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Résumé

Le formalisme des modèles graphiques fournit des outils puissants de représentation des connaissances
sous incertitude. Il présente un cadre unificateur pour capturer des dépendances complexes entre les vari-
ables des systèmes de grande dimension. L’objectif principal de cette thèse concerne l’apprentissage
des réseaux possibilistes conçus par Fonck (1990) comme étant la contrepartie possibiliste des réseaux
bayésiens développés par Pearl et Jensen (1988,1996). Les réseaux possibilistes représentent une combi-
naison intéressante entre la théorie des graphes et la théorie des possibilités qui a été inventée par Zadeh
(1987) comme une extension de sa théorie des ensembles flous et développée par Dubois et Prade (1988).

A l’instar des réseaux bayésiens, un réseau possibiliste est caractérisé par deux composantes: Une com-
posante graphique définie par un graphe orienté acyclique (DAG) où chaque variable du domaine étudié
correspond à un nœud et les interactions entre les variables constituent l’ensemble des arcs dans le DAG.
La deuxième composante est numérique et composée de distributions de possibilité permettant de coder
l’incertitude des variables sachant leurs parents dans le DAG. Il existe deux manières de définir la contrepar-
tie possibiliste des réseaux bayésiens: les réseaux possibilistes basés sur le produit, nommés également
réseaux possibilistes quantitatifs. Ces réseaux sont très semblables aux réseaux bayésiens théoriquement
et algorithmiquement. En effet, les deux modèles partagent la même composante graphique (c’est-à-dire
le DAG) et également l’opérateur produit dans le processus calculatoire. Cela n’est pas le cas des réseaux
possibilistes basés sur le min, nommés également réseaux possibilistes qualitatifs et qui représentent une
sémantique bien différente.

Au début des années 2000, plusieurs travaux de recherche dédiés aux réseaux possibilistes ont été pro-
posés pour raisonner avec des informations incertaines et imprécises. La plupart de ces travaux concernent
la propagation des informations dans les réseaux possibilistes ou leur application dans plusieurs domaines
comme les systèmes tuteurs intelligents (2006), la spécialisation sociale dans les espaces métropolisés
(2014) et la recherche d’information (2015). Cependant, leur apprentissage à partir de données reste un
véritable défi. En effet, quelques travaux ont été proposés par Borgelt et Kruse (2000) et Sangüesa et al.
(1998) dans ce sens et sont des adaptations directes des méthodes d’apprentissage des réseaux bayésiens
sans prendre en considération les spécificités du cadre possibiliste, ce qui les rendait limités et mal justi-
fiés théoriquement. En outre, ces travaux souffrent de l’absence d’une procédure de validation standard et
chaque méthode propose une mesure d’évaluation dont les valeurs sont difficiles à interpréter.

Cette thèse présente deux contributions majeures. La première contribution consiste à proposer une
stratégie de validation pour les algorithmes d’apprentissage des réseaux possibilistes. Cette stratégie pro-
pose trois variantes de processus d’échantillonnage permettant de générer des ensembles de données im-
précises à partir de réseaux générés aléatoirement, et deux nouvelles mesures d’évaluation possibilistes:
la première est une mesure globale et calcule une approximation de la distance de Manhattan normalisée
dans le contexte des réseaux possibilistes pour évaluer l’écart entre leurs distributions jointes. La deux-
ième mesure, basée sur information affinity proposé par Jenhani et al. (2007), est locale et compare les
distributions de possibilité conditionnelles de deux réseaux partageant la même structure. Notre deux-
ième contribution consiste à proposer une approche globale pour l’apprentissage des réseaux possibilistes
basés sur le produits permettant à la fois d’apprendre les paramètres (composante numérique) et la structure
(composante graphique). Nous proposons une fonction de vraisemblance possibiliste pour paramétrer les
réseaux possibilistes et définir une nouvelle fonction de score. Une étude expérimentale détaillée montrant
la faisabilité et l’efficacité des méthodes proposées a été aussi proposée pour chaque partie de cette thèse.
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Abstract

The formalism of graphical models provides powerful knowledge representation tools under uncertainty.
It presents a unifying framework for capturing complex dependencies among variables of high-dimensional
systems. The main focus of this thesis concerns learning possibilistic networks first conceived by Fonck
(1990) as possibilistic counterpart of the well known Bayesian networks developed by Pearl and Jensen
(1988,1996). Possibilistic networks represent an interesting combination between graph theory and possi-
bility theory which was coined by Zadeh (1987) as an extension of its fuzzy sets theory and developed by
Dubois et Prade (1988).

Like Bayesian networks, a possibilistic network has two components: a graphical component composed
of a directed acyclic graph (DAG) in which each variable of the studied domain corresponds to a node and
interactions between variables constitutes the set of edges in the DAG. The second component is numerical
composed of possibility distributions coding variables uncertainty given their parents in the DAG. There
are two different ways to define the possibilistic counterpart of Bayesian networks: quantitative also called
product-based possibilistic networks. These models are theoretically and algorithmically close to Bayesian
networks. In fact, these two models share the graphical component, i.e. the DAG and the product operator in
the computational process. This is not the case of qualitative, also called min-based possibilistic networks,
that represent a different semantic.

In the early 2000s, several research works dedicated to possibilistic networks have been proposed to
reason with uncertain and imprecise information. Most of these works concern information propagation in
possibilistic networks or their application in various domains such as intelligent tutoring systems (2006),
social specialization in metropolized spaces (2014) and information retrieval (2015). However, their learn-
ing from data remains a real challenge. In fact, only few works address this problem and existing ones
proposed by Borgelt and Kruse (2000) and Sangüesa et al. (1998) are direct adaptations of Bayesian net-
works learning methods without any awareness of specificities of the possibilistic framework which made
them limited and theoretically unsound. Moreover, These works suffer from the lack of an accurate and
standard validation procedure and each method proposes an evaluation measure whose values are difficult
to interpret.

This thesis presents two major contributions. The first one consists on proposing a validation strategy
for possibilistic networks learning algorithms. This strategy proposes three variants of sampling process,
which consists on generating imprecise datasets from randomly generated networks, and two new possi-
bilistic evaluation measures: the first one is a global measure and presents an approximation of the nor-
malized Manhattan distance in the context of possibilistic networks to assess the gap between their joint
distributions. The second measure, based on information affinity proposed by Jenhani et al. (2007), is local
and compares conditional possibility distributions of two networks sharing the same structure. Our second
contribution consists on proposing a global product-based possibilistic networks learning approach i.e. in-
cluding parameters (numerical component) and structure (graphical component) learning. We propose a
possibilistic likelihood function to learn possibilistic networks parameters and to define a new score func-
tion. A detailed experimental study showing the feasibility and the efficiency of the proposed methods has
been also proposed to each part of this thesis.
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Introduction

Context

Machine learning is the sub-field of artificial intelligence gathering techniques that take up the chal-
lenge to help humans to produce useful patterns from data. One of the most known techniques consists
on building/learning graphical models from data which also fits within the dependence analysis framework
and corresponds to extracting dependency relations from observed data in order to make predictions. The
success of graphical models is due to the fact that they meet our requirements of explicitness and clarity
by transforming high-dimensional domains into graphs making, thereby, information representation and
reasoning easily supported by human mind.

Graphical models were generally defined as a marriage between probability theory and graph theory that
provides a natural tool for dealing with two major problems, namely uncertainty and complexity (Murphy,
2001). However, over the last three decades, several graphical models have been proposed in non classical
uncertainty frameworks which are semantically different from the probabilistic one. These recently born
models were studied to handle some particular situations when all numerical data are not available or pre-
cisely defined, which may compromise the application of probabilistic framework. As consequence of the
above-mentioned items, graphical models could be redefined as a marriage between an uncertainty theory
and graph theory that provides a natural tool for dealing with two major problems, namely uncertainty
and/or imprecision and complexity.

This thesis investigates non classical graphical models and more procisely possibilistic networks, intro-
duced by Fonck (1992), which represent the counterpart of Bayesian networks (Pearl, 1988; Jensen, 1996)
in the possibility theory (Zadeh, 1978; Dubois and Prade, 1998). The latter offers a natural and simple
formal framework to represent imprecise and uncertain information and to describe states of the world in
both qualitative and quantitative aspects. Despite the fact that this is a rather young area of research, pos-
sibilistic networks have attracted the attention of many researchers. In fact, first works dedicated to them
concerned mainly information propagation (Fonck, 1992; Ben Amor et al., 2003; Benferhat and Smaoui,
2007; Ayachi et al., 2014). Then, they have been applied in various real domains such as intelligent tutoring
systems (Adina, 2006), social specialization in metropolized spaces (Caglioni et al., 2014) and information
retrieval (Chebil et al., 2015; Boughanem et al., 2009). However, contrarily to Bayesian networks, learning
possibilistic networks from data has not been deeply studied. In fact, only few works address this problem
and existing ones (Borgelt et al., 2009; Sangüesa et al., 1998) are direct adaptations of Bayesian networks
learning methods without any awareness of specificities of the possibilistic framework and of advances
made concerning possibilistic networks as models of independence (Ben Amor and Benferhat, 2005).

The main achievement of this thesis is proposing a global possibilistic networks learning approach from
imperfect data. Our first contribution consists on proposing a validation strategy which will represent a
clear experimental framework allowing the realization of a comparative and intensive study possibilistic
for networks learning algorithms. The aim of the remaining parts of this thesis consists on proposing a
new learning approach from imperfect data including two phases: the first one is dedicated to parameters
learning i.e. inferring conditional possibility distributions. The second phase concerns the structure learning
i.e. constructing the graph including dependence relations detected from data.

1
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Thesis overview
Figure 1 presents the thesis organization and inter-dependencies between chapters.
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Figure 1: Thesis synopsis

Chapter 1: Possibility theory: An overview. This chapter gives the necessary background regarding
basic concepts of possibility theory and briefly recalls other uncertainty theories i.e. probability theory,
belief function theory and imprecise probability theory highlighting their links with possibility theory.

Chapter 2: Graphical representation of knowledge in uncertain frameworks. This chapter overviews
mainly researches devoted to possibilistic networks, in particular their learning from data, and briefly in-
troduces other graphical reasoning models that are Bayesian networks, evidential networks and credal net-
works.
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Chapter 3: Benchmarking possibilistic networks learning algorithms and evaluation measures. In this
chapter, we provide an evaluation strategy by proposing three variants of sampling process to generate
imprecise datasets from possibilistic networks, and two possibilistic evaluation measures to quantify the
similarity between two networks.

Chapter 4: Possibilistic networks parameters learning from imperfect data. This chapter provides a new
possibilistic likelihood function which represents the first step of proposing a parameters learning algorithm.

Chapter 5: Possibilistic networks structure learning from imperfect data. In this chapter, we start by
proposing a new possibilistic score. Then, we apply greedy search algorithm to learn possibilistic networks
structure.

Publications
This research work on learning possibilistic networks was the subject of the following publications:
– Our preliminary work about learning possibilistic networks not described in this thesis handles pos-

sibilistic data, has been published in (Haddad et al., 2013)
– A survey of possibilistic networks learning methods has been published in (Haddad et al., 2015c,a)
– Our first contribution dedicated to benchmarking possibilistic networks learning algorithms has been

published in (Haddad et al., 2015b)
– An experimental study comparing our second contribution i.e. our possibilistic networks parameter

learning method with a probability-possibility transformation based has been published in (Haddad
et al., 2016)





I
State-of-the-art

5





1
Possibility theory: An overview
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1.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.1 Introduction
Most of researches of the last decades have proved that imperfection, be it uncertainty or imprecision,

is unavoidable in real world applications and must be incorporated in information systems. This is due
mainly to two imperfection sources: variability of observed phenomena and information incompleteness.
To deal with imperfect information, several theories have been developed to make reasoning possible under
uncertainty and/or imprecision. For a long time, probability theory has been considered as the unique

7
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normative model to cope with imperfection by presenting a classical well founded framework manipulating
uncertain but precise information. Nevertheless, probability theory, as good as it is, does not remain the
best alternative where imprecision is inherent in the studied domain, where available information are simply
preferences or where we are facing incomplete information. Thereby, over the last five decades, a lot
of effort has been put into developing new non-classical uncertainty theories. The most visible of these
theories are fuzzy sets theory (Zadeh, 1965), evidence theory (Shafer, 1976), imprecise probability theory
(Dempster, 1967) and possibility theory (Zadeh, 1978; Dubois and Prade, 1988) and stand out as best
alternatives to probability theory (Dubois et al., 1996).

In this thesis, we are interested by possibility theory, first formalized by Shackle (Shackle, 1969), then,
re-introduced by Zadeh (Zadeh, 1978) as an extension of its fuzzy sets theory. It was later developed by
Dubois and Prade (Dubois and Prade, 1988, 2000; Dubois, 2006). To a large extent, possibility theory is
comparable to probability theory because it is based on set-functions. However, contrarily to the probabilis-
tic case, possibility theory is able to offer a natural and simple formal framework representing imprecise and
uncertain information and is able to describe epistemic states in both qualitative and quantitative aspects
(Dubois and Prade, 1998). Among this panoply of theories, this chapter presents basic elements of possibil-
ity theory and its links, in order, with probability theory, evidence theory and finally imprecise probability
theory.

This chapter is organized as follows: Section 1.2 provides some notations that will be used in the
remaining of this chapter and defines the notion of possibility distribution. Section 1.4 describes how we can
derive a possibility distribution directly from data using possibilistic histograms. Section 1.5 briefly presents
two methods to generate a dataset representative of a given possibility distribution. Section 1.6 is dedicated
to possibilistic similarity/dissimilarity measures. Finally, Section 1.7 is devoted to the presentation of some
known uncertainty theories and shows how they are related to possibility theory.

1.2 Notations and definitions
This section recalls basic concepts of possibility theory i.e. possibility distribution, possibility and

necessity measures, non-specificity, marginalization, conditioning and conditional independence.

1.2.1 Notations
We first give some notations that will be used in the remaining.
– V = {X1, X2, ..., Xn} denotes a set of n variables describing a studied domain.
– Di denotes the supposedly finite domain associated with the variable Xi.
– xik denotes an instance, a state (a possible value) of Xi.
– Ai denotes a subset of instances of a variable Xi i.e. Ai ⊆ Di.
– Ω = D1 × ... ×Dn denotes the universe of discourse, which is the Cartesian product of all variable

domains in V .
– Each element ω ∈ Ω is called interpretation or event and is denoted by a tuple (x1k, ..., xnl).
– The power set 2card(Di) is the set of all subsets of Di including also ∅ and Di.

1.2.2 Possibility distribution
The basic building block of possibility theory is the notion of possibility distribution π which corre-

sponds to a mapping from the universe of discourse Ω to the unit interval [0, 1]. For any state ω ∈ Ω,
π(ω) = 1 means that ω realization is totally possible according to an agent for variables X1, ..., Xn and
π(ω) = 0 means that ω is an impossible state. It is generally assumed that at least one state ω is totally
possible and π is then said to be normalized. More formally, a possibility distribution π is normalized if:

max
ω∈Ω

π(ω) = 1 (1.1)
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Otherwise, π is said sub-normalized and in this case, Inc(π) = 1−maxω∈Ω π(ω) is called the inconsistency
degree of π. It is evident that Inc(π) = 0 if π is normalized. This concept plays an important role in
assessing similarity between possibilistic pieces of information by integrating the conflict degree between
them in the similarity measure.

Extreme cases of knowledge are presented by:
– Complete knowledge: ∃ωi ∈ Ω s.t. π(ωi) = 1 and for all ωj ∈ Ω s.t. ωj 6= ωi, π(ωj) = 0
– Total ignorance: ∀ω ∈ Di, π(ω) = 1 (all values in Ω are possible).
The particularity of the possibilistic scale is that it can be interpreted in two different ways:
– Ordinal (qualitative) interpretation: The possibility distribution is a mapping from the universe of

discourse Ω to an ordinal scale where only the order of values is important i.e. possibility degrees
reflect only a specific order between possible values.

– Numerical (quantitative) interpretation: The possibility distribution is a mapping from the universe of
discourse Ω to a numerical scale where possibility degrees make sense in the ranking scale and could
be manipulated by arithmetic operators.

Note that the notion of a possibility distribution could be defined on a variable Xi and it corresponds to
a mapping from Di to the unit interval [0,1]:
π(Xi) : Di → [0, 1]. In the remaining, for simplicity, we denote π(Xi = xik) by π(xik) and we define
possibilistic concepts on a variable.

1.2.3 Possibility and Necessity measures
Contrary to probability theory which uses only one measure, namely the probability measure, possibility

theory uses two dually related measures, namely possibility and necessity, to assess the plausibility and the
certainty of any subset of events of a variable Xi. Given a possibility distribution π(Xi) defined on Di and
any subset A ⊆ Di:

– Possibility measure is expressed by:

Π(A) = max
xik∈A

π(xik) (1.2)

The possibility measure Π assesses at what level A is consistent with our knowledge represented by
π i.e. at what level it is possible that xik pertains to A.

– Necessity measure is expressed by:
N(A) = 1− Π(Ā) (1.3)

The necessity measure N assesses at what level A is implied by our knowledge expressed by π i.e. at
what level it is certain that xik pertains to A.

Example 1.2.1. Let π be the possibility distribution relative to the variableX1 such thatD1 = {x11, x12, x13}
and π(x11) = 0.4, π(x12) = 0.7 and π(x13) = 1 and A = {x11, x12}.
Π(A) = max(0.4, 0.7) = 0.7.
N(A) = 1−max(1) = 0.

1.2.4 Non-specificity
Possibility theory is driven by minimum non-specificity principle (Yager, 1992). Let π1 and π2 be two

possibility distributions on Xi, π1 is said to be more specific (more informative) than π2 iff:

∀xik ∈ Di, π1(xik) ≤ π2(xik) (1.4)

Example 1.2.2. Let π1(X1) and π2(X1) be two possibility distributions relative to the variable X1 such
that D1 = {x11, x12, x13} and π1(x11) = 0.4, π2(x12) = 0.7, π3(x13) = 1, π2(x11) = 0.5, π2(x12) = 0.9
and π2(x13) = 1. π1 is more specific than π2.
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Figure 1.1: Example illustrating the specificity notion

In some situations, it is necessary to measure imprecision relative to a possibility distribution in order
to compare it with other distributions and to decide which is the most specific or informative one. This
imprecision is measured by non-specificity, denoted by nsp, and expressed as follows (Klir and Mariano,
1987):

Let π(k) be the kth degree in a possibility distribution π considered in a decreasing order of π values
(π(1) is the highest degree and π(m) is the smallest one)

nsp(π) = [
m∑
i=1

(π(k) − π(k+1)) log2 k] + (1− π(1)) log2 m (1.5)

where πm+1 = 0 by convention.

Example 1.2.3. Let us consider the possibility distributions in Example 1.2.2.
nsp(π1) = (1− 0.7) log2(1) + (0.7− 0.4) log2(2) + (0.4− 0) log2(3) = 0.9340.
nsp(π2) = (1− 0.5) log2(1) + (0.9− 0.5) log2(2) + (0.5− 0) log2(3) = 1.1925.
π is more specific than π′

1.2.5 Possibilistic marginalization and conditioning
When we are studying multivariate domains, a possibility distribution π relative to V defined on the

universe of discourse Ω must be manipulated in order to calculate uncertainties concerning a subset of
variables pertaining to V using marginalization or to update them after receiving new information using
conditioning.

The marginalization is an important notion used to determine how the realization of specific values of
some variables affects remaining variables possibility distributions. We derive marginal distributions rela-
tive to subsets of variables using the maximum operator for both quantitative and qualitative interpretations.
The marginalization is expressed as follows:

π(Xi) = max
{X1XjXn},j 6=i

π(X1, . . . , Xn) (1.6)

The possibilistic conditioning represents another important notion in possibility theory which consists
in reviewing a possibility distribution π by a new certain information Φ ⊆ Ω. The two interpretations
induce two definitions of possibilistic conditioning (Dubois and Prade, 1998).

The product-based conditioning based on the product operator is defined by the following Bayes-like
equation:

π(ω|Φ) =

{
π(ω)
Π(Φ)

if ω ∈ Φ

0 otherwise.
(1.7)
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The min-based conditioning based on the min operator is defined as follows:

π(ω|Φ) =


1 if π(ω) = Π(Φ) and ω ∈ Φ
π(ω) if π(ω) < Π(Φ) and ω ∈ Φ
0 otherwise.

(1.8)

These two definitions of conditioning satisfy a unique equation close to the Bayesian rule, of the form:

∀ω, π(ω) = π(ω | Φ)⊗ Π(Φ). (1.9)

whre⊗ corresponds to the minimum operator for Equation (1.8) and to the product operator for Equa-
tion (1.7). The min-based conditioning (1.8) corresponds to the least specific solution of Equation (1.9) first
proposed by Hisdal (1978).

Example 1.2.4. Let X1 and X2 be two binary variables defined on D1 = {x11, x12} and D2 = {x21, x22}
such that its joint possibility distribution is given by Table 1.1.

X1 X2 π(X1, X2)
x11 x21 0.8
x11 x22 0.4
x12 x21 0.6
x12 x22 1

Table 1.1: Example of a joint possibility distribution on two binary variables

In the numerical setting, using product-based conditioning defined by Equation 1.7, we obtain:
π(X2 = x21|X1 = x11) = 0.8

max(0.8,0.4)
= 1.

π(X2 = x22|X1 = x11) = 0.4
max(0.8,0.4)

= 0.5.
π(X2 = x21|X1 = x12) = 0.6

max(0.6,1)
= 0.6.

π(X2 = x22|X1 = x12) = 1
max(0.6,1)

= 1.

In the ordinal setting, using min-based conditioning defined by Equation 1.8, we obtain:
π(X2 = x21|X1 = x11) = 1.
π(X2 = x22|X1 = x11) = 0.4.
π(X2 = x21|X1 = x12) = 0.6.
π(X2 = x22|X1 = x12) =1.

1.3 Possibilistic conditional independence relations
Representing independence relations between variables of a complex domain enables us to decompose

the joint distribution which grows exponentially with the number of variables in the joint distribution.
Thereby, using independence relations between variables enables us to replace the joint distribution by
conditional distributions of each variable in the context of others variables to which it is dependent. From
an operational point of view, two forms of independence can be distinguished:

– Decompositional independence which ensures the decomposition of a joint distribution pertaining to
tuples of variables into local distributions on smaller subsets of variables. The reasoning machinery
can then work at a local level without losing any information.

– Causal independence for expressing the lack of causality between variables. This form of indepen-
dence is always characterized in semantic terms. Roughly speaking, a variable (or set of variables) is
said to have no influence on another variable (or set of variables) if our belief in the value of the latter
does not change when learning something about the value of the former.
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Possibilistic causal independence

The idea in defining possibilistic causal independence relation based on the possibilistic conditioning is
that X is considered as independent from Y in the context Z if:

Π(X | Y ∧ Z) = Π(X | Z),∀X, Y, Z. (1.10)

Since possibility theory has two kinds of conditioning (see Section 1.2.5), this leads to two definitions
of causal possibilistic independence:

– Min-based independence relation obtained by using the min-based conditioning (Equation (1.8).
– Product independence relation obtained by using the product-based conditioning (Equation 1.10).

We can rewrite this form of independence using:

Π(X ∧ Y | Z) = Π(X | Z) ∗ Π(Y | Z),∀X, Y, Z. (1.11)

or equivalently,
Π(X | Y ∧ Z) = Π(X | Z),∀X, Y, Z. (1.12)

Possibilistic decompositional independence

In the possibilistic framework, the standard decompositional independence betweenX and Y in the con-
text Z is represented by the non-interactivity relation, denoted by INI(X,Z, Y ) (NI for Non-Interactivity)
and defined by:

Π(X ∧ Y | Z) = min(Π(X | Z),Π(Y | Z)),∀X, Y, Z. (1.13)

1.4 Possibility distribution estimation
Possibility distribution estimation is a crucial notion, especially, when we deal with learning tasks. Esti-

mating a possibility distribution consists on deriving them from a dataset and it depends on the possibilistic
scale interpretation. In fact, in the ordinal setting, estimating possibility distributions encounter difficulties
since in this case, possibility degrees reflect an order between the world states and could not be quanti-
fied by numbers derived from observation occurrences in a dataset. In the numerical interpretation, Joslyn
(1991) has proposed a possibility distribution estimation method from imprecise data using possibilistic
histograms. Moreover, Joslyn discusses the non-specificity of obtained possibility distributions in some
particular cases such as certain and consistent data sets

Let Di = {d(l)
i } be a dataset relative to a variable Xi, d

(l)
i ∈ Di (resp. d(l)

i ⊆ Di) if data are precise
(resp. imprecise). The number of occurrences of each xik ∈ Di, denoted by Nik, is the number of times xik
appears in Di: Nik = N({xik} ∈ Di). The non-normalized estimation f̂nn(xik) is expressed as follows:

f̂nn(xik) =
Nik

Nb
(1.14)

where Nb is the number of observations in Di. N is equal (resp. lower or equal) to the sum of Nik if data
are precise (resp. imprecise).

Joslyn normalizes the obtained possibility distribution by dividing it by the maximum. Equation 1.14
becomes:

π̂n(xik) =
Nik

max(Nik)
(1.15)

Equation 1.15 can be defined on a set of variables Xi, Xj, ...Xw. In this case, Nik becomes Nik,jl,...,wp =
N({xikxjl...xwp} ⊆ Dijw).
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X1 X2

x11, x12 x21, x22

x12, x13 x21, x22

x11, x12 x21

x11, x13 x21

x12 x22

Table 1.2: Example of an imprecise dataset

Example 1.4.1. Table 1.2 presents an example of an imprecise dataset relative to a ternary variable X1

such that D1 = {x11, x12, x13} and a binary variable X2 such that D2 = {x21, x22}. Using Equation 1.15,
we obtain the following distributions:

N(x11) = 3, N(x12) = 4 and N(x13) = 2.
The normalized estimation of π(X1) is:
π̂n(x11) = 3

4
, π̂n(x12) = 4

4
and π̂n(x13) = 2

4
.

In the same way:
N(x21) = 4 and N(x22) = 3.
π̂n(x21) = 4

4
and π̂n(x22) = 3

4
.

We also have: N(x11, x21) = 3, N(x11, x22) = 1, N(x12, x21) = 3, N(x12, x22) = 3, N(x13, x21) = 2
and
N(x13, x22) = 1.

π̂n(x11, x21) = 3
3
, π̂n(x11, x22) = 1

3
, π̂n(x12, x21) = 3

3
, π̂n(x12, x22) = 3

3
, π̂n(x13, x21) = 2

3
and

π̂n(x13, x22) = 1
3
.

1.5 Variable sampling
In the probabilistic case, sampling a probability distribution consists in generating a random sample

representative and in proportion to its probability distribution. In the possibilistic case, sampling a variable
corresponds to the generation of a data set representative of its possibility distribution. This notion makes
sense only in the numerical interpretation since it is based on random generation of values pertaining to the
universe of discourse which contradicts the semantic of the qualitative aspect of possibility theory. So, in
the numerical interpretation, two approaches (Chanas and Nowakowski, 1988; Guyonnet et al., 2003) have
been proposed to sample a variable Xi in the possibilistic framework. These methods are based on α-cut
notion proposed by Zadeh (Zadeh, 1975) defined as follows:

α-cutXi = {xik ∈ Di s.t. π(xik) ≥ α} (1.16)

where α is randomly generated from [0,1].

Xi

π

1

0

α

α-cut

Figure 1.2: α-cut notion

The epistemic sampling method proposed by Guyonnet et al. (2003) focuses on the generation of im-
precise data by returning all values of α-cutXi for any variable Xi. In fact, it returns a nested random set
which represents the state of knowledge about the sampled variable Xi. Chanas and Nowakowski proposed
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another method in (Chanas and Nowakowski, 1988) which is dedicated to the generation of precise data
from the pignistic probability distribution by returning a single value uniformly chosen from α-cutXi .

Example 1.5.1. Let X1 be a ternary variable such that π(x11) = 0.1, π(x12) = 1 and π(x13) = 0.8.
If α = 0.1, α-cutX1 = {x11, x12, x13}.
If α = 0.7, α-cutX1 = {x12, x13}.
If α = 1, α-cutX1 = {x12}.

0,1

1

0,8

π(X1)

α=0.1

α=0.7

α=1

x11 x12 x13
X1

Figure 1.3: Example of α-cut

Note that the fact that α-cut returns the set of values whose degrees of possibility higher than α leads
to the construction of data which have to be represented as consonant sets as shown by Example 1.5.1. In
fact, x12 is the most possible state so, every returned α-cut contains this state. Thereby, a less possible state
can not appear in the data without being regrouped with all the states with higher degrees of possibility.

1.6 Possibilistic similarity measures
The concept of similarity/dissimilarity is fundamentally important in almost every scientific field. From

the scientific and mathematical point of view, similarity measure is defined as a quantitative degree of how
close two objects are. This concept has attracted a lot of attention in probability theory (Kullback and
Leibler, 1951; Chan and Darwiche, 2005) to compare two probability distributions. In the possibilistic
case, it reflects the degree of closeness between two possibility distributions π1 and π2 defined on the same
universe of discourse. As far as we know, there is only one attempt that has been made to propose a
possibilistic similarity measure (Jenhani et al., 2007). This section reviews some existing similarity and
distance measures that can be used in the possibilistic framework.

1.6.1 Information closeness

The information closeness measure (Higashi and Klir, 1983) is one of first works devoted to mea-
sure similarity between two possibility distributions based on non-specificity. In the following, we denote
G(π1,π2) the value of information closeness between two distributions π1, π2. ∨ refers to the maximum
operator and nsp(π) is given by equation(1.5).

G(π1, π2) = g(π1, π1 ∨ π2) + g(π2, π1 ∨ π2) (1.17)
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where g(π1, π2) = nsp(π2)− nsp(π1). Thus, the information closeness can also be written as:

G(π1, π2) = 2 ∗ nsp(π1 ∨ π2)− nsp(π1)− nsp(π2). (1.18)

Example 1.6.1. Let us consider the following possibility distributions over the same universe of discourse
π1 = {0.2, 0.9, 0.3, 1} and π2 = {0.1, 0.5, 1, 0}. Using Equation 1.18, we obtain:
G(π1, π2) = 2 ∗ nsp{1, 1, 0.9, 0.2} − nsp{0.2, 0.9, 0.3, 1} − nsp{0.1, 0.5, 1, 0} = 2 ∗ 1.6094 − 1.1584 −
0.5584 = 1.502

1.6.2 Sangûesa et al’s distance
Sangûesa et al’s distance (Sangüesa and Cortés, 2000), denoted by distance, computes possibility dis-

tributions non-specificity difference and is expressed by:

distance(π1, π2) = nsp(|π1(xik)− π2(xik)|) ∀(xik ∈ Di) (1.19)

Example 1.6.2. Let us reconsider possibility distributions in Example 1.6.1. Using Equation 1.19, we
obtain:
distance(π1, π2) = nsp{0.7, 0.4, 0.1} = 0.9754

1.6.3 Minkowski distance
In the possibilistic case, we can use the well known Minkowski distance (Riesz, 1910; Dunford et al.,

1971), denoted by MinD, which includes others as special cases of the generalized form: Manhattan,
Euclidean and Maximum distance (or Chebyshev distance or chessboard distance). Similarity measures
that can be derived from them are denoted respectively by MS, ES and CS. Minkowski distance between
two possibility distributions π1 and π2 is expressed as follows:

MinD(π1, π2) = p

√√√√ m∑
k=1

|π1(xik)− π2(xik)|p (1.20)

Special cases of Minkowski distance are:
– Normalized Manhattan distance, denoted by MD, is defined by:

MD(π1, π2) =

m∑
k=1

|π1(xik)− π2(xik)|

m
(1.21)

– Normalized Euclidean distance, denoted by ED, is defined by.

ED(π1, π2) =

√√√√ m∑
k=1

(π1(xik)− π2(xik))2

m
(1.22)

– Normalized Maximum distance, denoted by CD, is defined by:

CD(π1, π2) =
m

max
k=1
|π1(xik)− π2(xik)| (1.23)

Example 1.6.3. Let us reconsider possibility distributions in Example 1.6.1. Let us compute the distance
between the π1 and π2 using distances listed above given by equations 1.21 1.22 and 1.23, respectively:

– MD(π1, π2) = 0.1+0.4+0.7+1
4

= 0.55.

– ED(π1, π2) =
√

0.12+0.42+0.72+12

4
= 0.64.

– CD(π1, π2) = max(0.1, 0.4, 0.7, 1) = 1.
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1.6.4 Information affinity
Jenhani et al. (2007) have shown that measuring similarity between two possibility distributions depends

on two main criteria distance and inconsistency and have proposed a measure named information affinity
(Jenhani et al., 2007) and expressed as follows:

Aff(π1, π2) = 1− κ ∗MD(π1, π2) + λ ∗ Inc(π1, π2)

κ+ λ
(1.24)

where κ > 0 and λ > 0. Information affinity is based on two quantities: inconsistency degree Inc(π1, π2) =
Inc(π1∧π2) (∧ can be taken as min or product operator 1) and the normalized Manhattan distance expressed
by Equation 1.21 or the normalized euclidean distance expressed by Equation 1.22.

Note that in the remaining, we use Manhattan distance such that ∧ is the min operator. Since the
use of the min operator means that we give less importance to the inconsistency degree, we choose to fix
κ = λ = 1 to avoid penalizing twice the consistency degree.

Example 1.6.4. Let us reconsider possibility distributions in Example 1.6.1. Using Equation 1.24, we
obtain: Aff(π1, π2) = 1− 1∗0.55+1∗0.5

1+1
= 0.475.

Note that only Minkowski distance and information affinity satisfy basic properties of a distance i.e.
non-negativity, symmetry, upper bound and non-degeneracy, lower bound, large inclusion and permutation
(for more details, see (Jenhani et al., 2007)).

1.7 Possibility theory and links with other uncertainty theories
In this section, we will briefly describe the links between possibility theory and some established uncer-

tainty frameworks.

1.7.1 Possibility theory vs probability theory
Probability theory is considered as the standard uncertainty theory proposed to handle uncertain infor-

mation and is based on the notion of probability distribution which is a mapping p : Di → [0, 1] satisfying∑
xik∈Di p(xik) = 1. Given a probability distribution p, we can define a probability measure of any subset

A ⊆ Di by:
P (A) =

∑
xik∈Di

p(xik). (1.25)

In the probabilistic setting, a probability distribution p is transformed into a new probability distribution by
the arrival of a new fully certain piece of information Φ ⊆ Ω, as follows:

p(ω | Φ) =

{
p(ω)
P (Φ)

if ω ∈ Φ

0 otherwise.
(1.26)

Given three disjoint subsets of variables, X , Y and Z pertaining to V , the probabilistic conditional
independence between X and Y in the context Z, denoted by IProb(X,Z, Y ), is expressed by:

P (X | Y Z) = P (X | Z),∀X, Y, Z, (1.27)

or equivalently,
P (XY | Z) = P (X | Z) ∗ P (Y | Z),∀X, Y, Z. (1.28)

This means that X is considered as Prob-independent from Y in the context Z.

1. using the min operator instead of the product means that we give less importance to the inconsistency degree.
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One view of possibility theory is to consider a possibility distribution as a family of probability dis-
tributions (Dubois, 2006) for which the measure of each subset A of Di will be respectively lower and
upper bounded by its necessity and its possibility measures. More formally, if P is the set of all probabil-
ity distributions defined on Di, the family of probability distributions Pπ associated with π is defined as
follows:

Pπ = {p ∈ P ,∀A ⊆ Di, N(A) ≤ P (A) ≤ Π(A)} (1.29)

In order to describe different transformations, several properties were proposed in literature which are:
– Consistency condition: π and p satisfy the consistency condition if Π can be seen as an upper-bound

of P.
P (A) < Π(A),∀A ⊆ Di (1.30)

– Preference preservation: The preference preservation ensures that the obtained possibility distribu-
tion has the same form as the initial probability distribution. Formally, ∀(xik, xij) ∈ D2

i ,

p(xik) > p(xil) =⇒ π(xik) > π(xij) (1.31)

p(xik) = p(xil)⇒ π(xik) = π(xij) (1.32)

– Maximum specificity: This principle ensures that between two possibility distributions, the most
specific one should be chosen.

Several researches have been proposed to transform a probability distribution into a possibility one (Klir
and Parviz, 1992; Dubois et al., 1993, 2004; Mouchaweh et al., 2006; Bouguelid, 2007). Transforming prob-
abilistic distributions to possibilistic ones is useful when weak source of information makes probabilistic
data unrealistic, to reduce the complexity of the solution or to combine different types of data. In what
follows, we will cite the most common probability possibility transformations. Note that all of them make
sense in the numerical interpretation of the possibilistic scale. In the ordinal interpretation, some methods
have been proposed to estimate a possibility distribution from infinitesimal probabilities (Giang and Shenoy,
1999; Henrion et al., 1994; Darwiche and Goldszmidt, 1994), for more details see (Sabbadin, 2001).

Let P (Xi) be a probability distribution relative to a variableXi and {p(1), p(2), ..., p(m)} is the descending
order of P (Xi).

– Klir Transformation (Klir and Parviz, 1992):

π(k) =
p(k)

p(1)

(1.33)

Note that possibility distributions obtained using Klir transformation recovers the distributions ob-
tained using Equation 1.15. Moreover, this transformation generally violates the consistency principle
as shown in (Dubois and Prade, 2016).

– Optimal Transformation (Dubois et al., 2004) also called asymmetric transformation:

π(k) =
∑

j/p(j)≤p(k)

p(j) (1.34)

This transformation is optimal because it gives the most specific distribution i.e. that loses less in-
formation, and it is asymmetric since we can not recover the the probability distribution from the
obtained possibility one.

– Symmetric Transformation (ST) (Dubois et al., 1993):

π(k) =
m∑
j=1

min(p(k), p(j)) (1.35)

This transformation corresponds to the inverse of the pignistic transformation (Smets, 1989) i.e. it
provides a subjective possibility distribution, the least committed distribution assuming minimal sta-
tistical knowledge.



18 Chapter1: Possibility theory: An overview

– Variable Transformation (VT) (Mouchaweh et al., 2006):

π(k) = (
p(k)

p(1)

)c.(1−p(k)) (1.36)

where c is a constant belonging to the interval: 0 ≤ c ≤ logp(m)

(1−p(m)). log(
p(m)
p(1)

)
. This transformation needs

less computation then the asymmetric transformation. However, the maximum specificity principle
and the preference preservation are not always satisfied.

Example 1.7.1. Let us consider the quaternary variable X1 defined on D1 = {x11, x12, x13, x14} such that:
p(x11) = 0.2, p(x12) = 0.35, p(x13) = 0.4 and p(x14) = 0.05. By transforming p into π using different
transformations described above, we obtain:

– KT: π(x11) = 0.2/0.4 = 0.5, π(x12) = 0.35/0.4 = 0.875, π(x13) = 0.4/0.4 = 1, π(x14) =
0.05/0.4 = 0.125.

– OT: π(x11) = 0.05+0.2 = 0.25, π(x12) = 0.05+0.2+0.35 = 0.6, π(x13) = 0.05+0.2+0.35+0.4 =
1, π(x14) = 0.05.

– ST: π(x11) = 0.05 + 0.2 + 0.2 + 0.2 = 0.65, π(x12) = 0.05 + 0.2 + 0.35 + 0.35 = 0.95, π(x13) =
0.05 + 0.2 + 0.35 + 0.4 = 1, π(x14) = 0.05 + 0.05 + 0.05 + 0.05 = 0.2.

– VT: if c = log 0.05

(1−0.05). log 0.05
0.4

= 1.51, π(x11) = (0.2
0.4

)1.51.(1−0.2) = 0.43, π(x12) = (0.35
0.4

)1.51.(1−0.35) =

0.87, π(x13) = 1, π(x14) = (0.05
0.4

)1.51.(1−0.05) = 0.05.
Note that if the initial probability distribution are frequencies of states computed from data, the most suit-
able transformation is the optimal one and if the initial probability distribution is subjective, we use the
symmetric transofmormation (for more details see (Dubois and Prade, 2016))

1.7.2 Possibility theory vs belief function theory
Other uncertainty theories have already been formalized such as the case of belief function theory

(Shafer, 1976; Smets, 1988). It encodes our knowledge by a basic belief assignment also called a mass
function which corresponds to the mapping m : 2card(Di) 7−→ [0, 1] such that

∑
Aik⊆Di

(m(Aik)) = 1. A focal

element Aik ⊆ Di such that m(Aik) > 0 is called a focal set.
The total amount of belief committed to any event Aik is expressed by a belief function:

Bel : 2card(Di) → [0, 1], defined for any Aik ⊆ Di by:

Bel(Aik) = Σ
Ajk⊆Aik,Ajk 6=∅

m(Ajk) (1.37)

Bel(∅) = 0

The plausibility function Pl : 2card(Di) → [0, 1] quantifies the degree of plausibility that the actual world
belongs to Aik. For any Aik ⊆ Di by Pl(Aik) is expressed by:

Pl(Aik) = 1−Bel(¬Aik). (1.38)

If all the focal elements of m are singletons, then m is a Bayesian basic belief assignment and m =
Bel = Pl.

Several definitions of conditioning are developed in evidence theory, we give here the expression of the
Dempster’s rule of conditioning, let be Φ ⊆ Ω, the rule of conditioning is expressed as follows:

Pl(ω | Φ) =
Pl(ω ∩ Φ)

Pl(Φ)
(1.39)

In evidence theory framework, if the focal elements Ai1, ..., Aim are nested (i.e., Ai1,⊆ Ai2,⊆ ...,⊆
φAim), then the belief function Bel is called a consonant belief function and for all Aik, Ajk ⊆ Di, we have:
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Bel(Aik ∧ Ajk) = min(Bel(Aik), Bel(Ajk)); and
Pl(Aik ∨ Ajk) = max(Pl(Aik), P l(Ajk))

It is stated that in this case belief functions are necessity measures and plausibility functions are possi-
bility measures i.e. Bel = N and Pl = Π.

Let m be a basic belief assignment relative to a variable Xi with nested focal elements Ai1,⊆ Ai2,⊆
...,⊆ φAim. The possibility distribution π is derived using the following equation:

π(xik) =
∑

Aik|xik∈Aik

m(Aik) (1.40)

A random set is said to be consistent if there is at least one element xik contained in all focal sets Aik and
the possibility distribution induced by a consistent random set is, thereby, normalized.

Note that exploring this link between possibility theory and random sets theory has been extensively
studied, in particular, in learning tasks, we cite for instance (Borgelt et al., 2009; Joslyn, 1997). In the latter,
the possibility degree of an element is a contour function (Shafer, 1976) of a random set and corresponds
the probability of the possibility of the event i.e. the probability of the disjunction of all events (focal sets)
in which this event is included.

Example 1.7.2. Let X1 be a quaternary variable and m such that m(x13) = 0.6, m(x11x13) = 0.2,
m(x11x13, x14) = 0.1 and m(Di) = 0.1. Using Equation 1.40, we obtain:
π(x11) = 0.2 + 0.1 + 0.1 = 0.4.
π(x12) = 0.1.
π(x13) = 0.6 + 0.2 + 0.1 + 0.1 = 1.
π(x14) = 0.1 + 0.1 = 0.2.

However, it is important to note that in this case, the Dempster rule of conditioning defined by (1.39)
corresponds to the product-based conditioning defined by Equation (1.7) and not to the min-based one.

1.7.3 Possibility theory vs imprecise probability theory
Contrarily to already presented frameworks in which uncertainty is modeled by a function that maps

a state or a subset of states of the world to a single value, imprecise probability theory (Dempster, 1967;
Augustin et al., 2014) represents uncertainty by an interval specification/probability interval (IP). More
formally, to each event A is attached a probability interval [P∗(A), P ∗(A)] such that:

– P∗(A) = inf{P (A), P ∈ P}
– P ∗(A) = sup{P (A), P ∈ P} = 1− P∗(Ā)
As far as we know, few researches have been proposed to transform an imprecise probability distribution

into a possibility one (De Campos and Huete, 2001; Masson and Denœux, 2006; Hou and Yang, 2010;
Destercke et al., 2007).

De Campos and Huete (2001) proposed adaptations of Klir, optimal and symmetric transformations for
graphical models to support the joint possibility distribution decomposition by considering conditioning and
marginalization. Adaptations of Klir, optimal and symmetric transformations are expressed as follows: Let
P (Xi) be a probability distribution relative to a variable Xi and {p(1), p(2), ..., p(m)} is the descending order
of P (Xi) (p(1) is the highest degree and p(m) is the smallest one), u(k) = min(p(k) + cε√

N

√
p(k)(1− p(k)), 1),

l(k) = max(p(k) − cε√
N

√
p(k)(1− p(k)), 0), cε = 1

100
∗ 1+ε

2
and N be the number of observations in the

database.
– Klir transformation adaptation is expressed as follows:

π(k) = min(
u(k)

maxj=1..m(l(j), 1)
) (1.41)
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– Optimal transformation adaptation is expressed as follows:

π(k) = min(
k∑
j=1

u(j), 1) (1.42)

– Symmetric transformation adaptation is expressed as follows:

π(k) = min(
m∑
j=1

min(u(k), u(j)), 1) (1.43)

Note that all of these transformations make sense in the case of a numerical interpretation of the possibilistic
scale. However, De Campos and Huete (2001) suggests that their transformations could be applied in the
ordinal case, but basing on principles that Dubois (2006) restricted to the numerical interpretation.

The underlying idea of (Masson and Denœux, 2006; Hou and Yang, 2010; Destercke et al., 2007) is
inferring possibility distributions from interval based probability distribution. Transformations proposed
in (Masson and Denœux, 2006; Hou and Yang, 2010) construct a possibility distribution dominating all
the probability measures defined by IP and satisfy the consistency condition and preference preservation
properties (cf. Section 1.7.1). These transformations compute from each possible linear extension (a linear
extension Cl ⊆ C is a complete order that is compatible with the partial orderM induced by the considered
IP) a possibility distribution, then, they take the one dominating all the probability measures defined by
IP. Note that Masson and Denœux (2006) address possibility distribution inference from large datasets and
(Hou and Yang, 2010) is dedicated to small ones. The two methods converge to the optimal transformation
in the case we have sufficient data. There are two main drawbacks with these two transformations: i)
its computational cost since it considers in the worst case N! linear extensions where N is the size of the
distribution to transform and ii) the fact that this transformation results in a loss of information and does not
guarantee that the obtained distribution is optimal in terms of specificity (Destercke et al., 2007).

Destercke et al. (2007) suggest that any upper generalized R-cumulative distribution F̄ build from one
linear extension Cl can be viewed as a possibility distribution and ensures that the obtained distribution
dominates all the probability measures defined by IP [li, ui]. Let φ1, φ2, ..., φn be subsets of Di such that
φi = {xij ≤Cl xik}. The upper cumulative distribution F̄ from one linear extension Cl is computed as
follows:

F̄ (φi) = min(
∑
xij∈φi

uj, 1−
∑
xij /∈φi

lj) (1.44)

1.8 Conclusion
In this chapter we have presented basic concepts of possibility theory, a non classical theory of uncer-

tainty that offers an appropriate framework to handle uncertainty qualitatively and quantitatively. Then, we
have introduced many important concepts relative to possibility theory such as possibility distribution, non-
specificity, sampling, similarity etc. Finally, we have briefly reviewed some uncertainty theories, namely,
probability theory, evidence theory and imprecise probability theory and we have discussed their link with
possibility theory.

Next chapter discusses graphical representations of knowledge under uncertainty and we will mainly
focus on possibilistic networks and their learning from imperfect data.
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2.1 Introduction
Over the last three decades, a lot of effort has been put into learning graphical models from data but most

of the proposed methods are relative to probabilistic models. In particular, Bayesian networks (Pearl, 1988;

21



22 Chapter2: Graphical representation of knowledge in uncertain frameworks

Jensen, 1996) have been widely studied and used in real applications (Pourret et al., 2008). However, where
imprecision is inherent to the studied domain or where available information are simply preferences, non-
classical uncertainty theories such as possibility theory (Zadeh, 1978) and evidence theory (Shafer, 1976)
stand out as best alternatives to probability theory (Dubois and Prade, 2006). Therefore, other graphical
models have been proposed to model and reason with this form of imperfect information. Among these
models, we are interested by possibilistic networks representing the possibilistic counterpart of Bayesian
networks.

In this chapter, we will present three graphical reasoning models namely Bayesian, evidential and credal
networks by giving their formal descriptions and reviewing their inference and learning methods. Then, we
will focus on possibilistic networks, in particular, their learning from imperfect data.

This chapter is organized as follows: Sections 2.3, 2.5 and 2.4 briefly present Bayesian networks, credal
networks and evidential networks. Section 2.6 and 2.7 are dedicated to possibilistic networks and how to
learn them from data.

2.2 Background and notations on graphs

We first give some notations that will be used in the remaining. Let V = {X1, X2, ..., Xn} be a finite
set of variables. G= (V,E) is said to be a graph on V and E corresponds to the set of edges connecting
some pairs of nodes in V . If the edges in E are directed then they are called edges and G= (V,E) is said to
be a directed graph.

– For each edge X1X2, the node X1 is called its origin and X2 its end.
– In an edge X1X2, the node X1 is the parent of X2 and the node X2 is the child of X1.
– Pa(Xi) is the sets of parents of a variable Xi.
– A path in a directed graph is a sequence of nodes from one node to another using the edges.
– The path X1 → X2 → X3 is called a serial connection.
– X1 ← X2 → X3 is called a diverging connection.
– X1 → X2 ← X3 is called a v-structure.
– A cycle is a path visiting each node once and having the same first and last node.
– A loop is an undirected cycle.
– A DAG is a Directed Acyclic (without cycles) Graph.
– The skeleton of a directed graph is the same underlying undirected graph.
– A singly connected DAG or polytree is a DAG which contains no loops, in this case the graph

obtained by dropping the directions of the links is a tree.
– A multiply connected DAG is a DAG which can contain loops.
– D-separation criterion: Let be Z ⊆ V , X and Y two disjoint subsets in V \ Z. X and Y are said to

be d-separated by Z if X and Y are independent given Z.

2.3 Bayesian networks

In this section, we give a formal definition of Bayesian networks (Pearl, 1988; Jensen, 1996). Then,
we discuss information propagation in such models, their application in real world and available software
solutions. Finally, we review some existing learning methods.

2.3.1 Definition

Bayesian networks represent a powerful tool for reasoning and modeling complex domains. A Bayesian
network over a set of variables V consists of two components:
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– A graphical or qualitative component composed of a DAG which encodes a set of independence
relations satisfying the Markov assumption, i.e., each variable Xi ∈ V is conditionally independent
of its non-descendent given its parents.

– A numerical or quantitative component corresponding to the set of conditional probability distribu-
tions relative to each node Xi ∈ V in the context of its parents i.e. p(Xi|Pa(Xi)).

Given a Bayesian network, the global joint probability distribution over the set V = {X1, ..., XN} can
be expressed as a product of the n initial conditional probabilities via the following probabilistic chain rule:

p(X1, ..., Xn) =
∏
i=1..n

p(Xi | Pa(Xi)). (2.1)

Note that two different DAGs can represent the same set of conditional independence relations, and
hence distributions. Such graphs are said to be Markov equivalent.

Definition 2.3.1. Two Bayesian networks BN1 and BN2 are equivalent if they encode the same probability
distribution.

Judea Pearl (1991) have shown that two equivalent DAGs satisfy two graphical conditions expressed
through the following theorem:

Theorem 2.3.1. Two DAGs are equivalent if and only if they have the same skeleton and the same v-
structures.

Example 2.3.1. Let us consider the Figure 2.1.

X1 X2

X3

X1 X2

X3

X1 X2

X3

X1 X2

X3

G1 G2 G3 G4

Figure 2.1: Markov equivalence

In this example, G1, G2 and G3 are equivalent and are not equivalent to the v-structure in G4. In fact,
we can easily demonstrate that:
P (X1, X2, X3)G1 = P (X1, X2, X3)G2 = P (X1, X2, X3)G3 6= P (X1, X2, X3)G4 .

A Markov equivalence class is defined as a set of equivalent Bayesian networks and represented via a
Completed Partially Directed Acyclic Graph (CPDAG) having the same skeleton as all the graphs in the
equivalence class and all its reversible edges (edges that do not belong to a v-structure and their inversion
does not generate a v-structure) are undirected.

2.3.2 Propagation, applications and software solutions
Inference is one of the most important tasks we can process on Bayesian networks. It benefits from ad-

vantages of joint distribution decomposition into a product of local probability distributions of each variable
depending only on its parents to study the impact of some partially observed variables known as evidence
on remaining ones. This problem is classified as NP-hard except for poly-trees (singly connected graphs)
where inference can be performed in polynomial time (Cooper, 1990). Exact inference methods could be
mainly classified into two families: message passing algorithms are performed on the particular case of
singly connected DAGs (Pearl, 1988; Kim and Pearl, 1983). It consists in combining information deriving
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from parents and children of the variable of interest via a message passing mechanism. The second family
of methods are dedicated to more generic DAGs i.e. multiply connected networks. These algorithms trans-
form the DAG into a junction tree, composed of cliques of variables, using moralization and triangulation
techniques. Then, message passing is performed between obtained cliques (Jensen, 1996; Lauritzen and
Spiegelhalter, 1988). Several other works have been proposed to solve this problem either exact or approx-
imative. For exact algorithms, we cite for instance symbolic probabilistic inference (Li and d’Ambrosio,
1994) and polynomial compilation (Chavira and Darwiche, 2007). For approximate methods, we cite for
instance Monte Carlo methods (Henrion, 1986a) and Logic sampling (Dagum and Horvitz, 1993).

Bayesian networks are increasingly popular as reasoning tools among those researching the use of artifi-
cial intelligence, probability and uncertainty. Thereby, huge number of Bayesian networks based real world
applications have been developed in various disciplines we cite as examples: DIAVAL in medical diagnosis
(Diez et al., 1997), PINS IN MAPS in crime risk factors analysis (Oatley and Ewart, 2003), FINEX (Foren-
sic Identification by Network Expert systems) in forensic science (Cowell, 2003), ADVOCATE (Advanced
On-board Diagnosis and Control of Autonomous Systems) in risk management in robotics (Sotelo et al.,
2003). Readers interested in real applications may consult (Pourret et al., 2008; Korb and Nicholson, 2010).

Given the widespread popularity of Bayesian networks, it is evident that several softwares and libraries
have been developed to manipulate these reasoning models e.g. Bayesia 1, Netica 2 and BNT toolbox (Mur-
phy, 2014).

2.3.3 Learning from data

Learning Bayesian networks has been widely studied and various approaches were proposed to learn
both DAG structure and parameters. The most common way to learn parameters from complete data can
be easily performed using either the statistical approach or the Bayesian one (Heckerman, 1998). The
statistical approach consists on finding the most likely values for a model parameters given a dataset and an
underlying model. This is done by maximizing the likelihood function defined as follows:

Given a dataset D, a DAG G and the parameters Θ = {θ1, θ2, ..., θn} relative to {X1, X2, ..., Xn} to be
estimated.

The likelihood function is expressed by:

L(Θ, G,D) =
n∏
i=1

qi∏
j=1

ri∏
k=1

θ
Nijk
ijk (2.2)

where for each Xi qi is card(Pa(Xi)) and ri = card(Di), θijk is the parameter to be estimated when
Xi = xik and Pa(Xi) = xj .

Note that learning Bayesian networks parameters from imperfect data addresses the particular case of
missing data. In this case, the most common method is the standard Expectation Maximization (EM)
(Lauritzen, 1995).

Existing algorithms to learn the structure of Bayesian networks can be classified into constraint-based
approaches, score-based approaches and hybrid methods.

Constraint-based approaches

The first family of approaches considers the learning task as a constraint satisfaction problem which
consists in identifying conditional independence relations among variables using a statistical hypothesis
test, such as χ2 test (Chernoff and Lehmann, 1954). Then, it constructs a network that exhibits covered
independence relations.

1. http://www.bayesialab.com/
2. http://www.norsys.com/netica_c_api.htm#download
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All constraint-based methods such as IC (Inductive Causation) (Pearl and Verma, 1995), PC (Peter
and Clark, the inventor names of the algorithm) (Spirtes et al., 2000) and PMMS (Polynomial Max-Min
Skeleton) (Brown et al., 2005), are based on the same principle described as follows:

1. Construct an undirected graph detecting all relationships between variables using independence tests
i.e. an undirected graph representing all detected dependences.

2. Detect v-structures in the obtained undirected graph (Xj → Xi ← Xk) also using independence tests.

3. Orient edges based on a set of orientation rules related to DAG constraints for instance, cycle avoid-
ance.

Note that the two first steps are based on reasoning about conditional independence facts and learns the
Markov equivalence class rather than the fully DAG structure.

Score-based approaches

Contrarily to constraint-based approaches, score-based ones consider the learning task as an optimiza-
tion problem i.e. it looks for the structure that maximizes a score that assesses the fitness between each
possible structure and available data, or looks for the best sub-structures and combines them. So, a score-
based method usually consists of:

– a scoring function (to assess the quality of a given network),
– a search method (to traverse the space of possible networks).

Scoring functions: Most of scores proposed in the literature, e.g. Akaike information criterion (AIC)
(Akaike, 1970), Bayesian information criterion (BIC) (Cooper and Herskovits, 1992) and minimum de-
scription length (MDL) (Bouckaert, 1993), are based on the Occam’s razor principle: find the most simple
model that fits the data.

For instance, the AIC score presents a good compromise between likelihood and complexity and is com-
posed of two components: the likelihood of the structure given the data (Equation 2.2) and its complexity
which is controlled via its dimension denoted by Dim(G) and expressed by:

Dim(G) =
n∑
i=1

Dim(Xi, G) (2.3)

where Dim(Xi, G) = (ri − 1) ∗
∏

Xj∈Pa(Xi)
rj

So, formally, the AIC score is expressed as follows:

AIC = logL(Θ, G,D)− dim(G) (2.4)

Most of scores proposed in the literature satisfy two criteria: decomposability and Markov equivalence:
– A score S is said to be decomposable if it can be described in terms (generally a sum) of local scores
s i.e. depending only on a node and all its parents.

– A score is said to be Markov equivalent if it assigns the same value to two equivalent graphs.

Search methods: Since an exhaustive search cannot be performed due to the exponential growth of the
DAGs space w.r.t. the number of variables in the studied domain, score-based approaches use heuristics
to traverse the DAGs space. These search methods could be classified into two families: the first family
gathers methods which reduce the search space by traversing only a particular space (trees), for instance,
we cite maximum weight spanning tree (MWST) (Chow and Liu, 1968), or traversing the space in a specific
order (e.g. topological order) as done by K2 algorithm (Cooper and Herskovits, 1992). The second family
of score-based approaches traverse all the space of solutions: DAGs or CPDAGs space and performs a
greedy search.
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In the following, we describe the search algorithms that will be used in the remaining. MWST algorithm
(Chow and Liu, 1968) associates a weight i.e. a score to each pair of variables Xi, Xj ∈ and finds a subset
of edges where the total of their weights is maximized. The obtained structure is a sub-graph in the form of
an undirected tree. To transform it to a directed graph, one possible solution is using Depth-first search.

K2 algorithm requires a predefined topological order to perform the search. It consists in finding the
best set of parents for a node (variables that come before it in the topological order) in order to maximize the
score of sub-networks and combine them. At the beginning, we compute the score for the parentless variable
Xi. Then, in turn, each of the parent candidates Xj is temporarily added and the score is recomputed. The
parent candidate that yields the highest value of the scores is selected permanently added.

Greedy search algorithm is an iterative method which given an initial DAG (an empty DAG, randomly
generated network or the tree obtained by MWST algorithm), generates all neighbor structures obtained
after performing one of elementary operation, i.e., adding, deleting or reversing an edge. Then, it computes
obtained neighbors structures scores and picks the operation that leads to the structure having the highest
score. This process is repeated until the already obtained structure has a higher score than DAGs in the list
of neighbors. This algorithm will be used in chapter 5.

Hybrid methods

Hybrid methods combine advantages of both previous approaches and consists on a local search uses
independence test in order to provide a neighborhood containing all interesting conditional independence
relations and a global optimization is performed in order to search in the space of candidate graphs satisfying
observed conditional dependence relations. Tsamardinos et al. (2006) show that their hybrid method Max-
Min Hill-Climbing, which constrains a scoring search outperforms classical approaches. These methods
are able to scale to distributions with more than thousands of variables.

2.4 Evidential networks
Several adaptations of Bayesian networks were proposed in the literature in different frameworks.

Within these adaptations we can mention evidential networks proposed in (Xu and Smets, 1994; Smets,
1993; Ben Yaghlane and Mellouli, 1999) and based on belief function theory (cf. Section 1.7.2). In what
follows, we present two common definitions of these networks, existing information propagation algorithms
and their application in real world. Finally, we discuss their learning from data.

2.4.1 Definition

As Bayesian networks, evidential networks have two components:
– a graphical or qualitative component composed of a DAG.
– a numerical component which replaces probability distributions by conditional belief functions. In

the literature, there are several different ways to define evidential networks. The most common defi-
nitions have been proposed by Xu and Smets (1994) and Ben Yaghlane and Mellouli (1999). In the
first definition Xu and Smets (1994), conditional belief functions are not specified per variable like
the case of conditional probabilities. In fact, when a variable has more than one parent, a conditional
belief function has to be defined for this variable given each one of its parent separately. It is evident
that this representation is restricted to graphs with only binary relations among variables. The sec-
ond definition (Ben Yaghlane and Mellouli, 1999) were proposed to address this limitation. In fact,
conditional belief functions can be specified in two different manners:
– Per edge: Each edge between a variable and one of its parent is weighted by a conditional belief

function
– Per child: Each child node is associated with a conditional belief function given all its parents
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2.4.2 Propagation, applications and software solutions
The two different definitions of evidential networks lead naturally to families of information propaga-

tion algorithms. The algorithm proposed by Xu and Smets (1994) for belief propagation is based on the first
definition of evidential networks and adapts the message-passing algorithms initially proposed to Bayesian
networks (cf. Section 2.3.2) to singly connected evidential networks. For multiply connected networks, it
deletes all loops in the DAGs to transform them into singly-connected networks and perform message pass-
ing. The propagation algorithms in (Ben Yaghlane and Mellouli, 1999, 2008; Laâmari and Ben Yaghlane,
2014) are based the second definition of evidential networks and transform the latter into binary joint trees
(Shenoy, 1997) to perform belief propagation.

Evidential networks have been applied in various domains such as: Decision analysis (Xu, 1997), in-
formation fusion and threat assessment (Benavoli et al., 2009) and reliability analysis (Simon and Weber,
2009).

2.4.3 Learning from data
Few works (Ben Hariz and Ben Yaghlane, 2014, 2015) have been proposed to learn evidential networks

from evidential databases (Bachtobji et al., 2008) i.e. databases containing certain or/and uncertain data
modeled using the belief functions framework.

Ben Hariz and Ben Yaghlane (2014) proposes an evidential-likelihood-based parameter learning ap-
proach. This likelihood function is an evidential extension of the probabilistic one expressed by Equation
2.2. In (Ben Hariz and Ben Yaghlane, 2015), authors propose a constraint based approach for learning
evidential networks structure from evidential by extend the probabilistic χ2 to learn evidential networks
structure. This approach generalizes constraint based methods classically used to learn Bayesian networks
structure.

2.5 Credal networks
Credal networks (Cozman, 2000) are based on imprecise probability theory (cf. Section 1.7.3). In what

follows, we present these networks by analogy to Bayesian ones. Then, we discuss information propagation
in such models, their application in real world and available software solutions. Finally, we discuss their
learning from data.

2.5.1 Definition
A credal network (Cozman, 2000) can be viewed as a collection of Bayesian networks over a fixed set

of variables sharing the same DAG. More formally, a credal network consists of a DAG where variables
uncertainty is generally encoded by local separately specified credal sets i.e. closed and convex sets of
probability distributions (cf. Section 1.7.3).

Given a Credal network, the global joint probability distribution over the set V is the strong extension
of the network i.e. the convex hull (CH) of the set containing all joint distributions that factorizes the
probabilistic chain rule in Equation 2.1 and can be expressed as follows:

K(X1, ..., Xn) = CH(p(X1, ..., Xn)) (2.5)

where p(X1, ..., Xn) is computed using the probabilistic chain rule defined in Equation 2.1. Let P be the
set containing all joint distributions i.e. the strong extension of a credal network. One can compute an
interval-based joint probability distribution as follows:

P (X1, ..., Xn) = min
p∈P

p(X1, ..., Xn) (2.6)
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P (X1, ..., Xn) = max
p∈P

p(X1, ..., Xn) (2.7)

2.5.2 Propagation, applications and software solutions

Several exact and approximate algorithms have been proposed to perform information propagation in
credal networks. These algorithms could be classified into two families: exact inference algorithms examine
potential vertices of the strong extension and compute lower/upper values while approximate inference
algorithms can produce either outer approximations (Cozman, 2000; da Rocha and Cozman, 2002, 2003)
i.e. intervals that enclose the correct probability interval between lower and upper probabilities or inner
approximations (Cano and Moral, 2002; da Rocha et al., 2002) i.e. intervals that are enclosed by the correct
probability interval.

Credal networks have been applied in various complex domains such as computer vision problems
(Corani et al., 2010; De Campos et al., 2009), military planning (Antonucci et al., 2009) and natural haz-
ards identification (Antonucci et al., 2004). However, few publicly available software solutions have been
proposed to manipulate them, we cite, in particular, SAMIAM 3, JavaBayes (Cozman, 2001).

2.5.3 Learning from data

By analogy to Bayesian networks, learning credal networks from data is performed using maximum
likelihood based algorithms. Most of researches attempts made to learn credal networks from data concern
their parameters learning. In fact, we distinguish two family of methods: the first one estimates credal
networks parameters based on Dirichlet model i.e. using imprecise Dirichlet model (IDM) (Cano et al.,
2007) or imprecise sample size Dirichlet model (ISSDM) (Masegosa and Moral, 2014a). The second family
considers by analogy to Bayesian networks, a likelihood-based learning approach which takes all the models
quantification whose likelihood exceeds a given threshold (Antonucci et al., 2012).

Concerning structure learning of credal networks, existing works have adapted methods initially pro-
posed in the context of Bayesian networks by replacing Bayesian scores with imprecise ones based on IDM,
ISSDM and imprecise likelihood (Zaffalon and Hutter, 2005; Masegosa and Moral, 2014b; Cozman, 2014).

2.6 Possibilistic networks
As evidential networks, possibistic networks were proposed as another counterpart of Bayesian net-

works in the possibilistic framework. Such networks were first proposed (Fonck, 1992). In this section, we
present two common definitions of these networks, existing information propagation algorithms and their
application in real world.

2.6.1 Definition

As Bayesian networks, possibilistic networks have two components:
– a graphical or qualitative component composed of a DAG.
– a numerical or quantitative component corresponding to the set of conditional possibility distributions

relative to each node Xi ∈ V in the context of its parents, denoted by Pa(Xi), i.e. π(Xi|Pa(Xi)).
The two definitions of the possibilistic conditioning (cf. Section 1.2.5) lead naturally to two different

ways to define possibilistic networks (Borgelt et al., 2009; Fonck, 1992): quantitative also called product-
based possibilistic networks based on the product-based conditioning expressed by Equation 1.7. These
models are theoretically and algorithmically close to Bayesian networks. In fact, these two models share
the graphical component, i.e. the DAG and the product operator in the computational process. This is

3. http://reasoning.cs.ucla.edu/samiam
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X1 X2 X3 X4 π× πm X1 X2 X3 X4 π× πm
x11 x21 x31 x41 0.12 0.3 x12 x21 x31 x41 0.4 0.4
x11 x21 x31 x42 0.036 0.3 x12 x21 x31 x42 0.12 0.3
x11 x21 x32 x41 0.12 0.3 x12 x21 x32 x41 1 1
x11 x21 x32 x42 0.024 0.2 x12 x21 x32 x42 0.2 0.2
x11 x22 x31 x41 0.2 0.4 x12 x22 x31 x41 0.14 0.4
x11 x22 x31 x42 0.4 0.4 x12 x22 x31 x42 0.28 0.4
x11 x22 x32 x41 0.4 0.4 x12 x22 x32 x41 0.7 0.7
x11 x22 x32 x42 0.04 0.1 x12 x22 x32 x42 0.07 0.1

Table 2.1: Joint possibility distribution of the network defined by Figure 2.2 in the numerical (π×) and the
ordinal interpretation (πm)

not the case of qualitative also called min-based possibilistic networks based on min-based conditioning
defined by Equation 1.8 that represents a different semantic.

In both cases, possibilistic networks are a compact representation of possibility distributions. More
precisely, the joint possibility distribution could be computed by the possibilistic chain rule expressed as
follows:

π⊗(X1, ..., Xn) = ⊗i=1..nπ(Xi |⊗ Pa(Xi)) (2.8)

where⊗ corresponds to the minimum operator (min) for qualitative possibilistic networks and to the product
operator (*) for quantitative possibilistic networks.

Borgelt and Kruse (2003) define quantitative possibilistic networks differently with a numerical compo-
nent whose conditional possibility distributions are not necessarily normalized. Moreover, they are based
on non-interactivity relation which is applicable only in the ordinal interpretation. In this context, it is also
possible to apply the chaining rule (Equation 2.8) to non-normalized possibility distributions.

Example 2.6.1. The DAG and conditional distributions in Figure 2.2 represent a possibilistic network
composed of four binary variables X1, X2, X3 and X4 defined respectively on D1 = {x11, x12} D2 =
{x21, x22}, D3 = {x31, x32} and D4 = {x41, x42}. Table 2.1 gives its joint possibility distribution in the
numerical (π×) and the ordinal interpretation (πm).

X1

X3X2

π(X1)

π(X3|X1)π(X2| X1)

X4

π(X4|X2X3)

X1 π(X1) X1 X2 π(X2|X1) X1 X3 π(X3|X1)
x11 0.4 x11 x21 0.3 x11 x31 1
x12 1 x11 x22 1 x11 x32 1

x12 x21 1 x12 x31 0.4
x12 x22 0.7 x12 x32 1

X2 X3 X4 π(X4|X2, X3) X2 X3 X4 π(X4|X2, X3)
x21 x31 x41 1 x22 x31 x41 0.5
x21 x31 x42 0.3 x22 x31 x42 1
x21 x32 x41 1 x22 x32 x41 1
x21 x32 x42 0.2 x22 x32 x42 0.1

Figure 2.2: An example of possibilistic networks
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2.6.2 Inference, applications and software solutions
Inference

Most of inference methods proposed in literature (Fonck, 1994; Gebhardt and Kruse, 1997) represent
direct adaptations of methods initially proposed to Bayesian networks. These works show that product-
based possibilistic networks inference algorithms are very similar to probabilistic ones using the same
operator: product. This is not the case of min-based possibilistic networks. In fact, the min operator has
particular properties such as the idempotency and specific algorithms have thereby been proposed. We can,
in particular, cite the approximative algorithm anytime proposed in (Ben Amor et al., 2003) to avoid the
transformation of an initial DAG into a junction tree in the case of multiply connected DAGs.

Benferhat and Smaoui (2007) have proposed an inference algorithm in hybrid possibilistic networks
where uncertainty encoded by each node and its parents are represented by possibilistic logic. Inference al-
gorithms proposed in (Ayachi et al., 2010) based on knowledge compilation techniques following Darwiche
et al.’s work in the probabilistic case (cf. Section 2.3.2).

All of these methods have shown that the use of possibility theory in its ordinal interpretation provides
a significant gain in terms of treatments necessary for inference. Recently, another attempt has been made
concerning inference in naive structures handling soft evidence (Benferhat and Tabia, 2012) described by
possibility distributions relative to observed variables.

Applications

Possibilistic networks have been proposed to solve real problem in various domains as data fusion
(Beckmann et al., 1994), automotive industry (Kruse and Borgelt, 1995), intelligent tutoring systems (Ad-
ina, 2006), social specialization in metropolized spaces (Dubois et al., 2015) and information retrieval
(Chebil et al., 2015; Boughanem et al., 2009). In what follows, we detail two examples of possibilistic
networks applications.

First, we can cite the work presented in (Dubois et al., 2015) where authors explore uncertain knowledge
elicitation describing the field of social specialization in metropolized spaces. To this end, they need an
uncertainty framework where factors affecting the studied domain can be captured in a qualitative way,
more precisely, in a hierarchical form without quantifying them. Moreover, the evaluation of the impact of
certain variables on the others is not precise and is modeled by fuzzy membership functions that generate
possibility distributions. Therefore, the use of Bayesian networks in this case is not very suitable.

In what follows, we present another example in information retrieval where the concept of total igno-
rance is unavoidable and better expressed with possibilistic networks. Boughanem et al. (2009) try to select
from a collection of documents those likely to be relevant. Their model distinguishes, for example, rejec-
tion of a document as irrelevant and selection by the use possibility and necessity measures. The possibility
of relevance is used to eliminate irrelevant documents while the necessity of relevance is used to select the
most interesting ones. In addition, the weighting of a single word with a unique probability does not capture
the dual concept of specialty and non-specialty, easily modeled with the possibility theory.

Software solutions

Unlike Bayesian networks, only one publicly available software manipulates possibilistic networks:
INeS (Induction of Networks Structure) (Borgelt et al., 2009) that implements several methods detailed in
Section 2.7.2 dedicated to structure learning. Note that there is no solution for parameters learning.

2.7 Learning possibilistic networks from data
In this section, we give an overview of quantitative possibilistic networks learning algorithms. To the

best of our knowledge, parameters learning problem has not been studied yet. In fact, existing methods
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(Borgelt et al., 2009; Sangüesa et al., 1998) are dedicated to the structure learning and ignore parameters
learning problem. In fact, they compute possibility distributions either using the non-normalized estimation
described in Section 1.4 as done in (Borgelt et al., 2009) or using probability possibility transformations
as in (Sangüesa et al., 1998). So, the output of the proposed methods is a DAG which is not characterized
by any numerical data even if the proposed learning process is ensured in the possibilistic framework.
Semantically, the resultant structure is closest to a qualification via possibilistic conditional distributions
which may represent the qualitative component of several graphical models. That said, the semantic of
generated structures fits better with possibilistic networks and more precisely quantitative ones. A recent
work (Haddad et al., 2016) has been proposed to learn possibilistic network parameters using the imprecise
probability possibility transformation proposed by Destercke et al. (cf. Section 1.7.3). In fact, authors learn
imprecise probability distributions from data and approximate them by possibility distributions.

By analogy to Bayesian networks, structure learning methods could be categorized into three families:
constraint-based, score-based and hybrid methods.

2.7.1 Constraint-based methods
In the possibilistic case, as far as we know, only one attempt has been made to measure conditional

independence in order to learn possibilistic networks (Sangüesa et al., 1998). In this work, authors have
proposed an independence measure, denoted by Dep(Xi, Xj, α), and is expressed as follows:

Dep(Xi, Xj, α) = 1−
∑
xjl∈Dj

π(xjl)
∑

xik∈α−set

|π(xik)− π(xik|xjl)| (2.9)

where α-set = {xik ∈ Di s.t. |π(xik)− π′(xik)| ≥ α} and α ∈ [0.1].

2.7.2 Score-based methods
Borgelt et al. (2009) have proposed two methods handling imprecise data, possibilistic versions of two

learning methods initially proposed to Bayesian networks: K2 and maximum weight spanning tree (cf.
Section 2.3.3). These adaptations propose several possibilistic scores: first works propose global scores and
following works are based on local ones.

Borgelt and Gebhardt (1997) have proposed a global score named weighted sum of possibility degrees .
Given an imprecise dataset D and a DAG G learned from D, weighted sum of possibility degrees, denoted
by Q(G,D), is expressed as follows:

Q(G,D) =
∑

{x1k,...,xnl}∈D

Nx1k,...,xnl f̂
nn(x1k, ..., xnl) (2.10)

f̂nn(x1k, ..., xnl) is computed locally combining f̂nn(Xi|Pa(Xi)) computed by Equation 1.14 andNx1k,...,xnl

is the number of occurrences of the tuple (x1k, ..., xnl).
Then, Borgelt et al. have proposed other local scores which are:
• Specificity gain (Borgelt and Kruse, 2003), denoted by Sgain, is expressed by:

Sgain(Xi, Xj) = nsp(π(Xi)) + nsp(π(Xj))− nsp(π(Xi, Xj)) (2.11)

where possibility distributions are computed using Equation 1.14. This measure is the ancestor of
several scores (Borgelt and Kruse, 2003) i.e specificity gain ratio, symmetric specificity gain, etc.
– Specificity gain ratio denoted by Sgr and expressed by:

Sgr(Xi, Xj) =
Sgain(Xi, Xj)

nsp(π(Xj))
=
nsp(πi(Xi)) + nsp(π(Xj))− nsp(π(Xi, Xj))

nsp(π(Xj))
(2.12)
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– Symmetric specificity gain ratios denoted by S(1)
gr et S(2)

gr and expressed by:

S(1)
gr (Xi, Xj) =

Sgain(Xi, Xj)

nsp(π(Xi, Xj))
(2.13)

S(2)
gr (Xi, Xj) =

Sgain(Xi, Xj)

nsp(πi(Xi)) + nsp(π(Xj))
(2.14)

– Conditional specificity gain denoted by Scgain and expressed by:

Scgain(Xi, Xj) =
∑
xj∈Dj

∫ N(xj)

N

0

(
N(xj)

N
)α∑

xj∈Dj
(
N(xj)

N
)α
log2

∑
xi∈Di

(N(xi)
N

)α∑
xj∈Dj

(
N(xi|xj)

N
)α
dα (2.15)

• Possibilistic mutual information (Borgelt and Kruse, 2003), denoted by dmi, is expressed by:

dmi(Xi, Xj) = −
∑
xik∈Di
xjl∈Dj

Nik,jl

N
.log2

Nik,jl

min (Nik, Njl)
(2.16)

• Possibilistic χ2 measure (Borgelt and Kruse, 2003), denoted by dχ2 , is expressed by:

dχ2(Xi, Xj) =
∑
xik∈Di
xjl∈Dj

(min(Nik, Njl)−Nik,jl)
2

min(Nik, Njl)
(2.17)

A generalization of these scores to more than two attributes is made as follows: given a variable Xi, all
its parents could be combined into one pseudo-variable. That is, we measure dependence between Xi and
an artificial attribute representing the combination of all parents, i.e. the Cartesian product of their domains.

2.7.3 Hybrid methods
These methods combine advantages of the two previous families. In fact, hybrid methods use infor-

mation captured from conditional independence tests to guide search in DAGs space optimizing a score.
Sangüesa et al. (1998) have proposed two hybrid learning methods from precise data: the first one learns
trees and the second one learns DAGs. The two methods use the independence measure defined by Equa-
tion 2.9. This method learns undirected graphs detecting relations between each node and its parents and
children. Then, it combines obtained sub-graphs and orient edges using DAG non-specificity expressed by:

nsp(G) =
∑
Xi∈V

nsp(π(Xi|Pa(Xi))) (2.18)

where nsp(π(Xi|Pa(Xi))) = nsp(π(Xi, Pa(Xi)))−nsp(π(Pa(Xi))) and nsp(π(Xi|Pa(Xi))) = nsp(π(Xi))
si Pa(Xi) = ∅.

This method uses three probability possibility transformations to learn parameters, namely, Klir trans-
formation, optimal transformation and symmetric transformation (cf. Section 1.7.1).

2.7.4 Discussion
Only few attempts have been made to learn possibilistic networks structure from data. Moreover, exist-

ing works (Borgelt et al., 2009; Sangüesa et al., 1998) have been proposed before advances made concerning
possibilistic networks as models of independence (Ben Amor and Benferhat, 2005) ignoring also parameters
learning problem.
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In what follows, we give a global vision for possibilistic networks structure learning methods detailing
limitations of each one. Possibilistic networks structures learned using K2 and maximum weight span-
ning tree are evaluated using weighted sum of possibility degrees expressed by Equation 2.10. We note a
mismatch between global and local scores definitions. In fact, weighted sum of possibility degrees is not
decomposable on any local score. This score is close to log-likelihood used to learn Bayesian networks,
expressed by

∑
{x1k,...,xnl}∈D

Nx1k,...,xnllog p(x1k, ..., xnl). The possibilistic adaptation (Borgelt and Gebhardt,

1997) sees disappearing log by proposing weighted sum of possibility degrees without justification.
Concerning the hybrid method (Section 2.7.3), the main problem residing in its conditional indepen-

dence measure is that it is based on a similarity measure for which we find several contradictory formula-
tions in several works proposed by the same authors (Sangüesa et al., 1998; Sangüesa et al., 998b). The
second problem is the lack of an automatic computation of threshold to decide between the two hypothesis
(dependent or independent variables) such as the case of statistical tests. Moreover, this method could fail
to return a DAG since it does not take into account acyclicity property during the learning process. To esti-
mate possibility distributions, this hybrid method uses three transformations (Klir and Parviz, 1992; Dubois
et al., 1993, 2004) that could not be applied to possibilistic networks (see Section 4.3.1).

Measure Equation Data Function to be optimized
Dep 2.9 precise distance between the joint distributions and independent distributions
nsp 2.18 precise specificity
Q 2.10 imprecise divergence w.r.t. an (unknown) initial network

Sgain 2.11 imprecise divergence between joint distribution specificity and independent
distributions specificity

dmi 2.16 imprecise difference between the joint distribution and independent distributions
d2
χ 2.17 imprecise difference between the joint distribution and independent distributions

Table 2.2: Summary table of measures properties

2.8 Conclusion
In this chapter, we have introduced basic definitions and concepts related to graphical representation of

knowledge in uncertain frameworks. In particular we have presented Bayesian networks and their existing
structure learning methods from data. Then, we have briefly introduced two graphical reasoning models
namely evidential and credal networks by presenting some propagation algorithms, their application in real
world and software solutions proposed to manipulate them.

In the second part of this chapter, we mainly focus on possibilistic networks and in particular, their
learning from data. Concerning parameters learning, this problem has not been studied yet and remains
an open research area. Moreover, existing structure learning algorithms are direct adaptations of Bayesian
networks methods and we have shown that replacing probability distributions by possibility distributions
is not satisfactory. Moreover, they have been proposed before advances made on possibilistic framework
and use scoring functions whose values are difficult to interpret. These limitations make them limited and
theoretically unsound. Thereby, whatever the studied task, learning possibilistic networks is a problem that
is not well studied.

Next chapters propose a new possibilistic likelihood function which will represent the key concept of a
global possibilistic networks learning algorithm. The proposed likelihood function will be explored to learn
possibilistic networks parameters and to define a new score to learn their structure. In the next chapter,
we propose a new validation strategy which will represent a clear experimental framework allowing the
evaluation of proposed learning algorithms.
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3.1 Introduction
Probabilistic graphical models learning methods, in particular Bayesian networks ones, are tested us-

ing randomly generated networks (synthetic) or networks that have been used in real systems, so that the
structure of the network is known and can serve as a rigorous gold standard e.g. Asia (Lauritzen and
Spiegelhalter, 1988) and Insurance (Russell et al., 1995) networks. Assessing the quality of learning algo-
rithms consists in comparing an initial graphical model with the learned one. In the probabilistic case, we
can always rely on the following approach which consists in selecting an arbitrary Bayesian network either
randomly generated or constructed by an expert and generating a dataset using Forward Sampling (Henrion,
1986b). Then, we try to recover the initial network using a learning algorithm and we compare the initial
network with the learned one.

As far as we know, such evaluation process has not been transposed yet in the possibilistic case. In fact,
existing possibilistic networks learning algorithms (Borgelt et al., 2009; Sangüesa et al., 1998) suffer from
the lack of an accurate and standard validation procedure and each method proposes its evaluation measure
whose values are difficult to interpret.
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This chapter rigorously addresses this problem by proposing a new evaluation strategy to product-based
possibilistic networks learning algorithms. First, we will propose a possibilistic networks sampling method
and two extensions of the latter in which we control the imprecision and the consistency degrees in the
generated datasets. Then, we propose two new possibilistic evaluation measures to assess learning algo-
rithms quality: the first one presents an approximation of Manhattan distance in the context of possibilistic
networks i.e. computed between joint possibility distributions of two networks and the second is based on
information affinity (cf. Section 1.6.4) and compares conditional possibility distributions of two networks
sharing the same structure.

This chapter is organized as follows: Section 3.2 proposes a possibilistic networks benchmark genera-
tion methods. Section 3.3 is dedicated to the proposition of new possibilistic learning evaluation measures.
The detailed experimental study in Section 3.4 shows the efficiency of the sampling method and the evalu-
ation measure Manhattan distance approximation.

3.2 Possibilistic networks benchmark generation
In the possibilistic case, there are currently no publicly available possibilistic networks used in real

systems that could be used as gold standard. Thereby, this section proposes a synthetic approach to generate
randomly possibilistic networks and to construct imprecise datasets from generated networks.

3.2.1 Possibilistic networks generation
Generating a possibilistic network consists in generating its qualitative and quantitative components.

Two solutions can be considered: generating randomly the network or transforming a gold Bayesian net-
work into a possibilistic one. In fact, concerning the graphical component, we could use any method pro-
posed in the context of Bayesian networks such as (Xiang and Miller, 1999). For the numerical component,
we propose to uniformly generate random values from [0,1] for each distribution satisfying normalization
property, i.e. at least one of states degrees is equal to 1.

The second solution consists on transforming an existing (gold) Bayesian network into a possibilistic
one. More precisely, the obtained network shares the same structure with the Bayesian one and its condi-
tional possibility distributions are computed using one of probability possibility transformations discussed
in Section 1.7.1.

3.2.2 Possibilistic networks sampling
Sampling a possibilistic network consists in generating a dataset representative of its joint distribution.

To the best of our knowledge, this problem has not been studied yet. We propose to generalize the variable
sampling method proposed by Guyonnet et al. (cf. section 1.5) to possibilistic networks. This choice is
justified by the fact that this method generates a more generic form of imperfect data i.e. imprecise data. In
what follows, we generalize the sampling variable method to the case of conditioned variables.

Sampling conditioned variables

Instantiating a parentless variable corresponds to computing its α-cut. Instantiating a conditioned vari-
able corresponds to computing also its α-cut given its sampled parents values. This could not be directly
applied to conditional possibility distribution which is composed of more than one distribution. So, to
instantiate a conditioned variable Xi, we compute α-cut from Π(Xi|Pa(Xi) ∈ A), computed as follows:

Π(xik|Pa(Xi) ∈ A) = max
ai∈A

π(xik|ai)π(ai) (3.1)

Equation 3.1 could be obtained applying the following equalities:
π(xik|A) = π(A|xik)π(xik)

Π(A)
= maxai∈A π(ai|xik)π(xik), (Π(A) = 1, A is a cut and has at least one value
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whose possibility degree which is equal to 1).
Using π(ai|xik)π(xik) = π(xik|ai)π(ai), we obtain Equation 3.1.

Sampling process

The sampling process constructs a database ofN (predefined) observations by instantiating all variables
in V w.r.t. their possibility distributions. Obviously, variables are most easily processed w.r.t. a topological
order, since this ensures that all parents are instantiated.

The proposed sampling process is formally described by Algorithm 1.

Algorithm 1 Sampling process
Input: Possibilistic network
Output: Observation
begin

% Process nodes in a topological order
foreach Xi ∈ V do

if Xi is parentless then
observation(Xi)=α-cut(Xi)

else
Compute Π(Xi|observation((Pa(Xi)))) using Equation 3.1
observation(Xi)= α-cut(Xi) from Π(Xi|observation((Pa(Xi))))

end
end
Return observation

end

Example 3.2.1. Let us consider the possibilistic network in Figure 2.2. The topological order is X1, X2,
X3, X4. Applying the described sampling process we obtain:

1. X1: α = 0.3: α-cut(X1) = {x11, x12}.
2. X2: α = 0.9:

(a) π′(x21) = max(0.4 ∗ 0.5, 1 ∗ 1) = 1, π′(x22) = max(0.4 ∗ 0.2, 1 ∗ 0.8) = 0.8,
π′(x23) = max(0.4 ∗ 1, 1 ∗ 1) = 1.

(b) α-cut(X2) = {x21, x23}.
3. X3: α = 0.7:

(a) π′(x31) = max(0.4 ∗ 0.4, 1 ∗ 1) = 1, π′(x32) = max(0.4 ∗ 1, 1 ∗ 0.3) = 0.4,
π′(x33) = max(0.4 ∗ 0.1, 1 ∗ 0.5) = 0.5.

(b) α-cut(X3) = {x31}.
4. X4: α = 0.2:

(a) π′(x41) = max(1 ∗ 1 ∗ 1, 1 ∗ 1 ∗ 0.6) = 1, π′(x32) = max(1 ∗ 1 ∗ 0.3, 1 ∗ 1 ∗ 1) = 1,
π′(x33) = max(1 ∗ 1 ∗ 0.4, 1 ∗ 1 ∗ 0.5) = 0.5.

(b) α-cut(X4) = {x41, x42, x43}.
The obtained observation is then ({x11, x12}, {x21, x23}, {x31}, {x41, x42, x43}).

The sampling process generates a particular case of imprecise datasets i.e. obtained data relative to a
variable Xi are conditionally consonant with respect to the sampled values of its parents. This is due the
fact that the sampling process is based on the α-cut notion which returns generally most possible values as
observed ones.

In what follows, we propose to parametrize this sampling process in order to generate more generic
imprecise data by controlling the consistency degree and the imprecision degree in generated datasets.



40 Chapter3: Benchmarking possibilistic networks learning algorithms and evaluation measures

Imprecision control

The aim of controlling the imprecision degree in generated datasets is to create different forms of impre-
cision around the most possible value i.e. varying the values in the dataset but we conserve the most possible
combination of Ω. Given an imprecision degree θimp and a variable Xi such that the α-cut(Xi) presents
values returned by the sampling process, we generate all subsets of α-cut including the most possible value
and we assign a probability θ

card(SXi )−1

imp ∗ (1− θimp)card(α-cut(Xi))−card(SXi ) to each subset SXi ⊆ α-cut(Xi)
i.e. we assign θimp for each observed state different to the most possible one in SXi and (1 − θimp) for
each non observed state. Note that if θimpr = 0, the algorithm returns necessarily the most possible value
contrarily to the case of θimpr = 1, the algorithm returns necessarily α-cut(Xi). Finally, we sample this
probability distribution and we replace α-cut(Xi) by the sampled subset in the dataset.

The proposed sampling process is formally described by Algorithm 2.

Algorithm 2 Sampling process (imprecision control)
Input: Possibilistic network
Output: Observation
begin

% Process nodes in a topological order foreach Xi ∈ V do
if Xi is parentless then

observation(Xi)=α-cut(Xi)
else

Compute Π(Xi|observation((Pa(Xi)))) using Equation 3.1
observation(Xi)= α-cut(Xi) from Π(Xi|observation((Pa(Xi))))

end
end
foreach SXi ⊆ cut(Xi) do

p(SXi) = θ
card(SXi )−1

imp ∗ (1− θimp)card(α-cut(Xi))−card(SXi )

end
observation(Xi)=sample(p)
Return observation

end

Example 3.2.2. Let X1 be a quaternary variable X1 such that D1 = {x11, x12, x13, x14} and the α-cut
returned by the sampling process is equal to {x11, x12, x14} with x11 the most possible value. We gen-
erate all subsets (4 subsets) of α-cut including x11 i.e., {x11}, {x11, x12}, {x11, x14} and the original set
{x11, x12, x14}. Then we assign for each subset a probability based on θimp: P ({x11}) = (1 − θimp)

2,
P ({x11, x12}) = θimp ∗ (1− θimp), P({x11, x14}) = θimp ∗ (1− θimp) and the original set {x11, x12, x14} =
θ2
imp. Finally, we sample this probability distribution and we replace the original set by the sampled subset

in the dataset.

Consistency control

The objective of controlling consistency is to give chance to combinations that do not include the most
possible value to be generated in the dataset. Given a consistency degree θcons and a variable Xi such that
the α-cut(Xi) presents values returned by the sampling process, we generate all subsets (nb-subsets denotes
the number of subsets) of α-cut and we assign a probability equal to θcons to α-cut(Xi) and a probability
equal to 1−θcons

nb−subsets−1
to remaining subsets i.e. to each SXi . Note that if θcons = 0, the algorithms returns

necessarily a subset SXi ⊂ α-cut(Xi) and cannot in any case return α-cut(Xi) contrarily to the case of
θcons = 1, the algorithm returns necessarily α-cut(Xi). Finally, we sample this probability distribution and
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we replace the α-cut(Xi) by the sampled subset in the dataset. The proposed sampling process is formally
described by Algorithm 3.

Algorithm 3 Sampling process (consistency control)
Input: Possibilistic network
Output: Observation
begin

% Process nodes in a topological order foreach Xi ∈ V do
if Xi is parentless then

observation(Xi)=α-cut(Xi)
else

Compute Π(Xi|observation((Pa(Xi)))) using Equation 3.1
observation(Xi)= α-cut(Xi) from Π(Xi|observation((Pa(Xi))))

end
p(α-cut(Xi))=θcons
foreach SXi ⊂ cut(Xi) do

p(SXi) = 1−θcons
nb−subsets−1

end
end
observation(Xi)=sample(p)
Return observation

end

Example 3.2.3. Let X1 be a quaternary variable such that D1 = {x11, x12, x13, x14} such that the α-cut
returned by the sampling process is equal to {x11, x12, x14}. We generate all subsets (7 subsets) of α-cut
i.e., {x11}, {x12}, {x14}, {x11, x12}, {x11, x14}, {x12, x14} and the original set {x11, x12, x14} such that the
latter has probability P ({x11, x12, x14}) = θcons and the probability of remaining sets is 1−θcons

7−1
. Finally,

we sample this probability distribution and we replace the original set by the sampled subset in the dataset.

3.3 Learning evaluation measures

An evaluation measure assesses learned possibilistic networks quality and quantifies the efficiency of
the learning method graphically or numerically. Evaluation measures could be classified into two families:
The first family gathers graphical measures which are used to compare the structure of the initial network
and the learned one. The second family gathers numerical measures which compare the initial network
and the learned one using a possibilistic dissimilarity/similarity measure between their joint possibility
distribution as done by KL divergence (Kullback and Leibler, 1951) in the probabilistic case or between
their conditional possibility distributions. Such a measure has been proposed to compare two possibility
distributions π and π′ defined in Di s.t. π(xik) ≥ π′(xik)∀xik ∈ Di (Borgelt et al., 2009). This hypothesis
is restrictive for comparing two possibilistic networks.

In this section, we briefly recall graphical evaluation measures initially proposed in the Bayesian net-
works context that could be used in the possibilistic case. Then, we propose two new numerical evaluation
measures, namely Manhattan distance approximation and mean information affinity. The first measure is
global i.e. computed between joint possibility distributions of two networks and mean information affin-
ity is local i.e. computed between conditional possibility distributions of two networks sharing the same
structure.
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3.3.1 Graphical measures

To evaluate possibilistic networks structure learning algorithms, we can use measures proposed in the
context of Bayesian networks, e.g. sensitivity, specificity and editing distance. For more details, see (Field-
ing and Bell, 1997; Shapiro and Haralick, 1985).

– Editing distance: number of operations required to transform learned possibilistic network DAG into
the initial one (add, reverse or delete an edge increases the editing distance by 1).

– Specificity: ratio of edges correctly identified as not belonging to the learned possibilistic networks
DAG over the true number of edges not present in the initial possibilistic network DAG.

– Sensitivity: ratio of correctly identified edges over the total number of initial possibilistic network
edges.

Note that, it is necessary to take into account Markov equivalence properties when computing these mea-
sures if the used score is Markov equivalent. In fact, we should compute editing distance between equiva-
lence class representatives and sensitivity and specificity of DAGs skeletons i.e. without edges orientation
or DAGs v-structures.

3.3.2 Numerical measures

Studying possibilistic networks parameters learning algorithms behavior requires numerical evaluation
measures to compare the learned network and the initial one by quantifying the gap between their joint
and conditional possibility distributions. As a direct solution, we have proposed in (Haddad et al., 2015c)
to use information affinity expressed by Equation 1.24 between the initial and the learned networks joint
possibility distributions. However, like the case of KL divergence (Kullback and Leibler, 1951) in the
probabilistic case, information affinity involves heavy computing if the number of variables increases. This
can be explained by the fact that they involve all ω ∈ Ω. Consequently, to use these measures efficiently,
we can approximate them. For KL divergence such approximation exists, but, for information affinity, it
has not been studied yet and is not an option. In fact, the inconsistency degree computed in information
affinity is between two distributions i.e. joint distributions in our case and could not be obtained locally.
Thereby, we propose an extension of information affinity, named mean information affinity and denoted
by Mean-aff . It consists on computing similarity between two possibilistic networks by aggregating the
local similarity measures i.e. computed conditional possibility distributions. Mean information affinity is
expressed as follows:

Mean-Aff(π0, πl) =
1

n

n∑
i=1

1

qi

qi∑
j=1

Aff(π0(Xi|Pa(Xi) = xj), πl(Xi|Pa(Xi) = j)) (3.2)

Note that this measure is restricted to the case of comparing two possibilistic networks sharing the
same structure. In order to compare two networks with different structures, we propose to use Manhattan
distance in Equation 1.21 to compute the gap between their joint possibility distributions. Like information
affinity, the size of the joint domain Ω makes the computing ofMD impossible. However, we may consider
restricting the set Ω from which this measure is computed, so that the computation becomes efficient. A
natural choice for such a randomly generated sample of Ω denoted by Sub-Ω. Equation 1.21 becomes:

Approx-MD(π0, πl) =
∑

ω∈Sub-Ω

|π0(ω)− πl(ω)|
card(Sub-Ω)

(3.3)

To generate the Sub-Ω, for each Xi, we generate one value from Di uniformly chosen. Note that all the
generated elements of Sub-Ω are distinct.
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3.4 Experimental study

The first set of experiments evaluates the efficiency of our sampling method described in Algorithm 1.
The second set of experiments evaluates the efficiency of Manhattan distance in comparing possibilistic
networks and the convergence of its approximation values.

3.4.1 Possibilistic networks sampling process evaluation

The objective of this experiment is to study the convergence of the joint possibility distribution computed
from generated data using Equation 1.14, denoted by πl, to the theoretical one, i.e. computed using Equation
2.8, denoted by π0 as shown by Figure 3.1. Specifically, we generate synthetic datasets using Algorithm
1 containing 100, 1000, 5000 and 10000 observations from 100 randomly generated possibilistic networks
composed of nb nodes where nb is randomly generated in [5,10]. Then, we compute information affinity
between π0 and πl.

Initial joint distribution

(Equation 2.8)

Learned joint distribution

(Equation 1.12)

Information affinity

(Equation 1.22)

Synthetic network

Generated

datasets

Algorithm 1

Figure 3.1: Experimental protocol of possibilistic networks sampling evaluation
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Figure 3.2: Information affinity between π0 and πl w.r.t. the size of generated datasets (average over 100
experiments)

Figure 3.2 presents the mean of obtained values with a standard deviation around 0.04. Obtained results
show that the information affinity grows relatively smoothly with the number of observations, as expected.
This is an obvious result because when we increase the number of observations, the dataset becomes more
informative and representative of the joint possibility distribution, i.e. most possible ωi appears more fre-
quently, less possible appears less frequently and so on until reaching the least possible ωi or impossible ωi.
Consequently, we deflate considerably the gap between the initial possibility distribution and the learned
one.
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3.4.2 Manhattan distance and its approximation evaluation

The first objective of this set of experiments is to evaluate Manhattan distance efficiency in the context
of comparing two possibilistic networks. We generate randomly 25 possibilistic networks composed of nb
variables generated from {5, 10, 20, 30} variables varying the maximum number of parents between {2, 4,
8} and the maximum number of variables domains cardinality between {2, 5, 10}. Then, for each network,
we generate random possibilistic networks having the same structure as the initial one but in which we
increase the dissimilarity between the generated network and the initial one. The dissimilarity corresponds
to ∆ = Number of dissimilar parameters

Total number of parameters . Two parameters relative to a variable Xi are considered dissimilar if the
difference of their degrees is greater than 0.1. Figure 1.21 presents obtained values.

0

0,1

0,2

0,3

0,4

0,5

1 2 3 4 5

MD

Δ

Figure 3.3: Evolution of approximation of Manhattan distance w.r.t. ∆

Figure 3.3 shows that Manhattan distance values increase when we increase ∆, as expected. This is an
obvious result, because when we increase the dissimilarity between two networks, we inflate considerably
the gap between their joint possibility distributions.

The second objective of this set of experiments is to evaluate Manhattan distance approximation i.e.
fixing the size of Sub-Ω and verifying if values obtained with this approximation (Equation 3.3) converge
to the ones obtained with Manhattan distance (Equation 1.21). So, we rely on the following process: we
generate in each experiment two possibilistic networks composed of nb variables generated from {5, 10,
20, 30} variables varying the maximum number of parents between {2, 4, 8} and the maximum number
of variables domains cardinality between {2, 5, 10}. Then, we compute Manhattan distance between the
two generated possibilistic networks joint distributions computed with the chain rule (Equation 2.8) and its
approximation. The whole process is illustrated by Figure 3.4.

The first result of this set of experiments consists in fixing the size of Sub-Ω. In fact, for each possi-
bilistic networks, several sizes (100, 1000, 2000, 5000 and 1000) were chosen to observe the behavior of
Manhattan distance. Figure 3.5 shows the mean of the absolute difference between Manhattan distance val-
ues and its approximation values w.r.t. different sizes of Sub-Ω. Best values are obtained when the size of
SubΩ is 5000. Note that in the case of small networks 15% of the cardinality of Ω is sufficient to compute
Manhattan distance approximation. Consequently, the size of Sub-Ω is the minimum between 5000 and
15% of the cardinality of Ω.

The second result of this set of experiments illustrated in 3.6 shows that values obtained by the ap-
proximation converge to theoretical values obtained with Manhattan distance. Consequentially, we can use
Manhattan distance approximation to compare two possibilistic networks. Note that Manhattan distance
is insensitive to the structure of studied networks. In fact, increasing dissimilarity between two possibilis-
tic networks structures (computed using editing distance) does not increase necessarily the dissimilarity
between the two networks.



3.5 Conclusion 45
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Figure 3.4: Experimental protocol of Manhattan distance approximation evaluation
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Figure 3.6: Evolution of convergence of Manhattan distance approximation values to Manhattan distance
values

3.5 Conclusion

In this chapter, we propose a new evaluation strategy for product-based possibilistic networks learning
algorithms. The first step of the evaluation process consists in generating random possibilistic networks
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since there are currently no publicly available ones that can be used as gold networks. Then, we propose
a sampling method to generate datasets from possibilistic networks in which data relative to a variable
are conditionally consonant to its parents. To overcome this limitation, we propose two variants of this
sampling method generating more generic form of imperfect datasets by controlling their consistency and
imprecision degrees. Obtained benchmarks (generated networks and datasets) could be used to evaluate
many applications e.g. approximate inference in possibilistic networks. Moreover, generated imprecise
datasets could be used in many problems such as classification/clustering techniques handling this kind of
imperfect data.

The second main contribution of this chapter concerns learning evaluation measures. We propose two
new possibilistic measures, namely, mean information affinity and approximation of Manhattan distance.
The first measure is restricted to the case of comparing two networks sharing the same structure and the
second one is more generic and compares two possibilistic networks without any restriction.

The proposed evaluation strategy presents a clear experimental framework allowing the realization of
a deep comparative study of the proposed possibilistic networks learning methods regarding existing ones.
Next chapter details our second contribution that consists on a new approach to learn possibilistic networks
parameters based on a new possibilistic likelihood function.
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4.1 Introduction
The main concern of recent research endeavors dedicated to graphical models is how to learn them

from imperfect data. In this chapter, we cover the problem of parameters learning of possibilistic networks
from imprecise datasets, i.e., containing multi-valued data. As discussed in Chapter 2, only few works
address this problem and existing ones (Borgelt et al., 2009; Sangüesa et al., 1998) are direct adaptations of
Bayesian networks learning methods without any awareness of specificities of the possibilistic framework
which made them theoretically unsound. The main limitation of existing works is that they assume that
learning the parameters, i.e. possibility distributions coding variables uncertainty, and the structure i.e. the
graph of the possibilistic network are two separated tasks.

In this chapter, we first discuss how the choice of the graphical model depends on data we learn from
and we correspond to each type of data the most suitable reasoning model to present it. Then, we propose to
test existing methods proposed to estimate possibility distributions in the context of possibilistic networks

47



48 Chapter4: Possibilistic networks parameters learning from imperfect data

and we show that none of these methods is satisfactory. Thereby, we explore the link between random sets
theory (additive) and possibility theory (maxitive) to propose a new possibilistic likelihood function which
will be deployed to learn possibilistic networks parameters.

This chapter is organized as follows: Section 4.2 presents a cartography relative to different graphical
reasoning models described in Chapter 2 w.r.t. available data. In Section 4.3, we test possibility distributions
estimation methods invoked in Chapter 1 in the context of possibilistic networks. Section 4.4 proposes a
new possibilistic likelihood function which will be the basis of a possibilistic networks parameters learning
method presented in Section 4.4.2. Section 4.5 shows the efficiency of the proposed possibilistic-likelihood-
based learning method when applied to possibilistic networks and possibilistic classifiers.

4.2 Building graphical models from imperfect data
Building graphical models could be classified into two methods: the first family gathers expert elicitation

techniques which consist in elaborating the synthesis of experts opinions when available data are very
limited or unattainable because of physical constraints or lack of resources. As examples of such methods,
we cite (Pearl, 1988) for Bayesian networks, (Antonucci, 2011) for credal networks, (Ben Amor et al.,
2009) for min-based possibilistic networks and finally (Zhou et al., 2016) for evidential networks.

The second family gathers graphical models learning methods which depend chiefly on data nature i.e.
perfect or imperfect data. In real world applications, data are inseparably connected with imperfection
resultant from unreliable data sources such as measurement devices or aggregating opinions of different
experts. In this case, choosing the most suitable graphical model that can handle available imperfect data
corresponds to the most difficult task in a modeling problem. At first stage, we should check if available
data are complete i.e. a unique value is assigned to each variable in the dataset of the studied domain,
otherwise, data are considered incomplete. If we are faced to complete data i.e. we are in a perfect situation,
probability theory is the most adequate framework to handle precisely described domains. Consequently,
the most suitable graphical models handling this case are Bayesian networks. In the case of insufficient
complete data i.e. few data are available (small dataset), the imprecision could be due to limited data and
in this context, we may appeal to imprecise probability theory and consequently, we can represent this
imprecision by a credal network.

In the case of incomplete data, two cases are considered: the partial ignorance defined by multi-valued
data in which a variable is not precisely described and to which we assign more than one value. In such
case, evidential, credal and possibilistic networks stand out as best alternatives (Smets and Kennes, 1994)
to Bayesian networks. Note that credal networks are known by their high computational complexity. So,
evidential and possibilistic network are preferred and more suited to perform propagation algorithms (See
Chapter 2). The extreme case of partial ignorance corresponds to total ignorance of the variable real value
of considered as missing. In this case, we can use Bayesian networks learned by the standard Expectation
Maximization method.

In Figure 4.1, we propose a cartography relative to different graphical reasoning models w.r.t. available
data (source and data nature).

4.3 Evaluation of existing parameters learning algorithms
In this section, we propose to test two solutions inspired by existing methods proposed to estimate pos-

sibility distributions (described in Sections 1.7.1 1.7.3 and 1.4). The first naive solution is to use probability
possibility transformations. First, we learn probability distributions of each node P (Xi|Pa(Xi)) from pre-
cise data. Then, we transform the obtained distributions into possibility ones. The second method is to use
estimated possibility distributions using possibilistic histograms described in subsection 1.4. We will show
that these two solutions are unsatisfactory.
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4.3.1 Learning parameters based on transformations
The first solution consists in learning a Bayesian network from precise data then transforming obtained

probability distributions to possibility ones (cf. Sections 1.7.1 and 1.7.3). As probability possibility trans-
formations make sense in the numerical interpretation of the the possibilistic scale, we can learn only
product-based possibilistic networks parameters using these transformations. This approach is based on
the relationship between maximum likelihood proposed in the probabilistic framework and possibility dis-
tributions (Dubois, 2006): When prior probabilities are lacking, likelihood functions can be interpreted as
possibility distributions, by default. Recall that transformation methods manipulate probability distributions
or imprecise probability distributions. In what follows, we present an example of a transformation of each
category, i.e. optimal transformation (cf. Section 1.7.1) and Klir transformation adaptation (cf. Section ).

Example 4.3.1. Let us consider the Bayesian network described by Table 4.1 be composed of two variables
X1 and X2 such that D1 = {x11, x12, x13} and D2 = {x21, x22}.

X1

X2

X1 P (X1) X1 X2 P (X1|X2) X1 X2 P (X1, X2)
x11 0.2 x11 x21 0.4 x11 x21 0.08
x12 0.3 x11 x22 0.6 x11 x22 0.12
x13 0.5 x12 x21 0.9 x12 x21 0.27

x12 x22 0.1 x12 x22 0.03
x13 x21 0.3 x13 x21 0.15
x13 x22 0.7 x13 x22 0.35

Table 4.1: Example of a Bayesian network

Tables 4.2 and 4.3 represent possibilistic networks obtained by transforming this Bayesian network.
π(X1, X2) represents the joint possibility distribution obtained by transforming the initial Bayesian network
joint distribution. πt(X1, X2) is the joint possibility distribution computed from conditional possibility
distributions using Equation 2.8. Example (a) uses optimal transformation and Example (b) uses Klir
transformation adaptation using confidence intervals. Note that π(X1, X2) and πt(X1, X2) values are
different.

X1

X2

X1 π(X1) X1 X2 π(X2|X1) X1 X2 πt(X1, X2) π(X1, X2)
x11 0.2 x11 x21 0.4 x11 x21 0.08 0.11
x12 0.5 x11 x22 1 x11 x22 0.2 0.23
x13 1 x12 x21 1 x12 x21 0.5 0.65

x12 x22 0.1 x12 x22 0.05 0.03
x13 x21 0.3 x13 x21 0.3 0.38
x13 x22 1 x13 x22 1 1

Table 4.2: Example (a) of transformation of Bayesian network in a possibilistic network using the optimal
transformation (Equation 1.34)

As shown by Example 4.3.1, using possibility probability transformations to estimate possibilistic net-
works parameters leads to a loss of information i.e. we cannot recover the transformed joint possibility
distribution by aggregating transformed conditional possibility distributions.

4.3.2 Learning parameters directly from data
The second solution consists on applying Joslyn method (cf. Section 1.4) to learn possibilistic networks

parameters from imprecise data.
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X1

X2

X1 π(X1) X1 X2 π(X2|X1) X1 X2 πt(X1, X2) π(X1, X2)
x11 0.78 x11 x21 0.68 x11 x21 0.54 0.28
x12 1 x11 x22 1 x11 x22 0.78 0.41
x13 1 x12 x21 1 x12 x21 1 0.89

x12 x22 0.22 x12 x22 0.22 0.11
x13 x21 0.51 x13 x21 0.51 0.51
x13 x22 1 x13 x22 1 1

Table 4.3: Example (b) transformation of Bayesian network in a possibilistic network using Klir transfor-
mation adaptation (Equation 1.41)

Example 4.3.2. Let us consider the imprecise dataset described by Table 1.2. If we apply Joslyn method, we
obtain the possibility distributions presented in Table 4.5. To estimate conditional possibility distributions,
we compute for example π̂n(x21|x11) by dividing f̂nn(x11, x21) = 0.6 by f̂nn(x11) = 0.6 obtained by
Equation 1.14, then, we normalize possibility degrees. Note that obtained values of π̂n(X1, X2), the joint
possibility distribution estimated from data and π̂nl (X1, X2), the joint possibility distribution computed from
conditional distributions (Equation 2.8), are different.

X1 X2

x11,x12 x21,x22

x12, x13 x21, x22

x11, x12 x21

x11, x13 x21

x12 x22

Table 4.4: Example of an imprecise dataset

X1

X2

X1 π̂n(X1) X1 X2 π̂n(X1|X2) X1 X2 π̂nl (X1, X2) π̂n(X1, X2)
x11 0.75 x11 x21 1 x11 x21 0.75 1
x12 1 x11 x22 0.33 x11 x22 0.25 0.33
x13 0.5 x12 x21 1 x12 x21 1 1

x12 x22 1 x12 x22 1 1
x13 x21 1 x13 x21 0.5 0.66
x13 x22 0.5 x13 x22 0.25 0.33

Table 4.5: Example of learning possibilistic networks parameters

As shown by Example 4.5, using Joslyn’s method to estimate possibilistic networks parameters leads
to a loss of information i.e. we cannot recover the joint possibility distribution by aggregating obtained
conditional possibility distributions.

4.3.3 Discussion
In the previous subsections, we have applied two existing methods to learn possibilistic networks param-

eters: probability possibility transformation and direct possibility distribution estimation. We have shown
with two simple examples that none of these methods is satisfactory. Examples 4.3.1 and 4.3.2 show that
these methods could be applied only with the joint possibility distribution and not with local distributions
separately. Transformation methods detailed in Section 1.7.1 have been already studied in (Ben Slimen
et al., 2013) and this paper confirms our conclusion. Remaining transformation methods present the same
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inconvenient. This is due to the fact that marginalization notion of probability measures using sum operator
is very different to marginalization of possibility measures applying maximum.

Therefore, we should apply these methods cautiously: do we need primarily estimating local parameters
(usual interest of probabilistic and possibilistic graphical models) or directly estimate the joint distribution
ignoring the interest of graphical decomposition?

Since probability possibility transformations are restricted to precise datasets which represent a partic-
ular case of data we use to learn possibilistic networks parameters, we investigate, in the following, the use
of Equation 1.14 and we propose a new possibilistic-likelihood-based parameters learning method.

4.4 Possibilistic-likelihood-based parameters learning algorithm

In the probabilistic case, learning Bayesian networks parameters is performed satisfying maximum like-
lihood principle. As far as we know, such a measure has not been proposed in the context of possibilistic
networks parameters learning. Moreover, working on parameters in the possibilistic framework highlights
several difficulties when dealing with the learning task, in particular, when we handle uncertain and impre-
cise data. This is due to the fact that learning is usually viewed as an objective task while possibility theory
has been almost always based on the subjective opinions. That is to say, the absence of a learning possi-
bilistic networks parameters method could be justified by the fact that learning leads commonly to additive
assessment, i.e., based on computing frequency of observations while possibility theory is, by definition,
maxitive, i.e., the possibility of a disjunction of events is the maximum of the possibilities of each event in
this disjunction.

This is to some extent true, especially, when we deal with measurement devices leading to precise
observations (one possible value per variable). In this case, probability theory remains the most adequate
alternative. However, when measurement devices provide imprecise data and we want to model data as
they have been collected i.e. including imprecision due to the physical measurement itself, non-classical
uncertainty theories stand out as best alternatives. In our case, we choose to use possibility theory since it is
able to offer a natural and simple formal framework representing imprecise and uncertain information. The
latter refers to the study of maxitive and minitive set-functions and can be interpreted as an approximation
of upper and lower frequentist set probabilities in the presence of imprecise observations. Thereby, if we
want to learn parameters from data in the possibilistic framework, two steps are primordial: the first one
(additive) focuses in counting the occurrence of observations in the dataset to estimate non-normalized
distributions. While the second step (maxitive) aims to approximate the latter by possibility distributions.

4.4.1 Imprecise likelihood

The likelihood function is central to the process of learning parameters of a model, i.e., for a fixed
dataset and an underlying model, maximum likelihood finds the most likely values for the model parameters
based on a dataset. In the following, we propose a possibilistic likelihood function exploring the link
between possibility theory and random sets theory in Definition 1.40 (cf. Section 1.7.2). Consequently, the
formulation of our likelihood function is made in two steps: first, we propose a likelihood function defined
on random sets (additive). Then, we propose a possibilistic likelihood function exploring the link between
possibility theory (maxitive) and random sets theory and we show that the two functions are different but
lead to the same possibility distributions. The proposed likelihood function will be used later to learn
possibilistic networks parameters.

Random sets likelihood

The random sets likelihood extends the probabilistic one described in Section 2.3.3 by replacing the
probability distribution by mass functions (cf. Section 1.7.2).
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Definition 4.4.1. Let G be a DAG and {m1,m2, ...,mn} be the parameters relative to {X1, X2, ..., Xn}
to be estimated and Dij = {d(l)

ij } be a dataset relative to a variable Xi and its parents Pa(Xi) = j,
d

(l)
ij ⊆ Dij . The number of occurrences of each Aik ⊆ Di such that Pa(Xi) = j (j ⊆ Dj), denoted by Nijk,

is the number of times Aijk appears in Dij: Nijk = card({l s.t. Aijk = d
(l)
ij }). We express the likelihood

function as follows:

mL(m,G,D) =
n∏
i=1

qi∏
j=1

ri∏
k=1

Nijk logmijk (4.1)

where mL is expressed by random sets of domains variables i.e. for each Xi, qi = 2card(Pa(Xi)) and
ri = 2card(Di), mijk is the parameter to be estimated when Xi = Aik and Pa(Xi) = Aj .

For numerical stability reasons, we propose the log-likelihood function. Equation 4.1 becomes:

mLL(m,G,D) =
n∑
i=1

qi∑
j=1

ri∑
k=1

Nijk logmijk (4.2)

Note that mass functions associated to random sets are probability distributions, the partial derivative of the
mLL(m,G,D) follows the same principle of the partial derivative of the probabilistic likelihood function
and reaches its maximum in m̂ijk =

Nijk∑ri
k=1Nijk

.

Example 4.4.1. Let us consider the imprecise datasetD in Table 4.6 and the network in Table 4.7 composed
of two variables X1 and X2. mLL(m,G,D) relative to this network is:

X1 X2 nb of occurrences
x12 x22 3
x12 x21, x22 3

x11, x12 x22 3
x11 x21, x22 1

Table 4.6: Example of an imprecise dataset

X1

X2

X1 m(X1) X1 X2 m(X2|X1)
x11 0.1 x11 x21 0.2
x12 0.6 x11 x22 0.3

x11, x12 0.3 x11 x21, x22 0.5
x12 x21 0.1
x12 x22 0.7
x12 x21, x22 0.2

x11, x12 x21 0.1
x11, x12 x22 0.5
x11, x12 x21, x22 0.4

Table 4.7: Example of a network with two variables defined on random sets

mLL(m,G,D) = log(0.1) + 6 log(0.6) + 3 log(0.3) + 3 log(0.7) + 3 log(0.2) + 3 log(0.5) + log(0.5) =
−7.6655.
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X1

X2

X1 π(X1) X1 X2 π(X2|X1)
x11 0.1 x11 x21 0.2
x12 1 x11 x22 1

x12 x21 0.1
x12 x22 1

Table 4.8: Example of a possibilistic network with two binary variables

Possibilistic likelihood

Computing random sets likelihood function is computationally expensive. In fact, a random set relative
to a variable Xi is defined on 2card(Di) and its cardinality grows exponentially with the the number of val-
ues in Di (Dubois and Prade, 1990). Consequently, we propose to investigate the link between possibility
distributions and mass functions presented in Equation 1.40 and to define a possibilistic approximation of
random sets likelihood function. In the following, we will replace mass functions in Equation 4.2 by pos-
sibility distributions defined on singletons and we will study the link between the two proposed likelihood
function by checking if the possibility distributions computed by maximizing the random sets likelihood
recover the ones obtained by maximizing the possibilitic one.

We express the possibilistic likelihood function as follows:

Definition 4.4.2. Let G be a DAG and {π1, π2, ..., πn} be the parameters relative to {X1, X2, ..., Xn} to be
estimated and Dij = {d(l)

ij } be a dataset relative to a variable Xi and its parents Pa(Xi) = j, d(l)
ij ⊆ Dij .

The number of occurrences of each xik ∈ Di such that such that Pa(Xi) = j, denoted by Nijk, is the
number of times xijk appears in Dij: Nijk = |{l s.t. xijk ⊆ d

(l)
ij }|. We express the possibilistic likelihood as

follows:

πLL(π,G,D) =
n∑
i=1

qi∑
j=1

ri∑
k=1

Nijk log πijk (4.3)

where for each Xi, qi = card(Pa(Xi)) and ri = card(Di), πijk is the parameter to be estimated when
Xi = xik and Pa(Xi) = xj .

Example 4.4.2. Let us reconsider the imprecise dataset D in Table 4.6 and the possibilistic network in
Table 4.8 composed of two variables X1 and X2. πLL(π,G,D) relative to this network is:

πLL(π,G,D) = 4 log(0.1) + 9 log(1) + 1 log(0.2) + 4 log(1) + 3 log(0.1) + 9 log(1) = −7.6990.

4.4.2 Parameters learning algorithm from imprecise data

In what follows, we use the possibilistic likelihood in Definition 4.4.2 to learn possibilistic networks
parameters i.e. to find the most likely values for their parameters based on a dataset.

Proposition 4.4.1. Given a DAG, a fixed parameter πijk and an imprecision degree Si (prefixed value)
relative to the variable Xi the maximum possibilistic likelihood estimates are the parameter values that
maximize πLL(π,G,D). We assume that

∑ri
k=1 πijk is a constant equal to Si, πLL(π,G,D) reaches it

maximum in:

π̂ijk = argmax(πLL(π,G,D)) =
Nijk∑ri
k=1Nijk

∗ Si (4.4)

Proof. Let Si be
∑ri

k=1 πijk. So, the parameters πijk are related by the following formula: πijri = Si −∑ri−1
k=1 πijk. Then, πLL(π,GD) could also be rewritten as follows:
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πLL(π,G,D) =
n∑
i=1

qi∑
j=1

((

ri−1∑
k=1

Nijk log πijk) +Nijri log(Si −
ri−1∑
k=1

πijk))

So, its derivative w.r.t. a parameter πijk is:
∂πLL(π,G,D)

∂πijk
=

Nijk
πijk

=
Nijri

S−
∑ri−1

k=1 πijk
=

Nijk
πijk
− Nijri

πijri

So, the value π̂ijk of the parameter of πijk maximizing the possibilistic likelihood sets this derivative
equal to 0 and satisfies thereby:

Nijk
π̂ijk

=
Nijri
π̂ijri

We have:
Nij1
π̂ij1

=
Nij2
π̂ij2

= ... =
Nijri−1

π̂ijri−1
=

Nijri
π̂ijri

=
∑ri
k=1Nijk∑ri
k=1 π̂ijk

=
∑ri
k=1Nijk
Si

So, π̂ijk =
Nijk∑ri
k=1Nijk

*Si.

Consequently, given a network structure, Equation 4.4 will be applied for each in the context of its par-
ents Note that Si corresponds to the imprecision degree relative to a variable Xi and could be fixed by an
expert, inferred from the dataset to learn from or based on variables description. To obtain normalized pos-
sibility distributions, we divide every obtained distribution by its maximum. This operation will eliminate
the effect of the imprecision degree. However, it remains possible to fix an imprecision degree per value of
variables of the studied domain.

It is evident that random sets likelihood and possibilistic likelihood functions are not equivalent. How-
ever, parameters obtained by combining random sets likelihood and the mass possibility transformation,
denoted by transm→π in Definition 1.40 leads to the ones obtained by maximizing directly possibilistic
likelihood in Definition 4.4.1.

Proposition 4.4.2. argmax(πLL(πijk, G,D)) =
transm→π(argmax(mLL(mijk,G,D)))

transm→π(argmax(mLL(mj ,G,D)))

Proof. argmax(πLL(πijk, G,D)) =
Nijk∑ri
k=1Nijk

=
Nijk
N∑ri

k=1

Nijk
N

=

∑
Aijk|xijk∈Aijk

NAijk
N

∑
Aj |j∈Aj

NAj
N

=
transm→π

NAijk
N

transm→π
NAj
N

=

transm→π(argmax(mLL(mijk,G,D)))

transm→π(argmax(mLL(mj ,G,D)))
.

4.5 Experimental study
The objective of these two sets of experiments is the evaluation of our proposed possibilistic networks

parameters learning approach. The first set is dedicated to generic possibilistic networks and the second
one concerns the particular case of possibilistic classifiers.

4.5.1 Possibilistic networks parameters learning evaluation
To evaluate our parameters learning method, we generate synthetic datasets containing 100, 500 and

1000 imprecise observations from 15 randomly generated possibilistic networks composed of {10, 20, 30}
variables (3 datasets 1 for each dataset size). We also vary the maximum number of parents between {2, 4,
8} and the maximum number of variables domains cardinality between {2, 5, 10} in generated possibilistic
networks. Then, we compare the initial network using mean information affinity and approximation of

1. Datasets are available in https://sites.google.com/site/karimtabiasite/mappos
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Manhattan distance. The first part of this set of experiments uses datasets generated using the sampling
process proposed in Algorithm 1. Figures 4.3 and 4.4 present obtained results.

In the second part of this set of experiments, we compare our direct proposed possibilistic network
learning method (DPNL) with the transformation-based learning method (TPNL) described in Section 2.7
using mean information affinity. These experiments are carried out on datasets containing 1000 observa-
tions. Obtained results are presented in Table 4.9. Note that this part of the experimental study was carried
out under the project PEPS Fascido 2015 MAPPOS 2. This set of experiments is detailed in Figure 4.2.

Algorithms 1, 2, 3 DPNL,TPNL

Synthetic network Learned network

Numerical

Evaluation

Synthetic network 

structure+Generated

datasets

Figure 4.2: Proposed experimental protocol of possibilistic networks parameters learning evaluation
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Mean_aff

N

Figure 4.3: Mean information affinity between initial networks and learned networks varying datasets size

0

0,1

0,2

0,3

0,4

100 500 1000

10 variables 20 variables 30 variables

Approx_MD

N

Figure 4.4: Manhattan distance approximation between initial networks and learned networks varying
datasets size

2. https://sites.google.com/site/karimtabiasite/mappos
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Figures 4.3 and 4.4 show that mean information affinity and approximation of Manhattan distance of
learned networks do not seem to be affected by the number of variables, and number of observations.

number of variables
Mean-aff

TPNL DPNL
10 0.63 0.86
20 0.65 0.86
30 0.67 0.86

Table 4.9: Mean information affinity between initial networks and networks learned using DPNL and TPNL

The results of mean information affinity in Table 4.9 show that learned possibilistic networks using our
approach DPNL are very close/similar to the reference ones. Concerning the comparison of our approach
with TPNL, the results of Table 4.3 show that DPNL leads to better networks than TPNL. This is expected as
the datasets generation process and DPNL approach have the same view of possibility degrees. Moreover,
TPNL uses a probability possibility transformation which generates necessarily a loss of information to
move from the probabilistic framework to the possibilistic one. Note that the obtained similarity values do
not seem to be affected by the number of variables, variable domains size, etc.

The second part is dedicated to studying the behavior of DPNL using mean information affinity when
we vary the imprecision percentage (resp. the consistency percentage) in generated datasets obtained using
Algorithm 2 (resp. Algorithm 3). In what follows, we choose to vary θimp and θcons between 20%, 40%,
60% and 80%.

0,6

0,7

0,8

0,9

1

20% 40% 60% 80%

10 variables 20 variables 30 variables

Mean_Aff

θimp

Figure 4.5: Evolution of mean information affinity between initial networks and learned networks distribu-
tions using DPNL w.r.t. datasets imprecision percentage

0,6

0,7

0,8

0,9

1

20% 40% 60% 80%

10 variables 20 variables 30 variables

Mean_Aff

θcons

Figure 4.6: Evolution of mean information affinity between initial networks and learned networks distribu-
tions using DPNL w.r.t. datasets consistency percentage
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Figures 4.5 and 4.6 show that reducing the imprecision degree or consistency degree of learning datasets
affects the quality of local conditional possibility distributions. In fact, this operation introduces noise to the
dataset which allows the emergence of corrupted dependencies not relevant to the problem. However, vary-
ing the consistency or the imprecision degrees have not a considerable effect on the global joint distributions
of learned networks. This is an expected result since if we compute the information affinity between joint
distributions directly from datasets generated from the same network using the three sampling algorithms
(Algorithms 1, 2 and 3), we obtain similar distributions. Note that we have not presented the evolution of
Manhattan distance approximation because obtained values are close to the ones obtained in the previous
experimentation i.e. in which we use datasets generated by Algorithm 1.

4.5.2 Particular case: possibilistic classifiers parameters learning evaluation

The objective of this set of experiments is evaluating the predictive power of possibilistic network clas-
sifiers regarding credal network classifiers (NCC) Corani and Zaffalon (2008) and Bayesian network clas-
sifiers (NBC) Friedman et al. (1997). More precisely, we compare on many datasets the classification
efficiency of NCC and the possibilistic classifiers PNCPA and PNCTA obtained using respectively our
approach DPNL and TPNL. Moreover, we compare our results to naive Bayes classifier (NBC) as a base-
line. Note that this part of the experimental study was carried out under the project PEPS Fascido 2015
MAPPOS 3.

The evaluation mode used in this experiment is a 10-fold cross validation. The experimental study is
carried out on the following datasets where some data values are missing. The first four datasets of Table
4.10 are real datasets 4 used in the literature for evaluating classifiers with missing data. The remaining ones
are collected from different sources.

Name #instances #variables #classes % missing
Breast 286 9 2 4%

Housevotes 435 16 2 24%
Mushroom 8124 22 2 31%

Post-operative 90 8 3 3 %
Audiology 226 70 24 98%

Sick 3772 30 2 20%
Primary-tumor 339 18 21 46%

Kr-vs-kp 3196 37 2 0%
Soybean 683 36 19 18%

Crx 690 16 2 2%

Table 4.10: Description of Datasets

Results of Table 4.11 show that classifiers NBC, PNCPA and PNCTA have most of the time comparable
results in terms of correct classification rates on some datasets but they show real performances on some
other datasets. This is also valid for the results of the NCC classifier. Now, comparing PNCPA and PNCTA,
this latter achieves better results on two datasets while the former has better classification rates on the two
other datasets. It is not obvious what makes a given approach better, a thorough analysis of the properties
of the datasets is needed to help understanding such results.

3. https://sites.google.com/site/karimtabiasite/mappos
4. http://sci2s.ugr.es/keel/missing.php
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Dataset NBC PNCPA PNCTA NCC
Breast 72.88% 72.73% 70.27% 74.08%

Housevotes 90.11% 89.19% 58.71% 90.26%
Mushroom 95.73% 77.35% 85.34% 99.56%

Post-operative 68.11% 67.78% 71.11% 67.57%
Audiology 72.79% 55.90% 11.54% 99.55

Sick 96.97% 95.53% 94.41% 97.54%
Primary-tumor 49.54% 28.42% 43.42% 77.11%

Kr-vs-kp 87.82% 85.86% 86.89% 88.16%
Soybean 92.66% 92.56% 75.51% 92.56%

Crx 85.38% 85.80% 91.01% 86.34%

Table 4.11: % of correct classifications NBC, PNCPA, PNCTA and NCC classifiers on the datasets of Table
4.10

4.6 Conclusion
In this chapter, we have shown that learning possibility distributions from data and in particular con-

ditional ones seems to be unnatural due to the semantic of the possibilistic framework. In fact, learning
implies additive assessments while possibility theory is by definition maxitive. However, despite this con-
straint, the simplicity of representation of imperfect information in the possibilistic case, contrarily to other
non-classical uncertainty frameworks, highlights the interest of learning possibility distributions even if they
are only approximations of available data. Then, we propose a new approach to learn product-based pos-
sibilistic networks parameters from imprecise data based on a possibilistic likelihood function. The latter
explores the link between random sets theory and possibility theory. The extended experimental study eval-
uates the efficiency of the evaluation strategy and shows that the possibilistic likelihood could be efficiently
used to learn possibilistic networks parameters and possibilistic classifiers.

This work presents a first step in proposing a global product-based possibilistic networks learning ap-
proach i.e. including parameters and structure learning. So, in the next chapter, we intend to investigate the
use of the possibilistic likelihood to learn possibilistic networks structure.
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5.1 Introduction
Learning graphical models structure consists in constructing the graph structure from data i.e. selecting a

good model among different competing models that best describes (having the best fitness degree) observed
data. The most common way to learn the structure of a graphical model, in particular, a Bayesian network
is to use a scoring function combined with an optimization method.

As discussed Chapter 2, only a few methods for learning possibilistic networks structure have been
presented in the literature and most of them are theoretically unsound. Within these methods, the unique
attempt to learn them from imprecise data was carried out by Borgelt et al. (2009) and it addresses the
problem of learning a DAG structure in the possibilistic framework (the process computes non-normalized
marginal possibility distributions) but the output is a DAG without any quantification.

The aim of this chapter is to define and study a new scoring function based on the possibilistic like-
lihood proposed in Chapter 4. Combined with greedy search algorithm, this score will be used to learn
possibilistic networks structure from imprecise data. A detailed experimental study showing the efficiency
of the proposed method w.r.t. existing methods is also presented.

This chapter is organized as follows: Section 5.2 proposes a new possibilistic-likelihood-based score.
Section 5.3 describes greedy search algorithm. Section 5.4 presents the experimental results showing the
efficiency of the proposed structure learning method regarding existing possibilistic networks learning al-
gorithms.
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5.2 New possibilistic score
In this section, we try to apply Occam’s razor principle in the context of learning possibilistic networks

structure which is based on the following insight: the model to be selected is the one that is best balanced
in terms of simplicity and fitness of given data. In fact, we propose a new possibilistic-likelihood-based
score named possibilistic AIC (AICpos), the possibilistic counterpart of the AIC score, which includes two
terms: likelihood function (Equation 4.3) to quantify fitness between the graph and the data and complexity
computed via the dimension of the graph. The latter corresponds to the sum over variablesXi of the number
of parameters required to represent π(Xi|Pa(Xi)).

Definition 5.2.1. The dimension of a possibilistic network G denoted by Dim(G) is the number of param-
eters required to represent its conditional possibility distributions and is expressed as follows:

Dim(G) =
n∑
i=1

dim(Xi, G) (5.1)

where
Dim(Xi, G) = |Di| ∗

∏
Xj∈Pa(Xi)

|Dj| (5.2)

So, we define AICpos as follows:

AICpos(G|D) = πLL(G,D)−Dim(G) (5.3)

In the following, we will check if AICpos satisfies decomposability and score equivalence properties:
– AICpos is decomposable as follows:

AICpos(G|D) =
n∑
i=1

aicpos(Xi|Pa(Xi)) (5.4)

where
aicpos(Xi|D) = πLL(Xi|Pa(Xi),D)−Dim(Xi, G) (5.5)

– AICpos does not satisfy Markov equivalence as shown by the following example:

Example 5.2.1. Let us re-consider the imprecise dataset D in Table 5.1, the two Markov equivalent
graphs in Figure 5.1 composed of two variables X1 and X2.

X1 X2 nb of occurrences
x12 x22 3
x12 x21, x22 3

x11, x12 x22 3
x11 x21, x22 1

Table 5.1: Example of an imprecise dataset

For G1, π(x11) = 0.4, π(x12) = 0.9, π(x21|x11) = 0.25, π(x22|x11) = 1, π(x21|x12) = 1
3

and
π(x22|x12) = 1. The dimension of G1 is 6.
AICpos(G1|D) = 4 log(0.4) + 9 log(0.9) + log(0.25) + 4 log(1) + 3 log(1

3
) + 9 log(1)− 6 = −10.03.

For G2, π(x21) = 0.4, π(x22) = 1, π(x11|x21) = 0.25, π(x12|x21) = 0.75, π(x12|x22) = 0.4 and
π(x12|x22) = 0.9. The dimension of G2 is 6.
AICpos(G2|D) = 4 log(0.4) + 10 log(1) + log(0.25) + 3 log(0.75) + 4 log(0.4) + 9 log(0.9) − 6 =
−11.10.

AICpos will be combined with greedy search algorithm to learn possibilistic networks structure.
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X1

X2

X1

X2

G1 G2 ‘

Figure 5.1: Example of two markov equivalent graphs composed of two variables

5.3 Possibilistic adaptation of Greedy search algorithm

In this section, we propose an adaptation of greedy search initially proposed to learn Bayesian networks
structure (cf. Section 2.3.3) in the possibilistic case. The underlying idea of greedy search is making the
locally optimal choice at each step with the hope of finding a global optimum. Our choice could be justified
by the fact that greedy search represents the most common solution for finding a high scoring network in
the probabilistic case. Moreover, the decomposability property satisfied by our score AICpos allows us
to efficiently evaluate the elementary operators (addition, reversing or deletion of an edge) performed by
greedy search. In fact, it reduces the number of calculations by locally estimating the change in the score
between two neighboring structures, instead of recalculating entirely to the new structure. Our possibilistic
adaptation of greedy search is described by Algorithm 4.

Algorithm 4 Greedy search algorithm
Require: Initial graph G, dataset D

begin
Continue← True
AICpos_max ← AICpos(G|D) repeat

Generate Nbh(G) the neighborhood of G
% by deleting, reversing or adding an edge
Compute AICpos(G′|D) for each graph G′ in Nbh(G)
Gnew = argmaxG′∈Nbh(G)AICpos(G

′|D)
if AICpos(Gnew|D) > AICpos_max) then

AICpos_max ← AICpos(Gnew|D)
G = AICpos(Gnew|D)

else
Continue = False

end
until Continue;

end
Return G

Example 5.3.1. Let the DAG in Figure 5.2 be the initial graph given to greedy search algorithm. In the
first iteration, greedy search generates a neighborhood defined by the three operators addition (Insert),
delete (Delete) and reversing (Reverse) edge. The resultant DAGs are presented in Figure 5.3. Then, greedy
search computes obtained neighbors structures scores and pick the operation that leads to the the structure
having the highest score. If we assume that the graph (f) (Iteration #1 of greedy search) is the best structure,
we retain this structure and we perform the same steps to obtain the neighborhood composed of graphs in
Figure 5.3 (Iteration #2 of greedy search). Now, if we assume that all the scores of obtained obtained graphs
are inferior to the one of graph (f). Greedy search algorithm ends and returns graph (f). Otherwise, we
re-perform the same steps until obtaining the structure with the highest score.
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Figure 5.2: Initialization of greedy search
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Figure 5.3: Illustration of greedy search
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5.4 Experimental study
To evaluate our proposed possibilistic adaptation of greedy search, we use synthetic datasets containing

1000 imprecise observations generated using Algorithms 1, 2 and 3 from 8 randomly generated possibilistic
networks composed of {10, 20} variables. We also vary the maximum number of parents between {2, 4}
and the maximum number of variable domain cardinality between {2, 5} in generated networks. Then, we
apply existing possibilistic learning structure algorithms which handle imprecise data, i.e. the possibilistic
adaptation of k2 (πK2) and maximum weight spanning tree (πMWST) detailed in Chapter 2 (cf. Section
2.7) and our approach (πGS). In the current work, πK2 and πMWST are tested using two scores possibilistic
mutual information (dmi) and possibilistic χ2 measure (dχ2). The choice of these two scores is justified by
the fact that Borgelt et al. showed that these two measures yield to good structures Borgelt et al. (2009).
Note that πK2 treats variables in a predefined order, we generate 5 orders in each experiment and we retain
the best structure. πGS is tested with three scores i.e. AICpos and the sum over variables in V of dχ2 and
dmi denoted respectively by

∑
dχ2

and
∑

dmi
. Then, we compute editing distance and Manhattan distance

approximation between the learned and the initial possibilistic networks. Note that we can compute compute
Manhattan distance approximation only when applying our proposed method i.e. πGS + AICpos. In fact,
the other methods do not learn possibilistic networks but they return only networks structure without any
numerical quantification. Tables 5.2 and 5.3 present the means of obtained results.

Synthetic network Learned network

Numerical / graphical

Evaluation

Generated

datasets

Figure 5.4: Proposed experimental protocol of possibilistic networks structure learning evaluation

Editing distance
PPPPPPPPPMethod

n
10 20

πGS + AICpos 19.77 31.55
πGS +

∑
dχ2

28.83 51.66
πGS +

∑
dmi

35.66 49.55
πMWST + dχ2 23.44 47.33
πMWST + dmi 22.77 47.55
π K2 + dχ2 27.44 42.22
πK2 + dmi 28.38 42.77

Table 5.2: Editing distance between initial and learned networks

Table 5.2 shows that πGS combined with AICpos is more interesting than πK2, πMWST and πGS
combined with

∑
dχ2

and
∑

dmi
in term of editing distance. It is an expected result since greedy search
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Manhattan distance
PPPPPPPPPMethod

n
10 20

πGS + AICpos 0.05 0,04

Table 5.3: Manhattan distance between initial and learned networks

outperforms k2 and MWST in the probabilistic case. Table 5.3 shows that possibilistic networks learned
using πGS combined with AICpos lead to good models in term of Manhattan distance between them and
initial networks.

5.5 Conclusion
In this chapter, we have proposed the possibilistic counterpart of the probabilistic score AIC. AICpos is

composed of two main components: likelihood function and complexity term computed via the dimension
of the network. Then, we use this score to guide the greedy search algorithms trying to find the most
simple structure that fits a datasets. We have shown that the proposed method lead to better structures
regarding existing methods in term of editing distance. Such a result is preliminary and clearly deserves
more investigations but is encouraging.





Conclusion

Possibilistic networks present one of recent powerful frameworks for compactly representing uncertain
and imprecise information in both ordinal and numerical settings. Contrarily to Bayesian networks, most
of existing research endeavors devoted to possibilistic networks assume that they are elicited from experts.
This may not be always obvious and deprives us of exploring the wealth of information compiled in existing
datasets .

This is the core research problem of this Phd thesis in which we are interested by the learning of possi-
bilistic networks (structure and parameters) from data.

Our contribution is twofold: The first one arose following our deep study of existing works relative to
possibilistic networks that allows us to identify the importance of proposing formal learning algorithms.
In fact, we have proposed a new possibilistic likelihood function to learn possibilistic networks parameters
from imprecise datasets. Then, using this likelihood function, we have defined a new score named AICpos
which represents the key component of greedy search algorithm proposed to learn possibilistic networks
structure.

The second contribution concerns the evaluation of different proposed learning algorithms. In fact, in
contrast with probabilistic models, research has not directly addressed this issue. So that we have proposed
a global and experimental framework allowing the evaluation of any possibilistic learning algorithm. Then,
we apply the developed evaluation protocol to our proposed learning algorithms to compare them with
existing work addressing the same topic.

Experimental results show that given a DAG structure and a dataset, our parameters learning algorithm
is efficient in term of quality and outperforms the existing work. However, concerning the evaluation of
the proposed structure learning algorithm, obtained results are not clear-cut. In fact, first results show that
we obtain better structures than those obtained using existing algorithms, but, such a conclusion deserves
more investigations. First, editing distance penalizes so much the learned structures and it is obviously not
sufficient simply to evaluate a structure learning algorithm. Second, AICpos does not satisfy the Markov
equivalence property. This limitation deprives us to use graphical measures in an efficient way i.e. com-
puted between CPDAGs (graph representative of a Markov equivalence class) instead of DAGs. Third, our
proposed structure learning algorithm performs a greedy search which could be improved by constraining
the latter as done in the probabilistic case by Max-Min Hill-Climbing algorithm, an hybrid method which
is based on constraining a scoring search.

This conclusion leads us directly to multiple both short-and long-term perspectives that this work opens.
As short-term perspectives, we can distinguish direct improvements of our proposals. First, we aim to

make a comparative study, between our proposed parameter learning method regarding the existing one, on
a large number of benchmarks containing different types of imprecise data. This work is carried out under
the project PEPS Fascido 2015 MAPPOS 1. Second, we intend to propose a new conditional independence
test with the aim of adapting Max-Min Hill-Climbing algorithm, to the possibilistic case. This method
outperforms all the other existing learning algorithms proposed in the probabilistic case. to the possibilistic
case. Third, we endeavor to distribute our toolbox gathering all methods proposed in this thesis. A part of
our generated synthetic networks and datasets are already available 1 to researchers who are working in this
area. As we lack possibilistic networks benchmarks, we believe that this can be a useful tool for evaluating

1. https://sites.google.com/site/karimtabiasite/mappos
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new proposals related to the manipulation of possibilistic networks.
As long-term perspectives, we endeavor to test structure learning approaches proposed to learn proba-

bilistic classifiers as augmented possibilistic classifiers and multinets, in the possibilistic framework. Learn-
ing these models from data has not been studied yet in the possibilistic frameworks. Another line of research
concerns the proposition of an approximate method to perform information propagation in possibilistic net-
works using out proposed sampling method.

This thesis raises other open questions related for example to the nature of data to use if we try to learn
qualitative possibilistic networks.
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Apprentissage de modèles graphiques possibilistes à partir de données

Learning possibilistic graphical models from data

Résumé
Ce travail s’intègre dans le cadre de l’apprentissage automatique
des réseaux possibilistes, la contrepartie possibiliste des réseaux
bayésiens qui représentent une combinaison intéressante entre la
théorie des possibilités et les modèles graphiques. Cette thèse
présente deux contributions majeures. La première contribution
consiste à proposer une stratégie de validation pour les algorithmes
d’apprentissage des réseaux possibilistes. Cette stratégie propose
un processus d’échantillonnage permettant de générer des
ensembles de données imprécises à partir de ces modèles et deux
nouvelles mesures d’évaluation. Notre deuxième contribution
consiste à proposer une approche globale pour l’apprentissage des
paramètres et de la structure des réseaux possibilistes. Nous
proposons une fonction de vraisemblance possibiliste pour
apprendre les paramètres les réseaux possibilistes et définir une
nouvelle fonction de score pour apprendre la structure de ces
modèles. Une étude expérimentale détaillée montrant la faisabilité
et l’efficacité des méthodes proposées a été aussi proposée.

Abstract
This work fits within the framework of learning possibilistic networks,
the possibilistic counterpart of Bayesian networks, which represent
an interesting combination between possibility theory and graphical
models. This thesis presents two major contributions. The first one
consists on proposing a validation strategy for possibilistic networks
learning algorithms. This strategy proposes a sampling process to
generate imprecise datasets from theses models and two new
evaluation measures. Our second contribution consists on
proposing a global approach to learn the structure and the
parameters of possibilistic networks. We propose a possibilistic
likelihood function to learn possibilistic networks parameters and to
define a new score function used to learn the structure of these
models. A detailed experimental study showing the feasibility and
the efficiency of the proposed methods has been also proposed.
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Réseaux possibilistes, données imprécises,
apprentissage automatique, théorie des
possibilités, échantillonnage des résaux
possibilistes, distance possibiliste.
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