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Discrete Parameters in Petri Nets

Short abstract: With the aim of increasing the modelling capability of Petri nets, we
suggest that models involve parameters to represent the weights of arcs, or the number of tokens
in places. We consider the property of coverability of markings. Two general questions arise,
the universal and the existential one: “Is there a parameter value for which the property is
satisfied?” and “Does the property hold for all possible values of the parameters”. We show
that these issues are undecidable in the general case. Therefore, we also define subclasses of
parameterised nets, depending on whether the parameters are used on places, input or output
arcs of transitions. For some classes, we prove that universal and existential coverability become
decidable, making these classes more usable in practice. To complete this study, we prove that
those problems are ExpSpace-complete. We also address a problem of parameter synthesis,
that is computing the set of values for the parameters such that a given marking is coverable
in the instantiated net. Restricting parameters to only input weights (preT-PPNs) provides a
downward-closed structure to the solution set. We therefore invoke a result for the representation
of upward closed set from Valk and Jantzen. The condition to use this procedure is equivalent
to decide the universal coverability. We also propose an adaptation of this reasoning to the
case of parameters used only as output weights (postT-PPNs). In this case, the condition to
use this procedure can be reduced to the decidability of the existential coverability. Finally,
we broaden this study by establishing decision frontiers through the study of existential and
universal reachability.

Keywords: Petri nets - Parameters - Synthesis - Decidability - Complexity - Coverability -
Reachability
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Réseaux de Petri à Paramètres Discrets

Résumé court : Afin de permettre une modélisation plus souple des systèmes, nous pro-
posons d’étendre les réseaux de Petri par des paramètres discrets représentant le poids des arcs
ou le nombre de jetons présents dans les places. Dans ce modèle, tout problème de décision peut
être décliné sous deux versions, une universelle, demandant si la propriété considérée est vraie
quelles que soient les valeurs que prennent les paramètres et une existentielle, qui s’interroge sur
l’existence d’une valeur pour les paramètres telle que la propriété soit satisfaite. Concernant
la couverture, nous montrons que ces deux problèmes sont indécidables dans le cas général.
Nous introduisons donc des sous classes syntaxiques basées sur la restriction des paramètres aux
places, aux arcs en sortie ou aux arcs en entrée des transitions. Dans ces différents cas, nous
montrons que la couverture existentielle et universelle sont décidables et EXPSPACE-complètes.
Nous étudions alors le problème de la synthèse de paramètres qui s’intéresse à calculer l’ensemble
des valeurs de paramètres telles que la propriété considérée soit vraie. Sur les sous classes in-
troduites, concernant la couverture, nous montrons que les ensembles solutions à la synthèse
ont des structures fermée supérieurement (cas des arcs de sortie) et fermée inférieurement (cas
des arcs d’entrée). Nous prouvons alors que ces ensembles se calculent par un algorithme de
la littérature, proposé par Valk et Jantzen, dont les conditions d’application se réduisent aux
problèmes de décision étudiés précédemment. Enfin nous étudions les frontières de décision en
nous intéressant aux versions paramétrées de l’accessibilité pour ces sous classes.

Mots clés : Réseaux de Petri - Paramètres - Synthèse - Décidabilité - Complexité - Cou-
verture - Accessibilité
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CHAPTER 1

Introduction

“When you are curious, you find lots of interesting
things to do.”

— Walter Elias Disney

Contents
1.1 Context and Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.2 What are Parameters? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.3 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.4 Position in the Current Literature . . . . . . . . . . . . . . . . . . . . . . 18

1.4.1 Arbitrary Number of Identical Resources . . . . . . . . . . . . . . . . . 18
1.4.2 Parameters Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.4.3 Parameters in Petri Nets . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.4.4 Position of our Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.5 Contributions of this Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.6 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.1 Context and Motivations

Of late, the growing impact and press coverage of security bugs (Heartbleed, or the exploit
EternalBlue for instance) and of cyber attacks (such as the recent ransomware attack WannaCry)
show how our society has become, during the last decades, a computer based society. Software
and computers are involved while a majority of the population is not aware of this fundamental
dependency. “We do not understand what the software does, regardless of how well educated or
smart we are” explained Holger Hermanns, Professor of Dependable Systems and Software at
Saarland University in the description of a recent European project [Hermanns, 2016]. Wireless
networks, connected devices, self driving cars or computer assisted medical interventions have
become ubiquitous and therefore more and more safety-critical. It is not only about money:
lives and environment are directly involved. In parallel, complexity and interactions of systems
are also spreading. A great importance must be given to asserting, with certainty, the safety
of a system despite this growing complexity. That is what formal methods and model checking
are all about: proving that the design of a system is correct with respect to some meaningful
properties. In their book Principle of Model Checking [Baier and Katoen, 2008], Christel Baier
and Joost-Pieter Katoen define model checking as follow:

“Model checking requires a model of the system under consideration and a desired
property and systematically checks whether or not the given model satisfies the
property.”

15



16 CHAPTER 1. INTRODUCTION

Model checking tools have proved their efficiency. A well-known example through the com-
munity is the modelling of the embedded software which controlled the Ariane-5 launcher during
its flight (this system is detailed in [Bozga et al., 2001]). In the last few years, the European
Research Council has funded many grants to formal methods related project. Finally, to demon-
strate this growing interest toward verification, if there were still a need to do so, we can recall
to the reader that the Turing award of 2007 has been awarded to Sifakis, Clarke and Emerson
for their work in model checking and their concern to develop it into an effective verification
technology. More recently, Lamport has been the recipient of the Turing award of 2013, notably
for his work on the theory and practice of distributed and concurrent systems. In particular,
he has worked on notions such as causality and logical clocks, safety and liveness. Therefore,
maybe the conclusion of FAA (Federal Aviation Authority) and NASA (National Aeronautics
and Space Administration) stated in the book Principle of Model Checking has never been this
true:

“Formal methods should be part of the education of every computer scientist and
software engineer, just as the appropriate branch of applied maths is a necessary
part of the education of all other engineers.”

Nevertheless if this enthusiasm is founded and legitimate, it must be qualified. Indeed, formal
methods are, in the best case, resources and time consuming and in the worst case inefficient.
Model checking typically requires a complete knowledge of the system and its environment.
Therefore, the verification step can be performed only once the design stage is fully accomplished
which can be complex or impossible if its environment has an unpredictable behaviour, or if some
variables may be bounded to a given range of values without clue to determine the ideal one, etc.
Therefore, designing the system toward formal verification leads to an increase of the complexity
of the model, and thus of the verification steps, the procedures being generally resource-hungry 1.
Moreover, this verification step only provides a Boolean answer. This implies that if the model
of the system is proved wrong or if the environment changes, this complex verification process
must be carried out again after changing the design accordingly. It would thus be interesting
to provide the possibility of performing verification in an early design step, once a first abstract
model has been defined but not necessarily entirely specified. This less rigid modelling and
early verification would be more convenient since they would reduce the danger of losing time
and resources through the complex phase of exhaustive but not necessarily correct specification.
This would also accelerate the convergence toward the safe model by reducing the number of
iterations between design and verification.

This might seems a bit paradoxical for a casual reader: what we assert and will underline
in this thesis dissertation is how abstracting the model, by leaving some holes in it, will help to
provide a more precise knowledge of the system. Let us first clarify what those holes exactly are
by introducing the notion of parameters in this context.

1.2 What are Parameters?

Parameter comes from the Greek fi–fl– meaning beside and µ‘·flo‹ meaning measure. Thus,
following generic definitions, it is commonly used to refer to a feature or a measurable charac-
teristic that is used to define a system with no restriction on the system considered (concrete or
abstract, from a scientific field or not). From this wide definition, we target more specific inter-
pretations: from an abstract point of view, in mathematics, it can be defined 2 as “a quantity
whose value is selected for the particular circumstances and in relation to which other variable

1. This is a direct consequence of the state space explosion occurring when one wants to explore exhaustively
the whole state space of a system. The state space can be very large or even infinite. In this latter case, it is
impossible to explore the entire state space with limited resources of time and memory. The search must then be
performed efficiently by using different methods of abstraction.

2. This definition is taken from the Oxford online dictionary. (see https://en.oxforddictionaries.com/

definition/parameter)

https://en.oxforddictionaries.com/definition/parameter
https://en.oxforddictionaries.com/definition/parameter


1.3. RESEARCH QUESTIONS 17

quantities may be expressed”. From a more concrete point of view, in experimental/technical
field, it can be defined 3 as “a numerical or other measurable factor forming one of a set that
defines a system or sets the conditions of its operation”. Parameterisation consists in leaving
holes represented by abstract entities. Those abstract entities can be then filled with concrete
ones by instantiation. Let us consider some concrete examples of the use of parameters :

In computer programming, a parameter used in the implementation of a function refers
to one of the pieces of data provided as input to the function. When the function is
effectively called, the actual pieces of data used are called arguments. The argument is
thus the actual input passed to a function, that is to say an instance of the parameter
inside its implementation. For example, we could define a procedure to concatenate two
strings together. This would need two parameters, one for each string occurring in the
effective call.

In computer programming, it is also possible to encode algorithms or structures without
mentioning the type of the data. Types can thus be specified latter. This is what we call
generic programming or parametric polymorphism. Concrete examples are for instance
definition of functions in Haskell where no types need to be specified or templates in
C++.

In automatic control, it is classic to experiment in order to adjust the model thanks to
observations. Models can be directed by differential equations in which parameters are
involved. The feedback of the experience permits then to adjust the instance of the model
by adapting the value of those parameters. In fact, in automatic control, the comparison
of a measured value of a process with a desired value leads to sharpen the model.

As stated previously, the introduction of parameters in the context of formal methods aims
to improve genericity. It also allows the designer to leave unspecified aspects, such as those
related to the modelling of the environment. This increase in modelling power usually results
in greater complexity in the analysis and verification of the model, however.

1.3 Research Questions

Parameterised systems are of particular interest both in allowing the handling of more real-
istic classes of models and addressing more realistic verification issues. It can be challenging to
find meaningful parametric infinite state systems with decidable decision problems. This thesis
dissertation addresses three research questions:

RQ1 How to extend Petri nets with parameters in order to represent a whole family of nets
through one given model? We choose to explore the subject on concurrent models whose
archetype is that of Petri nets. We consider discrete parameterisation of markings (the
number of tokens in the places of the net) or weight of arcs connecting the input or output
places to transitions. We call these Petri nets parametric Petri nets or PPNs. The goal
is here to find meaningful parametric models based on the paradigm of Petri nets. This
includes finding subclasses that can be analysed more easily.

RQ2 How can we adapt decision problems to this parametric context? What problems are de-
cidable? What are their complexities? The introduction of parameters induces the need
of quantifying the valuation of these parameters in decision problems. Basically, two main
type of decision problems can be emphasised: on the one hand existential problems, asking
whether there exists an integer valuation v on the set of parameters such that the instance
where parameters are replaced by the value given by v satisfies some property, and on
the other hand universal problems, asking if that property is satisfied in every possible
instance of the parametric model.

3. See previous note.
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RQ3 Can we answer the problem of the synthesis of parameters? Beyond verification of prop-
erties, the use of parameters opens the way to very relevant issues in design, such as the
computation of the parameters values ensuring satisfaction of the expected properties.
This is the synthesis problem: given a property, compute the exact set of all the values of
the parameters such that, instantiated with these values, the system satisfies this property.
This notably permits an estimation of the robustness of a given instance of a model. In-
deed, in full knowledge of “good values” for the parameters, we may be able to quantify
the distance from a “bad value” providing an idea of how reliable is the system.

We will now focus on the position of our work in the current literature.

1.4 Position in the Current Literature

In terms of modelling, the first intuition behind parameters is to model an arbitrary number
of identical resources.

1.4.1 Arbitrary Number of Identical Resources

In [Bouajjani et al., 2000], a framework for the verification of infinite-state systems called
regular model checking is presented. States are represented by strings over a finite alphabet and
the transition relation by a regular length-preserving relation on strings. This analysis relies
on the use of regular sets of words over a finite alphabet to represent (symbolically) sets of
states, and finite-state transducers (in fact regular length-preserving relations between words)
to represent transition relations. The verification procedure is based on automata techniques.
Nevertheless, states of the system need to be representable as finite strings (of arbitrary length)
over a finite alphabet.

Many concurrent systems consist of an arbitrary number of identical processes running in
parallel. The literature on this subject is therefore well developed. In [Bertrand et al., 2015]
systems with an arbitrary amount of processes which communicate by broadcast are studied.
Note that here the decision of the processes are constrained: two processes with same past
behave similarly. This is called local strategies.

A fundamental intuition behind systems with arbitrary identical processes is to begin the
analysis by considering a reduced system with one or two processes. This informal reasoning is
addressed in [Browne et al., 1989] in order to provide a theoretical basis for this kind of analysis.

In [Abdulla et al., 2013], the author presents a simple framework for the verification of
safety problems on systems with a parameterised number of processes. The technique relies
on the detection of cut-off points beyond which the search of the state space does not need to
continue, allowing to exploit small model property. Informally, the idea is that the reachability
of bad configurations can be detected with only a small number of processes. In [Aminof et al.,
2014] a similar analysis technique is notably addressed on concurrent systems in which processes
communicate via pairwise rendezvous.

In [Esparza et al., 2016], systems with a leader process and arbitrarily many anonymous
identical contributors are considered. It provides an analysis of the complexity of the safety
verification problem on such systems.

This short overview of the literature is of course not exhaustive. A much more complete
survey of different parameterised models and verification methods that can be applied to con-
current and distributed systems with broadcast communication based on transition systems is
presented in [Delzanno, 2016].

1.4.2 Parameters Synthesis

The study of parameterised models and more specifically the question of the synthesis has
been studied in different parametric settings. Parameters representing delays in timed systems
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modelled as timed automata have been particularly studied, but with very few decidability
results [Alur et al., 1993]. Synthesis for such system is only possible in very particular settings,
such as bounded integer parameters computed symbolically in timed automata [JovanoviÊ et al.,
2015] or parameters in timed automata with parameters used only as upper bounds, or only as
lower bounds, in timing constraints [Bozzelli and Torre, 2009].

Note that in the case of parameterising time, the domain of parameters is often the entire
set of reals number. This is out of the scope of this thesis dissertation since we will only address
discrete parameters but this would be an interesting way to extend this work for instance by
considering continuous Petri nets [David and Alla, 1987] (or fluid Petri nets) where the marking
is a vector of positive real numbers.

1.4.3 Parameters in Petri Nets

As noticed in [Biel et al., 2011], the literature dealing with parameters in Petri nets is a bit
fragmented: parametric, parameterised or parameterized Petri nets are introduced with different
viewpoints. The notion of parameter is indeed subject to different interpretations depending on
the context and the problems addressed.

Parameters to Simplify the Modelling

Most articles introduce parameters in order to dynamically change the network structure
when the parameter is valued. This is for example used to describe in the same network several
levels of abstraction and allow the implementation of refinements. The appropriate level can
be chosen in order to get the best representation for the specific problem. Depending on the
context, places or transitions can themselves be parameters that can be replaced with more
complex subnets, for instance in [Gracanin et al., 1993] or [Christensen and Mortensen, 1997].
In this latter paper, parameterisation on values on the arcs with quantities or functions is also
considered but no verification is performed on those parameterised models. When parameters are
used as place-holders for quantities, and that the set of possible valuations of those parameters is
finite, parameterisation can be used primarily to shortcut the writing of the model. Parameters
are also introduced in models such as predicate Petri nets [Lindqvist, 1993], directly on the
markings, as a mean to fold reachability trees of Predicate/Transition nets into more concise
parameterised reachability trees. Considering a similar idea, [Chiola et al., 1997] studies some
symbolic reachability graph for coloured Petri net taking into account symmetries.

Verification Involving Parameters

When value parameterisation is considered, with a finite valuation domains, an expansion
on all possible values is imaginable, although it is sometimes avoided by the use of symbolic
techniques to conduct a formal analysis. For example, the model of Automaton Controlled Petri
nets (ACPN), introduced in [Badouel and Oliver, 1999] uses parameters to handle dynamics
change in a system. The possible valuations of the parameters (described in the weights of the
arcs) are provided by the state of a finite automaton. On the other hand, some papers consider
quantitative parameterisation with infinite valuation domains of the parameters. The analysis
of such models can be based on abstract interpretation, as in [Abdulla et al., 2013]. The goal
is indeed to reduce the verification problem to finite-state verification. This classic technique
has been mentioned in Section 1.4.1. Valk’s self-modifying Petri Nets [Valk, 1978] can also be
considered in this category: those nets are able to modify their own firing rules by using linear
function of the place markings as flow relations, but they are Turing powerful.

1.4.4 Position of our Work

In this manuscript, we only consider genericity on a unique level of abstraction since we
would like to provide a quantitative analysis on parameters which would rely on a perennial
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structure. We would like to provide a model allowing to model identical resources but also their
synchronisation thanks to the paradigm of Petri nets. The formalism introduced in this thesis
is not introduced in the aim to depict a precise case study. In this sense, we want to introduce
a general purpose formalism. Nevertheless, we can guess that this increase in generecity will be
gained at the cost of the complexity of the analysis. Moreover, we would like that the structure of
the difference instances of the parameterised models keep the same structure in order to provide
a quantitative analysis upon the valuations. Typically, a parameter can represent a number of
processes but not only since we later provide an illustrative example by modelling a financial
loan. In this context, we do not consider finite sets of valuation but infinite ones in order to
study classic properties of Petri nets.

Close to our work, [Chiola et al., 1991] and [Marsan et al., 1994] present Petri Nets where
the initial marking of the net can be parameterised. An initial marking with one or more
parameters is an abstraction of a set of markings obtained by assigning different legal values to
the parameters. We will prove in the sequel of this thesis that parameterising the markings can
be simulated by parameterising the output weights. In a different manner, [Geeraerts et al., 2015]
introduces Ê-Petri nets (ÊPN). This model augments classic Petri nets by allowing Ê-labelled
input or output arcs. We will provide more details on this latest model in Section 3.5 since we
will elaborate on some links with our model of parametric Petri nets and reuse some of the results
proved for ÊPNs. The fundamental difference with our model is the non-determinism introduced
by those labels. Indeed, an Ê-label input (resp. output) arc consumes (resp. produces), non-
deterministically, any number of tokens in its input place (resp. output place). This model is
said to be mainly used to analyse parametric concurrent systems with dynamic threads creation.

1.5 Contributions of this Thesis

As briefly mentioned earlier, RQ1 is addressed by the introduction of the model of parametric
Petri nets (PPNs), aiming to represent families of concurrent systems. Discrete parameters are
involved on the weight of arcs of the nets or in the initial marking. Moreover, syntactical
subclasses are introduced in a matter of decidability and tractability. Parameters are restricted
to initial markings only or weights of transitions only. In the latter case, we can impose that
parameters on input arcs and output are distinct. Finally, we consider the case where parameters
are used only as input weights or only as output weights.

To address RQ2, we consider the general property of coverability to which many safety
properties can be reduced and, to a lesser extent, boundedness and reachability (that are often
the basis for the verification of more specific properties). This thesis dissertation deals with
two decision problems induced by the use of parameters: The existential coverability: does
there exists an integer valuation v on the set of parameters such that m is coverable in the
marked Petri net where parameters are replaced by the value given by v? And the universal
coverability: is m is coverable in such a net for every possible valuation v? Those problems are
both undecidable in the most general case. Syntactic subclasses restricting the use of parameters
have been introduced, for which the different problems are decidable and ExpSpace-complete.
These results interestingly allows us to carry over a Rackoff upper bound into this parametric
setting. Considering boundedness, we provide the result of decidability using some adaptations
of the procedure of Karp and Miller for all those subclasses. We finally elaborate on decision
frontiers by showing that the parametric reachability problems are undecidable for the subclasses
of parametric Petri nets where parameters are used only on input arcs or only on output arcs,
whereas it becomes decidable (for the existential problem) when parameters are used only on
the initial marking. Note that the universal problem for this subclass is left open.

In order to address RQ3, we then focus on computing the exact solution set to the synthesis
problem for coverability in parametric Petri nets, i.e., the set of all parameter values such that
in the net instantiated with these values, a given marking is coverable. The emptiness and
universality of the solution set being undecidable in general, computing this set can only be
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done in a restricted setting. We thus focus on the case where parameters are used only as input
weights (preT-PPNs) or only as output weights (postT-PPNs). These assumptions give some
structure to the solution set: we prove that it is then downward-closed wrt. the usual order on
integer vectors for preT-PPNs, and upward-closed for postT-PPNs. We show how a procedure by
Valk and Jantzen from [Valk and Jantzen, 1985] can be used for computing a finite minimal basis
of the solution set for postT-PPNs or its complement for preT-PPNs. This requires deciding
universal coverability in preT-PPNs and existential coverability in postT-PPNs. Finally, we
prove that in what will be called distinctT-PPNs, i.e., when the set of parameters appearing as
input weights, and the set of parameters appearing as output weights are disjoint, the solution
set cannot be represented using any formalism for which the emptiness of the intersection with
equality constraints is decidable.

Those different results have been published in international conferences. The introduction
of the model and some proofs of decidability have been first presented in a workshop [David
et al., 2015b] and then have been published in [David et al., 2015a]. The work on complexities
and synthesis has been accepted and will be published in [David et al., 2017].

1.6 Outline

All those results are presented in this thesis dissertation according to the following outline.
Chapter 2 gives basic notations and recalls useful mathematical results from different theo-

ries.
Chapter 3 reviews some elements of the state of the art regarding Petri nets, related decision

problems and the classic procedure of Karp and Miller together with the model of Ê-Petri nets.
Chapter 4 gives the basic definitions related to the formalism of parametric Petri nets,

introduces two instances of decidability problems in parametric Petri nets, the universal and
the existential instances, based on the definitions of classic properties of Petri nets. We also
present the problem of the synthesis. We then provide a proof of the undecidability results
of existential and universal coverability. Therefore, we refine the hierarchy of PPN to provide
subclasses where universal or existential coverability are decidable.

Chapter 5 introduces these subclasses of our parameterised models and presents results of
translation and monotonicity. We carry out a complete survey of decidability of parametric
coverability in this restricted parametric setting with the corresponding complexities. We no-
tably give constructions for proving the ExpSpace-completeness of the universal coverability
for preT-PPNs. We then turn our attention to the problem of the synthesis.

In Chapter 6, we study the structure of the solution sets for preT-PPNs and postT-PPNs
and show under which condition Valk and Jantzen’s algorithm can be used to construct finite
representation of those sets. To complete this study, we propose a direct synthesis algorithm for
preT-PPNs. We also discuss the case of distinctT-PPNs.

In Chapter 7, we emancipate from the problem of the coverability in order to establish
decision frontiers in this parametric settings by studying the problem of existential and universal
reachability and proving their undecidability for the subclasses of preT-PPNs and postT-PPNs.
Interestingly, existential reachability becomes decidable when we restrict the use of parameters
to initial markings only. Note that the remaining problem of universal reachability in P-PPNs
is still an open problem.

Chapter 8 and 9 respectively conclude this thesis dissertation and present directions for
future work.





CHAPTER 2

Discrete Mathematical Background

“Everything has beauty, but not everyone sees it.”

— Confucius
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This chapter reviews basic notions and definitions about discrete mathematics from the field
of mathematical logic, set theory and graph theory, from algebra, order theory and combina-
torics. We also recall the notion of upward and downward closed sets. Those notions will be
mainly reused in the definitions of the following chapters and in the different proofs. Readers
familiar with those fields may skip this chapter or do a cursory reading and come back when
specific references are made.

2.1 Notions of Set Theory and Order Theory

2.1.1 Set Theory

We recall here classic notions and notations of the set theory in the classic form of Zermelo-
Fraenkel with the axiom of choice.

Intuitively, a set is a collection of distinct objects. The empty set is denoted by ÿ, membership
by œ, set inclusion by ™ whereas strict inclusion is denoted by µ. We denote set intersection by
fl, set union by fi and \ is used to denote the set difference. We denote by Z the set of integers,
and by N the set of natural numbers. We denote by Ê an arbitrary large number such that for
each n œ N, n + Ê = Ê, Ê ≠ n = Ê, Ê Æ Ê and n < Ê. We denote by NÊ is the union N fi {Ê}.

Let X be a finite set. We denote by 2X the powerset of X, that is to say the set of all subsets
of X and by |X| the size of X. If X ™ Nk, ¬X denotes its complement in Nk.

23
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The Cartesian product of two sets A and B, denoted by A ◊ B, is the set of ordered pairs
{(a, b) | a œ A, b œ B}. The Cartesian product can be generalised to the n-ary Cartesian product
over n sets X1, . . . , Xn such that X1 ◊ · · · ◊ Xn = {(x1, . . . , xn) | ’1 Æ i Æ n, xi œ Xi}.

We define correspondences between two sets through the notion of relation:

Definition 1 : Binary relation
A binary relation R between two sets X and Y is a subset of X ◊ Y . Given
(x, y) œ R we say that x is related to y by R, which is denoted by xRy. The
domain of R, denoted by dom(R), is the set {x œ X | ÷y œ Y, (x, y) œ R}. The
set Y is the co-domain of R whereas the image of R, denoted by im(R) is the
set {y œ Y | ÷x œ X, (x, y) œ R}, that is to say the subset of the co-domain
effectively reached.

We call the binary relation on X the binary relation between X and X itself. Given a binary
relation R œ X ◊ Y , we define R≠1 as the subset of Y ◊ Y such that for all x œ X, for all y œ Y ,
yR≠1x iff xRy. Given a binary relation f œ X ◊ Y , f is a partial functioniff (x, y) œ f and
(x, z) œ f implies that y = z. In this case, we can write equivalently (x, y) œ f or f(x) = y since
there is no ambiguity and y is called the image of x by f . If dom(f) = X, f is said to be a (total)
function, we write f : X æ Y . The set of all (total) functions from X to Y is written Y X . In
the sequel we may use the term mapping to refer to a total function in order to emphasise that
we establish a correspondence between elements in one set with elements in another set.

Given X and Y two sets, for any subset X Õ ™ X and function f œ Y X , we define the
restriction f|XÕ of f to X Õ as the unique function from X Õ to Y such that f|XÕ(x) = f(x) for all
x œ X Õ. We extend this notation to sets of functions: given F ™ Y X , F|XÕ denotes its projection
on X Õ that is to say F|XÕ = {f|XÕ | f œ F}. We now consider two sets A and B such that
X = A fi B and A fl B = ÿ, and functions g œ Y A and h œ Y B, we write g fi h œ Y X the function
defined by (g fi h)|A = g and (g fi h)|B = h. We call g fi h the union of g and h.

Definition 2 : Sequence
A sequence is an enumerated collection of objects from a set A in which rep-
etitions are allowed. Formally, it is a function fs : D æ A whose domain
D is a convex subset of the set of integers, i.e. ’i, j œ D with i Æ j,
’k œ N, i Æ k Æ j ∆ k œ D. For i œ D, the element associated to the index i,
fs(i) is simply denoted by si, and the sequence itself is denoted by (sn)nœD or
simply (sn).

The length of a sequence |(sn)| correspond to the cardinal of D. If D is finite, (sn) is said
finite, if not, D is necessary countable, by convention we can thus define |sn| = Ê. Finally, we
denote () the empty sequence which has a length equal to zero. Let A be a set, we denote by
Aú the set of all finite sequences of elements of A. In language theory, A is called alphabet and
those sequences can be seen as words. In this context, the empty sequence () is often written ‘

and is called the empty word. Let w œ Aú be a finite sequence. We write |w| the length of w.
Given a œ A, |w|a is the number of occurrences of a in w.

Given a finite sequence s = s1, s2, . . . , sn, we call every sequence t of the form s1, . . . , sm

with m Æ n a prefix of s. We write t ı s. Given L a language over the alphabet A, that
is to say a subset of Aú, we denote by Pref(L) the prefix closure of the language L, i.e.
Pref(L) =

t

sœL{t | t ı s}.

2.1.2 Order Theory

We now introduce formally the intuitive notion of order using binary relations. We first need
to introduce some properties for relations.
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Definition 3 : Relation properties
Given a binary relation R on a set S we say that R is

reflexive: ’x œ S, xRx

irreflexive: ’x œ S, ¬(xRx)

symmetric: ’x, y œ S, xRy … yRx

asymmetric: ’x, y œ S, xRy ∆ ¬(yRx)

antisymmetric: ’x, y œ S, (xRy · yRx) ∆ x = y

transitive: ’x, y, z œ S, (xRy · yRz) ∆ xRz

total: ’x, y œ S, xRy ‚ yRx

Given a binary relation R on a set X, the transitive closure of R written R+ is the minimal
transitive relation on X that contains R. The reflexive transitive closure of R, written Rú, is
the minimal transitive and reflexive relation on X that contains R. Based on those properties
we now formalise the notion of order.

Definition 4 : Quasi order
A relation R that is reflexive and transitive is said to be a quasi order (qo for
short).

A pair (S,.) is a quasiordered set if . is a quasiorder on S. Note that for the sequel, we
use Æ when the relation is antisymmetric and . when it is not. For x and y elements of S and
given a qo R on S, x and y are said comparable if either (x, y) œ R or (y, x) œ R. A relation < is
a strict order on a set S if it is irreflexive and transitive (which implies asymmetry). A relation
≥ is an equivalence relation on a set S if it is reflexive, symmetric and transitive. Given any
quasi order . on a set S we can define: (i) a strict order < given by x < y iff x . y · ¬(y . x),
(ii) an equivalence relation ≥ given by x ≥ y iff x . y · y . x, (iii) its dual quasi order & given
by y & x iff x . y.

Definition 5 : Well quasi order (See, e.g., [Higman, 1952] and [Kruskal, 1972])
A well quasi-ordering (wqo for short) is a qo . on a set S such that, for any
infinite sequence s = x0, x1, x2, ... in S, there are indices i < j with xi . xj.

Let us also recall the following property:

Lemma 1
Given a set S and a well quasi order . on this set, let p0, p1, ..., pn, ... be
an infinite sequence of elements of S. Then, there is an infinite sequence
pi1 , pi2 , ..., pin , ... such that pi1 . pi2 . ... . pin . .... (with i1 < i2 < · · · < in <

. . . ).

This can be easily understood using a Ramsey argument as follows: consider the set I = {i |
there exists no j s.t. i < j and pi Æ pj}. If I were infinite, then we could extract a subsequence
of the terms indexed by the elements of I which would contradict the definition of wqo. Therefore
I is finite. We can thus consider any pn with n greater than the maximal element of I as the
first element of such an infinite increasing subsequence. By construction of n and since N \ I is
infinite, we can find an element m > n such that m ”œ I and pn Æ pm. We can thus iterate the
process and build a sequence satisfying the previous property.

Note that well quasi-orders can be defined in a various but equivalent manner, by ensuring
that there exists no infinite strictly decreasing sequence (which is equivalent to a property called
well foundedness) and that there is no infinite antichains (sequences of pairwise incomparable
elements).

Some examples of wqos are listed below:
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(S, =) where S is a finite set equipped with the equality relation on its elements

(N, Æ), the set of natural numbers with standard ordering is a wqo (which is total).

(Nk, Æ) where Æ is the qo on Nk component-wise (this is known as the Dickson’s
lemma [Dickson, 1913] recalled below)

(Nk
Ê, Æ) where Æ is the qo on Nk

Ê component-wise

Lemma 2 : Dickson’s lemma [Dickson, 1913]
(Nk, Æ), the set of vectors of k natural numbers with component-wise ordering,
i.e. given two vectors m1 and m2, m1 Æ m2 if for all indexes i, m1(i) Æ m2(i),
is a wqo.

2.1.3 Deepening of the Order Theory

We reuse definitions and concepts from [Finkel and Goubault-Larrecq, 2009, Finkel and
Goubault-Larrecq, 2012] which are summed up in [Finkel and Leroux, 2015].

Upward Closed Sets

An upward closed set of the well quasi ordered set (Nk, Æ) is a subset U of Nk such that if
x œ U , y œ Nk and x Æ y then y œ U . The upward closure of a vector u, written ø u is the
set {m œ Nk | u Æ m}. Given a set U , we write ø U for the upward closure of U , defined as
ø U =

t

uœU ø u. This implies that ø U is the least upward closed set in which U is included.
Any upward closed set U can be represented by a finite set F , called basis, such that U =ø F .
An element x of F is called minimal when for all element y œ F such that y Æ x, then x Æ y.
The set of all the minimal elements of F ™ Nk still form a basis of U independently of F . This
basis is minimal for inclusion among all bases and is thus called the minimal upward basis of F .

Downward Closed Sets

A downward closed set of the well quasi ordered set (Nk, Æ) is a subset D of Nk such that
if x œ D, y œ Nk and y Æ x then y œ D. The downward closure of a vector d, written ¿ d is
the set {m œ Nk | m Æ d}. Given a set D, we write ¿D the downward closure of D, defined as
¿D =

t

dœD ¿d. This implies that ¿D is the least downward closed set in which D is included.
Moreover, the downward closure of a finite set (of vectors in Nk) is finite. To symbolically
represent downward closed sets, we use the extension Nk

Ê. The definitions remain otherwise the
same. If D is a downward closed set, we can write D = Nkfl ¿ F where F is a finite set of Nk

Ê.
We call F a downward basis of D. An element x of F is called maximal when for all element
y œ F such that x Æ y, then y Æ x. The set of all maximal elements of F ™ Nk still form a basis
of D independently of F . This basis is minimal for the inclusion among all bases and is thus
called the minimal downward basis of D.

Some Notable Properties

We also recall important results on upward and downward closed sets (see, e.g., [Bouajjani
and Mayr, 1999]): the union and the intersection of two upward (resp. downward) closed sets
is an upward (resp. downward) closed set. The complement of an upward closed set is a
downward closed set and vice-versa. Given the basis of an upward closed set, it is possible to
compute the basis of its complement using for instance the procedure suggested in Example 5
of [Goubault-Larrecq, 2009], and vice versa by adapting this procedure.

Let us recall those procedures. First, we recall the reasoning of [Goubault-Larrecq, 2009].
This report provides as an example that the complement of ø(1, 3, 2) is exactly the intersection
N3fl ¿ {(0, Ê, Ê), (Ê, 2, Ê), (Ê, Ê, 1)}. Indeed, not being greater than or equal to (1, 3, 2) means
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exactly having the first component less than or equal to 0, or the second component less than
or equal to 2, or the third complement less than or equal to 1.

For the general case, given a vector x = (i1, i2, . . . , ik) the complement of øx in Nk is equal
to Nkfl ¿{(Ê, . . . , Ê, ij ≠ 1, Ê, . . . , Ê) | 1 Æ j Æ k, ij Ø 1}. Now if we consider a family of vectors
{x1, . . . , xm}, the complement of ø {x1, . . . , xm} can then be computed as the intersection of
the complements of ø x1, . . . , ø xm. Moreover, we can notice that the following intersection
¿ {y1, . . . , ym}fl ¿ {z1, . . . , zp} can be computed as ¿ {min(yi, zj) | 1 Æ i Æ m, 1 Æ j Æ p},
where min(yi, zj) are computed component-wise, for instance min((1, Ê, 3, Ê, 2), (3, 5, 0, Ê, Ê)) =
(1, 5, 0, Ê, 2).

Conversely, we can adapt this reasoning as follows: the complement of ¿ (Ê, 3, 2) is exactly
N3fl ø{(0, 4, 0), (0, 0, 3)}. Indeed, not being lower than or equal to (Ê, 3, 2) means exactly having
the first component greater than Ê which is not possible, or the second component greater than
or equal to 4, or the third complement greater than or equal to 3.

For the general case, given a vector x = (i1, i2, . . . , ik) the complement of ¿x in Nk is equal
to Nkfl ø{(0, . . . , 0, ij + 1, 0, . . . , 0) | 1 Æ j Æ k, ij ”= Ê}. Now if we consider a family of vectors
{x1, . . . , xm}, the complement of ¿ {x1, . . . , xm} can then be computed as the intersection of
the complements of ¿ x1, . . . , ¿ xm. Moreover, we can notice that the following intersection
ø {y1, . . . , ym}fl ø {z1, . . . , zp} can be computed as ø {max(yi, zj) | 1 Æ i Æ m, 1 Æ j Æ p},
where max(yi, zj) are computed component-wise, for instance max((1, Ê, 3, Ê, 2), (3, 5, 0, Ê, Ê)) =
(3, Ê, 3, Ê, Ê).

Finally, Valk and Jantzen proposed in [Valk and Jantzen, 1985] a necessary and sufficient
condition, recalled in Lemma 3, to ensure that a finite basis of an upward closed set is effectively
computable.

Lemma 3 : [Valk and Jantzen, 1985]
Given an upward closed set U ™ Nk, a finite basis of U is effectively computable
iff for each v œ Nk

Ê, the emptiness of ¿vflU is decidable, which is also equivalent
to ask whether for all element v œ Nk

Ê, it is decidable to answer whether ¿vflNk ™
¬U .

2.2 Notions of Graph Theory, Algebra and Enumerative Combinatorics

2.2.1 Graph Theory

We now consider a set and a binary relation over itself. This pair of elements forms a directed
graph.

Definition 6 : Directed graph
A directed graph G is a pair (V, A) where V is a set of vertices and A ™ V ◊ V

is a set of pairs of vertices, called arcs.

In graph theory, it can be relevant to consider graphs where the nodes can be of different kinds.
When vertices can be divided into two disjoint sets U and V, such that no arc relates two vertices
from the same set, we can refine the above definition:

Definition 7 : Bipartite directed graph
A bipartite directed graph G is a triplet (U, V, A) where U and V are two disjoints
sets of vertices and A ™ (U ◊ V ) fi (V ◊ U) is a set of pairs of vertices, called
arcs.

Given a graph, we define sequences of nodes connected by consecutive arcs as a path.
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Definition 8 : Path
Given a directed graph G = (V, A) and n œ N, A path w : {1, . . . , n} æ V is a
finite sequence of nodes such that ’i œ {1, . . . , n ≠ 1}, (w(i), w(i + 1)) œ A.

We define a rooted tree as a triplet (T, r, S) where:
S ™ T ◊ T , r œ T is the root, and for all t œ T , rSút (with Sú the reflexive transitive
closure of S)
’t œ T , t ”= r ∆ ÷ a unique tÕ œ T s.t. tÕSt

’t œ T , ¬(tS+t) (with S+ the transitive closure of S)
Informally, it is a directed graph where any two vertices are connected by one path and every
arc can be assigned a natural orientation away from one given vertex (the root). We call the
depth of a node the length of a path from the root to this node. By convention, the depth of
the root is thus equal to zero.

Lemma 4 : König infinity lemma
Let T be a rooted (directed) tree in which each vertex has a finite number of
successors (finite branching) and there is no infinite path directed away from the
root. Then T is finite.

Each of those structures can be augmented by labelling functions assigning to each vertex
or each arc an object.

We consider two alphabets Σ1 and Σ2. We consider a labelled tree defined as a graph by
a tuple C = (N, r, B, Λ, Γ) where (N, r, B) is a rooted tree, Λ : N æ Σ1 labels nodes with Σ1,
and Γ : B æ Σ2 labels arcs with Σ2. We say that x is an ancestor of y iff (x, y) œ B+ where
B+ is the transitive closure of the relation B. Then, given a node n œ N , AncestorC (n), is the
set of ancestors of n in C plus n itself. Given two nodes x and y such that x œ AncestorC (y),
we write x  y to denote the unique sequence of nodes along the path from x to y, that is to
say x = n0, n1, . . . , nk = y such that each (ni, ni+1) œ B. We denote by pathC (x, y) œ Bú the
sequence of edges leading from x to y, formally it is equal to (n0, n1), (n1, n2), . . . , (nk≠1, nk). The
corresponding label is given by pathlabelC (x, y) œ Σú

2. Given two trees T1 = (N1, r1, B1, Λ1, Γ1)
and T2 = (N2, r2, B2, Λ2, Γ2), a mapping „ from N1 to N2 is a labelled tree isomorphism iff

„ maps the root of T1 to the root of T2 i.e. „(r1) = r2.
’(u, v) œ N1, (u, v) œ B1 … („(u), „(v)) œ B2 with Γ1(u, v) = Γ2(„(u), „(v))
for every node n of N1, Λ1(n) = Λ2(„(n)).

Given a tree C = (N, r, B, Λ, Γ), C Õ = (N Õ ™ N, rÕ, BÕ ™ B, ΛÕ, ΓÕ) is a prefix of C iff for each
y œ N Õ, either y = r = rÕ or if there exists a node x œ N such that (x, y) œ B then x œ N Õ and
(x, y) œ BÕ. Note that C Õ is indeed a tree and that ΛÕ and ΓÕ are respectively the restrictions of
Λ and Γ to N Õ and BÕ.

2.2.2 Elementary Algebra

Given a set of variables X, we define a linear expression on X by the following grammar:
⁄ ::= k | k ú x | ⁄ + ⁄ where k œ Z and x œ X.

Let V ™ NÊ, a V-valuation for X is a function from X to V . We refer to NÊ-valuations as
extended valuations and to N-valuations simply as valuations. The set V ÿ of valuations from ÿ
to V is reduced to a singleton {ÿV } where ÿV is the empty function. If X is finite, considering
some arbitrary order on X, an (extended) valuation can be seen as a vector of size |X|.

Given a value a of NÊ, we denote as ą the uniform (extended) valuation that maps every
element of X to a. Given an extended valuation v, we write Ê(v) for the subset of X such that
x œ Ê(v) iff v(x) = Ê. We write N(v) for the subset of X such that x œ N(v) iff v(x) œ N.

Given a linear expression ⁄ on X and an extended valuation v on X Õ ™ X, v(⁄) is the linear
expression obtained when substituting each element x in X Õ from ⁄, by the corresponding value
v(x). If X Õ = X we obtain an element of NÊ.
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2.2.3 Combinatorics

Given a function f : X æ Y , f is said to be injective iff given two elements x and xÕ of
X, f(x) = f(xÕ) implies that x = xÕ. That is to say that f never maps distinct elements of its
domain to the same element of its co-domain. Note that given x in X, y = f(x), when f is
injective, x is called the fiber of y by f .

A function f is said to be surjective iff for every y of Y , there exists x œ X such that
y = f(x). That is to say that the image of f is equal to its co-domain.

If f is both injective and surjective, f is said bijective. Informally, this means that the
elements from the domain and the codomain of f are in one to one correspondence by f . Given
a finite set X, we call the bijections (necessarily total) from X to X permutations.

Given a finite set X, SX denotes the symmetric group on X (i.e. the set of all permutations
of elements of X). If X is finite such that |X|=n, SX is finite and contains n! elements where
n! denotes the factorial of n. The notion of permutation is related to the act of arranging all
the members of a set into some sequence or order, or if the set is already ordered, reordering its
elements.

We also recall a well known result usually attributed to Dirichlet as the Dirichlet’s drawer
principle but more commonly referred to as the pigeonhole principle.

Lemma 5 : Pigeonhole principle
There does not exist an injective function whose co-domain is smaller than its
domain.

If n items are put into m containers, with n > m, then at least one container must contain
more than one item. By extension, if n is infinite, then at least one container contains an infinity
of items. Thus, if n = Ê, at least one container contains Ê items.

Numerous proofs will rely on this principle.

2.3 Computability Theory

Computability theory is a branch of mathematical logic and theory of computation. This
theory notably addresses the notion of computable sets. We turn our interest toward decidability
of decision problems in the sense originally introduced through [Turing, 1937].

2.3.1 Turing Machines

A Turing machine is a theoretical machine that reads and write symbols one at a time at a
position given by the head of the machine which moves on the cells of an infinite tape by following
a program. Let us provide a formal definition. Given an alphabet A we define Ã = A fi {⇤}
where ⇤ will be used to represent an empty cell from the tape.

Definition 9 : Turing Machine
A Turing machine on an alphabet A is a pair (Q, æ) such that:

Q is a set of states containing at least the initial state init, the accepting
state accept and the rejecting state reject

æ™ Q ◊ Ã ◊ Ã ◊ {≠1, 0, +1} ◊ Q is the transition relation

We define the configuration of a Turing machine as a triplet (q, f, i) where q œ Q, f : Z æ Ã

represents the contents of the tape and i œ Z represents the current position of the head. The
initial configuration defined on the input w is the triplet (init, f0, 0) where for 0 Æ i Æ |w| ≠ 1,
f0(i) = w(i) and f(i) = ⇤ otherwise.

Given a Turing machine, its configuration (q, f, i) yields in one step the configuration
(qÕ, f Õ, iÕ) iff ÷(q, a, b, x, qÕ) œæ such that:
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a = f(i) (i.e. the head reads a on the tape)

b = f Õ(i) (i.e. the head writes b on the tape)

’j ”= i, f Õ(j) = f(j)

iÕ = i + x

Given a configuration if there is only one transition yielding another configuration, the
machine is said deterministic. Otherwise it is said non-deterministic. Given an input w, if the
machine reaches the state accept the machine stops and return true and if the machine reaches
the state reject the machine stops and return false.

2.3.2 Decision Problems and Decidability

In computer science, a problem is characterised by a set of input instances and a task to
perform on these input instances. The problem is encoded into a specialised format for efficient
transmission, storage or processing by the machine.

A decision problem is a question which can be answered by a Boolean value depending on
the input values. Note that the set of possible input values may be infinite. For instance asking
whether an integer n œ N is a prime number is a decision problem. A decision problem can be
assimilated to the set of possible inputs, called solution set, for which the answer is true.

A decision problem is said decidable iff there exists an algorithm which terminates after a
finite amount of time (which may depend on the input value) and correctly decides whether the
input is in the solution set or not. It is semi-decidable if there exists an algorithm that correctly
decides when an input is in the solution set but may give no answer (i.e. may not terminate)
for input not in the solution set. A problem that is not decidable is called undecidable. Note
that some examples of decidable decision problems are presented in the next chapter when
introducing the background on Petri nets, more precisely in Section 3.2.

In order to formalise the notion algorithm we need to rely on a specific formal model of
computation. In particular we use here the formal model of Turing machine presented above.
Indeed, any Turing machine can be translated in an effective algorithm. This means that
every problem that is decidable through a Turing machine is decidable through an algorithm.
Reciprocally, we admit that the decidability of a problem implies its decidability through a
Turing machine. This latter implication is often referred to as the Church-Turing thesis.

Therefore, the definition of decidability is equivalent to the existence of a Turing machine
which terminates after a finite number of steps (which may depend on the input value) and
correctly decides whether the input is in the solution set or not.

2.3.3 Computational Complexity

We now focus on classifying decidable problems according to their difficulty by formalising
that for a given problem, finding its solution requires a certain amount of resources, whatever the
algorithm used. In particular, in this section, we provide the definition of the class ExpSpace

since the majority of the results proved in this manuscript belong to it.
To quantify the amount of resources needed, we refer to the Turing machines: if we consider

decidable problems, we can deduce that there exists a Turing machine solving any instance of
this problem, this instance being the input of the machine. Based on this observation, we define
the complexity in time as the number of steps performed by the machine to stop (which might
depend on the encoding). We also define the complexity in space as the maximal number of
cells used (i.e. containing a element of the alphabet different from ⇤) by the machine along its
execution, from the beginning until the termination.

Given two functions f, g : N æ N, we compare the asymptotic behaviour of f and g by
writing that g(n) = O(f(n)) when n increases toward infinity which means that there exists
some constants c œ R+, the set of positive real numbers, and N œ N such that for all n Ø N ,
g(n) Æ cf(n). In particular, if we call g(n) the complexity of the Turing machine on an input
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of size n. We denote the asymptotic complexity of a Turing machine by O(f(n)) according to
the previous definition.

The class ExpSpace is the set of all decision problems solvable by a deterministic Turing
machine in O(2p(n)) space, where p(n) is a polynomial function of n. The class NExpSpace is
the set of all decision problems solvable by a non-deterministic Turing machine in O(2p(n)) space,
where p(n) is a polynomial function of n. Those two classes are known to be equal:

Corollary 6 : Corollary of Savitch’s theorem [Savitch, 1970]
NExpSpace is equal to ExpSpace.

A decision problem is ExpSpace-complete if it is in ExpSpace, and every problem in
ExpSpace has a polynomial-time reduction to it. That is to say that there is a polynomial-
time 1 algorithm that transforms instances of one to instances of the other with the same answer.
Intuitively, it means that the complexity has an ExpSpace upper bound and that it is as hard
as any ExpSpace problem which provides a lower bound. This lower bound is referred to as
ExpSpace-hardness.

We provided an extensive list of mathematical notions and background notations used
throughout this thesis dissertation. We are now in position to introduce elements of the state
of the art regarding Petri Nets which will be done in the following chapter.

1. An algorithm is said to be polynomial-time (or to have a polynomial running time) if there exists k œ N
and C > 0 such that given any input of size n its running time is at most Cnk.





CHAPTER 3

Preliminaries on Petri Nets

“Those who do not want to imitate anything,
produce nothing.”

— Salavador Dali
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This chapter intends to introduce Petri nets in such a way that only classic properties and
results are presented. Those results will be extended to a parametric context in the following
chapters. Petri nets (or place/transition net) are a basic model of parallel and distributed
systems introduced by Carl Adam Petri [Petri, 1962]. Petri nets are designed to model discrete
event systems by exhibiting behaviours such as concurrency, conflict or dependency between
events in both a graphical and formal manner through a strong mathematical background.

3.1 Definitions and Examples

3.1.1 Formal Definition

A Petri net is a bipartite graph consisting of places, transitions and arcs. An example is
provided in Figure 3.1. Transitions represent events that may occur, they are depicted by squares
(or sometimes bars in the literature). Places represent conditions, they are depicted by circles.
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Definition 10 : Petri nets
A Petri net is a 4-tuple N = (P, T, Pre, Post) where P is a finite set of places, T

is a finite set of transitions, Pre and Post œ NP ◊T are the backward and forward
incidence functions, where for any p œ P and t œ T , Pre(p, t) = n with n > 0,
when there is an arc from place p to transition t with weight n and Post(p, t) = n

with n > 0 when there is an arc from transition t to place p with weight n. If
there is no arc between p and t, the corresponding values are equal to zero.

Given a Petri net N = (P, T, Pre, Post), and a transition t of T , we define Pre(t) as the
univariate function on P at the point t which associates to each p of P the weight Pre(p, t). This
function can be represented as that vector (Pre(p1, t), Pre(p2, t), ..., Pre(p|P |, t)). We define Post(t)
in a similar way. Seeing a transition t as an event occurring in a system, the input weights of t,
Pre(t), can be seen as the pre-conditions of this event. The ouput weights Post(t) can be seen as
its post-conditions. Note that Pre and Post can equivalently be seen as matrices from N|P |◊|T |. In
the sequel, we may consider one formalism or the other depending on the context, in particular,
each graphical representation of Pre or Post will rely on its matrix representation.

Definition 11 : Marking
A marking of a Petri net N = (P, T, Pre, Post) is an N-valuation for P .

If m œ NP is a marking, m(pi) represents a number of tokens in place pi. Note that markings
can be represented as vectors of N|P |.

Definition 12 : Marked Petri net
A marked Petri net (PN) is a couple S = (N , m0) where N is a Petri net and
m0 is a marking of N called the initial marking of the system.

An example of marked Petri net is given in Figure 3.1.
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Figure 3.1 – A marked Petri net

3.1.2 Operational Semantics

Augmenting Petri nets with markings leads to the notion of enabled transitions and firing
of transitions. Given a marked Petri net S, a transition t œ T is said enabled by a marking m

when m Ø Pre(t).
A transition system T is a directed graph with an initial state s0, (S, s0, æ). It is used to

describe the potential behaviour of discrete systems. It is convenient to associate a name to
each element of the relation æ. Given an alphabet A, a labelled transition system T Õ is a triplet
(SÕ, sÕ

0, æÕ) where sÕ
0 œ SÕ is the initial state and æÕ™ S ◊ A ◊ S.
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Definition 13 : Petri nets semantics
The semantics of Petri nets is a labelled transition system ST = (Q, q0, æ)
where, Q = N|P |, q0 = m0, æ™ Q ◊ T ◊ Q such that, for all ti œ T , m, mÕ œ NP

m
tiæ mÕ …

I

m Ø Pre(ti)
mÕ = m ≠ Pre(ti) + Post(ti)

(3.1)

This relation can be extended to sequences of transitions as follows:

(i) m
‘

æ mÕ if m = mÕ

(ii) m
wt
æ mÕ if ÷mÕÕ, m

w
æ mÕÕ · mÕÕ t

æ mÕ where w œ T ú and t œ T .

We write ú
æ the reflexive transitive closure of æ, i.e., m

ú
æ mÕ when there exists w œ T ú such

that m
w
æ mÕ. A path from m0 in the semantics is called an execution.

3.1.3 Well Structured Transition Systems

Since markings can be seen as vectors of N|P |, we can consider a wqo invoking Dickson’s
Lemma (see Lemma 2). This conveys a special structure called well structured transition system
which has been widely studied.

Definition 14 : Well structured transitions system [Abdulla et al., 1996, Finkel
and Schnoebelen, 2001]
A well structured transition system (WSTS for short) is a tuple S = (S, s0 æ, Æ)
where (S, s0, æ) is a transition system, Æ™ S ◊ S is a quasi order and:

Æ is a wqo

Æ is upward compatible with æ i.e. ’s1 Æ t1 and transition s1 æ s2,
÷t1

ú
æ t2 with s2 Æ t2

In fact, compatibility can satisfy several additional criteria.

Definition 15 : Strong compatibility [Finkel and Schnoebelen, 2001]
A WSTS S has strong compatibility iff ’s1 Æ t1 and transitions s1 æ s2, ÷ a
transition t1 æ t2 with s2 Æ t2

Definition 16 : Strict compatibility [Finkel and Schnoebelen, 2001]
A WSTS S has strict compatibility iff ’s1 < t1 and transition s1 æ s2, ÷t1

ú
æ t2

with s2 < t2

Petri nets are WSTS’s with strong strict compatibility. This property is also called strong
monotonicity. We will see in the sequel how this property plays a key role in many analysis
techniques of Petri nets.

3.1.4 Equivalent Modelling Formalism

One may notice that we sometimes invoke results and arguments initially used or proved on
the models of vector addition systems and vector addition systems with states directly to our
context. In fact those two models are equivalent to Petri nets. Vector addition systems (or VAS
for short) have been introduced in [Karp and Miller, 1969].
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Definition 17 : Vector addition system (VAS)
A VAS G of dimension n is a pair (d, W ) where d œ Nn is called the start vector
and W is a finite set of vectors in Zn.

The set of vectors that can be generated by G (called the reachability set, see infra) is then
defined as the set of all vectors of the form x = d+v1 + · · ·+vj where for all i = 1 . . . j, vi belong
to W and for all i such that 1 Æ i Æ j, d + v1 + · · · + vi Ø 0. VAS have then been generalised
to vector addition systems with states (or VASS for short) in [Hopcroft and Pansiot, 1979].

Definition 18 : Vector addition system with states (or VASS)
A VASS G of dimension n is a finite directed graph (P, T ) where transitions
are labelled by vectors of Zn together with an initial state p0 œ P and an initial
vector d œ Nn.

A configuration of a a VASS G = (P, T, p0, d) of dimension n consists in a tuple containing
a control state from the set P and a integer vector of dimension n. The idea is that a transition
can be fired from the current configuration iff it is in the corresponding control state and the
sum of its effect with the vector of its current configuration is non negative. The firing of a
transition will thus result in changing the current control state and updating the current vector
accordingly. Both are computationally equivalent to Petri nets as detailed in [Reutenauer, 1989].
There exist indeed polynomial translations from VASS to VAS and PN and from PN to VAS
(and VASS) [Reutenauer, 1989, Avellaneda and Morin, 2012].

3.2 Behavioural Properties of Petri Nets

We can now turn our attention to behavioural properties of Petri nets. In this context, one
of the most important problem is to know whether a marking is reachable from the initial state.
This problem is called the reachability problem and most verification problems are based on it.
Formally:

Definition 19 : Reachability
Let S = (N , m0), where N = (P, T, Pre, Post), a marking m of NP is reachable
in S if m0

ú
æ m.

The reachability set RS(S) of S is the set of all reachable markings of S. The reachability
problem is decidable in PN but its complexity is still an open question. Notwithstanding, it
is known to be ExpSpace-hard [Cardoza et al., 1976]. The original reachability proof was
provided by Mayr in [Mayr, 1984]. It has been later simplified by Kosaraju in [Kosaraju,
1982] and Lambert in [Lambert, 1992]. The main idea of the construction behind this proof is
also presented in [Reutenauer, 1989]. In other papers, this problem is solved using inductive
invariants and Presburger definable sets such as in [Finkel and Leroux, 2015, Leroux, 2009].

Another behavioural property of interest is called coverability. It allows to verify safety
properties.

Definition 20 : Coverability
Let S = (N , m0), where N = (P, T, Pre, Post), and m a marking of NP , m is
coverable in S iff ÷mÕ œ RS(S), mÕ Ø m.

Coverability permits to answer properties which are tested using observers since it can be
seen as the firability of a transition. The coverability set CS(S) of S is the set of markings
coverable in S. Coverability is decidable in marked Petri nets [Karp and Miller, 1969]. The
construction 1 provided by Karp and Miller is of non-primitive recursive space complexity. The

1. This classic construction is described in Section 3.3.2.



3.2. BEHAVIOURAL PROPERTIES OF PETRI NETS 37

p1

...

pn tempty,pn

tempty,p1

Figure 3.2 – Reducing coverability to reachability

original proof that the coverability problem is ExpSpace-complete is provided in [Rackoff, 1978].
The problem of coverability has been widely studied and is still studied nowadays. Indeed, more
recently, [Finkel and Leroux, 2015] suggested an approach based on inductive invariants to solve
coverability. The coverability set is an over approximation of the reachability set in the sense
that CS(S) =¿ RS(S). Given a marked PN S, and a marking m, we denote by cov(S, m) œ
{True, False} the coverability of m in S. We recall that the coverability set of a marked Petri
net is computable in the sense that its minimal downward basis is computable (see, e.g., [Finkel
and Leroux, 2015]). Here, the minimal downward basis is a finite set of extended markings.
Given a marked Petri net S, we write BCS(S) for the minimal downward basis of CS(S).

In fact, the construction of Karp and Miller cited above allows us to answer other interesting
behavioural properties. Two of them are presented below.

Definition 21 : Boundedness
A marked Petri net S is k-bounded iff for all m œ RS(S), m Æ k̨ where k̨ is
the vector equals to k on all its components. It is bounded iff there exists k œ N
such that S is k-bounded.

The simultaneous unboundedness asks a set of places to be unbounded together as follows:

Definition 22 : Simultaneous unboundedness [Demri, 2013]
Given N = (P, T, Pre, Post) and S = (N , m0), considering a subset X ™ P , S is
simultaneous X-unbounded if for any B Ø 0, there is a run w such that m0

w
æ m

and for i œ X, we have m(i) Ø B. If X is reduced to a singleton {p}, S is said
p-unbounded.

Note that the simultaneous unboundedness has been studied in [Demri, 2013] on VASS and
that paper provides its complexity recalled in the following theorem.

Theorem 7 : [Demri, 2013]
The simultaneous unboundedness problem for Petri nets is ExpSpace-complete.

We now recall some relations between those properties that will be used in this manuscript.
We focus here on two simple translations between the previous properties. Nevertheless, note
that there exist other more complex reductions that would not be useful for the understanding
of this thesis.

Coverability can be easily reduced to reachability by adding a subnet that we call observer
as depicted in Figure 3.2. Indeed, covering a marking m is equivalent to reach the marking m

in the net augmented where for each place p a transition tempty,p such that: Pre(p, tempty,p) = 1
and 0 for all other components, Post(tempty,p) is equal to 0 on all components.

Notice that coverability can be easily reduced to simultaneous unboundedness by the use of
an observer as depicted in Figure 3.3. The transition tobs has an input condition equal to the
marking we want to cover m. Its output effect provides a token in a place pobs, that, once
is marked, can become unbounded through the firing of tcumul. With this construction, m is
coverable in the net iff it is simultaneous pobs-unbounded.
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p1
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m(p1)

m(pn)

tcumul

2

Figure 3.3 – Reduction of coverability to the place unboundedness

3.3 Analysis of Petri Nets

Thanks to their strong theoretical and formal background, mathematically grounded results
can be derived from the systems modelled through this formalism. Standard techniques of
verification have been established and improved in order to prevent error prototyping and time
consuming ineffective trials. If some properties can be found directly through the structure of
the net, we turn our interest toward a fundamental topic of verification, which is what to expect
(or not to expect) from the system during operation. We will focus on the most generic method
of analysis, which is a state space approach (or behavioural approach), since we latter plan to
extend the results to a more generic model. Note that this approach relies on the enumeration
of some reachable markings and can thus become very expensive due to state-space explosion.

The following sections addresses the fundamental results of coverability, boundedness and
termination analysis through the search for self covering sequences during the executions.

3.3.1 Existence of Self-Covering Sequences

A self-covering sequence is a sequence of the form:

m0
t1æ m1

t2æ . . .
tiæ mi

ti+1
æ . . .

tj
æ mj with mj Ø mi

The termination problem asks whether all executions of the net are finite. The existence of a
self-covering sequence is a necessary and sufficient condition of the non-termination of a net.
The idea behind this statement is simple: once mj Ø mi is reached, it is possible to fire the
sequence ti+1, . . . , tj , leading to a marking mÕ

j Ø mj . This can then be repeated infinitely, which
is a witness run for the non-termination. Reciprocally, if there exists an infinite execution in the
net, then applying the definition of wqo (see Definition 5), we can find two comparable markings
in this sequence mi Æ mj with i < j which is exactly the definition of a self-covering sequence.

Let us consider the marked Petri net (N , m0) depicted in Figure 3.4. We can for instance
exhibit the following infinite run:

(1, 0, 0, 0, 0) t1æ (0, 1, 0, 0, 0) t2æ (0, 0, 1, 0, 0) t3æ (0, 1, 0, 0, 0) t2æ (0, 0, 1, 0, 0) t3æ (0, 1, 0, 0, 0) . . .

Moreover, if the self-covering sequence is strictly increasing, that is to say iff mj > mi, or
more precisely, ÷X ”= ÿ ™ P, ’p œ P, mj(p) Ø mi(p) and ’p œ X, mj(p) > mi(p), it becomes
then a necessary and sufficient condition for the unboundedness of the net. Indeed, using strong
monotonicity, it is possible to redo the sequence ti+1, . . . , tj to obtain a marking strictly greater
than mj on the components of X. If the earlier example does not lead to an unbounded marking,
the following one does:

(1, 0, 0, 0, 0) t4æ (0, 0, 0, 1, 0) t5æ (0, 0, 0, 0, 1) t6æ (0, 0, 0, 2, 0) t5æ (0, 0, 0, 1, 1) t6æ (0, 0, 0, 3, 0) . . .

After an arbitrary long repetition of firing of t5, t6 we would eventually reach any marking
(0, 0, 0, k, 0) for k œ N.

We will now see how Karp and Miller provided a behavioural analysis to systematically
detect those self-covering sequences while performing an exploration of the reachable states of
the net.
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Figure 3.4 – Example of an unbounded marked Petri net
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Figure 3.5 – The coverability tree of the marked Petri net from Figure 3.4

3.3.2 Karp and Miller Procedure

The Karp and Miller procedure constructs a finite representation of the potentially infinite
coverability set of a Petri net through a tree where nodes are labelled by markings and arcs by
transitions. This tree allows to answer the coverability and the (simultaneous) unboundedness
problems for Petri nets. To make the procedure finish even if the Petri net studied presents
infinitely many behaviours, an abstraction is used through an acceleration function. The idea
behind acceleration relies on self-covering sequences. Indeed, as explained previously, due to
monotonicity, a sequence m0 æ m1 æ ... æ mi æ ... æ mj , such that mi < mj , can be extended
indefinitely by repeating the transitions involved between mi and mj . In order to express this
repetition, Karp and Miller have suggested to replace the strictly increasing coordinates by Ê

meaning that we can store as many tokens as wanted in those places, by repeating the loop
of transitions. The number Ê is used to abstract the infinite set of markings coverable on the
component(s) strictly growing with the loop. To ensure the termination, this procedure stops
exploration once a node that has an ancestor with the same label is found. An example is
provided through Figure 3.5.

Formally, the acceleration function Acc used to bypass loops is defined 2 as follows:
Acc : 2N

|P |
ω ◊ N

|P |
Ê æ N

|P |
Ê such that given a set of markings M (ancestors of m) and a marking

2. This definition is the one used in [Reynier and Servais, 2011], which is slightly different from the original
acceleration of Karp and Miller since we accelerate directly w.r.t. the group of all predecessors rather than one
by one. This permits to provide a more compact tree.
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m, for each place p,

Acc(M, m)(p) =

Y

_

]

_

[

Ê if ÷mÕ œ M

-

-

-

-

-

mÕ < m

· mÕ(p) < m(p) < Ê

m(p) otherwise
(3.2)

If a node n labelled by m has an ancestor nÕ labelled by mÕ such that mÕ Æ m, the function
creates a marking mÊ such that for any place p, mÊ(p) = Ê if mÕ(p) < m(p) and m(p) otherwise.

Given a Petri net S we write KM(S) to denote its coverability tree obtained by the proce-
dure à la Karp and Miller described in Algorithm 1 which corresponds to an improvement of
the original method to build more compact structures (the acceleration beeing made directly
regarding all the predecessors of the node, see [Reynier and Servais, 2011] for more details). By
abuse of notation, we may assimilate the label of a node of the coverability tree with the node
itself.

Algorithm 1 Coverability Algorithm
1: Require: A PN S = (P, T, Pre, Post, m0)
2: Return: A labelled tree C = (N, n0, B, Λ)
3: procedure
4: Let n0 be a new node such that Λ(n0) = m0

5: N Ω n0 ; Wait Ω {(n0, t)|t œ T · Λ(n0) Ø Pre(t)} ; B Ω ÿ
6: while Wait ”= ÿ do
7: Pop(n’,t) from Wait;
8: m Ω Post(Λ(nÕ), t) ;
9: if @y œ AncestorC (nÕ) s.t. Λ(y) = m then

10: Let n be a new node s.t. Λ(n) = Acc(Λ(AncestorC (nÕ), m))
11: N Ω N fi {n} ; B Ω B fi {(nÕ, t, n)};
12: Wait Ω Wait fi {(n, u)|u œ T · Λ(n) Ø Pre(u)} ;

return C = (N, n0, B, Λ)

Many properties can be checked using the coverability tree.

Theorem 8 : [Karp and Miller, 1969]
Given a marked Petri net S and a marking m, m is coverable in S iff there is
a node in KM(S) labelled by a marking mÕ Ø m.

The following Lemma relates the notion of simultaneous unboundedness to the notion of
coverability set.

Lemma 9 : [Karp and Miller, 1969, Demri, 2013]
Given a marked Petri Net S, the following propositions are equivalent:

1. S is simultaneous X unbounded

2. KM(S) contains a node labelled by a marking z such that X ™ Ê(z)

3. BCS(S) contains a marking z such that X ™ Ê(z)

3.3.3 Introduction to the Rackoff Upperbound

We now focus on the establishment of the ExpSpace upper bound for coverability. We
provide here the main intuition of a classic proof from [Rackoff, 1978] that will not be used
directly in the sequel of this thesis but involves however interesting arguments. This has indeed
become a common method of proof in the field of Petri nets. The main idea is to bound the
length of witness runs among which the search should be performed.
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The following explanation of the intuition of the proof originally presented in [Rackoff, 1978]
is widely inspired by the one provided in [Bonnet et al., 2012] which was presented with a great
clarity. We define R as the maximum absolute value of any weight (on an input or output
arc) in the Petri net. Given a goal marking mcov, we define RÕ as the maximum among the
components of this marking and R. The main idea behind the Rackoff technique is to define
a function l : N æ N and prove that given a Petri net with n places, if mcov can be covered,
then it is coverable with a sequence of transitions of length at most l(n) with l(n) depending on
RÕ. This is performed by induction on the number of places. In a Petri net with i + 1 places,
suppose m0

‡
æ mÕ Ø mcov and m is the first marking obtained by a prefix of ‡ where one of the

coordinates is more than R◊ l(i)+RÕ ≠1. If there is no such marking, then one can deduce that
all intermediate markings coordinates are lower or equal to R◊ l(i)+RÕ ≠1. We can then bound
the length of ‡ by (R◊ l(i)+RÕ)i+1. Indeed, the i+1 places can take only R◊ l(i)+RÕ different
values. Otherwise let ‡ = ‡1‡2 such that m0

‡1æ m
‡2æ mÕ Ø mcov. As explained, the length of

‡1 is bounded by (R ◊ l(i) + RÕ)i+1. If we then (temporarily) forget the place (or places) p such
that m(p) Ø R ◊ l(i) + RÕ, we can use the induction hypothesis (on the net with strictly less
than i + 1 places) and conclude that starting from m, mcov can be covered (in all places except
p) with a sequence ‡Õ

2 of length at most l(i). By definition of RÕ, since m Ø R ◊ l(i) + RÕ we can
deduce that ‡1‡Õ

2 covers mcov from m0 and its length is at most (R ◊ l(i) + RÕ)i+1 + l(i) + 1.
So we can chose l(i + 1) = (R ◊ l(i) + RÕ)i+1 + l(i) + 1 and, solving the recurrence, it can be
proved 3 that l(i) Æ (6RRÕ)(i+1)!.

From this reasoning we can construct a non deterministic procedure that will guess a run
among those of size at most l(n) that allows to cover mcov. To this end, it is necessary to store
a marking and a counter, indeed, we will compare mcov to the intermediate stored marking and
ensure that the run is of length lower than or equal to l(n) through the counter. This can be
done using at most O(2cmlog(m)) bits for some constant c where m is an expression describing
the size of the net involving the above constants that is to say, the initial marking minit, the goal
marking mcov and the maximum absolute value of the weights involved in the net. Using the
theorem from Savitch mentioned in Section 2.3.3, we obtain the ExpSpace upper bound. Note
that this technique of proof is extended to the property of boundedness by Rackoff in his original
paper [Rackoff, 1978] and to the notion of simultaneous unboundedness by Demri [Demri, 2013].

3.4 Simulations of Nets

It is classic to introduce mappings from a net to another where some special behaviours
are easier to verify. We would like to be able to state that those mappings preserve some
properties. More generally it can be interesting and time saving to notice that some nets,
even if their structures are different, provide similar behaviours. This is formalised through the
notion of simulation and bisimulation (see [Milner, 1980] and [Park, 1981] for their work on
bisimulations). We consider marked Petri nets augmented by silent actions that abstract some
behaviours of the Petri nets. Therefore, we introduce a labelling function Λ from the set of
transitions T to Σ‘, Λ : T æ Σ‘, such that Σ‘ = T fi {‘} and Λ(ti) equals either ti or ‘. We

extend the previous notations by using m
t

æ mÕ or m
Λ(t)
æ mÕ depending on the context 4. For

instance, m
‘ú

æ mÕ means that m leads to mÕ by using zero or more internal ‘-transitions. In
this context, the transitions of the transitions system induced by the semantics defined through
Definition 13 are now labelled by the labels of transitions of the Petri net and not by the
transitions themselves. Considering the previous alphabet Σ‘ and a labelled transitions system
(S, s0, æ) with æ™ S ◊ Σ‘ ◊ S and two states s and sÕ of S we write:

s
–

æ‘ sÕ … s
‘ú

æ
–
æ

‘ú

æ sÕ with – œ Σ (and thus – ”= ‘) (3.3)

3. Note that in the context of [Bonnet et al., 2012], the constant R is defined for affine Petri nets. In the case
of Petri nets, the formula still holds but the computation of R is easier.

4. In fact, using labelling is more general and allows to introduce non-deterministic behaviours.
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Definition 23 : Weak-simulation
Given Σ‘ = Σ fi {‘} an alphabet and two labelled transitions systems, S1 =
(Q, q0, æ1) where æ1™ Q◊Σ‘ ◊Q and S2 = (S, s0, æ2) where æ2™ S ◊Σ‘ ◊S,
a binary relation R ™ Q ◊ S is a weak-simulation if

’(q, s) œ R …

I

’– œ Σ and qÕ s.t. q
–

æ‘ qÕ,

÷sÕ s.t. s
–

æ‘ sÕ and (qÕ, sÕ) œ R

If we can find a weak-simulation R ™ Q ◊ S such that (q0, s0) œ R we say that S2 weakly
simulates S1, which means intuitively that S2 can match all the moves of S1.

Moreover if we can find another weak-simulation RÕ ™ Q ◊ S such that S1 weakly simulates
S2, we say that S1 and S2 are weakly co-similar. In addition, when those two relations are the
inverse of one another, we call it a bisimulation:

Definition 24 : Weak-bisimulation
Given Σ‘ = Σ fi {‘} an alphabet and two labelled transitions systems, S1 =
(Q, q0, æ1) where æ1™ Q◊Σ‘ ◊Q and S2 = (S, s0, æ2) where æ2™ S ◊Σ‘ ◊S,
a binary relation R ™ Q ◊ S is a weak-bisimulation a if

R is a weak-simulation and R≠1 is a weak-simulation too where for every
couple x, y, xRy … yR≠1x.

a. There exists several definitions of bisimulation, for instance preserving deadlocks or
epsilon-branching, but the one we use is sufficient for our purpose.

Two labelled transitions systems S1 and S2 are weakly bisimilar if there is a weak bisimulation
relating their initial states.

Given two labelled marked Petri nets N1 and N2, and their semantics S1 and S2, we say
that:

N2 weakly simulates N1 if S2 weakly simulates S1.

N1 and N2 are weakly co-similar if S1 and S2 are weakly co-similar.

N1 and N2 are weakly bisimilar if S1 and S2 are weakly bisimilar.

3.5 Notable Petri Nets Extensions

It is possible to increase the modelling power and the expressiveness of Petri nets through
several extensions. Some of them, such as Coloured Petri nets [Jensen, 1987] are equivalent 5

to Petri nets and focus on improving the modelling capability whereas some others are more
expressive. Indeed, some formalisms offer to use arcs with specific behaviours such as reset
arcs [Araki and Kasami, 1976] or inhibitor arcs [Agerwala and Flynn, 1973, Hack, 1976], to add
time to the model [Ramchandani, 1973, Merlin, 1974, Berthomieu and Diaz, 1991] on transitions,
on places or on arcs (see [Boyer and Roux, 2008] for a comparison of those formalisms) or to
consider real numbers markings [David and Alla, 1987].

We will more specifically turn our interest towards Ê-Petri nets introduced in [Geeraerts
et al., 2015] which present some similarity with the model that will be introduced in Chapter 4.
In Ê-Petri nets, input and output arcs can be weighted with Ê:

Definition 25 : Ê-Petri net [Geeraerts et al., 2015]
An Ê-Petri net (ÊPN) is a tuple (P, T, Pre, Post) where P and T are respectively
a finite set of places and transitions. Pre (resp. Post) is a function of P ◊ T to
NÊ that gives the input (resp. output) effect of a transition t on a place p.

5. To be more precise, Coloured Petri nets with finite colour’s domain have the same expressiveness as Petri
nets.
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The main difference with classic Petri nets is that Ê-transitions introduce additional non-
determinism in the semantics:

Definition 26 : ÊPN semantics [Geeraerts et al., 2015]
Given a marking m, and a transition t such that m Ø Pre(t), firing t from m

gives a new marking mÕ s.t. ’p œ P , mÕ(p) = m(p) ≠ i + o where i = Pre(p, t) if
Pre(p, t) ”= Ê and i œ {0, ..., m(p)} if Pre(p, t) = Ê, o = Post(p, t) if Post(p, t) œ N

and o Ø 0 if Post(p, t) = Ê. We denote this by m
t

æ mÕ.

With this semantics, Post(p, t) = Ê means that an arbitrary number of tokens can be gen-
erated in p. We illustrate those definitions with the example of Figure 3.6 which is taken
from [Geeraerts et al., 2015]. It illustrates the skeleton of a distributed program where a main
function launches (through t1) an arbitrary parallel number of threads, each one executing a
task (depicted by t2).

p1 p2t1

Ê

t2

Figure 3.6 – An example of Ê Petri nets

Nevertheless, this model can be directly related to classic Petri nets. Indeed, Ê-output
arcs can be simulated by tokens canons 6 whereas Ê-input arcs can be simulated by transitions
allowing to empty input places. Given an Ê-Petri nets with a set of places P , it is possible to
construct a classic Petri net with a set of places P Õ = P fi Q where Q contains a global lock
lockg and one lock lockt per Ê-transition t. Then, given a marking m from the initial Ê-Petri
net, it is possible to define a function f such that the f(m) is a marking of the associated Petri
net and such that, for all places of P , f(m)(p) = m(p), f(lockg) = 1 and every f(lockt) =
0.

Lemma 10 : ÊPN to PN [Geeraerts et al., 2015]
Let N be an ÊPN, there exists a PN N Õ with the same set of places plus some
temporary places such that for any marking m0, RS(N , m0) = RS(N Õ, f(m0)).

We have presented this simple result which will be useful in the sequel. However, for other
properties such as termination, the reduction is not stragihtforward. It is important to notice
that this translation from Ê-Petri nets to Petri nets can be carried out in polynomial time.

The main concern of this first part was to review some essential mathematical notions and
notations that this thesis will invoke. We also provided some background on Petri nets and some
classic properties and verification techniques. On the basis of what has thus been presented,
the next part introduces the formalism of parametric Petri nets and the related contributions of
this thesis.

6. See construction from Figure 7.4 on page 109.
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CHAPTER 4

Parametric Petri Nets

“An idea is always a generalisation, and
generalisation is a property of thinking. To
generalise means to think.”

— Georg Wilhelm Friedrich Hegel
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This chapter intends to extend Petri nets with discrete parameters on the weights of arcs or
directly on the initial marking to describe families of concurrent systems and thus provide more
realistic classes of models. We formally introduce this formalism of parametric Petri nets (PPNs
for short) and provide a semantics in order to explain how classic problems studied in Petri nets
are impacted. We then show how this extension increases the modelling power of Petri nets
and how it allows to simulate a zero test, making the parametric instances of the coverability
problem undecidable.

4.1 Definition of Parametric Petri Nets

We would like to use less rigid modelling for systems where some data is not known a priori.
Therefore, in this subsection, we extend the previous definitions by adding a set of parameters
P. Working with Petri nets and discrete parameters leads to consider two main situations: the
first one involves parameters on initial markings, by replacing the initial number of tokens in
some places by parameters, the second one involves parameters as weights. The same parameter
can be used in both situations. Using parameters on initial markings can easily be understood
as modelling an unfixed amount of resources that one may want to optimise.

Figure 4.1 presents the modelling of a semaphore with a parametric initial value a. Let
us consider a concrete example to illustrate parameterised weights. In a production line, we
consider two operations: first, to supply raw material, we need to unpack some boxes containing
an amount b of resources, as depicted in Figure 4.2, and at the end, we need to pack end products
in boxes of capacity c, as in Figure 4.3. This is part of a whole packaging process that one may
want to optimise.

47
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p1 p2

a Semaphore

p3 p4

SemP

SemV

Figure 4.1 – A Petri net with a parametric initial marking modelling a semaphore with a para-
metric initial value

p1 p2t
b

Figure 4.2 – Unpacking raw material

p1 p2t

c

Figure 4.3 – Packing end products

The level of abstraction induced by parameters permits to leave those values unspecified in
order to perform an early analysis.

Definition 27 : Parametric Petri net
A parametric Petri net, N is a 5-tuple N = (P, T, Pre, Post,P) such that P is a
finite set of places of N , T is a finite set of transitions of N , P is a finite set of
parameters of N , Pre and Post œ (N fi P)P ◊T

We provide a more complex example of parametric Petri net through Figure 4.4 where the
matrix representations of Pre and Post are described.

p1

p2

p3

t2

b

c
t1

a

Pre =

Q

c

a

1 1
0 b

0 0

R

d

b
Post =

Q

c

a

0 0
a 0
0 c

R

d

b

Figure 4.4 – A parametric Petri net

Modelling with parameters means using parameters over weights and markings rather than
setting numeric values everywhere. Following the definitions of Petri nets, we now need to
provide an initial marking to parametric Petri nets in order to make them executable.
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Definition 28 : Marked parametric Petri net
A marked parametric Petri Net (PPN) is a pair S = (N , µ0) where N =
(P, T, Pre, Post,P) is a parametric Petri net and µ0 is the initial parametric
marking a of N belonging to (N fi P)P .

a. Note that the components of the initial marking of the marked Parametric Petri net are
not linear expression on P but either a parameter or a natural number. This extension will be
discussed as future work in Chapter 9.

Considering a fix ordering on places, parametric initial markings can be represented as vectors
of (N fi P)|P |. Similarly, Pre and Post can be seen as matrices of (N fi P)|P |◊|T |.

We define the parametric transitions of S, Θ ™ T as the set of transitions with at least one
parameter on an input or output arc: Θ = {t œ T | ÷p œ P s.t. Pre(p, t) œ P ‚ Post(p, t) œ P}.
We refer to T \ Θ as the set of plain transitions in echo to the notations of [Geeraerts et al.,
2015].

PPNs can be used to design systems where some parts have not been dimensioned or where
we need to keep flexibility. We now need to define a way to instantiate classic Petri nets from
our parametric marked Petri nets, in order to define a semantics.

Given a marked PPN S = (N , µ0), where N = (P, T, Pre, Post,P), for any N-valuation v on
a subset X of P, we define the v-instance of S as the marked PPN v(S) = (v(N ), v(µ0)) where
v(N ) = (P, T, v(Pre), v(Post),P\X). By v(Pre) and v(Post) we denote the functions/matrices
obtained by replacing in their entries each parameter a in dom(v) by v(a). If X = P, v(N ) and
v(S) are respectively a Petri net and a marked Petri net. Formally:

Definition 29 : Instantiation of parametric Petri nets
Let S = (P, T, Pre, Post,P, µ0) be a PPN. Let v œ NP, we define v(S) as the PN
obtained from S by replacing each parameter a œ P by v(a), its valuation by v,
i.e. v(S) = (P, T, PreÕ, PostÕ, m0) where ’i œ P, ’j œ T ,

PreÕ(i, j) =

I

Pre(i, j) if Pre(i, j) œ N fi P \ dom(v)
v(Pre(i, j)) if Pre(i, j) œ P fl dom(v)

PostÕ(i, j) =

I

Post(i, j) if Post(i, j) œ N fi P \ dom(v)
v(Post(i, j)) if Post(i, j) œ P fl dom(v)

m0(i) =

I

µ0(i) if µ0(i) œ N fi P \ dom(v)
v(µ0(i)) otherwise

Given a total valuation v on P, we define the relation æv as the firing of a transition in the
classic Petri Net v(S). This relation also holds for sequence of transitions. If m

t
æv mÕ, we may

also write mÕ = Postv(m, t).

4.2 Parametric Decision Problems

We can define several interesting parametric problems on PPNs. In fact, the behaviour
of a PPN is described by the behaviours of all the PNs obtained by considering all possible
valuations of the parameters. It seems therefore obvious to ask, in a first time, if there exists a
valuation for the parameters such that a property holds for the corresponding instance and its
dual, i.e., if every instance of the parametric marked Petri Net satisfies the property. Given a
class of problems P (coverability, reachability, boundedness. . . ), S a PPN and „ an instance of
P, parameterised problems are written as follows:
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Definition 30 : P-Existence problem
(E -P): Is there a valuation v œ NP s.t. v(S) satisfies the property „ ?

Definition 31 : P-Universality problem
(U -P): Does v(S) satisfy the property „ for each v œ NP ?

In the context of parametric Petri nets, coverability leads to two main problems: the existence
problem, written (E -cov) and the universal problem, written (U -cov). For instance, (U -cov) is:

Given a marking m œ NP , m is U -coverable 1 in S … ’v œ NP, ÷mÕ œ RS(v(S)) s.t. mÕ Ø m

For example, considering the parametric Petri net of Figure 4.4 we order the places by their
indices and the parameters lexicographically to use a vector representation. Let us define an
initial marking as µ0 = (d, 0, 0) and a goal marking as mgoal = (0, 0, 1). The marking mgoal is
existentially coverable, since valuation v = (1, 1, 1, 2) is a solution. Nevertheless mgoal is not
universally coverable, for instance valuations (1, 1, 1, 1) or (2, 3, 1, 2) lead to a deadlock where
p3 is not marked. In parallel, if we consider the parametric Petri net obtained by valuating the
parameters b, c and d respectively to 0, 1 and 1, we obtained a parametric Petri net where the
set of parameters is reduced to the singleton {a} and in which mgoal is universally coverable.
This latest consideration will be reused in Section 6.2 while working on parameter synthesis.

Remark 4.2.1. From any PN S, we can build a PPN S Õ by adding an unused parameter. Then
checking existential or universal coverability on S Õ is equivalent to checking coverability on S. For
instance, coverability is known to be ExpSpace-complete, and especially ExpSpace-hard. Since
coverability can be reduced to a parametric coverability problem, the universal and existential
problems are ExpSpace-hard too. The same reasoning applies for other properties such as
(simultaneous) unboundedness.

4.3 Synthesis of Parameters

Beyond verification of properties, the use of parameters opens the way to very relevant
issues in design, such as the computation of the parameters values ensuring satisfaction of the
expected properties. This is the synthesis problem: given a property, compute the exact set of
all parameter values such that, instantiated with these values, the system satisfies this property.
Computing such a set of values can help to design the system. Moreover, it permits to quantify
how reliable is this system. Such quantity is often called the robustness of the system. Indeed,
in full knowledge of “good values” for the parameters, we may be able to quantify the distance
between the instance considered and the closest “bad value”.

Given a class of problems P (coverability, reachability, boundedness, . . . ), S a PPN and „

an instance of P, the synthesis problem is written as follows:

Definition 32 : P-Synthesis problem
(S -P): Compute all the valuations v, such that v(S) satisfies „.

We call this set of valuations the P synthesis set of a marked PPN S given the instance „

of the problem P. For instance, we will latter address the coverability synthesis set of a marked
PPN S for a marking m that will be denoted by CV(S, m). We also call it the solution set to
the synthesis problem. Note that if the solution set to the synthesis problem can be computed
in an explicit enough form, then answering the existential and universal problems are equivalent
to deciding whether this set is respectively empty or the set NP itself (or a well defined subset
of this set if the domain of the parameters was restricted).

1. We can similarly define E -reach and U -reach for parameterised reachability.
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4.4 Illustrative Examples

We now introduce some examples which highlight and motivate the use of parametric models
and parametric verification and give the reader a better understanding of the theory. Two
examples are provided which correspond to simple real-life examples.

4.4.1 Financial Loan

The first example concerns a financial loan and is inspired by the description of an offer
for a personal loan on the website of the mainstream french bank BNP Paribas: “a solution
for financing different projects (renovations, car, leisure, furniture, computer equipment, travel,
etc.) - the amount loaned, length of reimbursement, rate applied and monthly payments are
defined when the contract is signed."

initialisation

a

funds

months

lock1

total loanOk

interestOk

loanF inished

lock2

lock3

grantLoan
c

d

reimburse
b

e

endLoan

getAmount

c

getInterestf

closeLoan

Figure 4.5 – Modelling a financial loan with parametric Petri nets

In the general case, a client has a certain amount of money, say a and is ensured to get a
income b every month. To finance his project, the client needs to define with the bank the amount
loaned c, the length of reimbursement d (in month) and the amount of each reimbursement e.
At the end of the process, the bank expects to get back the initial amount loaned c plus the
interest f . This interest is in fact directly related to the rate applied to the loan. Those variables
are of course ruled by a simple constraint system that is summed up below:

I

d ◊ e Ø c + f

a + c + d ◊ (b ≠ e) Ø 0

The PPN depicted by Figure 4.5 represents the process of this personal loan. The amount
of money in possession of the client is depicted in place funds. The signature of the contract
is symbolised through the firing of transition grantLoan which imposes to the bank to loan an
amount c for a term of d months. Each month, we can fire reimburse: the client receives its
own income e that is added to its capital in funds and in parallel an amount b is reimbursed to
the bank. When we consider that the reimbursement is finished, we fire endLoan that remove
the token from lock1 and allows us to enable the transitions of the second part of this example.
We can then check if the bank can get its money back by testing if loanOk can be marked and
if the bank can get the interest by checking interestOk can be marked or both by checking if
loanFinished can be marked.

If a deeper analysis were to be carried, the designer may fix some of the parameters. For
instance, one can fix a, b and c according to the profile of the client. The only variables remaining
are thus d, e and f . We could of course imagine providing a graphic modelling of more complex
cases of computational finance.
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4.4.2 Production Line

The second example concerns a production line composed of several cells in an assembly line
fashion. Our company hesitates between different manufacturing lines to build similar finite
products. The different manufacturing lines are depicted by the nets in Figure 4.6.

We first consider only the arcs depicted by solid lines. We thus imagine that all the manufac-
turing lines are available and want to analyse what is the best way to produce 50 finite products.
Our production line is now depicted by the overlapping of all the nets from Figure 4.6. The
first transition symbolises a delivery of raw material. We want to know the set of all valuations
allowing us to generate 50 tokens in pgoal. If we associate some cost to each raw material, we
will then be able to compute the minimal cost to produce our finite product and, by studying
the trace, see what manufacturing lines are effectively used.

In fact this problem can be encoded and solved using a constraint system. Let us suppose
that a costs 100, b costs 200, c costs 175, and d costs 125 per unit which defines a vector of costs
C. We order the places and transitions by their indices and provide a matrix representation
of this net in addition with some variables in Figure 4.7. At this point, consider only 0 in the
Post matrix when it is written 0|1. It is then possible to write the linear programming problem
associated to this production line:

minimise CT X

subject to m0 + (Post ≠ Pre)K Ø mgoal

K œ N11

and X œ N4

Nevertheless, parametric Petri nets provide here a more graphical and readable representa-
tion of this study. One can easily isolate some intermediate events, replace a machine and see
the effect on the production supply, which would be more abstract using only constraints.

Now, let us suppose that the production line is being modernised by adding a process to
recycle waste and thus create some kind of retroaction in the production process. This can be
easily depicted by introducing some events leading to produce tokens in the places from p2 to p5.
This is depicted by the dashed arcs on Figure 4.6. The matrix representation can be adapted as
well by now considering 1 each time a choice of the format 0|1 is provided for the Post matrix
in Figure 4.7. The Petri nets approach remains thus readable. Nevertheless, there is no direct
trivial encoding in terms of constraint systems. Indeed, with the previous constraint system, the
condition m0 +(Post≠Pre)K Ø mgoal is in fact related to the state equation of Petri nets. Given
‡ a sequence of transitions firable from m0 and a vector K where the ith component is equal
to the number of occurrences of the transition ti in ‡, the marking obtained is exactly equal to
m0 + (Post ≠ Pre)K. However, given any sequence of transitions ‡Õ, the state equation does not
check whether there is actually a sequence of intermediate markings such that ‡Õ is firable. This
is a well-known limitation of the state equation which in fact only provides a necessary condition
(but not sufficient) for the problem of the reachability. More concretely, when we introduce the
dashed arcs in the model, we create some loops which would enable new solutions that are not
correct in terms of execution. Therefore, this constraint system would not answer our problem.

4.5 Undecidability of the General Case

Studying decidability for reset-nets and corresponding subclasses [Dufourd et al., 1998] shows
that Petri nets are close to the frontiers of decidability: the reachability problem becomes
undecidable when we increase the power of Petri nets. For instance, adding reset arcs makes
reachability undecidable.

In this section, we focus on showing that adding parameters to Petri nets also leads to
undecidability. More specifically, (U -cov) and (E -cov) are undecidable on PPNs.
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Figure 4.6 – Modelling a production line with parametric Petri nets
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Figure 4.7 – The constraint system corresponding to the production line
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Since we will proceed by reduction from the halting problem and the counter boundedness
problem for counter machines to answer our problem, we first recall some definitions. A 2-
counter machine has two integer counters and a finite sequential program made of three types
of instructions: increment a counter, decrement a counter, and branch if some counter is 0.
Formally, it consists of two counters c1, c2, a set of states P = {p0, ...pm}, a terminal state
labelled halt and a finite list of instructions l1, ..., ls among the following list:

increment in pi: increase ck by one and go to pj , where pi œ P , pj œ P fi {halt} and
k œ {1, 2}

decrement in pi: decrease ck by one and go to pj , where pi œ P , pj œ P fi {halt} and
k œ {1, 2}

zero-test in pi: if ck = 0 go to state pj else go to state pl, where pi œ P , pj , pl œ P fi {halt}
and k œ {1, 2}

We can assume without restriction that the counters are non negative integers i.e. that the
machine is well-formed in the sense that a decrement instruction is guarded by a zero-test and
that the counters are initialised to zero. It is well known that the halting problem (whether state
halt is reachable) and the counters boundedness problem (whether the counters values stay in a
finite set) are both undecidable as proved in [Minsky, 1967].

Theorem 11 : Undecidability of E -cov on PPN
The E -coverability problem for PPN is undecidable a.

a. We can be more accurate by specifying that we need at least 1 parameter used on 6
distinct arcs. The question remains open for fewer parameterised arcs.

Proof. We proceed by reduction from a 2-counter machine. Given a Minksy 2-counter machine
M, we construct a PPN that simulates it, SM, as follows.

Each counter ci is modelled by two places Ci and ¬Ci. The value of the counter is encoded
by the number of tokens in Ci.

For each state p of P fi {halt} a 1-bounded place p is created in the net.

The instructions of the previous definition are modelled by the transitions and arcs depicted
in Figure 4.8.

A unique additional place fi with an additional transition ◊ serves to initialise the net. The
initial marking is composed of one token in fi and one token in the place p corresponding
to the initial state p of M.

Initially, only ◊ can be fired, which leads to the initial configuration of the machine (state
p0 and counters values null), with one token in p0, no tokens in C1 and C2 and a parameterised
number of tokens in ¬C1 and ¬C2. The value of this parameter will therefore represent the
upper bound of the counter over the instructions sequence. By construction, at all time, m(Ci)+
m(¬Ci) = a with i œ {1, 2}. First we show that SM simulates M by verifying the behaviour of
each instruction:

Increment instruction: As Ci models the counter, the transition Ci ++ adds one token in
Ci, removes one token from ¬Ci and changes the current state by removing the token from
pi and adding a token in pj . The error state is marked iff the incrementation instruction
is performed whereas the counter is already equal to a. This state will be useful for the
second proof.

Decrement instruction: As Ci models the counter, the transition Ci - - removes one token
from Ci, adds one token in ¬Ci and changes the current state by removing the token from
pi and adding a token in pj .

Zero test: As Ci models the counter, and as we know the sum of tokens in Ci and ¬Ci is
a, there is no token in Ci iff there are a tokens in ¬Ci. According to this test the current
state is updated by removing the token from pi and adding a token in pj or pk. The value
of the counter is left unchanged.
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Figure 4.8 – Modelling a counter with PPN

We will show that given a 2-counter machine M, (a) M halts (it reaches the halt state) iff
(b) there exists a valuation v such that v(SM) covers the corresponding phalt place.

(a) ∆ (b) First, let us assume that M halts. Since M halts, the execution of the machine
is finite. On this execution the two counters are bounded respectively by clim1 and clim2.
Let clim be the maximum of those two values. Let v be the valuation such that v(a) = clim.
By the previous explanation, SM simulates M. Moreover, the valuation v ensures that
SM does not reach a deadlock state where error is marked. Therefore, when M reaches
halt, SM will add 1 token in phalt. So, a marking where there is one token in phalt is
coverable.

(b) ∆ (a) We proceed by contrapositive. Let us assume that M does not halt. We want
to show that there is no valuation v such that v(SM) adds a token in phalt. Let us consider
the two following distinct alternatives:

If the counters are bounded along the execution, either the value of a is less than the
maximum value of the counters and error will be reachable during some increment
instruction resulting in a deadlock, or the value of a is big enough so that error is
never marked, but, in this case, then, as the machine does not halt, it means that it
does not reach halt. So there is no instruction that leads to halt in M. Therefore,
according to the previous explanation, there is no transition that adds a token in
phalt.

If at least one counter is not bounded, then for any given valuation v, we will reach
an instruction “increment ci”, where i is 1 or 2, and ci = v(a). Therefore, a token
will be added in error leading to a deadlock. So SM will not cover any marking with
one token in phalt.

The undecidability of the halting problem on the 2-counter machine gives the undecidability of
the E -coverability problem.

Theorem 12 : Undecidability of U -cov on PPN
The U -coverability problem for PPN is undecidable.

Proof. We proceed by reduction from the counter boundedness problem in 2-counter machines.
We use the same construction as in the previous proof. We denote by merror the marking where
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merror(p) = 0 for each p œ P except merror(error) = 1. We will show that given a 2-counter
machine M, (a) the counters are unbounded along the instruction sequence of M (counters
boundedness problem) iff (b) for each valuation v, v(SM) covers merror.

(a) ∆ (b) First, let us assume that on a given instruction sequence, one counter of M is
unbounded. By the second alternative considered in the proof for E -cov we proved that
for any valuation, a token will eventually be added in error.

(b) ∆ (a) Reciprocally, by contrapositive, we want to show that if the counters are
bounded, there exists a valuation v such that v(SM) does not cover merror. This comes
directly from the previous proof. Since the counters are bounded along the instructions
sequence, we consider a valuation v such that v(a) = clim where clim is an upper bound
of the values of the counters. By construction, there is no possibility to add a token in
error, otherwise, it means that SM took an incrementation transition meaning that clim

is not an upper bound.

The undecidability of the counters boundedness problem on the 2-counter machine gives the
undecidability of the U -coverability problem.

We can directly infer that universal reachability and existential reachability are undecidable.
Moreover, the synthesis coverability (and thus the synthesis reachability) cannot be solved.

We provided an extension of the Petri nets using parameters and derive two parametric
decision problems from the classic ones. However, this paradigm allows us to model zero test
making those problems undecidable. In the next chapter, we introduce syntactical subclasses
and study the decidability of parametric coverability with the aim of making parameters usable
in practice.





CHAPTER 5

Decidable Subclasses of PPNs for Parametric Coverability

“Start by doing what is necessary; then do what is
possible; and suddenly you are doing the impossible.”

— Francis of Assisi
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This chapter introduces syntactical subclasses of parametric Petri nets depending on whether
the parameters are used for initial markings, input or output arcs of transitions. We prove that
this restricted setting provides some strong properties on the semantics of those nets. We then
proceed with an exhaustive study of the parametric coverability for those subclasses including
decidability results and complexities.

5.1 Introduction of Subclasses

On the one hand, our parametric model increases the modelling power of Petri nets but on
the other hand, using parameters leads to complex models where properties of interest become

59
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undecidable. In order to obtain parameterised models that are easier to analyse and therefore
can be used in practice, we should reduce the power of modelling. We will therefore introduce
some subclasses of PPNs in which we restrict the use of parameters to only markings, which
could be used to model arbitrary number of identical processes, to only output arcs, which, we
will see, is a bit more general or to only input arcs, which could model synchronisations among
arbitrary numbers of identical process, and finally some combinations of those.

A P-parametric marked Petri net (P-PPN for short) is a classic Petri net where the places
are initially marked by a natural number or a parameter.

Definition 33 : P-parametric marked Petri net
A P-parametric marked Petri net (P-PPN), S = (N , µ0) where N =
(P, T, Pre, Post,P) is a Parametric Petri net such that Pre and Post œ NP ◊T

and µ0 is a parametric initial marking of (N fi P)P .

A T-parametric marked Petri net (T-PPN for short) is a parametric marked Petri net where the
initial marking is not parameterised.

Definition 34 : T-parametric marked Petri net
A T-parametric Petri net (T-PPN), is a PPN S = (N , m0) where N is a para-
metric Petri net and m0 is a marking of NP

PPN

T-PPN P-PPN

distinctT-PPN

preT-PPN postT-PPN

PN
™

™

™
™™

™

™ ™

ı

≥

Figure 5.1 –

™
≠æ : is a syntactical subclass of

ı
99K : is a weak-bisimulation subclass of

≥
······> : is a weak-cosimulation subclass of

To complete this study, we can extract a subclass in which parameters involved in the Pre

matrix and parameters involved in the Post matrix correspond to disjoint subsets of parameters
i.e. par(Pre) fl par(Post) = ÿ where par is the application that maps to the set of parameters
involved in a matrix (or a vector). We call this subclass distinctT-parametric Petri net 1 (or
distinctT-PPN for short). We can even refine the subclass of distinctT-PPN by considering the
two distinct classes of Pre-T-parametric Petri net (preT-PPN), where Post œ N|P | (or Post œ
P ◊ T æ N if Post is seen as a function) and Post-T-parametric Petri net (postT-PPN), where
Pre œ N|P | (or Pre œ P ◊ T æ N if Pre is seen as a function). Those subclasses are depicted
in Figure 5.1 where the solid lines represent the syntactical inclusion of classes. Note that the
meaning of the dashed arrow and the dotted arrow is introduced and justified in the following
section (see Section 5.2).

1. Studying the former undecidability proof, it is relevant to think that using different parameters for the
input and the output would reduce the modelling power.
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5.2 Links between P-PPNs and PostT-PPNs

Intuitively, using parameters on output arcs or directly in the initial marking seems related.
Parametric arcs should indeed lead to parameterised markings. In this section, we elaborate on
the relationship between the classes of P-PPNs and postT-PPNs.

5.2.1 Translating P-PPNs to postT-PPNs

Given a P-PPN S, we construct a postT-PPN S Õ as follows: in order to simulate the be-
haviour of parameterised places, we translate those places in a parameterised initialisation pro-
cess that has to be fired before firing any other transitions in the net. The idea relies on using a
new place fi and a new transition ◊ enabled by this place, such that Post(◊) initialises a P-PPN,
as showed in Figure 5.2. We define the initial marking m0 = (0, ..., 0, 1) i.e. ’p œ P , m0(p) = 0
and m0(fi) = 1. We will show that S Õ and S are weakly-bisimilar by showing that each behaviour
of S can be done in S Õ if we begin by firing ◊ and reciprocally.

p1

a

p2

b

p3

p4

t

p1 p2

fi

p3

p4

t

◊

1 b

a

replacement of
the P parame-
ters by postT
parameters

Figure 5.2 – From P-PPN to postT-PPN

As recalled earlier in Section 3.4, we extend our PPNs with labelling functions allowing to
consider silent actions. Formally S = (P, T, Pre, Post,P, Λ, µ0), has a set of transition T and T Õ

denotes the set of transition of the constructed postT-PPN, S Õ = (P Õ, T Õ, PreÕ, PostÕ,P, ΛÕ, µÕ
0)

such that T Õ = T fi Θ with T fl Θ = ÿ. In fact, here Θ = {◊}. For each t œ T , Λ(t) = t

and Λ(◊) = ‘. Note that for all v, each path in v(S) can be done in v(S Õ) by adding ◊ at the
beginning. And reciprocally, each path in S Õ begins by ◊ so is written ◊w where w is a path in
v(S).

Lemma 13
’v œ NP, v(S) and v(S Õ) are weakly bisimilar.

Proof. Let ‹ œ NP a valuation of the parameters. We want to show that ‹(S) and ‹(S Õ) are
weakly bisimilar. Let ‹(µ0) be the parametric initial marking of ‹(S) and ‹(mÕ

0) = mÕ
0 the

initial marking of ‹(S Õ). The only transition firable from mÕ
0 is ◊ and mÕ

0
◊

æ ‹(µ0) as shown in
Figure 5.2. From ‹(µ0), S and S Õ are isomorphic. So ‹(S1) and ‹(S2) are weakly-bisimilar.

These result underlines that using parameters on output arcs is more powerful than using
parameters on markings. We can conclude that T-PPNs are at least as expressive as P-PPNs
and thus as expressive as PPNs.

Remark 5.2.1. This translation adds 1 place and 1 transition and at most |P | + 1 arcs. Thus
this transformation is linear 2 in the size of the P-PPN.

2. The corresponding algorithm would be linear time.
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5.2.2 Translating postT-PPNs to P-PPNs

We now show that from a postT-PPN, S1 = (P1, T1, Pre1, Post1,P1, Λ1, m0
1) we can construct

a P-PPN, S2 = (P2, T2, Pre2, Post2,P2, Λ2, µ0
2) that weakly-simulates the behaviours of the postT-

PPN. Reciprocally, the postT-PPN also weakly-simulates the behaviours of the P-PPN built.

p

t

c

fit,1

p

fit,p,2

c

fit,p,1

fit,2

t

◊t

◊t,p,2◊t,p,1

replacement
of the postT

parameters by
P parameters

Figure 5.3 – From postT-PPN to P-PPN

For each transition t and place p such that the arc (t, p) is weighted by a parameter c, we
construct the net depicted in Figure 5.3 which replaces this arc 3. Therefore, T1 ™ T2. As
previously, we introduce two labelling functions Λ1 and Λ2 from T1 (resp. T2) to T1 fi {‘} such
that, for each t œ T1, Λ1(t) = Λ2(t) = t and Λ2(t) = ‘ otherwise (i.e. for each t œ T2\T1).

Lemma 14
’v œ NP, v(S1) and v(S2) are weakly cosimilar.

Proof. We will prove the 2 weak-simulations.

’v œ NP, v(S2) simulates v(S1). Let us consider v œ NP, v(S1) has the following behaviour:
each time t is fired, v(c) tokens are created in p. In S2, it is possible to generates v(c)
tokens in p after firing the sequence t ◊

v(c)
t,p,1 ◊t ◊

v(c)
t,p,2, labelled t‘ú. Moreover, this sequence

resets the sub-net constructed for the weak-simulation. As the other transitions of the
network are not affected, monotonicity gives directly the weak-simulation.

’v œ NP, v(S1) simulates v(S2). Reciprocally, a marking with v(c) tokens in p allows to
simulate the behaviours of every marking such that m(p) Æ v(c) according to monotonicity.
Therefore, the reachable markings induced by creating less than v(c) tokens in S2 are
simulated by the one with v(c) tokens, and therefore by S1. As the other transitions of
the network are not affected, monotonicity gives directly the weak-simulation.

Therefore, S1 and S2 are weakly co-similar.

Remark 5.2.2. This is not a weak-bisimulation. Indeed, if S2 adds 3 tokens in p (leading to
a marking m2) whereas S1 adds v(c) = 4 tokens in p (leading to a marking m1) then any
transitions needing more than 3 tokens could only be fired from m1 in S1 only. Here the two
simulations relations are not reciprocal: m1 would simulates m2 but m2 would not.

Remark 5.2.3. This translation adds 4 places and 3 transitions and 12 arcs for each parametric
arc of the postT-PPN. Thus this transformation is linear 4 in the number of parametric arcs
(which is bounded by the number of arcs) of the postT-PPN.

We have clearly established the link between postT-PPNs and PPNs inducing that T-PPNs
are as expressive as PPNs. Therefore, by abuse, we may refer to T-PPNs simply as PPNs. In the
sequel, we study the behaviour of the two elementary classes of preT-PPNs and postT-PPNs.
We will derive some results on P-PPNs and distinctT-PPNs from this survey in Section 5.9.

3. Notice that if several labelled arcs come from the same transition, some places and transitions of the
Figure 5.3 should be duplicated according to indices.

4. The corresponding algorithm would be linear time.
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5.3 Monotonicity in PreT-PPNs and PostT-PPNs

When we restrict the use of parameters to input arcs, we ensure that any marking coverable
in a v-instance remains coverable for any vÕ-instance such that vÕ Æ v. Intuitively, decreasing
the valuation leads to a more permissive firing condition. Symmetrically, when we restrict the
use of parameters to output arcs, we ensure that any marking coverable in a v-instance, remains
coverable for any vÕ-instance such that v Æ vÕ. Intuitively, firing the same parametric transition
while increasing the valuation leads to greater (and thus more permissive) markings. Those
results are formalised in Lemma 15.

Lemma 15
Let Spre and Spost be a marked preT-PPN and postT-PPN of initial markings
m0 and s0 respectively.

For every transition sequence w of Spre and for every valuation v, if

m0
w
æ m in v(Spre), then for every valuation vÕ Æ v, there exists mÕ Ø m

such that m0
w
æ mÕ in vÕ(Spre).

For every transition sequence w of Spost and for every valuation v, if

s0
w
æ s in v(Spost), then for every valuation vÕ Ø v, there exists sÕ Ø s

such that s0
w
æ sÕ in vÕ(Spost).

Proof. We only provide the proof for the preT-PPN. The case of postT-PPN can be adapted
easily.

Given wv = t1, t2, ..., ti, ..., tn, we proceed by induction on the length of wv

Base case: n=0
If the sequence is empty, then m0 Ø m0 and by definition m0 is reachable in v and vÕ

instances.

Inductive step: Let us assume the lemma holds for a sequence of length n

Given w = t1, t2, ..., ti, ..., tn, tn+1, we apply the induction hypothesis on wn = t1, t2, ..., tn

such that m0
wnæ mn

tn+1
æ mn+1 in v(S). By the induction hypothesis, for vÕ Æ v we have

m0
wnæ mÕ

n Ø mn in vÕ(S). Moreover tn+1 is firable in v(S) so mn Ø v(Pre(tn+1)) Ø
vÕ(Pre(tn+1)). So mÕ

n Ø vÕ(Pre(tn+1)) and m0
w
æ mÕ

n+1 in vÕ(S).

Moreover since v(Pre(tn+1)) Ø vÕ(Pre(tn+1)) and Post(tn+1) Ø 0̨, then mÕ
n+1 Ø mn+1, so

the proposition is true at rank n + 1.

By induction, it is true for every sequence of length n which proves Lemma 15.

From this property we can directly deduce that

Corollary 16
The U -coverability problem on postT-PPN is ExpSpace-complete.
The E -coverability problem on preT-PPN is ExpSpace-complete.

Proof. Using Lemma 15, this can be directly proved by testing for the corresponding coverability
problem on the instance under the lowest valuation of the domain, i.e. 0̨ here.

5.4 Decidability of Existential Coverability for PostT-PPNs

In this section, we use Ê-Petri nets as a reduction tool for the proofs. Let us consider a postT-
PPN N and let us associate to this model the ÊPN N Õ such that we replace each parametric arc
of N by an Ê arc. This transformation is a polynomial time transformation 5 from postT-PPN

5. More specifically we obtain an Ê-output-PN or ÊOPN for short, which corresponds to the natural subclass
of ÊPNs where Pre œ P ◊ T ‘æ N.
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to ÊPN (see [Geeraerts et al., 2015]) and we will show that it preserves existential coverability.
It is then sufficient to invoke a transformation from ÊPN to PN underlined in [Geeraerts et al.,
2015] and recalled in Lemma 10.

Lemma 17 : From postT-PPNs to Ê-Petri nets
Let N be a postT-PPN (which involves parameters of a set P), let N Õ be its
corresponding Ê-PN (with the same sets of places and transitions) and let m0 be
their common initial marking. Given a marking m œ RS(N Õ, m0), there exists a
valuation v such that there exists a marking mÕ Ø m with mÕ œ RS(v(N ), m0).
Moreover a, fivœNPRS(v(N ), m0) ™ RS(N Õ, m0).

a. Notice that this is only an inclusion. Indeed, contrarily to postT-PPNs, in ÊPNs, the
effect of an arc can change along the same execution.

Proof. We write N = (P, T, Pre, Post) a postT-PPN and N Õ = (P, T, Pre, PostÕ) the correspond-
ing Ê-PN where the parameters on weights have been replaced by Ê. Note that only the ma-
trix Post changes. The first point comes directly from the semantics of Ê-Petri nets. Given
m œ RS(N Õ, m0), there exists a run m0

w
æ m. If w does not contain any Ê-transition, then

m œ RS(Np, m0) thus m œ RS(N , m0). Otherwise, we consider all Ê-transitions involved in
w and compute their effective output effect on this particular run. That is to say, if an Ê-
transition t occurs in w between a marking mi and mi+1, its effective output effect is equal to
mi+1 ≠ mi + Pre(t). We therefore construct a finite set of vectors. Now, let us consider the
maximum value of the components of those vectors and call it k. We can then consider the
valuation k̨. By induction on the length of w we prove that w is firable in k̨(N ) and its firing
generates a marking greater or equal to m.

Base case: the case where w is an empty sequence is straightforward.

Inductive step: given n œ N, we suppose that if w has a length equal to n and w is firable
in N Õ generating a marking m1, then w is firable in k̨(N ) plus the marking generated m2

is greater than or equal to m1. We now consider that w has a length equal to n + 1. Then
w = wÕt where |wÕ| = n. We can apply the induction assumption. We obtain that wÕ

is firable in k̨(N ). Moreover, we write that m0
wÕ

æ m3
t

æ mÕ
3 in N Õ, we can thus assert

that m0
wÕ

æ m4 in k̨(N ) with m4 Ø m3. Since t is firable from m3, by monotonicity, it
is firable from m4. Moreover, by definition of k, k Ø max (mÕ

3 ≠ m3 + Pre(t)) therefore,

in k̨(N ), k̨(Post(t)) Ø mÕ
3 ≠ m3 + Pre(t). By construction, m0

wÕ

æ m4
t

æ mÕ
4 and mÕ

4 =
m4 + k̨(Post(t)) ≠ Pre(t) which implies that mÕ

4 Ø m3 + k̨(Post(t)) ≠ Pre(t) Ø mÕ
3. This

proves that the proposition holds at rank n + 1.

By induction, we can thus conclude that, m0
w
æ mÕ Ø m in v(N ).

For the second point, given a valuation and a marking reachable within v(N ) through a run
w, it is easy to construct a run wÕ composed of the same transitions in the same order in N Õ

with the same effect. Indeed, each time an Ê transition is fired in wÕ, the effect of the Ê output
arc should be equal to the value associated through v to the parameter of the corresponding
parametric output arc.

We can thus directly deduce the following theorem by reducing existential coverability in
postT-PPNs to coverability in ÊPN which belongs to ExpSpace by [Geeraerts et al., 2015].

Theorem 18 : Complexity of Existential Coverability
The existential coverability problem on postT-PPNs is ExpSpace-complete.

Proof. Given N a postT-PPN we construct N Õ its translation (in polynomial time) in an ÊOPN,
by replacing each parametric arc by an Ê arc. By Lemma 17 we can deduce that m is coverable
in N Õ iff m is existentially coverable in N :
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If m is coverable in N Õ then there exists a valuation v such that m is coverable in v(N )
by the first point of Lemma 17.

If m is existentially coverable in N , there exists a valuation v such that there exists
mÕ œ RS(v(N ), m0) with mÕ Ø m. Thus, mÕ œ RS(N , m0) by the second point of
Lemma 17.

So we only need to answer coverability of m in N Õ which is in ExpSpace. It follows that
existential coverability for postT-PPNs is in ExpSpace.

Moreover, Remark 4.2.1 provides the ExpSpace-hardness of this problem, so it is ExpSpace-
complete.

5.5 Decidability of Universal Coverability for PreT-PPNs

We prove here that universal coverability is decidable for preT-PPNs. To this end, as a
preliminary result, we show that it is sufficient for a marking to be coverable in infinitely many
instances (under uniform 6 valuations) of the parametric Petri nets to be universally coverable.
Indeed, for any valuation v, we can find a uniform valuation 7 k̨ such that v Æ k̨ and apply
Lemma 15.

Lemma 19
Given a marking m and a marked preT-PPN S, the following two propositions
are equivalent :

1. m is universally coverable in S

2. {k œ N | cov(k̨(S), m)} is infinite

Proof. We invite the reader to refer to the proof of Lemma 22 on page 67.
Lemma 22 is indeed a generalisation of Lemma 19 to the property of simultaneous

unboundedness.

Let us now provide the main reasoning. If a marking is universally coverable, two main cases
are possible: we can either reach this marking without using any parametric transition, and then
the corresponding run works for any valuation, or we need at least one parametric transition.
In the latter case, since there is an infinite number of parameter valuations and a finite number
of parametric transitions, there is at least one such transition that must be used, as the first
parametric transition in the run, for an infinite number of valuations, and therefore, clearly the
input places of its parametric arcs are not bounded.

Let us formalise this intuition. We recall that the coverability set CS(S) of a marked Petri net
S is computable in the sense that its minimal downward basis is computable (see, e.g., [Finkel
and Leroux, 2015]). Here, the minimal downward basis is a finite set of extended markings.
Given a marked Petri net S = (N , m0), we recall that BCS(S) for the minimal downward basis
of CS(S). Given a marking m and a subset Q of places, we recall that m|Q denotes the marking
m restricted to Q. Similarly, given a Petri net N and a subset of Q of places, let N|Q denote
the Petri net obtained from N by keeping only the places in Q. All transitions of N remain in
N|Q but the arcs from/to the places not in Q are simply removed.

Formally:

6. We recall that uniform valuations are valuations such that all components are mapped to the same value
N. Given an integer k œ N, the corresponding uniform valuation is written k̨.

7. We recall that the uniform valuation k̨ is the valuation that associates to every parameter of its domain,
dom(()v) here, the value k.
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Lemma 20
Let S = (N , m0) be a marked preT-PPN and let Np denote the Petri net obtained
from N by removing all parametric transitions. A marking m is universally
coverable in S iff

1. m is coverable in (Np, m0) or

2. there exists z œ BCS(Np, m0) such that Ê(z) ”= ÿ and m|N(z) is universally
coverable in (N|N(z), z|N(z))

Proof. ∆ We first assume that m is universally coverable in (N , m0). Two cases arise: Either
m is coverable in (Np, m0) and then there exists z in BCS(Np, m0) such that m Æ z, which
proves directly the implication. Otherwise m is not coverable in (Np, m0). Let us now consider
this second case. Since m is universally coverable in (N , m0), for every integer k > 0, there
exists a run in k̨(N ) from m0 to a marking uk Ø m. This run contains at least one parametric
transition, otherwise m would be coverable in (Np, m0). We can thus decompose it as:

m0
ú

æ mk
tkæ mÕ

k
ú

æ uk (5.1)

where tk is a parametric transition and the prefix m0
ú

æ mk contains no parametric transition.
Therefore, mk belongs to CS(Np, m0). Moreover, we know that BCS(Np, m0) is finite. Thus,
using the pigeon hole’s principle, there exists z in BCS(Np, m0) such that z Ø mk for infinitely
many k. We define the set V = {k̨ | z Ø mk}. This set is infinite. Moreover, for each of these
k, z(p) Ø mk(p) Ø k for some place p such that Pre(p, tk) œ P (such a place necessarily exists
since tk is a parametric transition). Since there are only finitely many places, the pigeon hole’s
principle now implies that z(p) = Ê for some place p, and Ê(z) is therefore not empty. To
complete the implication, we now prove that m|N(z) is universally coverable in (N|N(z), z|N(z)).

Lemma 19 states that it is sufficient to prove that m|N(z) is coverable in k̨(N|N(z), z|N(z)) for every

k̨ œ V . We get from Equation 5.1 that, in the Petri net k̨(N|N(z)), the following run holds:

mk |N(z)
tkæ mÕ

k |N(z)
ú

æ uk |N(z)

Moreover, we can notice that z|N(z) Ø mk |N(z) since z Ø mk. Therefore, by monotonicity of

the firing rule, we can fire the same run starting from z|N(z). We thus get a run z|N(z)
ú

æ uÕ
k

in k̨(N|N(z)) and by monotonicity uÕ
k Ø uk |N(z). Finally, by construction uk |N(z) Ø m|N(z), thus

uÕ
k Ø m|N(z) and m|N(z) is coverable in k̨(N|N(z), z|N(z)) which concludes this implication.

≈ Conversely, let us assume that there exists z in BCS(Np, m0) such that (1) or (2) holds.
First, if (1) holds, then m is trivially universally coverable in (N , m0). Let us now assume that (1)
does not hold (and thus (2) holds). Let k be a positive integer. By the second condition, m|N(z) is

coverable in k̨(N|N(z), z|N(z)). Thus, there exists a run z|N(z)
ú

æ mÕ in k̨(N|N(z)) with mÕ Ø m|N(z).
Let us consider a marking y œ NP such that y|N(z) = z|N(z). Since z(p) = Ê for every place p in
P\N(z), we get that z Ø y, regardless of the value of y|P \N(z). Therefore y œ CS(Np, m0) hence

y œ CS(k̨(N ), m0). Moreover, we can still fire the same run in k̨(N ) and get that y
ú

æ mÕÕ where
mÕÕ

|N(z) = mÕ. Moreover, mÕÕ
|N(z) Ø m|N(z) and we can impose that y|Ê(z) is big enough to lead to

mÕÕ
|Ê(z) Ø m|Ê(z) (otherwise, we should just choose a y greater on Ê(z)). Since y œ CS(k̨(N ), m0),

we can deduce that m is coverable in (k̨(N ), m0). This is true for every k Ø 0, we can therefore
invoke Lemma 19 and conclude that m is universally coverable in (N , m0), which concludes the
proof.

Remark now that the dimension (number of places) of the marked preT-PPN (N|N(z), z|N(z))
is strictly smaller than the dimension of (N , m0). We can derive a decision procedure ucovpre

for universal coverability for preT-PPNs from Lemma 20. Considering an initial marking m0, a
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preT-PPN N and a marking m to cover:

ucovpre(N , m0, m) =
3

cov
1

(Np, m0), m
2

4

‚

3

fl

z œ BCS(Np, m0)
ω(z) ”= ÿ

ucovpre

1

(Np|N(z), m0|N(z)), m|N(z)

2

4

Notice that in the case where a Petri net has no place, coverability will always be true. Thus
can we immediately deduce the following theorem:

Theorem 21
Universal coverability is decidable in PreT-PPNs.

5.6 ExpSpace Upper Bound for Universal Coverability in PreT-PPNs

In previous section, we answered the decidability of universal coverability for preT-PPNs.
We now focus on its complexity through that of the more general universal simultaneous un-
boundedness. We will prove that both are ExpSpace-complete.

5.6.1 Overview and Preliminaries

To prove that universal coverability in preT-PPNs belong to ExpSpace, we will prove that
universal simultaneous unboundedness in preT-PPNs is ExpSpace. Together with remark of
Section 4.2.1, knowing that coverability can be reduced to the simultaneous unboundedness
problem as recalled in Section 3.2, we can then conclude that both problems are ExpSpace-
complete.

Formally:

Definition 35 : Universal Simultaneous Unboundedness
Given a parametric Petri net, and a subset of places X of this net, the parametric
net is universal simultaneous X unbounded iff for every possible valuation v of
its parameters, the v-instance of this net is simultaneous X unbounded.

We first show that it is sufficient for a net to be simultaneous unbounded on a set of places
in infinitely many instances 8 (under uniform valuations) of the parametric Petri net to be
universally simultaneous unbounded on this set of places. Indeed, for any valuation v, we can
find a uniform valuation k̨ such that v Æ k̨ and apply Lemma 15.

Lemma 22
Given a marked preT-PPN S, a marking m, and X a subset of places of S, the
following two propositions are equivalent :

1. (S, m0) is universally simultaneous X unbounded

2. {k œ N | (k̨(S), m0) is simultaneous X unbounded} is infinite

Proof. (1) ∆ (2): Let V = {k̨ | k œ N}. Set V is infinite. Suppose that for all valuations
v œ NP, v(S) is simultaneous X unbounded. Since V ™ NP, we have in particular that for any
v œ V , v(S) is simultaneous X unbounded i.e. (2).

(2) ∆ (1): Let V = {k̨ | k œ N and (k̨(S), m0) is simultaneous X unbounded}. Suppose
V is infinite. Let us consider v œ NP. We define k1 = max⁄œP(v(⁄)) i.e. the maximum of v

componentwise. Clearly the number of elements in V that are less or equal to k̨1 is finite (they
form a bounded subset of NP ), so there exists k̨2 œ V such that k̨2 Ø k̨1. So k̨2(S) is simultaneous
X unbounded. This means that, for every value B > 0 we can consider a transitions sequence
w s.t. in k̨2(S), m0

w
æ mk2 such that for all p œ X, mk2(p) Ø B. Therefore by Lemma 15, in

v(S), m0
w
æ mv Ø mk2 Ø B. So v(S) is simultaneous X unbounded and we have (1).

8. This result is very close to the one stated in Lemma 19.
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We can now address the problem of universal simultaneous unboundedness. To solve this
problem, we reduce it to the existence of a classic Petri net built upon our parametric model
satisfying an adequately chosen simultaneous unboundedness property. The classic Petri net is
in fact obtained by evaluating a preT-PPN, called incremental net, under the uniform valuation
0̨. The incremental net has a polynomial size in the original preT-PPN and it directly depends
on the original preT-PPN plus a sequence of distinct parametric transitions. This section is
thus driven by the idea that universal simultaneous X unboundedness on a preT-PPN S is
equivalent to the existence of a sequence ‡ of distinct parametric transitions of S, such that the
incremental model built on S and ‡ evaluated under 0̨ satisfies a simultaneous unboundedness
property depending on X and ‡.

5.6.2 Notion of Incremental Model

Before providing the theoretical definition, let us consider the main intuition of our construc-
tion. If a net is universally simultaneous unbounded on a set of places X, as for coverability, two
main cases are possible: we can either find a path such that the places of X are unbounded with-
out using any parametric transition, and then the corresponding run works for any valuation,
or we need at least one parametric transition.

In the latter case, since there is an infinite number of parameter valuations and a finite
number of parametric transitions, using the pigeonhole principle, there is at least one such
transition that must be used as the first parametric transition in the run for an infinite number
of valuations. The input places of its parametric arcs are therefore not bounded. Thus, the
valuation of the input parametric arcs of this transition is not limiting anymore since we can
generate an arbitrary large amount of tokens in the corresponding places. Therefore, we will
later evaluate 9 those parameters to 0 in order to perform the verification on a classic Petri net.

Nevertheless, we need to ensure that the input places of the parametric arcs are not bounded
(without using that transition). This is exactly the goal of this incremental model. Indeed, once
fired, we could then consider a new net where the first parametric transition can be involved as
well as non parametric transitions and investigate for the newly unbounded places. Either we
can unbound the places of the set X or we can reuse the previous reasoning and choose a new
parametric transition that has to be involved in infinitely many instances. What is important
to note here is that at each firing of a new parametric transition, that never occurred in the
run, we need to ensure that its input places of parametric input arcs were unbounded using only
previous transitions of the run and to remember what are the new places that can be unbounded
through the use of this new transition. We will now formalise how it is possible to remember
the boundedness of the input places of parametric arcs by presenting exhaustively the model of
incremental nets.

Given a preT-PPN N = (P, T Õ, Pre, Post,P) and a partition of its transitions T Õ = T fi Θ
between its plain and parametric transitions, we denote by Np the Petri net obtained from N by
removing all transitions of Θ from N . An example is given in Figure 5.4. Let us now consider
a finite sequence ‡ œ Pref(SΘ) where SΘ is the symmetric group over Θ seen as a language.
Let |T | = m, |P | = n and |‡| = k. We define the incremental model I of N along ‡. We write
I = incr(N , ‡) to denote this preT-PPN. This model is illustrated by the example 10 at the
right hand side of Figure 5.4. Its construction consists of the following main steps:

(i) Consider Np and k copies of Np, where to each of those k + 1 subnets is associated a
global lock place, ensuring that exactly one copy is active at any given instant. The copies
correspond to the black subnet of this example, whereas the global locks pi

0’s are depicted
in blue and dotted arcs.

(ii) Add a copy of the first i transitions of ‡ to each ith copy of Np, for 1 Æ i Æ k.

9. Note that any other finite valuation would be suitable since the input places of the parametric arcs are
unbounded.

10. The exact meaning of the notations used to refer to the different components of this example will be provided
after this informal intuition of the construction.
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(iii) Between the i ≠ 1th and ith subnets, add a copy of the i + 1th transition of ‡, depicted
in plain green arcs in Figure 5.4, for 1 Æ i Æ k. Notice that this copy presents a special
behaviour: its input effect impacts the i ≠ 1th subnet and its lock pi≠1

0 whereas its output
effect impacts the ith subnet and its lock pi

0. This ensures that we change of active subnet
only after the firing of a the first occurrence of a precise parametric transition.

(iv) Finally, we ensure that given every copy of a transition, including the intermediate copies
that allow to change the active copy, it modifies simultaneously the places in the associated
copy as explained above, but also all copies of greater index (i.e. those that have not been
activated yet). Those arcs ensure that every later subnet always has the “same” marking
as the active copy. They are depicted by dashed red arcs in Figure 5.4. Note that we
synchronise the different copies and do not merge them because we use them to remember
the order in which the different input places to parametric transitions become unbounded.

Let us suppose we evaluated this incremental model in order to perform an execution. At the
beginning of any execution, given a precise subnet, let us say the ith subnet, it follows the
behaviour of the subnets with lower index because of synchronisations introduced in item (iv).
Then, once this copy becomes active, after the firing of a given parametric transition introduced
in item (iii), it will dictate the behaviour of the global net (and thus of the subnets with greater
index through synchronisations). Once the next copy becomes active, our original ith subnet
cannot change its state anymore. It is now literally an historic state of the global run of the
incremental net.

p1

p2

p3

t1

◊1

a

N

p1

p2

p3

t1

Np

p0
1

p0
2

p0
3

p0
0

p1
1

p1
2

p1
3

p1
0

t1
1

◊1
1

a

t0
1

◊0
1

aa

f0(N ) f1(N )
incr(N , ‡), the incremental net of N along ‡ = ◊1

Figure 5.4 – Construction of an incremental net

More formally, the incremental net incr(N , ‡) is the preT-PPN (P, T , Pre, Post,P) such
that P =

)

pi
j | 0 Æ i Æ k · 0 Æ j Æ n

*

where pi
0 represents the lock related to the ith copy

of N whereas pi
j with j > 0 represents the copy of the place pj of P in the ith subnet and

T =
)

ti
j | 0 Æ i Æ k · 1 Æ j Æ m

*

fi
)

◊i
j | 1 Æ j Æ i Æ k

*

fi
!

fi1ÆiÆk {◊0
i }

"

where ti
j represents the

copy of the transition tj of T in the ith subnet, ◊i
j represents the copy of the transition ◊j of Θ

in the ith subnet, ◊0
i represents a copy of the transition ◊i from ‡ which is used to change the

active copy (from the i ≠ 1th to the ith).
We define with this construction a net mapping to relate places and transitions from both

models. Given the two nets N and I defined as above, considering previous notations, for each
0 Æ i Æ |‡| we define the application f i

N æI that links the original net N to its ith copy in
I (except the corresponding lock). We define f i

N æI : T fi {◊j œ ‡ | j Æ i} fi P æ T fi P
such that for tj œ T (resp. ◊j œ ‡ and pj œ P ), f i

N æI(tj) = ti
j (resp. f i

N æI(◊j) = ◊i
j

and f i
N æI(pj) = pi

j). We can then define f≠1 the function that maps components of the
copies of N in I to their original fiber by the previous application. Formally, f≠1 is defined
by: f≠1 : fi0ÆiÆkim(f i

N æI) æ T fi P fi Θ and associates to ti
j œ T (resp. ◊i

j œ T and pi
j œ P)

f≠1(ti
j) = tj (resp. f≠1(◊i

j) = ◊j and f≠1(pi
j) = pj). Finally, we define the application
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hIæN : fi1ÆiÆk{◊0
i } ™ T æ Θ that maps the intermediate parametric transitions between each

copies of N in I, ◊0
i to their original fiber from N and occurring in ‡, that is to say the ith

transition of ‡.
Those applications allow us to define formally the functions Pre and Post. Given iÕ and

jÕ, let xiÕ

jÕ denote either ti
j or ◊i

j from
)

ti
j | 0 Æ i Æ k · 1 Æ j Æ m

*

fi
)

◊i
j | 1 Æ j Æ i Æ k

*

in the
following expressions:

Pre(pi
j , xiÕ

jÕ)(resp. Post(pi
j , xiÕ

jÕ)) =

Y

_

_

_

]

_

_

_

[

0 if (i < iÕ) or (i > iÕ and j = 0)
1 if i = iÕ and j = 0
Pre(f≠1(pi

j), f≠1(xiÕ

jÕ)) otherwise
(resp. Post(f≠1(pi

j), f≠1(xiÕ

jÕ)) otherwise )

Pre(pi
j , ◊0

iÕ) =

Y

_

]

_

[

0 if (i + 1 < iÕ) or (i + 1 > iÕ and j = 0)
1 if i + 1 = iÕ and j = 0
Pre(f≠1(pi

j), h≠1(◊0
iÕ)) otherwise

Post(pi
j , ◊0

iÕ) =

Y

_

]

_

[

0 if (i < iÕ) or (i > iÕ and j = 0)
1 if i = iÕ and j = 0
Post(f≠1(pi

j), h≠1(◊0
iÕ)) otherwise

Given a net N and the function f i
N æI we extend the definition of f i

N æI to sets by
f i

N æI(X) = {f i(x) | x œ X} and nets by defining f i
N æI(N ) as (f i(P ), f i(T ), Pref i(P )◊f i(T ),

Postf i(P )◊f i(T ),P). When the context is clear, we omit the subscript N æ I. As examples,
f0(N ) and f1(N ) are provided in Figure 5.4. Finally, we associate to a marking m of N the
marking f(m) defined by for all p of fi0ÆiÆk(f i(P )), f(m)(p) = m(f≠1(p)). Notice that this
ignores the locks introduced in the net. Given the initial marking m0, we thus define the initial
marking of the incremental net µ0 as f(m0) for the copies of the places, and 0 in all locks except
the first one which receives 1. Formally, µ0(pi

j) = m0(pj) if j ”= 0, 1 if i = j = 0 and 0 otherwise.
The idea behind this construction is double. First, we can enforce the order of the first

occurrence of a parametric transition which is dictated by the sequence ‡. Second, we can
access the exact amount of tokens stored in a place before the firing of the first occurrence of a
parametric transition and thus keep an historic of the state of a run, just before the firing of this
parametric transition, through the copies of the original net. Based on those two observations,
we will be able to observe if the input places of the parametric arcs of the first occurrence of a
parametric transition in a run are bounded or not.

5.6.3 Complexity of Universal Simultaneous Unboundedness

We will now prove that universal simultaneous unboundedness can be reduced to the exis-
tence of a sequence ‡ of distinct parametric transitions such that the incremental net built upon
this sequence is simultaneous unbounded on an adequately defined set of places. Indeed, we must
ensure that each input place of a parametric arc of the first occurrence of a parametric transition
is unbounded. Based on the previous construction, one can notice that given a parametric tran-
sition ◊i occurring in ‡, its input places are only impacted by the transitions occurring in the
first i copies of the net. Thus, once ◊i is fired in the incremental net, the new feasible transitions
will not impact the amount of tokens stored in the i first subnets. We will thus be able to verify
if the input places were bounded or not before its firing, by observing the places of the copy
that occurs just before the first firing of this transition. For each parametric transition of ‡, we
should thus verify that the input places in the corresponding copies are unbounded, and finally
verify that the places that should be unbounded as part of the original property are indeed
unbounded in the last copy of the net and that for each instance of the incremental net under a
uniform valuation. Nevertheless, since the corresponding input places of parametric transitions
are unbounded, it is sufficient to verify this property for only one instance of the incremental
net, and in particular we will later choose the 0̨-instance. Indeed, if such a property is verified
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for any k̨-instance, then, it could be verified for any k̨Õ-instance (with kÕ > k) by exhibiting the
witness run and performing more loops.

Given t œ Θ, Π(t) ™ P is used to represent the places p of P such that Pre(p, t) or Post(p, t)
belongs to P.

Lemma 23
Let N = (P, T Õ, Pre, Post,P) be a preT-PPN, such that T Õ = T fi Θ where Θ
represents the parametric transitions of N and T its plain transitions. For
every set of places of X ™ P , the following propositions are equivalent:

1. (N , m0) is universally simultaneous X unbounded

2. ÷‡ = t1, ..., tl œ Pref(SΘ), considering the incremental model I of N
along ‡, I = incr(N , ‡), ÷k œ N, (k̨(I), µ0) is simultaneous Y unbounded
where Y = f l

N æI(X) fi
!

t

tiœ‡ f i≠1
N æI(Π(ti))

"

.

3. ÷‡ = t1, ..., tl œ Pref(SΘ), considering the incremental model I of N
along ‡, I = incr(N , ‡), ’k œ N, (k̨(I), µ0) is simultaneous Y unbounded
where Y = f l

N æI(X) fi
!

t

tiœ‡ f i≠1
N æI(Π(ti))

"

.

Following the notations, Pref(SΘ) corresponds to the finite set of sequences of distinct
parametric transitions. Remark that f l

N æI(X) represents the copy of the places of X in the last
subnet of the I. Set

t

tiœ‡ f i≠1
N æI(Π(ti)) is a bit more complex: for each transition ti œ ‡, Π(ti)

represents the input places of the parametric arcs. We therefore address here the unboundedness
of the copies of those places in the corresponding subnet of the incremental net.

Let us first introduce a few definitions. In the course of the proof we will relate parts of the
construction using isomorphisms.

Definition 36 : Extension of [Couvreur et al., 2011]
Let N = (P, T, Pre, Post,P) and N Õ = (P Õ, T Õ, PreÕ, PostÕ,P) be two PPNs and
m0, mÕ

0 their respective initial markings. Let h : P fi T ‘æ P Õ fi T Õ be a mapping
such that h(P ) ™ P Õ and h(T ) ™ T Õ. We say that h is an isomorphism (of
structure) from N to N Õ if h is a bijection and for each transition t œ T , we
have PreÕ(h(t)) = h(Pre(t)) and PostÕ(h(t)) = h(Post(t)).

We extend h to markings as follows: for all p œ im(h), h(m)(p) = m(h≠1(p)).
If mÕ

0 = h(m0) we call it an isomorphism of net.

Considering the notations of Section 5.6.2, (f0
N æI(N ), f0

N æI(m0)) and (Np, m0) are isomor-
phic, which is immediate by construction.

Proof of Lemma 23. (1) ∆ (3): We proceed by strong induction on the number |Θ| of parametric
transitions in N .

Base case: if |Θ| = 0, N is a classic Petri Net, which means (N , m0) is simultaneous X

unbounded. We recall that I denotes the incremental model of N along a sequence ‡ of
parametric transitions and µ0 its associated marking. Since |Θ| = 0, ‡ must be ‘. Thus,
I only contains f0(N ), which is isomorphic to Np, plus a lock. So for all k, k̨(f0

N æI(X))
is simultaneous f0

N æI(X) unbounded. Thus (3) holds.

Inductive step: we consider n œ N and we assume that given a preT-PPN with i Æ n

parametric transitions, (3) holds. Let us assume |Θ| = n + 1. Since (N , m0) is universally
simultaneous X unbounded, two cases arise:

either (Np, m0) is simultaneous X unbounded. Thus ‡ = ‘ satisfies the property (3)
as explained in the base case.

otherwise, (Np, m0) is not simultaneous X unbounded. Nevertheless, by definition of
universal simultaneous unboundedness, for every integer k Ø 0, (k̨(N ), m0) is simul-
taneous X unbounded. Then, using Lemma 9, there exists a marking zk reachable
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N , mf0, f1, . . . , f |‡Õ|

f(m) is a marking of I (except locks)
µ0 is a marking of I –

ÿ

g0, g1, . . . , g|‡|

g(–(m)) is a marking of J (except locks)
’0 is a marking of J

—

–

For the sake of clarity, remark that we omit most of the arcs of
the incremental net detailed in Figure 5.4.

–(N )
f0(N ) f1(N )

. . .

f |‡Õ|(N )
h−1(θ1)

I

f1(N )

. . .

f |‡Õ|(N )
—(I)

f1(N )

. . .

f |‡Õ|(N )
–(—(I))

g0(–(N ))

. . .

g|‡|(–(N ))
J

Figure 5.5 – Relations between the different parts of the construction

in KM(k̨(N ), m0) such that X ™ Ê(zk). This means that, in the coverability graph
of (k̨(N ), m0), there is a run flk leading to a node labelled by zk. This run con-
tains at least one parametric transition, otherwise (Np, m0) would be simultaneous
X unbounded. We can thus decompose flk as

m0
ú

æ mk
◊kæ mÕ

k
ú

æ zk

where ◊k is a parametric transition and the prefix m0
ú

æ mk contains no parametric
transition. Therefore, mk belongs to CS(Np, m0). Moreover, we know that its basis
BCS(Np, m0) is finite. Thus, using the pigeon hole’s principle, there exists z in
BCS(Np, m0) such that z Ø mk for infinitely many k. We define V = {k̨ | z Ø mk}.
This set is infinite. To each k̨ of V , we can associate a parametric transition ◊k

which is the first parametric transition involved in the run flk. Nevertheless, there
is a finite number of parametric transitions. We can thus invoke again the pigeon
hole’s principle and define an infinite subset of V , called V1, such that for all k œ V1,
the ◊k’s are equal, and without loss of genericity, we assume they are all equal to
◊1. For every k of V1, for every p œ P , we know that z(p) Ø mk(p). In particular,
we can now assert that, for every p œ Π(◊1), z(p) Ø mk(p) Ø k̨(Pre(p, ◊1)) = k by
definition of Π(◊1), where Π(◊1) ™ P was defined has the subset of places p such that
Pre(p, ◊1) œ P. Therefore, Π(◊1) ™ Ê(z). Notice that since ◊1 œ Θ, Π(◊1) ”= ÿ.
Let – be the projection that associates to N the Petri net where the places of Ê(z)
have been removed. Through this operation 11, every arc that start or ends in a place

11. The relations between the different nets involved in this proof: N , –(N ), I, J , etc. are summarised in
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of Ê(z) is also removed. This projection can be extended to markings in the sense
that given m, –(m) = m|N(z). We now consider the new preT-PPN –(N ). It is in
fact equal to (N(z), T Õ, Pre|N(z)◊T Õ , Post|N(z)◊T Õ ,P).
In this setting, we can partition T Õ into the set of plain and parametric transitions:
T Õ = T1 fi Θ1. Remark that ◊1 is now an element of T1 since its parametric arcs
have been removed through the restriction to N(z). Thus, –(N ) has strictly less than
n + 1 parametric transitions. We also define the operation inverse –≠1

Ê operating on
a marking of –(N ) which reintroduces the places removed and valuate them to Ê.
The result is thus an extended marking of N .
Let –(y) be the marking obtained by firing ◊1 from –(z). This operation is well defined
since ◊1 is a plain transition in –(N ). We can define y such that y = –≠1

Ê (–(y)).
Moreover, for every k œ V1, y Ø mÕ

k by construction and we can fire the suffix of flk,
and obtain by monotonicity, in the coverability graph of (̨k(N ), y), that there is a run
such that y

ú
æ yk Ø zk. Thus X ™ Ê(yk), and X fl N(z) ™ Ê(–(yk)). Therefore by

Lemma 9 for every uniform valuation k̨ of V1, (k̨(–(N )), y) is simultaneous X flN(z)
unbounded. We can invoke Lemma 22 to deduce that (–(N ), –(y)) is universally
simultaneous X fl N(z) unbounded.
As explained previously, this preT-PPN –(N ) has at most n parametric transitions.
By applying the induction hypothesis, there exists a sequence ‡ of parametric transi-
tions from Θ1 ™ (Θ \ {◊1}) satisfying item (3). We define the associated incremental
net as J and its initial marking ’0. Following the definition of Section 5.6.2 we de-
fine g0, g1, . . . , g|‡| from –(N ) to J and given a marking m of –(N ), we denote by
g(m) the marking of J which corresponds to duplicate m on each copies of –(N ).
Note that since we start from –(N ) with an initial marking equal to –(y), the initial
marking ’0 of J coincides with g(–(y)) on the copies of the places of –(N ) (i.e. if
we omit the locks).
Now, let us consider the sequence ‡Õ = ◊1‡. We can define the incremental model I
of N along ‡Õ and its associated marking µ0 which coincide with f(m0) on the copies
of the places of N . Following the definition of Section 5.6.2 we define f0, f1, . . . , f |‡Õ|

from N to I and given a marking m of N , we denote by f(m) the marking of I
which corresponds to duplicate m on each copies of N . We also define h that maps
the intermediate parametric transitions of I that allows to change the active subnet
to the original ones of ‡Õ. Remark that h≠1 is well defined.
Given 0 Æ i Æ |‡Õ|, f i(N ) is isomorphic to a subnet of N (indeed, only some para-
metric transitions are being removed). We can thus extend the definition of – to each
of those nets. We now extend this projection to I as the union of the projections on
each subnets of I. By abuse of notation, we keep calling this operation –. We also
extend its inverse –≠1

Ê operating on a marking of –(I) which reintroduces the places
removed and valuate them to Ê. The result is thus a marking of I.
We define — as the projection that associates to I a copy of this net where the
following components have been removed:

the places and transitions of f0(N )

the lock corresponding to f0(N )

the parametric transition that changes the active subnet from f0(N ) to f1(N ).

As previously we define its inverse —≠1
0 operating on a marking of —(I) which rein-

troduces the places removed by — and valuate them to 0, including the lock.
Let us now consider –(—(k̨(I))). This net is isomorphic 12 to J . Indeed, given
0 Æ i Æ |‡|, gi(–(N )) is isomorphic to –(f i+1(N )). In particular for i = 0, notice that

Figure 5.5.
12. Informally, considering the notation of the Section 5.6.2, the application between J and –(—(I)) is defined

by increasing all superscript of places and transitions by 1.
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◊1 belongs to –(N ) and therein is not a parametric transition since all its parametric
arcs have been removed through –. Therefore, by construction this transition has
a copy in g0(–(N )). Moreover, for i > 1 it also has a copy in every f i(N ) by
construction of I. Now remark that f0(N ), the only subnet that is not isomorphic
to one of the gi(–(N )), has been removed in —(I). Then through – the subset Ê(z)
of places of N that were copied in I (and therefore —(I)) are removed in –(—(I)) to
match the set of places of J , which is built upon –(N ).
We can thus denote by ÿ the isomorphism between –(—(I)) and J . Given a marking
m of N , we thus have that:

ÿ ¶ – ¶ — ¶ f(m) = g ¶ –(m)

Let us now study the markings of those nets. Given a valuation k̨, we consider
(k̨(J ), ’0). It is simultaneous g|‡|(X) fi

!
t

tiœ‡ gi≠1(Π(ti))
"

unbounded by the in-
duction hypothesis. Thus, there exists a sequence of transitions w in its coverabil-
ity graph leading to a marking ÷ such that g|‡|(X) fi

!
t

tiœ‡ gi≠1(Π(ti))
"

™ Ê(÷).
Let us consider (–(—(I)), ÿ≠1(’0)), then ÿ≠1(w) leads to a marking ÿ≠1(÷) with

ÿ≠1
1

g|‡|(X) fi
!

t

tiœ‡ gi≠1(Π(ti))
"

2

™ Ê(ÿ≠1(÷)) by definition of ÿ≠1.

Now let us consider (k̨(I), —≠1
0 (–≠1

Ê (ÿ≠1(’0)))). Sequence ÿ≠1(w) is still firable. In-
deed, –≠1

Ê consists in adding Ê’s which are not blocking for the firing of a transition
and will stay unchanged through the firing of the sequence. Moreover —≠1

0 adds some
zeros in the places of f0(N ) but no transitions of f0(N ) are used in this sequence,
thus no places of f0(N ) are inputs to a transition of ÿ≠1(w). From those facts, we
can conclude that the marking obtained in the coverability graph of k̨(I) after firing
ÿ≠1(w) is exactly —≠1

0 (–≠1
Ê (ÿ≠1(÷))).

Let us now focus on ’0. It can be divided into two parts, first the locks, and second
the copies of the places of –(N ). On this second part, it is exactly equal to g(–(y)).
Thus the marking —≠1

0 (–≠1
Ê (ÿ≠1(’0))) can be as well divided in two parts: the locks

and the copies of the places of N . On the first part, it is equal to ’0 completed with 0
in the initial lock. On the second part, it is exactly equal to —≠1

0 (–≠1
Ê (ÿ≠1(g(–(y))))).

Now, let u = —≠1
0 (–≠1

Ê (ÿ≠1(g(–(y))))) and recall that g ¶ – = ÿ ¶ – ¶ — ¶ f . We have:

u = —≠1
0 (–≠1

Ê (ÿ≠1(ÿ(–(—(f(y)))))))

= —≠1
0 (–≠1

Ê (–(—(f(y))))))) Because ÿ ¶ ÿ≠1 is the identity function

= —≠1
0 ((—(f(y))))))) Because –≠1

Ê (–((x)) = x iff x equal Ê on
every place removed by –. Here y|Ê(z) = Ę̂

thus f(y) is equal to Ê on every copy of
Ê(z).

Æf(y) Because —≠1
0 (—((x)) Æ x since —≠1

0 re-
places by 0 the values of the places affected
by —.

Now, recall that f0 is an isomorphism between Np and f0(N ). In KM(Np, m0), there
is a run to a marking zÕ greater than z since z œ BCS(Np, m0). Therefore, there exists
a run in f0(N ) starting from f0(m0) leading to a marking f0(zÕ). This run can also
be seen as a run w1 of k̨(I), going from the initial marking µ0 to a marking Â0 equal
to f(zÕ) completed with zeros on the locks corresponding to the subnets f i(N ) for
1 Æ i Æ |‡Õ| and 1 on the lock corresponding to f0(N ). From this marking, we can

fire h≠1(◊1) since f0(Π(◊1)) ™ Ê(Â0) and thus have µ0
w1æ Â0

h≠1(◊1)
æ Â1 where Â1 can
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be decomposed in two parts, first the locks, and second the copies of the places of N .
This second part is greater or equal to f(y) by construction. Thus, Â1 Ø u. We can
thus consider monotonicity, and conclude that ÿ≠1(w) is firable from Â1 such that in

the coverability graph of k̨(I): Â0
w1æ Â0

h≠1(◊1)
æ Â1

ÿ≠1(w)
æ Â2 where Â2 Ø ÿ≠1(÷).

Therefore, f |‡Õ|(X) ™ Ê(Â2) and
!

t

tiœ‡ f i≠1(Π(ti))
"

™ Ê(Â2). Moreover,
f0(Π(◊1)) ™ Ê(Â2) since f0(Π(◊1)) ™ Ê(Â0) and Â2 is a successor of Â0. Thus,
since ‡Õ = ◊1‡ we obtain exactly that f |‡Õ|(X) fi

!
t

tiœ‡Õ f i≠1
N æI(Π(ti))

"

™ Ê(“) which
concludes the induction.

(3) ∆ (1): Intuitively, the last copy f |‡|(N ) of the incremental net I of N along ‡ is
synchronised with every previous copy. So every sequence performed on I can be folded into the
last copy of this net. Moreover, this last copy is isomorphic to a subnet of N itself. Therefore,
the run will be firable in N itself. In the sequel, we omit the subscript N æ I of the functions
f i

N æI and hIæN . We denote by P the places of N .
More formally, we reason on the coverability graph and reuse the notations introduced in

Section 5.6.2. From (3) we can deduce that, given k̨, we can exhibit a run

µ0 = y0
fi0æ z0

·1æ y1
fi1æ z1

·2æ y2
fi2æ z2 . . . zl≠1

·læ yl
filæ zl where

Y

_

]

_

[

’1 Æ i Æ l, ·i œ h≠1(Θ)
’0 Æ i Æ l, fii œ (f i(T fi Θ))ú

f l(X) fi
!

t

tiœ‡ f i≠1(Π(ti))
"

™ Ê(zl)

Moreover, by construction of the incremental net, the tokens in places f j(P ) are created by
transitions of the set fiiÆj(f i(T )). Since for each parametric transition ◊j , f j≠1(Π(◊j)) is equal
to Ê, the Ê’s of f j≠1(Π(◊j)) have to appear between fi0 and fij≠1. We can thus deduce that

’1 Æ j Æ l, f j≠1(Π(◊j)) ™ Ê(zj≠1)

Each time a new parametric transition is involved in the run, the input places of its paramet-
ric arcs already contain Ê in this run in the coverability graph. Since f |‡|(N ) is synchronised on
all the previous copies to mimic their behaviour along the run, it is possible to simply consider
the run folded into f |‡|(N ):

f l(m0) = y0|f l(P )
f l(f≠1(fi0))

æ z0|f l(P )
f l(h(·1))

æ y1|f l(P ) . . . zl≠1|f l(P )

f l(h(·l))
æ yl|f l(P )

f l(f≠1(fil))
æ zl|f l(P )

Where Ê((zl)|f l(P )) contains f l(X) and, as explained above, before each first occurrence of a
parametric transition, f l(h(·i)), f l(Π(h(·i))) ™ Ê((zi≠1)|f l(N )).

Now let us recall that f l is an isomorphism between a subnet of N and f l(N ). Therefore,
there exists an isomorphic run in the coverability graph of (k̨(N ), m0) which provides that same
set of places equal to Ê. In particular, since X is included in this set, we can deduce that k̨(N )
is simultaneous X unbounded. Moreover, by invoking Lemma 22, we can conclude that N is
universally simultaneous X unbounded.

(3) ∆ (2): straightforward

(2) ∆ (3): We reuse here the decomposition used in (3) ∆ (1) but push it a bit further.
Indeed, since the input places of parametric transitions are unbounded, it is sufficient to verify
this property for only one instance of the incremental net. If such a property is verified for a
k̨-instance, then, it could be verified for any k̨ÕÕ-instance (with kÕÕ > k) by exhibiting the witness
run and performing more loops.

Formally, from (3) we know that, there exists k̨, such that we can exhibit a run

µ0 = y0
fi0æ z0

·1æ y1
fi1æ z1

·2æ y2
fi2æ z2 . . . zl≠1

·læ yl
filæ zl where

Y

_

]

_

[

’1 Æ i Æ l, ·i œ h≠1(Θ)
’0 Æ i Æ l, fii œ (f i(T fi Θ))ú

f l(X) fi
!

t

tiœ‡ f i≠1(Π(ti))
"

™ Ê(zl)
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Moreover, as explained in (3) ∆ (1), by construction of the incremental net, the tokens in places
f j(P ) are created by transitions of the set fiiÆj(f i(T fi Θ)), which was summed up as:

’1 Æ j Æ l, f j≠1(Π(◊j)) ™ Ê(zj≠1)

Each time a new parametric transition is involved in the run, the input places of its paramet-
ric arcs already contain Ê in this run in the coverability graph (for the active copy and for all the
following one, thus for all the input places of this transition if we consider the synchronisations).
Therefore, if we consider the same run under a different valuation kÕÕ > k, we can assert that
there will be no difference for the coverability graph since the only effect of the valuation would
be to consume more tokens from places that already contains Ê. Using Lemma 9 we thus directly
obtain that ’kÕÕ > k, (k̨ÕÕ(I), µ0) is simultaneous f l

N æI(X) fi
!

t

tiœ‡ f i≠1
N æI(Π(ti))

"

unbounded.
Finally, supposing that ÷k œ N, (k̨(I), µ0) is simultaneous f l

N æI(X) fi
!

t

tiœ‡ f i≠1
N æI(Π(ti))

"

unbounded, we can easily adapt the result of Lemma 15 to prove that ’kÕ Æ k, (k̨Õ(I), µ0) is
simultaneous f l

N æI(X) fi
!

t

tiœ‡ f i≠1
N æI(Π(ti))

"

unbounded.
We have thus proved that (2) ∆ (3).

From Lemma 23 we can observe that answering the universal simultaneous X unboundedness
on a preT-PPN can be reduced to guessing an element ‡ of the finite set Pref(SΘ) such that
(̨0(I), µ0) is simultaneous Y unbounded. Since checking simultaneous X unboundedness can
be done in ExpSpace as recalled in Theorem 7, we obtain a NExpSpace procedure. Then, a
well-known theorem by Savitch [Savitch, 1970] stating that there is therefore an ExpSpace de-
terministic procedure answering this problem and Remark 4.2.1 allow us to deduce the following
theorem:

Theorem 24
The universal simultaneous unboundedness problem for preT-PPNs is
ExpSpace-complete.

Proof. The size of N is defined as usual, plus the number of parameters. The input consists
of N plus a subset of its places X. The ExpSpace-hardness lower bound is a consequence of
Remark 4.2.1.

We now establish the upper bound for the universal simultaneous unboundedness problem.
Given a preT-PPN N , we construct a non-deterministic Turing machine which guesses an ele-
ment ‡ of Pref(SΘ). Note that there are 2|P|+1 elements possible in Pref(SΘ).

We then ask whether given I = incr(N , ‡) and µ0 its associated initial marking, (̨0(I), µ0)
is simultaneous Y unbounded, where I is the incremental net of N along ‡ with the initial
marking associated µ0, and Y is a set 13 of size at most polynomial in the size of the input.

Constructing the incremental net can be done in polynomial time because it consists only in
filling matrices of size polynomial in the size of the input. It is therefore also only polynomially
larger than N .

Checking simultaneous X unboundedness can be done in ExpSpace as recalled in Theorem 7.
We thus obtain a NExpSpace procedure. By a well-known theorem by Savitch [Savitch,

1970], there is therefore an ExpSpace deterministic algorithm for the universal simultaneous
unboundedness problem. This problem is thus ExpSpace-complete.

Corollary 25
Universal coverability in preT-PPNs is ExpSpace-complete.

13. The exact formula of Y is given in Lemma 23.
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5.7 Adapting Karp and Miller for PostT-PPNs

We saw in Section 3.3.2 of Chapter 3 that the Karp and Miller tree is one of the very first
results in the scope of decidability in Petri nets. This construction permits to solve the problem
of coverability and simultaneous unboundedness. Note that in our context, we cannot extend
the proof for existential coverability using Ê-PNs to existential simultaneous unboundedness.
Indeed, there is a difference between places that are unbounded regardless to the valuation used
and places that can store an arbitrarily large number of tokens through the use of arbitrarily large
valuations of the parameters. Furthermore, in some sense, Karp and Miller’s tree also provides
some information about reachability (for the components that are bounded). Moreover, the
target marking needs not be fully specified, some places can be left unconstrained while others
can be imposed to be unbounded or to exceed a precise number of tokens. It seems thus natural
to extend this construction to our subclasses.

5.7.1 An Extension of Karp and Miller Algorithm

Here, we want to adapt the Karp and Miller algorithm to provide some decidability results for
existential coverability and existential simultaneous unboundedness. Formally:

Definition 37 : Existential Simultaneous Unboundedness
Given a parametric Petri net, and a subset of places X of this net, the parametric
net is existential simultaneous X unbounded iff there exists a valuation v of its
parameters such that the v-instance of this net is simultaneous X unbounded.

As presented above, our extension needs to deal with the fact that places where parameters
can be generated can reach an arbitrary high value (by using an arbitrary large valuation), but
are not necessary unbounded in a given instance. The following algorithm is different from the
one introduced in [Geeraerts et al., 2015] adapted to Ê-PNs which is based on an Ê-semantics.
In this latter algorithm, the Ê’s in the markings do not mean unboundedness (and thus non
termination) and a stronger condition on the paths in the tree obtained is then needed to
answer the termination. In fact if a marking of the coverability tree built contains an Ê, this
Ê is either due to a classic acceleration operation, meaning that the corresponding place can
store as many tokens as wanted through the repetition of a self increasing sequence or on the
contrary, it is the result of the firing of a unique Ê transition, which implies that a finite number
of tokens have been generated in this place. The main limitation is thus that after several
iterations of the algorithm, one cannot decide directly by looking at a marking which Ê results
from which operation. For instance, considering the simple postT-PPN depicted in Figure 5.6,
we would obtain in the coverability tree a marking (0, Ê) even if this net is clearly not existential
p2 unbounded. In fact, this net is universally bounded. Here, we try to represent directly in the

p1 p2t
b

Figure 5.6 – A universally bounded postT-PPN

tree the difference that exists between a parametric number of tokens (that can be arbitrarily
large) and an unbounded number of tokens. To model this duality in the arbitrary large value
we suggest to use a special extension of N. We use Ê to represent unbounded markings whereas
ú will be used to represent an arbitrary large value that is due to the effect of an arbitrary large
valuation. Formally, we denote by Nú the union N fi {ú} and by NÊ,ú the union N fi {Ê} fi {ú}
such that :

’n œ N, n < ú < Ê

’n œ N, ú ≠ n = ú and ú + n = ú
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’n œ Nú, Ê ≠ n = Ê and Ê + n = Ê

Note that there is no need to define ú ≠ ú or Ê ≠ Ê in our context. We can easily derive that
similarly to (NÊ, Æ), (Nú,Ê, Æ) is wqo. Therefore, using the component-wise order, (Nk

ú,Ê, Æ) is
wqo too. Given a vector (or a function) m taking values in NÊ,ú, we denote by Nú(m) the set of
components of m that belong to Nú

First, let us notice that given a postT-PPN with a set of parameter P, using monotonicity,
one can trivially show that it is equivalent to answer the existential coverability if we consider
the postT-PPN with the same structure but where all parameters have been set equal to the
same parameter say a, thus reducing P to {a}. The intuition is to value all parameters to ú, and
if all the input places of a transition are marked by ú to propagate this symbol to the output
places. Formally, given a marking m of NP

ú,Ê we define Postú(m, t) œ NP
ú,Ê as follow:

Postú(m, t)(p) =

I

m(p) + ú if Post(p, t) œ P
m(p) ≠ Pre(p, t) + Post(p, t) otherwise

Given a path in a tree C from a node n1 to a node n2, written n1  n2,
effectC (n1  n2) is defined by the sum of the effect of the transitions along this path i.e.

q

tœpathlabel(n1,n2)
Postú(t) ≠ Pre(t). We now adapt the acceleration function in a tree C to allow

the propagation of ú’s:

AccC (N, n)(p) =

Y

_

_

_

_

_

_

_

_

_

_

]

_

_

_

_

_

_

_

_

_

_

[

Ê if ÷nÕ œ N

-

-

-

-

-

-

-

Λ(nÕ) < Λ(n)
· effectC (nÕ  n)|Nú(nÕ) > 0
· Λ(nÕ)(p) < Λ(n)(p) < Ê

ú otherwise and if ÷nÕ œ N

-

-

-

-

-

-

-

Λ(nÕ) < Λ(n)
· effectC (nÕ  n)|N(nÕ) > 0
· Λ(nÕ)(p) < Λ(n)(p) < ú

m(p) otherwise

(5.2)

Algorithm 2 Karp and Miller for PostT-PPNs
1: Require: A postT-PPN S = (P, T, Pre, Post,P, m0)
2: Return: A labelled tree C = (N, n0, B, Λ)
3: procedure
4: Let n0 be a new node such that Λ(n0) = m0

5: N Ω n0 ; Wait Ω {(n0, t)|t œ T · Λ(n0) Ø Pre(t)} ; B Ω ÿ
6: while Wait ”= ÿ do
7: Pop(n’,t) from Wait;
8: m Ω Postú(Λ(nÕ), t) ;
9: if @y œ AncestorC (nÕ) s.t. Λ(y) = m then

10: Let n be a new node s.t. Λ(n) = m

11: update Λ(n) = AccC (Λ(AncestorC (nÕ), n))
12: N Ω N fi {n} ; B Ω B fi {(nÕ, t, n)};
13: Wait Ω Wait fi {(n, u)|u œ T · Λ(n) Ø Pre(u)} ;

return C = (N, n0, B, Λ)

The following proofs are very close to the original ones from Karp and Miller except for
Theorem 28 where the construction of the valuation is a bit technical.
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5.7.2 Termination

Theorem 26 : Termination
The procedure terminates and returns a finite tree.

Proof. We proceed by reductio ad absurdum. Note that we abuse the notations and we assimilate
the label of a node to the node itself. The procedure does not terminate iff the while loop does
not terminate. Moreover, since the procedure builds a tree, we can claim that no former nodes
are added to the set of nodes added to the set Wait during the construction, thus, the while
loop does not terminate iff the set Wait never becomes empty which directly implies that the
tree built is infinite. Now, notice that this tree is finite branching: one node has at most |T |
successors. Using König’s Lemma (see Lemma 4), we can infer that there exists an infinite path
in this tree.

Now, we can invoke Lemma 1 on the infinite sequence of labels of the nodes on this path. We
can thus extract an infinite subsequence (respecting the order of the infinite path) of markings
of Nú,Ê:

m0 Æ m1 Æ · · · Æ mi Æ · · · Æ mj Æ . . .

By construction, those markings are distinct otherwise, the exploration would have stopped.

m0 < m1 < · · · < mi < · · · < mj < . . .

Let us extract an infinite subsequence and prove that one Ê or one ú is generated. On
this sequence, there exists a pair mi and mj with i < j . Then, effect(mi  mj) Ø 0 on
the components in N. Moreover, effect(mi  mj) can be negative on the components equal
to Ê or ú. In any case, necessarily, one component of effect(mi, mj) must be strictly positive,
otherwise, the markings mi and mj would be equal which is not possible. Thus if we consider the
acceleration function, we are in the first or second situation, depending on where the negative
components occurs. This implies that the acceleration create at least a ú or an Ê.

Starting from mj , the rest of the sequence is still infinite and we can repeat this reasoning.
Since there is a finite number of components, and we will each time be able to add a symbol ú
or Ê to at least one component, this process will eventually reach a marking containing only ú’s
and Ê’s which contradicts the existence of the initial infinite sequence.

We can thus conclude that this tree is finite.

5.7.3 Correctness

Theorem 27 : Completeness
Given a marked postT-PPN S and a marking m, if there exists a valuation v

such that m can be covered in v(S), then, there exists a node n in the tree built
by the procedure such that its label Λ(n) is greater than or equal to m.

Proof. Let us suppose there exists a valuation v such that m0
w
æ mÕ Ø m in v(S) with w =

t1t2 . . . tk and consider the corresponding (finite) sequence of markings.
First, find each occurrence of a parametric transition in w and replace their effect by ú in

the sequence of markings. We will now apply to the newly obtained sequence of markings the
following operation as many time as possible:

1. find the first element uÕ of the sequence such that for some earlier element uÕÕ, uÕÕ Æ uÕ

with non negative effect on the components not equal to ú or Ê.

2. if uÕÕ = uÕ, delete all the elements following uÕ

3. otherwise, if the effect is positive on the components equal to ú, replace the positive
components by Ê in uÕ and for each marking beyond uÕ in the sequence
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4. otherwise, (there exists a component equal to ú where the effect is negative), replace the
positive components by ú in uÕ and for each marking beyond uÕ in the sequence

This process builds up a sequence of markings that is exactly the sequence of labels of nodes
from a path of the tree build through Algorithm 2. The final label in this sequence is a vector
greater or equal to mÕ and thus to m.

Theorem 28 : Soundness
Given a postT-PPN S, and the tree built by the procedure, given a node n of the
tree, the following propositions hold:

’B œ N, ÷v œ NP, ÷m œ RS(v(S)) such that, ’p:
(Λ(n)(p) = Ê or Λ(n)(p) = ú) ∆ m(p) Ø B

and (Λ(n)(p) ”œ {ú, Ê}) ∆ m(p) = Λ(n)(p)

÷v œ NP, ’B œ N, ÷m œ RS(v(S)) such that, ’p:
(Λ(n)(p) = Ê) ∆ m(p) Ø B

and (Λ(n)(p) ”œ {ú, Ê}) ∆ m(p) = Λ(n)(p)

The difference between the first and second items of this theorem is the inversion of the
universal and existential quantifiers targeting respectively a bound and a valuation. This claims
that when the valuation is fixed, then the components that can reach ú through the algorithm are
not unbounded. But on the other hand, if the valuation is not fixed, then it is possible to choose
a valuation big enough to overpass any chosen bound B. A direct consequence of Theorem 27,
Theorem 28 and Remark 4.2.1 is provided in the following corollary:

Corollary 29
The existential simultaneous unboundedness problem on postT-PPNs is
ExpSpace-hard.

Proof of Theorem 28. Given any node n, and B > 0, we will build a valuation v and a marking
m satisfying the first property. We will then prove the second one using that valuation.

There is a path in the tree defined by n0  n. We can assume that the first h components
of Λ(n) are equal to Ê, the components from h + 1 to k are equal to ú and the remaining
k + 1 to n belong to N. Plus we assume that the Ê’s (and the ú’s if possible) are generated
by growing indices. Note it is possible that a ú becomes an Ê along the procedure, therefore,
the order of components imposed by Ê’s may not match with the order of appearance of the
ú’s. Nevertheless, at most k ú’s are generated and h Ê’s along this path which is what mostly
interests us.

Λ(n) =

S

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

U

Ê
...
Ê

ú
...
ú

jk+1
...

jn

T

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

V

mgoal =

S

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

U

B
...
B

B
...
B

jk+1
...

jn

T

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

V

mgoal,l =

S

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

U

B + l
...

B + l

B
...
B

jk+1
...

jn

T

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

V

p1
...

ph

ph+1
...

pk

pk+1
...

pn

(5.3)

We denote by m0 the initial marking and define mgoal as in Equation (5.3). Our goal is to
find a valuation v such that there exists a marking m Ø mgoal reachable in the v-instance. Then,



5.7. ADAPTING KARP AND MILLER FOR POSTT-PPNS 81

given any l Ø 0, we define mgoal,l as in Equation (5.3). We will then explain why there exists a
marking ml Ø mgoal,l reachable in the v-instance.

We define L as |pathlabel(n0, n)| that is to say the length of this path (the number of arcs).
Let M be equal to maxpœP (mgoal(p)) and R be the maximum absolute value of the integer
weights involved in the net.

We now need to exhibit a valuation and a run in the Petri net leading to a marking satisfying
the property. The main idea is to analyse the path in the tree in order to build a valuation
and a sequence accordingly. Following Algorithm 2, if a new Ê appears, it is necessarily the
consequence of the acceleration function, we will thus need to estimate how many times the
corresponding loop must be performed. Whereas, if a new ú appears, it can come from the
firing of a parametric transition with the operator Postú, which corresponds to the firing of a
single parametric transition in the path or it can come from the acceleration function, which
intuitively corresponds to the transfer of an arbitrary large (but finite) amount of tokens due to
the value of the parameters. We will therefore need to estimate how many times those transfer
sequences need to be fired to transfer those tokens.

1. First, we estimate the valuation by back propagation of the constraints induced by the
transfer of the ú symbols.

2. Second we estimate the number of times each loop creating an Ê (called Ê loop in the
sequel) must be performed. If we consider the ith Ê to appear, we denote this number by
xi in the sequel. Note that the resolution here is more complex than in the classic Karp
and Miller proof, indeed, the number of times each loop is performed must consider some
loop executions to compensate the tokens consumed during the ú transfer from the places
already equal to Ê. To this aim, we will use a simple but brutal over approximation.

3. Finally we provide the intuition of the construction of the final run.

Step 1:
In this step, we reorder the components by order of appearance of the ú’s. We consider the
case where only one ú is introduced at each time. If several ú’s were to appear in one step, the
reasoning would be similar. We decompose the path as follows:

n0  n1  · · · nk  n

such that in n1 the first ú is introduced and in nk the last ú is introduced (we consider the “worst”
case where k ú’s are generated). Note that by definition, each of those paths has a length that is
lower or equal to L. Let us now study the acceleration function defined by Equation (5.2). It is
important to note that the repetition of Ê loops will not affect the number of tokens generated
by parametric arcs of the parameters since their effect must be non-negative on places marked
by ú. Thus, we keep the Ê’s as they are in those paths and make a first back propagation of
constraints on components equal to ú to find a value for the valuation in order to instantiate
those ú’s.

Considering nk, to reach a marking satisfying the property, it would be sufficient to instanti-
ate each ú in this marking by RL+M tokens. Let us recall how ú appears: either it is generated
by the firing of one transition, otherwise, it comes from the acceleration.

In the first case, we can choose directly the value necessary for the parameter, that is
to say, the maximum between what is needed for this new component (i.e. RL + M as
explained above) and what would be needed for the other components.

In the latter case, this implies that there is a sequence increasing with a negative effect
on at least one component already equal to ú (otherwise, we would value it to Ê through
the acceleration function by definition). If some negative components are on the Ê’s this
is not limiting since by construction it is sufficient to consider more executions of the
corresponding loops, and it will not influence the valuation of the parameters. What
matter here are thus the components with a negative effect on the ú’s already created.
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The valuation that we are going to build will consider the most expensive scenario in terms of
consumption of tokens. A ú transfer sequence has a length bounded by L transitions and each
transition can consume at most R tokens from any place, thus, if the latest ú introduced in nk is
a propagation of the ú’s from nk≠1, it is sufficient to ensure that the ú’s from nk≠1 can effectively
reach the value (M + RL) + RL(M + RL). Indeed RL(M + RL) tokens are used to generate
M + RL tokens through a run of length L consuming R tokens per transition. Plus we need to
ensure that M +RL tokens are still available after this transfer. We can iterate this process until
we reach the first ú created. Let us denote by (vn)nœN the arithmetico-geometric 14 sequence
such that: vn+1 = RLvn + (M + RL) with v0 = M + RL. To get v0 tokens in the ú from nk, we
need v1 tokens in the ú from nk≠1. To get v1 tokens in the ú from nk≠1, we need v2 tokens in
the ú from nk≠2, and so on. By finishing this reasoning, we need at most V =

qi=k≠1
i=0 vi tokens

in the ú from n1. Moreover, since this ú is the first to be introduced, it necessarily comes from
the use of the operator Postú. Using the first item stated previously, we can therefore consider
the valuation V̨ . This valuation would cover the most greedy case, that is to say, all the ú’s are
created by transfer sequences which have negative components on all the previous ú’s, such that
those sequences are of length L and each transition involved consume R tokens from each places
considered.

Step 2: We reorder the components by order of appearance of the Ê’s. Let us build from
the original sequence a run and a marking satisfying the property by evaluating how much time
it is necessary to perform the different loops in order to instantiate the Ê’s.

For the ith Ê, there is a subsequence such that its effect is positive on the component i and
non negative on the other components, from i + 1 to n. The effect can be negative on the
components already equal to Ê (i.e. from components from p1 to pi≠1). We consider ≠∆ the
smallest negative components among the effect of all those subsequences. In fact ∆ represent
the maximum amount of token that a loop which is repeated to create an Ê can consume per
component at each occurrence of the loop. We can define the xi’s just like in the classic proof
by Karp and Miller: each xi represent the number of times the loop creating the ith Ê needs to
be performed. The set {x1, . . . xh} satisfies thus :

xh Ø M + RL

xh≠1 Ø M + RL + ∆xh

. . .

x1 Ø M + RL + ∆(xh + · · · + x2)

Those xi’s are not sufficient however. Indeed, when we transfer a ú we may consume tokens
from some places equal to Ê’s. Nevertheless, we know how many times each transfer sequence
needs to be fired, using the previous arithmetico-geometric sequence. We know that a sequence
creating a ú by acceleration will consume less than V tokens (this is clearly a brutal over
approximation). So let us impose that each Ê covers the needs from the previous inequation
plus V . For the latest Ê we need at least (M + RL) for the remaining part after the ú’s plus
(k ≠ h)V tokens, for each of the stars that may appear after this Ê and thus consume some of
its tokens.

For the previous Ê, (the one in component h ≠ 1) the worst case would happen if in the hth

component an ú appears before to become an Ê. Therefore, we need to compensate at most
k ≠ h + 1 ú’s by acceleration. We thus need at least (M + RL) + (k ≠ h + 1)V , plus we need to
compensate the tokens consumed by the next omega, ∆ ◊ nk and so on. We will therefore add

14. Clearly if RL = 1 it means that R = 1 or L = 0. If L = 0, n = n0 thus there is no ú’s nor Ê’s and the answer
is direct. If R = 1, we obtain a classic arithmetic sequence of which generic term vi can be written (M +RL)+ iR.
Else if L > 0 and R > 1, given an arithmetico-geometric sequence (un)nœN defined by ’n œ N, un+1 = aun + b

with a ”= 1, we recall that if we write r = b
1≠a

, then un = an(u0 ≠ r) + r.
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those constraints to the inequation system 15 of the second point to obtain a new system whose
solutions are some xi’s.

xh Ø M + RL + (k ≠ h)V

xh≠1 Ø M + RL + (k ≠ h + 1)V + ∆xh

. . .

x1 Ø M + RL + (k ≠ 1)V + ∆(xh + · · · + x2)

Such a system can be solved due to its triangular form.
Step 3: Finally, let us put it all together. We first consider the Petri net V̨ (S). Now we

run through the path n0  n and apply the following procedure: As long as no ú nor Ê are
introduced, keep the path as it is. When a ú is found, if it comes from the firing using Postú keep
the path as it is. Otherwise, if a ú is found, say the ith to appear, go back to the beginning of
the acceleration sequence, and repeat this sequence

qi=h≠i
i=0 vi times and continue to run through

the path. Otherwise, if an Ê is found, say the ith to appear, go back to the beginning of the
acceleration sequence, and repeat this sequence xi times and continue to run through the path.
By construction this run will lead to a marking greater than or equal to mgoal which prove the
first property.

To prove the second property, using the initial discussion in this proof, it is sufficient to notice
that the xi are not bounded from above, therefore, it is possible to repeat them sufficiently to
cover the l tokens that have been added.

5.8 Adapting Karp and Miller for PreT-PPNs

We now consider the case of preT-PPNs. We provide an algorithm in Subsection 5.8.1. The
proof of termination and correctness are provided in Subsections 5.8.2 and 5.8.3 respectively.
Note that the algorithm presented is an adaptation of Karp and Miller algorithm 16.

5.8.1 An Extension of Karp and Miller Algorithm

The idea is to extend the construction to preT-PPN by introducing a special behaviour
for parametric transitions. We provide Algorithm 3 which we call extended Karp and Miller
algorithm or KM+ for short and which allows us to fire parametric transitions once we verified
that those transitions are firable for each instance of the parametric Petri net. This verification
relies on an easy criterion: intuitively, a parametric transition will be universally firable if the
input places of the parametric arcs are not bounded (formalised in Equation 5.4).

We apply the classic algorithm for non parametric transitions. The acceleration function Acc

used in the algorithm (see Line 10) is thus a classic acceleration of which definition is recalled in
Equation 3.2 of Section 3.3.2. For a parametric transition u, the firing condition (Equation 5.4
involved at line 12) is slightly different: we verify that the label of the node n covers the firing
precondition (when the input arc are valued with natural numbers) and that the components of
the label of n in a place corresponding to a parametric input arc are equal to Ê. Formally :

Pparam(n, u) = ’p œ P ,

I

Pre(p, u) œ P ∆ Λ(n)(p) = Ê

Pre(p, u) œ N ∆ Λ(n)(p) Ø Pre(p, u)
(5.4)

Once such a transition is considered in the set Wait, we fire it by considering the zero valuation
0 as shown at line 8. This could be any other valuation since Ê ≠ x = Ê for any x œ N.

15. Note that all those inequations are very pessimistic. One could suggest a more refined system where V

would be replaced by some partial sum of the terms vi depending on the number of ú’s that have already appeared.
For the sake of compactness and simplicity, we consider only this very rough system.

16. More precisely the version provided in the paper of Reynier and Servais [Reynier and Servais, 2011].
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Algorithm 3 Universal Coverability Algorithm
1: Require: A preT-PPN S = (P, T, Pre, Post,P) and an initial marking m0

2: Return: A labelled tree C = (N, n0, B, Λ)
3: procedure
4: Let n0 be a new node such that Λ(n0) = m0

5: N Ω n0 ; Wait Ω {(n0, t)|Pre(t) œ NP · Λ(n0) Ø Pre(t)} ; B Ω ÿ
6: while Wait ”= ÿ do
7: Pop(n’,t) from Wait;
8: m Ω Post0(Λ(nÕ), t) ;
9: if @y œ AncestorC (nÕ) s.t. Λ(y) = m then

10: Let n be a new node s.t. Λ(n) = Acc(Λ(AncestorC (nÕ), m))
11: N Ω N fi {n} ; B Ω B fi {(nÕ, t, n)};
12: Wait Ω Wait fi {(n, u)|Pparam(n, u)};

return C = (N, n0, B, Λ)

5.8.2 Termination

Theorem 30
For any preT-PPN S, the tree KM+(S) is finite.

In the classic Karp and Miller algorithm applied to any v-instance of a preT-PPN, a para-
metric transition ◊ may be fired even if its input places for parametric arcs (we call this set
of places Π(◊)) are not marked with Ê. Indeed, v(Pre(p, ◊)) tokens in all places p œ Π(◊) are
sufficient. In KM+, a parametric transition needs a node labelled with a marking presenting Ê

in each input places of a parametric arc to be fired. Since this condition is more restrictive, it
implies that if a parametric transition is fired in KM+(S), it would also be fired in KM(v(S)).
Nevertheless, if a parametric transition is fired in KM(v(S)), it would be fired in KM+(S) only
if it meets the previous condition. Therefore, KM+(S) paths are prefixes of paths of the tree
build by the Karp and Miller procedure i.e. KM+(S) is obtained from KM(v(S)) by cutting
out the branches where parametric transition are fired before reaching an Ê marking. The sequel
provides a formal proof.

Lemma 31
Given a preT-PPN S, for any v, there exists a prefix P of KM(v(S)) such that
P and KM+(S) are isomorphic.

Proof. Given a valuation v, we show that each path from the label of the root to the label of a
node of KM+(S) is also a path from the label of the root to the label of a node of KM(v(S)).
Considering only those paths, we construct a subtree of KM(v(S)) which would be the image
KM+(S) by a tree isormorphism „.

We will prove that for all n of N the following property holds:

’v œ NP, ÷P a prefix of KM(v(S)), ÷„ a tree isomorphism between P and P
Õ,

where P
Õ is the prefix of KM+(S) composed of the nodes of depth at most n

We proceed by induction on n and will consider a node ÷ of KM+(S) of depth n in order
to construct „ along the induction.

Base case: we consider n = 0, the only node of depth 0 is thus the root which has the
same label in both trees (the initial marking). „ maps the root of KM+(S) to the root
KM(v(S)). So the property is true.

Inductive step: given n œ N, we suppose the property holds. Thus, given a valuation v,
there exists an isomorphism „ such that each path to the label of a node of KM+(S) of
length n is also a path of KM(v(S)). We consider a node ÷ú of depth n + 1 in KM+(S).
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We write t the last transition used in this path such that Λ(÷) t
æ Λ(÷ú) where ÷ is thus

a node of depth n in KM+(S). Using the induction assumption on ÷, there exists a
valuation v and an isomorphism „ such that the same path can be fired toward a node ÷Õ

in KM(v(S)) such that Λ(÷) = Λ(÷Õ) (with „(÷) = ÷Õ). Now, let us consider t. Either t is
a parametric transition or not.

If t is not parametric, KM+ mimics the classic algorithm. Thus applying the ac-
celeration function, will create a node ÷ÕÕ with label Λ(÷ú) in KM(v(S)). Therefore,
considering the same valuation v, it is sufficient to extend „ as „ fi (÷ú ‘æ ÷ÕÕ).

If t is a parametric transition, we define Π(t) = {p œ P | Pre(p, t) œ P}. Line 12
of Algorithm 3 implies that Λ(÷)(p) equals Ê for each p œ Π(t). Moreover, for each
i œ N, Ê≠i = Ê. Therefore Λ(÷) t

æ0 and Λ(÷Õ) t
æv leads to the same marking mú such

that mú(p) equals Ê if p œ Π, and Λ(÷)(p) ≠ Pre(p, t) + Post(p, t) otherwise (or Ê if
there is a need to accelerate those components). The next steps of the two algorithms
thus have the same behaviour: using the induction assumption, mú is compared to
the same ancestors in both trees. Therefore, the acceleration function provides the
same result and a node ÷ÕÕ with label Λ(÷ú) will be created in KM(v(S)) (this node
will the the image of ÷ú by „).

In both cases, the path from Λ(÷0) to Λ(÷ú) studied in KM+(S) exists in KM(v(S)).
Since KM+(S) is finite branching, this can be repeated for each node of depth n + 1
allowing us to extend the isomophism „ to each of those nodes. We can thus deduce that
the property holds at rank n + 1. The nodes obtained and the corresponding ancestors
form a prefix of KM(v(S)).

By induction we have proved Lemma 31 since the function „ constructed induces trivially a
tree isomorphism between KM+(S) and the prefix of KM(v(S)) considered.

Considering Lemma 31 and the finiteness of the classic coverability tree of Karp and Miller
proved in [Karp and Miller, 1969], the proof of Theorem 30 is immediate.

5.8.3 Correctness

First we need to introduce some results in order to provide an intuition for the proof. To
determine the universal coverability set, we would like to compute the limit (if it exists) to the
infinite intersection of coverability sets of every instance of the parametric Petri net. In this
context, we first try to reduce the set of valuations on which this limit is computed. We already
stated in Lemma 19 that it is sufficient for a marking to be coverable in infinitely many uniform
instances.

We also already explained in a previous section the technique to answer universal coverability
of a marking in preT-PPNs. Here, since we adapt Karp and Miller algorithm, in addition to the
previous reasoning, we need to justify that every path studied in KM+ can be instantiated in
every instance of the parametric Petri net. We investigate a set of runs with good properties
i.e. runs using the same support of parametric transitions with the same “slowest” parametric
transition to appear (i.e. the same last first occurrence). Figure 5.8 on page 88 presents a set of
runs wi fired in different vi-instances of a preT-PPN with n + 1 parametric transitions (named
t⁄1 to t⁄n+1) such that each run wi is equal to xvi

t⁄n+1yvi
where each t⁄j

is involved in xvi
except

t⁄n+1 . The construction of this set of runs is detailed in the sequel. The identical “slowest” para-
metric transition allows us to prove Lemma 32 by induction: if there is no parametric transition
involved, then the result is obvious, as stated previously. Then, assuming that Lemma 32 is true
for at most n parametric transitions and considering n + 1 parametric transitions, we build a
set of runs using those n + 1 parametric transitions such that the induction hypothesis can be
applied to the prefix xvi

of each run. Even if the result may seem quite natural, the proof is a
bit technical. It is entirely detailed at the end of this section.
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To manipulate the parametric transitions occurring in a transitions sequence in the upcoming
proofs, we introduce the notion of parametric support as follows:

Definition 38 : Parametric support
Given a PPN, we write Θ its set of parametric transitions. The parametric
support of a transitions sequence w, written Suppar(w), is the set of parametric
transitions involved in w.

Suppar(w) = {t œ Θ s.t. |w|t Ø 1}

Lemma 32
Let n œ N, S = (P, T, Pre, Post,P) a preT-PPN and a marking m œ NP . If S
has at most n parametric transitions (|Θ| Æ n) and for an infinite number of
uniform valuations v, m is coverable in v(S) then there is a vertex x in KM+(S)
s.t. m Æ Λ(x).
Moreover, if for an infinite number of uniform valuations v , we can find a set
of firing sequences wv leading to a marking covering m in the v-instantiated
PPN, such that those sequences have the same parametric support, then, there
is a path in the tree constructed by KM+ from the root to the node, covering m,
which involves the same parametric support.

This technical lemma together with Lemma 31 allows us to conclude to the correctness of
the algorithm:

Corollary 33
The following propositions are equivalent :

1. m is U -coverable in S

2. There is a node in KM+(S) of which label is greater than or equal to m

Proof of Corollary 33. We prove the two implications:

(1) ∆ (2):
We consider a marking m universally coverable in S. By Lemma 19 we can define an
infinite set:

{v œ PN|÷k œ N s.t. ’⁄ œ P, v(⁄) = k · m coverable in v(S)}

i.e. m is coverable for an infinite number of uniform valuations. By Lemma 32, there is a
node in KM+(S) such that its label is greater than or equal to m.

(2) ∆ (1): Reciprocally,
Let us suppose that there exists a node n in KM+(S) such that its label is greater than
or equal to m. By Lemma 31, for any valuation v, m is coverable in KM(v(S)). The
correctness of Karp and Miller Algorithm provides that m is coverable in any instance of
S. So m is universally coverable in S.

Thus we have proved that the two properties are equivalent.

Proof of Lemma 32. We prove by induction that for all n œ N this implication is true.

Base case: n=0

Let S be a classic Petri net i.e. S has no parametric transition. Supposing that m is coverable
in an infinite number of instances of S means m is coverable in S itself. Let us build the KM+

tree of S. Since there is no parametric transition, our algorithm builds the classic coverability
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v1

v2

v3

v4

v5

...
vi

...
vn

(1) : apply f

V is infinite

wv1

wv3

... wvi

...wvn

´

W is infinite

wv3

...wvi

...wvn

W Õ
n+1 is infinite

v3

...
vi

...
vn

(3) : apply g

Vn+1 is infinite

(2) : same "slowest" t œ Θ

Figure 5.7 – The different sets of the proof

tree of Karp and Miller. Therefore, by the correctness of Karp and Miller algorithm, a node of
the tree will be labelled by a marking covering m. Moreover, since no parametric transition is
involved, the second point of the property clearly holds. So the implication holds for n = 0.

Inductive step: given n œ N, we assume the implication holds at this rank.

Let us consider S a preT-PPN such that |Θ| Æ n + 1. Let m be U -cov in S. We define the
set of uniform valuations V such that for any v œ V , m is coverable in v(S). By Lemma 19 V

is infinite.
If |Θ| Æ n, then we can apply the induction assumption and conclude that the implication holds.
Otherwise, |Θ| = n+1. For each valuation v we consider an application f : NP ‘æ T ú. Application
f associates to each valuation a unique transitions sequence wv such that m0

wvæv mv where
mv Ø m and |Suppar(wv)|, the number of distinct parametric transitions used in wv, is minimal.
In the sequel, we assimilate wv to f(v). Figure 5.7, presents a summary of the different sets used
in this proof. We are currently studying step (1). We consider W the union of those sequences:

W =
€

vœV

wv

We have to consider two cases: either W is finite or infinite.

First case: W is finite. We will exhibit a sequence which works for each valuation. Since
each sequence wv of W is finite, it can be interpreted as a finite list of markings of v(S), written
RSv(wv) i.e. the markings reached along the firing of wv in v(S). For each wv we can therefore
build a maximal marking, mmax,wv of which components are equal to the maximal components
of RSv(wv): given p, mmax,wv (p) = max

mœRS(wv)
(m(p)). We can then define a maximal value a

among the components of those markings : a = 1 + max
p,wv

(mmax,wv (p)). It represents a quantity

of tokens that any marking of RSv(wv) for any wv of W cannot store in any place. We define
a family of |P | markings mi = a.”i,j for 1 Æ i, j Æ |P | where ”i,j is the delta of Kronecker 17.
None of those markings is coverable by a marking of any RSv(wv). Nevertheless, V is infinite,
so we can consider a valuation vú Ø a in V . We know by construction that wvú allows to cover
m in vú(S) but this run cannot use any parametric transitions, since the mi’s are not coverable
by construction of vú, so Suppar(wvú) = ÿ. Therefore, wvú is firable in any instance of S. And in
particular, if we consider S Õ = (P, T\Θ, Pre, Post), m remains coverable. We found a PPN (in
fact a classic PN) with less than n parametric transitions where m is universally coverable. We
can therefore apply the induction assumption and conclude that the implication holds in this
case.

17. By definition ”i,j = 1 if i = j and 0 otherwise.
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mÕÕ
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t⁄n+1
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yv2

yvi
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prefix use at least t⁄1 to t⁄n
suffix may use t⁄1 to t⁄n+1

Figure 5.8 – wvl
covering m for the valuations of Vn+1,n+1

Second case: W is infinite. We will exhibit a pattern which works for an infinity of
valuations. First, we isolate a set of runs which use the same parametric transitions. By the
previous case, we can claim that there is no wv with 0 parametric transition otherwise W would
be reduced to this run (since wv are chosen so that |Suppar(wv)| is minimal). We can assign to
each wv the cardinal of its parametric support within 1 and n+1. Using the infinite extension
of the pigeonhole principle, there is a pigeonhole with an infinite number of representative i.e.

÷ j, 1 Æ j Æ n + 1 such that Wj =
€

vœV s.t.|Suppar(wv)|=j

wv is infinite.

We now consider the amount j of different parametric transitions involved. We study two
subcases: either j Æ n or j = n + 1.

If j Æ n, we can remove the unused parametric transition from Θ. We construct a parametric
PPN which meets the induction assumption and the implication is true.

Let us consider j = n + 1 i.e. there is an infinity of runs, corresponding to an infinity of
uniform valuations using necessarily every parametric transitions to cover m.
We can now assign to each run of Wn+1 the label of the parametric transition of which the
first occurrence is the last one among the other parametric transitions involved along the runs.
By the pigeonhole we find a set W Õ

n+1 which is infinite. The sequences of W Õ
n+1 have the same

parametric support and the last first occurrence of a parametric transition targets the same
parametric transition. Step (2) of Figure 5.7 illustrates the sets. We rename this parametric
transition t⁄n+1 . We rename the other parametric transitions of Θ as t⁄h

where 1 Æ h Æ n . For
any run of W Õ

n+1, there is a uniform valuation associated. We define the set Vn+1 = g(W Õ
n+1)

where
g : W æ V

w ‘æ v such that f(v) = w

and for all vÕ such that f(vÕ) = w, v Æ vÕ

In fact, we take the lowest valuation for each run as in Step (3) of Figure 5.7. Since W Õ
n+1

is infinite, Vn+1 is infinite. We rename the elements of Vn+1 as vl. We can impose for l < k,
vl < vk since we have a total order on distinct elements and the vl are distinct. Each run wvl

uses the n + 1 parametric transitions. Moreover, t⁄n+1 is the last parametric transition that is
used for the first time.

We consider the set of places Π(t⁄n+1) = {p œ P | Pre(p, t⁄n+1) œ P}. So for any p œ Π(t⁄n+1),
v1(Pre(p, t⁄n+1)) < v2(Pre(p, t⁄n+1)) < ... For each wvl

we define the prefix xvl
and the suffix yvl

such that wvi
= xvl

t⁄n+1yvl
and t⁄n+1 is not involved in xvl

. We define mvl
such that m0

xvlævl
mvl

as depicted in Figure 5.8. Moreover mvl

tλn+1
æ vl

mÕ
vl

and mÕ
vl

yvlævl
mÕÕ

vl
.

Let M =
€

vlœVn+1

mvl
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Λ(÷0) Λ(÷ú)
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in v2(S)
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yv1

yv2
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yvn

t⁄n+1

path in KM+ uses at least
t⁄1 to t⁄n

suffix may use
t⁄1 to t⁄n+1

Figure 5.9 – Construction of the node ÷ú

If M is finite, each component of each marking is bounded by a value b where b = 1 +
max

mœM , pœP
m(p). Since Vn+1 is infinite, we can find vb œ Vn+1 such that vb Ø b. For this

valuation vb, t⁄n+1 is not firable in vb(S) as each component of the markings of M is bounded
by b. So there is a contradiction. Thus M is infinite.

Since we have a wqo on markings, by Lemma 1, we can extract an infinite growing sub
sequence µ1 Æ µ2 Æ ... Æ µk Æ ... from M where each µk is in fact a mvl

. From this sequence,
we extract a strictly increasing subsequence: µi1 < µi2 < ... < µik

< ... Such an infinite
subsequence exists, otherwise, it would imply that infinitely many µk are equal which would
mean that, at a certain point, (µk)kœN is uniform, equal to µú. Since the µk correspond to
different (and thus strictly increasing) valuations, and by definition, µk must satisfy the firing
of t⁄n+1 , µú should satisfy the firing of t⁄n+1 for an infinity of increasing valuations, which is
impossible.

We now extract from this sequence a subsequence such that the strictly increasing µ

correspond to ordered uniform valuations. Let us consider µÕ
i1

= µi1 (we denote as vl1 the
valuation used for the run leading to µÕ

i1
), there is an infinity of µik

greater. Among this infinite
set, we look for µÕ

i2
of which the corresponding valuation is greater than vl1 . Such a valuation

exists otherwise we would construct an infinite subset of Vn+1 which would be bounded by vl1 .
Then we start back with the µik

chosen. We end up with a sequence µÕ
i1

< µÕ
i2

< ... < µÕ
ik

< ...

corresponding to vl1 < vl2 < ... < vlk < .... Those valuations define a new infinite set V ú.
Moreover, for each p œ Π(t⁄n+1), µÕ

i1
(p) < µi2(p) < ... < µÕ

ik
(p) < .... Indeed, let us imagine that

µÕ
ik

(p) for p œ Π(t⁄n+1) is bounded. At a given rank r, it would reach a uniform value. Never-
theless, it corresponds to a uniform valuation vlú . So the corresponding sequence of valuations
is bounded on vlú(p) which is not possible since the vli are strictly increasing.

The marking µÕ
i1

is the first element, so it is coverable in an infinity of v-instance where
v œ V ú. Moreover by construction the prefix of the corresponding wv uses the same n parametric
transitions. By the induction assumption, there is a node ÷1 in KM+(S) such that Λ(÷1) Ø µÕ

i1

and a path to this node which uses those n parametric transitions.
This also holds for each µÕ

ik
. By Theorem 30, KM+(S) is finite, so one node covers infinitely

many µÕ
ik

. Moreover, since the µÕ
ik

are growing on the component corresponding to the parametric
input of t⁄n+1 , the corresponding node present an Ê on those components. Now, in KM+

algorithm, we can fire t⁄n+1 . It does not affect the Ê as we see at line 8 of the Algorithm 3. The
node obtained is written ÷ú. This construction is shown in Figure 5.9.

By construction Λ(÷ú) covers all the mÕ
v with v œ V ú and the path in the KM+ tree uses

every parametric transition, then Λ(÷ú) has Ê’s on each place which is an input of a parametric
arc. More formally, for each p, if there exists t œ Θ s.t. Pre(p, t) œ P, then ÷ú(p) = Ê. Therefore,
from ÷ú any parametric transition would be firable in KM+ (as long as the non-parametric part
of the firing condition is satisfied).

Let us consider a suffix of a wv selected i.e. yvl1
for instance. By construction, Λ(÷ú) Ø mÕ

vl1
.
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So Λ(÷ú) allows to fire yvl1
in the algorithm. We can invoke the correctness of Karp and

Miller algorithm to conclude. Since we start from a marking covering mÕ
vl1

and fire a sequence
covering m, it leads to construct a node of which label covers m. Moreover, the path in the
tree constructed by KM+ uses every parametric transition by construction. So the implication
holds at rank n + 1.

In every sub-case considered, we conclude that the implication holds, therefore considering
the implication true at rank n, we proved that the implication holds at rank n + 1.

Conclusion:
By induction we have proved that for any value of n œ N the implication is true, so Lemma 32
is true.

5.9 Consequences on P-PPNs and DistinctT-PPNs

From the results underlined for postT-PPNs, using the translation provided in Section 5.2
we can directly deduce the following corollary:

Corollary 34
E -coverability in P-PPN is ExpSpace-complete.
U -coverability in P-PPN is ExpSpace-complete.

The previous study can also be used for distinctT-PPNs. Parameters can be partitioned
between PP re and PP ost, respectively sets of parameters involved on inputs and outputs which
are disjoint.

Corollary 35
E -coverability in distinctT-PPN is ExpSpace-complete.
U -coverability in distinctT-PPN is ExpSpace-complete.

Proof. We prove the two items:

Given a distinctT-PPN S and a set of parameter P, we consider the partial valuation 0̨|PP re
,

which maps every parameter of PP re to 0. We therefore get a postT-PPN, Spost = 0̨|PP re
(S),

on which the problem is decidable. Moreover, the postT-PPN Spost is the one with the
greatest number of behaviours for coverability as claimed in Lemma 15. Considering that
point, if we cannot find any instance of Spost satisfying the property, we cannot find any
instance of the original distinctT-PPN S satisfying it either since any marking coverable in
the postT-PPN where the “input parameters” values are greater than 0̨ would be coverable
in Spost where the “input parameters” were valuated to 0 by monotonicity. Reciprocally,
if we find an instance that works, then the corresponding valuation completed with 0 on
PP re is a witness valuation for coverability. Thus, E -coverability for the distinctT-PPN is
decidable.

Moreover, it can be done by forcing every parameters on input arcs to zero (linear in the
size of the PPN) and solving E -coverability on the corresponding postT-PPN. Thus, this
problem is in ExpSpace. As previously, from Remark 4.2.1 we deduce the ExpSpace-
hardness. This problem is thus ExpSpace-complete.

The proof is very similar to the previous one. We consider the partial valuation 0̨|PP ost
,

which maps every parameter of PP ost to 0. The preT-PPN built is the one with the smallest
number of behaviours for coverability by adapting the result of Lemma 15. Moreover, this
problem is known decidable on preT-PPN. Considering that point, given a marking m :

if the answer on this preT-PPN is false, then m is not universally coverable on this
distinctT-PPN.
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else if the answer is yes, adapting Lemma 15 claims that every instances will a be-
haviour covering m.

Thus U -coverability for the distinctT-PPN is decidable. Moreover, it can be done by
forcing every parameters on output arcs to zero (linear in the size of the PPN) and solving
U -coverability on the corresponding preT-PPN. Thus, this problem is in ExpSpace. As
previously, from Remark 4.2.1 we deduce the ExpSpace-hardness. This problem is thus
ExpSpace-complete.

We have restricted the use of discrete parameters depending on whether we parameterise
input arcs or output arcs. The study of the decidability of the parametric coverability leads to
the results summed up in Table 5.1 where the complexities of the corresponding problems are
recalled. We proved that all these decision problems are ExpSpace-complete, and even provide
the ExpSpace-completeness of the universal simultaneous unboundedness for the class of preT-
PPNs. Moreover, putting the two types of parameters together while forbidding any parameter
to be used as both an input and output weight preserves the decidability of the emptiness and
the universality of the solution set. In the next chapter, we turn our interest towards the problem
of coverability synthesis.

U -Cov E -Cov
PPN Undecidable (Theorem 12) Undecidable (Theorem 11)

T-PPN Undecidable (Th. 12 & Lem. 13) Undecidable (Th. 11 & Lem. 13)
preT-PPN ExpSpace-c (Corollary 25) ExpSpace-c (Corollary 16)
postT-PPN ExpSpace-c (Corollary 16) ExpSpace-c (Theorem 18)

P-PPN ExpSpace-c (Corollary 34) ExpSpace-c (Corollary 34)
distinctT-PPN ExpSpace-c (Corollary 35) ExpSpace-c (Corollary 35)

Table 5.1 – Global summary for the decidability of parametric coverability (with complexities)





CHAPTER 6

Solving the Synthesis

“Success is a science; if you have the conditions,
you get the result.”

— Oscar Wilde
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In this chapter, we address the coverability synthesis problem. When we restrict the use of
parameters to input arcs only, or output arcs only, we give some structure to the solution set
of the coverability synthesis problem: we prove that it is then downward-closed wrt. the usual
order on integer vectors for preT-PPNs, and upward-closed for postT-PPNs. We show how a
procedure by Valk and Jantzen from [Valk and Jantzen, 1985] can be used for computing a finite
minimal basis of the solution set for postT-PPNs or its complement for preT-PPNs. This requires
deciding universal coverability in preT-PPNs and existential coverability in postT-PPNs. We
also provide an algorithm computing directly a minimal basis of the solution set for preT-PPNs.
Finally, we prove for distinctT-PPNs that the solution set cannot be represented using any
formalism for which the emptiness of the intersection with equality constraints is decidable.

6.1 Special Structure of the Coverability Synthesis Set for PreT-PPNs

and PostT-PPNs

Note that the monotonicity properties presented in Lemma 15 directly provide a notable
structure for the solution set of the synthesis for those two subclasses presented in Corollary 36.
When we restrict the use of parameters to input arcs, we ensure that any marking coverable in
a v-instance remains coverable for any vÕ-instance such that vÕ Æ v. Intuitively, decreasing the
valuation leads to a more permissive firing condition. Therefore, if a marking is coverable for a
given valuation, it remains coverable for any lower valuation. Symmetrically, when we restrict

93
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Figure 6.1 – A preT-PPN S1 where P = {a, b} with two parametric arcs

the use of parameters to output arcs, we ensure that any marking coverable in a v-instance,
remains coverable for any vÕ-instance such that v Æ vÕ. Intuitively, firing the same parametric
transition while increasing the valuation leads to greater (and thus more permissive) markings.
Therefore, if a marking is coverable for a given valuation, it remains coverable for any greater
valuation. We recall that CV(S, m,) denotes the set of valuations that are solutions to the
coverability synthesis problem of the marking m in the PPN S.

This can be formalised through the following corollary of Lemma 15:

Corollary 36
Given Spre, Spost a marked preT-PPN and a marked postT-PPN respectively and
goal markings m and s for each of those nets,

CV(Spre, m) is downward closed.

CV(Spost, s) is upward closed.

Given a preT-PPN S and a marking m, one way to compute CV(S, m) is thus to find its
finite minimal basis. A naive enumeration is not possible however since this set may be infinite.
In particular, the strategy that consists in testing for universality and, in the negative case,
enumerating until a witness of non coverability is found would in general provide only a subset
of CV(S, m). In fact, the main difficulty here resides in the fact that the elements of the minimal
basis have to be found among the complete lattice induced by Æ on NP

Ê. We now suggest to use
a well known procedure by Valk and Jantzen [Valk and Jantzen, 1985] which aims to compute
a finite basis of a given upward closed set.

6.2 Reduction of Valk and Jantzen Condition for PreT-PPNs and PostT-

PPNs

In order to represent a finite basis of a downward closed set of valuations, we need
to extend valuations to NÊ. Given a preT-PPN and an extended valuation v, we ex-

tend the predicate cov(v(S), m) to extended valuations as follows: cov(v(S), m)
def
… ’vÕ œ

NÊ(v), cov(vÕ(v|N(v)(S)), m).
Figure 6.1 presents a preT-PPN with two parameters a and b. If we consider the valuation

v defined by v(a) = 1 and v(b) = Ê, cov(v(S), m) is therefore equivalent to the universal
coverability of m in v|{a}(S) where v|{a} is a valuation defined by v(a) = 1, that is to say
“can we cover m in 1̨|{a}(S) for any value of b ?". Note that this extension of cov(v(S), m) is
consistent with the classic behaviour: if N(v) = P, then cov(v(S), m) asks the coverability of m

in the marked Petri Net v(S).
We recall that in postT-PPNs, universal coverability is true iff cov(̨0(S), m). In a similar
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manner to preT-PPN, we extend the notation of cov, by: given a postT-PPN and an ex-
tended valuation v, we extend the predicate cov(v(S), m) to extended valuations as follows:

¬cov(v(S), m)
def
… ’vÕ œ NÊ(v), ¬cov(vÕ(v|N(v)(S)), m).

This definition is similar to the definition extended for preT-PPNs where coverability has
been replaced by non-coverability. Since universal coverability is decidable for preT-PPNs (see
Theorem 21) and existential coverability is decidable for postT-PPNs (see Theorem 18), it is
possible to extend the function cov defined in Section 3.2 to the context of extended valuations
of NP

Ê:

Corollary 37
Given a preT-PPN or a postT-PPN S, a marking m and an extended valuation
v œ NP

Ê, cov(v(S), m) is decidable.

With those extended notations, we now prove that it is possible to compute a finite basis
of CV(S, m) where S is a preT-PPN or a postT-PPN and m a goal marking. To this end, we
suggest to use an algorithm by Valk and Jantzen [Valk and Jantzen, 1985] to compute a finite
representation of those sets. Nevertheless, to ensure that this algorithm is suitable to our context
and that those bases are effectively computable, we need to clarify two points:

First, this algorithm is used to compute a basis of an upward closed set U ™ Nk.

Second, the necessary and sufficient condition recalled in Lemma 3 must be satisfied: we
must ensure that for every element v œ Nk

Ê, it is possible to decide whether the intersection
between ¿v and U is empty.

To address the first point, by Corollary 36 notice that in the case of postT-PPNs, the set
CV(S, m) is upward closed, and the procedure could be applied directly on it. In the case of
preT-PPNs, since CV(S, m) is downward closed, we need to consider its complement ¬CV(S, m),
which is thus upward closed.We also recalled in Section 2.1.3 that, given a finite basis of an
upward closed set, it is possible to compute a finite basis of its complement. It is therefore
equivalent to being able to compute a finite basis of the set of valuations for which it is not
possible to cover m or to being able to compute a finite basis of the set of valuations for which
it is possible to cover m. Thus, a finite basis of ¬CV(S, m) is effectively computable iff a
finite basis of CV(S, m) is computable. Considering this reasoning, we address the second point
through the following lemma:

Lemma 38
The Valk and Jantzen condition can be reduced to the following criteria:

we can compute a finite representation of the coverability synthesis set in
preT-PPNs iff universal coverability is decidable in preT-PPNs

we can compute a finite representation of the coverability synthesis set in
postT-PPNs iff existential coverability is decidable in postT-PPNs

We prove the two items by proving the two implications for both items.

Proof. We first consider the case of preT-PPNs. Let us denote the proposition we can compute
a finite representation of the coverability synthesis set in preT-PPNs by (1) and the proposition
universal coverability is decidable in preT-PPNs by (2).

(1) ∆ (2): Let us consider a marked preT-PPN S and a marking m. We assume a finite
basis of CV(S, m) is effectively computable. Thus, we can get a representation of its complement,
¬CV(S, m) using a procedure similar to the one of Example 5 in [Goubault-Larrecq, 2009] as we
already explained in Section 2.1.3. Since ¬CV(S, m) is upward closed, as the complement of the
downward closed set CV(S, m) from Lemma 36, we can invoke the result of Valk and Jantzen
from [Valk and Jantzen, 1985] which implies that for all element v œ Nk

Ê, it is decidable to answer
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whether ¿v fl ¬CV(S, m) ”= ÿ. This is equivalent to decide whether ¿v flNk ™ CV(S, m). Let us
consider in particular v = Ę̂. Then ¿v fl Nk = Nk.

This exactly means that universal coverability of m in S is decidable.
(2) ∆ (1): We suppose universal coverability in preT-PPNs is decidable. Let us consider

a preT-PPN S and a marking m. Then, for any valuation v œ Nk
Ê, coverability of m in v(S)

is decidable. Indeed, if v œ Nk it is trivially decidable, otherwise, it means that universal
coverability of m in v|N(v)(S) is decidable, which is true by assumption. Thus, for any v œ Nk

Ê,
it is decidable to answer whether cov(v(S), m) is true, which directly gives whether ¿v fl Nk ™
CV(S, m) by Lemma 15. This is equivalent to answering for all element v œ Nk

Ê whether ¿
v fl ¬CV(S, m) ”= ÿ which is exactly the condition given by Lemma 3 to use Valk and Jantzen
algorithm to compute a finite basis of ¬CV(S, m). Now, as recalled previously, we can compute
a finite basis of its complement ¬(¬CV(S, m)), that is to say CV(S, m).

We now consider the case of postT-PPNs. Let us denote the proposition we can compute a
finite representation of the coverability synthesis set in postT-PPNs by (3) and the proposition
existential coverability is decidable in postT-PPNs by (4).

(3) ∆ (4): Let us consider a marked postT-PPN S and a marking m. Set CV(S, m) being
upward closed, we can invoke Valk and Jantzen’s result and deduce that for all v œ Nk

Ê, it is
decidable to answer whether ¿v fl Nk ™ ¬CV(S, m). Let us now notice that non coverability is
monotonic in postT-PPNs in the sense that if m is not coverable in v(S), then it is not coverable
in any vÕ(S) for all valuation vÕ Æ v. This is indeed exactly the contrapositive of Lemma 15. Thus
¿v flNk ™ ¬CV(S, m) is equivalent to ¬cov(v(S), m). In particular, ¬cov(Ę̂(S), m) is decidable,
that is to say universal non coverability is decidable in postT-PPNs. We can now conclude by
remarking that universal non coverability is equivalent to non existential coverability.

(4) ∆ (3): We suppose existential coverability in postT-PPNs is decidable. Since universal
non coverability is equivalent to non existential coverability, we can now directly adapt the proof
of the first item to get this result.

Corollary 39 : Computability of the Solution Set of the S-cov Problem

Given a marked preT-PPN S and a marking m, we can compute a finite
representation of CV(S, m).

Given a marked postT-PPN S and a marking m, we can compute a finite
representation of CV(S, m).

6.3 An Algorithm for a Direct Computation for PreT-PPNs

For the sake of completeness of this study, we now provide a procedure to compute directly
the (minimal) basis of the solution set for preT-PPN rather than computing its complement.
We suggest to synthesise such a basis by enumerating and testing exhaustively some valuations
satisfying some criterion of monotonicity in preT-PPNs. For instance, let us consider the case
where |P| = 2, we intuitively need to begin by asking whether it is possible to cover the marking
targeted for any valuation of the parameters. In the affirmative case, then the procedure can
terminate. Otherwise, we need to restart by asking if the marking is universally coverable when
we fix one of the parameter to 0. Let us focus on S1 from Figure 6.1. Universal coverability of
mgoal1 = (0, 0, 1, 0, 1) is not possible. Nevertheless, mgoal1 is universally coverable when a is set
to 0. We must now pay attention to the fact that, if we choose a value for b, we can then permit
a to be greater. Indeed, with b set to 1, it is possible to chose a = 5. We could first be tempted to
set b to 0 hoping to find the maximal possible value for a. In this example, setting b to 0 allows
to find a maximal value of 5 for a. To sum up, CV(S1, mgoal1) =¿ {(0, Ê), (1, 5), (3, 2), (5, 1)}.
Nevertheless, a difficulty rises from the net S2 of Figure 6.2. Indeed, in this case, if we fix b to 0,
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Figure 6.2 – A preT-PPN S2 where P = {a, b} with three parametric arcs

then a has no maximal value since any valuation of a will allow to cover mgoal2 = (0, 0, 1, 0, 1, 0).
In fact, CV(S2, mgoal2) =¿{(0, Ê), (1, 5), (Ê, 2)}.

6.3.1 Preliminaries

We introduce a few notations that will shorten unions of partial valuations. Given a preT-
PPN S, an extended valuation v œ NΛ

Ê where Λ ™ P and a subset Ω of P, we define vΩ as the
extended valuation where for all ⁄ œ Ω, vΩ(⁄) = Ê and for all ⁄Õ œ Λ\Ω, vΩ(⁄Õ) = v(⁄Õ). Given
⁄ œ P and k œ N, we also define v⁄=k as the extended valuation where v⁄=k(⁄) = k and for all
µ ”= ⁄, v⁄=k(µ) = v(µ). We will also combine both notations, provided that ⁄ ”œ Ω. All those
notations are also valid for valuations v such that Ê(v) = ÿ.

We first extend Lemma 19 based on the extended definition of coverability from Corollary 37.

Lemma 40
Given a marked preT-PPN S, a marking m of NP and an extended valuation
v œ NP

Ê, the following three propositions are equivalent:

1. cov(v(S), m)

2. ’⁄ œ Ê(v), {k œ N | cov(v⁄=k(S), m)} is infinite.

3. ÷⁄ œ Ê(v), {k œ N | cov(v⁄=k(S), m)} is infinite.

Proof. First, let us notice that (1) ∆ (2) ∆ (3) are immediate, by definition of cov(v(S), m).
We now prove that (3) ∆ (1). Notice that we can rewrite v⁄=k as k̨|{⁄} fi Ê|Ê(v)\{⁄} fi v|N(v).
Let us consider S Õ = v|N(v)(S). It is a marked preT-PPN. Moreover, we know that there is an

infinity of k œ N such that cov(k̨|{⁄}fiÊ|Ê(v)\{⁄}(S Õ), m) is true. By the definition of the extension

of coverability to extended valuation, ’vÕ œ NÊ(v)\{⁄}, cov(vÕ(k̨|{⁄}(S Õ)), m) is true. Especially,

this is true for vÕ = k̨. Thus, we have found an infinite set of uniform valuations k̨ such that
cov(k̨(S Õ), m). Therefore, by Lemma 19, m is universally coverable in S Õ which concludes the
proof.

In the sequel, we abuse the term basis to designate a downward basis. We present in Fig-
ure 6.2 a preT-PPN S2, built to catch one of the difficulties of the coverability synthesis. In
this preT-PPN, m0 is equal to (3, 0, 0, 0, 0, 0). We consider a marking to cover mgoal2 equal to
(0, 0, 1, 0, 1, 0).

The exploration is based on the fact that there is no need to search for a bound of a. One
can remark that when we fix b to 0, and then progressively increase b, the maximal value found
for a decreases until it reaches a minimal value, 0 here, which is notably reached if we fix b to Ê.

Let us provide an example by focusing on parameter a. CV(S2, mgoal2) can be seen as the infi-
nite union for each possible value for a of each valuation va=k where v belongs to CV(k̨|{a}(S2), m)
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(v is thus a valuation of the parameter b only) formally:
t

kœN

t

vœCV(k̨|{a}(S2),m)
{va=k}. This

set might be infinite, but since each solution set CV(k̨|{a}(S2), mgoal2) is downward closed, we
can consider a finite basis to represent it. Let us enumerate those bases by instantiating the
parameter a, starting from 0: CV (̨0{a}(S2), mgoal2) is equal to ¿ {(Ê)}, CV (̨1{a}(S2), mgoal2) is

equal to ¿ {(5)} and CV(k̨{a}(S2), mgoal2) is equal to ¿ {(2)} for any k Ø 2. Thus, if we valuate
a to Ê we get that CV(Ę̂{a}(S2), mgoal2) is the set ¿{(2)}. Now, for each value k tested, we can
consider the minimal basis of the corresponding downward closed set and make the union of
the valuation of this basis and k̨|{a}. This manipulation is formalised in Definition 39 through
the notion of partial basis. For 0 we get ¿ {(0, Ê)}, for 1 we get ¿ {(1, 5)} and for any k Ø 2
we get ¿ {(k, 2)}. We see that this sequence converges toward ¿ {(Ê, 2)} and that there is no
need to seek for new valuations over k = 2. Considering a well chosen sequence, we will prove
in Lemma 41 that such a value necessarily exists.

Definition 39 : Partial Basis
Given S a preT-PPN involving a set of parameters P, v an extended valuation
(such that dom(v) ™ P), m a marking of NP fixed, we define the partial basis
CVFB(S, m, v) as the set of all the unions of v with all the partial valuations
of the minimal downward basis of CV(v(S), m). By definition of the minimal
downward basis, this is thus the subset of NP

Ê such that:

1. CVFB(S, m, v)|dom(v) = {v}

2. CVFB(S, m, v) ™ CV(S, m)

3. CV(v(S), m) ™¿CVFB(S, m, v)|P\dom(v)

4. ’x, y œ CVFB(S, m, v) x ”= y ∆ x ”Æ y and y ”Æ x

Remark 6.3.1. The projection of a downward closed set is still a downward closed set. Therefore,
this definition makes sense and describes a unique subset of NP

Ê.
With this definition, in particular, ¿ CVFB(S, m, ÿN) fl NP is trivially equal to CV(S, m). In

order to prove that the previous decomposition can be computed through a finite union of partial
bases, Lemma 41 is used to exhibit the least finite union that permits to compute the whole
basis by exhibiting a fix point of a specific sequence of downward closure of partial bases.

Lemma 41
Given S a preT-PPN involving a set of parameters P, v an extended valuation
m a marking of NP fixed, and a parameter ⁄ œ P \ dom(v), let

(Xn)nœN

I

X0 = CVFB(S, m, v⁄=Ê)
Xn+1 = Xn fi CVFB(S, m, v⁄=n)

Then the sequence (¿Xn)nœN is ultimately constant.

Since we change the value of the parameter ⁄, we search for the greatest value kmax such
that for every integer k greater than kmax, if m is coverable in v⁄=k, then m is also coverable in
v⁄=Ê.

Proof. We note Λ = dom(v) and we define ΛÕ as the union Λ fi {⁄}. Notice that dom(v⁄=Ê)
and dom(v⁄=n) are equal to ΛÕ. For greater readability, since S, m and ΛÕ are fixed, we denote
CVFB(S, m, v⁄=k) as B(k). With this notation X0 = B(Ê) and Xn+1 = Xn fi B(n). Thus, for any
n œ N, Xn ™ Xn+1. First, we show that the lemma follows from the following statement:

÷nú œ N, ’n Ø nú, ’xn œ B(n), ÷y œ B(Ê) such that y Ø xn (6.1)

Indeed, assuming (6.1), for every n Ø nú, ¿ B(n) ™¿ B(Ê). Moreover, since Xn+1 = Xn fi B(n),
¿ Xn+1 ™¿ B(Ê)fi ¿ Xn. Thus X0 = B(Ê) ™ Xn and ¿ B(Ê) ™¿ Xn. Thus ¿ Xn+1 ™¿ Xn.
Moreover, ¿Xn ™¿Xn+1. Therefore ¿Xn =¿Xn+1. Thus (¿Xn)nØnú is constant.
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Now we prove statement 6.1 ab absurdo.

Assume ’nú œ N, ÷n Ø nú, ÷xn œ B(n), such that ’y œ B(Ê), y ”Ø xn

Let us consider the infinite sequence of xn’s. By Lemma 1, we can extract a growing subsequence
(xni

) such that xn1 Æ xn2 Æ · · · Æ xni
Æ . . . with n1 < n2 < · · · < ni < . . . .

Moreover, by the definition of CVFB (see Definition 39, item (1) and (2)), we have
cov(xnj

(S), m) is true and xnj
(⁄) = nj . By Lemma 15 on monotonicity, given any ni Æ nj ,

cov(xnj ⁄=ni
(S), m) is true. Nevertheless, xni

Æ xnj
by construction and thus xni

Æ xnj ⁄=ni

Thus, invoking the definition of CVFB, item (4), xni
= xnj |⁄=ni

. Further, since xni
(⁄) = ni and

xni |Λ = v, (xni |P\ΛÕ)iœN is in fact constant equal to some value e. So every xni
is equal to efiv⁄=ni

.
We can thus deduce that ’i œ N, cov(e fi v⁄=ni

(S), m) is true. Thus, by applying Lemma 40,
cov(e fi v⁄=Ê(S), m) is true. Therefore by Definition of CVFB, item (3), ÷y œ B(Ê) such that
y|P \ΛÕ Ø e. Moreover, since y œ B(Ê), y|ΛÕ = v⁄=Ê. Therefore, y Ø e fi v⁄=Ê Ø e fi v⁄=ni

= xni
.

This contradicts the hypothesis. Thus Equation 6.1 is proved.

6.3.2 Procedure

Given a set of vectors X ™ Nn
Ê, we define max (X) as the minimal basis of ¿ X. Based on

those notations, we present, in Algorithm 4, a recursive procedure synthesisDB that computes
the minimal basis of CV(S, m). Its inputs are a marked preT-PPN S, a marking of m œ NP , an
extended valuation v such that dom(v) ™ P. Its output is a set of extended valuations.

Algorithm 4 Coverability Synthesis Algorithm for PreT-PPNs, synthesisDB

1: Require: A preT-PPN S = ((P, T, Pre, Post,P), m0), a goal marking m, a set of parameters
Λ, and an extended valuation v

2: Return: A subset of NP
Ê

3: procedure
4: if dom(v) = P then
5: if cov(v(S), m) then
6: return {v}
7: else
8: return ÿ

9: else choose ⁄ œ P\dom(v)

10: let

I

X0 = synthesisDB(S, m, v fi Ę̂|{⁄})
Xn+1 = Xn fi

!

synthesisDB(S, m, v fi n̨|{⁄})
"

11: nú Ω min{n œ N such that max(Xn) = max(Xn+1)}
12: return max(Xnú)

In the following subsections, we will prove that Theorem 42 holds:

Theorem 42
Given S a preT-PPN involving a set of parameters P, m a mark-
ing of NP fixed, synthesisDB(S, m, ÿN) terminates and, upon termination,
synthesisDB(S, m, ÿN) returns the minimal downward basis of CV(S, m).

6.3.3 Completeness and Soundness

We first prove that this algorithm is complete and sound through the following theorem:



100 CHAPTER 6. SOLVING THE SYNTHESIS

Theorem 43
Given S a preT-PPN involving a set of parameters P, v an extended valuation,
m a marking of NP fixed,

synthesisDB(S, m, v) = CVFB(S, m, v)

Proof. We note Λ = dom(v). We prove that synthesisDB(S, m, v) satisfies the four items of
Definition 39. Then by unicity of CVFB(S, m, v) (see Remark 6.3.1), we can deduce the equality.
We proceed by induction on |P\Λ|:

base case: we consider |P\Λ| = 0, then Λ = P. Two possibilities arise from the algorithm:
it returns either {v} or ÿ. In both case (1) (2) (3) and (4) are trivially true.

inductive step: given n œ N, n < |P| we assume that for any Λ, such that |P\Λ| = n the
proposition holds. Let us consider Λ such that |P\Λ| = n + 1. Given ⁄ œ P\Λ, we define
ΛÕ as Λ fi {⁄}. Thus, for every vÕ œ NΛÕ

Ê synthesisDB(S, m, vÕ) = CVFB(S, m, vÕ) by the
induction hypothesis. More precisely, if we consider the sequence defined in the algorithm,
each Xi is thus the union CVFB(S, m, v⁄=Ê) fi

!
t

0ÆkÆi≠1 CVFB(S, m, v⁄=k)
"

. Moreover, we
can invoke Lemma 41 to justify that the fix point nú exists and, by its proof, that for each
k > nú, ¿ CVFB(S, m, v⁄=k) ™¿ CVFB(S, m, v⁄=Ê) ™¿ Xnú . The algorithm then returns the
maximum elements of Xnú . First, let us consider Xnú . It is a finite union of sets satisfying
(1) (2) (3) and (4). Therefore, (1) and (2) remain true on Xnú . Then taking the max

of Xnú will not add new elements so (1) and (2) still hold for the result returned by the
procedure. We now focus on proposition (3) of the definition. By induction hypothesis, (3)
provides that ’b œ CV(S, m), such that b|Λ = v, ÷e œ CVFB(S, m, b|ΛÕ) such that e Ø b. Let
us consider a pair (b, e) defined by the previous statement. Two cases arise: if b(⁄) Æ nú,
we have that ¿ CVFB(S, m, b|ΛÕ) is directly included in ¿ Xnú , and as we consider only the
maximal elements, we will be able to choose some ‘ such that ‘ Ø e Ø b. Otherwise,
b(⁄) > nú then, by the proof of Lemma 41, ¿ CVFB(S, m, v⁄=b(⁄)) ™¿ Xnú . And as we
consider the maximal elements of Xnú , we are still able to choose ‘ satisfying ‘ Ø e Ø b.
Thus, ’b œ CV(S, m), such that b|Λ = v, ÷‘ œ max(Xnú) = synthesisDB(S, m, b|Λ) such
that ‘ Ø b. This means exactly that (3) holds for this set. Let us conclude by noting
that max just affects the minimality of the basis: by (2) and (3) we know that Xnú |P\Λ

is a basis of CV(v(S), m). Thus, max(Xnú)P\Λ
is the minimal basis of CV(v(S), m) and

max(Xnú) is just its extension with v on Λ. Thus, (4) holds, by construction.

By induction we proved (1) (2) (3) and (4). We can conclude by unicity of the minimal basis
and construction of CVFB that synthesisDB(S, m, v) is equal to CVFB(S, m, v).

6.3.4 Termination

Theorem 44
Given S a preT-PPN involving a set of parameters P, v an extended valuation,
m a marking of NP fixed, the procedure synthesisDB(S, m, v) terminates.

Proof. We note Λ = dom(v). We proceed by induction on |P\Λ|. Notice first that this algorithm,
when it terminates, returns a finite set.

base case: we consider ⁄ = P, then |P\Λ| = 0. Two possibilities arise from the algorithm:
it returns either {v} or ÿ. In both case it terminates.

inductive step: given n œ N, we assume that for any Λ, such that |P\Λ| = n the proposition
holds. Let us consider Λ such that |P\Λ| = n + 1. Given ⁄ œ P\Λ, we define ΛÕ as Λ fi {⁄}.
By induction hypothesis, for every vÕ, we know that synthesisDB(S, m, vÕ) terminates, and
as stated in Theorem 43, synthesisDB(S, m, vÕ) = CVFB(S, m, vÕ). Thus, by application
of Lemma 41 there exists nú such that (¿ Xn)nØnú is constant. Thus, (max(Xn))nØnú
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is constant too. Moreover, Xnú is computable as a finite union of finite sets. It is then
possible to take the maximal elements of this set, as it is a finite set.

By induction, we proved the termination of Algorithm 4.

Note that we could symmetrically carry out a development dual to that for preT-PPNs, and
derive an algorithm which computes the minimal downward basis of the set of valuation allowing
non-coverability for postT-PPNs.

We proposed here a survey of the coverability synthesis for preT-PPNs and postT-PPNs
to compute directly some basis for the sets of valuation allowing to cover (or not to cover) a
marking. We now study what can be inferred from these results to the class of distinctT-PPNs.

6.4 Limit for DistinctT-PPNs

Let us finally consider the case of PPNs in which the set of parameters used as input weights,
and the set of parameters used as output weights, are disjoint. For this class, called distinctT-
PPNs, the emptiness and the universality of the solution set to the synthesis problem for cov-
erability are decidable (see Corollary 35). Interestingly, we can adapt an idea originally used
for L/U-automata in [JovanoviÊ et al., 2015] to prove that the structure of this set is however
much more complex than for preT-PPNs or postT-PPNs. In particular, one cannot represent
this set with a finite set, a finite union of downward and/or upward closed sets or a finite union
of convex polyhedra.

Lemma 45
If it can be computed, the solution of the synthesis of coverability in distinctT-
PPN cannot, in general, be represented using any formalism for which emptiness
of the intersection with equality constraints is decidable.

Proof. We adapt an idea originally used for L/U-automata in [JovanoviÊ et al., 2015]. We recall
that following Theorem 11, existential coverability on PPNs is undecidable. Let us suppose we
can compute the set of valuations under which a given marking of NP is coverable in a distinctT-
PPN. Then, let us consider a general PPN S. For each parameter ⁄ used on both input and
output arcs, we replace its occurrence on input arcs by ⁄i and on output arcs by ⁄o. We have
therefore constructed a distinctT-PPN. We then solve the synthesis problem and compute the
set of valuations Good. Let K be the set of equality constraints ⁄i = ⁄o for each parameter ⁄

that was replaced. Clearly deciding whether there exists a valuation v such that m is coverable
in v(S) is equivalent to deciding whether Good fl K is empty or not. Existential coverability
being undecidable on T-PPNs, we can conclude that such an operation cannot be computed.

We achieved here to prove a powerful result for two strict syntactical subclasses of parametric
Petri nets: interestingly, the set of all valid valuations of parameters, allowing to cover a given
marking, is effectively computable for parametric Petri nets where parameters are restricted to
only input arcs or only output arcs. Indeed, we have shown how the computability of the syn-
thesis set for coverability in preT-PPNs and postT-PPNs can be reduced to a decision problem,
respectively, universal coverability and existential coverability, which is then used in Valk and
Jantzen’s procedure. We also develop this study to provide a direct procedure to compute the
basis of the solution set to the coverability synthesis for preT-PPNs rather than computing first
a basis of its complement and then its basis. Putting the two types of parameters together
while forbidding any parameter to be used as both an input and output weight preserves the
decidability of the emptiness and universality of the solution set. However, we have proved that,
even with this restriction, the solution set can in general not be represented using any formalism
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for which emptiness of the intersection with equality constraints is decidable, which seems a big
restriction in practice.

Since we have now provided a survey of the parametric coverability problems, it would be
interesting to turn our attention toward establishing decision frontiers for the subclasses of PPNs.
This is the concern of the next chapter.



CHAPTER 7

Establishing Frontiers of Decidability Problems

“We can only see a short distance ahead, but we can
see plenty there that needs to be done.”

— Alan Turing
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In this Chapter, we emancipate from the problem of coverability and investigate decidability
frontiers for the subclasses of PPNs. The currently known results are summed up in Table 7.1.
We extended the results of decidability to simultaneous unboundedness thanks to the extensions
of the procedure of Karp and Miller on the one hand, and to the monotonicity on the other
hand.

Lemma 46
We have the following results:

Universal simultaneous unboundedness on postT-PPNs, P-PPNs and
distinctT-PPNs is ExpSpace-complete.

Existential simultaneous unboundedness on preT-PPNs is ExpSpace-
complete.

Existential simultaneous unboundedness on P-PPNs and distinctT-PPNs
is ExpSpace-hard.

In order to close some of the remaining open problems, we study reachability for those subclasses
and prove an interesting gap of modelling power between postT-PPNs and P-PPNs.

7.1 Undecidability of Parametric Reachability for PostT-PPNs

We first consider the class of postT-PPNs. We will prove that universal reachability and
existential reachability are both undecidable for this class by adapting the proofs by reduction
from 2-counter machine of Section 4.5.

Given a Minsky 2-counter machine M, we want to construct a postT-PPN that simulates it,
SM. Note that since we can still use parametric output arcs the main structure of the translation
established for generic PPNs in Figure 4.8 remain unchanged. Indeed, parametric input arcs
were only used for the zero test. Nevertheless, we consider here reachability properties. We will

103
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U -problem E -problem
Reach. S.Unbound Cov. Reach. S.Unbound Cov.

PPN U U U U U U
T-PPN U U U U U U

preT-PPN ? D D ? D D
postT-PPN ? D D ? D D

P-PPN ? D D ? D D
distinctT-PPN ? D D ? D D

Table 7.1 – Intermediate summary for the decidability results (D stands for decidable, U stands
for undecidable)

pi lock1 lock2
pj

pi,0 pi,1

¬C1

fi

tbegin

a

tint tend

tcount

tfill

◊

a

pk

C1

tnot zero

alternative when C1 contains zero token

Figure 7.1 – Modelling a zero test with a postT-PPN and reachability

now detail a construction, where only parametric output arcs are involved, and which allows
us to perform zero test fairly or unfairly. In the latter case, some tokens will be trapped in
some observer places, meaning the only way to find a run reaching markings with zero token in
those observer places is to find a run which performs only fair zero test. Let us first detail this
construction depicted in Figure 7.1.

We recall that Ci models the counter, and at all times we know the sum of tokens available
in Ci and ¬Ci is a. Thus, there is no token in Ci iff there are a tokens in ¬Ci. However, we
cannot directly test if there are exactly a tokens in ¬Ci since we cannot consume them with a
parametric input arc. The idea is therefore to create an observer that will count if there is at
least a tokens in ¬C1. This is done by first generating a tokens in a place pi,0. Then, tokens
from pi,0 and ¬C1 are jointly consumed and used to fill a place pi,1. This is possible as long
as lock1 remained marked. Then, the intermediate event tint occurs: lock2 becomes marked, so
that the tokens stored in pi,1 can be used to refill ¬C1 through the firing of tfill. At the end of
the process, ¬C1 has at most a tokens. So there is a nominal behaviour that correctly simulates
a zero test. We will now investigate for the other possible behaviours.

Here, what is important is to notice that it is possible to perform an unfair zero test by firing
the sequence from tbegin to tend even if there are less than a tokens in ¬C1 say k < a (thus a≠k > 0
tokens in C1). Nevertheless, this will be remembered since, with this construction, at least a≠k

tokens will then be trapped in pi,0. On the contrary, if the sequence tbegin(tcount)atint(tfill)atend

is performed, we say that the zero test is fair.

Remark 7.1.1. Let us formalise this intuition. We can observe and prove the following properties:
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if there are a tokens in ¬C1 and 1 token in pi, then the zero test can be performed fairly,
leading to a marking with a tokens in ¬C1 and 1 token in pj whereas other places (in
particular pi,0, pi,1, lock1, lock2 and pi) are empty. As stated above, this is trivial since it
is sufficient to fire tbegin(tcount)atint(tfill)atend to obtain the result (but it is also possible
to perform unfair zero tests).

if there are strictly less than a tokens, say k, in ¬C1 and 1 token in pi, regardless of the
number of tokens initially in pi,0. Then, no possible fair zero test can be done. It is only
possible to perform an unfair zero test to reach a marking with 1 token in pj but the
place pi,0 will have a strictly positive amount of tokens. This is immediate by observing
the construction: we can fire tbegin(tcount)htint(tfill)ltend with h Æ k < a. Since tbegin

generates a tokens in pi,0, at most h tokens can be consumed from pi,0 and some tokens
thus remains trapped in pi,0.

Finally each time tbegin is fired, then a tokens are generated in pi,0 and at most a tokens
can be consumed from pi,0. Therefore, if at some moment in the execution some tokens
remain in pi,0, then performing the same zero test again cannot help to empty pi,0 since it
will generate a new tokens in addition to those already present in pi,0.

We have now all the material necessary to prove the following theorem:

Theorem 47
E -reachability is undecidable in postT-PPNs.
As a consequence E -reachability is undecidable in distinctT-PPNs.

Proof. We will show that given a 2-counter machine M, (a) M halts (it reaches the halt state)
iff (b) there exists a valuation v such that v(SM) reaches a marking where phalt is marked and
place pi,0 of every zero test are empty. To fully determine this problem, we will in fact consider
the marking mhalt where only the place phalt contains one token. In order to make sure that
the other places can be emptied, we modify a bit the construction: given any place pi different
from phalt and from the pi,0’s, we add a transition ti such that Pre(pi, ti) = 1, Pre(phalt, ti) = 1,
Post(phalt, ti) = 1, and Pre and Post are equal to 0 otherwise. Those transitions allow to empty
the places of the net once phalt is reached. With this feature, (b) is equivalent to the existence
a valuation v such that v(SM) can reach mhalt.

(a) ∆ (b) First, let us assume that M halts. Since M halts, the execution of the machine
is finite. On this execution the two counters are bounded by clim1 and clim2. Let clim be
the maximum of those two values. Let v be the valuation such that v(a) = clim. Invoking
the previous explanation on this construction, SM clearly simulates M. Moreover, the
valuation v ensures that SM does not reach a deadlock state where perror is marked.
Therefore, when M reaches halt, SM will add 1 token in phalt. Moreover, since the run
was performed in the machine, for any zero test performed in the machine, the simulated
run can perform a fair test in the constructed net. Thus, there exists a run in SM that
does not leave tokens trapped in any pi,0’s. So, a marking where there is one token in
phalt and no tokens in pi,0’s is reachable, and it is then sufficient to fire the transitions ti

to empty the other places.

(b) ∆ (a) We proceed by contrapositive. Let us assume that M does not halt. We want
to show that there is no valuation a such that v(SM) adds a token in phalt. Let us consider
the following two distinct alternatives:

If the counters are bounded along the execution, either the value of a is less than
the maximum value of the counters and perror will be reached during some increment
resulting in a deadlock, or the value of a is big enough so that perror is never marked,
but, in this case, then, since the machine does not halt, it means that it does not reach
halt. So there is no instruction that leads to halt in M. The only possibility to reach
halt would thus be to cheat at least one zero test. Nevertheless, this would create
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some tokens in the corresponding pi,0 that could never be consumed as explained in
the previous remark. Thus, no marking with jointly one token in phalt and no tokens
in any pi,0 can be reached.

If at least one counter is not bounded, then for any given valuation v, we will reach
an instruction “increment ci”, where i is 1 or 2, and ci = v(a). Therefore, a token
will be added in perror leading to a deadlock. So SM will not reach a terminal state.

The undecidability of the halting problem on the 2-counter machine gives the undecidability of
the E -coverability problem.

Theorem 48
U -Reachability is undecidable in postT-PPNs.
As a consequence U -reachability is undecidable in distinctT-PPNs.

Proof. We proceed by reduction from the boundedness problem for a 2-counter machine. We
denote by merror the marking where merror(p) = 0 for each p œ P except merror(perror) = 1. We
use a construction similar to the one of the previous proof : this time for each place pi different
from perror and the pi,0’s, a transition ti can be used to empty pi iff perror is marked.

We will show that given a 2-counter machine M, (a) the counters are unbounded along the
instructions sequence of M (counters boundedness problem) iff (b) for each valuation v, v(SM)
can reach merror.

(a) ∆ (b) First, let us assume that on a given instructions sequence, one counter of M is
unbounded. By the second alternative considered in the proof for E -cov we proved that for
any valuation, a token will be added in perror. Moreover, since there is no need to perform
an unfair zero test, then, for all valuation, the run that mimics exactly the behaviour of
the two counter machine will add one token in perror, leaving every pi,0’s empty. The other
places can then be emptied making (b) true.

(b) ∆ (a) Reciprocally, by contrapositive, we want to show that if the counters are
bounded, there exists a valuation v such that v(SM) does not reach merror. This comes
directly from the previous proof. Since the counters are bounded along the instructions
sequence, we consider a valuation v such that v(a) = clim where clim is an upper bound of
the values of the counters. By construction, there is no fair possibilities to add a token in
perror, otherwise, it means that SM took an incrementation transition meaning that clim

is not an upper bound. Thus, the only possible way to mark perror would be to perform an
unfair zero test in order to consider a different execution of the machine. Nevertheless, this
implies that there is no possibility to empty the corresponding pi,0 making the marking
merror not reachable either.

The undecidability of the counter boundedness problem on the 2-counter machine gives the
undecidability of the U -reachability problem.

We now consider the parametric reachability problems in the context of preT-PPNs.

7.2 Undecidability of Parametric Reachability for PreT-PPNs

Considering preT-PPNs, it is not possible to generate a tokens anymore. Nevertheless,
we are authorised to consume a tokens through parametric input arcs. We first introduce a
construction, depicted in Figure 7.2, that allows to generate arbitrary many tokens in a place
and keep a memory and a control on the amount of tokens generated using only preT-PPNs.
This construction will be used to simulate the effect of a parametric output arc generating a

tokens. Indeed, on this construction, it is easy to see that for every marking m of this net,
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Figure 7.2 – Generating a tokens with a preT-PPN
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Figure 7.3 – Modelling a zero test with a preT-PPN

m(p) = a ◊ m(pquotient) + m(premainder). Therefore, for every marking m, we can assert that
m(p) = a iff m(pquotient) = 1 and m(premainder) = 0.

We will now provide an adaptation of the construction of previous section where each para-
metric output arc is replaced by the construction depicted in Figure 7.2. Then, we will elaborate
on the properties satisfied by the net built and provide proofs for the undecidability of existen-
tial and universal reachability in preT-PPNs using this construction. Let us first focus on the
construction of Figure 7.3 and explain how it simulates the zero test.

First let us study the initialisation process: to initialise the place ¬C1, with this construction,
it is now possible to generate an arbitrary number of tokens in ¬C1, nevertheless, ¬C1 = a iff
the two places corresponding to the remainder and the quotient contain respectively 0 and 1
token.

Concerning the zero test, the properties of previous remark can be adapted as follow:

Remark 7.2.1. The following properties hold:

if there are a tokens in ¬C1 and 1 token in pi, then the zero test can be performed
fairly, and it leads to a marking with a tokens in ¬C1 and 1 token in pj and fiquotient

whereas other places are empty. As stated above, this is trivial since it is sufficient to fire
tbegin(tbegin,feed)atbegin,stoptstored(tcount)atint(tfill)atend to obtain the result (but it is also
possible to perform unfair zero test).

if there are strictly less than a tokens in ¬C1 (say k) and 1 token in pi. Then it is possible



108 CHAPTER 7. ESTABLISHING FRONTIERS OF DECIDABILITY PROBLEMS

to perform an unfair zero test to reach a marking with 1 token in pj . Two behaviours can
be considered:

If a tokens or more are created in pi,0, the place pi,0 will have a strictly positive number
of tokens after the firing of tend. This is immediate by observing the construction: we
can fire tbegin(tbegin,feed)a+ltbegin,stoptstored(tcount)htint(tfill)jtend with j Æ h Æ k < a

and l Ø 0. Since we generate a + l tokens in pi,0, at most k < a tokens can be
consumed from pi,0 and some tokens thus remains trapped in pi,0.

If less than a tokens are generated in pi,0, say h < a. Then pi,0,remainder will also
contain h < a, thus pi,0,quotient cannot be marked. There is no other possibilities than
generating more tokens in pi,0,remainder and thus in pi,0 to continue the execution,
leading to the previous item.

Finally each time tbegin is fired, then at least a tokens are generated in pi,0 and at most
a tokens can be consumed from pi,0. Therefore, if at some moment in the execution some
tokens remain in pi,0, then performing the same zero test again cannot help to empty pi,0

since it will generate a new tokens in addition to those already present in pi,0.

Let us now suggest a scenario to provide a better understanding. Imagine we perform this
zero test twice, the first time is fair but more than a tokens are created, say a + k. Then k

tokens remains in pi,0 and the place pi,0,remainder after the firing of this test. Now, let us suppose
we perform an unfair zero test, that is to say less than a tokens are in ¬C1. We could generate
less than a ≠ k tokens in pi,0,remainder such that now pi,0 as a tokens. Nevertheless, we could
never consume more than h Æ k tokens, leaving tokens trapped in pi,0, since it is not possible
to consume from pi,0 more tokens than there are in ¬C1.

Theorem 49
E -Reachability is undecidable in preT-PPNs.

Proof. We will show that given a 2-counter machine M, (a) M halts (it reaches the halt state)
iff (b) there exists a valuation v such that v(SM) can reach the corresponding phalt place, such
that each place pi,0 of the zero test is empty, the remainder place of the initial construction is
empty and the quotient place of the initial construction has exactly one token. Moreover, we
can impose that the other places of the net are empty by adding transitions that read if phalt is
marked and empty those other places.

(a) ∆ (b) This is a direct adaptation from the corresponding proof for postT-PPNs and
the discussion above.

(b) ∆ (a) This can be adapted as well from the proof for postT-PPNs, in particular, if
the counters are bounded along the execution, as previously, the only way to mark phalt is
to cheat the zero test leading to tokens trapped in pi,0 by the discussion above. The other
case is similar to the one in postT-PPNs.

The undecidability of the halting problem on the 2-counter machine gives the undecidability
of the E -reachability problem.

Theorem 50
U-Reachability is undecidable in preT-PPNs.

Proof. We proceed by reduction from the boundedness problem of a 2-counter machine. We use
the same construction as in the previous proof. We denote merror the marking were merror(p) = 0
for each p œ P except merror(perror) = 1. We will show that given a 2-counter machine M,
(a) the counters are unbounded along the instructions sequence of M (counters boundedness
problem) iff (b) for each valuation v, v(SM) reaches the merror (1 token in perror and in the
quotient corresponding to the initialisation of the counter, 0 tokens in the places pi,0’s of the
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Figure 7.4 – From PPNs to PNs

zero test). To precise this marking we can ask every other place to be equal to zero and add
transitions that reads if perror is marked and allows to empty the other places.

(a) ∆ (b) This is the same reasoning as for postT-PPNs.

(b) ∆ (a) This is the same reasoning as for postT-PPNs since perror could be marked
only if a zero test is performed unfairly which would leave tokens trapped in a place pi,0

marking the goal marking unreachable.

The undecidability of the counters boundedness problem on the 2-counter machine gives the
undecidability of the U -reachability problem.

7.3 Decidability of Existential Reachability for P-PPNs

We proved in Section 5.2 of Chapter 5 that postT-PPN and P-PPN are effectively weakly-
cosimilar. Therefore, given a postT-PPN we can build a P-PPN which is weakly-cosimilar.
Moreover, since coverability can be reduced to firing a transition (by adding an observer transi-
tion), weak-simulation preserves coverability. Nevertheless, it does not preserve reachability. In
this section, we prove that existential reachability is decidable on P-PPNs.

Theorem 51
E -Reachability on P-PPN is decidable and ExpSpace-hard.

Proof. We consider a P-PPN S1. We will now build a PN S2 with token-canons that will supply
the parameterised places of S1 as depicted in Figure 7.4. Each token-canon consists in two places
fip, fiÕ

p and two transitions ◊p, ◊Õ
p. Transition ◊p supplies place p of S2. Moreover, each transition

of S1 is added as an input and an output of fiÕ
p, meaning that the net is blocked as long as

every ◊Õ
p has not been fired. This is repeated for each place initially marked by a parameter. We

initialise S2 with 1 token in each fip. So for each valuation v of S1, firing the sequence ◊
v(⁄p)
p ◊Õ

p

for each parameterised place p leads to a marking m2 equals to the valuation of the initial
marking of S1. Moreover, the ◊-transitions added have been fired, so every fiÕ

p is marked. The
two nets have now the same behaviour: if we omit the places fip and fiÕ

p, any marking reachable
in a v-instance of S1 can be reached in S2 and reciprocally. This shows that S2 simulates any
valuation of S1. Therefore, the existence of a valuation such that a given marking is reached can
be reduced to the reachability of the same marking (completed with 0 for each fip and 1 for each
fiÕ

p added) which is known decidable as a classic reachability problem on a possibly unbounded
Petri net. Thus E -reachability is decidable on P-PPN.

From Remark 4.2.1, we know that E -reachability on P-PPN is at least ExpSpace-hard.
Moreover, we apply here a transformation which is linear in the size of the Petri Net. Indeed
we add 2 places, 2 transitions and 5 + 2 ◊ |T | arcs for each initial parameterised place. With
this transformation, we get a classic marked Petri Net. Thus E -reach on P-PPN is decidable
and not harder than reachability on Petri nets.
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U -problem E -problem
Reach. S.Unbound Cov. Reach. S.Unbound Cov.

PPN U U U U U U
T-PPN U U U U U U

preT-PPN U D D U D D
postT-PPN U D D U D D

P-PPN ? D D D D D
distinctT-PPN U D D U D D

Table 7.2 – Global summary for the decidability results

Intuitively, considering the property of reachability, it is possible to simulate a preT-PPN
with a postT-PPN and vice-versa as underlined through the constructions of Figures 7.1 and 7.3.
Informally, preT-PPNs and postT-PPNs are therefore equivalent from the point of view of
reachability.

With P-PPNs, there is no possibility to generate or consume a parametric amount of tokens.
The paramaterised amount of tokens is fixed in a place before the execution and there is no
modelling features to replicate this parametric amount somewhere else in the net. This is an
important modelling gap with postT-PPNs and preT-PPNs which may informally justify why
existential reachability becomes decidable here.

The results are summed up in Table 7.2. The reader can notice that the decidability (or
undecidability) of universal reachability in P-PPNs is not settled. We leave it as an open problem
in this thesis. Considering the gap of modelling power between postT-PPNs and P-PPNs, it
seems sensible to conjecture that universal reachability in P-PPNs is decidable and to this end,
to study reachability proofs for Petri nets in order to adapt the reasoning to our parametric
context. We will provide a small survey on the techniques of proof for reachability in the
Chapter 9 about future work.
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CHAPTER 8

Conclusion

“Believe you can, you are halfway there.”

— Theodore Roosevelt
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8.3 Study of Synthesis Problems . . . . . . . . . . . . . . . . . . . . . . . . . . 116

The core objective of this thesis was to propose meaningful parametric infinite state systems
with decidable decision problems in order to provide more realistic classes of models and to
address more realistic verification issues. This goal was formalised through the following three
research questions:

RQ1 How can we extend Petri nets with parameters in order to represent a whole family of nets
through one given model?

RQ2 How can we adapt decision problems to this parametric context? What problems are de-
cidable? What are their complexities?

RQ3 Can we answer the problem of the synthesis of parameters?

To satisfy this goal at those three levels, this thesis presented contributions dealing with veri-
fication of parametric problems (universal, existential and synthesis) in Petri nets augmented by
discrete parameters on their arcs or initial markings. We will now recall the main contributions
presented throughout Part II following the organisation of those research questions.

8.1 Introduction of Parametric Petri Nets and their Subclasses

Our first concern expressed in RQ1 was to provide some general models of Petri nets. The
main motivation is to enhance the design stage of a concurrent system by a stage of early
analysis. To this hand, we have introduced the use of discrete parameters in Petri nets. In
this paradigm, called parametric Petri nets (or PPNs for short) parameters are involved on
arcs (input or output arcs of transitions) or directly on the places through a parameterised
initial marking. We introduced the intuitive syntactical subclasses of this parametric models by
restricting the use of parameters to input arcs only (preT-PPNs), to output arcs only (postT-
PPNs) or to places (P-PPNs). Note that a specific class where parameters are allowed on the
arcs only such that the subset of parameters used on the input arcs and on the output arcs are
disjoint, called distinctT-PPNs, is also considered in a concern of completeness of this survey.
We studied the relations between those subclasses and proved that the class where parameters
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are used only on arcs (T-PPNs) is as expressive as the general class of PPNs. Those parametric
Petri nets provide more genericity in the design stage since they allow us to represent and analyse
a family of concurrent systems through one model. This former point is the concern of RQ2.
Indeed, we had to adapt the most useful properties to this parametric context. To this end, we
suggested two classic parametric families of well known decision problems involved in Petri nets
analysis that are reachability, coverability and (simultaneous) boundedness problems. Those
two families of decision problems can be observed based on the quantification of the values of
the parameters. The existential problems ask whether there exists a valuation such that the
instance of the parametric Petri net under this valuation satisfies the property, whereas the
universal problems ask whether the property considered holds for every valuation. Concretely,
this permits to understand if the parameterised parts of the net have an influence on the property
considered leading to possible simplification in the design stage.

8.2 Study of Decidability Problems

With those new decision problems introduced, the second half of RQ2 was of course to find
which problems are decidable and in the affirmative case, to provide their complexities. We
focused on the coverability problem, which can be used in Petri nets analysis to solve numer-
ous safety problems. All the results that have been proved throughout this thesis are summed
up in Table 8.1. We will here provide a quick overview of those results. We first proved that
the coverability (and thus the reachability and the simultaneous unboundedness) parametric
problems were undecidable for the generic classes of PPNs and T-PPNs. Therefore, we turn
our interest to the syntactical subclasses in order to find decidable decision problems. In par-
ticular, we consider the case of preT-PPNs and postT-PPNs and proved some simple results
of monotonicity allowing us to provide some straightforward proofs that directly derive from
classic Petri nets analysis. This is the case for existential coverability and existential simul-
taneous unboundedness for preT-PPNs and universal coverability and universal simultaneous
unboundedness for postT-PPNs. On the other hand, some results are more complex. Existen-
tial coverability for postT-PPNs is derived from a translation between this subclass and the class
of ÊPNs, whereas universal coverability for preT-PPN carry over some Rackoff upperbound to
prove its ExpSpace-completeness. Note that we also provided extensions of the classic Karp and
Miller algorithm to this parametric context for those two subclasses. It notably permits to pro-
vide a proof for the existential simultaneous unboundedness for postT-PPNs. Nevertheless this
construction is also interesting since it is stronger than a simple black box which would answer
if a marking is existentially (or universally) coverable. We are indeed able to compute the mark-
ings that are universally coverable or existentially coverable for any preT-PPN or postT-PPN
(and P-PPN and distinctT-PPN by extension). With the concern to establish decision frontiers,
we also provided proofs of undecidability based on reduction from Minsky 2-counters machines
for different problems. Those results interestingly emphasise the modelling power gap between
postT-PPNs and P-PPNs. Indeed, our results show that despite the strong link between those
two subclasses, there exists a significant difference in terms of use of parameters. PostT-PPNs
offer the possibility to generate a parameterised amount of tokens whereas P-PPNs are only able
to consume tokens from a parametric initial amount of tokens. This might informally explain
why, in the latter case, existential reachability becomes decidable which is a strong result. Our
research work has some limitation and the results that are still missing will be outlined in the
next chapter.
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U -problem E -problem

Reach. S.Unbound Cov. Reach. S.Unbound Cov.

PPN Undecidable (Th. 12) Undecidable (Th. 12) Undecidable (Th. 12) Undecidable (Th. 11) Undecidable (Th. 11) Undecidable (Th. 11)

T-PPN Undecidable (Th. 12) Undecidable (Th. 12) Undecidable (Th. 12 & Lem. 13) Undecidable (Th. 11) Undecidable (Th. 11) Undecidable (Th. 11 & Lem. 13)

preT-PPN Undecidable (Th. 50) ExpSpace-c (Th. 24) ExpSpace-c (Cor. 25) Undecidable (Th. 49) ExpSpace-c(Lem. 46) ExpSpace-c (Corollary 16)

postT-PPN Undecidable (Th. 48) ExpSpace-c(Lem. 46) ExpSpace-c (Corollary 16) Undecidable (Th. 47) ExpSpace-h(Cor. 29) ExpSpace-c (Theorem 18)

P-PPN ? ExpSpace-c(Lem. 46) ExpSpace-c (Corollary 34) Decidable (Th. 51) ExpSpace-h(Lem. 46) ExpSpace-c (Cor. 34)

distinctT-PPN Undecidable (Th. 48) ExpSpace-c(Lem. 46) ExpSpace-c (Corollary 35) Undecidable (Th. 47) ExpSpace-h(Lem. 46) ExpSpace-c (Corollary 35)

Table 8.1 – Global Summary for the decidability results (with complexities)

S -problem

Reach. S.Unbound Cov.

PPN 5 5 5

T-PPN 5 5 5

preT-PPN 5 3 3(Lem. 39)

postT-PPN 5 3 3(Lem. 39)

P-PPN ? 3 3(Lem. 13, 39)

distinctT-PPN 5 p p (Lem. 45)

Table 8.2 – Global summary for the synthesis results (3 stands for computable, p stands for no simple representation, 5 stands for non computable
in a formalism where the emptiness or the universality of the set can be decided and is a direct consequence of Th. 11 and 12)
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8.3 Study of Synthesis Problems

As explained, the aim of parameters is also to help the designer of a system by providing
a feedback on his modelling task. To this end, the most pertinent design issue that has to be
considered is the computation of the parameter values ensuring the satisfaction of some expected
properties, which is called the synthesis. Note that if the solution set of a synthesis problem
can be computed in an explicit enough form, then both existential and universal versions of this
problem can be directly answered. In this sense, the problem of the synthesis is more complex.
Moreover, the knowledge of this set notably permits an estimation of the robustness of a given
instance of a model. Therefore, RQ3 is at the heart of this thesis. Using the monotonicity
results from preT-PPNs and postT-PPNs, we proved that the solution set of the coverability
synthesis satisfied a structure of downward closed sets and upward closed sets respectively.
Those mathematical structures have been widely studied and, relying on the literature, given
the bases of an upward closed set, it is possible to compute the bases of its complement (which is
a downward closed set). Moreover, Valk and Jantzen provided an algorithm to compute a base of
an upward closed set if some precise condition is satisfied. We showed that in our context, those
two results allow us to reduce the computability of the solution of the coverability synthesis
problem to the decidability of the universal coverability for preT-PPNs and the existential
coverability for postT-PPNs. As explained in Chapter 6, this is a powerful result for those
two syntactical subclasses of parametric Petri nets: one can indeed compute the set of all valid
valuations of parameters, allowing to cover a given marking for parametric Petri nets where
parameters are restricted to only input arcs or only output arcs. We recalled in Table 8.2 the
synthesis problems such that their solution set is computable. We extended the results to the
problem of simultaneous unboundedness since the arguments of monotonicity still hold for this
property. It is important to underline the difference between “5” and “p”. The former, based on
the undecidability of the decision problems claim that there is no computable representation in
a formalism where emptiness or universality of a set can be decided (otherwise existential and
universal problems would be decidable) whereas the latter claims that there is no computable
representation in a formalism where the emptiness of the intersection with equality constraints
is decidable.

We believe that being able to handle these parameterised models is an important advance in
two ways. First, it significantly increases the level of abstraction in models, allowing to handle a
much larger and therefore more realistic classes of models. Second, the existence of parameters
can also address more relevant and realistic verification issues. Instead of just providing a binary
answer on the satisfaction or not of an expected property, we can aim to synthesise constraints
on the parameters ensuring that if these constraints are satisfied, the property is satisfied. Such
conditions for the proper functioning of the system are essential information for the designer. It
is often challenging to find meaningful parametric infinite state systems with decidable decision
problems. In this thesis, we introduced parametric Petri nets and investigated on those different
axes. Nevertheless, this research opens up room for further improvements. In the next chapter,
we propose some new directions that can be explored on this topic.
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Future Work

“What is past is prologue.”

— William Shakespeare
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In this chapter, we elaborate on different directions for future work. We have indeed identified
several possible research directions to explore. We first discuss the direct continuity of this work
by considering the results that remain to be proved such as universal coverability for P-PPNs
or the complexity of universal simultaneous unboundedness for postT-PPNs. Then, we propose
a reflexion based on a study made throughout this thesis on the implementation of a symbolic
algorithm using constraints. Finally, we elaborate on the different theoretical extensions that
could be considered first in a discrete context, and then in a continuous context.

9.1 Direct Continuation

As explained in the development of our thesis, some results are still missing. To complete
our study it would be interesting to look in more details the proofs for the decidability of
reachability in order to adapt one of them to answer to the problem of existential reachability
in P-PPN, which remains open. We have a strong intuition that this problem is decidable
using a result of [Leroux, 2013, Lemma XI.1.] stating that Presburger subreachability sets are
flatable. This implies that given a marking m, we can test if some semilinear set is included
in Preú(m) = {x œ NP | x

ú
æ m}. If we consider a P-PPN with a set of n parameters called

P = {a1, . . . , an} and of initial marking µ = m0 + µ0 where m0 œ NP and µ0 œ ({0} fi P)P ,
this would imply the decidability of universal reachability of a marking m in this P-PPN by
considering the linear set {m0 +

qi=n
i=1 kivi(µ0) | ’1 Æ i Æ n, ki œ N} where each vi is the

valuation that associates 1 to the parameter ai and 0 otherwise.
Our study could also be completed by establishing the complexity upper bound of existential

simultaneous unboundedness for postT-PPN which is currently solved using a procedure à la
Karp and Miller. We have a strong intuition that the work proposed for Ê-PNs in [Geeraerts
et al., 2015] to extend Rackoff arguments coupled to the work of Stéphane Demri in [Demri,
2013] could be used to establish an ExpSpace upper bound.

Finally, it would be interesting to study the complexity of the synthesis procedure in order
to find if some arguments à la Rackoff could help to provide an ExpSpace procedure, or if,
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on the contrary, if it is possible to provide an Ackermannian upper bound (see, e.g., [Figueira
et al., 2011]). More specifically, we could provide a complexity analysis of the two procedures
we suggested to answer the synthesis problem, that is the Valk and Jantzen procedure, and our
recursive procedure involving partial bases, in order compare those two algorithms.

9.2 Toward a practical symbolic algorithm

The research work carried out for this thesis proposed a theoretical study. We suggest
to investigate how a symbolic procedure could be developed to represent effectively a set of
markings and to extend some operators as the computation of successors or the test of ordering
of markings. To this end, it would be convenient to focus on some orders on powersets such as
those studied by A. Marcone in [Marcone, 2001] written Æ’

÷, also studied in [Jančar, 1999] and
used by P. Abdulla in [Abdulla and Nylén, 2000, Abdulla and Nylén, 2001]. Note that [Finkel
and Goubault-Larrecq, 2012, Section 5], permits to build well quasi-orders as products of well
quasi-orders.

A main limitation to this kind of symbolic representation is the apparition of quadratic
constraints that cannot be handled using convex polyhedra or Presburger arithmetic. For
instance, considering the net depicted in Figure 9.1, if a valuation if chosen, the net is
bounded, but if we consider the parametric net, the reachable markings belong to the set
{(1, 0, 0), (0, a, 0)} fi {(0, a ≠ k, kb) | 0 Æ k Æ a}.

p1 p2 p3t1
a

t2
b

Figure 9.1 – Quadratic constraints on parameters in a postT-PPN

9.3 Discrete Extensions

Another axis to extend our work could be to provide discrete extensions to our model. First,
one can easily imagine to allow some linear combinations of parameters on weights or initial
markings instead of simple parameters and to study how decidability frontiers evolve. If we
first consider that the linear combinations only use positive coefficients, we might find simple
constructions to simulate those new nets using our simpler models. It is indeed possible to
simulate the creation of such quantities using simple parametric arcs. Nevertheless, if negative
coefficients are allowed, the theory is less intuitive and some choices should be made: Do we
authorise negative valuations? Can we imagine a construction where the negative components
of linear combinations for input arcs are turned into positive linear combinations on output arcs
and vice-versa? And in the later case, can we relate those models to our simpler models?

It would also be a relevant extension to allow the user to verify parameterised properties.
For instance, it would be meaningful to ask whether a given parametric marking can be covered.
If such problem might be solved on P-PPNs and postT-PPNs where some markings can be
initially parameterised or where a parametric number of tokens can be generated, it seems more
complicated for the other subclasses that are preT-PPNs or distinctT-PPNs. Another interesting
approach could be to introduce reset arcs or transfer arcs to our models in order to provide new
scenarios. Note that reset arcs and transfer arcs make reachability undecidable but coverability
is still decidable (see [Dufourd et al., 1998]).

9.4 Timed Extensions

Many quantitative extensions of Petri nets could be combined with our discrete parameters,
such as probabilistic Petri nets [Emzivat et al., 2016] or continuous Petri nets [David and Alla,



9.4. TIMED EXTENSIONS 119

1987]. In this section, we briefly discuss the case of time Petri nets [Merlin, 1974].
It is possible to extend Petri nets with time by attaching timing constraints to transitions.

In this context, coverability is already undecidable even without parameters since it is possible
to simulate inhibitor arcs (see [Jones et al., 1977]). Therefore we need to start with subclasses
of time Petri nets. One possibility is to restrict the structure of the underlying untimed net:
indeed [Akshay et al., 2016] considers structural subclass of time Petri nets where the untimed
net is free choice (see e.g., [Desel and Esparza, 2005]) and provides some decidability results,
notably for the firability of a transition and for the termination of the net. It might thus be
interesting to introduce parameters in this context.

Another possibility is to consider a weak time semantics (i.e. no urgency). In Timed Arc
Petri nets, where the time corresponds to the age of tokens, with a weak semantics, coverability
is decidable [Abdulla and Nylén, 2001]. It follows from [Boyer and Roux, 2008] that considering
a weak time semantics gives similar results for other classes of Petri nets with time, in particular
for time Petri nets.
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10.1 Introduction

Récemment, nous avons pu observer que notre société s’est tournée vers une ère du tout
numérique. Dans ce cadre, les failles de sécurité ouvrent des brèches à des cyberattaques impac-
tant directement notre vie. L’exemple récent de WannaCry en est la triste illustration. S’il est
inquiétant de constater qu’une bonne partie de la population n’est pas consciente de l’impact
désastreux que peut causer une erreur dans un système informatique, le véritable danger vient
aussi du fait que nous manipulons des systèmes toujours plus complexes, toujours plus liés les
uns aux autres. Leur compréhension précise et complète tend à nous échapper car elle n’est plus
intelligible pour un cerveau humain. Les réseaux sans fils, les appareils connectés, les voitures
autonomes, les interventions médicales assistées par ordinateur sont des systèmes dont la criticité
n’est plus à démontrer : au delà de l’aspect financier, les systèmes informatiques peuvent avoir
un impact direct sur nos vies. Il est de ce fait nécessaire de pouvoir s’assurer de la sûreté de
tels systèmes, et ce malgré leur complexité croissante. Aussi, dans ce contexte, les méthodes
formelles et la vérification de modèles semblent toutes désignées pour devenir une compétence
clé de toute personne concevant de tels systèmes. Ces branches de l’informatique théorique
traitent en effet de la modélisation de systèmes et de propriétés afin d’analyser exhaustivement
et automatiquement si le modèle proposé satisfait ou non la propriété étudiée. Les outils de
vérification de modèles ont déjà su faire leur preuve sur des cas d’étude concrets. Néanmoins,
notre enthousiasme face à cette science doit être pondéré par la complexité des procédures mises
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en œuvre. Souvent très gourmandes, elles peuvent aussi s’avérer inefficaces si l’utilisateur ne
sait pas proposer de modèle complet du système étudié. Face à ces limitations, la vérification
de modèles s’est vu étendue par l’ajout de paramètres. Dans la vérification paramétrée, le but
est désormais de pouvoir réaliser une analyse du système même si sa spécification n’est pas
entièrement connue. La modélisation se veut moins rigide et plus abstraite afin de proposer des
phases d’analyses anticipées, desquelles des résultats sont tirés pour aider à la conception du
système, et non pas uniquement pour le vérifier. Paradoxalement, nous souhaitons, en laissant
des trous dans le système (les paramètres), en tirer une connaissance plus approfondie suite à
son analyse.

10.1.1 Contributions

Afin de permettre une modélisation plus souple des systèmes, nous proposons de généraliser
les réseaux de Petri par l’ajout de paramètres discrets représentant le poids des arcs ou le
nombre de jetons présents dans les places. Dans ce modèle, tout problème de décision peut
être décliné sous deux versions, une universelle, demandant si la propriété considérée est vraie
quelles que soient les valeurs que prennent les paramètres et une existentielle, qui s’interroge
sur l’existence de valeurs des paramètres telles que la propriété soit satisfaite. Concernant la
couverture, nous prouvons que ces deux problèmes sont indécidables dans le cas général. De ce
fait, nous introduisons des sous-classes syntaxiques basées sur la restriction des paramètres aux
places, aux arcs en sortie ou en entrée des transitions. Dans ces différents cas, nous montrons que
la couverture existentielle et universelle sont décidables et ExpSpace-complètes. Notre étude est
alors élargie au problème de la synthèse de paramètres qui s’intéresse à calculer l’ensemble des
valeurs de paramètres telles que la propriété considérée soit vraie. Sur les sous-classes introduites,
concernant la couverture, nous montrons que les ensembles solutions à la synthèse ont des
structures respectivement fermée supérieurement (cas des arcs de sortie) et fermée inférieurement
(cas des arcs d’entrée). Nous prouvons alors que calculer ces ensembles est possible en appliquant
un algorithme de la littérature, proposé par Valk et Jantzen, dont la condition d’application se
réduit aux problèmes de décision étudiés précédemment. Nous terminons cette étude par la
recherche de frontières de décision en étudiant les versions paramétrées de l’accessibilité pour
nos sous-classes.

10.1.2 Organisation

Cette thèse débute par des rappels mathématiques utiles pour la théorie des réseaux de Petri
ainsi que pour la compréhension des preuves présentées tout au long du manuscrit. Des rappels
portant sur le modèle des réseaux de Petri et les techniques courantes d’analyse sont évoqués
brièvement en Section 10.2. Nous introduisons par la suite le modèle des réseaux de Petri
paramétrés ainsi que les problèmes de décision universel et existentiel. Nous prouvons alors que
dans le cas général et pour le problème de la couverture, ces deux problèmes sont indécidables.
Ceci est résumé en Section 10.3. Aussi, dans la Section 10.4, nous introduisons des sous-classes
de ces réseaux paramétrés où l’utilisation de paramètres est restreinte aux arcs d’entrée, aux
arcs de sortie ou aux places. Dans ces différents cas, les problèmes de décision précédemment
étudiés deviennent décidables. Nous proposons alors des preuves de leur complexité. Comme
résumé en Section 10.5, nous élargissons cette étude au problème de la synthèse et montrons que
dans le cas de la couverture, pour les sous-classes où les paramètres sont autorisés sur des arcs
d’entrée uniquement ou de sortie uniquement, l’ensemble solution au problème de la synthèse
est calculable. Pour clore cette étude, nous considérons les versions paramétrées du problème
de l’accessibilité dans ces mêmes sous-classes afin d’établir des frontières de décision. Ceci est
l’objet de la Section 10.6.



10.2. TRAVAUX CONNEXES ET NOTIONS PRÉLIMINAIRES 123

10.2 Travaux Connexes et Notions Préliminaires

Plusieurs travaux traitent de modèles représentant un nombre arbitraire de processus iden-
tiques. D’une manière assez proche de nos travaux [Abdulla et al., 2013] présente notam-
ment un framework dédié à la vérification de problèmes de sûreté. Concernant le modèle des
réseaux de Petri et l’usage de paramètres, la littérature se veut quelque peu fragmentée. Les
paramètres sont utilisés tantôt en vue de décrire différents niveaux de raffinements, tantôt afin
de simplifier la représentation du modèle (ils sont alors à domaine fini) ou pour modéliser des
évolutions du système au cours de son exécution (les valuations peuvent changer au cours des
séquences d’exécution). Dans cette thèse, nous considérons des paramètres discrets à domaine
infini (l’ensemble N des entiers naturels), représentant un unique niveau de raffinement et dont
la valeur une fois établie pour l’exécution ne peut changer. Nous souhaitons en effet proposer
un modèle général sur lequel des analyses quantitatives pourront être réalisées. Les modèles les
plus proches de notre formalisme sont ceux présentés dans [Chiola et al., 1991] et, du point de
vue de leur analyse, les Ê-Petri nets introduits dans [Geeraerts et al., 2015].

Par la suite, nous abordons les notions mathématiques relevant de la théorie des ensembles
et de la théorie des graphes. Nous revenons également sur l’algèbre, la théorie des ordres que
nous approfondissons afin de considérer les notions d’espace fermé supérieurement et inférieure-
ment, et la combinatoire élémentaire. Nous rappelons également des notions de la théorie de la
décidabilité et de la complexité.

Comme expliqué, ce manuscrit se base sur le formalisme des réseaux de Petri servant à
modéliser des systèmes concurrents. Un exemple de réseau de Petri est rappelé en Figure 10.1.

p1

p2

p3

t2

2

t1

3

Figure 10.1 – Un réseau de Petri

Il comprend des places, représentées par les cercles, des transitions représentées par des
carrés et des arcs les reliant. Un marquage correspond à l’état du réseau et est représenté par
le vecteur du nombre de jetons par place (quitte à considérer un ordre sur les places). Une
transition peut être franchie s’il y a suffisamment de jetons pour satisfaire la précondition (arcs
entrant) de la transition, le tir de la transition consomme ces jetons et génère des jetons dans
les places en sortie (autant de jetons que la valeur précisée sur l’arc et un jeton si aucune valeur
n’est précisée). Nous abordons les propriétés usuelles que sont l’accessibilité, la couverture, la
non bornitude, et la non bornitude simultanée. Nous présentons également dans ce manuscrit
des techniques d’analyse et de preuve usuelles desquelles nous nous inspirerons dans les parties
de contributions. Parmi ces techniques, on notera la procédure de Karp et Miller permettant de
construire un arbre de couverture, ou la technique de preuve de Rackoff consistant à borner la
taille de séquences d’exécution.

10.3 Introduction des Réseaux de Petri Paramétrés et Problèmes de Dé-

cision Associés

Nous proposons d’étendre le modèle des réseaux de Petri par l’ajout de paramètres discrets
représentant le poids des arcs en entrée ou sortie des transitions ou les valeurs de jetons du
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marquage initial. Un exemple est donné par la Figure 10.2.

d

p1

p2

p3

t2

b

c
t1

a

Figure 10.2 – Un Réseau de Petri Paramétré

Ce modèle est introduit comme réseau de Petri paramétré ou PPN. Nous proposons deux
exemples illustratifs l’un concernant un modèle de prêt bancaire, l’autre relevant d’un problème
d’optimisation linéaire sur une chaîne de production où le but est de minimiser le coût en
matières premières. Étant donné une valuation des paramètres d’un réseau de Petri paramétré,
le réseau obtenu en remplaçant toute occurrence d’un paramètre par la valeur qui lui est associée
par cette valuation est appelé instance du réseau de Petri paramétré sous cette valuation. Si la
valuation est une fonction totale de l’ensemble des paramètres, nous obtenons un réseau de Petri
classique sur lequel nous pouvons appliquer la sémantique classique. Dès lors, étant donné un
problème de décision, nous pouvons nous demander s’il existe une valuation telle que l’instance
du réseau de Petri paramétré considéré satisfasse le problème, ou dualement, si ce problème
est satisfait pour toute valuation des paramètres. Ces problèmes sont qualifiés respectivement
de problème existentiel et universel. Nous prouvons alors que dans le cas général des PPNs,
les problèmes de la couverture existentielle et de la couverture universelle sont indécidables.
Ces preuves sont réalisées respectivement par réduction du problème de terminaison et de non
bornitude des compteurs d’une machine à deux compteurs de Minsky, qui sont bien connus pour
être eux mêmes non décidables. Nous proposons donc dans cette preuve de simuler une machine
à deux compteurs via un PPN.

10.4 Sous-Classes Paramétrées et Décidabilité

Les problèmes de couverture paramétrés ayant été prouvés indécidables dans le cas général,
nous nous employons à proposer des sous-classes syntaxiques de notre modèle où ces problèmes
seront décidables afin de pouvoir les utiliser en pratique. Aussi, nous proposons de contraindre
l’utilisation des paramètres:

aux places uniquement (P-PPNs)

aux poids des arcs uniquement (T-PPNs)

aux poids des arcs en entrée des transitions uniquement (preT-PPNs)

aux poids des arcs en sortie des transitions uniquement (postT-PPNs)

aux poids des arcs uniquement et tel qu’un même paramètre ne puisse pas être utilisé à la
fois sur un arc d’entrée et sur un arc de sortie (distinctT-PPNs)

À noter que cette dernière sous-classe est pertinente car c’est justement le fait d’utiliser le même
paramètre en entrée et sortie d’une transition qui nous permettait d’effectuer le test à zéro dans
la preuve d’indécidabilité précédente.

Si les inclusions syntaxiques entre ces sous-classes sont triviales, nous proposons une tra-
duction évidente (bisimulation faible) des P-PPNs vers les postT-PPNs montrant par là même
que les T-PPNs ont un pouvoir de modélisation aussi important que les PPNs. Nous proposons
également une construction plus technique attestant d’une co-simulation faible des postT-PPNs,
par les P-PPNs.
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Par la suite, nous nous focalisons donc sur les deux sous-classes “élémentaires” que sont les
preT-PPNs et les postT-PPNs. Nous prouvons tout d’abord des propriétés dites de monotonie.
Dans le cas des preT-PPNs, pour toute valuation des paramètres v, étant donné un marquage m

couvrable, alors m est toujours couvrable dans l’instance sous une valuation vÕ Æ v. Symétrique-
ment, dans le cas des postT-PPNs, pour toute valuation des paramètres v, étant donné un mar-
quage m couvrable, alors m est toujours couvrable dans l’instance sous une valuation vÕ Ø v.

Ces propriétés nous permettent d’établir des premiers résultats de décidabilité. En effet,
la couverture existentielle des preT-PPNs et la couverture universelle des postT-PPNs peuvent
être décidées par simple test de la propriété sur l’instance du réseau paramétré où tous les
paramètres ont été évalués à zéro. Nous obtenons conjointement la complexité (ExpSpace) de
ces problèmes de décision.

Nous proposons également deux preuves plus techniques pour la couverture universelle des
preT-PPNs, et la couverture existentielle des postT-PPNs, respectivement par récurrence sur le
nombre de places du réseau et par traduction vers les Ê-PNs. À noter que si dans ce dernier
cas, nous obtenons la complexité ExpSpacede la couverture existentielle pour les postT-PPNs,
nous passons par une autre preuve plus complexe et plus générale dans le cas des preT-PPNs,
mettant en avant le caractère ExpSpacede la non bornitude simultanée universelle et donc de
la couverture universelle.

Nous prolongeons ces résultats par des extensions de la construction de Karp et Miller, pour
ces deux sous-classes. En conclusion de cette première étude, nous élargissons ces résultats à la
classe des distinctT-PPNs où la couverture existentielle et universelle sont également décidables.

10.5 Problème de la Synthèse

Dans le cadre des systèmes paramétrés, au delà des simples problèmes de décision, notre
intérêt se porte sur le problème de la synthèse. Il s’agit dorénavant de calculer l’ensemble des
valuations des paramètres tel que tout réseau évalué sous l’une de ces valuations satisfasse la
propriété étudiée. En terme de vérification, la synthèse n’est plus un problème de décision,
puisque sa solution est un ensemble de valuations et pas seulement un booléen. De ce fait, la
synthèse permet d’obtenir des informations importantes sur le système.

Nous savons que pour le cas général des PPNs, le problème de l’existence est non-décidable.
Aussi il n’est pas nécessaire de s’intéresser au problème de la synthèse dans ce cas. Nous nous
focalisons donc sur les sous-classes que sont les preT-PPNs et les postT-PPNs. Nous avons
démontré que ces deux sous-classes sont sujettes à des propriétés de monotonie. Grâce à ces
propriétés, nous pouvons démontrer que, pour le problème de la couverture, les espaces solutions
au problème de la synthèse sont fermés inférieurement et supérieurement respectivement pour
les preT-PPNs et pour les postT-PPNs. Avec ces observations, nous mettons à profit une
procédure proposée par Valk et Jantzen dont l’objectif est de calculer une base d’un ensemble
fermé supérieurement. En effet, cette procédure possède une condition d’application nécessaire et
suffisante qu’il nous est facile d’adapter à notre contexte. Pour les postT-PPNs, nous montrons
que cette condition est équivalente à la décidabilité de la couverture existentielle. Pour les
preT-PPNs, nous considérons la synthèse de la non couverture dont l’ensemble solution est
fermé supérieurement en tant que complémentaire d’un ensemble fermé inférieurement. Dans
ce cas, la condition est équivalente à la décidabilité de la couverture universelle. Nous pouvons
alors calculer une base de son complémentaire (soit de l’ensemble solution à la synthèse de
la couverture) par une procédure adaptée. Nous proposons également dans cette thèse un
algorithme de synthèse afin de calculer directement la base de l’ensemble solution pour les preT-
PPNs sans passer par le complémentaire. En toute logique, cet algorithme peut être adapté
pour calculer la base de l’ensemble solution à la non couverture pour les postT-PPNs.
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10.6 Frontières de Décidabilité

Nous nous intéressons à élargir cette étude en proposant des frontières de décidabilité pour
les problèmes paramétrés. De ce fait, nous démontrons que les versions existentielle et uni-
verselle de l’accessibilité pour les preT-PPNs et les postT-PPNs sont indécidables en adaptant
la construction simulant une machine à deux compteurs de Minsky proposée pour le cas général.
Néanmoins, il est intéressant de noter que l’accessibilité existentielle est décidable pour la classe
des P-PPNs. La preuve repose sur une construction classique de canon à jetons. Nous pouvons
donc mettre en avant ici que les postT-PPNs, même s’ils semblaient proches des P-PPNs échap-
pent à la décidabilité pour cette propriété. Une explication informelle pourrait être l’impossibilité
de répliquer un montant paramétré de jetons: avec des postT-PPNs, il est possible de répliquer
un montant paramétré de jetons, par le tir d’une transition dont l’un des arcs de sortie est
paramétré, alors que les P-PPNs se limitent à la consommation d’une quantité initialement
paramétrée de jetons.

10.7 Conclusion

Il peut être difficile de trouver des modèles paramétrés non bornés où des problèmes de
décision sont décidables. Dans cette thèse, nous avons abordé ce problème sous l’angle des
réseaux de Petri, modèle largement représenté dans le monde de la vérification des systèmes
concurrents.

Nous pensons que l’analyse des systèmes paramétrés constitue une avancée considérable dans
le monde de la vérification. En effet, ces systèmes permettent de proposer des modèles présentant
un plus grand niveau d’abstraction, et ainsi représentatifs de classes de modèles plus larges et
donc plus réalistes. Par ailleurs, comme nous l’avons vu, la vérification paramétrée ouvre la
voie à des problématiques concrètes comme la synthèse. En connaissant l’ensemble des valeurs
de paramètres telles que le système satisfasse une propriété donnée, il est possible d’établir une
distance entre le système effectif et les valeurs limites, et ainsi d’estimer une robustesse de notre
système. Ce manuscrit ouvre les portes à d’autres études, plus pratiques, mais également à
l’extension de nos travaux par l’ajout d’aspects discrets (combinaisons linéaires de paramètres,
propriétés paramétrées, ajout d’autres types d’arcs) ou de temps, de probabilité ou même la
considération de réseaux de Petri continus.
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Réseaux de Petri à Paramètres Discrets

Discrete Parameters in Petri Nets

Résumé
Afin de permettre une modélisation plus souple des
systèmes, nous proposons d’étendre les réseaux de Petri
par des paramètres discrets représentant le poids des arcs
ou le nombre de jetons présents dans les places. Dans ce
modèle, tout problème de décision peut être décliné sous
deux versions, une universelle, demandant si la propriété
considérée est vraie quelles que soient les valeurs que
prennent les paramètres et une existentielle, qui s’interroge
sur l’existence d’une valeur pour les paramètres telle que la
propriété soit satisfaite. Concernant la couverture, nous
montrons que ces deux problèmes sont indécidables dans le
cas général. Nous introduisons donc des sous classes
syntaxiques basées sur la restriction des paramètres aux
places, aux arcs en sortie ou aux arcs en entrée des
transitions. Dans ces différents cas, nous montrons que la
couverture existentielle et universelle sont décidables et
EXPSPACE-complètes. Nous étudions alors le problème de
la synthèse de paramètres qui s’intéresse à calculer
l’ensemble des valeurs de paramètres telles que la propriété
considérée soit vraie. Sur les sous classes introduites,
concernant la couverture, nous montrons que les ensembles
solutions à la synthèse ont des structures fermée
supérieurement (cas des arcs de sortie) et fermée
inférieurement (cas des arcs d’entrée). Nous prouvons alors
que ces ensembles se calculent par un algorithme de la
littérature, proposé par Valk et Jantzen, dont les conditions
d’application se réduisent aux problèmes de décision
étudiés précédemment. Enfin nous étudions les frontières
de décision en nous intéressant aux versions paramétrées
de l’accessibilité pour ces sous classes.

Abstract
With the aim of increasing the modelling capability of Petri
nets, we suggest that models involve parameters to
represent the weights of arcs, or the number of tokens in
places. We consider the property of coverability of markings.
Two general questions arise, the universal and the existential
one: “Is there a parameter value for which the property is
satisfied?” and “Does the property hold for all possible
values of the parameters”. We show that these issues are
undecidable in the general case. Therefore, we also define
subclasses of parameterised nets, depending on whether
the parameters are used on places, input or output arcs of
transitions. For some classes, we prove that universal and
existential coverability become decidable, making these
classes more usable in practice. To complete this study, we
prove that those problems are EXPSPACE-complete. We
also address a problem of parameter synthesis, that is
computing the set of values for the parameters such that a
given marking is coverable in the instantiated net.
Restricting parameters to only input weights (preT-PPNs)
provides a downward-closed structure to the solution set.
We therefore invoke a result for the representation of upward
closed set from Valk and Jantzen. The condition to use this
procedure is equivalent to decide the universal coverability.
We also propose an adaptation of this reasoning to the case
of parameters used only as output weights (postT-PPNs). In
this case, the condition to use this procedure can be reduced
to the decidability of the existential coverability. Finally, we
broaden this study by establishing decision frontiers through
the study of existential and universal reachability.

Mots clés
Réseaux de Petri, Paramètres, Synthèse,
Décidabilité, Complexité, Couverture,
Accessibilité.

Key Words
Petri nets, Parameters, Synthesis, Decidability,
Complexity, Coverability, Reachability.
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