
Thèse de Doctorat

Mouna BEN ISHAK
Mémoire présenté en vue de l’obtention du

grade de Docteur de l’Université de Nantes

Docteur de l’Université de Tunis

sous le label de l’Université de Nantes Angers Le Mans

École doctorale : Sciences et technologies de l’information, et mathématiques

Discipline : Informatique, section CNU 27
Unité de recherche : Laboratoire d’informatique de Nantes-Atlantique (LINA)

Laboratoire de recherche opérationnelle, de décision
et de contrôle de processus (LARODEC)

Soutenue le
Thèse n°: ED 503

Probabilistic relational models: learning and
evaluation

The relational Bayesian networks case

JURY

Président : M. Zied ELOUEDI, Professeur des Universités, Université de Tunis, Tunisie

Rapporteurs : Mme Céline ROUVEIROL, Professeur des Universités, Université Paris-Nord, France
M. Jérôme DARMONT, Professeur des Universités, Université Lumière Lyon 2, France

Examinateur : M. Pierre-Henri WUILLEMIN, Maître de conférence, Université Pierre et Marie Curie, Paris, France

Directeurs de thèse : M. Philippe LERAY, Professeur des Universités, Université de Nantes, France

Mme Nahla BEN AMOR, Professeur des Universités, Université de Tunis, Tunisie

To my father’s soul,

to my dear mum,

to my dear brothers,

to all my family members,

to all those who love me.

Acknowledgements

First, I thank the jury’s members who honored me by judging my dissertation. I am grateful for the time

they spent to do this.

Then, I want to express my deep gratitude and sincere appreciation to my two supervisors: Pr. Nahla

Ben Amor who often gave me the courage to move forward in my research, I am thankful for her continuous

support, her precious advice and her invaluable help, Pr. Philippe Leray for the constructive discussions I

had with him. I was fortunate to benefit from his expertise in this interesting research area and to learn from

him. Without them this dissertation would never have been achieved.

I would like to offer my heartiest thanks to my beloved parents for their understanding, support and

confidence to which I am forever indebted. Dad, may god bless you, I wish you were here to share with us

these moments of joy and success. Mum, you are so supreme, you have always looked out for my future

and supported my dreams!

An honorable mention goes to my brothers for listening to my complaints and frustrations and for their

continuous help. Words are not enough to express how much I respect and I love them and I am sure that

having brought this work forward is the best reward for them.

I would like to express my deepest thanks to my lovely fiancé for his steadfast support, patience and

encouragement.

I am thankful to my research colleagues either in LARODEC or in DUKe team for their help, support

and encouragement whenever I was in need. I am also thankful to my work colleagues at IHEC-Tunisia for

their care and precious friendship. I thank them for the happy time we spent together during my teaching

experience at IHEC. I will miss you very much!!!

My greatest gratitude goes to my precious friends who were always here to help me to stay sane through

the difficult moments of my thesis.

Let all those who helped me by their support and encouragement find here the expression of my sincere

gratitude.

iii

Résumé

Les modèles graphiques probabilistes (MGPs) sont des outils puissants de représentation et de raison-

nement dans l’incertain. Les réseaux bayésiens sont des modèles graphiques probabilistes dirigés acy-

cliques conçus par Judea Pearl permettant de coder et de manipuler des distributions de probabilité sur des

espaces à grande échelle. Ils ont fait preuve de leur efficacité dans différentes applications du monde réel

où l’incertitude est presque un aspect incontournable. Pour se servir de ses modèles il faut avant tout les

construire. La structure et les paramètres doivent être déjà définis, sinon, ils doivent être appris à partir de

données. Apprendre les paramètres d’un RB consiste à fournir des distributions de probabilités condition-

nelles de chaque variable dans le contexte de ses parents dans le graph. Ceci pourrait être réalisé soit en

utilisant l’approche statistique du maximum de vraisemblance ou les méthodes d’estimation Bayésiennes.

Apprendre la structure d’un RB consiste à fournir une structure du réseau qui traduit les données observées.

Cette tâche s’avère plus compliquée surtout que l’espace de recherche est généralement très volumineux

et devient rapidement infinie même avec un petit nombre de variables. Plusieurs travaux de recherche ont

été menés dans ce sens. Ces travaux sont répartis en trois grandes familles. Les algorithmes à base de

contraintes traitent cette question comme étant un problème de satisfaction de contraintes. Ils recherchent

des indépendances (dépendances) dans les données, en utilisant des tests statistiques Ensuite, ils essayent

de trouver la structure graphique la plus appropriée. Les algorithmes à base de score traitent l’apprentissage

de la structure comme étant un problème d’optimisation. Ils évaluent la façon dont la structure correspond

aux données en utilisant une fonction de score, le but étant de maximiser cette fonction. Les algorithmes

hybrides présentent un mélange des deux premières familles. Ces algorithmes ont présenté de meilleurs ré-

sultats en terme de complexité et de scalabilité. Le processus d’évaluation d’un algorithme d’apprentissage

de la structure nécessite l’existence d’un réseau théorique à partir duquel on peut faire l’échantillonnage.

L’apprentissage est réalisée en utilisant les données générées et le réseau appris est ensuite comparé au

réseau théorique en utilisant des mesures d’évaluation. Habituellement, des RBs connus dans la littérature

sont utilisés comme réseaux théoriques (e.g., ASIA, INSURANCE). Pour fournir des études comparatives

plus rigoureuses, certains chercheurs utilisent un processus de génération aléatoire de RBs synthétiques.

Les RBs ont été développés pour manipuler des données sous forme matricielle simple. Toutefois, et

en raison de l’évolution des technologies de communication et de stockage, les données des applications

réelles ne respectent plus cette forme. Elles présentent un très grand nombre de dimensions, avec différents

types d’entités. Au début des années 2000, un grand intérêt a été adressé au traitement directe des données

relationnelles. L’apprentissage relationnel statistique (ARS) est un nouveau domaine de l’apprentissage au-

tomatique qui permet de raisonner dans ce contexte. Les réseaux Bayésiens relationnels (RBRs) présentent

une extension des réseaux Bayésiens qui permet la production et la manipulation de représentations struc-

turées des données, impliquant des objets décrits par des attributs et participant à des relations, des actions

et des événements. La spécification du modèle probabiliste concerne des classes d’objets plutôt que de

simples variables aléatoires. Ils ont fait leur preuve dans plusieurs domaines d’application (e.g., l’industrie,

l’analyse de la qualité du système, la classification des pages web) et jusqu’à maintenant les travaux sont

en cours afin de consolider la spécification théorique de ces modèles et de développer des algorithmes ap-

propriés permettant leur construction de à partir de données relationnelles. L’apprentissage des RBRs est

inspiré des méthodes d’apprentissage des RBs standards. Naturellement, leur évaluation est similaire à

celle des RBs. Elle est réalisée en utilisant soit des réseaux connus soit des réseaux synthétique générés

v

vi Abstract

aléatoirement. Cependant, ni la première démarche ni la seconde ne sont disponibles dans le contexte re-

lationnel. Même si une panoplie de travaux ont porté, séparément, sur la génération de réseaux Bayésiens

et de bases de données relationnelles, aucun travail regroupant ces deux disciplines n’a été recensé. Le

manque de RBRs connus dans la littérature ainsi que le manque de processus de génération aléatoire de ces

modèles pourraient expliquer le nombre réduit de travaux portant sur leur apprentissage. En effet, malgré

la panoplie des travaux existant pour l’apprentissage de la structure des RB, seulement quelques travaux

ont été recensés pour l’apprentissage de la structure de leur extension relationnelle. Ces travaux sont des

extensions de quelques algorithmes à base de contraintes ou à base de score pour l’apprentissage des RBs.

Aucun algorithme hybride n’a été présenté pour les RBRs.

Dans ce travail de thèse, nous proposons deux contributions majeures. Premièrement, Une approche

de génération de RBRs allant de la génération du schéma relationnel, de la structure de dépendance et des

tables de probabilités à l’instanciation de ce modèle et la population d’une base de données relationnelle.

Les données sont générées non seulement à partir de dépendances fonctionnelles mais aussi de dépendances

probabilistes. Ce processus s’avère bénéfique pour les chercheurs intéressés par les modèles graphiques

relationnels, notamment leur apprentissage à partir de données, afin de comparer leurs travaux dans un cadre

commun. Nous discutons aussi de l’adaptation des mesures d’évaluation des algorithmes d’apprentissage

de RBs dans le contexte relationnel et nous proposons de nouvelles mesures d’évaluation. Deuxièmement,

Une approche hybride pour l’apprentissage de la structure des RBRs à partir d’une instance complète d’une

base de données relationnelle. Cette approche présente une extension de l’algorithme MMHC dans le

contexte relationnel que nous appelons MMHC relationnel (RMMHC). Cet algorithme est constitué d’une

phase de recherche locale assurée par l’algorithme max-min parents and children relationnel (RMMPC),

et d’une phase de recherche globale assurée par l’algorithme relationnel de la recherche gloutonne (RGS).

Nous menons une étude expérimentale permettant de comparer ce nouvel algorithme d’apprentissage de

structure avec les approches déjà existantes. Cette étude se base sur notre processus de génération aléatoire

de RBRs et utilise les mesures d’évaluation que nous proposons pour évaluer les résultats d’apprentissage.

Abstract

Probabilistic graphical models offer a framework including famous statistical formalisms for defining

complex probability models such as Bayesian networks (BNs). These latter are directed acyclic graphs

conceived by Judea Pearl in order to efficiently encode and manipulate probability distributions over high-

dimensional spaces. BNs become quickly an important tool to address real world applications where uncer-

tainty is almost an inescapable aspect. To perform probabilistic inference, the BN structure and parameters

have to be already defined, if not, they have to be learned from data. Learning BN parameters consists on

providing the conditional probability distributions of each variable given its parents in the graph. It can be

done using maximum likelihood or Bayesian estimation methods. Learning the BN structure consists on

providing a network structure which fits the best way to the observed data. This is a tremendous issue as

the search space is usually very large and becomes quickly infinite even with few number of variables. A

wealth of literature has been produced that seeks to understand and provide methods of learning structure

from data. BN structure learning methods are divided into three main families. The first tackles this issue

as a constraint satisfaction problem. Constraint-based algorithms look for independencies (dependencies)

in the data, using statistical tests then, try to find the most suitable graphical structure with this information.

The second treats learning as an optimization problem. They evaluate how well the structure fits to the data

using a score function. So, these Score-based algorithms search for the structure that maximizes this func-

tion. The third presents hybrid approaches that mix both of the first two ones. Hybrid approaches perform

better than other techniques based only on conditional independence tests or on score functions on the level

of scalability and complexity of algorithms. The evaluation process of a BN structure learning algorithm

requires the existence of a theoretical (also called gold) network from which one can sample a training data.

Then learning is performed using this sampled data and the learned network is compared to the theoretical

one using some evaluation metrics. Usually, famous BNs are used in the literature as gold nets (e.g., ASIA,

INSURANCE). To provide more rigorous comparative studies, some researchers use a random generation

process of synthetic BNs.

BNs have been developed for data in the traditional matrix form. However, due to the development

of communication and storage technologies, data management practices have taken further aspects. The

data can present a very large number of dimensions, with several different types of entities. In the early

2000s, there has been growing interest in extracting patterns from relational data representation. Statistical

relational learning (SRL) is an emerging area of machine learning that enable effective and robust reason-

ing about relational data structures. Relational Bayesian networks (RBNs) are an extension of Bayesian

networks which allow to work with relational database representation rather than propositional data rep-

resentation. RBNs are interested in producing and manipulating structured representations of the data,

involving objects described by attributes and participating in relationships, actions and events. The proba-

bility model specification concerns classes of objects rather than simple attributes. They have demonstrate

their applicability in several areas (e.g., industry, system quality analysis, web page classification) and till

now works are in progress in order to provide a solid theoretical foundation of them and develop appropriate

algorithms allowing their construction from relational data. RBNs learning is inspired from standard BNs

learning approaches and naturally their evaluation will be similar to BNs evaluation techniques. It is gen-

erally done using either real known networks or randomly generate ones. However, neither the first nor the

second are available. Even though a panoply of works have focused, separately, on Bayesian Networks and

vii

viii Abstract

relational databases random generation, no work has been identified for RBNs on that track. The lack of fa-

mous RBNs as well as random process generation may argued the low number of works dealing with RBNs

structure learning. In fact, despite the panoply of works presented for standard BNs structure learning,

only few works have been devoted to learn their relational extension. Proposed approaches are extensions

of some constraint-based and score-based algorithms but no work has been proposed for relational hybrid

approach.

This thesis presents two major contributions. First, we propose an algorithmic approach allowing to

generate random RBNs from scratch, then populate a database instance. The originality of this process

is that it allows to generate synthetic relational data from a randomly generated relational schema and a

random set of probabilistic dependencies. Such a process is imperative for statistical relational learning

researchers to evaluate the effectiveness of their learning approaches in a common framework. Also, we

discuss the adaptation of the evaluation metrics of BNs structure learning algorithms to the relational context

and we propose new relational evaluation measurements. Second, we present a new hybrid approach to

learn RBNs structure from a complete relational database instance. We develop an extension of the max-

min-hill-climbing (MMHC) algorithm that we refer to as relational max-min-hill-climbing (RMMHC). The

approach consists of a local search phase ensured by the relational max-min parents and children algorithm

(RMMPC), and a global search phase ensured by the relational greedy search algorithm (RGS). We present

an experimental study to compare this new learning algorithm with the state-of-the-art approaches. This

study is based on our RBNs random generation process and uses the structure learning evaluation metrics

that we propose.

Contents

Introduction 1

I State-of-the-art 5

1 Bayesian Networks 7

1.1 Introduction . 9

1.2 Basic concepts . 9

1.2.1 Useful concepts from graph theory . 9

1.2.2 Useful concepts from probability theory . 10

1.3 Bayesian network formalism . 12

1.3.1 Bayesian network definition . 12

1.3.2 Conditional Independence in Bayesian networks 12

1.3.3 Markov equivalence class for Directed Acyclic Graphs 13

1.3.4 Reasoning with Bayesian networks . 14

1.4 Bayesian networks structure learning . 16

1.4.1 BNs learning assumptions . 16

1.4.2 Constraint-based approaches . 16

1.4.3 Score-based approaches . 17

1.4.4 Hybrid approaches . 18

1.5 Evaluating Bayesian networks structure learning algorithms 21

1.5.1 Gold Bayesian networks . 22

1.5.2 Sampling Bayesian networks . 24

1.5.3 Evaluation metrics . 24

1.6 Bayesian network-related softwares . 26

1.6.1 Commercial software tools . 26

1.6.2 Open source software tools . 27

1.7 Conclusion . 28

2 Database Relational Model 29

2.1 Introduction . 31

2.2 Database management . 31

2.3 Relational model . 31

2.3.1 Basic concepts . 32

2.3.2 Relational model definition . 35

2.3.3 Relational model representation . 35

2.4 From the entity-relationship model to the relational model 36

2.4.1 Entities . 36

2.4.2 Relationships . 36

2.4.3 Entity-relationship diagram representation . 37

ix

x CONTENTS

2.4.4 Mapping ER Diagram to a relational model . 37

2.5 Benchmarking database systems . 38

2.5.1 Database Benchmarks definition . 38

2.5.2 Random relational database generation . 39

2.5.3 Benchmarking for decision support systems . 40

2.6 Conclusion . 40

3 Relational Bayesian Networks 41

3.1 Introduction . 43

3.2 Relational Bayesian network formalism . 43

3.2.1 Relational Bayesian network definition . 43

3.2.2 Cycles in relational Bayesian networks . 45

3.2.3 Related work . 47

3.2.4 About relational d-separation . 50

3.2.5 Reasoning with relational Bayesian networks . 53

3.2.6 Structural uncertainty . 54

3.3 RBN and similar models structure learning . 55

3.3.1 RBN structure learning . 55

3.3.2 Similar models structure learning . 57

3.3.3 Relational hybrid approaches . 60

3.4 Evaluating relational Bayesian networks structure learning algorithms 60

3.4.1 Random generation of relational Bayesian networks 61

3.4.2 Sampling relational Bayesian networks . 61

3.4.3 Evaluation metrics . 61

3.5 Relational Bayesian network-related softwares . 62

3.6 Conclusion . 63

II Propositions 65

4 RBN Benchmark generation and learning evaluation 67

4.1 Introduction . 69

4.2 RBN Benchmark Generation . 69

4.2.1 Principle . 69

4.2.2 Relational schema random generation . 70

4.2.3 RBN random generation . 71

4.2.4 GBN generation . 73

4.2.5 Database population . 73

4.2.6 Implemented policies for the generation process 73

4.2.7 Time complexity of the generation process . 74

4.2.8 Toy example . 74

4.3 Learning evaluation metrics . 77

4.3.1 Discussion . 77

4.3.2 Penalization for relational models . 78

4.3.3 Relational Precision and Recall . 78

4.3.4 Relational Structural Hamming Distance . 80

4.4 Conclusion . 82

CONTENTS xi

5 RMMHC: a hybrid approach to Relational Bayesian Networks structure learning 83

5.1 Introduction . 85

5.2 Relational Max Min Parents and children RMMPC . 85

5.2.1 Neighborhood identification: RMMPC . 85

5.2.2 Symmetrical correction . 88

5.2.3 Conservative RMMPC . 89

5.2.4 Toy example . 91

5.3 Relational Max Min Hill-Climbing: RMMHC . 93

5.3.1 Global structure identification . 93

5.3.2 The overall algorithm . 94

5.4 Time complexity of the algorithms . 95

5.5 RMMHC vs Related work . 95

5.6 Conclusion . 96

6 Implementation 99

6.1 Introduction . 101

6.2 The PILGRIM project . 101

6.2.1 PILGRIM in nutshell . 101

6.2.2 Additional libraries . 103

6.2.3 Data accessibility . 104

6.3 PILGRIM Relational modules . 104

6.3.1 RBN serialization and unserialization . 104

6.3.2 Parameter learning . 106

6.3.3 Structure learning . 108

6.3.4 RBN structure learning evaluation metrics . 110

6.3.5 RBN benchmark random generation . 110

6.4 Conclusion . 110

7 Experimental study 111

7.1 Introduction . 113

7.2 Experimental protocols . 113

7.2.1 RMMHC, RGS, RCD: experimental protocol N°1 114

7.2.2 RMMHC, RGS: experimental protocol N°2 . 115

7.2.3 On the choice of theKmax value for the learning algorithms 115

7.3 Results and interpretation . 116

7.3.1 Experimental protocol N°1: Results and interpretation 116

7.3.2 Experimental protocol N°2: Results and interpretation 124

7.4 Discussion . 132

7.4.1 Benchmarks and datasets . 132

7.4.2 Canonical dependencies generation . 132

7.4.3 Conservative vs non conservative algorithms . 133

7.4.4 Learned dependency structure complexity . 133

7.4.5 Query performance . 133

7.5 Conclusion . 133

Conclusion 135

xii CONTENTS

A Annex 1: Recommender Systems 139

A.1 Recommendation techniques and main issues . 139

A.2 RBNs for recommendation . 140

A.2.1 Reviews . 140

A.2.2 Discussion . 141

List of Tables

2.1 Relationship types and representations . 37

3.1 Mapping rules from DAPER to RBN (Heckerman et al., 2004) 48

5.1 Overview of RGS, RCD, RMMHC and RMMHCc particularities 96

6.1 PILGRIM Overview: projects, code lines number, functionalities & main contributor roles 102

7.1 Relational Bayesian networks used by the experimental protocol N°1 114

7.2 Relational Bayesian networks used by the experimental protocol N°2 115

7.3 Experimental protocol N°1 normalized number of statistical calls (i.e., number of tests of

conditional independence and/or number of calls to the local scoring function) performed by

each algorithm for a particular sample size and network divided by RGS’s calls on the same

dataset. Average normalized values lower to one correspond to an algorithm performing

less statistical calls than RGS. 117

7.4 Experimental protocol N°1 Average ± standard deviation of RSHD for each algorithm for

a particular sample size and network. Bold values present the best values for a given model

and a given sample size. The AVG values present the average RSHD values for all models

for a given sample size. 119

7.5 Experimental protocol N°1 Average ± standard deviation of Precision for each algorithm

for a particular sample size and network. Bold values present the best values for a given

model and a given sample size. The AVG values present the average Precision values for

all models for a given sample size. 120

7.6 Experimental protocol N°1 Average ± standard deviation of Recall for each algorithm for

a particular sample size and network. Bold values present the best values for a given model

and a given sample size. The AVG values present the average Recall values for all models

for a given sample size. 121

7.7 Experimental protocol N°1 Average ± standard deviation of F-Measure for each algorithm

for a particular sample size and network. Bold values present the best values for a given

model and a given sample size. The AVG values present the average F-Measure values for

all models for a given sample size. 122

7.8 Experimental protocol N°2 normalized number of statistical calls (i.e., number of tests of

conditional independence and/or number of calls to the local scoring function) performed by

each algorithm for a particular sample size and network divided by RGS’s calls on the same

dataset. Average normalized values lower to one correspond to an algorithm performing

less statistical calls than RGS. 125

7.9 Experimental protocol N°2 Average± standard deviation of h-Precision for each algorithm

for a particular sample size and network. Bold values present the best values for a given

model and a given sample size. The AVG values present the average h-Precision values for

all models for a given sample size. 126

xiii

xiv LIST OF TABLES

7.10 Experimental protocol N°2 Average ± standard deviation of h-Recall for each algorithm

for a particular sample size and network. Bold values present the best values for a given

model and a given sample size. The AVG values present the average h-Recall values for all

models for a given sample size. 127

7.11 Experimental protocol N°2 Average ± standard deviation of h-F-Measure for each algo-

rithm for a particular sample size and network. Bold values present the best values for a

given model and a given sample size. The AVG values present the average h-F-Measure

values for all models for a given sample size. 128

7.12 Experimental protocol N°2 Average ± standard deviation of s-Precision for each algorithm

for a particular sample size and network. Bold values present the best values for a given

model and a given sample size. The AVG values present the average s-Precision values for

all models for a given sample size. 129

7.13 Experimental protocol N°2 Average± standard deviation of s-Recall for each algorithm for

a particular sample size and network. Bold values present the best values for a given model

and a given sample size. The AVG values present the average s-Recall values for all models

for a given sample size. 130

7.14 Experimental protocol N°2 Average ± standard deviation of s-F-Measure for each algo-

rithm for a particular sample size and network. Bold values present the best values for a

given model and a given sample size. The AVG values present the average s-F-Measure

values for all models for a given sample size. 131

List of Figures

1 Thesis synopsis . 3

1.1 Example of graphical models . 10

1.2 Example of a Bayesian network . 13

1.3 Markov equivalence . 14

1.4 Evaluation process of a BN structure learning algorithm 22

2.1 Relation components . 33

2.2 An illustration of foreign key, referential path, and referential cycle 34

2.3 An example of a relational model representation . 36

2.4 An example of an Entity-relationship diagram . 37

3.1 An example of a relational schema and a RBN for a movie domain 44

3.2 An example of a relational skeleton and a GBN for a movie domain 46

3.3 Example of a class dependency graph and its corresponding colored class dependency graph 47

3.4 The entity-relationship representation of the university domain 48

3.5 The relational schema of the university domain with respect to the DAPER representation . 49

3.6 Example of a relational model for the organization domain (Maier et al., 2013b) 50

3.7 Example of a ground graph for the organization domain (Maier et al., 2013b) 50

3.8 An abstract ground graph for the organization domain model in Figure 3.6 from the Em-

ployee perspective and with a hop threshold =6 (Maier et al., 2013b) 52

3.9 Examples of structured uncertainty (Getoor et al., 2007) 54

3.10 RPC algorithm: the four new constraints, where E is an existence attribute and X and Y are

two unit attribute classes (Maier et al., 2010). 57

3.11 RCD orientation rules on an abstract ground graph from perspective B (Maier et al., 2013a) 58

3.12 Evaluation process of a RBN structure learning algorithm 60

4.1 Overview of the generation and population process . 70

4.2 Relational schema generation steps . 75

4.3 Graph dependency structure generation . 75

4.4 Example of a generated relational schema where the dotted lines represent referential con-

straints and the generated RBN dependency structure where the arrows represent proba-

bilistic dependencies. we omit to specify slot chains to not overload the figure. Details

about slot chains from which probabilistic dependencies have been detected are given in

Paragraph RBN generation. 76

4.5 Visual graph representation of the generated relational schema and table records by using

SchemaSpy and PostgreSQL software tools. 77

4.6 Example of a gold RBN dependency structure and its canonical dependencies 80

4.7 Examples of calculating relational structural Hamming distance (RSHD)for the RBN of

Figure 4.6 . 81

5.1 An example of a relational schema . 89

xv

xvi LIST OF FIGURES

5.2 A RBN example of the relational schema of Figure 5.1 89

5.3 An example of asymmetric dependency . 90

5.4 Example trace of RMMPC with target node ClassC.X4 91

5.5 Example trace of RMMPC with target node ClassA.X3 92

5.6 Example trace of RMMPCc with target node ClassA.X3 93

6.1 Overview of the PILGRIM project . 103

6.2 Package diagram of the PILGRIM Relational project . 105

6.3 The skeleton for a probabilistic network encoded using the ProbModelXML format 105

6.4 The skeleton for a RBN using the ProbModelXML format 106

6.5 Additional RBN network properties: The encoded RBN contains 3 classes (Figure 6.5(a))

and 2 reference slots (Figure 6.5(b)) . 107

6.6 Main modifications made on already existing properties: In Figure 6.6(a), the variable

classa.x3 is associated to classa. Figure 6.6(b) illustrates an aggregated probabilistic de-

pendency between classa.x3 and classc.x4. Figure 6.6(c) presents the CPD of classa.x3. 107

6.7 Implemented algorithms for parameters learning . 108

6.8 Implemented algorithms for structure learning . 109

7.1 Experimental protocol N°1 normalized number of statistical calls with respect to the sample

size . 116

7.2 Mapping dependency structure into canonical dependencies 118

7.3 The average values of Precision, Recall and F-Measure with respect to the sample size . . 123

7.4 The average value of RSHD measure with respect to the sample size 123

7.5 Experimental protocol N°2 normalized number of statistical calls with respect to the sample

size . 124

7.6 The average values of h-Precision, h-Recall and h-FMeasure with respect to the sample size 132

List of Algorithms

1 DAG_TO_CPDAG (Chickering, 2002) . 15

2 Order (Chickering, 2002) . 15

3 Greedy hill-climbing (Heckerman, 1998) . 19

4 Generate_neighborhood . 19

5 MMPC (Tsamardinos et al., 2006) . 20

6 MaxMinHeuristic (Tsamardinos et al., 2006) . 20

7 MMPC (Tsamardinos et al., 2006) . 20

8 MMHC (Tsamardinos et al., 2006) . 20

9 PMMixed (Ide et al., 2004) . 23

10 Add and Remove (AR) (Ide et al., 2004) . 23

11 Add or Remove (AorR) (Ide et al., 2004) . 24

12 Forward Sampling (Henrion, 1986) . 24

13 SHD (Tsamardinos et al., 2006) . 26

14 Relational Greedy search (Friedman et al., 1999a) . 56

15 Relational Causal Discovery(RCD) (Maier et al., 2013a) 59

16 RandomizeRBN-DB . 70

17 Generate_Relational_Schema . 71

18 Generate_Dependency_Structure . 72

19 Determinate_Slot_Chains . 72

20 Generate_Relational_Skeleton . 73

21 RSHD . 79

22 RMMPC . 86

23 Generate_potential_list . 87

24 The MaxMinHeuristic . 88

25 RMMPC . 88

26 RMMPCc . 90

27 RMMHC_single_GS . 94

28 RMMHC_Multiple_GS . 95

xvii

Acronyms

A

AGG

Abstract Ground Graph. 51, 58, 80

AIC

Akaike Information Criterion. 17

ANSI

American National Standards Institute. 34

B

BD

Bayesian Dirichlet. 17

BIC

Bayesian Information Criterion. 17

BN

Bayesian Network. 1, 2, 7, 12, 27, 51, 55, 61, 69, 79, 83, 85, 101, 103, 108, 133, 140

C

CBN

Causal Bayesian Network. 2, 28

CF

Collaborative Filtering. 140, 141

CPC

Candidate Parents and Children. 19, 85, 87, 93, 94

CPD

Conditional Probability Distribution. 7, 9, 12, 43, 45, 71, 73, 106

CPDAG

Completed Partially Directed Acycle Graph. 14, 80, 133

D

DAG

Directed Acyclic Graph. 1, 9, 12, 69, 71, 73, 74, 86, 132

DAPER

Directed Acyclic Probabilistic Entity Relational. 47, 57

DBA

Database Administrator. 31

xix

xx Acronyms

DBMS

Database Management System. 31, 136

DBN

Dynamic Bayesian Network. 28

E

ER

Entity-Relationship. 35, 37, 38

G

GBN

Ground Bayesian Network. 45, 61, 73

GES

Greedy Equivalence Search. 17

GS

Greedy Search. 17, 18

H

HBN

Hierarchical Bayesian Network. 28

I

IC

Inductive Causation. 16

ILP

Inductive Logic Programming. 1

ISO

International Organization for Standardization. 34

J

JPD

Join Probability Distribution. 13

K

KDD

Knowledge Discovery in Databases. 1

M

MBOR

Markov Boundary search using the OR condition. 21, 58

MDL

Minimum Description Length. 17

MMHC

Max-Min Hill climbing. 19, 83, 85, 93, 94, 132

MMPC

Max-Min Parents and Children. 19, 85, 88, 93, 94

Acronyms xxi

O

OOBN

Object-oriented Bayesian Network. 2

P

PC

Peter and Clark. 16, 57, 58

PGM

Probabilistic Graphical Model. 1, 2, 7, 105

PRM

Probabilistic Relational Model. 41

R

RBN

Relational Bayesian Network. 1, 2, 28, 45, 60, 61, 63, 67, 69, 71, 73, 77, 82, 83, 85, 101, 104, 106,

113, 133, 135, 136, 139, 140, 141

RCD

Relational Causal Discovery. 58, 95, 113

RDBMS

Relational Database Management System. 29, 39, 103

RGS

Relational Greedy Search. 93, 95, 113

RMMHC

Relational Max-Min Hill climbing. 83, 85, 94, 95, 113, 135

RMMPC

Relational Max-Min Parents and Children. 85, 95, 113, 135

RPC

Relational Peter and Clark. 57, 113

RS

Recommender Sysytem. 139

RSHD

Relational Structural Hamming Distance. 69, 80, 115

S

SC

Sparse Candidate. 19

SGS

Spirte, Glymour and Scheines. 16

SHD

Structural Hamming Distance. 25, 67, 80, 85

SQL

Structured Query Language. 34, 35

SRL

Statistical Relational Learning. 1, 41

xxii Acronyms

T

TPC

Transaction Processing Performance Council. 38

X

XML

Extensible Markup Language. 104, 105

Introduction

Context

Knowledge discovery in databases (KDD) is concerned with the development of computational theories

and tools to assist humans in extracting hidden knowledge from voluminous data. Knowledge extraction is

considered as the end product of a data-driven discovery where data mining is considered as a central step.

This latter relies on several research areas, notably, statistics, databases and machine learning. Machine

learning techniques allow to learn patterns from training data in order to produce models that can be used

for prediction and decision making. Several basic machine learning methods have been involved (e.g.,

decision trees, association rules, Bayesian networks, support vector machines). These methods, known

as propositional learning approaches, focus on the propositional or attribute-value representation: a single

table of data where rows represent observations, and columns represent variables. However, due to the

development of communication and storage technologies, data about the real world is seldom of this form.

The data can present a very large number of dimensions, with several different types of entities.

Interests are, now, bigger in extracting patterns from such data representation. Statistical relational

learning (SRL) is an emerging area of machine learning that enable to represent, reason, and learn in do-

mains with complex relational and rich probabilistic structure (Heckerman et al., 2007). Other terms have

been used in the same context, including probabilistic logic learning and relational data mining. Utmost

SRL algorithms come form the field of inductive logic programming (ILP) (Lavrac and Dzeroski, 1993;

Muggleton and De Raedt, 1994) considered at the intersection of machine learning and logic programming.

Two major directions have been developed in order to use the old machine learning techniques together

with relational data representation. The first aim to transform an ILP problem into a propositional form and

then uses attribute-value approaches to solve the problem. De Raedt (De Raedt, 1998) treats the relation be-

tween attribute-value learning and ILP in detail, showing that propositionalization of some more complex

ILP problems is possible in principle, but results in attribute-value problems that are exponentially large

(i.e., with non allowable size).The second opts for the development of new data mining techniques that use

directly the relational representation of data. Typically these methods are inspired from traditional data min-

ing methods, while trying to fit them to the relational context. Probabilistic graphical models (PGMs) are

quite involved in KDD and three main groups of PGMs have been well studied, namely Bayesian networks

(BNs) representing Directed Acyclic Graphs (DAGs) (Pearl, 1988), Markov networks representing undi-

rected graphs (Pearl, 1988) and Dependency networks representing bi-directed graphs (Heckerman et al.,

2001). Three extensions match to these groups in the relational context that are respectively probabilistic

relational models (Koller and Pfeffer, 1998; Pfeffer, 2000), relational Markov networks (Taskar et al.,) and

relational dependency networks (Neville and Jensen, 2007). Neville and Jensen (Neville and Jensen, 2007)

use the term relational Bayesian networks (RBNs) to refer to Bayesian networks that have been extended

to model relational databases (Koller and Pfeffer, 1998; Pfeffer, 2000) and use the term probabilistic rela-

tional models in its more general sense to distinguish the family of PGMs that are interested in extracting

statistical patterns from relational models. In this thesis, we adopt the terminology proposed by Neville and

Jensen, which has not to be confused with the relational Bayesian networks of Jaeger (Jaeger, 1997). These

latter are extension of BNs using the first-Order logic whereas RBNs (Koller and Pfeffer, 1998; Pfeffer,

2000) represent a relational extension of BNs, where the probability model specification concerns classes

1

2 Introduction

of objects rather than simple attributes.

BNs are directed acyclic graphs initiated by Judea Pearl in order to efficiently encode and manipulate

probability distributions over high-dimensional spaces (Pearl, 1988). BNs become quickly an important

tool to address real world applications where uncertainty is almost an inescapable aspect. In 2011, the

Turing Award was awarded to J. Pearl for the development of these models which reflect their important

role for the industry as well as the scientific community. Several extensions have been proposed in the lit-

erature in order to broaden their range of application. We can, for instance, mention dynamic Bayesian net-

works (Murphy, 2002) that enable to model a system whose state evolves over time, hierarchical Bayesian

networks (Gyftodimos and Flach, 2002) that gives additional knowledge about variables structure by ex-

tending the classical formalism of Bayesian networks with composite nodes allowing the aggregation of

simpler types. Pearl (Pearl, 2000) focuses on the semantics of intervention and its relation to causality

through the causal Bayesian networks (CBN) framework.

RBNs belong to another range of extensions defined by their representation paradigm. The object-

oriented, entity-relationship and first order logic paradigms were mainly used. Object-oriented Bayesian

networks (OOBNs) (Koller and Pfeffer, 1997; Pfeffer, 2000; Bangsø and Wuillemin, 2000) are extensions

based on the object-oriented paradigm. The OOBNs as defined by (Pfeffer, 2000) have been extended, on

their part, using the entity-relationship paradigm by (Koller and Pfeffer, 1998; Pfeffer, 2000) through the

relational Bayesian networks, that we focus on in this thesis work. Other entity-relationship extensions have

been also proposed (Wellman et al., 1992; Buntine, 1994; Heckerman et al., 2004) yet RBNs remains the

most developed one as they also proposed to manage the structural uncertainty feature (Getoor et al., 2007).

Also, many other extensions have been proposed based on the first-Order logic (Jaeger, 1997; Laskey,

2008).

Today, most databases have relational capabilities and probabilistic relational models are powerful data

mining tools to deal with this data representation, however, it is not obvious to obtain them from domain

experts. So, as for classical PGMs, methods to learn them from relational data have to be developed.

Especially structure learning remains the most challenging issue, as it is considered as a NP-Hard prob-

lem (Koller and Friedman, 2009). It consists on providing the probabilistic structure for a given relational

schema and a relational observational dataset that instantiates this schema. Some preliminary work has been

recorded for directed relational models (Friedman et al., 1999a; Maier et al., 2010; Maier et al., 2013a).

Yet, the manner how these approaches have been evaluated is open to criticisms and to several improve-

ments. The evaluation of the learning approaches is generally done using randomly generated data coming

from either real known networks or randomly generated ones. However, neither the first nor the second

are available for RBNs. Furthermore, the proposed approaches are adaptations of either score-based or

constraint-based approaches to learn BNs structure, however, it has been shown that hybrid approaches pro-

vide better results (Tsamardinos et al., 2006) using several benchmarks and metrics (execution time, SHD

measure, etc.)

This thesis addresses three main issues:

– How to randomly generate relational Bayesian networks?

– How to compare two RBN structures?

– How to learn RBNs structure from a complete relational observational dataset using an hybrid ap-

proach?

Consequently, our first contribution is the proposition of an algorithmic approach allowing to generate

random RBNs from scratch, then populate a database instance. The originality of this process is that it

allows to generate synthetic relational data from a randomly generated relational schema and a random set

of probabilistic dependencies. Second, we propose a new distance-based measure allowing to compare two

RBN structures, one with respect to the other. Finally, we provide a new hybrid approach to learn RBNs

structure. We prove the effectiveness of our proposal by comparing it with already existing RBNs learning

approaches, in a common framework, using our random generation process.

Introduction 3

Overview

Figure 1 presents the thesis organization and interdependencies between chapters.

���������	�
��
�� ����
��������
������

������
��� ���
����

������
���

������
��� �������
����

����
�����

��
����������
�
���

��������	 ��������

�	������
���
��
����������
�
���

���������	�
��
��

������
��� ���
����

������
���

��������� ���������

��������

���������

����
����
�
��� �������
�
���
���������

��
��
���

��
��
�	

!��
���
���
�������

��
�
�����
����

��	��������
������
�
����
�

"

��
�
�����
���������
�
����������
���

Figure 1: Thesis synopsis

Chapter 1 is dedicated to introduce Bayesian Networks and to make a survey on existing learning as

well as evaluating approaches.

Chapter 2 gives an overview of database theory principles. Then, gives a formal definition of the rela-

tional model and discusses relational database benchmarking and methods to randomly generate databases.

Chapter 3 introduces relational Bayesian networks, presents their learning approaches and discusses

evaluation techniques of RBNs learning approaches.

Chapter 4 provides, firstly, an algorithmic approach allowing to generate random RBNs from scratch

to cover the absence of generation processes. The proposed method allows to generate RBNs as well as

synthetic relational data from a randomly generated relational schema and a random set of probabilistic

dependencies. Then, we present a new distance-based metric allowing to compare an RBN structure with

respect to another one.

Chapter 5 provides a new hybrid approach to learn RBNs structure from a complete relational observa-

tional dataset. It is an adaptation of the Max-Min Hill Climbing algorithm, described in Chapter 1, to the

relational context, that we refer to as Relational Max-Min Hill Climbing algorithm.

4 Introduction

Chapter 6 presents environments and softwares used during the development phase. Then, it discusses

the chosen policies to develop the generation approach.

Chapter 7 describes the detailed experiment protocol and its execution. It reports experimental results

concerning our learning approach compared with state-of-the-art methods.

Publications

This research work on probabilistic graphical models was the subject of the following publications:

– Our preliminary work about OOBNs, not described in this thesis, has been published in (Ben Ishak

et al., 2011a) and (Ben Ishak et al., 2011b).

– Our first contribution presented in Chapter 4 has been published in (Ben Ishak et al., 2014c) and (Ben Ishak

et al., 2014b). Also, extend version of this work has been accepted for publication in the IDA inter-

national journal (Ben Ishak et al.,).

– Our state-of-the-art about RBNs and their application to recommender systems has been published

in (Ben Ishak et al., 2013) and (Ben Ishak et al., 2014a).

I

State-of-the-art

5

1
Bayesian Networks

PRobabilistic graphical models (PGMs) (Koller and Friedman, 2009) offer a framework

including famous statistical formalisms for defining complex probability models such as

Bayesian networks (BNs) (Pearl, 1988). These latter are directed acyclic graphs that allow to

efficiently encode and manipulate probability distributions over high-dimensional spaces. BNs

become quickly an important tool to address real world applications where uncertainty is almost

an inescapable aspect. In 2011, the Turing prize was awarded to J. Pearl for the development

of these models which reflect their important role for the industry as well as the scientific com-

munity. To perform probabilistic inference, the BN structure and parameters have to be already

defined, if not, they have to be learned from data. Learning BN parameters consists on providing

the conditional probability distributions CPDs of each variable given its parents in the graph.

It can be done using maximum likelihood or Bayesian estimation methods. Learning the BN

structure consists on providing a network structure which fits the best way to the observed data.

This is a tremendous issue as the search space is usually very large and becomes quickly not

scalable even with few number of variables. Several approaches have been proposed to tackle

this issue and several manners have been proposed as well to evaluate the quality of the learn-

ing algorithms. The chapter is dedicated to introduce this framework and to make a survey on

existing learning as well as evaluating approaches.

7

8 Chapter1: Bayesian Networks

Contents

1.1 Introduction . 9

1.2 Basic concepts . 9

1.2.1 Useful concepts from graph theory . 9

1.2.2 Useful concepts from probability theory . 10

1.3 Bayesian network formalism . 12

1.3.1 Bayesian network definition . 12

1.3.2 Conditional Independence in Bayesian networks 12

1.3.3 Markov equivalence class for Directed Acyclic Graphs 13

1.3.4 Reasoning with Bayesian networks . 14

1.4 Bayesian networks structure learning . 16

1.4.1 BNs learning assumptions . 16

1.4.2 Constraint-based approaches . 16

1.4.3 Score-based approaches . 17

1.4.4 Hybrid approaches . 18

1.5 Evaluating Bayesian networks structure learning algorithms 21

1.5.1 Gold Bayesian networks . 22

1.5.2 Sampling Bayesian networks . 24

1.5.3 Evaluation metrics . 24

1.6 Bayesian network-related softwares . 26

1.6.1 Commercial software tools . 26

1.6.2 Open source software tools . 27

1.7 Conclusion . 28

1.1 Introduction 9

1.1 Introduction

Bayesian networks (Pearl, 1988) are founded on both graph and probability theories. They allow to

deal with uncertainty through the use of probability theory. On the other hand, They allow to deal with the

complexity of the addressed large spaces through the use of graph theory. Their construction implies the

identification of both components: The graphical one which is a directed acyclic graph (DAG) representing

probabilistic dependencies over a set of discrete random variables. The numerical one which is a set of

conditional probabilistic distributions (CPDs). Several approaches have been proposed to address this task

and several approaches have also been proposed to evaluate the quality of BNs learning methods.

The remainder of this chapter is as follows: Section 1.2 recalls some basic concepts from graph and

probability theories. Section 1.3 defines Bayesian networks. Section 1.4 presents BNs learning approaches.

Section 1.5 goes through evaluation techniques of BNs learning approaches. Section 1.6 presents a list of

some existing Bayesian network-related softwares.

1.2 Basic concepts

Bayesian networks are founded on both graph and probability theories. Thus, it is useful to recall some

useful concepts from these theories before addressing these models.

1.2.1 Useful concepts from graph theory

Definition 1.2.1. Graph.

– A graph is defined by:

– A set ϑ of vertices or nodes and,

– A set E ⊂ {(u, v) ‖u, v ∈ ϑ} of edges or links.

– Two nodes that are connected by an edge are called adjacent.

– An edge may be undirected (unmarked link), directed (marked by a single arrowhead on the edge) or

bidirected.

Definition 1.2.2. Complete graph.

A graph in which every pair of nodes is connected by an edge is a complete graph (e.g., Figure 1.1(a)).

Definition 1.2.3. Undirected graph.

A graph in which all edges are undirected is an undirected graph (e.g., Figure 1.1(c)).

Definition 1.2.4. Directed graph.

A graph in which all edges are directed is a directed graph.

Definition 1.2.5. Skeleton of a directed graph.

If we strip away all arrowheads from the edges of such a graph we obtain an undirected graph called its

skeleton (e.g., Figure 1.1(c)).

Definition 1.2.6. Directed path.

A directed path is a sequence of directed edges such that each edge starts with the vertex ending the pre-

ceding edge. (e.g., Figure 1.1(d): (X1, X2), (X2, X4), (X4, X5) is a path of length 3).

Definition 1.2.7. Directed cycle.

A directed cycle is a directed path starting and ending at the same vertex (e.g., Figure 1.1(d): (X1, X2),
(X2, X4), (X4, X3), (X3, X1) is a cycle). A cycle of length 1 (e.g., X1 → X1) is a called a self-loop

10 Chapter1: Bayesian Networks

(a) A complete graph (b) A directed acycle graph

(DAG)

(c) An undirected graph

��

�� ��

��

��

(d) A graph with cycle

Figure 1.1: Example of graphical models

Definition 1.2.8. Directed acyclic graph.

A graph that contains only directed edges and no cycles is called directed acyclic graph (DAG)(e.g., Fig-

ure 1.1(b)).

– The set of the ancestors An(Xi) of a node Xi is the set of nodes that can reach Xi by a directed path

of length one or more (e.g., Figure 1.1(b): An(X5) = {X1, X2, X3, X4}).
– The set of the parents Pa(Xi) of a node Xi, is the set of nodes that can reach Xi by a single arc

pointing into Xi. A node with no parents is called a root (e.g., Figure 1.1(b): Pa(X5) = {X4}, X1 is

a root node).

– The set of the children Ch(Xi) of a node Xi is the set of nodes reachable by a single arc from Xi. A

node with no children is called a sink (e.g., Figure 1.1(b): Ch(X4) = {X5}, X5 is a sink).

– The set of the descendants De(Xi) of a node Xi is the set of nodes reachable by a directed path from

Xi (e.g., Figure 1.1(b): De(X1) = {X2, X3, X4, X5}).
– The set of the non-descendants Nd(Xi) of a node Xi is defined as Nd(Xi) = ϑ\(Xi ∪ De(Xi) ∪
Pa(Xi)) (e.g., Figure 1.1(b): Nd(X2) = {X3}).

1.2.2 Useful concepts from probability theory

Let us denote random variables by upper case letters (e.g.,X , Y ,...). The domain of any random variable

X is denoted by DX . The assignments or states of X are denoted by corresponding lower-case letter x.

Definition 1.2.9. Joint probability distribution.

The joint distribution of n random variables X1, . . . , Xn is defined as follows:

P (X1, . . . , Xn) : DX1 × . . .×DXn
→ [0, 1]

(x1, . . . , xn) 7−→ P (x1, . . . , xn) = P (
⋂

i∈{1,...,n}{Xi = xi})
(1.1)

To define the joint distribution of n random variables, we have to provide the Cartesian product of all

the random variables domains. If each variable has k states, then there are kn combinations. This product

is exponential on the number of variables.

Definition 1.2.10. Conditional probability.

1.2 Basic concepts 11

Let X and Y be two random variables. ∀x ∈ DX and y ∈ DY . The conditional probability of X = x
under the condition Y = y (evidence) and the conditional probability of Y = y under the condition X = x
(evidence) are respectively expressed by:

P (x|y) =
P (x, y)

P (y)
, P (y) > 0 (1.2)

and

P (y|x) =
P (y, x)

P (x)
, P (x) > 0 (1.3)

we can easily derive the Bayes theorem defined as follows:

P (x|y) =
P (y|x).P (x)

P (y)
, P (y) > 0 (1.4)

More generally:

P (x|y, z) =
P (y|x, z).P (x|z)

P (y|z)
(1.5)

Definition 1.2.11. Marginal independence.

Two random variables X and Y are called independent (we note: X ⊥ Y) if the outcome of X has no

effect on the outcome of Y and vice versa.

Therefore:

X ⊥ Y ⇔

{

∀x ∈ DX , P (Y |X = x) = P (Y)
∀y ∈ DY , P (X|Y = y) = P (X)

(1.6)

and the joint distribution of X and Y is:

P (X, Y) = P (X).P (Y) (1.7)

Definition 1.2.12. Conditional independence.

Let three random variables X , Y and Z. We say that X and Y are conditionally independent to Z (we

note: X ⊥ Y |Z) if and only if:

X ⊥ Y |Z ⇔

{

P (X|Y, Z) = P (X|Z)
and P(Y|X,Z) = P (Y |Z)

(1.8)

and the joint distribution of X , Y and Z is:

P (X, Y, Z) = P (X|Z).P (Y |Z).P (Z) (1.9)

More generally, a joint distribution over n random variables may be expressed using conditional proba-

bilities as follows:

P (X1, . . . , Xn) =
n
∏

i=1

(P (Xi|X1, . . . , Xi−1)) (1.10)

This formula could be of interest when it is possible to simplify each P (Xi|X1, . . . , Xi−1) using condi-

tional independence facts:

∀i, Vi ⊂ {X1 . . . Xi−1}, such that Xi ⊥ ({X1 . . . Xi−1}\Vi)|Vi,

P (X1, . . . , Xn) =
∏n

i=1 P (Xi|Vi) (1.11)

12 Chapter1: Bayesian Networks

1.3 Bayesian network formalism

In this section, we give a formal definition of Bayesian networks (Pearl, 1988). Then, we recall the

d-separation criterion. finally, we present the Markov equivalence class for directed acyclic graphs.

1.3.1 Bayesian network definition

Bayesian networks allow to get a compact encoding of a complex distribution over a high-dimensional

space using a graph-based representation.

Formally, a Bayesian network (Pearl, 1988) (BN) B = (G,Θ) is defined by:

– A graphical (qualitative) component : a directed acyclic graph (DAG) G = (V,E), where V is the

set of vertices (nodes) represents n discrete random variables X = {X1, . . . , Xn}, and E is the set of

directed edges (arcs) corresponds to conditional dependence relationships among these variables.

– A numerical (quantitative) component : presents a set of parameters Θ = {Θ1, . . . ,Θn} where each

Θi = P (Xi|Pa (Xi)) denotes the conditional probability distribution of each node Xi given its

parents Pa (Xi).These conditional probability distributions are usually stored and organized in tables

named conditional probability distributions (CPDs).

Example 1.3.1. Figure 1.2 presents the graphical component of a Bayesian Network (Pearl, 2000). It

illustrates a BN having five random variables and dependencies among them. X1 is the season of the

year and it can take one of four values: spring, summer, fall, or winter. All other variables are binary:

X2 describes whether the rain falls, X3 describes whether the sprinkler is on, X4 describes whether the

pavement would get wet and X5 describes whether the pavement would be slippery.

1.3.2 Conditional Independence in Bayesian networks

A BN encodes the following conditional independence assumption, called local Markov property:

Property 1.3.1. (Local Markov Property) For each variable Xi, we have that each variable Xi in G is

independent of its non descendants Nd(Xi) given its parents Pa(Xi).

Xi ⊥ Nd(Xi)|Pa(Xi)

Example 1.3.2. In Figure 1.2, knowing X4 makes X5 independent of {X1, X2, X3}.

Pearl introduced a graphical criterion for determining whether two variables are independent condition-

ally to a set of variables, called the d-separation criterion (Pearl, 1988).

Before defining this criterion, let’s present the three basic connection structures between variables:

– Serial connection (chain) (X → Z → Y) and diverging connection (fork) (X ← Z → Y): If we

know the value of Z , then X has no influence on Y and vice versa. We say that X and Y are dependent,

but they are conditionally independent given Z, and we note: X⊥Y |Z.

– Converging connection (collider, also called V-structure) (X → Z ← Y): If we know the value of Z,

then evidence on X influences Y and vice versa. We say that X and Y are independent, but they are

conditionally dependent given Z, and we note: X⊥Y (butX 6⊥ Y |Z).

Thus, the d-separation criterion is defined as follow (Pearl, 1988):

Definition 1.3.1. d-separation.

Let G = (V,E) be a DAG and let X, Y, and Z be disjoint sets of variables in V:

1. A path from some X ∈ X to some Y ∈ Y is d-connected given Z if and only if every collider W on the

path, or a descendant of W, is a member of Z and there are no non-colliders in Z.

1.3 Bayesian network formalism 13

Figure 1.2: Example of a Bayesian network

2. X and Y are said to be d-separated by Z if and only if there are no d-connecting paths between X and

Y given Z.

Example 1.3.3. In Figure 1.2, X = {X2} and Y = {X3} are d-separated by Z = {X1} as both paths

connecting X2 and X3 (X2 ← X1 → X3 and X2 → X4 ← X3) are blocked by Z (The first path presents

a diverging connection having its middle node X1 in Z. While the second path is a converging connection

having its middle node X4 out Z).

Thanks to the local Markov property (cf. Property 1.3.1), Bayesian networks allow to represent the joint

probability distribution (JPD) of X = {X1, . . . , Xn} as a decomposition of a global function into a product

of local terms depending only on the considered node and its parents in the graph via the chain rule of BN:

P (X) =
n
∏

i=1

P (Xi|Pa (Xi)) (1.12)

1.3.3 Markov equivalence class for Directed Acyclic Graphs

The Markov condition and the d-separation criterion connect the BN structure and conditional indepen-

dence. When exactly the same set of d-separation relations hold in two directed graphs, we say that they

are Markov equivalent.

Definition 1.3.2. Markov equivalence.

Two Bayesian networks B1 and B2 are equivalent if they encode the same probability distribution.

Example 1.3.4. Let’s consider the Figure 1.3. In this example we can easy demonstrate that G1 and G2

are equivalent by the decomposition of their joint probability distributions (Naïm et al., 2004). We have:

P (X1, X2, X3)G1 = P (X2|X1) ∗ P (X1|X3) ∗ P (X3)

and

P (X1, X2, X3)G2 = P (X2|X1) ∗ P (X3|X1) ∗ P (X1)

14 Chapter1: Bayesian Networks

Figure 1.3: Markov equivalence

Thus:
P (X1, X2, X3)G2 = P (X2|X1) ∗ P (X3|X1) ∗ P (X1)

= P (X2|X1) ∗
P (X1|X3)∗P (X3)

P (X1)
∗ P (X1)

= P (X2|X1) ∗ P (X1|X3) ∗ P (X3)
= P (X1, X2, X3)G1

Similarly, we demonstrate that G3 is equivalent to G1 and G2. Yet these three networks are not equivalent

to the v-structure G4. As P (X1, X2, X3)G4 = P (X1|X2, X3) ∗ P (X2) ∗ P (X3) and P (X1|X2, X3) cannot

be simplified.

A graphical criterion for determining the equivalence of two DAGs was proposed by Verma and Pearl (Verma

and Pearl, 1990) and expressed through the following theorem:

Theorem 1.3.1. Two DAGs are equivalent if and only if they have the same skeletons and the same v-

structures.

A Markov equivalence class is defined as a set of equivalent Bayesian networks and represented via a

Completed Partially Directed Acyclic Graph (CPDAG) (Andersson et al., 1997).

Definition 1.3.3. Completed Partially Directed Acyclic Graph.

A CPDAG (essential graph) has the same skeleton as all the graphs in the equivalence class and all

its reversible edges (edges that do not belong to a v-structure and their inversion does not generate a

v-structure) are undirected.

Chickering (Chickering, 2002) proposes a method that allows the conversion of a DAG to the CPDAG

representing its Markov equivalence class. Steps to construct the CPDAG are as presented by Algorithm 1.

The algorithm starts by ordering all the BN edges using Algorithm 2. Then uses the set of ordered edges to

simplify reversible edges.

Example 1.3.5. For instance, the Completed Partially Directed Acycle Graph of G1, G2 and G3 of Exam-

ple 1.3.4, is the undirected graph G = X2 −X1 −X3.

1.3.4 Reasoning with Bayesian networks

Reasoning with Bayesian networks comes to perform probabilistic inference. This latter consists on

inferring the whole probability distribution of some variables given that some other variables are set to cer-

tain values (evidence) (Pearl, 1988). A panoply of algorithms have been proposed to perform probabilistic

inference (propagation) with BNs. Such a process looks for the impact of a certain information regarding

some variables, known as an evidence, on the remaining ones. The first algorithms are based on message-

passing architecture and were proposed by Pearl (Pearl, 1982), and Kim and Pearl (Kim and Pearl, 1983).

An extension of these algorithms, that are limited to trees, is found in several works like the Lauritzen

and Spiegelhalter’s method of join-tree propagation (Lauritzen and Speigelhalter, 1988) and the method of

1.3 Bayesian network formalism 15

Algorithm 1 DAG_TO_CPDAG (Chickering, 2002)

Require: G: A DAG

Ensure: CPDAGG: The Completed Partially Directed Acyclic Graph of the DAG

1: Order (E) % The set of directed edges of G
2: ∀e ∈ E, label(e)← ∅
3: A ← unlabeled(E)
4: repeat

5: (Xi, Xj)← minA(e) % Lowest unlabeled edge

6: ∀Kk/label(Xk, Xi)← irreversible
7: End← False
8: if Xk /∈ paXj then

9: label(∗, Xj)← irreversible
10: A ← A \ (∗, Xj)
11: End← True
12: else

13: label(Xk, Xj)← irreversible
14: A ← A \ (Xk, Xj)
15: end if

16: if End = False then

17: if ∃e(Xk, Xj)/Xk /∈ pa(Xi) ∪Xi then

18: ∀(Xk, Xj) ∈ A
19: label(Xk, Xj)← irreversible
20: A ← A \ (Xk, Xj)
21: else

22: ∀(Xk, Xj) ∈ A
23: label(Xk, Xj)← reversible
24: A ← A \ (Xk, Xj)
25: end if

26: end if

27: until A = ∅

Algorithm 2 Order (Chickering, 2002)

Require: E: list of edges, V : List of nodes

Ensure: Eordered

1: Topological_Tree(Xi) % Xi∀ ∈ V
2: k ← 0
3: A ← unordered(E)
4: repeat

5: Xj ← minj(Xj/(Xi, Xj) ∈ A) % Lowest destination node of an unordered edge

6: Xi ← maxi(Xi/(Xi, Xj) ∈ A) % Greatest source node of an unordered edge to Xj

7: order(Xi, Xj)← k
8: k ← k + 1
9: A ← A \ (Xi, Xj)

10: until A = ∅

cut-set conditioning (Pearl, 2000) that provide propagation in general networks. All these algorithms are

exact, however, inference in general networks is known to be NP-hard (Cooper, 1990), which means that

in some cases (e.g., a huge number of nodes, a densely connected DAGs) the computational complexity of

these algorithms may exceed reasonable bounds thus, a set of approximate algorithms was proposed to be

16 Chapter1: Bayesian Networks

used in such case. We refer readers to (Jensen and Nielsen, 2007; Darwiche, 2009; Larrañaga et al., 2013)

for detailed information about these methods.

1.4 Bayesian networks structure learning

BN learning implies structure learning and parameter estimation from complete or incomplete training

data. BN structure learning is known as an NP-Hard problem (Chickering et al., 1994). Once the structure is

identified, parameters learning can be easily performed using either the statistical approach or the Bayesian

one (Heckerman, 1998). In this section we focus on BN structure learning from complete data.

A wealth of literature has been produced that seeks to understand and provide methods of learning

structure from data (Daly et al., 2011). BN structure learning methods are divided into three main families.

The first family tackles this issue as a constraint satisfaction problem. Constraint-based algorithms look for

independencies (dependencies) in the data, using statistical tests then, try to find the most suitable graphical

structure with this information. The second family treats learning as an optimization problem. They evaluate

how well the structure fits to the data using a score function. So, these Score-based algorithms search for

the structure that maximizes this function. The third family presents hybrid approaches that mix both of the

first two ones. In this section, we start by citing some learning assumptions. Then, we present the basics of

these three families.

1.4.1 BNs learning assumptions

Besides the local Markov property, other assumptions are also required to perform structure learning,

namely, the sufficiency and the faithfulness assumption.

1. Sufficiency assumption: The set of variables X is sufficient to represent all the conditional depen-

dence relations that could be extracted from data (i.e., we assume the absence of latent variables).

2. Faithfulness assumption: We say that a joint probability distribution P and a DAG G are faithful

to each other if and only if every independence present in P is entailed by G and the local Markov

property.

1.4.2 Constraint-based approaches

Constraint-based approaches search for the best BN structure using conditional independencies obtained

from statistical tests on the data. Several algorithms have been proposed in the literature, e.g., IC (Verma

and Pearl, 1990), SGS (Spirtes et al., 1990), PC (Spirtes et al., 2000). All those algorithms share the same

structure:

i. Construct an undirected dependency network from data.

ii. Detect V-structures.

iii. Try to orient more edges using the already oriented ones.

As all these approaches are based on reasoning about conditional independence facts, they learn the

Markov equivalence class rather than the fully oriented BN structure.

The edge orientation step (iii) is based on a set of orientation rules. For instance, the PC algorithms

uses the following three rules:

– V-structure detection: if X − Y − Z and Y /∈ sepset(X,Z), then orient as X → Y ← Z.
– Known non-V-structures: ifX → Y −Z and 〈X, Y, Z〉 is not a V-structure, then orient asX → Y →
Z.

– Cycle Avoidance: if X − Y and X → V1 . . .→ Vk → Y , then orient as X → Y .

1.4 Bayesian networks structure learning 17

Given sufficiency and faithfulness assumptions (cf. Section 1.4.1), it has been proved that the result of

the PC algorithm converges to the CPDAG of the true model if statistical tests are substituted with an oracle

function able to provide dependencies derived from applying d-separation on the true model (Spirtes et al.,

2000).

Constraint-based methods are efficient and work well with sparse graphs, yet they are sensitive to fail-

ures in independence tests. Thus, score-based methods are commonly known to be a better tool for learning

structure from data (Friedman et al., 1999a).

1.4.3 Score-based approaches

Score-based approaches, also known as ’score-and-search’ techniques have been widely studied to learn

BNs structure. Several algorithms have been proposed such asMaximumWeight Spanning Tree(MWST) (Chow

and Liu, 1968), K2 (Cooper and Herskovits, 1992), Greedy Search (GS), Greedy Equivalence Search

(GES) (Heckerman, 1998; Chickering, 2002; Chickering and Maxwell, 2002), etc. All proposed meth-

ods present:

i. a search space allowing to determine which are the candidate legal Bayesian networks,

ii. a scoring function to assign a score to each candidate structure in the search space and,

iii. an effective search procedure to move from structure to another in the search space.

1.4.3.1 The search space

Each score-based algorithm defines a hypothesis space of potential models, namely, the set of possible

network structures it is willing to consider. Some algorithms are limited to small spaces such as trees (Chow

and Liu, 1968), polytrees and hypertrees (Srebro, 2001). Other approaches search either through the space

of equivalence classes, known as the E-space (Chickering, 2002), or through the space of DAGs, known as

the B-space (Cooper and Herskovits, 1992).

1.4.3.2 The scoring function

The idea over these approaches is to find the network that fits best to data while being as simple as

possible. Thus, score-based algorithms assign a score to each possible network based on these two criteria,

to search after through the space of graphs for the network that maximizes this score. Several scoring func-

tions have been developed to assess the goodness-of-fit of a particular model (e.g., Bayesian information

criterion (BIC) (Schwarz, 1978), Bayesian Dirichlet (BD) (Cooper and Herskovits, 1992), Akaike informa-

tion criterion (AIC) (Akaike, 1970), minimum description length (MDL) (Bouckaert, 1993)). All scoring

functions share two interesting properties:

– Score-equivalent scoring function: A scoring function is score-equivalent if it assigns the same

score to equivalent structures (cf. Definition 1.3.2).

– Decomposable scoring function: A scoring function is decomposable if it can be written as a sum

of measures, each of which is a function only of one node and its parents.

For instance, the BD score presented in (Cooper and Herskovits, 1992) as part of the K2 algorithm

consists of two main parts: The prior probability of the structure P (G) and the likelihood of the structure

given the data P (G|D).
Formally, the BD score is expressed by:

BDscore = P (G, D) = P (G)
n
∏

i=1

qi
∏

j=1

Γ(αij)

Γ(Nij + αij)

ri
∏

k=1

Γ(Nijk + αijk)

Γ(αijk)
(1.13)

where n is the number of variables, qi is the possible parent configurations of variable i, ri is the number

of values variable i, Nijk is the number of times where variable i took on value k with parent configuration

j Nij =
∑ri

k=1Nijk and Γ is the gamma function. However, the BD score is not score-equivalent.

18 Chapter1: Bayesian Networks

Buntine (Buntine, 1991) proposed the Bayesian Dirichlet Equivalent score known as BDeu. This latter

uses the same formula as the BD score, with Dirichlet coefficients:

αijk =
N ′

riqj
(1.14)

where N ′ is a user defined value to express the number of equivalent examples.

Heckerman et al. (Heckerman et al., 1995) proposed another variant of the BDeu score known as the

BDe score, with Dirichlet coefficients:

αijk = N ′ × P (Xi = xk, Pa(Xi = xj)|Gc) (1.15)

where Gc is the complete graph.

In the case where Xi has an uniform conditional probability distribution, αijk collapse to the Dirichlet

coefficients of Equation 1.14, that corresponds to an uniform, non-informative prior. An interesting property

of the BDeu and BDe scores is that they assign the same score for equivalent structures.

1.4.3.3 The search procedure

Having a set of possible network structures, a scoring function and a training dataset, we are dealing

with an optimization problem, where the desired output is a network structure, from the set of possible

structures, that maximizes the score. In the general case, finding an optimally scoring G∗ is NP-hard. Most

score-based methods use classical heuristic techniques that attempt to find the highest scoring structure, but

are not guaranteed to do so.

The simplest search procedure is the greedy one. Greedy search (GS) performs as follows: for each

BN structure G, GS moves on to the neighbor graph that has a better score, until it reaches a structure that

has the highest score in the list of neighbors. A natural choice of neighbors of a BN structure is a set of

structures that are identical to it except for small local modifications. The most commonly used operators

which define the local modifications are add an edge, delete an edge and reverse an edge, while considering

operations that result in legal networks (i.e., DAGs).

One of the simplest and often used search procedures is the greedy hill-climbing procedure (Heckerman,

1998; Chickering, 2002), based on 6 steps as follows: 1) Start from an initial network structure G that may

be either empty or not (e.g., obtained from some prior knowledge). 2) Compute its score. 3) Consider all

of the neighbors of G in the space (by applying a single operator to G (cf. Algorithm 4)). 4) Compute the

score for each of them. 5) Apply the change that leads to the best improvement in the score. 6) Continue

this process until no modification improves the score. Algorithm 3 summarizes all these steps.

Score-based methods work better with less data than constraint-based methods and with probability dis-

tributions that admit dense graphs. However, as the search space is extremely large, score-based approaches

spend a lot of time at examining candidates, and this problem becomes more awkward when we deal with

massive data (i.e., large in number of instances and attributes). Both constraint-based and score-based ap-

proaches present some advantages and suffer from some drawbacks, thus researchers have tried to draw

hybrid methods on the basics of the use of the good points of both approaches.

1.4.4 Hybrid approaches

Hybrid algorithms combine the main features of both techniques by using the local conditional indepen-

dence tests and the global scoring functions. The idea was at the beginning provided by (Singh and Valtorta,

1993; Singh and Valtorta, 1995). First, they construct a total ordering of the variables using conditional in-

dependence tests. Then, they use this ordering as input to the K2 algorithm to learn the structure. Several

works have followed this technique (e.g., (Provan and Singh, 1995; Acid and de Campos, 1996; Acid and

de Campos, 2000; Acid and de Campos, 2001)).

1.4 Bayesian networks structure learning 19

Algorithm 3 Greedy hill-climbing (Heckerman, 1998)

Require: D: A database, G: Initial BN structure, Score: A scoring function

Ensure: G: The local optimal BN structure

1: Maxscore ← Score(G)
2: No_Changes← false
3: repeat

4: List_neighbors← Generate_neighborhood(G)
5: Gnew ← ArgmaxG′∈neighborhoodG(Score(G

′))
6: if Score(Gnew) ≥Maxscore then

7: Maxscore ← score(Gnew)
8: G ← Gnew
9: else

10: No_Changes← true
11: end if

12: until No_Changes

Algorithm 4 Generate_neighborhood

Require: G: A BN structure

Ensure: N : A list of neighbors DAGs

1: N ← ∅
2: for all e ∈ G do

3: N ← N ∪ (G \ {e}) % delete_edge(e).

4: if acyclic (G \ {e} ∪ invert(e)) then

5: N ← (N ∪ G \ {e} ∪ invert(e)) % invert_edge(e).

6: end if

7: end for

8: for all all e /∈ G do

9: if acyclic (G ∪ {e}) then

10: N ← N ∪ (G ∪ {e}) % add_edge(e).

11: end if

12: end for

(Dash and Druzdzel, 1999) combine the PC algorithm with GS. (Acid and de Campos, 2003) do the

opposite: they perform an initial GS with random restart and then use conditional independence tests to add

and delete arcs from the obtained DAG.

Friedman et al. (Friedman et al., 1999b) proposed the Sparse Candidate (SC) algorithm. It uses con-

ditional independence to find good candidate parents and hence limit the size of the search in later stages.

This algorithm is very useful in increasing the speed of search procedures, without unduly damaging the

score. Tsamardinos et al. proposed the max-min-hill-climbing (MMHC) algorithm considered as an in-

stantiation of the SC algorithm. MMHC outperforms state-of-the-art learning algorithms and is applied to

large datasets (Tsamardinos et al., 2006).

MMHC is an hybrid approach that combines the local search technique of the constraint-based methods

and the overall structure search technique of the score-based methods. This algorithm consists of two phases

– The first phase aims to find, for each node in the graph, the set of candidate nodes that can be con-

nected to it. At this stage there is no distinction between children and parents nodes and links orien-

tation is not of interest.

– The second phase allows the construction of the graph G using the greedy search heuristic constrained
to the set of candidate children and parents of each node in the graph as defined in the first phase.

The first step is described by Algorithm 5 and Algorithm 7, while the overall process is summarized in

20 Chapter1: Bayesian Networks

Algorithm 5 MMPC (Tsamardinos et al., 2006)

Require: D: A database, T : A target variable, Potlist: The list of potential neighbors of T
Ensure: CPC: The set of candidate parents and children of T % Phase I: Forward

1: CPC ← ∅
2: repeat

3: 〈F.assocF 〉 ←MaxMinHeuristic(T,CPC, Potlist)
4: if assocF 6= 0 then

5: CPC ← CPC ∪ F
6: Potlist ← Potlist\F
7: end if

8: until CPC has not changed or assocF = 0 or Potlist = ∅
% Phase II: Backward

9: for all X ∈ CPC do

10: if ∃S ⊆ CPC, s.t.Ind(X;T |S) then

11: CPC ← CPC\{X}
12: end if

13: end for

Algorithm 6 MaxMinHeuristic (Tsamardinos et al., 2006)

Require: T : A target variable, CPC: A subset of variables, Potlist: The list of potential neighbors of T
Ensure: F : The variable that maximizes the minimum association with T relative to CPC, assocF : F

association measurement

1: assocF ← maxX∈PotlistMinAssoc(X;T |CPC)
2: F ← argmaxX∈PotlistMinAssoc(X;T |CPC)

Algorithm 7 MMPC (Tsamardinos et al., 2006)

Require: D: A database, T : A target variable

Ensure: CPC: The set of candidate parents and children of T
1: Potlist ← V\T
2: CPC ←MMPC(T,D, Potlist)
3: for all X ∈ CPC do

4: if T /∈MMPC(X,D,V\X) then

5: CPC ← CPC\{X}
6: end if

7: end for

Algorithm 8 MMHC (Tsamardinos et al., 2006)

Require: D: A database, Score: A scoring function

Ensure: BN : A BN on the set of variables V in D
1: All_CPCs← ∅ % Local search

2: for all X ∈ V do

3: CPCX ←MMPC(X,D)
4: All_CPCs← All_CPCs ∪ CPCX

5: end for

% Global search

6: BN ← Greedyhill − climbing(D, BN, Score, All_CPCs)

Algorithm 8. The MMPC algorithm (cf. Algorithm 7) discovers the set of candidate parents and children

1.5 Evaluating Bayesian networks structure learning algorithms 21

(CPC) for a target variable T . It consists of the MMPC (Algorithm 5) and an additional symmetrical

correction. MMPC removes from each set CPC(T) each node X for which T /∈ CPC(X).

TheMMPC algorithm states that two variablesX and Y are considered as neighbors if Y ∈ CPC(X)
AND X ∈ CPC(Y). (de Morais and Aussem, 2010) refer to this assumption as the AND condition.

This condition has been used by several algorithms such as MMPC, MMMB (Tsamardinos et al., 2006),

PCMB (Peña et al., 2007). yet, (de Morais and Aussem, 2010) considers this condition as severe and

may yield too many false negatives in the result, especially when the sample size is limited. (de Morais

and Aussem, 2010) provide a conservative approach that gives more chance for true positive to enter the

CPC(T) set under practical sample size limitations. They proposed the Markov Boundary search using the

OR condition (MBOR) algorithm, a Markov boundary learning algorithm under the OR condition which

states that two variables X and Y are considered as neighbors if Y ∈ CPC(X) OR X ∈ CPC(Y). The
OR condition gives more opportunity for true positive nodes to enter the Markov boundary. The MBOR

algorithm is scalable and correct under the faithfulness condition (cf. Section 1.4.1). In addition, exper-

imental results have shown a notable benefit of the OR condition in case of densely connected DAGs or

weak associations (de Morais and Aussem, 2010).

MMPC (Algorithm 5) consists of a forward phase where for each variable T of the graph, a set of

variables are added to CPC(T), and a backward phase whose role is to remove false dependencies detected

in the forward phase. During the forward phase. MaxMinHeuristic selects the variables that maximize

theMinAssocwith target variable T conditioned to the subset of the currently estimatedCPC. MinAssoc
estimates the strength of association between two variables given CPC. Dependency is measured using an

association measurement function such as mutual information, G2, χ2.

Tsamardinos et al. assume independence without performing independence tests if there are less than

five training instances on average per parameter (count) to be estimated. Contrary to Spirtes et al. (Spirtes

et al., 2000) who assume dependence if there are too few records. (de Jongh and Druzdzel, 2014) refers

to these rules as the remove and keep rules respectively. They made an experimental comparison between

these two assumptions and they experimentally proved that the remove rule outperforms the keep rule as it

allows to minimize the structural distance between the true BN structure and the learned one.

Algorithm 8 performs a Greedy hill-climbing search (Algorithm 3). The main difference is that the

Generate_neighborhood procedure (Algorithm 4) will generate the neighbors listN from only the sets of

candidate parents and children detected by Algorithm 7.

Tsamardinos et al. (Tsamardinos et al., 2006) provided a wide comparative study among several algo-

rithms from three algorithm families, using several benchmarks and metrics (execution time, SHD measure,

etc.) Following this study, they showed that hybrid approaches provide better results than other ones.

The next section provides more details on benchmarks and metrics used in the literature to evaluate

structure learning algorithms.

1.5 Evaluating Bayesian networks structure learning algorithms

The evaluation process of a BN structure learning algorithm often requires the existence of a theoretical

(also called gold) network from which one can sample a training data. Then learning is performed using

this sampled data and the learned network is compared to the theoretical one using some evaluation metrics.

The overall process is shown by Figure 1.4.

Usually, famous BNs are used in the literature as gold nets, yet, some researchers use a random gen-

eration process of synthetic BNs in order to provide a large number of possible models and to carry out

experimentation while varying models from simple to complex ones, depending on the addressed learn-

ing area. This section presents some famous Bayesian networks used in the literature, describes some BN

random generation processes, introduces some sampling approaches and goes through existing evaluation

measures.

22 Chapter1: Bayesian Networks

�������
���������������

	

����������
��

�	
	��
	� ����	
	��
	� ��

��������		
�����
��	���
��
��	
�������

�������
	��
���
��

���������	
���
��

������	
���
��

Figure 1.4: Evaluation process of a BN structure learning algorithm

1.5.1 Gold Bayesian networks

1.5.1.1 Famous gold Bayesian networks

BNs have proved their efficiency in several domains such as medicine, industry, marketing, security,

etc (Naïm et al., 2004). Some Bayesian networks used in these domains have been reused later by other

researchers or shipped as examples by BN software tools. This continuous use made them famous in the

literature, and they have become often used to evaluate new approaches related to probabilistic inference in

BNs or the generation of these models and to compare reported results to previous work results.

Famous gold BNs can be classified according to the application domain from which they were derived

or their size as they varies from small (i.e., less than 20 nodes) to massive ones (more than 1000 nodes).

Here are some examples of famous BNs:

The Asia network, also called LUNG CANCER network. It is a small network with 8 nodes representing
8 binary random variables and 8 arcs. It has been initially defined by (Lauritzen and Speigelhalter, 1988)

as a fictitious medical knowledge example and is considered as a typical diagnostic network. It provides a

diagnosis of a patient, having just come back from Asia and showing dyspnoea.

The Insurance network, with 27 nodes and 52 arcs, the insurance network is considered as a medium

net. It has been introduced by Binder et al. (Binder et al., 1997) and used to classify car insurance applica-

tions.

The MUNIN network, the Muscle and Nerve Inference Network has been introduced by Andreassen

et al. (Andreassen et al., 1989). It allows to diagnose peripheral muscle and nerve diseases. This network is

considered as a massive network since it contains 1041 nodes and 1397 arcs.

1.5.1.2 Random generation of gold Bayesian networks

(Statnikov et al., 2003) proposed an algorithmic approach to generate arbitrarily large BN by tiling

smaller real-world known networks. The complexity of the final model is controlled by the number of tiling

and a connectivity parameter which determines the maximum number of connections between one node and

the next tile. Some works have been devoted to the generation of synthetic networks but without guarantees

that every allowed graph is produced with the same uniform probability (Ide and Cozman, 2002). In (Ide

et al., 2004) the authors have proposed an approach allowing to generate uniformly distributed Bayesian

1.5 Evaluating Bayesian networks structure learning algorithms 23

Algorithm 9 PMMixed (Ide et al., 2004)

Require: n: Number of nodes, I: number of iterations,

W : maximum induced width, O: possibly constraints on node degree and number of nodes

Ensure: A connected DAG with n nodes

1: Create a network with n nodes, where all nodes have just one parent, except the first node that does not

have any parent.

2: for i← 1 to I do

3: if current graph is a polytree then

4: With probability p, call Procedure AorR(current graph)
5: with probability 1− p, call Procedure AR(current graph)
6: if the resulting graph satisfiesW and O then

7: accept the graph

8: else

9: keep previous graph

10: end if

11: else

12: Call Procedure AorR (current graph)

13: if the resulting graph is a polytree and satisfiesW and O then

14: accept with probability p
15: else

16: if it satisfiesW and O then

17: accept the graph

18: else

19: keep previous graph

20: end if

21: end if

22: end if

23: end for

Algorithm 10 Add and Remove (AR) (Ide et al., 2004)

Require: Ginitial: An initial DAG
Ensure: G A DAG

1: Generate uniformly a pair of distinct nodes i, j
2: if the arc (i, j) exists in Ginitial then

3: G ← Ginitial
4: else

5: Invert the arc with probability 1/2 to (j, i)
6: Find the predecessor node k in the path between i and j
7: G ← Ginitial \ {(k, j)} %Remove the arc between k and j.
8: G ← G ∪ {(i, j)} OR G ← G ∪ {(j, i)}%Add an arc (i, j) or arc (j, i) depending on the result of the

inversion

9: end if

networks usingMarkov chains, known as the PMMixed algorithm. Using this algorithm, constraints on gen-

erated nets can be added with relative ease such as adding constrains on nodes degree, maximum number of

dependencies in the graph, etc. This is done by constructing an ergodic Markov chain with uniform limiting

distribution, such that every state of the chain is a DAG satisfying the constraints. After a given number of

iterations, the algorithm leads to a satisfactory DAG. The overall process is outlined by Algorithm 9 that

calls the two procedures AR (Algorithm 10) and AorR (Algorithm 11).

24 Chapter1: Bayesian Networks

Algorithm 11 Add or Remove (AorR) (Ide et al., 2004)

Require: Ginitial: An initial DAG
Ensure: G: A DAG

1: Generate uniformly a pair of distinct nodes i, j
2: if the arc (i, j) exists in Ginitial then

3: G ← Ginitial \ {(i, j)} %Delete the arc.

4: if G does not remain connected then

5: G ← G ∪ {(i, j)} %Add the arc.

6: end if

7: else

8: G ← Ginitial ∪ {(i, j)} %Add the arc.

9: if G does not remain acyclic then

10: G ← G \ {(i, j)} %Delete the arc.

11: end if

12: end if

Algorithm 12 Forward Sampling (Henrion, 1986)

Require: G: A Bayesian network over X = {X1, . . . , Xn} nodes, N : The number of desired samples

Ensure: A sample of size N
1: δ ←topological ordering of X
2: for i← 1 to N do

3: for j ← 1 to |δ| do

4: uj ← x(Pa(Xi)) // (Pa(Xj)) ∈ {x1, . . . xj−1}

5: sample xj from P (Xj|uj)
6: end for

7: end for

1.5.2 Sampling Bayesian networks

Having either a famous Bayesian network or a generated BN resulting from a random generation pro-

cess (i.e., the BN structure and parameters), a sampling method is applied to generate observational data

and evaluate the ability of the learning algorithm to find the initial net from which data has been sampled

(e.g., Metropolis-Hastings MCMC (Metropolis et al., 1953), Forward Sampling (Henrion, 1986), Likeli-

hood Weighting (Fung and Chang, 1990), Gibbs Sampling (MCMC) (Gelfand and Smith, 1990; Smith and

Roberts, 1993)). The Forward Sampling is a well known sampling technique: nodes are sampled with re-

spect to the topological order of the ground graph, so that by the time we sample a node we have values for

all of its parents. After, we sample from the defined distribution and by the chosen values for the node’s

parents (cf. Algorithm 12).

1.5.3 Evaluation metrics

The evaluation of any learning algorithm is made according to two types of evaluation measures: the

first one is related to the execution speed while the second examines the quality of reconstruction.

1.5.3.1 Evaluating the execution speed

The execution speed is measured with respect to the execution time and the number of statistical calls

performed by an algorithm. The first metric is closely related to the specific implementation. So, to have

faithful results using this metric it would be better to use this metric with the same implementation environ-

ment for the set of compared algorithms. The second metric computes the total number of statistical calls

1.5 Evaluating Bayesian networks structure learning algorithms 25

used by an algorithm. Depending on the considered algorithm family, these measures might be either tests

of independence, or measures of association or local scores.

1.5.3.2 Evaluating the quality of reconstruction

Two complementary ways can be used to evaluate the capacity for reconstruction, namely reconstructing

the graphical structure and reconstructing the associated joint probability distribution (de Campos, 2006).

Evaluating the graph reconstruction. This evaluation returns to measure the structural differences be-

tween the original and the learned networks by computing the number of added, deleted and inverted edges

in the learned network with respect to the original one. Methods to evaluate the graph reconstruction quality

may be divided into three families: a) methods based on sensitivity and specificity, b) methods based on

score functions and c) methods based on distance measures.

a) Sensitivity and specificity-based method. Sensitivity and specificity are statistical measures of the

performance of a binary classification test, also known as classification function in statistics (FAST, 2010).

Sensitivity measures the proportion of actual positives which are correctly identified, while specificity

measures the proportion of negatives which are correctly identified.

Given the graph of the theoretical network G0 = (V,E0) and the learned graph G = (V,E), The
sensitivity-specificity-based method begins by calculating the following values:

– TP (true positive) = number of edges present in both G0 and G.
– TN (true negative) = number of edges absent in both G0 and G.
– FP (false positive) = number of edges present in G, but not in G0.
– FN (false negative) = number of edges absent in G, but not in G0.
Then, the sensitivity and specificity can be calculated as follows:

Sensitivity =
TP

TP + FN
(1.16)

Specificity =
TN

TN + FP
(1.17)

These measures are easy to calculate. They are often used in the literature. However, the differences

in orientation between two graphs in the same equivalence class are counted as errors, even if they are not

distinguishable from data.

b) Score-based method. To evaluate a structure learning algorithm, many studies use a comparison

between the score function of the learned graph and the original graph. The learning algorithm is good

if S(G, D) ∼= S(G0, D) where S is a score function. One interesting property of score functions is that

they assign the same score to networks that share the same essential graph. Nevertheless, the use of scores

to evaluate the reconstruction quality raises two criticisms: first, the score corresponds to the a posteriori

probability of a network only under certain conditions (e.g., a Dirichlet distribution of the hyperparameters

for the BDeu score) and it is unknown to what degree these assumptions hold in distributions encountered

in practice. Second, in practice, score functions are very sensitive with respect to the equivalent sample size

used.

c) Distance-based method. Tsamardinos et al. (Tsamardinos et al., 2006) adapted the Structural Ham-

ming Distance, usually used for DAGs, (SHD) for PDAGs.

Definition 1.5.1. Structural Hamming Distance.

The Structural Hamming Distance between two PDAGs is defined as the number of the following operators

required to make the PDAGs match: add or delete an undirected edge, and add, remove, or reverse the

orientation of an edge.

26 Chapter1: Bayesian Networks

Algorithm 13 SHD (Tsamardinos et al., 2006)

Require: H: Learned PDAG, G: True PDAG
Ensure: shd value
1: shd← 0
2: for every edge E different in H than G do

3: if E is missing in H then

4: shd+ = 1
5: end if

6: if E is extra in H then

7: shd+ = 1
8: end if

9: if E is incorrectly oriented in H then

10: shd+ = 1
This includes reversed edges and edges that are undirected in one graph and directed in the other.

11: end if

12: end for

The SHD of a given learned PDAG is computed as follows: An extra unoriented edge is penalized by an

increase of the distance by 1 and not orienting an edge that should be oriented is penalized by an increase

of the distance by 1 too. SHD is applied to PDAG to avoid penalizing structural differences that cannot be

statistically distinguished. Thus, for learning algorithms that returnDAGs, the PDAG has to be generated

before using the SHD metric (cf. Algorithm 1). The overall steps of the SHD metric computation are

described by Algorithm 13.

Evaluating the joint probability distribution reconstruction. To reconstruct the joint probability dis-

tribution, we can estimate the Kullback-Leibler divergence or KL-divergence (Kullback and Leibler, 1951)

between the distributions associated with the original and the reconstructed networks. This measure does

not directly penalize for extraneous edges and parameters (Tsamardinos et al., 2006).

1.6 Bayesian network-related softwares

Several software tools have been developed for Bayesian networks. Some of them are commercial while

some others are open source. Here we present a non exhaustive list of existing tools and we describe briefly

the functionalities allowed by each of them.

1.6.1 Commercial software tools

HUGIN. 1 a well known model-based decision support software for reasoning under uncertainty. It uses

several models to support decision making including Bayesian network. Hugin Developer comprises the

Hugin GUI and the Hugin Decision Engine. The user interface contains a graphical editor allowing to easily

construct and maintain BNs. The Hugin Decision Engine contains all functionalities related to handling and

using knowledge bases in a programming environment. Five major programming languages are supported,

namely, C, C++, Java, .NET and an ActiveX-server.

Functionalities related to the definition, inference and learning of Bayesian networks are all developed.

Several inference and learning algorithms are supported and BNs with continuous variables as well as learn-

ing from missing data are treated.

1. http://www.hugin.com

1.6 Bayesian network-related softwares 27

Netica. 2 a commercial software tool with a reduced price for the scientific community. Its intuitive

user interface allows to draw the networks. Parameters are then easily introduced or learned from data, with

support of learning from missing data. Several inference algorithms are supported too. Structure learning

is supported from version 5.0 and later, using the TAN Structure learning functionality.

BayesiaLab. 3 a french software tool distributed by Bayesia. BayesiaLab handles exact and approxi-

mate inference. BNs learning is also so developed in this software. It provides parameter learning using

maximum likelihood estimation and a variety of structure learning algorithms. It supports missing data,

prior knowledge, supervised learning, etc.

Probayes. 4 a french software tool developed using the C++ language. It provides solutions in areas

of decision support using artificial intelligence and machine learning techniques. For non-commercial pur-

poses, Probayes provides the ProBT library 5. ProBT is a set of high-performance algorithms. It allows to

create and manipulate BNs objects and provides a set of learning and inference algorithms.

1.6.2 Open source software tools

Bayes Net Toolbox for Matlab. 6 Initially provided by Kevin Murphy in 1977, the BNT toolbox sup-

ports many different inference algorithms either exact or approximate. It also supports several methods for

parameter learning from either complete or incomplete data sets. Structure learning can also be performed

as a number of known algorithms (e.g., MCMC, IC, PC) are already developed under the BNT toolbox.

Additionally, the source code is extensively documented which constitutes a strength for this tool and ex-

plains its wide use, especially by the scientific community.

Bayesian network structure learning, parameter learning and inference for R. 7 bnlearn is a R

package for BN parameter and structure learning. It is also useful to perform probabilistic inference. The

package provides several score-based, constraint-based and hybrid structure learning algorithms and sup-

ports discrete and continuous data sets. It supports statistical and Bayesian parameter estimation methods.

In addition, it provides some other utility functions, such as random data generation.

OpenMarkov. 8 Developed by the Research Center for Intelligent Decision-Support Systems of the Na-

tional Distance Education University (UNED) in Madrid. OpenMarkov is an open source tool, developed

in Java. The graphical user interface (GUI) has two working modes: edition and inference. OpenMarkov

offers two structure learning algorithms: the PC algorithm, as a constraint-based method and the hill climb-

ing algorithm, as a score-based algorithm. The default implementation of parameter learning is a Bayesian

approach using a Laplace-like correction.

Mens X Machina Probabilistic Graphical Model Toolbox (MxM PGM). 9 Is a MATLAB toolbox to

manipulate Bayesian networks and other probabilistic graphical models. Currently, MXM provides source

code only for the local Bayesian network learning and Bayesian network skeleton identification using the

MMPC algorithm (cf. Algorithm 7).

2. www.norsys.com/

3. http://www.bayesia.com

4. http://www.probayes.com

5. http://www.probayes.com/fr/Bayesian-Programming-Book/downloads/

6. bnt.googlecode.com

7. http://www.bnlearn.com

8. http://www.openmarkov.org

9. http://www.ics.forth.gr/bil/index_main.php?l=e&c=480

28 Chapter1: Bayesian Networks

1.7 Conclusion

In this chapter, we introduced basic definitions and concepts related to Bayesian networks. Then, we

described the current existing approaches for BN structure learning from complete data. We have seen that

hybrid methods perform better than other techniques based only on conditional independence tests or on

score functions on the level of scalability and complexity of algorithms. We also addressed the BN structure

learning evaluation task which consists of random model generation, sampling and evaluation metrics.

The use of BNs as a knowledge representation tool increases more and more in the machine learn-

ing community, and several extensions have been proposed in order to broaden their range of applica-

tion (e.g., Causal Bayesian Networks (Pearl, 2000) (CBN) Dynamic Bayesian Networks (Murphy, 2002)

(DBN), Hierarchical Bayesian Networks (Gyftodimos and Flach, 2002) (HBN) and Relational Bayesian

Networks (Koller and Pfeffer, 1998) (RBN) which are in the core of the current thesis. RBNs are an exten-

sion of Bayesian networks in the relational context. As the relational data representation is widely different

from the propositional data representation assumed by BNs, we devote the next chapter to present some

useful concepts from the relational database theory.

2
Database Relational Model

THe relational representation is strictly more expressive than propositional representation

assumed by almost all machine learning techniques such as Bayesian Networks.

The relational model principles where originally laid down by E. F. Codd (Codd, 1983) who

realized that the discipline of mathematics could be used to inject some solid principles and rigor

into the database management field. Based on set theory and predicate logic, the relational model

presents the theoretical foundation underlying today’s relational products.

Nowadays, the relational model is the most commonly used database model, it represents the

basis for the most large scale knowledge representation systems.

Systems used to handle relational data representation are called relational database management

systems (RDBMS). Usually, these softwares have to be tested in case of update (e.g., new com-

ponents added, old ones updated). Leading database platform providers (e.g., Microsoft, Oracle,

Informix) often perform benchmark data to prove the performance of their products. Bench-

marking database systems presents an old issue for the database community which is concerned

with several axes, among which, determining data distribution and generating the database.

The chapter is dedicated to provide some useful concepts. Then, to give a formal definition

of the relational model. Relational database benchmarking and methods to randomly generate

databases are also discussed.

29

30 Chapter2: Database Relational Model

Contents

2.1 Introduction . 31

2.2 Database management . 31

2.3 Relational model . 31

2.3.1 Basic concepts . 32

2.3.2 Relational model definition . 35

2.3.3 Relational model representation . 35

2.4 From the entity-relationship model to the relational model 36

2.4.1 Entities . 36

2.4.2 Relationships . 36

2.4.3 Entity-relationship diagram representation . 37

2.4.4 Mapping ER Diagram to a relational model . 37

2.5 Benchmarking database systems . 38

2.5.1 Database Benchmarks definition . 38

2.5.2 Random relational database generation . 39

2.5.3 Benchmarking for decision support systems . 40

2.6 Conclusion . 40

2.1 Introduction 31

2.1 Introduction

A database system is usually classified based on the data structure and operators used to access the data.

The relational representation has turned out sufficient for almost any kind of data representation problem,

and most commercial databases are based on the basis of the relational model.

This situation gives rise to the idea of setting up a standard for measuring the performance of competitive

products. The standard is usually known as a benchmark, A method for measuring similar systems in

reference to a standard is called benchmarking. Using these benchmark measurements, it will be possible

to compare the performance of various relational systems and to analyze their strengths and weaknesses

The remainder of this chapter is as follows: Section 2.2 gives an overview of database management.

Section 2.3 presents some basic concepts from the relational representation and defines the relational model.

Section 2.4 presents mapping rules from the Entity-relationship diagram to the relational model. Section 2.5

goes through relational database benchmarking and random relational database generation.

2.2 Database management

A database system is a repository for a collection of computerized files whose overall purpose is to

maintain information and to make that information available on demand. It consists on four components,

namely data, hardware, software and users (Date, 2003).

– Data. The data stored in the system. It can be shared or integrated.

– Hardware. Storage volumes used to store the data as well as processors and associated memory used

to support the execution of the database system software.

– Software. All requests from users for access to the database are handled by the database management

system (DBMS). It provides users with a view of the database and supports user operations (e.g.,

inserting, retrieving, updating data)

– Users. Users can be divided into three categories:

– Application programmers: who responsible for writing application programs that use the database.

– End users: who interact with the system from online terminals.

– Database administrator (DBA): who is responsible for administrating the database and the database

system.

One of the most important benefits of a database system is data independence, that is, the immunity of

applications to changes in the way the data is stored and accessed.

Database systems are categorized based on the data structure and operators used to access the data.

For instance, in the hierarchic system, the data is presented in the form of a set of trees structures and

operators provided for manipulating such structures include operators for traversing hierarchic paths. In the

relational system, the data is perceived by users as tables and the operators at the user’s disposal generate

new tables from old ones. Form both an economic and a theoretical perspective, the relational approach is

easily the most important.The next section is dedicated to an extended explanation of the relational model

components.

2.3 Relational model

A relational system is a system that supports relational databases and operations on such databases. This

section starts by providing some basic concepts. Then we give the definition of a relational model. All these

concepts and definitions are derived from (Date, 2003; Date, 2005; Date, 2008).

32 Chapter2: Database Relational Model

2.3.1 Basic concepts

The formal theory underlying relational systems is called the relational model. It addresses three aspects

of data: data structure, data integrity and data manipulation.

2.3.1.1 Data structure

Definition 2.3.1. Domain.

A domain D is a data type. It is a named set of scalar values V = (v1, . . . , vl). It might be either predefined

or user-defined. The later has a name that is unique within the database.

Definition 2.3.2. Attribute.

Loosely, a column; more precisely, an < attribute− name : domain− name > pair, though it’s common

to refer to a given attribute informally by its attribute name alone. Attributes have names that are unique

within the containing relation.

Definition 2.3.3. Relation.

A relation R consists of two parts: a heading and a body. The heading is the row of column headings and

the body is the set of data rows.

– The heading (= relation schema) consists of a fixed set of attributes, or more precisely

〈attribute− name : domain− name〉 pairs (A1 : D1, . . . , 〈An : Dn〉), such that each attribute

Aj corresponds to exactly one of the underlying domains Dj(j = 1, . . . , n). The attribute names

A1, . . . , An are all distinct.

– The body consists of a set of tuples. Each tuple consists of a set of 〈attribute− name : attribute− value〉
pairs (A1 : V vi1, . . . , 〈An : vin〉), where (i = 1, . . . ,m) and m is the number of tuples in the set.

In each such tuple, there is one such 〈attribute− name : attribute− value〉 pair 〈Aj, vij〉 for each

attribute Aj in the heading. For any given pair 〈Aj, vij〉, vij is a value from the unique domain Dj

that is associated with attribute Aj .

The number of attributes, n, is called the degree and the number of tuples, m, is called the cardinality.

Relations have names that are unique within the database.

Example 2.3.1. Figure 2.1 summarizes all the concepts related to a relation. The relation heading is defined

through 4 attributes, each of which has its one domain. The relation body is a set of m tuples. The relation

degree is equal to 4 and its cardinality is equal to m.

All relations satisfy four very important properties (Date, 2003).

1. They do not contain any duplicate tuples: This property follows from the fact that the body of the

relation is a mathematical set, and sets in mathematics by definition do not include duplicate elements.

2. There is no ordering to the tuples: This property also follows from the fact that the body of the relation

is a mathematical set and sets in mathematics are not ordered.

3. There is no ordering to the attributes: This property follows from the fact that the heading of a relation

is also defined as a set of attributes.

4. All attributes values are atomic: This property is a consequence of the fact that all underlying domains

contain atomic values only. A relation satisfying this condition is said to be normalized.

Definition 2.3.4. Relational schema.

Sometimes referred to as a database schema, it is a collection of named relation schemas (relation head-

ings).

Definition 2.3.5. Relational database.

A relational database is a database that is perceived by its users as a collection of normalized relations

(headings and body) of assorted degrees.

2.3 Relational model 33

����
���������

���������
���������

�����������	
��

������

����������	

���	
������

��	���

�	
��	������

�����
���

���
����
����
����

���
���

Figure 2.1: Relation components

2.3.1.2 Data integrity

Data integrity is insured by the use of primary and foreign keys.

Definition 2.3.6. Primary key.

It is a unique identifier. More precisely, let K be a subset of the heading of a relation R. K is a primary

key for R if and only if:

– No possible value for R contains two distinct tuples with the same value for K (the uniqueness

property);

– The same can’t be said for any proper subset of K (the irreducibility property). Every relation R, has

at least one candidate key. They are sets of attributes (and key values are therefore tuples), namely, a

column or column combination with the property that, at any given time, no two rows of the relation

contain the same value in that column or column combination.

Definition 2.3.7. Foreign key.

Let R1 and R2 be relations, not necessarily distinct, and let K be a key for R1. Let FK be a subset

of the heading of R2 such that there exists a possibly empty sequence of attribute renaming on R1 that

maps K into K ′ (say), where K ′ and FK contain exactly the same attributes. Further, let R2 and R1 be

subject to the constraint that, at all times, every tuple t2 in R2 has an FK value that’s the K ′ value for

some (necessarily unique) tuple t1 in R1 at the time in question. Then FK is a foreign key, the associated

constraint is a referential constraint, and R2 and R1 are the referencing relation and the corresponding

referenced relation, respectively, for that constraint.

Along with the foreign key concept, the relational model includes the following rule:

Property 2.3.1. Referential integrity.

The database must not contain any unmatched foreign key values. means that if B references A, then A
must exist.

From the foreign key definition, we can introduce referential path and referential cycle notions.

34 Chapter2: Database Relational Model

����������

���
�������

�������

�������	
����

�������������

����
���������

���������

�
���������	
����

�������������

����
���������

���������

�
���
�����	
����

�� ��

��

(a) An example of a referential path

���

�
��

��

����

���

�
��

��

����

����	��

��
��
	�

���	�

�����

��

����������	��

����
������
	�

�������	�

�������������

��

������
	��

���
����
	�

����
	�

���������

��

�� ��

��

(b) An example of a referential cycle

Figure 2.2: An illustration of foreign key, referential path, and referential cycle

Definition 2.3.8. Referential path.

Let relations Rz, Ry, Rx, ..., Rb, Ra be such that there exists a referential constraint from Rz to Ry, a refer-

ential constraint from Ry to Rx, . . . , and a referential constraint from Rb to Ra. Then the chain of such

constraints from Rz to Ra constitutes a referential path from Rz to Ra (and the number of constraints in the

chain is the length of the path).

Definition 2.3.9. Referential cycle.

A referential cycle is a referential path from some relation to itself.

Note that database designs involving referential cycles are usually contraindicated (Date, 2008).

Example 2.3.2. Let R1, R2 and R3 be three relations, with primary keys #IDR1, #IDR2 and #IDR3

respectively.

In Figure 2.2(a), R2 references R1 using the foreign key FKR1. For each tuple t of relation R2 has an

FKR1 that exists in column #IDR1 of relation R1. R1 is the referenced relation. Moreover, there exists

referential constraints from R3 to R2 and from R2 to R1. Then, {R3, R2, R1} constitutes a relational path

of length 2.

In Figure 2.2(b), there exists a referential constraints from R3 to R2, from R2 to R1 and from R1 to R3.

Then, {R3, R2, R1, R3} constitutes a relational cycle.

2.3.1.3 Data manipulation

Data manipulation concerns operators used to access the data. They are all set-level operators. An

operator manipulates individual data items and returns a result. The data items are called operands or

arguments.

Property 2.3.2. The closure property.

The closure property states that the output from every operation is the same kind of objects as the input (i.e.,

relations) which implies that we can write nested relational expressions.

Usually, the interaction with a relational database is ensured by specifying queries using structured

language. The standard language for interacting with relational databases is the Structured Query Language

(SQL) (Kline et al., 2008).

2.3 Relational model 35

Based on the relational algebra and tuple relational calculus, SQL consists of a data definition language

and a data manipulation language. It allows schema creation and modification, data update and delete, as

well as data access control. It presents a standard of the American National Standards Institute (ANSI) and

of the International Organization for Standardization (ISO).

SQL uses some specific operators to extract significant meaning such as aggregators and multi-set op-

erators.

Definition 2.3.10. Aggregate function.

An aggregate function γ takes a multi-set of values of some ground type, and returns a summary of it.

Multi-set operators combine the results of two queries into a single result (Perlich and Provost, 2006).

Formally, a multi-set operation is defined as follows:

Definition 2.3.11. Multi-set operator.

A multi-set operator φk on k multi-valued attributes A1, . . . , Ak that share the same range V (A1) denotes

a function from V (A1)
k to V (A1).

Example 2.3.3. Example of aggregate functions could be the maximum, the minimum, the mode, the aver-

age, the number of rows, etc. While, the intersection and the union are examples of multi-set operators.

For instance, SELECT COUNT (*) FROM R1; is an SQL query that returns the number of tuples in R1.

The SQL query SELECT #IDR1 FROM R1 UNION SELECT FKR1 from R2; returns all #IDR1 that

appeared in both R1 and R2.

2.3.2 Relational model definition

The relational model represents a database system at a level of abstraction that is somewhat removed

from the details of the underlying machine. Having introduced all basic concepts on which a relational

model is found, we can formally define it as follows:

Definition 2.3.12. Relational model.

A relational model addresses three aspects of data:

– Data structure: a collection of relations.

– Data integrity: insured by the use of primary and foreign keys

– Data manipulation: operators used to access the data.

2.3.3 Relational model representation

During this dissertation, we will adopt the following graphical representation to illustrate relational

models.

– Rectangle to represent relations.

– Each rectangle has a head part representing the name of the entity and a body part representing the

relation attributes.

– Each primary key is underlined.

– Each foreign key has the same name as the primary key attribute of the referenced relation.

– Dotted lines to represent referential constraints.

Example 2.3.4. Figure 2.3 is an example of a relational model representation relative to 4 relations

Professor, Student, Course and Registration of degrees 3, 3, 4 and 5 respectively. It contains 3 ref-

erential constraints: The relation Course references the relation Professor. The relation Registration
references both relations Student and Course.

36 Chapter2: Database Relational Model

��������� ��	
���

��	���
������������

�������
���	
����

������������
��

��	����
����

������
�������

��	����
�������
������
������	
�

������
��	����
��	����
�����
������������

Figure 2.3: An example of a relational model representation

2.4 From the entity-relationship model to the relational model

The Entity-Relationship (ER) model provides the conceptual level of database design. It was initially

defined by Bachman (Bachman, 1969) and Chen (Chen, 1976). An ER diagram can be easily mapped into

a relational model to represent database schema. its strength lies on its basic building block simple and

easy to understand 1. It is based on two simple concepts, namely, entities and relationships (Sumathi and

Esakkirajan, 2007).

2.4.1 Entities

An entity is a particular unique object. For instance, a particular person, a particular place, etc. A

collection of similar entities forms the entity type. For instance, all students at the university are of type

’Student’. Each entity type has a set of properties that allow to describe entities. These properties are called

attributes. For instance, enrollment number and name are attributes of the entity Student. Properties that

might be unique within the context of an entity are called keys. For instance, The enrollment number is

unique within the context of a particular student.

2.4.2 Relationships

Relationships are associations between one or more entities. They are classified into four main types,

namely 1) One-to-Many relation 2) Many-to-One, 3) One-to-One relation and 4) Many-to-Many relation.

– One-to-Many relationship type. It associates one entity to more than one entity. For instance an

order may contain many items. while an item belongs to only one order.

– Many-to-One relationship type. It associates more than one entity to just one entity. as relation-

ships work both ways, the same example of Order and Item presents an example of Many-to-One

relationship: There may be many items in a particular order.

– One-to-One relationship type. This relationship type is rarely met. It associates one entity to exactly

one entity, and it is considered as a special case of One-to-Many relationship. As an example of One-

to-One relationship is the relationship between a person and a passport in a particular country. A

person has only one passport, a particular passport is delivered to only one person.

1. In this part we are limited to only useful definition that we will reuse during the rest of the manuscript. For further reading

and more detailed definitions, we refer readers to (Date, 1990; Date, 2003; Sumathi and Esakkirajan, 2007)

2.4 From the entity-relationship model to the relational model 37

������������
����������	
��	��������
��	������	

	��	
	�������
	������
�������	

Table 2.1: Relationship types and representations

��������� ��	
�����	���

��������	�
����
 �������
���������

���� ������������

������������
�����

�������

������������
������

�������
���������

�������

Figure 2.4: An example of an Entity-relationship diagram

– Many-to-Many Relationship Type. It associates more than one entity to more than one entity. For

instance A student can take many courses and a course can have many students.

2.4.3 Entity-relationship diagram representation

Following (Sumathi and Esakkirajan, 2007), an ER diagram is represented by:

– Rectangle to represent entity types.

– Ellipses to represent attributes of entity types.

– Diamonds to represents relationships.

– Lines to represent linking of attributes to entity types and of entity types to relationship types.

– The four relationship types are summarized in Table 2.1

Example 2.4.1. Figure 2.4 is an example of an entity-relationship diagram. The example contains three

entity types, namely, Professor, Course and Student. Two relationships: a One-to-Many relationship be-

tween Professor and Course and a Many-to-Many relationship between Course and Student. The Professor

attributes are Prof − id as identifier, Popularity and Teaching ability.

2.4.4 Mapping ER Diagram to a relational model

An ER diagram can be easily mapped to a relational model by applying a set of mapping rules that we

list bellow (Sumathi and Esakkirajan, 2007):

– Rule 1. To each entity typeE corresponds a relation (table). The columns of the table are the attribute

of the entity type E.

38 Chapter2: Database Relational Model

– Rule 2. Mapping One-to-Many (Many-to-One) Relationship: Create a relation for each entity type

participating to the relationship. Then, include the primary key attribute of the entity on the One-side

of the relationship as a foreign key in the relation that is on the Many-side of the relationship.

– Rule 3. Mapping one-to-one relationship: As One-to-One relationship is a particular case of One-to-

Many relationship. The mapping processes are similar: First, two relations are created, one for each

of the entity types. Then, the primary key of either sides is included as a foreign key to the other side.

Another possible mapping of One-to-One relationships becomes to subsume one entity type into the

other (Date, 1990).

– Rule 4. Mapping Many-to-Many Relationship: The relationship is transformed to an entity type.

Then three relations have to be created: one for each of the three entity types. Primary key attributes

of the two initial entities are included as identifiers in the relation that presents the relationship. These

keys can be used together as a primary for the third relation, also, a new identifier can be declared.

– Rule 5. All attributes of the relationship, if any, go to the side receiving the transferred primary key.

Example 2.4.2. Figure 2.3 presents the mapping of the ER diagram of Figure 2.4 using the previously listed

rules.

2.5 Benchmarking database systems

Long ago, and due to the absence of ’standard’ to measure a system performance against other systems,

each DBMS vendor (e.g., Microsoft, Oracle, Informix) has its own means to evaluate its product. It cites

benchmark data that proves its database is the fastest, and each vendor chooses the benchmark test that

presents its product in the most favorable light. Often results are not divulged. If they are leaked, vendors

who present lower results try usually to discredit the benchmark. This phenomenon is known as benchmark

wars.

Consequently, some effort has been made in order to provide uniform benchmark tests and deliver

trusted results to the industry. Due to the importance of this task, the Transaction Processing Performance

Council (TPC) organization has been founded to define transaction processing and database benchmarks to

be disseminated to the industry 2. The TPC recognizes its benchmarks with respect to application types and

provides ways to calculate system price and report performance results. Till now, their benchmarks present

a standard to utmost all database system vendors.

From there, other commercial and non commercial benchmarks have been instituted. Examples include

Wisconsin (DeWitt, 1993), Engineering Database Benchmark (Cattell, 1993) and Neal Nelson’s Business

Benchmark 3.

Database benchmarks still remains trendy (Curino et al., 2012; Angles et al., 2013; Difallah et al.,

2013) because of hardware and software development and also the huge amount of data provided due to the

development of communication technologies and the need of storage it and manage it in such a manner it

can be used later.

In this section, we provide database benchmarks definition, types and components. Then we focus on a

particular element of a database benchmark, namely the database generation. Finally we discuss a particular

family of database benchmarks for decision support systems.

2.5.1 Database Benchmarks definition

A database benchmark should have some important basis such as (Gray, 1993):

– Generating the transaction workload.

– Defining transaction logic.

– Defining data access requirements.

2. http://www.tpc.org

3. http://www.nna.com/

2.5 Benchmarking database systems 39

– Determining data distributions and generating the database.

– Instrumenting and measuring the system.

2.5.1.1 Database benchmark types

Generally, database benchmarks are used to measure the performance of a database system. However,

it is not its only objective. In fact, we distinguish two types of database benchmarks:

– Performance benchmarks. allow to measure response time (e.g., transactions per second), batch

throughput and current hardware capacities.

– Functional benchmarks. allow to measure the system functionality, ease of use, operability, ease

of development, as well as other aspects of data processing.

Database benchmarks can be classified alternatively on generic benchmarks and domain-specific ones.

The former are useful in comparing systems overall performance. The latter allow to measure the perfor-

mance with respect to the application domain. Gray (Gray, 1993) reports that such a benchmark has to be

relevant, portable, scalable, and simple.

2.5.1.2 Database benchmark components

A database benchmark has two major components (Gray, 1993):

– The workload specification. It requires some analysis of what we hope to implement: If the system

is completely new, some effort must go into database and application design before any work speci-

fication can be performed. Otherwise, extension has to be made while respecting the current system

specification.

– The measurement specification. The major decision is how much of the environment will be mea-

sured? Trade-off between reality and simplicity should be taken into account when defining the

benchmark specification.

2.5.2 Random relational database generation

Database generation is a particular element of a database benchmark. It presents an old issue for

database designers. Its interest occurs when evaluating the effectiveness of a RDBMS components. Con-

sequently, several propositions have been developed in this context. The main issue was how to provide

a large number of records using some known distributions in order to be able to evaluate the system re-

sults. (Bitton et al., 1983; Bruno and Chaudhuri, 2005). In some research, known benchmarks 4 are used

and the ultimate goal is only to generate a large dataset (Gray et al., 1994). Several software tools are

available (e.g. DbSchema 5, DataFiller 6). They allow to populate database instances knowing the relational

schema structure. Records are then generated on the basis of this input.

Nowadays, the widespread use of Internet leads to the generation of huge and complex amount of data.

The challenges of capturing, storing, and analyzing, such big data imply further development of big data

systems, which in return implies the development of big data benchmarks in order to evaluate and compare

such systems. For such benchmarks, it is not obvious to obtain real big data sets to use as workload inputs

especially for confidential issues. In addition, even if such a dataset can be provided, it will not be sufficient

to satisfy all benchmarking scenarios (Lu et al., 2014; Zhu et al., 2014).

Synthetic data generation is a natural solution to solve this issue and generally a degree of predictability

in the generated data is necessary, especially for domain-specific benchmarks, where veracity of the real

life data has to be taken into account while generating data. For instance, in TPC-D benchmark, attribute

values are uniformly distributed (Ballinger, 1993).

4. http://www.tpc.org

5. http://www.dbschema.com/

6. https://www.cri.ensmp.fr/people/coelho/datafiller.html

40 Chapter2: Database Relational Model

2.5.3 Benchmarking for decision support systems

There are several families of Database benchmarks (Darmont, 2009) and some of them have been con-

ceived for specific applications (e.g, decision support 7, Cloud Computing (Ferrarons et al., 2013)). Great

effort has been devoted by the TPC in order to provide DB benchmarks for decision support applications.

Early work led to the creation of the TPC-D benchmark 8. This latter has been substituted by the TPC-

R 9 benchmark in 1999. From 2005, TPC-R became an obsolete benchmark and has been replaced by the

TPC-DS 10 considered, till now, as the decision support benchmark standard. TPC-DS is a benchmark for

data warehouses and decision support systems. It has been designed to be suitable with real-world business

tasks which are characterized by the analysis of huge amount of data. Its schema models the sales and sales

returns process for an organization. TPC-DS provides tools to generate either the data sets or the query sets

for the benchmark. Nevertheless, uncertainty management stays a prominent challenge to provide better

rational decision making.

2.6 Conclusion

In this chapter we have defined the relational model. Then we presented relational database bench-

marking and we have focused especially on random database generation process. We have shown that

benchmarking has been addressed only from the database industry perspective, where the main objective is

to provide common frameworks to compare the performance of different relational systems.

After presenting the BN model in Chapter 1 and the relational representation in the current chapter,

Chapter 3 introduces an extension of Bayesian networks in the context of relational data representation,

namely, Relational Bayesian Networks.

7. http://www.tpc.org/tpcds

8. http://www.tpc.org/tpcd

9. http://www.tpc.org/tpcr

10. http://www.tpc.org/tpcds

3
Relational Bayesian Networks

During the last decade, there has been growing interest in extracting patterns from relational

data representation. Statistical relational learning (SRL) is an emerging area of machine learn-

ing that enable effective and robust reasoning about relational data structures (Heckerman et al.,

2007). Relational Bayesian networks (RBNs) are an extension of Bayesian networks which al-

low to work with relational database representation rather than propositional data representation.

Initially, this model was called probabilistic relational model (PRM) (Koller and Pfeffer, 1998;

Pfeffer, 2000). Then, Neville and Jensen (Neville and Jensen, 2007) proposed to preserve the use

of the term PRM in its more general sense to distinguish the family of PGMs that are interested

in extracting statistical patterns from relational models, and to use RBN to refer to Bayesian net-

works that have been upgraded to model relational databases. In our dissertation, we preserve

the same designation as (Neville and Jensen, 2007). Note that (Koller and Pfeffer, 1998; Pfeffer,

2000) model is different from the relational Bayesian network of Jaeger (Jaeger, 1997) that is an

extension of BN using the first-Order logic. RBNs are interested in producing and manipulating

structured representations of the data, involving objects described by attributes and participating

in relationships, actions, and events. The probability model specification concerns classes of

objects rather than simple attributes.

RBNs have demonstrate their applicability in several areas (e.g., industry, system quality anal-

ysis, web page classification, etc.) (Fersini et al., 2009; Sommestad et al., 2010) and till now

works are in progress in order to provide solid theoretical foundations and develop appropriate

algorithms allowing their construction from relational data. RBNs learning is inspired from stan-

dard BNs learning approaches and naturally their evaluation will be similar to BNs evaluation

techniques but unfortunately this issue has not been well tackled. The chapter is then dedicated

to introduce this framework and to make a survey on existing learning as well as evaluating

approaches.

41

42 Chapter3: Relational Bayesian Networks

Contents

3.1 Introduction . 43

3.2 Relational Bayesian network formalism . 43

3.2.1 Relational Bayesian network definition . 43

3.2.2 Cycles in relational Bayesian networks . 45

3.2.3 Related work . 47

3.2.4 About relational d-separation . 50

3.2.5 Reasoning with relational Bayesian networks . 53

3.2.6 Structural uncertainty . 54

3.3 RBN and similar models structure learning . 55

3.3.1 RBN structure learning . 55

3.3.2 Similar models structure learning . 57

3.3.3 Relational hybrid approaches . 60

3.4 Evaluating relational Bayesian networks structure learning algorithms 60

3.4.1 Random generation of relational Bayesian networks 61

3.4.2 Sampling relational Bayesian networks . 61

3.4.3 Evaluation metrics . 61

3.5 Relational Bayesian network-related softwares . 62

3.6 Conclusion . 63

3.1 Introduction 43

3.1 Introduction

RElational Bayesian networks (RBNs) present an extension of BNs in the relational context. In this

chapter we will focus on RBNs defined by (Koller and Pfeffer, 1998; Pfeffer, 2000). The goal

behind this formalism is to express probabilistic models in a compact and intuitive way that reflects the

relational structure of the domain and, ideally, supports efficient learning and inference (Heckerman et al.,

2007). As for standard BNs, RBNs construction implies the identification of the graphical structure and

parameters. RBNs learning from relational data has been inspired from classical BNs learning approaches.

An intuitive way to evaluate these learning approaches is the adaptation of evaluation techniques used for

BNs to the relational context.

The remainder of this chapter is as follows: Section 3.2 defines relational Bayesian networks and similar

model representations. Section 3.3 crosses RBNs learning approaches. Section 3.4 goes through evaluation

techniques of RBNs learning approaches. Section 3.5 presents a list of some existing relational Bayesian

network-related softwares.

3.2 Relational Bayesian network formalism

In this section, we give a formal definition of relational Bayesian networks. Then, we discuss RBNs

acyclicity and relational d-separation. Finally, we briefly present structural uncertainty in RBNs. Recall that

we focus on RBNs of (Koller and Pfeffer, 1998; Pfeffer, 2000) in this thesis work. Jaeger (Jaeger, 1997)

used the same terminology to refer to another model specification which extends BNs using the first-Order

logic.

3.2.1 Relational Bayesian network definition

Let R be a relational schema, X be the set of all classes of a RBN, A(X) be the set of descriptive

attributes of a class X ∈ X andR(X) be the set of reference slots of a class X .

Definition 3.2.1. Reference slot. A reference slot of class X denoted by X.ρ has X as domain type and Y
as a range type, where Y ∈ X . For each reference slot ρ, a reversed slot ρ−1 can be defined.

Definition 3.2.2. Slot chain. A slot chain K is a sequence of reference slots. (reversed or not) ρ1, . . . , ρk,

where ∀i, Range[ρi] = Dom[ρi+1].

A RBN Π for a relational schema R is defined through a qualitative dependency structure S and a set

of parameters associated with it θS .

Definition 3.2.3. Relational Bayesian network.

Formally, a RBN Π for a relational schemaR is defined by (Getoor et al., 2007):

– A qualitative dependency structure S : For each class (relation) X ∈ X and each descriptive at-

tribute A ∈ A(X), there is a set of parents Pa(X.A) = {U1, . . . , Ul} that describes probabilistic

dependencies. Each Ui has the form X.B if it is a simple attribute in the same relation or γ(X.K.B),
where K is a slot chain and γ is an aggregate of X.K.B (cf. Section 2.3.1).

– A set of conditional probability distributions (CPDs), representing P (X.A|Pa(X.A)).

Note that there is a direct mapping from RBNs representation to relational database concepts: A class

correspond to a single relation (or table). Descriptive attributes correspond to standard table attributes.

Reference slots correspond to foreign key attributes. Slot chains correspond to long reference paths, with

some possible back and forth.

Slot chains may be arbitrary large and give rise to complicated models. So that a user specified value,

the maximum slot chain length (Kmax), is required to limit the length of possible slot chains that one can

cross in the model.

44 Chapter3: Relational Bayesian Networks

�����
����

	�
�

�����
����
	
���

������
�
�
�����
����	�
�����
��

�����

(a) An example of a relational schema

����

������

����� �	�

�����	�
���

�����

��������

����������

������
��

�����������

��������	
��
��
��������	
��
��
������������
��
������������
��
���������	�
��
���������	�
��
�������

	
�����
�����
���������

��
��
��

��
��

�

����������

��
��
��
��
�

(b) An example of a RBN

Figure 3.1: An example of a relational schema and a RBN for a movie domain

Example 3.2.1. An example of a relational schema is depicted in Figure 3.1(a), with three classes X =
{Movie, V ote, User}. The class V ote has a descriptive attribute V ote.Rating and two reference slots

V ote.User and V ote.Movie. V ote.User relates the objects of class V ote with the objects of class User.
Dotted links presents reference slots. An example of a slot chain would be V ote.User.User−1.Movie which

could be interpreted as all the votes of movies shown by a particular user.

V ote.Movie.genre → V ote.rating is an example of a probabilistic dependency derived from a slot

chain of length 1 where V ote.Movie.genre is the parent and V ote.rating is the child as shown by Fig-

ure 3.1(b). Also, varying the slot chain length may give rise to other dependencies. For instance, using a

slot chain of length 3, we can have a probabilistic dependency from γ(V ote.User.User−1.Movie.genre)
to V ote.rating. In this case, V ote.rating depends probabilistically on an aggregate value of all the genres

of movies rated by a particular user.

3.2 Relational Bayesian network formalism 45

Roughly speaking, a RBN Π is a meta-model used to describe the overall behavior of a system, to

perform probabilistic inference this model, as well as the relational schema have to be instantiated.

An instance of a relational schema is defined as follows (Getoor et al., 2007):

Definition 3.2.4. Instance of a relational schema. An instance I of a schema specifies:

– for each class X , the set of objects in the class, I(X).
– a value for each attribute x.A (in the appropriate domain) for each object x.

– a value y for each reference slot x.ρ, which is an object in the appropriate range type, i.e., y ∈
Range[ρ]. Conversely, y.ρ−1 = x|x.ρ = y.

A RBN instance contains for each class of Π the set of objects involved by the system and relations that

hold between them (i.e., tuples from the database instance which are interlinked). This structure is known

as a relational skeleton σr (Getoor et al., 2007).

Definition 3.2.5. Relational skeleton. A relational skeleton σr of a relational schema is a partial specifica-

tion of an instance of the schema. It specifies the set of objects σr(Xi) for each class and the relations that

hold between the objects. However, it leaves the values of the attributes unspecified.

Given a relational skeleton, the RBN Π defines a distribution over the possible worlds consistent with

σr.

Definition 3.2.6. Ground Bayesian Network. A RBN Π together with a relational skeleton σr define a

ground Bayesian network (GBN) with:

– a qualitative component:

– a node for every attribute of every object x ∈ σr(X), x.A.

– each x.A depends probabilistically on a set of parents Pa(x.A) = {u1, . . . , ul} of the form x.B or

x.K.B. IfK is not single-valued, then the parent is the aggregate computed from the set of random

variables {y|y ∈ x.K}, γ(x.K.B).
– a quantitative component, the CPD for each x.A is P (X.A|Pa(X.A)) .

Example 3.2.2. The Figure 3.2(a) is a possible relational skeleton of the relational schema of Figure 3.1(a).

It contains 3 users, 5 movies and 9 votes, where user 1 has voted for movies 1 and 2 and so on. A relational

skeleton together with a RBN model define the ground Bayesian network of Figure 3.2(b) (CPDs of objects

are those of the RBN , Figure 3.1(b)).

As with standard Bayesian networks, the joint distribution over the instantiations compatible with our

particular skeleton σr is factored, which leads to the following chain rule:

P (I|σr,S, θS) =
∏

X∈X

∏

x∈σr(X)

∏

A∈A(X)

P (x.A|Pa(x.A)) (3.1)

As for standard BNs, The dependency graph must define a coherent probability distribution. The next

section presents some concepts (Getoor et al., 2007) that ensure coherence in RBNs.

3.2.2 Cycles in relational Bayesian networks

Pfeffer (Pfeffer, 2000) introduces the class dependency graph notion that he uses to ensure that the

probabilistic dependencies defined by the RBN are acyclic (i.e., a random variable does not depend, directly

or indirectly, on its own value.).

Definition 3.2.7. Class dependency graph. The class dependency graph GΠ for a RBN Π has as:

– Nodes: a node for each descriptive attribute X.A.

– Edges: Type I and Type II edges where:

46 Chapter3: Relational Bayesian Networks

���

������

���
������

�		
��
���

���
������

�		
��
���

������

�		
��
���

�����

���������
�

�����

�����

�����

�����

��

��

��

��

��

��

��

��

��������

������
��������

������
��������

������
��������

������
�������	

������
��������

������
��������

������
��������

������
�������

���������
�

���������
�

���������
�

���������
�

(a) An example of a relational skeleton

���

������

���
������

�		
��
���

���
������

�		
��
���

������

�		
��
���

�����

���������
�

�����

�����

�����

�����

��

��

��

��

��

��

��

��

��������

������
��������

������
��������

������
��������

������
�������	

������
��������

������
��������

������
��������

������
�������

���������
�

���������
�

���������
�

���������
�

(b) An example of a GBN

Figure 3.2: An example of a relational skeleton and a GBN for a movie domain

3.2 Relational Bayesian network formalism 47

�����
����

�����������

	�
��

�
�	�
���

���������

������ ������ ������

������������

	�
�
����

�������

(a) The class dependency graph for the RBN of Figure 3.1(b)

�����
����

�����������

	�
��

�
�	�
���

���������

�����

	�
�
����

(b) The colored class dependency graph for the RBN of Figure 3.1(b)

Figure 3.3: Example of a class dependency graph and its corresponding colored class dependency graph

1. Type I edges: For any attribute X.A and any of its parents X.B, there is an edge from X.B to

X.A.

2. Type II edges: For any attribute X.A and any of its parents X.K.B there is an edge from Y.B
to X.A, where Y = Range[X.K].

In some situations, a cycle in the class dependency graph is not problematic, if it does not result in a

cycle at the ground level. (e.g., a recursive model: genetic model of the inheritance of a single gene that

determines a person’s blood type (Getoor et al., 2007)). To represent such models using RBNs, Pfeffer (Pf-

effer, 2000) defines the colored class dependency graph to guaranty the absence of cycles.

Definition 3.2.8. Colored class dependency graph. The colored class dependency graph GΠ for a RBN Π
has the following edges:

– Yellow edges: if X.B is a parent of X.A, we have a yellow edge X.B → X.A.

– Green edges: if γ(X.K.B) is a parent of X.A, Y = Range[X.K], and K is guaranteed acyclic, we

have a green edge Y.B → X.A.

– Red edges: if γ(X.K.B) is a parent of X.A, Y = Range[X.K], and K is not guaranteed acyclic,

we have a red edge Y.B → X.A.

Definition 3.2.9. Stratified class dependency graph. A colored class dependency graph is stratified if every

cycle in the graph contains at least one green edge and no red edges.

Example 3.2.3. Figure 3.3(a) is an example of a graph dependency graph where probabilistic dependencies

are labeled with respect to the edge type. The colored class dependency graph of Figure 3.3(b) contains 3
yellow edges representing intra-class dependencies of the formX.B → X.A and 2 green edges representing

inter-class dependencies of the form γ(X.K.B) → X.A . It is a stratified class dependency graph as it

does not contain red edges.

3.2.3 Related work

Even if pioneering work on establishing relational extension of directed graphical models has been

found in (Koller and Pfeffer, 1998), other similar representations have been proposed in order to provide

more clear theoretical basis and to generalize among all models of this family. Heckerman et al. (Heck-

erman et al., 2004) defined the Directed Acyclic Probabilistic Entity-Relationship (DAPER) model and

have discussed that a DAPER model can be easily transformed into a RBN as both are probabilistic graph-

ical languages for relational data and both follow a directed acyclic graphical representation. Maier et

al. (Maier et al., 2013c) proposed formal definitions of relational domain concepts similar to those of RBN

and DAPER. In this section, we start by giving a brief representation of DAPER models and we represent

a mapping from DAPER to RBN. Then, we will especially focus on Maier et al. (Maier et al., 2013c)

definitions as they will be useful to announce relational d-separation later (cf. Section 3.2.4).

48 Chapter3: Relational Bayesian Networks

��������� ��	
�����	���

��������	�
����
 �������
���������

���� ������������

������������
�����

�������

������������
������

�������
���������

�������

Figure 3.4: The entity-relationship representation of the university domain

3.2.3.1 The DAPER Model

DAPERmodels are to entity-relationship models (cf. Section 2.4) what RBNs are to relational schema (Heck-

erman et al., 2004).

Definition 3.2.10. Directed Acyclic Probabilistic Entity-Relationship model. DAPER model is a directed

extension of the entity-relationship model. It consists of two components:

– A qualitative component: The DAPER graph constructed among the ER model to which directed arcs

between attribute classes are added to represent probabilistic dependencies

– A quantitative component: local distributions for attributes.

Unlike RBN model, which uses aggregation functions to summarize a multi-set of values, DAPER

refers to the local distributions of such dependencies as canonical distribution and does not describe how to

encode them.

As for RBN, given a skeleton, the DAPER model allows to express conditional independence among

realized attributes.

Heckerman et al. (Heckerman et al., 2004) have provided an invertible mapping from a DAPER model

to a RBN. Table 3.1 summarizes the main steps of this mapping.

DAPER RBN

ER model Relational model

Probabilistic component of DAPER Probabilistic component of RBN

Entity classes Tables

Relationship classes Tables with foreign keys making the connections

to to tables presenting the entities

Attribute classes Attributes

Arc classes and constraints Drawn as they are in DAPER model

Table 3.1: Mapping rules from DAPER to RBN (Heckerman et al., 2004)

The final RBN resulting from those mapping rules has its probabilistic component defined as a graphical

augmentation of the relational model. While in a RBN, the probabilistic component takes the form of

a list of arc classes. Figure 3.4 provides the entity-relationship representation of the university domain

and Figure 3.5 presents the relational schema resulting from this ER diagram with respect to the DAPER

formalism.

3.2 Relational Bayesian network formalism 49

��������� ��	
�����	���
������������
�������
���	
����

������������
��

��	����
����

������
�������

��	����
������
������	
�

������
��	����
��	����
�����
������������

�����
������
��	����
�������

Figure 3.5: The relational schema of the university domain with respect to the DAPER representation

3.2.3.2 Maier’s relational model

Maier (Maier et al., 2013c) redefines relational models using the ER model rather than relational

schemas. All definitions presented in this section are extracted from (Maier et al., 2013c; Maier, 2014).

Definition 3.2.11. Relational schema. A relational schema S = (E ,R,A, card) consists of a set of

entity classes E = {E1, . . . , Em}; a set of relationship classes R = {R1, . . . , Rn}, where each Ri =
〈

Ei
1, . . . , E

i
ai

〉

, with Ei
j ∈ E; and ai is the arity for Ri; a set of attribute classes A(I) for each item class

I ∈ E ∪ R; and a cardinality function card : R× E → {ONE,MANY }.

Definition 3.2.12. Relational skeleton. A relational skeleton σ for a relational schema S = (E ,R,A, card)
specifies a set of entity instances σ(E) for each E ∈ E and relationship instances σ(R) for each R ∈ R.

Relationship instances adhere to the cardinality constraints of S: If card(R,E) = ONE), then for each

e ∈ σ(E) there is at most one r ∈ σ(R) such that e participates in r.

Definition 3.2.13. Relational path. A relational path [Ij, . . . , Ik] for a relational schema S is an alternating

sequence of entity and relationship classes Ij, . . . , Ik ∈ E ∪ R such that:

1. For every pair of consecutive item classes [E,R] or [R,E] in the path, E ∈ R

2. For every triple of consecutive item classes [E,R,E ′], E 6= E ′.

3. For every triple of consecutive item classes [R,E,R′], ifR = R′, then card(R,E) =MANY .

Ij is called the base item, or perspective, of the relational path.

Definition 3.2.14. Terminal set. For each skeleton σ ∈
∑

S and ij ∈ σ(Ij), the terminal set P |ij for

relational path P = [Ij, . . . , Ik] of length n is defined inductively as

P 1|ij = [Ij] |ij = {ij}
...

P n|ij = [Ij, . . . , Ik] |ij =
⋃

im∈Pn−1|ij
{ik|((im ∈ ikifIk ∈ R) ∨ (im ∈ ikifIk ∈ E)) ∧ ik /∈

⋃n−1
l=1 P

l|ij}

Definition 3.2.15. Relational variable. A relational variable [Ij, . . . , Ik] .X consists of a relational path

[Ij, . . . , Ik] and an attribute class X ∈ A(Ik).

Definition 3.2.16. Relational variable instance. For each skeleton σ ∈
∑

S and ij ∈ σ(Ij), a relational

variable instance [Ij, . . . , Ik] .X|ij for a relational variable [Ij, . . . , Ik] .X is the set of random variables

{ik.X|X ∈ A(Ik) ∧ ik ∈ [Ij, . . . , Ik] |ij ∧ ik ∈ σ(Ik)}.

Definition 3.2.17. Relational dependency. A relational dependency [Ij, . . . , Ik] .Y → [Ij] .X is a directed

probabilistic dependence from attribute class Y to X through the relational path [Ij, . . . , Ik].

Definition 3.2.18. Relational model. A relational modelMΘ consists of two parts:

1. The structure M = (S,D): a schema S paired with a set of relational dependencies D defined over

S .

50 Chapter3: Relational Bayesian Networks

�������� �	
���

��������	��
�������
 �	��
���������� 	
����� ��
��
�

Figure 3.6: Example of a relational model for the organization domain (Maier et al., 2013b)

�����
����	�

��
��

���������� 	
�����

��
��
�

����� ������
���������� 	
�����

Figure 3.7: Example of a ground graph for the organization domain (Maier et al., 2013b)

2. The parameters Θ: a conditional probability distribution P ([Ij] .X|parents([Ij] .X)) for each re-

lational variable of the form [Ij] .X , where Ij ∈ E ∪ R, X ∈ A(Ij) and parents([Ij] .X) =
{[Ij, . . . , Ik] .Y | [Ij, . . . , Ik] .Y → [Ij] .X ∈ D} is the set of parent relational variables.

Definition 3.2.19. Ground graph. The ground graph GGMσ = (V,E) for a relational model structure

M = (S,D) and a skeleton σ ∈
∑

S is a directed graph with nodes V = {i.X|I ∈ E ∪R∧ i ∈ σ(I)} and

edges E = {ik.Y → ij.X|ik.Y, ij.X ∈ V ∧ ik.Y ∈ [Ij, . . . , Ik] .Y |ij ∧ [Ij, . . . , Ik] .Y → [Ij] .X ∈ D}.

Definition 3.2.20. Class dependency graph. The class dependency graph GM = (V,E) for a relational

model structure M = (S,D) is a directed graph with a node for each attribute of every item class V =
{I.X|I ∈ E ∪R∧X ∈ A(I)} and edges between pairs of attributes supported by relational dependencies

in the model E = {Ik.Y → Ij.X| [Ij, . . . , Ik] .Y → [Ij] .X ∈ D}.

Example 3.2.4. Figure 3.6 is an example of a relational model for the organization domain. The example

contains 3 entity classes E = {Employee, Product, Business − Unit} and 2 relationship classes R =
{Develops, Funds}. Employees cause the success of products they develop. The success of products

influences the revenue received by the business unit funding the product. The dependencies are specified

by relational paths as follows: [Product,Develops, Employee].Competence → [Product].Success and

[Business− Unit, Funds, Product].Success→ [Business− Unit].Revenue.
Figure 3.7 shows the ground graph for the relational model in Figure 3.6 applied to a relational skeleton

consisting of two employees, two products, and a single business unit.

3.2.4 About relational d-separation

Maier et al. (Maier et al., 2013c) have developed the relational extension of the Markov condition:

Definition 3.2.21. Relational Markov condition. Let X be a relational variable for perspective B ∈ E ∪R
defined over relational schema S . Let Nd(X) be he non-descendant variables of X , and let Pa(X) be

the set of parent variables of X . Then, for relational model MΘ, P (X|Nd(X), Pa(X)) = P (X|Pa(X))
if and only if ∀x ∈ X|bP (x|Nd(x), Pa(x)) = P (x|Pa(x)) in parameterized ground graph GGMΘ

for all

skeleton σ ∈
∑

S and for all b ∈ σ(B).

3.2 Relational Bayesian network formalism 51

In other words, a relational variableX is independent of its non-descendants given its parents if and only

if, for all possible parameterized ground graphs, the Markov condition holds for all instances of X (Maier

et al., 2013c). The authors have also proved that the d-separation criterion cannot be reproduced as it is (cf.

Section 1.3.1) in the relational context.

In contrast to standard Bayesian networks, a relational model, such as a RBN, is a meta-model, a tem-

plate that results in several ground graphs (each of which is a BN) with different structures that depend on

the used data instantiation. So, a similar theory that allows to reason about relational d-separation has to

be provided. Maier et al. (Maier et al., 2013c) have developed the relational d-separation theory through a

new representation that they called abstract ground graph (AGG) and they proved how this latter enables a

sound, complete, and computationally efficient method for answering d-separation queries about relational

models (Maier et al., 2013c).

An abstract ground graph abstracts over all possible ground graphs, using only knowledge about the

schema and the model (entities, cardinalities and dependencies), with a specified maximum slot chain length

h 1. An abstract ground graph is invariant of the size of ground graphs even though these latter can be

arbitrarily large. An AGG has as nodes as nodes all possible relational variables that can be reached from a

perspective class, with a slot chain length less than or equal to h, as well as nodes representing intersection
between pairs of variables that may intersect. AGG edges are between pairs of relational variables and

edges inherited from both relational variables sources of every intersection variables.

Definition 3.2.22. Abstract ground graph. An abstract ground graph AGGMB = (V,E) for a relational

model structure M = (S,D) and a perspective B ∈ E ∪ R is a directed graph that abstracts the depen-

dencies D for all ground graphs GGMσ, where σ ∈
∑

σ.

The set of nodes in AGGMB is V = RV ∪ IV , where

– RV is the set of all relational variables of the form [B, . . . , Ij] .X
– IV is the set of all pairs of relational variables that could have non-empty intersections (referred to

as intersection variables)

IV = {RV1 ∩RV2|RV1, RV2 ∈ RV ∧RV1
= [B, . . . , Ik, . . . , Ij] .X ∧RV2
= [B, . . . , Il, . . . , Ij] .X ∧ Ik 6= Il}

The set of edges in AGGMB is E = RV E ∪ IV E, where

– RV E ⊂ RV ×RV is the set of edges between pairs of relational variables such that:

RV E = {[B, . . . , Ik] .Y → [B, . . . , Ij] .X| [Ij, . . . , Ik] .Y → [Ij] .X ∈ D ∧ [B, . . . , Ik]
∈ extend([B, . . . , Ij] , [Ij, . . . , Ik])}

– IV E ⊂ IV ×RV ∪RV × IV is the set of edges inherited from both relational variables involved in

every intersection variable in IV :

IV E = {Ŷ → [B, . . . , Ij] .X|Ŷ = P1.Y ∩ P2.Y ∈ IV ∧ (P1.Y → [B, . . . , Ij] .X ∈ RV E
∨P2.Y → [B, . . . , Ij] .X ∈ RV E)}
∪
{[B, . . . , Ik] .Y → X̂|X̂ = P1.X ∩ P2.X ∈ IV ∧ ([B, . . . , Ik] .Y → P1.X ∈ RV E
∨ [B, . . . , Ik] .Y → P2.X ∈ RV E)}

The extend method (cf. Definition 3.2.23) allows to construct the set of all valid relational paths from

two input relational paths. It is called repeatedly during the creation of an abstract ground graph as it allows

to capture all paths of dependence among the random variables in the relational variable instances for all

represented ground graphs (Maier et al., 2013c).

Definition 3.2.23. Extending relational paths. Let Porig and Pext be two relational paths for schema S .

Let no be the length of Porig and ne be the length of Pext. P
i,j corresponds to 1-based i-inclusive, j-inclusive

1. Following Maier et al. (Maier et al., 2013c), h is called hop threshold

52 Chapter3: Relational Bayesian Networks

���������	
�������	
������	�����	�������������	�����	
������ ���������

��������� ������������ ���������	
�������	
���������������

���������	
�������	
������	�����	����������������������

���������	
�������	
������	
�������	���������� ����������

���������	
�������	
������	
�������	��������	
�������	
���������������

���������	
�������	
������	
�������	��������	
�������	
���������������
∩

���������	
�������	
������	�����	�������������	�����	
���������������

Figure 3.8: An abstract ground graph for the organization domain model in Figure 3.6 from the Employee

perspective and with a hop threshold =6 (Maier et al., 2013b)

sub-path indexing, + is concatenation of paths, and reverse is a method that reverses the order of the path.

To extend Porig with Pext, the following three functions are needed:

i. pivot(P1, P2) = {i|P
1,i
1 = P i,1

2 }

ii. is valid(P) =

{

True if P does not violate Definition 3.2.13

False otherwise

iii. extend(Porig, Pext) = {P
1,no−i+1
orig + P i+1,ne

ext |i ∈ pivots(reverse(Porig), Pext) ∧ is valid(P)}

Example 3.2.5. Figure 3.8 shows the abstract ground graph for the organization domain modeled by Fig-

ure 3.6, from the Employee perspective with hop threshold = 6. It includes 6 relational variables and one

intersection node:

– RV = {[Employee].Competence, [Employee,Develops, Product, Funds,Business−Unit, Funds,
Product].Success, [Employee,Develops, Product].Success, [Employee,Develops, Product, Funds,
Business−Unit].Revenue, [Employee,Develops, Product,Develops, Employee].Competence,
[Employee,Develops, Product,Develops, Employee,Develops, Product].Success}

– IV = {([Employee,Develops, Product,Develops, Employee,Develops, Product].Success∩
[Employee,Develops, Product, Funds,Business− Unit, Funds, Product].Success)}

It contains 7 edges, with:

– RV E = {[Employee].Competence→ [Employee,Develops, Product].Success, [Employee,
Develops, Product, Funds,Business−Unit, Funds, Product].Success)→ [Employee,Develops,
Product, Funds,Business−Unit].Revenue, [Employee,Develops, Product].Success→ [Employee,
Develops, Product, Funds,Business−Unit].Revenue, [Employee,Develops, Product,Develops,
Employee].Competence→ [Employee,Develops, Product].Success, [Employee,Develops, Product,

3.2 Relational Bayesian network formalism 53

Develops, Employee].Competence→ [Employee,Develops, Product,Develops, Employee,Develops,
Product].Success}

– IV E = {([Employee,Develops, Product,Develops, Employee,Develops, Product].Success∩
[Employee,Develops, Product, Funds,Business−Unit, Funds, Product].Success)→ [Employee,
Develops, Product, Funds,Business−Unit].Revenue, [Employee,Develops, Product,Develops,
Employee].Competence→ ([Employee,Develops, Product,Develops, Employee,Develops,
Product].Success∩ [Employee,Develops, Product, Funds,Business−Unit, Funds, Product].
Success)}

The extend method has been called several times during the construction of AGG of Figure 3.8. It has

been used to insert edges corresponding to direct causes. For instance, extend(Porig, Pext), with Porig =
[Employee,Develops, Product] and Pext = [Product,Develops, Employee] has as pivots(reverse(Porig),
Pext) = {1, 2, 3}. The pivot at 1 and 3 gives as result {[Employee], [Employee,Develops, Product,Develops,
Employee]}, which leads to the insertion of two edges in theAGG: [Employee].Competence→ [Employee,
Develops, Product].Success and [Employee,Develops, Product,Develops, Employee].Competence→
[Employee,Develops, Product].Success. However the pivot at 2 gives the invalid relational path [Employee,
Develops, Employee].

Abstract ground graphs are used to reason about relational d-separation queries. As the construction of

an AGG depends on the chosen perspective, then, for a given relational model, there is as many AGG as

classes. Each AGG defined with respect to a given perspective can then be used to reason about relational

d-separation queries for that perspective. The relational d-separation is defined as follows (Maier et al.,

2013c):

Definition 3.2.24. Relational d-separation. Let X, Y , and Z be three distinct sets of relational variables

with the same perspective B ∈ X defined over relational schema R. Then, for relational model structure

S , X and Y are d-separated by Z if and only if, for all skeletons σ ∈
∑

R, X|b and Y |b are d-separated by

Z|b in ground graph GGSσ for all b ∈ σ(B).

Example 3.2.6. For relational models, we need to instantiate the model to be able to perform probabilistic

inference. So d-separation can be applied at the ground graph level.

– d-separation applied directly to the model in Figure 3.6 states that employee competence is condi-

tionally independent of the revenue of business units given the success of products.

– d-separation applied to the ground graph of Figure 3.7 states that to d-separate employee competence

from business unit revenue, we should condition on both the success of developed products and the

competence of other employees who work on those products.

– d-separation applied to the abstract ground graph of Figure 3.8, states that the conditioning set

must include both product success ([Employee,Develops, Product].Success) and the competence

of other employees developing the same products ([Employee,Develops, Product,Develops,
Employee].Competence).

3.2.5 Reasoning with relational Bayesian networks

Inference in RBNs and similar models is performed at the ground graph level. By this way, standard

inference algorithms for Bayesian networks can be used to query the GBN (cf. Section 1.3.4). However,

GBNs can be very large and complex, which makes the inference process very expensive. On the other

hand, inferring this way leads to the loss of the RBN structure, as it is converted into a flat BN represen-

tation. (Pfeffer, 2000; Pfeffer and Koller, 2000) have discussed these issues and have proposed to perform

inference in the lifted (i.e. non-grounded) model. Several inference algorithms have been proposed in this

direction (Pfeffer and Koller, 2000; Milch et al., 2008; Kisynski and Poole, 2009; Gonzales and Wuillemin,

2011; Wuillemini and Torti, 2012).

54 Chapter3: Relational Bayesian Networks

�����
�����
����	

����	

����

���
�

�����
�����
����	

(a) Relational schema for the citation domain

Paper

P5

Topic

AI

Paper

P4

Topic

Theory

Paper

P2

Topic

Theory
Paper

P3

Topic

AI

Paper

P1

Topic

???

Paper

P5

Topic

AI

Paper

P4

Topic

Theory

Paper

P2

Topic

Theory
Paper

P3

Topic

AI

Paper

P1

Topic

???

RegReg

RegRegCites

Paper

P5

Topic

AI

Paper

P4

Topic

Theory

Paper

P2

Topic

Theory
Paper

P3

Topic

AI

Paper

P1

Topic

???

Paper

P5

Topic

AI

Paper

P4

Topic

Theory

Paper

P2

Topic

Theory
Paper

P3

Topic

AI

Paper

P1

Topic

???

Paper

P5

Topic

AI

Paper

P4

Topic

Theory

Paper

P2

Topic

Theory
Paper

P3

Topic

AI

Paper

P1

Topic

???

Paper

P5

Topic

AI

Paper

P4

Topic

Theory

Paper

P2

Topic

Theory
Paper

P3

Topic

AI

Paper

P1

Topic

???

RegReg

RegRegCites

RegReg

RegRegCites

(b) Reference uncertainty: An object skeleton for the

citation domain

Document CollectionDocument Collection

?
?
?

?
?
?

(c) Existence uncertainty in the citation domain

Figure 3.9: Examples of structured uncertainty (Getoor et al., 2007)

3.2.6 Structural uncertainty

One of the highlights of RBNs, which differentiates them from classical BNs, is its ability to represent

structural uncertainty. In fact, BNs allow to describe a world using a set of descriptive attributes and

assign conditional probability distributions to them to represent uncertainty. However, BNs do not encode

uncertainty about the existence of probabilistic relations. In RBNs, as defined till now, only the descriptive

attributes are uncertain. All relations between attributes are given by the relational skeleton and all values

of reference slots are specified. This assumption implies that the model cannot be used to predict the

relational structure itself. Yet, the relational structure is informative in and of itself (Getoor et al., 2007).

Pfeffer provides two extensions of RBNs to model more complex structural uncertainty namely, reference

uncertainty and existence uncertainty (Pfeffer, 2000), also known as probabilistic models of link structure.

– RBN with reference uncertainty. This representation assumes that a partial skeleton called object

skeleton is given instead of a full one. This partial skeleton specifies only the objects in each class X
but not the values of the reference slots.

– RBN with existence uncertainty. In this representation no assumptions about the number of links

that exist are made. The number of links that exist and the identity of the links are all part of the

probabilistic model and can be used to make inferences about other attributes in the model.

Example 3.2.7. let us consider example of Figure 3.9, reference uncertainty model assumes that all

objects are specified and search for relations among them, i.e., citation links between papers (see

Figure 3.9(b)).

Figure 3.9(c) illustrates existence uncertainty, the goal of such a representation is to provide an

explicit model for the presence or absence of citations. Each potential citation can be present or

absent. Unlike the reference uncertainty model, the number of citation is not known in advance.

3.3 RBN and similar models structure learning 55

3.3 RBN and similar models structure learning

RBNs construction states finding the dependency structure S and the parameters for a given relational

schema R. Given the dependency structure S , parameters learning consists on providing θS . The key

concept in parameter estimation is the likelihood function known to be the probability of the data given the

model:

P (θS |I, σ,S) = P (I|S, σ, θS) (3.2)

It is the likelihood function of standard BNs. The main difference lies on the fact that there may be nodes

having the same probability distributions induced by the RBN given the relational skeleton. RBN parameter

estimation is then performed either using the statistical approach, namely maximum likelihood parameter

estimation, or using the Bayesian approach. The sufficient statistics are the counts of the number of times

that we observe the child states given its parents states. These counts have to be performed on a complete

instance I, using SQL queries.

The dependency structure identification is inspired from classical methods of finding standard BNs

structure from propositional data. Only few works have been presented in this area. These latter concern

either RBNs or other similar representations (cf. Section 3.2.3) structure learning. As these models are

closely related, this section is dedicated to present the relational state-of-the-art extensions of the score-

based and constraint-based techniques for either RBNs or other similar model representations. Then, we

will discuss hybrid relational approaches.

3.3.1 RBN structure learning

Friedman et al. (Friedman et al., 1999a) have proposed a relational extension of a score-based approach.

To the best of our knowledge, this algorithm is the only proposed work in this area. Similar to BNs Score-

based approaches, the relational score-based algorithm assigns a score to each possible network, to search

after through the space of candidate graphs for the network that maximizes this score. Which structures are

legal? How to evaluate them? How to proceed in order to find the high-scoring structure? These three main

issues are discussed by Getoor in (Getoor, 2002).

3.3.1.1 Finding legal structures

The dependency structure S has to be acyclic for any possible skeleton σr. Thus, for a RBN Π, a class
dependency GΠ is defined. This graph considers potential dependencies at the class level. We have to

maintain models whose dependency structures are stratified. S is stratified if the colored class dependency

graph is stratified, that is, if every cycle in the graph contains at least one green edge and no red edges.

Specifying that certain reference slots are guaranteed acyclic represents a prior knowledge allowing us to

guarantee the legality of certain dependency models.

3.3.1.2 Scoring function

As for standard Bayesian networks, a score-based approach is feasible in practice, if the used score is

locally decomposable, i.e., it can be expressed as the sum of local scores at each node.

For RBNs the posterior probability of the structure S given an instantiation I is :

P (S|I, σ) ∝ P (S|σ)P (I|S, σ) (3.3)

This score is composed of two parts:

– The prior probability of the structure P (S|σ), which is equal to P (S) as the choice of structure is

independent of the skeleton. This prior will penalize long indirect slot chains denoted by lengthK:

logP (S) =
∑

i

∑

A∈A(Xi)

∑

u∈V (Pa(Xi.A))

lengthK(Xi.A, Pa(Xi.A)) (3.4)

56 Chapter3: Relational Bayesian Networks

Algorithm 14 Relational Greedy search (Friedman et al., 1999a)

Require: R: A relational schema, S: A prior dependency structure, I: A database instance, Kmax: the

maximum slot chain length.

Ensure: The local optimal dependency graph S .
1: repeat

2: Maxscore ← Score(S)
3: repeat

4: List_neighbors← Generate_neighborhood(Current_SlotChain_length)
5: Snew ← ArgmaxS′∈neighborhoodS (Score(S

′))
6: if Score(Snew) ≥Maxscore then

7: Maxscore ← score(Snew)
8: S ← Snew
9: end if

10: until No change

11: Current_SlotChain_length← Current_SlotChain_length+ 1
12: until No changes or Current_SlotChain_length = Kmax

– The probability of the data assuming that structure P (I|S, σ), which is equal to the marginal likeli-

hood of I given S:

P (I|S, σ) =
∏

i

∏

A∈A(Xi)

∏

u∈V (Pa(Xi.A))

DM({CXi.A[v, u]}, {αXi.A[v, u]}) (3.5)

Where DM({CXi.A[v, u]}, {αXi.A[v, u]}) =
Γ(

∑
v α[v])

Γ(
∑

v(α[v]+C[v]))

∏

v
Γ(α[v]+C[v])

Γ(α[v])
,

and Γ(x) =
∫∞

0
tx−1e−tdt is the Gamma function.

As usual, we use the log of this function

logP (I|S, σ) =
∑

i

∑

A∈A(Xi)

∑

u∈V (Pa(Xi.A))

log[DM({CXi.A[v, u]}, {αXi.A[v, u]})] (3.6)

Consequently, the Relational BD score is as follows:

RBDscore =
∑

i

∑

A∈A(Xi)

∑

u∈V (Pa(Xi.A))

log[DM({CXi.A[v, u]}, {αXi.A[v, u]})]

−
∑

i

∑

A∈A(Xi)

∑

u∈V (Pa(Xi.A))

lengthK(Xi.A, Pa(Xi.A)) (3.7)

Friedman et al. (Friedman et al., 1999a) have used a relational extension of the BD score instead of a

relational extension of the BDeu score since unlike BNs, the notion of Markov equivalence class is not yet

developed for RBNs.

3.3.1.3 Search procedure.

The search procedure proposed in (Friedman et al., 1999a) resorts to heuristic search, namely the greedy

hill-climbing search. In order to reduce both the number of possible structures, which is usually very large

or even infinite, and database querying, which is quite expensive, the greedy algorithm proceeds in phases.

The choice of Potk(X.A) is based on classes dependencies: At phase 0 only dependencies within a class
are considered, At Phase 1, only dependencies from classes related toX by a reference slot are considered.

At phase 2 dependencies from classes related to X using slot chain of length equal 2 are considered, etc.

The algorithm stops when no changes are detected or when the maximum slot chain length is reached.

3.3 RBN and similar models structure learning 57

Figure 3.10: RPC algorithm: the four new constraints, where E is an existence attribute and X and Y are

two unit attribute classes (Maier et al., 2010).

The neighbor generation process consists in applying the add_edge, delete_edge and reverse_edge
operators between a target variable X.A and a variable Y ∈ PotK(X.A) where PotK(X.A) is the set

of potential parents of X.A given a slot chain length. PotK(X.A) may contain aggregate variables de-

pending on the crossed slot chain. Keeping one operator goes through a verification process in order to

maintain the class dependency graph acyclic. It is clear that deleting an edge does not present a concern,

so this verification concerns only adding and reversing edges. The verification is performed using the

Depth_First_Search algorithm for graph traversing. The relational greedy search algorithm is depicted

in algorithm 14.

3.3.2 Similar models structure learning

In (Maier et al., 2010), the authors proposed a relational extension of the PC algorithm (cf. Sec-

tion 1.4.2). The authors proposed a constraint-based approach to learn DAPER structure from relational

data. They preserve the same rules for the RPC algorithm, to which they add four new constraints specific

to the relational learning process, which are depicted in Figure 3.11.

First, they identify the key differences of relational data with propositional data:

– Variable space: RPC takes as input a ER model represented in first-order logic and a DB instance

which is an instantiation of this ER and returns a partially directed DAPER. To perform relational

learning, some modifications have to be done: RPC uses new concepts, which are:

– The set of unit classes U = {U1, . . . , Uk}: U ⊂ (E ∪ R)+, where each U consists of one or more

entity or relationship classes which are relationally connected. U is defined over a base entity or

relationship class, b (U).
– The unit attribute class: is any attribute class defined over an entity or relationship class within the

unit. A (U) =
⋃

B∈U A (B).
– Potential causal dependency: is composed of a treatment variable T ∈ A (U) and an outcome

variable O ∈ A (b (U)).
RPC requires identifying the set of possible common causes for treatment and outcome variables of

a potential dependency 〈A.X,B.Y 〉, which is the union of the set of treatment variables when A.X
and B.Y are considered outcomes {C.Z| 〈C.Z,A.X〉} ∪ {D.Z| 〈D.Z,B.Y 〉}.

– Aggregates and asymmetry: RPC uses aggregation functions to create a single value for each unit

attribute f (A.X). RPC tests the association from both perspective 〈f (X) , Y 〉 and 〈f (Y) , X〉 (as

58 Chapter3: Relational Bayesian Networks

[B... IY].Y 6∈ sepset([B... IX].X, [B... IZ].Z)

[B... IY].Y

[B... IX].X [B... IZ].Z

[B... IY].Y

[B... IX].X [B... IZ].Z

(a) Collider Detection (CD) (b) Known Non-Colliders (KNC)(a) Collider Detection

].W

[B... IY].Y

[B... IX].X [B... IZ].Z

[B... IY].Y

[B... IX].X [B... IZ].Z

(a) Collider Detection (CD) (b) Known Non-Colliders (KNC)(b) Known Non-Colliders

(c) Cycle Avoidance (CA) (d) Meek Rule 3 (MR3)

[B... IY].Y

[B... IX].X [B... IZ].Z

[B... IY].Y

[B... IX].X [B... IZ].Z

(c) Cycle Avoidance

[B... IX].X

[B... IY].Y

[B... IZ].Z

[B... IW].W

[B... IX].X

[B... IY].Y

[B... IZ].Z

[B... IW].W

(c) Cycle Avoidance (CA) (d) Meek Rule 3 (MR3)
(d) Meek Rule 3

Figure 3.11: RCD orientation rules on an abstract ground graph from perspective B (Maier et al., 2013a)

there is an inherent asymmetry for pairs of unit attributes because of the aggregation requirement), if

a statistical association is detected in either, then an association exists between X and Y .

– Structural variables: RPC includes an existence attribute for each relationship class. If this attribute

is viewed as a treatment variable, thenRPC uses the count aggregate function to represent cardinality.

If it is viewed as an outcome variable, RPC tests for association between a treatment variable and

the existence of the relationship.

Unlike the PC algorithm which is sound and complete the RPC algorithm did not satisfy these criteria.

In fact, in (Maier et al., 2013c), the authors have discussed that in order to adapt the constraint based as well

as the hybrid approaches of BNs structure learning to learn from relational data, a similar theory that allows

to reason about relational d-separation has to be provided. They invented the AGG notion (cf. Section 3.2.4)

and used it in (Maier et al., 2013a) to propose a new constraint-based algorithm, called relational causal

discovery (RCD) algorithm.

This algorithm makes the underlying assumptions:

– Causal sufficiency.

– Faithfulness.

– Sufficient maximum hop threshold.

– Sufficient depth.

– Perfect conditional independence tests.

Definition 3.3.1. Bivariate orientation rule. Let Π be a relational model andG a partially directed abstract

ground graph for Π, perspectiveXi ∈ X , and maximum slot chain length h. IfXi.A∈A(Xi)[Xi, . . . , Xj].A∈A(Xj)

is in G, and Xi.A⊥[Xi, . . . , Xj, . . . , Xi].A|Z, then 2

– if [Xi, . . . , Xj].A∈A(Xj) ∈ Z, orient as: Xi.A← [Xi, . . . , Xj].A∈A(Xj)

– if [Xi, . . . , Xj].A∈A(Xj) /∈ Z, orient as: Xi.A→ [Xi, . . . , Xj].A∈A(Xj)

The RCD algorithm, outlined by Algorithm 15 performs in two phases (Algorithm 15). In the first

phase, given a hop threshold, RCD starts by providing the set of all potential dependencies, then continues

by removing conditional independences found using conditional independence tests. RCD uses the linear

regression as statistical association measurement. When performing statistical tests, RCD verifies whether

a statistical association is detected between two variables in both directions and it leaves the dependence if

a statistical association exists in at least one direction. This assumption is nearly similar to the OR condition

of the MBOR algorithm for BNs (cf. Section 1.4.4). It allows to provide a broader list of dependencies

between variables.

In the second phase, RCD determines the orientation of the remaining dependencies. It preserves the

same orientation rules as the PC algorithm at the level of abstract ground graphs and add only one additional

2. This rule has to be performed if card([Xi, . . . , Xj]) = MANY .

3.3 RBN and similar models structure learning 59

Algorithm 15 Relational Causal Discovery(RCD) (Maier et al., 2013a)

Require: R: A relational schema, h: A hopThreshold, I: A database instance, depth.

Ensure: A set of canonical dependencies.

1: PDs← getPotentialDeps(R, h)
2: N ← initializeNeighbors(R, h)
3: S ← {}

Phase 1

4: for d← 0 to depth do

5: for X → Y ∈ PDs do

6: for each condSet ∈ powerSet(N [Y]\{X}) do

7: if |condSet|=d then

8: if X⊥Y |condSet then

9: PDs← PDs\{X → Y, Y → X}
10: S [X, Y]← condSet
11: break

12: end if

13: end if

14: end for

15: end for

16: end for

Phase 2

17: AGGs← buildAbstractGroundGraph(PDs)
18: AGGs, S ← ColliderDetection(AGGs, S)
19: AGGs, S ← BivariateOrientation(AGGs, S)
20: repeat

21: AGGs← KnownNonColliders(AGGs, S)
22: AGGs← CycleAvoidance(AGGs, S)
23: AGGs←MeekRule3(AGGs, S)
24: until No changes

25: getCanonicalDependencies(AGGs)

rule called bivariate orientation. Phase 2 starts by constructing as many AGGs as the number of classes

following Definition 3.2.22 and using the list of dependencies PDs derived from the first phase. Then, for

each AGG, it applies the collider detection rule (cf. Figure 3.11(a)) and the bivariate orientation rule (cf.

Definition 3.3.1). This latter leverages relational dependencies that cross relationships with Many-to-Many

cardinalities. It allows to detect relational autocorrelation (Jensen and Neville, 2002) and verifies whether

a distinct variable is a member of the separating set that eliminates the autocorrelation. Finally phase 2

iterates on the known non-collider (cf. Figure 3.11(b)), cycle avoidance (cf. Figure 3.11(c)) and Meek rule

3 (cf. Figure 3.11(d)) until no improvement is detected.

Even if RCD algorithm aims to meet the PC algorithm (cf. Section 1.4.2) in a relational context, it

is unable to return a final graph, equivalent to the PDAG returned by PC, at a relational level. Rather, it

constructs a set of AGGs, where each of them is equivalent to a PDAG from a given perspective. Then,

it merges all found dependencies into a set of canonical dependencies (cf. Definition 3.3.2). As the set of

canonical dependencies is derived from a set of PDAGs, it may contain unoriented dependencies. RCD is

sound and complete for causally sufficient relational data. Maier et al. (Maier et al., 2013a) proved that the

set of canonical dependencies presents a correct maximally oriented modelM via Theorem 3.3.1.

Definition 3.3.2. Canonical dependency. For a canonically specified dependency:

60 Chapter3: Relational Bayesian Networks

��������
���������������

	

���
�������

	
�
�
�
� ���	
�
�
�
� ���

��������		
�����
��	���
��
��	
����
�����	��
���

�������
	��
���
��

���������	
���
��

������
���
��

Figure 3.12: Evaluation process of a RBN structure learning algorithm

– The relational path of the child consists of a single item class: the class to which the child belongs.

– The relational path of the parent starts from the class to which the child belongs.

Theorem 3.3.1. Given a schema and probability distribution P , RCD learns a correct maximally oriented

modelM assuming perfect conditional independence tests, sufficient hop threshold h, and sufficient depth.

Theorem 3.3.1 states that RCD is sound and complete assuming perfect conditional independence tests.

Replacing the conditional independence test by an oracle function able to provide dependencies derived

from applying relational d-separation (cf. Definition 3.2.24) allows to give a perfect canonical dependencies

list.

3.3.3 Relational hybrid approaches

Despite the panoply of works presented for standard BNs structure learning, only few works have been

devoted to learn their relational extension. As we have seen in section 1.4.2, hybrid approaches use both

statistical conditional independence tests and a global structure learning approach. The relational extension

of the greedy search algorithm has been well developed. However, constraint-based approaches based on

the use of statistical tests are under study. Even the existing approaches present some deficiencies when

applying statistical tests due to the asymmetry caused by the use of aggregate functions. To the best of

our knowledge, there is no work in this direction. Chapter 5 of this manuscript is dedicated to a deeper

discussion about performing conditional independence tests in a relational context. In this chapter we also

present a new hybrid approach to learn RBNs structure from a complete relational database instance.

3.4 Evaluating relational Bayesian networks structure learning algo-

rithms

As seen in Section 3.3, only few works have been proposed to learn relational BNs extensions from

relational data. As for standard BNs, evaluating the effectiveness of the proposed approaches is needed.

The evaluation process goes through three main steps as depicted by Figure 3.12. 1) Generating relational

3.4 Evaluating relational Bayesian networks structure learning algorithms 61

database instance from an already known RBN or from a generated one. 2) Applying the learning approach

to the generated data. 3) Comparing the learned network with the gold one using some evaluation metrics.

In this section we discuss existing approaches to generate synthetic RBNs and relational observational data.

Then we focus on relational evaluation metrics.

3.4.1 Random generation of relational Bayesian networks

Random probabilistic relational models generation has to be established in order to evaluate proposed

learning approaches in a common framework. (Maier et al., 2010) used a predefined schema and have only

generated a number of dependencies varying from 5 to 15 and the conditional probability tables for attributes

from a Dirichlet distribution. In (Maier et al., 2013a) the authors have generated relational synthetic data

to perform experimentation. Their generation process is based only on a particular family of relational

schemas, with N classes (nodes) and N − 1 referential constraints (edges). Whereas in real world cases,

relational schemas may have more than N − 1 referential constraints. If the schema is fully connected (as

described in (Maier et al., 2013c)), it will follows a tree structure. Torti et al. (Torti et al., 2010) proposed

a slightly different representation of RBNs, developed in the basis of the object-oriented framework and

expert knowledge. Their main issue was probabilistic inference rather than learning. In their experimental

studies, (Wuillemini and Torti, 2012) have randomly generated RBNs using the layer pattern. The use of this

architecture pattern imposes a particular order when searching for connections between classes, generating

reference slots of the relational schema and also when creating the relational skeleton. No indication has

been made about the generation of probabilistic dependencies between attributes. In addition, they are not

interested neither in populating a relational database nor in communicating with a database management

system. In chapter 4, we turn back to this issue and we present a new approach to generate relational

Bayesian networks from scratch using a broader range of relational schemas.

3.4.2 Sampling relational Bayesian networks

This process is equivalent to generating data from a Bayesian network. Having a theoretical RBN and

an instantiation of this model,we can generate as many relational database instances as needed by sampling

from the constructed GBN.

3.4.3 Evaluation metrics

As we have discussed in Section 1.5.3), evaluation metrics of BN structure learning algorithms can

concern either the execution speed of the proposed algorithm or the quality of the graph reconstruction. As

RBNs structure learning algorithms are inspired from BNs structure learning ones, it would be natural to

perform same strategies as for BNs when evaluating those proposals. Evaluation with respect to the execu-

tion time will further depend on the used DBMS quality. Evaluation with respect to the number of statistical

calls performed by an algorithm will be exactly the same as for BNs. Evaluation with respect to the quality

of reconstruction needs to be adapted. Methods based on sensitivity and specificity as well as those based on

score functions may be applied as they are whereas, they will preserve same drawbacks already discussed

in section 1.5.3. Methods based on distance measures give better tool to compare theoretical dependency

structure with the learned one but they have to be adapted to the relational data representation. Further

discussion about those methods will be given in Chapter 4.

In (Maier et al., 2013a), the authors have used the precision, recall and F-score measures to evaluate the

quality of the learned graph structure:

Precision: The ratio of the number of relevant edges retrieved to the total number of relevant and

irrelevant edges retrieved in the learned PRM dependency structure SLearned. Relevant edges are those that
are present in the true model.

62 Chapter3: Relational Bayesian Networks

Precision =
Number of relevant edges retrieved in SLearned

Number of edges in SLearned
(3.8)

Recall: The ratio of the number of relevant edges retrieved to the total number of relevant edges int the

true PRM dependency structure STrue, which is generated using the random generation process.

Recall =
Number of relevant edges retrieved SLearned

Number of edges in STrue

(3.9)

F-score: The F-measure is used to provide a weighted average of both precision and recall.

F-score =
2 * Precision * Recall

Precision + Recall
(3.10)

Due to the reduced number of learning approaches, comparison with existing approaches and the eval-

uation task are so far not yet discussed.

On the other hand, we note that there is no adaptation of performance measures used to evaluate BN

Learning algorithms (see Section) to the relational context. This is due to the fact that a majority of these

measures use essential graphs when comparing the learned graph to the true one. However, this notion is not

yet defined in the relational context and an adaptation of the structure learning evaluation metrics requires

foremost the definition of Markov equivalence in a relational context.

3.5 Relational Bayesian network-related softwares

Some software tools have been already provided to address different challenging tasks related to proba-

bilistic relational models in general. A non exhaustive list contains:

ProbReM. 3 Provides inference methods in DAPER models (Heckerman et al., 2004).

Alchemy. 4 Presents a list of algorithms for statistical relational learning and probabilistic logic infer-

ence in Markov logic networks.

Primula. 5 A software tool allowing to perform inference and parameter learning for RBNs of Jaeger

(cf. Section 3.2).

BLOG. 6 A programming language allowing to deal with structural uncertainty in Relational modeling.

Unbbayes. 7 Limited to simple RBN models representation. It does not provide a tool to learn them.

Proximity. 8 This tool allows to work with several relational models (e.g.,relational Bayesian clas-

sifier (Neville et al., 2003b), relational probability trees (Neville et al., 2003a), Relational dependency

networks (Neville and Jensen, 2007)) and provides algorithms to learn them from relational data. Yet Prox-

imity does not provide such functionalities for RBNs.

A GRaphical Universal Model (AGrUM). 9 This C++ library is designed to work with various graph-

ical models either propositional or relational. As relational functionalities, the library allows to specify

3. http://www.cs.mcgill.ca/~fkaeli/probrem/index.html

4. http://alchemy.cs.washington.edu/

5. http://people.cs.aau.dk/~jaeger/Primula/

6. http://bayesianlogic.github.io/

7. http://unbbayes.sourceforge.net/

8. https://kdl.cs.umass.edu/display/public/Proximity

9. https://forge.lip6.fr/projects/agrum

3.6 Conclusion 63

a special RBN representation that is based on the object-oriented paradigm (Wuillemini and Torti, 2012).

In addition it provides algorithms to perform lifted probabilistic inference for this model representation.

A Python version of this library has been provided, called pyAgrum (https://forge.lip6.fr/

projects/pyagrum).

On one hand, these tools deal with a variety of relational probabilistic languages. A comparative study

of a subset of these systems has been started by Manfred Jaege 10. On the other hand, we notice the lack

of works on the context of learning relational Bayesian network structure. No implementation has been

found for the RGS algorithm. For RPC and RCD the code is made public. However, they are built on the

DAPER specification. Consequently, we have developed a new platform to deal with RBNs. Details about

our software tool are provided by Chapter 6.

3.6 Conclusion

In this chapter we have defined relational Bayesian networks and other similar relational representations.

Then we have provided a survey on existing approaches for learning relational models structure. Only few

methods are presented in the literature while the formalism has been developed since the early 2000s.

This can be argued, on one hand, by the complexity of this formalism although it is more realistic and

expressive than conventional models based on the flat representation. On the other hand, by the absence of

a counterpart in the relational domain of some basic existing theoretical concepts for probabilistic graphical

models. We have also shown that we lack of famous RBNs as well as random process generation.

In the next part of this manuscript, we will move on our contributions: In Chapter 4, we will address the

random generation of relational Bayesian networks as well as evaluation measures. In Chapter 5, we will

provide a new hybrid approach to learn RBN structure from relational data. In Chapter 6, we will provide

details about the implementation choice and the main components of our platform. Finally, in Chapter 7,

we will consolidate our theoretical contributions with an empirical study.

10. http://people.cs.aau.dk/ jaeger/plsystems/index.html

II

Propositions

65

4
RBN Benchmark generation and learning

evaluation

EVen though a panoply of works has focused, separately, on Bayesian Networks and re-

lational databases random generation, no work has been identified for RBNs on that

track. This chapter presents our first contribution. We propose an algorithmic approach allow-

ing to generate random RBNs from scratch, then populate a relational database. The originality

of this process is that it allows to generate synthetic relational data from a randomly generated

relational schema and a random set of probabilistic dependencies. This process is imperative

for statistical relational learning researchers to evaluate the effectiveness of their learning ap-

proaches. On the other hand, it can be of interest for database designers to be used as a decision

support benchmark. It allows to generate various relational schemas, from simple to complex

ones, and to populate database tables with huge number of tuples derived from distributions de-

fined by the generated RBN. Also, we propose a new distance-based evaluation metric able to

compare two relational models, one with respect to the other. This metric is an extension of the

structural hamming distance SHD to the relational context.

67

68 Chapter4: Random generation and population of relational Bayesian networks and databases

Contents

4.1 Introduction . 69

4.2 RBN Benchmark Generation . 69

4.2.1 Principle . 69

4.2.2 Relational schema random generation . 70

4.2.3 RBN random generation . 71

4.2.4 GBN generation . 73

4.2.5 Database population . 73

4.2.6 Implemented policies for the generation process 73

4.2.7 Time complexity of the generation process . 74

4.2.8 Toy example . 74

4.3 Learning evaluation metrics . 77

4.3.1 Discussion . 77

4.3.2 Penalization for relational models . 78

4.3.3 Relational Precision and Recall . 78

4.3.4 Relational Structural Hamming Distance . 80

4.4 Conclusion . 82

4.1 Introduction 69

4.1 Introduction

The evaluation process of a RBN structure learning algorithm, in the same way than BNs, requires the

existence of a theoretical (also called gold) network from which one can sample a training data. Then

learning is performed using this sampled data and the learned network is compared to the theoretical one

using some evaluation metrics. This process needs either real known networks or randomly generated

ones. However, contrary to Bayesian network, neither the first nor the second are available. Unfortunately,

already existing database benchmarks are not relevant in our context. In fact, these benchmarks allow to

generate databases with respect to the functional constraints present in the relational schema, whereas our

requirement is quite different. Using this data, we can construct a RBN structure following one structure

learning approach, but we will not be able to judge the quality of the used learning algorithm as this data

is not derived from an already existing RBN. Consequently, we are in need of a random generation process

of synthetic RBNs from which we can sample datasets. The relational databases generated following this

process are derived from distributions defined by the generated RBNs.

The first part of the chapter proposes a benchmark random generation process. As we are working with

a relational variety of Bayesian networks, our generation process will be inspired from classical methods

of random generation of BNs while respecting the relational domain representation. The second part of the

chapter concerns the evaluation metrics. In order to complete the evaluation process, we propose a new

distance-based evaluation metric that we refer to as Relational Structural Hamming Distance RSHD for

short. This distance is an adaptation of the SHD metric (cf. 1.5) to the relational context.

Section 4.2 explains the principle of our benchmark random generation process and details it. Sec-

tion 4.3 presents the relational extension of the SHD metric.

The remainder of this chapter is as follows: Section 4.2 explains the principle of our contribution and

details it. Section 4.2.8 provides a toy example that illustrates all the steps of our benchmark generation

process from the random generation of PRM and database to their population. Section 4.3 presents the

relational extension of the SHD metric.

4.2 RBN Benchmark Generation

Due to the lack of famous RBNs in the literature, this section proposes a synthetic approach to ran-

domly generate probabilistic relational models from scratch and to randomly instantiate them and populate

relational databases. To the best of our knowledge, this full process has not yet been addressed.

4.2.1 Principle

As we are working with a relational variety of Bayesian networks, our generation process will be in-

spired from classical methods of random generation of BNs (cf. Section 1.5) while respecting the relational

domain representation.

The overall process is outlined in Algorithm 16 and illustrated by Figure 4.1. Roughly, the proposed

generation process is divided into three main steps:

– The first step generates both the relational schema and the graph dependency structure usingGenerate_
Relational_Schema, Generate_Dependency_Structure and Determinate_Slot_Chains func-

tions respectively (Sections 4.2.2 and 4.2.3). Then the conditional probability tables are generated by

the Generate_CPD function in the same way than Bayesian networks (cf. Section 1.4).

– The second step instantiates the model generated in the first step by generating the relational skeleton

using the Generate_Relational_Skeleton function (Section 4.2.4). The Create_GBN function

creates the GBN, from both the generated RBN and the generated relational skeleton, following the

steps described in Section 3.2.1.

– The third step presents the Sampling function. It consists of a database instance population and it

may be performed using a standard sampling method over the GBN (Section 4.2.5).

70 Chapter4: Random generation and population of relational Bayesian networks and databases

Algorithm 16 RandomizeRBN-DB

Require: N : the number of relations, Kmax: The maximum slot chain length allowed

Ensure: Π: < R,S, CPD >, DB_Instance
1: Step 1: Generate the RBN

2: Π.R ← Generate_Relational_Schema(N)
3: Π.S ← Generate_Dependency_Structure(Π.R)
4: Π.S ← Determinate_Slot_Chains(Π.R,Π.S,Kmax)
5: Π.CPD ← Generate_CPD(Π.S)
6: Step 2: Instantiate the RBN

7: σr ← Generate_Relational_Skeleton(Π.R)
8: GBN ← Create_GBN(Π, σr)
9: Step 3: Database population

10: DB_Instance← Sampling(GBN)

4.2.2 Relational schema random generation

The relational schema generation process is depicted by Algorithm 17. Our aim is to generate, for a

given number of classes (relations) N , a relational schema, with respect to the relational model definition

presented in section 2.3.1 and where generated constraints allow to avoid referential cycles. We apply

elements from the graph theory for random schema generation. We associate this issue to a DAG structure

generation process, where nodes represent relations and edges represent referential constraints definition.

Xi → Xj means that Xi is the referencing relation and Xj is the referenced one. Besides, we aim to

construct schemas where ∀{Xi, Xj} ∈ X there exist a referential path from Xi to Xj . This assumption

allows to browse all classes in order to discover probabilistic dependencies later and it is translated by

searching DAG structures containing a single connected component (i.e., connected DAG).

Figure 4.1: Overview of the generation and population process

4.2 RBN Benchmark Generation 71

Algorithm 17 Generate_Relational_Schema

Require: N : the number of classes

Ensure: R: The generated relational schema

1: repeat

2: G is a connected DAG

3: until G ← Generate_DAG(Policy)
4: for each relation Xi ∈ R do

5: Pk_Xi ← Generate_Primary_Key(Xi)
6: A(Xi)← Generate_Attributes(Policy)
7: V(Xi.A)← Generate_States(Policy)
8: end for

9: for each ni → nj ∈ G do

10: Fk_Xi ← Generate_Foreign_Key(Xi, Xj, Pk_Xj)
11: end for

Having a fixed number of relationsN , theGenerate_DAG function constructs a DAG structure G with

N nodes, where each node ni ∈ G corresponds to a relation Xi ∈ R following various possible implemen-

tation policies (cf. Section 4.2.6). For each class we randomly generate a primary key attribute using the

Generate_Primary_Key function. Then, we randomly generate the number of attributes and their asso-

ciated domains using the Generate_Attributes and Generate_States functions respectively. Note that

the generated domains do not take into account possible probabilistic dependencies between attributes. For

each ni → nj ∈ G, we generate a foreign key attribute in Xi using the Generate_Foreign_Key function.

4.2.3 RBN random generation

Generated schemas are not sufficient to generate database instances where the attributes are not inde-

pendent. We need to randomly generate probabilistic dependencies between the attributes of the schema

classes. These dependencies have to provide the DAG of the dependency structure S and a set of CPDs

which define a RBN (cf. definition 3.2.3).

We especially focus on the random generation of the dependency structure. Once this latter is identified,

conditional probability distributions may be sampled in a similar way as standard BNs parameter generation.

The dependency structure S should be a DAG to guarantee that each generated ground network is also

a DAG (Getoor, 2002). S has the specificity that one descriptive attribute may be connected to another with

different possible slot chains. Theoretically, the number of slot chains may be infinite. In practice a user-

defined maximum slot chain length Kmax, is specified to identify the horizon of all possible slot chains. In

addition, the Kmax value should be at least equal to N − 1 in order to not neglect potential dependencies

between attributes of classes connected via a long path. Each edge in the DAG has to be annotated to

express from which slot chain this dependency is detected. We add dependencies following two steps. First

we add oriented edges to the dependency structure while keeping a DAG structure. Then we identify the

variable from which the dependency has been drawn by a random choice of a legal slot chain related to this

dependency.

4.2.3.1 Constructing the DAG structure

The DAG structure identification is depicted by Algorithm 18. The idea here is to find for each node

X.A a set of parents from the same class or from further classes while promoting intra-class dependencies

in order to control the final model complexity as discussed in (Getoor, 2002). This condition promotes the

discovery of intraclass dependencies or those coming from short slot chains. The more the chain slot is long,

the less a probabilistic dependency through this slot chain may be found. To follow this condition, having

72 Chapter4: Random generation and population of relational Bayesian networks and databases

Algorithm 18 Generate_Dependency_Structure

Require: R: The relational schema

Ensure: S: The generated relational dependency structure
1: for each class Xi ∈ R do

2: Gi ← Generate_Sub_DAG(Policy)
3: end for

4: S ←
⋃

Gi
5: S ← Generate_Super_DAG(Policy)

Algorithm 19 Determinate_Slot_Chains

Require: R: The relational schema, S: The dependency structure,Kmax: The maximum slot chain length

Ensure: S: The generated relational dependency structure with generated slot chains
1: Kmax ← max(Kmax, card(XR)− 1)
2: for each X.A→ Y.B ∈ S do

3: Pot_Slot_Chains_List← Generate_Potential_Slot_chains(X, Y,R, Kmax)
4: for each slot_Chain ∈ Pot_Slot_Chains_List do

5: l ← length(slot_Chain)

6: W [i]← exp
−l

nb_Occ(l,Pot_Slot_Chains_List)

7: end for

8: Slot_Chain∗ ← Draw(Pot_Slot_Chains_List,W)
9: if Needs_Aggregator(Slot_Chain∗) then

10: γ ← Random_Choice_Agg(list_Aggregators)
11: end if

12: if Slot_Chain∗ = 0 then

13: S.Pa(X.A)← S.Pa(X.A) ∪ Y.B % here X = Y
14: else

15: S.Pa(X.A)← S.Pa(X.A) ∪ γ(Y.Slot_Chain∗.B)
16: end if

17: end for

N classes, we propose to construct N separated sub-DAGs, each of which is built over attributes of its

corresponding class using theGenerate_Sub_DAG function. Then, we construct a super-DAG over all the

previously constructed sub-DAGs. At this stage, the super-DAG containsN disconnected components: The

idea is to add inter-classes dependencies in such a manner that we connect these disconnected components

while keeping a global DAG structure.

To add inter-class dependencies we constrain the choice of adding dependencies among only variables

that do not belong to the same class. For an attribute X.A, the Generate_Super_DAG function chooses

randomly an attribute Y.B, where X 6= Y , then verifies whether the super-DAG structure augmented by a

new dependency from X.A to Y.B remains a DAG. If yes it keeps the dependency otherwise it rejects it

and searches for a new one. Used policies are discussed in Section 4.2.6.

4.2.3.2 Determining slot chains

During this step, we have to take into consideration that one variable may be reached through different

slot chains and the dependency between two descriptive attributes will depend on the chosen one. The

choice has to be made randomly while penalizing long slot chains. We penalize long indirect slot chains, by

having the probability of occurrence of a probabilistic dependence from a slot chain length l proportional
to exp−l (Getoor, 2002). Having a dependency X.A → Y.B between two descriptive attributes X.A and

Y.B, we start by generating the list of all possible slot chains (Pot_Slot_Chains_List) of length ≤ Kmax

4.2 RBN Benchmark Generation 73

Algorithm 20 Generate_Relational_Skeleton

Require: R: The relational schema

Ensure: σr: The generated relational skeleton
1: for each class ρ ∈ R do

2: nb_Objectsρ.referencing ← Draw_Objects(policy)
3: nb_Objectsρ.referenced ← Draw_Objects(policy)
4: Oρ.referenced ← Generate_Objects(nb_Objectsρ.referenced, ρ.referenced)
5: Oρ.referencing ← Generate_Objects(nb_Objectsρ.referencing, ρ.referencing)
6: nb_Related← Draw_Objects(policy)
7: σr ← Add_Links(Oρ.referenced,Oρ.referencing, nb_Related)
8: end for

from which X can reach Y in the relational schema using the Generate_Potential_Slot_chains func-

tion. Then, we create a vector W of the probability of occurrence for each of the found slot chains, with

log(W [i]) ∝ −l
nb_Occ(l,Pot_Slot_Chains_List)

, where l is the slot chain length and nb_Occ is the number of slot

chains of length l ∈ Pot_Slot_Chains_List. This value will rapidly decrease when the value of l in-
creases which allows to reduce the probability of selecting long slot chains. We then sample a slot chain

from Pot_Slot_Chains_List following W using the Draw function. If the chosen slot chain implies an

aggregator, then we choose it randomly from the list of existing ones using the Random_Choice_Agg
function. The slot chain determination is depicted by Algorithm 19.

Following our approach, database population requires the instantiation of the previously generated RBN.

Both steps are detailed below.

4.2.4 GBN generation

The generated schema together with the added probabilistic dependencies and generated parameters

give rise to the probabilistic relational model. To instantiate this latter, we need to generate a relational

skeleton by generating a random number of objects per class, then adding links between objects. This

step is strongly related to the reference slot notion. That is, all referencing classes have their generated

objects related to objects from referenced classes. In Algorithm 20, we start by generating the number of

objects of referencing and referenced classes using the Draw_Objects function. Then we generate the

objects, referencing and referenced ones, by randomly instantiating their corresponding classes using the

Generate_Objects function. We specify the number of related ones using the Draw_Objects function

and finally, we relate them using the Add_Links function. Used policies are discussed in Section 4.2.6.

The GBN is fully determined with this relational skeleton and the CPDs already present at the meta-

level.

4.2.5 Database population

This process is equivalent to generating data from a Bayesian network. We can generate as many

relational database instances as needed by sampling from the constructed GBN. The specificity of the

generated tuples is that they are sampled not only from functional dependencies but also from probabilistic

dependencies provided by the randomly generated RBN.

4.2.6 Implemented policies for the generation process

Policy for generating the relational schema DAG structure. To randomly generate the relational

schema DAG structure, we use the PMMixed algorithm (cf. Section 1.3). This latter leads to generate uni-

formly distributed DAGs in the DAGs space. Consequently the generated structure may be a disconnected

74 Chapter4: Random generation and population of relational Bayesian networks and databases

graph yet, we need a DAG structure containing a single connected component. To preserve this condition

together with the interest of generating uniformly distributed examples, we follow the rejection sampling

technique. The idea is to generate a DAG following the PMMixed principle, if this DAG contains just one

connected component, then it is accepted, otherwise it is rejected. We repeat these steps until generating a

DAG structure satisfying our condition.

Policies for generating attributes and their cardinalities. Having the graphical structure, we con-

tinue by generating, for each relation R, a primary key attribute, a set of attributesA, where card(A)−1 ∼
Poisson(λ = 1), to avoid empty sets, and for each attribute A ∈ A, we specify a set of possible states

V(A), where card(V(A))− 2 ∼ Poisson(λ = 1).

Policies for generating the dependency structure. We follow the PMMixed algorithm principle to

construct a DAG structure inside each class. Then, to add inter-class dependencies we use a modified

version of the PMMixed algorithm where we constrain the choice of adding dependencies among only vari-

ables that do not belong to the same class.

Policy for generating the relational skeleton. The number of generated objects either for the refer-

enced or the referencing classes as well as the number of interlinked objects ∼ Poisson(λ = N1) and
∼ Poisson(λ = N2) respectively. N1 and N2 are user-defined.

4.2.7 Time complexity of the generation process

Time complexity of the random generation process is closely related to the choice of the implementation

policies. Let N be the number of relations (classes), we report the average complexity of each step of the

generation process.

Complexity of the relational schema generation process. Algorithm 17 is structured of three loops.

Namely, the most expensive one is the first loop dedicated for the DAG structure construction and uses the

PMMixed algorithm. Time complexity of the PMMixed algorithm isO(N ∗ lgN). This algorithm is called

until reaching the stop condition (i.e., a connected DAG). Let T be the average number of calls of the PM-

Mixed algorithm. T is the ratio of the number of all connected DAG constructed from N nodes (Robinson,

1977) to the number of all DAGs constructed fromN nodes (Bender and Robinson, 1988). Time complexity

of Algorithm 17 is O(T ∗N ∗ lgN).
Complexity of the dependency structure generation process. As for Algorithm 17, the most expen-

sive operation of Algorithm 18 is the generation of the DAG structure inside each class Xi∈{1...N} ∈ X .
Through Algorithm 17, a set of attributes A(Xi) has been generated for each Xi. As card(A(Xi)) − 1 ∼
Poisson(λ = 1), following Section 4.2.6, Then the average number of generated attributes for each class

is lambda = 1 + 1 = 2. Then time complexity of the algorithm is O(N ∗ 2 ∗ lg 2).
Complexity of the slot chains determination process. The most expensive operation of Algorithm 19

is the Generate_Potential_Slot_chains method. This latter explore recursively the relational schema

graph in order to find all paths (i.e., slot chains) of length k ∈ {0 . . . Kmax}. Time complexity of this

method is O(NKmax).
Complexity of the relational skeleton generation process. In Algorithm 20, the generate_Objects

method allows to generate a random number of objects per class. The average number of generated objects

per class ∼ Poisson(λ = N1) = N1. The average number of attributes for each object is equal to the

average number of attributes at the class level which is equal to 2. Let E be the number of ρ ∈ R, then time

complexity of this method is O(N1 ∗ 2 ∗ E).

4.2.8 Toy example

In this section, we illustrate the benchmark random generation process through a toy example.

4.2 RBN Benchmark Generation 75

������

������

������

��������
��

��
��

������

������

������

����������
����

����
����
����

����
����
����
����

����

������

������

������

������
���		�
�

���		�
� ���		�
�

���		�
�

���		�
�

���		�
�

���		�
�

���		�
�

������

������

������

����������
����

����
����
����

����
����
����
����

����

���		�
�

���		�
�

���		�
�

���		�
�
����		�
������
�����		�
������
����		�
������

����		�
������

����		�
������

G
�����������
���������

�������������
�����

���������
���
�������

���������
���
�������

�

�

�

�

Figure 4.2: Relational schema generation steps

������

������

������

������

����

����

����

����

����

����������		�

�����
���		
�
����������		��
�����
���		
�

���������		�

����

����

����

����

����

Figure 4.3: Graph dependency structure generation

76 Chapter4: Random generation and population of relational Bayesian networks and databases

������

������

������

������

����

����

����

����

����

������������	

�����	�����	

�������������

������������

�������������

����

����

����

����

����

����
����

����
�	
�

���	
�

�������������	
����	�

�����

�����
����

	
���
����

����

����������
���	
����

	��
�����	

����	�

�������

��������������	
�����
���

�������	
������
������	
�����
���

����

Figure 4.4: Example of a generated relational schema where the dotted lines represent referential constraints

and the generated RBN dependency structure where the arrows represent probabilistic dependencies. we

omit to specify slot chains to not overload the figure. Details about slot chains from which probabilistic

dependencies have been detected are given in Paragraph RBN generation.

Relational schema generation. Figure 4.2 presents the result of running Algorithm 17, with N = 4
classes. For each class, a primary key has been added (clazz0id, clazz1id, clazz2id and clazz3id). Then a
number of attributes have been generated randomly together with a set of possible states for each attribute

using the policies described in Section 4.2.6 (e.g., clazz0 has 3 descriptive attributes att0, att1 and att2.
att0 is a binary variable). Finally, foreign key attributes have been specified following the DAG structure

of the graph G (e.g., clazz2 references class clazz1 using foreign key attribute clazz1fkatt12).

RBN generation. Having the relational schema of the previous step, we will randomly generate a

RBN. We recall that this process consists of two steps: randomly generate the dependency structure S (Al-

gorithm 18), then randomly generate the conditional probability distributions which is similar to parameter

generation of a standard BN. The random generation of S is performed in two phases. We start by construct-

ing the DAG structure, the result of this phase is in Figure 4.3. Then, we fix a maximum slot chain length

Kmax to randomly determine from which slot chain the dependency has been detected. We use Kmax = 3,
the result of this phase gives rise to the graph dependency structure of Figure 4.4. S contains 5 intra-class

and 5 inter-class probabilistic dependencies.
Three of the inter-class dependencies have been generated from slot chains of length 1:
Clazz0.clazz1fkatt10.att1→ Clazz0.att2;
MODE(Calzz2.clazz2fkatt23−1.att0)→ Clazz2.att3 and;
Clazz2.clazz1fkatt12.att1→ Clazz2.att3
One from slot chain of length 2:
MODE(Clazz2.clazz1fkatt12.clazz1fkatt12−1.Clazz2.att0)→ Clazz2.att3
One from slot chain of length 3:
MODE(Calzz2.clazz2fkatt23−1.claszz1fkatt13.clazz1fkatt10−1)→ Clazz2.att3

4.3 Learning evaluation metrics 77

Figure 4.5: Visual graph representation of the generated relational schema and table records by using

SchemaSpy and PostgreSQL software tools.

GBN creation. Once the RBN is generated, we follow the two steps presented in Section 4.2.4 to create

a GBN and to populate the DB instance. We have generated an average number of 1000 tuple per class.

The database has been stored using PostgreSQL 1 RDBMS. Figure 4.5 presents a graphical representation

of the generated relational schema using SchemaSpy 2 software tool and some table records viewed from

PostgreSQL interface.

After detailing and illustrating our benchmark random generation process, we turn to another interesting

task, namely metrics to compare two RBNs structures. These metrics are well important when dealing with

RBN structure learning approaches as they allow to assess the quality of reconstruction of a given algorithm.

4.3 Learning evaluation metrics

4.3.1 Discussion

As we have seen in Chapters 1 and 3, there are several metrics allowing to evaluate a BN structure learn-

ing approach. This concern is not yet developed for RBNs, especially when the main goal is to evaluate

the quality of reconstruction. We have seen in Section 3.4.3 that Maier et al. (Maier et al., 2013a) have

used the Precision, Recall and their harmonic mean, the F-score, to evaluate the quality of their learning

algorithm. However, these measures are not well appropriate; theoretically, a perfect structure learning

1. http://www.postgresql.org/

2. http://schemaspy.sourceforge.net/

78 Chapter4: Random generation and population of relational Bayesian networks and databases

algorithm should provide a precision and a recall of value one, whereas, usually, these two requirements

are often contradictory: a learning approach that returns the list of all possible dependencies will provide

a 100% recall. Alternatively, we can have a high value of the precision, not because of the good quality of

learning approach but because it provides a few number of learned dependencies. For instance a learning

approach that is able to provide only one learned dependency given a true model with 10 dependencies will

have a 100% precision, if this learned dependency is relevant, against a very low recall. Even though their

harmonic mean, the F-score, allows to provide a compromise between these two measures, its value will

somehow be infected by the erroneous values of the precison or the recall.

Furthermore, for relational dependency structures, a dependency is defined among three components,

namely, the presence of the edge, the slot chain from which the dependency is constructed and the used

aggregator. (Maier et al., 2013a) have computed the Precision, Recall and F-score to only penalize missing

edges, extra edges, and reversed edges and they omit slot chains and (or) aggregators.

4.3.2 Penalization for relational models

In this section, we introduce two new terms of penalization, the first penalizes wrong slot chains while

the second penalizes poorly learned aggregator.

– Penalization for wrong slot chains. Let α ∈ [0, 1] be the term of penalization to be used to express

the fact that a dependency may be discovered between two nodes but it is not derived from the right

slot chain in the gold model structure. α is weighted by the longest common slot chain from the slot

chains of the true and learned dependencies and is expressed as follows:

α = 1−
length(Max_Common_sub_Slot(true dependency, learned dependency))

Max(length(true dependency),length(learned dependency))
(4.1)

TheMax_Common_sub_Slot refers to the longest sequence of slot references from the slot chains

of the true dependency and the learned one. The length(Max_Common_sub_Slot) refers to the

length of this sequence.

– Penalization for wrong aggregators. Let β ∈ [0, 1] be the term of penalization to be used to express

the fact that a dependency may be discovered between two nodes but using an aggregator different

from the one used by the gold dependency. Let nAgg be the number of all possible aggregators for one

attribute. We define a nAgg × nAgg cost matrix C where all C(i, j) ∈ [0, 1] values are user specified
costs. C(i, j) = 0 means that the learned aggregator is the gold one.

– Overall penalization. To consider both slot chain and aggregator penalizations, we compute their

arithmetic mean ψ defined as follows:

ψ =
α + β

2
(4.2)

4.3.3 Relational Precision and Recall

We redefine the notions of Precision and Recall presented in Section 3.4.3 as follows:

hard_Precision: The ratio of the number of relevant dependencies retrieved to the total number of

relevant and irrelevant dependencies retrieved in the learned PRM dependency structure SLearned. Relevant
dependencies are those that are present in the true model: same edge, same slot chain and same aggregator.

hard_Precision =
Number of relevant dependencies retrieved in SLearned

Number of dependencies in SLearned
(4.3)

hard_Recall: The ratio of the number of relevant dependencies retrieved to the total number of relevant

dependencies in the true PRM dependency structure STrue, which is generated using the random generation

process.

4.3 Learning evaluation metrics 79

Algorithm 21 RSHD

Require: Canonic_Depsgold: The canonical dependencies of the gold model.

Canonic_Depslearned: The canonical dependencies of the learned model.

Ensure: The rshd value.
1: rshd = 0
2: for every dependency D different int Canonic_Depsgold than Canonic_Depslearned do

3: %For missing canonical dependencies.

4: if D.edge /∈ Canonic_Depslearned then

5: rshd+ = 1
6: end if

7: %For extra canonical dependencies.

8: if D.edge /∈ Canonic_Depsgold then

9: rshd+ = 1
10: end if

11: %For reversed edges and edges undirected in one graph and directed in the other.

12: if D.edge is incorrectly oriented in Canonic_Depslearned then

13: rshd+ = 1
14: end if

15: %For inappropriate discovered slot chain of the learned dependencies.

16: if D.edge ∈ Canonic_Depsgold AND D.edge ∈ Canonic_Depslearned AND D.slot_chain is in-

appropriate then

17: rshd+ = ψ
18: end if

19: end for

hard_Recall =
Number of relevant dependencies retrieved SLearned

Number of dependencies in STrue

(4.4)

The hard_Precision and hard_Recall strictly penalize wrong slot chains and aggregators. Alter-

natively, we can define a soft version of these metrics which takes into account the penalization terms

introduced in Section 4.3.2. soft_Precision and soft_Recall are calculated as follows:

soft_Precision =

∑Nb

i=0 ωi

Number of dependencies in SLearned
(4.5)

where Nb is the number of dependencies in SLearned and,

ωi =







1, for same dependencies (i.e., same edge, slot chain and aggregator)

0, for extra edges end reversed edges
1− ψ, ψdefined by Formula 4.2, for relevant edges but from different slot chains/aggregators

soft_Recall =

∑Nb

i=0 ωi

Number of dependencies in STrue

(4.6)

Even though these new definitions of Precision and Recall are more suitable to evaluate relational struc-

ture learning algorithms, they present some deficiencies. As these measures are calculated among the de-

pendency structure, errors may be made when a difference in orientation between two dependency structures

is found for symmetric dependencies (cf. Section 3.3.2). Thus, in the next section, we propose a relational

distance-based measure defined on the concept of canonical dependencies presented in Section 3.3.2, rather

than of the dependency structures.

80 Chapter4: Random generation and population of relational Bayesian networks and databases

������������
����

��

��
����������������	�����

�� ��� ����
������ ��

�� ��

�� � � �
��� � � ��	
�
�� � ��	 �

�������� 	
���

(a) RBN structure#1

������������
����

��

��
����������������	�����

������ ��

�� ��

(b) Structure derived from the canonical dependencies

of RBN structure#1

Figure 4.6: Example of a gold RBN dependency structure and its canonical dependencies

4.3.4 Relational Structural Hamming Distance

We cannot use directly the methods based on score function or on distance measures used in the context

of BNs (cf. Section 1.5), and this is for many reasons:

– These metrics are based on the use of the essential graph (CPDAG), unfortunately this notion is not

yet developed in the relational context. A RBN is a meta-model from which we can construct several

ground graphs, having not necessarily the same equivalent class, depending on the used skeleton.

– The RBN graph structure is much more complicated than BN graphical representation due to the

presence of slot chains and asymmetry caused by the use of aggregators.

Consequently, we are in need of a graphical representation similar to the essential graph representation

in the relational context. The abstract ground graph (AGG) representation (cf. Section 3.2.4) cannot be

considered similar as CPDAG. First, an AGG constructed from a given perspective is always fully oriented

which is not the case of a CPDAG. Second an AGG allows to reason about relational d-separation from its

perspective class, so it is not as general as a CPDAG.

However we have seen that the RCD algorithm presented in Section 3.3.2 results on a set of canonical

dependencies presenting a correct maximally oriented model M via Theorem 3.3.1. Moreover, we have

discussed that applying RCD while substituting the conditional independence test by an ’oracle’ function

leads to a perfect canonical dependencies list. In this section, we will use the list of canonical dependencies

derived from a learning algorithm and compare it to the list of perfect canonical dependencies derived from

the true model.

Let Canonic_Depsgold and Canonic_Depslearned be respectively the set of canonical dependencies for
both, the true and the learned structures respectively and let N be the number of classes of the RBN. Each

canonical set is constructed as follows:

– For the true model structure, Canonic_Depsgold is derived from theN abstract ground graphs (AGG)
of the true model.

– For the learned model structure, Canonic_Depslearned is derived from the N abstract ground graphs

(AGG) of the learned model.

From these sets, we propose to define the relational structural Hamming distance, RSHD for short. As

the SHD measure, RSHD penalizes extra edges and missing edges by an increase of the distance by 1.
When the edge exists in both structures, we turn to check whether the slot chain and aggregator of the

learned dependence are those of the true dependence. If not, RSHD will be incremented by a penalization

of ψ > 0 (ψ defined by Formula 4.2). The steps of computing th RSHD measure between two sets of

canonical dependencies are depicted by Algorithm 21.

Example 4.3.1. We provide some examples of calculating relational structural Hamming distance (RSHD).

Figure 4.6 provides a hypothetical true RBN structure (Figure 4.6(a)) and the structure derived from its

4.3 Learning evaluation metrics 81

������������
����

��

��
����������������	�����

������ ��

�� ��

(a) RBN structure#2

������������
����

��

��
����������������	�����

������ ��

�� ��

(b) Structure derived from the canonical dependencies

of RBN structure #2 (RSHD = 0)

������������
����

��

��
����������������	�����

������ ��

�� ��

(c) RBN structure#3

������������
����

��

��
����������������	�����

������ ��

�� ��

(d) Structure derived from the canonical dependencies

of RBN structure #3 (RSHD = 3)

������������
����

��

��
����������������	�����

������ ��

�� ��

(e) RBN structure#4

������������
����

��

��
����������������	�����

������ ��

�� ��

(f) Structure derived from the canonical dependencies

of RBN structure #4 (RSHD = 2/3)

������������
����

��

��
����������������	�����

������ ��

�� ��

(g) RBN structure#5

������������
����

��

��
����������������	�����

������ ��

�� ��

(h) Structure derived from the canonical dependencies

of RBN structure #5 (RSHD = (2/3 + 0.5)/2)

Figure 4.7: Examples of calculating relational structural Hamming distance (RSHD)for the RBN of Fig-

ure 4.6

list of canonical dependencies (Figure 4.6(b)). Figures 4.7(a), 4.7(c), 4.7(e) and 4.7(g) show learned RBNs

(from data sampled from the true RBN structure) and Figures 4.7(b), 4.7(d), 4.7(f) and 4.7(h) represent

82 Chapter4: Random generation and population of relational Bayesian networks and databases

respectively, the structures derived from their corresponding list of canonical dependencies. We aim to

compare the canonical dependencies of Figures 4.7(b), 4.7(d), 4.7(f) and 4.7(h) respectively to the canonical

dependencies of Figure 4.6(b) using the RSHD measure.

– For the canonical dependencies of Figure 4.7(b) RSHD = 0. We notice that the RBNs of Fig-

ures 4.6(a) and 4.7(a) are different whereas they have the same set of canonical dependencies.

– For the canonical dependencies of Figure 4.7(d) RSHD = 3. The set of canonical dependencies of

Figure 4.7(d) can match the set of canonical dependencies of Figure 4.6(b) by removing three edge

orientations.

– For the canonical dependencies of Figure 4.7(f) RSHD = 2/3. The set of canonical dependencies of

Figure 4.7(f) does not match the set of canonical dependencies of Figure 4.6(b) for only one depen-

dency where the slot chain from which the dependency if found is not the same. This configuration is

penalized by α = 1− 1
Max(1,3)

= 2/3.

– For the canonical dependencies of Figure 4.7(h) RSHD = (2/3 + 0.5)/2. The set of canonical

dependencies of Figure 4.7(h) does not match the set of canonical dependencies of Figure 4.6(b) for

only one dependency where both the slot chain and aggregator from which the dependency if found

are not the same. This configuration is penalized by ψ = ((1− 1
Max(1,3)

) + 0.5)/2.

4.4 Conclusion

In this chapter, We have detailed our first contribution that consists on developing an algorithmic process

allowing to randomly generate synthetic RBNs and instantiate them to populate a relational database. Then

we have illustrated our approach using a toy example. Also, we have adapted the SHD measure to the

relational context.

In the next chapter we will detail our second contribution that consists on a new approach to learn RBNs

structure from relational observational data. We will highlight the utility of our generation process while

comparing the new proposed structure learning approach with already existing RBN learning approaches,

in a common framework, using the generated synthetic networks.

5

RMMHC: a hybrid approach to Relational

Bayesian Networks structure learning

RBNs structure learning is inspired from classical methods of finding standard BNs structures as

we have already discussed in Section 3.3. In Section 1.4, we have seen that BNs structure lean-

ing algorithms are divided into three families, namely, constraint-based, score-based and hybrid

approaches. Also we have deduced that hybrid approaches provides better experimental results,

using several benchmarks and metrics. However, in the relational context, we find extensions

of constraint-based and score-based approaches but no work has been proposed for relational

hybrid approach. In this chapter we present our second contribution: an hybrid approach to learn

the structure of a relational Bayesian network from a complete observational relational dataset.

The proposal is an adaptation of the Max-Min Hill climbing (MMHC) algorithm (Tsamardinos

et al., 2006) to the relational context. We call it Relational Max-Min Hill Climbing algorithm,

RMMHC for short.

83

84 Chapter5: New approach to RBNs structure learning

Contents

5.1 Introduction . 85

5.2 Relational Max Min Parents and children RMMPC 85

5.2.1 Neighborhood identification: RMMPC . 85

5.2.2 Symmetrical correction . 88

5.2.3 Conservative RMMPC . 89

5.2.4 Toy example . 91

5.3 Relational Max Min Hill-Climbing: RMMHC . 93

5.3.1 Global structure identification . 93

5.3.2 The overall algorithm . 94

5.4 Time complexity of the algorithms . 95

5.5 RMMHC vs Related work . 95

5.6 Conclusion . 96

5.1 Introduction 85

5.1 Introduction

RBNs extend standard BNs in the context of relational data and are suitable to deal with large-scale

systems. On the other hand, MMHC demonstrated its performance when learning BNs from

massive dataset. In (Tsamardinos et al., 2006), the authors have provided a wide comparative study with

already existing approaches, either constraint-based or score-based, to learn BNs structure from observa-

tional data. Reported results have proved that MMHC outperforms other state-of-the-art approaches, using

several benchmarks and metrics (execution time, SHD measure, etc.). In this chapter, we will present

an extension of the MMHC algorithm to learn RBNs from relational data that we refer to as relational

max-min-hill-climbing (RMMHC). The approach consists of a local search phase ensured by the relational

max-min parents and children algorithm (RMMPC), and a global search phase ensured by the relational

greedy search algorithm (Algorithm 14). Our learning assumptions stipulate that 1) the input contains a

relational schema that describes the domain, 2) the training data consists of a fully specified instance of that

schema. 3) The structure learning task comes to induce the dependency structure automatically from the

complete relational observational training database.

The remainder of this chapter is as follows: Section 5.2 describes the local structure identification

strategy. Section 5.3 presents the overall learning process. Section 5.4 gives the time complexity of the

algorithms.

5.2 Relational Max Min Parents and children RMMPC

As seen in Section 1.4.4, the local search identification is composed of twomain steps: the neighborhood

identification realized by the MMPC algorithm, completed by a symmetrical correction. Our relational

extension will preserve the same steps. In this section, we start by explaining the RPPMC algorithm

for neighborhood identification. Then, we will detail the symmetrical correction for a relational domain.

This latter is characterized by the non-symmetry caused by the use of aggregators. We present two different

manners to construct the set of candidate parents and children (CPC) list of a target variable. We will show

how this characteristic could be useful to automatically detect some directed parent or children relationships.

Finally, we will discuss a conservative version of the algorithm.

5.2.1 Neighborhood identification: RMMPC

At this step, we aim to find the list of neighbors of a target attribute T , that consists of either children or
parents of T , from a set of potential variables.

When applyingMMPC in the case of standard BNs, no difference is made between a node and a variable,

and the potential set of parents and children of a node T is V\T , where V is the set of BN nodes. While, in

a relational domain, and due to the horizon of crossed slot chains, the number of potential variables is not

fixed. Note that we have to make the difference between an attribute and a variable:

– An attribute is characterized by its name, domain, a set of possible aggregators and the class that it

belongs to.

– A variable is characterized by its name, domain, the class that it belongs to, a specific aggregator type

and the slot chain that it is derived from.

Via Definition 3.2.3, a parent is a variable, while a child is an attribute. When searching the CPC(T)
list of T , T is a target attribute, while CPC(T) consists of the candidate parents and children of T . Each
parent is a variable and each child is an attribute. |CPC(T)| depends on the length of the traversed path

k ∈ {0 . . . Kmax}. For each value of k, a subset of potential parents and children can be generated. As

the final generated CPC(T) list may be very large, we adopt the same strategy as (Friedman et al., 1999a)

and we proceed by phases. That is, suppose that we want to provide the list of children and parents of

86 Chapter5: New approach to RBNs structure learning

Algorithm 22 RMMPC

Require: R: A relational schema, I: A database instance

Current_slot_chain_length: A slot chain length, T : A target attribute

Ensure: CPC: The set of parents and children of T , CPCT = CPCsym
T ∪ CPCasym

T

1: Potlist = Generate_potential_list(T,Current_slot_chain_length)
% Phase I: Forward

2: repeat

3: 〈F.assocF 〉 =MaxMinHeuristic(T,CPCT , Potlist)
4: if assocF 6= 0 then

5: if Current_slot_chain_length = 0 OR does_Not_Contains_Many_Relationship(F) then

6: CPCsym
T = CPCsym

T ∪ F
7: else

8: CPCasym
T = CPCasym

T ∪ F
9: end if

10: CPCT = CPCsym
T ∪ CPCasym

T

11: Potlist = Potlist\F
12: end if

13: until CPC has not changed or assocF = 0 or Potlist = ∅
% Phase II: Backward

14: for all A ∈ CPCT do

15: if ∃S ⊆ CPC, s.t.Ind(A;T |S) then

16: CPCT = CPCT\{A}
17: end if

18: end for

each attribute T given a maximum slot chain length kmax, the neighborhood identification will be done on

k phases where k ∈ {0 . . . kmax}. At phase 0, we will search for the set of parents and children of attribute

T from the same class as T , at phase 1, we will search for the set of parents and children of attribute T in

classes related to T class using reference slots. At phase 2, we will go through further classes and search

for the set of parents and children of attribute T in classes related to T class using slot chains of length 2
and so on. The neighborhood identification, for one specified value of slot chain length, is described by

Algorithm 22.

Potential list generation.

The Generate_potential_list method (Algorithm 23) aims to identify the list of potential parents and

children of a target attribute T given a slot chain length k. This method performs as follows.

– First, it searches all paths (i.e., slot chains) from a starting class XT to other classes Y ∈ X of length

k. These slot chains may be a sequence of reversed and not reversed slot references. As mentioned

in (Getoor et al., 2007), if the slot chain contains at least one reversed slot reference then aggregators

are needed. That is, the list of aggregators associated with each A ∈ A(Y) has to be used. The

starting class is the class to which T , the target attribute, belongs.
– All attributes of reached classes Y , A ∈ A(Y) are considered as potential attributes. If X = Y ,

then all the attributes, expect T are considered as potential attributes. In fact, as (Friedman et al.,

1999a), we only focus in generating dependency structures that are DAGs. Even if S may contain

cycles, as discussed in Section 3.2.2, we do not consider this particular case where expert knowledge

is needed to guarantee the acyclicity of derived ground Bayesian graph. As already mentioned, our

input contains only a full specified relational observational database.

The result of the Generate_potential_list method is a set of potential variables defined as follows:

– XT .A, if Y = X and we are searching for intra-class dependencies.

– γ(XT .Slot_Chain.Y.A), if the Slot_Chain_length 6= 0, where γ is an aggregation function. This

5.2 Relational Max Min Parents and children RMMPC 87

Algorithm 23 Generate_potential_list

Require: R: A relational schema, Current_slot_chain_length: A slot chain length, T : A target attribute

Ensure: Potlist: the set of potential parents and children of T given Current_slot_chain_length
1: Potlist = ∅
2: ClassFromPath = FindPaths(XT ,R, Current_slot_chain_length)
3: for all 〈Y ∈ X , SlotChain〉 ∈ ClassFromPath do

4: if Y 6= XT then

5: listAttributes = findAllAttributes(Y)
6: else

7: listAttributes = findAllAttributes(Y)
8: listAttributes = listAttributes\{T}
9: end if

10: for all A ∈ listAttributes do

11: if SlotChain.length = 0 OR isAllNotReversed(SlotChain) then

12: Potlist = Potlist ∪XT .SlotChain.Y.A
13: else

14: listAggregators = getAggregators(A)
15: for all γ ∈ listAggregators do

16: Potlist = Potlist ∪ γ(XT .SlotChain.Y.A)
17: end for

18: end if

19: end for

20: end for

set presents inter-class dependencies. With respect to Definition 3.2.3, γ(XT .Slot_Chain.Y.A)
could only be parents of the target attribute T .

Statistical tests. The asymmetry caused by the use of aggregators can provide more interesting inter-

pretation than dependency detection. Clearly, if an independence is detected in both directions then we can

conclude that these two variables are independent. Otherwise, if a dependence is detected in one direction

and not in the other, the semantic of the slot chain involved in this dependency may even provide a deci-

sion on the dependency direction (i.e., identifying if the potential variable is either a potential parent or a

potential child).

On the other hand, if we keep the same assumption as in the context of the MMPC algorithm, the

symmetrical correction cannot be performed accurately: saying that A ∈ CPCT and verifying whether

T ∈ CPCA is not yet enough in the relational context as the correlation is also related to the semantic of

the slot chain. As some dependencies may require aggregators, there is an inherent asymmetry and this list

of candidate dependencies is closely related to the slot chain composition and the perspective class.

To deal with these issues, we propose to divide the neighborhood list, CPC, into two sub-lists. Formally,

CPC(T) = CPCsym
T ∪ CPCasym

T , where:

– CPCsym
T : The set of potential children and parents of target attribute T coming either from the

same class as T , with slot chain length equal to 0 or from slot chains that do not contain anyMany
relationship.

– CPCasym
T : The set of potential variables coming from the other slot chains ∀A ∈ CPC2

T , A could

only be a potential parent of T as described in (Getoor, 2002).

As for the standard case, MaxMinHeuristic (Algorithm 24) selects the variables that maximize the

MinAssoc with target attribute T conditioned to the subset of the currently estimated CPC = CPCsym
T ∪

CPCasym
T .

88 Chapter5: New approach to RBNs structure learning

Algorithm 24 The MaxMinHeuristic

Require: T : Target attribute, CPC: a subset of variables, Potlist: The list of potential neighbors of T
Ensure: The variable F that maximizes the minimum association with T relative to CPC, and its associ-

ation measurement assocF .
1: assocF = maxA∈PotlistMinAssoc(A;T |CPC)
2: F = argmaxA∈PotlistMinAssoc(A;T |CPC)

Algorithm 25 RMMPC

Require: R: A relational schema, I: A database instance, Current_slot_chain_length: A slot chain

length, T : A target attribute

Ensure: CPC: The set of parents and children of T , CPC = CPCsym ∪ CPCasym

1: if Current_slot_chain_length = 0 then

2: CPCsym
T = ∅, CPCasym

T = ∅
3: CPCT = CPCsym

T ∪ CPCasym
T

4: end if

5: CPCT = RMMPC(R, I, T, Current_slot_chain_length)
6: for all A ∈ CPCT do

7: if Current_slot_chain_length = 0 then

8: CPCsym
A = ∅, CPCasym

A = ∅
9: CPCA = CPCsym

A ∪ CPCasym
A

10: end if

11: CPCA = RMMPC(R, I, A, Current_slot_chain_length)
12: if A ∈ CPCsym

T AND T /∈ CPCsym
A then

13: CPCT = CPCT\{A}
14: end if

15: end for

5.2.2 Symmetrical correction

RMMPC (Algorithm 25) comes to refine the result of Algorithm 22 by applying a symmetric verification

to the result of RMMPC. For standard BNs, this task returns to remove from each set CPC(T) each node
X for which T /∈ CPC(X). For RBNs, this task is quite different, as CPC(T) consists of two subsets, the
symmetrical correction depends on the concerned subset.

– For each A ∈ CPCsym
T , we must verify that T ∈ CPCsym

A , otherwise, A has to be removed from

CPCsym
T . This symmetrical correction is equivalent to the symmetrical correction of MMPC.

– For each A ∈ CPCasym
T , we cannot apply the symmetrical correction since the SQL queries involved

in such a case are not equivalent and the resulting datasets on which we will apply statistical tests are

not the same. However, ∀A ∈ CPCasym
T , A can only be a parent of T . By this way, we can deduce

the dependency direction, directly from the first phase of RMMHC.

Example 5.2.1. Let’s consider the relational schema of figure 5.1 and the RBN of Figure 5.2 constructed

among this relational schema.

– For CPCsym, the symmetric correction is performed similar to the symmetric correction of MMPC

(Tsamardinos et al., 2006).

– For the CPCasym, the symmetric correction is not possible. In Figure 5.3, we are searching for

CPCClassA.X3 for a slot chain length k = 1. RMMPCClassA.X3 = {γ(ClassA.ClassAPK
−1.ClassC.X4)},

where γ is an aggregation function. On the other hand, if ClassC.X3 ∈ RMMPCClassA.X4 then

RMMPCClassA.X4 = {ClassC.ClassAPK.ClassA.X3}.
The statistical association computed for each retrieved dependency is not computed from the same

dataset as the SQL requests used are not equivalent and consequently will produce two different

5.2 Relational Max Min Parents and children RMMPC 89

������
��
��������	
�����
��	

������
��
��
��
��

������
��
��
��

Figure 5.1: An example of a relational schema

������

������

������
����

��
��

����

��

��
��

��

Figure 5.2: A RBN example of the relational schema of Figure 5.1

tables. In addition, with respect to Definition 3.2.3, γ(ClassA.ClassAPK−1.ClassC.X4) could

only be a potential parent ofClassA.X3 andClassC.ClassAPK.ClassA.X3 could only be a parent

of ClassC.X4.

5.2.3 Conservative RMMPC

With small sample size, the power of statistical test may be limited and RMMPC may lead to weak

results. In Section 1.4.4, we have discussed a conservative approach that allows to deal with this issue. In

Section 3.3.2, we have seen that the RCD algorithm compute statistical association in both directions and

leaves the dependency if a statistical association is detected in at least one direction. In this section we

propose the RMMPCc, a conservative version of the RMMPC algorithm that mixes both practices.

RMMPCc a slight variation of the RMMPC algorithm that allows to provide stronger guarantees for

true positives to enter the CPC list of T , especially when the algorithm is run with a limited sample size.

The main differences between the RMMPC and the RMMPCc lie in two levels:

– At theRMMPC algorithm: At this level we followMaier et al. (Maier et al., 2013a) assumption, by

computing the statistical association twice for asymmetric dependencies: A variable γ(XT .Slot_Chain.Y.A)
could enter the CPC list of a target attribute T if there is a statistical association Assoc(γ(XT .Slot
_Chain.Y.A), T |CPC(T)) ORAssoc(γ(YA.Slot_Chain.X.T), A|CPC(T)). The key difference is

90 Chapter5: New approach to RBNs structure learning

������������

�� ������
�������	������
��
���

��������	��

���	�
����������
���

��������	��

���	�
����������
���

������������������	�
�
�
γ���������������	

�
��������		

�

������������������		
�
�
��������������	
 ��������	�
�

������������

�� ��γ
�������	������
��
���

���������	
��	����

������������

�� ���������	������
��
�

���������	
��	����

Figure 5.3: An example of asymmetric dependency

Algorithm 26 RMMPCc

Require: R: A relational schema, I: A database instance, Current_slot_chain_length: A slot chain

length, T : A target attribute

Ensure: CPC: The set of parents and children of T , CPC = CPCsym ∪ CPCasym

1: if Current_slot_chain_length = 0 then

2: CPCsym
T = ∅, CPCasym

T = ∅
3: CPCT = CPCsym

T ∪ CPCasym
T

4: end if

5: CPCT = RMMPC
c
(R, I, T, Current_slot_chain_length)

6: Potlist = Generate_potential_list(T,Current_slot_chain_length)
7: for all A ∈ Potlist\CPCT do

8: if Current_slot_chain_length = 0 then

9: CPCsym
A = ∅, CPCasym

A = ∅
10: CPCA = CPCsym

A ∪ CPCasym
A

11: end if

12: CPCA = RMMPC
c
(R, I, A, Current_slot_chain_length)

13: if T ∈ CPCsym
A then

14: CPCsym
T = CPCsym

T ∪ {A}
15: end if

16: end for

then in theMaxMinHeuristic treatment. We refer to this conservative version asMaxMinHeuristicc.
RMMPC

c
is RMMPC that callsMaxMinHeuristicc.

– At the symmetrical correction: At this level we follow (de Morais and Aussem, 2010) assumption,

by applying an OR condition, instead of the AND condition when performing symmetrical correc-

tion for the CPCsym subset. A variable A ∈ CPCsym
T if A ∈ CPCsym

T OR T ∈ CPCsym
A , which

means that, after performing the symmetric correction, CPCsym
T = CPCsym

T ∪ {∀A|T ∈ CPCsym
A }.

The RMMPCc algorithm is depicted by algorithm 26.

5.2 Relational Max Min Parents and children RMMPC 91

������

������

������
����

��
��

����

��

��
��

��

���������	
��	����
����
����
���

���������	
�������
�
�

(a)

������

������

������
����

��
��

����

��

����

��

���������	
��	����
����
����
������������ ���	

���

�
��� ���
�
	�����

(b)

������

������

������
����

��
��

����

��

����

��

���������	
��	����
����
����
��������	
���
�

(c)

������

������

������
����

��
��

����

��

����

��

���������	
��	����
����
����
��������	
���
�
���
���������
���������
���������

(d)

������

������

������
����

��
��

����

��

����

��

���������	
��	����
����
����
��������	
���
�
���
������⊥��
���������
�������

(e)

������

������

������
����

��
��

����

��

����

��

���������	
��	����
����
����
��������	
���
�
���
���������
���������
���������

(f)

������

������

������
����

��
��

����

��

����

��

���������	
��	����
����
����
��������	
���
�
���
������ ⊥ ��
���������
�������

(g)

������

������

������
����

��
��

����

��

����

��

���������	
��	����
����
����
������������� ���	

(h)

Figure 5.4: Example trace of RMMPC with target node ClassC.X4

5.2.4 Toy example

In this section, we provide an example trace of RMMPC with a toy example, the relational schema as

well as the RBN used are respectively depicted by Figures 5.1and 5.2.

The relational observational dataset I is sampled from the network of Figure 5.2, with an average of

1000 records per table. The Assoc function used for independence measurement is the Mutual Information.

To simplify, we suppose that theMODE is the only possible aggregator for all attributes. The longest slot

chain present in the model is of length 1, we fix the maximum slot chain length toKmax = 1. The algorithm
performs on two phases, k = 0 and k = 1.

Figure 5.4 provides an example trace of RMMPC with target node ClassC.X4.

– Initially, CPC(ClassC.X4) = ∅ and it remains empty for k = 0 (Figure 7.6(a)) as ClassC.X4 is the

only attribute of ClassC.

92 Chapter5: New approach to RBNs structure learning

������

������

������
����

��
��

����

��

��
��

��

���������	
��	����
���������
��������	
����

��
���������	
�������
�
�

(a)

������

������

������
����

��
��

����

��

��
��

��

���������	
��	����
���������
��������	
���
�

(b)

������

������

������
����

��
��

����

��

��
��

��

���������	
��	����
���������
������������� ���	

(c)

������

������

������
����

��
��

����

��

��
��

��

���������	
��	����
���������
��������	
����

��
���������	
�������
�
�

(d)

������

������

������
����

��
��

����

��

��
��

��

���������	
��	����
���������
��������	
���
�

(e)

������

������

������
����

��
��

����

��

��
��

��

���������	
��	����
���������
������������� ���	

��	
���
����	
���
����	
���
�����

(f)

������

������

������
����

��
��

����

��

��
��

��

���������	
��	����
���������
������������� ���	

��	
���
�� ⊥ �	
���
����	
���
���

(g)

Figure 5.5: Example trace of RMMPC with target node ClassA.X3

– For k = 1,ClassC.X4 has 7 possible parents (dotted nodes of Figure 7.6(b)), namely, Potlist(ClassC.X4)
= {ClassC.ClassA-PK.ClassA.Xi, ∀i ∈ {1, . . . , 3}}∪{ClassC.ClassB-PK.ClassB.Xj, ∀j ∈ {5, . . . , 8}}.
At the first iteration of the forward phaseCPC(ClassC.X4) = {ClassC.ClassB-PK.ClassB.Xi, ∀i ∈
{5, . . . , 7}} (Figure 7.6(c)). At the second iteration, computing the statistical association between

ClassC.X4 and ClassC.ClassB-PK.ClassB.X6 conditionally to ClassC.ClassB-PK.ClassB.X5 (Fig-

ure 7.3(a)) leads to eliminate ClassC.ClassB-PK .ClassB.X6 fromCPC(ClassC.X4) (Figure 7.3(b)).
Also, computing the statistical association between ClassC.X4 and ClassC.ClassB-PK.
ClassB.X7 conditionally to ClassC.ClassB-PK.ClassB.X5 (Figure 7.3(c)) leads to eliminate ClassC.

ClassB-PK .ClassB.X7 from CPC(ClassC.X4) (Figure 5.4(g)).
– The result ofRMMPC algorithm for nodeClassC.X4 isCPC(ClassC.X4) = {ClassC.ClassB-PK

.ClassB.X5} (Figure 5.4(h)).
Figure 5.5 provides an example trace of RMMPC with target node ClassA.X3.

– For k = 0,ClassA.X3 has 2 possible parents (dotted nodes of Figure 5.5(a)), namely, Potlist(ClassA.X3)
= {ClassA.X1, ClassA.X2}. At the end of the first phase (i.e., k = 0), CPC(ClassA.X3) =

5.3 Relational Max Min Hill-Climbing: RMMHC 93

������

������

������
����

��
��

����

��

��
��

��

���������	
��	����
���������
������ ��	�
�	����
	

�
�
����������
������
������
�����������
����
����

(a)

������

������

������
����

��
��

����

��

��
��

��

���������	
��	����
���������
������ ��	�
�	����
�

�
�
����������
�
���������	
���������

(b)

������

������

������
����

��
��

����

��

��
��

��

���������	
��	����
���������
������ ��	�
�	����
�

�
�
����������
�
���������	�����
������
�����������
����
���

(c)

Figure 5.6: Example trace of RMMPCc with target node ClassA.X3

{ClassA.X2} (Figure 5.5(c)).
– For k = 1, Potlist(ClassA.X3) = {MODE(ClassA.ClassA-PK−1 .ClassC.X4)} (dotted node

of Figure 5.5(d)). At the forward phase of the first iteration CPC(ClassA.X3) = {ClassA.X2,
MODE(ClassA.ClassA-PK−1.ClassC.X4)} (Figure 5.5(e)). At the backward phase, computing the

statistical association between ClassA.X3 and ClassA.X2 conditionally toMODE(ClassA

.ClassA-PK−1.ClassC.X4) (Figure 5.5(f)) leads to eliminate ClassA.X2 from CPC(ClassA.X3)
(Figure 5.5(g)).

– The final CPC(ClassA.X3) = {MODE(ClassA.ClassA-PK−1.ClassC.X4) }. ClassA.X2 should

had remained inCPC(ClassA.X3), however the test of independence conditionally toMODE(ClassA

.ClassA-PK−1.ClassC.X4) has removed it. This may be due to to the limited sample size. Even if the

result of theRMMPC algorithm applied toClassA.X2 gives thatClassA.X3 ∈ CPC(ClassA.X2),
it will be removed at the symmetrical correction step of the RMMPC algorithm.

We have run the RMMPCc algorithm (cf. Algorithm 26) using the same dataset. Figure 5.6 provides

an example trace ofRMMPCc with target node ClassA.X3. TheRMMPC
c
result is CPC(ClassA.X3)

= {MODE(ClassA.ClassA-PK−1.ClassC.X4)} (Figure 5.6(a)). At the symmetrical correction step, the

RMMPCc will verify whether ClassA.X3 ∈ CPCX|X /∈ CPC(ClassA.X3). As ClassA.X3 ∈
CPC(ClassA.X2) (Figure 5.6(b)), ClassA.X2 will enter CPC(ClassA.X3).

5.3 Relational Max Min Hill-Climbing: RMMHC

5.3.1 Global structure identification

The global structure identification is performed using a score-based algorithm only on the set of vari-

ables derived from the first local search phase. We choose to work with the relational greedy search RGS

procedure as described by Algorithm 14, using the relational Bayesian score described in Section 3.3.1.

In this case, PotK(X.T) consists of the CPC list of variable X.T found on the local search step. As

this set contains two subsets, the choose of the operator to be performed during the neighbors generation

process will depends on the concerned subset:

– For CPCsym
T : each A ∈ CPCsym

T can be either a child or a parent of X.T so all the operators,

namely, add_edge, delete_edge and reverse_edge can be tested.
– ForCPCasym

T : eachA ∈ CPCasym
T is a potential parent ofX.T so only the add_edge and delete_edge

operators can be tested.

94 Chapter5: New approach to RBNs structure learning

Algorithm 27 RMMHC_single_GS

Require: R: A relational schema, I: A database instance, kmax: Maximun_SlotChain_Length
Ensure: The local optimal dependency graph S

% Local search

1: for Current_slot_chain_length = 0 to kmax do

2: for all T do

3: CPCT = RMMPC(R, I, T, Current_slot_chain_length)
4: end for

5: end for

% Global search

6: Perform Relational Greedy Search with operators add-edge, delete-edge, reverse-edge.

Only try operators add-edge and delete-edge A→ T if A ∈ CPCasym
T .

5.3.2 The overall algorithm

The global search step is an expensive step in term of complexity, since the size of the generated neigh-

borhood may increase rapidly. In the standard MMHC, the MMPC result is used as input for the GS

algorithm. In the relational context both the local and global search procedures are included in an itera-

tive process which increases the slot chain length where we look for possible probabilistic dependencies

between variables and till we reach a maximum value of slot chain length which is user-defined. So, two

patterns can be envisaged:

– Iterate on the slot chain length during only the local search procedure then perform only one global

search using the results of the iterative local search.

– Perform the local search as well as the global one for each slot chain length.

The RMMHC algorithm can be performed following one of these two possible assumptions:

– With single global search call. In this case the local search procedure is performed in phases until

reaching the maximum slot chain length. The result of this search procedure will be the CPC list of

all variables with different possible slot chains lengths. This result is the input of the global search

procedure that will be run only one time. The overall process is as presented in Algorithm 27.

– With multiple global search calls. In this case both the local and global search procedures will be

performed in phases until reaching the maximum slot chain length. At each phase K, a CPC list is

identified with slot chain length equal to K and passed to the global search procedure. This latter

starts, at phase K = 0, from the empty graph. Then, at each new phase K, the global search is

performed using the graph structure found at phase k − 1. The overall process is as presented in

Algorithm 28.

The first assumption seems to be more suitable with MMHC principle as for this latter the global search

is performed once, on all candidate nodes derived from the local search step. This allows to push the global

search phase to the end of the process, nevertheless, this does not guarantee the use of the correct skeleton

when identifying the CPC lists.

The second assumption is more suitable with the relational context as it allows to treat each slot chain

length separately during the learning process. This approach allows to identify and clean the neighborhood

at each iteration, however, the greedy search is called multiple times.

We have to mention that for both versions of the RMMHC algorithm, we apply the relational greedy

search algorithm (see Algorithm 14) while omitting the outer loop, as the slot chain concern will be taken

into consideration by the RMMHC algorithm.

5.4 Time complexity of the algorithms 95

Algorithm 28 RMMHC_Multiple_GS

Require: R: A relational schema, I: A database instance, kmax: Maximun_SlotChain_Length
Ensure: The local optimal dependency graph S
1: for Current_SlotChain_Length = 0 To kmax do

2: % Local search

3: for all T do

4: CPCT = RMMPC(R, I, T, Current_slot_chain_length)
5: end for

% Global search

6: Perform Relational Greedy Search with operators add-edge, delete-edge, reverse-edge.

Only try operators add-edge and delete-edge A→ T if A ∈ CPCasym
T .

7: end for

5.4 Time complexity of the algorithms

The MMPC (cf. Section 1.4.4) consists of the MMPC algorithm of complexity O(|Potlist| .2
|CPC|)

and an additional symmetrical correction. Thus, its overall complexity is O(|Potlist|
2 .2|CPC|).

At each iteration of the classical greedy search algorithm (cf. Section1.4.3), the number of possible

local changes is bounded by O(V2), where V is the number of variables in the graph.

OurRMMPC algorithm presents the same steps as for the standard case, augmented with theGenerate
_potential_list procedure which is of complexity O(Nk), where N is the number of classes and k is the

current slot chain length. Thus, its time complexity, at each k value, k ∈ {0 . . . Kmax} remains equal to

O(|Potlist| .2
|CPC|). Thus, augmented with the symmetrical correction, the time complexity of the RMMPC

algorithm is O(|Potlist|
2 .2|CPC|).

For RGS, we have to iterate on variables and for each variable, we have to iterate on the list of all po-

tential parents of this variable. Unlike the standard case where this set is fixed for all nodes of the graph,

the relational context makes this set variable, depending on the length of the considered slot chain. A prob-

abilistic dependence is no longer a simple link between two nodes in a graph, but a link from a possible

chain slot value. Let us consider β the number of potential parents that could be reached, then the number of

possible local changes is bounded by O(β.V). Note that β = |CPC| when the RGS is called after a local

search step performed using RMMPC algorithm. We distinguish between βmax = |CPC| for RMMHC

algorithm with single global search and βk = |CPC| for RMMHC algorithm with multiple global search,

∀k ∈ {0 . . . Kmax}.

In RMMHC algorithm, either with single or multiple global search, the local search step has been

augmented with an outer loop presenting the current slot chain length to consider at each iteration. Thus

the final complexity of the local search is O(Kmax. |Potlist|
2 .2|CPC|). It is obvious that the RMMHCc

algorithm preserves the same complexity as the RMMHC algorithm.

5.5 RMMHC vs Related work

In this section, we highlight assumptions made either by RMMHC or by related state-of-the-art methods

and discuss some perspectives. Table 5.1 presents the main particularity of each approach.

Causal sufficiency. RGS, RCD and RMMHC make the causal sufficiency assumption which states

that for all considered relational models, all common causes of observed variables are also observed and

included in the model.

Addressing self-relationships. Self-relationships are defined by Maier et al. (Maier et al., 2013c) as

96 Chapter5: New approach to RBNs structure learning

Algorithm RGS RCD RMMHC RMMHCc

Family score-based constraint-based hybrid hybrid

Input relational schema relational schema

with ER description

relational schema relational schema

Output learned RBN list of canonical de-

pendencies

learned RBN learned RBN

Testing depen-

dency

using score func-

tions

using statistical

tests

using score func-

tions and statistical

tests

using score functions

and statistical tests

Statistical asso-

ciation measure-

ment

RBD score Linear regression RBD score, Linear

regression, Mutual

information

RBD score, Linear re-

gression, Mutual in-

formation

Heuristic AND condition OR condition AND condition OR condition

How to do? given a kmax, it

generates potential

dependencies itera-

tively, for each k ∈
{0 . . . kmax}

given a kmax, it gen-

erates all the poten-

tial dependencies at

once

given a kmax, it

generates potential

dependencies itera-

tively, for each k ∈
{0 . . . kmax}

given a kmax, it gen-

erates potential depen-

dencies iteratively, for

each k ∈ {0 . . . kmax}

Self-relationship yes no yes yes

Structural uncer-

tainty

no no no no

cyclic models no no no no

Table 5.1: Overview of RGS, RCD, RMMHC and RMMHCc particularities

relationship classes that involve the same entity class more than once. Even if the authors have defined rela-

tional schemas that can express these types of relationships. for simplicity, they do not consider them when

searching for the list of potential dependencies of the RCD algorithm (cf. Section 3.3.2). RCD is executed

around the AGG specification which is constructed using the extend method (cf. Definition 3.2.23). The

extend method relies on the definition of relational paths (cf. Definition 3.2.13) which requires unique en-

tity class names within [E,R,E] triples. However, in a relational context, self-relationships are frequently

involved (e.g., scholarly articles cite other articles). In contrast to RCD, both RGS and RMMHC support

this additional layer of complexity.

Cyclic models. For the three algorithms that we discuss, the relational model is assumed to be acyclic

with respect to the class dependency graph (cf. Definition 3.2.7). Note that, as discussed in (Friedman

et al., 1999a), this additional layer of complexity can be taken into account for further improvement of

these algorithms by studying stratified dependency structures (cf. Definition 3.2.9), where prior knowledge

allowing us to guarantee the legality of certain dependency models is needed.

Structural uncertainty. RGS, RCD and RMMHC algorithms do not treat structural uncertainty (cf.

Section 3.2.6). They only search for probabilistic dependencies between attributes. In (Maier et al., 2010),

existence uncertainty has been addressed by the RPC algorithm. Yet, the proposed algorithm was not sound

and complete. RCD comes to refine RPC but it omit the existence uncertainty issue and leave it for future

research.

5.6 Conclusion

This chapter proposed a new hybrid approach to learn RBN structures. We have proposed two possible

versions of the algorithm and we have discussed its complexity. We have also made a discussion with

respect to related work.

5.6 Conclusion 97

In the next chapter, we will move on describing the implementation process. We will introduce our

software project and provide some details on implemented statistical tests and score functions.

6

Implementation

The contributions detailed in chapters 4 and 5 have to be approved experimentally. However,

before proceeding the experiments, and because of the great efforts that have been devoted to the

development, we dedicate this chapter to introduce our PILGRIM software under which we have

implemented all the proposed contributions.

99

100 Chapter6: Experimental study

Contents

6.1 Introduction . 101

6.2 The PILGRIM project . 101

6.2.1 PILGRIM in nutshell . 101

6.2.2 Additional libraries . 103

6.2.3 Data accessibility . 104

6.3 PILGRIM Relational modules . 104

6.3.1 RBN serialization and unserialization . 104

6.3.2 Parameter learning . 106

6.3.3 Structure learning . 108

6.3.4 RBN structure learning evaluation metrics . 110

6.3.5 RBN benchmark random generation . 110

6.4 Conclusion . 110

6.1 Introduction 101

6.1 Introduction

THis chapter is dedicated to the implementation of our theoretical contributions. As seen in Sec-

tion 3.5, even if there is some software tools that support relational data representation, these tools

either do not support relational structure or provide it for RBN similar models for which the model speci-

fication is not necessary similar to RBN. Furthermore, these softwares do not provide relational evaluation

metrics. Thus, in order to evaluate our contributions, we implemented all the proposed algorithms into

the C++ PILGRIM project which is under development. The PILGRIM software tool allows to deal with

several probabilistic graphical models. It presents the development effort of several participants who have

made or are making their academic researchers within the Data User KnowledgE (DUKe) research group

of the LINA lab 1. Section 6.1 provides an overview of the PILGRIM project and lists the used environment

and softwares. Then, Section 6.3 focuses especially in the PILGRIM Relational framework and illustrates

different functionalities that have already been implemented.

6.2 The PILGRIM project

PILGRIM is actually under development to provide an efficient tool to deal with several probabilistic

graphical models (e.g., BNs, RBNs). In this section we give a brief representation of the PILGRIM project

and we specify additional libraries used by PILGRIM.

6.2.1 PILGRIM in nutshell

PILGRIM is a software tool for modeling, learning and reasoning upon probabilistic networks. It has

support to:

1. Probabilistic networks modeling: We are particularly interested with directed acyclic graphs. Ac-

tually, PILGRIM allows to model:

– Bayesian Network (BN)

– Relational Bayesian Network (RBN)

– Relational Bayesian Network with Reference Uncertainty (RBN-RU)

2. Probabilistic networks learning: Besides models representation, Pilgrim addresses the main learn-

ing tasks related to those models, namely:

– Parameter learning

– structure learning

3. Probabilistic networks benchmarking: The validation of any learning approach goes through an

evaluation process where benchmarks availability is essential. Thus, PILGRIM allows:

– Model generation

– Sampling

4. Probabilistic networks evaluation metrics: There are several metrics allowing to evaluate prob-

abilistic graphical models structure learning algorithms. PILGRIM implements a set of metrics to

evaluate the quality of reconstruction of the graph structure, namely:

– Distance-based measures

– Performance measures

PILGRIM is developed around four main sub-projects, namely PILGRIM general, PILGRIM structure

learning, PILGRIM relational and PILGRIM applications such illustrated by Figure 6.1. The PILGRIM

general was the first developed project it allows modeling standard probabilistic models.

1. pilgrim.univ-nantes.fr

102 Chapter6: Experimental study

P
ro

je
ct

m
a

n
a

g
er

s:
P

h
il

ip
p

e
L

E
R

A
Y

a
n

d
T

h
o

m
a

s
V

IN
C

E
N

T

S
u

b
-p

ro
je

ct
C

o
d

e
li

n
es

n
u

m
b

er
D

ev
el

o
p

er
s

F
u

n
ct

io
n

a
li

ti
es

R
o

le

L
ea
d
er

P
ar
ti
ci
p
an
t

P
IL
G
R
IM

g
en
er
al

6
1
9
6

A
m
an
u
ll
ah

Y
A
S
IN

(1
)

B
N
sp
ec
ifi
ca
ti
o
n

(1
)

(2
)

G
h
ad
a
T
R
A
B
E
L
S
I
(2
)

P
IL
G
R
IM

st
ru
ct
u
re

le
ar
n
in
g

6
1
7
5

A
m
an
u
ll
ah

Y
A
S
IN

(1
)

B
N
st
ru
ct
u
re

le
ar
n
in
g

(1
)

(2
)

G
h
ad
a
T
R
A
B
E
L
S
I
(2
)

P
IL
G
R
IM

re
la
ti
o
n
al

2
7
4
1
2

R
B
N
sp
ec
ifi
ca
ti
o
n

(1
)

(2
),
(3
)

R
B
N
-R
U
sp
ec
ifi
ca
ti
o
n

(1
)

R
B
N
p
ar
am

et
er
s
le
ar
n
in
g
le
ar
n
in
g

(2
)

(1
)

A
n
th
o
n
y
C
O
U
T
A
N
T
(1
)

R
B
N
se
ri
al
iz
at
io
n

(1
)

(2
)

M
o
u
n
a
B
E
N
IS
H
A
K
(2
)

R
B
N
v
is
u
al
iz
at
io
n

(1
)

R
aj
an
i
C
H
U
L
Y
A
D
Y
O
(3
)

R
B
N
u
n
se
ri
al
iz
at
io
n

(2
)

R
B
N
st
ru
ct
u
re

le
ar
n
in
g

(2
)

R
B
N
st
ru
ct
u
re

le
ar
n
in
g
ev
al
u
at
io
n
m
et
ri
cs

(2
)

R
B
N
b
en
ch
m
ar
k
ra
n
d
o
m

g
en
er
at
io
n

(2
)

P
IL
G
R
IM

ap
p
li
ca
ti
o
n
s

1
5
6
3

R
aj
an
i
C
H
U
L
Y
A
D
Y
O
(1
)

R
B
N
-b
as
ed

re
co
m
m
en
d
er

sy
st
em

(1
)

T
ab
le
6
.1
:
P
IL
G
R
IM

O
v
er
v
ie
w
:
p
ro
je
ct
s,
co
d
e
li
n
es

n
u
m
b
er
,
fu
n
ct
io
n
al
it
ie
s
&

m
ai
n
co
n
tr
ib
u
to
r
ro
le
s

6.2 The PILGRIM project 103

� �������� 	�
��
�����	� � �	 �

��
�
� ���
���� � ����
���������������
	�
��
�����	�
� ����
���������������
	�
��
����
��
���
�����
����

���
�����	����

� �������
����
��
���������
��
���
���

Figure 6.1: Overview of the PILGRIM project

By standard probabilistic models we refer to the family of probabilistic networks which are constructed

among the classical propositional data representation.The PILGRIM structure learning project provides sev-

eral structure learning algorithms for BNs (e.g., GS, MMHC). It also implements several score functions

(e.g., BDeu, BIC, AIC, MDL), statistical tests (e.g., mutual information) and metrics to evaluate the quality

of the reconstructed networks (e.g., SHD). The PILGRIM relational project provides several functionali-

ties to deal with probabilistic networks for relational data representation. Finally, PILGRIM application

contains some domain applications (e.g., RBN application to recommender systems) where probabilistic

networks implemented by either PILGRIM general or PILGRIM relational have been used. Table 6.1 re-

capitulates the functionalities developed under PILGRIM while presenting the main participants and their

roles.

6.2.2 Additional libraries

The PILGRIM project uses several existing C++ libraries to manage graph structures, to manipulate

BNs objects, to communicate with a RDBMS or to run unit tests.

The Boost Graph Library (BGL). BGL is a C++ open source library that provides a generic open in-

terface for traversing graphs. Its implementation follows a generic programming principle and its source can

be found as part of the Boost distribution 2. BGL is characterized by its easy of use and integration in any

program: no need to be built to be used, wealth of documentation and multiple code examples. It consists of

a set of core algorithm patterns, namely, Breadth First Search, Depth First Search and Uniform Cost Search,

and a set set of graph algorithms (e.g., Dijkstra’s Shortest Paths, Connected Components, Topological Sort).

Database Template Library (dtl). dtl is a C++ open source library. The specificity of this library is

that it can run on multiple platforms and C++ compilers. In addition, Several DBMS are supported (Oracle,

PostgreSQL, MySql, etc) and Database access is ensured through ODBC drivers. dtl allows to perform

several manipulations on databases such as reading and writing records. It also allows to perform more

other requests such as creating schemas, tables, constraints, etc. dtl is well documented and a variety of

examples are given and commented. Moreover, instructions for using the library are provided and precision

on how to use it with each DBMS is given 3.

Googletest. Released under the BSD 3-clause license 4, Google Test presents a library for writing C++

unit tests. It works on a variety of platforms and can be easily integrated to any c++ program. The library

allows several test types and several options for running the tests 5.

2. http://sourceforge.net/projects/boost/files/

3. http://dtemplatelib.sourceforge.net/

4. http://opensource.org/licenses/BSD-3-Clause

5. https://code.google.com/p/googletest/

104 Chapter6: Experimental study

Besides, when we instantiate RBNs, ground Bayesian networks are BN objects defined using the ProBT

library 1.6.

6.2.3 Data accessibility

Some functionalities (e.g., parameter learning, structure learning) involve datasets as input. For standard

probabilistic models, flat data representation (e.g., a text file) is used. For relational probabilistic models,

relational data representation is needed. For the second case, we use the PostgreSQL Relational database

management system.

PostgreSQL. Postgres is an open-source object-relational database management system. Initially cre-

ated at the University of California at Berkeley, PostgreSQL is now considered among the most advanced

open-source database. It supports a large part of the SQL standard and provides the possibility to be used,

modified, and distributed by anyone free of charge for any purpose, be it private, commercial, or academic 6.

The next section is dedicated to the PILGRIM relational project. We will briefly present the main

modules of PILGRIM relational. Then, we will focus on the main modules on which we have contributed.

6.3 PILGRIM Relational modules

PILGRIM relational is built on the RBN specification, thus it requires the data to be modeled through

a relational schema. The probabilistic structure defines the dependencies among the probabilistic attributes

of that schema. Reference slots encode One-to-Many cardinality type, therefore it is possible that some

children nodes have multiple parents for the same probabilistic dependency. As multiple parents have to

be aggregated, PILGRIM relational defines several aggregation functions and Multi-set operators (e.g.,

AVERAGE, MODE, INTERSECTION) (cf. Section 2.3.1). PILGRIM relational allows also to model and

reason about RBN-RU (cf. Section 3.2.6). Figure 6.2 presents the main modules of the PILGRIM relational

project. In the remaining of this section we will especially focus on our contribution on this project.

Under PILGRIM Relational, we have already developed tools to define, instantiate and visualize RBNs.

These latter may be defined either manually or from a relational database schema or from an existing RBN

object serialized as an XML file. We use existing methods from the PILGRIM general project to perform

probabilistic inference at the ground Bayesian network level. We have also developed parameter learning as

well as structure learning approaches for RBNs from complete relational observational datasets. We have

also implemented modules for saving and reconstructing RBN objects. The PILGRIM relational contains

the implementation of our generator tool as well as our RBN structure learning evaluations measurements.

6.3.1 RBN serialization and unserialization

Methods to save a RBN object into a stored representation (e.g., file, memory buffer) or to create RBN

object from stored representation are very important and useful. Therefor, we have implemented a seri-

alization method which intends to save RBN objects into XML files and an unserializaton method which

intends to reconstruct them later either in the same computer environment or in another one. In order to

facilitate the reusability of our objects, we have worked with an enhanced version of an already existing

XML format for probabilistic graphical models encoding, namely the ProbModelXML format. Here we

start by presenting the main properties of the chosen format. Then, we present extensions made to encode

RBNs.

6. http://www.postgresql.org/docs/9.4/interactive/index.html

6.3 PILGRIM Relational modules 105

����

����
�
���	
��

��

����
�����
�	
��

��

����������
��
	����
��

�����
���
���� ����	
��

��

����
���
�	
��

��

�����
���
����
	����
��

��������������
������

�� �������	��

��

Figure 6.2: Package diagram of the PILGRIM Relational project

<ProbNet type=enumNetworkType >

<AdditionalConstraints />0..1

<Comment />0..1

<DecisionCriteria />0..1

<Agents />0..1

<Language />0..1

<AdditionalProperties />0..1

<Variables />

<Links />

<Potentials />

</ProbNet>

Figure 6.3: The skeleton for a probabilistic network encoded using the ProbModelXML format

6.3.1.1 The XML encoding of serialized RBNs

There is currently no formalization of RBNs, so that our generated models are serialized based on the

ProbModelXML format for encoding probabilistic graphical models. We use an enhanced version of the

XML syntax of the ProbModelXML specification (Arias et al., 2011).

106 Chapter6: Experimental study

Figure 6.4: The skeleton for a RBN using the ProbModelXML format

Probabilistic networks encoding in the ProbModelXML format ProModelXML is a prespecified XML

format allowing to encode several probabilistic graphical models (e.g., Bayesian networks, Markov net-

works, Dynamic Bayesian networks). It has been developed by the Research Center on Intelligent Decision-

Support Systems of the UNED in Madrid in 2011. The format is supported by OpenMarkov software tool 7.

The ultimate goal behind ProbModelXML is to provide a common format for the interchange of PGMs.

Therefore, it gives the possibility of encoding other probabilistic graphical models without a necessity to

modify the format definition. The skeleton for a probabilistic network is as depicted by Figure 6.3.

RBNs encoding using the ProbModelXML format The XML syntax that we used to encode RBNs

under PILGRIM is an enhanced version of the ProbModelXML specification. Mainly, we have added new

tags to encode properties related to the meta-model specification (i.e., classes and reference slots) and we

have used the 〈AdditionalProperties〉 tags to add further notions related to RBNs (i.e., aggregators and

slot chains associated with dependencies, classes associated with nodes). The skeleton for a relational

probabilistic network is as depicted by Figure 6.4.

The additional network properties concerns classes and reference slots representation. An example is

provided by Figure refrbnXML1.

– Classes: The 〈rbn− Classes〉 tag allows to encode classes of the rbn. A class has as attribute name,
a string value.

– Links between classes: The 〈rbn− ClassesLinks〉 tag allows to encode reference slots. A link has

three attributes fk, to and from, all of type string. The fk attribute specifies the reference slot name.

The to attribute specifies the name of the referenced class. The from attribute specifies the name of

the referencing class.

The already existing properties on which we have made some modifications are variable, link and po-

tential. An example is provided by Figure 6.6.

– Variable: The 〈AdditionalProperties〉 tag of a variable allows to associate a class with a node.

– Link: The 〈AdditionalProperties〉 tag of a link allows to associate a slot chain and an aggregator,

if any, with a dependency.

– Potential: To specify that the potential comes from an aggregated dependency, a new attribute rbn−
aggregator has been defined within the 〈V ariable〉 tag of a potential.

6.3.2 Parameter learning

Given a dependency structure S , parameter learning comes to estimate the CPDs of this structure. We

have developed parameter learning approaches for RBNs from complete relational observational dataset.

Despite its straightforwardness, it is an interesting task as it represents a crucial component to define score

functions used by structure learning algorithms. RBNs parameters learning approaches are inspired from

statistical and Bayesian parameter learning methods of classical Bayesian networks. The statistical ap-

proach consists in estimating the probability of an event by its frequency of occurrence in the database,

7. http://www.openmarkov.org/

6.3 PILGRIM Relational modules 107

(a) An example of a rbn-Classes tag

(b) An example of a rbn-ClassesLinks tag

Figure 6.5: Additional RBN network properties: The encoded RBN contains 3 classes (Figure 6.5(a)) and

2 reference slots (Figure 6.5(b))

(a) An example of a RBN V ariable tag (b) An example of a RBN Link tag

(c) An example of a RBN Potential tag

Figure 6.6: Main modifications made on already existing properties: In Figure 6.6(a), the variable classa.x3
is associated to classa. Figure 6.6(b) illustrates an aggregated probabilistic dependency between classa.x3
and classc.x4. Figure 6.6(c) presents the CPD of classa.x3.

known as the maximum likelihood estimation. The Bayesian approach consists on finding the most likely

parameters knowing that the data were observed using some prior. As a Bayesian estimator, we can use

either the maximum a posteriori (MAP) or the expectation a posteriori (EAP) (Heckerman, 1998). For both

approaches, the likelihood function (i.e., the probability of the data given the model) is the main ingredient.

For a RBN, the likelihood of a parameter set θS is (Getoor et al., 2007):

L(θS |I, σ,S) = P (I|σ,S, θS) (6.1)

As usual, we use the log of the likelihood function (Getoor et al., 2007):

l(θS |I, σ,S) = logP (I|σ,S, θS) =
∑

Xi

∑

A∈A(Xi)





∑

x∈σ(Xi)

log(P (Ix.A|Ipax.A))



 (6.2)

108 Chapter6: Experimental study

����������	
���

�
����

�����������
��
��
��
�����

���
��
����
��
��
��
�����

������

Figure 6.7: Implemented algorithms for parameters learning

PILGRIM Relational provides four possible ways to parameter learning illustrated by Figure 6.7:

– Maximum Likelihood. To perform a maximum likelihood estimation of parameters (Getoor et al.,

2007):

l(θS |I, σ,S) =
∑

Xi

∑

A∈A(Xi)





∑

x∈σ(Xi)

log(P (Ix.A|Ipax.A))





=
∑

Xi

∑

A∈A(Xi)

∑

v∈V (Xi.A)

∑

u∈V (Pa(Xi.A))

CXi.A[v, u]logθv|u (6.3)

Where, CXi.A[v, u], is the number of times we observe each of the different values v, u that the

attribute Xi.A and its parents can jointly take.

– Bayesian approaches. The Bayesian approach uses a prior distribution over the parameters to deal

with the training data irregularities. It is considered significantly more robust than the statistical

approach as it reduces the overfiting problem of the likelihood function. Same as the Bayesian ap-

proaches for BNs parameter learning (Heckerman, 1998), the prior for a multinomial distribution

of a variable Xi.A is a Dirichlet distribution specified by a set of hyper parameters α[v] : v ∈
V (Xi.A) (Getoor et al., 2007).
– Maximum A Posteriori. Implementing the relational version of the MAP Bayesian approach of

parameters learning.

MAPθ [P ((Xi.A = v|Pa(Xi.A) = u)|I] =
CXi.A[v, u] + αXi.A[v, u]− 1

∑k
i=1(CXi.A[vi, u] + αXi.A[vi, u]− 1)

(6.4)

– Expected A Posteriori. Implementing the relational version of the EAP Bayesian approach of

parameters learning.

EAPθ [P ((Xi.A = v|Pa(Xi.A) = u)|I] =
CXi.A[v, u] + αXi.A[v, u]

∑k
i=1CXi.A[vi, u] + αXi.A[vi, u]

(6.5)

– Laplace. Implementing a special case of the Bayesian approach with a uniform prior equal to 1.

6.3.3 Structure learning

This package includes algorithms for RBN structure learning as well as needed score functions and

statistical tests illustrated by Figure 6.8.

6.3 PILGRIM Relational modules 109

��������	�
��	�
���	�	���
��
����� �������� ����������
��	
���	�	���
��
�����

����������	
�������	
�������� ����������	������	������
�����

������	�����������
������	���������� ����������		�������	

�������	���	��������
�������

����������		�������	 ���	����!���
��� �	"	�����	#	���

Figure 6.8: Implemented algorithms for structure learning

We have implemented a score-based approach, namely the relational greedy search algorithm with the

relational extension of the Bayesian Dirichlet as score function (cf. Section 3.3). We have implemented

two variants of the RGS algorithm. The first constructs the neighborhood from all nodes of the RBN. The

second constructs the neighborhood from a subset of nodes given as input.

We have also implemented our new hybrid approach of RBN structure learning, the RMMHC algorithm

detailed in Chapter 5 with its two variants (cf. Algorithms 27 and 28). During the local search step, the

RMMPC algorithm (cf. Algorithm 25) tests statistical independence between variables. To this end, we

have implemented two statistical measures of association:

– The mutual information (MI) allows to measure the mutual dependence between a set of variables.

– The linear regression is a statistical approach for predicting the relationship between a dependent

variable and one (simple linear regression) or more (multiple linear regression) explanatory variables.

We use the linear regression in our context to measure the dependence between a variable and a set

of variables.

During the global search step, the RMMHC algorithm uses the RGS algorithm (cf. Algorithm 14) with as

parameters the set of potential parents and children identified by the local search step.

We note that the classical version of the MMHC (cf. Algorithm 8) and GS (cf. Algorithm 3) algorithms

is already implemented in PILGRIM structure learning project for BNs. We have used this implementation

and extended it to provide the relational version of the algorithms.

110 Chapter6: Experimental study

6.3.4 RBN structure learning evaluation metrics

We have implemented all the evaluation metrics that we have presented in in Chapter 4. We have im-

plemented our new versions of the Precision, Recall and F-score metrics as well as our new distance-based

metric, the RSHD measure, which represents a relational extension of the SHD measure (cf. Section 1.5).

All these structure learning evaluation metrics will be used during our experimental study detailed in Chap-

ter 7.

6.3.5 RBN benchmark random generation

To validate implemented learning approaches, we are in need of relational database benchmarks that

allow to check probabilistic dependencies among the DB attributes. The benchmark random generation

process described in Chapter 4 has been implemented under the PILGRIM relational project. During the

implementation, we have used the main policies described in Section 4.2.6.

6.4 Conclusion

In this chapter we have presented the overall organization of the PILGRIM project. Then, we have

concentrated on the PILGRIM relational and we have listed our contributions in the development of this

software.

The next chapter is dedicated to the experimental protocol for the learning approach. It will serve to

prove the effectiveness of the proposed learning approach. In addition, it will present the usefulness of the

generation process.

7

Experimental study

After detailing our theoretical contributions in Chapters 4 and 5 and introducing the PILGRIM

relational software tool in Chapter 6, this chapter is dedicated to the experimental study regarding

the new relational structure learning algorithm. We follow two different experimental protocols

where we compare our contribution to state-of-the-art methods with respect to different compar-

ison criteria.

111

112 Chapter6: Experimental study

Contents

7.1 Introduction . 113

7.2 Experimental protocols . 113

7.2.1 RMMHC, RGS, RCD: experimental protocol N°1 114

7.2.2 RMMHC, RGS: experimental protocol N°2 . 115

7.2.3 On the choice of the Kmax value for the learning algorithms 115

7.3 Results and interpretation . 116

7.3.1 Experimental protocol N°1: Results and interpretation 116

7.3.2 Experimental protocol N°2: Results and interpretation 124

7.4 Discussion . 132

7.4.1 Benchmarks and datasets . 132

7.4.2 Canonical dependencies generation . 132

7.4.3 Conservative vs non conservative algorithms . 133

7.4.4 Learned dependency structure complexity . 133

7.4.5 Query performance . 133

7.5 Conclusion . 133

7.1 Introduction 113

7.1 Introduction

THis chapter is dedicated to the empirical validation of our theoretical contributions. In Section 7.2,

we explain our two experiment protocols, for each we will specify used algorithms for the structure

learning experiments, used networks as well as the set of evaluation metrics. In Section 7.3, we report

the experimental results. We note that all reported results are drawn from experiments carried out on a

dedicated PC with Intel(R) Core(TM)i5-3210M CPU 2.5GHz, 64 bits architecture, 6 Gb RAM memory and

under Windows 8.1. Finally, in Section 7.4, we made a discussion about the experimentation results, the

encountered problems during experimentations and we present some possible solutions to those problems.

7.2 Experimental protocols

As we said previously, only few works have been proposed to learn RBNs and similar model from data,

namely RGS,RPC and RCD algorithms (cf. Sections 3.3, 3.3.2). In term of specific implementations, we

have re-implemented the RGS algorithm and used our version in the experimental study. RPC and RCD

source codes are available respectively in https://kdl.cs.umass.edu/display/public

/Relational+PC and https://kdl.cs.umass.edu/display/public/Relational+Causal+Discovery. The implemen-

tation of the RCD algorithm is operational, while the RPC code was difficult to use as it can be used only

with a restricted operating system (Mac OS X 10.5) and could not run on our experimental platform. We

did not use this algorithm in our comparative study, because, besides the implementation problems, RCD

is supposed to correct the theoretical problems of RPC and an experimental study on these two approaches

can be found in (Maier et al., 2013a). Consequently, our study includes the following algorithms:

– Relational Greedy Hill-Climbing Search (RGS, re-implemented in our experimental platform using

the RBD score, as a score-based approach (cf. Algorithm 14)).

– Relational Causal Discovery (RCD, the available implementation), as a constraint-based approach

(cf. Algorithm 15).

– Relational Max-Min Hill-Climbing (RMMHC, our novel hybrid algorithm with both conservative

and non conservative versions of the RMMPC algorithm (cf. Sections 5.2) and both single (cf. Al-

gorithm 27) and multiple (cf. Algorithm 28) RGS calls for global optimization. Consequently, our

study will include four different versions of the RMMHC algorithm that we refer to as:

– RMMHC_Single_GS: The non conservative version of the RMMHC algorithm with single

relational greedy search call.

– RMMHCc_Single_GS: The conservative version of the RMMHC algorithm with single rela-

tional greedy search call.

– RMMHC_Multiple_GS: The non conservative version of the RMMHC algorithm with multi-

ple relational greedy search call.

– RMMHCc_Multiple_GS: The conservative version of the RMMHC algorithm with multiple

relational greedy search call.

To compare these algorithms, we need to use them in the same experimental context. As we use an

existing code of RCD algorithm, we have to work with the constraints under which RCD could run (see

Section 5.5). So we planned two experimental protocols, the first compares RMMHC, RGS and RCD with

respect to the RCD implementation requirements, the second compares RMMHC to RGS only, but gives

more flexibility in term of generated models, neighborhood generation and used statistical tests.

114 Chapter6: Experimental study

Network # entities # relationships # Kmax # variables # edges #states {Min-Max} #parents {Min-Max}

RBN1 1 0 0 8 8 2− 2 0− 2
RBN2 2 1 1 8 8 2− 2 0− 3
RBN3 3 2 1 11 7 2− 4 0− 2
RBN4 4 3 2 11 8 2− 3 0− 2

Table 7.1: Relational Bayesian networks used by the experimental protocol N°1

7.2.1 RMMHC, RGS, RCD: experimental protocol N°1

7.2.1.1 Specificities using the algorithms

As the RCD algorithm does not support self-relationships (cf. Section 5.5), we provided restricted ver-

sions of RGS and RMMHC where self-relationships are prohibited. In addition, as both RCD and RMMHC

use statistical independence tests, we have implemented the linear regression test to fit the the RCD imple-

mentation and we have used it to perform statistical tests during the local search phase of RMMHC. For

judging conditional independence, we have run both RCD and RMMHC using a threshold α = 0.05.

7.2.1.2 Networks and datasets

Networks. Unlike standard Bayesian networks, where a set of famous networks is available to perform

experimentations (cf. Section 1.5), there is no such models defined in the context of RBNs.

We were not able to use the MovieLens+ database that has been used in (Maier et al., 2013a). It turns

out that the licensing of IMDB prohibits the authors from sharing the data. We should mention that there’s

no ground truth model there, it’s merely to show that the algorithm was implemented and it can run on real

data. Consequently, we have used our generating process, already described in chapter 4 to generate gold

models and relational database instances in order to lunch experimentations.

As RCD implies some constrains on the used network, we have generated networks following their

experimental plan described in (Maier et al., 2013a), where:

– Generated schemas contain from 1 to 4 entity classes.

– Generated schemas contain one less than the number of entities as relationship classes.

– Cardinalities are selected uniformly at random

– Attributes per item drawn from Poison(λ = 1) + 1
– Relational dependencies from 1 to 15, limited by a hop threshold of 4 and at most 3 parents per

variable.

Details about all networks included in the study are given in Table 7.1. The Kmax value in the table refers

to the maximum slot chain length found in the generated dependencies of the generated model.

Datasets. For each of the previously described networks, we have randomly sampled 5 relational obser-

vational complete datasets with 500, 1000, 2000 and , 3000 instances as an average number of objects per

class for each.

7.2.1.3 Evaluation metrics

We have compared the algorithms in term of execution speed and in term of quality of reconstruction.

For the former, we have used the number of statistical calls performed by an algorithm as evaluation metric.

The quality of reconstruction is measured using RSHD (cf. Algorithm 21), Precision (cf. Formula 4.3),

Recall (cf. Formula 4.4) and F-score (cf. Formula 3.10).

7.2 Experimental protocols 115

Network # classes # Kmax # variables # edges #states {Min-Max} #parents {Min-Max}

RBN1 1 0 8 8 2− 2 0− 2
RBN2 2 1 5 4 2− 2 0− 1
RBN3 3 1 8 6 2− 3 0− 1
RBN4 4 2 8 7 2− 3 0− 2
RBN5 5 2 16 10 2− 3 0− 3

Table 7.2: Relational Bayesian networks used by the experimental protocol N°2

7.2.2 RMMHC, RGS: experimental protocol N°2

7.2.2.1 Specificities using the algorithms

We will use the extended versions of RGS and RMMHC which support self-relationships. In addition,

opposed to the first experimental protocol where we have used linear regression as statistical independence

test, the following experimental protocol will use the mutual information association measure with thresh-

old α = 0.05. By this way, we will illustrate the implementation of all statistical tests enumerated in

Section 6.3.3.

7.2.2.2 Networks and datasets

Networks. We have varied the number of classes from 1 (i.e., the particular case where the RBN collapse

to a standard Bayesian network) to 5 and the maximum slot chain length from Kmax = 0 to Kmax = 5.
Details about all networks included in the study are given in Table 7.2. The Kmax value in the table refers

to the maximum slot chain length found in the generated dependencies of the generated model.

Datasets. For each of the described networks, we have randomly sampled 5 relational observational com-

plete datasets with 500, 1000, 2000 and 3000 instances as an average number of objects per class.

7.2.2.3 Evaluation metrics

As for the first experimental protocol, we have compared the algorithms in term of execution speed

and in term of quality of reconstruction. For the former, we have used the number of statistical calls

performed by an algorithm. The quality of reconstruction is measured using both the hard and soft versions

of Precision, Recall and F-score defined by Section 4.3.3. However, the RSHD measure is excluded since

it has been implemented for the special case where RBNs collapse to DAPER models.

7.2.3 On the choice of the Kmax value for the learning algorithms

It is clear that any learning algorithmwill be unable to find some dependencies if theKmax value is lower

than the length of slot chains of some dependencies. However,a good learning algorithm should not be very

sensitive if the Kmax is higher than the longest slot chain encountered in the true model. In (Maier et al.,

2013a), the authors have fixed a maximum value of 4 as they have fixed the same value for their generated

models (cf. Section 7.2.1). For both experimental protocols we fixed Kmax equal to the maximum slot

chain length that really exists in the true model dependencies.

116 Chapter6: Experimental study

� �� ��� ��� ��� �	� �
� ��

�
 � � � � � � � �� ������ ��� ��� ���!! ��"#� ��"��� $
% & '% ()% * * + (, - (, ' � . / � � , & '% * * + (, (, ' � . / � � , & '% * * + (, * 0 � 1 � � � � , - (, & '% * * + (, * 0 � 1 � � � � , (, & '

Figure 7.1: Experimental protocol N°1 normalized number of statistical calls with respect to the sample

size

7.3 Results and interpretation

7.3.1 Experimental protocol N°1: Results and interpretation

7.3.1.1 Statistical calls results

We are comparing algorithms that are not necessary implemented using the same data structures for

representing and performing graph operations. RGS and RMMHC with its different versions are imple-

mented in our local platform while, for the RCD algorithm, we use the available source code.

Table 7.3 contains the normalized number of statistical calls performed by the algorithms we have

compared in this experimental protocol. As the used networks are of small size, we have fixed two hours

limit to perform computations. Experimentations are canceled when this limit is reached. Also, we note

that the RCD algorithm failed to run on some datasets. These latter are also excluded and not reported

in Table 7.3 which may explain the low values of RCD. Figure 7.2 illustrates the normalized number of

statistical calls with respect to the sample size for all algorithms included in the comparative study.

The RCD algorithm presents better results in term of statistical calls than RGS and RMMHC with its

different versions. The RMMHC_Single_GS and RMMHC_Multiple_GS algorithms performs less

statistical calls than RMMHCc_Single_GS and RMMHCc_Multiple_GS. This behavior is explained
by the fact that the statistical association is computed twice for asymmetric dependencies. In addition, at the

symmetrical correction phase, RMMHC_Single_GS and RMMHC_Multiple_GS algorithms tend to

reduce the CPC lists size, whereas, RMMHCc_Single_GS and RMMHCc_Multiple_GS algorithms

tend to to expand it which may increase the number of calls of the scoring function during the global

optimization phase (cf. Section 5.2.3).

Statistical calls conclusions. The RCD algorithm performs the least number of statistical calls on aver-

age, followed by the non conservative versions of the RMMHC algorithm. However, RCD was unscalable

for some experimentations whileRMMHC scaled with all datasets. In general, theRMMHC_Single_GS

7.3 Results and interpretation 117

Model Algorithm
Data size

500 1000 2000 3000

RBN1

RGS 1.00 1.00 1.00 1.00

RCD 0.26 0.20 0.16 0.22

RMMHC_Single_GS 0.66 0.37 0.30 0.48

RMMHCc_Single_GS 0.71 0.42 0.35 0.51

RMMHC_Multiple_GS 0.68 0.37 0.30 0.48

RMMHCc_Multiple_GS 0.71 0.42 0.35 0.51

RBN2

RGS 1.00 1.00 1.00 1.00

RCD 0.12 0.26 0.38 0.36

RMMHC_Single_GS 0.15 0.72 0.71 0.74

RMMHCc_Single_GS 0.16 0.76 0.79 0.88

RMMHC_Multiple_GS 0.16 0.81 1.02 0.88

RMMHCc_Multiple_GS 0.17 0.94 1.11 1.23

RBN3

RGS 1.00 1.00 1.00 1.00

RCD 0.28 0.27 0.34 0.33

RMMHC_Single_GS 0.90 0.71 0.82 0.78

RMMHCc_Single_GS 0.99 0.78 0.78 0.78

RMMHC_Multiple_GS 0.89 0.87 0.88 0.88

RMMHCc_Multiple_GS 0.96 0.95 0.98 0.98

RBN4

RGS 1.00 1.00 1.00 1.00

RCD 0.34 0.24 0.23 0.31

RMMHC_Single_GS 0.75 0.64 0.65 0.66

RMMHCc_Single_GS 0.87 0.77 0.69 0.71

RMMHC_Multiple_GS 0.74 0.60 0.54 0.55

RMMHCc_Multiple_GS 0.86 0.70 0.78 0.74

AVG

RGS 1.00 1.00 1.00 1.00

RCD 0.25 0.24 0.28 0.30

RMMHC_Single_GS 0.61 0.61 0.62 0.66

RMMHCc_Single_GS 0.68 0.68 0.65 0.72

RMMHC_Multiple_GS 0.61 0.66 0.68 0.69

RMMHCc_Multiple_GS 0.67 0.75 0.80 0.87

Table 7.3: Experimental protocol N°1 normalized number of statistical calls (i.e., number of tests of condi-

tional independence and/or number of calls to the local scoring function) performed by each algorithm for a

particular sample size and network divided by RGS’s calls on the same dataset. Average normalized values

lower to one correspond to an algorithm performing less statistical calls than RGS.

118 Chapter6: Experimental study

����������	
����

����
�����

�����
����

���
����
�
�
�
�

��
	�����
��	�
��

�	
������������

�������
�����
���������������

�����������	�

���
	��� �
�����
����������������
��
	���
�����

�	
������������

���
	��� �
�����
���������������

Figure 7.2: Mapping dependency structure into canonical dependencies

performs less statistical calls thanRMMHC_Multiple_GS, except for sample size 500. Also, theRMMHCc_Single
performs less statistical calls than RMMHCc_Multiple_GS, except for sample size 500.

7.3.1.2 Quality of reconstruction results

In this section, we are comparing algorithms which do not provide the same output. RCD returns a

set of canonical dependencies, whereas, RGS and RMMHC return a learned dependency structure S .
In order to compare them, we must first standardize their results. To this end, we have used the oracle

function available with the RCD source code. This function allows to provide the list of all canonical

dependencies of a RBN given as input. Thus, as illustrated by Figure 7.2, we will use the oracle function

either to transform the gold model into its set of canonical dependencies or to transform models learned by

RGS or RMMHC into their corresponding canonical sets. Evaluation metrics, namely Precision, Recall,

F-Measure, and RSHD are applied to canonical dependencies rather than dependency structures.

Tables 7.4, 7.5, 7.6, 7.7 summarize the average ± standard deviation of RSHD, Precision, Recall and

F-Measure evaluation metrics respectively, for all algorithms included in the experimental protocol N°1.

Reported values present the average over 5 runs of the algorithms, on 5 generated DB instances, for each

RBN from Table 7.1 and each sample size.

Given the model as input, the oracle function aims to find the set of canonical dependencies given a

maximum slot chain value. This function fails if the provided value is insufficient to find the result. For

RBN4, the oracle function was unable to find the canonical set of the gold model. We have progressively

augmented the kmax value, this augmentation resulted in a high running time of this function. It spent more

than one day without providing any result. This led us to stop the execution and to exclude the model

RBN4 from the comparative study results. Also, as the remaining models are of Kmax ∈ {0, 1}, hard and

soft precision, recall and F-Measure will be of same values. That’s why they are presented just once in the

summary tables.

Figures 7.3 and 7.4 illustrate the average values of precision, recall, F-score and RSHD measures with

respect to the sample size. In general, RGS presents the worst result for all evaluation measures used in the

7.3 Results and interpretation 119

Model Algorithm
Data size

500 1000 2000 3000

RBN1

RGS 8.80± 1.00 8.40± 0.80 8.40± 0.80 3.20± 0.70

RCD 8.00 ± 0.00 7.75 ± 0.60 3.80± 1.38 2.80± 1.00

RMMHC_Single_GS 8.00 ± 0.00 7.75 ± 0.60 2.00 ± 0.00 2.00 ± 0.00

RMMHCc_Single_GS 8.00 ± 0.00 7.75 ± 0.60 2.00 ± 0.00 2.00 ± 0.00

RMMHC_Multiple_GS 9.00± 0.80 8.60± 0.60 2.00 ± 0.00 2.00 ± 0.00

RMMHCc_Multiple_GS 9.00± 0.80 8.60± 0.60 2.00 ± 0.00 2.00 ± 0.00

RBN2

RGS 12.00± 0.00 11.80± 0.60 12.00± 0.00 12.00± 0.00

RCD 8.40± 1.00 7.00 ± 0.60 4.00 ± 0.00 4.00 ± 0.00

RMMHC_Single_GS 8.00 ± 1.20 8.00± 1.20 5.00± 0.60 5.00± 0.60

RMMHCc_Single_GS 8.00 ± 1.20 8.00± 1.20 5.00± 0.60 5.00± 0.60

RMMHC_Multiple_GS 8.00 ± 1.20 8.00± 1.20 5.00± 0.60 10.00± 1.00

RMMHCc_Multiple_GS 8.00 ± 1.20 8.00± 1.20 5.00± 0.60 5.00± 0.60

RBN3

RGS 5.33± 1.00 7.50± 0.80 7.50± 0.80 8.00± 1.00

RCD 5.40± 1.60 5.50± 0.60 3.00 ± 0.00 4.00± 0.60

RMMHC_Single_GS 4.00± 1.00 4.00 ± 0.60 4.00± 1.12 3.00 ± 0.86

RMMHCc_Single_GS 3.00 ± 0.56 4.00 ± 0.60 4.00± 1.12 3.00 ± 0.86

RMMHC_Multiple_GS 4.00± 1.00 4.00 ± 0.60 3.50± 0.80 4.00± 1.00

RMMHCc_Multiple_GS 4.00± 1.00 4.00 ± 0.60 3.00 ± 0.56 4.00± 1.00

AVG

RGS 8.71 9.23 9.30 7.73

RCD 7.26 6.75 3.60 3.60

RMMHC_Single_GS 6.67 6.58 3.67 3.33

RMMHCc_Single_GS 6.33 6.58 3.66 3.33

RMMHC_Multiple_GS 7.00 6.86 3.50 5.33

RMMHCc_Multiple_GS 7.00 6.87 3.33 3.67

Table 7.4: Experimental protocol N°1 Average ± standard deviation of RSHD for each algorithm for a

particular sample size and network. Bold values present the best values for a given model and a given

sample size. The AVG values present the average RSHD values for all models for a given sample size.

120 Chapter6: Experimental study

Model Algorithm
Data size

500 1000 2000 3000

RBN1

RGS 0.40 ± 0.09 0.46± 0.10 0.49± 0.10 0.88± 0.05

RCD 0.13± 0.10 0.60 ± 0.06 0.83± 0.08 0.93± 0.06

RMMHC_Single_GS 0.13± 0.10 0.60 ± 0.06 1.00 ± 0.00 1.00 ± 0.00

RMMHCc_Single_GS 0.13± 0.10 0.60 ± 0.06 1.00 ± 0.00 1.00 ± 0.00

RMMHC_Multiple_GS 0.37± 0.13 0.44± 0.11 1.00 ± 0.00 1.00 ± 0.00

RMMHCc_Multiple_GS 0.39± 0.16 0.44± 0.11 1.00 ± 0.00 1.00 ± 0.00

RBN2

RGS 0.14± 0.11 0.22± 0.08 0.31± 0.06 0.31± 0.06

RCD 0.15± 0.14 0.33 ± 0.10 0.69 ± 0.08 0.71 ± 0.06

RMMHC_Single_GS 0.50 ± 0.10 0.33 ± 0.10 0.67± 0.08 0.67± 0.08

RMMHCc_Single_GS 0.33± 0.15 0.17± 0.10 0.67± 0.08 0.67± 0.08

RMMHC_Multiple_GS 0.33± 0.15 0.17± 0.10 0.67± 0.10 0.30± 0.16

RMMHCc_Multiple_GS 0.50 ± 0.10 0.33 ± 0.10 0.67± 0.08 0.67± 0.08

RBN3

RGS 0.66± 0.08 0.57± 0.11 0.59± 0.06 0.56± 0.06

RCD 0.69± 0.10 0.73 ± 0.09 0.63± 0.11 0.75 ± 0.00

RMMHC_Single_GS 0.73± 0.09 0.73 ± 0.09 0.73± 0.12 0.72± 0.11

RMMHCc_Single_GS 0.80 ± 0.05 0.73 ± 0.09 0.73± 0.09 0.72± 0.11

RMMHC_Multiple_GS 0.73± 0.11 0.73 ± 0.09 0.80 ± 0.05 0.72± 0.10

RMMHCc_Multiple_GS 0.73± 0.11 0.73 ± 0.09 0.80 ± 0.05 0.73± 0.10

AVG

RGS 0.40 0.42 0.46 0.58

RCD 0.32 0.55 0.77 0.80

RMMHC_Single_GS 0.45 0.55 0.80 0.80

RMMHCc_Single_GS 0.42 0.50 0.80 0.80

RMMHC_Multiple_GS 0.48 0.46 0.82 0.67

RMMHCc_Multiple_GS 0.53 0.50 0.82 0.80

Table 7.5: Experimental protocol N°1 Average ± standard deviation of Precision for each algorithm for

a particular sample size and network. Bold values present the best values for a given model and a given

sample size. The AVG values present the average Precision values for all models for a given sample size.

7.3 Results and interpretation 121

Model Algorithm
Data size

500 1000 2000 3000

RBN1

RGS 0.31± 0.10 0.40± 0.00 0.51± 0.06 0.67± 0.02

RCD 0.13± 0.08 0.32± 0.10 0.45± 0.05 0.73 ± 0.06

RMMHC_Single_GS 0.13± 0.08 0.32± 0.10 0.73 ± 0.06 0.73 ± 0.06

RMMHCc_Single_GS 0.13± 0.08 0.32± 0.10 0.73 ± 0.06 0.73 ± 0.06

RMMHC_Multiple_GS 0.35 ± 0.10 0.42 ± 0.08 0.73 ± 0.06 0.73 ± 0.06

RMMHCc_Multiple_GS 0.35 ± 0.10 0.42 ± 0.08 0.73 ± 0.06 0.73 ± 0.06

RBN2

RGS 0.13 ± 0.11 0.30 ± 0.13 0.63± 0.11 0.63 ± 0.06

RCD 0.05± 0.00 0.17± 0.09 0.69 ± 0.10 0.63 ± 0.06

RMMHC_Single_GS 0.13 ± 0.10 0.25± 0.12 0.50± 0.00 0.50± 0.00

RMMHCc_Single_GS 0.13 ± 0.10 0.13± 0.07 0.50± 0.00 0.50± 0.00

RMMHC_Multiple_GS 0.13 ± 0.10 0.13± 0.10 0.50± 0.00 0.38± 0.09

RMMHCc_Multiple_GS 0.13 ± 0.10 0.25± 0.11 0.50± 0.00 0.50± 0.00

RBN3

RGS 0.67± 0.06 0.59± 0.12 0.59± 0.10 0.60± 0.10

RCD 0.51± 0.07 0.55± 0.10 0.70± 0.05 0.75± 0.00

RMMHC_Single_GS 0.73 ± 0.08 0.73 ± 0.10 0.73± 0.10 0.90 ± 0.05

RMMHCc_Single_GS 0.73 ± 0.08 0.73 ± 0.10 0.73± 0.10 0.90 ± 0.05

RMMHC_Multiple_GS 0.73 ± 0.08 0.73 ± 0.10 0.6± 0.15 0.63± 0.10

RMMHCc_Multiple_GS 0.73 ± 0.08 0.73 ± 0.08 1.00 ± 0.00 0.73± 0.06

AVG

RGS 0.37 0.43 0.58 0.63

RCD 0.23 0.34 0.59 0.70

RMMHC_Single_GS 0.33 0.43 0.65 0.71

RMMHCc_Single_GS 0.33 0.39 0.65 0.71

RMMHC_Multiple_GS 0.40 0.42 0.61 0.56

RMMHCc_Multiple_GS 0.40 0.47 0.74 0.65

Table 7.6: Experimental protocol N°1 Average ± standard deviation of Recall for each algorithm for a

particular sample size and network. Bold values present the best values for a given model and a given

sample size. The AVG values present the average Recall values for all models for a given sample size.

122 Chapter6: Experimental study

Model Algorithm
Data size

500 1000 2000 3000

RBN1

RGS 0.34± 0.09 0.42± 0.04 0.49± 0.07 0.76± 0.03

RCD 0.13± 0.10 0.41± 0.07 0.58± 0.06 0.81± 0.06

RMMHC_Single_GS 0.13± 0.10 0.41± 0.07 0.84 ± 0.04 0.84 ± 0.04

RMMHCc_Single_GS 0.13± 0.10 0.41± 0.07 0.84 ± 0.04 0.84 ± 0.04

RMMHC_Multiple_GS 0.35 ± 0.11 0.43 ± 0.10 0.84 ± 0.04 0.84 ± 0.04

RMMHCc_Multiple_GS 0.35 ± 0.14 0.43 ± 0.10 0.84 ± 0.04 0.84 ± 0.04

RBN2

RGS 0.13± 0.11 0.25± 0.11 0.42± 0.08 0.42± 0.06

RCD 0.07± 0.13 0.20± 0.09 0.69 ± 0.09 0.67 ± 0.06

RMMHC_Single_GS 0.20 ± 0.10 0.29 ± 0.11 0.57± 0.07 0.57± 0.07

RMMHCc_Single_GS 0.18± 0.12 0.14± 0.08 0.57± 0.07 0.57± 0.07

RMMHC_Multiple_GS 0.18± 0.13 0.14± 0.10 0.57± 0.08 0.33± 0.12

RMMHCc_Multiple_GS 0.20 ± 0.10 0.29 ± 0.10 0.57± 0.07 0.57± 0.07

RBN3

RGS 0.66± 0.07 0.58± 0.11 0.58± 0.07 0.58± 0.07

RCD 0.59± 0.08 0.62± 0.09 0.70± 0.07 0.75± 0.00

RMMHC_Single_GS 0.73± 0.08 0.73 ± 0.09 0.73± 0.11 0.80 ± 0.08

RMMHCc_Single_GS 0.76 ± 0.06 0.73 ± 0.09 0.73± 0.09 0.80 ± 0.08

RMMHC_Multiple_GS 0.73± 0.09 0.73 ± 0.09 0.69± 0.08 0.67± 0.10

RMMHCc_Multiple_GS 0.73± 0.09 0.73 ± 0.08 0.89 ± 0.04 0.73± 0.07

AVG

RGS 0.38 0.42 0.50 0.58

RCD 0.26 0.41 0.66 0.74

RMMHC_Single_GS 0.35 0.48 0.71 0.74

RMMHCc_Single_GS 0.36 0.43 0.71 0.74

RMMHC_Multiple_GS 0.42 0.43 0.70 0.61

RMMHCc_Multiple_GS 0.43 0.48 0.77 0.71

Table 7.7: Experimental protocol N°1 Average ± standard deviation of F-Measure for each algorithm for

a particular sample size and network. Bold values present the best values for a given model and a given

sample size. The AVG values present the average F-Measure values for all models for a given sample size.

7.3 Results and interpretation 123

2 3 3 4 3 3 3 4 2 3 3 5 3 3 3 5 2 3 3 6 3 3 37 877 897 8:7 8;7 8<= 87
> ? @ A B C > D E CF GHIJKHLMN OP QR IHST OT UV W X YW Z [W \ \] Z ^ _ Z ^ Y D ` a B C ^ X YW \ \] Z ^ Z ^ Y D ` a B C ^ X YW \ \] Z ^ \ b B c D A B C ^ _ Z ^ X YW \ \] Z ^ \ b B c D A B C ^ Z ^ X Y

(a) Average precision

2 3 3 4 3 3 3 4 2 3 3 5 3 3 3 5 2 3 3 6 3 3 37 877 897 8:7 8;7 8<= 87
> ? @ A B C > D E CF GHIJKHLMN OP Qd HSJee W X YW Z [W \ \] Z ^ _ Z ^ Y D ` a B C ^ X YW \ \] Z ^ Z ^ Y D ` a B C ^ X YW \ \] Z ^ \ b B c D A B C ^ _ Z ^ X YW \ \] Z ^ \ b B c D A B C ^ Z ^ X Y

(b) Average recall

2 3 3 4 3 3 3 4 2 3 3 5 3 3 3 5 2 3 3 6 3 3 37 877 897 8:7 8;7 8<= 87
> ? @ A B C > D E CF GHIJKHLMN OP Qf Qg HJOhIH W X YW Z [W \ \] Z ^ _ Z ^ Y D ` a B C ^ X YW \ \] Z ^ Z ^ Y D ` a B C ^ X YW \ \] Z ^ \ b B c D A B C ^ _ Z ^ X YW \ \] Z ^ \ b B c D A B C ^ Z ^ X Y

(c) Average F-measure

Figure 7.3: The average values of Precision, Recall and F-Measure with respect to the sample size

i j j k j j j k i j j l j j j l i j j m j j jno
pq
rsn

t u v w x y t z { y
| }~���~���� � � �� � �� � � � � � � � � � z � � x y � � �� � � � � � � � � z � � x y � � �� � � � � � � � x � z w x y � � � � � �� � � � � � � � x � z w x y � � � � �

Figure 7.4: The average value of RSHD measure with respect to the sample size

study. RCD and RMMHC with its different versions have very similar results. Precision, recall and F-

score metrics are not well suitable to judge the quality of reconstruction of a structure learning algorithms.

They may provide some useful interpretation yet, it is preferable to use them with other measurements. In

Figure 7.3 RGS outperforms RCD in term of precision, recall and F-score for sample size 500. However,
Figure 7.4 shows that for this same sample size, RCD provides better learned structure than RGS as it has

a lower RSHD value. For some datasets, the conservative versions of the RMMHC algorithm provide

slightly better results than the non conservative ones.

Quality of reconstruction conclusions. The RSHD measure reflects the quality of reconstruction of

a learning algorithm better than precision, recall and F-score. In general, RGS presents the worst result in

term of RSHD. Even if RCD and RMMHC, with its different versions, provide similar results in term of

quality of reconstruction, RCD is more efficient as it was able to achieve these quality results with a lowest

number of statistical calls. Nevertheless, it was unscalable for some experimentations while RMMHC

124 Chapter6: Experimental study

� �� ��� ��� ��� �	� �
� ��

�
 � � � � � � � �� ������ ��� ��� ���!! ��"#� ��"��� $
% & '% * * + (, - (, ' � . / � � , & '% * * + (, (, ' � . / � � , & '% * * + (, * 0 � 1 � � � � , - (, & '% * * + (, * 0 � 1 � � � � , (, & '

Figure 7.5: Experimental protocol N°2 normalized number of statistical calls with respect to the sample

size

scaled with all datasets. In addition, we have used a limited range of models (cf. Section 7.2.1) in order to

include RCD in the comparative study.

7.3.2 Experimental protocol N°2: Results and interpretation

7.3.2.1 Statistical calls results

Table 7.8 contains the normalized number of statistical calls performed for the algorithms we have com-

pared in this experimental protocol. As for the first protocol, we have fixed two hours limit to perform

computations. Experimentations are canceled when this limit is reached. Figure 7.5 illustrates the normal-

ized number of statistical calls with respect to the sample size for all algorithms included in the comparative

study. AllRMMHC versions perform less statistical test calls than theRGS algorithm. As for the first ex-

perimental protocol, RMMHC_Single_GS and RMMHCc_Multiple_GS perform less statistical test

calls than RMMHCc_Single_GS and RMMHCc_Multiple_GS respectively.

Statistical calls conclusions. All RMMHC versions apply less statistical test calls than RGS algo-

rithm. the RMMHC_Single_GS performed the smallest number of tests followed by its non conserva-

tive version. The RMMHCc_Multiple_GS performed the highest number of statistical calls among all

RMMHC versions.

7.3.2.2 Quality of reconstruction results

Tables 7.9, 7.10, 7.11, 7.12, 7.13 and 7.14 summarize the average± standard deviation of hard precision

(h-Precision), hard recall (h-Recall), hard F-score (h-F-Measure), soft precision (s-Precision), soft recall (s-

Recall) and soft F-score (s-F-Measure) respectively for all the algorithms of the experimental protocol N°2.

Reported values present the average over 5 runs of the algorithms, on 5 generated DB instances, for each

RBN from Table 7.1 and each sample size. The RMMHCc_Multiple_GS provides better results than

7.3 Results and interpretation 125

Model Algorithm
Data size

500 1000 2000 3000

RBN1

RGS 1.00 1.00 1.00 1.00

RMMHC_Single_GS 0.38 0.40 0.35 0.49

RMMHCc_Single_GS 0.40 0.44 0.37 0.52

RMMHC_Multiple_GS 0.38 0.40 0.35 0.49

RMMHCc_Multiple_GS 0.40 0.44 0.37 0.52

RBN2

RGS 1.00 1.00 1.00 1.00

RMMHC_Single_GS 0.56 0.59 0.63 0.62

RMMHCc_Single_GS 0.58 0.61 0.65 0.64

RMMHC_Multiple_GS 0.72 0.82 0.87 0.86

RMMHCc_Multiple_GS 0.73 0.83 0.87 0.86

RBN3

RGS 1.00 1.00 1.00 1.00

RMMHC_Single_GS 0.61 0.55 0.61 0.67

RMMHCc_Single_GS 0.66 0.59 0.68 0.77

RMMHC_Multiple_GS 0.77 0.72 0.81 0.81

RMMHCc_Multiple_GS 0.81 0.76 0.86 0.96

RBN4

RGS 1.00 1.00 1.00 1.00

RMMHC_Single_GS 0.82 0.81 0.71 0.80

RMMHCc_Single_GS 0.89 0.90 0.80 0.91

RMMHC_Multiple_GS 0.87 0.90 0.85 0.81

RMMHCc_Multiple_GS 0.94 1.00 0.96 0.94

RBN5

RGS 1.00 1.00 1.00 1.00

RMMHC_Single_GS 0.31 0.41 0.47 0.50

RMMHCc_Single_GS 0.38 0.49 0.59 0.58

RMMHC_Multiple_GS 0.33 0.45 0.57 0.65

RMMHCc_Multiple_GS 0.42 0.54 0.69 0.75

AVG RGS 1.00 1.00 1.00 1.00

RMMHC_Single_GS 0.52 0.55 0.56 0.62

RMMHCc_Single_GS 0.58 0.60 0.61 0.68

RMMHC_Multiple_GS 0.61 0.66 0.69 0.72

RMMHCc_Multiple_GS 0.69 0.71 0.75 0.81

Table 7.8: Experimental protocol N°2 normalized number of statistical calls (i.e., number of tests of condi-

tional independence and/or number of calls to the local scoring function) performed by each algorithm for a

particular sample size and network divided by RGS’s calls on the same dataset. Average normalized values

lower to one correspond to an algorithm performing less statistical calls than RGS.

126 Chapter6: Experimental study

Model Algorithm
Data size

500 1000 2000 3000

RBN1

RGS 0.25± 0.14 0.22 ± 0.11 0.28± 0.15 0.79± 0.07

RMMHC_Single_GS 0.26 ± 0.15 0.21± 0.14 0.32± 0.14 0.79± 0.05

RMMHCc_Single_GS 0.26 ± 0.15 0.22 ± 0.14 0.33 ± 0.14 0.81 ± 0.05

RMMHC_Multiple_GS 0.26 ± 0.15 0.21± 0.14 0.32± 0.14 0.79± 0.05

RMMHCc_Multiple_GS 0.26 ± 0.15 0.22 ± 0.14 0.33 ± 0.14 0.81 ± 0.05

RBN2

RGS 0.56± 0.10 0.65± 0.04 0.75± 0.03 0.75± 0.05

RMMHC_Single_GS 0.55± 0.11 0.72 ± 0.09 0.80 ± 0.04 0.80 ± 0.05

RMMHCc_Single_GS 0.55± 0.11 0.72 ± 0.09 0.80 ± 0.04 0.80 ± 0.05

RMMHC_Multiple_GS 0.57 ± 0.11 0.72 ± 0.09 0.80 ± 0.04 0.80 ± 0.05

RMMHCc_Multiple_GS 0.57 ± 0.11 0.72 ± 0.09 0.80 ± 0.04 0.80 ± 0.05

RBN3

RGS 0.32± 0.17 0.37± 0.13 0.39± 0.07 0.49± 0.15

RMMHC_Single_GS 0.40 ± 0.10 0.40 ± 0.12 0.46 ± 0.09 0.50 ± 0.12

RMMHCc_Single_GS 0.40 ± 0.10 0.40 ± 0.12 0.46 ± 0.09 0.50 ± 0.12

RMMHC_Multiple_GS 0.37± 0.11 0.40 ± 0.12 0.46 ± 0.09 0.50 ± 0.12

RMMHCc_Multiple_GS 0.40 ± 0.10 0.40 ± 0.12 0.46 ± 0.09 0.50 ± 0.12

RBN4

RGS 0.27± 0.15 0.27± 0.19 0.29± 0.17 0.30± 0.11

RMMHC_Single_GS 0.30 ± 0.17 0.43 ± 0.13 0.31 ± 0.17 0.32 ± 0.12

RMMHCc_Single_GS 0.30 ± 0.17 0.43 ± 0.13 0.31 ± 0.17 0.32 ± 0.12

RMMHC_Multiple_GS 0.29± 0.17 0.40± 0.14 0.31 ± 0.17 0.32 ± 0.12

RMMHCc_Multiple_GS 0.29± 0.17 0.40± 0.14 0.31 ± 0.17 0.32 ± 0.12

RBN5

RGS 0.32± 0.11 0.31± 0.13 0.59± 0.09 0.59± 0.09

RMMHC_Single_GS 0.65± 0.05 0.36 ± 0.10 0.71 ± 0.02 0.63 ± 0.04

RMMHCc_Single_GS 0.69 ± 0.04 0.36 ± 0.10 0.71 ± 0.02 0.63 ± 0.04

RMMHC_Multiple_GS 0.59± 0.07 0.36 ± 0.10 0.71 ± 0.02 0.63 ± 0.04

RMMHCc_Multiple_GS 0.62± 0.06 0.36 ± 0.10 0.71 ± 0.02 0.63 ± 0.04

AVG

RGS 0.35 0.36 0.46 0.58

RMMHC_Single_GS 0.40 0.42 0.52 0.61

RMMHCc_Single_GS 0.44 0.42 0.52 0.61

RMMHC_Multiple_GS 0.42 0.42 0.52 0.61

RMMHCc_Multiple_GS 0.43 0.42 0.52 0.61

Table 7.9: Experimental protocol N°2 Average ± standard deviation of h-Precision for each algorithm for

a particular sample size and network. Bold values present the best values for a given model and a given

sample size. The AVG values present the average h-Precision values for all models for a given sample size.

7.3 Results and interpretation 127

Model Algorithm
Data size

500 1000 2000 3000

RBN1

RGS 0.13 ± 0.03 0.13 ± 0.03 0.23 ± 0.10 0.63 ± 0.01

RMMHC_Single_GS 0.13 ± 0.03 0.13 ± 0.03 0.23 ± 0.10 0.63 ± 0.01

RMMHCc_Single_GS 0.13 ± 0.03 0.13 ± 0.03 0.23 ± 0.10 0.63 ± 0.01

RMMHC_Multiple_GS 0.13 ± 0.03 0.13 ± 0.03 0.23 ± 0.10 0.63 ± 0.01

RMMHCc_Multiple_GS 0.13 ± 0.03 0.13 ± 0.03 0.23 ± 0.10 0.63 ± 0.01

RBN2

RGS 0.60± 0.07 0.65± 0.02 0.75± 0.00 0.75± 0.00

RMMHC_Single_GS 0.55± 0.05 0.90 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

RMMHCc_Single_GS 0.55± 0.05 0.90 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

RMMHC_Multiple_GS 0.65 ± 0.03 0.90 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

RMMHCc_Multiple_GS 0.65 ± 0.03 0.90 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

RBN3

RGS 0.33± 0.02 0.40 ± 0.05 0.43 ± 0.05 0.53± 0.03

RMMHC_Single_GS 0.37 ± 0.04 0.37± 0.04 0.43 ± 0.02 0.63 ± 0.03

RMMHCc_Single_GS 0.37 ± 0.04 0.37± 0.04 0.43 ± 0.02 0.63 ± 0.03

RMMHC_Multiple_GS 0.33± 0.03 0.37± 0.04 0.43 ± 0.02 0.63 ± 0.03

RMMHCc_Multiple_GS 0.37 ± 0.04 0.37± 0.04 0.43 ± 0.02 0.63 ± 0.03

RBN4

RGS 0.23 ± 0.09 0.26± 0.05 0.29 ± 0.07 0.29 ± 0.06

RMMHC_Single_GS 0.20± 0.10 0.50 ± 0.00 0.29 ± 0.04 0.29 ± 0.02

RMMHCc_Single_GS 0.20± 0.10 0.50 ± 0.00 0.29 ± 0.04 0.29 ± 0.02

RMMHC_Multiple_GS 0.20± 0.10 0.40± 0.03 0.29 ± 0.04 0.29 ± 0.02

RMMHCc_Multiple_GS 0.20± 0.10 0.40± 0.03 0.29 ± 0.04 0.29 ± 0.02

RBN5

RGS 0.50 ± 0.00 0.50 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

RMMHC_Single_GS 0.50 ± 0.00 0.50 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

RMMHCc_Single_GS 0.50 ± 0.00 0.50 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

RMMHC_Multiple_GS 0.50 ± 0.00 0.50 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

RMMHCc_Multiple_GS 0.50 ± 0.00 0.50 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

AVG

RGS 0.36 0.39 0.54 0.64

RMMHC_Single_GS 0.36 0.48 0.59 0.71

RMMHCc_Single_GS 0.35 0.48 0.59 0.71

RMMHC_Multiple_GS 0.36 0.46 0.59 0.71

RMMHCc_Multiple_GS 0.37 0.46 0.59 0.71

Table 7.10: Experimental protocol N°2 Average ± standard deviation of h-Recall for each algorithm for

a particular sample size and network. Bold values present the best values for a given model and a given

sample size. The AVG values present the average h-Recall values for all models for a given sample size.

128 Chapter6: Experimental study

Model Algorithm
Data size

500 1000 2000 3000

RBN1

RGS 0.16± 0.05 0.16 ± 0.05 0.25± 0.12 0.70 ± 0.02

RMMHC_Single_GS 0.17 ± 0.05 0.16 ± 0.05 0.26± 0.12 0.70 ± 0.02

RMMHCc_Single_GS 0.17 ± 0.05 0.16 ± 0.05 0.27 ± 0.12 0.70 ± 0.02

RMMHC_Multiple_GS 0.17 ± 0.05 0.16 ± 0.05 0.26± 0.12 0.70 ± 0.02

RMMHCc_Multiple_GS 0.17 ± 0.05 0.16 ± 0.05 0.27 ± 0.12 0.70 ± 0.02

RBN2

RGS 0.58± 0.08 0.65± 0.03 0.75± 0.00 0.75± 0.00

RMMHC_Single_GS 0.55± 0.07 0.80 ± 0.07 0.89 ± 0.04 0.89 ± 0.04

RMMHCc_Single_GS 0.55± 0.07 0.80 ± 0.07 0.89 ± 0.04 0.89 ± 0.04

RMMHC_Multiple_GS 0.61 ± 0.05 0.80 ± 0.07 0.89 ± 0.04 0.89 ± 0.04

RMMHCc_Multiple_GS 0.61 ± 0.05 0.80 ± 0.07 0.89 ± 0.04 0.89 ± 0.04

RBN3

RGS 0.33± 0.05 0.38 ± 0.08 0.41± 0.06 0.51± 0.06

RMMHC_Single_GS 0.38 ± 0.06 0.38 ± 0.06 0.45 ± 0.03 0.56 ± 0.06

RMMHCc_Single_GS 0.38 ± 0.06 0.38 ± 0.06 0.45 ± 0.03 0.56 ± 0.06

RMMHC_Multiple_GS 0.35± 0.07 0.38 ± 0.06 0.45 ± 0.03 0.56 ± 0.06

RMMHCc_Multiple_GS 0.38 ± 0.06 0.38 ± 0.06 0.45 ± 0.03 0.56 ± 0.06

RBN4

RGS 0.25 ± 0.12 0.26± 0.10 0.29± 0.13 0.29± 0.07

RMMHC_Single_GS 0.24± 0.14 0.46 ± 0.09 0.30 ± 0.07 0.30 ± 0.04

RMMHCc_Single_GS 0.24± 0.14 0.46 ± 0.09 0.30 ± 0.07 0.30 ± 0.04

RMMHC_Multiple_GS 0.23± 0.14 0.40± 0.06 0.30 ± 0.07 0.30 ± 0.04

RMMHCc_Multiple_GS 0.23± 0.14 0.40± 0.06 0.30 ± 0.07 0.30 ± 0.04

RBN5

RGS 0.40± 0.09 0.38± 0.10 0.74± 0.07 0.74± 0.07

RMMHC_Single_GS 0.55± 0.04 0.42 ± 0.08 0.83 ± 0.02 0.77 ± 0.03

RMMHCc_Single_GS 0.57 ± 0.03 0.42 ± 0.08 0.83 ± 0.02 0.77 ± 0.03

RMMHC_Multiple_GS 0.54± 0.05 0.42 ± 0.08 0.83 ± 0.02 0.77 ± 0.03

RMMHCc_Multiple_GS 0.55± 0.05 0.42 ± 0.08 0.83 ± 0.02 0.77 ± 0.03

AVG

RGS 0.34 0.37 0.50 0.61

RMMHC_Single_GS 0.38 0.44 0.55 0.64

RMMHCc_Single_GS 0.40 0.44 0.55 0.64

RMMHC_Multiple_GS 0.38 0.43 0.55 0.64

RMMHCc_Multiple_GS 0.39 0.43 0.55 0.64

Table 7.11: Experimental protocol N°2 Average ± standard deviation of h-F-Measure for each algorithm

for a particular sample size and network. Bold values present the best values for a given model and a given

sample size. The AVG values present the average h-F-Measure values for all models for a given sample

size.

7.3 Results and interpretation 129

Model Algorithm
Data size

500 1000 2000 3000

RBN1

RGS 0.25± 0.14 0.22 ± 0.11 0.28± 0.15 0.79± 0.07

RMMHC_Single_GS 0.26 ± 0.15 0.21± 0.14 0.32± 0.14 0.79± 0.05

RMMHCc_Single_GS 0.26 ± 0.15 0.22 ± 0.14 0.33 ± 0.14 0.81 ± 0.05

RMMHC_Multiple_GS 0.26 ± 0.15 0.21± 0.14 0.32± 0.14 0.79± 0.05

RMMHCc_Multiple_GS 0.26 ± 0.15 0.22 ± 0.14 0.33 ± 0.14 0.81 ± 0.05

RBN2

RGS 0.56± 0.10 0.65± 0.04 0.75± 0.03 0.75± 0.05

RMMHC_Single_GS 0.55± 0.11 0.72 ± 0.09 0.80 ± 0.04 0.80 ± 0.05

RMMHCc_Single_GS 0.55± 0.11 0.72 ± 0.09 0.80 ± 0.04 0.80 ± 0.05

RMMHC_Multiple_GS 0.57 ± 0.11 0.72 ± 0.09 0.80 ± 0.04 0.80 ± 0.05

RMMHCc_Multiple_GS 0.57 ± 0.11 0.72 ± 0.09 0.80 ± 0.04 0.80 ± 0.05

RBN3

RGS 0.32± 0.17 0.37± 0.13 0.39± 0.07 0.49± 0.15

RMMHC_Single_GS 0.40 ± 0.10 0.40 ± 0.12 0.46 ± 0.09 0.50 ± 0.12

RMMHCc_Single_GS 0.40 ± 0.10 0.40 ± 0.12 0.46 ± 0.09 0.50 ± 0.12

RMMHC_Multiple_GS 0.37± 0.11 0.40 ± 0.12 0.46 ± 0.09 0.50 ± 0.12

RMMHCc_Multiple_GS 0.40 ± 0.10 0.40 ± 0.12 0.46 ± 0.09 0.50 ± 0.12

RBN4

RGS 0.27± 0.15 0.27± 0.19 0.29± 0.17 0.30± 0.11

RMMHC_Single_GS 0.30 ± 0.17 0.43 ± 0.13 0.31 ± 0.17 0.32 ± 0.12

RMMHCc_Single_GS 0.30 ± 0.17 0.43 ± 0.13 0.31 ± 0.17 0.32 ± 0.12

RMMHC_Multiple_GS 0.29± 0.17 0.40± 0.14 0.31 ± 0.17 0.32 ± 0.12

RMMHCc_Multiple_GS 0.29± 0.17 0.40± 0.14 0.31 ± 0.17 0.32 ± 0.12

RBN5

RGS 0.32± 0.11 0.31± 0.13 0.59± 0.09 0.59± 0.09

RMMHC_Single_GS 0.65± 0.05 0.36± 0.10 0.71 ± 0.02 0.63 ± 0.04

RMMHCc_Single_GS 0.69 ± 0.04 0.36± 0.10 0.71 ± 0.02 0.63 ± 0.04

RMMHC_Multiple_GS 0.59± 0.07 0.55 ± 0.08 0.71 ± 0.02 0.63 ± 0.04

RMMHCc_Multiple_GS 0.62± 0.06 0.55 ± 0.08 0.71 ± 0.02 0.63 ± 0.04

AVG

RGS 0.35 0.36 0.46 0.58

RMMHC_Single_GS 0.40 0.42 0.52 0.61

RMMHCc_Single_GS 0.44 0.42 0.52 0.61

RMMHC_Multiple_GS 0.42 0.46 0.52 0.61

RMMHCc_Multiple_GS 0.43 0.46 0.52 0.61

Table 7.12: Experimental protocol N°2 Average ± standard deviation of s-Precision for each algorithm for

a particular sample size and network. Bold values present the best values for a given model and a given

sample size. The AVG values present the average s-Precision values for all models for a given sample size.

130 Chapter6: Experimental study

Model Algorithm
Data size

500 1000 2000 3000

RBN1

RGS 0.13 ± 0.03 0.13 ± 0.03 0.23 ± 0.10 0.63 ± 0.01

RMMHC_Single_GS 0.13 ± 0.03 0.13 ± 0.03 0.23 ± 0.10 0.63 ± 0.01

RMMHCc_Single_GS 0.13 ± 0.03 0.13 ± 0.03 0.23 ± 0.10 0.63 ± 0.01

RMMHC_Multiple_GS 0.13 ± 0.03 0.13 ± 0.03 0.23 ± 0.10 0.63 ± 0.01

RMMHCc_Multiple_GS 0.13 ± 0.03 0.13 ± 0.03 0.23 ± 0.10 0.63 ± 0.01

RBN2

RGS 0.58± 0.08 0.65± 0.03 0.75± 0.00 0.75± 0.00

RMMHC_Single_GS 0.55± 0.07 0.80 ± 0.07 0.89 ± 0.04 0.89 ± 0.04

RMMHCc_Single_GS 0.55± 0.07 0.80 ± 0.07 0.89 ± 0.04 0.89 ± 0.04

RMMHC_Multiple_GS 0.61 ± 0.05 0.80 ± 0.07 0.89 ± 0.04 0.89 ± 0.04

RMMHCc_Multiple_GS 0.61 ± 0.05 0.80 ± 0.07 0.89 ± 0.04 0.89 ± 0.04

RBN3

RGS 0.33± 0.02 0.40 ± 0.05 0.43 ± 0.05 0.53± 0.03

RMMHC_Single_GS 0.37 ± 0.04 0.37± 0.04 0.43 ± 0.02 0.63 ± 0.03

RMMHCc_Single_GS 0.37 ± 0.04 0.37± 0.04 0.43 ± 0.02 0.63 ± 0.03

RMMHC_Multiple_GS 0.33± 0.03 0.37± 0.04 0.43 ± 0.02 0.63 ± 0.03

RMMHCc_Multiple_GS 0.37 ± 0.04 0.37± 0.04 0.43 ± 0.02 0.63 ± 0.03

RBN4

RGS 0.23 ± 0.09 0.26± 0.05 0.29 ± 0.07 0.29 ± 0.06

RMMHC_Single_GS 0.20± 0.10 0.50 ± 0.00 0.29 ± 0.04 0.29 ± 0.02

RMMHCc_Single_GS 0.20± 0.10 0.50 ± 0.00 0.29 ± 0.04 0.29 ± 0.02

RMMHC_Multiple_GS 0.20± 0.10 0.40± 0.03 0.29 ± 0.04 0.29 ± 0.02

RMMHCc_Multiple_GS 0.20± 0.10 0.40± 0.03 0.29 ± 0.04 0.29 ± 0.02

RBN5

RGS 0.50 ± 0.00 0.50± 0.00 1.00 ± 0.00 1.00 ± 0.00

RMMHC_Single_GS 0.50 ± 0.00 0.50± 0.00 1.00 ± 0.00 1.00 ± 0.00

RMMHCc_Single_GS 0.50 ± 0.00 0.50± 0.00 1.00 ± 0.00 1.0 ± 0.00

RMMHC_Multiple_GS 0.50 ± 0.00 0.65 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

RMMHCc_Multiple_GS 0.50 ± 0.00 0.65 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

AVG

RGS 0.36 0.39 0.54 0.64

RMMHC_Single_GS 0.36 0.48 0.59 0.71

RMMHCc_Single_GS 0.35 0.48 0.59 0.71

RMMHC_Multiple_GS 0.36 0.49 0.59 0.71

RMMHCc_Multiple_GS 0.37 0.49 0.59 0.71

Table 7.13: Experimental protocol N°2 Average ± standard deviation of s-Recall for each algorithm for

a particular sample size and network. Bold values present the best values for a given model and a given

sample size. The AVG values present the average s-Recall values for all models for a given sample size.

7.3 Results and interpretation 131

Model Algorithm
Data size

500 1000 2000 3000

RBN1

RGS 0.16± 0.05 0.16 ± 0.05 0.25± 0.12 0.70 ± 0.02

RMMHC_Single_GS 0.17 ± 0.05 0.16 ± 0.05 0.26± 0.12 0.70 ± 0.02

RMMHCc_Single_GS 0.17 ± 0.05 0.16 ± 0.05 0.27 ± 0.12 0.70 ± 0.02

RMMHC_Multiple_GS 0.17 ± 0.05 0.16 ± 0.05 0.26± 0.12 0.70 ± 0.02

RMMHCc_Multiple_GS 0.17 ± 0.05 0.16 ± 0.05 0.27 ± 0.12 0.70 ± 0.02

RBN2

RGS 0.58± 0.08 0.65± 0.03 0.75± 0.00 0.75± 0.00

RMMHC_Single_GS 0.55± 0.07 0.80 ± 0.00 0.89 ± 0.00 0.89 ± 0.00

RMMHCc_Single_GS 0.55± 0.07 0.80 ± 0.00 0.89 ± 0.00 0.89 ± 0.00

RMMHC_Multiple_GS 0.61 ± 0.05 0.80 ± 0.00 0.89 ± 0.00 0.89 ± 0.00

RMMHCc_Multiple_GS 0.61 ± 0.05 0.80 ± 0.00 0.89 ± 0.00 0.89 ± 0.00

RBN3

RGS 0.33± 0.05 0.38 ± 0.08 0.41± 0.06 0.51± 0.06

RMMHC_Single_GS 0.38 ± 0.06 0.38 ± 0.06 0.45 ± 0.03 0.56 ± 0.06

RMMHCc_Single_GS 0.38 ± 0.06 0.38 ± 0.06 0.45 ± 0.03 0.56 ± 0.06

RMMHC_Multiple_GS 0.35± 0.07 0.38 ± 0.06 0.45 ± 0.03 0.56 ± 0.06

RMMHCc_Multiple_GS 0.38 ± 0.06 0.38 ± 0.06 0.45 ± 0.03 0.56 ± 0.06

RBN4

RGS 0.25 ± 0.12 0.26± 0.10 0.29± 0.13 0.29± 0.07

RMMHC_Single_GS 0.24± 0.14 0.46 ± 0.09 0.30 ± 0.07 0.30 ± 0.04

RMMHCc_Single_GS 0.24± 0.14 0.46 ± 0.09 0.30 ± 0.07 0.30 ± 0.04

RMMHC_Multiple_GS 0.23± 0.14 0.40± 0.06 0.30 ± 0.07 0.30 ± 0.04

RMMHCc_Multiple_GS 0.23± 0.14 0.40± 0.06 0.30 ± 0.07 0.30 ± 0.04

RBN5

RGS 0.40± 0.09 0.38± 0.10 0.74± 0.07 0.74± 0.07

RMMHC_Single_GS 0.55± 0.04 0.42± 0.08 0.83 ± 0.02 0.77 ± 0.03

RMMHCc_Single_GS 0.57 ± 0.03 0.42± 0.08 0.83 ± 0.02 0.77 ± 0.03

RMMHC_Multiple_GS 0.54± 0.05 0.60 ± 0.05 0.83 ± 0.02 0.77 ± 0.03

RMMHCc_Multiple_GS 0.55± 0.05 0.60 ± 0.05 0.83 ± 0.02 0.77 ± 0.03

AVG

RGS 0.34 0.37 0.50 0.61

RMMHC_Single_GS 0.38 0.44 0.55 0.64

RMMHCc_Single_GS 0.40 0.44 0.55 0.64

RMMHC_Multiple_GS 0.38 0.47 0.55 0.64

RMMHCc_Multiple_GS 0.39 0.47 0.55 0.64

Table 7.14: Experimental protocol N°2 Average ± standard deviation of s-F-Measure for each algorithm

for a particular sample size and network. Bold values present the best values for a given model and a given

sample size. The AVG values present the average s-F-Measure values for all models for a given sample

size.

132 Chapter6: Experimental study

2 3 3 4 3 3 3 4 2 3 3 5 3 3 3 5 2 3 3 6 3 3 37 877 897 8:7 8;7 8<= 87
> ? @ A B C > D E CF GHIJKHM QR IHST OT UV W X YW \ \] Z ^ _ Z ^ Y D ` a B C ^ X YW \ \] Z ^ Z ^ Y D ` a B C ^ X YW \ \] Z ^ \ b B c D A B C ^ _ Z ^ X YW \ \] Z ^ \ b B c D A B C ^ Z ^ X Y

(a) Average h-Precision

2 3 3 4 3 3 3 4 2 3 3 5 3 3 3 5 2 3 3 6 3 3 37 877 897 8:7 8;7 8<= 87
> ? @ A B C > D E CF GHIJKHM Qd HSJee W X YW \ \] Z ^ _ Z ^ Y D ` a B C ^ X YW \ \] Z ^ Z ^ Y D ` a B C ^ X YW \ \] Z ^ \ b B c D A B C ^ _ Z ^ X YW \ \] Z ^ \ b B c D A B C ^ Z ^ X Y

(b) Average h-Recall

2 3 3 4 3 3 3 4 2 3 3 5 3 3 3 5 2 3 3 6 3 3 37 877 897 8:7 8;7 8<= 87
> ? @ A B C > D E CF GHIJKHM Qfg HJOhIH W X YW \ \] Z ^ _ Z ^ Y D ` a B C ^ X YW \ \] Z ^ Z ^ Y D ` a B C ^ X YW \ \] Z ^ \ b B c D A B C ^ _ Z ^ X YW \ \] Z ^ \ b B c D A B C ^ Z ^ X Y

(c) Average h-FMeasure

Figure 7.6: The average values of h-Precision, h-Recall and h-FMeasure with respect to the sample size

RMMHC_Multiple_GS especially for small dataset sizes (e.g.,RBN3 andRBN5 with dataset size equal

to 500). Also,RMMHCc_Single_GS provides better results thanRMMHC_Single_GS. Hard and soft
precision, recall and f-score have the same values for RBN1, RBN2, RBN3 as Kmax ∈ {0, 1} for these
networks. For RBN4 their values remain the same also. For RBN5, we notice a slight difference between

hard and soft precision, recall and f-Measure usingRMMHC_Multiple_GS,RMMHCc_Multiple_GS
with sample size 1000.

Figure 7.6 illustrate the average values of h-Precision, h-Recall and h-FMeasure with respect to the

sample size. We have not illustrates soft values as the since there is too little differences between the

reported values.

Quality of reconstruction conclusions. RMMHC algorithm, with its different versions, presents

better results than RGS. Figure 7.6(c) provides a weighted average of both precision and recall. Based on

h-FMeasure, RMMHCc_Single_GS presents better results than all other RMMHC versions.

7.4 Discussion

7.4.1 Benchmarks and datasets

Tsamardinos et al. (Tsamardinos et al., 2006) have experimentally proved that MMHC for Bayesian

networks is able to scale up to thousands of variables in reasonable time while preserving a good learning

quality. Unfortunately, currently, we are unable to verify this property for our relational case. Our experi-

mentations were limited to simple models with few number of variables and this is due to some problems

raised during benchmark generation.

In fact, we noted that the more the RBN generated is complex and/or the size of the dataset to be sampled

is large, the more the ground Bayesian network generation and sampling steps of the benchmark generation

process are slow. Knowing that the time complexity of the sampling process is linear on the number of

variables, we can conclude that the problem is in the spatial complexity of the generated GBN object from

which we are sampling datasets. This problem which presented a handicap for our experimental process

led us to seek possible solutions. One possible direction is to process sampling in lifted models rather than

grounded ones (cf. Section 3.2.5).

7.4.2 Canonical dependencies generation

We used the concept of canonical order dependencies proposed a relational distance-based. RSHD

compares the list of canonical dependencies derived from a learning algorithm to the list of perfect canonical

7.5 Conclusion 133

dependencies derived from the true model. Following the first experimental protocol (cf. Section 7.2.1), we

have concluded that such a metric is more suitable to judge the quality of reconstruction of the graph. Yet

this solution was not generic enough to work with all DAGs. In addition, we have seen that the construction

of this list of canonical dependencies depends on the Kmax value. The more Kmax is high, the more the

construction of the canonical dependencies list takes time, which makes its use impossible, especially for

experimentations where we have hundreds of networks to transform and to compare.

In fact, to provide more rigorous evaluation metrics, we are in need of a graphical representation similar

to the essential graph representation (cf. Section 1.3.3) at the relational context. A graphical representation

that is derived directly from the RBN dependency structure, just like the CPDAG derived directly from the

BN graphical component.

7.4.3 Conservative vs non conservative algorithms

For both experimental protocols we have seen that conservative algorithms provide better results than

non conservative one in term of quality of reconstruction. Yet, they made more statistical calls. It would be

more interesting to use conservative algorithms if we are working with small data sets.

7.4.4 Learned dependency structure complexity

As described in Section 3.3.1, The RBD score includes a prior that penalizes long indirect slot chains.

Yet it does not control the learned dependency structure complexity which may led to some false positive

dependencies and affect the quality of the learning approach. To provide further control of the dependency

structure complexity we can introduce a new penalty term that penalizes models with many parameters

(i.e., complex structures containing a lot of probabilistic dependencies). For standard Bayesian networks,

measurement from information theory have been used to address this issue such as AIC (Akaike, 1970) and

BIC (Schwarz, 1978) criteria.

7.4.5 Query performance

Also, we noted that if the dataset sizes gets bigger, query performance decreases. Consequently, to be

able to run the learning algorithms using large datasets with huge number of variables, we are in need of

further solutions in order to speed up query performance. Possible solutions to address this issue would

be column-stores or graph databases. DBMS using column store architecture enable queries to read just

the attributes they need, rather than having to read entire rows from disk and discard unneeded attributes

once they are in memory (Abadi et al., 2013). Graph database are characterized by a relatively constant

performance, even with large datasets. This is due to the fact that the execution time for each query is

proportional only to the size of the part of the graph traversal to satisfy that query (Robinson et al., 2013).

7.5 Conclusion

Performance evaluation is an essential component in the development process of any data mining tool.

The lack of famous benchmarks in our relational data mining context presents a basic limitation to study

and compare the proposed approaches. Via this chapter, we showed the utility of our benchmark random

generation tool and its major role when evaluating the quality of any RBN structure learning algorithm. The

experimental protocols have been made using several generated theoretical RBNs and various relational

observational database instances, of different sizes, sampled from those RBNs. Achieving these results was

not possible without our benchmark generation process.

In this chapter we have made a first comparative study including all state-of-art structure learning al-

gorithms for relational domain. Thanks to this experimental prototype, we have been able to discuss some

crucial tasks that have to be either designed or improved in order to ensure more progress in this area.

134 Chapter6: Experimental study

We have applied our structure learning evaluation metrics to evaluate the results of the learning ap-

proaches included in the comparative study. For both experimental protocols, RMMHC outperforms RGS

either in term of complexity (number of statistical calls) or in term of accuracy (precision, recall, f-score

and RSHD). In the experimental protocol N°1, we have generated a limited range of models, that RCD

is able to learn (cf. Section 7.2.1), and we have compared RMHHC to both RGS and RCD. The results

showed that RCD and RMMHC present similar results in term of accuracy. In order to highlight RMMHC

learning abilities, we have performed the experimental protocol N°2. For this latter we have excluded RCD

from the comparative study as it cannot be performed and we have generated a wide range of models that

RMMHC is able to learn (cf. Section 7.2.2).

Conclusion

Summary

The first part of this dissertation was dedicated to a survey on Bayesian networks, relational databases

and relational Bayesian networks. Chapter 1 deals with Bayesian networks, their definition, utility and

learning approaches allowing their construction from observational data. The chapter also discussed meth-

ods for generating and sampling Bayesian networks and techniques to measure the quality of the learning

algorithms. Chapter 2 applies to database theory. It provides a quick overview on database management

and focuses mainly on the relational representation of the data and relational benchmarking. Chapter 3

concerns relational Bayesian networks, which are based on Bayesian networks and relational data represen-

tation discussed in the first two chapters. The chapter provides RBNs definition and existing approaches to

learn them from relational data. We have shown that only few methods have been proposed to deal with this

issue. Also we have discussed the lack of RBNs generating methods and techniques to measure the quality

of an algorithm. These observations were the subject of the second part of this thesis, which is dedicated to

the contributions.

Our contributions were developed theoretically in Chapters 4 and 5. Then they were approved experi-

mentally in Chapter 7. Chapter 6 has been dedicated to introduce the PILGRIM project and a major part

of the chapter discussed strategies used to implement our contributions. Chapter 4 provides an algorithmic

approach allowing to generate random RBNs from scratch to cover the absence of generation process. The

proposed method allows to generate RBNs as well as synthetic relational data from a randomly generated

relational schema and a random set of probabilistic dependencies. It allows to generate various relational

schemas, from simple to complex ones, and to populate database tables with huge number of tuples derived

from distributions defined by the generated RBNs. A second part of the chapter concerns the evaluation

metrics, where we have redefined the Precision and Recall metrics for the relational context and we have

proposed a relational extension of the SHD measure based on the use of canonical dependencies. Chapter 5

proposes a novel approach to learn RBNs structure called Relational Max-Min Hill Climbing algorithm,

RMMHC for short. It presents a first hybrid approach proposed to learn RBNs structure from relational ob-

servational data. As discussed in Chapters 1 and 3, RBNs are an extension of BNs in the relational context.

On the other hand, Hybrid methods to learn BNs structures gave the best results, compared with score-

based and constraint-based methods used separately. However, no hybrid approaches have been proposed

for RBNs structure learning. The RMMHC algorithm is based on a first local search step performed using

the relational max-min Parents an children (RMMPC) algorithm detailed in Chapter 5 and a global search

step performed on the basis of the RMMPC results. We have proposed two possible versions of the overall

algorithm and we have discussed differences between both.

Chapter 7 approves the proposed learning algorithm with experimental results. It provides a first com-

parative study of state-of-the-art relational structure learning approaches using standardized evaluation

methods. Usually, the evaluation of the learning approaches is generally done using randomly generated

data coming from either real known networks or randomly generated ones. However, neither the first nor

the second are available as we have discussed in Chapter 3. Consequently we have used the approach de-

scribed in Chapter 4 to randomly generate RBNs and relational observational data from these generated

networks to develop the experimentation part. Algorithms evaluation has been made using the relational

135

136 Conclusion

metrics proposed in Chapter 4. We have presented two experimental protocols. The experimental protocol

N°1 deals with a limited range of generated models but allows to compare all state-of-the-art algorithms.

The experimental protocol N°2 deals with a wide range of generated models thatRMMHC is able to learn

but excludes the RCD algorithm as it cannot be performed with this range of models. Experimental results

showed that our approach presents good results either in term of complexity or in term of accuracy.

Application: a preliminary work

We are about using RBNs to address the recommendation task (cf. Annexe A). In (Ben Ishak et al.,

2013) we have proposed a first contribution in this context. Our approach limits the search procedure to a

generation of a simple model in order to resolve the model generation computational task noted in (Huang

et al., 2005). But this model is not well developed to ensure a good recommendation. Thus, the key

component to enrich the model is to provide an appropriate model instantiation to each active user and to

perform recommendation at this level. The model instantiation is then performed based on a set of rules

derived from recommendation requirements. The advantage of this approach is that it is based on the RBN

model and its instantiation and so all the recommendation process is crossed through this model without

combining it with other frameworks. In addition, the search procedure is optimized by limiting it to only

browse short paths.

Future work

The work presented in this thesis is just the beginning for several challenging research tasks. Since

RBNs bring together two neighboring subfields of computer science, namely machine learning and database

management, our process can be of interest not only for machine learning researchers but also for database

designers to evaluate the effectiveness of a database management system (DBMS) components. It allows

to generate various relational schemas, from simple to complex ones, and to populate database tables with

huge number of tuples derived from distributions defined by the generated RBNs. The generation process

can be improved to give more flexibility in the choice of class attributes, domains, etc. and also to tackle

some other features of the relational model: NULL values, composite key (key made of several columns),

UNIQUE constraints, etc. Additionally, to be used as a benchmark, it has to be enriched by a test queries

component, in order to exhibit particular specificities of the query language, or particular behaviors of

database engines.

In Chapter 4, we have presented a relational extension of the SHD measure using canonical dependen-

cies (cf. Section 3.3.2). The application of this measure was limited to a special relational representation

(cf. Section 3.2.3). As a future work we aim to provide a generic version of this measure and this is by

establishing the notion of equivalent RBN dependency structures. Our goal is to define Markov equiva-

lence class for RBNs in theory and to provide an algorithmic method allowing its construction given a RBN

dependency structure.

We have made our generated PRMs as well as data available to researchers who are working in this

area 1. As we lack of PRM benchmarks, we believe that this can be a useful tool for evaluating new

proposals related to PRMs learning from relational data. We are also about to distribute our software into

GPL license.

Also we aim to apply structure learning approaches to the recommendation task. In (Ben Ishak et al.,

2013) we have proposed an architecture of a recommender system based on the use of RBNs. As perspective

we aim to implement our proposal and to test it with real recommendation benchmarks.

As discussed in Section 3.2.6, RBNs are characterized by their ability to model more complex structural

uncertainty. Consequently, extending our generation and learning approaches to deal with these extensions

1. https://drive.google.com/folderview?id=0B160ZHpTs0CfUGI0Tmc3VXdJX1U&usp=sharing

Conclusion 137

might be a challenging research area.

Another interesting task is to expand our research to address other directed probabilistic relational mod-

els. Learning DAPER (cf. Section 3.2.3) structure using schema-free graph databases is one of our per-

spectives. The challenge here is to learn both the schema and the dependency structure.

A
Annex 1: Recommender Systems

RBNs were succesfully applied in several areas such as industry (Medina-Oliva et al., 2010), system

quality analysis (Medina-Oliva et al., 2009), web page classification (Fersini et al., 2009), risk analy-

sis (Sommestad et al., 2010), recommendation (Getoor and Saham, 1999) etc. which reflect great interest

to upgrade from propositional models to relational ones as they are more convenient and appropriate to the

requirements of real-world problems. In what follows we focus on recommendation.

A.1 Recommendation techniques and main issues

Recommender systems (RS) (Ricci et al., 2010; Jannach et al., 2010) emerged in the mid-1990s as a new

research area whose interest has increased recently with the intension of reducing part of the information

overload problem produced on the Net. They are invoked in many Internet sites such as Amazon, YouTube,

Yahoo, Netflix, etc. In 2009, Netflix awarded a million dollar prize to the team that first succeeded in

improving substantially the accuracy of predictions of its recommender system 1. The ultimate goal of a

recommender system is to deliver a list of personalized recommended items to a particular user within a

specific domain.

Several recommender systems have been developed. Nonetheless, collaborative filtering and content-

based approaches stay the most familiar and mature ones (Park et al., 2012). The former attempts to identify

groups of users with similar tests as the active user and recommends items that they have liked. The latter

learns to recommend items that are similar to those the user has liked in the past. Data mining techniques

have been largely applied for the first as for the second approach.

Content-based recommendation approaches analyze features of items previously rated by a user in order

to build a profile of user interests. Then, the recommendation process consists in matching up the attributes

of the user profile against the attributes of a content item with the intension of providing the user’s level of

interest in that item.

While content-based recommender systems need only ratings provided by the active user to build his

own profile, collaborative filtering methods need ratings from other users in order to find users that have

similar tastes since they rated the same items similarly. Then, only the items that are most liked by this

group will be recommended.

Each of these approaches presents some deficiencies which present challenging issues when conceiving

a recommendation approach. Among them we can list:

1. http://www.netflixprize.com/

139

140 Annex 1: Recommender Systems

Data sparsity. In general users rate only a limited number of items, whereas recommender systems are

based on large datasets. Consequently, the user-item matrix could be extremely large and sparse, which

affects the performances of the recommendation. One direct consequence of data sparsity is the cold start

problem.

Cold start problem. Cold start refers to the difficulty in providing recommendation for new users or

new items due to the lack of information: To provide reliable recommendations, the system needs the user

ratings, this is not supplied with a new user. Likewise, new items need to be rated before they could be

recommended. This problem does not arise for the content-based technique as the recommendation of an

item is based on its characteristics rather than its ratings. While content-based approaches have also a

start-up problem in that they must build a reliable classifier about user with very few ratings.

Scalability. Often high scalability of recommender systems is needed, especially that many systems need

to react immediately to online requirements. Knowing that they operate with millions of users and million

of items, trade-offs between scalability and prediction performance have to be established.

There have been studies to integrate both content-based and collaborative filtering strategies into hybrid

systems in order to complement each other’s deficiency (Burke, 2002). On the other hand, several data and

knowledge sources can be available for a recommender system, however, their exploitation depends on the

used recommendation technique. Various recommendation approaches are derived from machine learning

techniques, commonly classification and clustering methods (de Campos et al., 2010; Xu et al., 2012), and

rely on simple data representation of the user-item rating matrix. Some avenues of research attempt to

use additional domain knowledge to the classical user-item interaction with the intension to achieve better

performance (Carrer-Neto et al., 2012; Deng et al., 2011; Kapusuzoglu and Öguducu, 2011).
In the following we will be interested in a set of approaches that uses RBNs to perform recommendation.

We will show different manner of the integration of such a model to the recommendation process. Also we
will show that the use of RBNs allows to build an hybrid system due to the integration of all the available
information.

A.2 RBNs for recommendation

A.2.1 Reviews

The first proposition to apply RBN to recommendation was proposed by (Getoor and Saham, 1999)
Their approach is based on the models proposed by (Ungar and Foster, 1998; Hofmann and Puzicha, 1999)
which use BNs for collaborative filtering. The main idea in these models is to cluster the users and the items
separately and make prediction based on the clusters instead of working on a large set of user-item matrix.
In this model, strong assumptions are made that each person (also each item) belongs to only one cluster
and that every relation rij must have the same local probability model. These assumptions make it possible
to represent this model compactly by RBNs.

Newton (Newton and Greiner, 2004) has proposed a new way of hierarchal RBN: They organize items
to hierarchal types tree, next create a class type for every leaf node in the tree and then divide the classes
reachable from classes’ types previously created. Hierarchal for a class X will divide the classes that are
reachable from the class X for one or more reference slot. For example if we have a system in which users
give score to movies and we have four different types of movies, so we will have four different scores. In
this model the hierarchy is not well exploited as only leaves are represented in the hRBN.

Gao et al. (Gao et al., 2007) described a method that combines Collaborative Filtering (CF) and RBNs.
This method develops a User grade (UG) function to determine the weight between the prediction from
CF and that from the RBN. The RBN considered in the model employs user demographic information and
movie’s genre, but its structure is very simple and slot chains’ length are no greater than one; hence, it does

A.2 RBNs for recommendation 141

not really exploit the properties of RBNs. Finally, it must be noticed that, as the UG function increases,
UGCF-RBN is dominated by CF and RBN is relegated to solve the problems of regular CF.

Huang et al. (Huang et al., 2005) proposed a unified approach based on RBNs structure learning. In fact
in their work they develop an hybrid approach able to combine different techniques of recommendation and
thus different informations gathered by the RS (i.e., demographic information about users, items character-
istics, transactions,...) and by this way they can overcome shortcomings of each of these techniques and also
provide promising results in term of accuracy and performance comparing to existing approaches. The idea
besides their proposal is to walk through long slot chains in order to capture and represent the maximum of
information needed for recommendation: For instance, in CF techniques, we need to represent neighbors
properties this is cannot be done using simple slots. They have shown that the most long slot chains are
considered the most the model will capture interesting patterns for recommendation but also the most the
RBN model will be complex and the process of its generation will be a computational task. In order to
optimize their approach, they only use the greedy search algorithm for RBN structure learning (Friedman
et al., 1999a) from a recommendation perspective where they focus only on finding dependencies of the
exist node from the order class with other classes’ attributes in order to find nodes constructing its Markov
blanket. Then, they use this attributes to build a naive classifier and to perform recommendation using
probabilistic inference on this net.

Recently, (Chulyadyo and Leray, 2014) proposed a personalized recommender system based on RBN
with existence uncertainty. The specificity of this proposal is that it allows to build a personalized recom-
mender in cold start situation, when no user profile exists.

A.2.2 Discussion

(Getoor and Saham, 1999)’s work builds a hybrid recommender system rather than a collaborative one
as explained in the paper. The good points of this model are that it is easier to interpret than a Bayesian
network, is extensible and can handle cold start and scalability problems. However, the paper does not
explain how to learn such RBN and how to make actual recommendations from such model. Besides, the
effectiveness of the model mainly depends on the quality of clusters and it is difficult to obtain good clusters
that can assign items/users to only one cluster. Also, the authors have not presented experimental results.
Hence, we do not have a clear vision of how effective the model could be.

The introduction of mutli-set operation has increased the expressiveness of the recommendation frame-
work proposed by (Huang et al., 2005). It allows to capture data patterns that cannot be captured by simple
(short) slot chains of RBNs. The framework unifies different recommendation techniques simultaneously.
They have presented promising experimental results whereas the obvious limitation of this work persists on
the intensive computation required by the model estimation process. In addition, this framework aims at
dealing with binary transaction data rather than rating data. Customers’ purchase history is an example of
binary transaction data where the recommendation problem is to predict the existence of a customer-product
pair. So, a new attribute Exists is introduced in the relational data to indicate whether the pair exists. All
the records in purchase history will have Exists = 1 and for the customer-product pairs that are not in the
purchase history take Exists = 0. The objective is to create a classifier with Exists attribute as a target
attribute and predict the probability of the existence of the customer-product pair given other attributes.

(Newton and Greiner, 2004)’s work addresses the cold start problem as for new users the scoring will
depend on the demography of the user and for the new items it depends on the demography of the user
and the users previous scoring for other movies types. In addition, Different types of scores can depend on
different attributes. They show that hierarchal RBNs perform better than standard RBNs and some other
algorithms however, the approach presents some limitations. for instance, for a given person X , his score
cannot depend on his previous score of the same type. Also Hierarchical classes are not well represented,
as only leaves are represented in the hierarchal RBN. In which it could be considered more as a clustering
instead.

(Gao et al., 2007)’s work describes a method that combines Collaborative Filtering (CF) and RBNs

142 Annex 1: Recommender Systems

which aims to overcome simultaneously the most common problems of CF: sparsity, scalability and cold
start. They showed that these issues are solved by the use of RBNs. However this work does not exploit the
capability of RBN in recommendation. For the target user with many ratings, the effect of RBN becomes
negligible.

(Chulyadyo and Leray, 2014)’s work is a pure RBN-based approach and allows to perform recommen-
dations in both cold and hot systems using the same RBN model. Exprimental results were interesting, yet
they applied an offline evaluation approach.

Bibliography

Abadi, D., Boncz, P., Harizopoulos, S., Idreos, S., and Madden, S. (2013). The design and implementation
of modern column-oriented database systems. Foundations and Trends in Databases, 5:197–280. 133

Acid, S. and de Campos, L. M. (1996). Benedict: an algorithm for learning probabilistic Bayesian networks.
In Proceedings of the Sixth International Conference on Information Processing and Management of

Uncertainty in Knowledge-based Systems, pages 979–984. 18

Acid, S. and de Campos, L. M. (2000). Learning right sized belief networks by means of a hybrid method-
ology. In PKDD, Lecture Notes in Computer Science, pages 309–315. Springer. 18

Acid, S. and de Campos, L. M. (2001). A hybrid methodology for learning belief networks: Benedict.
International Journal of Approximate Reasoning, 27:235–262. 18

Acid, S. and de Campos, L. M. (2003). Searching for Bayesian network structures in the space of restricted
acyclic partially directed graphs. Journal of Artificial Intelligence Research, 18:445–490. 19

Akaike, H. (1970). Statistical predictor identification. Ann. Inst. Statist. Math., 22:203–217. 17, 133

Andersson, S., Madigan, D., and Perlman, M. D. (1997). A characterization of Markov equivalence classes
for acyclic digraphs. Annals of Statistics, 25(2):505–541. 14

Andreassen, S., Jensen, F. V., Andersen, S. K., Falck, B., Kjaerulff, U., Woldbye, M., Sørensen, A. R.,
Rosenfalck, A., and Jensen, F. (1989). MUNIN - an Expert EMG Assistant. In Computer-Aided Elec-

tromyography and Expert Systems, Chapter 21. Elsevier, Noth-Holland. 22

Angles, R., Prat-Pérez, A., Dominguez-Sal, D., and Larriba-Pey, J.-L. (2013). Benchmarking database
systems for social network applications. In First International Workshop on Graph Data Management

Experiences and Systems, GRADES ’13, pages 1–7, New York, NY, USA. ACM. 38

Arias, M., Díez, F. J., and Palacios, M. P. (2011). ProbModelXML. A format for encoding probabilistic
graphical models. Technical Report CISIAD-11-02, UNED, Madrid, Spain. 105

Bachman, C. W. (1969). Data structure diagrams. SIGMIS Database, 1(2):4–10. 36

Ballinger, C. (1993). Tpc-d: Benchmarking for decision support. In Gray, J., editor, The Benchmark

Handbook. Morgan Kaufmann. 39

Bangsø, O. and Wuillemin, P.-H. (2000). Object Oriented Bayesian networks: a framework for top-down
specification of large Bayesian networks with repetitive structures. Technical report, Department of
Computer Science, Aalborg University, Denmark. 2

Ben Ishak, M., Ben Amor, N., and Leray, P. (2013). A rbn-based recommender system architecture. In
Proceedings of the 5th International Conference on Modeling, Simulation and Applied Optimization

(ICMSAO 2013), pages 1–6, Hammamet, Tunisia. 4, 136

Ben Ishak, M., Chulyado, R., Abdelwahab, A., Ramirez, M., Leray, P., and Ben Amor, N. (2014a). Rela-
tional Bayesian networks for recommender systems: review and comparative study. The 2014 ENBIS-
SFdS Spring Meeting on graphical causality models. Paris, France. 4

Ben Ishak, M., Leray, P., and Ben Amor, N. Probabilistic relational model benchmark generation: Principle
and application. Intelligent Data Analysis International Journal (to appear), pages ?–? 4

143

144 BIBLIOGRAPHY

Ben Ishak, M., Leray, P., and Ben Amor, N. (2011a). Ontology-based generation of Object Oriented
Bayesian Networks. In Proceedings of the 8th UAI Bayesian Modeling Applications Workshop (UAI-

AW 2011), pages 9–17, Barcelona, Spain. 4

Ben Ishak, M., Leray, P., and Ben Amor, N. (2011b). A two-way approach for probabilistic graphical mod-
els structure learning and ontology enrichment. In Proceedings of the 3rd International Conference

on Knowledge Engineering and Ontology Development (KEOD 2011) part of the International Joint

Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management IC3K,
pages 189–194, Paris, France. 4

Ben Ishak, M., Leray, P., and Ben Amor, N. (2014b). La génération aléatoire de réseaux bayésiens relation-
nels. 7èmes journées francophones de réseaux Bayésiens. Paris, France. 4

Ben Ishak, M., Leray, P., and Ben Amor, N. (2014c). Random generation and population of probabilistic
relational models and databases. In Proceedings of the 26th IEEE International Conference on Tools

with Artificial Intelligence (ICTAI 2014), pages 756–763. 4

Bender, E. A. and Robinson, R. W. (1988). The asymptotic number of acyclic digraphs, II. J. Comb. Theory,

Ser. B, 44(3):363–369. 74

Binder, J., Koller, D., Russell, S., and Kanazawa, K. (1997). Adaptive probabilistic networks with hidden
variables. Machine Learning, 29(2–3):213–244. 22

Bitton, D., Turbyfill, C., and Dewitt, D. J. (1983). Benchmarking database systems: A systematic approach.
In Proceedings of the 9th International Conference on Very Large Data Bases, pages 8–19. ACM. 39

Bouckaert, R. R. (1993). Probalistic network construction using the minimum description length principle.
In ECSQARU’93, volume 747 of Lecture Notes in Computer Science, pages 41–48. Springer. 17

Bruno, N. and Chaudhuri, S. (2005). Flexible database generators. In Proceedings of the 31st International

Conference on Very Large Data Bases, pages 1097–1107. ACM. 39

Buntine, W. (1991). Theory refinement on Bayesian networks. In Proceedings of the 7th Conference on

Uncertainty in Artificial Intelligence, pages 52–60. 18

Buntine, W. L. (1994). Operations for learning with graphical models. Journal of Artificial Intelligence

Research, 2:159–225. 2

Burke, R. (2002). Hybrid recommender systems: Survey and experiments. User Modeling and User-

Adapted Interaction, 12(4):331–370. 140

Carrer-Neto, W., Hernández-Alcaraz, M., Valencia-García, R., and García-Sánchez, F. (2012). Social
knowledge-based recommender system. application to the movies domain. Expert Systems with appli-

cations, 39(12):10990–11000. 140

Cattell, R. G. G. (1993). The engineering database benchmark. In Gray, J., editor, The Benchmark Hand-

book. Morgan Kaufmann. 38

Chen, P. (1976). The entity-relationship model—toward a unified view of data. ACM Trans. Database

Syst., 1(1):9–36. 36

Chickering, D.M. (2002). Optimal structure identification with greedy search. Journal of Machine Learning

Research, 3:507–554. xvii, 14, 15, 17, 18

Chickering, D. M., Geiger, D., and Heckerman, D. (1994). Learning Bayesian networks is NP-hard. Tech-
nical report, MSR-TR-94-17, Microsoft Research. 16

Chickering, D. M. and Maxwell, D. (2002). Learning equivalence classes of Bayesian-network structures.
J. Mach. Learn. Res., 2:445–498. 17

Chow, C. and Liu, C. (1968). Approximating discrete probability distributions with dependence trees. IEEE

Trans. Inf. Theor., 14(3):462–467. 17

BIBLIOGRAPHY 145

Chulyadyo, R. and Leray, P. (2014). A personalized recommender system from probabilistic relational
model and users’ preferences. In Proceedings of the 18th Annual Conference on Knowledge-Based

and Intelligent Information & Engineering Systems, pages 1063–1072. 141, 142

Codd, E. (1983). A relational model of data for large shared data banks. Commun. ACM, 26:64–69. 29

Cooper, G. (1990). Computational complexity of probabilistic inference using Bayesian belief networks.
Artificial Intelligence, 42:393–405. 15

Cooper, G. and Herskovits, E. (1992). A Bayesian method for the induction of probabilistic networks from
data. Machine Learning, 9:309–347. 17

Curino, C. A., Difallah, D. E., Pavlo, A., and Cudre-Mauroux, P. (2012). Benchmarking OLTP/Web
Databases in the Cloud: The OLTP-bench framework. In Proceedings of the Fourth International

Workshop on Cloud Data Management, CloudDB ’12, pages 17–20, New York, NY, USA. ACM. 38

Daly, R., Shen, Q., and Aitken, S. (2011). Learning Bayesian networks: approaches and issues. The

Knowledge Engineering Review, 26:99–157. 16

Darmont, J. (2009). Database benchmarks. In Erickson, J., editor, Database Technologies: Concepts,

Methodologies, Tools, and Applications, pages 1226–1233. IGI Global. 40

Darwiche, A. (2009). Modeling and Reasoning with Bayesian Networks. Cambridge University Press, New
York, NY, USA, 1st edition. 16

Dash, D. and Druzdzel, M. J. (1999). A hybrid anytime algorithm for the construction of causal models
from sparse data. In Proceedings of the Fifteenth Conference on Uncertainty in Artificial Intelligence,
pages 142–149. 19

Date, C. (2003). An Introduction to Database Systems. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 8 edition. 31, 32, 36

Date, C. J. (1990). Relational database writings: 1985-1989. Addison-Wesley. 36, 38

Date, C. J. (2005). Database in Depth: Relational Theory for Practitioners: The Relational Model for

Practitioners. O’Reilly Media, 1 edition. 31

Date, C. J. (2008). The Relational Database Dictionary, Extended Edition. Apress, New York. 31, 34

de Morais, S. R. and Aussem, A. (2010). A novel markov boundary based feature subset selection algo-
rithm. Neurocomputing, 73(4–6):578–584. 21, 90

de Campos, L. M. (2006). A scoring function for learning Bayesian networks based on mutual information
and conditional independence tests. Journal of Machine Learning Research, 7:2149–2187. 25

de Campos, L. M., Fernández-Luna, J., Huete, J., and Rueda-Morales, M. (2010). Combining content-based
and collaborative recommendations: A hybrid approach based on Bayesian networks. Int. J. Approx.

Reasoning, 51(7):785–799. 140

de Jongh, M. and Druzdzel, M. J. (2014). Evaluation of rules for coping with insufficient data in constraint-
based search algorithms. In Proceedings of the 7th Probabilistic Graphical Models, pages 190–205.
21

De Raedt, L. (1998). Attribute-value learning versus inductive logic programming: the missing links. In
Proceedings of the Eighth International Conference on Inductive Logic Programming, pages 1–8. 1

Deng, Y., Wu, Z., Si, H., Xiong, H., and Chen, Z. (2011). A collaborative filtering approach to making
recommendations based on ontology in the movie domain. Energy Procedia, 13:228–236. 140

DeWitt, D. J. (1993). The wisconsin benchmark: Past, present, and future. In Gray, J., editor, The Bench-

mark Handbook. Morgan Kaufmann. 38

Difallah, D. E., Pavlo, A., Curino, C., and Cudre-Mauroux, P. (2013). OLTP-Bench: An extensible testbed
for benchmarking relational databases. 7(4):277–288. 38

146 BIBLIOGRAPHY

FAST, A. S. (2010). Learning the structure of Bayesian networks with constraint satisfaction. PhD thesis,
University of Massachusetts Amherst. 25

Ferrarons, J., Adhana, M., Colmenares, C., Pietrowska, S., Bentayeb, F., and Darmont, J. (2013). Prime-
ball: a parallel processing framework benchmark for big data applications in the cloud. In 5th TPC

Technology Conference on Performance Evaluation and Benchmarking (VLDB/TPCTC 13), Riva del

Garda, Italy, Lecture Notes in Computer Science, pages 109–124, Heidelberg, Germany. Springer. 40

Fersini, E., Messina, E., and Archetti, F. (2009). Probabilistic relational models with relational uncertainty:
An early study in web page classification. In Proceedings of the 2009 IEEE/WIC/ACM International

Joint Conference on Web Intelligence and Intelligent Agent Technology - Volume 03, WI-IAT ’09,
pages 139–142, Washington, DC, USA. IEEE Computer Society. 41, 139

Friedman, N., Getoor, L., Koller, D., and Pfeffer, A. (1999a). Learning probabilistic relational models. In
Proceedings of the International Joint Conference on Artificial Intelligence, pages 1300–1309. xvii, 2,
17, 55, 56, 85, 86, 96, 141

Friedman, N., Nachman, I., and Peér, D. (1999b). Learning Bayesian network structure from massive
datasets: The sparse candidate algorithm. In Proceedings of the 15th UAI, pages 206–215. 19

Fung, R. M. and Chang, K. (1990). Weighing and integrating evidence for stochastic simulation in Bayesian
networks. In Proceedings of the Fifth Annual Conference on Uncertainty in Artificial Intelligence,
pages 209–220. 24

Gao, Y., Hong, H., Liu, J., and Liu, D. (2007). A recommendation algorithm combining user grade-based
collaborative filtering and probabilistic relational models. In Proceedings of the Fourth International

Conference on Fuzzy Systems and Knowledge Discovery, pages 67–71, Washington, DC, USA. IEEE
Computer Society. 140, 141

Gelfand, A. E. and Smith, A. F. M. (1990). Sampling-based approaches to calculating marginal densities.
Journal of the American Statistical Association, 85:398–409. 24

Getoor, L. (2002). Learning statistical models from relational data. PhD thesis, Stanford University. 55,
71, 72, 87

Getoor, L., Koller, D., Friedman, N., Pfeffer, A., and Taskar., B. (2007). Probabilistic Relational Models,

In Getoor, L., and Taskar, B., eds., Introduction to Statistical Relational Learning. MA: MIT Press,
Cambridge. xv, 2, 43, 45, 47, 54, 86, 107, 108

Getoor, L. and Saham, M. (1999). Using probabilistic relational models for collaborative filtering. In
Working Notes of the KDD Workshop on Web Usage Analysis and User Profiling. 139, 140, 141

Gonzales, C. and Wuillemin, P.-H. (2011). PRM inference using jaffray & faÿ’s local conditioning. Theory

and Decision, 71(1):33–62. 53

Gray, J. (1993). The Benchmark Handbook: For Database and Transaction Processing Systems. Morgan
Kaufmann, San Francisco, CA, USA. 38, 39

Gray, J., Sundaresan, P., Englert, S., Baclawski, K., and Weinberger, P. J. (1994). Quickly generating
billion-record synthetic databases. In Proceedings of the 1994 ACM SIGMOD international conference

on Management of data, pages 243–252. ACM. 39

Gyftodimos, E. and Flach, P. (2002). Hierarchical Bayesian networks: A probabilistic reasoning model for
structured domains. In Proceedings of the ICML-2002 Workshop on Development of Representations,
pages 23–30, University of New South Wales, Sydney, Australia. 2, 28

Heckerman, D. (1998). A tutorial on learning with Bayesian network. In Proceedings of the NATO Ad-

vanced Study Institute on Learning in graphical models, pages 301–354, Kluwer Academic Publishers
Norwell, MA, USA. xvii, 16, 17, 18, 19, 107, 108

Heckerman, D., Chickering, D. M., Meek, C., Rounthwaite, R., and Kadiel, C. (2001). Dependency Net-
works for Inference, Collaborative Filtering, and Data Visualization. Journal of Machine Learning

Research, 1:49–75. 1

BIBLIOGRAPHY 147

Heckerman, D., Geiger, D., and Chickering, D. (1995). Learning Bayesian networks: The combination of
knowledge and statistical data. Machine Learning, 20:197–243. 18

Heckerman, D., Meek, C., and Koller, D. (2004). Probabilistic models for relational data. Technical report,
Microsoft Research, Redmond, WA. xiii, 2, 47, 48, 62

Heckerman, D., Meek, C., and Koller, D. (2007). Probabilistic entity-relationship models, PRMs, and plate

models, In Getoor, L., and Taskar, B., eds., Introduction to Statistical Relational Learning. MA: MIT
Press, Cambridge. 1, 41, 43

Henrion, M. (1986). Propagating uncertainty in Bayesian networks by probabilistic logic sampling. In
Proceedings of Uncertainty in Artificial Intelligence 2 Annual Conference on Uncertainty in Artificial

Intelligence (UAI-86), pages 149–163, Amsterdam, NL. Elsevier Science. xvii, 24

Hofmann, T. and Puzicha, J. (1999). Latent class models for collaborative filtering. In International Joint

Conference on Artificial Intelligence, volume 16, pages 688–693. 140

Huang, Z., Zeng, D., and Chen, H. (2005). A unified recommendation framework based on probabilistic
relational models. Technical report, The University of Arizona, Tucson. 136, 141

Ide, J. S. and Cozman, F. G. (2002). Random generation of Bayesian networks. In Brazilian symp.on

artificial intelligence, pages 366–375. Springer-Verlag. 22

Ide, J. S., Cozman, F. G., and Ramos, F. T. (2004). Generating random Bayesian networks with constraints
on induced width. In Proceedings of the 16th Eureopean Conference on Artificial Intelligence, pages
323–327. xvii, 22, 23, 24

Jaeger, M. (1997). Relational Bayesian networks. In Proceedings of the 13th Annual Conference on Un-

certainty in AI UAI, pages 266–273. Morgan Kaufmann. 1, 2, 41, 43

Jannach, D., Zanker, M., Felfernig, A., and Friedrich, G. (2010). Recommender Systems: An Introduction.
Cambridge University Press. 139

Jensen, D. and Neville, J. (2002). Linkage and autocorrelation cause feature selection bias in relational
learning. In Proceedings of the Nineteenth International Conferenceon Machine Learning, pages 259–
266. 59

Jensen, F. V. and Nielsen, T. D. (2007). Bayesian Networks and Decision Graphs. Springer, New York, NY,
2nd edition. 16

Kapusuzoglu, H. and Öguducu, S. (2011). A relational recommender system based on domain ontology. In
Proceedings of the 2011 International Conference on Emerging Intelligent Data and Web Technolo-

gies, pages 36–41, Washington, DC, USA. IEEE Computer Society. 140

Kim, J. and Pearl, J. (1983). A computational model for combined causal and diagnostic reasoning in
inference systems. In Proceedings of the International Joint Conferences on Artificial Intelligence,
pages 190–193, Karlsruhe, Germany. 14

Kisynski, J. and Poole, D. (2009). Lifted aggregation in directed first-order probabilistic models. In Pro-

ceedings of the 21st International Jont Conference on Artifical Intelligence, IJCAI’09, pages 1922–
1929, San Francisco, CA, USA. Morgan Kaufmann Publishers Inc. 53

Kline, K., Klinel, D., and Hunt, B. (2008). SQL in a nutshell - a desktop quick reference (3. ed.). O’Reilly.
34

Koller, D. and Friedman, N. (2009). Probabilistic Graphical Models. MIT Press, Cambridge. 2, 7

Koller, D. and Pfeffer, A. (1997). Object-Oriented Bayesian networks. In Proceedings of the 13th con-

ference on Uncertainty in Artificial Intelligence, pages 302–313, Providence, Rhode Island, USA.
Morgan Kaufmann. 2

Koller, D. and Pfeffer, A. (1998). Probabilistic frame-based systems. In Proc. AAAI, pages 580–587. AAAI
Press. 1, 2, 28, 41, 43, 47

148 BIBLIOGRAPHY

Kullback, S. and Leibler, R. (1951). On information and sufficiency. The Annals of Mathematical Statistics,
22:79–86. 26

Larrañaga, P., Karshenas, H., Bielza, C., and Santana, R. (2013). A review on evolutionary algorithms in
Bayesian network learning and inference tasks. Inf. Sci., 233:109–125. 16

Laskey, K. B. (2008). MEBN: A language for first-order Bayesian knowledge bases. Artificial Intelligence,
172:140–178. 2

Lauritzen, S. and Speigelhalter, D. (1988). Local computations with probabilities on graphical structures
and their application to expert systems. Royal Statistical Society: Series B (Statistical Methodology),
50(2):157–224. 14, 22

Lavrac, N. and Dzeroski, S. (1993). Inductive Logic Programming: Techniques and Applications. Rout-
ledge, New York. 1

Lu, W., Miklau, G., and Gupta, V. (2014). Generating private synthetic databases for untrusted system
evaluation. In "Proceedings of the 30th IEEE International Conference on data engineering ICDE,
pages 652–663. 39

Maier, M. (2014). Causal Discovery for Relational Domains: Representation, Reasoning, and Learning.
PhD thesis, University of Massachusetts Amherst. 49

Maier, M., Marazopoulou, K., Arbour, D., and Jensen, D. (2013a). A sound and complete algorithm
for learning causal models from relational data. In Proceedings of the Twenty-ninth Conference on

Uncertainty in Artificial Intelligence, pages 371–380. xv, xvii, 2, 58, 59, 61, 77, 78, 89, 113, 114, 115

Maier, M., Marazopoulou, K., and Jensen, D. (2013b). Reasoning about independence in probabilistic
models of relational data. In Approaches to Causal Structure Learning Workshop, UAI 2013. xv, 50,
52

Maier, M., Marazopoulou, K., and Jensen, D. (2013c). Reasoning about independence in probabilistic
models of relational data. CoRR, abs/1302.4381. 47, 49, 50, 51, 53, 58, 61, 95

Maier, M., Taylor, B., Oktay, H., and Jensen, D. (2010). Learning causal models of relational domains. In
Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence, pages 531–538. xv, 2,
57, 61, 96

Medina-Oliva, G., Weber, P., Levrat, E., and Iung, B. (2009). Probabilistic relational model (PRM)_based
technical knowledge formalization for dependability of an industrial system. In 7th Workshop on

Advanced Control and Diagnosis, ACD’2009, Zielona Gora, Poland. 139

Medina-Oliva, G., Weber, P., Levrat, E., and Iung, B. (2010). Use of probabilistic relational model (PRM)
for dependability analysis of complex systems. In 12th IFAC Symposium on Large Scale Systems:

Theory and Applications, LSS 2010, Villeneuve d’Ascq, France. 139

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M., Teller, A., and Teller, E. (1953). Equation of state
calculations by fast computing machines. The Journal of Chemical Physics, 21(6):1087–1092. 24

Milch, B., Zettlemoyer, L. S., Kersting, K., Haimes, M., and Pack Kaelbling, L. (2008). Lifted probabilistic
inference with counting formulas. In Proceedings of the 23rd Conference on Artificial Intelligence

(AAAI). 53

Muggleton, S. and De Raedt, L. (1994). Inductive logic programming: Theory and methods. JOURNAL

OF LOGIC PROGRAMMING, 19(20):629–679. 1

Murphy, K. P. (2002). Dynamic Bayesian Networks: Representation, Inference and Learning. PhD thesis,
University of California, Berkeley, Computer Science Division. 2, 28

Naïm, P., Wuillemin, P.-H., Leray, P., Pourret, O., and Becker, A. (2004). Réseaux bayésiens. Eyrolles,
Paris. 13, 22

Neville, J. and Jensen, D. (2007). Relational dependency networks. Journal of Machine Learning Research,
8:653–692. 1, 41, 62

BIBLIOGRAPHY 149

Neville, J., Jensen, D., Friedland, L., and Hayl, M. (2003a). Learning relational probability trees. In
Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining, pages 625–630, New York, NY, USA. ACM. 62

Neville, J., Jensen, D., and Gallagher, B. (2003b). Simple estimators for relational Bayesian classifiers.
In Proceedings of the 3rd IEEE International Conference on Data Mining (ICDM 2003), December

19-22, 2003, Melbourne, Florida, USA, pages 609–612. IEEE Computer Society, Washington, DC,
USA. 62

Newton, J. and Greiner, R. (2004). Hierarchical probabilistic relational models for collaborative filtering.
In Proceedings of the 21st International Conference on Machine Learning, Workshop on Statistical

Relational Learning, pages 249–263. 140, 141

Park, D. H., Kim, H. K., Choi, I. Y., and Kim, J. K. (2012). A literature review and classification of
recommender systems research. Expert Syst. Appl., 39(11):10059–10072. 139

Pearl, J. (1982). Reverend Bayes on inference engines: A distributed hierarchical approach. In Proceedings

of the AAAI National Conference on AI, pages 133–136, Pittsburgh, PA. 14

Pearl, J. (1988). Probabilistic reasoning in intelligent systems. Morgan Kaufmann, San Franciscos. 1, 2, 7,
9, 12, 14

Pearl, J. (2000). Causality: Models, reasoning and inference. MIT Press, Cambridge. 2, 12, 15, 28

Peña, J. M., Nilsson, R., Björkegren, J., and Tegnér, J. (2007). Towards scalable and data efficient learning
of markov boundaries. Int. J. Approx. Reasoning, 45(2):211–232. 21

Perlich, C. and Provost, F. (2006). Distribution-based aggregation for relational learning with identifier
attributes. Machine Learning, 62(1-2):65–105. 35

Pfeffer, A. and Koller, D. (2000). Semantics and inference for recursive probability models. In AAAI/IAAI,
pages 538–544. AAAI Press / The MIT Press. 53

Pfeffer, A. J. (2000). Probabilistic Reasoning for Complex Systems. PhD thesis, Stanford University. 1, 2,
41, 43, 45, 47, 53, 54

Provan, G. M. and Singh, M. (1995). Learning Bayesian networks using feature selection. In D. Fisher and

H. Lenz, eds, Proceedings of the fifth International Workshop on Artificial Intelligence and Statistics,

Ft. Lauderdale, FL, pages 450–456. 18

Ricci, F., Rokach, L., Shapira, B., and Kantor, P. (2010). Recommender Systems Handbook. Springer, New
York, USA. 139

Robinson, I., Webber, J., and Eifreml, E. (2013). Graph Databases. O’Reilly Media, Inc. 133

Robinson, R. W. (1977). Counting unlabeled acyclic digraphs, In C. H. C. LITTLE, Ed., Combinatorial

Mathematics V, volume 622 of Lecture Notes in Mathematics. Springer, Berlin / Heidelberg. 74

Schwarz, G. (1978). Estimating the dimensions of a model. Annals of Statistics, 6:461–464. 17, 133

Singh, M. and Valtorta, M. (1993). An algorithm for the construction of Bayesian network structures from
data. In Proceedings ofthe Ninth Conference on Uncertainty in Artificial Intelligence (UAI-93), pages
59–265. 18

Singh, M. and Valtorta, M. (1995). Construction of Bayesian network structures from data: a brief survey
and an efficient algorithm. International Journal of Approximate Reasoning, 12:111–131. 18

Smith, A. F. M. and Roberts, G. (1993). Bayesian computation via the gibbs sampler and related markov
chain monte carlo methods (with discussion). Journal of the Royal Statistical Society, 55:3–23. 24

Sommestad, T., Ekstedt, M., and Johnson, P. (2010). A probabilistic relational model for security risk
analysis. Computers & Security, 29:659–679. 41, 139

Spirtes, P., Glymour, C., and Scheines, R. (1990). Causality from probability. In J. Tiles, G. McKee, and G.

Dean (eds.): Evolving Knowledge in the Natural and Behavioral Sciences, pages 181–199. 16

150 Bibliography

Spirtes, P., Glymour, C., and Scheines, R. (2000). Causation, Prediction and Search. MIT Press. 16, 17,
21

Srebro, N. (2001). Learning markov networks: maximum bounded tree-width graphs. In Proceedings of

the 12th ACM-SIAM Symposium on Discrete Algorithms, pages 392–401. 17

Statnikov, A. R., Tsamardinos, I., and Aliferis, C. (2003). An algorithm for generation of large Bayesian
networks. Technical report, Department of Biomedical Informatics, Discovery Systems Laboratory,
Vanderbilt University. 22

Sumathi, S. and Esakkirajan, S. (2007). Fundamentals of Relational Database Management Systems.
Springer. 36, 37

Taskar, B., Abbeel, P., and Koller, D. Discriminative probabilistic models for relational data. In Proceedings

of the 18th Conference on Uncertainty in Artificial Intelligence. 1

Torti, L., Wuillemin, P. H., and Gonzales, C. (2010). Reinforcing the Object-Oriented aspect of probabilistic
relational models. In Proceedings of the 5th Probabilistic Graphical Models, pages 273–280. 61

Tsamardinos, I., Brown, L. E., and Aliferis, C. F. (2006). The max-min hill-climbing Bayesian network
structure learning algorithm. Machine Learning, 65:31–78. xvii, 2, 19, 20, 21, 25, 26, 83, 85, 88, 132

Ungar, L. and Foster, D. (1998). A formal statistical approach to collaborative filtering. CONALD’98. 140

Verma, T. and Pearl, J. (1990). Equivalence and synthesis of causal models. In Proceedings of the 6th UAI,
pages 220–227. 14, 16

Wellman, M., Breese, J. S., and Goldman, R. P. (1992). From knowledge bases to decision models. The

Knowledge Engineering Review, 7:35–53. 2

Wuillemini, P. H. and Torti, L. (2012). Structured probabilistic inference. Int. J. Approx. Reasoning,
53(7):946–968. 53, 61, 63

Xu, B., Bu, J., Chen, C., and Cai, D. (2012). An exploration of improving collaborative recommender
systems via user-item subgroups. In Proceedings of the 21st international conference on World Wide

Web, pages 21–30. 140

Zhu, Y., Zhan, J., Weng, C., Nambiar, R., Zhang, J., Chen, X., and Wang, L. (2014). Bigop: Generating
comprehensive big data workloads as a benchmarking framework. In Proceedings of DASFAA, pages
483–492. Springer. 39

Thèse de Doctorat

Mouna BEN ISHAK

Les modèles probabilistes relationnels : apprentissage et évaluation
Cas des réseaux bayésiens relationnels

Probabilistic relational models: learning and evaluation

The relational Bayesian networks case

Résumé
L’apprentissage statistique relationnel est apparu au début des
années 2000 comme un nouveau domaine de l’apprentissage
machine permettant de raisonner d’une manière efficace et robuste
directement sur des structures de données relationnelles. Plusieurs
méthodes classiques de fouille de données ont été adaptées pour
application directe sur des données relationnelles. Les réseaux
Bayésiens Relationnels (RBR) présentent une extension des
réseaux Bayésiens (RB) dans ce contexte. Pour se servir de ce
modèle, il faut tout d’abord le construire : la structure et les
paramètres du RBR doivent être définis à la main ou être appris à
partir d’une instance de base de données relationnelle.
L’apprentissage de la structure reste toujours le problème le plus
compliqué puisqu’il se situe dans la classe des problèmes
NP-difficiles. Les méthodes d’apprentissage de la structure des
RBR existantes sont inspirées des méthodes classique de
l’apprentissage de la structure des RB. Pour pouvoir juger la qualité
d’un algorithme d’apprentissage de la structure d’un RBR, il faut
avoir des données de test et des mesures d’évaluation. Pour les RB
les données sont souvent issues de benchmarks existants. Sinon,
des processus de génération aléatoire du modèle et des données
sont mis en oeuvre. Les deux pratiques sont quasi absentes pour
les RBR. De plus, les mesures d’évaluation de la qualité d’un
algorithme d ’apprentissage de la structure d’un RBR ne sont pas
encore établies.
Dans ce travail de thèse, nous proposons deux contributions
majeures. I)Une approche de génération de RBR allant de la
génération du schéma relationnel, de la structure de dépendance et
des tables de probabilités à l’instanciation de ce modèle et la
population d’une base de données relationnelle. Nous discutons
aussi de l’adaptation des mesures d’évaluation des algorithmes
d’apprentissage de RBs dans le contexte relationnel et nous
proposons de nouvelles mesures d’évaluation. II) Une approche
hybride pour l’apprentissage de la structure des RBR. Cette
approche présente une extension de l’algorithme MMHC dans le
contexte relationnel. Nous menons une étude expérimentale
permettant de comparer ce nouvel algorithme d’apprentissage avec
les approches déjà existantes.

Abstract
Statistical relational learning (SRL) appeared in the early 2000s as
a new field of machine learning that enables effective and robust
reasoning about relational data structures. Several conventional
data mining methods have been adapted for direct application to
relational data representation. Relational Bayesian Networks
(RBNs) extend Bayesian networks (BNs) to a relational data mining
context. To use this model, it is first necessary to build it: the
structure and parameters of a RBN must be set manually or learned
from a relational observational dataset. Learning the structure
remains the most complicated issue as it is a NP-hard problem.
Existing approaches for RBNs structure learning are inspired from
classical methods of learning the structure of BNs. The evaluation
of learning approaches requires testing datasets and evaluation
measurements. For BNs, datasets are usually sampled from real
known networks. Otherwise, processes to randomly generate the
model and the data are already established. Both practices are
almost absent for RBR. Moreover, metrics to evaluate a RBN
structure learning algorithm are not yet proposed.
This thesis provides two major contributions. I) A synthetic approach
allowing to generate random RBNs from scratch. The proposed
method allows to generate RBNs as well as synthetic relational data
from a randomly generated relational schema and a random set of
probabilistic dependencies. Also, we discuss the adaptation of the
evaluation metrics of BNs structure learning algorithms to the
relational context and we propose new relational evaluation
measurements. II) A hybrid approach for RBNs structure learning.
This approach presents an extension of the MMHC algorithm in the
relational context. We present an experimental study to compare
this new learning algorithm with the state-of-the-art approaches.

Mots clés

Réseaux Bayésiens Relationnels (RBR),
Apprentissage de la structure des RBR,
Génération de modèles, Mesures d’évaluation.

Key Words

Relational Bayesian Networks (RBN), RBN
structure learning, Models generation, Evaluation
metrics.

L’UNIVERSITÉ NANTES ANGERS LE MANS

Bibliography 153

