propose to reuse a core ontology to identify and further define the
core concepts by specialization [16], [30], [31]. Based on the Core Ontology (Section
1.1.1), Medelyan, Witten, Divoli et al. 2013 [29] propose a ontology construction ap-
proach, which extends from the application of core concepts into the seed concepts
lists, seeing the guidance of Figure 1.4. The seed terms are the concrete expression of
the core concepts, in which one core concept consists of several seed terms. Both
of them convey the supervision information thus play the role as prior knowledge.
The seed terms could be regarded as one significant kind of prior knowledge in the
construction process.

On the one side, once the seed terms were determined as core concepts, either
manually or automatically, the further terms could be identified by computing their co-
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occurrence probability with the seed terms [32]. On the other hand, if the seed terms
are determined randomly from the pool of content words, the terms that are close to
seed terms could be clustered into semantic categories, using pattern analysis bet-
ween seed terms and the core concepts [33]. Gruber 1993 [30] suggests using the
core ontology of a domain to build domain ontology, and Gangemi, Catenacci, Ciara-
mita et al. 2006 [34] and Kutz et Hois 2012 [35] agreed that mapping a core ontology to
a domain ontology could improve the modularity of ontology. For instance, Burita, Gar-
davsky et Vejlupek 2012 [16] map NEC (Network Enabled Capabilities) core ontology
to the NEC domain ontology.

With seed terms as prior knowledge, an ontology could be learned into different
sub-domains, which conforms to the structure of Modular Ontology (Section 1.1.2).
Besbes et Baazaoui-Zghal 2015 [36] defined different sub-domains developed from
their core concepts (i.e. seed terms) and developed taxonomic relation and conceptual
relation between terms within a partition ; in parallel, the topic feature from documents
can also lead to the sub-domain representation of an ontology. Mustapha, Aufaure,
Zghal et al. 2012 [37] proposed the topic ontology where topic and relation definitions
are specified in advance ; then, each topic would go deep to relate terms (i.e. entities)
inside that partition.

However, it results in difficulties in tackling the problem of scalability in subdomains
of ontology. In general, we notice the strong correlation between domain ontology and
seed terms as the ontology construction approaches.

Without Prior Knowledge

Imagine an algorithm that can read large amounts of text and build ontologies ba-
sed on the information itself, just as like people read books for knowledge. To achieve
this, firstly it ought to identify the concepts of interests and then learn the facts and
relationships associated with them. However, unlike the understanding process of the
human, most of the ontology construction tasks are not starting from prior knowledge.

It exists bottom-up approaches for constructing ontology from unstructured text [38].
They identify concepts by detecting terms of interest and clustering them based on
similarity measures in the feature space. Next, they use the document partitions to
cluster co-occurring concepts and use them as the basis for the deeper relationship
extraction.

This work combines the ideas of clustering techniques, and words document allo-
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cation appearance. It raised the importance of clustering techniques and topic models
for ontology construction. Besides, Poon et Domingos 2010 [39] proposed to build a
probabilistic ontology in a unified approach. To identify concepts and their relations,
they used a semantic dependency parser to analyze the sentences. From this parser,
they built a non-deterministic ontology by the logical forms of sentences.

For other facts extracted from webs, they operate on terms rather than a concept
level. For example, the never-ending language learning (NELL) [40] utilize masses of
unstructured text crawled from the Web to bootstrap the extraction of millions of facts.
In this way, the massive occurrence of fact plays a significant role in finding the relations
between terms and constructing ontology.

1.3 Ontology Learning From Text

In the last section, ontology construction can be done manually or automatically. Dif-
ferent from it, the techniques of ontology learning focus on automatically constructing
an ontology. Over the past decade, many proven techniques have contributed to onto-
logy learning progress from established fields, such as information retrieval, machine
learning, data mining, natural language processing, and knowledge representation. In-
formation retrieval provides diverse algorithms to analyze the associations between
concepts in the text. Machine learning and data mining contribute to extract patterns
out of massive datasets based on extensive statistical analysis in a supervised or un-
supervised manner. Natural language processing provides many tools to deal with the
source text for different linguistic purposes, e.g., morphology, syntax, and semantics, to
uncover the concept representation and their relations from linguistic behaviors. Know-
ledge representation enables the ontological elements to be formally specified and re-
presented, which stimulates knowledge integration with the existing knowledge bases.

From the perspective of techniques, they were first introduced to solve the specific
tasks. However, in ontology learning, those techniques will finally combine and serve
for the different stages. Generally, the techniques could be classified into linguistics-
based, statistics-based, or hybrid, where the hybrid approach is mainly used in current
research. Figure 1.5 presents the complex connections between the commonly used
techniques and the different sub-tasks. In the "output layer", the components in blocks
conform to the components of the ontology construction layer cake in Section 1.2.
Unlike before, the components are connected with the chain relations from ’terms’ to
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FIGURE 1.5 — An overview of ontology Learning.
Notes : this figure is re-drawed from the work of Wong, Liu et Bennamoun 2012 [41].
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‘axioms’ and the ’relations’ are divided into ‘taxonomic relations’ and ‘taxonomic rela-
tions’. In the "task layer", it describes the corresponding tasks to the components of
ontology. For example, pre-processing texts and extracting terms result in terms com-
ponent’, forming concepts and labeling concepts contribute to 'concepts components’,
and so on.

Before we proceed, | present a textual example to present the contents of ontology
components from the usage of the ontology learning techniques. As the text shown in
Table 1.1, this snippet talks with the relations between human and their pets, token out
from an article ' in BBC Earth. First of all, we narrow down our focus from any terms
to only nouns or noun phrases, seeing the bold terms in Table 1.1.From the point of
view of humans, it is not difficult to conclude that a pet is a synonym of domesticated
animals. The main concept of this snippet is about pet and pet owner. We know that
pet has the is-a relation with dogs, hamsters, and parakeets. Also, we can learn that
your furry love-bundle holds the relations, i.e. understand, to a joke.

In the following sub-sections, we will use this example to present how the statistics-
based and the linguistic-based techniques help to recognize the knowledge in the man-
ner of human’s interpretation.

1.3.1 Linguistics-Based Techniques

In the field of knowledge acquisition from the text, it is apparent that the functional
entities of sentences and their clauses constitute the dominant linguistic elements for
syntagmatic information collection. Cimiano P, et Saitia 2004 [42] describes the local
context by extracting triples of nouns, their syntactic roles, and co-occurred verbs. They
consider only verb/object relations to emphasize partial features of terms working as
an object by a conditional probability measure, which calculates the conditional pro-
bability that a certain term appears as head of a certain argument position of a verb.
Similarly, Jiang et Tan 2005 [43] and Rios-Alvarado, Lopez-Arevalo et Sosa-Sosa 2013
[44] formed the triple term structure of noun phrases and verbs, in shape as a NP as
subject, a verb, a NP as object.

Moreover, ASIUM [45] acquires semantic knowledge from the following canonical
syntactic frames, which include the verb, and their preposition or syntactic roles and
the headword of noun phrases :

1. https ://www.bbcearth.com/blog/ ?article=is-your-cat-laughing-at-you
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<towverb> ((< preposition > | < syntactic role >) < headword >)

For examples, in the instantiated syntactic frame of the clause, "Bart travels by a huge
boat”, we get :

< totravel > < subject > < Bart >
< by > < boat >

It is evident that their focus is based on the dependency between the verb (i.e., 'to
travel’) and features of the verb (i.e., ‘Bart’ with syntactic roles 'subject’; ’boat’ with the
preposition ’by’). Except for the extraction of nouns and verbs, some works consider the
involvement of adjectives, which would be considered as keywords of ontology learning
[46], [47].

With the assistance of the natural language processing tools, linguistics-based tech-
niques (the linguistics box of Figure 1.5) can support the interpretation of the text :

e Tagging and Parsing. They are the basic and widely used method to uncover
terms and relations in a sentence. As for instance, the first sentence is parsed
with part-of-speech tags in Figure 1.6, which is generated by ‘displaCy Depen-
dency Visualizer 2. In Figure 1.6, the common nouns or noun phrases(NPs) are
tagged as NOUN. While the proper noun has PRON tag. The single verbs know
and develop are tagged as VERB, in which develop with is a verb with its pre-
position(VPC) for human. For the rest term As, it is an auxiliary of verb tagged
as ADP. In addition, in order to study the syntactic structures of this sentence,
in Figure 1.6, from the 'nsubj’ arrows, we could learn that any pet owner is the
subject of verb know, you is the subject of verb develop. The ‘dobj’ arrow indi-
cates that, a distinct emotional bond is the direct object of develop. The 'pobj’
arrows show that, your animal companion is the object of preposition with and
choice is the object of preposition of. It is easy to conclude that the POS tagging
techniques assist for term extraction task, i.e. noun or NPs recognition, and
the syntactic parsing techniques support the ad-hoc relation discovery task.

e Semantic Lexicons. It provides easy access to the predefined concepts and
relations of a large collection. For example, WordNet [48], a famous dataset
for semantic lexicons, is capable of providing a set of similar words (i.e., syn-
sets) to a concept from semantic lexicons. Except for synonyms, the lexicon

2. https ://explosion.ai/demos/displacy
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As any pet owner will know, you develop a distinct emotional bond with your ani-
mal companion of choice. You chat with the dog, remonstrate with the hamster
and tell your parakeet secrets you would never tell anyone else. And, while part
of you suspects that the whole endeavour might be completely pointless, another
part of you secretly hopes that somehow your beloved pet understands. But what,
and how much, do animals understand ? For instance, you know that an animal is
capable of experiencing pleasure, but do they experience humour ? Can your furry
love-bundle understand a joke or stifle a guffaw when you drop a heavy item on
your toe ? Do dogs or cats or any animal laugh in the same way that we laugh ?

TABLE 1.1 — The snippet example extracted from the BBC Earth.

mark
nsubj advel
| aux | l nsubj | |

As any pet owner will know, you develop

ADP NOUN VERB VERB PRON VERB

dobj l | prep l | pobj l | prep l | pobj l

a distinct emotional bond with your animal companion of choice.

NOUN ADP NOUN ADP NOUN

FIGURE 1.6 — A sentence is parsed by the displaCy Dependency Visualizer.

defines more associations, such as hypernym-hyponym (i.e., parent-child rela-
tion), meronym-holonym (i.e., part-whole relation), etc.

¢ Lexico-Syntactic Patterns. Some patterns are evident for hypernym relations,
e.g., 'NP such as NP’, 'NP...., and NP’, or meronym relations, e.g., 'NP is part
of NP’. Based on these surface information in a sentence, the use of lexico-
syntactic patterns has been proposed by Hearst 1998 [49] to extract hypernyms
and meronyms. Thus many works have been employed to generate more detai-
led rules and conditions automatically, rather than the hand-craft patterns from
Hearst, to extract the taxonomic or non-taxonomic relations.

e Noun Modifier Relationships. Also for the task of taxonomic relation re-
cognition, relatively, another approach noun modifier relationships [7] could be
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applied to exploit the internal structure of noun phrases (i.e. ’emotional bond’)
to derive taxonomic relations between classes expressed by the head of the
noun phrase and itself that can be derived from a combination of this headword
(i.e. ’bond’) and its prefixes (i.e. ’emotional’). From another point of view, it is
prevalent to use the prior knowledge from the well-known knowledge bases to
acquire the taxonomic relations between the terms in the corpus, which turns to
be more convinced and knowledgeable compared to other methods.

e Seed Words. It is a common practice to use seed words to guide ontology lear-
ning. Since it assists in focusing on a particular domain and discover the relevant
terms in the predefined direction.

1.3.2 Statistics-Based Techniques

In the early stages of ontology learning, statistical techniques are prevalent when
the semantics and relations of text are considered. The key notion behind these tech-
niques is that the lexical unit’s co-occurrence indicates the existence of semantic iden-
tity among these related terms. Let’s look at the statistics box in Figure 1.5 :

e Topic Models. The term frequency-inverse document frequency (TFIDF) [50]
provides the relevance between documents and terms. Except for the docu-
ment mutuality, the language modeling and probabilistic representation also un-
cover the specific relevance between terms. However, the raw data of the corpus
cause the sparseness of term-document matrices. The topic model aims to re-
generate the documents with words along with the predicted distribution. It intro-
duces the topic to express terms instead of document representation and sym-
bolize documents instead of terms’ representation. In this manner, the symbolize
of topics carries out the dimension-reduction effects to those sparse matrices.
There are many typical topic models developed from simple ones to sophisti-
cated ones, e.g. Latent Semantic Analysis (LSA)[51], Latent Semantic Indexing
(LSI) [52], Latent Dirichlet Allocation (LDA) [6], et al. From front to back, those
models turn to be more generative, less overfitting and easier for calculation.
Furthermore, the inherent relations between terms can be revealed by analy-
zing their topic probabilities, leading to concepts formation.

e Cooccurrence Analysis. The purpose of the lexical unit's co-occurrence is
to either extract related terms or form concepts of the close terms. The co-
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occurrence form could be expressed as the co-occurrence of a sequence of
words (i.e., a couple of noun phrases) beyond chance within a segment of a
document. If we take advantage of the direct co-occurrence of terms, the joint
presence of verbs will support to detail the meaning of nouns, additionally, the
verbs could even serve as features for nouns. In this geometric feature space,
the nouns co-occur with an identical verb in the corpus are prone to close to
each other. If we take advantage of a larger window for co-occurrence terms,
which means that two terms are regarded as co-occurred even though they are
n-positions far from each other in the context, one term could be represented
by the facts of its surrounding terms in the feature space. Accompanying with
the clustering techniques, it is convinced that the clusters of terms are relevant
and even lead to a certain degree of synonym identification [53]. To measure
the association strength between the co-occurred terms, there are many popu-
lar measures, including dependency measures (i.e. mutual information [54]) and
statistic measures (i.e. frequency on co-occurrence matrix).

Clustering. Clustering aims to discover concepts or construct hierarchy by ga-
thering terms together respecting their semantic similarities [55]. The clustering
procedure is either to group the most related terms (i.e., agglomerative cluste-
ring) or to divide all terms into smaller aggregations to maximize the in-cluster
similarity (i.e., divisive clustering). As a beginning, the word representation turns
to be the main issue. For example, the features could be syntactically related
(e.g., Rabbit eat carrot. a verb links two nouns) or semantic related (e.g., King
and Queen live in the castle. King co-occurs with Queen in context). If we simply
rely on the syntactic feature of verbs, the Rabbit and carrot might be clustered
together, which seems to be less useful than semantically related terms for hu-
mans.

Classification. The classification algorithm is widely used to train models. If the
well-labeled dataset is available, the classification methods help form concepts
and even provide labels for terms’ aggregation.

Term Subsumption. Conditioning to the documents that a term occurs, the
conditional probabilities of this term are employed to discover the hierarchical
relations between this term and other terms in documents [56], [57]. The sub-
sumption measure is to quantify the extent of a term being more general than
another term by calculating their joint and conditional probabilities.
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1.3.3 Summary

Developing an ontology is comparable to a craft. It is largely left to the personal skills
and preferences of the ontologist [58]. Meanwhile, it is difficult to highlight our interests
in ontology building, specifically when we deal with a big corpus. This puzzle could be
alleviated if the ontologist could start from and focus on the shared and foundational
concepts. Therefore, we are interested in exploring the term clustering techniques for
concept formation tasks with and without prior knowledge. With the addition of the
taxonomic discovery techniques, the modular ontology would be constructed with the
formed concepts respecting the predefined core concepts.

In the following chapters, we will start by studying and analyzing the detailed ap-
proaches related to term clustering techniques.
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CHAPITRE 2

RELATED WORKS ABOUT TERM
CLUSTERING

This chapter is concerning with term clustering approaches for ontology learning.
Harris hypothesis [59] suggests that terms sharing the same context tend to have a
similar meaning. The supervised techniques usually use a training dataset to learn a
model for predicting the classification of a term or semantic relation between a pair of
terms, while the unsupervised techniques gather terms semantically close on the same
cluster by either measure-based approaches or clustering-based approaches. Gene-
rally, the supervised approaches outperform non-supervised approaches [60]. Howe-
ver, unlike unsupervised approaches, the supervised approach requires extra effort on
building a training dataset, which is not suitable for a big corpus. Therefore, rather than
the classification approaches, the clustering approaches are widely applied to build
ontology automatically.

In the process of ontology learning, we would achieve the goal of uncovering sy-
nonyms between terms. This step could be achieved by employing some clustering
algorithms to assign terms into groups. The major issues of term clustering locate in
the approaches of feature extraction, the solutions of the high-dimensional matrix, and
the choice for clustering algorithms.

Accordingly, we study term clustering into four sections : in Section 2.2, we discuss
the word representations in the three different aspects : linguistic, statistical, and hybrid
features; in Section 2.3, we introduce the classic clustering algorithms by specifying
their drawbacks and weaknesses on clustering; in Section 2.4, we divide the evalua-
tion metrics into two categories regarding the presence or absence of gold standard;
finally, in Section 2.5, we investigate the related works that apply the clustering-based
approaches for ontology learning.
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2.1 Term Clustering

Clustering is the task of grouping a set of objects in such a way the objects in
the same group are more similar to each other than to those in other groups [61]. To
accomplish a clustering task, a targeted clustering algorithm is chosen in advance. The
inputs of a clustering algorithm include the objects to cluster, their features, and/or the
number of clusters, and the parameters of the selected algorithm. As a result, each
object is assigned to a group.

To support the terminology’s comprehension, we list the substituted terms in this
thesis that refer to the same meaning :

e objects : individuals, observations, items
e groups : clusters, partitions, aggregations
o feature matrix : word representation, feature space, vector space

In particular, term clustering is to group a set of 'terms’ based on the similarity of
their features. Many surveys have been generated to discuss the term clustering tech-
niques. Feldman and Sanger [62] presented a comprehensive discussion in text mining
in 2006. Specifically, in chapter 5, they studied the advanced text techniques that sup-
port the clustering approaches and summarized the previous in-depth algorithms for
text analysis.

With the efforts of more detailed studies on term clustering, Aggarwal and Zhai [63]
published a conclusive book Mining Text Data in 2012. They introduced the systemati-
cal procedures of text mining, including information extraction from text, text summari-
zation, text clustering and classification, dimensionality reduction, probabilistic models,
et al. Especially, they conducted a survey of term clustering techniques in details in
chapter 4 [64], which detailed the feature selection and transformation methods for text
and explored the clustering algorithms on the distance and word orientations. With the
development and refinement of the new technologies for text mining, Aggarwal wrote
an enhanced book Machine Learning From Text [65], which supplemented and ame-
liorated the term clustering techniques regarding the needs of application scenario.

2.2 Term Representation Techniques

Word representations are found to be useful for measuring semantic similarity, and
for solving proportional analogies [66]. Before going into depth of word representation

41



Partie 1, Chapitre 2 — Related Works about Term Clustering

techniques, it is necessary to make clear which terms are interesting to be represented
in the feature space. In other words, the preliminary goal is to extract a set of terms
that are related to the main topics discussed in a given document [67]-[70] and present
them in their related feature space. Thus we use ’'term representation’ in this section to
be concrete. We present the operations typically into two steps : 1) explore the ways to
extract the particular kind of words; 2) study what kind of features are important and
interesting for term representation.

In our expression, terms could be nouns, verbs, noun phrases (NPs), verb preposi-
tion combinations (VPCs) or other words ; tokens only refer to a single word ; individuals
here are the terms that are selected and will be represented in the feature space.

2.2.1 Term Selection

The first step is designed to avoid trivial information and keep the number of indi-
viduals to a minimum in the representation task. The typical approaches include : 1)
recognize words with certain part-of-speech tags or dependency parsing (e.g. nouns,
verbs) [71], [72]; 2) extract n-grams that also appear in Wikipedia article titles [73];
3) extract noun phrases (NPs) [74] or other phrases that satisfy pre-defined lexico-
syntactic patterns [75].

For a sentence from the text, the nouns or noun phrases (NPs) are worth to be
highlighted because they cover most of the descriptive information of this sentence. At
the same time, the components of the context of NPs, i.e., verbs or verb preposition
compositions (VPCs), could also present the concrete connection between NPs. To
be specific, a noun phrase (NP) is a phrase that has a noun as its head or performs
the same grammatical function as a noun; a verb preposition composition (VPC) is
the combination of two or three words from different grammatical categories to form a
single semantic unit on a lexical or syntactic level, e.g. turn down, run into, et al. In our
thesis, we will emphasize noun phrases(NPs) working as the terms to be represented
in the feature space.

2.2.2 Feature Space Construction

The second step (feature selection) is intended to convert words or phrases from vo-
cabulary to a corresponding vector of real numbers, which is used to capture the useful
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success is not final  failure fatal
success 0 1 1 0 0 0
is 1 0 2 2 1 1
not 1 2 0 1 2 1
final 0 2 1 0 1 0
failure 0 1 2 1 0 0
fatal 0 1 1 0 0 0

FIGURE 2.1 — An example of co-occurrence term representation.
Notes :It is generated from sentence "Success is not final, failure is not fatal". The co-occurrence
window size is two (2 positions ahead and 2 positions behind).

syntactic and semantic properties of words [76]. Two main approaches for computing
term representations can be identified in prior work [77] : co-occurrence term repre-
sentation and word embedding representation. We start by introducing which kind of
features to be represented for terms and then discuss how to present the feature matrix
in the condensed manners for the convenience of clustering algorithms.

Co-occurrence term representation

Many previous works are proposed to apply the co-occurrence term representation
techniques of interesting terms, which could be divided into three main parts : 1) the lin-
guistic representation [78], [79], where the terms or phrases co-occur with the others in
certain syntactic or grammar rules; 2) the statistical representation [80], where a term
co-occurs with other terms in a given window size ; 3) the hybrid representation, which
combines the previous two representations. For example, in Figure 2.1, we present the
co-occurrence matrix of a sentence with the statistical representation.

After the recognition of the co-occurrence situation between terms, the raw count
of terms and their co-occurred terms will fill into the co-occurrence matrix. In Table 2.1,
we depict the co-occurrence representation techniques into these three sections. The
column ’terms’ specifies the targeted terms that would be represented by feature vec-
tors. The column ‘co-occurred terms’ means the terms that satisfy the co-occurrence’s
rules with their targeted terms. The column 'co-occurrence’s rules’ describes the co-
occurrence situation to locate the co-occurred terms.

To benefit from the linguistic features of terms, some works thought that the noun
pairs are more interesting, thus they tried to employ different restrictions to extract
these pairs. Based on a predefined list of domain-specific concepts, Clariana et Koul
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TABLE 2.1 — The co-occurrence techniques of term representation.

terms co-occurred co-occurrence’s rules
terms
nouns in the same sentence [81]
linguistic nouns appearing respectively as subject and object in the same sentence [82]
verbs dependency relations [74]
statistical any terms any terms within a fixed window size [83]
hybrid NPs NPs within a fixed window size [84]

TABLE 2.2 — The condensed term representation.

original value resulting value examples
co-occurrence representation raw occurrence a (lze.rtain .weigh.t of occurrence tf-idf [85], PMI
(original dimension) [54]
raw occurrence the condensed probabiliies NMF[86], LSI
(condensed dimension) [52], LSA [51],
LDA [87]
word embedding representation terms within a certain win- dense, low dimensional and real NNLM [88],
dow size of a specific term  values (condensed dimension)  word2vec [89],
[90]

2004 [81] extracted noun pairs only if both of them appear in the same sentence. With
the same idea but more confined, Punuru et Chen 2012 [82] extracted noun pairs only
if when they appear respectively as subject and object in a sentence. Other works
explored the diverse utilities of the co-occurred verbs and nouns, for instance, Leake
2006 [74] used nouns/NPs to extract concepts and used the co-occurred verbs/verbal
phrases to extract relationships. From the statistical concerns, Matsuo et Ishizuka 2004
[83] recognized the co-occurrence of words within a certain window size. In the hybrid
aspect, within a certain window size, for example, Barker et Cornacchia 2000 [84]
made use of the occurrence of their extracted NPs.

In the co-occurrence term representation, for a targeted term, the counts of all its
co-occurred terms compose a vector of this targeted term. Hence the feature size is
equal to the size of the vocabulary. This kind of term representation suffers from data
sparsity, which turns to be difficult for term clustering. To transform the co-occurrence
representation into the term representation favored by clustering, we apply the dimen-
sionality reduction techniques to condense the sparse feature space.

In the upper side of Table 2.2, from the raw occurrence matrix, tf-idf [85] could
produce the weighted co-occurrence representation; Church et Hanks 1990 [54] pro-
posed to apply PMI (pointwise mutual information) weighting to reduce bias in rare
contexts, in which values below 0 are replaced by 0. In this situation, the dimension is
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not reduced but helps to reduce the bias of word counts. While other works sugges-
ted transforming the value of straightforward occurrence into the latent features. For
example, NMF (non-Negative Matrix Factorization) [86] was dedicated to solving the
dimensionality reduction problem by performing feature compression; besides, many
topic models transform the document term occurrences into latent topic features, which
lead to the condensed term representation in probabilities, e.g. LSI [52], LSA [51] and
LDA [87].

Word embedding representation

Except for the co-occurrence representation, word embedding representation could
directly generate the condensed representation from the text. The word embedding
representation firstly assigns each word with a real vector, and learns the elements
of those vectors, where the goal is to predict the next word in a given sequence
[91]. For instance, the neural network language model (NNLM) [88] uses a multi-layer
feed-forward neural network to predict the next word in a sequence, and uses back-
propagation to update the word vectors such that the prediction error is minimized.
Although this model aims to predict the next word, the term representation is also lear-
ned to capture the semantics at the same time.

However, training multi-layer neural networks using large text corpora is time-consuming.
To overcome these limitations, many methods that specifically focus on word co-occurrences
in large corpora have been proposed, where all the words in a contextual window will
participate in the prediction task. The skip-gram model [90] predicts the words ¢ that
appear in the local context of a word w, whereas the continuous bag-of-words mo-
del (CBOW) [89] predicts a word w conditioned on all the words ¢ that appear in w’s
local context. Overall, the word embedding representation has shown to outperform
co-occurrence representation [77]. In the lower side of Table 2.2, these two models are
named word2vec [89], [90], which could create the low dimensional and real-valued
feature vectors for term representation.

Word2vec is a two-layer neural net that processes text by “vectorizing” words, which
is useful in capturing semantic meanings of words. However, it fails to capture higher-
level information that might be even more useful. Because it generates the same em-
bedding for the same word in different contexts, it is given as static word embedding.
Comparatively, contextualized words embedding aims at capturing word semantics in
different contexts to address the issue about the context-dependent nature of words,
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which could be achieved by some popular language models, e.g. Contextualized Word-
Embeddings(CoVe) [92], Embeddings from Language Models(ELMO) [93], Transfor-
mer [94], and Bidirectional Encoder Representations from Transformers(BERT) [95].

Let’s focus on Transformer language model [94]. The ideas of producing better
contextualized words embedding has proved very successful in many NLP tasks, by ap-
plying the recurrent neural networks (RNNs) and convolutional neural networks (CNNs).
However, due to their recurrent and sequential nature as neural language models, they
tend to be slow to train and very hard to parallelize. While Transformer could get rid
of these drawbacks. A Transformer is essentially composed of a stack of encoder and
decoder layers. The role of an encoder layer is to encode the sentence into a nume-
rical form using the attention mechanism, while the decoder aims to use the encoded
information from the encoder layers to give the translation for this sentence. This model
was firstly designed for natural language translation, meanwhile, it could also be ap-
plied for terms representation. In this thesis, we will not solve the issues of polysemy,
which could be studied with multiple layers in language models, so we will only apply
the static word embedding techniques, i.e. word2vec, in the following experiments.

2.3 The Clustering Algorithms

From the last section, the linguistic and statistical information from the text has
already been translated into the word representations. Then term clustering will achieve
by employing the word representations to calculate the similarity between terms, to
group similar terms. Many previous works managed to apply the well-known clustering
algorithms over texts in different manners. This section will introduce the clustering
algorithms in the orientation of textual exploration, e.g. K-Means [96], K-Medoids [97],
Affinity Propagation [98], DBscan [99] and Co-clustering [100]. The reason to choose
these clustering algorithms is that they are representatives because of their diverse
clustering methods. In Table2.3, we have presented the specialties of the five different
clustering algorithms, their benefits and the drawbacks.

2.3.1 K-Means

The most typical clustering technique is k-means, which starts with randomly se-
lected centroids and performs iterative calculations to change the centroids’ positions
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for better clustering performance [96]. It is easy to be implemented and widely used as
a simple clustering solution. However, its drawbacks are also evident that 1) k-means
is quite sensitive to the initial centroids; 2) its performance could be strongly impac-
ted by the noisy elements. Despite that, k-means is always regarded as the baseline
to compare with other clustering algorithms. Except for the original usage in an unsu-
pervised manner, there are also some semi-supervised variants of k-means clustering
algorithms, i.e. seeded k-means and constrained k-means [101]. These algorithms ex-
plored the use of labeled data to generate initial centroids or the constraints to guide the
clustering process. For instance, based on the term document probabilities, Buatoom,
Kongprawechnon et Theeramunkong 2020 [102] applied the different term weighting
methods and selected the salient feature constraints to guide the seeded k-means
clustering process to find the similar documents [102], [103].

2.3.2 K-Medoids

Similar to the k-means clustering algorithm, k-medoids also attempt to minimize
the distance between centroids. In contrast to k-means, k-medoids choose the starting
centroids as priori before calculation [97]. K-medoids provide many favorable proper-
ties : 1) it presents no limitations on input types, which means it is capable of numerical,
categorical, and binary input matrix, while most of the other clustering algorithms only
dedicate to the numerical matrix. 2) the choice of centroids is dictated by the location of
a predominant fraction of points inside a cluster and therefore, it is less sensitive to out-
liers’ presence. Briefly, it is more robust to noise and outliers as compared to k-means.
However, this algorithm suffers from the negative effects of global issues because it
does not reassign centroids to other clusters but only the initial cluster of the centroids
[104]. Nevertheless, it could be a preferable clustering algorithm once we acknowledge
the proper starting seed for each cluster. Similarly, many works applied the k-medoids
algorithm for document clustering on the term occurrence matrix [105]-[107]. Also, it
could be used for term clustering over a dimension reduced matrix [108].

2.3.3 Affinity Propagation

Like k-medoids, the affinity propagation (AP) clustering algorithm finds centroids
to represent their located clusters during iterations. Unlike the dissimilar distance in k-
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medoids, affinity propagation uses graph distance that performs in a ’'message passing’
way between data points [98]. It firstly measures the similarity between pairs of items.
The 'message passing’ means that this algorithm exchanges the real-valued messages
between items and expects each item to choose its well-suited centroid with the lowest
cost until a high-quality set of centroids and corresponding clusters gradually emerges.

With this approach, 1) it is not required to determine the number of clusters in
advance, and 2) the centroid of each cluster is specified after calculation, which turns
out to be helpful for cluster interpretation. However, this algorithm is not friendly with
big datasets because the time complexity of calculation increases dramatically, and the
amount of clustered elements. Nevertheless, affinity propagation is still interesting as
a clustering algorithm for normal-size datasets.

The particularity of the AP algorithm provides the opportunities to group terms in a
different way. Li, Li, Xu et al. 2012 [109] [109] used affinity vector rather than a context
vector for sentiment classification of terms. In a rather normal way, Qasim, Jeong,
Heu et al. 2013 [110] applied AP to cluster terms according to their relationships from
text documents. They started by extracting the candidate nouns/noun phrases and ap-
plying the self-defined algorithms to extract their relationships of verbs/ verb phrases.
According to these relationships, the similarity between terms is measured and used
to cluster the related terms by the AP clustering algorithm. Then they assigned the re-
lationships between clustered terms, in order to organize the knowledge in a graphical
node-arc representation [110].

2.3.4 DBscan

Despite those distance-based clustering methods, DBscan (Density-based spatial
clustering of applications with noise) [99] is distinguished as a density-based clustering
method. It groups together closely packed points and mark the low-density points as
outlier points to accentuate the high-density points into clusters and eliminate the ne-
gative impacts of outliers. DBscan clustering algorithm has some special benefits : 1) It
can find arbitrarily shaped clusters because of the reduced single-link effect (different
clusters being connected by a thin line of points) 2) no demand to specify the number
of clusters as that of affinity propagation. On the opposite, DBscan allows for points
to be part of more than one cluster, which might induce overlapping between clusters.
It requires the knowledge of a domain expert during selecting key parameters, such
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as the minimum number of points required to form a dense region (i.e., minPts) and
the radius of a neighborhood concerning some points (i.e., eps). It is desirable to ap-
ply DBscan clustering algorithm even with several pre-experiments for the selection of
parameters.

Interestingly, Cui, Liu, Li et al. 2019 [111] used the DBscan algorithm to cluster the
documents according to their relevance to a specific domain, where each cluster of
documents is expected to support a category of this domain. Then they finished by
extracting the most important sentence within documents as a subject of this cluster.
In this manner, DBscan helps for document clustering and categorization.

2.3.5 Co-clustering

In a co-clustering algorithm (also called bi-clustering, block clustering), the indivi-
duals and the features of the individuals can be clustered simultaneously, which pre-
serves the existing relation between individuals and their features. We are interested
in the bi-clustering over the contingency table [100]. Typically, the input matrix would
be arranged as a two-way contingency table. This algorithm shows the encouraging
performance of the contingency outcomes. The co-clustering has practical importance
in gene research and also document classification. The resulted co-clusters are expec-
ted to overlap with each other, where these overlaps themselves are often of interest.
It has two major shortcomings : 1) the problem of local optimization to each co-cluster
individually ; 2) the lack of a well-defined global objective during each iteration [112].
Despite these facts, the co-clustering algorithm is attractive because it considers the
relation between clustered elements and their features. For example, tancucki, Fosz-
ner et Polanski 2017 [113] aimed to extract the key terms and use the bi-clustering
algorithm to separate the list of key terms into sub-categories of a domain. The term
occurrence matrix for bi-clustering is made up of the counts of the pair of terms once
they appear in the same document, in which the matrix has the same dimension as the
number of key terms in both directions. Finally, they achieved term clustering purpose
for a specific domain.

In brief, many clustering algorithms serve various purposes, e.g. term clustering,
document clustering, sentiment classification, and knowledge representation. As shown
in Table 2.3, some of the algorithms generate overlapping clusters, which bring many
difficulties for a term clustering target. In order to solve this puzzle towards ontology
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TABLE 2.3 — The summation of the clustering algorithms on text.
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learning, it requires an intermediate process to remove the obscure items and clearly
separate the terms into clusters. Besides, several algorithms need the setting for the
number of clusters as an input value. To find the optimal number of clusters, we need
the evaluation indices to guide us for the identification task.

2.4 Evaluation Indices

A large number of indices provide possibilities to assess the quality of clusters,
which are mentioned in this survey[64]. To simplify the discrimination process, we se-
lect two aspects of indices, respectively for internal evaluation and external evaluation.
The internal evaluation indices make use of the intrinsic features of terms in vector
space. For instance, Liu, Li, Xiong et al. 2010 [114] summarized many internal eva-
luation indices based on the compactness and separation criteria of clusters, including
silhouette width [115] and Dunn Index [116].

However, in the previous scenario, the clusters are difficult to be interpreted into
some human-understandable concepts. In contrast, the external evaluation indices use
the Gold Standard constituted of manually labelled terms, where the term clusters are
measured to explain their concepts according to human’s knowledge. Amigo, Gonzalo,
Artiles et al. 2009 [117] made a survey work to summarize the external indices into dif-
ferent aspects, which including evaluation by set matching (i.e. precision, recall and F-1
of macro/micro metric [118] and matthews correlation coefficient [119], [120]), indices
based on counting pairs(i.e. asymmetric rand index [121] and pairwise metric [118])
and indices based on entropy (i.e. adjusted mutual information score [122] ), etc.

Indices for Internal Evaluation

One intuitive approach to evaluate term clusters is to measure the compactness
and separateness from the feature similarity of terms’ observations. Even without any
extra knowledge assistance, the cluster could be evaluated by some distance-based
indices, namely internal evaluation. For instance, after applying the clustering algorithm
over the terms’ feature space, the assignment of terms could be directly evaluated by
the internal indices.

Silhouette Width, proposed by Rousseeuw 1987 [115] is considered as a pro-
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minent metric for compactness and separateness. Silhouette method specifies how
well each observation lies within its cluster :

s(i) = b(i) — a(i) (2.1)

max(a(i), b(i))

As presented in Equation 2.1, i represents one observation in clusters, a(:) represents
average dissimilarity between i and all other observations of the cluster to which i be-
longs. For each cluster C, d(i, C') denotes average dissimilarity of i to all observations
of C. On this basis, b(7) is set by the smallest d(i, C') and can be considered as the dissi-
milarity between an observation i and its &neighbora cluster. A high average silhouette
width indicates a good clustering according to features.

Dunn Index, proposed by Dunn 1974 [116], was dedicated to the identification of
"compact and well-separated clusters." In this manner, a ratio between compactness
and separateness is used. Higher values are preferred, which leads to the best possible
solution. The Dunn Index of each clustering situation is given by :

ming << <g|[separateness(C, Cr )]

DI = (2.2)

max<p<i|compactness(Cy)]
The separateness between two generic clusters C,, and Cy is measured by the
minimum Euclidean distance between the pairs across these two clusters. The com-
pactness of a generic cluster C,, is measured by the distance between the furthest
observations belonging to this cluster, in other words, to calculate the diameter of this
cluster itself. It seems that both the worst separateness and the worst compactness are
considered for evaluating the quality of clusters [123]. Notably, the Dunn Index does not
exhibit any trend concerning the number of clusters. This property is exceedingly wel-
comed since the number of clusters varies in different iterations.

Indices for External Evaluation

For external evaluation, the indices are slightly different from the former because of
the necessity of a gold standard. The observations of clusters here could be marked
with different classes assigned in the gold standard. The external indices are applied
to measure the coherence between the clustering labels and the assigned classes.
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The Asymmetric Rand Index, proposed by Hubert et Arabie 1985 [121], provides
the comparison between the result of clusters and the correct classification of the items
in clusters. This index is developed from the idea of the typical Rand Index (RI). Instead
of counting a single observation, the typical Rand Index (RI) [124] counts the pairs of
observations that are classified correctly, which is calculated by :

Rl = 210 2.3)

(3)

, Where (g) is the number of disordered pairs in a set of n observations; a refers to
the number of pairs of observations that are in the same class and in the same cluster
and b refers to the number of pairs of observations that are in different classes and
in different clusters. Hence the score of Rl depends on both the assigned number of
clusters and of observations [125]. In fact, we cannot get the lowest value (e.g. zero)
by the typical Rand Index, which indicates the worst situation like two random clusters.
Hubert et Arabie 1985 [121] made a modification to satisfy the null hypothesis, which
means the value of Adjusted Rand Index (ARI) is expected to be 0 for two independent
or random clusters and 1 for two identical clusters. The Adjusted Rand Index (ARI)
[121] is defined as follows :

Zf: Zl': mii\ t3
ARI = = (%) (2.4)
s(t1+1t2) — t3

,where t; = 228, (191), 12 = X2, (191), ts = ;24525 In general, the i and j represents
the cluster i and class j. The m;; indicates the number of observations in cluster i
matching to class j. The |C;| and |C7| represent the total number of observations for
each cluster i or for each class j, respectively.

Additionally, ARI allows evaluating the quality of clustering, even if the number of
clusters is different from the number of classes in the gold standard classification [126].
During experiments, the number of clusters varies a lot. Therefore the application of

ARI allows us to perform a more accurate analysis.

Macro, Micro, and Pairwise Metrics were applied by Galarraga, Heitz, Murphy
et al. 2014 [118] in their work, to evaluate the clusters to the gold standard without
considering the assigned cluster ID. This method directly links the clusters ¢ € C' to the
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classes of Gold Standard s € S and measures the performance in three different ways,
which are called macro analysis, micro analysis, and pairwise analysis.

¢ In the macro analysis, we define the macro precision as the fraction of pure
clusters, where all the terms in a cluster are linked to the same class of the Gold
Standard, as depicted in Equation 2.5 :

lce C:31s€ 5 :s52D (¢
€l

Precisionmaqo(C, S) = (2.5)
The macro recall is calculated by swapping the roles of the Gold Standard and
the resulting clusters :

recallpaero(C, S) = precisionaero(S, C') (2.6)

¢ In the micro analysis, we assume that the most frequent belonging of terms in
a cluster is in the correct class. The purity of the resulting clusters is evaluated
among all terms in Equation 2.7 :

1
Precisioniqo(C,S) = — Z maxses|cN s (2.7)
ceC
The micro recall is calculated by swapping the roles of the Gold Standard and
the resulting clusters :

recallyicro(C, S) = precisioniero(S, C') (2.8)

¢ Inthe pairwise analysis, we measure all the pairwise individuals’ precision inside
a cluster, whether both observations of a pair belong to the same class of Gold
Standard. If it satisfies the condition, we name this pair as a hit in Equation 2.9 :

ZCGC #hltsc
ZCEC #pairsc

The pairwise recall is calculated by dividing the number of all the correct pairs
in Gold Standard :

(2.9)

pTGCiSionpairwise(C> S) =

ZCEC #hltsc

recallpairwise(C; S) = > es Fpairs
ce 8

(2.10)
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FIGURE 2.2 — An example of term clusters.

¢ In all cases, the F1 measure is defined as the harmonic mean of precision and

recall :

P = 2 -pr?czjsion - recall 2.11)
precision + recall

To help understand these metrics, we use the example of Figure 2.2 to calculate the
precision in these three metrics. Initially, from the result of term clustering, we get
the grouped terms. Then terms would be labeled by the Gold Standard. In the figure,
the items which are represented by the same symbol belong to the same classes.
Each cluster will be assigned to a class (a symbol in the figure) that has a dominant
occurrence in it. For the visualization purpose, the clusters tagged with the same class
are partitioned into the same color.

For the macro precision, it is obvious that there is no pure cluster whose all terms
tagged with the same label :

PrecisioNmaero = 0 (2.12)

For the micro precision, we evaluate the purity of the labeled clusters. In Figure
2.2, we observe that each cluster has already voted for its dominant class, i.e. circle for
"Cluster1’, "Cluster4’ and 'Cluster5’, square for 'Cluster2’ and triangle for 'Cluster3’. The
same ratio is applied to all the other five clusters, until all the correct tagged items are
added up in the numerator and the total amount of items is counted in the denominator.
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As calculated in Equation 2.13 :

6+6+5+5+5 27
| STONmicro = = — =58.70 2.13
preciston Or11+8+9+9 46 % (2.13)
For the pairwise precision, we calculate the number of hit pairs inside a cluster

divided by the total number of pairs in a cluster by Equation 2.14 :

2 2 2 2 2
62’6 + 06 —|— 052+ 052+ 052 — ﬂ = 3141% (2'14)
C3+ G+ C3+C3+C3 191

PreciSioNpgirwise =

The micro pairwise metric and the ARI metric have the same target, that is to mea-
sure the portion of the favorable pairs, in which both items are from the same cluster
and also belong to the same class. However, the most obvious difference is that micro
pairwise metric focuses on the hit pairs inside a cluster, while the ARI metric concerns
all the possible pairs regardless of the clusters’ boundary.

Besides the precision, we could also calculate the recall and F1 score accordingly,
so as to evaluate the clusters with the assistance of the Gold Standard.

The Matthews correlation coefficient (MCC) is used as a measure of the qua-
lity of binary and multi-label classifications. When it confronts the binary classification
[119], this metric will consider the values of true positive (TP), true negative (TN), false
positive (FP), and false negative (FN) in a confusion matrix, as depicted in Equation
2.15. If any of the four sums in the denominator is zero, the denominator can be arbitra-
rily set to one. The correlation coefficient value ranges between -1 and +1. A coefficient
of +1 represents a perfect prediction, 0 an average random prediction, and -1 an in-
verse prediction.

TP x TN — FP x FN
\/(TP + FP)(TP + FN)(TN + FP)(TN + FN)

MCC (binary) = (2.15)

Also, the MCC has been generalized to the multi-label case [120]. The generaliza-
tion will take into account the K x K confusion matrix C', where K represents the total
number of different classes, t, = > C;;. the number of times class k truly occurred,
Pp = Z{( C; the number of times class k was predicted, ¢ = ZkK Cii. the total number
of samples correctly predicted, and s = >X ZJK C;; the total number of samples. The
generalized MCC [127] is depicted in Equation 2.16 . The minimum value of multi-label
MCC will be between -1 and 0 depending on the true distribution, and its maximum va-
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lue is always +1. In addition, this metric is generally regarded as a balanced measure
that can be used even if the partitions are of very different sizes.

CXs— YK pp Xt

(2.16)
V(82— SEp2) x (82— 2K )

MCC(multi — label) =

The adjusted mutual information score (AMI) [122] is an adjustment of the Mutual
Information (MI) [128] score to account for chance. Like the development from the
well-known Rand Index (RIl) to the Asymmetric Rand Index (ARI), it solved the same
problem in which the baseline value of information-theoretic measures does not take
on a constant value.

It turns to be necessary to calculate the Mutual Information (MI) and entropy. Let
(X,Y) be a pair of random variables with values over the space X x ). The marginal
entropy of X is calculated based on its marginal distribution p(z) :

g(p z) logy p(x) = E[loggp(lx)] (2.17)

The conditional entropy H(X | Y) is calculated based on the marginal distribution
p(y) and the conditional entropy conditioned by the occurrence of sample y :

HX|Y)= Zp HX|Y =y (2.18)
yey

The MI could be obtained by the difference between the entropy and its conditional
entropy, as depicted in Equation 2.19 :

MI(X;Y)=H(X)-H(X|Y) (2.19)
Then the formula of adjusted mutual information score (AMI) could be depicted in
Equation 2.20 :

MI(X;Y) — E[MI(X;Y)]
avg(H(X),H(Y)) — E[MI(X;Y)]

AMI(X;Y) = (2.20)
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2.5 Clustering based Approaches for Ontology Lear-
ning

Clustering approaches are widely applied to build ontology automatically.

Among all the clustering algorithms, k-means clustering algorithms are widely
applied for ontology learning. Ganz, Barnaghi et Carrez 2014 [129] tried to use topical
ontology to interpret the real-world data, i.e. raw sensor data. They used an exten-
ded k-means clustering method and apply a statistic model to extract and link relevant
concepts from the raw sensor data and represent them in the form of a topical onto-
logy. Finally, they succeed to automatically create and evolve topical ontologies based
on rules that are automatically extracted from external sources. Based on the same
idea of topical ontology, Fortuna, Mladenic et Grobelnik 2005 [130] applied k-means
clustering algorithm over the term-document distribution matrix to give suggestions for
the terms to help user taking the decisions as the means for semi-ontology building.

In the using of the other typical clustering algorithms, Louge et al. [131] imple-
mented affinity propagation clustering algorithms [132] upon string similarity measure-
ment for the construction and population of ontology. Togatorop, Siagian, Nainggolan
et al. 2020 [133] applied the POS tagging techniques to identify the dedicated terms
and built up the word2vec word representation for them. Then they applied the DBs-
can clustering algorithm over the word representation, which resulted in several term
clusters with lists of terms inside to prepare for ontology construction. Giannakidou,
Koutsonikola, Vakali et al. 2008 [134] utilized the co-clustering method to yield a series
of clusters, each of which contains a set of resources together with a set of tags. The
extracted concepts or relations will enrich the content of ontology.

In particular, hierarchical clustering algorithms show their specialities on taxono-
mic relation discovery of ontology [135]. For example, Huangfu et al. [136] chose the
hierarchical clustering algorithms for knowledge organization. Their work examined the
different word representations techniques at the same time, i.e. word2vec, doc2vec,
and gloVe embeddings, and organized those clusters regarding their containing key-
words to build up a hierarchical knowledge organization system. Ozdikis, Senkul et
Oguztuzun 2012 [137] applied the agglomerative text clustering to cluster hashtags of
tweet contents. They analyzed the contexts of hashtags and their co-occurrence statis-
tics with other words and identified their paradigmatic relationships and similarities. In
this way, they are able to capture statements that actually refer to the same concepits.
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For other clustering scenarios, different clustering strategies are also used for
ontology learning. Koskela, Smeaton et Laaksonen 2007 [138] presented a entropy-
based clustering method for modeling semantic concepts of multimedia repositories. It
introduced the procedures of exploiting the structure of a multimedia ontology and dis-
covering the existing inter-concept relations. To be unified, Niekler et Kahmann 2016
[53] proposed a workflow to extract information from collections of text to create know-
ledge bases for medicine domain. It started by focusing on the co-occurrence statistics
and then inferred a probabilistic graph-based data structure to discover more clusters.
However, this workflow has the limitation that it works only on the required graph-based
structure for term clustering, and it is difficult to be extended to other term clustering
methods.

In addition, there is an interesting survey paper by Sarwar, Ahmed, Habib et al.
2020 [139], who exploited a framework to build up an appropriate ontology according
to user requirements in the unsupervised approaches. They started from the term do-
cument matrix and applied the term weighting schema to get the extended numerical
matrix, e.g. binary, tf-idf ( term frequency-inverse document frequency), entropy, and
the other two variants of tf-idf. Based on the generated word representations, they em-
ployed the k-means, k-medoids, and fuzzy c-means clustering algorithms to cluster the
selected terms of a domain ontology. Then they selected the best combination of word
representation and clustering algorithms with the highest accuracy. Eventually, the on-
tology had been constructed by the groups of terms. However, the evaluation work
only relied on the accuracy metric without considering other worthy metrics, in which
the clustering results are not examined thoroughly in the different aspects.

2.6 Summary

In previous work, we notice that the facilities of clustering algorithms and word re-
presentation are inseparable. To achieve the term clusters, the individual clustering
algorithms could combine with the independent word representation techniques; also
the new clustering algorithms could be derived directly from the features of word repre-
sentation, without using any typical clustering algorithms.

It is evident that there is not a systematic framework to discuss the linkage bet-
ween different phases of term clustering from text and evaluate the clustering results
comprehensively. To fill this blank, on the one hand, we provide a complete frame-
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work in Chapter 3 of this dissertation. This framework does not purely examine the
performance of term clustering but also explores the word representation possibilities
with statistical and syntactic concerns. On the other hand, we explored the new clus-
tering algorithms derived from the specialties of word representations. The resulting
term clusters will then be evaluated by the gold standard of ontology’s core concepts.
In brief, the whole procedure helps to dig out as many linguistic features for clustering
purposes and guarantees that the terms in clusters conform to the concept formation
of ontology learning.
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CHAPITRE 3

THE PROPOSAL FRAMEWORK FOR TERM
CLUSTERING TOWARDS ONTOLOGY
LEARNING AND ITS DEPLOYMENT

In this chapter, we firstly propose a framework that describes the task or process
of term clustering as a component of the ontology learning process, which helps the
user to apprehend its inputs and outputs, tune its parameters, and adapt techniques
for performing it. In Section 3.1 we will present the framework including its process, the
inputs, the outputs, and the applied techniques, in which a cluster could be considered
as a group of terms referring to the same concept of the ontology. We propose also
a new term representation method in the linguistic perspectives, which remarks the
relation between noun phrases and their co-occurred verbs. This method generates
the NPs representations for the clustering task, where the co-occurred verbs contribute
to the feature vectors of the noun phrases. Except for that, we also examined other
term representation techniques from a statistical perspective, i.e. word2vec and LDA
techniques. Subsequently, we explored the performance of the different combinations
between the NPs representations and the various clustering algorithms.

Therefrom, we notice that the term representation techniques of LDA have pro-
minent performance in term clustering tasks, thus in Section 3.2, we introduce a new
strategy of adapting the topic model LDA for term clustering as a task for ontology buil-
ding, in which the algorithm transforms the topic-term probabilities distribution toward a
partitioning of the set of terms into disjoined parts (clusters). In Section 3.3, we present
the details to conduct the different experiments for various concerns, i.e. practical para-
meters, the clustering randomness, and the size of clusters. In Section 3.4, we analyze
the influence of cluster numbers and explore the optimal cluster numbers for different
clustering approaches. Also, the comparisons between these two different clustering
strategies are conducted in terms of the clustering performance. A summary of this
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FIGURE 3.1 — The framework of term clustering for ontology building.

chapter is provided in Section 3.5.

3.1 The Proposal Framework of Term Clustering

To have a clear view, the framework of term clustering is visualized in a workflow, as
shown in Figure 3.1. The workflow is comprised of 4 stages, which gradually transform
the plain text into the dedicated term clusters and finish with cluster evaluations. The
corpus pre-processing (stage 1) provides textual resources to extract the NPs and/or
VPCs, by the identification of dependency parsing and POS tagging. This step finishes
by storing the extracted terms into the reconstituted corpus. In the representation stage
(stage 2), we apply the feature selection techniques over the reconstituted corpus and
select two kinds of features : 1) term pairs co-occurrence features 2) term contextual
embedding features. Then with the feature representation techniques, two kinds of NPs
representations are generated preparing for the clustering tasks. Given the clustering
algorithms (stage 3), the NPs representations could be executed into NPs’s clusters. In
the evaluation stage (stage 4), the clusters of NPs would be examined by two different
indices for clustering analysis.
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1.Dependency Parsing
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FIGURE 3.2 — The instantiated co-occurrence couples extraction. Extracted from Xu et
al. [140]

3.1.1 Corpus Pre-processing

From the given corpus, we firstly analyze the relations between terms in their context.
Regarding the utility of syntactic roles, a sentence’s skeleton comprises the subject, the
object, and their related verb. In other words, terms with important syntactic roles are
assumed to cover the most descriptive information in a sentence. Thus noun phrases
(NP), acting as subject or object, are worth to be highlighted in concept extraction, while
their contextual components, i.e., verbs or VPCs, could present the concrete connec-
tion between NPs. The syntactic information could be extracted to help identify NPs
acting as a subject or object and their co-occurred verbs.

To explain how noun phrases (NPs) with subject and object role and verb-preposition
combinations (VPCs) are extracted, we propose to use spaCy ' [141] as a parser tool.
It could decompose an entire typical syntactic tree into structured information, which
shows the overwhelming convenience in post-processing, comparing to other parser

1. https://spacy.io/
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tools, such as cleanNLP [142] and coreNLP [143].

With the parser tool, we provide an instance to show how the co-occurrence couples
are extracted in Figure 3.2. As shown in the top of Figure 3.2, terms in a sentence are
presented with dependency relation, where the shaded terms have been tagged as
subject (nsubj), ROOT, and object (dobj, pobj). The subject 'ontowrapper’ and direct
object 'information’ point to the ROOT ’extract’ with the solid lines. In contrast, the
proposition object ’on-line resource’ indirectly points to ROOT ’extract from’ with the
relay of dashed lines and solid lines. As for the non-skeleton dependency, they are
connected in dashed lines.

Then in the middle part of Figure 3.2, with the assistance of head pointers, noun
phrases (NPs) and verb preposition combinations (VPCs) could be lemmatized and
extracted in the compound format. In the bottom part of Figure 3.2, the NPs-VPCs pairs
are identified in the right hand and their tags are listed in the left hand. Furthermore,
we need to pay attention to the distinction between passive and active sentences.
To simplify the composition of sentences, it is practical to record the passive subject
(nsubjpass) as a direct object (dobj).

Finally, the NPs and VPCs, that are extracted from one original document, are re-
corded as a list of terms in a reconstituted document.

3.1.2 The NPs Representations

We begin to discuss the proposed co-occurrence representation, which takes ad-
vantage of NPs-VPCs pairs’ raw counts. Then we study the variants of the proposed
co-occurrence representations : to apply the weighting strategy or to employ dimension
reduction techniques. Finally, we present the embedding representation techniques
with word2vec and with LDA, and generate the word2vec embedding representation
and the topic embedding representation.

The Proposed Co-occurrence Representations

In Section 2.2.2 of the state of art, we discussed that the terms co-occurrence
representations are calculated based on the raw counts of the co-occurred terms’ pairs.
We summarized that the co-occurrence techniques are divided into two parts according
to their co-occurrence’s rules : 1) when the term pairs appear within the same sentence
or within the special syntactic positions; 2) when the term pairs appear within a fixed
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FIGURE 3.3 — The merged co-occurrenc matrix. Extracted from Xu et al. [140]

window size. In this section, we propose a new co-occurrence representation technique
following the first co-occurrence rule.

Before introducing the new co-occurrence representation technique, we will dis-
cuss how the terms’ pairs are represented. As we discussed in the last section, the
NPs-VPCs pairs are the only term pairs that we take into account into representation.
However, we notice a big difference between the subject role and the object role of NPs
to their co-occurred verbs / VPCs. For instance, given a sentence ‘human eat pizza,
the parsing tools could recognize that human works as subject of eat and pizza works
as object of eat. If we store these two instance pairs together, i.e. < human, eat > and
< pizza, eat >, their syntactic roles are lost. In this wrong information, we could falsely
induce that ‘pizza eat something'’.

To overcome this mistake, we need to separate the two kinds of instance pairs in the
different repositories. Thus we divide the NPs representation into two parts : the subject
NPs co-occurrence representation and the object NPs co-occurrence representation.

In fact, one kind of term’ pairs either working as subject or object, could only convey
the partial linguistic knowledge from a sentence. Thus it is profitable to deliberately
combine subject and object term’ pairs, in order to cover the entire linguistic infor-
mation. To preserve the distinctions between subject and object attributes, we sug-
gest the merged co-occurrence matrix (in Figure 3.3) in our published paper [140].
This model differentiated NPs and VPCs into 'pure subject’(upper-left corner), 'pure
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object’(bottom-right corner), and the common part (center shaded rectangle). The com-
mon part means NPs and VPCs appear in both subject and object roles. On the whole,
the merged matrix comprises nine sub-parts, where the non-existing pairs present to
be all zero (blank rectangles), and the ’pure pairs’ (subject or object) present their fre-
qguency respectively in two blue rectangles. Common couples (the shaded rectangles,
also the overlap between the subject rectangle and object rectangle), are filled with
the accumulative frequency of the subject and object pairs. For example, in 3.2, the
instance pairs < ontowrapper, extract > and < on — lineresource, extract from > will
locate in the upper-left corner of matrix in Figure 3.3 as 'pure subject’; the instance pair
<information, extract > will locate in the bottom-right corner of this merged matrix.

As long as subject and object co-occurrence pairs join together, the merged matrix
theoretically encompasses complete linguistic information. The merged matrix will work
as an integrated NPs co-occurrence representation for the further clustering tasks.

The Variants of the Proposed Co-occurrence Representations

The integrated NPs co-occurrence representation is composed of the raw counts of
the terms’ pairs. As we discussed in the state of art, the original NPs co-occurrence
representations could be transformed in two directions : 1) applying the weighting stra-
tegy to strengthen the representation of features ; 2) condensing the size of feature with
the dimension reduction techniques.

e Weighted Co-occurrence Representation. Based on the NPs co-occurrence
representation, we would like to weigh the occurrence value to distinguish the
different importance of the co-occurrence pairs. TF-IDF is designed for this dis-
criminative purpose. Basically, this algorithm could extract the most descriptive
terms from documents, which can be extended to highlight the most significant
NPs for the specific VPCs. In this analog, the column of VPCs works as the
function as the document. Owing to the application of TF-IDF over the originally
proposed co-occurrence representation, on the one hand, the close connected
NPs and VPCs are able to be emphasized. On the other hand, this technique
supports weakening the weights of the most common and rare NPs and VPCs.
However, the weighting strategy cannot help to reduce the dimension of the ori-
ginal representations.

e NMF Co-occurrence Representation. Term co-occurrences could be divided
into 3 levels according to the identity of words in context [144]. In the first-
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order co-occurrence, terms appear together in an identical context, i.e. in a
NP-VPC pair, a NP co-occurs with a VPC within a sentence. Two terms, who
share at least one-word context and have strong syntactic relations, are asso-
ciated through second-order co-occurrence, i.e. in the originally proposed co-
occurrence representation, two NPs are second-order co-occurred if they have
similar count value in more than one VPC column. Besides, terms do not co-
occur in context with the same words but between words related through indirect
co-occurrences, namely third (higher) order co-occurrence. To capture the fea-
tures of the third (higher) order co-occurrence, NMF [86] is applied to condense
the isolated VPCs into some encoded features. In this way, the NPs associa-
ted with the indirect co-occurrence could be presented in the new dense feature
space.

The Embedding Representations

e Word2vec Embedding Representation. The contextual information of terms
allows us to build feature vectors that are adapted for semantic similarity tasks.
In the state of art, we discussed that word2vec [89] is the typical embedding
algorithm to generate the NPs embedding representations. In addition to the
word2vec algorithm, we also resort to the topic model LDA to represent the NPs
with the topic embedding.

e Topic Embedding Representation. The NPs topic embedding representation
was extracted from the term topic probabilities trained by the LDA topic model.
In this manner, all of the terms in a document will be considered as the context
information for a certain term in that document.

The word2vec embedding representation considers the range of the contextual
terms to be within a certain window size (i.e. equal to 5 or 10). Comparatively, the
range of contextual terms for the topic embedding representation is further large (i.e.
equal to the length of a document). Moreover, the features of topic embedding re-
presentation possess the intuitive meaning for humans, e.g. topics, whereas the fea-
tures of word2vec embedding representation could only provide the indirect sense as
co-location context. The relation from terms to documents could be transformed and
condensed into the relation from terms to topics. Nevertheless, the same as word2vec
embedding representation, the topic embedding representation could be presented
with the required dimension of features.
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All'in all, after the NPs representations are prepared, this framework will be conti-
nued for the term clustering tasks. Except for the typical clustering algorithms, we also
propose a LDA-based term clustering strategy in the next chapter.

3.2 The LDA-based Term Clustering Strategy

For the term clustering task, the application of the clustering algorithm ignores the
quality requirement of modular ontology learning. For example, the resulting clusters
ought to have the suitable and balanced size, neither too large (i.e. a cluster contains
90% NPs) nor too small (i.e. a cluster contains only one NP); a term cluster should
avoid overlapping with other clusters; a cluster is anticipated to possess the meaning
of a certain concept. In order to obtain better clusters towards ontology learning, we
propose a term clustering strategy based on LDA. This strategy is composed of term
cluster formation schemes and term cluster thinning metrics.

To interpret LDA’s performance, there are two directions to analyze the LDA mo-
del (the introduction of LDA please see Section 4.3.3), one for document aggregation,
another for term aggregation. This chapter concentrates on aggregating terms by the
feature of their aligned topics learned from the LDA model. One of LDA’s direct out-
puts is the probabilities matrix between terms and topics p(w | t), where each topic
is represented by its probabilities of terms. Based on this probability, a term is able
to be clustered into a topic group. In this section, | will discuss what are the possible
schemes to form term clusters and to refine the term clusters.

3.2.1 Term Cluster Formation

From the probabilities matrix between terms and topics p(w | t), each topic is com-
posed of the all terms with different probabilities and each term possesses the proba-
bilities to each topic. To form the term clusters, we assume that each term could only
be clustered into one topic, not multiple topics. If one term has a rather high probability
to a list of different topics, it would be assigned to only one topic, which has the highest
topic-word probabilities. In this manner, eventually, we extract a cluster of terms (a sub-
set of terms) from each topic by selecting the most relevant terms for that topic. And
the clusters are disjointed.
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| Problem : If a topic has low probabilities for every term, this topic is not capable
to form a term cluster (We name this kind of topic as the opposite kind of the
‘clustering-oriented topic’ in the following text).

| Question : Is the highest p(w | t) of each topic representative to distinguish the
clustering-oriented topics ?

To answer this question, we visualized the highest p(w | t) of each topic in
Figure 3.4. This figure is generated from the topic-word probabilities based
on the Computer Science corpus (which will be introduced in Section 3.3).
The horizontal axis represents the separate topics (i.e. 200 topics), and the
vertical axis represents the value of the highest p(w | t). The black dots are
the highest p(w | t) of one topic, and the ID of this topic is written next to the
black dots. The downwards grey arrow shows the range of the top-5 highest
p(w | t) of each topic.

In Figure 3.4, we can observe that it has 50 evident topics from a total of
200 topics. The results demonstrate that the highest p(w | t) of each topic
is capable to make a distinction between the clustering-oriented topics and
the rest topics.

II Problem : The variance between clustering-oriented topics and other topics is
not large.

[I Question : Is the normalized highest p(w | t) able to enlarge the gaps between
the clustering-oriented topics and other topics ?

plu | ) ~minfp(w|t)

normalized p(w; | t,) = maz(p(w | t)) — min(p(w | 1))

, where p(w | t) = {p(w; | ty),Vi € V,VYk € T}, w; denotes the i-th term in the
vocabulary V' and ¢, demotes the k-th topic for the total 7" topics. According
to the Equation 3.1, we visualized the highest normalized p(w | t) of each
topic in the Figure 3.5. The vertical axis represents the value of the highest
normalized p(w | t). The blue dashed horizontal line indicates the averaged
value of the top-5 normalized p(w | t) for all the clustering-oriented topics.

Comparing to Figure 3.4, we notice that the difference between the clustering-
oriented topics and other topics becomes enlarged.
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3.2.2 Term Cluster Thinning

The term cluster has been formed by aggregating together all terms according to
their topic preferences. However, it is easy to notice that the term clusters’ size is excep-
tionally biased since the biggest cluster is hundreds of times larger than the smallest
cluster. Therefore, thinning clusters turn out to become necessary to guarantee the
balanced term clusters.

In this section, we start by discussing the upper bound of the size. | draw the term
cluster figures to show the difference before and after the cluster’s thinning with the
chosen size. Additionally, we also provide alternative options to help limit the size of
term clusters.

[l Problem : When the size of a term cluster is too large, this cluster will be covered
up by the majority of the unimportant terms.

[l Question : How can we control the upper bound of size (top-n) for all clusters ?

Following the same idea as Figure 3.5, we increase the upper bound va-
lue to top-10, top-20, top-30, top-40 and top-50 to draw the normalized
p(w | t) of each topic. Please check their corresponding figures in Appen-
dix 7.1. Along with the increasing upper bound, we have a clear view that
the downward grey arrow is extending to the bottom axis, which shows that
the evident value’s coverage is enlarged from the highest to the lowest va-
lue. When the upper bound reach the top-50, it is remarkable that the value
range is almost totally covered; in other words, the top-50 NPs of a topic
can cover the significant value range of that topic. It indicates that we are
convinced to choose top-50 as the upper bound for all the clusters.

It is worth mentioning that, in Figure 7.6 of Appendix 7.1, the numerical
value in blue indicates the number of terms that are allocated to each to-
pic when we set the upper bound is top-50. We observe that this value is
less than 50, it is due to the fact that even though a term possesses the
probability within the top-50 highest list of one topic, this term might not be
allocated to this topic. In this situation, this term possesses the rather high
probabilities of more than one topic. It reflects that the upper bound (top-50)
of topic clusters could effectively decrease the size of clusters and highlight
the important terms for a cluster.

IV Problem : From other perspective, if we want to relax the restriction of size, which
threshold could be considered to refine the clusters ?
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IV Question : How to choose the threshold to obtain the significant NPs of the dis-
tinguished topics ?

We have drawn the blue dash line to signify the averaged normalized p(w |
t) of top-n in Appendix 7.1. With the increase of the upper bound value,
the dashed line becomes lower, where the average value for top-50 NPs of
those distinguished topics is 0.14.

From our observation in Question 3, it is conclusive to choose top-50 as
optimal upper bound; thus, it is probable to set the threshold of normalized
p(w | t) as 0.1 (used to exclude NPs which is lower than 0.1). Comparatively,
this is a more loose and closer restriction than that of 0.14.

To simplify the calculation step, we choose to use this soft threshold on averaged
normalized p(w | t), which could be seen as an extension of the upper bound of size.

Also, we draw the figure of term clusters before and after thinning as a contrast,
i.e. Figure 3.6 and Figure 3.7. In the figures, the feature matrix is transposed from the
topic-word probability p(w | t). Based on this feature matrix, then the top-two principal
components are calculated and used as the axes. Finally, the feature space is repre-
sented in cosine distance. It is worth mentioning that, the core concepts of a Computer
Science corpus (which will be detailed in Section 3.3) are positioned as the red dots.
In Figure 3.6, the T-SNE presents the 2-dimension feature space for all NPs; while in
Figure 3.7, the T-SNE presents the 2-dimension feature space for the remaining NPs,
which were pruned by the soft threshold on averaged normalized p(w | t).

From the contrast, it is noticeable that the cluster thinning technique has a strong
impact on the term clusters’ size. The pruning operation also increases the compact-
ness and separateness of clusters in Figure 3.7, which indicates that the remaining
NPs possess significant features for their affiliated topics.

In brief, to formulate the discussed procedures above, we provided the related
pseudo algorithm in Algorithm 1. The pseudo-code is divided into three main parts,
corresponding to the solutions of the related questions that we have proposed in pre-
vious procedures.
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Algorithm 1 The pseudo-code of LDA-based clustering strategy

Require: A matrix of size (V' x K), p(w; | t;); The size of topical cluster, n
Ensure: the set of terms in topical clusters, Z;
1: // (Solution of Problem 1&2 : assign terms to topics that have the highest probabilities)
2: fori=0toV do
3 j <+ argmaxp(w; | t;)
J
4 w; € 25525 € Z
5. end for
6: // (Solution of Problem 3 : remove non-significant topics)
7
8

. forj=1to K do
if max p(w; | t;)vw,ez, < le”® then

o remove z; from Z
10:  end if
11: end for

12: // (Solution of Problem 4 : reserve top-n for each topical cluster)
13: for z; to Z do

14:  sortall w; € z; by p(w; | t;);

15:  reserve only first-n w; in z;;

16: end for

3.3 Experiment

3.3.1 Corpus Preprocessing

We choose two corpora in different domains : the news stories and computer science
abstracts with the aim of term clustering experiments :

o The Reuter Corpus?, used by Oramas, Anke, Sordo et al. 2016 [145], is a col-
lection of documents that appeared on Reuters newswire in 1987. We randomly
selected 1 000 documents from 10 788 plain text documents, acquired from
the dataset of NLTK library 2. During the text document selection, we guarantee
that each document will possess the acceptable length—at least 1000 tokens.
This corpus contains 90 topics 4, for the convenience of experiments, we have
divided them into 4 main subdomains : Corporate-Industrial, Economics and
Economic Indicators, Government and Social and Securities and Commodities
Trading and Markets. Each subdomain will be represented respectively by a core
concept : company, economic, government, and commodity.

e The Computer Science corpus comprises the abstracts of the academic ar-

2. Reuters-21578 : http://kdd.ics.uci.edu/databases/reuters21578/reuters21578.html

3. http://www.nltk.org/nltk_data/

4. http://www.ai.mit.edu/projects/jmlr/papers/volume5/lewisO4a/al6-rbb-topic/topics.
rbb
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3.3. Experiment

TABLE 3.1 — The corpus size and statistics.

Corpus #OriginalDocs #SampledDocs #tokens #NPs #unique NPs #VPCs #unique VPCs
Reuter 10 788 1000 301303 10254 5043 945 294
Computer Science 6514 1000 212437 8259 5139 6 965 1211

ticles in the Computer Science domain, extracted from the Web of Science
[146]°. In the original corpus, there are 6514 documents in plain text format,
from where we randomly extract 1 000 documents with the acceptable length
(at least 1000 tokens in each abstract). We separate this domain into 10 subdo-
mains corresponding to 10 core concepts.

As we talked about, the proposed co-occurrence representation in section 3.1.2
focuses on the co-occurrence of NPs and VPCs in sentences, while the embedding
representation techniques only interest the appearance of NPs in documents. It is ne-
cessary to re-construct the documents only with NPs and/or VPCs. To achieve these
procedures, we recognize the NPs and VPCs and pre-process them with a unified for-
mat, to avoid the redundancy resulted from the various formats. Finally, each document
will be simplified and transformed into a sequence of NPs, namely the re-constituted
documents. In this manner, the input for NP representation techniques is guaranteed
to be the same. We will apply this kind of documents to calculate the Word2vec Em-
bedding Representation and the Topic Embedding Representation. Simultaneously, the
re-constituted documents would also be used as the input of the LDA-based term clus-
tering strategy. The statistics of the pre-processing steps are shown in Table 3.1, of
which the statistical knowledge of NPs and VPCs assist to build up the the merged
co-occurrence matrix in Figure 3.3. Based on this matrix, we could finally get the the
Proposed Co-occurrence Representation and the other two Variant Co-occurrence Re-
presentations.

3.3.2 Gold Standard

The Gold Standard in this thesis is regarded as knowing the truth concerning a
specific question or task. They are the ideal judgment of term clusters. For instance,
the Gold Standard for our task (term clusters evaluation) is the agreed label for each

5. https://data.mendeley.com/datasets/9rwdvkcfy4/6
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TABLE 3.2 — The experimental recordings of the annotators.

Rating part of terms AnnotatorlD Total time

0-200 NPs Annotator1 25 mins
201-400 NPs Annotator2 57 mins
401-600 NPs Annotator3 27 mins

term, where each term has a corresponding label with the domain knowledge. The
domain experts would be involved to provide this kind of knowledge. However, it is
inevitable that the domain expert tags the conflict or disagreed labels for the same
term. To understand the confidence of the practical Gold Standard, it is necessary to
measure the agreement of different annotators.

The precondition is that we have an entire Gold Standard for all the terms, which is
labeled continuously by a domain expert. Meantime, we asked for the other annotators
to assign labels to a different part of the terms. Then we would like to compare the part
of practical Gold Standard with the corresponding part of one annotator. In this way, we
could assess the different agreement degrees of different annotators, with the metrics
for two human raters.

An Example of Annotation Task

As an example, we present a task description document to explain the tasks and the
expected outputs, as shown in Appendix 7.12. To build up the Gold Standard, we have
three volunteers with a domain-related educational background. During the evaluation
step, the raters are allowed to use networks or books if they need to acquire further
knowledge for this task; meanwhile, the total time to finish the task is recorded in
Table 3.2. We can see that it has a big difference in the consuming time for different
annotators. And also, annotating work is time-consuming. We assume that the average
consuming time of 200 NPs is 36 mins; it will use 180 mins (3 hours) for 1000 terms
and 900 mins (15 hours) for 5000 terms (the size of vocabulary in one corpus) for a
single annotator. For this reason, we did not ask the annotating volunteers to label all
of those terms.
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The agreement degree between annotators

To compare two annotators’ results, the confusion table could be a direct and effec-
tive method to summarize the accordance and discords. To have a distinctive view of
the confusion table’s values, we present this table in a heat map where the background
of higher value has lighter color. As shown in Figure 3.8, eleven core concepts and
two extra tags ("Others" and "Unknown") are used to label the terms in the Computer
Science corpus. The vertical axis denotes the labels of Gold Standard, and the hori-
zontal axis locates the labels of Annotator1. In this table, the values in diagonal lines
denote the agreed labels between two annotators.

It is clear that except for "Others" and "Unknown," we notice the significant and
high agreements on several core concepts, e.g., "Computer graphs," "Data structures,”
"Machine learning," and "network security." However, not all the core concepts have
high accordance. In our view, one possible reason is that the eleven core concepts
are not evenly distributed. In addition, this unbalanced phenomenon also could be
due to the limited knowledge of domain experts. In fact, all of the annotators from this
experiment have at least a master’s degree in computer science, but they have the
same specialty in "Machine Learning." It could be seen as one subjective factor for this
biased phenomenon.

Besides, the diagonal values of "Others" and "Unknown" are weighty, revealing
that the agreement for anti-domain knowledge between annotators is considerable. In
contrast, we could infer that at least the annotators are agreeable to label the domain
knowledge.

The cohen’s kappa [147] is the most popular metric to measure the agreement
between two raters. It is generally seen to be a more robust measure than a simple
percent agreement calculation because it takes into account the probabilities of the
agreement occurring by chance. In the Equation 3.2 of cohen’s kappa, the p. denotes
the hypothetical probability of chance agreement, and p, is similar to accuracy, which
depicts the relative agreement between raters.

K = Po — Pe (32)
1 — Pe

For a simple example of Table 3.3, supposing that two volunteers are requested
to rate for a case with "yes" or "no". In Table 3.3, the horizontal and vertical direction
depicts the opinions of the two individuals. The value in the main diagonal of the matrix
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FIGURE 3.8 — The heat map between the practical Gold Standard and the labels of
Annotator1.

Notes : The X-axis denotes the labels of Gold Standard, the Y-axis locates the labels of Annotator1. The
value in the cell represents the agreements of the labels on two sides.
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(a and d) count for the number of agreements and the off-diagonal value (b and c)
count for the number of disagreements. The p, and p. could be calculated as :

a+d
P = bt et d (3.3)

(a+0b)-(a+c) (c+d)-(b+d)
a+b+c+d a+b+c+d

Pe = DPyes + Pno = (34)

Overall there are two important metrics to measure the agreement degree between
annotators, the cohen’s kappa and the agreement score. The agreement score is
also called the accuracy, which is identical to p, of cohen’s kappa. Unlike the simple
example in Table 3.3, the real task of human’s annotating always be asked to tag with
multi-labels rather than solely the binary labels in the last example. Therefore, the
confusion table could be applied with the multi-labels to present the agreement bet-
ween two annotators. The agreement score could be calculated by dividing the sum
of diagonal values (denoted as DiagnalSum) by the sum of all values (denoted as All-
Sum).

As shown in Table 3.4, the agreement degree is presented in the different me-
trics and different ranges of samples. Since the samples contain the domain-unrelated
terms (labeled as "Unknown" and "Others"), the evaluation of the entire samples cannot
completely reveal the agreement degree for the domain-related labels. It is meaningful
to evaluate the agreements in the partial samples, which exclude the domain-unrelated
terms. Accordingly, two different ranges of samples (i.e. entire samples and partial
samples) with the same metrics are shown in Table 3.4. We notice that cohen’s kappa
coefficient is always lower than the agreement score in the same situation. The cohen’s
kappa takes into account the chance agreement, which lessens the entire value com-
pared to the agreement score. Meanwhile, we observe that the range of samples does
not influence a lot for the majority of annotators.

In general, the agreement ratio between annotators is less than a half, which means
that human annotating work has a rather high individual relevance, even though they
have the same knowledge background. To be simplified, in our case, we use the anno-
tation work from only one rater.
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TABLE 3.4 — The agreement degree bet-
ween human annotators. A1, A2 and A3 is
the identity for different annotators.

TABLE 3.3 — An example to
calculate cohen’s kappa.

entire samples  partial samples*

A1l A2 A3 At A2 A3
yes no

kappa_score 0.34 0.31 029 0.36 0.16 0.22
yes a b

agreement_score 0.47 041 046 046 0.26 0.44
no c d

DiagnalSum 95 82 91 26 14 8

AllSum 200 200 200 57 54 18

The difference between Gold Standard and Keywords

This section introduces the statistics of the Gold Standard and the extraction of
Keywords for each corpus. The Gold Standard is the name of a list of terms that are
examined by the domain experts, to guarantee that each term of Gold Standard is
semantically close to one core concept. The Keywords are the terms attached to the
documents that we acquire before dealing with the related corpus, which are regarded
as the prior knowledge for the corpus.

There are two aspects to concern about in the formation of Gold Standard : 1)
the terms of Gold Standard should conform to the pre-processed format. 2) a term is
labeled by its core concept if they are closely related unless this term is discarded. As
shown in Table 3.5, in the column of 'Gold Standard’, we listed the number of terms for
each core concept, where we have 1629 terms of Reuter’s Gold Standard and 2150
terms of CS’s Gold Standard. They are labeled based on the terms of the entire corpus,
not only the sampled corpus.

We have different strategies to extract Keywords for the different corpus, because
of the variance of the given resource. For Reuter corpus, the Keywords are initially
extracted from the 90 topics®, in which each topic contains several Keywords. After
the pre-processing procedure over these Keywords, we only retain the Keywords that
also appear in the final corpus. As for the Computer Science corpus, the Keywords,
which are attached to the documents, are gathered together regarding the different

6. http://www.ai.mit.edu/projects/jmlr/papers/volume5/lewisO4a/al6-rbb-topic/topics.
rbb

80


http://www.ai.mit.edu/projects/jmlr/papers/volume5/lewis04a/a16-rbb-topic/topics.rbb
http://www.ai.mit.edu/projects/jmlr/papers/volume5/lewis04a/a16-rbb-topic/topics.rbb

3.3. Experiment

TABLE 3.5 — The Gold Standard and keywords of the whole corpus.

Corpus Core Concepts Gold Standard Keywords
company 603 62

Reuter government 483 38
economic 346 26

commodity 197 8

1629 134

Algorithm design 113 61

Bioinformatics 92 84

Computer graphics 378 81

Computer programming 131 48

Cryptography 179 70

Computer Science Data structures 258 67
Distributed computing 172 75

Machine learning 256 44

network security 247 64

Operating systems 139 54

Software engineering 185 86

2150 734

core concepts. We select the top-100 frequent Keywords for each core concept and
transform them into a unified format. Likewise, the last step is to guarantee that the
extracted Keywords also appear in the final corpus.

Even though the terms of Gold Standard and of Keywords seem to have similar
semantics because of their relatedness to the core concepts, they should not be mixed
up. In fact, they have big differences in the correctness and the utilities : 1) the terms
of Gold Standard are evaluated by domain experts, while the terms of Keywords do
not have this guarantee, however, at least they contain the terms that are related to
the content of documents. 2) the Gold Standard is only used for evaluation at the end
of the experiments, while the Keywords could be used as prior knowledge during the
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experiments in Chapter 5.

3.3.3 Experiment Settings

This section introduces the details before executing the different experiments. We
start by discussing how to control the variables of different clustering strategies, which
includes the dimension of NPs representations and the number of clusters. Then we
explore all the possible random settings in every step of the clustering procedure and
determine the random scenario to run for experiments. Finally, we compare the size of
clusters between different clustering strategies.

Practical Parameters

In our clustering framework, the combination of NPs representations and the clus-
tering algorithms jointly contributes to clustering the terms, where both the dimension
of NP representations and the number of clusters are the key variables. For the LDA-
based clustering strategy, similarly, the size of the topic feature and the number of
clusters is also the main variables.

In the practice, we prone to restrict the variables within a reasonable range, or even
the equivalent settings as best as we can. For the NPs representation, the proposed
co-occurrence representations and weighted co-occurrence representations use the
number of VPCs as the size of their feature (please check the #uniqueVPCs column of
Table 3.1), which is hard to be altered in the post-processing. However, for the NMF co-
occurrence representation, word2vec embedding representation, and topic embedding
representation, the dimension of NPs’ features could be easily controlled by the prior
setting. Therefore, we set the size of the feature to 100. To maintain consistency with
the LDA-based clustering strategy, we set the number of topics to 100.

As for the clustering algorithm, we go through the number of clusters from 5 to 50 by
step of 5. The practical library parameters of clustering experiments are shown in Table
3.6. It is worth mentioning that, affinity propagation and DBscan clustering algorithms
are designed to find the optimal number of clusters, therefore, they are not required to
go through different numbers of clusters as others.
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TABLE 3.6 — The practical library parameters of the typical clustering algorithms.

algorithms python library function k selection other parameters
k-means sklearn cluster.KMeans() 5-50 default
k-medoids sklearn_extra cluster.KMedoids() 5-50 default
affinity propagation sklearn cluster.AffinityPropagation() - default
DBscan sklearn cluster.DBSCAN() - eps = 0.2, min_samples = 3
co-clustering sklearn cluster.SpectralCoclustering() 5-50 n_init =1

Randomness of Clustering

For the same parameter setting, it is famous to train with multiple repetitions, so
as to get convincing results for evaluation. Due to the existence of random effects
among the repetitions, we need to ensure that different repetitions have different ran-
dom states, so as to avoid totally identical repetitions.

In the classic clustering framework, the NMF co-occurrence representation, word2vec
embedding representation, and topic embedding representation provide the possibili-
ties to set random states, at the same time, all of the five clustering algorithms are
also able to fix random states. We set 3 random states of NPs representations and 3
randoms states of clustering algorithms. In brief, we manage to experiment with 3*3
different random states for one parameter setting of clustering. In the same way, the
clustering strategy based on LDA also needs to examine the 9 different random states
for each experiment.

Size of Clusters

In our proposed term clustering framework, we present the clustering strategies
of typical algorithms. Also, we propose the LDA-based clustering strategy. Due to the
application of term cluster’s thinning metrics in the latter work, the obvious difference
lies in the size of clusters.

We present the averaged statistics of multiple repetitions here. As shown in Table
3.7, the total number of NPs in clusters (from 50 NPs to 500 NPS) is around 5 times
less in the LDA-based clustering strategy than that of the classic clustering strategy.
The relevant NPs are the terms that we can find in the Gold standard ; the irrelevant
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TABLE 3.7 — The size of clusters in different clustering strategies.

Corpus Clustering strategies  #NPs in #clusters #NPs in % relevant %
Each Clusters NPs irrelevant
Cluster NPs
LDA-based strategy <=10 from5to 50 from 50 to 500 77.47% 22.53%
Reuter
classic algorithms No limitation from 5 to 50 5043 32.30% 67.70%
LDA-based strategy <=10 from 5to 50 from 50 to 500 64.70% 35.30%

Computer Science
classic algorithms No limitation from 5 to 50 5139 41.84% 58.16%

NPs are the terms that we cannot find in the Gold standard (the amount of GS is
listed in Table 3.5). The percentage here is the averaged value when the number of
clusters varies. The comparatively high percentage of relevant NPs indicates that the
LDA-based clustering strategy is able to extract more domain-related NPs than other
clustering strategies.

3.4 Evaluation of clustering strategies

In this section, the two major term clustering strategies (the classic clustering al-
gorithms strategy and the LDA-based clustering strategy) were examined concurrently
from various aspects.

Regarding the issue of choosing the number of clusters, we present the perfor-
mance of these two clustering strategies along with the increasing number of clusters.
Moreover, we also explore to select the optimal number of clusters of the classic stra-
tegy, under the consideration of the complexity arising from the various combinations
of NPs representations and clustering algorithms.

Subsequently, we compare the optimal performance of these two clustering stra-
tegies under the same metrics on the same corpora. As for the framework of classic
clustering algorithms, we provide a detailed analysis of the existing preference for the
combination of the different NPs representations and the diverse clustering algorithms.
Eventually, we summarize the comparison and highlight the most outperforming clus-
tering strategy, which turns to be helpful for the ongoing research.

84



3.4. Evaluation of clustering strategies

3.4.1 Influence of clusters numbers

The number of clusters is always an important factor for clustering performance.
However, due to the complexity of the different combinations in the classic clustering
strategy, it brings chaos if we analyze the influences on account of the entire frame-
work of the classic term clustering. Given this, we distinguish two aspects from the
classic clustering framework and study the influence of cluster numbers from these
two aspects : NPs representations and the clustering algorithms.

We examine the performance of clusters regarding an important metric : micro pre-
cision. In a term cluster, we assume that the partial terms that belong to the most
frequent label of this cluster, are regarded as the correct separation. The portion of
correct separation is also called the purity ratio of a term cluster, which also is identical
to micro precision (please see Section 2.4 for more information).

Along with the growing cluster numbers, the influence of the different clustering
strategies are shown in Figure 3.9 and Figure 3.10 in the different corpora. In the sub-
figures about the aspect of feature representations, except for the blue line, each other
line presents the averaged micro precision of the five clustering algorithms and one
specific NPs representation technique. In the sub-figures about the aspect of cluste-
ring algorithms, except for the blue line, each other line presents the averaged micro
precision of the five NPs representation techniques and one specific clustering algo-
rithm. It is worth mentioning that if the number of clusters could not be chosen within
the range, the corresponding clustering algorithms would not be presented, i.e. Affinity
Propagation and DBscan. The blue lines denote the averaged micro precision of the
LDA-based clustering strategy.

In Figure 3.9, based on the Reuter corpus, the performance of clustering strategies
is enhanced with the increasing cluster numbers. From the upper sub-figure (the aspect
of feature representations), we notice that the performance of NPs representations as-
pect of the classic clustering strategy is close to each other. But we also remark that
the topic embedding representation (N Ps_Ilda) has better performance than others.
The bottom sub-figure (the aspect of clustering algorithms) draws the same overwhel-
ming line on the clustering based on LDA and it shows that, in general, the co-clustering
algorithm is slightly better than other clustering algorithms. Notably, affinity propagation
and DBscan clustering algorithms tend to fail in this range of clusters from 5 to 50. It is
because these two algorithms are capable to choose the number of the cluster by their
own computation.
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The relation between the number of clusters and the two aspects of classic frameworks (Reuter Corpus)
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FIGURE 3.9 — The performance of clustering strategies with the increasing of cluster
numbers (Reuter corpus).

The relation between the number of clusters and the two aspects of classic frameworks (CS Corpus)
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FIGURE 3.10 — The performance of clustering strategies with the increasing of cluster
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In Figure 3.10, based on the Computer Science corpus, even though the general
precision is lower than that of the Reuter corpus, but we could still notice the outs-
tanding lines of the clustering strategy based on LDA. In addition to this, the other
performances conform to that of the Reuter corpus.

In brief, even though the two clustering strategies achieve different precisions in
the different corpus, their performances are improving with the rising cluster numbers.
The LDA-based term clustering strategy shows an overwhelming precision over any of
the two aspects of the framework of a classic clustering strategy. Meanwhile, the topic
embedding representation (N Ps_Ida) turns to be the best NPs representation for term
clustering.

3.4.2 The optimal cluster numbers

In the last section, we have analyzed the performance of the classic clustering fra-
meworK into two aspects. For each separate aspect, it shows better performance with
higher cluster numbers. However, we cannot conclude that the combined word repre-
sentation and clustering algorithms will still have enhanced performance with a large
number of clusters. In this part, we aim to explore the optimal cluster numbers of the
entire classic clustering framework, with the combination of the two aspects.

In the experiments, to examine the performance of every possibility of the classic
clustering framework, we go through the entire 5 x 5 combinations of the classic cluste-
ring framework. Each combination will be executed with all the number of clusters, from
5 to 50 with the step of 5. For each execution, we will study the resulting term clusters
by micro precision, the same as that in the last section. Based on those abundant ex-
periments, eventually, we can select the optimal cluster number of each combination,
once the highest micro precision is achieved across all possible cluster numbers.

In Tabel 3.8, we summarize the optimal number of clusters regarding the combined
NPs representations and clustering algorithms. Notably, it exists some failed combina-
tions, which is signified with ’—’. For the co-clustering algorithm, it fails to execute over
the condensed co-occurrence representation. For the affinity propagation algorithm,
only the word embedding representation has succeeded for execution. For the DBscan
algorithm, word2vec embedding representation and topic embedding representation
are failed. The failed combinations indicate that the calculation of the clustering algo-
rithm cannot converge within a reasonable computation time, without human tuning
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TABLE 3.8 — The optimal number of clusters regarding to the combined word represen-
tations and clustering algorithms

NPs_VPCs NPs_VPCs_tfidf NPs VPCs_nmf NPs_w2v NPs Ida

k-means 35 40 20 25 25
k-medoids 30 30 20 25 30
Reuter co-clustering 40 30 - 25 35
affinity propagation - - - 10
DBscan 186 163 225
k-means 35 35 35 25 25
k-medoids 45 35 20 20 30
Computer Science co-clustering 40 30 - 25 35
affinity propagation - - - 168
DBscan 220 207 42

and intervention. Hence we do not take into account those failed combinations.

As we have discussed, the affinity propagation and DBscan algorithm are capable to
choose their own optimal numbers, and their choices are presented in Table 3.8. They
prefer a larger amount of clusters than the pre-defined range of clusters. Besides, we
notice that the optimal cluster numbers of other clustering algorithms fluctuate a lot,
but still far from the ceiling of range (i.e. 50 clusters).

In conclusion, it is not true that the larger the number of clusters the better per-
formance of the entire classic clustering framework. Still, the choice of optimal cluster
number varies a lot, depending on the combination of word representation and cluste-
ring algorithms and on the corpus.

3.4.3 The comparison between the classic strategy of clustering
framework and the LDA-based clustering strategy

Based on the optimal number of clusters that we have explored over the classic

clustering framework, we would like to compare these two clustering strategies in the

different evaluation metrics : the internal indices (i.e. silhouette width and Dunn index)
are applied to measure the compactness and separateness of term clusters in their
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geometric feature space; the external indices (i.e. Macro precision, Micro precision,
and Asymmetric rand index) are involved to evaluate the agreements between term
clusters and the Gold Standard, please see details in Section 2.4.

Except for the evaluation of term clusters, it is also interesting to learn about the
robustness of these two clustering strategies. Concisely, we prefer a more stable clus-
tering strategy, who only brings little difference in various random states. Thus we also
present the standard deviation of these clustering strategies.

The overall performance of the classic clustering framework

To simplify the presentation of these abundant experiment results, we draw the five
figures regarding different metrics, from Figure 3.11 to Figure 3.15 on Reuter corpus.
As for another corpus about Computer Science, their results are presented in Appendix
7.2 to save space in context. The data, that we applied in the figures, is calculated as
the average value of multiple random states of one combination of the framework of
classic clustering strategy, by using the corresponding optimal cluster number. The da-
shed cyan lines in the figures present the averaged value of the LDA-based clustering
strategy with the number of clusters as 50.

Regarding the silhouette width score, -1 indicates the worst clustering, while 1 indi-
cates the best clustering situation. The higher the score, the clusters are more prone
to reach the high compactness and separateness. From Figure 3.11, we notice that
k-means and k-medoids have better performance, whereas the k-means clustering is
slightly better than that of k-medoids ; and the performance of co-clustering algorithm
fluctuates a lot with different NPs representation, which implies that the performance
of co-clustering algorithm relies more on the combined NPs representations. As for the
NPs representations, the word2vec embedding representation has the worst perfor-
mance in compactness and separateness.

For the Dunn score, | computed in the Davies-Bouldin’s algorithms ’, where 0 indi-
cates the minimum score. The lower the score, the clusters are more prone to reach
the high compactness and separateness. From Figure 3.12, we can induce a similar
analysis as that of silhouette width.

The macro precision denotes the portion of pure clusters, in which 0 means all
clusters contain the terms with mixed labels and 1 means all clusters are pure clusters.

7. https://scikit-learn.org/stable/modules/generated/sklearn.metrics.davies_bouldin_
score.html
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The average silhouette width of the different combinations (Reuter corpus)
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The average macro precision of the different combinations (Reuter corpus)
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The average asymmetric rand score of the different combinations (Reuter corpus)
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FIGURE 3.15 — The asymmetric rand score of the two clustering strategies(Reuter cor-
pus)

The higher value the more pure clusters. In Figure 3.13, most of the clustering algo-
rithms approach 0, except for k-means and k-medoids clustering algorithms. In fact, it
exists an exceptionally high score for k-means algorithms. This phenomenon could be
caused by abundant scattered pure clusters.

The micro precision denotes the averaged purity of all clusters, in which 0 means
all terms of a cluster are not from the Gold Standard, and 1 means all terms of a
cluster belong to one label. The higher the more agreement between clusters and
Gold Standard. In Figure 3.14, the co-clustering and DBscan algorithms show bet-
ter performance than others. However, the higher micro precision score is mainly due
to a large number of clusters of DBscan algorithms. In general, the topic embedding
representation (i.e. N Ps_Ilda) reaches higher scores than other representations. Fur-
thermore, the proposed co-occurrence representation and the weighted co-occurrence
representation show better performance than the NMF co-occurrence representation,
or than the word2vec embedding representations. Particularly, the combination of topic
embedding representation and the co-clustering algorithm achieves the highest micro
precision than other combinations of the framework of a classic clustering strategy.

The asymmetric rand score denotes the agreement between clusters and Gold
Standard, in which 1 means the equivalence between clusters and the partitions of
Gold Standard. The higher the more agreement between clusters and Gold Standard.
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In Figure 3.15, the analysis accords to that of the micro precision. Briefly, even though
the co-clustering algorithm achieves the poor compactness and separateness of clus-
ters, its clusters reach a rather high agreement to the Gold Standard.

The benefit of the LDA-based term clustering strategy

Based on the same evaluation metrics, we would like to provide an obvious compa-
rison between the classic term clustering strategy and the LDA-based term clustering
strategy. Before the contrast, it is worth mentioning the difference in the parameter
settings of these two clustering strategies. On the one hand, we select to present the
performance of a classic clustering strategy with their corresponding optimal cluster
numbers. On the other hand, for the LDA-based strategy, we apply the fixed ceiling
number of clusters (i.e. 50 clusters) to be compared with. In addition, we utilize the
standard deviation to measure the robustness of these two clustering strategies.

In the figures of last part, e.g from Figure 3.11 to Figure 3.15, we remark the dashed
blue line appeared in the evaluation of each metric. These lines show the correspon-
ding value of different metrics for the term clustering strategy based on LDA. We notice
that the LDA-based strategy achieves a rather better performance in most of the me-
trics, except for the macro precision score. The 0 value of macro precision implies that
it does not exist any pure clusters from the generated 50 clusters.

As for the robustness, in Table 3.9, we present the standard deviation regarding
each aspect of clustering strategies. Due to the failure of multiple experiments on af-
finity propagation and DBscan, their standard deviation will not be taken into account.
In this way, the LDA-based term clustering strategy is proved to be a more robust clus-
tering strategy than others.

We could conclude that the LDA-based strategy could produce clusters with a simi-
lar degree of compactness and separateness as that of k-means clustering algorithms.
However, the LDA-based clustering strategy can generate the term clusters with a hi-
gher agreement degree to the Gold Standard.

3.5 Summary

We have presented the framework of classic term clustering strategy in order to
obtain the desired term clusters, where the clusters could be considered as concepts

93



Partie 1, Chapitre 3 — The proposal Framework for Term Clustering towards Ontology Learning
and its deployment

TABLE 3.9 — The deviation for different clustering strategies

NPs_VPCs NPs_VPCs_tfidf NPs_VPCs_nmf NPs_w2v NPs_lda

Reuter corpus 0.0332 0.0823 0.0281 0.1538 0.0655
classic term CS corpus 0.0316 0.0776 0.0349 0.0130 0.0454
clustering
k-means k-medoids co-clustering AP DBscan
Reuter corpus 0.0427 0.0529 0.0502 0.5575 0.0061
CS corpus 0.0373 0.0530 0.0387 0.0082 0.0060
LDA-based term  Reuter corpus 0.0273
clustering
strategy CS corpus 0.0276

of the ontology to build. During this step, we examine their performances with the rising
cluster numbers. We discovered it is not true that the larger the number of clusters the
better performance of the entire classic clustering framework. Still, the choice of optimal
cluster number varies a lot, depending on the combination of word representation and
clustering algorithms and on the corpus.

In parallel to the classic term clustering strategy, we proposed new NPs represen-
tation techniques in linguistic perspective (i.e. the proposed co-occurrence representa-
tions and their variants) and in statistic perspective compared to word2vec embedding
representations and the topic embedding representations. Then we explored the prefe-
rences of those NPs representations for their suitable clustering algorithms. We found
that even though the co-clustering algorithm achieves the poor compactness and sepa-
rateness of clusters, their clusters reach a rather high agreement to the Gold Standard.
Also, the topic embedding representation (i.e. N Ps_lda) reaches a higher micro preci-
sion than other representations. Furthermore, the proposed co-occurrence represen-
tation and the weighted co-occurrence representation show better performance than
the NMF co-occurrence representation, other than the word2vec embedding repre-
sentations. Moreover, the combination of topic embedding representation and the co-
clustering algorithm is considered as the optimal pair of the framework of classic term
clustering strategy, which satisfies the need to possess the high precision modules of
modular ontologies.

Comparatively, we also introduced a clustering strategy of applying the topic mo-
del LDA directly for term clustering. We found that the LDA-based clustering strategy
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shows an overwhelming precision than any of the two aspects of the classic term clus-
tering strategy. Still, it could produce clusters with a similar degree of compactness and
separateness as that of k-means clustering algorithms (which is in the best situation of
classic clustering framework). Particularly, the LDA-based term clustering strategy can
generate the term clusters with a higher agreement degree to the Gold Standard. As
for the robustness, it is proved to be a more robust clustering strategy than any aspects
of the framework of the classic term clustering strategy.

From the results of this chapter, we notice that LDA could assist to achieve better
performance in term clustering, not only as of the feature presentations of the clas-
sic clustering framework but also as the LDA-based clustering strategy. Therefore, we
continue to optimize the LDA-based clustering strategy, which allows us to build a mo-
dular ontology where the label of each core concept will be the label of a module of the
ontology to build.

It should be noted that the partial work in this chapter was first published at KEOD
conference [140]. The conference paper was then extended into a chapter book to be
published in Springer [148].
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CHAPITRE 4

RELATED WORKS ABOUT LDA

As we have mentioned in the last chapter, applying LDA has been proved to be
profitable as a technique of term clustering towards ontology learning. Now we plan to
discuss the concrete algorithms of LDA from the aspect of topic models. This chapter
describes the different phases of topic models and provides the different metrics to
evaluate their performance. More interestingly, we would like to explore the extensive
LDA models, which are assisted by some prior knowledge to improve the topics towards
the concrete concepits.

It starts with the basic hypothesis and the corresponding notations for topic models
in Section 4.1. We discuss the interesting surveys and tools for topic models in Section
4.2. Then we specify the typical topic models in Section 4.3, from the simple statistical
models, i.e. Latent Semantic Indexing algorithms(LSI), to the simple latent variable
models, i.e. probabilistic Latent Semantic Indexing (pLSI), and finish with the Latent
Dirichlet Allocation (LDA). Section 4.4 then details the extensive LDA models which
make use of the seed information as prior knowledge and provides the summary of the
mentioned models. After that, we investigate the LDA-based approaches for ontology
learning in Section 4.5. Finally, in Section 4.6, we present the evaluation methods in
the topic model aspect and the term clustering aspect to answer that : what are the
language model evaluation metrics and how to apply the statistical evaluation metrics.

4.1 Specific Notation and Terminology

In the background of text mining techniques, we assume that :
e a document is represented as the bag of its terms, regardless of grammar and
word order, but keeping counts. It is well known as bag-of-words assumption
by Zellig Harris [4];
e An essential unit in a text document, e.g., a single term, is regarded as a token.
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TABLE 4.1 — The notions of topic models.

Models Symbol | Meaning
w; the i-th word in vocabulary V'
d; the j-th document in the corpus D
oLS| t a topic
\%4 the vocabulary of corpus
D the corpus including documents
T the total topics
«@ dirichlet prior for document-topic distribution
Ié] dirichlet prior for topic-word distribution
LDA 04 document-topic distribution to generate document d
o topic-word distribution to generate words respecting to topic ¢
z the latent topic of a word
C; the set of possible topiclDs for the word w;
z-labels
n soft constraint value of applying C;
3* dirichlet prior for topic seed distribution ¢*
8" dirichlet prior for topic word distribution ¢”
o° topic seed distribution, where seed represent seed words
Seeded Q" topic word distribution
LDA
e a parameter to control the portions of ¢* and ¢" contributing to a topic ¢
s the seed set
Vs group-topic distribution of seed set s
¢d the document-topic multinomial parameter of document d
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According to the bag-of-words assumption, the text could be parsed into dif-
ferent units, where the unit could comprise a contiguous sequence of n tokens,
denoted as n-grams, and store the term frequency of n-grams as before. For
example, the noun phrases (NPs) and verbs preposition compositions (VPCs)
belong to the category of n-grams

e The classic input for various text models is word-document matrix, which re-
cords the frequency of words that occur in a collection of documents.

Let us consider the topic models :

e a word of a document is the basic unit of discrete data, from the vocabulary
indexed by {1,...,V}. A vocabulary is a dictionary constituted by a set of unique
words or other strings extracted from text, which are arranged in order. The v-th
word in the vocabulary is represented by V-vector w such that w” = 1 and w" = 0
foru #v;

e a document is a sequence of N words, denoted by d = (wy, ws, ..., wy);

e a corpus is a collection of M documents denoted by D = (dy,da, ...,dy) ;

e a topic model, e.g. Latent Dirichlet Allocation (LDA) [87], considers a semantic
representation that documents are represented as random mixture over latent topics
among {1, ..., Z}, where each topic z is characterized by a distribution over
words. More parameters could be found in Table 4.1

4.2 The overview of topic models

The main intention of topic modeling is to learn a model explaining the co-occurrence
of terms in the documents. To undercover the connection between terms and docu-
ments, the topic is introduced as the intermediate bridge. Thus, in a topic model, terms
can be working with documents and these documents are mixtures of topics, where a
topic is a probability distribution over words. To be specific, a topic model executes a
simple probabilistic procedure, by which documents can be generated.

There are many interesting surveys to summarize the development of topic mo-
deling algorithms. In a systemic sort of view, Alghamdi et Alfalqi 2015 [149] divided
the area of methods into two sections : Bag-Of-Words topic Model and Topic Evolu-
tion Model. The former kind of model includes the typical topic models based on the
Bag-Of-Words assumption, e.g. LSI [52], pLSI [150] and LDA [9], while the latter kind
of model considers an important factor time, allows identifying topics with the appea-
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rance of time and checks their evolution with time. For example, it has introduced Topic
Over Time(TOT) [151], Dynamic Topic Models(DTM) [152], multiscale topic tomogra-
phy [153], et al.

In a normal way, many surveys of topic models focus on discussing the application
over text corpus, however, Chen, Thomas et Hassan 2016 [154] extended with an in-
depth discussion on the reliable application of the software un-structural data over the
topic model, which is generated during software engineering. For instance, the un-
structural data raised by the software includes the source code, emails, requirements
or design documents, execution logs, bug reports, et al. Their work not only presented
a broad study on the different topic models ( i.e. many diverse variations of LDA) but
also summarized the different facets concerning the practical usages of those models
(i.e. target tasks and evaluation directions).

In the following sections, we concentrate on discussing the typical topic models and
the variations of LDA with seed information, without the consideration of the time factor.

4.3 The typical topic models

4.3.1 Simple Statistical Models

This section introduces the development to uncover the semantic meaning of docu-
ments from the algebraic manipulation with the simple statistical models.

There are usually many literal terms to express one given conceptual topic; ho-
wever, one single term is deemed to be unreliable to represent a conceptual topic or
meaning of a document [52]. To overcome the problem of retrieving conceptual content
from documents, Latent Semantic Indexing (LSI) [51], [52] was proposed to reform
documents representation into low dimension latent semantic space to capture the im-
plicit association between terms and documents. Gradually, it is also well known as a
more general terminology, Latent Semantic Analysis (LSA).

Based on the distributional hypothesis, words that are used and occur in the same
contexts tend to have similar meanings [4]. LSA embarks on establishing associations
between those terms that occur in similar contexts. Then it uses linear algebra and
singular value decomposition (SVD) [155] to identify a linear subspace of the TF-IDF
feature that captures the most of meanings in documents collection.

Formally let A be the i x j term-document matrix of a collection of documents with

101



Partie I, Chapitre 4 — Related Works about LDA

TF-IDF as a weighing scheme, then

D
fij - 1og m, fij #0
0, fij =0

Ali, j] = tf (i, j) * idf (1, D) = { (4.1)

,where the first component(term frequency ¢f(i, 7)) computes how frequently a term
occurs in a document and f; ; denotes the raw count of term 7 occurs in document j ;
the second component(inverse document frequency idf (i, D)) computes how much a
term is common or rare across all documents. Within the second component, the | D |
is the total number of documents in the corpus and | {d; € D : w; € d;} | is the number
of documents where the term i appears [156].

The matrix A is usually large and sparse, the dimension reduction technique turns
to be essential. The SVD could be performed by approximating term-document matrix
A into three other matrices — an ¢ by r term-concept matrix T, an r by r singular
values matrix S, and a j by r concept-document matrix D, which satisfy the following
relations :

A =USV?T (4.2)

In LSI, we assume that the singular value is too small to be negligible, thus replaced
by 0. Let us say that we only keep the first-k singular values in S. As such, we can
reduce matrix S into S which is an £ x k matrix containing only the % singular values
that we keep, and also reduce U and V into U, and V,, to have k& columns and rows,
respectively.

A~ Ay = US, Vi (4.3)

Intuitively, the k£ remaining ingredients of the eigenvectors in U and V' correspond to
k "hidden topics," in which it preserves the most important semantic information in the
text.

In the perspective of the dimension reduction, the large collections carry out signi-
ficant compression over the term document matrix through V;, and it maps document
into a low dimensional space, but it alleges difficulty in determining the optimal num-
ber of dimensions to use for performing the SVD. The number cannot be chosen to
arbitrary numbers, but it depends on the rank of the matrix and cannot go beyond
that. Furthermore, once the new documents appear, the calculation of SVD requires
intensive efforts of computation, and eventually the model is hard to update.
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From the perspective of semantic meaning, LS| can retrieve synonyms (i.e. a term
means nearly the same to another) of the query terms from U,. However, it raises the
difficulties of interpreting the dimensions.

4.3.2 Simple latent variable models

From the last section, the algebraic approaches aim to uncover the semantic rela-
tionship between terms and documents, whereas the previous statistical models are
not preparing to handle the large collections of documents. To organize, understand,
search, and summarise those text documents, the hidden themes of documents could
be explored to annotate documents and use those annotations to manage amounts of
documents. Technically, according to Blei, Ng et Jordan 2003 [9], we can begin with
generating text documents from the given topics, expecting that the outcomes fit the
observed documents. Thereby the topic assignments turn to be apparent to those ori-
ginal collections.

Initially, as the simplest generative process, a document could be constituted by
words drawn independently from a single multinomial distribution, denotes as w ~
Mult(p). The probability of this document is :

p(d) = ] p(w) (4.4)

Secondly, before generating a document, choose a topic from z ~ Mult(p) , then
its component words will follow the conditional multinomial distribution independently,
w ~ Mult,(p) [157] . While it has the limitation that each document exhibits exactly one

topic.
v

p(d) = p(2) Hlp(wz- | 2) (4.5)

In the third place, the probabilistic Latent Semantic Indexing (pLSl)proposed by
Hofmann 1999 [150], extends LS| assuming that each document is a probability dis-
tribution over topics and each topic is a probability distribution over words. The pLSI
model uses the statistical latent variant for factor analysis of the raw count in the term-
document matrix, where Figure 4.1 displays the matches between matrix resolving and
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documents topics documents

P(t|d)

topics

words

P(w|d)

words

observed - latent
FIGURE 4.1 — The matrix resolving of word document distribution.

the probabilities expression; it could also be written as :

plw|d)=> plw|2)p(z|d) (4.6)
ZEZ
it is worthy noting that the equivalent symmetric version can be obtained by inverting
the conditional possibility p(z | d) with the help of Bayes’ rule, in which a document and
a word are conditionally independent given a latent topic = :

p(w,d) = p(d)p(w | d) = _ p(z)p(w | 2)p(d | z) (4.7)
z2€EZ

The application of pLSI handles the problem of polysemy. However, different from
the previous generative process, pLSI treats topics as term distribution and uses pro-
babilistic methods instead of matrices. It captures the possibility that a document may
contain multiple topics. It must be pointed out that this model is prone to overfitting
(being corpus specific) and a linearly increasing number of parameters that need to be

estimated, with the inclusion of extra training documents [87].

4.3.3 Latent Dirichlet Allocation

The basic ideas behind Latent Dirichlet Allocation (LDA) are to discover the topics
from a collection of documents automatically. It is most easily described as a statistical
model by the intuition of the words’ occurrence within documents. Contrary to this fore-
sight, this model assumes that the topics are generated first, and then documents are
estimated from the generative process that includes hidden variables [6].
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LDA assumes that each word w; is associated with a latent topic ¢. Each of these
topics t = 1, ..., T is associated with a multinomial ¢, over the V-word vocabulary, each
¢ is drawn from a Dirichlet prior with parameter 3. Likewise, each document j = 1...D is
associated with a multinomial 6; over topics, drawn from a Dirichlet prior with parameter
a. The full generative procedure is then

| Foreachtopict=1,2,....,T
(a) Sample topic-word multinomial ¢; ~ Dirichlet(f3)
Il For each document j =1,2,....D
(@) Sample document-topic multinomial §; ~ Dirichlet(c)
(b) For each word w; in document j :
i. Sample topic z; ~ Multinomial(6;)
ii. Sample word w; ~ Multinomial(¢.,)

The procedure implies a joint probability distribution over the random variables
(w,z,¢,0), which is given by

T D

P(w,2,6,0 | a,3,D) oc ([Ip(¢x | 5))(1Ip(0; [ a))(1] 6 (Wi)ba,(z))  (4.8)

t j

, where w and z are two coupled vectors of terms respecting to topics of the same
size ; w represents a document as a vector of words w;, and z represents the vector of
topics z; of words w; at the same position/index i in document j; z; is the latent topic
associated with the i-th term in the corpus, ¢..(w;) is the w;-th element in vector ¢, ,
and 0,4, (z;) is the z;-th element in vector 6,, . The conditional dependencies implied by
this distribution can be represented by the directed graphical model shown in Figure
4.2.

There is a step-by-step example of the generative process designed by Andrze-
jewski, Craven et Zhu 2010 [158], as shown in Figure 4.3. Subfigure (a) presents an
elementary vocabulary with three terms inside, and subfigure (b) indicates that we set
to 3 topics with the concrete value for each hyper-parameter a and 5. Following the
generative process that we discussed above, we first sample a topic-word multinomial
¢, for each topic in subfigure (c), then we sample document-topic multinomial 6, in
subfigure (d). To present the probabilities more straightforwardly, these ¢ vectors and
p vectors could be plotted graphically on a simplex. In the subfigure (e) and (f), the
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FIGURE 4.2 — The directed graphical model of LDA.

nearness of each ¢; to each corner is proportional to the probability that ¢; places on
their corresponding word. For more detail, in subfigure (e), the ¢; possesses a rather
high probability on word = 3 and the location of ¢, is close to P(w = 3) comparing to
the other words. The same idea suit for subfigure (f) as well, in which 6, approaches to
P(z = 3) and 6, approaches to P(z = 2).

From the generative process of LDA, we observe that the LDA uses dirichlet priors
for the document-topic and topic-word distributions. The inclusion of dirichlet priors
prevents over-fitting effects. However, it seems to be unable to model further relations
among topics.

Given the observed words w, the major goal for calculation is the inference of the
hidden topics z. However, computing the conditional distribution of the topic structure
given the observed documents (also called the posterior) is intractable. Various infe-
rence techniques have been developed to approximate the posterior. The topic mo-
deling algorithms generally fall into two categories— sampling-based algorithms and
variational algorithms.

The sampling-based algorithms attempt to collect samples from the posterior to
approximate it with an empirical distribution [6]. We resort to a Markov Chain Monte
Carlo (MCMC) sampling scheme, specifically Collapsed Gibbs Sampling [159].

Alternatively, the variational algorithms are a deterministic methodology for approxi-
mating likelihood and posteriors [6], [160]. It reformulates the problem of computing the
posterior distribution as an optimization problem. Variational inference algorithms ge-
nerally perform worse but run faster than sampling-based algorithms. Thus, variational
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1 Dog T 3

w 2 Run a 0.5
3 Cat g 0.1
(a) Example vocabulary. (b) Example parameters.
[0 w 0 z
1 2 3 1 2 3
.1 .1 8 1{.15 .15 .7
z 218 .1 .1 d 2|.15 .7 .15
3/].5 4 .1 3]5 4 1
(¢) ¢, ~ Dirichlet(3) (d) 8 ~ Dirichlet(a)

P(z=3)

01

P(w=1) P(w=2) P(z=1) P(z=2)

(e) Simplex representation of ¢. (f) Simplex representation of 6.

FIGURE 4.3 — An example of the LDA generative process extracted from Andrzejewski,
Craven et Zhu 2010 [158].
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inference suit well particular for large-scale documents.

Roughly speaking, both inference algorithms perform a search work over the topic
structure. The choice of the inference algorithms depends on the size of the corpus
and the expectation of the searching performance.

4.4 The extensive LDA models with seed information

Topic models, e.g. LDA, have emerged as a popular tool to analyze document col-
lections in an unsupervised way. The LDA model’s practical objective is to maximize the
probability of the most obvious observed data but sacrifice the performance on rare to-
pics. Intuitively, this results in a skewed topical impression of the corpus. However, this
skewed topic is not following the underlying topical structure for human interpretation in
most cases. We address this problem by guiding topic models to learn topics of specific
interest to a user.

Here we consider the involvement of 'prior knowledge’ to improve the topic rele-
vant in LDA. And there are many different ways to introduce some prior knowledge,
which include the non symmetric Dirichlet meta-parameters, must link and cannot link
constraints, wordnet lexical properties, list of pre-labeled words (seeds), etc.

For instance, during the generative process of topics, in order to involve users’ su-
pervision, an interactive topic model [161] brings the user into the loop by allowing
him/her to make suggestions on how to improve the quality of the topics at each itera-
tion. Their approach uses the Dirichlet Forest method to incorporate the user’s prefe-
rences.

Many other works also use external knowledge to operate at the level of tokens,
documents, and pairwise constraints. In the level of tokens, Andrzejewski et Zhu 2009
[10] proposed to apply the topic-in-set knowledge on LDA, but the seed information is
provided manually. The word-level seed information can be converted into token-level
information, but this prevents their model from distinguishing them based on the word
senses. In the level of pairwise constraints, Andrzejewski, Zhu et Craven 2009 [162]
incorporated domain knowledge into topic modeling via Dirichlet forest priors, but the
seed information is still required manually. Interestingly, he proposed to use Dirichlet
forest priors to incorporate Must Link and Cannot Link constraints into the topic models
so as to distinguish the similar and opposite clusters, which has the analogous concept
with the constrained K-means clustering algorithm [163]. At the documents’ level, many
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works aimed to predict the category labels for the input documents based on document
labeled data, i.e., the supervised topic models [164] and DiscLDA [165].

In the perspective of the seed information usage, Thelen et Riloff 2002 [166] pro-
posed to learn semantic lexicons using extraction pattern contexts. However, semantic
information only focuses on specific notions (i.e., entities) but not general concepts.
Apart from this, Li, Roth et Sporleder 2010 [167] used sets of words for the word sense
disambiguation task ; this model assumes that a topic is a distribution over synsets and
relies on the Wordnet to obtain the synsets. The labeled LDA [168] can operate on a
multi-class labeled corpus. Besides the operation in the document level, the z-labels
LDA [10] deals with the multi-topics for each word so as to raise the accordance from
words to topics. Besides, generating document topic distribution of the labeled LDA
[168] is similar to generating group distribution to another model Seeded LDA [11]. As
for Seeded LDA, it provides sets of seed words that a user believes in representing
the underlying topics in a corpus. Those seeds are then used to improve both topic-
word distributions by biasing topics to produce appropriate seed words and improve
document-topic distributions by biasing documents to select topics related to the seed
words they contain.

4.41 z-labels LDA

The target of z-labels LDA [10] is to use the topic assignments of seed words to
guide the learning of topics in the corpus. Initially, it assumes that some seed words
are already known and assigned to one or several topic IDs ; this is the prior knowledge
provided by the domain expert according to the corpus’s content. Let C; be the set
of possible z-labels for the word w;. For instance, if we wish to restrict word w; to
a single value (e.g., topiclD_of_w; is equal to 5), this can now be accomplished by
setting C; = {5}. Likewise, we can restrict word w; to a subset of topiclDs {1, 2, 3}
by setting C; = {1,2,3}. Otherwise, for the unconstrained word w; , we simply set
C;={1,2,...,T}.

To insert this prior knowledge into the learning process, it induces a boolean indica-
tor function §(v € C;), which takes value as 1 when v € C;, otherwise 0. This function
will be used as a hard constraint by modifying the Gibbs sampling equation. The full
conditional Gibbs sampling equation used for sampling individual z; values from the
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FIGURE 4.4 — The directed graphical model of LDA.

B

Soft
constraints
value n

FIGURE 4.5 — The graphical model of z-labels LDA.
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posterior is given by :

(d)
77,’U+Oé fzv—i_
P(Zl - U’Z—i7w7a7ﬁ) X ( 5

ST, +a) W ")+ 8)

,Where n(dfv is the number of times topic z is used in document d, and n(“;lf, is the
number of times word w generated by topic z. The —i notation signifies that the counts
are taken omitting the value of z;. In detail, if we consider the right part of Equation 4.9

as ¢;,, then the modified Gibbs sampling equation could be :

) (4.9)

P(zi=v |z, w,a,8) X g 0(v € C}) (4.10)

This modification makes the inference of latent topics become flexible, regarding
the prior knowledge. Meanwhile, the hard constraints could be relaxed into the soft
constraints. Let 0 < n < 1 be the strength of our constraint, where n = 1 equals to the
hard constraint Equation 4.10 and n = 0 equals to the original sampling Equation 4.9.
Then this soft constraint equation will be :

Plzi=v|z,w,a,0) X g (n-0(veC;)+1—n) (4.11)

The generative process of z-labels LDA is listed below :

| Foreachtopict=1,2,....,T
(a) Sample topic-word multinomial ¢; ~ Dirichlet(f3)

Il For each document j =1,2,..., D
(@) Sample document-topic multinomial §; ~ Dirichlet(«)
(b) For each word w; in document j :

i. If w; is contained by seed words set :

ifn#£0:
choose topic assignment z; from the seeded topic set C;

ii. Sample topic z; ~ Multinomial(6;)
iii. Sample word w; ~ Multinomial(¢.,)
As a comparison, we draw the generative graph of basic LDA into Figure 4.4, on this

basis, the generative graph of z-labels LDA could be drawn as Figure 4.5. It is obvious
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that the z-labels LDA uses the topic assignments of seed words to guide the learning
of topics in the corpus and it introduces the constraints of z-labels LDA to control the
contribution of seed topic distribution. The results of z-labels LDA [10] shows that the
performance is greatly affected by the topic assignments of seed words.

4.4.2 Seeded LDA

Similar to the z-labels LDA model, the Seeded LDA [11] aims to handle the learning
of topics by applying the topic alignments of seed words. However, Seeded LDA has a
rather sophisticated mechanism.

On the one hand, it benefits from two different topic-term distributions : one for
topic-seed distribution ¢* (with the shape of 7' x S, where S is the number of seed
words), another for topic-word distribution ¢" (with the shape of T x V', where V is
the size of vocabulary). Each topic is a mixture of these two distributions, and the
parameter 7; controls their portions contributing to a topic. For the part of topic-term
distribution, the generative process of Seeded LDA is listed below (see Figure 4.6) :

| For eachtopict=1,2,....T
(a) Choose regular topic ¢ ~ Dirichelet(,).
(b) Choose seed topic ¢; ~ Dirichelet(Ss).
(c) Choose m; ~ Beta(1,1).
Il For each document j =1,2,..., D
(a) Sample document-topic multinomial 6; ~ Dirichlet(«)
(b) For each word w; in document j :
i. Select a topic z; ~ Multinomial(0;).
ii. Select an indicator z; ~ Bernoulli(r,,).
ji. Ifz;is0:
Select a word w; ~ Multinomial (¢, ).
//lchoose from regular topic

iv. Ifx;is1:
Select a word w; ~ Multinomial(¢3,).
/Ichoose from seed topic
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T, indicator
Xi

Z w

FIGURE 4.6 — The graphical model of topic-term distribution part of Seeded LDA.
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FIGURE 4.7 — The graphical model of document-topic distribution part of Seeded LDA.
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In the previous process, we notice that the indicator x; decides to choose to apply
the topic-seed distribution or the topic-word distribution for a specific word. The binary
decision is similar to the output of hard constraints of z-labels LDA [10]; however, the
major difference is that this model tried to consider the topic preference of its related
document by using the Beta distribution in (l.c) and the Bernoulli distribution in (ll.b.ii).
While for the hard constraints, the binary decision only considers whether a word is a
seed word. If so, it will apply all the topic distributions of this seed word. Additionally,
the soft constraints of z-labels LDA take into account a certain portion of seed topic
distribution, which could be considered a mixture of distribution, but this scenario never
happens for this model.

On the other hand, this model also improves the document-topic distributions
by biasing documents to select topics related to the seed words they contain. In the
general case, the number of seed topics is not equal to regular topics. Hence, this
model associate each seed set (here refer as g for group) with a multinomial distribution
over the regular topics, which we call group-topic distribution 1,. In the next step, it will
be considered prior to draw the document-topic distribution 6,. In this way, this model
allows a flexible number of seed and regular topics and connects the topic distributions
of all the documents within a group.

For the integrated model of both topic-term distribution and document-topic distri-
bution, the generative process of Seeded LDA is listed below (corresponding to Figure
4.7) :

| Foreachtopict=1,2,....,T

(a) Choose regular topic ¢ ~ Dirichelet(,).
(b) Choose seed topic ¢; ~ Dirichelet(Ss).
(c) Choose m; ~ Beta(1,1).

Il Foreachseedsets=1,,,.5,

(a) Choose group-topic distribution 13 ~ Dirichlet(«).

Il For each document j = 1,2,..., D
(a) Choose a binary vector ? of length S.

(b) Choose a document-topic multinomial ¢7 ~ Dz‘m‘chlet(T?).
(c) Choose a group variable g ~ Multinomial({7).
(d) Choose 6; ~ Dirichlet(1),).
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(e) For each word w; in document j :
i. Select a topic z; ~ Multinomial(6;).
ii. Select an indicator z; ~ Bernoulli(r.,).
ji. Ifz;is0:
Select a word w; ~ Multinomial(¢’.).
//lchoose from regular topic

iv. Ifz;is1:
Select a word w; ~ Multinomial(¢s,).
//choose from seed topic

The integrated Seeded LDA also uses the topic assignments of seed words to guide
the learning of topics in the corpus. The results show that it has the ability to handle
a situation with an unequal number of seeds and regular topics. However, they also
found that allowing a seed word to be shared by multiple sets of seed words degrades
term clustering performance. The computation complexity is considerably high.

After the discussion of the typical topic models and the variations of LDA accom-
panying with seed information, we present the comparison of these mentioned models
with their strength and weakness in Table 4.2.

4.5 LDA based approaches for ontology learning

In the last two decades, topic modeling has been explored in various domains, i.e.
text mining and information retrieval, however, applying topic modeling for ontology
learning still needs more exploration.

Many works were interested in making use of the connection between terms, to-
pics, and documents from LDA. There are two main directions to benefit from LDA for
ontology learning : 1). to apply the knowledge of ontology to LDA for better term repre-
sentations and optimize the ontology with the semantic-close terms; 2). regardless of
the existing ontology, to combine the word embedding representations and term topic
representations in order to tackle the specific tasks of ontology construction, such as
term clustering and term classification.

In the first direction, we would like to explain four typical works in detail, which are
notated as 'LDA_WN’[170], ’LDA_Probase’[171], 'LDA_Probase2’[172] and 'LDA_CTM’
[173] in Table 4.3.
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TABLE 4.2 — The comparison table of topic models, adapted from Barde et Bainwad

2017 [169]

Model

Strengths

Weaknesses

LSl [52]

pLSI [150]

LDA [9]

z-labels LDA [10]

Seeded LDA [11]

Typical topic models

1). It can handle the problem of synonymy to
some extent. 2). It maps documents to a low-
dimensional space.

1). It handles the problem of polysemy 2). It
treats topics as term distribution and uses pro-
babilistic methods instead of matrices

1)It uses dirichlet priors for the document-topic
and topic-word distributions for semantics disco-
very. 2)It prevents over-fitting.

1). It depends heavily on SVD which is compu-
tationally intensive and hard to update as new
documents appear. 2). The latent topic dimen-
sion can not be chosen to arbitrary numbers. It
depends on the rank of the matrix, can not go
beyond that.

1). It is prone to overfitting, so the number of pa-
rameters increases linearly with the number of
documents.

1). It becomes unable to model relations among
topics.

Variations of LDA (with seed information)

1). It uses the topic assignments of seed words
to guide the learning of topics in the corpus. 2).
It introduces the constraints of z-labels LDA to
control the contribution of seed topic distribution

1). It uses the topic assignments of seed words
to guide the learning of topics in the corpus. 2). It
has the ability to handle a situation with an une-
qual number of seeds and regular topics.

1). the performance is greatly affected by the to-
pic assignments of seed words.

1). the computation complexity is considerably
high. 2). allowing a seed word to be shared by
multiple sets of seed words degrades term clus-
tering performance.
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TABLE 4.3 — The summary of LDA based works for ontology learning
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Boyd-Graber, Blei et Zhu 2007 [170] proposed the 'LDA_WN'’ to distinguish the
polysemy of terms in the WordNet taxonomy (WORDNET-WALK). For a term with dif-
ferent meanings (known as polysemy), it has different paths in the taxonomic structure
of wordNet. Respecting the context of a polyseme, the 'LDA_WN’ model will locate the
taxonomic path, so that the sense of polyseme could be precised by the taxonomic
terms of WordNet. To achieve this goal, they extract the concepts from the taxonomy,
calculate the closeness probabilities between concepts, and embed these probabilities
to LDA model. The new term representations of LDA could be used to measure the
semantic similarity between the query terms and concepts in taxonomy, so as to locate
the query terms with the closest concepts in taxonomy.

Except to acquire knowledge from WordNet, Probase [176] is also a good resource
for capturing the relationships between terms. It contains a number of closely rela-
ted terms and every relationship has a typicality score indicating the importance of
one term to another term. Kim, Wang et Oh 2013 [171] aimed to map terms to the
concepts of Probase, i.e. 'apple’ maps to ’fruit’ or 'firm’. In the proposal 'LDA_Probase’,
they managed to represent the topic information by terms from text p(topic | term)
and link the topic information with the concepts from Probase p(concept | topic). In this
way, in the given context, the relatedness between a term and a concept from Pro-
base could be examined, and terms could be mapped and semantically labeled by the
concepts. Following the same idea, Cheng, Wang, Wen et al. 2015 [172] proposed the
'LDA_Probase?’ to distinguish the polysemy of terms by combining the explicit concept
of Probase and the implicit concepts of topics regarding to context. They applied the
k-medoids clustering on the raw terms of Probase to obtain the explicit conceptual
clusters. The centroids of clusters are worded as the explicit concept embedding. Ad-
ditionally, they explored the implicit concepts embedding by performing LDA over the
corpus. Finally, they join these two embeddings together to disambiguate the meanings
of terms respecting their context. They found that the explicit concepts have higher ac-
curacy but low recall, and the implicit concepts provide a complement, which could
include the words (such as verbs and adjectives) that do not exist in Probase ontology.
And the joint effects outperform the single output.

The previous works focus on the semantic labeling for terms, in a different way, the
‘LDA_CTM’ model [173] is interested in the semantic labeling for Web pages. Chemu-
dugunta, Holloway, Smyth et al. 2008 [173] proposed the concept-topic model (CTM) to
automatically tag Web pages with concepts from an ontology without any need for the
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labeled documents. They modified the basic LDA and estimated the p(concept | term)
and p(document | concept), where the original topics in the estimation are instantiated
as the concepts from the Cambridge International Dictionary of English (CIDE) onto-
logy. Then the probabilities between the concepts of ontology and term or documents
could be measured and analyzed.

In the second direction, we would like to explain two typical works in detail, which
are notated as 'LDA_SongUser’ [174] and 'LDA_word embedding’ [171] in Table 4.3.

Apart from applying LDA over the plain text, it could also be used in the structu-
ral text, i.e. the string names of songs [174] or the software log files [154]. Here we
will detail the structural text with songs. Zhou, Fan et Zhang 2019 [174] proposed
‘LDA_SongUser’ to use LDA to find the closeness between a cluster of songs with
other clusters of songs and the closeness between a cluster of songs with a cluster of
frequent users, in order to build up the knowledge maps of songs and users. To ac-
complish this goal, they started by building up the constituted corpus, which includes a
number of separate text documents for each user. In each user’s document, it includes
a list of string names of songs that this user listen frequently. Based on this corpus,
they acquired the topic-song probabilities p(topic | song) and the user(document)-topic
probabilities p(user | topic) from LDA. Then they applied the k-means clustering on
both probabilities representations to cluster the songs and to cluster the users. Finally,
they matched the clusters in two clustering maps according to the similarity between
clustering centers of songs and users. They observed that the song clusters and user
clusters have their topic significance ; the song clusters and user clusters can be asso-
ciated with each other in the different clusters maps.

In recent works, more and more researchers [175], [177]-[179] focused on combi-
ning together the word embedding techniques and LDA techniques for the concrete
terms representations for specific tasks, i.e. polysemy discrimination, conceptualiza-
tion, and term classification. Here we introduce one work from Liu, Liu, Chua et al.
2015 [175], denoted as 'LDA_word embedding’. They aimed to discriminate the terms
of polysemy and classify similar terms with concrete meanings. In the beginning, they
learned word representations separately by the skip-gram algorithms [90] and by the
features of the topic of LDA, joined them together in the trade-off manner. Based on the
classification rules, the terms could be classified to a close concept. For more details,
the polysemy terms could also be a concept as the label of a class, while the terms in
a class reversely assist to distinguish the meaning of this polysemy term.
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4.6 Evaluation Metrics for Topic Models

Except for the statistical evaluation metrics, topic models could be evaluated thanks
to their intrinsic features as a language model. Without any post-processing interpreta-
tion, a language model could be examined for its predictive power in terms of its ability
to predict words in unseen documents. There are two main metrics to evaluate the
production of a language model, i.e. language model perplexity and topic coherence
score. The perplexity can be interpreted as being proportional to the distance between
the word distribution learned by the model and the distribution of words in an unseen
document [173]; and the topic coherence is used to judge how good a topic model on
qualitative understanding of the semantic nature of the learned topics. In addition, ex-
pect for the evaluation on models, we also mentioned the evaluation metrics for topical
terms, e.g. saliency and relevance.

4.6.1 Model perplexity

Let’s think about this question, what makes a good language model ? Intuitively, we
expect a language model to understand the rules of language but decrease the pro-
babilities of chaotic language expression. In other words, a good language model is to
pursue the high probability and lower perplexity while generating the language expres-
sions. We could also interpret the value of perplexity in a simple way. For instance, if
we have a perplexity of 100, it means that a language model is as confused as if it had
to pick 1 word between 100 words. Thus, lower scores are better.

It is straightforward that, the longer a sentence the more uncertainty is introduced.
To be independent of the size of text, model perplexity is calculated in a normalized
manner by the total number of word probabilities. As shown in Equation 4.12, the per-
plexity could be interpreted as the inverse joint probability of a text, normalized by the
number of words in that text, in which the W contains the sequence of words of all
sentences, denoted by VV words as wy, ws...wy.

1

P(wy,ws, ..., wy)

(4.12)

perplexity(W) =

<=

The joint probability assigned by a language model is simply expressed in Equation
4.13, once we take a unigram model as example. Under the assumption of unigram
model, words are assigned with probability independently, then the joint probability
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could be transformed into the products of the individual probability of words.

v
P(wi, wa, ..., wy) = P(w)P(ws)...P(wy) = HP<wi) (4.13)
=1
If we apply the perplexity in the text document for practice, the perplexity of the test
documents is calculated by the individual probability of words given the train documents
[173] :

P4 g log p(uws | Divain)
> Na,

, where Dy,..., is the documents in training set, D,..; is the documents in test set, wy.

is the words in test set, w; are words in document d;, and N, is the number of words

in document d;.

perplexity(wtest ’ Dtrain) = 637]?(— ) (414)

In the experiments of a topic model, the documents of the training set are used
to train the model and the remaining test documents are for computing the perplexity.
For each test document d;, a randomly selected subset of the words in the document
are assumed to be observed and used to estimate the document-specific parameters
p(z | d;) via Gibbs sampling. Perplexity is then computed on the remaining words in the
document.

4.6.2 Topic coherence

We have talked that the topic model can be evaluated intrinsically in terms of model
perplexity, but there has been less effort on qualitative understanding of the semantic
nature of the learned topics [180]. Topic models learn topics by representing as sets
of important words, which are automatically extracted from massive documents. In
this manner, we treat words as fact, compare word pairs and rate their topics as the
coherence score for the qualitative measure.

To calculate topic coherence for topic models, there are four different stages to be
concerned in the framework of coherence measure [181] : segmentation, probability
estimation, confirmation measure, and aggregation. The coherence of a set of words
measures the hanging and fitting together of single words or subsets of the words.
In the beginning, we could segment a word set into pieces of pairs of word subsets.
Secondly, the individual word probabilities are computed based on a given reference
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corpus. Then, we choose a certain confirmation measure to score the agreement of a
given pair. Last, those values are aggregated to a single coherence value for evalua-
tion. In general, the higher the coherence score the better a topic model is.

As we have talked, the calculation of topic coherence is relevant to a reference
corpus. Originally, it was the human task to evaluate the semantic relevance between
words of a topic [182].

Now a variety of the automated coherence methodologies are proposed. On the
one side, based on the statistic information, Mimno, Wallach, Talley et al. 2011 [183]
believed that standard topic models do not fully utilize available co-occurrence infor-
mation and a held-out reference corpus is not required. Therefore they defined the
coherence metric, relying only upon word co-occurrence statistics gathered from the
corpus. The results proved that the low-quality topics can be detected by their metrics
but not by the existing word-intrusion tests. Newman, Lau, Grieser et al. 2010 [180]
applied a range of topic scoring models for topic coherence evaluation, drawing on
WordNet, Wikipedia and the Google search engine, and existing research on lexical
similarity/relatedness. In comparison with the human evaluation methodologies, they
found a simple co-occurrence measure based on point-wise mutual information over
Wikipedia data is able to achieve results for the task at or nearing the level of inter-
annotator correlation.

On the other side, by utilising word embedding algorithms, such as word2vec [89]
and fastText [184]. Belford et Greene 2019 [185] evaluated the different impact on
coherence scores between these two popular word embedding algorithms and their
variants, using two distinct external reference corpora. It is clear that the choice of
these three factors has a large impact on coherence values, which might affect the
interpretations made from the topics ultimately.

4.6.3 Metrics for Topical Terms

Apart from the evaluation metrics of the entire topic models, we summarize some
metrics based on the closeness of terms to their affiliated topics. Here we would like
to introduce the saliency and relevance, who are capable to examine the significant
terms for a certain topic.

p(w | t)
p(w)

relevance(w,t | A) = Mogp(w | t) + (1 — \) log (4.15)
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The relevance is defined by Sievert et Shirley 2014 [186] to rank important terms
within topics to aid for topic interpretation. As shown in Equation 4.15, the relevance
depends on the p(w | t), the p(w) and a weight parameter \, where p(w) presents the
raw counts of words and A (0 < A\ < 1) determines the weight given to the probability of
term w under topic ¢ relative to its lift. Setting A = 1 results in the familiar ranking with
the topic-word probability p(w | t), and A = 0 ranks terms solely by their lift. According
to the analysis of Sievert et Shirley 2014 [186], it is said that setting A = 0.6 could be
the optimal value to improve topic interpretation.

saliency(w;) = p(w;) X ET:p(t | wi)logp(;g;)w) (4.16)

t
p(wi | t) X p(t)

p(w;)

The saliency is proposed by Chuang, Manning et Heer 2012 [187] to filter out
terms, so as to assist for the rapid disambiguation of topics. In Equation 4.16, it is
composed by p(t | w), p(w) and p(t), where the p(t | w) is the probability about the
observed words generated by a latent topic ¢. It could be induced by the topic-word
probability p(w | t), marginal distribution of words p(w) and marginal distribution of
topics p(t), as shown in Equation 4.17. In the right side of Equation 4.16, it describes
how informative the specific term w; is for determining the generating topic versus a
randomly-selected term to determine such a topic. There are more generic terms than
distinctive terms for the topics, saliency could differentiate among the significant topics
and potential junk topics by measuring the salient terms inside those topics.

However, in brief, even though these metrics of language model and of topical terms
provide us a useful way of quickly comparing models, it does not take into account
the specific tasks, i.e. the evaluation of term classification or clustering. These initial
evaluations of language model are not as "good" as the statistical evaluation metrics,
who are dedicated to achieve a specific final task. Therefore, to have an integrated
evaluation for the performance of topic models, we could employ both kinds of these
evaluation metrics : language model evaluation metrics and the statistical evaluation
metrics.

plt | wi) = (4.17)
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CHAPITRE 5

LDA DRIVEN BY CORE CONCEPTS FOR
TERM CLUSTERING

From the experiments and results of Chapter 3, we learned that LDA could assist
to achieve better performance in term clustering, not only as the topic model to learn
a probabilistic embedding of terms and documents into a topic feature representation
for the classic clustering strategy but also as the foundation of the LDA-based cluste-
ring strategy. Among them, we noticed that the LDA-based clustering strategy has an
overwhelming clustering performance. However, it is difficult to correlate the resulting
clusters to the meanings of core concepts in that corpus.

Here we propose to enhance the strategy of using LDA as a clustering strategy,
to cluster terms over core concepts as a support for learning a modular ontology. It
allows us to build a modular ontology where the clusters of each core concept consti-
tute a module of the ontology to build. In Section 5.1, we introduce the approaches
using core concepts and their hyponyms as prior knowledge to guide LDA to cluster
over core concepts. Then, we discuss the techniques to discover taxonomic relations
by noun modifier relationships and knowledge bases. In Section 5.2, we analyze the
key factors that could affect the performance of our proposal, e.g. the syntactic roles of
NPs, the inclusion of verbs occurring with NPs, the inclusion of NPs which only exists
in GS, and the number of LDA training times. In Section 5.3, we experiment with our
approach by studying the effect of these factors and other LDA parameters on its per-
formance. In section 5.4, we analyze the results of these experiments and according to
that, we highlight the best manner to embed prior knowledge to our strategy of using
LDA for term clustering towards modular ontology learning. Then we compare it with
other LDA-based approaches using prior knowledge, i.e. z-label LDA and seeded LDA.
Then we finish by summarizing the various employments of LDA for modular ontology
construction in Section 5.5. It should be noted that the partial work in this chapter about
twice trained LDA was first published in KES conference [188].
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5.1 Our proposal : LDA guided by core concepts and
their hyponyms

In this section, we propose to improve the LDA-based clustering strategy for modu-
lar ontology building in two sides : 1) In the LDA training procedure, we apply the prior
knowledge embedding techniques to guide LDA model within the clustering strategy,
in order to obtain the term clusters close to core concepts; 2) In the ontology construc-
tion procedure, we employ the taxonomy relation discovery techniques to construct
the taxonomic hierarchy of each module, i.e. noun modifier relationships methods and
knowledge bases methods. Eventually, benefiting from the results of the optimizations
on two sides, we present the workflow to construct the modular ontology with the term
clusters of topic semantics.

Starting from the re-constituted corpus, the prior knowledge embedding techniques
are composed of two main methods relating to the core concepts : 1) applying the
core concept replacement method i.e. if a NP is a hyponym of a core concept (in the
following we call it a CC-subconcept), this NP will be replaced by this core concept; 2)
implementing the subdomain knowledge supplementation method i.e. If a document
has the prior knowledge relating to several CC-subconcepts, this document will be
extended with these CC-subconcepts. The CC-subconcepts could belong to one CC
or several CCs, respecting the presence of prior knowledge.

We believe that the two prior knowledge embedding techniques bring many benefits
for the LDA-based clustering strategy in terms of guiding the training of LDA. The first
method reduces the sparseness of topics, for which situation the meaning of topics is
close to the sparse CC-subconcepts but not the integrated core concepts. In response,
this method enforces the topics with a stronger connection to a core concept. The se-
cond method assists LDA to capture more CC-subconcept-related context in a docu-
ment. Also, they bring benefits in terms of forming clusters close to core concepts. The
first method facilitates clustering performance from gathering CC-subconcept-related
terms to gathering the core concept-related terms. And the second method helps ga-
ther the related terms with the assistance of the supplemented context. Overall, the
proposed techniques could guide LDA to gather terms related to the CC-subconcepts
and the core concepts.
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5.1.1 Prior knowledge embedding

The corpus pre-processing procedure makes use of its linguistic features to sim-
plify the corpus. In this procedure, we would like to enrich this kind of simplified corpus
with the related prior knowledge of topics. For the core concept replacement method,
we would discuss what kind of CC-subconcepts are interesting to be replaced, where
to find those subconcepts and what the replacement benefits are. For the subdomain
knowledge supplementation method, we would distinguish the difference from the pre-
vious method and decide how many CC-subconcepts would be added in the reconsti-
tuted corpus.

Core concept replacement

The precondition of core concept replacement is that the partial taxonomy rela-
tions of core concepts are known, which will be detailed later in Section 5.1.2. Once a
core concept possesses the containment relation to their subconcepts, it would present
much more general meaning than their descendants. Generally, the slight difference
between a core concept and its subconcept brings little impact to the topics or the
subdomains that they belong to. Therefore, the replacement from subconcepts to core
concepts in a new corpus brings little difference. For this reason, a new corpus could
be constructed without affecting the validity of the topic representation of terms [189].
Additionally, core concepts play an essential role in topic modeling to match topics
to subdomains. Intuitively, if we replace CC-subconcepts with their core concept, the
meaning of topics obtained from LDA tends to be close to the core concept.

For instance, in a computer science domain, we can consider two subdomains : the
'machine learning subdomain’ and the 'data structure subdomain.’” In this way, the two
associated core concepts are ‘'machine learning’ and ’data structure’. After the terms
are replaced by the core concepts, for example, ‘supervised classification’ is replaced
by ‘machine learning’, the topics would have a higher tendency to correspond to the
subdomains of the corpus. Notably, not every term is acceptable to be replaced by a
core concept; it will induce a semantic drift if the replaced terms are far from the core
concepts that replace them. Therefore, the recognition of core concept-subconcept
pairs turns to be the key parts. In Section 3.3.2, the terms appearing as the "keywords"
of documents are feasible to express the critical meanings of the subdomains; thus
some subdomain-related terms appeared in the "keywords" prone to be selected as
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TABLE 5.1 — The diverse approaches to employ prior knowledge in different cases.

Approaches Functions Examples

Approach1  without any prior knowledge new image analysis algorithm’, ’layer neural network’, 'support
vector machine’

Approach2 core concept replacement upon Ap- new image analysis algorithm’, ’layer neural network’, ’Machine
proach1 learning’

Approach3  keywords supplementation upon Ap- new image analysis algorithm’, ’layer neural network’, 'support
proachi vector machine’, ’‘computer vision’, ’yield prediction’

Approach4 core concept replacement and supple- new image analysis algorithm’, ’layer neural network’, "Machine
mentation upon Approach1 learning’, "Computer graphics’, ’Computer graphics’

subconcepts. Accordingly, the pair can be denoted as <CoreConcept, Keyword>. In
Table 5.1, the 'support vector machine’ is recognized as the 'Keyword’ in ’Approach2’
and is replaced by its 'CoreConcept’ Machine learning. In the following content, we will
utilize keywords as a unified name for the subconcepts.

Concerning the bag-of-word assumption, the core concept replacement technique
brings many benefits in supporting LDA training :

e The size of the vocabulary is dramatically reduced, which leads to the reduction
of computational complexity.

e The frequency of hypernym terms has a significant increase, such that their
statistic importance is highlighted during training.

e The neighbor terms of original hyponyms (words being replaced) could be cap-
tured easily because they co-occur with the more frequent hypernyms after re-
placement, to implicitly reinforce the connection between neighbor terms and
the substitute hypernyms.

Subdomain knowledge supplementation

The previous method tends to adjust corpus to help topics get close to subdomains,
comparatively, the subdomain knowledge supplementation method preserves original
terms but adds supportive information to increase the prominence of supportive infor-
mation for topic modeling.

From the bag-of-world assumption, LDA uses the statistics of term and document
frequency to generate the probabilistic topic model; therefore, the order of terms in
a document is not important for the LDA algorithm. As a new method, the supportive
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information could be appended at the tail of each document, which extends the content
with a higher occurrence of these appended words. In this context, the supportive in-
formation should present with the most specific and expressive terms to accentuate
the dependence between documents and their subdomains(i.e., keywords in each do-
cument). As the keywords discussed in Section 3.3.2, we would append from 0 up
to 5 keywords for each document. Overall, the supportive information for each docu-
ment can be the keywords list or the list of the corresponding core concepts of these
keywords, corresponding to 'Approach3’ and 'Approach4’ of Table 5.1 respectively.

5.1.2 Taxonomy relation discovery

Here we are interested in building a partial taxonomy deriving sub-concepts from
the core concepts. There are two resources to acquire taxonomic relation between
terms : 1) from the text’s linguistic features; 2) from the published taxonomy of com-
mon knowledge bases. We apply the noun modifier relationships techniques in the
former approach to identify the taxonomic relations between noun phrases, especially
between NPs and the core concepts.

Taxonomic discovery from text by noun modifier relationships

A head noun along with a noun pre-modifier is often called a noun compound, which
is one kind of noun phrase. Levi 1978 [190] argued that the word formation make noun-
noun compounds a heterogeneous class.

For the purpose of taxonomic relation discovery, we would like to focus on the se-
mantics of a noun compound that are transparent and endocentric according to Barker
et Szpakowicz 1998 [7]. The meaning of a transparent compound is close to its ele-
ments. For example, ’query language’ is transparent (the language specified for the
usage of a query); in the opposite, ’‘Guinea pig’ has no obvious relationship to guinea
or to pig. The meaning of an endocentric compound is considered as a hyponym of its
head. For example, ’relational database’ is a kind of ‘database’; in the opposite, ’bird
brain’ does not refer to a kind of ’brain’, but rather to a kind of person (whose brain
resembles that of a bird).

Furthermore, the multiple nouns compounds is also a kind of noun phrase, who in-
cludes more than two words. The taxonomic relation is located between the head noun
compound and the pre-modifier noun compound. For example, ’formal query language’
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TABLE 5.2 — The discovered hyponyms of head terms

head terms query language relational database knowledge base
formal query language probabilistic relational database behavior knowledge base
database query language non relational database current knowledge base
NPs with
prefix keyword query language relational database system heterogeneous lexical knowledge base
(hyponyms)
generic temporal query language multi relational database ontological knowledge base

is a kind of ‘query language’. Liberman et Sproat 1992 [191] has investigated to bracket
those head noun compounds and pre-modifier noun compounds to specify the relation
between them. In fact, a head noun compound contains a more general concept than its
combined noun phrases. We supposed that the shorter head noun compound (namely
hypernym) holds a taxonomic relation with its longer combinations(namely hyponym).

However, to guarantee the reliability of the discovered relations, it is vital to jud-
ging whether a head noun itself is meaningful as domain knowledge. If a head noun
is significant for a domain, it is convinced that its noun phrase is still meaningful be-
cause it becomes a more concrete concept. Therefore, we consider the core concepts
themselves and their corresponding keywords as the head noun compound.

To find the hyponyms of the selected head terms, it is also to find the noun phrases
in which a head term is combined with prefixes. We can benefit from a pattern defined
by the regular expression :

% HeadTerms$

This pattern is used in string searching algorithms to find the target string as its cor-
responding hyponym.

For instance, in Table 5.2, here are several examples of the resulted hyponyms
derived from the selected head terms. It is worth noting that the head terms themselves
could be noun phrases, which is even more preferable than the single term.

Consequently, this pattern could lead to rather high precision with the cost of the
low recall. The probable damage over precision is given by adding the negative prefix
to a head term. i.e. structured storage and non-structured storage.
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TABLE 5.3 — An example for hyponym acquisition in DBpedia.

Step| Logical Implication SPARQL Query

[ ddbr:Machine_learning -

. 3dbr: Machine_learning. SELECT ?X. WH'?ERE {dbr:MaChine_'l?earning
det:subject.  {dbcres) dct:subjeqt ?x. FILTER regex( ?x,
"http://dbpedia.org/resource/Category:")}
I dbezres).skos:broader. SELECT_?y WHE_RE{?y skos:broader
dbc:Machine_learning. FILTER regex(?y,
"http://dbpedia.org/resource/Category:")}
Hdbe:resl}.skos:broader.

- dbe: SELECT 7z WHERE {7z skos:broader{1,5}
v oo dbc:Machine_learning. FILTER regex( ?z,

Hdbc:res2}.skos:broader. — : !
dbe:resl http://dbpedia.org/resource/Category:")}

. dbc: M achine_learning

Taxonomic discovery by knowledge bases

The knowledge bases tend to blanket extensive information to be encyclopedic and
serviceable for users. It is beneficial to connect the local ontology to the global know-
ledge bases to obtain a befitting and expert domain ontology. Especially, we focus on
extracting the taxonomic relations between core concepts and their hyponyms that oc-
curred in the corpus.

However, it is not simple to canonicalize the noun phrases to the available entities
in the knowledge bases. The canonicalization process is, given the synonyms of NPs,
to select a representative NP that will replace the other NPs in the canonicalized KB
[118]. To simplify the canonicalization process, we apply the API :Opensearch [192]
from MediaWiki project' to match the NPs to the existing items in the related know-
ledge bases. We draw attention to the two widely used knowledge bases, i.e., DBpedia
[193] and Wikidata [194], and anticipate retrieving the hyponyms of the proposed core
concepts. For instance, we follow four steps by applying SPARQL queries in DBpedia
to obtain the descendants of core concepts :

i). match a NP to one existing entity in DBpedia

ii). match the existing entity(i.e. 'Machine_learning’) to the category items (i.e. 'Cate-

1. https://www.mediawiki.org/wiki/API:0pensearch
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gory :Machine_learning’) in DBpedia
iii). find the subcategories of the obtained category item

iv). find the subcategories in the depth of 5 layers of the obtained category item

For each step, we provide the corresponding logical implication and the SPARQL
query with "Machine Learning" as an example in Table 5.3. The first step implies that
the noun phrase "Machine Learning" is successfully canonicalized by an identifier of
DBpedia by using the API :Opensearch [192], i.e., dbr:Machine_learning. In the co-
lumn of logical implication, the query results are denoted as {dbc:res}, and the relations
stand out as dct:subject and skos:broader. We carefully select the former relation to ex-
plore the category items and apply the latter relation regarding the obtained category.
The final results are listed in the Appendix as Figure 7.18.

By contrast, the taxonomy extraction process from Wikidata is more convenient
with the assistance of a tool wikidata-taxonomy?. This tool makes use of the property
"subclass of" or "subproperty of" to obtain the descendants of a canonicalized noun
phrase, and one example of the 'Machine Learning’ taxonomy is listed in the appendix
of Figure 7.19.

After the hyponyms extraction from the two knowledge bases, it is important to
check whether the extracted NPs have also occurred in our source corpus. To maxi-
mize the hyponym outcomes, for each core concept, we merge its hyponyms from the
two different sources. As shown in Table 5.4, the first group columns present the sta-
tistics of the extracted hyponyms from two KBs. Then we will filter out the duplicate
hyponyms of each core concept and delete the chaotic hyponyms that affiliate to mul-
tiple core concepts, denotes as the two deletion Phrases 'Del1 and Del2’. In the end,
those extracted hyponyms will be cleaned in the same manner as that of other NPs
in the corpus. From the second group columns, we can observe that the corpus only
contains 215 NPs over the entire extraction with 1129 NPs, and the occurrence of these
215 NPs takes place 1308 times in the corpus.

Interestingly, we also summarize the effects of taxonomic phrase discovery by ap-
plying the techniques of noun modifier relationships. In the last group of Table 5.4, all
of the hyponyms of core concepts are taken into account in column "Without Del’. Then
the hyponyms that only appear once in the corpus are deleted to avoid storing the rare
hyponyms. It shows that we could acquire 164 unique hyponyms of core concepts, and

2. https://github.com/nichtich/wikidata-taxonomy
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TABLE 5.4 — The extracted hyponyms and its appearance in corpus

#hyponyms in the knowledge #KB hyponyms in #hyponyms from the noun
bases Corpus modifier relationships

Core Concepts
Two KBs Dellt Del2 Clean #unique #0Occu #without Del #unique #Occu

Algorithm_design 0 0 0 0 0 0 112 14 38
Bioinformatics 12 12 12 13 8 24 86 1 2

Computer_graphics 36 36 36 34 32 141 52 6 14
Computer_programming 115 114 113 120 20 43 57 5 18
Cryptography 21 21 21 20 21 21 75 15 98
Data_structure 211 200 197 202 11 113 290 54 186
Distributed_computing 50 43 43 42 8 140 0 0 0

Machine_learning 75 75 75 75 9 236 92 6 18
Operating_system 635 565 562 518 25 112 172 38 188
Software_engineering 72 72 71 69 44 293 100 15 40
Network_security 37 37 37 36 37 185 73 10 42
total 1,264 1,175 1,167 1,129 215 1,308 1,109 164 644

Note : 'Del1’ denotes the operation to filter out the duplicate hyponyms of each core concept;
'Del2’ is to delete the chaotic hyponyms that affiliate to multiple core concepts ; ‘#unique’ repre-
sents the number of unique hyponyms ; ‘#Occu’ denotes the occurrence of the unique NPs in the
corpus ; ‘#withoutDel’ means all of the hyponyms of core concepts are taken into account.

they appear 644 times in the corpus. All in all, we observe that it has no overlapping
between the hyponyms from KB and the hyponyms from the noun modifier relation-
ships. Therefore, the total number of hyponyms we found is the summation of the two
kinds of hyponyms.

From the comparison of the hyponym discovery performance between the two ap-
proaches, it is clear that the occurrence of extracted hyponyms by the noun modifier
relationships approach is rather lower than that by the KB approach. It implies that the
KB approach could extract the hyponyms that are significant in corpus occurrences.
However, the noun modifier relationships approach is much easier and faster to exe-
cute and acquire taxonomic results.
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FIGURE 5.1 — The modular ontology construction with topic clusters.
Notes : The black dots in bottom-left are the NPs extracted from the corpus, where the 'CC# denotes
the core concepts and 'N#.#" denotes their corresponding hyponyms.

5.1.3 Towards modular ontology

After the formations of clusters and their aggregation by subdomain (i.e. by core
concept), we could benefit from the recognition of the taxonomic relations among NPs,
to construct a modular ontology and a taxonomy inside each module. The workflow
is presented in Figure 5.1. In step |, all terms could be assigned to topic clusters ac-
cording to the LDA training results. In step I, these topic clusters are tagged into the
different separations (i.e. the blue clusters and green clusters), which guarantees that
the cluster including one core concept and the clusters including the hyponyms of this
core concept are aggregated together. It is worth mentioning that the white cluster here
is not assigned to any separations because it does not contain any core concepts or
their hyponyms, which would be eliminated in the ontology construction step.

In the final step, each module corresponds to one sub-domain separation that in-
cludes the related topic clusters. And the discovered taxonomic relations will be consi-
dered the backbone of a hierarchy. Except for the backbone terms, the terms, who do
not hold taxonomic relations but in the same topic cluster with a core concept, possess
the topic-related relations with this core concept. Because we assume that all the terms
within a topic cluster hold the topic-related relations to each other.

These relations set up the strong inner connections for a module. For the modules
of an ontology, they are loosely coupled and alternative to be replaced. This flexible
construction facilitates knowledge reuse and provides users the knowledge with the
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self-adapted scope.

5.2 The Influencing Factors of our Proposal

5.2.1 Composition of the reconstituted Corpus

The idea of the reconstituted corpus has been introduced in Section 3.1.1, here we
would like to detail this idea using more the notion of probability.

The general process of the corpus reconstitution is to extract the 'focusing terms’
from a document and store them into a string list as a reconstituted document. In
fact, the types of 'focusing terms’ work as one of the main influencing factors in our
approach. We consider four kinds of ’focusing terms’ : 1) NPs with syntactic roles as
subject and object; 2) NPs and their co-occurred verbs; 3) NPs that only exist in Gold
Standard ; 4) NPs that have high topical significance.

NPs as subject and object

Regarding the utility of syntactic roles, a sentence’s skeleton comprises the subject,
the object, and their related verb. In Section 3.1.1, we believe that terms with important
syntactic roles are assumed to cover the most descriptive information in a sentence.
Despite the other term constituents of a sentence, we would like to examine the diffe-
rence between the NPs as subject and object and the NPs with any syntactic roles.

NPs with verbs

The NPs, acting as subject or object, are worth to be highlighted in concept extrac-
tion. On the one hand, their contextual components, i.e., verbs or VPCs, could present
the concrete connection between NPs. On the other hand, verbs or VPCs usually serve
as functions in sentences [195]. We would like to designate the reconstituted corpus
to only include NPs with the syntactic role as subject and as an object and/or include
their co-occurred verbs as well.
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FIGURE 5.2 — The procedures to extract NPs with high topical significance in the modle
of twice trained LDA [188].

NPs from GS

Imagine that there is the only domain-related term (i.e. terms from Gold Standard)
in the corpus, it is interesting to discover how the topic model will perform on this 'pure
corpus’. The comparison between this corpus and other reconstituted corpus will help
to judge whether the inclusion of domain unrelated term contributes to the topic model.

NPs with high topical significance

Except for the terms from Gold Standard, it is noteworthy that many other terms
are not interesting to be engaged in the partitions of domains. For instance, if some
terms are not significantly related to a certain topic, these terms’ involvement will bring
some fuzzy meanings into topic clusters and even give rise to semantic drift of topics.
To address the problem, we propose to employ twice trained topic modeling of LDA as
an approach to sorely concentrate on the topic-significant terms, which is detailed in
my published paper [188]. In the drawing of Figure 5.2, from the first training of LDA,
we can obtain the term probabilities of topics and term significance of topics from the
corpus. This information can be used as indicators to identify topic-significant terms.
Then the residual terms will be kept for the second training of LDA. It is anticipated
that the second trained LDA can cluster terms into topics regarding the significance of
terms.

Overall, the different operations correspond to the different cases of the manipulated
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TABLE 5.5 — The different cases of corpus reconstitution.

Nps as Subj or Obj NPs with Verbs NPs From GS NPs with high topical significance

Casel yes yes

Case2 yes yes yes

Case3 yes

Cased4 yes yes

Case5

Case6 yes

Case3-T yes yes
Case4-T yes yes yes
Case5-T yes
Case6-T yes yes

corpus. To have a clear overview, in Table 5.5, the columns present these four kinds of
"focusing terms". A row denotes a case of a specific reconstituted corpus associated
with a combination of "focusing terms" kinds. Cases ending with ’-T’ correspond to the
fourth factor with the model of twice trained LDA. We study the influence of the kind of
"focusing terms" and find out the suitable cases to support LDA as a clustering strategy.

5.2.2 Corpus Filtering

As discussed above, the corpus is re-constructed in different manners respecting
different phases, but the primary purpose stays the same : it is to facilitate the training
of LDA for better clustering results. Still, the most common and rarest words’ existence
decreases the efficiency to learn LDA, where the common words mix up the separate
topics, and the rare words increase the complexity of calculation but contribute little to
the distinction of topics. To handle this problem, the idea of the TF-IDF (Term Frequency
- Inverse Document Frequency) statistic model could help to filter out the most common
terms, and their term frequency could simply separate the rare terms.

A high value in TF-IDF is reached by a high term frequency and a low document
frequency of this term. The value hence is used for filtering. However, the integrated TF-
IDF value also tends to filter out topic-related terms under a certain threshold. Based on
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this problem, it is better to analyze the filtering impact of term frequency and document
frequency individually.

In the beginning, it is interesting to check whether the two individual metrics tend
to filter out the same sets of terms within the same range. In Figure 5.3, the top-10
frequent terms of TF and DF are listed in the order of their maximum TF-IDF values.
It is evident that even though the two metrics could filter partially the same terms, still
they have different preferences to filter out words. And we could conclude that the
maximum TF-IDF value of a term could not provide the evident boundary to distinguish
those 'common terms’. However, with the combination of TF metric and DF metric, it is
sufficient to filter out the common terms by given a certain threshold.

The threshold could be a concrete value, a ratio of the set, or even the appearance
of a ’target term’. For this corpus, our 'target term’ could be the most interesting, rela-
ted, and distinctive term; it is acceptable to consider the most frequent core concept
term as a ’target term’. For this ’target term’, it is easy to acquire its term frequency and
document frequency. These two values could be assumed as the ’basic lower bound’;
the number of terms whose frequency exceeds this 'basic lower bound’ could be re-
corded then. In Figure 5.4, it presents an example with concrete numbers above the
threshold (ratio lower bound) in the corpus Computer Science. In this example, along
with the decreasing ratio in X-axis, the number of terms whose frequency exceeds the
threshold (ratio lower bound) is increasing dramatically. We could observe a big gap
between ratio 0.2 and ratio 0.1; To avoid over-filtering, the frequency with ratio 0.2 is
specified as the ’final threshold’.

Once the ’final threshold’ is selected, the two sets of terms could also be extracted
by both term frequency and document frequency. The overlapping terms of two side
extraction would be considered as the common terms, which are designed to be filtered
out then.

Besides terms, it is also required to eliminate some fragmented documents, which
only include a few words as the entire content. In the pre-processing procedure, since
each document has been transformed into the designed content with NPs, the ex-
tracted content may be extremely limited. On this occasion, the fragmented document
would be filtered out because of its tiny content. Then this step is followed by filte-
ring out terms to have the newly constructed corpus. Table 5.6 presents an example
of Computer Science corpus with concrete data for the whole filtering procedure. It is
evident that step-(2) has four times less content than the original corpus in step-(1). In
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TABLE 5.6 — The statistics of filtering of computer science corpus.

Different Phrases of Type of Tokens Number of To- Numberof Unique Additional Info.
Corpus kens occurrence  Tokens

(1). Source File Terms 1,180,813 76,459 # files : 6514

(2). All NPs File NPs 289,564 120,293 # files : 6514
(3-Filtering Out Files) (< NPs 289,333 120,189 # files : 6486

10)

(4-Filtering Out Com- NPs #terms to be dele-
mon Terms) ted : 398
(5-Filtering Out Rare NPs #terms to be dele-
Terms) (< 2) ted : 95,310
(6-New NPs file) NPs 114,807 24,585

the filtering procedure, the fragmented files are firstly cut out if they contain NPs less
than 10 (i.e. step-(3)). Then the common and rare NPs are filtered out in step-(4) and
step-(5). Finally, step-(6) ends with the extra two times less based on step-(2).

5.3 Experiments

To improve the LDA model for the term clustering purpose, we focus to examine the
three main aspects that significantly influence the LDA model’s performance. Firstly,
we study to find the optimal parameter setting for LDA models regarding a convinced
metric, i.e. silhouette width. Then, along with the same parameter setting, the LDA
model’s random effects would be examined, in which the stable LDA models are favo-
red. Finally, once we have settled down the steerable parameters of LDA models, we
summarize the procedures of model selection to find the models that are capable of
providing good performance on clustering terms into sub-domains.

5.3.1 Parameter setting

In order to accelerate the training process of the LDA model in the massive docu-
ment collections, it is prominent to use the online variational Bayes algorithm for Latent
Dirichlet Allocation( LDA) [196], owing to the quick convergence of variational Bayes
objective function. Now the concrete model has been decided, it is important to learn
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about the impact of the intrinsic parameters of the algorithm on the performance of the
LDA model :

e Topic number K. The number of topics has the most straightforward influence
on the probabilities between topics and words. The fewer topics are prone to mix
up the comprehension of the sub-domains knowledge, while the more topics
apt to over-interpret the concepts into the scattered term clusters. In contrast
with these two extreme cases, we anticipate that a term cluster holds a detailed
concept rather than a mixed concept. Therefore, the number of topics is worth
to be measured in the increasing trend, e.g., from 10 topics to 200 topics.

e Alpha «. The parameter « presents the prior belief for each topics’ probability.
In most cases, it is set as the symmetric distribution, where all the topics have
the same probability in the beginning.

e Beta ;5. The parameter g presents the prior belief for the topic terms probability.
In parallel, it is set as the symmetric distribution as default usually.

e Chunksize. The learning parameter chunksize indicates the number of docu-
ments to be used in each training chunk. It is the customized parameter for
online LDA [196]. The higher the value, the shorter the computation time, but
the performance suffers.

¢ Repetition. The times to repeat the training procedures without changing any
parameters above. Here all of the experiments are repeated 10 times and they
offer the averaged results for evaluation.

After learning about the parameters’ utilities, we expect to discover the optimal pa-
rameter setting for LDA models. For this reason, we could benefit from the evaluation
metrics. The target of selecting the LDA model parameters is to obtain the optimal
topic-term probabilities, where the terms show the distinctive likelihood for a certain
topic. In the geometric space, the goal is reflected by the preferred phenomenon, in
which the terms gather together for one topic and the distance between topic clusters
is far from each other.

It conforms to the idea about the compactness and separateness of the mentioned
metric, silhouette width.

The benefit is that, by using the silhouette width, the parameter selection procedure
be done without using the Gold Standard. The silhouette width of the topic term pro-
bability will be considered as the criterion for selecting the parameters. We alter the
number of topics and the number of chunksize as the two main LDA model’s variables,
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assuming others to be the default setting. Worth mentioning that, because of the appli-
cation of forming terms’ clusters, the topic clusters in geometric space are instantiated
into terms’ clusters. However, not all the topic clusters possess their topic-significant
terms (see Section 3.2.2), which leads to some empty topic clusters. The empty cluster
means that the topic feature is not able to be instantiated by terms. All of the variables
and their resulting silhouette widths are presented in Table 5.7. The results are ac-
quired based on the Computer Science corpus (‘case5’ in Table 5.5) by applying the
filtering ratio of lower bound to 0.2.

On the one hand, we assume that the high silhouette width reflects the better ag-
gregation of terms. On the other hand, we also need to take into account the number of
topics. As shown in Table 5.7, the highest silhouette width appears in the fourth record
from the end. However, in this record, the number of non-empty clusters is too low to
provide sufficient and clear clusters. We would like to choose the parameter (50, 50,50,
0.949) (which is underlined in the table) because there are no empty clusters and the
silhouette score is nearly high. Therefore, we select the corresponding parameters to
train an LDA model.

However, the optimal parameters are not fixed for the different corpora. If a new
corpus is introduced, we need to go through all of the candidate parameters to find the
optimal option. Once the number of topics has been settled down, selecting parameters
could be facilitated by only choosing the chunksize.

5.3.2 Random effect

Because of the existence of random effects in the topic model, we usually always
get different results with the same parameter setting. After considering this, it is neces-
sary to learn about the influence of random effects on the term clusters’ final results.
The final term clusters are instantiated by a group of terms, however, the silhouette
width metric cannot be used to measure the semantic closeness of terms and the size
of terms in clusters. At this point, we choose the macro, micro, and pairwise metric
as direct evaluation measurements. In this manner, we could learn about the random
effect respecting applying LDA as a clustering strategy.

For instance, we directly apply the selected parameter setting (the underlined record
in Table 5.7) to the LDA model and estimate the cluster results with the assistance of
the Gold Standard. The results are acquired based on the Computer Science corpus
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TABLE 5.7 — The silhouette width on topic term clusters with different parameters of
LDA in Computer Science corpus.

# topics # chunksize # non-empty clusters silhouette width

10

10

10

10

10

50

50

50

50

100

100

100

100

100

200

200

200

200

200

10

50

100

500

2000

50

100

500

2000

50

100

500

2000

50

50

28

81

97

100

100

28

73

175

200

0.658
0.685
0.729
0.500
0.290
0.927
0.949
0.937
0.716
0.558
0.966
0.925
0.917
0.821
0.626
0.984
0.977
0.961
0.890

0.673
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TABLE 5.8 — The random effect of LDA model.

LDA model
average standard deviation

RANDOM O RANDOM1 RANDOM 2

Avg size of cluster 7.6 7.0 7.5 7.4 0.2658
macro_prec 19.4% 14.3% 15.8% 16.5% 2.16%
macro_recall 0.0% 0.0% 0.0% 0.0% 0
macro_f1 0.0% 0.0% 0.0% 0.0% 0
micro_prec 57.7% 59.9% 54.0% 57.2% 2.40%
micro_recall 25.6% 25.2% 25.6% 25.4% 0.19%
micro_f1 35.4% 35.4% 34.8%  35.2% 0.32%
pair_prec 36.6% 39.1% 30.2%  35.3% 3.76%
pair_recall 11.1% 10.2% 10.9% 10.7% 0.40%
pair_f1 17.1% 16.2% 16.1% 16.4% 0.44%

Notes : The LDA models are trained with 50 topics, 50 chunksize and 50 non-empty clusters. It is applied on the Computer
Science corpus by applying the filtering ratio of lower bound to 0.2.

(‘caseb’ in Table 5.5) by applying the filtering ratio of lower bound to 0.2.

As shown in Table 5.8, the evaluation results are generated from the same LDA
model but with three different random states. From the comparison, we observe a little
difference between the averaged clusters’ size, which suggests that the resulting terms
keep stable in quantity for different random states. It conforms to the small variations
on the recall values; that is to say, the amount of retrieved terms has a small change.
Besides, we notice that the difference in the three precision metrics changes signifi-
cantly than other metrics. This scenario reveals that some terms alter their affiliations
of clusters in random states.

In brief, the LDA model's random effect does not have a strong impact on the re-
sulting range of terms, but it brings a slight variance in the affiliation of the clustered
terms.

5.3.3 Model selection

Up to now, we have discussed the method of optimal parameter setting for the LDA
model. We also measured the random effects of LDA models when the parameter set-
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ting is the same. However, we still have no idea which model satisfies the anticipation
of term clusters. In this section, we would like to present the strategy of selecting LDA
models based on the previous training methods. To be generalized, we will go through
the whole procedures of filtering datasets, clustering terms, and evaluating the LDA
models. In this framework, we display each step’s optimization strategies to get the
most optimal LDA model in different steps.

All in all, the entire step of training LDA model is summarized below :

i pre-process corpus
—select the different re-constituted corpus and the prior knowledge embedding
techniques along with it (Section 5.1.1)
—delete the rare terms and common terms of corpus (Section 5.2.2)

i select LDA model (Section 5.3.1)
—set the parameters of LDA model, e.g. chunksize and number of topics
—select the most outperforming LDA model by the silhouette width metric re-
gardless of the random state

iii cluster terms
—form term clusters (Section 3.2.1)
—thin term clusters (Section 3.2.2)

iv evaluate term clusters
—evaluate the term clusters with different metrics (Section 5.4.1)
—compare the optimal LDA model with other LDA models with seed information
(Section 5.4.2)

5.4 Evaluation : Results, Analysis and Comparison

Given the term clusters of LDA training, two main factors could influence the eva-
luation step : the corpus field and the evaluation field. The corpus field has 10 different
cases of the re-constructed corpus and 4 different approaches of embedding prior
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TABLE 5.9 — The evaluation of five different metrics on the re-constituted corpus.

silhouette width purity ARI MCC AMI
Case-GS preference yes yes yes yes yes
Case-syntactic roles preference yes not clear not clear not clear
Case-verbs preference not clear not clear not clear not clear not clear
Case-training times preference once not clear not clear not clear not clear
Approaches preference Approach?2 or approach4 approach4 approach4 approach4 approach4

knowledge. The evaluation field divided the evaluation metrics into 5 different measu-
rements by their different focuses.

5.4.1 Results and Analysis

Regardless of the evaluation metrics, it is indispensable to proceed from the corpus
field to judge the term clusters’ results.

On the one hand, we intend to examine the clustering effects of LDA trained in the
different cases of the corpus field. On the other hand, we bear in mind that embedding
prior knowledge also influences the results respecting the Gold Standard.

To provide a clear view of those influence factors, we presented the resulting fi-
gures of the individual evaluation metrics in Appendix 7.4. Based on those metrics’
performance, we summarize and display the outcomes of term clusters on account of
the corpus fields, see Table 5.9. For the implicit meaning of 'C#A#’, we could look back
to Table 5.5 and Table 5.1 for more details, where the 'C# corresponds to the different
identifiers of cases and the ’A#’ corresponds to different identifiers of approaches.

As discussed above, the corpus field is divided into two parts : 10 different cases
of re-constructing corpus and 4 different approaches of embedding prior knowledge.
The different cases refer to the different property categories. For instance, in Table 5.9,
the category Case-GS preference indicates that whether the performance is preferable
when all the input terms belong to the Gold Standard, and it is signified by the com-
parison of {case 1; case2} and the rest of cases; the category Case-syntactic roles
preference denotes that whether it is preferred when only the terms with important
syntactic roles are contained as input, which is marked by comparing {case3} against
{caseb}; the category Case-verbs preference means whether it is outperformed when
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the corpus is enlarged with the co-occurred verbs of the remaining NPs, by comparing
{casel} to {case?2}, {case3} to {case4} and {case5} to {caseb}; the category Case-
training times preference examines whether the twice re-constructed corpus exceeds
the others, by contrasting {case#} to {case#-T}. Besides, the category Approaches pre-
ference expresses whether it is encouraging to apply a certain approach to embed prior
knowledge on the corpus by comparing the overall performance in all cases.

The results of silhouette width are shown in Figure 7.13 of Appendix 7.4. The
negative value or even -1 implies that there are too many or too few clusters,

while the value 1 means the clusters are well separated from each other. Fortuna-
tely, all of the results are positive values in this figure, which reveals that the clusters
are separated in a balanced way. The high value of case1 and case2 denotes the
best compactness and separateness than other cases, which conforms to the fact that
the cases with gold standard terms as input are preferred. The decreasing trend from
case3 to case5 indicates the syntactic role preference of NPs. Comparing the twice
trained cases to the original cases from case3 to case6, we can notice the main de-
creasing trends, which means more training times do not bring better performance. In
general, we observe that approach 2 and approach 4 surpass other approaches for
most of the cases.

The results of purity score are shown in Figure 7.14 of Appendix 7.4. The value
0 implies no relationship between the groups of terms and the Gold Standard’s sepa-
rations. On the opposite, the value 1 means the perfect matching between them. The
resulting value of the purity score ranges from 20% to 55%, which reveals the degree
of connection between the resulting groups with the Gold Standard. It is evident that
casel1 and case2 have around 3 times higher purity than the other cases; it shows the
strong GS preference for groups’ purity.

For the other cases, with a value of around 20%, it is difficult to distinguish the
difference among them. Overall, approach4 is quite outperforming other approaches in
a large part of cases.

For the results of ARI, MCC and AMI, their results are shown in Figure 7.15, 7.16
and 7.17 of Appendix 7.4. The value 0 indicates the random groups of terms compared
to the Gold Standard, while the value 1 means the perfect matching. The trends of
results are similar to that of purity scores. The main difference is that most of the
cases, except for case1 and case2, were fluctuated around the base value 0%, which
means the groups of terms do not conform to Gold Standard. Even if like this, we could
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FIGURE 5.5 — The Macro, Micro and Pairwise evaluation results for different cases and
approaches.
Notes : The results are averaged for 10 times with parameters : 50 topics and 50 chunksize. It is
applied on the Computer Science corpus by applying the filtering ratio of lower bound to 0.2.

observe that approach 4 has the best performance in most cases.

From these facts, we may conclude that the cases with GS corpus are far more
outperformed than other cases, which is seen as the upper limit of all the cases. The
biggest difference of GS corpus against the other corpus is the lack of "unknown"
or "other" terms, which means their corpus only contains domain-specific terms. We
can induce that the exclusion of domain-unrelated terms in the input is good for term
clustering. Furthermore, it is hard to conclude that the corpus has a preference in
terms of syntactic roles of terms, the addition of verbs, or the training times. But it is
easier to perceive that approach 4 has a slight distinction from other approaches on
the performances of the evaluation metrics.

It is hard to recognize the difference between cases in most of the individual evalua-
tion metrics. To solve this problem, we intend to apply the macro, micro, and pairwise
evaluation metrics to evaluate the term clusters in a continuous vision. Fortunately, the
difference between cases turns to be more significant than the former metrics. In Fi-
gure 5.5, the string in horizontal axis 'C#A# denotes the case# with approach#. The
comparison between different cases shows that the GS corpus ((C1A# and 'C2A#’)
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achieves around 70% in the micro precision score. On the one hand, we notice a slight
increase resulting from verbs’ inclusion (i.e. from 'C1A# to 'C2A#’) and a considerable
increase by applying the corpus regardless of the syntactic roles(i.e. from 'C3A# and
'C5A#). On the other hand, we note that the local peaks of precision and F1 metrics
are mostly located at approach 4. Thus the 'C6A4’ reaches the highest values except
for case1 and case2. To have a clear view of the concrete clustering results of 'C6A4’,
we provide an example in Figure 7.20 in the Appendix section.

In brief, we are convinced that the GS corpus provides the best term clusters obtai-
ned from LDA models. However, this kind of corpus is artificially constructed, respec-
ting the given Gold Standard. Besides, we found that the NPs corpus accompanying
with their co-occurred verbs with Approach4 techniques(i.e’C6A4’) provides the best
performance in term clusters.

5.4.2 Comparison

Once we have selected the optimal case (i.e/C6A4’) of clustering terms among
many different cases, we learn that the re-constructed corpus embedding with prior
knowledge could achieve the local optimal results than the normal LDA training. Like-
wise, some other seed-embedding topic models follow the same idea to guide the topic
model to perform in a preferred way. It is necessary to compare our optimal cases with
other topic models, e.g., z-label LDA [10] and seeded LDA [11].

From the discussion on the various evaluation metrics, we note that the application
of micro precision conforms to our major interests on term clustering, respecting the
Gold Standard. Thus we would like to apply only the micro precision to measure the
performance of term clusters with the comparison between models, i.e. the selected
case on LDA, z-label LDA, and seeded LDA. To thoroughly evaluate different models,
we would implement these models in two different corpora like in Section 3.3 : the
Computer Science(CS) Corpus® and the Reuter Corpus*. The information of seed
keywords of these two corpora is described in Section 3.3.2 and their statistics are
presented in Table 3.5. If you are interested in the methods of seed word assignments
regarding the different number of topics, please check the examples in Appendix 7.21.

The z-label LDA could modify the inference of latent topics with a flexible degree,

3. https://data.mendeley.com/datasets/9rw3vkcty4/6
4. Reuters-21578 : http://kdd.ics.uci.edu/databases/reuters21578/reuters21578.html
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ranging from 0 to 1. Here we are interested in the three values as discussed in Section
4.4.1, namely no constraint (value 0), soft constraint (value 0.5), and hard constraint
(value 1). In Figure 5.6, these three constraints are signified by different colors. The
micro precision of the case 'C6A4’ with topic 200 is presented as the fixed value indi-
cating line. It is obvious that the trend of the micro precision on CS corpus decreases
steadily, while the trend on Reuter corpus decreases dramatically until reaching the lo-
west point at 40 and increases a bit then. Overall, the CS corpus reaches higher micro
precision than the other corpus for z-label LDA. Also in CS corpus, we can observe
that the hard constraint (value 1) outperforms the other constraint values, and all of
them are locating above case 'C6A4’. However, in Reuter corpus, there is no clear clue
to distinguish the performance of different constraints. Thus we can rank roughly from
the best-performed models to the worse ones :

zlabel — hardConstraint > zlabel —soft | noConstraint > optimalCase—'C6A4" (5.1)

The seeded LDA handles the learning of topics by applying the topic alignments
of seed words. The M1 model only benefits from the modification over the topic-term
distributions, while the seeded LDA benefits from the integrated model of both topic-
term distribution and document-topic distribution. At the same time, we present normal
LDA as well. In Figure 5.7, it is obvious that the trends of CS corpus and Reuter corpus
are decreasing along with the increase of topics and ending with the similar trends
below that of case 'C6A4’. We can observe that in the CS corpus the seeded LDA
outperforms the M1LDA and the M1LDA outperforms the normal LDA, but all of them
are below case 'C6A4’. Thus we can rank them from the best-performed models to the
Wworse ones :

optimalCase —' C6A4" > seeded LDA > M1LDA > normal LDA (5.2)

In the Reuter corpus, even though the micro precision is always lower than that of
CS corpus, it ends with similar results once the number of topics reaches 100. The low
values in the Reuter corpus are due to the different number of labels ( core concepts)
for the different domains, e.g., 11 core concepts in CS corpus and 5 core concepts in
Reuter corpus. For z-label LDA, it is difficult to recognize the best constraint of LDA. In
parallel, for seeded LDA, we confront the same problem of recognizing the best models
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5.5. Summary

of them. However, in general, the z-label LDA outperforms the variants of seeded LDA.
All in all, the selected optimal case of LDA surpasses the Seeded LDA but not z-label
LDA.

5.4.3 Ontology Visualization

Based on the clustering results that we acquired from case 'C6A4’, we succeeded
to build up an modular ontology equipped with the discovered taxonomic relations in
Section 5.1.2.

In Figure 5.8, we show the overview of the resulting ontology. The orange nodes in-
dicate the core concepts ; the dark yellow nodes indicate the sub-concepts that link the
core concepts with taxonomic relations (according to WikiData knowledge database).
For Figure 5.9, the zoom-in resulting ontology is presented. The green nodes indicate
the terms from topical clusters. The orange links represent is-a relations and the grey
links represent cluster-to relations, where the green nodes gathering together by grey
links indicate the terms from the same cluster.

5.5 Summary

Before the variation employment of LDA, we explored the optimal parameter setting
during experiments. We observed that the optimal parameters are not fixed for the dif-
ferent corpus. If a new corpus is introduced, we need to go through all of the candidate
parameters to find the optimal option, i.e. number of topics and the chunksize value.
Also, we found that the random effect of LDA does not influence a lot the quantity of
clustered terms, but alters a bit of term’ affiliations to the clusters.

In the aspect of the corpus properties, we noticed the overwhelming performance
for GS corpus, in which the corpus includes only the domain-related terms. However,
the extra training times of LDA do not bring significant performance. It is also hard to
conclude that the corpus has a preference in terms of syntactic roles of terms and
the addition of verbs. In the aspect of the prior knowledge embedding techniques,
we remarked that the combined approaches of core concept replacement and sub-
domain knowledge supplementation, i.e. approach4, stand out from other approaches
regarding all of the metrics. Besides, we found that the NPs corpus accompanying
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The micro precision value of z-label model
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no constraint 0
(CS)

soft constraint 0.5
(CS)

hard constraint 1
(CS)

CBA4(CS)

no constraint 0
(reuter)

soft constraint 0.5
(reuter)
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FIGURE 5.6 — The micro precision value of z-label model.
Notes : The X-axis is the value of micro precision; the Y-axis denotes the number of topics.

The micro precision value of the variants of seeded model

20 40 60 80 100

normal LDA(CS)
Seeded LDA(CS)
M1 LDA(CS)
CB6A4(CS)

normal LDA(reuter)

Seeded LDA
(reuter)

M1 LDA(reuter)

FIGURE 5.7 — The micro precision value of the variants of seeded model.
Notes : The X-axis is the value of micro precision ; the Y-axis denotes the number of topics.
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5.5. Summary

neo4j$ MATCH p=()—> () RETURN p > % e 2 £ A X
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The resulting ontology of
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Displaying 635 nodes, 601 relationships.
FIGURE 5.8 — The overview of the resulting ontology.
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FIGURE 5.9 — The zoom-in of the resulting ontology.
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Partie 1l, Chapitre 5 — LDA driven by core concepts for term clustering

with their co-occurred verbs with Approach4 techniques(i.e’C6A4’) provides the best
performance in term clusters.

Based on the best employed LDA, we compared it to other prior knowledge-guided
LDA, i.e. z-label LDA, and seeded LDA in two different corpora. As for z-label LDA, we
perceived that, in CS corpus, the hard constraint(full usage of seed terms) outperforms
the other constraint values, and all of them exceeded the performance of the best case
'C6A4’. However, in Reuter corpus, there is no clear clue to distinguish the performance
of different constraints. For the seeded LDA, it is obvious that the trends of CS corpus
and Reuter corpus were decreasing along with the increasing of topics and ending with
the similar trends below that of case 'C6A4’. In brief, the selected optimal case of LDA
surpasses the Seeded LDA but not z-label LDA.

In terms of taxonomic discovery techniques, the statistics of extracted terms implied
that the knowledge base approach could extract the hyponyms that are significant in
corpus occurrences. However, the noun modifier relationships approach is much easier
and faster to execute and acquire taxonomic results.

Briefly, this chapter presents the various concerns to improve the utilities of LDA
towards modular ontology building.
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CHAPITRE 6

CONCLUSION

The aim of this dissertation Enhancing LDA for Ontology Learning is to explore the
potential and valuable utilities of LDA to learn an ontology. The LDA models have been
widely applied to represent the topics, but to date, no systematic workflows are known
to compare and use them to cluster terms, so that the clusters would further compose
the modules of an ontology. For this reason, we decided to improve the term clustering
performance of LDA models, with the aim of generating those clusters who possess
the meaning closing to the meaning of the sub-modules of a domain ontology.

6.1 Contributions

This thesis firstly introduces the fundamental procedures of ontology constructions
and presented the ontology learning techniques from both the statistical and the lin-
guistic sides in Chapter 1.

In the first contribution, the framework of the unsupervised term clustering as
a task towards ontology learning is presented. Chapter 2 listed and summarized the
essential compositions for term clustering algorithms. Then in Chapter 3, the various
term representation techniques are proposed and experimented with the different clas-
sical clustering algorithms, e.g. K-Means, k-medoids, DBscan, affinity propagation, and
co-clustering. The results suggest that the basic and the weighted co-occurrence re-
presentation shows better performance than the condensed co-occurrence represen-
tation. Moreover, the combination of word topic representation and the co-clustering
algorithm is considered as the optimal pair of the classic term clustering strategy.

Comparatively, we also introduce the strategy to apply the topic model LDA di-
rectly for term clustering. The results indicate that the LDA-based strategy achieves
an overwhelming precision higher than the majority of classic term clustering strate-
gies in a framework. Therefore, the optimization of the LDA-based clustering strategy
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is proven to be beneficial for acquiring the term clusters for ontology learning.

The second contribution talks about the semi-supervised modular ontology lear-
ning, in which the meaning of term clusters are driven by the core concepts of a do-
main. It succeeds to expand the topic models’ utilities for modular ontology learning.
Chapter 4 shows the variations of topic models from a simple statistic model to the ba-
sic LDA model, and even to the extensions of the LDA model, which take advantage of
seed information to acquire the desired topic features. In Chapter 5, the mechanisms of
core concept replacement and subdomain knowledge supplementation are proposed
and applied as the knowledge embedding technique over the corpus. Besides, we also
study the influencing factors of LDA, e.g., the syntactic roles of NPs, the inclusion of
verbs occurring with NPs, and the number of LDA training times. It turned out that the
combination of these two knowledge embedding techniques is outperformed,i.e’C6A4’,
and the corpus with the inclusion of verbs occurring with NPs shows an outstanding
impact on the performance of term clusters.

In terms of taxonomic discovery techniques, there are two resources of acquiring
taxonomic relations between terms : from the textas linguistic features, e.g. noun mo-
difier relationships; and the published taxonomy of common knowledge bases, e.g.
Wikidata and DBpedia. In the comparison of the discovered terms, the results support
that the knowledge base approach could extract the hyponyms that are significant in
corpus occurrences. However, the approach of noun modifier relationships is much
easier and faster to execute and acquire taxonomic results.

In brief, we made broad research on ontology learning procedures, including the
extraction of significant terms, the discovery of similar terms, the formation of term
clusters, and the taxonomic relation detection from plain text or from knowledge bases.
Our thesis started by measuring the effectiveness of the LDA-based clustering strategy
and continued to present the various concerns to improve the utilities of LDA towards
modular ontology building. We present a detailed and integrated workflow to explore
the LDA applications for the term clustering purpose, with respecting to aggregate the
meaningful terms for modules of a domain ontology.

In the aspect of programming, the main programming language that | used in the
experiments is Python 3.7. From steps to steps, | tried to rewrite the previous codes
into a modular and simplified version. Finally, this thesis could be implemented by a
few thousand lines of code.
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6.2 Perspectives

My future research plans revolve around developing a reusable and knowledgeable
ontology/knowledge graph of humans. The extraordinary complexity of humans’ un-
derstanding makes this a rich topic with many possible avenues of investigation.

In the near future, | would like to employ modular ontology to ameliorate the concep-
tual structure of knowledge graphs and enrich the knowledge graph with more domain-
related terms. To achieve this goal, based on the results that we have acquired, firstly,
we would like to remove the non-significant terms in clusters. There are many inter-
esting term weighting techniques that could be used to distinguish the terms by their
statistic features. Also for the clusters in the same sub-domain, we believe that the clo-
seness in the feature space between clusters and the valuable concepts of the know-
ledge graph will help interpret these clusters by the instantiated terms of the closest
concept.

To provide the more reliable knowledge between text, | am also interesting on disco-
vering more relations between terms. Following the same idea of Chapter 4, we would
make use of seed terms pairs for relation discovery. Despite of applying the knowledge
into document levels, the prior knowledge, i.e. seed pairs, would be used for data aug-
mentation to get the acceptable training corpus. In such a semi-supervised manner, we
will concentrate on some specific relation extractions, i.e. component-whole relations
and cause-effect relations.

In the far future, my agenda is not limited to building more accurate and up-to-
date ontology (although this certainly remains a challenge), but encompasses seve-
ral other problems, including discovering more feasible relations for different end-use
needs ; connecting to the other resources, not only text, e.g., video ; extending to some
knowledge-intensive domains, e.g., medicine, education and law ; and applying my al-
gorithms to the dataset outside of non-structured data, including semi-structured data,
structured data or even labeled data. | anticipate that the applications of this research
will be numerous and diverse, for the simple reason that feasible ontology has imme-
diate relevance to anything that involves speeding up searching, facilitating communi-
cation, and organizing the newly generated knowledge with the related background.
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CHAPITRE 7

APPENDIX

7.1

The Top-N of Partition Size
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FIGURE 7.1 — The distinction of the top-10 normalized maximum term probability in

each topic partition.

Notes : The Y axis represents the value of normalized p(w|t) of each topic in the X axis.

158



&
o #12 30 #06
4 5 CCE 2 1 #8514 4 La Al #74
éé .1.21 ‘ggli % ‘; §02% @ ,21325 @32 gso o5 @59 dm.u;.wa #9297
0s o ¥ gos¥l g2 90 ¢ g5 $
&
06
value
04
_____ e ____ .\ L o e 4
02
0.0 - -—e
0 25 0 7 100 125 150 175 200
Topic

FIGURE 7.2 — The distinction of the top-20 normalized maximum term probability in
each topic partition.

Notes : The Y axis represents the value of normalized p(w|t) of each topic in the X axis.
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FIGURE 7.3 — The distinction of the top-30 normalized maximum term probability in
each topic partition.

Notes : The Y axis represents the value of normalized p(w|t) of each topic in the X axis.
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FIGURE 7.4 — The distinction of the top-40 normalized maximum term probability in
each topic partition.

Notes : The Y axis represents the value of normalized p(w|t) of each topic in the X axis.
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FIGURE 7.5 — The distinction of the top-50 normalized maximum term probability in
each topic partition.

Notes : The Y axis represents the value of normalized p(w(t) of each topic in the X axis.

160



010 & o7
oL
¢ #66
0.08 o2
9
é f ol4 12
0.06 7 ¢08 &30
] #4lay 24 92
v 74
value| L& 24 g 4
o &5
7 @ ¢ §02 929 "
24 3 1 @7 g78
¢2 @ 1 P° 15 59 ¥’
0.04 o 1 0 23 §25 #32 g39 13
8 12, u €3, 9° 33 14‘1450 5 2 10
30 7 it L Py 178385943 #53 o Lt
i 18 hib 17 25
126 12 hq 29 15 26
12
002
L
2
0.00 - i - -e
o 50 7 100 125 150 175 200
Topic

FIGURE 7.6 — The number of terms exceeding the threshold on top-50 probability in
each topic partition.

Notes : The Y axis represents the value of normalized p(w|t) of each topic in the X axis.
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7.2 The Comparison between Two Clustering Strate-
gies on CS corpus

The average silhouette width of the different combinations (CS corpus)
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FIGURE 7.7 — The silhouette width of the two clustering strategies(CS corpus)

The average dunn score of the different combinations (CS corpus)
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FIGURE 7.8 — The dunn score of the two clustering strategies(CS corpus)
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The average macro precision of the different combinations (CS corpus)
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FIGURE 7.9 — The macro precision of the two clustering strategies(CS corpus)

The average micro precision of the different combinations (CS corpus)
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FIGURE 7.10 — The micro precision of the two clustering strategies(CS corpus)
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The average asymmetric rand score of the different combinations (CS corpus)
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FIGURE 7.11 — The asymmetric rand score of the two clustering strategies(CS cor-
pus)
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7.3 Human Evaluation

Background Description

Domain Computer Science
source of corpus WebOfScience
corpus type plain text

the size of corpus 6000 documents
Task

* give label to Noun Phrases(NPs) by the predefined 11 subdomains OR ‘Unknown’ OR ‘Others’
* to alleviate the word, you can use abbreviation of those labels

Related and non-related Labels

11 subdomains Abbreviation
Algorithm design ad
Bioinformatics b
Computer graphics cg
Computer programming cp
Cryptography c
Data structures ds
Distributed computing dc
Machine learning mi
Operating systems 0s
Software engineering se
network security ns
Non related labels Abbreviation

For those NPs, you know it belongs to
Computer Science Domain, but you are not

Unknown u sure which subdomains it belongs to
For those NPs, you know it does NOT belongs
Others o] to Computer Science Domain

FIGURE 7.12 — A task explanation document for volunteers, which describes the anno-
tation tasks detailed in Section 3.3.2.
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7.4 Term Partition Evaluation

0.3

0.25

0.2

0.15

Silhouette Width

0.1

0.05
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A Approachl W Approach2 Approach3 % Approach4

Casel Case2 Case3 Case3-T Case4 Cased4-T Case5 Case5-T Case6 Case6-T

FIGURE 7.13 — The partition-oriented evaluation of 10 cases (including twice trained
LDA model) in silhouette width.

166



Purity score in group orientation

A Approach1 M Approach2 ¢ Approach3 - Approach4
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FIGURE 7.14 — The group-oriented evaluation of 10 cases (including twice trained LDA
model) in purity score.

Asymmetric Rand Index in group orientation
A Approachl W Approach2 ¢ Approach3 % Approach4
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10.00%

Asymmetric Rand Index

0.00% —
Casel Case2 Case3 Case3-T Case4 Cased4-T Case5 Case5-T Case6 Case6-T

FIGURE 7.15 — The group-oriented evaluation of 10 cases (including twice trained LDA
model) in asymmetric rand index.
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Matthew correlation coefficient in group orientation
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FIGURE 7.16 — The group-oriented evaluation of 10 cases (including twice trained LDA
model) in Matthew correlation coefficient.

Adjusted Mutual Information in group orientation
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FIGURE 7.17 — The group-oriented evaluation of 10 cases (including twice trained LDA
model) in adjusted mutual information.
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7.5 The results of hyponym acquisition in DBpedia

x (step-ii)

y (step-iii)

:Category:Machine_learning :Category:Inductive_logic_programming

:Category:Cybernetics
:Category:Learning

:Category:Unsupervised_learning
:Category:Reinforcement_learning
:Category:Classification_algorithms
:Category:Cluster_analysis
:Category:Computational_learning_theory
:Category:Structured_prediction
:Category:Supervised_learning
:Category:Support_vector_machines
:Category:Applied_machine_learning
:Category:Kernel_methods_for_machine_learning
:Category:Latent_variable_models
:Category:Learning_in_computer_vision
:Category:Machine_learning_algorithms
:Category:Statistical_natural_language_processing
:Category:Semisupervised_learning
:Category:Signal_processing_conferences
:Category:Genetic_programming
:Category:Bayesian_networks
:Category:Dimension_reduction
:Category:Atrtificial_intelligence_conferences
:Category:Artificial_neural_networks
:Category:Data_mining_and_machine_learning_software
:Category:Datasets_in_machine_learning
:Category:Deep_learning
:Category:Ensemble_learning
:Category:Evolutionary_algorithms
:Category:Markov_models
:Category:Log-linear_models
:Category:Loss_functions
:Category:Machine_learning_researchers
:Category:Machine_learning_task
:Category:Ontology_learning_(computer_science)

z ( step-iv)

:Category:Ontology_learning_(computer_science)
:Category:Machine_learning_task
:Category:Machine_learning_researchers
:Category:Loss_functions
:Category:Log-linear_models
:Category:Markov_models
:Category:Evolutionary_algorithms
:Category:Ensemble_learning
:Category:Deep_learning
:Category:Datasets_in_machine_learning
:Category:Data_mining_and_machine_learning_software
:Category:Atrtificial_neural_networks
:Category:Atrtificial_intelligence_conferences
:Category:Dimension_reduction
:Category:Bayesian_networks
:Category:Genetic_programming
:Category:Signal_processing_conferences
:Category:Semisupervised_learning
:Category:Statistical_natural_language_processing
:Category:Machine_learning_algorithms
:Category:Learning_in_computer_vision
:Category:Latent_variable_models
:Category:Kernel_methods_for_machine_learning
:Category:Applied_machine_learning
:Category:Support_vector_machines
:Category:Supervised_learning
:Category:Structured_prediction
:Category:Computational_learning_theory
:Category:Cluster_analysis
:Category:Classification_algorithms
:Category:Reinforcement_learning
:Category:Unsupervised_learning
:Category:Inductive_logic_programming
:Category:Decision_trees
:Category:Clustering_criteria
:Category:Cluster_analysis_algorithms
:Category:Graphical_models
:Category:AlphaGo
:Category:Factor_analysis
:Category:Structural_equation_models
:Category:Genetic_algorithms
:Category:Language_modeling
:Category:Neural_network_software
:Category:Social_network_analysis_software
:Category:Datasets_in_computer_vision
:Category:Deepfakes
:Category:Nature-inspired_metaheuristics
:Category:Gene_expression_programming
:Category:Markov_networks
:Category:Hidden_Markov_models
:Category:Atrtificial_immune_systems
:Category:Causal_inference

FIGURE 7.18 — The outputs of SPARQL query in DBpedia.

169



7.6 The example of Wikidata-Taxonomy

machine learning (Q2539) <68 x4 11t

——Explanation-based learning (Q133580) -2

L—artificial neural network (Q192776) <60 x2 1

——ADALINE (Q348261) <7

-——hierarchical temporal memory (Q652594) 8 11

—Neocognitron (Q669754) <6

—autoencoder (Q786435) <8

——self-organizing map (Q1136838) +19

—recurrent neural network (Q1457734) 19

——Boltzmann machine (Q194706) 11

-——bidirectional associative memory (Q506355) <5

L—winner-take-all (Q769931) <3

—Hopfield network (Q1407668) +21

——echo state network (Q5332763) 5 1t

——Long Short-Term Memory (Q6673524) <11

——recursive neural network (Q18393747) <4
recursive cascade correlation neural network (Q94695789)
recursive neural tensor network (Q94695794)

——Jordan Network (Q20@082799) <3

——E1lman Network (Q20082800) <3

——gated recurrent unit (Q25325415) <5

——Hamming neural network (Q30891811) -1

——neural history compressor (Q94695713)

—autoregressive model (Q2202883) <12 x4 1

——Time delay neural network (Q2434543) <6

——Radial basis function network (Q2679684) 7

—modular neural network (Q3504403) -4

——Kohonen neural network (Q4316454) «2

—Bcpnn (Q4875410) -1

—Cerebellar Model Articulation Controller (Q5064071) =2

-——compositional pattern-producing network (Q5156806) -1

L——connectionist expert system (Q5161689) -1

——eccho state network (Q5332763) +5 1t ..

FIGURE 7.19 — The partial taxonomy of '"Machine Learning’ by Wikidata-Taxonomy tool
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7.7 The partial results of 'C6A4’ term clusters.

Cluster 1

computer graphic

3d depth image
behavioural image processing issue

bp mip neural network
branch decomposition based algorithm design technique

common image analysis technigue
comparative genomic analysis

continuous variable quantum key distribution protocol
current state art statistical image processing method

deep convolutional neural network model

Cluster 2

machine learning
agent based system

art feature selection method

automate computer vision based inspection system
base feature selection method

bi objective genetic algorithm
chaotic tent map

cla based classification algorithm
cloud based distributed system
complex statistical model

Cluster 3

cryptography

accurate fast image segmentation
aes-128 bit algorithm design consist
chebyshev chaotic map

coherent w state

computer graphics task

deep convolutional neural network
deep visual feature extraction
efficient elliptic curve cryptography

coherent ghz state

FIGURE 7.20 — The partial term clusters of 'C6A4’ case.
Notes : this result is trained based on Computer Science corpus with 50 topics. We only extracted 10

terms for each cluster. The underlined terms of each cluster belong to the same classes for evaluation.
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7.8 The methods of selecting seed words for topics.

company government economic commodity

|
Topic 0 -> Topic 3 |strategy tariff economic performance stock exchange
Topic 4 -> Topic 7 [ new company parliament intervention foreign exchange trading
Topic 8 -> Topic 11 |joint venture european court interest rate exchange rate
Topic 12 -> Topic 15 |consortium policy money supply commodity
Topic 16 -> Topic 19| diversification issue inflation agricultural commodity
Topic 20 -> Topic 23 | investment subsidy price metal
Topic 24 -> Topic 27 | legal proceeding law consumer price energy product
Topic 28 -> Topic 31 |court ruling fraud wholesale price security
Topic 32 -> Topic 34 | investigation police \’ncnin"é” -
Topic 35 -> Tepic 37 | regulation armed force debt
...|deregulation visit government spending
«|ruling treaty revenue
...|government policy summit taxation
suspension delegation fiscal policy
account international cooperation |government borrowing
result earthquake inventory
report airplane industrial production index
dividend radio employment
forecast conservation unemployment
comment designer reserve
recommendation model current account
bankruptcy trend invisible
liquidation health capital movement
financing disease foreign exchange
share issue medicine asset
equity M . economic
bond issue [hospital
debt instrument legislation
bank loan union
credit year
acquisition congress
merger exploration
sale holiday
product arrival
production demonstration
output war
service national
activity government
mineral

agricultural production
new product
research
development
pracess

capacity

closure
production cost
market
marketing
market research
domestic market
import

export

contract

order

monopoly
resignation

FIGURE 7.21 — An example of selecting the seed words regarding different number of
topics.

Notes : This example lists all of the seed words for Reuter corpus. Each column includes the seed
words of one core concepts (e.g. in bold). Each topic will be assigned with one seed word in horizontal

direction from left to right (e.g. the blue arrows), until the required number of topics is achieved.
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Resumé : Cette thése vise & tirer profit du mo-
dele sémantique LDA pour améliorer la conceptua-
lisation des termes en vue de I'apprentissage d’on-
tologie a partir de textes, ou des termes similaires
sont regroupés en fonction de concepts de base
prédéfinis. Nous avons exploré le cadre classique
du regroupement de termes et étudié I'impact des
techniques de représentation des termes. Nous
avons proposé des stratégies de regroupement de
termes (term clustering) basées sur LDA, ou des
connaissances préalables sont utilisées pour semi-
superviser LDA. De plus, nous avons construit

la structure taxonomique de l'ontologie, en appli-

quant en interne les cadres de sous-catégorisation
sur les phrases nominatives et en bénéficiant en
externe des bases de connaissances. Notre straté-
gie de regroupement basée sur LDA a été plus per-
formante que la majorité des travaux de regroupe-
ment dans le cadre classique. Notre approche op-
timale d’intégration des connaissances préalables
a dépassé les performances de LDA de base et
de seeded LDA. Le regroupement basé sur LDA
pourrait contribuer a améliorer la formation des
concepts a partir de termes pour 'apprentissage

d’ontologie.
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Abstract : This dissertation aims to enhance
LDA’s utilities of conceptualizing terms towards on-
tology learning, where similar terms are cluste-
red to the predefined core concepts. We explored
the classic workflow of term clustering and studied
the clustering impacts of the terms representation
techniques. Comparatively, we proposed the LDA
based clustering strategy, where the prior know-
ledge embedding techniques are applied to semi-
supervise the LDA for the more satisfying clusters.
In addition, we built up the taxonomic structure of

the ontology, by internally applying the subcatego-

rization frames over noun phrases and externally
benefitting from the knowledge bases. The expe-
riment results showed that our proposed LDA ba-
sed clustering strategy outperformed the majority
of the clustering works in the classic workflow. Our
optimal prior knowledge embedding approach ex-
ceeded the performance of basic LDA and Seeded
LDA but dropped behind the Z-label LDA. This dis-
sertation suggests that the LDA based clustering
strategy could contribute to the anticipating term

conceptualizations for ontology learning.
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