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Optimisation of inspection plans for structures submitted to a stochastic 

degradation context: application on RC structures 

Résumé 
 
La gestion des structures en béton armé dans le but 
d'assurer leur sécurité et leur durabilité est devenu un 
challenge économique d'importance notable. La 
réponse à ce challenge tient en partie dans la recherche 
d'un plan d'inspection, de maintenance et de réparation 
(IMR) optimisé en fonction de contraintes de sureté. 
Ce travail est placé dans un cadre de maintenance 
préventive, où les dégradations du béton considérées 
peuvent amener à la corrosion des armatures, non à la 
défaillance structurelle. Les modèles de dégradation 
concernés sont placés dans un cadre probabiliste où la 
variabilité spatiale de l'exposition environnementale et 
des propriétés matériaux du béton sont prises en 
comptes. Sur la base de ces prédictions, un plan 
d’expérience adaptatif permet d’identifier, à une date 
donnée, où il est intéressant d’inspecter la structure 
pour évaluer son état qui conditionnera la décision de 
maintenance ou de réparation. 
Un arbre de décision permet ensuite de prédire 
l’évolution probabiliste de cet état incluant les effets des 
maintenances et réparations. Ce modèle est enfin utilisé 
dans une procédure d’optimisation qui vise à déterminer 
quand et avec quel outil cette structure doit être 
inspectée pour optimiser l'espérance du budget de suivi 
d'une structure ou d'un parc ainsi que les incertitudes 
associées liées aux erreurs de mesure, tout en prenant 
en compte les diverses contraintes spécifiques des 
gestionnaires d’ouvrages.  
 
Mots clés 
Optimisation, Variabilité spatiale, Inspection, 
Maintenance, Actualisation Bayésienne 
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Abstract 
 
The development of modern societies has seen the 
construction of several structures and infrastructures 
built in reinforced concrete. The management of those 
structures, potentially large and subjected to important 
pathologies, aiming at ensuring and guaranteeing their 
safety and durability has become a true economical 
challenge. Looking for an optimal inspection, 
maintenance and repair plan according to safety 
constraints is one of the possible solutions to address 
this challenge. 
This work is bounded by a preventive maintenance 
context where the concrete degradations may lead to 
the corrosion of the reinforcements and not to structural 
failure. The corresponding degradation models are put 
in an uncertainty context where the spatial variability of 
the environmental exposure and the concrete properties 
are accounted for. Based on such predictions, an 
adaptive design of experiments helps to identify, at a 
given time, where the structure should be inspected in 
order to evaluate its degradation state which will 
indicate the need for maintenance or a repair action.  
A decision tree therefore allows to predict the 
probabilistic evolution of the structure state, including 
the effect of maintenance and repairs.  This tree is then 
used in an optimisation process which aims at finding 
where and with which inspection technique the structure 
is to be inspected to minimise both the expectation of 
the exploitation costs and the associated uncertainties 
due to the measurement errors, accounting for the 
stakeholder’s constraints. 
 
Key Words  
Optimisation, Spatial variability, Inspection, 
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RÉSUMÉ ÉTENDU

Les structures en béton armé et leur plan d’inspections

Introduction

L’expansion des pays développés et la croissance rapide de leur population depuis le 19ème

siècle ont conduit à la construction de nombreuses structures et infrastructures en béton
armé afin de répondre aux besoins en :

• Énergie ;

• Logements ;

• Infrastructures routières et ferroviaires.

En France, ces infrastructures routières et ferroviaires sont composées de :

• 280 000 ponts ;

• 50 000 murs de soutènement ;

• 1 000 kilomètres de tunnels.
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L’électricité est produite entre autres à 80% par 60 réacteurs nucléaires et à 5% par 450
barrages hydrauliques. 62% des 4 millions d’habitations à loyer modéré ont été construites
avant les années 80. En considérant l’importance économique et sociale de ces structures et
infrastructures, il ne fait aucun doute qu’assurer leur fiabilité est un challenge majeur pour
chaque pays développé. D’autant plus que dans l’environnement économique actuel, ces
structures tendent à avoir une durée de vie étendue afin d’éviter de coûteuses reconstruc-
tions. C’est pourquoi la conservation d’un niveau de fiabilité donné impose que ces structures
soient inspectées et maintenues de façon régulière, en accord avec des plans d’inspection,
de maintenance et de réparation (IMR). Cependant le coût de ces plans IMR, bien que plus
faible qu’un coût de reconstruction, n’est pas pour autant négligeable.

D’un autre côté, les politiques de développement durable sont devenues un sujet de
préoccupation majeur ces 10 dernières années. Cela implique d’appliquer les plans IMR
dans un contexte de maintenance préventive afin de réduire au maximum les coûts associés
aux actions de maintenance et de s’affranchir du besoin de reconstruction.

Traiter de ces aspects nécessite une procédure optimisé pour concevoir les plans IMR
visant à réduire également le coût d’inspection à long terme de ces structures et infrastruc-
tures.

Les processus de dégradation physico-chimique du béton armé

Le vieillissement des structures en béton armé trouve ses origines dans des processus de
dégradation physico-chimiques liés à l’environnement extérieur. Chaque structure en béton
armé est au minimum exposée au dioxyde de carbone, noté CO2, qui est la source du pro-
cessus de carbonatation du béton. Le dioxyde de carbone pénètre à l’intérieur du béton par
la porosité et réagit avec la chaux du béton pour former du carbonate de calcium, comme
illustré Figure 1, ce qui conduit à une baisse du pH de la solution interstitielle.

FIGURE 1 – Représentation du processus de carbonatation du béton. L’aire rose représente la partie
carbonatée. Les barres et cercles bleus représentent les armatures ainsi que leur protec-
tion contre la corrosion.

La cinétique du processus de dégradation, relativement lente, dépend principalement de
la porosité du béton, de son humidité relative et de la concentration de CO2 dans l’atmo-
sphère qui varie entre 0.03% et 0.2% en atmosphère urbaine.
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Les structures proches d’un environnement marin sont également exposées aux chlo-
rures. Comme le montre la Figure 2, ce processus est similaire à la carbonatation puisque
les ions chlorures pénètrent également via la porosité du béton. Leur présence entraîne une
baisse du pH de la solution interstitielle.

FIGURE 2 – Représentation du processus de pénétration des ions chlorures dans le béton armé.

La solution interstitielle du béton armé est alcaline, son pH étant compris entre 12 et
13. Dans ces conditions de pH un film passif (représenté en bleu dans les Figures 1 et 2)
protège les armatures de la corrosion. Si la pénétration des ions chlorures et la carbonata-
tion n’occasionnent pas directement une baisse des propriétés mécaniques du béton armé,
ces processus de dégradation détruisent la protection des armatures contre la corrosion en
baissant le pH de la solution interstitielle. L’apparition de la corrosion pouvant amener vers
la défaillance structurelle par fissuration du béton armé.

Ø Ces processus de dégradation et leurs modélisations sont introduits dans le Chapitre 1.

Bilan sur les approches d’optimisation

De l’analyse de Faber et Stewart (2003) sur la généralisation des méthodologies d’optimi-
sation de plan d’inspections résultent d’intéressantes conclusions comme par exemple :

• Les ingénieurs n’apparaissent pas complètement convaincus de l’utilité de ces métho-
dologies qu’ils jugent "trop compliquées", "trop mathématiques" pour évaluer le risque
d’un évènement jamais observé ;

• La prudence générale et une longue expérience amènent à privilégier l’usage de mé-
thodes standardisées pour la définition des plans d’inspections. Cependant ces mé-
thodes peuvent ne pas être appropriées.

Basés sur ces observations et sur une revue de la littérature de ce sujet, les objectifs de
la thèse sont :

1. De proposer une méthodologie d’optimisation des plans d’inspections :

• Non dédiée à un unique objectif ;
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• Aussi indépendante que possible des différentes hypothèses qui peuvent être
faites sur la modélisation des inspections, des maintenances et des défaillances ;

• Capable d’être appliquée sur des structures de différentes tailles, soumises ou
non à des processus de dégradation présentant une corrélation spatiale ;

• Indépendante du processus de dégradation considéré et de l’indice de dégrada-
tion correspondant ;

• Aussi simple que possible avec un coût de calcul acceptable.

2. De permettre l’utilisation de données existantes qui s’avéreraient pertinentes pour ca-
librer ou actualiser le modèle de dégradation pour affiner le plan d’inspections conçu
par la méthodologie d’optimisation.

Ø La revue bibliographique évoquée est disponible dans le Chapitre 1.

Prédire l’évolution d’un indice de dégradation

Modèle de prédiction de l’indice de dégradation

Pour proposer une méthodologi.e capable de répondre aux objectifs de la thèse, l’utilisation
d’un arbre de décision comme modèle prédictif de l’évolution d’un indice de dégradation
incluant l’effet des inspections, des maintenances et des réparations, dénoté ci-après IMRM,
est apparue plus appropriée. Cet arbre de décision illustré Figure 3 est capable de répondre
aux objectifs de la thèse puisque :

• Le noeud d’inspection conduit à l’estimation de deux probabilités, fonction d’un indice
de dégradation D :

– La probabilité de réparer (ou probabilité de défaillance) définie par :

P̃ f = P̃ [D >= dc] , (1)

où dc est le seuil de défaillance relatif à l’indice de dégradation D ;

– La probabilité de maintenance définie par :

P̃Ma = P̃
�

D >= dpm | D < dc

�

, (2)

avec dpm le seuil de maintenance relatif à l’indice D. La probabilité de mainte-
nance est conditionnée par le non-franchissement du seuil de défaillance.

Aucune hypothèse n’est nécessaire concernant la méthode d’inspection menant à l’es-
timation de ces probabilités ;

• Maintenir et réparer mènent uniquement à la prochaine inspection, sans hypothèse
sur la technique de réparation (parfaite ou non, modifiant la cinétique de dégradation,
. . .).
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FIGURE 3 – Arbre de décision avec deux inspections. P◦ est la probabilité de la branche ◦.
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Plan d’expérience adaptatif

En définissant l’indice de dégradation D tel que :

D =
|Ld − Lt |

Lt
,

où Ld est la longueur d’armatures potentiellement dépassivées et Lt la longueur totale d’ar-
matures. À partir des simulations du modèle de dégradation considéré, la probabilité, notée
P [D ≥ d], que cet indice de dégradation ait dépassé un seuil donné peut être aisément
calculée, par exemple par échantillonnage de Monte Carlo.

Cependant, si les simulations du processus de dégradation sont effectuées sur l’inté-
gralité de la structure, une campagne d’inspections ne retournera que la mesure de cette
dégradation à certains endroits de cette structure. A partir de la Figure 3, nous pouvons
donc définir la probabilité d’action calculée à partir des simulations telle que :

Pact =P [D ≥ dc] +P
�

D >= dpm | D < dc

�

,

et son estimation résultante des points choisis pour l’inspection P̂act .

Un plan d’expérience adaptatif en deux étapes est proposé pour assurer qu’avec un mi-
nimum de points inspectés l’approximation soit suffisamment précise.

La première partie de ce plan utilise l’autocorrélation du champ de dégradation de ma-
nière à effectuer des inspections quasi-indépendantes. Connaissant le nombre maximum de
points d’inspection autorisés ninspm

, la démarche est la suivante :

• Allouer shigh des points d’inspection
�

x (i)insp, i = 1, . . . , ninspm

�

dans les zones de fortes
dégradations définies par :

argmax
x
QX (x),

avec QX (x) le quantile à 95% de la dégradation au point x dénotée par
P (X (x)≤QX (x)) = 0.95 ;

• Allouer 1− shigh des points d’inspection dans les zones faiblement dégradées définies
par :

argmin
x insp
QX (x insp) ;

• Ajouter les points situées sur les coins du domaine afin de le considérer dans son
intégralité ;

• Interpoler les trajectoires entre les points d’inspection pour estimer la distribution de
l’indice de dégradation ;

sous contrainte que >x (i)insp, x ( j)insp�R
�

x (i)insp, x ( j)insp

�

< 0.3, i 6= j, (i, j) = 1, . . . ninsp ≤ ninspm
,

R(x , x ′) représentant la corrélation linéaire de la dégradation entre les positions d’inspection
x (i)insp et x ( j)insp
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La seconde partie de ce plan, la partie adaptative, vise à assurer la qualité de l’approxi-
mation de la probabilité d’action P̂act .

Soit le critère I(x) qui quantifie la qualité de l’approximation tel que :

I(x) = εT (x),

avec εT (x) = max
�

T (x)− T̂ (x)
�

−min
�

T (x)− T̂ (x)
�

où T (x) est le vecteur des trajec-
toires de la dégradation à la position x et T̂ (x) les approximations correspondantes qui
résultent du plan d’expérience.

Soit une formulation générique de la précision de l’approximation définie par :

εP =

�

�P̂ −P
�

�

P
,

où les probabilités P and P̂ sont respectivement égales à :

• P f et P̂ f pour l’événement de défaillance, la précision étant par conséquent notée
εP f

;

• PMa et P̂Ma pour l’action de maintenance, la précision correspondante étant notée
εPMa

.

En premier lieu, le plan d’expérience adaptatif cherche à améliorer la précision de l’es-
timation de la probabilité de défaillance en ajoutant aux points d’inspection la solution de :

argmax
x

I(x),

en s’assurant que cette solution permet de diminuer εP .

De multiples solutions sont trouvées et ajoutées tant que εP f
≥ εP f l im

et dans un second
temps jusqu’à ce que εPMa

≤ εPMalim
, tout en vérifiant que ninsp ≤ ninspm

à la fin de ces
deux étapes. L’ordre de ces étapes doit être respecté, étant donné que la probabilité de
maintenance est conditionnée par la non-défaillance, une bonne approximation de cette
probabilité nécessite une bonne approximation de la probabilité de défaillance.

Ø La mise en place et l’utilisation de l’IMRM sont décrites dans le Chapitre 2.

Calibrer le modèle prédictif : le cas du béton armé

Un des objectifs de la thèse est de permettre l’utilisation des données pertinentes pour ca-
librer le modèle de dégradation utilisé par l’IMRM. Les propriétés du béton, qui sont des
entrées de ces modèles, pouvant être connues par :
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• Mesure directe ;

• Mesure indirecte ;

• Jugement d’expert ;

La mixité de ces données convient parfaitement au cadre de l’actualisation Bayésienne qui
permet de toutes les prendre en compte.

Cependant, il apparaît qu’il est globalement difficile de renseigner les entrées de ces
modèles et d’observer leur sortie par des techniques de contrôle non-destructif. A partir de
données réelles de carbonatation obtenues par contrôle destructif, il est cependant démontré
que la mesure des sorties du modèle de dégradation est plus importante que toute autre
mesure. Ce travail permet de mettre en lumière le besoin d’une technique de contrôle non-
destructif capable de suivre les dégradations considérées dans un cadre de maintenance
préventive.

Ø Cette partie est détaillée dans le Chapitre 3.

Optimiser le plan d’inspection

Fonctions objectif

Le coût d’exploitation d’une structure est en général défini par (Frangopol et al. (1997);
Sheils et al. (2010a)) :

C tot = C In + C Ma + C F ,

avec C In, C Ma and C F les coûts d’inspection, de maintenance et de réparation, respective-
ment. Dans le contexte probabiliste de cette thèse, chaque coût C• est remplacé par son
espérance mathématique E [C•].

Étant donnés :

• l’IMRM représenté Figure 3 avec m branches, chacune ayant une probabilité Pi d’être
réalisée ;

• l’horizon temporel t l im discrétisé en t tot pas de temps ;

• les dates d’inspection tIn ;

• un taux d’actualisation r ;

Des modèles génériques pour les coûts d’inspection, de maintenance et de défaillance
sont définis par :

E
�

C In
�

=
m
∑

i=1

Pi

∑

t∈tIn

nI
(i,t)CIn

(t)

(1+ r)t
,
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E
�

C Ma
�

= CMa

m
∑

i=1

Pi

∑

t∈tIn

1Ma
i,t

(1+ r)t+tMa
,

E
�

C F
�

= CF

m
∑

i=1

Pi

∑

t∈tIn

1F
i,t

(1+ r)t+tR
,

où :

• n(i,t)I est le nombre de points inspectés à la date t dans la branche i de l’arbre de
décision ;

• 1Ma
i,t (ou 1F

i,t) vaut 1 si une maintenance (ou une réparation) est décidée dans la
branche i au temps t, 0 sinon ;

• tMa et tR sont respectivement les délais de maintenance et de réparation qui peuvent
résulter de contraintes techniques ou financières.

Ces formulations génériques dérivées de l’arbre de décision ne font aucune hypothèse
sur les coûts associés à une inspection, une maintenance ou une défaillance respectivement
notés CIn, CMa and CF .

Définition du problème d’optimisation

Le problème d’optimisation résolu dans cette thèse est le suivant.

En supposant que :

• L’intervalle de temps entre deux inspections est constant, de façon à mieux représenter
les habitudes des gestionnaires d’ouvrages ;

• Une seule technique d’inspection est utilisée lors d’une campagne d’inspection ;

Et étant donnés :


















































Les techniques d’inspection TIn = [0, 1,2, · · · , nT ]
Les coûts d’inspection correspondants CIn = [C (0)In , C (1)In , · · · , C (nT )

In ]
L’horizon temporel t l im

Le taux d’actualisation r
Le délai de maintenance tMa

Le délai de réparation tR

L’indice de dégradation préventif DP

L’indice de dégradation curatif DF

L’IMRM

Le problème d’optimisation est de trouver :
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�

L’intervalle de temps entre deux inspections ∆t In

Le plan d’inspections Pl In =
�

TIn
(0), . . . , TIn

(t l im/∆t In)
�

Pour minimiser l’espérance du coût total E [(Ctot)] et son intervalle de confiance
C I (E [(Ctot)]) sous certaines contraintes, où

• i ∈ TIn signifie que la technique d’inspection i avec le coût C (i)In est utilisée ;

• PlIn
(i) est la technique d’inspection utilisée à la i − eme inspection.

La solution finale est sélectionnée au sein du front de Pareto résultant, à partir de critères
donnés par le gestionnaire.

Exploitation du front de Pareto

Un cas simple d’un immeuble comprenant 120 balcons soumis à la carbonatation où 12
d’entre eux sont régulièrement inspectés est considéré. Un exemple de ce type de structure
est donné Figure 4. Les coûts d’inspection, de maintenance et de réparation sont fixés à
partir d’une analyse de coûts.

Le modèle de carbonatation utilisé est un méta-modèle de type krigeage vectoriel iden-
tifié à l’aide de simulations du modèle SCARABET (de Larrard et al. (2014)). Les balcons
sont modélisés soit par des poutres de 3 mètres de long, soit des surfaces de 3 mètres de
long par 1.2 mètres de large. Les prévisions du modèle de carbonatation ainsi que la struc-
ture de corrélation observée sur ces trajectoires sont illustrées Figures 5 et 6, dans le cas
unidimensionnel.

Le front de Pareto résultant de l’optimisation du plan d’inspections de ce cas unidimen-
sionnel est donné Figure 7.

Le point ∆t In = 12;PlIn = [0, 2,0, 1] signifie que pour cette solution :

• L’intervalle de temps entre deux inspections est fixé à 12 ans ;

• Sur l’horizon temporel de 60 ans cela amène donc à 4 inspections qui sont successi-
vement réalisées par les techniques d’inspection 0, 2, 0 et 1. L’inspection de type 0 est
la plus chère et la plus précise. L’inspection de type 2 est la moins chère et la moins
précise.

Ce plan prédit que 2 inspections (avec une probabilité égale à 0.9997) seront utiles :

• La première inspection a 100% de chances d’être inutile ;

• La troisième inspection a 65% de chances d’être effectuée ;
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FIGURE 4 – Illustration d’un immeuble à Marseille.
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• La dernière inspection a 65% de chances d’être inutile.

De nombreux indicateurs peuvent être dérivés de l’arbre de décision, tel que l’espérance
et l’intervalle de confiance du nombre de maintenances et de réparations réalisées comme
montré dans le Tableau 1. Selon ce plan la probabilité qu’une action de maintenance soit
menée est de 77%, celle qu’aucune réparation ne soit nécessaire est de 82%. Les erreurs
d’inspections entraînent un risque que deux actions de maintenance soient effectuées avec
une probabilité de 24% si la dégradation est suresaDe nmée.

n° µMa [C I−; C I+]Ma µF [C I−; C I+]F
0 0.18 [0.13; 0.09] 0.82 [0.87;0.91]
1 0.77 [0.87; 0.67] 0.18 [0.13;0.09]
2 0.05 [0;0.24] 0 [0;0]
3 0 [0; 0] 0 [0;0]
4 0 [0; 0] 0 [0;0]

TABLE 1 – Moyenne et intervalle de confiance pour le nombre de maintenances et de réparations
avec un intervalle de temps entre deux inspections de 12 ans.

Ø Cette partie est détaillée dans le Chapitre 4.

Conclusion

La méthodologie développée dans ce travail répond donc aux objectifs de la thèse. L’uti-
lisation d’un arbre de décision permet de dériver de nombreux indicateurs pour aider le
gestionnaire à choisir sa solution au sein d’un front de Pareto. Des cas variés ont été trai-
tés (modélisation 1D, 2D, système) démontrant les capacités d’adaptation de la méthode à
différents choix de modélisation.

Cependant, ce travail, notamment la notion de plan d’expérience adaptatif, n’est pas
directement exploitable aux cas où l’action de maintenance dépendrait d’une valeur locale
de la dégradation (e.g. la présence d’une fissure critique au sein d’une structure en acier).
L’extension à d’autres types de dégradation ainsi que l’application sur un cas industriel font
partie des principales perspectives de ce travail.
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INTRODUCTION

“O most ingenious Theuth, the parent or inventor of an art is not always the best judge of the
utility or inutility of his own inventions to the users of them.

And in this instance, you who are the father of letters, from a paternal love of your own
children have been led to attribute to them a quality which they cannot have; for this discovery
of yours will create forgetfulness in the learners’ souls, because they will not use their memories;
they will trust to the external written characters and not remember of themselves.

The specific which you have discovered is an aid not to memory, but to reminiscence, and
you give your disciples not truth, but only the semblance of truth; they will be hearers of many
things and will have learned nothing; they will appear to be omniscient and will generally know
nothing; they will be tiresome company, having the show of wisdom without the reality.” Plato

The stakeholder challenge

Since the 19th century, the expansion of developed countries and the fast increase of their
population has lead to the build of numerous structures and infrastructures in reinforced
concrete in order to answer to the needs in:

• Energy;

• Accomodations;

• Road and railway infrastructures.

In France, the road and railway infrastructures gather:

• 280.000 bridges;

• 50.000 retaining walls;

• 1.000 km of tunnels.

The electricity is produced at 80% by 60 nuclear power plants, 5% by 450 hydraulic
dams. 62% of the 4 millions low-cost housing have been built before the eighties. Ensuring
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the reliability level of those structures is undoubtedly a major challenge for each developed
country considering their economical and social importance.

Due to the economical context, on one side most of the stakeholders plan to extend the
original lifespan of their structures to avoid costly reconstructions. Those structures are
thus inspected and maintained regularly according to Inspection, Maintenance and Repair
(IMR) plans in order to sustain their reliability. Although much lower than reconstruction
costs, the costs induced by these IMR plans keep on being significant.

On the other side, the sustainable development has grown as a major subject in the
past 10 years which induces to apply the IMR plans in a preventive context of degradation,
i.e. to reduce at most the volume of natural material required and the risk of a needed
reconstruction.

These aspects call for an optimised procedure to design IMR plans in order to reduce the
long run monitoring cost at the same time. Therefore the stakeholders challenge may come
down to both:

• Ensure the maximum safety at a given cost;

• Ensure the minimum cost at a given safety level.

Outline of the thesis

Chapter 1 presents an overview of the concrete degradation processes which can be pre-
dicted by empirical, finite-element or statistical models. These processes may lead to a loss
of safety and a need of maintenance for the concerned structures. This chapter introduces a
literature review of the optimisation methods available for structures management together
with the different inspection modellings of non-destructive techniques (NDTs). Finally the
objectives of the thesis are derived from an analysis of the latter review.

Chapter 2 is concerned with the prediction of the structure degradation index by a de-
cision tree which includes the effect of inspections and maintenance, i.e. the first step of the
methodology proposed in this thesis. In order to account for the spatial variability inherited
by the concrete properties and the structures sizes, an adaptive design of experiments based
on valuable degradation predictions is proposed to estimate the degradation index of the
structure with the minimum number of inspection locations. Low-discrepancy sequences
are also introduced and may be used if no reliable degradation predictions are available. A
silver thread case study based on balconies management is described and used to demon-
strate the usefulness of the decision tree as an inspection, maintenance and repair model.

The methodology assumes that a predictive degradation model exists. The purpose of
Chapter 3, is to give to the stakeholder a tool for calibrating its degradation model. Bayesian
statistics are particularly suited to this case since they allow to gather measurement results,
expert judgement and structure specifications. The use of such method with the available
non-destructive methods for concrete structures is illustrated by real measurements per-
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formed on a concrete wall belonging to the French Alternative Energies and Atomic Energy
Commission.

Last but not least, Chapter 4 aims at integrating the life-cycle model designed in
Chapter 2 into an optimisation procedure. Genetic algorithms are introduced for their abil-
ity to handle multi-objective problems with categorical optimisation variables (e.g. the in-
spection method). A focus is made on the Non-Sorting Genetic Algorithm (NSGA-II) for its
interesting space exploration and elitism properties. The optimisation problem is defined
such as the expectation of the total cost, its confidence interval and the time spent into the
failure state are the three objectives to minimise. The optimisation variables are the time
interval between two successive inspection and the inspection method used at each inspec-
tion. The optimisation procedure is performed on the silver thread example described in
Chapter 2 and demonstrates the ability of the proposed methodology to handle the thesis
objectives defined in Chapter 1.

For the sake of clarity, the connections between the different chapters and the overall
methodology presented in this thesis are shown in Figure 1.

Figure 1 – Outline of the thesis



CHAPTER 1
OVERVIEW ON RC STRUCTURES AND

THEIR INSPECTION PLANS

1.1 Introduction

The management of ageing reinforced concrete (RC) structures has been a productive re-
search domain through the past decades. Two complementary views of the optimisation
of Inspection, Maintenance and Repair (IMR) plans of structures have emerged from these
researches. The first one is based on the degradation predictions of given structures and
predicts the potential results of an inspection. The second one uses real observations in
order to define the structure state to update the degradation predictions.

This chapter introduces the basics of those management methods. It contains three main
sections. Section 1.2 presents the basics of the main degradations affecting RC structures.
A focus is made on the statistical models in Section 1.3. Section 1.4 is an overview of
the two thinking movements mentioned above, each of them dealing with the optimisation
of the management through different methods. Section 1.5 presents the objectives of the
thesis which are derived from the inconsistency of the answers those methods give to the
stakeholder’s challenge.

1.2 Context : RC structures and their degradations

1.2.1 Ageing RC structures

Ensuring the maximum safety is a challenge due to different time-dependent degradation
processes of reinforced concrete structures which could lead to structural failure more or
less quickly.
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1.2.1.1 Physicochemical degradations

The ageing of RC structures finds its origin in physicochemical degradations conditioned by
their environmental exposure. Each RC structure placed in atmospheric conditions is at least
exposed to the carbon dioxide CO2 which is the source of the so-called carbonation process.
As illustrated through Figure 1.1, the carbon dioxide penetrates into the concrete through
its porosity. A chemical reaction thus happens between the carbon dioxide and the lime
in the cement, forming calcium carbonate. Compared to a normal concrete, a carbonated
concrete has:

• a higher compressive strength;

• a lower porosity;

• a lower pH.

Figure 1.1 – Illustration of the carbonation process of reinforced concrete. The pink area represents
the carbonated part.

This degradation process has a slow kinetic which depends mainly on the concrete poros-
ity, the relative humidity and the carbon dioxide concentration in the atmosphere which
varies from 0.03% to 0.2% in urban areas.

RC structures close to a marine environment are also exposed to the chloride ingress
process. As shown by Figure 1.2 it is similar to the carbonation process since the chlorides
progress into the concrete through the porosity, lowering the pH.

The pore solution of the reinforced concrete is alkaline, meaning its pH is around 12-
13. Under these conditions a passive film (represented in blue in Figures 1.1 and 1.2) is
formed on the steel surface of the reinforcement protecting it from the corrosion. If the
chloride ingress and the carbonation processes do not damage the concrete by decreasing
mechanical properties of the concrete, they still lower the corrosion protection of the rebar
by lowering the pH of the pore solution, thus inducing the corrosion when the passive film
is broken as illustrated Figure 1.3.

When corrosion occurs, the reinforcements are progressively replaced by the corrosion
products which fill the porous zone of the concrete close to the rebar. Since the cross-section
area of the reinforcement is reduced and the interface between the concrete and the rebar
is weakened, the reinforced concrete load-carrying capacity is drastically decreased.
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Figure 1.2 – Illustration of the chloride ingress process of reinforced concrete.

Figure 1.3 – Illustration of the corrosion process of reinforced concrete.

1.2.1.2 Mechanical degradation

When the porous zone close to the reinforcement is filled by the corrosion products, the
internal pressure applied to the concrete increases with the corrosion evolution until cracks
illustrated in Figure 1.4 appear. From then, the ageing of RC structures is due to both
physicochemical degradation and mechanical one which interact between each other. The
cracks facilitate the introduction of the oxygen needed by the corrosion process meanwhile
the corrosion products keep on creating new cracks.

Figure 1.4 – Illustration of the cracking process of reinforced concrete.

The concrete cover is then progressively reduced and thereby increasing the risk of:

• Concrete blocks falls due to spalling;
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• Structural failure due to a reduced load-carrying capacity.

1.2.2 Modelling degradation

Since these time-dependent degradation processes lead to an increase of the structural fail-
ure probability, their modelling is needed to predict their evolution. Although it appears
that a global model able to deal successively with carbonation, chloride ingress, corrosion
and cracking does not exist, each step of the ageing process has been modelled by either
empirical or physical models.

Many attempts have been made to build empirical models mixing physical knowledge
and regression parameters able to predict the evolution of the physicochemical processes.
Empirical carbonation models assume that the carbon dioxide pressure evolves linearly from
the surface where it equals the environmental pressure to the carbonation depth where it
is null due to an assumed instantaneous consumption of the carbon dioxide. The chloride
ingress models assume that the chlorides migration into concrete is only due to the concen-
tration gradient observed between the environment and the concrete, independently from
the other constituents present in the pore solution. They also mainly assume that the con-
crete is saturated, i.e. its saturation rate Sr is up to 100%. The corrosion models are either
modelling the corrosion rate or the corrosion current which are linked by the Faraday’s law,
each of them making different assumptions.

The project DuraCrete (2000) proposes a predictive model for each physicochemical de-
gradations mentioned above. They are shortly introduced in the following as an illustration
of those models which keep a similar form for a given degradation process.

The carbonation process model (DuraCrete (2000)) reads

X c(t) =

√

√kekckt Cs t
Rcar b

∗
� t0

t

�n

, (1.1)

where X c(t) is the time-dependent carbonation depth. ke, kc, kt are empirical paramet-
ers adjusted with carbonation data obtained through accelerating testings (higher carbon
dioxide concentration and optimal rate of humidity) with different types of cement, expos-
ure conditions, curing conditions and concrete composition. Cs is the surface concentration
of the carbon dioxide. Rcar b is a function of both the amount of carbon dioxide required
to carbonate a unit volume and the diffusion rate of CO2. t0 is a reference time and n is
an age-exponent which is a function of both the environment and the degradation of the
material properties with time.

For a nearly exhaustive list of the carbonation models, the interested reader is referred
to Hyvert (2009).

The proposed model (DuraCrete (2000)) for the chloride ingress reads

C(x , t) = Cser f c

�

x

2
p

kekc Da(t)t

�

, (1.2)
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where C(x , t) is the chloride concentration at depth x at time t, Cs is the surface chloride
concentration, ke and kc factors function of the exposition conditions, the type of cement
and the curing conditions. Da(t) is a time-dependent diffusion coefficient. For a nearly ex-
haustive list of the chloride ingress models, the interested reader is referred to Deby (2008).

The last model for the corrosion current (DuraCrete (2000)) reads

icor r =
kcor r

ρ(t)
FCl FGalv Fox ideFOx y , (1.3)

where kcor r is a regression parameter and ρ(t) is the concrete resistivity at time t. FCl , FGalv,
Fox ide, FOx y take into account the impact of chloride content, galvanic effects, continuous
formation, ageing of oxides and availability of oxygen respectively. For a nearly exhaustive
list of the corrosion models, the interested reader is referred to Otieno et al. (2012); Raupach
(2006).

The physical models, mostly based on the resolution of diffusion equations by finite dif-
ference or finite elements methods, are not introduced here for the sake of simplicity. How-
ever the interested reader is referred to Bary and Sellier (2004); de Larrard et al. (2014);
Saetta et al. (1995); Talukdar et al. (2012); Thiery (2005) for physical carbonation model,
Bastidas-Arteaga (2010); Deby (2008); Marchand (2001) for chloride ingress models, and
Gulikers and Raupach (2006); Redaelli et al. (2006); Warkus et al. (2006b,a) for corrosion
models.

Concerning the cracking models, they mainly are a combination of a model predicting
the creation of corrosion products, as a function of the corrosion rate, and a mechanical
model to compute the pressure applied to the neighbourhood concrete. Experimental stud-
ies have been done by Oh Hwan et al. (2009) to identify the critical corrosion amount to
cause cracking which is the key parameter for the crack initiation. Either analytical as the
model of Bhargava et al. (2006) or numerical as the one of Hansen and Saouma (1999),
the crack initiation and propagation is derived from fracture mechanics equations by eval-
uating the stresses applied on the concrete by the corrosion products, like in Leung (2001).
The interested reader is referred to El Maaddway and Soudki (2007); Molina et al. (1993);
Pantazopoulou and Papoulia (2001); Val et al. (2009) for more details on the available
models for cracking induced by corrosion expansion.

1.2.3 Probabilistic modelling

All the degradation models presented in Section 1.2.2 have some of their inputs dependent
on:

• the concrete properties or;

• the environmental exposure.

Due to:
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• The concrete realisation process;

• The natural variability of environmental exposure;

• The measurement error relative to both parameters;

both concrete properties and environmental exposure are uncertain and as such be mod-
elled by correlated random variables. The project DuraCrete (2000) proposes probabilistic
distributions for the inputs of its carbonation, chloride ingress and corrosion models.

However, considering the structure sizes (for instance a bridge) it may be too strong to
assume that a given property (e.g. the concrete porosity) is constant along the structure. In
other words modelling the spatial variability of the concrete properties may be needed. To
the author’s knowledge, few works have been performed to account for the spatial variability
of structures’ degradation. Correlated random fields may be needed to model the inherent
variability of these parameters. A method based on local stationary models is for instance
proposed in Straub and Faber (2002).

1.3 Condition states and statistical approaches

1.3.1 Structure rating

Using physical or empirical models to predict the evolution of physicochemical or mech-
anical degradation in order for a stakeholder to manage his structures is relevant only if
the predicted degradation is measured. The fact is that in most cases, the structures are
beforehand inspected by visual means and the inspection will not go further until a major
defect is noticed. A visual inspection usually results in the classification of the structure in
a given condition rate. For instance, Table 1.1 presents the condition rating provided by
FHWA (2011) used to determinate the condition state of U.S. bridges and Table 1.2 is the
french equivalent provided by the Sétra (1996).

When the only inspections performed on a structure are visual, the only available data to
build a predictive model of the condition rate evolution are the condition rate themselves.

1.3.2 Markov chains for condition rate evolution

The markov chains have been widely used as a tool to model the degradation of components
and structures. For the sake of clarity, the basics of markov chains are introduced prior to
the description of their use.

1.3.2.1 Homogeneous markov chain of the first order

Let E be a discrete state space of size N ∈ N. A markov process is a stochastic process
discrete in time taking its values in E, satisfying a property commonly named the markov
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Score Description Details
9 Excellent condition
8 Very good condition No problems noted
7 Good condition Some minor problems
6 Satisfactory condition Structural elements show some minor deterioration
5 Fair condition All primary structural elements are sound but may

have some minor section loss, cracking, spalling or
scour

4 Poor condition Advanced section loss, deterioration, spalling or
scour

3 Serious condition Loss of section, deterioration, spalling or scour have
seriously affected primary structural components.
Local failures are possible. Fatigue cracks in steel
or shear cracks in concrete may be present.

2 Critical condition Advanced deterioration of primary structural ele-
ments. Fatigue cracks in steel or shear cracks in con-
crete may be present or scour may have removed
substructure support. Unless closely monitored the
bridge may have to be closed until corrective action
is taken.

1 Imminent failure condition Major deterioration or section loss present in crit-
ical structural components or obvious vertical or
horizontal movement affecting structure stability.
Bridge is closed to traffic but corrective action may
put back in light service.

0 Failed condition Out of service- beyond corrective action

Table 1.1 – National bridge inventory general condition rating guidance FHWA (2011).

Score Description
1 Good overall state
2 Equipment failures or minor structure damage

2E Equipment failures or minor structure damage. Urgent maintenance needed
3 Structure deterioration. Non urgent maintenance needed

3E Serious structure deterioration. Urgent maintenance needed

Table 1.2 – IQOA classification for bridges Sétra (1996)

property which writes

P (X t+1 = x |X t = x t , X t−1 = x t−1, . . . , X0 = x0)
=P (X t+1 = x |X t = x t).

(1.4)

This property indicates that the probability of a system being in state x ∈ E, at time t+1
is only dependent on its presence in state x t at time t.
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The markov process is therefore called memory-less process. Whatever has happened
in the past of the process, its future realisation will only be dependent on its present value.
Markov processes have been widely used for management of structures inspections (Baik
et al. (2006); Bastidas-Arteaga (2010); Elachachi and Breysse (2007); Kallen (2007); Sheils
et al. (2010b,a)). The main idea is that the condition state at time t implicitly contains the
history. For smooth and monotonic degradation mechanisms it seems to be an acceptable
assumption. In order to prove that a given process is markovian, the interested reader is
referred to Bickenbach and Bode (2001) who propose chi-square tests to ensure the Markov
property, spatial independence and homogeneity across time of the observed process.

In many civil engineering applications, the structure state is only periodically inspec-
ted which is in agreement with the use of a markov chain since it leads to represent the
progression of the degradation on a discrete timescale. Moreover, the discretization of the
degradation into several states is expected by the managers which aim at handling a lim-
ited number of condition states to help them in taking decisions, as suggested by the use of
FHWA (2011) and Sétra (1996) recommendations.

0 1 2 3
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p12

p13p11

p23

p22

1

Figure 1.5 – Example of a state diagram

Usually a markov process’ behaviour is described with a state diagram as shown in Fig-
ure 1.5. A state is defined by a circle, while the arrows represent the transition from one
state to another. Each transition from state i at time t to state j at time t+1 has a probability
pi j to happen defined by a conditional probability

pi j =P (X t+1 = j|X t = i) (i, j) ∈ E. (1.5)

The graph shown on Figure 1.5 has two specific features. First, it is a non-return stage
diagram. An element following the markov process modelled by this graph is not able to
return to a previous state. Consequently, the last state is called an absorbing state, meaning
that once the process reaches this state it will stay within it (for instance, failure after crack
propagation, full saturation of a porous material, . . . ).

The transient probabilities are usually grouped together into a matrix called the markov
transition matrix, an example is shown in Eq. (1.6).

P =







p00 p01 p02 p03

p10 p11 p12 p13

p20 p21 p22 p23

p30 p31 p32 p33






. (1.6)
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One has to keep in mind that the matrix components are probabilities, therefore they
have to follow probability’s rules described by











N
∑

j=1

pi j = 1, i ∈ E

0≤ pi j ≤ 1, (i, j) ∈ E

. (1.7)

Thus in Eq. (1.6) the summation of each matrix line equals one.

Let ts be a time shift. A markov process is said to be homogeneous if the transition
probabilities are not age-dependent, i.e. they are independent from ts. Consequently

pi j =P (Xn+ts
= j|Xn = i) =P (X ts

= j|X0 = i), (i, j) ∈ E. (1.8)

Under this assumption, the conditional probability of belonging to a state j at time t knowing
that at the initial time it was in state i is then computed by multiplying the probability matrix
by itself t times as

P (X t = j|X0 = i) = Pt(i, j), (i, j) ∈ E. (1.9)

Finally the probability of belonging to a state j ∈ E at time t is computed as follows

P (X t = j) =
∑

i∈E

P (X0 = i)Pt(i, j), j ∈ E, (1.10)

and the time dependent states distribution is computed by

qt = q0Pt , (1.11)

given the initial state distribution q0 as a vector of size n.

Eventually, if the chain is irreducible, aperiodic and reversible, the state distribution con-
verges qt toward a stationary distribution πM when t tends to infinity, independently from
the initial state distribution Chung (1967).

1.3.2.2 Transition probabilities estimation

An exhaustive literature review of the existing methods (Bayesian methods, ordered probit
methods, . . . ) to estimate the transition probabilities can be found in Kallen (2007); Kelton
and Kelton (1985). This section describes two of them which are mostly used, depending
on the available data.

1.3.2.2.1 First case: Transitions observation The most desirable data-set would con-
tain an observation of all the transitions. It means that one knows for any transition from
state i to state j the time at which it happened. Let Nik be the number of observed trans-
itions from state i to any other state k, and Ni j, (i, j) ∈ E the number of observed transitions
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between states i and j. Then an estimation of the transition probabilities pi j, (i, j) ∈ E can
be assessed by

p̂i j =
Ni j

∑

k

Nik

(i, j) ∈ E. (1.12)

As demonstrated by Kelton and Kelton (1985), this method is similar to a likelihood
method for which the result of Eq. (1.12) would be the maximum likelihood estimator.
Consequently a sufficient number of transitions have to be observed if one wants this es-
timator to be unbiased. It is indeed a quite easy method to apply, however it has several
drawbacks.

The states distribution has to be defined before estimating the transition probabilities,
so it may happen that some states are never visited, leading to unnecessary complexity
and computational time. In this case, the markov matrix obtained by identification will
include a line with all probabilities being equal to 0, which is therefore not acceptable from
a probabilistic point of view. Such problem can be managed by aggregating the state never
visited with the previous one.

As the probabilities computed by this method are maximum likelihood estimators, some
indicators of the quality of the estimation can be derived.

Standard deviation of the probabilities Each computed probability pi j, (i, j) ∈ E has
an associated estimator of its standard deviation BODE (1998) following

cp̂i, j
=







r

1−p̂i j

Ni p̂i j
if p̂i j ≤ 0.5 (i, j) ∈ E

r

p̂i j

Ni(1−p̂i j)
if p̂i j > 0.5

, (1.13)

where Ni =
∑

k Nik. This estimator tends to +∞ when p̂i j tend to 0 or 1.

Stability measurement Berchtold and Ritschard (1997); Berchtold (1998) proposed
a method to measure the quality, or the stability, of a discrete probability distribution. The
idea of a stability measurement is to measure how the evaluation of a probability distribution
is affected by the introduction of an additional data into the used sample for the estimation.

Denoting (p1, p2, · · · , pM) a discrete probability distribution with M > 1 modalities, the
stability measure is computed by

D =
M

n+ 1
(1−min

m
pm)); (1.14)

where n is the number of data used for the estimation of the distribution. According to
Berchtold and Ritschard (1997); Berchtold (1998), the lower the stability measure, the
better the estimation. A transition matrix estimation of quality gives a stability measure
lower than 5× 10−3.
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As each line of the transition matrix P represents a discrete probability distribution,
Mattrand (2011) proposed to apply this criterion to the transition matrix P. As a result, for
a markov chain with N states, there are N stability measures available.

An estimator of the stability measure for one line of the transition matrix can then be
obtained by

Di =
N

Ni + 1
(1−min

j
pi j) (i, j) ∈ E; (1.15)

Depending on the use of the markov process, two measures can be proposed (Mattrand
(2011) ):

• measure of the maximal stability defined by

DM(P) =max
i
(

N
Ni + 1

(1−min
j

pi j)), (i, j) ∈ E; (1.16)

This measure evaluates which distribution, i.e. line, of the transition matrix P is the
worst evaluated. Then it should be used if one needs to have a proper estimation of
all the lines.

• measure of the mean stability defined by

DE(P) =
1

N 2

N
∑

i=1

(
N

Ni + 1
(1−min

j
pi j)), (i, j) ∈ E; (1.17)

This measure evaluates the overall quality of the transition matrix estimation. It could
be used in cases where it would be admissible to have few poorly estimated distribu-
tions.

1.3.2.2.2 Second case: States observation When structures are inspected at a time
interval and not monitored, the data-set of observation is less complete. In this case, one
will know in which state i ∈ E was the process at time t i, but the information about when
it came into this state is unknown. It is therefore impossible to evaluate the transition
probabilities with the maximum likelihood estimator.

However, a markov chain can be used to compute the probability that the process is in
a state at a given time using Eq. (1.10). Accordingly, a common method used is to estimate
the transient probabilities from a regression over the state expectation. Let Pobs (X t = k)
be the observed probability of being in state k at time t and P (X t = j) the corresponding
probability computed with Eq. (1.10). Then the transitions probabilities are computed by a
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constrained least-squares optimization

min
pi, j

∑

t

∑

k

(Pobs (X t = k)−P (X t = j))2 (i, j) ∈ E

under the constraints







N
∑

j=1

pi j = 1

0≤ pi j ≤ 1

. (1.18)

This method can obviously be used to estimate a markov model in the case where the
transitions are observed.

1.3.2.3 On the use of markov chain

Throughout the literature, the markov chains have been used to predict condition state
evolution for structures which are not monitored. Baik et al. (2006) identify a markov
chain to predict the conditions of waste-water systems. An ordered probit model which
writes

zi = βiX + ε, i ∈ E (1.19)

is used to model the continuous latent deterioration into a discrete state space together with
an incremental model reading

yi = j − i,
if µi( j−i) −βiX ≤ zi ≤ µi( j−i+1) −βiX , (i, j), ( j − i) ∈ E, (0, · · · , N − 1).

(1.20)

By assuming that the disturbance term ε in Eq. (1.19) is gaussian, the model parameters
β ,µ can be estimated by a maximum likelihood method. It is then used to identify the
transient probabilities of the markov process.

Bocchini et al. (2012) make use of a markov chain with three condition states (ser-
vice, maintenance and repair state) to predict the lifetime of multiple bridges. Duc Le and
Ming Tan (2013) use a continuous-time markov process to model the degradation of a sys-
tem which, for the sake of simplicity, combines an homogeneous markov chain which de-
termines what will be the next state, and a probabilistic distribution for the time at which
the transition will happen. Elachachi and Breysse (2007) use a markov chain with each
transition probability computed by a hazard model. Hong (1999) generates new corrosion
defects on pipeline systems with a Poisson process and models the effect of these defects
size on the pipeline strenght by a markov process. The Kolomogorov forward differential
equation is solved to obtain an analytical transition matrix. This equation reads

∂ Pi, j (s, t)

∂ t
=
∑

k

Pi,k(s, t)Ak, j(t), (1.21)
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where














Ai, j =
�

∂ Pi, j(t,u)
∂ u

�

u=t
A j,k(t)≥ 0
∑

k Aj, k(t) = 0
t > s.

Kallen and van Noortwijk (2006) propose a continuous-time markov process to model
the transition between one condition rate to another. The transition intensities are estimated
by a maximum likelihood method. Orcesi and Cremona (2010) also propose the use of a
markov chain for the evolution of the IQOA score (Sétra (1996)), which is used to derive a
maintenance event-tree.

1.3.3 A point on renewal processes

Renewal processes are another type of statistical processes used to estimate the evolution of
a condition score index, although it can be identified with any measurable degradation as for
instance the carbonation depth. They are lightly introduced for the sake of completeness.
The renewal processes are mainly composed of the Brownian motion with drift and the
gamma process.

The first is a stochastic process Y (t), t ≥ 0 with independent increments and decrements
according to a normal distribution with mean µt and standard deviation σ

p
t,∀t ≥ 0

A gamma random variable has a probability distribution reading

Ga(x |v, u) =
uv

Γ (v)
x v−1ex p(−ux)δ(E)(x) (1.22)

where δE = 1,∀x ∈ E and δE = 0,∀x /∈ E, and Γ (x) being the gamma function. A gamma
process is monotonic. Once identified, it can be used to derive the distribution of the time
to failure for instance.

A review of these processes and on the methods to estimate their parameters is available
in van Noortwijk (2009).

1.4 Optimising the management

Although the first step (i.e. predicting the degradation) is reached, modelling the degrad-
ation evolution accounting for the effect of inspections, maintenance and repairs which is
the so-called lifetime of the structure in order to optimise the inspection plan is mandatory.
This section first introduces some basics on inspections modelling needed to understand the
following literature review.
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1.4.1 Inspections modelling

An inspection, visual or resulting from a non-destructive evaluation, may result in two out-
puts: detection of a default, or non detection. For instance, a default can be the presence of
a crack on a plane, or a chloride concentration higher than a critical threshold on a marine
concrete structure. A usual mean to quantify the quality of an inspection tool is based on
the probability of detection PoD and the probability of a false alarm PFA (detection of a
nonexistent default) illustrated through Figure 1.6 (Schoefs and Clément (2004); Schoefs
et al. (2009); Straub (2004)).
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Figure 1.6 – Probabilistic model for PoD and PFA, from Rouhan and Schoefs (2003).

Rouhan and Schoefs (2003) have described measures of probability for events which
may happen during an inspection and derived for each of them their probability of occur-
rence:

• P (E1), probability that a default is detected and this default exists;

• P (E2), probability that a default is detected and this default does not exist;

• P (E3), probability that no default is detected and a default exists;

• P (E4), probability that no default is detected and no default exists.

with

P (E1) =
PoD(a)γ(a)

PoD(a)γ(a) + PFA(1− γ(a))
, (1.23)

P (E2) =
PFA(1− γ(a))

PoD(a)γ(a) + PFA(1− γ(a))
, (1.24)

P (E3) =
(1− PoD(a))γ(a)

(1− PoD(a))γ(a) + PFA(1− γ(a))
, (1.25)
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P (E4) =
(1− PFA)(1− γ(a))

(1− PoD(a))γ+ PFA(1− γ(a))
, (1.26)

γ(a) being the probability that a default of size a exists.

Sahraoui et al. (2013) defined two more outcomes for an inspection than the four presen-
ted above:

• P (E5), probability that a default is detected, a default exists but no repair is performed
due to the acceptable size of the defect;

• P (E6), probability that a default is detected, no default exists but no repair is per-
formed due to the acceptable size of the defect.

with

P (E5) =
PoD(a)η(a)

PoD(a)η(a) + PFA(1−η(a))
, (1.27)

P (E6) =
PFA(1−η(a))

PoD(a)γ(a) + PFA(1−η(a))
, (1.28)

where η(a) being the probability that a default of size a lower than the critical size threshold
for repair acri t exists. This definition is, to the author’s belief, more adapted to the case of
carbonation, chloride ingress or corrosion since the NDTs assess their level, not their pres-
ence, and repairing is determined by a critical level of the degradation, not by its presence.

For common inspection tools, the probability of detection PoD(a) = P(a ≥ ad) is con-
sidered as dependent on the default’s size given a minimal detectable default of size ad ,
whenever the probability of false alarm is only dependent on the noise and is therefore
constant for a given detection threshold (e.g. Figure 1.6).

Different functions can be used as PoD function. For instance, if the signal represented
in Figure 1.6 is normally distributed, then the PoD function writes (Schoefs and Clément
(2004))

PoD(a) =

∫ +∞

ad

1
p

2πσ(a)
ex p

�

−
(as −µ(a))

2

2σ2(a)

�

das (1.29)

For the sake of illustration, probability of detection can also be modelled by exponential
functions such as (Nielsen and Sorensen (2011); Straub (2004))

PoD(a) = P0

h

1− ex p(−
a
λ
)
i

, (1.30)

where P0 is the maximum probability of detection or by log-logistics models (Straub (2004))
writing

PoD(a) =
ex p [α+ β ln(a)]

1+ ex p [α+ β ln(a)]
. (1.31)

Although the inspections are sometimes assumed as perfect (Barker and Newby (2009);
Estes and Frangopol (2001b); Grall et al. (2002)), the probability of detection which mod-
els the performance of a non-destructive technique is widely used (Ellingwood and Mori
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(1996); Faber and Sorensen (2002); Frangopol et al. (1997); Hong (1997, 1999); Kim
and Frangopol (2011); Nielsen and Sorensen (2011); Orcesi and Frangopol (2011b); Soli-
man et al. (2013)). The probability of false alarm which can lead to wrong maintenance
decisions is also usually considered together with the probability of detection (Bastidas-
Arteaga (2010); Breysse et al. (2009); Rouhan and Schoefs (2003); Sahraoui et al. (2013);
Straub (2004); Sheils et al. (2010a)).

The use of a probability of detection and a probability of false alarm may appear redund-
ant since from a detection one can hardly say if it is a false alarm or not. From this point
of view, the so-called probability of indication PoI gathers the probability of detection and
the probability of false alarm into one indicator of the inspection quality. This probability
writes (Straub (2004); Nielsen and Sorensen (2011))

PoI(a) = PoD(a) + [1− PoD(a)] PFA. (1.32)

1.4.2 Maintenance and optimisation

The previous section has introduced the basics on inspection modelling. A literature re-
view on the optimisation of maintenance and inspection plans is presented below, the latter
mostly based on the PoD and PFA definitions.

1.4.2.1 Optimisation

Onoufriou and Frangopol (2002) proposed an interesting review of the reliability-based
techniques for the optimisation of inspection plans. The meaning of reliability-based is that
the performance criterion which will lead to the decision of performing an inspection (or
maintenance) is a reliability index β which has to be higher than a target reliability index,
i.e. β ≥ βtar , or p f ≤ p ftar

, the probability of failure p f being linked to the reliability index
β (for linear limit states) by

p f = Φ(−β). (1.33)

A generalisation of reliability-based concept leads to the formalisation of the optimisa-
tion of inspection (or maintenance) plan such as

min
x0,··· ,x i

¦

f (0)ob j , · · · , f ( j)ob j

©

such that
�

c(0) ≥ c(0)t , · · · , c(k) ≥ c(k)t

	

, (1.34)

where {x0, · · · , x i} are the optimisation variables, for instance inspection (or maintenance)
time and quality.

¦

f (0)ob j , · · · , f ( j)ob j

©

are the objective functions which are to be minimised
(or maximised), such as the long-term total cost Ctot or the redundancy level of a system.
Lastly

�

c(0) ≥ c(0)t , · · · , c(k) ≥ c(k)t

	

are the different constraints that have to be fulfilled like
the previously mentioned target reliability lindex in the reliability-based optimisation.

The following paragraphs introduce a review of the inspection and maintenance plan
optimisation. As its title suggests, this thesis is dedicated to inspection plan, yet the presence
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of the latter is explained by the link between inspection and maintenance which leads to
many similarities between both methodologies.

1.4.2.1.1 Mono-objective optimisation For the sake of clarity, Table 1.3 summarises
the inspection models used in the literature review presented below.

Author PoD PFA PoI Uniform delay Nonuniform delay
Barker and Newby (2009) no no no no yes

Breysse et al. (2009) yes yes no yes no
Ellingwood and Mori (1996) yes no no yes no
Estes and Frangopol (2001a) no no no yes no

Faber et al. (1996) yes no no yes no
Hellevik et al. (1999) yes no no yes no

Frangopol et al. (1997) yes no no yes yes
Nielsen and Sorensen (2011) yes yes yes yes no

Sheils et al. (2010a) yes yes no yes no

Table 1.3 – Inspection modelling of the mono-objective optimisation literature review

Barker and Newby (2009) proposed an original minimisation of the expected total cost
(inspection and repair costs) for a multivariate Wiener degradation model. The inspections
are assumed perfect, and the next inspection date is derived sequentially with the use of
a deterministic function of the state of the system x which gives the time until the next
inspection. For instance one of these functions writes

m(x) = max
§

1, a−
a− b

b
x
ª

, (1.35)

where a and b are the optimisation parameters of the problem. The minimisation of the
expected total cost is then obtained when optimising the function for the time of the next
inspection.

Breysse et al. (2009) optimised the delay between two inspections under a reliability
constraint with respect to the expected sum of the inspection costs, dependent on the in-
spection quality, the repair cost growing with the defect size and the failure cost. Each cost
is represented as a part of the initial construction cost. PoD and PFA are accounted for.
The measurement error is assumed to follow a centred normal distribution with variance
dependent on the quality. The effect of different inspection qualities and different threshold
levels for the allowable annual probability of failure on the expected number of false alarm
and good assessment is studied.

Ellingwood and Mori (1996) also minimised the total cost composed of the inspection,
repair and failure costs to optimise the intervals of inspection under a reliability constraint.
The notion of PoD is reminded, however the inspections are supposed to have a binary PoD
function such as

PoD(x) =
§

0, x < xc

1, x ≥ xc
, (1.36)
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with xc the detection threshold.

Estes and Frangopol (2001a) proposed an optimisation of maintenance plans. Different
repair options are proposed (with their corresponding costs) as for instance replace the deck
or replace exterior girders. This is a reliability-based optimisation with β ≥ 2. However
serviceability flags are also used as constraints to better model the possible choices of a
stakeholder. Namely, a given serviceability flag in this paper is to replace the concrete slab
every 28 years even if its strength decay is not a concern, because excessive potholes may
have appeared on the deck leading to unacceptable deteriorated driving conditions. Yet
the use of serviceability flag is proved to be less efficient in the structural concern problem.
In Estes and Frangopol (2001b) a minimisation of the total cost equalling the sum of the
inspection cost and of repair cost, by optimising the inspection times, given:

• an inspection technique assumed perfect, defined by the spacing of readings (i.e. the
higher the spacing of readings, the lower the number of inspected locations);

• the number of inspections;

• the probability function of repairing depending on the inspection result.

The latter is used to derive a decision tree which is used to estimate the total expected
cost. As shown in Figure 1.7, a tree-node splits in two branches after an inspection, one
with the probability of repairing, the other with the complementary probability. The cost
functions include a discount rate of money in order to derive the real cost of an operation
at the application time. For an interesting discussion of this financial aspects, as well as
socio-economic point of view, the interested reader is referred to Rackwitz et al. (2005).

Figure 1.7 – Example of a decision tree from Estes and Frangopol (2001b).

Faber et al. (1996) introduce the maximisation of a utility function

u∗ =max
z

max
i

max
d

u(z, i, d), (1.37)
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with z, i and d being respectively the design parameters, the inspection decisions and the
repair decisions. This is a generalisation of the optimisation problem similar to Eq. (1.34).
The utility function is the minus of the total costs and the optimisation is reliability-based.
The probability of detection is accounted for. Hellevik et al. (1999) propose a similar ap-
proach for inspection and replacement planning of corroded piping. Both papers consider
the cost as being the result of a decision tree shown Figure 1.8.

Figure 1.8 – Total cost derived from a decision tree, from Faber et al. (1996).

Frangopol et al. (1997) optimise the inspection plan of a bridge submitted to corrosion.
Inspections are modelled by their PoD. The total costs (construction, preventive mainten-
ance, inspection, repair, failure) are minimised under a reliability constraints for both a
uniform and a nonuniform delay between inspections. The latter thus writes

min Ctot = C0 + CPM + Ci + Crep + C f

subject to
m
∑

i=1

t i ≤ T

tmin ≤ t i ≤ tmax , i = (1, · · · , m)
β(t)≥ βtar

, (1.38)

where T is the lifetime of the bridge, t i is the delay between inspection i and i − 1, tmin

and tmax are respectively the lower and upper constraints of the nonuniform delays. As a
conclusion, the nonuniform delay between inspections has been proved more economic than
the uniform case.

Nielsen and Sorensen (2011), as mentioned in Section 1.4.1, present an optimisation of
inspection plan for wind turbine components using the probability of indication PoI (see
Eq. (1.32)). A parametric analysis is made to study the effect on the total cost of the de-
gradation threshold for preventive maintenance, the inspection quality, the delay between
inspections, the discount rate and the cost related to each operation.

Sheils et al. (2010a) proposed to combine the four probabilities introduced in Sec-
tion 1.4.1 (see Eq. (1.23) to Eq. (1.26)) to describe the different outcomes of an inspection
with the transition matrix of the markov process modelling the degradation to form two
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different transition matrices (see Section 1.3.2.1). Considering a uniform delay between
two inspections, the first matrix only contains the probabilities linked to the degradation
process and the corresponding failure probabilities. At an inspection year, the probabilit-
ies corresponding to the inspection outcomes are introduced to obtain the second matrix.
When a critical default is detected or when a failure occurs, the structure is immediately
repaired to an as-good-as-new state.

Transition matrix between two inspections Let p fi
be the failure probability associ-

ated with the state i. The different elements of the transition matrix P(bi) used to predict
the process evolution between two inspections write (Bastidas-Arteaga (2010))











p(bi)
i1 = pi j +

N
∑

k=2

�

pikp fk

�

, j = 1, i ∈ E

p(bi)
i j = pi j

�

1− p f j

�

, j > 1, i ∈ E

, (1.39)

with pi j the probabilities of the transition matrix P of the markov process modelling the
degradation.

The Markov chain’s predictions at years without inspection being performed thus follow

qt = qt−1Pt(bi). (1.40)

Transition matrix at inspection years At an inspection year, two events can lead the
structure to be repaired: a critical default (existing or not) is detected, or a non-detected
default leads to the failure of the structure. LetPi

�

R
⋃

F
�

be the joint probability of a return
from state i to a as-good-as-new state due to a repair R following or not a failure F . The
matrix P(ai) manipulated at inspection years writes (Bastidas-Arteaga (2010))











p(ai)
i,1 = pi, j +

N
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k=2
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pi,kPk
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, j = 1, i ∈ E

p(ai)
i, j = pi, j

�

1−P j

�

R
⋃

F
��

, j > 1, i ∈ E

, (1.41)

with
Pi

�

R
⋃

F
�

=Pi (Repair) +Pi(Failure|Non-detected), i ∈ E, (1.42)

in which
Pi(Repair) = PoDiγi + PFAi(1− γi), i ∈ E, (1.43)

and
Pi(Failure|Non-detected) = (1− PoDi)γi

+(1− PFAi)(1− γi)p fi
, i ∈ E. (1.44)

In these equations, the PoD and PFA are prescribed for each state, the detection
threshold being fixed to the mean degradation of the considered state.
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As explained by Sheils et al. (2010a), computing each step of the markov process with
Eq. (1.11) is equivalent to simulate the failures and inspections at the end of the period t, e.g.
at the end of each year if the temporal discretization is annual. Thus at an inspection year,
the degradation and the possible failures without inspection have to be simulated before
using the inspection matrix P(ai). The prediction therefore writes

qt =
�

qt−1Pt(bi)
�

Pt(ai). (1.45)

The predictions using Eq. (1.40) and Eq. (1.45) are not computed from the initial state
of the process. Indeed, with the change of transition matrix, the markov process loses its
homogeneity. It is consequently not possible to predict the process state only from the initial
state and the time spent as described by Eq. (1.11).

1.4.2.1.2 Multi-objective optimisation The main goal achieved by the use of multi-
objective optimisations is to replace the constraints of the mono-objective problem into ob-
jective functions, such that the choice of the stakeholder will result from a compromise
between the different objectives.

Bocchini and Frangopol (2011) minimise the cost and maximise the network perform-
ance of a group of bridges to find the optimal times of preventive maintenance. A constraint
on the maximum cost is considered. The originality of this work is that a correlation between
each bridges is accounted for as a function of the distance separating them, their charac-
teristics and structural similarities. This correlation is proved to have a great impact on the
network performance indicators such as the distance covered by all the users of the network
in a unit time, and the times spent by them to reach their destination.

Barone and Frangopol (2014) consider the cost to be minimised and the reliability or
the system hazard to be respectively maximised or minimised. The structure considered is
a bridge for which either a girder or the deck may be repaired. Kim and Frangopol (2011)
use as objective functions to minimise the inspection cost and the delay prior to damage
detection for a ship hull structure in order to optimise the inspection date and the inspec-
tion quality (i.e. a parameter of the PoD function used for the inspections). Okasha and
Frangopol (2009, 2010) propose to minimise the cost, to maximise the redundancy and to
minimise the probability of failure or the unavailability to optimise the preventive main-
tenance plans of structures. The first is applied to a truss while the latter uses a Colorado
bridge as an application example. Orcesi and Cremona (2010) optimise the maintenance
plan of a bridge network to minimise the users and owners costs, the first being expressed
as a function of the travel distance, the latter being the maintenance costs.

Orcesi and Frangopol (2011a) optimise the management of a bridge to minimise the
maintenance costs, the failure costs, and the error in the decisions taken at a given perform-
ance assessment date. The optimisation is constrained by the reliability of the bridge and
considers on one side the available budget of the stakeholder for maintenance operation
and on the other side the delay existing between a performance assessment and a main-
tenance operation. All the publications mentioned in this paragraph use the Non-Sorted
Genetic Algorithm-II (NSGA-II) proposed by Deb et al. (2000) to solve the multi-objective
optimisation.
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1.5 Objectives of the thesis

The overview of Faber and Stewart (2003) on the generalisation of risk-based inspection
makes interesting conclusions as the two following:

• Engineers may not be fully convinced by the use of risk-based inspection methods, as
they judge it “too difficult”, “too mathematical” to assess the risk of an event never
observed;

• A general tendency and a long experience lead to restrain the risk analysis methods
to the well-known and standardised ones which may not be fully appropriate for all
cases.

The author is fully according with these points which have driven the thesis objectives.

The literature review has more or less revealed that nearly each case study has its op-
timisation methodology. For instance the methodology developed by Sheils et al. (2010a)
makes two strong assumptions:

• Maintenance actions are performed immediately and instantaneously when a default
is detected;

• The structure is back in a as-good-as-new state after any maintenance action;

and is completely dependent with the PoD definition, as many methodologies. From the
author point of view, the main drawback here is that these methods cannot be generalised.
Therefore they do not answer the conclusions of Faber and Stewart (2003) cited above.

Based on these observations, the thesis objectives are:

1. To propose a methodology for the optimisation of inspection plans:

• Not driven by a unique objective to be reached;

• As independent as possible with the different assumptions that could be made to
model inspection, failure and maintenance;

• Able to deal with structures of different sizes, submitted to spatially correlated
degradation process or not;

• Independent from the degradation process and the corresponding degradation
indexes;

• As simple as possible with an affordable computational cost.

2. To allow the use of any existing data which would be relevant in order to calibrate the
degradation model or to update the inspection plan computed with the methodology
mentioned above.
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1.6 Conclusion

This introductory chapter has presented the basics concerning the degradation modes of
RC structures (carbonation, chloride ingress, corrosion and crack propagation). Although
modelling the physical of degradation processes is not the subject of this thesis, the author
wants to point out the difficulties to predict the sequential appearance and propagation of
each degradation process since the transitions between them and their interactions are still
on-going subjects of research.

The same thing can be said about the optimisation of inspection plans. Many meth-
odologies have been presented, each of them having different assumptions and different
objectives, but few of them are insensitive to a change in these assumptions and objectives.
Considering this together with the conclusions drawn by Faber and Stewart (2003), this
thesis should result in a methodology to optimise the inspection plan:

• adjustable to the different assumptions a stakeholder may make;

• efficient with any degradation process, should it be spatially correlated;

• simple to understand, fast to be computed.

The author assumes that at least the first predicted inspection will be performed, con-
sequently this thesis also contains tools to help the stakeholder using the results of this
inspection to take a decision.

The first step of this methodology is to build a predictive model of the condition evolution
of a structure including the degradation, the inspections and the maintenance actions. This
degradation index predictive model is described in the following chapter. As mentioned
in Section 1.2.3, the spatial variability of the degradation may be accounted for therefore
being able to simulate and handle such degradation predictions is another challenge which
is addressed in this chapter.

!Although the methodology developed herein is independent of the degradation process and
the corresponding degradation indexes, this thesis was conducted in a preventive mainten-
ance context. As such and for the sake of simplicity the carbonation and chloride ingress
processes are the only ones considered in the following chapters.



CHAPTER 2
PREDICTING THE EVOLUTION OF A

DEGRADATION INDEX

2.1 Introduction

As described in the previous chapter, the first part of any methodology aiming at optimising
the inspection plan of a structure is to derive a predictive model for the life cycle of this
structure. This chapter presents in a first part some basics on the probability theory prior to
the theory of the random fields in a second section. Since this thesis aims at considering the
spatial variability of the degradation processes, it appears important to be able to simulate
physically representative random fields. The third section is dedicated to the construction
of the life-cyle model. Based on a decision tree, it combines the degradation predictions,
potentially spatially correlated, the inspection models as well as the maintenance and failure
ones in order to predict the long-run evolution of a given degradation index.

2.2 Basics of probability theory

2.2.1 Probability space

In probability theory, (Ω,F ,P ) is the probability space where

• Ω is the event space, the set of all possible outcomes;

• F is the σ-algebra defining the events as combinations of the elements in Ω;

• P is the probability measure of any event in F , defined in [0,1].
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2.2.2 Random variable

A real-valued random variable X is an application of the probability space (Ω,F ,P ) which
return a real value X (ω) ∈ DX for any event ω with the probability P [X = X (ω)] ∈ [0, 1],
where DX ⊂ R is the support of X .

This application is totally defined by the so-called cumulative distribution function (CDF)
reading

FX (x) =P [Y ≤ y] . (2.1)

The CDF also reads

FX (x) =

∫ x

−∞
fX (x)d x (2.2)

where fX (x) is the probability density function.

2.2.2.1 Moments of a random variable

Provided all the integrals in this section exist, the mathematical expectation of a random
variable X (i.e. its mean value) writes

µX = E [X ] =
∫

DX

x fX (x)d x . (2.3)

The moments of order k > 1 are given by

E
�

X k
�

=

∫

DX

x k fX (x)d x . (2.4)

The centred moments read

E
�

(X −µX )
k
�

=

∫

Dx

(x −µX )
k fX (x)d x . (2.5)

Special attention is given for the centred moments of order 2 which is called the variance
of the random variable and denoted by σ2

X = Var [X ] , its square root σX being the so-called
standard deviation.

2.2.3 Random vector

Given n real-valued random variables X1, . . . , Xn, the random vector X = {X1, . . . , Xn} is an
application of Ω such as

X =
§

Ω → Rn

ω 7→ {X1(ω), . . . , Xn(ω)}
(2.6)
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2.2.3.1 Joint probability distribution

Just as random variables, continuous random vectors are defined by their joint CDF FX(x )

FX(x ) =P (X1 ≤ x1 ∩ · · · ∩ Xn ≤ xn), (2.7)

which can also be expressed as a function of the joint probability distribution

FX(x ) =

∫

· · ·
∫

Rn

fX(x )d x1 · · · d xn (2.8)

2.2.3.2 Marginal distribution

The marginal distribution of any X i, i ≤ n reads

fX i
(x i) =

∫

· · ·
∫

Rn−1

fX(x )d x1 · · · d x i−1d x i+1 · · · d xn. (2.9)

2.2.3.3 Moments of a random vector

The mathematical expectation µX of a random vector gathers the mean of each random
variable of the random vector such as

µX =
�

µX1
, . . . ,µXn

	

(2.10)

The centred moment of order two for a random vector is called the covariance and is
derived for each pair of random variables by

Cov
�

X i, X j

�

= E
�

(X i −µX i
)(X j −µX j

)
�

, ∀i, j = (1, . . . , n). (2.11)

The covariances of a random vector are usually gathered in a symmetric and positive definite
matrix denoted C where the components read

Ci j = Cov
�

X i, X j

�

. (2.12)

The diagonal of the covariance matrix is thus the variance of each component of the
random vector X . The covariance represents both the combined variance of two components
and their dependency. The pearson correlation matrix R can therefore be derived as

Ri j =
Cov

�

X i, X j

�

σX i
σX j

. (2.13)
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2.3 Random fields

2.3.1 Definition

A random field X (x ,ω), x ∈ DX ⊂ Rn is composed of an infinite set of random variables
indexed by Rn and taking its values in Rn. It reads

X =
§

Ω → Rn

ω 7→ X (x ,ω) ∈ R, x ∈ Rn (2.14)

Therefore at any position x0 ∈ DX , X (x0,ω) is a random variable, and over the domain DX ,
X (x ,ω0) is called a trajectory of the random field.

A random field defined on R such as

X =
§

Ω → Rn

ω 7→ X (x ,ω) ∈ R, x ∈ R (2.15)

is usually denoted as random process.

2.3.2 Properties

The mean of a random field X (x ,ω) is a function of x denoted µX (x). The corresponding
centred moment of order 2 is called the covariance function Cov (x , x ′).

A random field is said to be stationary of the first order if its mean is independent of x
such as

µX (x ) = µX , ∀x ∈ Rn. (2.16)

The stationarity of the second order implies that the variance is constant and the cov-
ariance function of the random field is only dependent of the distance between two points
and is therefore writing

Cov
�

x , x ′
�

= σ2
X ∗R(x − x ′), (2.17)

With the pearson autocorrelation function R(x − x ′).

Finally, a random field is said to be ergodic if the mean and variance of a trajectory are
respectively equal to the mean and variance of the random field, therefore denoting

E [(X (x ,ω0)] = µX ; (2.18)

Var [X (x ,ω0)] = σ
2
X . (2.19)
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Consequently, the ergodicity of a random field implies the stationarity of the second
order.

2.3.3 Simulation of random fields

As it could have been expected, dealing with an infinite set of random variables is not trivial.
This section presents the basics of the random fields simulation.

2.3.3.1 The different methodologies

To simulate a random field, it is usually discretized with a finite set of random variables
{χi, i = 1, . . . , n} and then the random field approximate reads (Sudret and Der Kiureghian
(2000))

X̂ (x ) =F [x ,χ] (2.20)

The discretization methods can be separated into two groups:

• Local discretization methods, where the random vector χ is identified from selected
values or local averages of X (x ,ω);

• Series expansion methods, where the random field is exactly represented as a series of
given random variables and spatial functions.

Among all the methods presented in Sudret and Der Kiureghian (2000), the author se-
lected the Karhunen-Loève expansion described in the following, for reasons exposed latter
on.

2.3.3.2 Karhunen-Loève

2.3.3.2.1 Definition The Karhunen-Loève (KL) (Loève (1977); Ghanem and Spanos
(2003)) denotes

X (x ,ω) = µ(x ) +
+∞
∑

i=1

Æ

λiξi(ω)φi(x ), x ∈ Dx ,ω ∈ Ω, (2.21)

where ξi, i ∈ N+∗ are centred and uncorrelated random variables. In the case of a gaussian
random field, these random variables are also normally distributed.

The covariance function of the random being bounded, symmetric and positive definite
admits the following decomposition:
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Cov
�

x , x ′
�

=
+∞
∑

i=1

λiφi(x)φi(x
′), (2.22)

where the pairs {(λi,φi), i ∈ N+∗} are respectively the eigenvalues rearranged in the des-
cending order and the corresponding eigenvectors, solutions of the Fredholm integral of
the second kind reading

∫

DX

C(x , x ′)φi(x )dx = λiφi(x
′). (2.23)

In practice, the decomposition is truncated after M terms (the so-called truncation order)
in order to obtain an approximate of the random field writing

X̂ (x ,ω) = µ(x ) +
M
∑

i=1

Æ

λiξi(ω)φi(x ), x ∈ Dx ,ω ∈ Ω. (2.24)

Truncating the expansion indeed implies that the Karhunen-Loève expansion tends to
underestimate the true variance of the random field X (x ,ω).

2.3.3.2.2 Solving the Fredholm integral Except for specific cases of domains and cov-
ariance function (Ghanem and Spanos (2003)), there is no analytic solution to this problem.

The basic idea proposed by Ghanem and Spanos (2003) is to use a Galerkin-type method
to solve Eq. (2.23).

By decomposing the eigenfunctions {φi(x ), i ∈ N+∗} onto a complete set of functions
�

h j(x ), j = 1, . . . , N
	

such as

φi(x ) =
N
∑

j=1

d(i)j h j(x ), (2.25)

and substituting Eq. (2.25) into Eq. (2.23), the error made by the truncation therefore reads

εN =
N
∑

j=1

d(i)j

�

∫

DX

C(x , x ′)φi(x )dx −λiφi(x
′)

�

. (2.26)

By imposing the error εN to be orthogonal with the set of functions {hk(x ), k = 1, . . . , N}
it comes

N
∑

j=1

d(i)j

�

∫

DX

�

∫

DX

C(x , x ′)h j(x )dx

�

hk(x
′)dx ′ −λi

∫

DX

h j(x )hk(x )dx

�

= 0. (2.27)
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Rewriting the matrix C as

Ci j =

∫

DX

∫

DX

C(x , x ′)h j(x )hk(x
′)dx dx ′, (2.28)

denoting the matrix B

Bi j =

∫

DX

h j(x )hk(x )dx , (2.29)

the matrix D

Di j = d( j)i , (2.30)

and finally the matrix Λ

Λi j = δi jλi, (2.31)

with δi j being the Kronecker delta, Eq. (2.27) becomes

CD= ΛBD. (2.32)

Classical sets of orthogonal functions of size N are:

• Legendre polynomials (Phoon et al. (2002a)) reading

Π0 = 1, Π1 = x , . . . ,Πi =
2i − 1

i
xΠi−1 −

i − 1
i
Πi−2, i = 2, . . . , P (2.33)

where P = (N − 1) is the highest polynomial degree. They are defined on the inter-
val [−1, 1] and thus needs to be scaled. It gives access to a maximum M = P − 1
eigenvalues;

• Haar wavelets (Phoon et al. (2002a)). They are generated by the Haar mother wavelet
function denoted by

Ψ(x) =







1 x ∈ [0,1/2[ ;
−1 x ∈ [1/2, 1[ ;

0 otherwise.
(2.34)

By shifting and scaling the Haar wavelets such as

Ψ j,k(x) = α jΨ(2
j x − k), j, k ∈ Z, (2.35)

the set of Haar wavelets is defined by

Ψ0(x) = 1, Ψi(x) = Ψ j,k(x) (2.36)
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with i = 2 j + k; k = 0, . . . , 2 j − 1; j = 0, . . . , m− 1 where m is the maximum wavelet
level. The number of eigenvalues achievable is M = (2m)card(DX ) − 1. With α j = 2 j/2

the corresponding set of Haar wavelets are orthonormal.

• Finite elements basis (Ghanem and Spanos (2003); Recek et al. (2005)) where the set
of orthogonal functions is composed by the shape functions of the mesh, the number
of eigenvalues computed being equal to the number of elements.

2.3.3.2.3 Choice of the basis In order to test the different bases, let us consider a gaus-
sian non-stationary random field with its mean and covariance matrix shown in Figure 2.1.
It is defined over a domain DX ⊂ R of size 500. This random field presents a non-derivable
point on the middle of the domain. The correlation function of the field is an exponential
function reading

R(x , x ′) = ex p(
−‖x − x ′‖

l
) (2.37)

where l is called the correlation length and is equal to 10. The variance of the field is defined
with a constant coefficient of variation cv = 0.05µX (x). In other words, as illustrated in
Figure 2.1, the correlation length is pretty small in front of the domain width.
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Figure 2.1 – On the left, the mean of the random field with its confidence interval derived from the
covariance on the right.

Legendre polynomial basis The Legendre polynomials basis in this case is up to 51,
which should give access to 50 eigenvalues solutions of Eq. (2.32). Figure 2.2 presents the
covariance resulting from the simulations with truncation orders M equal to 20 and 50 with
Legendre polynomials order up to order 21 and 51.

Figure 2.2 clearly shows that the Legendre polynomials basis is quite sensitive to its
parameters. On one hand, the increase of the polynomials order does not improve the
approximation of the covariance function for a given truncation order. On the other hand,



36 Chapter 2. Predicting the evolution of a degradation index

0 100 200 300 400 500
x

0

100

200

300

400

500

x
′

M=20, P=21

0 100 200 300 400 500
x

0

100

200

300

400

500

x
′

Input Covariance

0 100 200 300 400 500
x

0

100

200

300

400

500

x
′

M=20, P=51

0 100 200 300 400 500
x

0

100

200

300

400

500

x
′

M=50, P=51

0.0000
0.0002
0.0004
0.0006
0.0008
0.0010
0.0012
0.0014
0.0016
0.0018

C
ov

(x
,x
′ )

0.0000
0.0002
0.0004
0.0006
0.0008
0.0010
0.0012
0.0014
0.0016
0.0018

C
ov

(x
,x
′ )

0.0000
0.0002
0.0004
0.0006
0.0008
0.0010
0.0012
0.0014
0.0016
0.0018

C
ov

(x
,x
′ )

0.0000
0.0002
0.0004
0.0006
0.0008
0.0010
0.0012
0.0014
0.0016
0.0018

C
ov

(x
,x
′ )

Figure 2.2 – Autocovariance matrix of the simulated field for different Legendre polynomials orders
and truncation orders. On the upper right is the real covariance which was used as an
input.

increasing the truncation order up to the maximum possible (deduced from the polynomials
order) leads to a diverging estimate.

These results are somehow intuitive since high polynomial orders are known to be oscil-
lating with high amplitudes. An example given in Figure 2.3 confirm this to be the cause of
the bad approximation of the eigenfunctions. For a domain large in front of the correlation
length, the smaller polynomial orders appears unable to approximate well the covariance
function.

Haar wavelet basis On the same principle, the wavelet basis has a maximum wavelet
level ranging from 5 to 10 with a truncation order equal to 20 and 1000.

Through Figure 2.4 it is clear that an increase of the wavelet level gives a smoother
approximation of the covariance. With a wavelet level equal to 10, the decomposition seems
sensitive to the boundary of the domain where it returns a covariance higher than the real
one.

When extending the decomposition up to 1000 eigenvalues, the global covariance is
reproduced with a pretty high accuracy. A focus on the sub-domain [0, 20] ⊂ DX (see Fig-
ure 2.5) proves that the local accuracy in this case also tends to be pretty good. On the op-
posite the lower truncation order shows the border effect which return a completely biased
estimate of the covariance while with a small wavelet level it is clear that the wavelets are
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Figure 2.3 – Mean, confidence interval and an example of trajectory resulting from the KL decom-
position on a Legendre polynomials basis with order 51 and truncation order equal to
50.

way too large which creates visible discontinuities.

Finite elements basis Finally the finite elements basis contains on one hand 100 ele-
ments and 1000 on the other hand, the truncation order ranging from 20 to 1000. The
elements have linear shape functions and are equally subdividing the domain.

The finite elements help in decomposing the eigenfunctions solutions of the Fredholm
integral Eq. (2.23) into local shape functions. In Figure 2.6, the covariance evolution ap-
pears to be smooth enough for the linear shape functions of the finite elements, since the
increase in the number of elements with a constant truncation order does not have much
effect.

However increasing the truncation order, thus adding information on the covariance into
the KL decomposition, helps pretty much to fit the input covariance of the simulated field
X (x ,ω).

A focus on the sub-domain [0,20] ⊂ DX made in Figure 2.7 confirms the above observa-
tions.

Conclusion Apart from the Legendre polynomials basis, the choice of the basis cannot
be easily driven by the approximation accuracy. With the wavelet and the finite element
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Figure 2.4 – Autocovariance matrix of the simulated field for different Haar wavelets levels and
truncation orders. On the upper right is the real covariance which was used as an
input.

bases, in this configuration the results are equivalent given than the wavelet order, the
number of elements and the number of eigenvalues kept in the decomposition are enough.

The decomposition made with Legendre polynomials is less efficient for large domain
and building a basis of polynomials of order 1001 (i.e. to compute 1000 eigenvalues) is
impossible due to the numerical instability of high order polynomials.

Such an order may seem unnecessary, yet computational cost is not impacted enough
for the wavelet and the finite element basis to justify any choice of truncation, provided that
the evaluated eigenvalues keep on being positive.

The choice of the basis therefore results from the major difference between the Haar
wavelets and the finite elements: the first derives a global basis while the latter creates a
local one.

In the context of this thesis, which aims at proposing a methodology able to deal with
large structures, it is evident that the finite elements have two great advantages over the
Haar wavelets:

• it is not limited to rectangular domain;

• if needed, in case of strong local non-stationarity, the mesh can be refined in the zone
of interest without having to increase the precision over the whole domain.
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Figure 2.5 – Autocovariance matrix of the simulated field for different Haar wavelets levels and
truncation orders. On the upper right is the real covariance which was used as an
input. Focus on the domain [0, 20].

Considering these advantages, the following simulation of random fields will be made
with the help of a finite element basis.

2.3.3.3 Why the Karhunen-Loève expansion ?

The previous section has made it clear that this thesis uses the Karhunen-Loève expansion,
but it has never said why.

The first point is that it answers perfectly one of the objectives of this thesis: it is com-
pletely versatile. The Karhunen-Loève expansion is the only decomposition which does not
need any assumption to be made on the simulated field (Sudret and Der Kiureghian (2000)).

In Eq. (2.21), it is obvious that both the mean and the covariance can be non-stationary
as it has been shown in Section 2.3.3.2.3. The marginal distribution of the field is defined
by the distributions of the random variables ξi, i ∈ N+∗. In case of a gaussian random field,
the law of these random variables is also gaussian, but for other cases it is unknown.

Let X̂ (x ,ω) being observed trajectories of the random field X (x ,ω), µ̂(x ) and ˆCov (x , x ′)
respectively the empirical mean and covariance estimated from the observed trajectories,
thus the random variables ξi, i ∈ N+∗ read
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Figure 2.6 – Autocovariance matrix of the simulated field with a finite elements basis for different
number of elements and truncation orders. On the upper right is the real covariance
which was used as an input.

ξi(ω) =
1
p

λi

∫

DX

�

X̂ (x ,ω)− µ̂(x )
�

φi(x )dx . (2.38)

It means that with enough observed trajectories, the laws of the random variables ξi, i ∈
N+∗ can be estimated without making any assumption.

These appealing properties together with the use of a finite element basis consequently
encouraged the author to prefer this methodology.

2.3.4 Simulation of non-gaussian fields

In case of a random field with not enough observation to estimate the probability distri-
butions of the random variables ξi, i ∈ N+∗, it is still possible to simulate a non-gaussian
random field by the so-called translation field transformation (also called the Nataf trans-
formation for random variables and random vectors) defined as:

Y (x ,ω) = F−1
Y [FU(U(x ,ω)] , (2.39)

where Y (x ,ω) is random field with the marginal CDF FY and U(x ,ω) being a stationary
gaussian random field with 0 mean and unit variance. This method is the Nataf transforma-
tion for random variables applied to random fields, yet it has the major drawback that such
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Figure 2.7 – Autocovariance matrix of the simulated field with a finite elements basis for different
number of elements and truncation orders. On the upper right is the real covariance
which was used as an input. Focus on the domain [0, 20].

non-linear transformation does not conserve the autocorrelation of the underlying gaussian
random field.

To the author’s knowledge, two methods exist to simulate non-gaussian random fields.

2.3.4.1 Covariance and marginal fitting methods

The covariance fitting methods aim at identifying the underlying gaussian random fields
autocorrelation which will result in non gaussian random fields with the desired autocor-
relation.

Puig (2003) and Puig and Akian (2004) proposed to decompose the transformation
F−1

Y (FU(x)) on a hermite polynomials basis such as:

fn = (n!)−1

∫

R
F−1

Y (FU(x))Hn(x)
e
−x2

2

p
2π

d x , (2.40)

where Hn(x) are the hermite polynomials reading

H0(x) = 1, Hn(x) = (−1)nex2/2 dn

d xn
e−x2/2, n ∈ N∗. (2.41)
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From this point the resulting correlation function of the transformation writes

R̂Y (x , x ′) =
M
∑

n=1

n! f 2
n (RU(x , x ′))n, (2.42)

where RU(x , x ′) is the autocorrelation function of the underlying stationary gaussian pro-
cess.

The objective is thus to minimise the residual defined by

‖RY (x , x ′)−
M
∑

n=1

n! f 2
n (RU(x , x ′))n‖. (2.43)

The main difficulty is to constrain the autocorrelation function of the underlying gaussian
process to stay positive definite.

Most of the methods available aim at estimating the autocorrelation function of the
underlying process in similar ways (Gioffré et al. (2000); Gurley (1997); Sakamoto and
Ghanem (2002)).

Alternatively, a procedure proposed by Phoon et al. (2002b) and Phoon et al. (2004),
based on the KL decomposition iterates over the random variables ξi, i ∈ N+∗ in order to fit
the marginal distribution of the random field. The target covariance being an input of the
decomposition, as soon as the random variables ξi, i ∈ N+∗ are zero-mean, unit variance
and non-correlated, Eq. (2.21) ensures that the covariance is kept unmodified. The main
difficulty concerns the non-stationary random fields for which the marginal distribution is
also indexed by the random field domain.

2.3.4.2 Fractile correlation

An interesting idea proposed in Phoon et al. (2004) consists in using a gaussian copula
(Caniou (2012)) to define the autocorrelation of the underlying gaussian random field
U(x ,ω).

Indeed, the idea is to target a rank correlation function RS(x , x ′), or fractile correlation,
for the non-gaussian random fields. From Eq. (2.39) the transformation being based on
cumulative density functions is monotonic. From the definition of a rank correlation it is
evident that it is invariant with monotonic transformations.

Similarly to the gaussian copula relationships, the pearson correlation function then
denotes

R(x , x ′) = 2sin
�π

6
RS(x , x ′)

�

. (2.44)
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2.3.5 Simulation of cross-correlated random fields

As inputs of a degradation model, multiple variables may be considered as random fields,
and analogically with the random variables, a correlation between two or more random
fields may be considered. To the author’s knowledge, three methods exist to cross-correlate
several random fields.

2.3.5.1 Translation field

The Nataf transformation of random vectors aims at making every component of a random
vector independent with a standard gaussian distribution. The invert Nataf transforma-
tion goes back into the space of non-gaussian and correlated random variables, so does the
translation field.

Let Rcross be the cross-correlation matrix between the components of a vector-valued
random field X(x ,ω) with x ∈ DX ⊂ Rn. Let U(x ,ω) be a gaussian vector-valued random
process with each component being an independent standard gaussian random field.

The Cholesky decomposition of the cross-correlation reads

Rcross = LLT , (2.45)

with L being a lower triangular matrix, then the random field X(x ,ω) writes

X(x ,ω) = FX
−1 [FU(LU(x ,ω)] . (2.46)

The advantage of this simple method is that all the autocorrelation functions defined
for the components of the gaussian random field U(x ,ω) are conserved in the random field
X(x ,ω) if they have been defined as fractile correlation (see Section 2.3.4.2)

Example 2.3.1. Let U(x ,ω) = U1(x ,ω), U2(x ,ω) be a gaussian standard random field with
each component’s correlation function denoting

R(x , x ′) = 2sin
hπ

6
exp

�

(x − x ′)2
�

i

. (2.47)

Let X(x ,ω) = X1(x ,ω), X2(x ,ω) be the lognormal stationary random field with FX1
∼

LN(µ = 5,σ = 1) and FX2
∼ LN(µ = 15,σ = 3) and the cross-correlation coefficient ρX1X2

=
−0.8

Using the translation field method to cross-correlate the components of the random field
X(x ,ω) gives satisfactory results as shown in Figure 2.8 since the input autocorrelation function
is conserved.
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Figure 2.8 – On the left, two trajectories of random fields cross-correlated with the translation field
methodology. On the right the resulting marginal autocorrelation functions.

2.3.5.2 Vorechovsky method

The method proposed by Vorechovsky (2008) aims at cross-correlating the components of
a vector-valued random field X(x ,ω) with x ∈ DX ⊂ Rn using the KL decomposition of each
component.

Indeed, while the covariance is represented by the eigenvalues and eigenfunctions of the
fredholm integral in the KL decomposition (see Eq. (2.21), the randomness is represented
by the random variables ξi, i ∈ N+∗.

The idea of Vorechovsky (2008) is to correlate each components of X(x ,ω) by correlating
the random variables of the decomposition.

Let us define
�

ξ j, j = (1, . . . , n)
	

the vector gathering the random variables
�

ξ
j
i , i = (1, · · · , M), j = (1, . . . , N)

	

, M being the truncation order of the KL decompos-
ition, identical for all the components of the vector-valued random field, and ξ =
¦

�

ξ j
�T

, j = (1, . . . , n)
©

the random vector gathering all the random variables.

Finally let R(n×n) be the cross correlation matrix of the vector-valued random field.

The cross-correlation matrix of the random vector ξ therefore writes
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D=















I(M×M) R1,2I(M×M) R1,3I(M×M) . . . R1,N I(M×M)
... I(M×M) R2,3I(M×M) . . . R2,N I(M×M)
...

... I(M×M) . . . R3,N I(M×M)
... s ym.

...
. . .

...
. . . . . . . . . . . . I(M×M)















. (2.48)

The spectral decomposition of D writes

D= ΦΛΦT . (2.49)

Consequently, the correlated random variables of the vector-valued random field KL de-
composition are denoted by:

ξc = Φ(Λ)1/2ξ. (2.50)

The major drawback of this methodology is that it requires to truncate all the KL de-
composition at the same order, which could be problematic in case of very heterogeneous
covariance functions among the components of the vector-valued random field. On the
other hand, the advantage is that the marginal covariance function of each random field is
not modified, even if the autocorrelations are not derived from the fractile correlation.

Example 2.3.2. Starting from Example 2.3.1, the random fields U1(x ,ω) and U2(x ,ω) are
simulated with a KL decomposition on a Legendre polynomials basis up to order 41 with 38
eigenvalues kept, the 39th and 40th eigenvalues available being negative due to approximation
errors.

These fields are correlated with the Vorechovsky method beforehand and then transformed
into the target random fields X1(x ,ω) and X2(x ,ω) with Eq. (2.39).

As expected, the Vorechovsky correlation method is equivalent to the translation field method
as demonstrated in Figure 2.9.

2.3.5.3 Vector valued random fields

Provided by Perrin et al. (2013), the main idea is to directly extend the Karhunen-Loève
decomposition to the vector-valued random field X(x ,ω) with x ∈ DX ⊂ Rn. This way,
the cross-correlations are to be contained in the eigenfunctions solutions of the Fredholm
integral as written in Eq. (2.23).

In this case the covariance becomes a matrix-valued function reading
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Figure 2.9 – On the left, two trajectories of random fields cross-correlated with the Vorechovsky
methodology. On the right the resulting marginal autocorrelation functions.

Cov(x , x ′) =















Cov11(x , x ′) · · · Cov1n(x , x ′)
. . .

... Covi j(x , x ′)
...

. . .
Covn1(x , x ′) · · · Covnn(x , x ′)















, i, j = 1, . . . , n.

(2.51)

The KL decomposition minimises the square error committed on the variance approxim-
ation. It seems logical that on a vector-valued random fields the components with higher
variance will tend to be better estimated than the other components. To solve this issue,
Perrin et al. (2013) proposed to project the KL decomposition on different basis in order
to distribute the approximation error among the components of the vector-valued random
field to the user’s will.

Despite the fact that it has not been used in this thesis because of the complexity induced
by the estimation of a cross-covariance function, to the author’s opinion this method is to
be preferred when possible (i.e. the cross-covariances are known or estimable).
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2.3.6 Conclusion

This section has presented the basics concerning the simulation of random fields, should they
be Gaussian or not, cross-correlated or not. The purpose is now to describe how to build
an inspection, maintenance and repair model for the degradation index, denoted as IMRM
in the following, according to the thesis objectives and being able to consider the spatial
variability of reinforced concrete degradation phenomena using the methods presented in
this section.

2.4 Evolution of the degradation index

The objective of an IMRM is to gather the degradation predictions, the inspection, mainten-
ance and failure models in order to predict the long-run evolution of a given degradation
index. It is evident that proposing a methodology able to deal with any problems represents
a dream. Having this point in mind, the present section is organised as follows.

The first section presents the global concept of the IMRM based on a decision tree used in
this thesis. The following section is dedicated to the construction of the degradation indexes
and of their estimators. The last exhibits two examples which will be the silver threads in
the following chapters.

2.4.1 Inspection, maintenance and repair model for the degradation
index

As explained in Section 1.4, many methodologies based on markov chains or decision trees
have been developed as models for the evolution of a condition index. Markov chains meth-
ods are well-suited with the PoD definition, however the probability of detection is defined
for one mesure at one point. In case of spatial variability, it becomes much more tricky to
define a PoD since:

• It seems difficult to interpret the PoD of a degradation index defined for a large scale,
the maximum of the carbonation depth for instance, when only parts of the structure
are inspected (e.g. in Schoefs et al. (2009) where polynomial chaos decomposition of
the degradation and the measurement noise are used to derive spatial PoD);

• With a fully inspected structure, the definition of the overall PoD would be difficult
to write, considering that two measurements being close may not be independent.

Moreover, the PoD may not be always defined for a given measurement technique.

In order to propose a methodology:

• As independent as possible of the different assumptions that could be made on the
inspection, failure and maintenance models;
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• Independent of the degradation process;

• Independent of the considered structure;

the choice of decision trees for the IMRM appears more appropriate. Indeed, a simple tree
like in Figure 2.10 may answer to the objectives since:

• The inspection node resulting in two probability estimates which depend on a degrad-
ation index D:

– The probability of repairing (i.e. the probability of failure) reading

P̃ f = P̃ [D >= dc] , (2.52)

where dc is the failure threshold corresponding to index D;

– The probability of maintenance reading

P̃Ma = P̃
�

D >= dpm | D < dc

�

, (2.53)

with dpm the maintenance threshold corresponding to index D. The probability
of maintenance is conditioned by the index not violating the failure threshold.

The inspection method leading to the estimate of these probabilities of repairing has
no special requirements;

• Repairing and maintaining only lead to the next inspection, without any assumptions
on the repairing process (perfect or not, modifying the degradation kinetic, . . . ).

2.4.2 Estimating the degradation index

In the methodology developed herein, predicting the degradation of RC structures aims at
predicting the evolution of a degradation index.

This index shall be seen as one decision variable of the stakeholder, the variable saying it
is time to repair or not. Beware, this may not be the only decision variable and the mainten-
ance could thus be postponed considering the others. For instance, the degradation index
could be no crack length is higher than the threshold and its evaluation may indicate the ne-
cessity of a maintenance while at the same time other decision variables of the stakeholders
could be repair the most degraded structure and choose among the structures to be repaired
the ones with predicted maintenance costs affordable considering the annual budget.

Since both carbonation and chloride ingress processes lead to the depassivation of the
reinforcements in concrete (see Section 1.2.1.1), this thesis uses a unique degradation index
reading

D =
|Ld − Lt |

Lt
, (2.54)
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with Ld being the length of a reinforced concrete zone with a carbonation depth higher than
a given threshold (maintenance of failure) and Lt the total length of the considered struc-
ture. From the simulations of the prediction model for the considered degradation (carbon-
ation in this thesis), the probability for the degradation index violating a given threshold
P [D ≥ d] can easily be computed through Crude Monte Carlo simulations or more ad-
vanced reliability methods (the interested reader is referred to Dubourg (2011, Chapter 3)
for a complete review of those methods).

Yet this probability will be computed considering the whole domain of the degradation
random field, provided that the discretisation of the random field is fine enough. One can
note, no stakeholder will perform an inspection campaign on the entire structure, but only
on a limited number of locations mostly driven by budget considerations. Referring to the
decision tree presented in Figure 2.10, the probability of acting, which has to be returned
from the simulation of inspections, is indeed an approximate of the predicted probability

Pact =P [D ≥ dc] +P
�

D >= dpm | D < dc

�

, (2.55)

which is denoted P̂act .

Consequently, the question is: Given an inspection budget and considering the spatial
variability of the degradation process, in which locations should the structure be inspected in
order to ensure a good estimate of Pact ?

Two situations may occur:

• No information available to predict accurately the degradation process (e.g. no idea
of the autocorrelation structure or no confidence in the model predictions, . . . ). In
this case, the probability Pact is assumed as being intractable;

• An efficient way to predict the degradation process exists.

The two following sections propose different solutions to position the inspection depend-
ing on the above cases.

2.4.2.1 Classical Design of Experiments

If no reliable data are available for the prediction, or not enough information on the spatial
variability to predict anything more than homogeneous degradation over the structure, the
best way to investigate is evident. The inspections points shall fill the space the best as they
could considering the number of measurements that can be afforded.

The so-called space filling sequences are perfectly adapted for this case.

2.4.2.1.1 Discrepancy Let defineB as the subset family of In = [0, 1]n Lebesgue meas-
urable and the domain B ⊂ In where n is the space dimension, the measure of discrepancy
of an ensemble of variables {X i, i = 1, . . . , N} is defined by:
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D (B , XN )¬ sup
B∈B

�

�

�

�

1
N

A(B, X n)−λ (B)
�

�

�

�

, (2.56)

with A(B, XN ) being the number of elements of XN in B and λ (•) the Lebesgue measure.

IfB gathers all the subsets of the form
∏n

i=1 [0, ui[,the star discrepancy is denoted by:

D∗N (XN ) = D (B , XN )¬ sup
u∈[0,1]n

|FN (u)− FU(u)| , (2.57)

where FN (u) is the empirical cumulative density function and FU(u) =
∏n

i=1 ui the uniform
CDF.

We also define the extreme-discrepancy as DN (XN ) = D (B , XN ) ifB aggregates all the
subsets of the form

∏n
i=1 [ui, vi[.

It is harsh to derive analytical expressions of the discrepancies except for the case of
uni-dimensional space. In this case the star discrepancy is defined by:

D∗N (XN ) =
1
2

N+ max
1≤i≤N

�

�

�

�

X i −
2i − 1

2N

�

�

�

�

, (2.58)

which is the Kolmogorov-smirnov goodness-of-fit test applied for a uniform distribution over
[0, 1].

The extreme-discrepancy is denoted by:

DN (XN ) =
1
N
+ max

1≤i≤N

�

i
N
− X i

�

− min
1≤i≤N

�

i
N
− X i

�

. (2.59)

The discrepancy measures the dispersion of the sequence XN over the space. The smaller
the discrepancy, the better the space filling. Based on this metric, it has been proved (Franco
(2008)) that the easiest way to fill the space is to use the low-discrepancy sequences intro-
duced hereafter.

2.4.2.1.2 Low-discrepancy sequences Among the low-discrepancy sequences, the most
famous one is the Van der Corput (VDC) sequence defined by (Van der Corput (1935)):

xk ¬ φb(k) =
m−1
∑

i=0

ai b
−(i+1), (2.60)

where b is the chosen base and ai is the i-th digit of k written in basis b. For instance, [50]10

in base 10 writes [1212]3 in base 3, thus m = 4, a0 = 1, a1 = 2, a2 = 1 and a3 = 2. The
discrepancy of the VDC sequence is bounded by:

ND∗N (X∞) = NDN (X∞)≤ 1+
log(N)
log(8)

(2.61)
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For dimension n ≥ 1, Halton (Halton (1960)), Hammersley (Hammersley (1960)) and
Sobol (Sobol’ (1967)) sequences are generalisations of the uni-dimensional VDC sequence.

The Halton sequence is defined by:

xk ¬
�

φb1
(k) , . . . ,φbn−1

(k) ,φbn
(k)
�T

, (2.62)

where φbi
(k) is the VDC sequence in base {bi ∈ N, i = 0, . . . , n}. They are chosen such

as GCD
�

bi, b j

�

= 1,∀i 6= j. In practice they are the n-th firsts prime numbers
{q, q = 2,3, 5,7, 11,13, 17,19, 23, . . . }.

The Hammersley sequence is a Halton sequence completed by a term dependent on the
sequence length. It writes

xk ¬
�

k
N

,φb1
(k) , . . . ,φbn−1

(k)
�T

. (2.63)

On the opposite of the VDC and the Halton sequences, since the Hammersley sequence
is dependent on the number of points in the sequence, it cannot be augmented.

The star discrepancies of the Halton and Hammersley sequences are respectively
bounded by:

D∗N (X∞)≤ An
[log(N)]n

N
+O

�

[log(N)]n−1

N

�

(2.64)

D∗N (X∞)≤ An−1
[log(N)]n−1

N
+O

�

[log(N)]n−2

N

�

(2.65)

with lim
n→∞

log (An)
n log (n)

= 1, meaning that An, thus the star discrepancy, exponentially increases

with the dimension n.

The Sobol sequence construction is not developed in this thesis for the sake of simplicity.
The interested reader is referred to Franco (2008) which gathers an extended set of low-
discrepancy sequences along with the classical design of experiments methods (e.g. factorial
experiments design, . . . ).

When dealing with space-filling methods, the so-called curse of dimensionality is one
of the major problems encountered. However distributing the inspection locations will be
done at most in a 3-dimensional space thus the curse of dimensionality is out of concern in
this thesis.

However the number of locations, i.e. the size of the sequence, indeed tends to be pretty
small (N ≤ 20) in this context. Since the discrepancy of the sequence is decreasing with the
number of points N (e.g. Eq. (2.64)), the optimal space-filling becomes out of reach.

Examples are given in Figure 2.11 and Figure 2.12 for the 20 and 100 first points of
the Halton and Sobol sequences. It appears that the space-filling tendency of the Sobol and
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Figure 2.11 – Halton sequence realisations in two dimensions.

Halton sequences with 100 points is better but also creates useless point concentrations. For
both sequences, with the first 20 points the point’s distribution is far from being uniform.

2.4.2.1.3 K-means clustering An efficient way to circumvent this issue is to make use
of the K-means clustering method described herein. Let us define C a set of clusters
{Ci, i = 1, . . . , nc} and the so-called metric inertia derived by:

I (X ,C ) =
nc
∑

i=1

∑

X∈Ci

‖x −µi‖2
2, (2.66)

where µi is the centre of cluster Ci. Inertia is a measure of the points concentration around
the centre of the cluster they belong to.

Consequently, in order to define the best cluster, i.e. to minimise the distance between
a point and the centre of its cluster, the following optimisation problem is solved:

argmin
C

nc
∑

i=1

∑

X∈Ci

‖x −µi‖2
2. (2.67)

Given a number of clusters nc, the steps to solve this optimisation problem are:

1. Initialise the centres of the clusters [µi, i = 1, . . . , nc];
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Figure 2.12 – Sobol sequence realisations in two dimensions.

2. Attribute each point corresponding to the closest cluster such that
�

l : ‖x l −µi‖< ‖x l −µ j‖∀i 6= j, l = 1, . . . , N
	

; (2.68)

3. Compute the mean of each cluster as the mean of all the points belonging to it:

µi =
1

Card (Ci)

∑

j∈Ci

x j, i = 1, . . . , nc; (2.69)

4. Repeat step 2 and 3 until convergence. The convergence criterion could be fixed by a
limited iteration number or/and by a threshold for a minimum increase of the inertia.

The optimisation problem may have multiple local solutions, consequently the k-means
algorithm shall be run with multiple seeds for the clusters’ centres.

An example of a K-mean clustering with 20 clusters identified from a Sobol sequence
with 1000 points is given Figure 2.13. The distribution of the inspection points appears
to be much more appropriate compared to the Halton and Sobol sequences with the same
number of measurement locations as Figure 2.14 illustrates. The maximum of the minimum
distance between each point of the sequences shown in Table 2.1 confirms this point since
the maxi-min criterion of the K-means is 24% lower than the same criterion computed for
the Halton sequence.

However like the Hammerslay sequence, a set of points obtained through the K-means
algorithm cannot be augmented (i.e. increasing the number of clusters) without running
again the K-means algorithm.
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Sequence maxi-min distance
Halton 1.31
Sobol 1.59

K-means 0.99

Table 2.1 – Maximum of the minimum distance between each point of the sequence
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Figure 2.13 – Space-filling with K-means algorithm used on a Sobol sequence.

2.4.2.2 Adaptive Design of Experiment

If an efficient way to predict the degradation is available, it would seem evident to head for
the area where the degradation predictions are high. In this case the space-filling properties
of the low-discrepancy sequences would lose their attractiveness.

However, only considering degraded area would put the stakeholder at risk to:

• Miss an area of interest due to a bias of the predictive model;

• Overestimate the degradation index by missing a poorly degraded area when inter-
polating the process between two maximums.

In addition, combining this information with the autocorrelation structure of the degrad-
ation random field gives another tip on the minimum distance to put between two inspected
points. Intuitively if two points of a structure appear to be very correlated, there will not be
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Figure 2.14 – Space-filling wih K-menas algorithm used on a Sobol sequence compared to the Halton
(a) and Sobol (b). All sequences have 30 points.
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any advantage to inspect both points. On the opposite, to improve the statistical knowledge
on the degradation process the inspections should be as independent as possible.

On this purpose, Schoefs et al. (2015) have studied the effect of the inspection distance
threshold on the estimate of the two first moments (namely the mean and the standard
deviation, see Section 2.3.2) of a stationary random process, and they concluded that for
R(x , x ′)≤ 0.3 the inspection points can be assumed independent.

Consequently, given a degradation random field X (x ,ω), x ∈ DX ⊂ Rn the design of
experiments (DoE) described herein proposes to:

• Allocate shigh of the inspected points
�

x (i)insp, i = 1, . . . , ninspm

�

in the highly degraded
locations reading

argmax
x
QX (x), (2.70)

with QX (x) being the 95% quantile of the degradation at location x denoted by
P (X (x)≤QX (x)) = 0.95;

• Distribute the 1− shigh of allowed inspected points in the poorly degraded parts of the
structures defined by:

argmin
x insp
QX (x insp); (2.71)

• Add the points located on the corners of the domain to ensure that the whole domain
is being considered;

• Interpolate the trajectories between the inspected points to estimate the degradation
index (see Eq. (2.54)).

provided that >x (i)insp, x ( j)insp�R
�

x (i)insp, x ( j)insp

�

< 0.3, i 6= j, (i, j) = 1, . . . ninsp ≤ ninspm
. It is clear

that a number of points ninsp ≤ ninspm
could verify this constraint and thus the DoE may

contain less inspected points than the maximum affordable.

Example 2.4.1. Let us consider a RC beam 5 metres long being submitted to a non-stationary
carbonation random field derived with the DuraCrete model (see Eq. (1.1)). The autocorrela-
tion of the process, the quantileQX c

(x) of the carbonation and a subset of the 10,000 simulated
trajectories are given in Figures 2.15 and 2.16, respectively.

In Figure 2.15, a pearson correlation lower than 0.3 corresponds approximately to the
points in the green and blue areas on the horizontal or vertical axes. The corresponding length
is approximately ranging from 1 metre to 1.5 metres. Considering that 20 measures can be
done, with shigh = 0.5, the corresponding DoE is represented with red dots on Figure 2.16. In
this case, the number of inspected points is much lower than the maximum allowed (7 for 20).

Considering the percentage of concrete carbonated up to the reinforcements as the degrada-
tion index given in Eq. (2.54) together with a concrete cover of 2 centimetres (i.e. failure is not
considered) the effect of the DoE is illustrated in Figure 2.17. The coloured area corresponds
with the length of carbonation depth higher than the threshold, the degradation index being
the proportion of this area’s width in front of the domain size. On the left, this degradation
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Figure 2.15 – Non-stationary autocorrelation matrix
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index is estimated using the trajectory while on the right, it is derived from the approximate
of the process. The benefice in looking into the poorly degraded area is evident, without the
second, third and fourth points (starting from the left), the approximate would not grasp the
sudden increase of the trajectory therefore the degradation index could be quite overestimated.
The probability P̂act is finally estimated considering all the trajectories one by one.
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Figure 2.17 – Illustration of the approximation resulting from the DoE on one trajectory.

As pointed out in Section 2.4.2, the DoE shall allow to derive a good approximate P̂act

of the probability for the degradation index to be higher than the corresponding threshold,
identified with the degradation predictions. Until now, the proposed methodology to build
the DoE does not ensure that this approximate will be efficient. For instance, the DoE shown
in Figure 2.17 tends to underestimate the degradation index on the illustrative trajectory.
This is the purpose of the forthcoming adaptive design of experiments (ADoE).

Referring to Eq. (2.55), to derive a good approximate of the action probability means
that good approximates of the probability of failure and the probability of maintenance have
to be derived at the same time.

Let us define the criterion I(x) which quantifies the quality of the approximation such
as

I(x) = εT (x), (2.72)

with εT (x) = max
�

T (x)− T̂ (x)
�

−min
�

T (x)− T̂ (x)
�

where T (x) is the vector of the
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degradation trajectories at location x and T̂ (x) the corresponding approximate resulting
from the DoE. Let define the generic accuracy εP reading

εP =

�

�P̂ −P
�

�

P
, (2.73)

where the probabilities P and P̂ are respectively set to

• P f and P̂ f for the failure event, the accuracy thus being denoted by εP f
;

• PMa and P̂Ma for the maintenance event, the corresponding accuracy reading εPMa
.

The ADoE first helps to improve the estimate of the failure probability by adding to the
inspected points the solution of:

argmax
x

I(x), (2.74)

given that this point helps in decreasing εP .

Solutions of Eq. (2.74) are found and added to the inspected points until εP f
≤ εP f l im

,
and in a second step until εPMa

≤ εPMalim
and verifying that ninsp ≤ ninspm

at the end of the
two steps.

The ordering of the steps indeed has an importance. Referring to Eq. (2.53) the prob-
ability of maintenance is conditioned by the complementary of the failure probability and
as such requires a good approximate of the failure probability.

Example 2.4.2. Resuming Example 2.4.1, let denote εPMalim
= 0.05 and the threshold for the

degraded proportion of the beam dc = 0.5 (i.e. half of the beam is violating the degradation
threshold). The error εPMa

on the probability of repairing due to the approximation made by
the DoE is up to 91% (see Table 2.2).

The DoE alone largely underestimates the probability PMa as it could have been expected
(see Figure 2.17). Indeed Figure 2.18 shows that the simulated trajectories tends to be under-
estimated from 2.5 metres to the top of the RC beam, where the degradation predictions are the
highest according to Figure 2.16.

Using the ADoE methodology described above, this error comes down to 3% with three
locations added to the inspected points shown in Figure 2.19. All of them are located in the
area where the degradation predictions are high. Indeed, further increasing the accuracy in
the poorly degraded area obviously does not help to improve the accuracy of the probability
estimate as the probability of maintenance is underestimated. Finally, one may notice that the
highest point of the criterion I(x) is not the first one to be added. Again, through Figure 2.18
the first most needed point appears to be in the region where nearly all the trajectories are
underestimated.

It proves the usefulness of completing the DoE with the criterion I(x) (see Eq. (2.74)) given
that it helps in decreasing εPMa

.
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Figure 2.18 – Approximate error made by the DoE on each trajectory.
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Figure 2.19 – Illustration of the criterion I(x), and the position of the points successively added by
the ADoE to the inspected locations with respect to Eq. (2.74).
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DoE ADoE
PMa 6.3× 10−1 6.3× 10−1

ˆPMa 0.51× 10−1 6.2× 10−1

εPMa
91% 3%

ninsp 7 10

Table 2.2 – Evolution of εP with the ADoE which adds three points to achieve εP ≤ εPl im
.

Up to now, the ADoE has assumed that if the predicted trajectory was real, an inspec-
tion would return the real value of this trajectory at the point considered. In other words,
inspection is assumed to be perfect. Reminding that:

• The probability of detection function PoD may not have been derived for every in-
spection method;

• Even though, assuming that the inspections are independent in order to combine the
PoD of different inspected points would be hard to prove;

• The most basic information of the inspection error is the standard deviation of the
measure resulting from its repetition;

The author chose to model the inspection error with a confidence interval around the
observed value. Let define

�

y (i)obs, i = 1, . . . , ninsp

	

the observations vector of the variable of

interest y . With the standard deviations
¦

σy(i)obs
, i = 1, . . . , ninsp

©

known, one can compute a
confidence interval at 95% by

C I95%

�

y obs

�

=
�

y obs ± 1.96 ∗σ yobs

	

, (2.75)

assuming the measurement error is unbiased and normally distributed. This confidence in-
terval could be computed knowing the bias, or either the distribution of the measurement
error. In other words, approximately all the inspection models for the measurement error
can be reduced to confidence intervals, this way the methodology becomes nearly independ-
ent of the inspection method.

By successively considering the upper and lower bounds of C I95%

�

y obs

�

as the result
of the inspections (i.e. all the measurements overestimate the degradation, respectively
underestimate), two bounds of the corresponding approximate P̂act can be derived. Con-
sequently, the greater the inspection error, the greater the uncertainties on P̂act , thus on the
probabilities of maintenance and failure.
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!The notion of confidence interval may seem improper. Indeed, the mean probability of
a branch may be outside the bounds defined as a confidence interval. Overestimating
the degradation may lead from maintenance action to repair, while in the same time un-
derestimating may lead to no action being performed. Both probabilities of going into a
maintenance branch would be decreased, thus leading the mean probability to be outside
these bounds. In the following, the bound denoted 95%C I+, resp. 95%C I−, refers to the
bound obtained while overestimating, resp. underestimating, the degradation process.

Example 2.4.3. To conclude Example 2.4.1 and Example 2.4.2, let us consider that the inspec-
tion method has an error normally distributed with 0 mean and a standard deviation of 2.5
millimetres.

Figure 2.20 presents both the modification of the approximate which includes the inspection
points added by the adaptive part of the methodology and the confidence interval resulting from
the standard deviation of the inspection technique.

Finally Table 2.3 contains the confidence interval of ˆPMa which clearly denotes the impact of
the measurement error, despite its standard deviation could have seemed insignificant at first.

ˆPMa C I95%

�

ˆPMa

�

6.3× 10−1
�

0.2× 10−1; 9.9× 10−1
�

Table 2.3 – Confidence interval for the probability of maintenance.

The following section presents the two silver thread examples which are used throughout
this manuscript, the IMRM described in Section 2.4.1 applied on them in this chapter.

!The maintenance and failure models have not been described here since they are both very
specific to the stakeholder habits and to the considered structure. Consequently they will
be introduced straight after together with each example.

2.5 Illustrations : balconies of a building

2.5.1 Description

The example is inspired from the management of balconies in a housing in Marseille
(France) exposed in Figure 2.21.

2.5.1.1 Different cases

On purpose of demonstrating the capabilities of the ADoE, and latter in this manuscript of
the optimisation methodology, three cases are considered:
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Figure 2.20 – Illustration of the approximation resulting from the ADoE on one trajectory. The blue
area corresponds with the confidence interval resulting from the measurement errors.
Three superimposed degraded areas result from this consideration.
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1. One-dimensional case : A balcony is approximated by a simple line which means that
its width is neglected. In this example we will consider a building with 120 balconies
and 10 percents of them are inspected;

2. Bi-dimensional case : A balcony is modelled as a rectangle, in order to take into ac-
count the variation of concrete cover thickness along the width of a balcony, for water
evacuation purpose. Again, a building with 120 balconies and 12 balconies inspected
is considered;

3. System bi-dimensional case : in this illustration the balcony modelling is the same as
in the bi-dimensional case. However it considers 12 buildings, each of them with 120
balconies, where only 1 balcony per building is inspected.

These three examples shall demonstrate the capacity of the developed methodology to
deal with:

• Stationary and non-stationary processes;

• One and Bi-dimensional models;

• Components and system approaches.

2.5.1.2 Degradation modelling

A surrogate vectorial gaussian process has been identified from 149 independent simula-
tions of a carbonation finite elements model modelling a 10cm concrete cover (de Larrard
et al. (2014)) with the random variables listed in Table 2.4 and with humidity and tem-
perature official measurements made over the last 50 years in Marseille. For more details
on the surrogate modelling procedure, the interested reader is referred to Dubourg (2011,
Chapter 1).

Random variable Designation Probabilistic distribution
CH0 Initial portlandite quantity (mol/m3) LN(µ= 2519, σµ = 10%)
φ Concrete porosity (%) LN(µ= 11.8, σµ = 15%)
K0 Inherent permeability (m2) LN(µ= 2.45× 10−17, σµ = 25%)

Table 2.4 – Random variables used as input for the finite elements model of carbonation (de Larrard
et al. (2014)). LN(•) denotes the log-normal probabilistic distribution.

Using the fractile autocorrelation function based on the Matérn function reading

R(x , x ′) = 2sin

�

π

6

n
∏

i=1

1
2ν−1Γ (ν)

�

2
p
ν
|x ′ − x |

0.9

�ν

K
�

ν, 2
p
ν
|x ′ − x |

0.9

�

�

, (2.76)

withK (ν, x) being the modified Bessel function of the second kind and n the spatial dimen-
sion, let us define three cross-correlated stationary random fields CH0(x ,ω), φ(x ,ω) and



66 Chapter 2. Predicting the evolution of a degradation index

Figure 2.21 – Capture of a housing in Marseille, France.
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K0(x ,ω) with the same marginal probabilistic distributions as the corresponding random
variables listed in Table 2.4. The cross-correlation matrix of the random fields writes

Rcross =





1 −0.85 −0.70
−0.85 1 0.70
−0.70 0.70 1





CH0(x ,ω)
φ(x ,ω)
K0(x ,ω) (2.77)

This correlation matrix has been also used to correlate the inputs of the carbonation finite
elements model.

The cross-correlated random fields are simulated with the translation field method (see
Section 2.3.5.1) and a KL decomposition with a finite element basis.

In the end, the carbonation random field is computed with the surrogate model of the
finite elements model for one balcony with the three random fields previously defined
CH0(x ,ω), φ(x ,ω) and K0(x ,ω) as inputs assuming that each balcony is identically ex-
posed to the carbonation process (which implies indentical solar radiation, rain exposition,
. . . ).

2.5.1.2.1 One-dimensional model Each balcony is approximated by a mesh of 100 lin-
ear elements, the length Lt of a balcony assumed equal to 3 meters.

Some trajectories of the inputs of the degradation model are provided in Figure 2.22 with
the evaluation of their autocorrelation function which perfectly matches the input function
given in Eq. (2.76). The cross correlations derived with the translation field are also given
in Eq. (2.78).

R̂
(1D)
cross =





1 −0.83 −0.68
−0.83 1 0.69
−0.68 0.69 1





ĈH0(x ,ω)
φ̂(x ,ω)
K̂0(x ,ω)

(2.78)

The conclusions made in Section 2.3.5.1 on the use of the fractile correlation together
with the translation field method for cross-correlated random fields are confirmed by this
example.

The predictions resulting from these inputs are illustrated in Figure 2.23. On the right
panel, the process appears to be non-monotonous. The carbonation depth is close to 10cm
which is the boundary of the finite elements model used to evaluate the surrogate model.
This behaviour indeed is unrealistic however since it appears far from any realistic concrete
cover thickness of balconies, it is out of concern.

The correlation structure of the simulated carbonation process is given Figure 2.24. The
stationarity is conserved and the distance between two points being correlated at most at
0.3 indicates that the DoE will propose inspection locations distanced by more than 1 metre.
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Figure 2.22 – Trajectories of the inputs for the degradation model together with their empirical auto-
correlation functions - one dimensional case.
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Figure 2.23 – Predictions of the degradation model.
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Figure 2.24 – Predictions of the degradation model.

2.5.1.2.2 Bi-dimensional model The mesh of a balcony is composed by 320 triangular
elements, the length Lt of a balcony assumed equal to 3 metres and its width lt equal to
1.2 metres. Assuming that the mesh of the reinforcement is equal to 15cm, each of them is
decomposed into two elements.

The classical inspection methods assume the homogeneity of the concrete parameters
inside a reinforcement mesh. According to this point, an element value is computed as the
mean of its nodel values. A mesh of reinforcement being composed of two elements, the
mean of their value is set to be the mesh value.

One trajectory for each input is given in Figure 2.25. For the sake of simplicity, instead
of comparing the correlation matrices for multiple inputs by plotting them, e.g. Figure 2.6,
Figure 2.26 presents their adequation with the input correlation function (see Eq. (2.76)),
i.e. each term of the input matrix is plotted in front of the corresponding estimated term for
each input. As such a perfect match is represented by the dashed-line. From Figure 2.26,
the adequations therefore appear to be.

R̂
(2D)
cross =





1 −0.83 −0.68
−0.83 1 0.70
−0.68 0.70 1





ĈH0(x ,ω)
φ̂(x ,ω)
K̂0(x ,ω)

(2.79)

The conclusions made in Section 2.3.5.1 on the use of the fractile correlation together
with the translation field method for cross-correlated random fields are confirmed by this
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Figure 2.25 – One trajectory for each input of the degradation model. The correlation between the
variables is visible.
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the input desired autocorrelation.

example.

The resulting predictions of the degradation model are shown in Figure 2.27 after 20
years of carbonation. The quantile indeed has a similar order of magnitude than in the
one-dimensional case (see Figure 2.23), around 1.5 centimetres. The representation of the
concrete cover thickness is also plotted on Figure 2.27. It is deterministic and decreases
linearly from 3 centimetres to 2 centimetres.

2.5.1.3 Inspection, maintenance and failure modelling

2.5.1.3.1 Inspection modelling The inspection error of the method used in this example
is denoted by εinsp ∼ N(µ = 0, σµ = 10%), meaning that it is unbiased. The maximum
number of inspected points is set to ninspm

= 20. Two cases are distinguished:

• The inspected locations are derived with the ADoE. The accuracy bound for the prob-
abilistic degradation index estimate is set to εP = 10% (see Eq. (2.73)) ;

• The inspected locations are derived with a Sobol low-discrepancy sequence, with a
length equal to ninspm

.

The time interval between two inspections is successively set to 10 and 20 years. The time
horizon being equal to 60 years, consequently 2 and 5 inspections will be performed (i.e.
the inspection at the end of the lifetime is not considered).
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Figure 2.27 – On top, quantile of the degradation model predictions at 20 years. Below is the rep-
resentation of the concrete cover thickness.

If at an inspection, the probability of action Pact equals 0, which means that neither
maintenance nor repair actions are expected, we will consider two cases:

• The inspection is performed

• The inspection is judged useless and thus avoided.

2.5.1.3.2 Failure modelling The failure state assumes that the reinforcements are de-
passivated. With respect to the considered degradation process (see Section 1.2.1.1), the
corresponding degradation index writes

DF =

�

�LX c>ct
− Lt

�

�

Lt
(2.80)

where ct is the curative threshold.

Due to the local heterogeneity of the concrete (e.g. presence of aggregates) which are
not modelled by the degradation processes shown in Section 1.2.1.1, the carbonation depth
may be varying around the predicted value. In an attempt to account for this heterogeneity
the curative threshold ct threshold is equal to the concrete cover thickness increased by 0.5
centimetre.
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The repair action is triggered if the carbonation depth has reached the reinforcements
over dc = 25% of a balcony.

2.5.1.3.3 Maintenance modelling For the uni-dimensional case, the maintenance ac-
tion is triggered if the carbonation depth has been found higher than the preventive
threshold pt = 1.5cm (i.e. half of the concrete cover) over dpm = 25% of a balcony. It
is assumed that after repair the balcony is always back to an as-good-as-new state. From
Eq. (2.54) we thus derive a preventive degradation index:

DP =

�

�LX c>pt
− Lt

�

�

Lt
(2.81)

Concerning the bi-dimensional case, the maintenance action is triggered if any of the
12 inspected balconies presents a carbonation depth violating the preventive threshold over
dpm of a balcony.

However for the system bi-dimensional case (where only one balcony is inspected per
building), only 25% of the buildings (i.e. 3 of them) may be repaired at the same time,
between two inspections. Moreover, a building cannot be maintained two successive times.
In this case, it means that for each IMRM (one per building), the probability of maintenance
PMa for a given building at a given inspection is rewritten by:

PMa =P
�

D >= dpm | D < dc, nmaint ≤ 3
�

, (2.82)

where nmaint is the number of other building to be maintained.

This conditional probability is hard to evaluate without simulation. Thus to compute
the probability of realisation of a IMRM branch (see Figure 2.10), simulations of the IMRM
are run in a sufficient number for every building, with the constraint that only one building
at a time is able to get in a maintenance branch. At the end, the new probabilities for each
branches are re-estimated. An instance of such simulation is given in Figure 2.28 where
3 buildings are considered, each of them being simulated one time, and without allowing
more than one maintenance action between two inspection. The simulation gives the third
balcony as being maintained, yet the second one is already in such state thus nothing is
done on the third balcony. The probabilities of each branch are computed again on the
right. Indeed one sample is not enough to correctly estimate these probabilities. On this
purpose and throughout this illustration, the tree is simulated 100,000 times.

2.5.2 Evaluation of the life-cyle model

2.5.2.1 One-dimensional problem

Figure 2.29 and Figure 2.30 present the probabilistic distributions of the number of main-
tenances and inspections for a time interval between two inspections equal to 10 and 20
years, respectively.
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Figure 2.28 – Illustration of the tree simulation with a constraint on the number of simultaneous
maintenance. A green line represents the followed path. A dotted red line denotes
the effect of the constraint.
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The first observation is that the results are equivalent, shall the inspected points be
defined with the ADoE or the Sobol low-discrepancy sequence. This point is discussed later
on in this section.

When inspecting every 10 years, after 60 years the probability is very high that only
one maintenance action is going to be performed. In this case, if the inspections judged as
useless are always performed, 5 inspections are made. The probability of repairing 3, 4 or 5
times being null, it means that inspecting 5 times is useless. If the useless inspections are not
performed, it is more likely that only 3 inspections will be made, confirming the previous
intuition. According to the degradation trajectories shown in Figure 2.23, in 10 years the
carbonation process has not been initiated which explains why an inspection every 10 years
is useless if the structure has been repaired.

The dispersions presented in Table 2.5 are not significant in this case.

n° µMa [C I−; C I+]Ma µF [C I−; C I+]F Type
0 0.04 [0.05; 0.10] 0.96 [0.96;0.89] ADoE
0 0.03 [0.04; 0.11] 0.97 [0.96;0.88] Sobol’
1 0.94 [0.95; 0.82] 0.04 [0.04;0.11] ADoE
1 0.95 [0.96; 0.80] 0.03 [0.04;0.12] Sobol’
2 0.02 [0;0.08] 0 [0;0] ADoE
2 0.02 [0;0.09] 0 [0;0] Sobol’
3 0 [0; 0] 0 [0;0] ADoE
3 0 [0; 0] 0 [0;0] Sobol’
4 0 [0; 0] 0 [0;0] ADoE
4 0 [0; 0] 0 [0;0] Sobol’
5 0 [0; 0] 0 [0;0] ADoE
5 0 [0; 0] 0 [0;0] Sobol’

Table 2.5 – Mean and confidence interval of the number of maintenances and repairs with an in-
spection interval of 10 years.

n° µMa [C I−; C I+]Ma µF [C I−; C I+]F Type
0 0.63 [0.21; 0.84] 0.37 [0.79;0.16] ADoE
0 0.65 [0.21; 0.84] 0.35 [0.79;0.16] Sobol’
1 0.37 [0.79; 0.16] 0.63 [0.21;0.84] ADoE
1 0.35 [0.79; 0.16] 0.65 [0.21;0.84] Sobol’
2 0 [0; 0] 0 [0;0]

Table 2.6 – Mean and confidence interval of the number of maintenances and repairs with an in-
spection interval of 20 years.

When the interval between inspections is set to 20 years, Figure 2.30 shows that the 2
inspections will be made. On these two inspections, it is likely that none of them will lead
to a maintenance action. Yet the mean probability and the probability resulting from an
underestimation of the degradation process for 1 maintenance performed are not negligible
(respectively equal to 0.37 and 0.79, see Table 2.6).
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(b) Inspected points designed with a Sobol low-discrepancy sequence.

Figure 2.29 – Probabilistic distributions for the number of maintenances, inspections and repairs
with an inspection interval of 10 years.
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(b) Inspected points designed with a Sobol low-discrepancy sequence.

Figure 2.30 – Probabilistic distributions for the number of maintenances, inspections and repairs
with an inspection interval of 20 years.
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With the same degradation process, the interval between inspections may lead to no
maintenance action being performed. In a sense, it could be interpreted as a better chance
to lower the costs. However regarding Figure 2.29 and Figure 2.30 the chances of failure
occurring (i.e. corrosion occurs) are indeed higher (from 4 percents with a 10 years interval
to 62 percents with the 20 years interval), which may not be an advantage. Moreover in case
of an overestimation of the degradation, this probability is increased to 84% (see Table 2.6).

The last point of this illustration of a one-dimensional case is related to the use of the
ADoE or a low-discrepancy sequence. We have seen that it has no effect on the estimates
presented above. In order to point out the main difference, Figure 2.31 illustrates the Sobol
sequence and the ADoE resulting from the first inspection with a time interval between in-
spections of 20 years. The approximate resulting from these design of experiments is shown
on two trajectories extracted from the sample of the degradation predictions at 20 years.
As expected, given the stability of the quantile of the carbonation depth (see Figure 2.24)
the ADoE only proposes 4 points against 22 for the Sobol sequence (as for the ADoE, the
borders have been added to the sequence). For the trajectories shown on the two panels of
Figure 2.31, the approximate resulting from the ADoE happens to miss all the pikes of the
trajectory, which does not happen with the Sobol sequence. It was to be expected, this is
one tricky point of the so-called stationarity. Given a lot of trajectories, the predictions are
uniform. Yet for one trajectory this is not the case, unfortunately the DoE takes into con-
sideration where the degradation shall be the highest, which is not an information given to
this modelling when considering stationary random processes. Moreover, the relatively high
correlation length considering the structure’s size limits the number of acceptable points.
Finally, in this case approximating the trajectories by a few points is enough to get a correct
evaluation of the probability of action Pact such that the adaptive part does not add any
point.

In other words, in case of stationary random process, the use of a low-discrepancy se-
quence is to be preferred. Obviously, this is strongly dependent with the maximum number
of inspections ninspm

.

2.5.2.2 Two-dimensional problem

For the sake of simplicity, in the following only the results obtained through the ADoE are
exposed. The two-dimensional problem uses the same concrete specifications for the pre-
dictions of carbonation as the one-dimensional one, the major difference being the concrete
cover thickness. This case assumes that it decreases linearly from 3 to 2 cm, for water evac-
uation purpose. In other words, the degradation is the same, but the cover thickness tends
to be lower than in the one-dimensional case.

The results with an inspection interval of 10 years on Figure 2.32 do not show any
significant tendency comparing to the similar one-dimensional case shown on Figure 2.29.
Indeed, the risk of failure tends to be small and the threshold for the maintenance action
is constant over the balcony, therefore the effect of the second dimension does not appear.
Except for the number of inspections which would be more likely equal to 2. This denotes
that the degradation index increases slower than in the one dimensional case due to the
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Figure 2.31 – Comparison of the approximated made by the ADoE and the Sobol sequence at 20
years for two trajectories of the simulation sample. The overestimation (resp. under-
estimation) on the left (resp. right) panel of the
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increase of the reinforcement total length. However concerning the confidence intervals
shown in Table 2.7 an overestimation may lead to a repair action with 34% of chances
against 11% in the one-dimensional case (see Table 2.5).

n° µMa [C I−; C I+]Ma µF [C I−; C I+]F
0 0.10 [0.09; 0.33] 0.90 [0.91;0.66]
1 0.89 [0.91; 0.63] 0.10 [0.09;0.34]
2 0.01 [0;0.04] 0 [0;0]
3 0 [0; 0] 0 [0;0]
4 0 [0; 0] 0 [0;0]
5 0 [0; 0] 0 [0;0]

Table 2.7 – Mean and confidence interval of the number of maintenances and repairs with an in-
spection interval of 10 years.

n° µMa [C I−; C I+]Ma µF [C I−; C I+]F
0 0.92 [0.75; 0.96] 0.08 [0.45;0.04]
1 0.08 [0.25; 0.04] 0.92 [0.55;0.96]
2 0 [0; 0] 0 [0;0]

Table 2.8 – Mean and confidence interval of the number of maintenances and repairs with an in-
spection interval of 20 years.

However a clear tendency is detectable with an inspection interval of 20 years. Fig-
ure 2.32 shows that the number of maintenances is highly decreased, from 65% (see
Table 2.6) that one maintenance is to be made to less than 8% (see Table 2.8), while the
probability of one repair action increases by nearly 29%. The confidence interval evolves in
the same way since:

• An underestimation of the degradation results in a probability of repairing equal to
55% (instead of 21% in the one-dimensional case, see Table 2.8);

• The degradation being overestimated increases the probability of repairing up to 96%
(instead of 84% in the one-dimensional case).

There is the effect of a mean cover thickness lower than the one-dimensional case, where
the failure state intuitively becomes easier to reach.

2.5.2.3 System approach for the two-dimensional problem

Last but not least, Figure 2.33 presents the results obtained with the system of two-
dimensional balconies.

The main difference remains in the constraint set on the maintenance action since only
three buildings may be repaired after an inspection. Through Figure 2.32, the consequence
of a system approach is clear: the constraint on the maintenance actions reduces the chances
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Figure 2.32 – Probabilistic distributions for the number of maintenances, inspections and repairs for
two inspection intervals.
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for a balcony to be maintained before failure when maintenance actions were predicted (i.e.
with a 10 years interval), while it has no effect when the chances of maintenance being
performed were already low (i.e. with 20 years between two successive inspections).

Regarding Table 2.9 and Table 2.10, the measurement uncertainties increase the prob-
ability of maintenance with an inspection interval of 10 years yet it means that maintenance
decision may be taken instead of repairing ones which is not an advantage either. With a
delay between two inspections of 20 years, both underestimation and overestimation keep
the probability of repairing above the probability of maintenance.

n° µMa [C I−; C I+]Ma µF [C I−; C I+]F
0 0.69 [0.52; 0.71] 0.31 [0.87;0.91]
1 0.30 [0.48; 0.26] 0.69 [0.13;0.09]
2 0.01 [0;0.03] 0 [0;0]
3 0 [0; 0] 0 [0;0]
4 0 [0; 0] 0 [0;0]
5 0 [0; 0] 0 [0;0]

Table 2.9 – Mean and confidence interval of the number of maintenances and repairs with an in-
spection interval of 10 years.

n° µMa [C I−; C I+]Ma µF [C I−; C I+]F
0 0.92 [0.75; 0.96] 0.08 [0.45;0.04]
1 0.08 [0.25; 0.04] 0.92 [0.55;0.96]
2 0 [0; 0] 0 [0;0]

Table 2.10 – Mean and confidence interval of the number of maintenances and repairs with an in-
spection interval of 20 years.

2.5.2.3.1 Conclusions In order to prove the ability of the methodology to handle various
cases, three different ones have been developed:

• an uni-dimensional case;

• a bi-dimensional case;

• a bi-dimensional case for several buildings linked by a maintenance constraint.

At this point, this illustration demonstrates the capability of the decision tree as an
IMRM. It gives valuable information on the number of maintenances, the number of in-
spections and the probability of failure which are expected, which allow to study the impact
of a given inspection plan. These examples have pointed out that the predictions may be
used to determine if a planned inspection can be avoided or not. Since the degradation is
supposed to be stationary with a high correlation length regarding the length of a balcony,
the information given on the degradation distribution over a balcony is not discriminating
enough for the ADoE to be efficient. In this case a low-discrepancy sequence would be a
better choice.
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Figure 2.33 – Probabilistic distributions for the number of maintenances, inspections and repairs for
two inspection intervals.
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2.6 Conclusion

This chapter introduces the basics of the probability theory prior to the basics of the random
fields. In order to account for the spatial variability of any degradation process, it appears
important to present the methodologies available to simulate spatially correlated processes.

Among the methodologies available, the Karhunen-Loève has been chosen since it is
the most versatile one and it does not need any assumption on the random field to be
simulated. In order to simulate non-gaussian random fields which have not been observed,
the KL decomposition is to be used for simulating a standard gaussian random field on
which the translation field method is applied to transform the field into a non-gaussian one.
The inconvenience here is that the correlation structure of the field is to be given to the
underlying gaussian process and is then modified by the translation field method. It can be
circumvent by optimisation methods or by the use of the fractile correlation function. The
latter being the simplest, it is prescribed by the author. The same goes for the simulation of
cross-correlated random fields, since it is simpler than the presented Vorechovsky method,
although the method proposed by Perrin et al. (2013) has the author’s preference.

The second part of the chapter presents the IMRM used in this thesis which is based on a
simple decision tree. This sort of model is nearly assumption-independent which is the best
fit regarding the thesis objectives. The inspection node of the decision tree is introduced by
the classical low-discrepancy sequences and the adaptive design of experiments developed
in this thesis. Both aims at obtaining the better statistical knowledge of the degradation
random field from a limited number of inspected points. The first is, to the author’s advice, to
be used in case of stationary random process and any case where the degradation predictions
cannot be reliable.

The maintenance node and the failure consideration are presented in the first example
of the thesis which studies the case of multiple balconies of french housings. Submitted to a
stationary carbonation process, the predictions are made using a surrogate model identified
with simulations of a finite element model. The inputs of the model are cross-correlated,
non-Gaussian, thus defined with the fractile autocorrelation function and simulated with
the translation method. Applying the IMRM for two time steps between inspections, it has
shown that:

• Avoiding inspections if the estimated probability of maintenance equals 0 can be useful
in case of a short time step between inspections since increasing the time interval may
lead to a higher expectation of the probability of failure encountered in the decision
tree;

• Although the ADoE and the low-discrepancy sequence give similar results for the prob-
abilities derived by the IMRM, regarding the approximate done by each of them on a
unique trajectory shows that the low-discrepancy sequence is to be preferred in the
case of stationary random process;

• Confidence intervals are available for all the quantities derived from the decision tree
since it propagates the measurement error.
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However the use of this IMRM needs a predictive degradation model. The following
chapter is dedicated to the calibration by a bayesian framework of such model based on
inspection results or structure specifications.



CHAPTER 3
UPDATING THE PREDICTIVE MODEL

3.1 Introduction

The previous chapter introduced a methodology based on a decision tree in order to predict
the evolution of a given structure submitted to any inspection plan.

Two things are worth to be pointed out on this methodology:

• It assumes that a predictive degradation model exists. If it does, it may however not
be calibrated really well for young structures;

• Its output is an inspection plan likely to be applied, at least for the first inspection.

These considerations drove another objective of this thesis: To allow the use of any exist-
ing data which would be relevant in order to improve the inspection plan computed with the
methodology. Indeed relevant measure coming from an inspection may be used to improve
the accuracy of the predictive model in order to derive a better inspection plan.

This situation is particularly suited to Bayesian statistics. This chapter presents in a first
section the Bayesian framework prior to a discussion on its potential.
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3.2 Bayesian framework

3.2.1 Bayesian updating in structures management

The Bayesian methodology is well known for its ability to mix data coming from measure-
ments and from expert judgement.

Estes and Frangopol (2001b) adopted this methodology. Their life-cycle model is based
on an event tree applied to a deteriorating bridge. They update the predictions through
a Bayesian context and rerun the optimisation process. The expected exploitation cost is
reduced by 97%, since the update drastically decreases the probability that a maintenance
will be performed during the lifetime of the bridge.

Faber et al. (1996) use the Bayes theorem in order to update the probability of failure
of a structure or the probability density function of an observed random variable. Faber
and Sorensen (2002) derive the update of a Bayesian indicator. Applied on a structure
submitted to localised and distributed corrosion, the corrosion measurements help to refine
the knowledge on the indicator first defined with an expert judgement (presence or not of
corrosion deduced from a given threshold of half-cell measurement).

Hellevik et al. (1999) optimise the inspection and replacement planning for piping sub-
jected to carbonation-induced corrosion. The probability of maintenance and the probab-
ility of failure are updated based on inspection results of the degradation. It results in an
increase of the reliability index of the structure by a factor two after a first inspection after
7 years.

Ma et al. (2013) use Bayesian statistics to update the model of corrosion-induced
strength degradation, using data of flexural bearing capacity testing. It greatly reduces
the uncertainties of the model predictions.

Perrin (2008) uses Bayesian technique to update the knowledge of the material prop-
erties of a concrete by indirect measurements of concrete creep, through a creep model.
He developes a methodology able to take into consideration the errors coming from the
inspection technique and from the model approximations.

Zhang and Mahadevan (2000) update the predictions of a fatigue model based on non-
destructive measure. Each observation (e.g. crack detected) is linked with the PoD defini-
tion of the inspection technique (see Section 1.4.1).

3.2.2 Bayes theorem

Bayesian updating relies on the Bayes theorem. Let X = [X1, . . . , Xn] be a random vector
such as

X =
§

Ω → Rn

ω 7→ {X1(ω), . . . , Xn(ω)}
(3.1)
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πX(x ) its prior probability density function, estimated from test data or from expert
judgement (for instance, machining production follows a normal distribution centred on
the nominal value, the distribution of temperature along the time is uniformly distributed
between two bounds, ...).

Let X obs be a set of observations such as

X obs =
�

x (zi ,t j),

∀i = (1, · · · , P);∀ j = (1 · · · ,Q)
	

,
(3.2)

with each component {x (zi ,t j)} indexed by its location zi and the observation date t j.

Since these observations are realisations of the random vector X , the posterior probability
density function of the random vector X is given by the Bayes theorem:

fX(x |X obs) =
1
c
πX(x )L (x , X obs), (3.3)

where L (x , X obs) is the likelihood of the observations with respect to the probabilistic dis-
tribution of the random vector X , and c is a normalisation constant which reads

c =

∫

DX

πX(x )L (x , X obs)dx . (3.4)

The equation 3.3 is unfortunately not easy to solve as this integral only has an analytic
solution in a few academic examples.

3.2.3 Estimation of the posterior distribution

Several methods help in estimating the posterior distribution given in Eq. (3.3). As pointed
out in the previous section the main issue comes with the evaluation of the normalisation
constant (see Eq. (3.4)). A historical way to circumvent this problem was to make use of
conjugate distributions but the development of numerical simulation permitted to develop
more complex methods such as the Markov chain Monte Carlo (Metropolis and Ulam (1949);
Metropolis (1987)), introduced in the following together with the conjugate distributions, or
method based on polynomial chaos expansion of the likelihood function (Nagel and Sudret
(2015) which is the most recent method to the author’s knowledge).

3.2.3.1 Conjugate prior distributions

Conjugate distributions are specific combinations of prior distribution and likelihood which
return known form of the posterior distribution. This section present a brief overview of
conjugate prior distributions. The reader is refereed to Fink (1997); Ntzoufras (2009);
Perrin (2008) for a nearly exhaustive list of the conjugate prior distributions.
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3.2.3.1.1 Binomial likelihood The binomial likelihood with success probability θ reads

L (θ , k) =
�

n
k

�

θ k(1− θ )n−k, (3.5)

n and k being the number of trials and the number of desired successes, respectively.

One prior conjugate distribution for the parameter θ is the gamma distribution

πθ (θ ) =
Γ (a+ b)
Γ (a)Γ (b)

θ a−1(1− θ )b−1, (3.6)

with parameters a and b, which combines with the likelihood so that the posterior distribu-
tion yields

fθ (θ |x obs)∝ θ k+a−1(1− θ )n−k+b−1. (3.7)

3.2.3.1.2 Normal distribution with unknown mean A Gaussian likelihood with un-
known mean θ and known variance σ2 writes

L (θ , x obs)∝ exp

�

−
1
2

�

x obs − θ
�

σ2

�

. (3.8)

Combined with a Gaussian prior for θ with mean θ0 and variance τ2
0, thus reading

πθ (θ )∝ exp

�

−
1
2
(θ − θ0)
τ2

0

�

, (3.9)

after some basic algebra the posterior distribution of θ writes

fθ (θ |x obs)∝ exp

�

−
1
2
(θ − θ1)

2

τ2
1

�

, (3.10)

where







θ1 =
1
τ0
θ0+

1
σ2 xobs

1
τ0
+ 1
σ2

;

τ2
1 =

1
1
τ0
+ 1
σ2

. (3.11)

3.2.3.1.3 Normal distribution with unknown variance For a sample X obs =
�

x i,∀i ∈ (1, . . . , n)
	

, each experiment being exchangeable, with known mean µ and un-
known variance θ , a Gaussian likelihood reads
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L (θ , x obs)∝
n
∏

i=1

θ−
1
2 exp



−
1
2

�

x (i) −µ
�2

θ



 . (3.12)

Combined with an inverted-gamma prior such as

πθ (θ )∝ θ−(a0+1) exp
�

−
b0

θ

�

, (3.13)

the posterior distribution of θ is also an inverted-gamma yielding

fθ (θ |X obs)∝ θ−(a1+1) exp
�

−
b1

θ

�

, (3.14)

where

�

a1 =
n+2a

2 ;

b1 = b+ 1
2

∑n
i=1

�

x (i) −µ
�2 . (3.15)

3.2.3.2 Markov Chain Monte Carlo

Markov Chain Monte Carlo (MCMC) method, introduced by Metropolis and Ulam (1949),
is used to sample directly into the posterior distribution (see Eq. (3.3)).

If a Markov chain is irreducible, aperiodic and reversible (see Section 1.3.2.1) and its
stationary distribution is the posterior distribution fX(x |X obs) thus sampling this chain will
return the posterior distribution.

Two issues are to be addressed, which are illustrated in Figure 3.1:

• Indeed the chain shall start from an initial point, the so-called seed. Depending on this
point the convergence towards the stationary distribution will need a different initial
sample size. The burn-in period removes this sample from the overall chain in order
to only keep the points which belong to the stationary distribution.

• Despite the memoryless property of the Markov chain, the sample points may be cor-
related between each other. This autocorrelation is to be avoided in order to get in-
dependent experiments thus the sample is thinned (e.g. only one point every 4 points
is stored).

Finally the major remaining issue is to sample from a Markov chain with fX(x |X obs).
For this purpose, Hastings (1970) improved a proposition of Metropolis et al. (1953) called
the Metropolis-Hasting algorithm. They found out that any Markov chain with transition
probabilities being a ratio of the stationary distribution and the proposal distribution both
evaluated on the proposed point and the last accepted one will converge asymptotically to
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Algorithm 3.1 MCMC with Single-component Metropolis-Hastings sampler

q Proposal PDF
fX Target PDF

x (0) Seed verifying fX (x (0))> 0

Generate a
sample of size N

i = 0

j = 0

Propose a new candidate
x?j ∼ q j

�

•
�

�x (i)
�

Compute the probability of acceptance

r(i+1)
j = min

(

fX (x?j | x \ j)q(x
(i)
j | x

?
j , x \ j)

fX (x
(i)
j | x \ j)q(x?j | x

(i)
j , x \ j)

; 1

)

Draw a uniform random number
z ∼ U ([0; 1])

Is z ≤ r(i+1)
j ?

x j = x?j x j = x (i)j

j = j + 1

Is j = d?

i = i + 1

x (i+1) = x

Is i = N?

Apply burn-in and
thinning

Convergence ?

f̂X Approximated target PDF

N = N + K

yes

no

yes no

no yes

no yes
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Figure 3.1 – Illustration of Burn-in and Thinning of Markov Chain.

the stationary distribution (i.e. the posterior distribution). Many variant of this algorithm
have been proposed, such as the single-component Metropolis-Hastings sampler illustrated
in Algorithm 3.1, the Gibbs sampler, the slice sampler, etc . . . (Perrin (2008))

3.2.4 Model calibration

The Bayesian statistics are known for their efficiency in model calibration Perrin (2008);
Nagel and Sudret (2015) since unlike classical methods such as the least-square problem,
they:

• allow to calibrate a model with a small number of points if the prior distributions are
relevant;

• return a distribution of possible values for the model parameters, i.e. probability
distributions.

Given a model M which tries to predict an outcome y ∈ DY ⊂ Rdy given some inputs
x ∈ DX ⊂ RdX , any observation of the output denoted y obs could be written as Perrin (2008):

y obs =M (x ) + ε, (3.16)
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where ε represents the model approximations and output observations uncertainties as-
sumed to be independent of each other.

From this point, three situations may occur:

• First case: an inspection returns measurements of some model outputs. In this case
the purpose is to calibrate the model parameters in order to fit the observations;

• Second case: an inspection returns measurements of some model inputs. This is not
a calibration problem. Each observed inputs are to be updated and the corresponding
posterior distributions propagated through the modelM ;

• Third case: Both measurements could be made, which would lead to a calibration of
the unobserved model inputs.

3.2.4.1 Model outputs observation

From Eq. (3.16), we could write each observation
¦

y obs (i), i = 1, . . . , Nobs

©

as being a real-
isation of the model/measurement uncertainties:

ε(i) = y obs (i) −M (x ), i = (1, . . . , Nobs). (3.17)

Let assume that the model/measurement error random vector is normally distributed
with 0 mean such as

ε∼N (0,σε × I) , (3.18)

where 0 is a vector of zeros with size dy , σε the corresponding vector of standard deviations
and I the identity matrix of shape dy × dy (i.e. the components of the error random vector
are independent).

Given that each observation is independent, the likelihood of the observations with re-
spect to the model predictions reads

L
�

x ,σε, Y obs
�

=
Nobs
∏

i=1

dy
∏

j=1

ϕ

�

M (x )− y obs
i, j

σ

�

, (3.19)

where ϕ is the probability density function of the standard normal distribution.

The posterior distribution of the input parameters of the modelM is thus defined by

fX ,σε

�

x ,σε | Yobs
�

∝ πX(x )πσε(σε)L
�

x ,σε, Y obs
�

. (3.20)
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3.2.4.2 Combined observations of the model outputs and inputs

Due to the capacity of the measurement techniques, some outputs of the modelM can be
measured together with some components of the input random vector X . The proposition
made to deal with this particular case is to split up the random vector X into two sub-vectors.

Let define the random vector X obs which gathers the inputs of the modelM which have
been measured, and X obs the random vector of the inputs not observed.

Following the assumptions made in Section 3.2.4.1, the likelihood writes

L
�

x obs ,σε, Y obs , x obs
�

=
Nobs
∏

i=1

dy
∏

j=1

ϕ





M
�

x obs , x obs (i)
�

− y obs
i, j

σ
( j)
ε



 , (3.21)

and the posterior distribution of the non-observed input parameters denotes

f
Xobs ,σε

�

x obs ,σε | Yobs,Xobs
�

∝ π
Xobs (x

obs)πσε(σε)L
�

x obs ,σε, Y obs , x obs
�

. (3.22)

Above equations however assume that the observations of the input parameters are per-
fect still there is no reason for them to be perfect while the measurements of the output are
not. Knowing the error made on this measurement, for instance εx obs ∼ N

�

0,σεx obs
× I
�

,
the idea to circumvent this problem is to get from the distribution of the error εx obs centred
on the observed value (i.e. N

�

x obs ,σεx obs
× I
�

) a sample x̃ obs of size dy and rewrite the
likelihood Eq. (3.21) as:

L
�

x obs ,σε, Y obs , x obs
s

�

=
Nobs
∏

i=1

dy
∏

j=1

ϕ





M
�

x obs , x obs
s

(i)
�

− y obs
i, j

σ
( j)
ε



 . (3.23)

Drawing such a sample at each step of the MCMC shall take into account the measure-
ment error. The corresponding single-component Metropolis-Hastings sampler is given in
Algorithm 3.2.
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Algorithm 3.2 MCMC with Single-component Metropolis-Hastings sampler

q Proposal PDF
f
Xobs ,σε

Target PDF

x obs
(0)

, σ(0) Seed verifying f
Xobs ,σε

�

x obs
(0)

,σ(0)
�

> 0

Generate a
sample of size N

i = 0

j = 0

Propose a new candidate

x?j ∼ q j

�

•
�

�

�x obs
(i) �

σ?j ∼ qσj
�

•
�

�σ(i)
�

x obs
s ∼ N

�

x obs ,σεx obs × I
�

Compute the probability of acceptance

r(i+1)
j = min







f
Xobs ,σε

�

x?j ,σ
?
j | x \ j ,σε\ j , x obs

s

�

q(x (i)j | x
?
j , x \ j)qσ(σ

(i)
j | σ

?
j ,σ\ j)

f
Xobs ,σε

�

x (i)j ,σ(i)j | x \ j ,σε\ j , x obs
s

�

q(x?j | x
(i)
j , x \ j)qσ(σ?j | σ

(i)
j ,σ\ j)

; 1







Draw a uniform random number
z ∼ U ([0; 1])

Is z ≤ r(i+1)
j ?

x j = x?j x j = x (i)j

j = j + 1

Is j = d?

i = i + 1

x (i+1) = x

Is i = N? Done!

yes no

no yes

yesno
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3.3 Discussion on the use of Bayesian statistics for con-
crete structures

3.3.1 Problem statement

Although for steel structures the non-destructive techniques have been used for a long time,
concerning concrete structures it remains an active research subject with promising results
Garnier et al. (2014). The french national project SENSO (2009) which aimed at design-
ing non-destructive inspection protocols for concrete structures resulted in the ability to
measure:

• The saturation rate (i.e. the water content) Sr;

• The concrete porosity φ;

• The Young modulus Ec;

• The compressive strength Rc.

The models presented in Section 1.2.2 helps to predict:

• A carbonation depth (e.g. Eq. (1.1));

• A chloride concentration (e.g. Eq. (1.2));

• A corrosion current (e.g. Eq. (1.3)).

In order for them to compute accurate predictions, they need specific inputs such as:

• The exposure conditions of the concrete;

• The type of concrete;

• The curing conditions;

• The diffusion coefficient associated with the penetration agent.

Basically, it means that at the instant of this manuscript writing, none of the non-
destructive inspection techniques may be of any help to improve the predictions of the
carbonation, the chloride concentration and the corrosion degradation processes.

However:

• The exposure conditions of the concrete may be given by meteorological records;

• The type of concrete and the curing conditions may be found in the construction spe-
cifications of the building, with respect to the trust one may have in the concordance
between the specifications and the resulting concrete;

• The diffusion coefficient may be estimated by empirical formulations introduced be-
low for the carbonation process.
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3.3.2 Empirical formulations for the carbonation process

In order to use non-destructive testing results to estimate the evolution of the carbonation
depth, the research project EVADEOS funded by the French National Research Agency ex-
perienced the use of the following empirical formulations.

Let define both the concrete degree of hydration denoted by (Taylor (2004))

αH = 1− exp [−3.3w/c] , (3.24)

where w/c is the water-cement ratio (available in the construction specifications) and the
volume fraction of cement writing (m3/m3) (Taylor (2004))

Vc =
c

1000 (1−φair)

�

1
ρc
+w/c

�

, (3.25)

with c the cement quantity (kg/m3),φair the air content andρc the concrete relative density.

Then, the initial porosity of concrete may be estimated by (Taylor (2004))

φ =
�

w/c
w/c + 0.32

− 0.53αH

�

1−
w/c

w/c + 0.32

��

Vc. (3.26)

As a reminder, the DuraCrete carbonation model (DuraCrete (2000)) presented in
Chapter 1 reads

X c(t) =

√

√kekckt Cs t
Rcar b

∗
� t0

t

�n

. (1.1)

Rcar b can be derived by

Rcar b = 1000
C1MCaO

DCO2

Vc (3.27)

where C1 is given by (Hyvert (2009)):






C1 =
�

αH
1−φair
1
ρc
+w/c

CaOCk
MCaO

�

− C2

C2 = 1.65αH
1−φair
1
ρc
+w/c

SiO2Ck
MSiO2

(3.28)

CaO and SiO2 are respectively the amount of calcium oxide and silicone dioxide, with
MCaO and MSiO2

their molar mass, respectively.

Finally DCO2
is the coefficient of diffusion which writes (Thiery (2005))

DCO2
= Dair

CO2
φ2.74 (1− Sr)

4.2 , (3.29)

with Datm
CO2

the diffusion coefficient for the carbon dioxide in the air.

With these empirical models, the DuraCrete model is thus dependant on the concrete
porosity and saturation rate, two of the measurable concrete properties by NTDs.
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3.3.3 Case study

Through the research project EVADEOS, destructive (DT) and non-destructive testings have
been performed on an area delimiting wall belonging to French Alternative Energies and
Atomic Energy Commission (CEA), built 35 years ago. The output of this testing campaign
were measurements of:

• Carbonation depth (DT);

• Saturation rate (DT and NDT);

• Concrete porosity (DT and NDT);

• Compressive strength (DT and NDT).

The NDTs were performed with the methodology described in Garnier et al. (2014)
which basically combines the results of different non-destructive techniques which are sens-
itive to the quantity of interest one wants to measure. An illustrative plan of the measure-
ment site is shown in Figure 3.2 together with a picture of the inspection team in Figure 3.3.
Some of the results extracted from this inspection campaign are gathered in Table 3.1. To-
gether with these results, the cement quantity c has been estimated to 350 kg/m3 by de-
structive testing.

X c (DT) (mm) 19, 19, 20, 22, 20, 17, 19, 17, 22
16, 21, 19, 17, 18, 17, 23, 25, 28

Sr (NDT) (%) 73.3, 70, 66.1, 61.1, 54.7, 51.4, 57, 59, 62.7
53.4, 58.9, 56.1, 64.8, 62.2, 61.4, 56.8, 56.4, 57.4

φ (NDT) (%) 17, 17, 17.2, 17.6, 17.9, 19.2, 18.7, 18.2, 17.4
18.7, 18.9, 18.6, 17.5, 19.2, 18.8, 19.3, 18.4, 16.8

Table 3.1 – Results of the inspection campaign. Each couple of X c , Sr and φ have been measured
at the same location. DT, resp. NDT, means that the values have been obtained through
destructive testing, resp. non-destructive testing.

3.3.3.1 Material parameters

Since this wall does not have any structural utility, it is assumed that the concrete is a C25.
According to DuraCrete (2000) and expert knowledge (since no structure specifications
were available), the DuraCrete model parameters have been considered as random variables
described in Table 3.2.

3.3.3.2 Updating cases

Before any update, the prior distributions of the carbonation model inputs (see Table 3.2)
are used to predict the carbonation depth evolution of the wall during 35 years, i.e. until the
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Figure 3.2 – Plan of the measurement site

inspection date. Then in order to highlight the data needed to perform an efficient update,
three cases are considered:

Case 1: The first case uses the measurements of the carbonation depth together with the meas-
urements of Sr and φ. (see Section 3.2.4.2);

Case 2: Since this work shall use NDT results, the update of Sr and φ is performed and the
carbonation depth predictions are made with the identified posterior distributions;

Case 3: The last case uses the measurements of the carbonation depth only, although they have
been obtained by destructive testing (see Section 3.2.4.1). In this case the concrete
porosity is not updated through the model but identified by Eq. (3.26).

In order to reduce the number of random variables, a sensitivity analysis has been per-
formed on the DuraCrete model by computing the total order Sobol’ indices Sobol’ (1993)
which are easy to interpret (e.g. an indice of 10% for an input means that the total variance
of this input is responsible for 10% of the output variance). Yet they do not account for
the correlation which may exists between the variables but which is not modelled since it
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Figure 3.3 – Picture of the inspection team on the CEA measurement site

Item Distribution Description
ke LN (muLN = 0.82,σLN = 0.27)
kc Beta (r = 1.86, t = 2.96, a = 0.35, b = 1)
kt N (µ= 0.983,σ = 0.023)
n Beta (r = 0.802, t = 2.102, a = 0, b = 0.5) Beta : Beta distribution

c
�

kg/m3
�

U (a = 320, b = 370) U : Uniform distribution
Ck (%) U (a = 95, b = 100) N : Normal distribution

w/c (%) U (a = 40, b = 70) LN : Lognormal distribution
CaO (%) U (a = 64, b = 66) Tr : Triangular distribution
SiO2 (%) U (a = 20, b = 21)

Sr (%) Tr (a = 50, b = 100, c = 70)
φ (%) U (a = 1, b = 30)

Table 3.2 – Distribution of the DuraCrete model inputs

is completely unknown. If the correlation was introduced, indices based on the covariance
decomposition (Caniou (2012)) may be efficient.

The sensitivity analysis has been performed two times:

• The first analysis considers Sr and φ as known parameters;

• The second analysis does not.

A classic interpretation of Figure 3.4 would be that without considering the measure-
ments on the concrete porosity and saturation rate, n, Sr , ke, kc and CaO should be kept.
However to the author’s experience with the DuraCrete model, n and Sr indices are way too
important (i.e. around 10 times higher) to update them with ke, kc and CaO. Indeed n and
Sr are coefficients of power laws while ke, kc and CaO are only multiplying factors. The
mean sensitivity to n and Sr is then expected to be much higher. When Sr and φ measure-
ments are considered, following this principle only n shall be updated. Thus for the three
cases mentioned above, two different updates are done:
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Figure 3.4 – Sobol total indices for the DuraCrete model. On the left Sr and φ have been considered
as known, on the right no input is measured.

Case a: If the input measurements are considered, only n is modelled as a random variable.
If not, n and Sr are modelled as random variables. For both cases, all the other para-
meters are set equal to their mean.

Case b: If the input measurements are considered, n, ke and kc are modelled by random vari-
ables, but ke and kc are not updated (i.e. always accepted in Algorithm 3.2. If not, n,
Sr , ke, kc and CaO are considered as random variables yet only n and Sr are updated
Algorithm 3.1.

The measurement/model error standard deviation ε is modelled by a uniform random
variable between 0 and 1.6. In all cases, the MCMC algorithm is used with a burning period
of 5,000 points and a thinning of 5 (see Figure 3.1) in order to get 2,000 experiments of the
posterior distribution.

3.3.3.3 Results and analysis

3.3.3.3.1 Case a

Case a-1 The posterior distributions shown in Figure 3.5 have converged towards un-
imodal distributions. The concrete porosity mean is around 18%, which is different from
the porosity predicted by Eq. (3.26) which gives a porosity of 14.6%.
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Figure 3.5 – Prior and posterior distributions of the updated random variable in the Case a-1.
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Figure 3.6 – Prior and posterior degradation predictions in the Case a-1.
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The analysis of the predictions shown in Figure 3.6 demonstrates the usefulness of the
Bayesian updating. The prediction mean which was quite underestimating the real degrad-
ation evolution is corrected, and the confidence interval around this mean is reduced at the
same time.

Case a-2 However, if only the updates of the saturation rate and the porosity are con-
sidered (see Figure 3.5), although the confidence interval of the updated prediction in Fig-
ure 3.7 contains most of the observed carbonation depth, the mean is below all of them. At
35 years it is equal to 1.5cm while the lowest carbonation depth equal 1.7cm, the observed
mean being near 2cm (i.e. a plausible value for the concrete cover). Such prediction could
thus lead to a false conclusion concerning the reinforcement depassivation.
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Figure 3.7 – Prior and posterior degradation predictions in the Case a-2.

Case 3 When the measures of the saturation rate and the concrete porosity are not
considered, the posterior distribution of the saturation performed through the degradation
model shown in Figure 3.8 is similar with the posterior obtained with direct measurements
(see Figure 3.5). The posterior distribution of n is however slightly different, yet as already
mentioned the porosity predicted by the empirical formulation in Eq. (3.26) is lower than
the observed one.

Finally, the updated degradation predictions in Figure 3.9 appear quite similar compared
to Figure 3.6 which indicates that the most useful measurements are the measurements of
the output itself in this case.
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Figure 3.8 – Prior and posterior distributions of the updated random variable in the Case a-3.
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Figure 3.9 – Prior and posterior degradation predictions in the Case a-3.
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Figure 3.10 – Prior and posterior distributions of the updated random variable in the Case b-1.

3.3.3.3.2 Case b, cases 1 and 3 When considering ke and kc as random variables, the
posterior PDF of n in Figure 3.10 appears larger than in the case a-1 (see Figure 3.5), so
does the confidence interval of the DuraCrete model predictions shown in Figure 3.11. Yet
compared to the case a-1 in Figure 3.6, the posterior means of the predictions are pretty
similar. In the end, considering ke and kc as random variables only enlarge the confidence
interval (which ios normal considering their Sobol’ indices up to 6 and 9.5 % as it was
expected due to their role in the DuraCrete model.

Regarding Figures 3.12 and 3.13, for the case where only the carbonation depth values
are used to update n and Sr and with Sr , ke, kc and CaO modelled as random variables, the
results of the Bayesian update lead to the same conclusions.

3.3.4 Conclusions

This case study, based on real on-site measurement, basically shows that:

• To improve the predictions of a simple degradation model, the best way is to update
them with observations of the degradation itself. Indeed only updating the material
parameters which are made inputs of the predictive model through the use of several
empirical formulations is not efficient. Yet it is hard to say if this inefficiency is due
to wrong prior distributions chosen, inaccuracy of the degradation model or of the
combined empirical equations;
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Figure 3.11 – Prior and posterior degradation predictions in the Case b-1.
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Figure 3.12 – Prior and posterior distributions of the updated random variable in the Case b-3.
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Figure 3.13 – Prior and posterior degradation predictions in the Case b-3.

• Using both some observed inputs and the output of the degradation model to update
its prediction does not give results different enough compared to the use of the output
alone.

Such conclusions somehow seem logical since all the degradation models (even the finite
element ones) gather some physical (or not) parameters which are impossible to measure.
Measurements of the model output are then necessary to identify these parameters.

In the case of non-destructive testings, it therefore calls for the development of non-
destructive methods able to measure the degradation itself in order to be able to improve
the predictions.

3.4 Conclusions

When dealing with degradation predictions, the situation which often occurs is that the
inputs of the degradation model are known but with large uncertainties. In order to define
an optimal inspection plan, the predictions have to be as accurate as possible. Mixing the
data coming from various sources such as:

• Structure specifications;

• Destructive or non-destructive testings;
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with the prior knowledge available on the predictive model inputs is made possible by the
use of Bayesian statistics.

In a first part this chapter presents the basics on Bayesian statistics in order to calib-
rate/update the knowledge of given parameters through the use of conjugate distributions
or Monte Carlo Markov Chains. The latter is used in the purpose of model calibration based
either on:

• Output measurements of the model;

• Combined measurements of some inputs and the output of the model, considering the
possible measurements error made on the inputs.

Despite the appealing properties of the Bayesian statistics, the second part the chapter
discusses on their possible application in case of concrete structures. A case study which
uses on-site measurements demonstrates that the most important data to obtain in order to
efficiently update the degradation predictions are measurements of the degradation itself.
Unfortunately non-destructive techniques are not yet able to measure the considered de-
gradation (carbonation depth or chloride ingress). This thesis being dedicated to the use of
NDT’s to perform an inspection, the Bayesian statistics cannot be wisely used in the scope
of this manuscript. Fortunately, the assessment of carbonation depth and chloride ingress
profiles is an on-going subject of research with promising perspectives.

The next chapter is dedicated to the optimisation of the inspection plan in order to
answer to the last objectives of this thesis: When and how shall the structure be inspected ?



CHAPTER 4
OPTIMISATION OF THE INSPECTION

PLAN

4.1 Introduction

Chapter 1 has presented the basics of the stakeholders’ concerns for the management of
their structures. It has resulted in the overall question: Where, when and how should the
structure be inspected ? That is the focus of risk based inspection that links an action with
its cost and allows to formulate an optimisation problem (Rouhan and Schoefs (2003);
Straub and Faber (2005)). The answer shall be given by an optimisation methodology as
simple as possible with an affordable computational cost, independent of the structure and
its degradation process, the inspection techniques, the maintenance and the failure modes.

In order for the optimisation problem to keep an affordable computational cost, the
inspection locations may not take part in any optimisation problem. Indeed, it would lead
to an infinite set of solutions. The purpose of Chapter 2 was thus to propose a modelling
based either on an adaptive design of experiments or a low-discrepancy sequence in order
to position the minimum inspection points needed to ensure a good approximate of the
structure degradation state.

When and How, these terms have not been answered yet even if Chapter 2 briefly demon-
strates their impact. The ambition of the present chapter is consequently to determine which
is the best time interval between two inspections and which are the inspection methods to
be used at each inspection.

The present chapter is thus decomposed in two parts. The first one presents the basics on
the genetic algorithms, especially the non-dominated sorting genetic algorithm (NSGA-II),
since their abilities to deal with discrete variables (i.e. the inspection dates, the capability
of the inspection methods) with multiple objectives answer completely the optimisation
problem of this manuscript. The second section is dedicated to the formalisation of this
optimisation problem and to the application of the overall optimisation methodology on the
two silver threaded examples.
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4.2 Genetic algorithms

4.2.1 Description

Genetic algorithms (GAs), as the name suggests, were originally designed in order to simulate
the evolution of natural ecological systems driven by genetic modifications (Fraser (1957);
Holland (1975)). Basically any living being possesses a mix of the genetic patrimony of its
parents. Throughout multiple generations, mutations may occur in this patrimony which
will be persistent (i.e. the individual will survive) if the mutations help the concerned species
to adapt itself to its environment, the so-called natural selection illustrated in Figure 4.1.

Figure 4.1 – Illustration of the natural selection. Credits: radio canada, sedna IV project.

Concerning the use of GA to find the optimal solution of a search problem like the one
given in Eq. (1.34), the optimisation variables {x0, · · · , x i} are encoded into strings of al-
phabets with a given cardinality. Each string is a candidate solution for the optimisation
problem, so-called chromosome, i.e. a combination of candidate values for each optimisa-
tion variables (Forrest (1993)). Each alphabet, or optimisation variable, is referred to as
gene with their value being called allele. Any set of chromosomes is called a population.

In order to determine an order in a population, each chromosome is associated with
the so-called fitness value, which would be for instance the objective function value for this
candidate solution in the case of a mono-objective optimisation.

According to the natural evolution of ecological systems, the first set of candidate solu-
tions results into new candidate solutions, i.e. a new population, through the process of
evolution:
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• Selection of candidates through the population;

• Recombination of the candidates;

• Mutation of the candidates;

• Replacement of the population.

Each step is lightly described in the following sections.

4.2.1.1 Main steps

4.2.1.1.1 Selection The basic idea behind the selection step is to define which chromo-
somes among the population are going to be used in order to create an offspring which will
be used to define a new population of candidate solutions. The selection methods could be
separated into two classes:

• Fitness-dependant methods;

• Ordinal methods.

One of the most famous fitness-dependant methods is the so-called roulette-wheel
method (Goldberg (1989)). A probability is attributed to each candidate proportionally
to its fitness contribution with respect to the fitness of the population (i.e. the sum of each
individual fitness) such as

P [S = c] =
fc

∑

i∈C

fi

, (4.1)

C being the set of chromosomes (i.e. the population), fi, i ∈ C the fitness of chromosome
i and S the selected candidate.

Candidates are selected with respect to these probabilities until the desired number of
candidates is reached. Let us highlight that this selection process may select the same chro-
mosomes multiple times, thus creating copies of them into the maiden pool.

Among the ordinal methods, first we could cite the tournament selection described in
Goldberg (1989) which consists in selecting the best chromosome in a randomly created
subset of the population. As in the previous method, the tournament is to be run until
the desired number of candidates is reached, with or without replacement of the subsets
which would again create copies into the maiden pool. Another famous ordinal method
is the truncation selection introduced by Mühlenbein and Schlierkamp-Vooser (1993). The
population is simply ordered by descending chromosome fitness and truncated up to the
number of desired candidates.
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4.2.1.1.2 Cross-over Recombination, or cross-over, as the name suggests combines chro-
mosomes of the maiden pool called the parents in order to create offspring chromosomes
with hopefully better fitness.

Figure 4.2 illustrates one of the numerous available methods to recombinate two chro-
mosomes, the k-point cross-over method. Basically, k cross-over points are randomly located
and the alleles of the chromosome between two points are swapped.

(a) One point recombination.

(b) Two points recombination.

Figure 4.2 – Illustration of k-point cross-over method.

Many methods could be cited, such as the uniform crossover which randomly swaps each
allele. The interested reader is referred to Goldberg (1989) for more details.

As illustrated through Figure 4.2(b), unfortunately such recombination methods could
result in no change. Moreover if the two parent chromosomes are identical, the cross-
over may never give new chromosomes, thus the population would not evolve anymore.
Mutation is applied to circumvent this issue.

4.2.1.1.3 Mutation Similarly to natural systems, the introduction of diversity into a pop-
ulation is the result of genetic mutations. They are usually performed after the cross-over
step in GAs, with a low probability. The most simple mutation is the bit-flip mutation which
consists in reverting a binary allele (i.e. from 0 to 1 or the opposite).

4.2.1.1.4 Replacement Once an offspring of new chromosomes has been created, they
are to be used in order to form the new population. Two basic strategies of replacement
are:
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• Replace the parent population by the offspring;

• Replace some chromosomes of the parent population by some of the offspring. The
number of replacement as well as the choice of the chromosomes replaced are para-
meters to be chosen.

More advanced replacement strategies have been derived in order to ensure that the
best points of the population and the offspring are selected, such as the NSGA-II algorithm
presented below.

4.2.2 NSGA-II

Proposed by Deb et al. (2000), the Non-dominated Sorting Genetic Algorithm (NSGA-II) is
a genetic algorithm following the global steps presented in Section 4.2.1.1 where selection,
cross-over and mutation methods are not prescribed. The NSGA-II specificity relies on the
replacement step.

4.2.2.1 Non-dominated selection

The first step of the replacement is the detection of the non-dominated individuals con-
sidering both the maiden pool generated by the selection and the offspring resulting from
recombination and mutation. Given a number of objectives to optimise nob j and the set of
chromosomes (i.e. the population and the offspring) C , any candidate solution p ∈ C is
dominating any other candidate solution q ∈ C , i.e. p ≺ q, if it follows:

p ≺ q

if
§

fi(p) ≤ fi(q) , i = 1, . . . , nob j

∃ fi(p) < fi(q) p, q ∈ C , p 6= q
(4.2)

Finding all the non-dominated chromosomes results in a first front, which is namely the
Pareto front. These candidates are removed from C , all the new non-dominated solutions
detected are gathered in a second front, and this process is repeated until every front has
been identified.

Figure 4.3 presents an example with two objectives functions f1(x) and f2(x) with the
first three fronts identified. By using the initial population and the resulting offspring to
detect the best solutions, it clearly appears that if any parent chromosome has resulted in a
worse child, the latter will at least not be selected without its parent. It thus ensures that the
replacement will not result in a new population worse than the previous one. This property
in GAs is called elitism and has been proved to increase the GAs efficiency (Rudolph (1999);
Zitzler et al. (2000)).
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Figure 4.3 – Illustration of the three first non-dominated fronts identified

4.2.2.2 Replacement

The new population is then filled by the candidates in the successive fronts.

Considering a front construction, each candidate in a given front is equivalently efficient.
If a front cannot be fully included in the new population (i.e. the population size would
become too large), in order to select which candidates of this front are to be included in
the new population another criterion has been introduced by Deb et al. (2000) called the
crowding distance. The crowding distance is defined as the average side-length of the largest
cuboid wrapping a candidate without including any other chromosome. An example of such
cuboid is given for the third non-dominated front in Figure 4.3.

Consequently, if candidates of the same front have to be selected the NSGA-II will select
the points associated with the greatest crowding distance (i.e. the more isolated ones) in
an attempt to increase the space exploration.

4.2.3 Conclusion

This section has seen the presentation of the general framework for genetic algorithms.
Among them, the NSGA-II has been chosen mainly due to its elitist property and space-search
filling attempts. The following section is dedicated to the definition of the optimisation
problem which points out the need of a genetic algorithm.
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4.3 Optimisation problem

4.3.1 Definitions

Referring to Chapter 1, the general form of an optimisation problem reads

min
x0,··· ,x i

¦

f (0)ob j , · · · , f ( j)ob j

©

such that
�

c(0) ≥ c(0)t , · · · , c(k) ≥ c(k)t

	

, (1.34)

where {x0, · · · , x i} are the optimisation variables, for instance inspection (or mainten-
ance) time and quality;

¦

f (0)ob j , · · · , f ( j)ob j

©

are the objective functions which are to be minimised
(or maximised), such as the long-term total cost Ctot or the redundancy level of a system;
lastly

�

c(0) ≥ c(0)t , · · · , c(k) ≥ c(k)t

	

are the different constraints that have to be fulfilled.

4.3.2 Objective functions

As mentioned in Chapter 1, the objective of this thesis is to propose a methodology to minim-
ise the exploitation cost of reinforced concrete structures. This cost generally writes (Fran-
gopol et al. (1997); Sheils et al. (2010a))

C tot = C In + C Ma + C F , (4.3)

with C In, C Ma and C F are the inspection, maintenance and failure costs respectively. In a
probabilistic framework, each cost C• is substituted by its mathematical expectation E [C•].

4.3.2.1 Cost functions

Given:

• the IMRM represented in Figure 2.10 with m branches, each one having a probability
Pi to be realised ;

• the time horizon t l im discretised into t tot time steps;

• the inspection dates tIn;

• a discount rate r;

General models for the inspection, maintenance and failure expected costs respectively
write

E
�

C In
�

=
m
∑

i=1

Pi

∑

t∈tIn

nI
(i,t)CIn

(t)

(1+ r)t
, (4.4)
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E
�

C Ma
�

= CMa

m
∑

i=1

Pi

∑

t∈tIn

1Ma
i,t

(1+ r)t+tMa
, (4.5)

E
�

C F
�

= CF

m
∑

i=1

Pi

∑

t∈tIn

1F
i,t

(1+ r)t+tR
, (4.6)

where:

• nt
I is the number of points inspected at time t in the branch i;

• 1Ma
i,t (or 1F

i,t) are equal to 1 if a maintenance (or repair) action is decided on branch i
at time t, 0 otherwise;

• tMa and tR are respectively the maintenance and repair delays, which could be due to
financial or technical consideration;

These are generic formulations based on the decision tree. They do not make any as-
sumption on the costs of an inspection, a maintenance and a failure written respectively as
CIn, CMa and CF . For instance, the inspection cost could be dependant on the installation
cost, the post-treatment cost, the inspection technique, etc... The failure cost could include
direct and indirect costs such as the repair cost and the impact of a loss of reputation due
to the failure.

4.3.2.2 Mono-objective optimisation

The objective could basically be to minimise the exploitation cost alone. The optimisation
problem is therefore defined as follows.

Assuming that:

• The time between two inspections shall be constant in order to best represent the
stakeholders habits;

• Only one inspection technique may be used at an inspection date;

And given:


















































The inspection types TIn = [0, 1,2, · · · , nT ]
The corresponding inspection costs CIn = [C (0)In , C (1)In , · · · , C (nT )

In ]
The time horizon t l im

The discount rate r
The maintenance delay tMa

The repair delay tR

The preventive degradation index DP

The curative degradation index DF

The IMRM

(4.7)
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The optimisation problem is to find:

�

The time between two inspections ∆t In (4.8)

In order to minimise the total expected cost E [(Ctot)], under given constraints, where

• i ∈ TIn means inspection i with cost C (i)In is performed;

• PlIn
(i) is the inspection method used for the i − th inspection.

4.3.3 Multi-objective optimisation

Any objective could be added to the minimisation of the exploitation cost. Considering the
IMRM which provides confidence interval for its outputs related to the inspection errors (see
Section 2.4.2.2), we shall consider the confidence interval of the expected exploitation cost
as an objective to be minimised.

4.3.3.1 Pareto front

Intuitively, an accurate inspection is likely to be more expensive than an inaccurate one.
Thus by reducing the confidence interval of the expected cost (i.e. using an accurate in-
spection technique) the expected cost will increase.

These two objectives are therefore called competing objectives. In this context, no global
solution exists but only a set of optimal solutions, the so-called Pareto front, all of them
being a compromise between the two competing objectives.

The Pareto front is mathematically composed by all the solutions which are not domin-
ated (see Eq. (4.2)), in other words the Pareto front is the first front derived by the NSGA-II
algorithm, as illustrated in Figure 4.3.

With this set of optimal solutions, the question is: Which solution is to be preferred ?
Here comes the so-called multi-criteria methodology which consists in the selection among
these solutions the one which best answers to quantitative or qualitative criterion of the
stakeholder. It could be for instance the solution which:

• Minimises the highest probability of failure encountered during the life-cycle;

• Minimises the risk of exceeding an annual budget;

• Leads to the smaller number of inspections.

4.3.3.2 Problem definition

In this multi-objective context, the optimisation problem is thus defined as follows.

Assuming that:
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• The time between two inspections shall be constant in order to best represent the
stakeholders habits;

• Only one inspection technique may be used at an inspection date;

And given:



















































The inspection types TIn = [0, 1,2, · · · , nT ]
The corresponding inspection costs CIn = [C (0)In , C (1)In , · · · , C (nT )

In ]
The time horizon t l im

The discount rate r
The maintenance delay tMa

The repair delay tR

The preventive degradation index DP

The curative degradation index DF

The IMRM

(4.9)

The optimisation problem is to find:

�

The time between two inspections ∆t In

The inspection plan Pl In =
�

TIn
(0), . . . , TIn

(t l im/∆t In)
� (4.10)

In order to minimise the total expected cost E [(Ctot)] and its confidence interval
C I (E [(Ctot)]) under given constraints, where

• i ∈ TIn means inspection i with cost C (i)In is performed;

• PlIn
(i) is the inspection method used for the i − th inspection.

The final solution is selected among the Pareto front by considering the given criteria.

4.4 Study case

4.4.1 Presentation of the study case

Based on the degradation modelling of the balconies proposed in Section 2.5, the present
illustration thus makes use of the IMRM (i.e. the decision tree shown in Figure 2.10) and
the ADoE in order to optimise the inspection plan of the balconies. Prior to the optimisation
the different cost functions mentioned in Section 4.3.2.1 are introduced in the following.
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4.4.1.1 Inspection costs

The inspection cost CIn (see Eq. (4.4)) is composed of the unit cost for each inspection
method used in the inspection plan. This illustration considers that inspections are per-
formed by non-destructive testing, according to the methodology described in Garnier et al.
(2014).

For the sake of completeness, the basic idea is to combine the results of different non-
destructive techniques (NDT’s) which are sensitive to the quantity of interest one wants to
measure. According to the results of the research project EVADEOS funded by the French
National Research Agency, the chosen combination uses 4 NDT’s: impact echo, capacity,
ultrasounds and radar. Including, per point:

• The cost of a qualified technician;

• The cost of a qualified engineer;

• The cost of the material (including amortisation);

• The cost of the measure (i.e. multiple points are performed to get one measure);

• The transport cost of the needed material;

• The rental cost of an aerial lift;

the cost of this combination has been estimated around 400 euros per point. It indeed seems
high, yet one has to remind that such combinations are not yet industrialised and we could
thus expect this cost to decrease in the future.

Unfortunately, this combination only helps to measure both the concrete porosity and
saturation rate. No combination able to measure a carbonation depth actually exists.
Moreover the knowledge on the accuracy of such combination is leaking.

This illustration thus extrapolates on the future developments which are on-going and
proposes three different levels of costs and accuracy for the inspection methods, presented
in Table 4.1.

Inspection Technique 0 1 2
Cost per point (euro) 500 300 100

Coefficient of variation 5% 10% 25%

Table 4.1 – Inspection costs and accuracy for each technique.

4.4.1.2 Maintenance costs

Bastidas-Arteaga et al. (2010) proposed a summary of different maintenance technique costs
for RC concrete structures. The solution retained in this illustration is to replace the concrete
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cover with wet shotcrete (projected concrete). The costs associated with such technique are
gathered in Table 4.2.

Item Cost (Euro / m3)
Hydrodemolition 1500

Waste management 172
Materials 1309

Labor 685
Equipments 183

Table 4.2 – Maintenance costs

A balcony is assumed to be 3 metres long, 1.2 metres wide and 6 centimetres high (twice
the concrete cover thickness then). It leads to a rounded cost of 800 euros for maintaining
a balcony.

Local maintenance actions are not considered due to the actual ignorance of any positive
effect of such maintenance technique. Indeed creating a composite material has a known
worsening effect on the corrosion initiation and corrosion rate since it creates difference of
potentials.

4.4.1.3 Failure costs

Finally, the failure implies that corrosion may have occurred. In this case the reinforcement
is to be exchanged. Bastidas-Arteaga and Schoefs (2012) for instance proposed to use a
factor 2 between the maintenance costs and the repair costs (which also implies the re-
placement of the concrete cover). Following this idea, the failure of a balcony is expected
to cost 1,600 euros.

4.4.1.4 Summary

Table 4.3 presents a summary of the different costs introduced above. As a reminder, for
the three cases considered, all of them with a time horizon of 60 years:

• One and bi-dimensional cases: 12 balconies are inspected at the same time, repair or
maintenance actions are applied to 120 balconies simultaneously;

• System bi-dimensional cases: 12 balconies are inspected at the same time, repair or
maintenance actions may be applied to multiple buildings, each of them composed of
120 balconies.

The discount rate r is set to 0, according to the inflation perspectives in force at the
writing time of the present manuscript.

All the thresholds and delays are given in Section 2.5. Last but not least, the mainten-
ance/repair delay is set equal to 3 years. It includes:
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• 2 years to raise funds and select the company;

• 1 year to perform the maintenance/repair action.

The maximum number of inspected point depends on the inspection technique. The
budget allowed for an inspection is set to 6,000 euros per balcony, with a minimum delay
between two inspections equal to 10 years: that was suggested by the stakeholders to pre-
serve the life quality of inhabitants and due to the expectation of inhabitants turn over in
the apartments.

Item Cost (Euro)
Inspection type 0 500 (per point and balcony)
Inspection type 1 300 (per point and balcony)
Inspection type 2 100 (per point and balcony)

Maintenance action 800 (per balcony)
Repair action 1600 (per balcony)

Table 4.3 – Summary of the different costs

4.4.2 One-dimensional problem

4.4.2.1 Mono-objective optimisation

The first approach used is a mono-objective optimisation. According to the problem defin-
ition in Section 4.3.2.2, the optimisation variable is the time step between two inspections
∆t In.

Considering that the inspection method 1 (see Table 4.1) is used, the predicted inspec-
tion, maintenance and failure costs for ∆t In ranging from 10 to 60 years are shown in Fig-
ure 4.4 and Figure 4.5. The first considers that unnecessary inspections are performed, not
the latter. The main difference between these two cases is the inspection costs for∆t In ≤ 20
years. An inspection interval of 10, 15 of 30 years may be chosen thanks to this. In the fol-
lowing, this manuscript thus only considers that unnecessary inspections can be avoided.

In both cases, the first point to highlight is the presence of several local solutions, in-
cluding at 15 and 30 years for instance, due to the change of the number of inspections
performed with a given lifetime (∆t In = 29 years gives two inspections, with 30 years only
one). Together with the use of discrete optimisation variables, these aspects give credits to
the use of genetic-algorithms which are less sensitive to local solutions than gradient-based
methods.
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Figure 4.4 – Optimisation of the total expected cost without avoiding useless inspections. The red
dot corresponds to the solution found by the NSGA-II algorithm.

The global solution in both cases is found by the NSGA algorithm. The optimal ∆t In is
equal to the time horizon: no inspection shall be performed. Indeed, regarding the IMRM
in Figure 2.10 and considering the degradation process which does not lead to the limit
state of service, no maintenance or repair action can be performed without an inspection.
Thus the optimum cost is obtained with no inspection being performed. Let define the time
during which there is more than 50% of chances that the balcony is in the failure state as
the time spent in the failure state t f .

On the right panels of Figures 4.4 and 4.5 the expectation of the time spent by a balcony
in the failure state E

�

t f

�

clearly indicates that with no inspection, the reinforcement is
expected to be depassivated during 23 years. Obviously such situation is unacceptable and
calls for either a constrained optimisation problem or a multi-objective one. The last solution
has been chosen in this manuscript since it also aims at optimising a second objective (i.e.
the confidence interval of the total cost expectation) according to the problem defined in
Section 4.3.3. A third objective is thus added: minimising the expectation of the time spent
in the failure state E

�

t f

�

. This is the purpose of the following section.
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Figure 4.5 – Optimisation of the total expected cost with useless inspections being avoided. The red
dot corresponds to the solution found by the NSGA-II algorithm.

4.4.2.2 Multi-objective optimisation

Basically, the problem with multi-objective optimisation comes with competing objective
functions which lead to a Pareto front of optimal solutions. The present optimisation prob-
lem deals with 3 objectives:

• The expected total cost, competing with its confidence interval since an increase of
the latter implies the use of a cheaper inspection method;

• The expected time spent in the failure state, not competing with any objective as
shown through Figures 4.4 and 4.5. A focus is made on several points to point out the
corresponding values of the optimisation variables defined in Eq. (4.10), i.e. the time
interval between two inspections ∆t i In and the vector gathering the method used at
each inspection Pl In.

Figure 4.6 presents the Pareto front obtained after 10 generations of 50 chromosomes,
projected on the plan shaped by E [Ctot] and its confidence interval C I (E [Ctot]). Figure 4.7
and Figure 4.8 present the Pareto front projected on the two other plans formed by the
objective functions, E [Ctot] and E

�

t f

�

for the first,C I (E [Ctot]) and E
�

t f

�

for the latter.

It clearly appears that the minimisation of E
�

t f

�

is not competing with the other two
objectives.
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Figure 4.6 – Pareto front projected on the plan made by the expected total cost and its confidence
interval.
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Figure 4.7 – Pareto front projected on the plan made by the expected total cost and the expected
total time spent in the failure state.
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Figure 4.8 – Pareto front projected on the plan made by the confidence interval of the expected total
cost and the expected total time spent in the failure state.

Indeed the problem with such set of solutions is to select one of them. For this purpose,
a first criterion is applied: an expected time spent in the failure state higher than 1 year is
unacceptable. Figure 4.9 presents the candidate solutions extracted from the Pareto front
according to this criterion. Basically from this reduced number of solutions, three points
are extracted.

4.4.2.2.1 First candidate solution An inspection plan with a time interval between two
inspections ∆t In equals to 31 years (i.e. one inspection during the lifetime of the building),
where the inspection number 2 is used (see Table 4.1). This solution presents the lowest
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Figure 4.9 – Pareto front projected on the plan made by the expected total cost and its confidence
interval, without the solutions giving an expected total time spent in the failure state
higher than one year.
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E [Ctot], 100,000 euros, but one of the largest confidence intervals (due to the inspection
method) equal to [20, 000;150, 470] euros.

n° µMa [C I−; C I+]Ma µF [C I−; C I+]F
0 0.04 [0.81; 0.61] 0.97 [1; 0.38]
1 0.96 [0.19; 0.38] 0.03 [0; 0.62]

Table 4.4 – Mean and confidence interval of the number of maintenances and repairs with an in-
spection interval of 31 years.
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Figure 4.10 – Probabilistic distributions for the number of maintenances, repairs and inspections
with an inspection interval of 31 years.

Figure 4.10 illustrates the corresponding probabilistic distributions of the number of
maintenances, inspections and repairs. With this candidate solution, the unique inspec-
tion is not judged as useless and it seems nearly certain that one maintenance action will
be performed. However due to the use of the less accurate inspection method, there ex-
ists a significant probability (with respect to the 95% confidence interval of the inspection
method) that a repair action may be decided instead of a maintenance one as written in
Table 4.4. On one hand, overestimating the degradation process may lead to a repair with
a probability of 62%. On the other hand an underestimation may result in neither repair
nor maintenance during the time horizon.

4.4.2.2.2 Second candidate solution An inspection plan with ∆t In = 10 years leads
to 5 inspections respectively performed with inspection techniques 1, 2, 2, 0 and 0 (see
Table 4.1). The expectation of the total costs is the highest of the three selected points
(138,000 euros) yet the width of its confidence interval equal to 1900 euros is the lowest
of the Pareto front. However, as mentioned in Section 2.4.2.2, the term confidence interval
may not be really fitted in this case. The lower bound is up to 183,000 euros, the higher
bound to 185,000 euros. Indeed these are not any more bounds for the expected total cost.
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Figure 4.11 shows that the mean tendency (i.e. with perfect inspections) results in a
pretty high probability of maintenance with 3 inspections really needed instead of 5.

n° µMa [C I−; C I+]Ma µF [C I−; C I+]F
0 0.03 [0.39; 0.36] 0.97 [0.61;0.63]
1 0.95 [0.61; 0.41] 0.03 [0.39;0.37]
2 0.02

�

10−5; 0.23
�

0 [0;0]
3 0 [0; 0] 0 [0;0]
4 0 [0; 0] 0 [0;0]
5 0 [0; 0] 0 [0;0]

Table 4.5 – Mean and confidence interval of the number of maintenances and repairs with an in-
spection interval of 10 years.

0 1 2 3 4 5
Number

0.2

0.4

0.6

0.8

1.0

µ

Inspection
Maintenance
Failure

Figure 4.11 – Probabilistic distributions for the number of maintenances, repairs and inspections
with an inspection interval of 10 years.

Table 4.5 illustrates the phenomenon. In both cases, underestimating and overestim-
ating the degradation leads to an increase of the probability of repairing, from 3% to re-
spectively 39% and 37%. In one case, a maintenance action is avoided thus leading to a
repair one at the following inspection. In the other case, instead of a maintenance action,
the overestimate leads to a repair decision.

4.4.2.2.3 Third candidate solution An inspection plan with ∆t In = 16 years which
leads to 3 inspections, the firsts two performed with inspections number 2, the last one with
inspection number 1 (see Table 4.1). E [Ctot] is equal to 108,000 euros, and C I (E [Ctot]) to
7,179 euros. Again, the expected total cost is outside of the bounds ranging from 164,832
euros to 172.011 euros. The confidence bounds of the inspection results once more lead
to an increase of the failure probability, as shown in Table 4.6. Like the second candidate
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solution, the mean prediction illustrated in Figure 4.12 leads to a significant probability of
one maintenance action being performed during the time horizon of 60 years.

n° µMa [C I−; C I+]Ma µF [C I−; C I+]F
0 0.07 [0.58; 0.72] 0.93 [0.42;0.28]
1 0.93 [0.42; 0.27] 0.07 [0.58;0.72]
2 0 [0; 0] 0 [0;0]
3 0 [0; 0] 0 [0;0]

Table 4.6 – Mean and confidence interval of the number of maintenances and repairs with an in-
spection interval of 16 years.
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Figure 4.12 – Probabilistic distributions for the number of maintenances, repairs and inspections
with an inspection interval of 16 years.

4.4.2.3 Multi-objective optimisation with a supplementary criterion

Consequently to the precedent results, another criterion is to be applied on the Pareto front.
In order to avoid really bad measurement error effects which could lead to an increase of the
failure probability, the Pareto front presented in Figure 4.13 is now reduced by two criteria:

�

E
�

t f

�

≤ 1 year
E [Ctot] ∈

�

C I (E [Ctot])
− ; C I (E [Ctot])

+� (4.11)

where C I (E [Ctot])
−, resp. C I (E [Ctot])

+, is the bound of E [Ctot] resulting from the com-
plete underestimation, resp. overestimation, of the true degradation approximated by the
inspections.

Mainly candidate solutions with both a low expected total cost and confidence interval
were removed. From this front, the best points for each objective are selected. The first one
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Figure 4.13 – Pareto front projected on the plan made by the expected total cost and its confidence
interval, without the solutions giving an expected total time spent in the failure state
higher than one year and an expected total cost outside of the bounds formed by its
confidence interval.
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was already studied in Section 4.4.2.2.1. The second one has an inspection interval of 12
years.

The corresponding probabilistic distributions for the number of maintenances, repairs
and inspections are shown Figure 4.14. Consequently to the use of a second criterion, this
inspection plan worsens false estimates of the degradation process due to inspection errors
lead to a decrease of the probability for the number of repairs from 18% to 13% and 9%
(see Table 4.7).

n° µMa [C I−; C I+]Ma µF [C I−; C I+]F
0 0.18 [0.13; 0.09] 0.82 [0.87;0.91]
1 0.77 [0.87; 0.67] 0.18 [0.13;0.09]
2 0.05 [0;0.24] 0 [0;0]
3 0 [0; 0] 0.03 [0;0]
4 0 [0; 0] 0.03 [0;0]

Table 4.7 – Mean and confidence interval of the number of maintenances and repairs with an in-
spection interval of 12 years.
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Figure 4.14 – Probabilistic distributions for the number of maintenances, repairs and inspections
with an inspection interval of 12 years.

This plan predicts that only 2 inspections (with a probability equal to 0.9997) will be
useful:

• The first inspection has 100% of chances to be useless;

• The third inspection has 65% of chances to be performed;

• The last inspection has 65% of chances to be useless.
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n° ∆t In (year) E [Ctot] (€) C I (E [Ctot]) (€) µt f
(year) σt f

(year)
1 31 100,089 130, 0195 [20, 275;150, 470] 0.78 4
2 12 147,519 4,568 [143,893; 148,461] 5× 10−3 0.32.

Table 4.8 – Summary of the two selected inspection plans

4.4.2.3.1 Synthesis Table 4.8 summarises the results obtained for the two selected can-
didate inspection plans. Considering that:

• The second inspection plan leads to a first inspection performed at 24 years, thus
reducing the possible error due to a bias of the predictive degradation model;

• The first inspection due to the inspection method used (the less accurate) could lead
to a highest expected total cost of both plans;

• The second inspection plan predicts an expected time spent in the failure state pretty
small with less than 4 months of standard deviation, instead of the 4 years of standard
deviation predicted by the first plan;

If the expected total cost of the second plan fits within the stakeholders budget con-
straints, this inspection plan would be recommended.

4.4.3 Two-dimensional problem

Using the same criteria as for the one-dimensional problem, the resulting Pareto front is
given Figure 4.15. The total expected cost of each candidate solution tends to be higher
than the average obtained in the one-dimensional case (150,000 euros against 120,000
euros). Since the two-dimensional model presents a mean concrete cover depth lower than
the one-dimensional case, failure is easier to achieve thus an increase of E [Ctot] is not
surprising.

Moreover, the two selected points (like all the points of the Pareto front) propose an
inspection interval higher than 30 years. As pointed out in Section 2.5.2.2, the mainten-
ance threshold is on the opposite harder to reach (due to the increase of the reinforcement
length), thus an increase of ∆t In seems logical as well.

Unlike the one-dimensional case, the difference between the two selected points is the
inspection technique used to perform the only inspection predicted at 31 years.

4.4.3.1 First candidate solution

The first candidate solution proposes to use the less accurate method for the inspection and
thus returns the largest confidence interval equal to 165,331 euros, higher than E [Ctot]
which is equal to 155,000.
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Figure 4.15 – Pareto front projected on the plan made by the expected total cost and its confidence
interval, without the solutions giving an expected total time spent in the failure state
higher than one year and an expected total cost outside of the bounds formed by its
confidence interval.
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As seen in Figure 4.16, the perfect inspection predicts 83% of chances that the building
will be maintained at the inspection, against 18% that failure will be observed. The meas-
urement error leads to a confidence interval for the total expected cost between 48,796 and
214,128 euros. In the first case, the degradation is underestimated and since there is only
one inspection through the lifetime of the structure with this plan, Table 4.9 shows that
there is a probability of 85% that nothing will be done to the building. On the opposite,
overestimating nearly ensure (with a probability of 87%, see Table 4.9) that a repair action
will be performed instead of the needed maintenance action.

n° µMa [C I−; C I+]Ma µF [C I−; C I+]F
0 0.16 [0.85; 0.87] 0.84 [1; 0.13]
1 0.84 [0.15; 0.13] 0.16 [0; 0.87]

Table 4.9 – Mean and confidence interval of the number of maintenances and repairs with an in-
spection interval of 31 years resulting in one inspection performed with the inspection
technique 2.
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Figure 4.16 – Probabilistic distributions for the number of maintenances, repairs and inspections
with an inspection interval of 31 years resulting in one inspection performed with the
inspection technique 2.

4.4.3.2 Second candidate solution

The second candidate solution uses the most accurate inspection technique. In this
case the expected total cost reaches 210,000 euros and is included within the interval
[199, 411;226, 608] euros. The mean tendency is equivalent with the first inspection plan.
In fact, it should indeed be the same. Yet the ADoE being dependent on the inspection
cost (through the maximum number of inspected points), the resulting approximate may
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be slightly different thus returning equivalent (due to the control of the approximate error)
but not identical.

The major difference comes with the confidence intervals. From Table 4.10, with this
technique the probability of repairing is increased by only 17% if the degradation is re-
peatedly overestimated. The probability of maintaining is higher in case of underestimation,
from 85% to 93% which means that such measurement errors are more likely to lead from a
repair decision to a maintenance one and not from a maintenance decision to nothing being
done.

n° µMa [C I−; C I+]Ma µF [C I−; C I+]F
0 0.15 [0.07; 0.30] 0.87 [0.96;0.70]
1 0.85 [0.93; 0.70] 0.13 [0.04;0.30]

Table 4.10 – Mean and confidence interval of the number of maintenances and repairs with an in-
spection interval of 31 years resulting in one inspection performed with the inspection
technique 0.
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Figure 4.17 – Probabilistic distributions for the number of maintenances, repairs and inspections
with an inspection interval of 31 years resulting in one inspection performed with the
inspection technique 0.

4.4.3.3 Synthesis

Table 4.11 presents the overall results of the two selected points. Considering the risk that
neither maintenance nor repair action may be decided due to the inaccuracy of the inspec-
tion method, the use of the second inspection plan may be preferred.
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n° ∆t In (year) E [Ctot] (€) C I (E [Ctot]) (€) µt f
(year) σt f

(year)
1 31 155,000 165,331 [48, 796;214, 128] 0.24 2.48
2 31 210,787 27,196 [199, 411;226, 608] 0.22 2.40.

Table 4.11 – Summary of the two selected inspection plans

4.4.4 System approach for the two-dimensional problem

The system approach for the two-dimensional problem adds a constraint on the number of
buildings which can be maintained between two inspections (3 over 12 buildings), with no
constraint on the repair action.

The Pareto front resulting from the optimisation is shown in Figure 4.18, projected on
the plan

�

E
�

t f

�

,E [Ctot]
�

. It unfortunately appears that due to the constraint applied on
the maintenance action no inspection plan leads to a time spent in the failure state lower
than 5 years, which is far from the first criterion applied on the two previous cases.

This criterion is thus modified in the following: no expected time spent in the failure
state higher than 6 years will be accepted. The produced set of candidate solutions is shown
in Figure 4.19.

Basically, the optimisation tends to increase the delay between two inspection ∆t In.
Indeed it tries to minimise both the total expected cost and the time spent in the failure
state. In this context, the optimal solution is not to maintain 3 buildings earlier, and then
repair the 9 buildings left at another inspection, but to wait until all the buildings are to be
repaired, so that they will not go back in the failure state after repair before the end of the
lifetime.

The two candidate solution results shown in Figure 4.20 and Figure 4.21 illustrate this
point, since for both cases the probability of a building to be repaired is around 80%.

From the dispersion shown in Table 4.12 and Table 4.13, it is clear that using the less
accurate inspection technique as the first candidate may lead to repair action performed with
probability one if the degradation is overestimated. On the other side with the most accurate
technique the probability of repairing is only increased by 10%. In case of underestimation,
it may become more problematic since the less accurate technique returns a 0 probability of
repairing and only a probability of 25% that a maintenance action is to be made. Since only
one inspection is to be performed in this inspection plan, a significant probability exists for
the building to stay in the failure state during more than 20 years (see Figure 4.5).

n° µMa [C I−; C I+]Ma µF [C I−; C I+]F
0 0.80 [0.75;1] 0.25 [1;0]
1 0.20 [0.25;0] 0.75 [0;1]

Table 4.12 – Mean and confidence interval of the number of maintenances and repairs with an in-
spection interval of 37 years.
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Figure 4.18 – Pareto front projected on the plan made by the expected total cost and the expected
time spent in the failure state.

n° µMa [C I−; C I+]Ma µF [C I−; C I+]F
0 0.84 [0.76; 0.93] 0.17 [0.38;0.07]
1 0.16 [0.24; 0.07] 0.83 [0.60;0.93]

Table 4.13 – Mean and confidence interval of the number of maintenances and repairs with an in-
spection interval of 38 years.
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Figure 4.19 – Pareto front projected on the plan made by the expected total cost and its confidence
interval, without the solutions giving an expected total time spent in the failure state
higher than six years and an expected total cost outside of the bounds formed by its
confidence interval.
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Figure 4.20 – Probabilistic distributions for the number of maintenances, repairs and inspections
with an inspection interval of 37 years.

4.4.4.1 Synthesis

Table 4.14 summarises the properties of the two selected inspection plans. The second one
may be preferred if the stakeholder can deal with its costs, since the standard deviation of
the mean expected time spent in the failure state is nearly divided by 2 compared to the
first inspection plan.

n° ∆t In (year) E [Ctot] (€) C I (E [Ctot]) (€) µt f
(year) σt f

(year)
1 37 184,420 167,783 [44, 420;212, 204] 5.02 4.62
2 38 227,859 42,749 [196, 679;239, 428] 5.34 2.64

Table 4.14 – Summary of the two selected inspection plans

4.4.5 Conclusion

This illustration has shown the capability of the methodology to optimise an inspection plan
to deal with:

• Various degradation processes (One or bi-dimensional, stationary or not);

• Various assumptions on the management procedure (system or component approach);

independently from the assumptions made on the inspection, maintenance and failure costs.

It proved that genetic algorithms are well suited to this problem since the objective
functions are only piecewise derivable. And the use of a multi-objective approach has been
shown useful to avoid unacceptable solutions such as: don’t know, don’t care.
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Figure 4.21 – Probabilistic distributions for the number of maintenances, repairs and inspections
with an inspection interval of 38 years.

The tools presented in Chapter 2 were used to analyse the probabilistic distributions for
the number of inspections, maintenances and repairs of some candidates extracted from the
Pareto front in order to help the stakeholder to choose between them.

Last but not least, the computational cost for the most complex optimisation (system
approach) is only up to a few hours.
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4.5 Conclusion

This chapter introduces first the basics on genetic algorithms which are used to solve
the optimisation problems defined later on. Revealed by the literature review (see Sec-
tion 1.4.2.1.2), the presented NSGA-II algorithm demonstrates its appealing properties such
as its elitism.

The optimisation problems defined in the second part are composed by:

• A mono-objective definition which aims at minimising the expected total cost;

• A multi-objective definition which aims at minimising both the expected total cost, its
confidence interval and the expected time spent in the failure state.

Generic cost functions for the inspection, maintenance and repair actions based on the
IMRM description are proposed, independently from any modelling.

In order to prove the capability of the optimisation method to find when and how the
structure should be inspected to optimise the objective functions, the illustration presented
in Chapter 2 which models the degradation of balconies is resumed. Several cases are
performed, from a simple one-dimensional model of the degradation with an optimisation at
a building level to a complex two-dimensional non-stationary degradation index at a system
of several buildings level.

The result of such optimisation is a Pareto front with many different solutions. The tools
derived from the decision tree used as a life-cyle model, and proposed in Chapter 2, are
used to analyse the interesting potential solutions. It thus gives valuable indications to the
stakeholder on which plan is the most suitable considering his constraints.

Indeed the obtained results are dependent onh the objective functions introduced in this
manuscript. The different Pareto fronts presented were all pretty scattered which means that
every candidate solutions were leading to different conclusions. It tends to prove the useful-
ness of the proposed objectives since they allow for the choice of many different inspection
strategies with really different impacts.

In the end, this illustration proves that the methodology proposed in this chapter fulfills
the thesis objectives presented in Chapter 1.
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Summary and main contributions

According to Chapter 1, the research performed in this thesis aimed at :

1. Proposing a methodology for the optimisation of inspection plans:

• Not driven by a unique objective to be reached;

• As independent as possible of the different assumptions that could be made to
model inspection, failure and maintenance;

• Able to deal with structures of different sizes, submitted to spatially correlated
degradation process or not;

• Independent from the degradation process and the corresponding degradation
indexes;

• As simple as possible with an affordable computational cost.

2. Allowing the use of any existing data which would be relevant in order to calibrate the
degradation model or to update the inspection plan computed with the methodology
mentioned above.

Predicting the evolution of a degradation index

Chapter 2 dealt with the prediction of a degradation index dependent on a degradation pro-
cess spatially correlated. The inputs of the degradation model may also be non-gaussian,
spatially correlated and correlated between each other. It has been shown that the numerical
simulation of such input data keeps on being an active research field. This manuscript pro-
posed to combine the translation field (i.e. Nataf transformation) together with the quantile
autocorrelation function and the Karhunene-Loeve decomposition in order to obtain such
random fields. HoweveWhr the author acknowledges the method developed by Perrin et al.
(2013) which is more suited to such problems, although much harder to use.
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Based on the resulting degradation predictions, an adaptive design of experiments hand-
ling the spatial variability has been proposed. Despite the first objective of this thesis, this
ADoE is directly related to the degradation index chosen in this thesis, yet it proves that
dealing with spatial variability is affordable if the degradation index is suited to this case.

The degradation predictions also are an input of the IMRM based on a classical decision
tree which also needs models for inspections, failures and maintenance. Since it uses these
models without being dependent on them, this IMRM complies with the first objective of
this thesis. Moreover it also fulfills the second objective since the simple form of a decision
tree allows for the derivation of many valuable criteria which may help the stakeholders to
take a decision.

Updating the predictive model

Chapter 3 aimed at answering to the last objective of the thesis. Bayesian statistics were
found to be the best tool to calibrate or update a degradation model since their inputs
may come from various sources (e.g. direct measurement, structure specifications, expert
judgement, . . . ). The inverse problem has been developed further in order to take into
consideration the model inputs which may also be measured with uncertainties. A case
study built from real measurements has been used in order to discuss the potential of such
approach in the context of ageing RC structures inspected through NDTs. Despite that the
degradation is not measurable by NDTs, the Bayesian approach has shown its potential and
calls for the results of on-going research dealing with NDT measurements of carbonation
and chloride ingress.

Optimisation of the inspection plan

Chapter 4 was the final step of the methodology. It uses the IMRM potentially calibrated
through a Bayesian scheme in order to optimise the exploitation cost and its uncertainties.
It has shown that considering one or several buildings with different modelling does not
impact the capability of the overall methodology to handle different assumptions. The solu-
tion of a multi-objective optimisation being a set of potential candidates, i.e. a Pareto front,
many possible solution that could be chosen. The approach used in this manuscript, neither
new nor usual, makes use of the indicators derived from the IMRM in order to help the
stakeholder to select which candidate fulfils its own and potentially subjective criteria. The
methodology thus completes the answer given to the first objective of the thesis.

Future work

The proposed optimisation methodology has been applied on a numerical case (though its
inputs are at least inspired from reality) yet in order to fully validate it an industrial applica-
tion would be appealing. However from the proposed application several perspectives have
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been drawn.

Predicting the evolution of a degradation index

The degradation index considered in this manuscript is linked with the degradation con-
sidered: the carbonation process. Using other degradation indexes dedicated to other de-
gradation processes (e.g. concrete cracking, steel fatigue) may lead to a need of updating
the proposed adaptive design of experiments. Indeed, this ADoE was developed in order
to improve the estimate of a probability of maintenance/failure directly related to the in-
terpolation quality of the degradation trajectories. It would not be suited to the case of
maintenance actions being decided upon localised degradation (e.g. critical crack on a
steel structure).

Optimisation of the inspection plan

The last part of the methodology uses the stakeholder constraints which may be diversified.
A simple approach for the management of several structures has been illustrated. It has been
shown that dealing with a constraint on the number of maintenance needs the simulation of
the decision tree in order to account for interactions. Through these simulations much more
complex constraints may be modelled (e.g. choosing between the structures to be repaired
in agreement with a budget constraint).

The IMRM was used to optimise when and how the structure is to be inspected. Another
perspective is to include more accurate models of maintenance and repair actions (e.g. dif-
ferent repair methods, localised maintenance action), information on the construction and
the deconstruction costs. The IMRM would thus become a so-called life-cycle model.
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Abstract

The development of modern societies has seen the construction of several structures and
infrastructures built in reinforced concrete. The management of those structures, poten-
tially large and subjected to important pathologies, aiming at ensuring and guaranteeing
their safety and durability has become a true economical challenge. Looking for an optimal
inspection, maintenance and repair plan according to safety constraints is one of the pos-
sible solutions to address this challenge. This work is bounded by a preventive maintenance
context where the concrete degradations may lead to the corrosion of the reinforcements
and not to structural failure. The corresponding degradation models are put in an uncer-
tainty context where the spatial variability of the environmental exposure and the concrete
properties are accounted for. Based on such predictions, an adaptive design of experiments
helps to identify, at a given time, where the structure should be inspected in order to eval-
uate its degradation state which will indicate the need for maintenance or a repair action.
A decision tree therefore allows to predict the probabilistic evolution of the structure state,
including the effect of maintenance and repairs. This tree is then used in an optimisation
process which aims at finding where and with which inspection technique the structure is to
be inspected to minimise both the expectation of the exploitation costs and the associated
uncertainties due to the measurement errors, accounting for the stakeholder’s constraints.

Keywords: Optimisation, Spatial variability, Inspection, Maintenance, Bayesian statistics

Résumé

La gestion des structures en béton armé dans le but d’assurer leur sécurité et leur durabilité
est devenu un challenge économique d’importance notable. La réponse à ce challenge tient
en partie dans la recherche d’un plan d’inspection, de maintenance et de réparation (IMR)
optimisé en fonction de contraintes de sureté. Ce travail est placé dans un cadre de mainten-
ance préventive, où les dégradations du béton considérées peuvent amener à la corrosion
des armatures, non à la défaillance structurelle. Les modèles de dégradation concernés sont
placés dans un cadre probabiliste où la variabilité spatiale de l’exposition environnementale
et des propriétés matériaux du béton sont prises en comptes. Sur la base de ces prédictions,
un plan d’expérience adaptatif permet d’identifier, à une date donnée, où il est intéressant
d’inspecter la structure pour évaluer son état qui conditionnera la décision de maintenance
ou de réparation. Un arbre de décision permet ensuite de prédire l’évolution probabiliste de
cet état incluant les effets des maintenances et réparations. Ce modèle est enfin utilisé dans
une procédure d’optimisation qui vise à déterminer quand et avec quel outil cette structure
doit être inspectée pour optimiser l’espérance du budget de suivi d’une structure ou d’un
parc ainsi que les incertitudes associées liées aux erreurs de mesure, tout en prenant en
compte les diverses contraintes spécifiques des gestionnaires d’ouvrages.

Mots-clés: Optimisation, Variabilité spatiale, Inspection, Maintenance, Actualisation
Bayésienne
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