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1
Introduction

1.1 Quality Assessment of Immersive Multimedia

With the rise of more advanced 3D displays, head-mounted displays and other advanced equipment, Immer-

sive Media applications such as Free-viewpoint TV (FTV), 3DTV, and Virtual Reality (VR) has become a hot

topic for media ecosystems. Immersive media development requires usage of computer vision/image process-

ing techniques that are likely subject to affect structures of images/videos. This happens in scenarios such as

Free-viewpoint TV and Virtual Reality (where omnidirectional contents are presented):

— Free-viewpoint TV and Quality of Synthesized Views: FTV [1] aims to make possible for users to

freely switching the viewpoints as they do in the real world. Super Multi-View (SMV) and Free Navigation

(FN) applications are the two dominant applications that maybe qualified as FTV. Even though there are

commonalities between them, they are usually optimizing different goals: SMV targets at compressing all

the views more efficiently, while FN focuses more on developing better view synthesis so one can sample

more coarsely the number of views (e.g camera arrangements, larger baselines ...). For Super Multi-View

applications, densely arranged views are preferred to be compressed and transmitted without synthesizing

virtual views and offer glasses-free 3D experience to viewers. High efficient compression mechanism for

hundreds of views and smooth transition between adjacent views are the critical factors in this scenario.

For Free Navigation, only a limited set of input views are expected to available and transmitted among

all possible viewing angle that end user could select. As presented contents are synthesized using Depth-

Image-Based Rendering technology (DIBR) [2, 3], in addition to compression and smooth transition

between views, reliable synthesis algorithms that are robust to sparser camera arrangements and larger

baselines are critical factors with respect to the rendered quality. DIBR based algorithms have the

tendency to introduce local non-uniform structure-related distortions. In extreme cases, entire viewing

experience of one Free Viewpoint Video (FVV) can be ruined by only one severely distorted region in

one synthesized view [4]. As most of existing image/video estimators have been tuned and designed to

15



16 CHAPTER 1. INTRODUCTION

handle other type of distortions (traditional uniform compression distortions including blocking artifact,

blurriness, ...), they are mostly not suitable for FTV systems. New image/video quality assessment tools

that can deal with these structure related distortions are required for this scenario.

— 360◦ Image/Video in Virtual Reality: 90% of the existing VR contents are in the form of panoramic

images/videos [5]. Virtual Reality/360◦ images/videos offer to users immersive and interactive visual

experiences notably supported by head-mounted or other new equipment [6]. Apart from all the com-

mon compression-related issues of 2D/flat images/videos, there are more unique distortions that are

brought along with the delivery chain (from production to rendering). For instance, inappropriate map-

ping/projections from one layout to another may introduce geometric distortions. More importantly, to

obtain 360◦ panoramic contents, stitching algorithms are commonly used for combining images/videos

taken by a set of cameras/micro-cameras/fish-eye cameras. Depending on the stitching algorithm or the

cameras calibration, very localized structure-related artifacts may be observed. As for the FVT systems

scenario, usual image/video quality estimator are likely not sensitive to such distortions.

More generally, the way to assess the impact of structure-related distortions with respect to specific usage

of images/videos is also relevant for the following cases:

— utility assessment of image/video: utility assessment is to evaluate the usefulness of one image/video

in a certain task with respect to a reference. As demonstrated by Rouse and al., Image quality assessment

is not a proxy for utility assessment. In most utility assessment tasks, as long as the structure of the

image/video is still recognizable for observers, the image/video is considered as usable. However, in some

other cases, an image may not be useful if its textures are severely degraded (e.g. in material recognition,

textures are important for material identification). Due to the goal of the task itself, image/video may

suffer from different levels of structures/textures related degradation in different systems. The definition

of ‘utility’ varies when the goal of the task changes. As thus, how to quantify and leverage the amount

of degradation on different information within images/videos, so that the ’utility’ of the images/videos

is evaluated properly according to the task, is important and challenging.

— quality assessment of synthesized texture image: visual texture synthesis is to infer a generating

process from a texture sample. It allows then producing arbitrarily many new samples of that texture.

This is an important technique in nowadays immersive multimedia system and widely used in many do-

mains and applications. For example, it can be used in the DIBR process for inpainting the dis-occluded

regions. As summarized in [7], applications of texture synthesis include image/video restoration [8],

image/video generation [9], image/video compression [10], multimedia image processing [11], texture

perception and description [12], texture segmentation, recognition [13, 14], and synthesis [15]. Qualify-

ing a synthesized texture algorithm from quality performance point of view is important for all these

applications. What makes the quality assessment of synthesized texture difficult relies on the fact that

local structure of the synthesized texture may be very different from reference texture while still being

perceived as equivalent by human observers. This is especially the case as long as some main properties

of the texture patterns are preserved. Therefore, in synthesized texture image quality assessment, it is

important and challenging to extract and quantify these texture attributes that convey the perceptually

relevant information by taking structure into account.



1.2. REPRESENTING THE STRUCTURE-RELATED DISTORTION FOR QUALITY ASSESSMENT: A BIO INSPIRED APPROACH17

1.2 Representing the Structure-Related Distortion for Quality As-

sessment: a Bio Inspired Approach

Intuitively, the best way to quantify the impact of those local, non-uniform, and structure-related distortions

on visual quality is to adopt representation inspired by human visual system (HVS). The process of human

analyzing a visual scene has been characterized by the presence of regions in the extrastriate cortex that

are selectively responsive to scenes [16, 17]. These regions have often been interpreted as representing high-

level properties of scenes (e.g., category) and they also exhibit substantial sensitivity to low-level (e.g., edge

and texture) and mid-level (e.g., spatial layout) properties. Scene vision involves both foveal and peripheral

information, and the representations of multiple features extracted from multiple levels (low, mid, high-level) of

the hierarchy (e.g., gist and navigability). A recent bio-vision study [18] proposes a hierarchical framework of

visual perception, which comprises a series of discrete stages that successively produce increasingly higher level

representations. This framework is illustrated in Figure 1.1. It adopts well-adopted principles including the

three levels of representation. Structure-related distortions could be possibly detected and quantified

at any levels.

Figure 1.1 – The hierarchical framework of visual perception. Visual percept is formed based on successive
extraction and representations of low-, mid- and high-level features. [16, 17]

1.2.1 Low-level of Visual Scenes in Human Brain

Low-level vision is thought to involve the representation of elementary features, such as local edge/contour,

color, luminance, contrast, and texture. Such process is typically linked to the flow of information to primary

visual cortex (V1) via the retinogeniculate and geniculostriate pathways [19], which translate light intensity at

the retina into an orientated edge representation by means of small receptive fields (RFs) tiling the entire visual
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field [20]. Neurons in the striate cortex (V1) encode nothing about the meaning of a scene, but they do provide

a great deal of information about the image features within it.

In this dissertation, low-level representations of images/videos are defined as local features

and descriptors that represent local image/video basic information (e.g., orientations of local

edges, granularity of local textures).

1.2.2 Mid-level Representations of Visual Scenes in Human Brain

Mid-level vision is thought to involve intermediate visual patterns. The processes of ’mid-level’ vision

presumably provide the bridge between these ’low-level’ representations of edges, colors, and textures and

the ’high-level’ semantic representations of objects, actions, and scenes. The immediate stages beyond V1,

V2–V4 are often considered to encompass mid-level vision [18]. Overall, these areas are assumed to produce

and convey representations of conjunctions of elementary features and properties such as surfaces, higher order

image statistics, disparities, and intermediate shape features [21–23]. Recent studies have linked fMRI responses

from these areas to representations of locally pooled low-level representations in computational models [24–26].

Furthermore, it is believed that the visual system is very efficient in encoding stimulus properties by utilizing

available regularities in the inputs. These ‘encoded’ information can be considered as mid-level representation

obtained based on low-level representations.

In this dissertation, mid-level representations of images/videos are defined as intermedi-

ate ‘pattern-based encoded feature’, where the patterns are learned by summarizing regular-

ity/characteristics/properties of local low-level information (e.g., category of contour).

1.2.3 High-level Representations of Visual Scenes in Human Brain

High-level vision is thought to involve abstraction of visual input. It is well known that at some point there

is a semantic, ‘high-level’ representation of the visual scene because human can describe verbally the contents

that we are viewing and their meaning to us [18]. One of the most striking findings in visual neuroscience is that

multiple distinct brain regions exhibit selective and highly reliable responses to stimuli from particular semantic

categories [27]. Here, semantic is usually related to a certain given task, and categories are defined according to

the task (e.g., categories would be different objects in object recognition). More specifically, high-level vision is

considered to reflect the abstraction of the visual input into categorical or semantic representations that enable

classification, identification with respect to the task. Another point about higher-level representation has been

pointed out in [28], neural code in the higher-level cortex can be sparse code, where each element stands for

meaningful characteristics of the world as sparsity is considered as one of the essential principles to sensory

representation [29].

In this dissertation, higher-level representations of images/videos are defined as ’task-related

abstraction’, which learns a set of meaningful abstract patterns reflecting the characteristics of

the task (e.g., distortion type in quality assessment). These representations are not direct liked

to the semantics of the images/videos, but have better representation capability. Therefore, it is

defined as ‘higher-level representations’ instead of ‘high-level’ representation.
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1.3 Building and Learning Representation: White vs. Black Box

Approaches

From visual quality assessment prospective, immersive media technologies are providing new challenges

mostly related to structure information. To provide effective perceptual quality metric (e.g. in agreement with

perceptual quality judgment of human observers), one can adopt bio inspired approaches to quantify the effect of

distortions any levels. It implies then to investigate how to represent structure-related distortions. Nevertheless,

the higher the representation level, the more difficult it is to derive pure parametric models in a white box

manner where internal structures and functions of models are fully tractable and explainable. With the rapid

development of machine learning techniques, advanced models have been proposed and employed in different

domains. Compared to ’white box’ approach, these ’black box’ learning based models are more representative.

Nevertheless, in many cases, ’black box’ methods, e.g., deep learning models, are capable of achieving greater

performance than human being [30] especially for high level tasks. These ’white/black box’ methodologies are

of potential to be adopted for representing images/videos concerning the representative mechanism especially

for high level representation. In this thesis, we propose to explore both white and black approaches, mostly

depending on the representation level, leading possibly to grey/hybrid approaches (e.g. combining white and

black approaches for different stages of the models/representations).

Overall, this thesis aims at designing new effective representation of structural information at any perceptual

levels from visual quality prediction application. In other words, effectiveness of representation will be only

assessed based on the capacity to predict perceptual quality. While this investigation mostly targets immersive

media applications, we also propose to study the characteristics of structure-related distortions in texture

synthesis and utility assessment applications. Towards this end, we first review the type of structure-related

distortion that occur in new visual media and identify the limitations of existing visual quality predictor to

cope with these artefacts. As effectiveness of the representation will be assessed from perceptual quality point

of view, it is also important to review the existing relevant visual quality datasets as the perfomance evaluation

methodologies.





2
Structure-Related Distortions in

Visual Media

2.1 Introduction

In this chapter, distortions that occur in recent images/videos applications are introduced and illustrated.

Examples of distortions that challenge common objective quality measures are given along the following sections.

As most of the efforts of this thesis are dedicated to FTV scenario, deeper details are provided on the distortions

related to this scenario.

2.2 Distortions within Synthesized Views in Free-viewpoint TV

In FTV application, most of the structure-related distortions are introduced by the Depth-Image-Based

Rendering technology (DIBR). To understand what types of structure-related distortions are introduced by

DIBR and why they are difficult to handle, one should have an overall understanding of the DIBR-based

framework for synthesized views generation. Different types of distortions come after certain processes within

the DIBR framework. One of the most commonly used DIBR based view synthesized scheme can be summarized

as a two-views framework similar to the one proposed by MPEG-FTV [31]. The diagram of this framework

is represented in Figure 2.1. Different distortions introduced in different stages during the DIBR process are

summarized below along with a brief description of the commonly used DIBR process:

(1) During the pre-processing procedure, camera parameters of both reference and synthesized views are

utilized to obtain the projection matrix. This projection matrix is important as it is used to project coordinates

in reference views to the ones in virtual views. If inaccurate parameters (i.e., PL, PV and PR shown in the first

part of the block diagram in Figure 2.1) are taken, or any mistakes occur during transformation operations,

structure related distortions would appear in the next processes.

21
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Figure 2.1 – Diagram of DIBR algorithm [31]: It consists of five main parts: (1) Preprocessing, (2) Depth
mapping, (3) Texture mapping, (4) Blending, (5) Hole filling. Different distortions are introduced by these
processes.

(2) During depth mapping/virtual depth map generation, both the left and the right reference depth maps

are warped to generate the corresponding virtual depth map by doing forward warping (the 3D warping from

the reference views to the virtual ones) with the relative transform matrix. To get rid of the small holes

introduced due to the noise existing in the reference depth maps or the aliasing effects, median/low pass filters

are commonly used. After using low-pass filters to remove noise in the depth maps, translation or change in

the size of a region within the image, namely ‘object shift’ or ‘deformation of object shapes’ may be

introduced. Furthermore, since the depth maps are needed for forward warping, any types of depth map related

errors (including depth estimation, quantization errors and even inaccurate camera parameters obtained from

the previous steps) may cause ‘local geometric distortion’.

(3) During texture mapping, the texture of the virtual view is synthesized by reverse warping, which is to

map the texture from the reference view pixel-wise to the virtual one with the virtual depth maps. In this

texture mapping process, regions that can be seen in the right/left views but occluded in the virtual views are

remained as dark holes and commonly defined as the dis-occlusion/dis-occluded regions. Apart from the big

holes (big dis-occluded regions) caused by the occlusions, ‘small holes’ could also be introduced by the ‘round-

off error’ [32] (if pixel coordinates are not mapped to an integer value at the virtual viewpoint, they would

be usually either interpolated or rounded to their nearest integer positions. This type of incorrect coordinate

mapping is name the ‘round-off error’).

(4) During the blending process, the left and right synthesized textures are then blended to recover the

dis-occluded regions by borrowing information from the two reference views, which is defined as ‘occlusion

handling’. Geometric distortions can be amplified due to improper blending in this process.

(5) During the dis-occluded regions filling (hole filling) process, inpainting methods are commonly employed

to fill up holes that cannot be handled in the previous steps. In this filling procedure, ‘blurry regions’ may

be introduced. When it comes to complex texture regions, where inpainting algorithms may fail to fill up the

missing holes, incorrect rendering of texture regions may also occur (e.g., ‘ghosting artifact’ ). These blurry

or poorly inpainted regions are more visible since they are always located along transitions regions between
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foreground and background [33] and sometimes even degrade the structure.

In summary, the DIBR procedure may introduce the following special spatial and temporal distortions:

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2.2 – Examples of special distortions introduced by DIBR algorithms in FTV system. Reference images
are in the first row, while synthesized ones are in the second row.

Spatial Distortions in FTV Scenario:

(1) Local non-uniform geometric distortions: unlike traditional global uniform artifact, e.g., blocking

artifact, the dominant spatial distortions of synthesized views are the local non-uniform geometric distortions

around dis-occluded regions. These distortions are normally located around the boundaries of objects within

‘Regions of Interest’. Although they are not distributed continuously throughout the image, they are less

acceptable than the uniformly distributed distortions [34].

(2) Structure deformations: inappropriate 3D warping may modify/deform the shape of the objects

as shown in 2.2 (f). This type of shape deformation is more annoying as it makes important objects appear

unnatural.

(3) Global shifting: DIBR based algorithms may introduce global continuous shifting of objects as shown

in 2.2 (e). Observers are normally more tolerant to this type of distortions than local severe ones [34]. However,

this type of distortions is over-penalized by point to point metric like PSNR as (the acceptable shifted regions

are considered errors by PSNR).

(4) Dis-Occluded Regions/Dark Holes: small and medium size of dis-occluded regions may be intro-

duced as shown in 2.2 (h). Although these dark/black holes rarely exist in virtual views synthesized with

more advanced view synthesis algorithms (e.g., the view synthesis reference software provided by the MPEG

community), it could still appear in extreme situations (e.g., huge baseline distance).

(5) Blurriness/ghosting artifacts: inpainting algorithms that are used to inpaint the dis-occluded regions

may introduce blurriness and unsmooth transition along objects’ boundaries as shown in Figure 2.2 (g). If the

dis-occluded regions are not well inpainted, it may cause changes of structures as well (e.g., strange blurred

contours). When geometric distortions and blurriness are introduced at the same location, it could be more

noticeable (or even become the dominant distortion) for human observers.

Temporal Distortions in FTV Scenario:

There are mainly two types of temporal structure-related distortions that are introduced by DIBR based

algorithms:
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Figure 2.3 – Example explaining specific temporal trajectory deformations caused by spatial geometric distor-
tions. tsyn: trajectory of one object’s key point in synthesized video; tcom: trajectory of one object’s key point
in video contain traditional compression artifacts; tref : trajectory of one object’s key point in reference video.

(1) Temporal structure-related distortions at one viewpoint location/ temporal structure-

related distortions within one viewpoint: in the case of viewing one view at one individual view po-

sition/location, spatial geometric distortions introduced by DIBR processes may lead to temporal structure

inconsistency. This type of temporal structure related distortion within one viewpoint can be reflected by the

differences among the three trajectories as shown in Figure 2.3. As shown in the figure, shapes of objects in one

frame could be deformed significantly compared to the ones in next frames when playing a synthesized view

at one viewpoint location. In this situation, temporal flickering in the form of fluctuation of moving objects’

boundaries may be observed within videos at a particular viewpoint location.

(2) Temporal structure related distortions among viewpoints: considering the scenario of navigating

among different viewpoints, local structure related distortions (e.g., geometric distortions or inpainting related

distortions) may introduce structure inconsistency from one viewpoint to another. Compared to temporal

structure-related distortions at one viewpoint location, this type of distortions is observed due to view switch

and could be more disturbing. Furthermore, the larger the baseline distance is used for view synthesis, the more

abrupt/inconsecutive the structure changes would be when the users switch from one viewpoint to another.

This rough transition between different viewpoints could be considered as temporal flickering. For example,

Figure 2.3 shows the change of the shape of a static object along five frames across time in one multi-view

content (i.e., the change of the object shapes from the first frame f1 to the fifth one). Different degrees of local

structure-related distortions could be introduced differently among different viewpoints with different contents.

For example, to encode a set of multi-views sequences using 3D/MV HEVC [35], one rate-point for the entire

set of multi-view plus depth format sequences is usually selected. Different viewpoints may contain significantly

different contents, but the arrangement of compression budget for texture/depth map of different viewpoints

are normally not assigned differently according to the contents. Structure information of different viewpoints

may be degraded differently due to different degrees of distortions on depth map/texture of the sequence. As a

result, unsmooth structures transition among viewpoints could be observed.
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2.3 Distortions within Stitched Panoramic Images in Virtual Real-

ity

The growing popularity of virtual reality (VR), augmented reality (AR) and mixed reality (MR) applications

necessitates the generation of good-quality 360-degree panoramic images from multiple viewpoint images cap-

tured by different cameras on the same rig. However, stitching individual viewpoint images into one high-quality

and coherent panoramic image is technically challenging, which could introduce disturbing structure-related dis-

tortions:

Ghosting and structure inconsistency are the two most common visual artifacts produced by modern

image-stitching tools due to geometric misalignment and improper photometric correction [36]. Ghosting arti-

facts usually appear in the form of transparent objects, while structure inconsistency usually appears in the form

of non-continuous contour transition along object shapes. Both of them are locally located in the 360-degree

content, and in most of the case affect the perceived quality.

Overlap of different distortions: ghosting artifact, structure inconsistency, and even blurriness may be

introduced together at the same location. This kind of phenomenon can be considered a ’masking effect’ of

different distortions. In most of the cases, this effect may amplify the annoyance level of the distortions.

Examples of local non-uniform structure-related disruptions are depicted in Figure 2.4. These artifacts

cannot be easily captured by traditional image quality metrics, yet they are more visually disturbing than

conventional distortion types like compression artifacts. Because severely distorted local structure regions are

less acceptable for observers and greatly affect the quality of the entire image [34].

(a) (b) (c) (d)

Figure 2.4 – Examples of structure-related distortions introduced by stitching algorithms in VR System.

2.4 Distortions within Images in Utility Assessment

Different qualities can have equal or similar utilities in the task of utility assessment. In different tasks, the

amount of structure/texture information needed to be maintained for an image/video to be useful is different.

Severely degraded structure: because of the goal of the task itself, images/videos with severe and

extreme distortions on texture and structure could be kept as long as they are still useful for the system in

related utility tasks. For example, in cases like object recognition, degraded image/video that contains only the

shapes of the objects are still useful even though other detail structure/texture information is severely degraded.

This is because human observers are capable of recognizing objects based on only the main structure of the

image/video.

Different utility tasks, different structure/texture related distortions: distortion type differs de-



26 CHAPTER 2.

pending on the exact utility task and system. For example, in the case of predicting utility of synthesized views,

the primary structure-related distortion could be synthesized-related geometric distortions. However, in the

case of predicting the utility of images taken by surveillance cameras in adverse weather conditions, the main

degradation comes from the camera systems. In this situation, the primary structure-related distortions could

be blurry structures caused by lens distortion, which are different from the previous example.

Examples of images that are used in utility assessment are shown in Figure 2.5. These images are from the

CU-Nantes database [37]. Description of the database is given in section 4.2.3. By checking the three degraded

figures (b)-(d), it is not easy for someone to recognize the parrots in Figure 2.5 (c) or (d). However, we can

still point out the two parrots in (b), since the structures of parrots in this sub-figure are roughly maintained.

For Figure 2.5 (b), it would be useful if the task were object recognition but would be useless if the task were

to tell the material of the cage. In utility assessment, how the utility should be evaluated should refer to the

exact task. In most of the cases, utility assessment does not equal to quality assessment and should be designed

differently according to the exact utility task.

(a) (b) (c) (d)

Figure 2.5 – Examples of different levels image distortions in task of utility assessment.

2.5 Distortions within Synthesized Texture Image in Nowadays Mul-

timedia Applications

Distortions in synthesized texture images are typical. Synthesized texture images may include mis-

alignment, blur, tiling, and loss in the periodicity of the primitives, depending on the texture synthesis algorithm.

Generally, poor synthesis algorithm could result in altering of statistical texture properties and even image struc-

ture with respect to the original reference texture. According to a subjective test conducted in [38], the most

detrimental distortion within synthesized texture images are the lack of structural details. Other pronounced

artifacts include misalignment of the texture patterns, blurriness, and tiling introduced in the texture patterns.

Difficulties of quantifying texture-synthesis related distortions: The process of automatically

assessing the perceived visual quality of synthesized texture images is an ill-posed because of the fact that

� Texture synthesis algorithms may modify the size of the original image.

� Global shifting of the image are commonly introduced. The synthesized textures are not required to have

pixel-wise correspondences with the original texture but can still appear perceptually equivalent.

� In some cases, even the structures of the images have been modified, the quality of the synthesized

texture images could still be high.

Examples of synthesized texture image are presented in Figure 2.6. Images in this figure are from the
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SynTEX database [39–41] described in section 4.2.4. It can be seen from Figure 2.6 (c) and (d) that the

structure of the ’green beans’ has been destroyed compared to the one of Figure 2.6 (a). To better evaluate

synthesized texture images, metrics should not only be able to quantify texture related distortions, but also the

structure-related ones.

(a) (b) (c) (d)

Figure 2.6 – Examples of different levels of image distortions in task of synthesis texture images’ quality assess-
ment.

2.6 Conclusion

In this chapter, different types of structure-related distortions that appear in different applications are

introduced. It is evident that those distortions are entirely different from the common distortions like blocking

artifact, blur or quantization artifacts. Therefore, a particular model that is designed exactly for capturing these

types of artifacts is needed. In the next chapter, limitations of commonly used metrics and existing metrics

that are designed for the corresponding applications are described in detail.





3
Limitations of Existing Image/Video

Quality/Utility Assessment Metrics

3.1 Introduction

In this chapter, examples of failure cases of commonly used image/video quality assessment metrics in

different applications are first given. Afterwards, this chapter introduces special images/video quality models

that has been designed for evaluating 1) the quality of synthesized images in FTV scenario; 2) the quality of

synthesized videos in FTV scenario; 3) the quality of stitched panorama images in VR scenario; 4) the quality

of synthesized texture images; and 5) the utility of images are introduced separately in the following sections.

Meanwhile, limitations of those existing metrics are pointed out.

3.2 Commonly Used Image and Video Quality Assessment Metrics

Fail to Quantify Structure-Related Distortions

In order to assess the quality of images/videos, where structure-related distortions (introduced in chapter

2) exist for different use cases or applications, it is intuitive to try existing commonly used image or video

metrics first. As expected, the performances of these metrics are not acceptable as they fail to handle those

novel structure-related distortions described in chapter 2. Following are some failure cases of using existing

commonly used metrics for the quality/utility evaluation of images/videos in different applications. Their

performance, in terms of Pearson Correlation Coefficient (PCC), Spearman’s rank order Correlation Coefficient

(SCC) or Root Mean Squared Error (RMSE), in different applications are reported (introductions of these

performance evaluation methodologies are given in section 4.3).

� In FTV Use Case

� Spatial Structure-Related Distortions

29
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Spatial structure-related distortions like geometric distortions and object shifting are challenging for

commonly used metrics. IVC-Images dataset consists of frames extracted from sequences synthesized

with different DIBR synthesized algorithms. Images in this dataset thus contain mainly spatial

non-uniform local geometric distortions, details of this database is given in section 4.2.1.1. The

performances of commonly used image quality metrics on this dataset are shown in Table 3.1 as

reported in [42]. According to Table 3.1, commonly used full reference image quality metrics, including

peak signal to noise ratio (PSNR) [43], structural similarity index (SSIM) [44], multi-scales SSIM (MS-

SSIM) [45], information content weighted PSNR (IW-PSNR) [46], and information content weighted

SSIM (IW-SSIM) [46], show poor performance on this database. Moreover, natural scene statistic

(NSS) based no reference metrics, i.e., natural image quality evaluator (NIQE) [47] and blind image

integrity notator using DCT statistics (Bliinds) [48] perform poorly on this database too. Thus, it

is necessary to develop a new reference metric to quantify the effect of degradations of structures

spatially on perceived quality.

Table 3.1 – Performance of common image quality metrics on the IVC-Images database.

PCC SCC RMSE
PSNR [43] 0.456 0.442 0.593
SSIM [44] 0.434 0.400 0.599

MS-SSIM [45] 0.541 0.502 0.560
IW-PSNR [46] 0.361 0.346 0.621
IW-SSIM [46] 0.533 0.479 0.563
Bliinds [48] 0.533 0.180 0.563
NIQE [47] 0.402 0.367 0.609

� Temporal Structure-Related Distortions within One viewpoint

Temporal structure-related distortions in the form of temporal inconsistency within one viewpoints are

challenging for commonly used metrics. IVC-Video dataset consists of sequences synthesized using

seven different DIBR synthesized algorithms. Sequences in this database contain both structure-

related spatial distortions, and temporal structure-related distortions observed at one viewpoint lo-

cation. The detailed description of the dataset is given in section 4.2.1.2. The performances of

commonly used image/video quality metrics on this dataset (reported in [49]) are concluded in Ta-

ble 3.2. Tested metrics includes visual signal to noise (VSNR) [50], information fidelity criterion

(IFC) [51], SSIM, visual information fidelity (VIF) [52], pixels version of VIF (VIFP) [52], noise qual-

ity measure (NQM) [53], PSNR, PSNR-human visual system masking model (PSNR-HVSM) [54],

PSNR-human visual system (PSNR-HVS) [54], video quality metric (VQM) [55], video structural

similarity measure (VSSIM) [56], weighted signal-to-noise ratio (WSNR) [57], MS-SSIM, and univer-

sal quality index (UQI) [58]. According to Table 3.2, it is obvious that those commonly used metrics

are poorly correlated with the subjective scores. Among them, the PCC value of the best performing

VSNR is less than 0.5.

Another example is shown in Table 3.3, this table reports the performances of commonly used im-

age/video quality metrics on SIAT synthesized video quality database (as reported in [60]). The

140 videos in this database are synthesized from ten multi-view plus depth (MVD) based 3D se-

quences with different texture/depth quantization combinations. These sequences contain not only

spatial structure distortions but also temporal structure-related artifacts (within one viewpoint). It
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Table 3.2 – Performance of commonly used image/video quality metrics on the IRCCyN/IVC DIBR Videos
database (IVC-Video) [59].

VSNR [50] VIFP [52] IFC [51] SSIM [44] VIF [52] NQM [53] PSNR [43]
PCC 0.46 0.46 0.44 0.44 0.42 0.36 0.34

PSNR-HVSM [54] PSNR-HVS [54] VQM [55] VSSIM [56] WSNR [57] MS-SSIM [45] UQI [58]
PCC 0.34 0.32 0.32 0.32 0.32 0.26 0.2

is claimed in [60] that this database is a supplement of IVC-Videos database. According to Table

3.3, it can be seen that both commonly used image quality metrics, including PSNR, WSNR [57],

SSIM, MS-SSIM, and commonly used video quality metrics, including VQM, motion-based video in-

tegrity evaluation (MOVIE), fail to predict the perceived quality of synthesized views well. Among

all these metrics, the PCC value of the best performing MS-SSIM is 0.703. On the one hand, there

is still a room to improve the performance. On the other hand, metrics include MS-SSIM can obtain

considerably good performance because this dataset contains mainly compression artifacts. Synthe-

sized related artifacts are not obvious/dominant compared to the compression ones in this dataset.

Therefore, in this study, this database is not used for performance evaluation.

Table 3.3 – Performance of commonly used image/video quality metrics on the SIAT synthesized video quality
database [60].

PCC SCC RMSE
PSNR [43] 0.648 0.627 0.097
SSIM [44] 0.608 0.598 0.101

MS-SSIM [45] 0.703 0.731 0.091
VQM [55] 0.669 0.655 0.095
WSNR [57] 0.605 0.589 0.102
MOVIE [61] 0.646 0.693 0.097

� Temporal Structure-Related Distortions among Viewpoints

Temporal structure-related distortions in the form of temporal inconsistency among viewpoints (ob-

served due to view switch) are challenging for commonly used metrics. Time freeze free-viewpoint-

synthesized-video-dataset (FFV) consists of sequences synthesized using seven different DIBR synthe-

sized algorithms. In this dataset, sequences were generated to mimic a smooth camera motion during

a time freeze with synthesized sequences. As thus, sequences in this dataset contain mainly spatial

structure-related distortions and temporal structural related distortions in the form of unsmooth

transition among viewpoints. Detailed descriptions of the database are given in section 4.2.1.3. The

performance of the commonly used image metrics on time freeze free-viewpoint-synthesized-video-

dataset (FFV) are shown in Table 3.4 (reported in [62]). As it can be observed from Table 3.4, this

new type of temporal structure-related distortion (caused by switches of viewpoints) is challenging

for those commonly used video quality assessment metrics as they perform so poorly on this FFV

database with PCC values less than 0.3.

� In VR Use Case

Ghosting and structure inconsistency are challenging for commonly used metrics to quantify. In practical,

references of stitched images are not available, and no reference metrics are thus needed. SIAQ dataset

contains mainly structure distortions introduced by stitching algorithms. Detailed descriptions of the

database are given in section 4.2.2. The performances of commonly used no reference image quality
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Table 3.4 – Performance of commonly used image quality metrics on the time-freeze free-viewpoint-synthesized-
video-database (FFV) [62].

PCC SCC RMSE
PSNR [43] 0.267 0.294 0.907
SSIM [44] 0.000 0.000 0.941

MS-SSIM [45] 0.011 0.061 0.941
IFC [51] 0.128 0.065 0.934
VIF [52] 0.058 0.094 0.939
VIFP [52] 0.079 0.122 0.938
UQI [58] 0.000 0.000 0.941

assessment metrics on this database are summarized in Table 3.5 (reported in [63]). It is obvious that

both Bliinds and distortion identification-based image verity and integrity evaluation (DIIVINE) index

fail to evaluate the quality of stitched panoramic images (with PCC values lower than 0.3). One of

the reason is that they are not able to localize and quantify dominant structure-related artifacts, e.g.,

ghosting artifact.

Table 3.5 – Performance of common image quality metrics on SIAQ stitched images database [36].

PCC SCC
Bliinds [48] 0.118 0.066

DIIVINE [64] 0.258 0.145

� In Texture Synthesis Use Case

Texture synthesis-related distortions are challenging for commonly used metrics to quantify since syn-

thesized texture images may contain structure as well as texture related distortions. SynTex dataset

contains images generated using different texture synthesis algorithms. Details of this dataset are given

in section 4.2.4. The performance of commonly used image quality assessment metrics on the SynTex

dataset (reported in [7, 65] ) are summarized in Table 3.6. According to Table 3.6, PSNR, SSIM, struc-

tural texture SSIM (ST-SSIM) [66], DIIVINE [64], and NIQE, fail to predict the perceived quality of

synthesized texture images well. The PCC values of those metrics are all below 0.4.

Table 3.6 – Performance of commonly used image quality metrics on the SynTex database [7, 65].

PCC SCC RMSE
PSNR [43] 0.237 0.345 1.210

ST-SSIM [66] 0.215 0.135 1.213
MS-SSIM [45] 0.293 0.122 1.105
DIIVINE [64] 0.357 0.408 1.094
NIQE [47] 0.253 0.218 1.154

� In Utility Assessment Use Case Different levels of structure/texture-related distortions are chal-

lenging for commonly used metrics to handle regarding to different utility tasks. Cu-Nantes dataset is

released for the task of utility assessment. Images in this database contain different level of structure,

texture disruptions. Detailed introductions of this dataset are given in section 4.2.3. The performance

of using commonly used image quality metrics for predicting utility scores on the Cu-Nantes dataset

(reported in [67,68]) is summarized in Table 3.7. Tested metrics include PSNR, SSIM, MS-SSIM, VSNR,

WSNR, and NQM. As none of these metrics focus on quantifying the amount of structure disruptions

according to the goals of the tasks, they fail to provide acceptable performance for utility assessment.
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Table 3.7 – Performance of using commonly used image quality metrics as utility estimator on the Cu-Nantes
database.

PCC SCC RMSE
PSNR [43] 0.191 0.471 43.5
WSNR [69] 0.187 0.425 32.8
SSIM [44] 0.749 0.871 18.2

MS-SSIM [45] 0.566 0.726 23.9
NQM [53] 0.318 0.467 35.4
VSNR [50] 0.371 0.473 31.8

3.3 Limitations of Existing No Reference Metrics designed for Nat-

ural Images

On the one hand, NSS based no reference metrics including DIIVINE [64], Bliinds [48], and NIQE [47] are

designed for capturing natural uniform distortions that distributed throughout the entire image/video (like the

traditional gaussian blur, pepper noise or compression related distortions). Dealing with local non-uniform

distortions that appear in images/videos are challenging for them. In most cases, those NSS based metrics

underestimate the importance of these structure-related distortions.

On the other hand, deep learning based quality assessment models, like the one proposed in [70], assign

image-level subjective scores for patches during training. This is questionable when it comes to applications

where local non-uniform distortions are the dominant distortion. Furthermore, in the model proposed in [71],

the final predicted quality score is obtained by calculating the statistics (e.g., mean and standard deviation) of

local patches’ features. By doing so, the impact of severe local distortions on perceived quality is ‘averaged’

and ‘weaken’.

Taking the two points mentioned above into account, no reference metrics that are trained to learn the local

non-natural structure (NNS) is needed.

3.4 Limitations of Existing Image Quality Assessment Metrics for

FTV System

The very first full reference (FR) approach that designed for evaluating the quality of synthesized images

is proposed by Bosc et al. [49] by applying some prior knowledge acquired through subjective tests (e.g., the

common localization of view-synthesis artifacts along contours) to SSIM. Following this idea, Conze et al. [72],

propose the view synthesis quality assessment (VSQA) metric, which improves SSIM with three visibility maps

that characterizes the complexity of the images. Later, the ‘3D synthesized view image quality metric’ (3DswIM)

is proposed by Battisti et. al. [33]. This metric is based on statistical features of wavelet sub-bands. In addition,

Tsai and Hang [73] propose a metric based on compensating the shifts of the objects that appear in synthesized

views by calculating the noise around them. Considering the fact that using multi-resolution approaches could

increase the performance of image quality metrics, Sandić-Stanković et al. develop the ‘Morphological Wavelet

PSNR’ (MW-PSNR) using a morphological wavelet decomposition [74]. Later they extend the work by using

a multi-scale decomposition based on morphological pyramids, which is called ‘Morphological Pyramid PSNR’

(MP-PSNR) [75]. Recently, Stanković et.al. [76] point out that PSNR is more consistent with human judgment
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when it is calculated at higher morphological decomposition scales. They thus propose reduced versions of

the morphological multi-scale measures called reduced MP-PSNR and reduced MW-PSNR correspondingly

(denoted as MP-PSNRr and MW-PSNRr). According to their experimental results, the reduced versions (i.e.,

MP-PSNRr and MW-PSNRr) outperform the full versions (i.e., MP-PSNRf and MW-PSNRf ).

In real application, reference synthesized views are generally not available. Thus, No Reference (NR) metrics

are more desirable. Nevertheless, compared to FR metrics mentioned above, only few NR metrics are designed

for synthesized views in FTV scenario. In [77], NIQSV is proposed by hypothesizing that high quality images

are consist of flat areas separated by edges. Later on, NIQSV+ is proposed in [42] to improve NIQSV by taking

‘black holes’ into account. Recently, a novel NR metric APT is proposed in [4] using the auto-regression (AR)

based local image description.

All the FR/NR images metrics mentioned above suffers from at least one of the drawbacks mentioned below:

(1) Geometric distortions in a certain extent are acceptable for human observers and should be treated

differently from those are unacceptable. For example, in Figure 3.1, the slightly expanded nose on the right in

the third row is more acceptable for human observers than the twisted nose in the middle. Some of existing

metrics fail to well predict good quality synthesized images as they over-penalized geometric distortions.

(2) The human visual system is sensitive to severe local artifacts [34, 78] local geometric distortions. The

most upsetting artifacts in synthesized images are the inconsistent local geometric distortions instead of the

consistent global shifting artifacts. These specific artifacts appear mainly around the disoccluded regions and

thus are sparse. However, most of the existing metrics process the entire image equally. Thus, they are not able

to locate and quantify local geometric distortions properly. Sensitive region selection should be considered as a

pre-process module to select regions with structure-related distortions.

(3) Global shifting within certain limits is acceptable for human observers but is punished severely by point-

to-point based metrics like PSNR. Due to equal-weighted pooling and point-wise comparison, some image quality

assessment metrics mistakenly emphasize the consistent global shifting artifacts. For example, in Figure 3.1, it

is obvious that the ‘twisted nose’ in the middle is more annoying than the ‘slightly shifted nose’ on the right.

However, the PSNR score for the patch in the middle with its referred patch on the left is 20.2854 db while the

one of the patch on the right is 18.6616 db, which incorrectly indicating that the quality of the ‘twisted nose’

is better.

(4) With the rapid development of machine learning technologies, many quality assessment models have

been proposed recently. Many of these machine learning based models are trained based on the assumption

that the perceived quality of any local regions in the image is the same as the one for the entire image. This

assumption may work for images that contain uniform distortions but may not stand for those contain non-

uniform distortions.

3.5 Limitations of Existing Video Quality Assessment Metrics for

FTV system

The ‘Peak Signal to Perceptible Temporal Noise Ratio’ (PSPTNR) metric, introduced by Zhao and Yu [81],

quantifies temporal artifacts that can be perceived by observers in the background regions of the synthesized

videos. Similarly, Ekmekcioglu et al. [82] propose a video quality metric by using depth and motion information
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Figure 3.1 – Failure examples of using point-to-point metrics for synthesized views. Rows:(from up to down) :
Part of the images for better observation; Patches from images; Extracted contours of patches. Columns: (from
left to right) reference image, synthesized image obtained with algorithm proposed in [79], synthesized image
obtained with algorithm proposed in [80]. PSNR(L, M)=20.2854 db, PSNR(L, R)=18.6616 db

to locate the degradations. The state-of-the-art video metric designed for free viewpoint videos is recently

introduced by Liu et al. [60]. Their proposed metric considers the spatio-temporal activity and the temporal

flickering that appears in synthesized video sequences.

However, none of the aforementioned video quality metrics is designed to quantify the unsmooth transition

among views (temporal structure inconsistency observed during view switch).

3.6 Limitations of Existing Image Quality Assessment Metric for

Stitched Panoramic Images

The model presented in [83] is an early work combining mainly low-level and high-level features. However,

structure-related artifacts are not considered in this model. In [84] and [85], the authors focus mainly on

color and intensity consistency. Nevertheless, color correction is no longer a problem for advanced stitching

algorithms. MIQM [86] is proposed to quantify luminance, contrast, spatial motion and structure-related

abrupt local changes in stitched images. Later, Qureshi et al. [87] proposed a SSIM-based metric to compute

geometric distortions between the left and right reference images and the stitched ones. Recently, Yang et

al. [36] proposed to compute the local difference of optical flow field energy between the stitched and reference

images with the guidance of saliency map in order to quantify content-related structural loss. However, this

metric is a full-reference metric. It is not practical since ground-truth reference images are rarely available in

most practical cases.

In summary, none of the aforementioned metrics is capable of quantifying ghosting artifacts and structural

inconsistencies without the need of any reference images. None of them is proposed based on learning the

non-naturalness of these structure-related distortions. None of them can quantify and locate the local non-
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uniform structure distortions. More importantly, none of them considers the impact of ‘masking effect’ (overlap

of several different types of distortions) on the perceived quality.

3.7 Limitations of Existing Image Utility Assessment Metrics

In recent years, several metrics have been introduced for the purpose of predicting utility. The natural

image contour evaluation (NICE) [67] metric is first proposed to predict utility by comparing contours of a

test image and its reference. Later, the multi-scale version of NICE (MS-NICE) is proposed to improve the

performance of NICE by comparing contours in each sub-band of a wavelet decomposition, with thresholding

and normalization at each subband level. One of the most recent utility metric, the multi-scale difference of

gaussian utility (MS-DGU), is proposed in [68] by comparing the number of extrema of a multi-scale difference

of gaussian (DoG) decomposition between distorted and reference images.

However, all of these metrics focus only on using structure information and ignore the importance of texture.

Texture also plays an important role in certain utility assessment tasks, e.g. material recognition. Moreover,

none of these utility estimators are designed according to the goals of the task.

3.8 Limitations of Existing Image Quality Assessment Metrics for

Synthesized Texture Images

In the past decade, many metrics have been proposed for the quality evaluation of synthesized texture images.

The complex wavelet SSIM (CWSSIM) [88] is proposed to take advantage of the fact that image distortions

could lead to changes of magnitude and/or phase of local wavelet coefficients. In [89], a multi-scale weighted

variant of the complex wavelet SSIM (WCWSSIM) is proposed to improve CWSSIM with weights based on the

human contrast sensitivity function. In [38], Swamy et al. propose to use parameters from a texture-synthesis

algorithm. Synthesized texture quality assessment (STQA) index is proposed in [65] based on multi-scale spatial

and statistical texture attributes. According to [65], CWSSIM, WCWSSIM, parametric metric proposed in [38]

and STQA are the four most promising metrics. As discussed in the previous chapter, the acceptance of texture

change is task dependent. For example, inpainting in high-frequency texture regions is acceptable in some cases

but could be unacceptable in material recognition with the same amount of changes. None of these existing

studies design a metric by exploring the role of structure and texture information with respect to the tasks.

3.9 Conclusion

In this chapter, failure cases of using commonly used metrics for evaluating the quality/utility of im-

ages/videos in different applications are given. Furthermore, limitations of existing metrics that designed for

different applications are also introduced. It is shown that there are glaring needs to develop better image/video

quality metrics by considering the characteristics of those local non-uniform structure-related distortions.



4
Relevant Datasets and Evaluation of

Performance

4.1 Introduction

This chapter contains two main sub-parts. In the first part, the datasets used in this study are introduced.

They are released for different use cases and contain images/videos with structure related-distortions. These

datasets are used for 1) experimental comparison; 2) training the mid/higher-level representation based models;

and 3) performance evaluation of the proposed models. In the second part of this chapter, the methodologies

used for evaluating the performance of the proposed metrics are introduced.

4.2 Datasets

4.2.1 Datasets for Free-viewpoint TV Applications

In recent years, most of the research efforts in FTV scenario are spent on developing encoding approaches and

view-synthesis algorithms [1], while the subjective evaluation of the QoE of such system is still limited [90]. For

example, no subjective study considers the impact of content related navigation trajectories on perceived quality.

This fact may be caused mainly by the technological aspects and novelties related to the visualization of FTV

content, in the sense that it provides users with the possibility to freely watch different viewpoints of the scene.

For this, displays offering motion parallax (at least horizontal, ideally also vertical) should be employed, such as

SMV displays, light-field displays, etc. However, since these types of displays are still under development, and

only some prototypes are available, other visualization techniques should be used. For example, conventional

screens can be used together with some interactive interface allowing the user to select the desired viewpoint

(e.g., browsers, head-tracking systems). This alternative also introduces difficulties in the subjective evaluation

37
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of FTV content, since the provided interactivity makes it difficult to have reliable and reproducible results with

traditional evaluation methodologies.

Apart from the preliminary subjective study carried out by Dricot et al. [91] that considers coding and view-

synthesis artifacts using a light-field display, the majority of the experiments for FTV scenario are conducted

using conventional screens and limiting the interactivity of the users. For example, some representative content

or predefined trajectories simulating the movement of the observers are shown to the observers. In this way, it

is possible to obtain more reliable results, as shown by the fact that MPEG has adopted this type of alternative

for their recent standardization activities regarding the evaluation of compression techniques for FTV [92]. In

particular, the adoption of this evaluation approach is based on previous subjective studies with SMV [93]

through view sweep (i.e., generating videos in which a sweep across the different viewpoints is shown, as if

the observer was moving his head horizontally from one viewpoint to another). These studies were carried out

to study different aspects of this technology, such as smoothness in view transitions, comfortable view-sweep

speed [94], and the impact of coding artifacts [95].

Although these studies provide some insights related to the effects of coding artifacts on quality, the evalu-

ation of view-synthesis algorithms is still an open issue [96]. Therefore, some works that were carried out with

previous technologies, like multi-view video, should be taken into account in the study of the effects of view-

synthesis on the perceived quality in current FTV applications, such as FN and SMV. To this end, Bosc et al.

conducted subjective studies to evaluate the visual quality of synthesized views using DIBR-based algorithms.

In these studies, the quality performance of view synthesis was evaluated through different ways, such as by

showing the observers: 1) synthesized still images [49], 2) synthesized views of Multi-View plus Depth (MVD)

video sequences [97], and 3) a smooth sweep across the different viewpoints of a static scene [62]. These different

approaches are illustrated in Figure 4.1 (a)-(c) correspondingly. In the following sections, details of the three

datasets released along with these three studies are given.

4.2.1.1 IRCCyN/IVC DIBR Images (IVC-DIBR-I/IVC-Image)

The IVC-DIBR image dataset contains 96 images with a resolution of 1024 × 768. It contains both mean

opinion score (MOS) obtained using ACR protocol and pair comparison results. The dataset was designed for

benchmarking view synthesis algorithms. Images from this dataset [49, 98] were obtained from 3 multi-view

video plus depth sequences. 7 DIBR algorithms (labeled as A1-A7) [3,32,79,80,99,100] were used to process the

three sequences to generate four new virtual views for each of them. The dataset is composed of 84 synthesized

views and 12 original frames extracted from the corresponding synthesized sequences. Images in this dataset

contain only spatial synthesized artifacts caused by view synthesis.

4.2.1.2 IRCCyN/IVC DIBR Videos dataset (IVC-DIBR-V/IVC-Video)

The IVC-DIBR video dataset [59] consists of 102 videos with a resolution of 1024×768 generated with three

multi-view plus depth contents. It contains MOS obtained using ACR-HR protocol. The dataset was designed

for the evaluation of the reliability of DIBR algorithms by assessing the quality of the synthesized virtual views.

Totally 7 DIBR related algorithms, which denoted as A1-A7 [3,32,79,80,99,100], are used to obtain 4 new virtual

viewpoints for each content. Apart from the 9 original sequences and the 84 synthesized virtual viewpoints,

there are also 9 sequences that contain only traditional compression artifacts obtained by encoding the texture
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of the reference sequences. The sequences in this dataset contain only synthesized related spatial artifacts

and temporal artifacts within one viewpoint, as there is no navigation among different viewpoints (switch of

viewpoints) to mimic free navigation.

4.2.1.3 Time Freeze Free-Viewpoint Synthesized Video dataset (FFV)

The time freeze free-viewpoint synthesized video dataset [62] is composed of 264 videos sequences in resolu-

tion of 1024× 768 / 1920× 1080 generated with six multi-view plus depth original sequences. It contains MOS

obtained using the ACR protocol. The dataset was released for the purpose of evaluating the impact of depth

coding artifacts on the perceived quality. Since depth maps are important during the DIBR based rendering

process, 7 codecs and 3 bitrates were adopted to encode the depth maps for later synthesis process. These 7

algorithms include 3D-HEVC [101], MVC [102], HM 6.1 [103], JPEG2000 [104], lossless-edge based codec [105],

proposed in [106] using color frames’ correlations, and Z-LAR-RP [107] using local information (they are la-

beled as C1 to C7 respectively). After generating the synthesized viewpoints between the reference views with

a certain configuration, a sequence that navigates from one viewpoint to another (from left to right and vice

versa) is generated with 100 key frames extracted from the synthesized viewpoints. Thus, the sequences in this

dataset contain synthesized related spatial artifacts and temporal artifacts caused by views switch.

4.2.1.4 Limitations of the Three FTV Datasets

The three FTV datasets mentioned above are released to evaluate FTV contents that represents different

degrees of navigation with respect to different type of distortions. Figure 4.1 (a)-(c) show the ‘degree of

navigation’ in these three subjective studies. It is shown from Figure 4.1 (a)-(c) that the first subjective studies

only considers spatial DIBR-related artifacts, the second study also considers temporal distortions within the

synthesized view, and the third study considers spatial DIBR-related artifacts of all the views, but no temporal

distortions. Therefore, a complete evaluation of spatial and temporal degradations caused by view synthesis,

which takes content-related navigation trajectories into account, is still missing. It requires the use of content-

related view sweep over the views in video sequences (similar to the trajectories designed in [93] but considering

view-synthesis artifacts), as depicted in Figure 4.1 (d). To fill this need, a subjective study that considers all

the factors as mentioned above is conducted in this thesis to further confirm the impact of content-related

navigation trajectory on perceived quality. This novel subjective study is described in section 11.3.

4.2.2 Dataset for Stitched Panoramic Images (SIAQ)

The SIAQ dataset [36] consists of 1224 stitched images, in resolution of 2k × 3k. This dataset contains

only subjective comparison scores. It was released for benchmarking the performance of different stitching

algorithms. In total, 34 different contents (varying from scenery landscapes to indoor scenes) are included in

the dataset. These stitched images are obtained by stitching adjacent left and right virtual views (totally 12

views for each content covering 360-degree surrounding views) with an off-the-shelf stitching software. The

entire dataset can be divided into three groups: reference and two sets of stitched images generated using 2 sets

of different parameters. The images in this dataset contain only spatial stitching artifacts.
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(a) (b)

(c) (d)

Figure 4.1 – Different possibilities to evaluate FTV content representing different degrees of navigation. (a)
Synthesized image. (b) Video from a synthesized view (exploration along time). (c) Video containing a view
sweep (exploration along views). (d) Video containing a view sweep from videos of various synthesized views
(exploration along time and views)

4.2.3 Dataset for Utility Assessment (Cu-Nantes)

The CU-Nantes dataset [37] consists of 9 reference gray-scale images and 235 distorted images. This dataset

contains both perceived quality and perceived utility scores for the distorted images. It was released for evalu-

ating the performance of utility metrics. The quality scores were obtained using the SAMVIQ protocol while

the utility scores were obtained using pair comparison. Each image in CU-Nantes is degraded by one of the five

processes. These five processes include JPEG compression, blocking, JPEG2000 with dynamic contrast-based

quantization, texture smoothing (TS) and texture smoothing with high pass filtering. The images in this dataset

contain different level of structure loss due to degradation processes.

4.2.4 Dataset for Synthesis Texture Images (SynTex)

The SynTEX Granularity dataset [39–41] contains 105 synthesized texture images. This dataset is equipped

with MOS obtained using ACR protocol. It was designed for evaluating the effect of granularity on synthesized

textures, and benchmarking metrics designed for quality assessment of texture synthesized images. To prepare

the dataset, 21 reference texture images that contain textures with low, medium and high granularity levels were

selected. In this dataset, the synthesis texture images were generated utilizing five different texture synthesis

algorithms, including parametric, non-parametric, statistical, and non-statistical approaches. The images in this

dataset contain mainly texture synthesized related distortions. Both structure and texture of the synthesized

texture images were modified to different extent compared to the reference images.
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4.3 Performance Evaluation Methodology

In this section, the measures used for evaluating the performance of proposed objective metrics are de-

scribed. To be compliant with the standard procedure [108, 109] for assessing the performance of objective

image/video quality/utility assessment metrics, the accuracy, monotonicity, and consistency properties of the

objective estimation of subjective score are considered. Measurements including pearson correlation coefficient

(PCC), spearman rank order correlation coefficient (SCC), root mean square error (RMSE) and the ’Krasula’

model [110,111] are used for performance evaluation in the thesis.

Before calculating PCC, SCC, and RMSE, as recommended in [108,109], a logistic regression is employed to

map the predicted objective quality/utility scores to the subjective ones, with the constraint that the function

is monotonic on the interval of perceived quality values:

objfit(obj) = a+ b

1 + exp [−c · (obj − d)] , (4.1)

where a, b, c, d are the parameters of the fitting functions and obj, objfit are the predicted objective scores and

the objective scores after fitting, respectively.

4.3.1 Pearsons Correlation Coefficient

The pearsons linear correlation coefficient (PCC) is computed between predicted objective quality scores

and subjective scores to estimate the accuracy of the predicted scores, and is defined as

PCC =
∑Ms

i=1(sub(i)− ¯sub(i))(obj(i)− ¯obj(i))√∑Ms

i=1(sub(i)− ¯sub(i))2
√∑Ms

i=1(obj(i)− ¯obj(i))
, (4.2)

where sub(i) and obj(i) are the MOS for a sample i obtained from the observers and the predicted score

predicted by the objective models correspondingly. ¯obj(i) and ¯sub(i) indicate the means of the objective and

subjective scores respectively. Ms is the total number of samples.

4.3.2 Spearman Rank Order Correlation Coefficient

The spearman rank order correlation coefficient (SCC) is computed between predicted score and ground

truth subjective score to estimate the monotonicity of the objective score:

SROCC =
∑Ms

i=1(subr(i)− ¯subr(i))(objr(i)− ¯objr(i))√∑Ms

i=1(subr(i)− ¯subr(i))2
√∑Ms

i=1(objr(i)− ¯objr(i))
, (4.3)

where subr(i) and objr(i) represent the rank of a sample i indicated by the MOS and the predicted subjective

score respectively. ¯subr(i), ¯objr(i) represent the respective midranks andMs is the total number of test samples.
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4.3.3 Root Mean Square Error

For evaluating the performance of objective metrics, the root-mean-square error (RMSE) is also computed

between quality scores predicted by the objective models and subjective scores. It is defined as

RMSE =

√√√√ 1
Ms − 1

Ms∑
i=1

(sub(i)− objf (i))2, (4.4)

where sub(i) is the individual subjective score of the sample i and objfit(i) is the predicted objective score of

the sample after fitting. Ms is the number of total samples.

4.3.4 Krasula Model

The previous three methods are commonly used for evaluating the performance of metrics for objective

quality assessment with respect to subjective ground truth. Nevertheless, those conventional methodologies

suffer from at least one of the following disadvantages:

(1) These methodologies do not take into account the uncertainties in the subjective scores. Thus, certain

decisions have to be made by the models without knowing the correct behaviors.

(2) These methodologies are vulnerable to the quality range of the stimulus in the experiments. So, mapping

functions are required to pre-process the objective scores to compare the performance of the metrics, which are

not the same as how the metrics are used in practice.

(3) These methodologies are not capable of dealing with pair comparison results directly, and other models

should be used beforehand to pre-process the subjective comparison results.

Figure 4.2 – Framework of the Krasula methodology for performance evaluation of objective metrics [110,111].

In order to better evaluate the performance of different metrics, as well as to better assess the metrics
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on datasets that contains only pair comparison results, in this thesis, the methodology proposed by Krasula

et al. [110, 111] is used. In their model, it is assumed that the capability of an objective metric depends its

capabilities of making reliable decisions about 1) when comparing two stimulus, whether they are qualitatively

different and 2) if they are, which of them is of higher quality. In brief, the ’Krasula’ model is based on

determining the classification capabilities of the objective models considering ’Better or Worse’ and ’Different

or Similar’ scenarios.

The entire framework can be divided into five steps and is depicted in Figure 4.2. To use the ’Krasula’

model for performance evaluation, the first step is to preprocess the subjective results of the dataset to select

pairs that are statistically significantly different from each other with respect to their subjective quality scores.

Approaches like ANOVA test can be used for significance difference calculation as mentioned in [110]. After

significance difference confirmation, the significantly different pairs are further divided into groups with positive

and negative MOS difference for latter different/similar and better/worse analyses. For example, let sub(i) and

obj(i) be the subjective score and objective predicted score of a sample i respectively, stimuli pairs that are

significantly different can be defined as

Pr[sub(i) 6= sub(i)] > 1− αsig, (4.5)

where Pr[sub(i) 6= sub(i)] denotes the probability that the stimuli i and j are qualitatively different and αsig
denotes the level of significance. Normally, the value of αsig is set as 0.05 to ensure 95% probability. For

subjective scores expressed in form of MOS, the probability of difference can be computed using the formula

(4.6) defined in [112]

Pr[sub(i) 6= sub(i)] = Ψ( |sub(i)− sub(j)|√
v(i)/Nobs + v(j)/Nobs

), (4.6)

where v(·) is the variance of the stimulus and Nobs is the number of observers. For subjective scores expressed in

the form of pair comparison scores, a statistical test like Barnard’s test [113] can be used to determine whether

the preference for one stimulus over another is statistically significant. In other words, the Krasula model is

capable of dealing with subjective data containing only pair comparison results.

After categorizing pairs within one dataset into one group that contain pairs with significantly different

quality scores and another one that contain pairs that are not significantly, the second step is to pre-process

the predicted scores by calculating the difference between the predicted scores of each pair of stimuli i and j:

∇obj(i, j) = obj(i)− obj(j). (4.7)

With the pre-processed objective predicted and subjective scores, the ’Difference vs. Similar’ Analysis

can be then conducted to check how well can the objective metric distinguish between significantly different

and similar pairs. In this analysis, it is assumed that the difference of the objective scores predicted by a well-

performing model, should be larger for significant pairs than for the non-significant ones. With this assumption,

the objective metric can be indirectly considered as a binary classifier with categories ’Difference’ versus ’Similar’.

In detail, one dataset (in the case of analyzing several datasets, those datasets could be merged into one) can
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be separated into two groups S and D as

|∇obj(i, j)| ∈ S ⇐⇒ Pr[sub(i) 6= sub(i)] ≤ 1− αsig,∀i < j ≤ k,

|∇obj(i, j)| ∈ D ⇐⇒ Pr[sub(i) 6= sub(i)] > 1− αsig,∀i < j ≤ k
(4.8)

The capability of the objective metric of categorizing similar and significantly different pairs can be deter-

mined by employing the receiver operating characteristic (ROC) analysis on these two sets (ROC quantifies

how well are the two sets are separated). Then, the performance of the metric can be verified with the area

under the ROC curve (AUC). In the following part of this manuscript, it is denoted as AUCDS . Ideally, the

different/similar ROC curve of a well-performing model will look approximately like the example shown in

Figure 4.2 (a). As it can be observed, the two distributions are well separated from each other.

Another important analysis, which can be done with the pre-computed subjective and predicted scores, is

the Better Vs. Worse Analysis. The goal of this analysis is to see whether the objective metric is capable of

picking out stimuli that are of higher/lower quality. Similar to the previous analysis, one dataset can be divided

into two sets B and W as

∇obj(i, j) ∈ B ⇐⇒ Pr[sub(i) > sub(i)] > 1− αsig,∀i, j ≤ k ∧ i 6= j,

∇obj(i, j) ∈W ⇐⇒ Pr[sub(i) < sub(i)] > 1− αsig,∀i, j ≤ k ∧ i 6= j,
(4.9)

Similarly, ROC is employed on the two sets. The performance of the under-test model can be then evaluated

by checking the AUC value of the ’Better vs. Worse’ ROC (denoted as AUCBW in the following part of the

thesis). Figure 4.2 (b) shows an example of the Better/Worse ROC curve of one well-performing objective model.

Apart from AUCBW , correct classification in 0 (CC) defined in [110, 111] is also used as another quantifier to

evaluate the performance with respect to whether the stimuli of better quality are assigned with higher objective

scores by the objective model. More specifically, CC is defined as

CC = ΩB>0 + ΩW>0

ΩB + ΩW
, (4.10)

where ΩB and ΩW are cardinalities of sets B and W correspondingly, ΩB>0 is the number of positive members

in the set B, and ΩW<0 is the number of negative members in the set W. The numerator of the equation is the

total number of the members where the order is correct.

In summary, the advantages of using the Krasula model for performance evaluation can be summarized as

below:

(1) The method does not require any mapping to enable numerical comparisons.

(2) The model takes into account the statistical significance of subjective scores and depends less on the

quality range of the dataset.

(3) The model enables an easy combination of data from different subjective experiments and provides means

to determine the statistical significance of the performance differences.

(4) The model makes it possible to evaluate the performance of one objective metric by considering certain

factors.

(5) With this model, it is possible to evaluate the objective metric on databases that contain only pair
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comparison results.

4.3.5 Maximum Likelihood Estimation (MLE) based Quality Recovery Model

Uncertainties and noise in raw subjective scores: in most of the studies, where objective quality

assessment metrics are proposed, subjective scores in terms of raw mean opinion scores are used without any

preprocessing procedure to remove the noise from the observers. However, it is described in [114] that observers’

personal characteristics, including viewing experience, ages or their careers, may lead to uncertain ground truth

driven by the number of panelists. As a result, the obtained subjective score may be noisy. If we can get rid of

the uncertainties and noise before developing the objective quality metrics, the developed metrics could be more

robust. To get rid of these uncertainties, a recently introduced recovery model based on maximum Likelihood

estimation (MLE) [115] could be used to improve the discriminability of standard subjective quality assessment.

In the MLE model proposed in [115], the individual score of each subjective is considered as a combination of

true subjective score and noise caused by subjects’ biases and inconsistency. Based on this, individual subjective

score of one processed video sequence (PVS) from a subject sobs is defined as

Xeobs,sobs = xeobs +Beobs,sobs , (4.11)

where xeobs is the true score of a sample eobs and Beobs,sobs is the noise from sobs. The noise follows a Gaussian

distribution Beobs,sobs v N(bsobs , v2
sobs

) with a mean of bsobs (subject’s bias) and variance of v2
sobs

(subject’s

inconsistency). The main goal of the model proposed in [115] is to use MLE model to jointly recover these three

unknown parameters Θ = xeobs , bsobs , vsobs . To this end, the log likelihood function is defined as

L = log P (Xeobs,sobs |xeobs , bsobs , vsobs), (4.12)

and the three parameters can be obtained by solving Θ̂ = argmaxΘL. Each parameter’s estimation is associated

with a 95% confidence interval and is computed as

Θ̂± 1.96 1√
−∂

2L(Θ̂)
∂Θ2

. (4.13)

According to the experimental result reported in [114] on a usual ACR-dataset:

1. The uncertainties from subjects can be removed by using the quality recovery MLE model. Since most

of the proposed models in this thesis are learning-based models, this MLE model is a useful tool to clean

out the noise. After removing the uncertainty from the subjective scores, learning-based model can thus

avoid being affected by the noise from the subjective scores and provide more robust performance.

2. Since the variance (in terms of confidence interval) of MOS could be reduced (proven in [114]), this

model could be used as a pre-process procedure before using the ’Krasula’ model. More specially, since

traditional significant test like ’t-test’ and ’ANOVA’ test may fail to select all the significant pairs from

the data due to the large variance among observers, this model is of potential to be employed to select

more significant pairs for the latter analysis by reducing uncertainties from observers.

As this is a recent study released not long ago, experimental results using this new model could not be

finished by the time this thesis is finished. Therefore, relative analyses are considered as future work to improve
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the proposed models in this thesis.

4.4 Execution Time

To better compare the complexity of metrics executed on different datasets with different machine, an

execution time normalized based on PSNR is computed as done in [42]. For a given image I from a database,

the normalized execution time is defined as

T exenor =
T exeobj

T exePSNR

, (4.14)

where T exeobj is the execution time of using one test objective model to predict a quality score for image I, and

T exePSNR is the one for PSNR.

4.5 Conclusion

In respect of datasets that used for benchmarking/training different models in different applications, a total

of 6 datasets are described in this chapter. It must be pointed out that although there are already some

datasets designed for FTV scenarios, there is still a lack of dataset including sequences that contains both

temporal synthesized artifacts within one viewpoint and temporal structure inconsistencies due to views switch,

as described in section 4.2.1. With this objective, a new subjective experiment that takes both types of temporal

artifacts into account is presented in section 11.3. The purpose of this experiment is to check the impact of

navigation scan-paths on perceived quality.

In respect of performance evaluation measures, several methodologies are introduced. In this manuscript,

PCC, SCC, and RMSE are used throughout all the experimental sections for objective metrics’ performance

evaluation. In certain cases, the ’Krasula’ model is used for deeper and more reliable analysis. For example, for

datasets like SIAQ (introduced in section 4.2.2), where only pair comparison results are provided, the ’Krasula’

model provides advantages for better evaluating the performance of the metrics under-test.



5
From Existing Problems to Main

Research Questions

In chapter 2, we highlighted specific structure-related distortions that are appearing in modern visual media

technologies. In chapter 3, it has been illustrated that common used visual quality predictors fail to quantify

the perceptual impact of those artifacts. As characteristics of those structure-related distortions are different in

different applications and scenarios, it appears meaningful to consider application use case when targeting effec-

tive visual quality prediction. Such investigation requires relevant datasets (visual content with corresponding

observers opinion on visual quality) aligned with the application use case. In chapter 4, we have seen that many

of these datasets are available, nevertheless for some use case such navigation trajectories between views along

time in video, dataset is missing. To solves these problems, this dissertation focuses on two research questions

summarized in the following section.

5.1 Main Research Questions

� How to quantify spatial structure-related distortions based on the representative mechanism in HVS

(low, mid, higher-level representations) ?

As introduced in 2, spatial structure-related distortions are challenging to be captured and quantified

due to their characteristics. Although these characteristics varies according to the applications under

different scenarios, there are common properties among them (e.g., non-uniform, locally distributed,

disrupt the semantics of images/videos to different levels). Models developed based on different level

may have different representation capability and be suitable for different applications. Thus, how to

develop a proper model for a target application in a certain scenario by using the right concept of

perceptual representation (i.e., using low, middle, or higher-level representation) is one the main focuses

of the thesis.
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� How to quantify temporal structure-related distortions based on the representative mechanism in Hu-

man Visual System (low, mid, higher-level representations)?

Temporal structure-related distortions in immersive multimedia applications are more difficult to quantify

since 1) new factor ‘navigation trajectory’ is involved; 2) spatial structure-related distortions introduce

temporal structure inconsistencies.

To study these research questions, effective image/video low, mid, and higher-level representations, especially

structure-related representations, are investigated according to the characteristics of the distortions for a given

use case. The rest of this dissertation is divided into three parts according to the three perceptual representation

levels. The two main research questions are further decomposed into more specific questions in each part. As

illustrated in Figure 5.1, in each part, quality assessment models are proposed and tested on different datasets

considering different applications and scenarios:

Part II (low-level representation): models exploiting low-level representations are explored for im-

age/video utility/quality assessment in different applications. Firstly, in order to check the roles of structure

and texture information in different tasks, a bilateral-filter based model (BF-M) is proposed by utilizing bilateral

filters to separate structure information from the texture. Secondly, in order to quantify the structural defor-

mation of an image, an elastic metric based image quality assessment metric (EM-IQM) is proposed. It is then

extended for video quality assessment as an elastic metric based video quality assessment metric (EM-VQM) by

quantifying 1) the deformation between multi-scale motion trajectories in synthesized and original sequences;

2) the structure dissimilarities along the trajectories.

Part III (mid-level representation): models exploiting mid-level representations are explored for devel-

oping image/video quality assessment metrics. Mid-level contours ‘encoding’ methods are adopted to mimic the

‘encoding’ process of low-level structure information to mid-level structure representations. First of all, a sketch

token based image quality assessment metric (ST-IQM) is proposed to quantify the geometric distortions by

checking how the categories of contours change from a mid-level point of view (i.e., using a bag of word model to

‘encode’ contours into contour categories). Furthermore, since no existing database takes the impact of content

related navigation scan-paths on perceived quality into account, a subjective study is conducted and introduced.

It includes generated sequences with different content related viewing trajectories for FTV scenario. A novel

free viewpoint videos database (FVV) is also released and presented. Sketch token based video quality

assessment metric (ST-VQM), the extension of ST-IQM for video quality assessment, is introduced based on

quantification of contours’ classes temporal evolution.

Part IV (higher-level representation): higher-level representations are investigated for developing im-

age/video quality assessment models. Considering that human visual system uses ‘sparse mode’ to compress

low, mid-level information from V1, a no reference convolutional sparse coding based image quality metric (CSC-

IQM) is proposed to quantify local non-uniform geometric distortions by learning the non-natural structures.

Moreover, considering that 1) ‘high-level’ features extracted from deep neural network intermediate layers are

well connected to semantics; 2) discriminator in generative adversarial network (GANs) model is usually trained

to distinguish artificial images from the real ones with respect to the statistic of the training set, a no reference

GAN based image quality assessment metric (GAN-IQM) is proposed to quantify local non-uniform inpainting

related distortions.
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Figure 5.1 – Overview of the following parts of the dissertation: low, mid, and higher-level representation based
models are proposed and tested in different applications under different scenarios on different relative datasets.





II
Exploring Low-Level Representation

for Image/Video Quality Assessment
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6
Introduction of Part 2

Low-level representations of images/videos are defined as local features and descriptors that

represent local image/video basic information. In this part, based on the importance of structure and

texture information in Human Visual System, two ‘low-level representation’ models are proposed using struc-

ture/texture features.

6.1 Low-Level Information in Human Visual System

6.1.1 Low-Level Structure Information

It is confirmed in [116] that low-level structure-related properties of the images are the foundation of cate-

gorical patterns of brain activity within scene-selective regions. The ability to perceive and recognize different

visual scenes is essential for spatial navigation in the world. Although real-world scenes can be incredibly com-

plex and heterogeneous, human observers are able to reliably recognize and categorize images of objects/scenes

even when the images are shown briefly [117]. Human is able to extract important fundamental structure of the

images/videos in form of low-level representations for latter higher semantic understanding. These studies have

been taken to suggest that the initial perception of natural images is based on the global, visual properties ‘the

gist’ of the scene [117]. Moreover, the human visual system tends to perceive global structure first and then

fine-grained details of an image at the first glance. The procedure of processing a scene proceeds from the top

of the hierarchy to the bottom (global-to-local) [118]. In other words, the global structure of a visual object

within an observer’s effective global span is comprehended before its local features. It has been pointed out

in [118] that the global precedence accelerates several possible advantages including utilization of low-resolution

information, the economy of processing resources, and disambiguation of indistinct details. Therefore, it is in-

tuitively appealing to assume that structure information (i.e., edges, contours etc.) plays a greater role in tasks

like utility assessment, where the objectiveness is to evaluate the usefulness instead of the perceived quality of a

distorted natural image. As low-level structure representations (e.g., representations in form of edges/contours)
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are important for human to extract basic information of an image/video on the first hand, especially in certain

tasks, severe deformations and geometric transformations of structures may affect the process of information

extraction and hence affect the perceived quality/utility later on.

6.1.2 Low-Level Texture Information

On the other hand, "visual texture" is usually defined as the portion of an image that is filled with repeated

elements and often subject to some randomization in their location, size, orientation and so on [119]. The

importance of texture related representations in early scene identification has also been proven in [120]. As

mentioned in [120], a holistic cue is defined as a cue processed over the entire visual field and without requiring

attention to analyze local features. Texture can be processed quickly and in parallel over the visual field [121],

making it a candidate (of holistic cues) as well. Subjects can rapidly identify scenes without color. An image

region with one texture seems to ‘pop-out’ or segregate easily from a background region with a perceptually

different texture. Julesz et al. [122] claim that the first order statistics of ‘textons’ determine the strength of

texture discrimination and make rapid discrimination possible. Textons are the elements that govern human’s

perception of texture. They are further described to be locally conspicuous features such as blobs, terminators

and line crossings. Firstly, natural texture (texton) provides an important source of information of visible

surfaces and details [123]. It is thus important for many tasks like material recognition and image/video quality

assessment ( where texture descriptors were usually utilized as a proxy to quantify blurriness). Secondly, texture

cues in images provide human observers with a potentially rich source of surface and shapes of objects [124].

In summary, the texture is also important for human observers when viewing a scene as it also related to

structure. Distortions like blurriness (e.g., blurriness introduced by inpainting in DIBR process) interrupt the

characteristic of ‘textons’ and thus interrupt the ‘pop-out’ process.

6.1.3 Structure and Texture Information in Quality Assessment:

In the field of quality assessment, distortions on both structure and texture regions affect how human

observers judge the quality of an image. For instance, a three-component weighted SSIM (3-SSIM) has been

proposed in [125] by assigning different weights to the SSIM scores according to the type of local regions: edge,

texture, or smooth areas. Another example is the quality assessment of synthesized views in FTV scenario.

Different from common images/videos, synthesized views generated based on DIBR algorithms contain artifacts

mainly around dis-occluded regions, including objects shifting, twisted shape of objects, and blurriness along

edges. It can be visually observed that structure related distortions (e.g., geometric distortions) and texture

related distortions (e.g., blurriness) affect unequally the process of evaluating the quality of the synthesized

images/videos. Metrics that taking both information into account are needed for such tasks.

6.2 Research Questions Associated with Low-Level Representation

Models Development

According to the discussion above, in this part, we explore low-level descriptors that can represent low-level

information, as perceptual models. This investigation can be decomposed into more specific questions:

� Low-level representations of images/videos for quality/utility assessment in different tasks (Part II)
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� How to confirm the roles of low-level structural and textural information in different tasks?

As it has been discussed in chapter 2 that both texture and structure information is important for

certain tasks, e.g., textures are important in the task of quality assessment of texture synthesized

texture images while structure information is important in the task of image utility assessment. If

one can tell which information plays a greater role than another in those tasks, the task can be then

accomplished easier towards a correct direction by assigning higher weights/penalties to more critical

information’s degradation.

� How to separate low-level structural and textural information?

As mentioned in chapter 2 and also in the previous research question, the roles of structural and

textural information differ according to the tasks. One should first explore their roles in those tasks

before designing a model to handle the task. However, before indicating which information is more

important than another, one should be able to separate this two information properly.

� If structural and textural information play different roles in a task, do the roles change with the

quality of the images?

As mentioned in chapter 2, the relationship between perceived utility and quality is linear when the

quality of an image is lower than a certain threshold [37], while the one between them is non-linear

when the quality of the image is higher than that threshold. One inherent assumption may be that,

for specific tasks, different information play different roles in different quality range.

� How to quantify distortions according to a specific task with low-level representations?

As introduced in chapter 2, even though the structure related distortions appear in images/videos in

different applications are similar, they are still not the same. For example, the geometric distortions

in synthesized texture images and the ones in stitched images are different. Furthermore, as posted

in previous questions, different information may play a different role in different tasks.

� How to quantify structural degradations regarding non-uniform contour deformations for image qual-

ity assessment without over-penalizing uniform global endurable distortions?

As it has been presented in the examples shown in chapter 2, deformations of object shapes are one of

the common structural distortions that exist in applications like FTV. This type of severe distortions

is less acceptable for observers since they interrupt the structure of images/videos. Moreover, as

pointed out in chapter 3 that, most of the point-to-point metrics over-penalize continuous global

geometric distortions. Therefore, metrics designed for these cases should also be robust to global

uniform distortions.

� How to quantify the structure related temporal distortions (introduced by spatial structure distor-

tions) observed at one viewpoint location in FTV application?

As discussed in chapter 2, in the case of FTV, there are spatial-temporal distortions in free viewpoint

sequences as frames evolve due to the spatial geometric distortions. This kind of structure inconsistent

within one viewpoint is different from the traditional temporal coding artifacts and are challenging.

In addition, as concluded in chapter 3, there is still no efficient video metrics that are capable of

quantifying this type of temporal artifacts and meet the need of the system.





7
The Roles of Structure and Texture

information in Different Tasks

7.1 Introduction

This chapter introduces the first low-level representation based utility/quality assessment model. It is

developed based on leveraging low-level edge/contour and texture based estimators with bilateral filtering. This

proposed model is tested in task of utility assessment, quality assessment of synthesized texture images, and

quality assessment of synthesized views.

The HVS of image perception is hierarchical. Humans tend to first perceive global structural information

such as shapes and later focus on local details such as texture. Furthermore, it is widely believed that structure

information plays the most important role in task of utility assessment and quality assessment [37], especially

in new scenarios like free-viewpoint television, where the synthesized views contain geometric distortion around

objects. We hypothesize that the degradation of structural information in an image is more annoying for human

observers than the one of texture in certain application scenarios. To verify our hypothesis, a perceptually

inspired bilateral filtering based model (BF-M) is proposed. In this scheme, a bilateral filter is first adopted

to extract the structure and texture information separately based on a subjective study of Human Material

Perception in [126], i.e., structural features are extracted from the filter response while the textural features are

extracted from the residual after bilateral filtering. Then, 1) a‘NICE’ based edge estimator named ‘bilateral

natural image contour evaluation’ (BI-NICE), 2) a shape related estimator named ‘bilateral histogram of oriented

gradients estimator’ (BI-HOG), and 3) a texture estimator named ‘bilateral local radius index estimator’ (BI-

LRI) are introduced by calculating the dissimilarity between the original and distorted images based on low-level

features. Lastly, the model is designed by leveraging the weights of the three proposed basic estimators to yield

the best performance in different tasks. By doing so, one can determine to what extent the disruption of different

information in an image affects the perceived quality/utility of images in different tasks.
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Figure 7.1 is an example explaining the fundamental idea of the proposed bilateral filtering based model: (1)

By only observing the edge map of the response of bilateral filtering (fourth column in Figure 7.1), it is apparent

that one can recognize the shape of the ’teddy bear’ easily from the first image (first row,fourth column), while

it is difficult to tell the second one (second row, fourth column) is an image of ’wood floor’. (2) For the third

image from the IVC-Image dataset, one can observe not only the geometric distortions around objects but also

the blurred regions. Apparently, the structure-related distortion is more annoying considering the fake edges

and changes of shape around the women. (3) For the fourth image from the SynTEX dataset, one can see that

the structure of the stones has been emphasized by comparing the edge maps of the original image (the fourth

row, second column) and the one of the response of bilateral filtering (the fourth row, fourth column). The

unrelated texture of the stones has been removed after bilateral filtering. It is thus more reasonable to extract

structure-related features from the response instead of the original image. (4) The last two images in Figure

7.1 are from the CU-Nantes dataset with different levels of quality. The previous one (the fifth row) is the

reference of the other one (the sixth row). By checking the last column of these two images (i.e., the residual

obtained by subtracting the response of bilateral filter from the original image), one can see that there are more

details/texture information maintained in the residual of the reference image. An intuitive assumption could be

made based on this observation that texture plays a more important role for higher quality images in specific

tasks.

As discussed above, it is evident that the effect of degradations on structural and texture regions differs with

tasks. To the best of our knowledge, no related work explores the roles of structure and texture information in

different tasks. In this study, our hypothesis and the model performance are verified on CU-Nantes database as

a utility estimator and on SynTEX and IVC-Image database as a quality estimator. In the following sections,

more details about the proposed model are given.

7.2 Hypothesis and Theoretical Foundation

As discussed in [127], on the one hand, structure information in a visual scene provide the human visual

system (HVS) with more semantic information. Continuous edges/contours of an image could reveal the vi-

sual objects inside one image (e.g., people). Those structural edges are essential for the HVS and should be

maintained as much as possible in digital image processing for tasks like object detection. On the other hand,

textures are usually the surface of objects which can also be the material of the targets, such as texture patterns

of clothes, grass, sea and buildings’ surface. Texture contains details of objects, could thus further augment

the objects with more appealing properties (as fine texture, smooth gray-scale transition and vibrant color)

and make them vivid to human observers. In summary, structure and texture jointly construct and enrich the

visual scenes. Structural contours provide the human visual system with most of the semantic information while

textures provide the details [126]. Therefore, we hypothesize that features that focus on structural properties

and features that measure details play different roles in different applications. To verify this, in the following

sub-sections, we first explain the reason why local edges/contours can represent the structure and then further

discuss how we separate texture from structure and extract different features separately afterward.
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Figure 7.1 – Example of separating structure information from texture information. First column: original
image; Second column: edge map of the original image; Third column: response of the of bilateral filter on
the image; Forth column: edge map of the response of the bilateral filter; Fifth column: residual of bilateral
filtering obtained by subtracting the original image with the response.
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Local Edges/Contours Reveal Structure

According to [119], the perception of complex visual patterns and objects appears from neural activity as

it is transformed through a cascade of areas in the cerebral cortex. Neurons in the primary visual cortex

(V1) are selective for local orientation and spatial scale of visual input [128–130]. Downstream regions (V2-V4)

contain neurons selective for more complex attributes, which is approximately achieved by assembling particular

combinations of their upstream afferents. Considering the ubiquity of orientation selectivity in primary visual

cortex [131], it is intuitive to assume that its computational purpose is to represent the orientation of edges.

Furthermore, over the past decades, the mainstream view in both biological and computational vision com-

munities is that later stages of scene processing should somehow combine these local edge elements to construct

more extensive contours, eventually leading to shapes, forms, and objects [132]. Until recently, most researches

on object recognition were built around this paradigm, as well as much of the study of mid-level pattern

perception, and physiological measurements in areas V2 and V4.

Local edges and contours, which are local structural information, are the vital foundation for the following

processes of higher level semantic structural understanding of images. Edges and contours features are important

elements that reveal the structure information of an image. Therefore, in the proposed model, a contour based

estimator and a histogram of oriented gradient based estimator are designed to quantify the amount of structural

changes due to disruptions. Detail of these estimators will be given in the following sections.

Separating Structure from Texture

Subjective test done in [126] about Human Material Perception provides us with important clues about

how to extract structural and textural features separately. In [126], a subjective experiment is conducted in

order to study which features are useful for the recognition of material categories. In this experiment, images

emphasizing local surface information and global structure information were generated separately with bilateral

filtering, which is usually used as a non-linear, edge-preserving and noise-reducing smoothing filter for images.

More specifically, Sharan et al. followed the idea of Bae et al. [133] to extract the micro-structure of the

surface by smoothing an image with bilateral filtering. Afterward, they utilized the residual image for further

texture analysis. The residual image was obtained by subtracting the bilateral filtering results from the gray-

scale versions of the original images to emphasize details of surface structure, which is an operation similar to

high-pass filtering. In their subjective test, observers were asked to categorize those distorted images into ten

material categories. Based on their results, they concluded that texture is an important attribute of material

appearance, while information about surface micro-structure are often related to certain categories (higher level

semantics). These analyses are conducted based on using bilateral filter to leverage the two information.

Based on their study, bilateral filtering is used as a proxy to separate structure and texture information. In

the proposed model, structure features related to shape are extracted from the response of bilateral filtering

while texture features are extracted from the residual.
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Figure 7.2 – Overall framework of the proposed model based on separating structure and texture information
using bilateral filtering

7.3 The Proposed BF-M Model for Validating the Proposed Hy-

pothesis

In order to verify the roles that structure and texture information are playing in different perceptual tasks, a

model based on separating this two information is proposed in this section. Figure 7.2 is the overall framework

of our proposed model. First and foremost, structure and details related features are extracted separately with

bilateral filtering from both of the original and the degraded images. More specifically, images are first separated

into a base image (bilateral responses) and the residuals after bilateral filtering [126]. In order to generate a

response more efficiently, a faster approximated bilateral filter is used [134] . The scale σs of the spatial kernel

and the range value σr are set according to the tasks [135]. Structure-related features, including the histogram of

oriented gradients estimator (HOG) and the natural image contour evaluation estimator (NICE), are calculated

with the base image,whereas texture related feature local radius index (LRI) are extracted from the residual

image. With the extracted feature sets fHOG, fNICE and fLRI from both the reference and degraded images,

dissimilarity scores are then calculated. After normalization, the three estimators, BI-NICE, BI-HOG, and

BI-LRI are combined with different assigned weights according to different applications. Finally, the roles of

different information can be investigated by checking the optimized weights

A. Bilateral Filtering based Contours based Image Evaluation Estimator (BI-NICE)

As discussed in section 7.2 that local edge/contours provide important structural information to observers,

in this section, a contour based estimator is thus introduced. It has been confirmed that fragments of contours

can be used to successfully identify semantics in images [136–138]. This further showcases the importance of

structure information in semantics related tasks. Since contours are important for global structure understand-

ing, the NICE estimator is improved by using a bilateral filter to emphasize important structural local elements.

First of all, the edge maps are generated only on the responses of bilateral filters using the Canny edge detector.

For reference and degraded images, the obtained contour maps are then denoted as CBI and ˆCBI respectively.

To probe and expand the shapes contained in the images, contour maps are subjected to morphological

dilation with a 3× 3 ‘plus-sign’ shaped structuring element Ese. In line with the one-scale NICE estimator, the
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object score was computed by comparing the binary contours maps of the reference and the test images. Then,

the final contour error map is obtained by exerting point-wise exclusive-or (XOR) operation of the dilated binary

images, since XOR is the commonly used operation for contours maps comparison. The overall BI-NICE score

for a test image is defined as

BI-NICE = DH(CBI ⊗ Ese, ˆCBI ⊗ Ese)
NBI
C

, (7.1)

where NBI
C is the number of contours elements, DH(X,Y ) denotes the Hamming distance between the X

and Y, and CBI ⊗E denotes the dilation operation of the contour map CBI with the morphological structuring

element E.

B. Bilateral Filtering based Histogram of Oriented Gradients Estimator (BI-HOG)

Considering the fact that histogram of oriented gradients (HOG) [139] is a powerful shape related descriptor

used in computer vision and image processing for object detection, action recognition etc., we extract HOG

features from each response of bilateral filters as a higher level structure feature. First, each image is divided

into 8 × 8 cells/blocks. After calculating the histogram of each cell, spatial pooling strategy based on visual

importance [137] is utilized to pool the dissimilarity values. This pooling strategy is presented based on the

perception study that humans tend to perceive ‘poor’ regions (i.e., regions with visible/severe distortions) in an

image more severely than the ‘good’ ones (i.e., regions without visible distortions ).

Finally, the shape related estimator named as bilateral HOG estimator (BI-HOG) is then defined as

BI-HOG = 1
|bij ∈ Bp|

∑
bij∈Bp

De(H-HOGRij , H-HOGDij), (7.2)

where H-HOGRij and H-HOGDij denote the histograms corresponding to the cell at the ith row and jth column of

the bilateral response of both the reference and distorted images. Bp is the lowest 60% cells ranked according to

the dissimilarity values (lowest quality/ highest dissimilarity values). De(X,Y ) denotes the euclidean distance

between the two vectors X and Y.

C. Bilateral Filtering based local radius index Estimator (BI-LRI)

To represent detailed information in images, texture related features are considered in this section. Different

from [126], instead of extracting micro-jet and micro-SIFT features, the local radius index (LRI) [140] texture

descriptors are extracted in this chapter with a size limit of K = 4 and a threshold TLRI equals to the standard

deviation of the image divided by 2. Similar to BI-HOG, LRI texture descriptor are extracted based on

8× 8 cells/blocks. After extracting the LRI descriptors from the residual of bilateral filtering from both of the

reference and degraded images, the texture based estimator named as bilateral LRI estimator (BI-LRI) is then

defined as

BI-LRI = 1
|bij ∈ Bp|

∑
bij∈Bp

De(H-LRIRij , H-LRIDij ), (7.3)

where H-LRIRij and H-LRIDij denote the LRI feature histograms corresponding to the cell at the ith row and

jth column of the bilateral residual of both reference and distorted images.
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D. The Final Bilateral based Model

As discussed at the beginning of this chapter, structural and textural information plays different roles in

different applications scenarios. Therefore, we combine the three proposed estimators, and weights of them are

tuned as parameters according to applications. The output of each estimator, which is the dissimilarity value

calculated based on each feature, is normalized to a range of [0, 1]. Finally, the proposed BF -M model, which

can also be utilized as a task-based parametric image metric, is designed as

BF -M = 1− (αBI ·BI-NICE + βBI ·BI-HOG+ γBI ·BI-LRI)

s.t. αBI + βBI + γBI = 1,
(7.4)

where αBI , βBI , γBI are the aforementioned weights used for fine-tuning the roles of the contour, shape, and

texture based estimators respectively, αBI + βBI + γBI = 1. The configurations of these three estimators are

set differently according to the specific task in our experiments and are further discussed to investigate the

functionality of different information in images in the following section.

7.4 Results and Analysis

To verify the assumption that structure information like edges/contours do not play the same roles as detail

information like texture in different tasks, the proposed BF -M model described in the previous section serves as

an utility estimator on the CU-Nantes dataset [37] and as a quality estimator on both the SynTex dataset [39–41]

and the IVC-Image dataset [49, 98]. Details of these three datasets are given in section 4.2. With the best-fit

weights assigned to BI-NICE, BI-HOG and BI-LRI, the roles of both structure and texture information in

the correspondence tasks can be uncovered.

The proposed model is applied to different tasks by tuning the weights, performances of the metrics and roles

of different information in different tasks are analyzed in each of the following sub-section for each application.

Model performances are evaluated according to the PCC, SCC, and the RMSE as introduced in section 4.3.

A. Results: Objective Estimates of Perceived Utility

In utility assessment task, observers estimate the usefulness of a natural image as a substitute for a reference.

In such a task, structure information is important since the primary purpose is to quantify the amount of useful

information from an image instead of evaluating its quality. According to what has been analyzed in [37] based

on the results obtained on the CU-Nantes database, there is a linear relationship between perceived quality

score and perceived utility score for images with quality scores under 30. On the contrary, the relationship

between quality and utility score is non-linear for those whose quality scores are higher. It is concluded that

observers evaluate very low quality images by checking whether the content is interpretable. About why the

relationship between perceived quality and utility of higher quality images is non-linear, one possible explanation

could be that texture information play different roles in the task of utility and quality assessment for higher

quality images. Because the higher the quality, the more details will be maintained. Disruption of texture

(blurriness) is annoying for human observers while judging the quality of the image. For example, in Figure

7.1, the image in the last row is one degraded image while the one in the fifth row is its reference image. It can
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be observed from the last columns of the two rows (the residual of the correspondence images) that there is

more texture information in the residual of the reference image than the one of the degraded image. In the case

of evaluating the quality of higher quality images, details are important to distinguish one quality level form

another. On the contrary, in some utility task, the perceived utility remain the same after reaching a certain

quality threshold. Therefore, we also hypothesize that the roles of structure and texture information in the task

of utility assessment vary with the quality of the image.

To confirm the assumption that (1) structure information play a main role in utility assessment, (2) the

role of texture and structure differs in different quality ranges, the proposed BF -M model is utilized as utility

estimator and is tested on the CU-Nantes database [37] introduced in section 4.2.3. To further check how the

weights of different information vary with quality, one best configuration will be selected for each sub-interval

divided according to the perceived quality scores. To confirm the feasibility of using the proposed model as

utility estimator as well as to check the roles of different informations, ReDLOG [141], most apparent distortion

(MAD) [142] metric, multi-scale SSIM (MS-SSIM) [45], the visual information fidelity criterion (VIF) [52],

the contours based image evaluation (NICE) [67] metric, the multi-scale version of NICE (MS-NICE) and the

Multi-Scale Difference of Gaussian Utility (MS-DGU) [68] metrics are chosen for utility prediction performance

evaluation.

Table 7.1 – Performance of the proposed parametric metric with different parameters in different quality ranges.

SCC Quality Range
αBI , βBI , γBI [1 , 2] [2 , 3] [3 , 4] [4 , 5]

1 ,0 ,0 0.687 0.752 0.659 0.661
0.9,0.1,0 0.696 0.756 0.719 0.854

0.8, 0.1,0.1 0.681 0.743 0.737 0.831
0.7, 0.1,0.2 0.694 0.755 0.728 0.888

In the experiment, since each sample in the database is labeled not only with a utility score but also with a

quality score ranging from 1 to 5, we divide the whole range into quarters and optimize one configuration for each

subrange. Table 7.1 illustrates the correlation between objective and subjective scores in different quality ranges

along with the relative weights configuration. As it can be observed from Table 7.1, for images locates in quality

range of [1,3], the proposed model performs the best with a configuration of αBI = 0.9, βBI = 0.1, γBI = 0,

while for higher quality images in range of [3,5], the model performs better with a higher weight for the texture

estimator. Overall speaking, it can be concluded that structure plays a vital role in utility assessment, especially

for lower quality images. Furthermore, it is apparent that textures play certain roles in evaluating the utility

of higher quality images. It has been verified that the roles of structure and texture information are different

among different quality ranges in utility evaluation task.

For performance evaluation, best weights are selected for the three basic estimators for images with different

quality according to Table 7.1. The overall performances of the metrics are concluded in Table 7.2. Among

the compared metrics, the proposed BF -M performs the best. We demonstrate that the proposed model is

qualified for the task of utility assessment.

To better understand why structure-related information is important for utility assessment, the edge maps

and the extracted HOG descriptors are visualized in the second and third row of Figure 7.3. The first column

shows the reference image while the other two display the degraded images. The degraded image in the second

column has a higher utility score than the third one (10.528 > −47.638). By only observing the edges and HOG
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Table 7.2 – Performances of various estimators as utility estimator.

PCC SCC RMSE
ReDLOG [141] 0.7575 0.7757 39.89
MAD [142] 0.7241 0.7303 42.1

MS-SSIM [45] 0.833 0.8510 33.8
VIF [52] 0.943 0.959 12.4

NICEcanny [67] 0.935 0.937 13.3
MS-NICE [67] 0.911 0.959 15.4
MS-DGU [68] 0.960 0.961 10.3

BF-M 0.961 0.961 10.2

Figure 7.3 – Examples explaining why structure-related information play greater tole in task of utility assessment

maps, one can notice that the shapes of the ’pumpkin lanterns’ on the floor in the first and second column are

recognizable while the ones in the third column are not. It can be concluded that, for low quality distorted

images, where most of the texture information is lost, structure is the most important information for judging

its utility.

B. Results: Objective Estimates of Perceived Quality for Synthesized Texture Im-

ages

Texture-synthesis is a broadly and commonly used technique for bit-rate saving in images, videos com-

pression, in-painting (e.g., used for error concealment or dis-occluded regions filling for view synthesis in FTV

system), etc. The purpose of quality assessment for texture synthesized images is to estimate the perceived

quality of the synthesized textures referring to the original textures in images. The role of texture information

is more important than the one of structure information in such case.

In verifying what has been discussed above, we test the proposed BF -M model on the SynTEX Granularity

dataset [39–41] introduced in section 4.2.4. According to [65], CWSSIM [88], WCWSSIM [89], parametric

metric proposed in [38] and STQA [65] are the 4 most promising metrics on the SynTEX Granularity dataset

for evaluating the quality of synthesized texture images. Therefore, the performance of the proposed model

used as an estimator of perceived quality for texture synthesized images is tested on the same database and
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Figure 7.4 – Examples explaining why texture related information play a more significant role in the task of
quality assessment for synthesis texture.

compared to these four methods.

Table 7.3 – Performances of various metrics as quality estimator for synthesized texture.

PCC SCC RMSE
WCWSSIM [89] 0.546 0.497 0.170
CWSSIM [88] 0.663 0.644 0.198
Parametric [38] 0.412 0.481 0.253

STQA [65] 0.766 0.755 0.799
BF-M 0.708 0.719 0.162

During the experiment, by setting αBI = 0.2, βBI = 0.2, γBI = 0.6, the proposed model gets the best

performance. Since the weight for the texture estimator (i.e., BI-LRI) accounts for the greatest proportion, we

can conclude that texture is more important than structure in the task of quality assessment for synthesized

texture images. In addition, the overall performance of the model applied as a quality estimator for synthesized

texture images is reported in Table 7.3. Although BF -M does not outperform STQA, the performance is still

comparable to the others. This result demonstrates the feasibility of using the proposed model as a quality

estimator for synthesized texture images.

To further interpret why texture information is most important for the quality assessment of synthesized

texture images, we visualize the edge, HOG, LRI maps and the error map between LRI maps of the reference

and the synthesized texture images in the second to fourth columns in Figure 7.4. In this figure, the first row

corresponds to the reference image while the second and third row correspond to synthesized texture images.

The image in the second one has a higher perceived quality score (4.647 > 1.235). For better observation, when

generating the visualized LRI maps, we select a slightly larger block size 16 × 16 and crop only the top left

part of the image. In the visualized LRI maps, each sub-figure is a LRI histogram representing the texture
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information of the local block. LRI is a statistical texture feature that considers inter-edge distance distribution

along different angles, i.e., 8 directions by comparing the current pixel value to the closest edge pixel value

along each direction. The magnitude of each bin in the histogram is decided by the pixel number between the

current pixel and the closest edge pixel along the direction. The sign of the bin is decided by comparing the two

pixels’ value. Therefore, the more saturated the histogram, the smoother the block. By comparing the edges,

HOG maps of the two synthesized texture images with the ones of the original image, it is almost impossible

for human observers to tell the difference between them. On the contrary, the LRI map can provide more clues

about the statistical difference between the texture in images. By comparing the error maps calculated using

euclidean distance between LRI histograms of the original and the synthesized image, it can be observed that

the overall error of the synthesized texture image in the third row is larger than the one in the second row,

which is consistent with perceived quality score (bins in error map that are larger than a value of 1.2 are labeled

with red color). It can be concluded from this sub-section that texture information is more important when the

task involves mainly fine-granular texture in images. Since there is no clear main structure (e.g., boundaries of

objects) in these texture images, detail of these images (i.e., the texture) is the dominant factor in the task.

C. Results: Objective Estimates of Perceived Quality for DIBR based Synthesized

Views

Views that are synthesized with DIBR based techniques contain specific distortions (e.g., object shifting,

incorrect rendering, flickering, blurriness, and geometry distortion around disoccluded regions). Since the human

visual system is more sensitive to severe local disruptions than the consistent global ones [78], we hypothesize

that structure information play a greater role than texture information during the process of assessing quality

of synthesized views.

To verify our hypothesis, the proposed model is applied as a quality estimator and tested on the IVC-Image

dataset [49,98]. In [143,144], images synthesized with A1 is excluded from the experiment due to the significant

shifting artifacts compared to the others. However, according to the MOS, images synthesized with A1 [79]

have better quality compared to others. It is more similar to advanced synthesized algorithms. Since the

main purpose of developing a full reference image/video quality metric in an FTV system is to evaluate the

performance of synthesis algorithms, the tested dataset should be in line with the images/videos synthesized

with the more advanced synthesis algorithms to follow the trend. In our experiments, we include the image

set generated by A1 and check the performance on the full IVC-Image dataset. As claimed in [76, 143, 144],

MP-PSNR and MW-PSNR performed the best among the existing metrics designed for synthesized views.

According to Dragana et al. [76], PSNR is more consistent with human judgment when calculated at higher

morphological decomposition scales. They thus proposed reduced versions of the morphological multi-scale

measures: reduced MP-PSNR, and reduced MW-PSNR. The reduced versions outperform the full ones. In

this section, we compare our proposed model with MW-PSNRf , MP-PSNRf MW-PSNRr and MP-PSNRr. To

obtain the best performance from them, a 5 × 5 size of SE is used for MP-PSNR, and a min Haar wavelet

decomposition is used for MW-PSNR as reported in [76].

The overall performances of the metrics are reported in Table 7.4. In our experiment, by setting αBI , βBI , γBI
to 0.5, 0.2 and 0.3, the performance of the proposed model peaks. This configuration indicates that both

structure and texture information play a role in evaluating the quality of synthesized views. However, structural
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Table 7.4 – Performance of the proposed metric compared with existing metrics for synthesized views.

PCC SCC RMSE
MP-PSNRf [75] 0.6553 0.6239 0.5029
MP-PSNRr [76] 0.6733 0.66 0.4923
MW-PSNRf [74] 0.6089 0.5738 0.4948
MW-PSNRr [76] 0.6444 0.6218 0.5091

BF-M 0.6980 0.5885 0.4768

information are more important than textural information. In other words, artifacts that degrade the structure

of the view are more annoying for the human visual system, which verifies our previous assumption. Moreover,

according to Table 7.4, the proposed BF -M achieves 0.6980 value of PCC, which outperforms all of the compared

metrics designed for synthesis images. Compared to the second best performing MP-PSNRr our proposed model

obtains a gain of 0.0247 in PCC, which verifies its capability of assessing the perceived quality of synthesized

views.

Figure 7.5 – Examples explaining why both structure and texture information play a considerable role in the
task of quality assessment synthesized views.

In order to understand how different information loss affects the perceived quality of synthesized views, the

edges, HOG and LRI maps of the synthesized image in the third row of Figure 7.1 and the ones of its reference

are shown in Figure 7.5. By only comparing the edges and HOG maps, one can easily notice the geometric

distortions around the face of the women, especially in the right part where the entire regions are blurred.

Therefore, it is evident that structure-related information is more important in this task since the deformation

of objects’ shapes caused by synthesized algorithms are more annoying for human observers and can be well

captured by structure-related descriptors. More interestingly, by comparing the right part of the two LRI maps,

one can easily notice the differences between the histograms in blurred regions within the synthesized image

compared to the ones in the reference. Due to the blurriness introduced by the DIBR algorithms, texture

information has been modified, and start to become annoying. That is why BI-LRI accounts for 20% weights

in this task.

Execution Time

In verification of the efficiency of the proposed BF-M, execution time of the metrics normalized by PSNR

as introduced in section 4.4 are listed in Table 7.5. According to the table, even though our proposed metric is

a bit slower than MW-PSNR and MW-PSNRr.
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Table 7.5 – Normalized execution time of proposed metric compare to the state-of-the-art metrics

Metric MW-PSNR MW-PSNRr MP-PSNR MP-PSNRr BF-M
Normalized time 12.4 9.6 100 35 17

Figure 7.6 – The configurations of αBI , βBI and γBI which yield the best performances in the corresponding
tasks on relative datasets.

7.5 Conclusion

In summary, the optimized configurations of BI-NICE, BI-HOG, and BI-LRI in tasks of utility assess-

ment, quality assessment of synthesized texture images and synthesized views are concluded in Figure 7.6.

Weights are selected according to the best performance of the proposed model tested on the Cu-Nantes, Syn-

TEX, and IVC-Image datasets. According to the optimized settings, two main conclusions can be made:

(1) Our hypothesis has been verified : It is obvious that structure information does play greater role than

texture information in tasks like utility assessment and quality assessment for synthesized views. Nevertheless,

in the context of synthesized texture images quality assessment, texture information is more important.

(2) In utility assessment tasks, interesting result can be found: the role of structure and texture informations

varies with quality of images. It can be concluded from the experiments that textures are also useful for images

with higher quality.

Human observers tend to perceive global structure first then finer details like texture. We hypothesize that

structure and texture information play different roles in visual tasks according to the characteristics of the

tasks. To validate this hypothesis, a contours, a coarse-grained structure-related, and a texture estimator are

introduced using bilateral filtering. A bilateral filtering based model (BF-M) is then designed to combine the

three estimators according to different applications. Experiments are conducted on three different datasets for

different tasks. The optimized configuration of the model serves as a proxy for checking the roles of structure and

texture information in those tasks. According to the experimental results, our hypothesis has been verified and

the performance of the proposed model applied as a tasks-based parametric metric is proven to be comparable

to the state of the art utility/quality metrics.





8
Quantifying Structure Deformation

with Elastic Metric

8.1 Introduction

In this chapter, the second low-level representation based metric is presented. In order to quantify the

deformation of ‘curves’, an elastic metric based model is proposed for image/video quality assessment. This

proposed model is tested FTV scenario for image/video quality assessment.

Images/Videos in applications like FTV contain mainly local non-uniform geometric distortions. As de-

scribed in section 2.2, observers are more sensitive to such local severe deformations than consistent shifting

artifacts which are penalized by most of the point-to-point metrics. Elastic metric is capable of measuring

the difference in stretching or bending between two curves and thus is suitable for evaluating such geometric

distortions. Examples shown in Figure 8.1. 1) The elastic metric can be used as a distance measure for curves

(i.e., measure for quantifying the amount of deformations of contours), whose output is the dissimilarity value

between curves ranging from 0 to 1. The larger the value, the more severe the curve is deformed compared

to the reference one. Let DEM (c1, c2) be the function to calculate the distance between two curves based on

the elastic metric. In Figure 8.1, the difference between the extracted curves of the reference patch (red) and

the ‘twisted nose’ (green), i.e., DEM (L,M), equals to 0.1926 while the one DEM (L,R) for the ‘slightly shifted

nose’ equals to 0.1781. This is in line with the fact that the local crooked contours are more annoying. 2)

Consistent global shifting artifacts are not over-penalized by elastic metric with curves matching. For example,

in Figure 8.1, the second patch in the second row contains annoying geometric artifacts where the shape of the

nose is changed significantly while the one on the right is expanded and shifted slightly. It is obvious that the

‘twisted nose’ in the middle is more annoying than the ‘slightly shifted nose’ on the right. However, the PSNR

value for the patch in the middle with its reference patch on the left PSNR(L,M) is 20.2854 db while the one

PSNR(L,R) of the patch on the right is 18.6616 db, incorrectly indicating that the quality of ’twisted nose’ is

71
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better. Details of the proposed model are given in the following sections.

Figure 8.1 – Examples of advantages of elastic metric and disadvantages of commonly used metric PSNR
Rows:(from up to down) : Part of the images for better observation; Patches from images; Extracted contours
of patches. Columns: (from left to right) reference image, a synthesized image obtained with A2, a synthesized
image obtained with A5. PSNR(L, M)=20.2854 db, PSNR(L, R)=18.6616 db, DEM (L,M)=0.1926 , DEM (L,R)=
0.1781.

8.2 Elastic Metric based Image Quality Assessment Metric (EM-

IQM)

In this section, the elastic metric based image quality assessment is described by taking the quality assessment

of synthesized views in FTV use case as an example. The overall framework of the proposed scheme is shown in

Figure 8.2. Firstly, to select local regions where human observers are sensitive to, and to ensure shifting resilience,

speeded-up robust features (SURF) [145] descriptors are first extracted and matched from the reference to the

synthesized images. After matching the detected interest points from the reference images to the synthesized

ones, simple linear iterative clustering (SLIC) [146, 147] is used for contour extraction on the matched patches

centering at the matched features points. Before calculating the dissimilarity DEM on the matched contours

set (Cori, Csyn) with elastic metric, contours inside the matched patches are matched based on the features of

the superpixels. Finally, the predicted objective score SEM for one synthesized image is obtained by spatially

pooling the elastic scores of all pairs of matched contours.

8.2.1 Local Sensitive Regions Selection based on Interest Points Matching

In FTV scenarios, it is observed that :

1. DIBR based synthesized images contain mainly local non-uniform distortions around disoccluded regions

instead of uniform artifacts throughout the entire image due to the DIBR process. These geometric

distortions are around important regions (interest of regions), e.g., regions at the center of the image and
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Figure 8.2 – Framework of the proposed elastic metric based image quality assessment model.

regions around the boundaries of objects.

2. While observing an image, artifacts that are located around/within regions of interest are much more

annoying than those are located around inconspicuous area [34]. Meanwhile, ‘poor’ regions are more

likely to be perceived by humans in an image with more severity than the ‘good’ ones. Thus, an image

with even a small number of ‘poor’ regions is penalized more gravely.

3. The typical DIBR artifacts, such as ‘Shift of objects’, is a big challenge for point to point metrics like

PSNR due to the mismatched correspondences.

Based on this observation, it is important to select local regions to locate geometric distortions and avoid

over-penalize acceptable global shifting.

Speeded up robust features (SURF) [145], which is a local feature detector and descriptor, is frequently used

in tasks like object recognition, image registration, as well as 3D reconstruction. It uses an integer approximation

of the determinant of Hessian blob detector to detect interest/feature points. Those detected interest/feature

points are normally key points of objects that reveal images’ local properties and local shape information of

objects. With these key points, same/similar interest points in two images can be then matched by calculating

structure-related similarity between them.

Based on the characteristic of SURF, it is a good candidate for selecting the local sensitive regions, where

geometric artifacts for observers. After interest points matching, key points of objects are better aligned.

Therefore, interest point matching can also compensate the consistent ‘Shift of Objects’ artifacts, which is to
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some extent acceptable for the human visual system.

To confirm the feasibility of using SURF for sensitive regions selection, we check the overlap areas between

the matched interest points regions and the local severely distorted regions indicated by error maps. For better

understanding, an example is visualized in Figure 8.3. The error maps are generated with the synthesized and

the reference images as introduced in [144]. The darker the regions the more distortions appear in the regions as

shown 8.3 (c). Interest-point regions are covered by matched patches centering at the matched interest points

as the green bounding boxes shown in 8.3 (c). In this study, the size of the patch is empirically set as 35× 35.

It can be observed that the majority of regions that with severe local distortions are covered by the matched

interest-point regions. It demonstrates the feasibility of utilizing SURF for sensitive regions selection.

Figure 8.3 – Example of sensitive regions selection based on interest point detection. Left: Reference image;
Middle: Synthesized image with A2; Right: Matched SURF points regions on the error map.

According to the analysis above, SURF descriptors (interest/feature points) are first extracted from both the

reference and synthesized images. Interest points in reference image are then matched to the ones in synthesized

images to get corresponding patches (i.e., patches that are center at the matched feature points). This regions

selection process can be summarized by the red dash bounding box in Figure 8.2. In Figure 8.2, (a) is an

original image Iori and (b) is a synthesized image Isyn. The extracted surf descriptors (key/interest point) kori
of Iori are labeled with red circle and the ones ksyn in Isyn are labeled with green cross. Then, SURF interest

points are matched kori to ksyn, as shown in Figure 8.2 (c) where matched feature points are connected with

yellow lines. Pairs of interest points that have significantly different coordinate (x or y) values are discarded

(difference between one of the coordinate values is larger than a threshold ). In the following process, closed

curves/contours are extracted from patches centering at the matched features points in both the synthesized

and reference images. For example, in Figure 8.2 (d), kori, ksyn are one pair of matched SURF points and

Pori, Psyn are the corresponding patches centering at kori, ksyn. In the following process, only the selected

regions are considered.

8.2.2 Curve Extraction based on Patch Segmentation

With the matched selected regions Pori and Psyn, image segmentation approach SLIC proposed in [147]

is then utilized to further segment the patches into superpixels, whose boundaries are considered as closed

curves for later matched curves comparison. As shown in [147], SLIC, which clusters pixels in the combined

five-dimensional color and image plane space, outperforms the mainstream superpixel methods in boundary

adherence, segmentation speed, and performance. Therefore, it is selected for its simplicity and efficiency.

The proposed algorithm for superpixels matching is shown in Algorithm 1. For each corresponding Pori
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Algorithm 1 Superpixels matching algorithm
1: procedure S matching(Sori, Ssyn)
2: for i ∈ [1, ..., n] do
3: while |s

i
ori|
|Pori| ,

|sjsyn|
|P jsyn|

> εEM do
4: ciori = fcurve(siori)
5: for j ∈ [1, ...,ms] do
6: f iori =

[
xiori
Pwidth

,
yiori

Pheigth
,
|siori|
|Pori|

]
7: f jsyn =

[
xjsyn
Pwidth

,
yjsyn
Pheigth

,
|sjsyn|
|Psyn|

]
8: Mdistance(i, j) = De(f iori, f jsyn)
9: end for

10:

cjsyn = fcurve

(
arg min
sjsyn∈Psyn

Mdistance(i, j)
)

11: end while
12: end for
13: return(Cori, Csyn)
14: end procedure

and Psyn, two sets of superpixels Sori and Ssyn are obtained with SLIC. Here, the goal is to extract fragments

of objects’ boundaries. Superpixels that are too small may not be useful (may not be a part of and object

boundary). For instance, in Figure 8.2 (e), s3
ori is discarded as it is too small, and it does not represent

meaningful shape. To do so, before curves matching, superpixels that are too small are discarded basing on

a ratio. This ratio is defined as the number of pixels in the superpixels to the one in the patch |s|
|P | , where

|R| represents the number of pixels in a region R. If the ratio of a superpixes is smaller than a threshold

εEM , it would be discarded. Let ns and ms be the number of superpixels in Pori and Psyn. The boundary of

each superpixel siori, i ∈ 1, ..., ns is considered as the closed curve ciori, which needs to be matched from Ssyn.

In Algorithm 1, fcurve(s) is the function of getting the boundary of the superpixels s. For each candidate

sjsyn, j ∈ 1, ...,ms, features that reflect the location and the size of superpixels are concatenated as a feature

vector for comparing the similarity among superpixels. Here, x, y are the mean of the row and column values of

the pixels inside the superpixels. They are normalized by the width Pwidth and the height of the patch Pheight
separately. The last dimension of the feature vector is the number of pixels inside the superpixels normalized

by the size of the patch and denoted as |s||P | . For each possible pair siori and sjsyn, they are represented as

feature vectors f iori = [ xi
ori

Pwidth
,

yi
ori

Pheigth
,
|siori|
|Pori| ] and f jsyn = [ xjsyn

Pwidth
,

yjsyn
Pheigth

,
|sjsyn|
|Psyn| ] correspondingly. Dissimilarity

between superpixels is computed using euclidean distances De(f iori, f jsyn), and stored in the matrix Mdistance.

The matched superpixels of siori, i.e., s
j
ori = arg minsjsyn∈PsynMdistance(i, j) is the one that minimize Mdistance.

Then, the matched closed curved cjsyn is the boundary of the matched superpixels sjori. For example, in Figure

8.2 (e), s1
ori is matched with s1

syn when s2
ori is matched withs2

syn. Finally, the set of matched closed curves

(Cori, Csyn) is obtained and is used for curves comparison with elastic metric.

8.2.3 Curve Comparison based on Elastic Metric in Euclidean Spaces

With the matched closed curves generated with the aforementioned sensitive regions selection and curves

extraction stages, the framework proposed in [148, 149] is then used for measuring the amount of ‘stretching’

and ‘bending’ between two matched curves from the original and synthesized images.
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Given a parametrized curve c along with its curve parameter t ∈ D, it is first defined as

c : D → (x, y) ∈ Rn, (8.1)

where (x,y) represents the coordinates of each point in the curve. For general case, D = [0, 1], but for closed

curves D = S1. Then, the parameterized curve can be further represented with square-root velocity (SRV)

function defined by q : D → (x, y) ∈ Rn, where

q(t) ≡ F (ċ(t)) = ċ(t)/
√
‖ċ(t)‖ (8.2)

In (8.2), ‖ · ‖ represent the euclidean 2-norm in Rn and ˙c(t) = dc
dt . It is reversible that one can obtain the curve

with the equation: c(t) =
∫ t

0 q(s)‖q(s)‖ds.

To completely specify curve c as well as to quantify deformations of the curves, Srivastava then defined

φ : D → R by φ(t) = ln(‖ċ(t)‖) and θ : D → Sn−1 by θ(t) = ċ(t)/‖ċ(t)‖ in [149]. Therefore, a riemannian

metric named as ’Elastic Metric’ on a tangent space of Φ × Θ is then defined based on calculating an inner

product:

DEM =〈(u1, v1), (u2, v2)〉(φ,θ)

= a2
∫
D

u1(t)u2(t)eφ(t)dt+ b2
∫
D

v1(t)v2(t)eφ(t)dt,
(8.3)

where 〈·〉 denotes the standard dot product in Rn and (u1, v1), (u2, v2) ∈ Tφ,θ(Φ×Θ). As explained in [148,149],

u1 and u2 in the first integral are variations of the log speed φ of the curves while v1 and v2 in the second

integral are the variations of the direction θ of the curves. The first and second integrals can be interpreted to

measure the amount of ‘stretching’ and ‘bending’ correspondingly and a2,b2 are the weights chosen to penalize

these two types of deformations. In order to compute geodesics with equation (8.3) in the pre-shape and shape

spaces more efficiently, the SRV formulation (8.2) was used and adjusted in terms of (φ, θ) by q(t) = e
1
2φ(t)θ(t).

Afterwards, the tangent vectors to L2(D,Rn) at q is obtained with f = 1
2e

1
2φuθ + e

1
2φv. For two elements f1

and f2 of Tφ,θ(Φ×Θ), computing the L2 -metric (elastic metric) of them yields

DEM =〈f1, f2〉 =
∫
D

〈12e
1
2φu1θ + e

1
2φv1,

1
2e

1
2φu1θ + e

1
2φv2〉dt

=
∫
D

(1
4e

θu1u2 + eθ〈v1, v2〉)dt
(8.4)

8.2.4 Pooling Stage

As discussed in previous sections, human observers tend to perceive ‘poor’ regions than the ‘good’ ones

within an image. For DIBR based synthesized images, the disoccluded regions are the ‘poor’ regions and should

be penalized during the quality assessment.

After sensitive regions selection, the curves are only extracted from the selected regions where the annoying

local distortions could be unacceptable. Moreover, due to local sensitive regions selection, artifacts in local

important disoccluded regions are penalized sufficiently, and at the same time, the consistent global artifacts
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are not over penalized. Hence, the final object score is calculated by simply summing out all the elastic

dissimilarities values without applying any specific pooling strategies as defined below

EM − IQM =
∑

DEM (ciori, cjsyn), (8.5)

where (ciori, cjsyn) ⊂ (Cori, Csyn).

8.2.5 Experimental Results

The performance of elastic curve based synthesized image quality assessment metric (EM-IQM) is evalu-

ated on the entire IVC-Image dataset [49, 98] as described in section 4.2.1.1. To compare the performances

between existing metrics designed for synthesized images, the widely employed criteria PCC, SCC, and RMSE

as described in section 4.3 are considered with non-linear mapping between the subjective scores and objective

measures.

8.2.5.1 Performance Comparison

As claimed in [76, 143, 144], MP-PSNR MW-PSNR and their reduced versions perform the best among

existing metrics designed for synthesized images. Therefore, in this section we mainly compare our proposed

metric with MW-PSNRf , MP-PSNRf MW-PSNRr and MP-PSNRr.

The overall result is concluded in Table 8.1. According to Table 8.1, the proposed EM-IQM achieves 0.7430,

0.6626 and 0.4455 value of PCC, SCC and RMSE correspondingly, which outperforms all of the compared

metrics designed for synthesis images. Compared to the second best performing MP-PSNRr, our proposed

metric achieves a gain of 25% in PCC. To further check whether the proposed EM-IQM significantly outperforms

the second best performing MP-PSNRr, a t-test is conducted taking the difference between the subjective scores

and the objective scores predicted using MP-PSNRr and the ones using EM-IQM as input. According to the

t-test result, EM-IQM significantly outperforms MP-PSNRr (P-value=10−5).

Table 8.1 – Performance comparison of the proposed metric with state-of-the-art metrics

PCC SCC RMSE
MP-PSNRf [75] 0.6553 0.6239 0.5029
MP-PSNRr [76] 0.6733 0.6600 0.4923
MW-PSNRf [74] 0.6089 0.5738 0.4948
MW-PSNRr [76] 0.6444 0.6218 0.5091

EM-IQM 0.7430 0.6626 0.4455

To demonstrates the advantage of the proposed metric with PSNR based metric like MP-PSNR, the scatter

plots of subjective DMOS values versus MP-PSNR and the proposed EM-IQM (for better observation, the

figures are zoomed) are illustrated in Figure 8.4 and Figure 8.5 respectively. In the figures, each stimulus

that generated with different algorithms is labeled with different colors and shapes. It is obvious that the

performance of MP-PSNR on the set of images obtained with A1 is poor since most of the blue cross points

(A1) are outliers. It can be concluded that PSNR based metrics like MP-PSNR are not robust to global

acceptable ’objects shifting’ artifacts. On the contrary, according to Figure 8.5, the performance of EM-IQM on

the same subset is much better as most of the blue cross points are gathered along the diagonal line. The reason

is that the proposed metric penalizes only the local annoying artifacts and compensates the shifting artifact

with the sensitive regions selection process.
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Figure 8.4 – Scatter plots of MOS versus MP-PSNR, the blue diagonal line represents the perfect prediction

Figure 8.5 – Scatter plots of MOS versus EM-IQM, the blue diagonal line represents the perfect prediction.

To check the efficiency of the proposed EM-IQM, execution time of the metrics normalized by PSNR as

introduced in section 4.4 are listed in Table 8.2. According to the table, the proposed EM-IQM is slower

than MW-PSNR and MW-PSNRr. However, since the gain compared to the second best performing metric is

significant, it is acceptable if the running time is a bit longer.

Table 8.2 – Normalized execution time of proposed metric compare to the state-of-the-art metrics

Metric MW-PSNR MW-PSNRr MP-PSNR MP-PSNRr EM-IQM
Normalized time 12.4 9.6 100 35 127

8.3 Elastic Metric based Video Quality Assessment Metric (EM-

VQM)

As described in the section 2.2, temporal structure-related distortions within one viewpoint and among

different viewpoints (observed due to views switch) are difficult for conventional video quality assessment metrics

to capture. There is an obvious lack of such video quality metrics in predicting the perceived quality of

sequences in FTV system. Targeting at solving this problem, here, the EM-IQM is extended to VQM to
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quantify the structure-related temporal distortions in FTV system, including spatial geometric distortions,

temporal structure inconsistency, and unsmooth viewpoints changing.

The framework of EM-VQM is summarized in Figure 8.6. As motion trajectory reveals important structural-

motion information, local structure disruptions that affect the quality of the synthesized sequences could be

quantified based on the multi-scale trajectory representations. In the proposed scheme, synthesized sequences

Seqsyn and their reference sequences Seqref are firstly represented as a set of multi-scale trajectories Trastrasyn and

Trastraref , where stra indicates different scales. Considering the special characteristics of DIBR based synthesized

techniques, neighborhoods around the trajectories could be considered as the sensitive regions(candidates of

possible disturbing distorted regions), where local non-uniform distortions are less endurable for observers. With

the trajectory representations, spatial-temporal related features, i.e., F strasyn and F straref , along the trajectories are

extracted. Afterwards, 1) the structure deformations of the moving objects, which can be represented by the

deformation of motion trajectory Dtem
def , could be quantified using elastic metric with Trastrasyn and Trastraref ; 2) the

temporal structural losses along trajectories Dtem
SL could be quantified with the temporal structural features in

the form of histograms Hstra
syn and Hstra

ref . Details of the computation of temporal structural dissimilarity between

a synthesized sequence and its reference is given in the following sections. Finally, SRV is used to obtain one

final quality score for the synthesized sequence by combining these two type of temporal dissimilarity values

between the synthesized and reference sequences at all the scales.

Figure 8.6 – Framework of Temporal Structural loss computation

8.3.0.1 Multi-scale Motion Trajectory Representation as Spatial-Temporal Sensitive Regions

Selection

Dense motions trajectory, which is first proposed in [150] by Wang et al., is utilized to represent a free

viewpoint sequence. It is a spatial-temporal representation for video in the form of multi-scale dense trajectories

and motion boundary descriptors along the trajectories.

After generating the multi-scale representation of a sequence Seq with several spatial scales stra, feature

points are sampled on each spatial scale with a sampling step ofW (in this study, totally 7 scales are considered).

Considering that most of the local annoying geometric distortions are located around the boundaries of the
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objects instead of homogeneous texture regions, points within regions that do not contain any structure are

thus removed. Sampled points on each spatial scale are then tracked by using large displacement optical flow

algorithm (LDOF) proposed in [151]. Each trajectory trastra obtained at a certain scale stra can be represented

as a sequence of points (p1, ..., pf , ..., plseq ) with a length of lseq (equals to the frame number of the sequence).

In trastra , pf is a feature point at frame f , which is spatially-temporally related to feature points in previous

and later frames, i.e., pf−1 and pf+1. As human observers are more sensitive to structure-related distortions

in moving structural regions, e.g., moving objects, static trajectories that do not contain any motion are thus

pruned.

It is worth mentioning that the process of generating trajectories could be served as a proxy to select sensitive

regions where local synthesized distortions are less endurable. An example is shown in Figure 8.7. In Figure

8.7 (a), the points of optical flow on current frame are marked with red color. The green lines connect the

corresponding points between the previous frame and the ones in the current frame. Figure 8.7 (b) is the error

map generated with the frames extracted from a synthesized sequence (i.e. sequence ’C1-balloons-R47-view-3’)

and its reference sequence (i.e. sequence ’Original-balloons-view-3’) from FFV dataset (introduced in section

4.2.1.3). In the error map, the darker the color, the more errors are in the regions. It can be observed that most

of the error regions have been covered by the detected motion trajectories (most error regions are covered by

the neighborhoods of detected motion trajectories). It is thus feasible to employ multi-scale motion trajectory

generation as a proxy for spatial-temporal sensitive regions selection.

(a) (b)

Figure 8.7 – (a) Example of dense motion trajectory. (b) Error map between frames extracted from reference
and the synthesized views.

8.3.0.2 Motion Structure-Related Trajectory Descriptor

As mentioned in the previous sections, the dominant non-uniform distortions are mainly located around the

boundaries of objects. Boundaries of objects provide shape information of the objects and thus are important

structure information. In order to better quantify the changes of structure as well as motion information along

trajectories due to synthesizing process, three motion-structure-related descriptors are extracted from each

trajectory at each scale [151]. They are the histogram of oriented gradient (HOG) [152], the histogram of optical

flow (HOF) [153] and the motion boundary histogram (MBH) [154], which are all extracted within a spatial-
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temporal volume that is aligned with a trajectory Trastra . The size of the temporal volume isMtra×Ntra× ltra
as shown in the left part of Figure 8.6, where ltra is the length of the trajectory and Mtra × Ntra is the

spatial block size. During feature extractions, each spatial block is further divided into mtra ×mtra sub-blocks

for histogram based feature extraction. Among those structure-related features, MBH is computed with the

derivatives of both the horizontal and vertical element of optical flow, which further ends up into two histograms

as MBHh and MBHv respectively. Both MBHh and MBHv are normalized with L2 norm. In conclusion, for

each trajectory at scale stra, four structural histograms Hstra
HOG, H

stra
HOF , H

stra
MBHx and Hstra

MBHy are obtained after

feature extraction.

8.3.0.3 Temporal Structure Dissimilarity

After getting the trajectory representations along with the extracted structural features, trajectories at

each scale in synthesized and reference sequences are matched according to their averaged horizontal and

vertical coordinates. Only the matched trajectory pairs (trastraori , tra
stra
syn ) in the matched trajectory set Tram

are maintained for later deformation quantification and structure loss computation. To quantify the two typical

temporal distortions (i.e., 1) deformation of motion trajectories, and 2) unsmooth transition of structures )

mentioned in section 2.2, two main aspects are taken into consideration:

1. First, the temporal evolution of spatial local structure-related distortions may result in deformation of

motion trajectories within the sequences, e.g., the motion trajectories distributed along boundaries of

foreground objects may fluctuate and result in changes of the shapes of the trajectories. This changes of

trajectories in term of global motion trajectory deformation could be quantified by using elastic metric

DEM described in section 8.2.3. More specifically, the entire deformable change of trajectories between

the synthesized and the reference sequences at a scale stra is calculated by accumulating all the elastic

errors calculated with the matched trajectories at this scale using elastic metric:

Dtem,stra
def (Tram) =

∑
ntra

DEM (trastraori , tra
stra
syn ), (8.6)

where ntra is the number of matched trajectory pairs (trastraori , tra
stra
syn ) ∈ Tram. Since Dtem,stra

def (·)

computes the amount of deformations between trajectories, ideally, it is able to capture not only the

temporal flickering within one viewpoint but also the one among viewpoints due to views switch (reflecting

the smoothness of the transition among frames at one viewpoint position as well as the smoothness of

the transition among viewpoints). By doing so, local structure-related severe temporal distortions are

well captured, while the global uniform distortions are not over-penalized.

2. To further quantify the unsmooth transition of structures from one frame to another, structural sta-

tistical dissimilarities along trajectories are computed with the four extracted motion structure-related

descriptors described in section 8.3.0.2. More specifically, each type of temporal structural statistical loss

Dij,stra
SL at a scale of stra is defined as the distance between one type of extracted features vectors Hi of

the synthesized sequence and the one of its reference using a certain distance measure Dj :

Dij,stra
SL = Dj(Hi,stra

ref , Hi,stra
syn ), (8.7)

where H1,stra = Hstra
HOG, H2,stra = Hstra

HOF , H3,stra = Hstra
MBHx and H4,stra = Hstra

MBHy indicates the four
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motion descriptors and Dj denotes one type of distance measures. In this study, four distance measures

are considered including D1 = jensen-shannon divergence (JSD), D2 = euclidean distance, D3 = cosine

distance and D4 = minkowski summation.

8.3.1 Spatial-Temporal Scores Aggregation

Finally, in order to predict the final quality score, SVR is employed to aggregate the calculated temporal

Dtem,stra
def and the 16 temporal structural error Dij,stra

SL , i, j = 1, ..., 4 at all scales with a linear kernel. Intuitively,

SVR serves as a distance measure and trajectory scale selector for predicting perceived quality. In this study, 7

scales are considered, the dimension of the final vector of each sequence is 119 (16 dimensions for Dtem,stra
SL and

1 dimension for Dtem,stra
def at each scale). The SVR model training process is conducted according to [155–157]

by employing a 1000-fold cross-validation. Each dataset is randomly divided into 80% for training and 20% for

testing, without overlap between them. To evaluate the median value of the performance estimation benchmark

(e.g., PCC) is reported across 1000 runs for performance evaluation.

8.3.2 Experimental Results

The performance of EM-VQM is evaluated on the IVC-Video and FFV dataset described in section 4.2.1.2

and 4.2.1.3. Apart from synthesis related spatial distortions, IVC-Video database contains temporal distortions

within one viewpoint while FFV dataset contains temporal distortions among different viewpoints (artifact

observed during the switch of viewpoints). To evaluate the performances, PCC, SCC, RMSE and AOCDS ,

AOCBW , CC introduced in section 4.3, are utilized. In section 3.2, it has been pointed out that commonly used

metrics designed for capturing compression artifacts fail to correctly predict the perceived quality of synthesized

sequences in FTV scenario. Therefore, in this section, only image/video metrics (described in section 3.4 and

3.5) designed for DIBR based synthesized views quality evaluation are considered. For those image metrics,

predicted quality score for each frame is averaged to obtain one score for the entire sequence.

Table 8.3 – Performance Comparison of the Proposed EM-VQM with Existing Metrics Designed for FTV
Scenario

Database IVC-Video FFV
Metric PCC SCC RMSE AOCDS AOCBWCC PCC SCC RMSE AUCDS AUCBWCC

Image Quality Metrics Designed for Synthesized Views
MW-PSNRf 0.448 0.425 0.612 0.523 0.692 0.665 0.429 0.291 0.662 0.497 0.647 0.615
MW-PSNRr 0.450 0.439 0.590 0.537 0.704 0.671 0.430 0.296 0.610 0.508 0.653 0.621
MP-PSNRf 0.523 0.542 0.564 0.531 0.754 0.723 0.440 0.318 0.609 0.508 0.660 0.623
MP-PSNRr 0.461 0.496 0.587 0.521 0.739 0.704 0.410 0.287 0.617 0.5102 0.659 0.625
EM-IQM 0.666 0.647 0.493 0.493 0.830 0.739 0.522 0.556 0.575 0.551 0.781 0.722

Video Quality Metrics Designed for Synthesized Views
Liu-VQA 0.617 0.609 0.521 0.507 0.704 0.692 0.574 0.629 0.552 0.559 0.799 0.760
EM-VQM 0.848 0.806 0.248 0.796 0.883 0.815 0.802 0.782 0.289 0.745 0.799 0.763

The overall performance of the metrics is summarized in Table 8.3. According to the table, among the image

quality metrics designed for synthesized images, EM-IQM performs the best. Among the video quality metrics

designed for synthesized videos, the proposed EM-VQM outperforms the other. Compared to the second best

performing video quality metric Liu-VQM, EM-VQM obtains a gain of 37% and 39% in terms of PCC values

on IVC-Video and FFV database, respectively. It is proven that the proposed EM-VQM can capture not only

temporal artifacts within one viewpoint but also the ones among viewpoints.
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Moreover, to check the time complexity of the proposed EM-VQM compared to the second best performing

video quality metric Liu-VQM, execution time of the metrics normalized by PSNR as introduced in section 4.4

are listed in Table 8.4. It can be observed from the table that the proposed EM-VQM is slower than Liu-VQM.

However, since the gain of the EM-VQM compared to the second best performing metric is significant, it is

acceptable if the running time is a bit longer.

Table 8.4 – Normalized execution time of proposed metric compare to the state-of-the-art metric

Metric Liu-VQM EM-VQM
Normalized time 20K+ 48K+

8.4 Conclusion

EM-IQM: Basing on the fact that DIBR based synthesis algorithms mainly introduce local geometric dis-

tortions and humans are more sensitive to severe local artifacts, an elastic metric based image quality assessment

metric is first proposed in this chapter. In the proposed scheme, a SURF based sensitive regions selection process

is incorporated to penalize only annoying local artifacts but to compensate shifting artifacts. The core concept

of the proposed metric is to use the elastic metric to quantify the deformation dissimilarities between curves

from reference and synthesized images. Among the compared metrics, the proposed EM-IQM metric provides

the best performance.

EM-VQM: Targeting at quantifying both the structure-related temporal artifacts within one viewpoint and

among viewpoints, the EM-IQM metric is extended for video quality assessment by first representing videos

with multi-scale dense trajectories and then quantifying spatial-temporal artifacts based on 1) the deformation

dissimilarity between trajectories in reference and synthesized sequences calculated using elastic metric; 2)

spatial-temporal structure dissimilarity calculated based on motion descriptors extracted along the trajectories.

Experimental results have proven its capability of quantifying not only the unique temporal artifacts within one

viewpoint but also the ones among viewpoints.





9
Conclusion of Part 2

In this part, low-level representations have been explored for images utility/quality assessment. Two low-level

based models have been proposed.

9.1 Answers to Research Questions

� Low-level representations of images/videos for quality/utility assessment in different tasks:

� Verification of the roles of low-level structural and textural information in different tasks.

In order to verify what are the roles of structure and texture information in different tasks, a bilateral

filtering based model (BF-M) has been proposed in chapter 7 to first separate structure and texture

information. Afterwards, the roles of these information according to given visual content usage have

been illustrated.

� A bilateral filtering based metric is proposed to leverage structure and texture related distortions by

using low-level features.

A bilateral filtering based model has been proposed in chapter 7. Since the respective importance

of structure and texture estimators can be easily leveraged, a parametric metric has been defined to

balance the roles of the two information according to the visual content usage.

� An elastic metric based image quality metric (EM-IQM) has been proposed to quantify the structural

degradation in terms of curves/contours deformations.

The elastic metric based image quality metric has been proposed in section 8.2 based on low-

level curves representation. In this model, the elastic metric is used to quantify the amount of

stretched/bent between curves in distorted images to the ones in reference. To avoid over-penalizing

acceptable continuous distortion, a sensitive region selection approach has been proposed along with

a fast curves matching algorithm. According to the experimental result, EM-IQM is robust to global

shifting and is able to quantify local structure deformation.

� An elastic metric based video quality assessment metric (EM-VQM) has been proposed in based of

85
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elastic metric and multi-scale motion trajectory to quantify the temporal structure related artifacts

in FTV scenario.

As structure related distortions introduce not only new types of structure inconsistencies in terms of

non smooth transition of structures along time intra view but also non smooth transition among view,

the EM-IQM has been extended to quantify both types of temporal distortions in section 8.3. Tempo-

ral artifacts are quantified with the amount of deformation between matched multi-scale trajectories

using elastic metric and the amount of structure disruption using structure related descriptors along

trajectories. Experimental results have highlighted the efficiency of EM-VQM compared to existing

video quality models designed for synthesized views.

9.2 Overall Performance on Tested Datasets

The performance and executing time of the proposed models on all the tested datasets are respectively

summarized in Table 9.1 and 9.2.

Table 9.1 – Summary of performance and discussion

PCC Low-level
Related Task Related Database BF-M EM-IQM EM-VQM

Utility Assessment CU-Nantes 0.961
IQM of synthesis texture image SynTex 0.708

IQA & VQA in FTV

IVC-Image 0.698 0.743
IVC-Video 0.847

FFV 0.801

BF-M has been tested on CU-Nantes for utility assessment, on SynTex for quality assessment of synthesized

texture images and on IVC-Image for quality assessment of synthesized views. The performance of this metric

on the three datasets are comparable to other metrics designed for the corresponding task. However, the gains

are not significant. Since the main purpose of BF-M is to provide users with a parametric tool that could be

used to decide which information is more important than another, it is not further extended for video quality

assessment. In addition, the performance of BF-M on CU-Nantes has already reached a PCC value of 0.961.

Even though there is still a small room to improve the performance, the database is too limited to be used

for further exploration (it is designed for general utility task and thus not practical enough to be used as a

benchmark for new applications; for example, to select useful training samples for machine learning models).

Hence, other metrics developed in this study are not tested on this database.

Table 9.2 – Summarization of executing time of the low-level representation based models on different datasets

Normalized time Low-level
Related Task Related Database BF-M EM-IQM EM-VQM

Utility Assessment CU-Nantes 17
IQA of synthesis texture image SynTex 17

IQA & VQA in FTV

IVC-Image 17 127
IVC-Video 48k+

FFV 48k+

Moreover, it has been verified in chapter 7 that textures play the dominant role in the task of quality

assessment of synthesized texture images. As the purpose of this thesis is to deal with images/videos where
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structure related distortions are the dominant distortions in immersive multimedia use cases, other metrics

other than BF-M have not been tested on SynTex database.

Both BF-M, EM-IQM have been tested on IVC-Image database. According to Table 9.1 and t-test analysis,

EM-IQM outperforms BF-M significantly. There are mainly three reasons : 1) EM-IQM incorporates a sensitive

regions selection procedure to ensure that endurable ‘global artifacts’ are not over penalized; 2) even though

both of them deal with low-level features directly, EM-IQM makes use of elastic metric to compute the amount

of deformation between curves, which is of better capacity to quantify the amount of geometric distortions in

terms of contours’ deformation. It is straightforward designed according to the characteristics of the task and

thus may not be used for a task like the quality assessment of synthesized texture images. In another word,

EM-IQM is more ‘problem-focus’; 3) EM-IQM is locally-focused, which means that it penalizes more severe

local distortions with the sensitive regions selections.

Considering its performance, EM-IQM has been further extended as EM-VQM. EM-VQM has been tested

on IVC-Video and FFV databases for quality assessment of synthesized videos by making use of low-level tem-

poral structure related representations. EM-VQM is able to well predict perceived quality of free viewpoint

videos mainly because 1) dense motion trajectory is used as a proxy to select temporal sensitive regions to avoid

over-penalize ‘global shifting’; 2) unsmooth transitions among frames at one viewpoint position and unsmooth

transitions among viewpoints could be quantified by the changes of multi-scale trajectories; 3) structure disrup-

tions along trajectories can be quantified with the structure dissimilarity values calculated with the structure

and motion related descriptors along the trajectories. It is confirmed that multi-scale trajectory and low-level

structure-motion descriptors along trajectories are suitable low-level representations for video, being able to

capture temporal structure related distortions.

Last but not least, according to Table 9.2, even though there is still a big room for the two mid-level

based models to improve (in term of performance), their complexities are considerably low since no learning or

optimized processes are involved.

9.3 Summary

One of the big advantage of low-level based models is their simplicity in terms of executing time. Low-level

models that are more ‘problem-focus’, e.g., using problem-oriented distance measures and representations, obtain

better performance. The representative ability of low-level representations is weak (are not linked to quality

directly), as performance still depends on certain ’distance measure’ to quantify perceived quality. Last but not

least, these low-level representations do not represent enough information of the quality of the images/videos

and thus are difficult to be used to develop powerful no reference metrics.
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10
Introduction of Part 3

Mid-level representations of images/videos are defined as intermediate ‘pattern-based encoded

feature’, where the patterns are learned by summarizing regularity/characteristics/properties of

local low-level information. These representations are between low-level and high-level representations,

obtained by simplifying/encoding low-level information. Inspired by the encoding strategy in HVS, two mid-

level representation based models are proposed by defining the ‘category’ and ‘entropy’ as patterns.

10.1 Mid-level Encoding Strategy in HVS

As mentioned in [158], human visual system is very efficient in encoding the properties of stimulus by utilizing

available regularities, e.g., shape of objects, from the inputs. Here, inputs are mainly low-level representations

of the perceived contents, e.g., contours. Human brain is subject to processing great amounts of information,

and efficiency in information encoding is hence often postulated as one of the major organizing principles in

the brain [159]. According to the previous study, efficiency has been observed at many levels, including highly

optimized information transmission and redundancy in the retinal ganglion cells, sparse encoding strategy of

natural images in V1 and utilization of higher-order stimulus regularities in mid-level and high-level vision [160].

It is claimed in [158] that efficient representations would be maximally informative with respect to the actual

inputs in the world. In particular, stimuli that are more likely to occur should be encoded more compactly.

The primate visual system has long been known to utilize such perceptual regularities [161]. Another mid-

level strategy, known as norm-based encoding [162], utilizes one particular regularity of the distribution of

encountered exemplars from a given category, namely the center of this distribution. Leopold and colleagues

argue in [163] that such strategy minimizes resources the system needs to learn and store stimulus.
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10.2 Research Questions Associated with Mid-Level Representation

Models Development

According to the discussion above, in this part, we explore mid-level representations that learn patterns to

encode structure, as perceptual models. This investigation can be decomposed into more specific questions:

� Mid-level representations of images/videos for quality assessment in different tasks (Part III)

� What type of mid-level representations of images could be used for capturing structure related dis-

tortions for image/video quality assessment to mimic the ‘encoding strategy’ in the human visual

system?

As introduced at the beginning in chapter 1 that human visual system is able to encode low-level

features extracted from images/videos efficiently for later interpretation of the scene, one may thus

be curious about whether those structural distortions shown in chapter 2 can be ‘encoded’ too with

some mid-level representations.

� How to quantify the change of contours/curves from a higher semantic level for image/video quality

assessment?

As presented in chapter 2, some of the structure related distortions disrupt the ‘categories’ of the

contours and thus are annoying for observers. For instance, a ‘L’ shape contour may be changed

into an ‘I’ shape contour. This type of structural change can be considered as mid-level semantic

change and are less acceptable compared to common compression artifacts. Therefore, a metric that

is capable of quantifying the changes contours’ categories from a higher level can be a solution to the

problem.

� Would how observers navigate among different viewpoints (when viewing a free-viewpoint video)

affects the perceived quality?

As emphasized in section 4.2, there is no existing subjective studies considering how observers navigate

among viewpoints (especially in the form of content related navigation trajectories) effects perceived

quality. In practice, it is common for human observers to stop navigating and stay in one viewpoint

that contains important objects when viewing a free-viewpoints content. When an observer stops at

one viewpoint and observes the moving objects, geometric distortions around those objects are easier

to be noticed. Furthermore, as introduced in section 1.1, with the rapid development of immersive

multimedia, more applications allow users to navigate in the virtual world. It is thus of great research

value to explore whether content related navigation trajectory is one important factor that affects

user visual experience.

� If content related navigation scan-path matters, how to quantify the temporal artifacts appear due

to views switch in applications where multi-views are available?

As it has been pointed out in section 2.2, transitions of spatial structure related distortions among

different viewpoints introduce a new type of structure related temporal distortions in terms of un-

smooth structural transition among viewpoints. Also, according to what has been discussed in chapter

3, there is no video quality metric is designed for sequences where both temporal distortions observed

within viewpoints and among viewpoints exist.

� Is it possible to mimic the concept of ‘encoding of configural regularity’ in the human visual system

for image quality assessment?
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As mentioned in section 1.2.1, the visual system is very efficient in encoding stimuli properties by

utilizing available regularities. Therefore, it is worth trying to find a way to model/mimic how

structure related low-level configural regularity (e.g., contour configural regularity) is encoded in the

visual system.





11
Encoding Contours with Sketch-Token

Categories

11.1 Introduction

In this chapter, the first mid-level representation based model is presented and tested in the scenario of FTV.

More specifically, a sketch-token based synthesized image quality assessment metric (ST-IQM) is proposed. In

this model, contours are first ‘encoded’ as a vector of contour categories likelihood values. Then the perceived

quality is predicted by quantifying to what extent the classes of contours change due to structure related

distortions by comparing the ‘encoded’ contour category vectors.

According to the experimental results, the performance of ST-IQM is desirable and is of potential to be

extended for video quality assessment on a more practical dataset that consider most of the important factors

that affect perceived quality. However, as discussed in section 4.2.1, there is no subjective studies considers

the impact of content-related navigations trajectories on perceived quality. To verify this impact, a subjective

study is conducted and presented in this chapter. A free viewpoint video dataset (FVV) is released along with

the subjective study. Afterwards, ST-IQM is extended for video quality assessment ST-VQM and tested on the

new FVV dataset.

It is discussed in section 3 that structure related distortions contained in nowadays immersive multimedia

are difficult for commonly used metrics to quantify. Distinguishable contour descriptors which capture edge

structures have great potential in evaluating geometric transformations around disoccluded regions after syn-

thesis. Bag of words based contours descriptor, sketch-token (ST) [164], trains a codebook for representing the

categories of contours. This model could be used to mimic the ‘encoding’ process as the human visual system

tends to encode low-level information for following higher-level process. With a ST-codebook, for each pixel in

a test image, the probability that a patch centered at this pixel contain a certain category of contours could be

predicted. In other words, contour within a patch could be represented as a vector of contour category.

95



96 CHAPTER 11.

For example, Figure 11.1 (c) shows a pair of patches with a part of human face and their extracted ST

descriptors Vori, Vsyn from the reference and synthesized images. By observing the synthesized patch in Figure

11.1 (b), it is found that the boundary of the face is twisted and the shape has changed due to synthesis. Each

dimension of ST vector is a probability value indicating how likely the current patch belongs to one certain

category of contour from the codebook. In Figure 11.1 (c), each contour class from the codebook is visualized

as edge patch, where edge pixels are labeled with white color. The positions of the elements (ST classes) in one

ST vector are sorted according to the probability values for better observation. It can be observed that the most

likely contour class that the original patch belongs to is a vertical straight line (the 64th class in the codebook

) while the one of the synthesized patch is a crooked line (the 105th class in the codebook ). The probability

p64 for the straight token to exist in the original and synthesized patch are 10% and 1% respectively. Both of

the two respective ’tokens’ manage to reveal the basic shape of the patches, and the geometric transformation

can be assessed based on the comparison between the extracted vectors.

Figure 11.1 – Example explaining the principle of the proposed metric. (a) A patch in the reference image
labeled with a red bounding box. (b) A searching window in synthesized image labeled with a green bounding
box. (c) A pair of patches and their corresponding ST descriptors from the reference and synthesized images.

11.2 Sketch-Token based Image Quality Assessment Metric (ST-

IQM)

In this section, the proposed ST-IQM is described. First and foremost, a registration step based on normal-

ized cross-correlation [165] is incorporated to ensure shifting resilience and return a set of match patches. Then,

mid-level contours feature called ‘sketch-token’ are extracted from both of the original and synthesized images

in parallel with the registration step. An ‘sketch-token’ descriptor represents each pixel centering at a patch in

the image with a vector showing the likeliness of the existence of each contour class in the patch. Dissimilarity

among each matched patches is then calculated based on the contour feature vector, and a dissimilarity map
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between the original and synthesized image is obtained. Finally, the objective scores of the synthesized images

are estimated by pooling the dissimilarity map using Minkowski summation.

11.2.1 Registration Stage

Aiming at tackling the shifting artifacts described in section 2.2, the image registration approach proposed

in [165] is utilized here for matching template centers at each pixel in the reference image from the searching

window which centers at the same coordinate in the synthesized image. For example, the red bounding box

(e.i. template) in Figure 11.1 (a) is matched to another patch from the green bounding box (e.i., searching

window) in Figure 11.1 (b) during the registration stage. In order to match patches along borders of the

images, both reference and synthesized images are padded with extra regions along the boundaries (e.g., dotted

bordered rectangle in Figure 11.2) according to the size of the searching windows. The matching process

is illustrated in Figure 11.2. For each pixel in the reference, a pixel (xr, yr) is considered as the central

point of the template (blue square) which is needed to be matched in the corresponding searching windows

(green rectangle) centralizing at the same position (xs, ys) in the synthesized image. This process involves the

calculation of each position of the searching windows under examination a distortion function that measures

the degree of dissimilarity between the template and alternative patches in the searching window. Then, the

minimum distortion/maximum correlation position (xm, ym) is taken as the matched path (red square) from

corresponding searching window in the synthesized image and is stored in the mapping matrix Mmatch, where

Mmatch(xr, yr) = (xm, ym).

Figure 11.2 – Registration between reference and synthesized images

Normalized cross correlation(NCC) is employed for similarity measure [165, 166] in order to achieve better

robustness. For a given template temref that is located at a certain pixel in the reference image Iref and its

corresponding searching windows winsyn at the same position in synthesized image Isyn, the normalized cross

covariance is defined as

NCC = CIM (temref , winsyn)
[
∑∑

win2
syn(x+ ushift, y + ushift)]

1
2
, (11.1)

where ushift and vshift are variables representing shift components along x-direction and y-direction respec-

tively. CIM (temref , winsyn) is defined as (11.2) with npixel equaling to the number of pixels in the template:

CIM (temref , winsyn) =
npixel

∑
temrefwinsyn −

∑
temref

∑
winsyn√

(npixel
∑
tem2

ref − (
∑
temref )2)(npixel

∑
win2

syn − (
∑
winsyn)2)

.
(11.2)
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11.2.2 Sketch-Token Descriptors Extraction

The local mid-level features called ‘sketch-token’ is adapted here to better capture how contour boundaries

change for the sake of predicting the quality of synthesized images. To obtain the sketch-token classes, Joseph

J. Lim et al. [164] first asked human subjects to generate sketches for each training image as the structural

contours. Then, the sketch-token categories set were defined by clustering patches with a fixed size of 35× 35

pixels. After the clustering process, only 151 of tokens which capture the most commonly occurred edges were

maintained. Random decision forests model was then used to trained classifiers for each image patch with a set of

low-level features including oriented gradient channels [167], color channels, and self-similarity channels [168].

Each output of these 151 classifiers corresponds the possibility pi of the existence of corresponding token i

in that patch and
∑
i

pi = 1. The dimension of a ST contour descriptor for one pixel in an image is 151

including an extra dimension indicating how likely this patch does not contain any tokens (no contour class).

For instance, in Figure 11.1 (c), the ST descriptor of the patch that is located at (x, y) can be represented as

V (x, y) = (p1, p2, ..., p151). At the end of feature extraction stage, the contour feature maps Mref and Msyn are

obtained for both reference and synthesized images.

11.2.3 Distortion and Pooling Stage

After obtaining the contour features mapMref ,Msyn and the mapping matrixMmatch, the distance between

each matched contour vectors is then calculated with certain distance measure. Considering the fact that the

sum over the 151 dimensions of each contour vector
∑
i

pi equals to 1, Jensen – Shannon divergence is used

here for calculating the distance between two contour vectors. Similar to Kullback – Leibler divergence, Jensen

– Shannon divergence is an approach which can be used as similarity measurement between two probability

distributions. Other distance measures are also tested and further described in the next section. For each pixel

(xr, yr) in the reference image, the corresponding center coordinate of its matched patch in the synthesized

image is given by Mmatch(xr, yr) = (xm, ym). The contour descriptor of each pixel is stored in the aforemen-

tioned contour feature maps, where Mref (xr, yr) = Vori(xr, yr) and Msyn(xm, ym) = Vsyn(xm, ym). Then, the

dissimilarity between the matched patches centering at (xr, yr) and (xm, ym) respectively is calculated as

DJSD(s) = 1
2DKLD(Vori(xr, yr), A)

+ 1
2DKLD(Vsyn(xm, ym), A),

(11.3)

where A = 1
2 (Vori(xr, yr) + Vsyn(xm, ym)), and DKLD is the Kullback– Leibler divergence defined as

DKLD(Vori, Vsyn) =
∑
i

Vref (i)log Vori(i)
Vsyn(i) . (11.4)

As mentioned before, since
∑
i

pi = 1 and p151 corresponds to the category of non-contour.The majority pixels

belong to non-contour pixel are with high p151 values while all the other elements in the feature vector are around

zero. The dissimilarity values for non-contour regions in Mmatch are also around zeros since D(Vori, Vsyn) ≈

D(pref151 , p
syn
151 ). The dissimilarity matrix is commonly a sparse matrix because there is few differences in non-

contour regions. Most of the non-zero elements for most of the dissimilarity maps in the dataset is lower than

0.5 (DJSD range from 0 to 1). In order to amplify error regions along the contours, the minkowski distance
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measure is used as pooling strategy to pool dissimilarity values to get the final objective score. The proposed

metric ST-IQM is then defined as

ST − IQM =

[
∑

Npixel

DJSD(Vori(xr, yr), Vsyn(xm, ym))βST ]
1

βST

Npixel
,

(11.5)

where Npixel is the number of pixels in the image and βST is a parameter corresponds to the β−norm defining

the LβST vector space. The selections of βST and distance metric for calculating distance between contour

vectors in (11.6) are further discussed in the section 11.2.4.

11.2.4 Experimental Results

The performance of sketch-token based synthesized image quality assessment is evaluated using the IVC-

Image dataset [49, 98] described in section 4.2.1.1. As mentioned in [144], images synthesized with algorithms

A1 is excluded from the experiment due to the significant shifting artifacts compared to other algorithms. In

order to be consistent with their experiment, the proposed metric is evaluated not only on the entire dataset

but also on the subset where images generated with A1 are excluded.

To compare the performances between existing metrics designed for synthesized images summarized in

section 3.4 and the proposed metric, the following widely employed criteria PCC, SCC, and RMSE introduced

in section 4.3 are utilized with non-linear mapping between the subjective scores and objective measures.

The performance dependency of the proposed algorithm on the exponent variable βST in equation (11.6)

is examined on the subset where images generated by A1 are excluded. The result is provided in Figure 11.3.

According to Figure 11.3, with increasing value of βST , the performance of the proposed metric increases

significantly and peaks with βST = 4. Afterwards, the performance drops steadily.

Figure 11.3 – Performance dependency of the proposed ST-IQM metric with changing βST .

Distance metrics are also explored for calculating the dissimilarity between each ST contour vector utilized

in (11.6), and to check the dependency between the performance and the distance metric. Different distance

metrics including Jensen – shannon divergence, cosine distance, euclidean distance, and chi-squared distance are

tested. This test is also conducted on the subset where images generated by A1 are excluded. The results are

illustrated in Table 11.1. Table 11.1 shows that the performance of the metric does not vary significantly with

the change of using different distance metrics. The proposed ST-IQM metric acquires the best performance
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with Jensen – shannon divergence distance measure by achieving 0.8877, 0.8525 and 0.3070 values of PCC, SCC,

and RMSE respectively. This outcome proves the feasibility of choosing Jensen – shannon divergence metric

for dissimilarity evaluation.

Table 11.1 – Performance of ST-IQM with different distance approaches

PCC SCC RMSE
Jensen– Shannon divergence 0.8877 0.8525 0.3070

Cosine Distance 0.8680 0.8419 0.3312
Euclidean Distance 0.8584 0.8024 0.3422

Chi-Squared Distance 0.8829 0.8531 0.3132

Based on the experimental results and analyses described above, we have fixed βST to be 4 and selected

Jensen – Shannon divergence measure for calculating the distance between ST contour vectors of each matched

pair of matched patches from reference and synthesized images. During the registration stage, the size of the

template in original images and the one of the searching windows in the synthesized images are set empirically

as 35× 35 and 90× 90 respectively.

The overall result of performance comparison among the image metrics is concluded in Table 11.2. According

to Table 11.2, the proposed ST-IQM achieves 0.8877, 0.8525 and 0.3070 value of PCC, SCC and RMSE corre-

spondingly on the subset of the dataset (where images generated with A1 are excluded) and 0.8217, 0.7710 and

0.3929 on the entire dataset. According to t-test results, it outperforms the compared image metrics significantly

(with P-value smaller than 0.05).

Table 11.2 – Performance comparison of the proposed metric with the state-of-the-art metrics.

PCC SCC RMSE
Subset without images generated with A1

MP-PSNRf [75] 0.8874 0.8175 0.3165
MW-PSNRf [74] 0.8855 0.8298 0.3188

ST-IQM 0.8877 0.8525 0.3070
Entire dataset

MP-PSNRf [75] 0.6553 0.6239 0.5029
MW-PSNRf [74] 0.6089 0.5738 0.4948

ST-IQM 0.8217 0.7710 0.3929

For the purpose of checking the capacity of ST-IQM to detect specific artifacts generated with DIBR algo-

rithms, the dissimilarity mapsMdis calculated with Jensen– shannon divergence metric are visualized according

to the dissimilarity values. Figure 11.4 is an example showing some regions of the obtained dissimilarity maps

along with their corresponding regions from original and synthesized images. The regions are generated by

enlarging the aforementioned template for better observation. By observing these error maps, it is found that:

1. Incorrect rendering/texture stretching: For the first row, by checking the respective visualized dissimilar-

ity map, it could be found that both the ‘fake edge’ generated by blurred region and the disappearance

of the missing ‘hair boundary’ are well captured.

2. Blurry regions: The synthesized region in the second row is from ‘Book Arrival’ sequence synthesized

with A5. Blurred regions along the objects’ boundaries as well as the missing hands of the clock are

emphasized with darker colors indicating higher dissimilarity values.

3. Dark holes: For the third row, in the respective dissimilarity map region, the dark hole regions are

assigned with larger dissimilarity values (darker color) verifying the capacity of our metric to detect

these kinds of artifacts.
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4. Geometry distortion (twisted shape): The main problems in the synthesized regions in the last row are

twisted shape of the face, especially the right part of it, and the missing left ear of the girl. According to

the respective dissimilarity map, these main distorted regions are also well detected, especially the left

ear region which is depicted with the darkest color.

Figure 11.4 – First column: regions from original images; second column: matched regions in synthesized
images; third column: corresponding regions in dissimilarity maps obtained from ST-IQM (the darker the color
the higher the dissimilarity value)

Furthermore, to check the complexity of the metric compared to other metrics designed for synthesized

views, the execution time of the metrics normalized by PSNR as introduced in section 4.4. It is shown that

the proposed ST-IQM is much slower than the second best performing MP-PSNR. However, since the gain of

performance on the entire dataset is significant compared to the second best performing metric, i.e., 18 % of

gain in PCC values, it is acceptable if the running time is longer.

Table 11.3 – Normalized execution time of proposed metric compare to the state-of-the-art metrics.

Metric MW-PSNR MP-PSNR ST-IQM
Normalized time 12.4 100 1324

11.3 Impact of Navigations Scan-Path on Perceived Quality: Free

Navigation vs. Predefined Trajectories

Immersive media technologies provide the users with more freedom to explore the content allowing more

interactive experiences than with traditional media. These new possibilities introduce the observers’ behavior

as an important factor for the perceived quality [96]. Given the fact that each observer can explore the content

differently, there are two approaches that can be adapted to practically study this factor: 1) let the observers
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navigate the content freely; 2) let the observer watch the sequences in the form of certain pre-defined navigation

trajectories. By employing the first approach, a common trajectory could be obtained according to all the

observers’ data. However, this common trajectory does not necessarily represent the critical one that will

stress the system to the worse case. Moreover, if observers are allowed to navigate freely during a test, it may

become a new factor that increases the variability of the MOS (despite observer’s variability in forming a quality

judgment). In order to obtain MOS that can distinguish one system from another statistically significantly. more

observers are required. The second approach (predefined trajectories) is not affected by this trajectory-source

of variability but it comes with the challenge of selecting the ‘right’ trajectory. In case of system benchmark,

the ‘right’ trajectory could be defined as the most critical one or weakest link (e.g., the one that leads to the

lowest perceived quality). Nevertheless, there is a high possibility that this trajectory-effect is highly dependent

on content, some being more sensitive than some others to the choice of trajectory. Identifying the impact of

navigation trajectory among different viewpoints on perceived quality for a given content is then of particular

interest. For quality evaluation, it may be useful to know how navigation affects the visual experience and which

are the ‘worst’ trajectories for the system, to carry out performance evaluations of the system under study in

the most stressful cases. Consequently, the availability of computational tools to select the critical trajectories

would be extremely useful.

As discussed at the beginning of the thesis in chapter 4, no existing subjective study is conducted to check

how observers navigate the free-viewing content affect the quality of it. To meet this need, a subjective study is

conducted by designing content related trajectories to mimic the worse cases. A video quality dataset for FVV

scenarios named as ‘image, perception and interaction group free-viewpoint video dataset’ (FVV) is built. This

dataset consists of sequences that contain both compression, view-synthesis artifacts, and temporal structure

consistencies. More specifically, the videos of this dataset are generated by simulating exploring trajectories

that the observers may use in real scenarios, which are set by the hypothetical rendering trajectory (HRT),

defined in the section 11.3.1.

11.3.1 Hypothetical Rendering Trajectory

A commonly used naming convention for subjective quality assessment studies was provided by the video

quality experts group [169], including: SRC (i.e., source or original sequences), HRC (i.e., hypothetical reference

circuit or processing applied to the SRC to obtain the test sequences, such as compression techniques), and PVS

(i.e., processed video sequence or the resulting test sequence from applying an HRC to a SRC). In the context of

free navigation, another dimension of the system under test related to the interactivity part should be reflected

(e.g. the use of exploration trajectories in the quality evaluation of immersive media). Towards this goal, the

term hypothetical rendering trajectories (HRT) is introduced, to reference the simulated exploration trajectory

that is applied to a PVS (as the result of an HRC on a give SRC) for rendering. It is worth mentioning that

the generality of this term is applicable to all immersive media from multi-view video, VR, light fields, AR to

point clouds.

11.3.2 Test Material

Three different super multi-views sequences are utilized in this study. These three sequences are ‘champagne

tower’ (CT), ‘pantomime’ (P) and ‘big buck bunny flowers’ (BBBF). The description of the three SMV sequences



11.3. IMPACT OF NAVIGATIONS SCAN-PATH ON PERCEIVED QUALITY: FREE NAVIGATION VS. PREDEFINED TRAJECTORIES 103

is summarized in Table 11.4. They were also selected as test materials in [170]. For each of the 3 SRC sequences,

20 HRCs, are selected, covering 5 baselines and 4 rate-points (RP). In addition, 2 HRTs are also included to

generate 120 PVSs. Details on these parameters (selected after a pretest with expert viewers) are described in

the following subsections.

Table 11.4 – Information of the sequences, including properties and selected configuration (rate-point and
baseline distance).

Name Views Resolution Fps Seconds Frames QP values Baseline DistanceRP1 RP2 RP3 RP4
BBBF 91 1280 x 768 24 5 121 35 - 45 50 B0, B2, B5, B9, B13

CT 80 1280 x 960 29.4 10 300 37 43 - 50 B0, B4, B8, B12, B16
P 80 1280 x 960 29.4 10 300 37 43 - 50 B0, B2, B6, B12, B16

11.3.2.1 Camera Configuration

For each SRC, 5 stereo baseline values, as summarized in Table 11.4, are selected in the test including the

setting Setb0 without using synthesized views. The baseline is measured based on the camera distance/gap

between the left and right real views. Here, Bi or bi represents the stereo baseline distances that were settled

to generate the synthesized virtual views, where i is the number of synthesized views between two reference

views. Figure 11.5 illustrates the baseline setting for synthesized views generation in the subjective study. For

instance, for camera setting Setb4 in the upper part of Figure 11.5, between each pair of views that captured

by original cameras (indicated by two closest black cameras in the figure) there are four virtual views that are

synthesized using them as left and right reference. In this case, the baseline distance is 4, denoted as b4. For

example, in the lower part of Figure 11.5, for SetR1
b4 , between each two transmitted encoded views, there are

totally 4 virtual synthesized views are generated.

Figure 11.5 – Camera arrangements (1) The upper part of the figure is the configuration designed in [93, 94]
where the black cameras represent the sequences taken with real original cameras while the white ones indicate
the synthesized view using the original ones as references. (2) The lower part of the figure is the camera
configuration in our experiment, where the deep blue camera represents the encoded/transmitted sequences
taken from the corresponding original camera and the lighter blue ones indicate the synthesized ones using the
encoded ones as references.
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11.3.2.2 3D-HEVC Configuration

In this experiment, HTM 13.0 in 3D high-efficiency video coding (3D-HEVC) mode is used to encode all the

views of the three selected SMV sequences. These encoded views along with the selected original ones are used

as the reference views in the following synthesis process, which are also named as ‘anchors’. The configuration

of the 3D-HEVC encoder recommended in [170] is adopted in this experiment. Specifically, taking into account

the contents and the limitations of the duration of subjective experiment tests, 3 rate-points, as summarized

in Table 11.4, are selected for each SRC according to the results of the pretest. For each content, the original

sequences without compression are included in the experiment and are denoted as RP0.

11.3.2.3 Depth Maps and Virtual Views Generation

In this study, reference software tools are used for the preparation of the synthesized views, including depth

estimation reference software (DERS) and view synthesis reference software (VSRS). Both of them have been

developed throughout the MPEG-FTV video coding exploration and standardization activities. To generate

virtual views with reference sequences taken by real cameras, depth maps, and related camera parameters are

required. For sequences ‘CT’ and ‘P’ [171], since original depth maps were not provided, DERS v6.1 is used to

generate depth maps for each corresponding view. Relative parameters are set as recommended in [172, 173].

For synthesized views-generation, the version 4.1 of VSRS is applied. For each corresponding content, the

configuration of the relative parameters is set according to [173].

11.3.2.4 Navigation Trajectory Generation

Figure 11.6 – Description of generated trajectories. In the figure, red cameras indicate views contain important
objects while the black ones represent the one mainly contain background (1) Left T1 : Sweeps (navigation
path ) are constructed at a speed of one frame per view (as what is done in MPEG) (2) Right T2 : Sweeps
(navigation path ) are constructed at a speed of two frames per view.

One of the purposes of this study is to check whether semantic contents (e.g. moving objects) of the videos

and how the navigation trajectories among views will affect the perceived quality. Therefore, different HRTs are

considered in this study, generating sweeps that focus more on important objects since human visual system
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tends to attach greater interest on ‘regions of interest’ (ROI) [174] that contain important objects. Specifically,

the following two HRTs are chosen from the pretest session (because human observers may pay more attention

and even stop navigating to observe targeted objects in the video). These two HRTs are denoted with T1 and

T2 as depicted in Figure 11.6: (T1) An ‘important-objects HRT’ that first scans from the left-most to the right-

most views to observe the overall contents in the video, then scans back to the views that contain the main

objects and looking left and right around the central view that contain the objects several times at a velocity

of one frame per view (1fpv); (T2) An ‘important-objects-stay HRT’ that first scans from the left-most to the

right-most views to observe the overall content in the video, then scans back to the views that contain main

objects at a velocity of 2fpv and finally stays in the central view that contains the main object. Due to the

limitation of resources, only two trajectories are considered in this study as initial exploration.

11.3.3 Test Methodology

Absolute category rating with hidden reference (ACR-HR) [175] is adopted for this subjective experiment.

The observers watch the test videos sequentially, and after each one, they provide a score using the five-level

quality scale. For this purpose, an interface with adjectives representing the whole scale is shown until the

score is provided before next text video is displayed. Additional, the test videos are shown to each observer in

different random orders, and each of them is shown only once. At the beginning of the test session, an initial

explanation is given to each participant indicating the purpose and how to accomplish the test. Then, a set of

training videos are presented to the observers to familiarize them with the quality range of the content. The

entire session for each observer lasts 30 minutes.

11.3.4 Environment and Observers

The test sequences are displayed on a professional screen TVLogic LVM401W, using a high-performance

computer. Observers are provided with a tablet connected to the displayed computer for voting. The test room

is set up according to the ITU recommendation BT.500 [176]. The walls are covered by gray-color curtains, and

the lighting conditions are regulated accordingly to avoid annoying reflections. Moreover, a viewing distance of

3H (H being the height of the screen) is chosen.

There are 33 participants in the subjective test, including 21 females and 12 males, with ages varying from 19

to 42 (average age of 24). Before each experimental trial, observers are screened for correct visual acuity and color

vision using the Snellen chart and Ishihara test, respectively. All of them report normal or corrected-to-normal

vision. After the subjective test, the obtained scores are screened according to the procedure recommended by

the ITU-R BT.500 [176] and the VQEG [169]. As a result of this screening, data of four observers were removed.

11.3.5 Subjective Experiment Results and Analysis

The result of the subjective test is depicted in Figure 11.7, where each sub-graph summarizes the mean

opinion score (MOS) (with confidence intervals [176]) for each content in each virtual sweep. Apart from MOS,

the differential mean opinion score (DMOS) is also provided along with the dataset, computed from the hidden

references according to [175]. As required for a quality dataset, the MOS values are well distributed covering

almost the whole rating scale. In addition, in order to verify whether different baselines (B), rate-points (RP)

and, especially, virtual trajectories (T) have significant impacts on perceived quality, a three-way analysis of
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(a) Sequence BBB Flowers with T1 (b) Sequence BBB Flowers with T2

(c) Sequence Champagne with T1 (d) Sequence Champagne with T2

(e) Sequence Pantomime with T1 (f) Sequence Pantomime with T2

Figure 11.7 – MOS of the sweeping sequences with different rate-points (RP), different baselines (B) and different
sweeping trajectories (T) in the FVV dataset.
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variance (ANOVA) is performed. Considering the results of this test and the results illustrated in Figure 11.7,

the following main conclusions could be made:

� With a same configuration (i.e., baseline, rate-point, and trajectory), the quality obtained with different

contents are significantly different.

� The effects of view-synthesis and compression artifacts are obvious, as shown when considering how the

perceived quality changes with only baseline (for a given RP), or with only bitrate (fixing the baseline).

The accumulation of the effects can be also observed in the scores for the tests sequences with combined

degradations.

� The three considered factors, specially trajectory T , have significant impact on the perceived quality

(p = 0 for B and RP , and p = 0.038 for T ).

� Regarding interaction among the considered factors, the interaction between baseline distance and coding

quality has a significant effect on the MOS scores (p = 0).

Following are more detailed analysis of the impact of trajectory on perceived quality:

1. The averaged MOS values (averaged contents ‘CT’, ‘P’, ‘BBBF’ and conditions) of sequences in form

of T2 are smaller than the ones of T1. Apart from ANOVA test, to further confirm the impact of the

navigation trajectory on perceived quality, the dataset is divided into two sets based on which trajectory

the sequences are generated with. A t-test is conducted by taking the pairs of sequences in form of T1 and

T2 with same baseline, rate-point configuration as input. According to the result, there is a significant

difference between the quality of these two sets (i.e., T1 and T2).

2. Certain contents are more sensitive to certain trajectories. To further check whether the impact of certain

trajectories depend on the content of the sequences, another t-test is conducted. More specifically, for each

content, pairs of sequences that generated with the same baseline and ratepoint but different trajectory

are first formed. Then, a t-test is conducted by taking the individual subjective scores (opinion scores

from all the observers) of each pair of these sequences as input. According to the t-test result, for

content ‘C’, 50 % of the pairs are of significantly different perceived quality. However, for content ‘CT’

and ‘BBBF’, only around 10% of pairs are of significantly different quality. It is proven that the impact

of the trajectory on quality is content dependent. In other words, ‘extreme trajectory’ of videos with

different contents are different.

3. Whether the quality of sequence in the form of one trajectory is higher than another depends also on

the quality range (regarding baseline and rate-point setting). The results of t-test taking individual

subjective score of each trajectory pair as input also shows that, for content ‘C’, videos that in the form

of T2 are of better quality than the ones in T1 when quality is higher than a certain threshold (smaller

baseline or smaller rate-point) and vise versa. For example, for content ‘C’ with rate-point larger than

RP2, sequence in form of T1 is better than the one in form of T2.

In conclusion, it is confirmed by the subjective study that there is an impact on perceived quality from

navigation trajectory. It is found that content related trajectory can stress the system one step further for a

more extreme situation. Therefore, image/video objective metrics that are able to indicate sequences in the

form of one trajectory is of better quality than another is required to push the system to its limit according to

the contents. To meet this need, a video quality metric is introduced in the next section by extending ST-IQM.
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11.4 Sketch-Token based Video Quality Assessment Metric (ST-

VQM)

Considering the facts that 1) content related trajectory is able to stress the system; 2) content is related

to structure; 3) geometric distortions are the most disturbing degradations that interrupt structure introduced

by view synthesis, in this section, ST-IQM metric is extended for video quality assessment as ST-VQM. Since

temporal structure inconsistencies are the most upsetting degradations in synthesized sequences, the main idea

of the proposed method is to assess the quality of the sweeping videos by quantifying to the changes of contour

category change due to synthesis/compression distortions or transition among views.

Figure 11.8 – Overall framework of the proposed objective metric: (a) Reference image (on the left) and
synthesized image (on the right); (b) Extracted SURF key-points of the reference and synthesized images;
(c) Matched key-points from the reference to the synthesized image; (d) Extracted ST feature vector of the
corresponding patches and its visualization of each contour category.

As mentioned in section 11.2, one of the disadvantages of ST-IQM is related to its complexity. Image

registration stage is the bottleneck of the metric. In order to improve the efficiency of ST-IQM for efficient

video quality assessment, ST-IQMimp, an improved version of ST-IQM, is proposed in this section by replacing

image registration stage with the sensitive/distortion regions selection methodology proposed in section 8.2.1.

Then, ST-VQM is proposed by combining the improved spatial estimator ST-IQMimp and one sketch-token

based temporal estimator (ST-T). The framework of ST-IQMimp and ST-T are represented in Figure 11.8 and

Figure 11.9 respectively. For ST-IQMimp, after incorporating sensitive regions selection procedure proposed

in 8.2.1 to ensure shifting resilience. The sensitive regions selection process is based on SURF points detection

and matching as depicted in section 8.2.1. Similarly, the obtained selected sensitive regions are actually matched

patches whose centers are the matched SURF points in synthesized and reference frames. With the selected

sensitive regions, ST descriptors are then extracted from these matched patches. In particular, ST descriptor

represents each matched patch with a vector showing the likeliness of the existence of each contour class in

the dictionary. Once the contour feature vectors from the reference and the distorted frames are obtained,

a dissimilarity value is computed for each matched patches. Then, by pooling all the dissimilarity values
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(calculated based on the matched patches) using a minkowski summation, a global value representing the

spatial dissimilarity of the whole frame can be then obtained as ST-IQMimp. For ST-T, a temporal vector

is computed by concatenating the spatial difference between each frame pair in the synthesized and reference

sequence. Afterwards, the temporal inconsistency could be quantified by calculating the distance between the

obtained temporal vectors of the synthesized and reference sequences. In the end, the spatial (ST-IQMimp) and

temporal (ST-T) structure dissimilarities are combined to get the final objective score for the sequence. Details

of each part of the proposed model are given in the following subsections.

11.4.1 Local Sensitive Regions Selection

Local regions selection is essential for the later evaluation of the quality of DIRB-based synthesized views as

already described in section 8.2.1 (mainly three reasons). Therefore, the same local distortion regions selection

method proposed in section 8.2.1 is incorporated in this model to improve its efficiency.

The process of sensitive regions selection is summarized by the red dash bounding box in Figure 11.8. First

SURF feature points (i.e. Fori and Fsyn) are extracted from both original Iori and synthesized frames Isyn. Then

SURF points matching between the two frames is achieved following the reference method in [145] (the original

frame is considered as the reference for this matching process). Pairs of interest points that have significantly

different x and y values are discarded. They are considered as not plausible matched regions from the synthesis

process. The patches Pori, Psyn centered at the corresponding matched SURF points in synthesized and original

images are considered. The size of these patches is set as 35×35 to match ST formalism as introduced by [164].

The matching relation for all patches is encoded in a matching matrix MRS
match(xr, yr) = (xm, ym), where

(xr, yr) corresponds to the coordinate of one SURF point of the patch in the reference frame and (xm, ym) is

the coordinate of its matched SURF point of the patch in the synthesized frame. Different from the matrix

Mmatch in section 11.2, MRS
match is obtained by sensitive regions selection.

To illustrate the capability of SURF for selecting sensitive regions, an example is presented in Figure 11.8

(e). The error maps are generated with the synthesized and the reference images as introduced in [144]. The

darker the region, the more distortions it contains, as depicted in the top part of the dashed bounding green box

in Figure 11.8 (e). The red bounding box in the lower part of Figure 11.8 (e) represents the sensitive regions

as extracted by the proposed process. It can be observed that, the majority of regions containing severe local

distortions are well identified by this process.

11.4.2 Improved Sketch-Token based Spatial Dissimilarity

Similar to ST-IQM, the dissimilarity between each matched contour vectors is computed with Mref , Msyn

and MRS
match using Jensen–Shannon divergence. For each matched interesting key point pixel (xr, yr) in the

reference image, the corresponding coordinate of its matched key point in the synthesized image is given by

MRS
match(xr, yr) = (xm, ym). The contour descriptor of each pixel after region selection is stored in the afore-

mentioned contour feature maps, where MRS
ref (xr, yr) = V RSref (xr, yr) and MRS

syn(xm, ym) = V RSsyn(xm, ym). Then,

the dissimilarity between the matched patches centering at (xr, yr) and (xm, ym) respectively can be calculated

using equation (11.3) and the final improved ST-IQMimp can be calculated using
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ST -IQMimp(Iref , Isyn) =

[
∑

Npixel

DJSD(V RSref (xr, yr), V RSsyn(xm, ym))βST ]
1

βST

Npixel
,

(11.6)

where Npixel is the total number of pixels in the frame and βST is a parameter corresponds to the β − norm

defining the Lβ vector space.

11.4.3 Sketch-Token based Temporal Dissimilarity

Sweeping between views introduces and amplifies specific structure related temporal artifacts, including

flickering, temporal structure inconsistency, etc. Among them, temporal structure inconsistency is usually the

most sensitive artifacts for human observers since they are usually located around important moving objects and

are easier to be noticed compared to other temporal artifacts. To quantify temporal structure inconsistency,

Figure 11.9 – Diagram of sketch-token based temporal distortion computation, where F is the total frame
number of the sequence.

the dissimilarity score between each pair of continuous frames is computed using the proposed sketch-token

model introduced in section 11.4.2. In section 11.4.2, ST-IQMimp is used to quantify the difference of structure

between synthesized and its reference frames (the original purpose of this framework). It can also be used to

encode and describe how structures are evolving from one frame to another along a given sequence. Temporal

structure changes as observed in FVV should affect this description. This approach is exploited to refine the

quality estimation in case of FVV in order to capture temporal structure inconsistency.

How the sketch-token based temporal distortions are quantified is explained in Figure 11.9. More specifically,

for each pair of continuous frames of a sequence S, f i and f i+1, ST − IQMimp(f i, f i+1) is computed using

equation (11.6). A temporal vector V tem can be formed considering all frames of the sequence (each component

of the vector corresponding to ST − IQMimp(f i, f i+1)). The sketch-token based temporal dissimilarity (ST-

T) between the original and the synthesized sequences is defined as the euclidean distance between the two

temporal vectors of the original and the synthesized sequence:

ST -T (Sori, Ssyn) = De(V temori , V
tem
syn ) (11.7)
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where De(·) is the euclidean distance function.

11.4.4 Pooling

With the improved spatial sketch-token based score (ST − IQMimp) and the temporal sketch-token based

score (ST-T), they are then combined to produce an overall quality score defined as:

ST -V QM = wS · ST -IQMimp + wT · ST -T + γST (11.8)

where wS , wT are two parameters used to balance the relative contributions of the spatial and temporal scores

with a bias term γST . The selection and the influence of the related parameters will be given in section 11.4.5.

11.4.5 Experiment Results of the Proposed ST-VQM

The FVV dataset described in section 11.3 is adopted for the evaluation of ST-VQM’s performance. For

comparison, only image/video measures designed for quality evaluation of view-synthesis artifacts are tested

since commonly used metrics fail to quantify geometric distortions as already reported in section 3.2. To

compare the performance of the proposed metric with other metrics, the standard criteria including PCC,

SCC, and RMSE between the subjective scores and the objective ones are used after applying a non-linear

mapping over the measures [169]. For image quality metrics, their corresponding spatial objective scores are

first calculated frame-wise, and the final object score is computed by averaging the spatial scores.

Table 11.5 – Performance comparison of the proposed metric with metrics designed for synthesized views in
FTV scenario

PCC SCC RMSE
Image Quality Metrics

3DSwIM [33] 0.5230 0.5649 0.8640
MW-PSNR [144] 0.5705 0.8192 0.8304
MW-PSNRr [76] 0.5779 0.8295 0.8252
MP-PSNR [143] 0.5706 0.8299 0.8304
MP-PSNRr [76] 0.5603 0.8319 0.8377
ST-IQMimp 0.8805 0.8511 0.4793

Video Quality Metrics
Liu-VQM [60] 0.9286 0.9288 0.3753

ST-T 0.8336 0.8926 0.4837
ST-VQM 0.9509 0.9420 0.3131

The overall results are summarized in Table 11.5 and the best performance values are marked in bold. As

it can be observed from Table 11.5, ST-VQM, Liu-VQM are the two best-performing metrics, with PCC equals

to 0.9509, 0.9286 correspondingly. To check whether the differences between those values are significant, a

t-test is carried out taking the difference of the predicted score between DMOS and Liu-VQM, and the one

between DMOS and ST-VQM as inputs. The results show that our proposed metric significantly outperforms

the second best performing Liu-VQM. As it can be observed from Table 11.5, the performances of the image

metrics, including MW-PSNR and MP-PSNR, are very limited. These results could be explained by: (1) they

over-penalize the consistent shifting artifacts, and (2) these measures do not take into account the temporal

distortions.
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Table 11.6 – Performance comparison of metrics for distinguishing sequence in different trajectories

AUCDS AUCBW CC
Image Quality Metrics

3DSwIM [33] 0.4603 0.8311 0.8667
MW-PSNR [74] 0.5571 0.6889 0.6000
MW-PSNRr [76] 0.5317 0.6933 0.6667
MP-PSNR [75] 0.5079 0.7022 0.6667
MP-PSNRr [76] 0.5238 0.6933 0.6667
ST-IQMimp 0.5016 0.7244 0.6000

Video Quality Metrics
Liu-VQM [60] 0.6270 0.8311 0.7333

ST-T 0.5857 0.8800 0.8000
ST-VQM 0.6762 0.8933 0.8667

As it has been verified in the subjective experimental results in the previous section, navigation scan-paths

affect the perceived quality. Therefore, it is important for an objective metric to point out whether the perceived

quality using a given trajectory is better than using other trajectories. As thus, the metric can be used to evaluate

the limit of the system in worse navigation situations. To this end, the Krasula performance criteria [110,111] is

used to assess the ability of objective quality metrics to estimate whether one trajectory is better than another

with the same rate-point and baseline configurations regarding perceived quality. Pairs of sequences generated

with the same configurations but in form of T1 and T2 in the dataset are selected to calculate the area under

the ROC curve of the ‘Better vs. Worse’ categories (AUCBW ), area under the ROC curve of the ‘Different vs.

Similar’ category (AUCDS), and percentage of correct classification (CC) (see [110,111] for more details). More

specifically, since pairs are collected in the form of (T1, T2) with other parameters fixed, if one metric obtain

higher AUCBW , it shows more capability to indicate that sequences with certain trajectory are better/worse

than sequences with another trajectory. Similarly, if the metric obtain higher AUCDS , then it can better tell

whether the quality of one sequence in the form of one trajectory is different/similar to the one in the form of

another trajectory. Results are reported in Table 11.6. As it can be observed, the proposed metric obtains the

best performance regarding the three evaluation measures. It is proven that the proposed ST-VQM is capable of

quantifying temporal artifacts introduced by views switch. More importantly, ST-VQM is the most promising

metric in decidng sequence generated in the form of which trajectory is of better quality than another.

11.4.6 Selection of Parameters

The performance of a reliable VQM should not vary significantly with a slight change of the parameters.

In this section, an analysis of the selection of the parameters of the proposed metric is presented. In order

to properly select wS , wT and γST in equation (11.8), as well as to check the performance dependency of the

parameters, a 1000 times cross-validation is conducted. More specifically, the entire dataset is separated into

a training set (80%) and testing set (20%) 1000 times, and the most frequently occurred value will be selected

for the corresponding parameter. Before the validation test, we first multiply ST -IQM by 1010 and ST -T by

105 so that the difference between the corresponding parameter wS , wT will be smaller making it easier for

later visualization (it has to be pointed out that this operation does not change the performance). The values

of the three parameters with the corresponding PCC values across of 1000 times cross-validation are shown in

Figure 11.10 (d). It can be observed that both the values of the three parameters and the performance do not

change significantly throughout 1000 times, which verifies the fact that the performance of the metric does not
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change dramatically along with the modification of the parameters. Figure 11.10 (a)-(b) depicts the histograms

of frequencies of the three parameters’ values respectively. As it can be observed that wS = 0.28, wT = −0.43

and γST = 3.26 are the three most frequent value among 1000 times. They are thus selected and fixed for

reporting the final performance in Table 11.5 and 11.6. The mean value of PCC, SROCC, and RMSE of the

proposed metric across the 1000 times is 0.9513, 0.9264 and 0.2895 correspondingly, which are close to the

performance values reported in Table 11.5 with the selected configuration.

Subsequently, the performance dependency of the proposed algorithm on the exponent variable βST in

equation (11.6) and the distance approaches has been reported and examined in [177]. Therefore, in this

section, the same βST = 4 and the Jensen Shannon divergence are selected.

(a) (b) (c)

(d)

Figure 11.10 – (d) Values of wS , wT , γST and their corresponding PCC values across 1000 times cross validation.

11.4.7 Execution Time

Moreover, to check the time complexity of the proposed ST-VQM compared to the second best performing

video quality metric Liu-VQM, execution time of the metrics normalized by PSNR as introduced in section 4.4

are listed in Table 11.7. It can be observed from the table that the proposed ST-VQM is slower than Liu-VQM.

However, since the gain of the ST-VQM compared to the second best performing metric is significant (according

to t-test result: p-value=10−4), it is acceptable if the running time is longer.
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Table 11.7 – Execution time of proposed metric compared to state-of-the-art metric

Metric Liu-VQM ST-VQM
Normalized time 20K+ 62K+

11.5 Conclusion

11.5.1 Conclusion of Subjective Study on Navigation Trajectories’ Impact on Per-

ceived Quality

Compression and views synthesis are the two main sources of degradations in the FVV scenario. Therefore, in

the subjective study of this chapter, different configurations of the state-of-the-art software for views compression

and view-synthesis have been considered. In addition, following the approach of using simulating navigation

trajectories of immersive media that the users may employ to explore the content, two different trajectories

(referred as hypothetical rendering trajectories) have been used to study their impacts on the perceived quality.

Knowing these possible effects may help on the identification of critical trajectories that may be more suitable

to carry out quality evaluation studies related to the benchmark of systems in the worst cases. Also, it must

be pointed out that the sweeps that generated in this test focus more on views that contain regions of interest

(e.g., moving objects) in videos since human observers are more interested in them and even stop navigating

after these regions show up. By analyzing the subjective results, we find that the way of how the trajectories

are generated affects the perceived quality. In addition, the dataset generated for the subjective tests (FVV),

along with the obtained subjective scores, is made available for the research community of the field.

11.5.2 Conclusion of ST-IQM and ST-VQM

ST-IQM At the beginning of this chapter, a sketch-token based image quality assessment metric has been

proposed by quantifying the change of contours’ classes. Among the compared metrics including MW-PSNR

and MP-PSNR, the proposed ST-IQM metric performs the best and shows great improvement. Visualized

results have also showcased the capacity of the proposed metric to detect as well as to quantify the amount of

structure related artifacts generated during DIBR process around disoccluded regions.

ST-VQM Aiming at better quantifying the structure related distortions in sequences generated in FVV

systems, a sketch-token based video quality metric is proposed by checking how the classes of contours change

between the reference and the degraded sequences spatially and temporally. The results of the experiments

conducted on the FVV dataset has shown that the performance of proposed ST-VQM is promising. More

importantly, ST-VQM is the best performing metric in predicting if sequences that are in the form of a given

trajectory are of higher/lower quality than sequences that are in the form of other trajectories, with respect to

subjective scores.
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Encoding Structure Information with

Context Tree Encoder

12.1 Introduction

In this chapter, the second mid-level representation based model is presented. As mentioned in section

10, there is an ’entropy encoding’ like mechanism in human brain to proceed low-level features into mid-level

representations. Hence, entropy-based contour encoder is explored in this chapter for quality assessment of

synthesized views in FTV scenario in this chapter.

Recently, Zheng et al. [178] proposed to use geometric prior with context tree (CT) for contour coding. In

their proposed scheme, object contours composed of contiguous between-pixel edges were first converted into

sequences of directional symbols by using differential chain code (DCC) [179]. For example, in Figure 12.1,

a contour that has Nep contiguous edge pixels can be represented with a symbol string as c = [x0, ..., xNep ].

For the starting point of the contours x0, the possibility of four directions, including north, east, south, and

west were assumed to be equal. These four directions are shown in Figure 12.1(f). For any other subsequent

DCC symbol xi, i > 1, only three relative directions are possible with respect to the previous symbol xi−1:

left (l), straight (s) and right (r), as shown in Figure 12.1(e). With one generated training DCC set (e.g., all

the contours represented with DCC), an optimal variable-length context tree (CT) [180, 181] TCT is computed

and all the symbols of contours could be then encoded with arithmetic coding [182] using the trained context

tree. To obtain the context tree, a maximum a posterior (MAP) formulation for estimating symbol conditional

probability was designed in [178]. Since the encoding scheme is designed based on contours, it can be utilized

and served as a tool for quantifying perceptual annoyance of structure-related distortions reflecting in quality

score. For example, suppose there are a great amount of geometric distortions within one synthesized view.

When using this model to encode the contours, the bits assignment are supposed to be different from their

reference view since the sequences of symbols (contours) are different. Ideally, the more structure-related
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distortions/loss (i.e., contour changes) there are, the larger the gap there is between the encoding cost of the

synthesized and the reference view. Based on the discussion above, in this part of the thesis, we investigate the

relationship between the dissimilarity in encoding cost and the perceptual annoyance. By hypothesizing that

the dissimilarity in encoding cost computed using the context tree based contour coding model is relevant to

perceptual quality score, we propose a context tree based image quality assessment metric (CT-IQM) in the

context of free-viewpoint TV.

Figure 12.1 – (a) A patch from one reference image. (b) A patch from one synthesized image. (c) Contour
in reference patch represented by four-connected chain code. (d) Contour in synthesized patch represented by
four-connected chain code. (e) Direction code for the non-starting point (f) Direction code for the starting
point.

In general, the strength of the proposed metric is three folds:

(1) It is capable of quantifying overall structure/contour loss (due to geometric distortions) by firstly repre-

senting contours with differential chain code (DCC) and secondly calculating the difference between encoding

cost of contours in synthesized and reference images with the learned CT: For example, in Figure 12.1, (c) is

the rough DCC representation ( actual chain is much longer since each node in the subfigure corresponds to one

pixel in the image ) of the contour Cori in an original image patch as shown in (a), while (d) is the one of the

corresponding contour Csyn in a synthesized image patch as shown in (b). It can be observed that the chain

code of Cori : south− s− s− l − r − l − r − s− s− r − l − r − l − r − l − r is totally different from the one of

Csyn : south − s − s − s − s − s − s − s − s − s − r − s − s − s. By using CT tree, the change of contours, as

well as structure, could be quantified indirectly. Further introduction of DCC and CT is given in section 12.2.

(2) It is robust to consistent global shifting: For example, suppose Cori in Figure 12.1 (a) has shifted slightly

to one direction, its corresponding chain code remain unchanged as ′south − s − s − l − r − l − r − s − s −

r − l − r − l − r − l − r′. In our proposed scheme, shifting artifacts are captured but not be over-penalized by

dissimilarity in contour characteristics (i.e., dissimilarity in the coordinates of contours’ starting points).

(3) Deformations of straight contours are penalized sufficiently. In [178], to avoid overfitting due to the lack

of enough training data, a geometric prior was proposed and formulated as straightness of all the contexts in one

learned context tree. For instance, for one straight contour in one reference view, the curvier the corresponding

contours in the synthesized view, the more different the encoding cost will be. Since deformations of straight

contours are more severe for human observers, the metric can be benefited by the design of the context tree.
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12.2 Context Tree based Image Quality Assessment Metric (CT-

IQM)

The overall framwork of the proposed scheme is illustrated in Figure 12.2. First of all, edges in reference

and synthesized views Eref , Esyn are detected with gradient based approach proposed in [183]. Afterwards, as

showed in Figure 12.2, the following process is composed of two parts (bounded by blue and red dashed box

correspondingly):

(1) Overall structure/contour dissimilarity is computed based on variable-length context tree: The detected

edge/contour sets Eref , Esyn are first converted into differential chain code (DCC) and represented by sets of

symbol strings Xref , Xsyn. For each set of synthesized images whose reference is Xref , one optimal context tree

T ∗CT is learned with Xref . After getting T ∗CT , the encoding cost of the target synthesized view ECsyn as well as

the one of its reference ECref are calculted using the scheme proposed in [178]. Then the structure dissimilarity

Dsl between the original and the synthesized view is obtained by subtracting the normalized ECref from the

normalized ECsyn.

(2) Overall dissimilarity in contour characteristics is computed by considering contour statistics: After

edge detection and DCC conversion, contour characteristics including coordinates of contours’ starting points,

the total number of contours and the total number of symbols from both original and synthesized views are

calculated. The dissimilarities between these statistical information Dcs are then computed.

Finally, the proposed context tree based image quality assessment metric (CT-IQM) is designed by combining

Dsl and Dcs. More details are given in the following subsections.

Figure 12.2 – Overview framework of the proposed metric

12.2.1 Context Tree based Overall Structure Dissimilarity

The overall scheme of the context tree based structure dissimilarity calculation can be concluded as below.

In order to quantify the overall difference in contour structure, the dissimilarity values of encoding cost between

the reference and synthesized views are calculated referring to the context tree based encoding scheme proposed
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in [178]. Different from [178], for each set of synthesized images created with the same source, one independent

optimal context tree is trained using only the reference view (e.g., for synthesized images IA1 , ..., IA7 , whose

correspondence image is Iref , the optimal context tree is trained using all the contours detected from Iref )

since the purpose is to check how the structure of the image changes after synthesis. With the trained tree

obtained using contours in Iref , one can then calculate the encoding cost of the synthesized images Isyn as well

as the one of Iref . In the beginning, each detected contour in the reference image and the target synthesized

image is converted into a differential chain code (DCC) [179](each differential chain code is a string of symbols).

Here, each reference image is considered as the training image for its corresponding synthesized images. Each

symbol in the string is chosen from a size-three alphabet (left, straight, right) as described in [178]. For each

reference image, an optimal context tree T ∗CT is then constructed with the DCC strings in this original image

via solving a maximum a posterior (MAP) problem referring to [178]. With the context tree, the conditional

probability distribution of each symbol in an input DCC string (corresponding to a contour in the target image)

can be identified. Afterward, the coding costs of an image could be obtained by computing the sum of all the

encoding cost of all the symbols within it. The encoding cost of symbols are computed using the arithmetic

coding with the context trees T ∗CT by taking each DCC as input. Then, the global structure difference between

a synthesized image and its reference is calculated by subtracting the encoding cost of the synthesized image

from the one of the reference. Details of related definitions and the process of training a context tree are given

below.

Figure 12.3 – An example of a context tree where each node is a sub-string and the root
node is an empty substring. The contexts are all the end nodes of the tree: TCT =
{ll, lsl, lss, lsrl, lsrs, lsrr, lr, sl, ss, srl, srsl, srsl, srss, srrr , srr, rl, rs, rr}

Suppose there areM DCC strings (contours) in a given reference image Iref , then all these strings constitute

a training set X = {x(1), .., x(m), .., x(M)}. Each string is composed of a series of symbols and the length of

x(m) is denoted as lm. The total number of symbols in each Iref is equal to L =
∑M
m=1 lm. Given a sub-string

xba = [xb, xb−1, ..., xa] , where a < b and a, b ∈ Z+, the number of occurrences of sub-string in the training set

is defined in [178] as:

N(xba) =
M∑
m=1

lm−|xba|+1∑
i=1

1
(
x(m)i+|x

b
a|−1

i = xba

)
, (12.1)
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where |xba| = b − a + 1 is the length of the sub-string, and 1(e) is an indicator function that equals to 1 if the

expression e returns ’true’ and 0 otherwise. Given Iref and its corresponding strings set Xref , P (x|xba) can be

estimated by,

P (x|xba) = N(< x, xba >)
N(xba) , (12.2)

where N(xba) denotes the occurrence of substring xba in Xref and < x, xba > denotes the concatenation of sub-

string x and xba. In order to calculate the conditional probability P (xi | xi−1
1 ) of any symbol xi given with all

its previous symbols xi−1
1 , a model needed to be trained to determine a context w. In [178] , w = xi−1

i−l was

defined as an l long prefix of the sub-string of xi−1
1 so that

P (xi | xi−1
1 ) = P (xi | w), (12.3)

where P (xi | w) is calculated with (12.2). All the possible mappings from xi−1
1 to w can be then represented

as a context tree TCT . This context tree TCT is a full ternary tree where each node of the tree has either zero

children or all three children. The sub-strings of the end nodes are the contexts of the tree. For each xi−1
1 , a

context w can be obtained by traversing TCT from the root node until an end node to get a matching path

with a series of symbols xi−1, xi−2...x2. Figure 12.3 is an example explaining a context tree TCT . For example,

context ’lsrl’ can be obtained by traversing from the root node to the leaf node ’lsrl’ by passing symbols ’l’,’s’,’r’

and ’l’ one by one.

With a set of all the DCC strings Xref in the reference image Iref , the purpose is to select the optimal tree

T from all the possible context trees for later evaluation of structure/contour loss between synthesized images

and their corresponding source. First of all, the posterior probability of TCT given Xref is given via Bayes’ rule:

P (TCT |Xref ) = P (Xref |TCT )P (TCT )
P (Xref ) , (12.4)

where P (TCT ) is the prior that describes a priori knowledge about the context tree. The likelihood term is

defined as the joint conditional probability of all the symbols in Xref with their past and T . It is reformulated

as (12.5) since the prefix w of the past symbols x(m)i−1
1 of each symbol x(m)i can be settled to calculate the

conditional probability:

P (X | TCT ) =
∏

w∈TCT

∏
x∈D

P (x | w)N(<x,w>) (12.5)

In [178], to avoid over-fitting, a geometric prior is proposed and defined as the sum of straightness s(w) of

all the contexts w in one tree TCT based on the assumption that contours in natural image are more likely to

be straight than curvy.

The context w to a shape segment on a 2D grid with |w|+ 2 points is mapped from the most recent symbol

w|w| to the symbol w1 furthest in the past plus an initial edge. Afterwards, the straightness of w is computed

as the maximum distance from any point pk, 1 5 k 5 |w|+ 2 to a straight line f(p1, p|w|+2) that connect point

p1 and p|w|+2:

s(w) = maxdist(pk, f(p1, p|w|+2)). (12.6)

Then, the prior term P (TCT ) in (12.3) is defined based on the sum of the straightness s(w) of all contexts w in
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the context tree as below:

P (T ) = exp

(
−θCT

∑
w∈TCT

s(w)
)
, (12.7)

where θCT is a constant defined in [178]. Finally, the optimal context tree problem can be solved by MAP

estimation formulated as:

T ∗CT = arg min
TCT∈FCT

P (Xref |TCT ), (12.8)

where FCT is a context forest constituted of all possible context trees.

During the optimization procedure, an initial tree T 0
CT is first constructed with the reference image. Then

T 0
CT is pruned to obtain the optimal context tree T ∗CT as described in [178].

After obtaining the optimal context tree T ∗CT for each reference image, one can calculate the structure/contour

loss between one synthesized image and its reference image by calculating the difference in coding cost using

adaptive arithmetic coding with T ∗CT . For each symbol xi in the contours represented by DCC strings of the

target synthesized image, the matched context w = xi−1
i−|w| of xi is found first. With w, the corresponding

conditional probability distribution P (xi|w) is then computed with T ∗CT . Then, the distribution is inputted

into an adaptive arithmetic coder to encode xi. The encoding cost of all the symbols in the synthesized im-

age ECctsyn can be then acquired and used to compare to the one of the reference. To get the final structure

loss, the context tree based encoding cost of both the synthesized and reference images are normalized by the

corresponding number of symbols. The context tree based overall structure/contour dissimilarity is defined as

Dsl = |ECref
|Xref |

− ECsyn
|Xsyn|

|, (12.9)

where |Xref | and |Xsyn| is the total number of symbols in the reference and synthesized views correspondingly.

It has to be pointed out that the value of Dsl between a synthesized view with a considerable amount of

disturbing geometric distortions and its reference could be large. Due to geometric distortion, the matched

context wsyn of one symbol xsyn is different from the one of the correspondence symbol xori in the reference

image. Therefore, the encoding cost is different. From an overall point of view, the more geometric distortions

there are, the larger the difference between the encoding cost of the reference and the synthesized image.

12.2.2 Overall Dissimilarity in Contour Characteristics

As discussed in the previous section, the starting point of a contour is represented by one of the four symbols

including ’north’, ’east’, ’south’ and ’west’ along with its 2D coordinate. This information reveals the spatial

distribution of contours in an image and thus is important structure information of the image. By checking the

dissimilarity in contours characteristics between the reference and synthesized images, one can get the structural

gap between them. Therefore, for both of the reference and synthesized views, we accumulate the total contour

number ncref , ncsyn , the total amount of contours’ starting point information and the total number of symbols

nsref , nssyn correspondingly.

For the measurement of difference in contours’ starting point information, one cannot compare starting

points in one synthesized image to the ones in its reference directly, due to synthesized artifacts like object

shifting. Coordinate comparison without contour matching is impracticable in this case. In order to quantify

the amount of dissimilarity considering starting points of contours in synthesized and reference views, we refer
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to [178] and calculate the encoding cost of all the starting points’ coordinates. Considering the fact that the

difference among neighboring points in coordinates is small, the mixed-Golomb (M-Golomb) [184] algorithm is

used. In [178], all the starting points in one image are first sorted in ascending order according to one chosen

coordinate component. The difference of one coordinate of the neighboring points is coded with Golomb coding

while the other components are coded with fixed length binary coding. To distinguish the encoding cost of

starting points of the contours and the encoding cost of the DCC strings in images, here the encoding cost of

contour starting points in reference and synthesized images are denoted as ECspref and ECspsyn, respectively.

we denote the encoding cost of contour starting points in reference and synthesized images with ECspref

and ECspsyn. Then, the overall dissimilarity in contour characteristics between one synthesized image and its

reference Dcs can be written as :

Dcs = |sum(ncref , nsref , EC
sp
ref )− sum(ncsyn, nssyn, ECspsyn)|. (12.10)

12.2.3 The Final Proposed Metric

Finally, the context tree based structure loss metric for one synthesized image with its corresponding reference

image is formulated by leveraging the aforementioned context tree based overall structure dissimilarity value

and the overall dissimilarity value in contour characteristics as defined below:

DCT = αCT ·Dls + βCT ·Dcs, (12.11)

where αCT , βCT are two weights for the two corresponding dissimilarity values and αCT +βCT = 1. The setting

of the two parameters is further discussed in the next section.

12.3 Experimental Results

The performance of context tree based image quality assessment metric is evaluated on the IVC-Image

dataset described in section 4.2.1.1 and compared to the best performing full reference image quality metrics

developed for synthesized images summarized in section 3.4.

To compare the performances existing metrics designed for synthesized images, the widely employed criteria

PCC, SCC, and RMSE described in section 4.3 are utilized with a non-linear mapping between the subjective

scores and objective.

Table 12.1 – Performance comparison of the proposed metric with existing metrics designed for synthesized
views

PCC SCC RMSE
MP-PSNRf [75] 0.6553 0.6239 0.5029
MP-PSNRr [76] 0.6733 0.66 0.4923
MW-PSNRf [74] 0.6089 0.5738 0.4948
MW-PSNRr [76] 0.6444 0.6218 0.5091

CT-IQM 0.6809 0.6312 0.4877

The result is concluded in Table 12.1. As it can be observed from Table 12.1, the proposed CT-IQM

achieves 0.6809 and 0.4877 value of PCC and RMSE correspondingly, which slightly outperforms all of the

compared metrics designed for synthesis images. In this experiment, for the proposed CT-IQM, a configuration
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of αCT = 0.9, βCT = 0.1 yields the highest correlation with subjective utility scores. The selected configuration

shows that the first part (encoding cost based structure/contour dissimilarity) of the metric plays a more

significant role in predicting the perceived quality. This configuration also proves the hypothesis that there is

a relationship between the encoding cost computed using the context tree based contour coding model and the

perceived quality.

Finally, to check the efficiency of the proposed CT-IQM, the execution time of the metrics normalized by

PSNR as introduced in section 4.4 are listed in Table 12.2. According to the table, CT-IQM is the most complex

metric.

Table 12.2 – Normalized execution time of proposed metric compare to the state-of-the-art metrics.

Metric MW-PSNR MW-PSNRr MP-PSNR MP-PSNRr CT-IQM
Normalized time 12.4 9.6 100 35 458

12.4 Conclusion

In this chapter, the relation between encoding cost (calculated by a context tree based contour coding

scheme) and perceived quality is investigated. Based on an assumption of such relation, a variable-length

context tree based image quality assessment metric (CT-IQM) is proposed to measure how the structure change

due to synthesized artifacts. CT-IQM is consist of two main parts. The first part is the dissimilarity in

encoding cost between the original and synthesized views using the context tree based model. The second part

is the dissimilarities in various contour characteristics. The experimental results have confirmed our hypothesis.

However, compared to the performance of ST-IQM, its performance is less desirable, and it is more time-

consuming. Therefore, CT-IQM is neither further tested in other applications nor extended for video quality

assessment.



13
Conclusions of Part 3

In this part, mid-level representations have been explored for images/videos quality assessment. Two mid-

level based models have been proposed, and certain research questions that posed in section 10.2 are answered.

13.1 Answers to Research Questions

� Mid-level representations of image/video for quality assessment in different tasks (Part III)

� A sketch token based image quality assessment metric (ST-IQM) is proposed for quantifying the

structure related distortions.

Borrowing the concept of ‘encoding’ low-level feature into the mid-level representation to carry more

semantic information in the human visual system, ST-IQM is proposed in section 11.2 to quantify

geometric distortions by firstly encoding contours into ‘patterns’ of contours’ categories and secondly

checking how the categories of the contours change after degradations. It outperforms all the compared

full reference image quality metrics that designed for synthesized views.

� The impact of navigation scan-paths on perceived quality is verified.

As there is no existing study that has a deep analysis on how human observer navigates among

viewpoints affect on perceived quality in the context of FTV, especially in the case when observers

focus on ‘regions of interest’. To this end, a subjective experiment is conducted and introduced

in section 11.3. Two trajectories are considered in the experiment, including one tracing the main

moving object (content related) and the other just repeatably navigating from left to right then back

forward. Subjective results indicate that there are trajectory related impacts on perceived quality.

Moreover, a video database named as free viewpoint videos database (FVV) is released along with

subjective scores. Different from most of the existing datasets, this dataset contains compression,

synthesis and views transition artifacts.

� A sketch token based video quality assessment metric (ST-VQM) is proposed for quality evaluation

of videos where spatial-temporal structure distortions exist.
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To quantify the structure related temporal artifacts within one viewpoint and among viewpoints

based on mid-level contours representation, ST-IQM is extended and improved by incorporating

another ST based temporal estimator to quantify temporal structure inconsistency. In the framework,

sensitive regions selection process introduced in section 8.2 is utilized to improve the metric in terms

of complexity. The extended ST based video quality assessment metric achieves the best performance

on FVV database compared to other existing metrics designed for synthesized views as reported in

section 11.4. The feasibility of extending a mid-level representation based image metric into a video

one is verified.

� A context tree based image quality metric (CT-IQM) is introduced by encoding contours in images

using pre-trained context tree.

Borrowing the concept of encoding more frequently appear ‘item’ with more compact ‘code’ strategy

in the human visual system (tested in psychological experiments), the context tree based contour

encoder is used in chapter 12 to quantify structure loss regarding encoded contours dissimilarity.

Although the gain of performance is not significant, the proposed CT-IQA still outperform most of

the existing metrics designed for synthesized images. The feasibility of using contour encoder for

quantifying of structure disruption is confirmed.

13.2 Summary of performance and discussion

The performance and executing time of the proposed mid-level representation based models on all the tested

datasets are summarized in Table 13.1 and 13.2.

Both ST-IQM and CT-IQM have been examined on the IVC-Image dataset. According to Table 13.1 and the

t-test results, ST-IQM significantly outperform CT-IQM. There are mainly three reasons for ST-IQM to obtain

better performance: (1) Even though they are both mid-level representation based models using the concept of

encoding low-level structure information, the representative (semantic) level of ST-IQM (i.e., contour categories)

is higher than the one of CT-IQM (i.e., frequencies of particular type of contour appear in distorted image with

respect to the ones in the reference). (2) Registration stage incorporated in ST-IQM helps to better avoid over

penalizing global acceptable continuous distortions. (3) ST-IQM first obtains local dissimilarity value and then

employs pooling strategy to yield the final quality score, while CT-IQM calculates one final score in one time. In

such a way, ST-IQM is better in capturing local structure dissimilarity since it does not only deal with detected

edges like CT-IQM.

The feasibility of predicting perceived quality by quantifying the change of contours’ categories from a

mid-level point of view is verified in the experiment conducted on the IVC-Image database. Therefore, ST-

IQM is further extended as video quality metric ST-VQM and tested on the new presented FVV database

by incorporating a sketch token based temporal estimator. Considering the fact that FVV database contains

sequences with compression distortions, spatial synthesized related distortions, temporal synthesized related

distortions, and temporal inconsistency of structure due to view switch, ST-VQM is only tested on this new

database (most of the conditions considered in IVC-Video database and FVV database are considered in this

one too).

By comparing the performance of mid-level representation based models with the ones of low-level represen-

tation based models on IVC-Image database (based on Table 13.1, 9.1, 9.2 and 13.2), it is found that ST-IQM
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outperforms EM-IQM. Nevertheless, mid-level based model CT-IQM does not outperform EM-IQM. On one

hand, it is because that models employ higher level representation does not necessarily ensure better perfor-

mance. Only when the mid-level representation reaches a certain semantic level, e.g., categories of contours in

ST-IQM, models proposed based on this representation can be benefited from it. On the other hand, it is also

because that choosing a proper distance measure for quantifying the changes of structures, e.g., elastic metric in

EM-IQM, is also important. By comparing the executing time of low-level and mid-level based representation

models, it is found that mid-level representation based models are more complex. For CT-IQM, a context tree

has to be learned first with the reference, which increases its complexity. For ST-IQM, the registration stage is

the bottleneck of the model.

Table 13.1 – Summarization of performance of mid-level representation based models tested on different
databases

PCC Mid-level
Related Task Related Database ST-IQM ST-VQM CT-IQM

Image quality assessment in FTV IVC-Image 0.821 0.680
Video quality assessment in FTV FNV 0.950

Table 13.2 – Summarization of execution time of mid-level representation based models tested on different
databases

Normalized time Mid-level
Related Task Related Database ST-IQM ST-VQM CT-IQM

Image quality assessment in FTV IVC-Image 1324 458
Video quality assessment in FTV FNV 62k+

13.3 Summary

Generally speaking, the mid-level representation based models are of higher representative capability com-

pared to the low-level ones. However, if the mid-level representation is not rich enough regarding representing

more meaningful information, it can not reach better performance. Structure dissimilarity measure like elastic

metric is useful for image/video quality assessment models in applications where geometric distortion is the

dominant distortion. Last but not least, mid-level representation based models proposed in this part are still

not linked to the quality directly. In another word, such learning process seems still not be sufficiently directly

related to perceptual quality.





IV
Exploring Higher-Level Representation

based Models for Image/Video Quality

Assessment
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Introduction of Part 4

Higher-level representations of images/videos are defined as ‘task-related abstraction’, which

learns a set of meaningful abstract patterns reflecting the characteristics of the task. Those

representations are always related to the semantics of tasks. In this part, ‘abstraction’ is defined by the abstract

‘distortions’ learned according to the tasks. Based on this concept, two higher-level representation based models

are proposed.

14.1 Higher-Level Sparse Representation in Human Visual system:

On one hand, with respect to high-level sparse coding in the human visual system as mentioned in section

1.2.1, human observers are capable of seeking semantic information from the scene with sparse representation,

where each item in the representation represents certain meaningful ‘characteristics’ captured from the world.

In inferotemporal cortex (IT), a wide range of studies support the notion that neurons are selective to high-level

object dimensions, and to features such as faces and hands. It is expected for these neurons to show a high

degree of sparseness for efficiency. Based on these perceptual study, it is reasonable to assume that how the

observer detects structure related distortion follows such similar sparse strategy. Instead of getting semantic

related sparse elements for sparse coding (e.g. ‘face’ or ‘hand’), the human visual system may try to get quality

related elements (e.g. ‘ghosting edge’ or ‘shading edge’) for judging the quality of one image. For example, it

has been discussed in [185] that functions of different intermediate feature layers in deep convolutional network

models capture different levels of information from the input. The latter the layer, the higher-level of semantic

information can be extracted depending on the target task. Therefore, it is reasonable to use deep learning

models for representing images/videos from a higher level.

Higher-Level Representations Related to Semantic Tasks On another hand, as introduced in section

1.2.1, high-level vision transfer input signals into categorical or semantic representations that enable later

classification or identification. Nowadays, deep learning is commonly used for semantic tasks. More importantly,

features extracted from intermediate layers of a deep neural network are commonly used as high-level features for
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different tasks including sequence classification [186], speech emotion recognition [187], object detection [188],

image quality assessment [71] and so on. Semantic information like the category of objects are the high-level

representations. Therefore, models that designed to learn the semantic information are of potential to be used

to obtain high-level representations of the input signals.

14.2 Research Questions Associated with Higher-Level Representa-

tion Models Development

According to the discussion above, in this part, we explore higher-level representations that learns a set of

meaningful abstract patterns reflecting the characteristics of the task, as perceptual models. This investigation

can be decomposed into more specific questions:

� Higher-level representations of images/videos for quality assessment in different tasks (Part IV)

� How to quantify local non-uniform distortion related to structure degradation using the concept of

sparse coding in the human visual system?

As discussed in section 1.2.1, a considerable amount of neurophysiological data from high-level visual

cortex support Barlow’s hypothesis that the neural codes are sparse and also those sparse elements of

the codes stand for meaningful features of the world [28,29] (e.g., complex shapes, object-components).

Therefore, it is worth trying to find a learning-based model to learn the effect of non-uniform structure

related distortions on perceived quality with a meaningful sparse codebook containing ‘understandable

distortion’ elements.

� In the case where several different structure related distortions appear at the same location, how to

learn this type of ‘masking effect’ of different distortions?

As shown in section 2.3, images/videos in some applications, e.g., stitched panoramic images, may

contain more than one type of structure related distortions. In another word, different types of struc-

tural distortions will overlap at the same locations and give rise to the ‘masking effect’ phenomenon.

� In some cases, incorrect inpainting may cause annoying structure related distortions too. How to

quantify local non-uniform distortion incurred by inpainting using advanced machine learning tech-

niques?

As shown in section 2.2, in case of FTV, inpainting related artifacts are another disturbing distortions

that degrade structures of images/videos. As those local structure degradation are usually accom-

panied with blurriness, they may become the dominant artifacts that affect the perceived quality

directly. Therefore, if there are machine learning based models that could be used to capture and

quantify this type of artifacts, the quality of services where inpainting is required can be improved

significantly.



15
From Natural Scenes Statistics to Non

Natural Structure: Learning

Structure-Related Distortions with

Convolutional Sparse Coding

15.1 Introduction

In this chapter, the first higher-level representation based model is presented. As described in 3.3, the existing

natural scene statistics (NSS) based models fail to predict the quality of image/video that contains non-natural

structure (NNS). In this chapter, an advanced machine learning model, convolutional sparse coding, is adapted

to learn the NNS within images and predict their perceived quality. More specifically, this model tries to train

a sparse codebook where each item corresponds to one type of ‘meaningful’ geometric distorted element (e.g.,

twisted vertical curve) and quantify the local non-uniform distortions by checking the amount of activated

non-natural elements within the test image with the codebook.

In the cognitive psychology domain, sparse coding is suggested to be an underlying strategy of the brain’s

neural system, for instance, examples of sparse coding in brain regions is given by Olshausen and Field [189].

Sparse coding is also widely used in the computer vision domain for semantically related tasks [190]. Further,

in [191], the process of image quality assessment is also assumed to adhere to such a strategy. As mentioned in

section 1.2.1, if each item within the sparse codebook is relevant to higher ‘semantic’ meaning, a higher-level

representation could be obtained for a given image/video using the sparse codebook. In this thesis, higher

‘semantic’ meaning could be considered as ‘distortion’ category (e.g., a type of ghosting artifact), and sparse

coding could be used to learn the non-natural structure.

131
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Unlike conventional sparse coding, convolutional sparse coding (CSC), first introduced in [192], computes a

sparse representation for an entire image with the sum of a set of convolutions with dictionary filters, instead

of the linear combination of a set of dictionary atoms. Briefly, instead of independently computing sparse

representations for a set of overlapping patches, CSC only computes one for the entire image. Thus, by using it

for a no-reference model, it is possible to: 1) get one score from the model for one image instead of pooling local

score calculated patch-wise; 2) better locate certain types of artifacts locally by checking the pixels that are

activated by the corresponding learned convolutional filters; and 3) better determine whether the co-occurrences

of certain types of artifacts will amplify or weaken the visual distortion effect. Therefore, CSC model is used

for no reference image quality assessment of synthesized images in FTV and stitched images in VR scenarios in

the following sections.

15.2 CSC based No Reference Metric for Synthesized Views

In this section, the details of the proposed convolutional sparse coding based image quality metric (CSC-

IQM) is given and tested for quality assessment of synthesized views. The overall framework of the proposed

scheme is illustrated in Fig. 15.1. First, a set of convolutional kernels DCSC are learned using the improved

fast CSC algorithms [193] with a training set Itrain composed of a set manually selected patches, which contains

obvious synthesized local distortion. Afterwards, CSC based feature vectors vcsc of images I in IVC-Image

dataset [49] (i.e., testing database) are extracted. Finally, the objective score SCSC is obtained with linear

support vector Regression.

Figure 15.1 – Diagram of the proposed model

15.2.1 Mid-Level Features Extraction with CSC using the Proposed Activated

Function

Convolutional sparse coding explicitly models local interactions through the convolution operator. In general,

as introduced in [193], the CSC is commonly defined as in equation (15.1), since it has been proven that sparse
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representation is recoverable using l1 norm:

minD,Z
1
2‖y −

K∑
k=1

Dk ~ Zk‖2 + βCSC

K∑
k=1
‖Zk‖1

s.t.‖Dk‖ 6 1

,

(15.1)

where ~ denotes the convolution operation, y denotes observed samples, Zk represents sparse feature maps and

Dk are the convolution kernels. K is the number of convolution kernels and βCSC is a positive scalar used for

balancing model accuracy and sparsity of feature maps, which can be tuned accordingly. By using CSC, there

are two modes commonly involved:

1. The convolution kernels learning step by solving the optimization problem (15.1) with training data that

can be written as:

min{Dk}
1
2‖y −

K∑
k=1

Dkzk‖2, s.t.‖Dk‖22 6 1, (15.2)

where zk denotes the operators of convolution with feature maps Zk;

2. The feature extraction step where the kernels are settled and features are extracted with minimization

over feature maps:

minz
1
2‖y − d · z‖

2 + βCSC‖z‖1, (15.3)

where d = [d1, ..., dk] represents the operator consists of convolutions with K kernels Dk, and z =

[ZT1 , .., ZTK ] is the vectorized feature maps vector.

Considering the efficiency of the training phase, the state-of-the-art model proposed in [193] is adapted to

learn the convolutional kernels for obtaining the mid-level structure descriptors for synthesized views. In order

to speed up the inversion step in algorithms proposed in [192, 194], Sorel et al. propose to compute this most

time-consuming step in [194] non-iteratively in the Fourier domain with the matrix inversion lemma. With a

training set Itrain, their improved approach is employed for convolution kernels learning to obtain a dictionary

of convolutional kernels DCSC = Dk, k ∈ [1, ...,K]. In our experiment, three scales of kernels are chosen, which

are filters with sizes of 8× 8, 16× 16, and 32× 32. The relative numbers of kernels for each scale are 8, 16, and

64, correspondingly. Therefore, the total number of kernels is K = 88. Figure 15.2 shows the kernels learned in

our experiment. For better comparison of more meaningful kernels to the others, we separate the 64 kernels of

size 32× 32 into sub-figures (d) and (d). The kernels in Figure 15.2 are of higher energy. One can easily notice

that kernels in (d) are more structure-related while the ones in (b) are with more noise. Details of the images

set Itrain that we utilize are given in section 15.2.2. With the trained kernels DCSC , for a M ×N test image

I, a set of feature maps Z can be obtained with the feature extraction process proposed in [193]. So that the

image can be sparsely represented as S =
∑
k=1Dk ~ Zk. Z = [Z1; ...;Zk; ...;ZK ] is a M × N ×K matrix of

K feature maps, where each Zk corresponds to one kernel. Afterward, a feature vector vcsc extracted based on

CSC for an image I can be generated with

vcsc = (fact(Z1), ..., fact(ZK)), (15.4)
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where activated function fact is defined as

fact(Zk) =
∑M
i=1
∑N
j=1 1(Zk(i, j) > εCSC)

M ·N
. (15.5)

In equation (15.5), 1(c) is an indicator function that equals to 1 if the specified binary clause c is true and

0 otherwise, and εCSC is a threshold for selecting activated pixels. Function fact(·) accumulates the number of

pixels which are above the threshold εCSC in each sparse feature map Zk that corresponds to each kernel Dk.

Intuitively, this function checks the number of the pixels that are activated by the corresponding kernel as an

activated function. For example, let kernel Dk represent a certain type of synthesized artifact, if certain regions

of one image contain the same artifact, then these regions in the corresponding feature map Zk of the image

will be activated. This activated function can be interpreted as the ratio of the area of non-uniform distorted

regions versus the entire image.

(a) 8 kernels of size 8 × 8

(b) 48 kernels of size 32 ×
32

(c) 16 kernels of size 16 ×
16

(d) 16 kernels of size 32 ×
32

Figure 15.2 – Kernels learned by the convolutional sparse coding [193] on three different scales. Kernels are
sorted by energy of the corresponding feature map in a descending order from top-left to bottom-right.

15.2.2 Convolution Kernels Learning

During the training process, two major factors are considered here. First, in order to learn a set of convolution

kernels that is capable of capturing local non-uniform distortions introduced by DIBR based algorithms, the

training data set must contain typical local synthesized artifacts including geometric distortions. Second, to

learn a general codebook that can represent general DIBR based relative artifacts, the training set should not

be limited to one dataset that consists of images synthesized with limited DIBR algorithms. To this end, we

manually select a total of 366 images that contain significant DIBR related synthesis artifacts from three datasets

including the FFV [62] dataset described in 4.2.1.3, IVC-Videos [59] dataset described in section 4.2.1.2, and

the MCL-3D [195] image database. For the previous two videos datasets, we extract one frame from each video.

Especially, we extract different frames from the ones that were selected in the IVC-Image dataset, which is used

for performance testing, to avoid overlap of training and testing sets. After labeling the locations of synthesis

artifacts in the images, two professional observers were asked to pick up the most annoying patches centering

at pre-labeled locations; only patches agreed by both of the observers are maintained for training. Examples

of selected patches of size 128 × 128 are shown in the dashed bounding box in Figure 15.1. It can be observed

that all the remaining patches contain obvious synthesized-related distortions.
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Table 15.1 – Performance comparison of the proposed metric with existing metrics designed for synthesized
views.

PCC SCC RMSE
Full Reference Metric (FR)

3DSwIM [33] 0.6864 0.4842 0.6125
MP-PSNRr [75] 0.6954 0.4784 0.6606
MW-PSNRr [74] 0.6637 0.4921 0.6293

CT-IQM (section 12.2) 0.6809 0.6626 0.4877
EM-IQM (section 8.2) 0.7430 0.6726 0.4455
ST-IQM (section 11.2) 0.8217 0.7710 0.3929

NO Reference Metric (NR)
NIQSV [77] 0.6346 0.5146 0.6167
APT [4] 0.7307 0.7140 0.4622
CSC-IQM 0.8302 0.7827 0.3233

15.2.3 Prediction Module

After extracting the feature vector vcsc based on the proposed model, referring to [157], support vector

machine regression is then used on vcsc with a linear kernel. During the training procedure, a 1000-fold cross-

validation is applied. For each fold, the dataset is randomly split into 80% of the images for training and 20%

for testing, with no overlap between them. After doing so, the image contents on which the model is tested are

different from the ones on which the model is trained, to ensure the robustness of the trained models [155]. The

median PCC , median SCC, and median RMSE between subjective and objective scores are reported across the

1000 runs for performance evaluation.

15.2.4 Experimental Results

The performance of the proposed CSC-IQM is evaluated on the IVC-Image dataset [49] as described in

section 4.2.1.1. It is only compared to the full reference and no reference metrics designed for quality assessment

of synthesized images summarized in section 3.4 and other image models proposed in this study.

The results of performance are concluded in Table 15.1. According to Table 15.1, ST-IQM performs the best

among the full reference DIBR quality metrics, while the proposed CSC-IQM performs the best among the no

reference ones in terms of PCC, SCC, and RMSE. Overall, CSC-NRM is the most consistent objective metric

with the subjective scores and it even slightly outperforms the best performing full reference metric ST-IQM.

In our experiment, due to the limitation of RAM, testing images are scaled with ratios for efficiency and the

largest ratio that has been tested in our experiment is 0.8. We have also found that the performance of the

proposed metric decreases with a reducing scaling ratio, which is reasonable since downscaling an image will

inevitably degrade its quality. Therefore, CBC-IQM has the potential to achieve better performance with larger

scaling ratio.

To better understand why and how the proposed model is capable of learning the effect of non-uniform

artifacts on perceived quality in the case of synthesized views, the linear coefficients ( the weights of dimensions

in the feature vector that corresponds to the kernels) of the support vector regression model that yields the

median PCC during cross-validation are visualized in Figure 15.3 and the largest 8 coefficients are represented

as red bars. The larger the absolute value of the coefficient, the more important the role of the correspondence

feature is in predicting the objective quality score, and thus the corresponding kernels are more important

in capturing related local distortions. In the figure, the 8 largest weights are labeled with the corresponding

visualized kernels bounded with red boxes while the smallest one is bounded with cyan color. By comparing
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Figure 15.3 – Linear coefficients of learned SVR model.

them, one can find that most of the useful kernels contain structure information, specially double-edges-like

structure, while the useless ones contain mainly noise. Furthermore, the color points labeled on the error map

in Figure 15.4 are examples of the pixels activated by the top 3 filters selected according to the weights. Different

colors corresponds to different kernels. It can be observed that those points are well distributed around the

non-uniform error regions, meaning that the corresponding filters are capable of capturing these local geometric

distortions. According to the analysis above, the feasibility of using CSC for revealing the impact of non-uniform

structure-related distortions on the perceived quality, in the context of view synthesis, has been verified.

Figure 15.4 – Example of non-uniform distortion, Left: Reference, Middle: Synthesized view, Right: Error map

Last but not least, to meet the need of real-time computation for applications like multi-view live match

broadcasting, the efficiency of the no reference quality assessment metric should be high enough. In order to

check the efficiency of the proposed metric, the execution time of the metrics normalized by PSNR as introduced

in section 4.4 are listed in Table 15.2. Here, only the no reference metrics are reported. According to the table,

our proposed metric is slower than NIQSV. However, the gain of the performance of CSC-IQM is significant

compared to NIQSV in PCC value (i.e., 30 % gains in PCC value, t-test result: P-value=10−4), this advantage

outweighs the disadvantage of its complexity.
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Table 15.2 – Normalized execution time of proposed metric compare to the state-of-the-art metrics.

Metric NIQSV APT CSC-IQM
Normalized time 18 13k+ 985

15.3 CSC based No Reference Metric for Stitched Panoramic Image

In this section, the proposed CSC-based no-reference metric CSC-IQM is utilized to quantify ghosting and

structure inconsistency artifacts that are specific to stitched panoramic images in the context of VR applications.

Considering the masking effect, i.e., overlap of two types of artifacts that may amplify the annoyance level, a

compound feature selection algorithm is further proposed and incorporated into the model. The contributions of

this section compared to the previous one are twofold: 1) produce and release a training database labeled with

location information of the stitching artifacts; and 2) propose an efficient compound feature selection algorithm

by only considering the useful combinations of feature maps obtained in the previous iteration.

In general, Figure 15.5 shows the overall framework for quality assessment of stitching images. First, a

set of training images Itrain that contain obvious stitching-related artifacts are collected; more information is

given in section 15.3.4. With the training database, a CSC dictionary DCSC is learned using an available fast

CSC implementation [193] as done in the previous section. Then, the learned dictionary is used to generate

representations of the input testing images Itest, from which we form initial feature vectors Finit by aggregating

activated pixels in each feature map. To make better use of location information and investigate compound

feature effects, we design a sequential feature selection algorithm to select meaningful filters and discover

impactful combinations of simultaneously activated filters. Finally, with the selected feature set FSfinal, support

vector regression (SVR) is adapted to learn the final quality score.

Figure 15.5 – Diagram of the proposed scheme
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15.3.1 Kernels Training and Feature Extraction with CSC

A Detailed definition of CSC has been given in section 15.2. Hence, a simpler definition is given in this

section as shown in equation (15.6), where sparse representation of an image is recovered using l1-norm:

min
{Dk,Zk}

1
2‖y −

K∑
k=1

Dk ~ Zk‖2 + βCSC

K∑
k=1
‖Zk‖1

s.t. ‖Dk‖ 6 1,

(15.6)

where ~ denotes the convolution operation, y denotes observed samples, Zk represents sparse feature maps and

Dk are the convolution kernels as introduced in the previous section. Similarly, K is the number of convolution

kernels, and βCSC is a positive scalar variable used for balancing the model accuracy and the sparsity of feature

maps. They are parameters that can be tuned.

Similarly, considering the efficiency of the training phase, the state-of-the-art implementation proposed

in [193] is adapted in order to learn the convolutional kernels to obtain the mid-level structure descriptors for

stitched images.

(a) 64 kernels of size 32 ×
32

(b) 8 kernels of size 8 × 8

(c) 32 kernels of size 16 ×
16

Figure 15.6 – Kernels learned by the convolutional sparse coding [193] on three different scales. Kernels are
sorted by the energy of the corresponding feature map in descending order from top-left to bottom-right.

With a training set Itrain, their improved approach is employed to train a set of convolution kernels DCSC =

{Dk}, k ∈ {1, ...,K}. In our experiment, three scales of kernels, which are filters with sizes of 8×8, 16×16, 32×32,

are chosen, and the relative numbers of kernels for each scale are 8, 32, and 64 respectively. Hence, the total

number of kernels is K = 104 in this case. Figure 15.6 shows the kernels learned in our experiment. One can

observe that characteristics of ghosting artifacts like ‘double edges’ are well captured by the dictionary. With

the trained kernels DCSC , for a M ×N test image I, a sparse representation ZI for each filter given an input

image can be obtained. ZI = [Z1; . . . ;Zk; . . . ;ZK ] is a M × N ×K tensor of feature maps for I, where each

map Zk is the response of using kernel Dk. Then, a mid-level feature vector vcsc for image I can be generated

using CSC as:

vcsc = (fact(Z1), ..., fact(ZK)), (15.7)

where fact is defined as

fact(Zk) =
∑M
i=1
∑N
j=1 1(Zk(i, j) > εCSC)

M ×N
. (15.8)

As introduced in section 15.2, 1(c) is an indicator function that equals to 1 if the specified binary clause c

is true and 0 otherwise, and εCSC is a threshold for selecting activated pixels. Function fact(·) aggregates the

number of pixels which are above the threshold εcsc in each sparse feature map Zk corresponding to each kernel
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Algorithm 2 Feature Selection for Evaluation of Simultaneously Activated Feature Maps
1: Initialization: i = 1; c = 0; optoverall = 0;
2: FS = ∅; FC(0) = {f1, ..., fk};
3: while c <= C do
4: opt1 = optoverall
5: d = size(FC(c));
6: while i < d and opti > opti−1 do
7: max = 0;
8: for j from 1 to d do
9: if fj 6∈ FS then
10: score = eval(ftmp ←− FS + fj)
11: if score > max then
12: max = score; fmax = fj ;
13: end if
14: end if
15: end for
16: if max > opti then
17: opti = max ;
18: end if
19: FS ←− FS + fmax
20: i = i+ 1;
21: end while
22: if opti > optoverall then
23: optoverall = opti;
24: end if
25: c = c+ 1;
26: if c = 1 then
27: FC(c) = FS;
28: else
29: FC(c) = Fext(Cmb(FC(1)) ∪ Cmb(FC(c−1)))
30: end if
31: end while

Dk. Intuitively, this function counts the number of pixels that are activated by the corresponding kernel. In

other words, since the kernels are trained to capture stitching-related artifacts, this process can be interpreted

as the computation of certain types of artifacts in the entire image and thus can be used to indicate perceived

quality.

15.3.2 Adjusted Forward Feature Selection for Evaluation of the Interplay among

Feature Maps

In the trained dictionary, ideally, each filter in the dictionary reveals a certain type of distortion introduced

by stitching algorithms. However, in practice, only a subset play active roles in reflecting distortions. Further,

observing that several convolutional filters may be activated at the same local neighborhood, simultaneous

activation of different distortion types (e.g., ghosting artifacts and structure inconsistencies) may amplify the

extent of visual annoyance. It is thus reasonable to quantify the amplification effect of simultaneously activated

feature maps.

To this end, we propose a new sequential forward feature selection algorithm. This algorithm improves

the traditional sequential forward selection (SFS) by accounting for simultaneously activated filters. It is

summarized in Algorithm 2. In detail, the inside loop (i.e., line 5-17) selects one best feature at a time from

the current candidate set FC(c), which is updated by the outside loop, until the performance starts to decrease.
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Specifically, the algorithm starts with an empty selected feature set FS and adds one feature from the candidate

feature set FC(c), which contains d candidates, for the first step which gives the highest value for the target

evaluation function eval(·). In the experiment, PCC is used for feature selection. From the second step onwards,

the remaining features are added individually to the current subset, and the new subset is evaluated. The

individual feature is permanently included in the subset FS ← FS+fmax if it gives the maximum performance

score (opti = max). The process is repeated until the current maximum performance opti does not improve,

i.e. opti < opti−1.

The outside loop (i.e. line 3-25) generates a new candidate feature set FC(c). Each iteration considers c

number of feature maps, which are selected in the previous iteration c − 1 until the maximum number C is

reached or the overall performance optoverall does not improve anymore. In the experiment, C is set as 5, since

it is observed that no pixel is activated by more than 5 filters at the same time. The loop starts with c = 0,

where FC(0) is the set of the original 104 features from vCSC without feature selection. The dashed bounding

box in Figure 15.5 shows an example of how the combinations are selected. For better visualization, we use the

corresponding convolutional filters instead of the activated feature map to represent one feature in the selected

feature vector. The example starts after one inner loop, and the first candidate set FC(1) is shown as the first

column. Then all the elements (green color) in FC(2) are obtained by selecting two filters from FC(1) (blue

color). Similarly, to set up FC(3), all the candidates are obtained by selecting 1 element from FC(1) and other

combined elements (2 filters) from FC(2). This operation can be represented as Cmb(FC(1)) ∪ Cmb(FC(2)),

where Cmb(F ) is the function of selecting one possible compound item with c− 1 kernels selected from the set

of F in the previous iteration without repetition. More specifically, when c > 1, one of the kernels is always

selected from FC(1), when the other c − 1 kernels are selected by Cmb(FC(c−1)) as one compound element,

with the restriction that there are no repetitions among the currently selected kernels. For instance, the first

candidate (purple color) in the third column in Figure 15.5 is obtained with the second candidate (blue) in the

first column and another two bounded filters (green) in the first row of the second column in the figure. The

reason why the other c−1 filters are selected from FC(c−1) is that, for one image, if one location is not activated

by c− 1 filters selected in the previous iteration, it is unlikely to be activated by another c− 1 filters that have

not been selected before.

By doing so, the obtained set of candidates can be represented as Cmb(FC(1)) ∪ Cmb(FC(c−1)), which is

a set of n possible combinations l = {(l11, .., l1j , .., l1c), .., (li1, .., lij , .., lic), .., (ln1 , .., lnj , .., lnc )}, where (li1, .., lij , .., lic) is

the ith combination with c elements. Finally, Fext defined below is used to extract the feature,

Fext(l) = {fmltact ((l11, .., l1j , .., l1c), ...,

fmltact (li1, .., lij , .., lic), ..., fmltact (ln1 , .., lnj , .., lnc )}.
(15.9)

Similar to the activation function (15.8), here fmltact (·) is a multi-element activation function accumulating the

number of pixels that are activated simultaneously by the corresponding filters of the feature map Zli1 , ..., Zlic :

fmltact (li1, .., lij , .., lic) =∑M
x=1

∑N
y=1 1(Zli1(x, y) > εCSC & ... & Zlic(x, y) > εCSC)

M ×N

(15.10)

For example, if c = 4, and the i-th combination is (li1 = 5, li2 = 45, li3 = 66, li4 = 92), then the 5-th, 45-th, 66-th
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and 92-th feature maps will be used to check the simultaneously activated pixels to compute feature fi. Finally,

the entire feature candidate set is obtained by Fext(l) = {f1, .., fi, fn}.

15.3.3 Experimental Result

To validate the performance of the improved CSC-IQM with compound feature selection CSC-IQMFS , we

use the publicly available SIQA database released in [36] as introduced in section 4.2.2. Since the SIAQ database

is only equipped with pairwise comparison results [196], a pre-processing step is needed to acquire scalar scores

for later training. The least squares complete matrix solution with Bradley Terry’s logistic model [196] is used

in this step to scale the pairwise comparison scores from 28 observers by assuming that the reference image is

always better than the stitched images. After linear mapping, the scaled mean opinion scores (MOS) lie in the

range of [0, 100]. To better evaluate the performance of our proposed metric from pair comparison subjective

scores, besides the commonly used PCC, SCC, and RMSE, we also utilize the ‘Krasula’ evaluation model

proposed in [111]. Specifically, as introduced in section 4.3.4, the area under the curve for the Better/Worse

(AUCBW ) receiver operating characteristic (ROC) analysis and correct classification rate (CC) are calculated.

Further, in order to compare with the existing objective quality models designed for stitched images summarized

in [36], the precision is also calculated by comparing the subjective and objective predicted scores.

15.3.4 Training Set Collection

Training process is vital for CSC. The use of the trained kernels to correctly capture the specific distortions

introduced by stitching algorithms depends on whether the training dataset contains enough well represented

distortions. Towards this goal, we collected more than two hundred images (from APAP [197] and PTIS [198]

database) and used advanced stitching algorithms including APAP [197], PTIS [198] and simple stitching with

global homography [199] to get more than 100 stitched images. Afterwards, stitched images that contain

significant stitching-related artifacts were selected, and coordinates of the center of the distorted regions were

manually labeled. Finally, two another professional observers were asked to pick up the most annoying patches

centering at the pre-labeled locations; only patches agreed by both of the observers were maintained for training.

Examples of selected patches of size 256 × 256 are shown in Figure 15.7. It can be observed that all the remained

patches contain obvious ghosting or structure inconsistency artifacts. The training database can be downloaded

from: ftp:\\ftp.ivc.polytech.univ-nantes.fr\LS2N_IPI_Stitched_Patches_Database\.

Figure 15.7 – Examples of patches selected manually by observers contain annoying stitching related artifact
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15.3.5 Result and Analysis

First, to confirm our hypothesis that the adverse visual effects of different filters will be amplified or weakened

by others (and to validate our proposed algorithm), the performance of our proposed metric with different

numbers of combinations of feature maps are examined and reported in Table 15.3. In this table, the first

column contains the numbers of feature maps combinations. For example, FS-4 means four feature maps are

selected to generate the new features; FS-0 means no feature selection is adopted. The second column shows the

number of the feature dimensions after feature selection. The third column is the change of the dimension after

considering another number of the combination. Further, the dimension is accumulated here as the number

of combination c increases. For example, by considering the co-activation of three feature maps FS-3, the

dimension increases from 49 to 51 compared to FS-2 where two more dimensions are added. Overall, with

an augmented number of considered combination numbers among kernels, the performance increases steadily,

which confirms our hypothesis and validates our proposed feature selection scheme.

Table 15.3 – Performance of the proposed metric with different combination numbers of Features Map and
theirs corresponding optimized dimension numbers.

Z.num Dim.num 4 Dim Precision RMSE
FS-0 104 0 0,8871 0,3234
FS-1 40 -64 0,8947 0,3164
FS-2 49 +9 0,8947 0,3168
FS-3 51 +2 0,8980 0,3165
FS-4 54 +3 0,8992 0,3163
FS-5 55 +1 0,9000 0,3161

Table 15.4 – Results summarizing performance of the proposed metric and the compared full reference metrics

Metric Precision with subjective PC score RMSE
Conventional IQA

FSIM [200] 0.8162 0.4287
SR-SIM [201] 0.8333 0.4082

SIQA
Quereshi [87] 0.5343 0.6824
Solh [86] 0.8947 0.3803
Yang [36] 0.9436 0.2374
Ours 0.9000 0.3161

The overall performances of the proposed metric and the compared metrics are summarized in Table 15.4 and

15.5. In the previous table, performance is evaluated with the precision score and RMSE obtained by comparing

the predicted score and the subjective pair comparison (PC) scores as reported in [36]. The compared metrics

can be categorized into two groups: the conventional image quality assessment metric group and the stitched

image quality assessment metric (SIQA) group. Comparing to the first group, we observe that our proposed

metric outperforms all of the conventional IQA metrics. More importantly, in the SIQA group, the CSC based

metric is the second best performing metric and is comparable to the best performing full reference metric

proposed by Yang [36]. In the latter table, our proposed metric has significant gains compared with another

three commonly used no-reference metrics. Since the distortions within the stitched images are non-uniform

and these local severe distortions are more eye-catching than minor distortions spread globally, the assumption

that all the regions share the same subjective score labeled at the image level is no longer sufficient. This

makes models trained based on this assumption questionable in this case. In the contrary, the proposed model
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is designed to quantify local non-uniform distortions and is thus more promising.

Table 15.5 – Results summarizing performance of the proposed metric and the compared no reference metrics

PCC SCC AUCBW CC
Full reference metrics

Solh [86] 0.9533 0.7161 0.9515 0.9076
Yang [36] 0.9102 0.8437 0.9082 0.8725

No reference metrics
Bliinds [48] 0,1184 0,066 0,5167 0,4461

DIIVINE [64] 0,2582 0,1451 0,5405 0,1577
CNN [202] 0,2261 0,2428 0,5512 0,4798

Ours 0,8574 0,7295 0,9427 0,8643

(a) Reference of example 1 (b) Reference of example 2

(c) Stitched image of example 1 (d) Stitched image of example 2

Figure 15.8 – Visualization of activated points for stitched related artifacts’ regions detection

In order to demonstrate the superiority of our proposed metric, the obtained activated maps of two examples

are shown in Figure 15.8. The first row are the original images and the second row is the corresponding stitched

images. The points labeled on the stitched images are the activated pixels by specific filters (the best-selected

filters after feature selection), where different colors correspond to different filters. First, we observe that

the pink points are well distributed around regions where ghosting artifacts are obvious, meaning that the

corresponding filters are capable of capturing these vertical ghosting artifacts (double vertical curves). Second,

we observe that different colors of points overlap around the distorted regions, which also proves the fact that

different filters can amplify the visual distortion in local areas, adversely affecting perceived image quality.

15.4 Conclusion

CSC-IQM in FTV scenario: To learn the impact of non-uniform artifacts on visual quality, a convolu-

tional sparse coding model is first studied in the case of 3-D synthesized views quality assessment in this chapter.

Taking advantage of the characteristics of CSC, which can be used to learn from local regions and generate one

sparse representation for the entire image, a referenceless metric is proposed by designing an activated func-

tion. According to the experimental results, the proposed CSC-IQM performs the best among FR/NR metrics
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dedicated to evaluating the quality of synthesized views and its capability of revealing the effect of non-uniform

artifacts on perceived quality has been verified.

CSC-IQM in VR scenario: Latter in this chapter, CSC model is further tested on quantifying structure-

related distortions (e.g. ghosting and structure inconsistency) in stitched images. Different from the CSC based

metric used in FTV application, a layered feature selection algorithm is proposed to quantify the amplification

effects of simultaneously activated distortion filters by exploiting the local characteristics of CSC. Extensive

experiments have validated that our proposed no-reference metric has competitive performance compared to

the state-of-the-art full reference metric designed for stitched images.



16
Learning Synthesized

Structure-Related Distortion with

Generative Adversarial Network

16.1 Introduction

In this chapter, the second higher-level representation based model is presented. It aims to extract higher-

level features from advanced new deep neural network to learn meaningful distortion representation.

As summarized in chapter 14, it is common to use deep learning models for representing images/videos

from a higher semantic level in many domains. However, among the existing deep learning models, which

model is suitable for learning the effects of non-uniform local structure related distortions on perceived quality?

Generative Adversarial Network (GANs), first proposed by Goodfellow et al. [203], might be an answer to this

question. It has been widely and successfully used in solving problems in computer vision domain, such as super-

resolution [204], semantic inpainting (i.e. context encoder) [205–207], and scene images generation [208]. The

main idea of the adversarial nets framework is to train a generator (G) and a discriminator (D) simultaneously:

a generative model that capture the data distribution and a discriminative model [203] that can tell ‘real’

image from the generated one. They are trained together so that the discriminator can keep pitting against the

generator until the discriminator cannot distinguish the counterfeits generated by the generator. By doing so,

both of them are driven to improve their performance until the probability of D making a mistake is maximized.

Considering the case of synthesizing views obtained with DIBR methods, the most annoying non-uniform

distortion could be the non-continuous inpainted regions that introduced by the hole filling stage. Examples

are shown in the second row of Figure 16.1. In Figure 16.1, sub-figure (d) is a patch containing dark holes

(dis-occluded regions) that needed to be filled, while sub-figures (e)-(g) are results after filling up the holes with

145
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different inpainting algorithms. If the generator in GANs is trained to inpaint mimicked dis-occluded regions

(i.e., similar darks holes as shown in (d) of Figure. 16.1), and the discriminator is trained along with the

generator to tell whether the input is an inpainted image or not. An intuitive assumption is that if the GANs is

trained to inpaint similar dis-occluded holes that may be generated during the DIBR process, the discriminator

is then trained to identify whether the DIBR synthesized views are of good quality or not. More specifically,

on one hand, the intermediate architecture of discriminator is to some extent trained to relate the input to the

quality concerning the ground truth. On the other hand, the output of the discriminator can be used as an

indicator for selecting local poorly inpainted regions from the entire image.

(a) Original image (b) Synthesized views with A7

(c) Green box (d) Red box (e) A6 (f) A4 (g) A3

(h) Exp. 1 (i) Exp. 2 (j) Exp. 3 (k) Exp. 4 (l) Exp. 5

Figure 16.1 – Examples of non-uniform distortions in DIBR based synthesized views and examples of results of
using different inpainting algorithms for dis-occluded regions filling.

Based on this assumption, in this chapter, a NR quality metric is proposed for evaluating synthesized

images. There are mainly three contributions in this work: 1) A GANs based context inpainter/encoder is

retrained by designing special masks that are similar to ‘dis-occluded regions’ induced by DIBR algorithms.

This inpainter can thus be used in DIBR framework for ‘dis-occluded regions’ inpainting; 2) A local non-uniform

distortion regions detection strategy is proposed based on the pre-trained discriminator. 3) A quality-aware

‘bag of distortion words’ is proposed to obtain new quality related representation for each synthesis image by

extracting higher-level quality relevant features from the retrained discriminator.

16.1.1 Generative Adversarial Networks based Semantic Inpainting

In the field of computer vision, semantic inpainting is a brand new application, where the goal is to infer

missing regions within images according to the semantics of the image. Unlike traditional inpainting or tex-

ture synthesis methodologies, semantic inpainting [206, 207, 209–212] aims at filling the missing parts by using
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statistical information from external dataset instead of only making use of the internal properties of the image

needed.

Among the existing semantic context inpainters, the ones proposed in [206,207], which are based on GANs,

provide the best performance. As introduced before, during the training procedure of GANs, the goal is to

train two networks at the same time, including a Generator (G) and a Discriminator (D). The role of G is

to produce artificial images that look real by mapping a noise sample z from Zn distribution to an image

training data distribution Itrain, while the role of D is to distinguish the generated images from the real ones.

More specifically, (1) after taking both the generated and the real images as input, the duty of the adversarial

discriminator D is to be able to tell the difference between them; (2) the duty of Generator G is to be able to

‘fool’ D by offering as real as possible images. They are commonly trained with the following adversarial loss

function:

min
G

max
D

Ei∈Itrain [log(D(i)] + Ez∈Zn [log(1−D(G(x))]. (16.1)

In [209], the proposed context encoder is designed as an autoencoder with the unfilled images as the condition.

In detail, to ensure continuity within the context, L2 norm reconstruction is defined in (16.2) to regress the

missing parts to the ground truth content.

Lrec(i) =‖M � (i−G((1−M)� Itrain)) ‖22, (16.2)

where M denote the binary mask indicating the missing regions needed to be inpainted and G(·) is the (Gener-

ator) function representing the autoencoder, which generates the inpainted image with an input i. To overcome

the blurry preference problem aroused by L2 loss (i.e, it tends to predict the mean of the distribution result-

ing in an averaged blurry image), the adversarial loss is also introduced to jointly optimize both G and D as

formalized in equation (16.3):

Ljoint = λLrec + (1− λ)Ladv, (16.3)

where λ is a hyper-parameter to balance the weights between the two losses. Ladv is further defined in equation

(16.4), which is derived from equation (16.1) by customizing GANs for the context encoder task with the mask

M :

Ladv = max
D

Ei∈Itrain [log(D(i) + log(1−D(G((1−M)� Itrain)))] (16.4)

In this chapter, based on the common GANs formulation (16.4) used for semantic inpainting, specific masks

M are designed, which mimics the ‘dis-occluded’ regions appear during DIBR process, to retrain a new ‘context

inpainter’. Then, we explore using the pre-trained discriminator to evaluate the quality of synthesized images.

Details of the proposed model are given in the following sections.

16.2 The Proposed GAN-IQM Model

In this section, the proposed GANs based No-reference Quality Metric for synthesized views (GANs-NQM)

is described in detail.

The overall framework of the proposed model is illustrated in Figure 16.2. The entire scheme can be divided

into three sub-procedures, which are 1) Pretraining of the GANs based context encoder; 2) ‘bags of distortions
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words’ code-book training; and 3) quality prediction. They are bounded by the blue, green and red dashed

boxes in Figure 16.2 correspondingly.

First and foremost, during the context encoder (inpianter) pre-training procedure, special masks that locate

at possible dis-occluded regions or possible distorted regions introduced by DIBR based algorithms are designed.

As thus, the inpainter is trained to generate inpainted images that are similar to the synthesized views generated

by DIBR based methodologies. Then, during the code-book training process, the validation image set is divided

into a set of overlapping patches. After feeding those patches into the pre-trained discriminator, a ‘bag of

distortion codebook’ is obtained by clustering all the patches into K clusters. Ideally, each cluster represents

a category of patches that with a similar type of distortion. To predict the perceived quality, images are

first represented as a set of overlapped patches. Afterward, the discriminator is used as a distortion regions

selector, only patches with values smaller than a certain threshold (i.e., indicating the regions are not well

inpainted) are remained for the next process. After distortion regions selection, the image under test is then

represented as a histogram of distortion categories with the distortions related code-book. Finally, with each

image represented as hadv, quality scores are predicted with SVR. Details of each sub-procedure are given in

the following sub-sections.

Figure 16.2 – Diagram of the proposed model: (1) Deep GANs context encoder pre-training; (2) Distortion
codebook training; (3) Quality predicting.

16.2.1 Pre-training of GANs for inpainting of RGB-D synthesis view

16.2.1.1 Design of masks

As introduced before, dis-occluded regions are introduced during the DIBR synthesis process. There are

mainly two types of dis-occluded regions: 1) edge-like holes that are located along the boundaries of the

foreground objects as shown in Figure 16.3a, and 2) small or medium size of holes that are distributed throughout

the entire images as shown in Figure 16.3b. The shapes of these regions are normally related to the shapes of

objects. These regions can be filled with certain inpainting algorithms. However, inpainting-related artifacts

may also be introduced.

Generally, dis-occluded regions that are located along the border between the foreground and the background
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are challenging for existing inpainting algorithms. It is often to see that foreground regions are inpainted

with background pixels or vice versa. As a result, the structures of objects are disrupted. Structure related

degradation around foreground objects, accompanying with inter-view inconsistency on depth, might then cause

binocular rivalry, binocular suppression, or binocular superposition [213, 214] which eventually lead to visual

discomfort. Concerning the issues above, and to train a new context encoder that is capable of inpainting the

distortions mentioned above, two types of masks M are designed:

(a) (b)

Figure 16.3 – Examples of typical dis-occluded regions introduced during the process of DIBR based views
synthesis. (a) Examples of dis-occluded regions that are around foreground objects’ boundaries (bounded by
green boxes); (b) Examples of small and median size of dis-occluded regions (bounded by red and blue bounding
boxes correspondingly) that distributed throughout the image;

� Mask I: to mimic the holes in dis-occluded regions, which is generally around foreground objects’

boundaries. The mask is designed as the dilated object boundaries. An example is shown in Figure 16.4c.

� Mask II: to mimic the shifted objects’ boundaries in the synthesized views induced by compression on

depth map [49]. We generate the second type of masks by simply shifting the first type of mask with

certain pixels as shown in Figure 16.4d.

Generally, it is easier to inpaint smooth regions with homogeneous textures than complicated regions with

non-homogeneous textures, as the context around a smoother region is more ‘copyable’ and less structure are

involved. Hence, the quality of smooth inpainted regions within homogeneous texture is generally better than

the non-homogeneous ones. If one wants to train a more powerful context encoder, the selected masks should

contain contents/structures that can not be replicated from the surroundings. In addition, unlike the big

connected region masks with arbitrary location introduced in [207], dis-occluded regions or missing parts in a

virtual view are generally disconnected, and the shapes of these regions are always related to the foreground

objects (i.e., related to the depth map). With these two concerns, the third mask is proposed:

� Mask III: The SLIC super-pixels algorithm [147] is used to select regions where masks should be located

for later training. More specifically, an image is first segmented into a set of super-pixels as shown in

Fig. 16.5a and 16.5d. Then, two mask sizes are considered. Super-pixels that contains less than 100

pixels are considered as small size mask, while super-pixel contains 200 to 1000 pixels are considered as

medium size mask. Examples are presented in Fig. 16.5. The black holes in Fig. 16.5b and 16.5e are

small size masks which are similar to the small holes shown in Fig. 16.3a. The holes in Fig. 16.5c and

16.5f are with medium size. By doing so, 1) the selected masks are separately distributed in the entire

image; 2) the shape of the masks are related to objects; 3) the content within each mask region is more
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independent from its neighborhood.

Since the three masks designed in this work are to mimic the dis-occluded regions that appear during DIBR

process, where they are generally black holes or boundaries, M is thus with value 0 while in [206,207] the mask

is white with value 1. The corresponding calculation on loss shown in Equation (16.2) and Equation (16.4),

used in [206,207], are therefore changed to:

Lrec(x) =‖ (1−M)� (x−G(M � x)) ‖22 (16.5)

Ladv = max
D

Ex∼px [log(D(x)) + log(1−D(G(M � x)))] (16.6)

16.2.1.2 Training data

To generate a new dataset with the three masks mentioned above, we collect images from the PASCAL VOC

2012 [215] and the Places database [216]. There are in total 10K training images in this study.

� PASCAL VOC 2012 database: The original objective of this database is for a challenge to recognize

objects from a number of visual object classes in realistic scenes. It contains 3K images with twenty

object classes, which diverse from people, animals to vehicles and indoor scenes. One of the merits of

this database is that it provides us with pixel-wise segmentation labels, which gives the boundary of

‘objects’ against the ’background’ label. An example is given in Fig. 16.4a and Fig. 16.4b. In our study,

we utilize this segmentation label to generate Mask I and Mask II mentioned above, which leads to 6K

training data.

� Places database: To have a balanced dataset with mask I and II, the validation set from the ‘Places

Challenge 2017’, which contains around 2K images, are selected as a part of the training set in this study

with mask III mentioned above. This dataset contains images with diverse contents, which varies from

outdoor landscapes, cities views to indoor people portrait images. As there are two mask sizes in Mask

III, this leads to 4K training images.

(a) Image (b) Labeled map (c) Mask I (d) Mask II

Figure 16.4 – Example of images in the training set and with mask I and II.

16.2.1.3 GANs training process

The framework of the ‘context inpainter’ is implemented based on the pipeline developed by Pathak et

al. [207] with Caffe and Torch packages. The commonly used stochastic gradient descent method Adam [217] is

used for optimization. We start with a learning rate of 0.0002, as set in DCGAN [218], but a different bottleneck

of 4000 units. In our experiment, the impact of trade-off between G and D, i.e., different λ in Equation (16.3),

on the performance of the proposed metric has been tested.
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(a) Supper-pixel map (b) Small size mask (c) Medium size mask

(d) Supper-pixel map (e) Small size mask (f) Medium size mask

Figure 16.5 – Example of images in the training set and designed mask III. Two mask sizes are considered.

For the architecture of the GANs network, as it has been tested in [207] that finer inpainting results can

be obtained by replacing pooling layers with the convolutional ones, in this study, the pool-free structure

remains. Furthermore, since the main focus of this section is to explore the discriminator for quality assessment

of synthesized views with local non-uniform distortions, we only change the architecture of the discriminator.

Details of all the discriminator architectures that have been tested in this study are summarized in Table 16.1.

The main difference between D1 and the other two architectures is the size of images that can be fed into.

D2 is of less complex structures than D3 and D1, where the number of convolutional kernels is halved in each

layer. With such design, we could check how the input size and complexity of the discriminator influence the

performance of the proposed scheme.

16.2.2 Bag-of-Distortion-Words (BDW) codebook learning with pre-trained dis-

criminator

As discussed before, the discriminator serves as an indicator telling whether a patch is well inpainted or

not. Thus the output of the discriminator is related to the quality of the patch. Therefore, it is reasonable

to hypothesize that the intermediate output of D is strongly related to inpainting related distortions which

affect the perceived quality significantly. Based on this hypothesis, we propose to use the discriminator to get

a latent codebook with ‘codewords’ that represent different types of distortions. This codebook is trained with

a validation set Ival that contains real DIBR-based images (in this study, it is 20% of the IRCCyN/IVC DIBR

database [49], details can be found in Section 16.2.4 and Section 16.3). With this codebook, a higher-level

representation could be obtained for each image. Details are illustrated below.
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Table 16.1 – Different discriminator architectures tested in this study, In is the input of each layer, InSize is
the input size of each layer, k is the kernel size, s is the stride, OutL is the output channels for each layer and
Act is the activation function of each layer.

Layer In InSize k s OutL Act Visualization
Discriminator architecture D1

conv_1 image 64× 64 4 1 64 Leaky
ReLU

conv_2 conv_1 32× 32 4 1 128 Leaky
ReLU

conv_3 conv_2 16× 16 4 1 256 Leaky
ReLU

conv_4 conv_3 8× 8 4 1 512 Leaky
ReLU

conv_5 conv_4 4× 4 4 1 1 Sig
moid

Discriminator architecture D2

conv_1 image 128× 128 4 1 32 Leaky
ReLU

conv_2 conv_1 64× 64 4 1 64 Leaky
ReLU

conv_3 conv_2 32× 32 4 1 128 Leaky
ReLU

conv_4 conv_3 16× 16 4 1 256 Leaky
ReLU

conv_5 conv_4 8× 8 4 1 512 Leaky
ReLU

conv_6 conv_5 4× 4 4 1 1 Sig
moid

Discriminator architecture D3

conv_1 image 128× 128 4 1 16 Leaky
ReLU

conv_2 conv_1 64× 64 4 1 32 Leaky
ReLU

conv_3 conv_2 32× 32 4 1 64 Leaky
ReLU

conv_4 conv_3 16× 16 4 1 128 Leaky
ReLU

conv_5 conv_4 8× 8 4 1 256 Leaky
ReLU

conv_6 conv_5 4× 4 4 1 1 Sig
moid

To predict the image level quality by considering local distortion, the image needed to be processed locally.

Therefore, a set of multiple overlapping patches Pi = {pij |j = 1, · · · , n}, where n is the total number of patches,

is used to represent the image xi as done in [71]. In this study, the overlap size is selected as half of the patch size,

and the patches are sampled over the whole image (along both the horizontal and vertical direction) to maintain

as much structural information as possible. Afterwards, with the pre-trained GANs model, these patches are

fed into the adversarial discriminator to extract higher-level features for later patches categorizations. For each

patch pij in the entire validation dataset Ival, its corresponding feature vector vij is extracted from the lth layer

in the discriminator as:

vij = D(pij , l) (16.7)

In this study, the feature vector is extracted from the last convolutional layer of the discriminator (Details are
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shown in Section 16.2.3). Finally, m× n vectors can be obtained for the m images in the validation set Ival.

(a) c47 (b) c147 (c) c102

(d) c121 (e) c05 (f) c98

Figure 16.6 – Selected ‘Words’ in the learned BDW Codebook.

With the set of extracted features in correspondence to their patches, now we want to look for a new

representation of the entire image by taking the intermediate output of the discriminator into account so that

this new representation is able to link the local information with the entire image quality.

Intuitively, the idea is to categorize image patches into different clusters that can be representatives of

perceived quality, so the quality of the tested image can be quantified by checking how many ‘good’ or ‘poor’

patches it has. Formally, the m × n patches vij , i = {1, · · · ,m}, j = {1, · · · , n} are reshaped to vo, o =

{1, · · · , n×m}. Then the v are clustered intoK clusters {c1, · · · , cK} using an advanced clustering algorithm [?],

which is a fast nearest neighbor algorithm robust in high dimensional vectors matching. Selected cluster results

are shown in Fig. 16.6. It can be observed that patches with similar type of distortions are gathered in the

same cluster as a ‘distortion word’. For example, both of the cluster c47 and c147 are consist of patches with

‘dark holes’, and the ones in cluster c47 are obviously larger than that of c147, which indicates worse quality. For

other clusters shown in the figure, the distortions of c102 is imperceivable (guarantee good quality), while c121,

c05 and c98 are with more obvious inpainting related artifacts. Naturally, different ‘codeword’ in the clustered

‘codebook’ actually represents a certain level of quality with respect to the types and magnitudes of distortions,

which is in consistent with our hypothesis. Based on this observation, in this study, the trained codebook is

named after ‘bag of distortion words’ (BDW). With the BDW codebook, each image xi can then be encoded

as a histogram hadv(i) = {µi1, · · · , µiK} , where each µik is defined as

µik =
∑n
j=1 1(pij ⊂ ck)

n
(16.8)

1(c) is an indicator function that equals to 1 if the specified binary clause c is true. An intuitive interpretation

of this BDW based representation of the image is that the histogram statistically quantifies how many ‘good

quality’ and ‘poor quality’ patches that a synthesized image has. As local significant synthesized distortion is

more annoying than the global uniform one, this new representation is a higher-level quality descriptor which

can indirectly predict the overall quality of one image. During clustering, K is an important parameter that

will have an impact on the final performance. Therefore, further discussion about the selection of K is given in

Section 16.3.
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16.2.3 Local distortion regions selection

Generally, artifacts located at a region of interest is much more annoying than those located at an inconspic-

uous area when observing an image [34]. In our case, ‘poor’ quality regions (i.e., holes and inpainting artifacts)

are generally in the regions of interest (such as the foreground object), thus, they are more likely to be attracted

by observers than the ‘good’ ones. Therefore, images with even a small number of ‘poor’ regions are penalized

more gravely by the observers. Accordingly, it is reasonable to do the same penalization in the objective model

as well.

Moreover, as discussed before, the discriminator is trained to distinguish artificial generated picture (in-

painted images in this case) from the real one. A well-trained discriminator is supposed to be able to indicate

poor inpainted regions. The output of the discriminator D is a boolean value indicating whether the input patch

pij is an inpainted or not, where ‘1’ for real patches and ‘0’ for generated patches. It is intuitive to hypothesize

that patches assigned with ‘0’ by the discriminator are those with poor quality. Hence, the discriminator is

further utilized as a ‘poor’ quality patches selector. As thus, Equation (16.8) could be modified to:

µik =
∑n
j=1 1(pij ⊂ ck) ·XOR(D(pij), 1))

n
(16.9)

where D(·) is the direct boolean output of the pre-trained discriminator when taking a patch pij as the input.

XOR(·) is the exclusive OR operation, XOR(D(pij), 1)) equals to 1 if D(pij) = 0.

Apart from using the final boolean output of the discriminator for selecting the possible inpainted regions,

another possibility is to use the output just before the final sigmoid layer (i.e., the last convolutional layer)

with normalization. To do this, the output of the last convolutional layer of the discriminator for all the

training patches pij , i = {1, · · · ,m}, j = {1, · · · , n} are collected and normalized into a range of [0, 1]. After the

normalization, the output of the last convolutional layer serves as a probability value indicating that whether

the test patch is natural (non-inpainted) or not. A smaller value represents a higher probability that this patch

is inpainted and with a greater magnitude of distortions. Afterwards, patches that with a certain magnitude of

in-painting distortions can be selected according to a certain threshold ε, meaning that only poorly inpainted

regions with certain low-quality level are selected for the final quality decision. By doing so, Equation (16.9)

could be further rewritten as:

µik =
∑n
j=1 1(pij ⊂ ck) · 1(DBS(pij) < ε)

n
(16.10)

where DBS(·) means we only consider the output of the last convolutional layer in the discriminator with a

patch pij as input. ε is a threshold for poor-quality patches selection. The setting of threshold ε is discussed in

Section 16.3.

Examples of possible distortion regions predicted by the discriminator are shown in Fig. 16.7. Fig. 16.7

(b) is the distortion map obtained using the direct output of the discriminator, i.e., D(I). Dark color patches

are the regions predicted to be inpainted while the white ones are predicted to be the real. Fig. 16.7 (c) is the

distortion map DBS(I). To check whether distortion regions within a synthesized image are well indicated by

the output of the discriminator, we plot D(I) and DBS(I < 0.7) (red and blue color respectively) on the ground

truth error map in 16.7 (e) and (f) respectively. According to Figure 16.7 (e) and (f), the distortion regions are

better covered by DBS(I < 0.7) than D(I). For DBS(I), it is observed that a threshold of 0.7 could make most

of the severely distorted regions detected.
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(a) (b) (c)

(d) (e) (f)

Figure 16.7 – Example of possible distortion regions selected by the pre-trained discriminator (better see in
color). (a) original image I; (b) distortion map D(I) generated directly using the 0/1 output of the discriminator
for all the patches within one image; (c) distortion map DBS(I) generated with the normalized output of
the previous layer before the last sigmoid layer of the discriminator (the darker the color, the more likely
the distortions exist); (d) synthesized image with zoomed-in regions that contain severe inpainting-related
distortions ; (e) possible synthesized regions (labeled with red color) indicated by D(I) with ground truth error
map as reference (obtained with the reference (a) and synthesized image (d)). (f) possible synthesized regions
(labeled with red color) indicated by DBS(I) (with a threshold ε = 0.7, meaning that patches with a normalized
value smaller than 0.7 are plotted ) with ground truth error map as reference.
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16.2.4 Final Score Prediction

After extracting the histogram hgan , SVR is then applied on hgan with a linear kernel to predict the final

quality score. In the experiment, the entire database is divided into 20% validation set for model parameters

selection (e.g., codebook training) and 80% for performance evaluation. During the performance evaluation

procedure, a 1000-fold cross-validation is applied. For each fold, the remaining 80% of the dataset is further

randomly split into 80% of the images for SVR training and 20% for testing, with no overlap between them [155].

The median PCC, SCC, and RMSM between subjective and objective scores are reported across the 1000 runs

for performance evaluation.

16.3 Experimental Result

The performance of the proposed GAN-IQM is evaluated on the IVC-Image database [49] as described in

section 4.2.1.1. To the best of our knowledge, this is the only existing image database designed for comparing

different DIBR synthesis algorithms, and released with subjective scores. To provide more robust performances

evaluation data augmentation is conducted by rotating each image by 90◦, 180◦ and 270◦ counterclockwise

successively, which ends up into totally 384 images. Unlike other data augmentation methodology, such as

scaling, rotation does not introduce distortions. We thus assume the quality of the augmented image remains

unchanged.

16.3.1 Performance Dependency of Utilized Parameters

16.3.1.1 Number of ’Distortion Words’ K in BDW

To check if the performance of the proposed GAN-IQM is sensitive to the cluster number K, different

numbers of K for the quality-aware dictionary training are tested on the validation set. The results are shown

in Figure 16.8. The corresponding PCC/SCC curves are obtained by fixing other related parameters. As it can

be observed that, the performance of GAN-IQM in PCC/SCC raises gradually along with the increase of K at

the beginning. After the performance peaks at a certain number of K (160), it starts to drop gradually. In this

study, we set K = 160.

Figure 16.8 – Performance dependency of proposed metric with changing K number
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Table 16.2 – Performance dependency of proposed metric with different solver hyper-parameters λ

PCC λ = 0.5 λ = 0.9 λ = 0.999
D1 0.7802 0.8083 0.7821
D2 0.7377 0.7536 0.7339
D3 0.7266 0.7280 0.7273

Table 16.3 – Performance dependency of proposed metric with different Threshold ε

PCC SCC RMSE
no selection 0.7691 0.7268 0.4782
direct output 0.8083 0.7669 0.4214
ε = 0.3 0.7525 0.7259 0.4995
ε = 0.4 0.7631 0.7649 0.4593
ε = 0.5 0.7889 0.7600 0.4546
ε = 0.6 0.7963 0.7798 0.4176
ε = 0.7 0.8195 0.7920 0.4016
ε = 0.8 0.7704 0.7248 0.4723

16.3.1.2 Different Solver Hyper-Parameters λ

As introduced in [207,218], the solver hyper-parameter λ in equation (16.3), is suggested to be set as 0.999.

It is a tunable parameter balancing the reconstruction loss and the adversarial loss during training. Since the

discriminator is utilized for both distortion regions selection, and higher level feature extraction in this study,

higher weight for the adversarial loss is tested, i.e. lower λ in equation (16.3). The performances of the proposed

model with different λ are reported in Table 16.2. The performance reported in this table is obtained by fixing

K = 160 and using the direct output of the discriminator for distortion region selection. By comparing the

performances with λ equaling to 0.5 and 0.9, it is obvious that with larger λ = 0.9 the proposed metric achieve

better PCC value despite what discriminator architectures are using. Interestingly, it is found that the PCC

drops when λ = 0.999. In this study, we set λ = 0.9.

16.3.1.3 Different Discriminator Architecture

The performances of the proposed model equipped with different discriminator architectures, which are

described in Table 16.1, are also reported in Table 16.2. It is found that, with any chosen λ, the proposed

method always attains better PCC value with architecture D1 than with D2 or D3. In the proposed model, we

finally choose architecture D1 for discriminator.

16.3.1.4 Threshold ε Setting

The influence of the threshold ε on the performance of GAN-IQM is illustrated in Table 16.3. The perfor-

mance of using a strategy of selecting a proper threshold in equation (16.10) for distortion regions selections is

better than using the direct output of the discriminator. The performance climbs with an increasing ε until it

reaches to 0.7, then the performance declines.

Based on this observation, conclusions can be made that 1) regions that contain considerably serious local

distortion do play a major role in predicting the perceived quality score for synthesized images; 2) the direct

output of the discriminator may fail to detect the regions with better quality but still contain synthesized related

artifacts, which also play certain role in deciding the quality. .
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16.3.2 Overall Performance

The performance of the proposed model is compared with all the 3D quality metrics that are developed

for assessing synthesized views summarized in chapter 3. For fair comparison, the median performance of the

compared metrics are also reported under a 1000-fold cross-validation.

Performance results are summarized in Table 16.4. These metrics can be divided into two groups, which are

the full reference (FR) metrics and the no reference (NR) ones. Parameters of GAN-IQM that yield the best

performance are selected according to the previous discussion. It can be seen from Table 16.4 that our proposed

method attains the best performance within the group of NR metrics in terms of PCC, SCC and RMSE. The

gain of GAN-IQM compared to the second best NR metric APT is 17% in PCC. Furthermore, even compared

to FR metrics, its performance is comparable to the best performing ST-IQM.

Table 16.4 – Performance of the proposed metric an the state-of-the-art metrics designed for synthesized views

PCC SCC RMSE
Full Reference Metric (FR)

3DSwIM 0.7266 0.6421 0.4304
VSQA 0.5096 0.5064 0.5336

MP-PSNRr 0.7489 0.7011 0.4148
MP-PSNRf 0.7336 0.6634 0.4199
MW-PSNRr 0.7400 0.6836 0.4240
MW-PSNRf 0.7183 0.6419 0.4401
CT-IQM 0.7107 0.6151 0.4481
EM-IQM 0.7599 0.7012 0.4038
ST-IQM 0.8462 0.7681 0.3415

NO Reference Metric (NR)
NIQSV+ 0.7010 0.5158 0.4553
APT 0.7046 0.7198 0.4993

GAN-IQA(NR) 0.8262 0.8072 0.3861

The scatter plots of all the NR quality metrics versus DMOS are provided in Fig. 16.9. By comparing the

scatter plots of GAN-IQM with others, we can notice that most of the objective scores that predicted by the

proposed metric are well distributed along the diagonal of the plot. In the scatter plot of APT and NIQSV+,

images that synthesized using same DIBR algorithm are predicted with similar objective scores, which leads to

a ’vertical line’ as shown in Figure 16.9 (a) and (b).

(a) (b) (c)

Figure 16.9 – Scatter plots of the three blind quality metrics versus DMOS on IVC-Image database. (a) APT.
(b) NIQSV+. (c) GAN-IQM.

Last but not least, to meet the need of real-time computation for real applications such as multi-views live

match broadcasting, the time cost of the quality assessment metric should be low enough. In verification of

the efficiency of the proposed metric, the execution time of the metrics normalized by PSNR as introduced in



16.3. EXPERIMENTAL RESULT 159

section 4.4 are listed in Table 16.5. Due to the lack of reference views in most of the practical situation, here

only the no reference metrics are reported. According to the table, even though our proposed metric is a bit

slower than NIQSV+, it is still much faster than second best performing APT.

Table 16.5 – Normalized execution time of proposed metric compare to the state-of-the-art metrics.

Metric NIQSV+ APT GANs-NRM
Normalized time 21 13k+ 157

16.3.3 Inpainting results

The theoretical assumption of this study is that the generator/discriminator are simultaneously trained

to inpaint/evaluate the RGB-D dis-occluded regions/RGB-D synthesis views. The performance of utilizing

discriminator to predict the quality of the RGB-D synthesis views has been demonstrated in the previous

section. As a side outcome of this study, it would be interesting to evaluate the performance of the pre-trained

context inpainter (generator) on the same database, i.e., the synthesized views that contain dis-occluded regions

in the IRCCyN/IVC DIBR images database.

PSNR between the reference and the inpainted image is calculated for evaluation. Three inpainting algo-

rithms [80] [99] [100] are used for comparison. Due to the limitation of space, selected results are shown in

Fig.16.10.

Based on the results, it is observed that 1) By comparing our inpainted result in Fig. 16.10f to the others

with respect to the reference, the shape of the braid of the girl is better remained by our model. Similar results

could also be observed in Fig. 16.10l where the corner of the poster is better preserved compared to the others;

2) The shape of the dis-occluded regions in Fig. 16.10n are better inpainted by the proposed models as shown

in Fig. 16.10r. There are obvious ‘double-edge like’ shapes, i.e. ghosting artifacts, along the objects after being

inpainted by other methods; 3) In the condition that holes appear in homogeneous texture regions which are

also close to the borders of foreground objects, our inpainted result is with higher texture consistency than the

others as shown in Fig. 16.10x.

In conclusion, our proposed context inpainter could maintain the structures of the dis-occluded regions,

especially when the dis-occluded regions are large. For the challenging dis-occluded regions that lie on the

border of foregrounds and backgrounds, as well as in the homogeneous texture regions close to the border of

foreground objects, the proposed inpainter performs better than the others.

The appealing performance of our pre-trained context inpainter (generator) on RGB-D dis-occluded regions

validates the effectiveness of the proposed training strategy, which uses specific designed masks to mimic the

typical black-hole artifacts induced in DIBR process. The proposed strategy is more flexible in using the

large-scale image databases in the computer vision domain rather than the RGB-D datasets where the depth

information might be noisy. It should also be noted that the training data scale in our study is only 10K, which

could be definitely further augmented by employing the existing datasets. Therefore, there is still improvement

space for our current trained model, no matter for quality assessment or for hole filling of RGB-D synthesis

view.
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(a) reference (b) patch with holes (c) PSNR= 10 (d) PSNR= 10 (e) PSNR= 11 (f) Our PSNR= 12

(g) reference (h) patch with holes (i) PSNR= 24 (j) PSNR= 23 (k) PSNR= 24 (l) Our PSNR= 27

(m) reference (n) patch with holes (o) PSNR= 25 (p) PSNR= 25 (q) PSNR= 25 (r) Our PSNR= 28

(s) reference (t) patch with holes (u) PSNR= 23 (v) PSNR= 23 (w) PSNR= 23.9 (x) Our PSNR= 27

Figure 16.10 – Results of using our re-trained generator to inpaint the dis-occluded regions. First column: ref-
erence patches; Second column: patches with dis-occluded regions; Third column: inpainted results using algo-
rithm proposed in [99]; Forth column: inpainted results using algorithm proposed in [80]; Fifth column:inpainted
results using algorithm proposed in [100]; Sixth column: inpaintd results using our retrained generator;
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16.4 Conclusion

In this section, we proposed a GANs-based NR quality metric, GANs-NQM, to evaluate the perceptual

quality of RGB-D synthesis views. To resolve the challenges of the training data scales in DNNs, a novel

strategy is proposed which exploits the current existing large-scale 2D computer vision datasets rather than

RGB-D datasets, where depth data may be unreliable. The spirit of the strategy can be easily applied to other

applications in RGB-D domain or even other community. Based on the assumption that if a generator of a

GANs could be trained to inpaint the dis-occluded regions then the discriminator could be used to predict the

quality, in this study, we learned a ‘Bag of Distortions Word’ (BDW) codebook, proposed a local distortion

region selector from the discriminator, and eventually mapped the non-uniform inpainting related artifacts to

perceptual quality through SVR. According to experimental results, the proposed GANs-NQM provides the

best performance compared to the state-of-the-art FR/NR quality metrics for RGB-D synthesized views. As a

side outcome, the pre-trained inpainter also shows an appealing performance in inpainting the challenging holes

in RGB-D synthesis view.
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Conclusion of Part 4

In this part, higher-level representations have been explored for image quality assessment. Based on this

study, two higher-level based models have been proposed, and certain research questions that posed in section

14.2 are answered. Based on the performance and complexity of the proposed models, some conclusions are

made.

17.1 Answers to Research Questions

� Higher-level representations of image/video for quality assessment in different tasks (Part IV)

� A convolutional sparse coding based no reference image quality assessment metric (CSC-IQM) is

proposed for capturing local structural non-uniform distortions in both the use-cases of FTV and

VR.

Referring to the fact that there is a ‘sparse mode’ in the human visual system that transmits low,

mid-level image/video representations to higher semantic representations, where each item within the

mode is ‘semantic’ relative, in section 15.2 and 15.3, a convolutional sparse coding no reference image

quality metric is proposed. A set of convolutional ‘items’ are trained using manually labeled patches

that contain non-natural structure according to specific applications, where each ‘item’ are related to

a certain type of non-natural structure, e.g., double edges kernel. According to experimental results

and visualized analysis, it is proven that the proposed metric is able to localize and quantify local

non-uniform structure distortions.

� An adjusted forward feature selection algorithm is proposed for quantifying the interplay relation

among different structure related artifacts in the case of quality assessment of stitched panoramic

images.

Considering the fact that there are certain interplay relationships between different structure related

distortions, i.e., the ‘masking effect’ happens when more than one type of structure related distor-

tions appear at the same location. To handle and quantify this effect, a compound feature selection
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algorithm is proposed in section 15.3.2 by selecting useful feature maps corresponding to differ-

ent convolutional kernels (different kernels correspond to different distorted structures/non-natural

structure). According to experimental results, the performance of CSC-IQM is improved with the

incorporation of the proposed feature selection algorithm. Visualized results have also proven its

capability of localizing distortions’ overlap regions and quantifying the overlapping effects.

� A generative adversarial network based no reference image quality assessment metric (GAN-IQM) is

proposed to quantify local non-uniform inpainting related artifacts.

Discriminator in a generative adversarial network is trained to distinguish artificial images from the

real one according to the goal of the task. In order to learn the effect of inpainting related artifact

(causing changes of structure) on perceived quality, a new GANs model is retrained in chapter 16

to inpaint regions that similar to dis-occluded regions that are introduced in DIBR based synthesis

procedure. As the goal is to well inpaint those regions, the discriminator is thus trained to tell whether

the input image is good enough to be real. It is then assumed that the discriminator judges the input

based on its quality. Based on which, the GA-IQM is further proposed by using the discriminator as

higher-level feature extractors. According to the experimental results, the proposed metric is able to

quantify local inpainting structure related distortions.

17.2 Performance summary and discussion

The performance and executing time of the proposed higher-level representation based models on all the

tested datasets are summarized in Table 17.1 and 17.2 respectively.

Both CSC-IQM and GAN-IQM have been tested on the IVC-Image dataset for evaluating the quality of

synthesized frames in FTV scenario. The performance of CSC-IQM is slightly higher than the one of GAN-

IQM (PCC value). However, GAN-IQM is much faster regarding complexity since it mainly needs to fit the

input image (a set of patches) into the pre-trained discriminator while CSC-IQM needs to optimize the features

maps for the input image with the pre-trained codebook. CSC-IQM is more visual friendly than GAN-IQM

since the learned convolutional kernels can be easily visualized to show the learned un-natural structure. Both

of these two higher-level representation based models maintain well local information. For CSC-IQM, both

global and local information can be accessed easily with the feature maps. Since each kernel corresponds to one

potential type of non-natural structure, this type of local non-uniform distortion could be localized with the

pixels coordinates activated with the corresponding kernel. With this advantage, one can then further check

the interplay relations among different types of non-uniform structure distortions with the feature maps as

shown in section 15.3.2. For GAN-IQM, an image is first divided into patches, those patches are then fitted to

the pre-trained discriminator and are further assigned to a particular ‘word’ (in the trained ‘bag of distortions

word’ codebook) with the extracted high-level feature. As thus, whether local patches contain severe inpainting

related distortion could be indicated by either the normalized output of the discriminator or the ‘word’ within

the trained ‘bag of distortions word’ codebook that the patches belong to.

Compared to low, mid-level representation based models presented in the previous parts, the two higher-level

representation based models proposed are of higher representation capability, which generate representations

that quantify directly the amount of structure disruptions (i.e. (1) number of activated pixels where non-uniform

structure are located at in CSC-IQM; (2) number of patches contain non-uniform distortions in GAN-IQM).
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More importantly, with better representative power, distance measures are not required in these two models,

and they are no reference metrics. The performances of these two metrics are comparable to the best performing

mid-level model ST-IQM. In terms of complexity, GAN-IQA is faster than the mid-level based metrics proposed

in this thesis and slightly slower than the low-level ones. Since they are newly developed metrics, they will be

further extended for video quality assessment in the future.

Table 17.1 – Summarization of performance of higher-level representation based models

PCC Higher-level
Related Task Related Database CSC-IQM GAN-IQM
IQM in FTV IVC-Image 0.830 0.826

IQM of Stitched panoramic image SIQA 0.857

Table 17.2 – Summarization of executing time of higher-level representation based models

Normalized time Higher-level
Related Task Related Database CSC-IQM GAN-IQM
IQM in FTV IVC-Image 985 157

IQM of Stitched panoramic image SIQA 672

Higher-level representation based models are of better capacity in representing images/videos. Compared

to low, mid-level representation based models, higher-level representation based models learn to represent and

quantify structure related distortions by taking advantage of the characteristics of advanced machine learning

based models according to the task. As thus, representations obtained from these models have a stronger link

to perceived quality in terms of showing the portion of regions that contain non-natural structure. Unlike other

‘black box’ deep learning based models, the learning procedures of these two models are highly related to the

task (task-oriented), e.g., in order to train a discriminator to reveal the quality of inpainted images, the GANs

network is designed as a ‘context inpainter’ with designed dis-occluded regions to be inpainted. Therefore,

the promising performance is guaranteed by how the learning process is designed according to the task. As

mentioned in section 3.3, natural scene statistics (NSS) based models fail to handle local geometric distortions,

these two models meet this need by learning the non-natural structure (NNS). Last but not least, higher-level

representation based model GAN-IQM is efficient enough to be executed in real-time.





18
Conclusions and Perspectives

In this dissertation, a research effort has been conducted to explore different levels of image/video represen-

tations, referring to human visual representation mechanism, for image/video quality assessment in immersive

multimedia applications. In those applications, local non-uniform structure-related distortions are one of the

toughest distortions that commonly used metrics fail to deal with.

As all of the proposed metrics have been tested on the IVC-Image dataset, their performances (in terms

of PCC value) and the execution time (in terms of normalized time with the executing time of PSNR) are

summarized in Table 18.1. The following conclusions are drawn based on their performance and complexity

(Table 18.1).

Table 18.1 – Summarization of performance of all the proposed models on IVC-Image database

Low-level Mid-level Higher-level
BF-M EM-IQM ST-IQM CT-IQM CSC-IQM GAN-IQM

PCC 0.6980 0.7430 0.8219 0.6809 0.8302 0.8262
Executing time 17 127 1324 458 985 157

The proposed low-level representation based models (Part II) evaluate the quality/utility of image

based on the dissimilarities between low-level representations of the reference and the distorted images/videos.

These low-level representations (‘white box’ approaches) show almost no intermediate visual pattern or any

semantics related to the tasks. As a result, the performances of the two proposed low-level representation based

models are less promising compared to other metrics (except for CT-IQM). However, simplicity is one of the

advantages of these two models. As shown in Table 18.1, BF-M and EM-IQM are two of the most effective

metrics among all the proposed models. Since BF-M is proposed to check the role of structure and texture

information in different tasks, its advantages outweigh its disadvantages in such a case (e.g., used as a guide

for improving another learning-based model). Last but not least, EM-IQM outperforms one of the mid-level

representation based model CT-IQM. As discussed before, it is because 1) sensitive regions selection process

is incorporated 2) elastic metric is suitable for quantifying geometric distortions in FTV use case. One of the
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most important conclusion that could be made from this part is that: if the right distance measures are selected

according to the problem that needs to be solved, low-level representation based models could be powerful too.

The proposed mid-level representation based models (Part III) evaluate the quality of images/videos

by checking how intermediate patterns (e.g., contours’ categories and entropies of contours) change. The pro-

posed mid-level representation based models are of higher representative capability compared to the low-level

ones. According to Table 18.1, ST-IQM obtains one of the best performance among all proposed full reference

metrics. However, CT-IQM is the worse performing metric. It proves that if a mid-level representation is not

rich enough regarding its capability to represent meaningful information according to the task, it could not guar-

antee better performances compared to low-level representation based models. In the case of quality assessment

of synthesized views, observers are sensitive to degradations of structure, ST-IQM is able to quantify changes

of contours from a higher semantic level than CT-IQM. One of the reasons why CT-IQM is not performing well

could be that for certain types of contours, they may have the same entropy. For example, for ‘T’ and ‘L’ shape

contours, their frequencies of occurrence in the an image could be the equal, which may result in same entropy

for the two types of contours. Furthermore, the complexity of these two models are higher compared to others

since registration stage (in ST-IQM) or learning stage (i.e., context tree learning in CT-IQM) is involved.

The proposed higher-level representation based models (Part IV) evaluate the quality of im-

ages/videos by learning to represent and quantify structure-related distortions according to the tasks. In this

study, the two proposed higher-level representation based models are trained to learn the non-natural structure

within images. Thus, they are of better ability in representing images/videos for the task. In other words,

representations obtained from these models have a stronger connection with the perceived quality of images

that contain structure-related distortions. Unlike other ‘black box’ deep learning based models, the learning

procedure is highly task-oriented. The promising performances are guaranteed by how the learning process

is designed according to the task. Unlike natural scenes statistics (NSS) based models, these two models are

capable of predicting the perceived quality of images/videos in immersive multimedia use cases by learning the

non-natural structures (NNS). According to Table 18.1, GAN-IQM is the second lest time-consuming model,

which confirms that using more a complex network does not necessarily lead to higher complexity.

Comparisons of different level representation based models:

The proposed low-level models are the least representative models, while the higher-level representation

based models are the most representative ones. Low, mid-level representation based models proposed in this

study are not directly linked to quality. They rely on using certain distance measures to compute the final

quality scores with the images/videos representations. Unlike higher-level models, even the learning process is

involved in these models, they are not trying to learn the distortion/unnaturalness. Compared to low, mid-level

based models, higher-level representation based model learn to represent and quantify distortions by designing

the learning process according to the tasks.

18.1 Perspectives

Throughout the thesis, different level of visual representations have been explored for image/video qual-

ity/utility assessment in different use cases. The final goal of this dissertation is to highlight insights obtained

during the exploration and the potential usages/improvements of the proposed models.

Better usage of distance measures: Considering the fact that low-level representation based model EM-
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IQM outperforms mid-level representation based model CT-IQM, it is essential to use proper distance measures

according to the characteristics of the task.

‘White box’ vs. ‘Black box’ approaches: On one hand, the ‘black box’ methods do not necessarily

outperform ‘white box’ methods. For example, ST-IQM obtains performance close to GAN-IQM. The key point

is to design and learn a model which is suitable for the task. On another hand, the ‘black box’ method does

not necessarily mean less comprehensible. For example, the learned kernels of CSC-IQM model are visualized

friendly, where most of the learned kernels correspond to certain types of non-natural structures, e.g., ‘double

line shape’ curve. One should choose and design a model properly according to the characteristics of the task.

Take advantages of ‘Black Box’ method by designing the learning process carefully according

to the task: GAN-IQM model is a successful example of using deep learning approach by mimicking ‘similar

problems’ for the ‘black box’ to solve. Compared to those deep learning based quality models, which fine-tunes

an existing deep net with MOS as label, our proposed model trains the network by forcing it to accomplish the

same task by generating artificially generated training samples (e.g., it is forced to well inpaint the artificial

dis-occluded regions). By doing so, the model is more task-oriented and can obtain more promising and

understandable performance.

Using deep learning to speed up optimization process: As reported before, the cumbersome opti-

mization process is one of the main reason that makes those learning based models slow. For instance, for the

proposed CSC-IQM, the optimization procedure of getting the feature maps with a learned codebook could be

improved significantly by employing deep learning based unrolling methods ( e.g., algorithm proposed in [219]).

Combining different level representation based models: In this work, different level representation

based models are proposed separately. As concluded above, they are of different superiorities depending on the

use cases. Therefore, combining different level representation based models according to the characteristics of

the task may yield a more robust hierarchical model.

Following is an example of combing BF-M with ST-IQM for the task of quality assessment of synthesized

images in FTV scenario. As the primary goal of proposing BF-M is to explore the roles of structure and

texture information in different tasks by first separating the structural and textural information. By using the

bilateral filter, structures within an image can be emphasized, e.g., obtaining clearer contours at the same time

better separating texture from the structure. One possible improvement is to equip BF-M with more powerful

structure and texture features or measures. ST-IQM could be that structure measure.

In order to check how BF-M can be combined with ST-IQM and with another more advanced texture

descriptors, we replace the simple descriptors in BF-M with ST-IQA and a perceptual inspired texture features

that we proposed in [220].

More specifically, the ST-IQM is used to replace the structure-related estimator BI-NICE and BI-HOG

as BI-ST , while the spatial contrast sensitivity (CSF) based texture descriptor [220] is used to replace the

texture-related estimator BI-LRI as BI-CSF . As thus, equation (7.4) can be modified as

BF -Mnew = 1− [(αBI + βBI) ·BI-ST + γBI ·BI-CSF ]

s.t. αBI + βBI + γBI = 1.
(18.1)

The performance of the BF -Mnew is summarized in Table 18.2. The optimized performance of BF -Mnew is

obtained while (αBI + βBI) is set as 0.8 and γBI as 0.2. This best-fit configuration is similar to the optimum
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configuration of BF -M as described in chapter 7, conclusion that structural information plays the major role in

task of synthesized view quality evaluation is still solid in this case. It can be observed from the table that the

performance of BF -Mnew with more advanced structural/texture estimators outperforms the one of BF -M . It

can be concluded that the performances of the proposed models can be improved by combining different level

representation based models proposed in this dissertation.

Table 18.2 – Performance of the improved BF-M.

PCC SCC RMSE
ST-IQM 0.8217 0.7827 0.3233
BI-ST 0.8313 0.7956 0.3183
BI-CSF 0.7279 0.6409 0.4565
BF-M 0.6980 0.5885 0.4768

BF-Mnew 0.8405 0.8072 0.3052
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Représentations perceptuelles de l’information structurelle et géométrique des
images : approches bio inspirées et par apprentissage machine
Application à la qualité visuelle de médias immersifs

Perceptual representations of structural and geometric information in images:
bio-inspired and machine learning approaches
Application to visual quality assessment of immersive media

Résumé
Ce travail vise à mieux évaluer la qualité perceptuelle des images contenant

des distorsions structurelles et géométriques notamment dans le contexte de

médias immersifs. Nous proposons et explorons un cadre algorithmique

hiérarchique de la perception visuelle. Inspiré par le système visuel humain,

nous investiguons plusieurs niveaux de représentations des images : bas

niveau (caractéristiques élémentaires comme les segments), niveau

intermédiaire (motif complexe, encodage de contours), haut niveau

(abstraction et reconnaissance des données visuelles). La première partie du

manuscrit traite des représentations bas niveau pour la structure et texture. U

n modèle basé filtre bilatéral est d’abord introduit pour qualifier les rôles

respectifs de l’information texturelle et structurelle dans diverses tâches

d’évaluation (utilité, qualité. . . ). Une mesure de qualité d’image/video est

proposée pour quantifier les déformations de structure spatiales et

temporelles perçues en utilisant une métrique dite élastique. La seconde

partie du mémoire explore les représentations de niveaux intermédiaires. Un

modèle basé « schetch token » et un autre basé sur codage d’un arbre de

contexte sont présentés pour évaluer la qualité perçue. La troisième partie

traite des représentations haut niveau. Deux approches d’apprentissage

machine sont proposées pour apprendre ces représentations : une basée sur

un technique de convolutional sparse coding, l’autre sur des réseaux profonds

de type generative adversarial network. Au long du manuscrit, plusieurs

expériences sont menées sur différentes bases de données pour plusieurs

applications (FTV, visualisation multivues, images panoramiques 360. . . ) ainsi

que des études utilisateurs.

Abstract
This work aims to better evaluate the perceptual quality of image/video that

contains structural and geometric related distortions in the context of

immersive multimedia. We propose and explore a hierarchical framework of

visual perception for image/video. Inspired by representation mechanism of

the visual system, low-level (elementary visual features, e.g. edges), mid-level

(intermediate visual patterns, e.g. codebook of edges), and higher-level

(abstraction of visual input, e.g. category of distorted edges) image/video

representations are investigated for quality assessment. The first part of this

thesis addresses the low-level structure and texture related representations. A

bilateral filter-based model is first introduced to qualify the respective role of

structure and texture information in various assessment tasks (utility, quality

. . . ). An image quality/video quality measure is proposed to quantify structure

deformation spatially and temporally using new elastic metric. The second

part explores mid-level structure related representations. A sketch-token

based model and a context tree based model are presented in this part for the

image and video quality evaluation. The third part explores higher-level

structure related representations. Two machine learning approaches are

proposed to learn higher-level representation: a convolutional sparse coding

based and a generative adversarial network. Along the thesis, experiments an

user studies have been conducted on different databases for different

applications where special structure related distortions are observed (FTV,

multi-view rendering, omni directional imaging . . . ) .

Mots clés

évaluation de la qualité visuelle, représentation

perceptuelle et cognitive, TV à point de vue libre,

apprentissage profond, convolutional sparse

coding, réseaux "generative adversarial network",

réalité virtuelle, systèmes multi vues
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