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Introduction

Version française
Un entrelacs avec n composantes dans une variété Y de dimension 3 est

l’image par un plongement lisse tni=1S
1 ↪→ Y de copies du cercle. Deux en-

trelacs L1 et L2 sont dit équivalents si il existe une isotopie ambiante de Y qui
envoie L1 sur L2. Une multitude d’invariants d’entrelacs ont été définis et ils
peuvent être de beaucoup de types différents. Le plus simple est peut-être le
nombre n de composantes connexes d’un entrelacs : un entrelacs avec une seule
composante connexe est appelé nœud. Un exemple d’invariant plus sophistiqué,
mais encore classique, est le polynôme d’Alexander, qui associe à un entrelacs
L de S3 un polynôme de Laurent.

Durant les quinze dernières années, de nouvelles méthodes, impliquant l’uti-
lisation de structures géométriques additionnelles sur les variétés, ont mené à la
découverte de nouveaux types d’invariants pour les entrelacs, ainsi que pour les
variétés de dimension trois et quatre. Une structure symplectique sur une variété
M orientée de dimension paire 2n consiste en une 2-forme ω telle que (ω)2n

est une forme de volume positive sur M . Étant donnée une variété Y fermée
et orientée, Ozsváth et Szabó dans [42] ont construit une variété symplectique
auxiliaire (M(Y ), ω) équipée d’une structure presque complexe J ; ensuite ils
ont défini quatre Z-modules CF ∗(M(Y ), J, ω), avec ∗ ∈ {∞,+,−,̂}, mu-
nis de différentielles obtenues en comptant certaines courbes holomorphes dans
M(Y ). Les groupes d’homologie associés ne dépendent pas des choix faits pour
la variété auxiliaire ni des structures géométriques et sont des invariants topolo-
giques de Y :

HF∞(Y ), HF+(Y ), HF−(Y ), ĤF (Y ).

Ces groupes sont les homologies de Heegaard Floer respectivement en version
infinie, plus, moins et chapeau.

De plus Ozsváth et Szabó dans [44] et Rasmussen dans [50] prouvent qu’un
nœud homologiquement trivial K dans Y induit une filtration sur les complexes
de chaînes de Heegaard Floer. La première page de chaque suite spectrale asso-
ciée (dans les versions relatives) s’avère être un invariant topologique de K : ce

7



8 Introduction

sont les groupes bigradués

HFK∞(K,Y ), HFK+(K,Y ), HFK−(K,Y ), ĤFK(K,Y ),

nommés homologies de Heegaard Floer pour les nœuds (dans les versions res-
pectives). Ces homologies sont des invariants puissants pour le couple (K,Y ).
Par exemple dans [44] et [50], il a été prouvé que ĤFK(K,S3) catégorifie le
polynôme d’Alexander de K. C’est-à-dire la chose suivante.
Si C := {(C∗,i, ∂i)}i∈Z est une collection de complexes de chaînes, sa caracté-
ristique d’Euler graduée est χ(C) :=

∑
i χ(C∗,i)t

i, où χ(C∗,i) est la caractéris-
tique d’Euler standard de C∗,i et t est une variable formelle. Par les propriétés de
la caractéristique d’Euler, ce polynôme est invariant si on le calcule à partir de
l’homologie de C. Comme nous l’avons mentionné, ĤFK(K,Y ) est un groupe
bigradué : le fait qu’il catégorifie le polynôme d’Alexander signifie que

χ(ĤFK(K,S3))
.
= ∆K ,

où .
= veut dire que les deux côtes sont égaux à multiplication par un monôme

monique près. Cela a été la première catégorification du polynôme d’Alexander ;
une seconde (en homologie de Seiberg-Witten-Floer) a été découverte plus tard
par Kronheimer et Mrowka ([35]).

Dans [46] Ozsváth et Szabó développent une construction similaire pour les
entrelacs L dans S3 et obtiennent les invariants

HFL−(L, S3) et ĤFL(L, S3),

les homologies de Heegaard Floer pour les entrelacs de L. Ces homologies sont
dotées d’un Zn-degré additionnel, où n est le nombre des composantes connexes
de L. De plus ils prouvent que HFL−(L, S3) catégorifie le polynôme d’Alexan-
der à multivariables, qui est une généralisation du polynôme d’Alexander clas-
sique. En particulier ils montrent que :

χ
(
HFL−(L, S3)

) .
=


∆L(t1, . . . , tn) si n > 1

∆L(t)/(1− t) si n = 1.
(0.1)

En général la théorie d’Heegaard Floer a fourni une grande quantité d’infor-
mations sur la topologie des nœuds et des variétés de dimension trois. De plus
elle donne de puissants instruments pour la compréhension de certaines struc-
tures géométriques sur les variétés. Un exemple est la présence d’un invariant
de structures de contact dans Heegaard Floer ([45]). Une forme de contact sur
une variété Y orientée est une 1-forme lisse α telle que α∧ dα est une forme de
volume positive. Une structure de contact sur Y est une distribution de plans ξ
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pour laquelle il existe une forme de contact α avec ξ = kerα. Deux structures
de contact ξ1 et ξ2 sont dites équivalentes s’il existe une isotopie de Y dont la
différentielle envoie ξ1 sur ξ2.

Un ingrédient clé pour la définition de l’invariant de structures de contact
dans Heegaard Floer est la correspondance de Giroux entre structures de contact
et les décompositions en livre ouvert. De manière informelle, une décomposi-
tion en livre ouvert d’une variété Y de dimension trois consiste en un triplet
(L, S, φ), où L est un entrelacs dans Y , S est une surface compacte orientée
avec bord et φ : S → S est un difféomorphisme préservant l’orientation, tel que
siN (L) est un petit voisinage tubulaire de L, alors Y \N (L) est homéomorphe
à S×[0,1]

(x,1)∼(φ(x),0)
. Alors L, S et φ sont respectivement la reliure, la page et la mo-

nodromie du livre ouvert. Si l’entrelacs L est la reliure d’un livre ouvert, on dit
que L est un entrelacs fibré.

Étant donnée une décomposition en livre ouvert (L, S, φ) de Y , Thurston
et Wilkenkemper ([57]), ont décrit une méthode pour construire une structure
de contact “adaptée” à (L, S, φ). Plus tard, dans [19], Giroux a découvert une
façon d’associer à une structure de contact ξ sur Y une décomposition en livre
ouvert de Y adaptée (à isotopie près) à ξ. Par conséquent, il a montré qu’il existe
une correspondance biunivoque entre classes d’isotopie de structures de contact
et (classes d’équivalence de) décompositions en livre ouvert. Ce résultat est un
apport fondamental à l’étude des interactions entre la géométrie de contact et la
topologie en basse dimension.

Les livres ouverts ont été utilisés dans une série d’articles par Colin, Ghig-
gini et Honda pour prouver l’équivalence entre l’homologie de Heegaard Floer
et l’homologie de contact plongée pour les trois-variétés. Celle-ci est une autre
théorie homologique, définie par Hutchings, qui associe à une variété de contact
(Y, α) deux modules gradués ECH(Y, α) et ÊCH(Y, α). Une forme de contact
α détermine de façon unique un champ de vecteurs non singulier Rα, appelé
champ de Reeb. Les générateurs des complexes de chaînes des homologies
ECH sont alors certains produits formels d’orbites de Reeb, c’est-à-dire des
orbites fermées de Rα.

Théorème 0.1 (Colin, Ghiggini, Honda).

HF+(−Y ) ∼= ECH(Y, α)

ĤF (−Y ) ∼= ÊCH(Y, α),

où −Y est la variété Y avec l’orientation opposée.

Après ce théorème, il est naturel de chercher un analogue en homologie de
contact plongée de l’homologie de Heegaard Floer pour les nœuds. Dans [13]
les auteurs définissent une version suturée de l’homologie de contact plongée,
en analogie avec l’homologie de Heegaard Floer suturée développée par Juhász
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dans [32]. Celle-ci peut être pensée comme une version relative de ECH pour
les variétés à bord. En particulier, étant donné un nœud K dans une variété Y
de dimension trois, ils ont défini une version chapeau de l’homologie de contact
plongée pour les nœuds

ÊCK(K,Y, α).

De manière informelle, celle-ci est l’homologie ECH dans la version chapeau
de la variété de contact (Y \N (K), α), oùN (K) est un petit voisinage tubulaire
de K dans Y et α est une forme de contact convenable. Dans [13] la conjecture
suivante est énoncée :

Conjecture 0.2.

ĤFK(−K,−Y ) ∼= ÊCK(K,Y, α).

L’objectif principal de ce travail est de donner des indices sur la véracité de
cette conjecture. Tout d’abord on définit une version complète de homologie de
contact plongée

ECK(K,Y, α)

pour les nœuds K dans des variétés Y de dimension trois munies d’une forme
de contact α convenable. Puis on généralise les définitions au cas des entrelacs
L avec plusieurs composantes connexes et on obtient des homologies

ECK(L, Y, α) et ÊCK(L, Y, α).

Conjecture 0.3. Pour chaque nœud K ou entrelacs L dans Y , il existe une
forme de contact α telle que :

ECK(K,Y, α) ∼= HFK−(K,Y )

et
ÊCK(L, Y, α) ∼= ĤFK(−L,−Y ),

ECK(L, Y, α) ∼= HFK−(L, Y ).

Ensuite on calcule les caractéristiques d’Euler graduées des homologiesECK
pour les nœuds et entrelacs dans les sphères d’homologie et on montre le résultat
suivant :

Théorème 0.4. Soit L un entrelacs avec n composantes dans une sphère d’ho-
mologie Y . Alors il existe une forme de contact α pour laquelle

χ(ECK(L, Y, α))
.
= ALEX(Y \ L).

Ici ALEX(Y \ L) est le quotient d’Alexander du complémentaire de L dans
Y . Ce théorème est prouvé en utilisant une reformulation dynamique de ALEX
due à Fried ([16]). Des relations classiques entre ALEX(S3 \ L) et ∆L im-
pliquent le résultat suivant.
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Théorème 0.5. Soit L un entrelacs dans S3 avec n composantes. Alors il existe
une forme de contact α telle que :

χ
(
ECK(L, S3, α)

) .
=


∆L(t1, . . . , tn) if n > 1

∆L(t)/(1− t) if n = 1

et

χ
(
ÊCK(L, S3, α)

)
.
=


∆L(t1, . . . , tn) ·

∏n
i=1(1− ti) if n > 1

∆L(t) if n = 1.

Cela implique que l’homologie ECK est une catégorification du polynôme
d’Alexander à multivariables.
Une comparaison entre ces formules et l’equation 0.1 (et les expressions ana-
logues pour les versions chapeau de HFK et HFL prouvées en [46]), implique
en plus le corollaire suivant.

Corollaire 0.6. Dans S3 les conjectures 0.2 et 0.3 sont vraies au niveau des
caractéristiques d’Euler.

Dans le dernier chapitre de cette thèse on commence à examiner la Conjec-
ture 0.2 au niveau de l’homologie. Comme remarqué ci-dessus ĤFK∗,∗(K,Y )

et ÊCK∗,∗(K,Y, α) sont des modules bigradués. Le degré filtré vient d’une fil-
tration induite par K sur des complexes des chaînes convenables ĈF ∗(Y ) et
ÊCC∗(Y, α) pour ĤF ∗(Y ) et, respectivement, ÊCH∗(Y, α).

Dans leur série d’articles, Colin, Ghiggini et Honda définissent des mor-
phismes de complexes des chaînes

Φ : ĈF ∗(−Y ) → ÊCC∗(Y, α)

et
Ψ : ÊCC∗(Y, α) → ĈF ∗(−Y )

qui induisent des isomorphismes en homologie, inverse l’un de l’autre. Ici les
complexes ĈF ∗(−Y ) et ÊCC∗(Y, α) sont définis de façon appropriée à partir
d’une décomposition en livre ouvert (K,S, φ) de Y avec reliure connexe. Soit
H (resp. G) une homotopie de chaînes entre Ψ◦Φ (resp. Φ◦Ψ) et le morphisme
identité sur ĈF (−Y ) (resp. ÊCC(Y, α)). Tous ces morphismes sont définis en
comptant certaines courbes holomorphes dans des variétés symplectiques avec
bord. Par des résultats classiques sur les suites spectrales, si l’on prouve que tous
les morphismes ci-dessus préservent les filtrations données parK sur ĈF ∗(−Y )

et ÊCC∗(Y, α), alors la conjecture 0.2 est vraie pour les nœuds fibrés.
En section 7.3 on prouvera le résultat suivant :
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Théorème 0.7. Soit (K,S, φ) une décomposition en livre ouvert de Y . Alors il
existe α pour laquelle Φ préserve la filtration du nœud donnée par K sur les
complexes.

Une des difficultés principales dans la preuve du théorème 0.7 vient du fait
que les courbes holomorphes comptées par Φ n’intersectent jamais K : par
conséquent on ne peut pas appliquer certains arguments standards utilisés nor-
malement dans des contextes similaires, comme par exemple dans la preuve que
la différentielle de ECH respecte la filtration du nœud ([13]).

Notre stratégie consistera tout d’abord à modifier la monodromie et la forme
de contact près du bord de Y \ N (K), afin de pouvoir définir les filtrations
du nœud en HF et en ECH d’une façon similaire. Ensuite nous appliquerons
des arguments de Wendl à propos de feuilletages holomorphes ([59]) pour vé-
rifier que Φ′ ne compte pas certaines courbes holomorphes qui ne respectent
clairement pas la filtration. Finalement nous prouverons que toutes les courbes
holomorphes comptées par Φ′ préservent la filtration.

Ainsi le théorème 0.7 peut être considéré comme la première étape d’une
preuve de la conjecture 0.2.
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English version
A link with n components in a 3-manifold Y is the image of an embedding

tni=1S
1 ↪→ Y . Two links L1 and L2 are said equivalent if there exists an ambient

isotopy of Y carrying L1 to L2. A multitude of link invariants of different types
has been defined and they can be of very different types. The simplest to define
is perhaps the natural number n of the connected components of a link: a 1-
component link is called a knot. An example of more sophisticated, but still
“classical” invariant is the Alexander polynomial ∆K , which associates to any
link L in S3 a Laurent polynomial.

In the last fifteen years new methods involving additional geometric struc-
tures on manifolds led to the discovery of new invariants of links, as well as of
three and four manifolds.

A symplectic structure on an oriented even dimensional manifold M con-
sists in a closed two form ω such that ω ∧ . . . ∧ ω is a positive volume form
on M . Given a closed oriented three-manifold Y , in [42] Ozsváth and Szabó
built an auxiliary even dimensional manifold M(Y ) equipped with a symplectic
form ω and an almost complex structure J ; then they defined four Z-modules
CF ∗(M(Y ), J, ω), with ∗ ∈ {∞,+,−,̂}, endowed with differentials, ob-
tained by counting certain holomorphic curves in M(Y ). The associated ho-
mology groups do not depend on the choices made for the auxiliary manifold
and the geometric structures and are topological invariants of Y , indicated

HF∞(Y ), HF+(Y ), HF−(Y ), ĤF (Y ).

These groups are the Heegaard Floer homologies of Y in the infinity, plus, mi-
nus and hat version respectively.

Moreover Ozsváth and Szabó in [44] and Rasmussen in [50] proved that any
homologically trivial knot K in Y induces a “knot filtration” on the Heegaard
Floer chain complexes. The first pages of the associated spectral sequences (in
each versions) result then to be topological invariants of K: these are bigraded
homology groups

HFK∞(K,Y ), HFK+(K,Y ), HFK−(K,Y ), ĤFK(K,Y )

called Heegaard Floer knot homologies (in the respective versions). These ho-
mologies are powerful invariants for the couple (K,Y ). For instance in [44]
and [50], it has been proved that ĤFK(K,S3) categorifies the Alexander poly-
nomial of K. This means the following. Given a collection of finite dimen-
sional chain complexes C = {(C∗,i, ∂i)}i∈Z, its graded Euler characteristic is
χ(C) =

∑
i χ(C∗,i)t

i, where χ(C∗,i) is the standard Euler characteristic of C∗,i
and t is a formal variable. By the properties of the Euler characteristic, this poly-
nomial does not change by taking the homology of C. As said, ĤFK(K,Y )
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is a bigraded collection of moduli: the fact that it categorifies the Alexander
polynomial of K means that:

χ(ĤFK(K,S3))
.
= ∆(K),

where .
= means that the two sides are equal up to change sign and multiply by

a monic monomial. This was the first categorification of the Alexander poly-
nomial; a second one (in Seiberg-Witten-Floer homology) has been discovered
later by Kronheimer and Mrowka ([35]).

In [46] Ozsváth and Szabó developed a similar construction for any link L
in S3 and got invariants

HFL−(L, S3) and ĤFL(L, S3)

for L, which they called Heegaard Floer link homologies. Now these homolo-
gies come with an additional Zn degree, where n is the number of the connected
components of L. Ozsváth and Szabó proved moreover that HFL−(L, S3) cat-
egorifies the multivariable Alexander polynomial of L, which is a generalization
of the classic Alexander polynomial. They found in particular that:

χ
(
HFL−(L, S3)

) .
=


∆L(t1, . . . , tn) if n > 1

∆L(t)/(1− t) if n = 1.
(0.2)

In general, Heegaard Floer homology theory can give a huge amount of in-
formation about the topology of links and three-manifolds. Moreover it turned
out to provide powerful tools in the understanding of certain geometric struc-
tures on the underling manifolds. One example is the presence of an invariant
of contact structures in Heegaard Floer ([45]). A contact form in an oriented
three manifold Y is a smooth one form α such that α ∧ dα is a positive volume
form. A contact structure on Y is a plane field ξ for which there exists a contact
form α such that ξ = kerα. Two contact structures ξ1 and ξ2 are equivalent if
there exists an isotopy of Y whose differential carries ξ1 to ξ2.

A key ingredient in the definition of the invariant of contact structures in
Heegaard Floer is the Giroux one-to-one correspondence between contact struc-
tures and open book decompositions. Roughly speaking, an open book decom-
position of a three manifold Y consists in a triple (L, S, φ), where L is a link in
Y , S is a compact oriented surface with boundary and φ : S → S is an orienta-
tion preserving diffeomorphism such that, if N (L) is a small tubular neighbor-
hood of L, then Y \ N (L) is homeomorphic to S×[0,1]

(x,1)∼(φ(x),0)
. In this case L, S

and φ are called the binding, the page and, respectively, the monodromy of the
open book. If the knot K is the binding of some open book, then it is called
a fibered knot. Given an open book decomposition (L, S, φ) for Y , Thurston
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and Wilkenkemper ([57]) described how to get a contact structure “adapted” to
(L, S, φ). In [19], Giroux discovered a way to associate to a contact structure ξ
on Y an open book decomposition of Y adapted (up to isotopy), in the sense of
Thurston and Wilkenkemper, to ξ. By consequence he showed that there exists
a one-to-one correspondence between isotopy classes of contact structures and
(equivalence classes of) open book decompositions. This result gave a funda-
mental contribution to the study of the deep interactions intercurring between
contact geometry and low dimensional topology.

Open book decompositions were used in a series of papers by Colin, Ghig-
gini and Honda to prove the equivalence between Heegaard Floer homology
and embedded contact homology for three manifolds. The last one is another
Floer homology theory, first defined by Hutchings, which associates to a contact
manifold (Y, α) two graded modules

ECH(Y, α) and ÊCH(Y, α).

A contact form α determines univocally a non singular vector field Rα,
called Reeb vector field. The generators of the ECH chain groups are then
certain formal products of Reeb orbits, i.e. closed orbits of Rα.

Theorem 0.1 (Colin, Ghiggini, Honda, [8]-[12]).

HF+(−Y ) ∼= ECH(Y, α)

ĤF (−Y ) ∼= ÊCH(Y, α),

where −Y is the manifold Y with the inverted orientation.

In light of Theorem 0.1, it is a natural problem to find an embedded con-
tact counterpart of Heegard Floer knot homology. In analogy with the sutured
Heegaard Floer theory developed by Juhász ([32]), in [13] the authors define a
sutured version of embedded contact homology. This can be thought of as a ver-
sion of embedded contact homology for manifolds with boundary. In particular,
given a knotK in a contact three manifold (Y, ξ), using sutures they define a hat
version of embedded contact knot homology

ÊCK(K,Y, α).

Roughly speaking, this is the hat version of ECH homology for the contact
manifold with boundary (Y \ N (K), α), where N (K) is a suitable thin tubu-
lar neighborhood of K in Y and α is a contact form for ξ satisfying specific
compatibility conditions with K. In [13] the following conjecture is stated:

Conjecture 0.2.

ÊCK(K,Y, α) ∼= ĤFK(−K,−Y ).
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The aim of this thesis is to provide evidences of the veracity of this conjec-
ture. The first thing we do is to define a full version of embedded contact knot
homology

ECK(K,Y, α)

for knots K in any contact three manifold (Y, ξ) endowed with a (suitable) con-
tact form α for ξ. Moreover we generalize the definitions to the case of links L
with more then one components to obtain homologies

ECK(L, Y, α) and ÊCK(L, Y, α).

We state then the following:

Conjecture 0.3. For any knot K and link L in Y , there exist contact forms for
which:

ECK(K,Y, α) ∼= HFK−(K,Y )

and
ÊCK(L, Y, α) ∼= ĤFK(−L,−Y ),

ECK(L, Y, α) ∼= HFK−(L, Y ).

Next we compute the graded Euler characteristics of the ECK homologies
for knots and links in homology three-spheres and we prove the following:

Theorem 0.4. Let L be an n-component link in a homology three-sphere Y .
Then there exists a contact form α such that

χ(ECK(L, Y, α))
.
= ALEX(Y \ L).

Here ALEX(Y \L) is the Alexander quotient of the complement of L in Y .
The theorem is proved using Fried’s dynamic reformulation of ALEX ([16]).
Classical relations between ALEX(S3 \ L) and ∆L imply the following result:

Theorem 0.5. Let L be any n-component link in S3. Then there exists a contact
form α for which:

χ
(
ECK(L, S3, α)

) .
=


∆L(t1, . . . , tn) if n > 1

∆L(t)/(1− t) if n = 1

and

χ
(
ÊCK(L, S3, α)

)
.
=


∆L(t1, . . . , tn) ·

∏n
i=1(1− ti) if n > 1

∆L(t) if n = 1.
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This implies that the homology ECK is a categorification of the multivari-
able Alexander polynomial.
Moreover comparing last theorem with Equation 0.2 (and the analogue expres-
sions for the hat versions of HFK and HFL proved in [46]), it follows that

Corollary 0.6. In S3, Conjectures 0.2 and 0.3 hold at level of Euler character-
istics.

In the last chapter of this thesis we begin to investigate Conjecture 0.2 at
the homology level. As mentioned, both ĤFK∗,∗(K,Y ) and ÊCK∗,∗(K,Y, α)
are bigraded modules. The further Z-degree comes from a filtration induced
by K on suitable chain complexes ĈF ∗(Y ) and ÊCC∗(Y, α) for ĤF ∗(Y ) and,
respectively, ÊCH∗(Y, α).

In their series of papers, Colin-Ghiggini-Honda define chain maps

Φ : ĈF ∗(−Y ) −→ ÊCC∗(Y, α)

and
Ψ : ÊCC∗(Y, α) −→ ĈF ∗(−Y )

that induce isomorphisms in homology, which are the inverse of one another.
Let H (resp. G) be chain homotopies between Ψ ◦ Φ (resp. Φ ◦ Ψ) and the
identity map of ĈF (−Y ) (resp. ÊCC(Y, α)). All these maps are defined by
counting certain holomorphic curves in symplectic four manifolds with bound-
ary. By standard results about spectral sequences, if one can prove that all the
maps above are filtered with respect of the knot filtrations on ĈF ∗(−Y ) and
ÊCC∗(Y, α), then conjecture 0.2 is true at least for the fibered knots.

In section 7.3 we prove the following:

Theorem 0.7. Let (K,S, φ) be an open book decomposition of a three manifold
Y . Then, there exists a contact form α for which Φ preserves the knot filtrations
given by K on the complexes.

One of the main difficulties in proving Theorem 0.7 comes from the fact that
the holomorphic curves counted by Φ never cross K, so that we can not directly
apply some standard argument common in this kind of situation and used, for
example, in [13] to prove that the ECH-differential respects the knot filtration.

Our strategy will consist first in modifying the monodromy and the contact
form near the boundary of Y \ N (K) in order to define the knot filtrations in
HF and ECH in a similar way. Then we will apply Wendl’s arguments about
holomorphic foliations ([59]) to check that some specific holomorphic curve that
evidently do not respect the knot filtrations are not in fact counted by Φ. Finally
we will prove that all the remaining holomorphic curves counted by Φ respect
the filtrations
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For what said before, Theorem 0.7 can be viewed as the first step of a proof
of conjecture 0.2.
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1
Contact geometry and holomorphic
curves

In this chapter we give basic definitions and results about contact geometry,
open book decompositions of three manifolds and holomorphic curves. More-
over in Section 1.3 we recall some notions about Morse Bott theory in contact
geometry.

1.1 Contact geometry
Let us begin by introducing some basic objects in three dimensional contact

geometry. We refer the reader to [20] and the other cited references for the
details.

A (co-oriented) contact form on a three dimensional oriented manifold Y is
a α ∈ Ω1(Y ) such that α ∧ dα is a positive volume form. A contact structure
is a smooth plane field ξ on Y such that there exists a contact form α for which
ξ = kerα. The Reeb vector field of α is the (unique) vector field Rα determined
by the equations dα(Rα, ·) = 0 and α(Rα) = 1. A simple Reeb orbit is a closed
oriented orbit of R = Rα, i.e. it is the image δ of an embedding S1 ↪→ Y such
that RP is positively tangent to δ in any P ∈ δ. A Reeb orbit is an m-fold cover
of a simple Reeb orbit, with m ≥ 1.
The form α determines an action A on the set of its Reeb orbits defined by
A(γ) =

∫
γ
α. By definition A(γ) > 0 for any non empty orbit γ.

A basic result in contact geometry asserts that the flow of the Reeb vector
field (abbreviated Reeb flow) φ = φR preserves ξ, that is (φt)∗(ξP ) = ξφt(P ) for

21



22 CHAPTER 1. CONTACT GEOMETRY AND HOLOMORPHIC CURVES

any t ∈ R (see [20, Chapter 1]). Given a Reeb orbit δ, there exists T ∈ R+

such that (φT )∗(ξP ) = ξP for any P ∈ δ; if T is the smallest possible, the
isomorphism Lδ := (φT )∗ : ξP → ξP is called the (symplectic) linearized first
return map of R in P .

The orbit δ is called non-degenerate if 1 is not an eigenvalue Lδ. There are
two types of non-degenerate Reeb orbits: elliptic and hyperbolic. δ is elliptic
if the eigenvalues of Lδ are on the unit circle and is hyperbolic if they are real.
In the last case we can make a further distinction: δ is called positive (negative)
hyperbolic if the eigenvalues are both positive (resp. negative).

Definition 1.1. The Lefschetz sign of a non-degenerate Reeb orbit δ is

ε(δ) := sign(det(1− Lδ)) ∈ {+1,−1}.

Observation 1.2. It is easy to check that ε(δ) = +1 if δ is elliptic or negative
hyperbolic and ε(δ) = −1 if δ is positive hyperbolic.

To any non-degenerate orbit δ and a trivialization τ of ξ|δ we can associate
also the Conley-Zehnder index µτ (δ) ∈ Z of δ with respect to τ . Even if we do
not give a precise definition (that can be found for example in [14] or [23]) we
will provide an explicit description of this index (see [28, section 3.2]).

Given P ∈ δ, using the basis of ξ|δ determined by τ we can regard the
differentials φt∗ : ξP → ξφt(P ) of the Reeb flow as a path in t ∈ [0, T ] of 2 × 2
symplectic matrices. In particular φ0∗ : ξP → ξP is the identity matrix and, if T
is as above, φT ∗ : ξP → ξP is a matrix representation for Lδ.

If δ is elliptic, following this path for t ∈ [0, T ], φT ∗ will represent a rotation
by some angle 2πθ with θ ∈ R \ Z (since δ is non degenerate). Then µτ (δ) =
2bθc+ 1, where bθc is the highest integer smaller then θ.

Otherwise, if δ is hyperbolic, then the symplectic matrix of φT ∗ rotates the
eigenvectors of Lδ by an angle kπ with k ∈ 2Z if δ is positive hyperbolic and
k ∈ 2Z+ 1 if δ is negative hyperbolic. Then µτ (δ) = k.

Observation 1.3. Even if µτ (δ) depends on τ , its parity depends only on δ.
Indeed, if δ is elliptic, then µτ (δ) ≡ 1 mod 2. Moreover suppose that δ is
hyperbolic and µτ (δ) = k; if τ ′ differs from τ by a twist of an angle 2nπ with
n ∈ Z, the rotation by kπ on the eigenvectors will be composed with a rotation
by 2nπ. Then µτ ′(δ) = k + 2n ≡ k mod 2.

Corollary 1.4. If δ is non-degenerate then for any τ

(−1)µτ (δ) = −ε(δ).

Definition 1.5. Given X ⊆ Y , we will indicate by P(X) the set of simple Reeb
orbits of α contained in X . An orbit set (or multiorbit) in X is a formal finite
product γ =

∏
i γ

ki
i , where γi ∈ P(X) and ki ∈ N is the multiplicity of γi in γ,

with ki ∈ {0, 1} whenever γi is hyperbolic. The set of multiorbits in X will be
denoted by O(X).
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Note that the empty set is considered as an orbit, called empty orbit and it is
indicated by ∅.

An orbit set γ =
∏

i γ
ki
i belongs to the homology class [γ] =

∑
i ki[γi] ∈

H1(Y ) (unless stated otherwise, all homology groups will be taken with integer
coefficients). Moreover the action of γ is defined by A(γ) =

∑
i ki
∫
γi
α.

1.2 Holomorphic curves
In this section we recall some definitions and properties about holomorphic

curves in dimension 4. We refer the reader to [38] and [39] for the general theory
and [28] and [9]-[12] for an approach more specialized to our context.

Let X be an oriented even dimensional manifold. An almost complex struc-
ture on X is an isomorphism J : TX → TX such that J(TPX) = TPX and
J2 = −id. If (X1, J1) and (X2, J2) are two even dimensional manifolds en-
dowed with an almost complex structure, a map u : (X1, J1) → (X2, J2) is
pseudo-holomorphic if it satisfies the Cauchy-Riemann equation

du ◦ J1 = J2 ◦ du.

Definition 1.6. A pseudo-holomorphic curve in a four-dimensional manifold
(X, J) is a pseudo-holomorphic map u : (F, j) → (X, J), where (F, j) is a
Riemann surface.

Note that here we do not require that F is connected.
In this thesis we will be particularly interested in pseudo-holomorphic curves

(that sometimes we will call simply holomorphic curves) in “symplectizations”
of contact three manifolds. Let (Y, α) be a contact three-manifold and consider
the four-manifold R × Y . Call s the R-coordinate and let R = Rα be the Reeb
vector field of α. The almost complex structure J on R× Y is adapted to α if

1. J is s-invariant;

2. J(ξ) = ξ and J(∂s) = R at any point of R× Y ;

3. J |ξ is compatible with dα, i.e. dα(·, J ·) is a Riemannian metric.

For us, a holomorphic curve u in the symplectization of (Y, α) is a holomor-
phic curve u : (F, j)→ (R× Y, J), where:

i. J is adapted to α;

ii. (Ḟ , j) is a Riemann surface obtained from a closed surface F by removing
a finite number of points (called punctures);

iii. for any puncture x there exists a neighborhood U(x) ⊂ F such that U(x)\
{x} is mapped by u asymptotically to a cover of a cylinder R × δ over
an orbit δ of R in a way that limy→x πR(u(y)) = ±∞, where πR is the
projection on the R-factor of R× Y .
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We say that x is a positive puncture of u if in the last condition above the limit
is +∞: in this case the orbit δ is a positive end of u. If otherwise the limit is
−∞ then x is a negative puncture and δ is a negative end of u.

If δ is the Reeb orbit associated to the puncture x, then u near x determines
a cover of δ: the number of sheets of this cover is the local x-multiplicity of δ in
u. The sum of the x-multiplicities over all the punctures x associated to δ is the
(total) multiplicity of δ in u.

If γ (γ′) is the orbit set determined by the set of all the positive (negative)
ends of u counted with multiplicity, then we say that u is a holomorphic curve
from γ to γ′.

Example 1.7. A cylinder over an orbit set γ of Y is the holomorphic curve
R× γ ⊂ R× Y .

Observation 1.8. Note that if there exists a holomorphic curve u from γ to γ′,
then [γ] = [γ′] ∈ H1(Y,Z).

We state now some result about holomorphic curves that will be useful later.

Lemma 1.9 (see for example [58]). If u is a holomorphic curve in the symplec-
tization of (Y, α) from γ to γ′, then A(γ) ≥ A(γ′).

This lemma follows by applying the Stokes’ theorem and using the fact that
dα is always non negative on a holomorphic curve.

Theorem 1.10 ([39], Lemma 2.4.1). Let u : (F, j) → (R × Y, J) be a non-
constant holomorphic curve in (X, J), then the critical points of πR ◦ u are
isolated. In particular, if πY denotes the projection R × Y → Y , πY ◦ u is
transverse to Rα away from a set of isolated points.

From now on if u is a map with image in R × Y , we will set uR := πR ◦ u
and uY := πY ◦ u.

Holomorphic curves also enjoy the following property, which will be impor-
tant for us: see for example [21].

Theorem 1.11 (Positivity of intersection; Gromov, McDuff, Micallef-White).
Let u and v be two distinct holomorphic curves in a four manifold (W,J).
Then #(Im(u) ∩ Im(v)) < ∞. Moreover, if P is an intersection point be-
tween Im(u) and Im(v), then its contribution mP to the algebraic intersection
number 〈Im(u), Im(v)〉 is strictly positive, and mP = 1 if and only if u and v
are embeddings near P that intersect transversely in P .

When the almost complex structure does not play an important role or is
understood it will be omitted from the notations.
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1.3 Morse-Bott theory

The Morse-Bott theory in contact geometry has been first developed by
Bourgeois in [3]. We present in this section some basic notions and applica-
tions, mostly as presented in [9].

Definition 1.12. A Morse-Bott torus (briefly M-B torus) in a 3-dimensional con-
tact manifold (Y, α) is an embedded torus T in Y foliated by a family γt, t ∈ S1,
of Reeb orbits, all in the same class in H1(T ), that are non-degenerate in the
Morse-Bott sense. Here this means the following. Given any P ∈ T and a pos-
itive basis (v1, v2) of ξP where v2 ∈ TP (T ) (so that v1 is transverse to TP (T )),
then the differential of the first return map of the Reeb flow on ξP is of the form(

1 0
a 1

)
for some a 6= 0. If a > 0 (resp. a < 0) then T is a positive (resp. negative) M-B
torus.

We say that α is a Morse-Bott contact form if all the Reeb orbits of α are
either isolated and non-degenerate or come in S1-families foliating M-B tori.

As explained in [3] and [9, section 4] it is possible to modify the Reeb vector
field in a small neighborhood of a M-B torus T preserving only two orbits, say
e and h, of the S1-family of Reeb orbits associated to T .

Moreover, for any fixed L > 0, the perturbation can be done in a way that e
and h are the only orbits in a neighborhood of T with action less then L.

If T is a positive (resp. negative) M-B torus and τ is the trivialization of ξ
along the orbits given pointwise by the basis (v1, v2) above, then one can make
the M-B perturbation in a way that h is positive hyperbolic with µτ (h) = 0 and
e is elliptic with µτ (e) = 1 (resp. µτ (e) = −1).

The orbits e and h can be seen as the only two critical points of a Morse
function fT : S1 → R defined on the S1-family of Reeb orbits foliating T and
with maximum corresponding to the orbit with higher C-Z index. Often M-B
tori will be implicitly given with such a function.

Observation 1.13. It is important to remark that, before the perturbation, T is
foliated by Reeb orbits of α and so these are non-isolated. Moreover the form
of the differential of the first return map of the flow of ξ implies that these orbits
are also degenerate.

After the perturbation, T contains only two isolated and non degenerate
orbits, but other orbits are created in a neighborhood of T and these orbits can
be non-isolated and degenerate. See Figure 1.1 later for an example of M-B
perturbations.
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Proposition 1.14 ([3], Section 3). For any M-B torus T and any L ∈ R there
exists a M-B perturbation of T such that, with the exception of e and h, all the
periodic orbits in a neighborhood of T have action greater then L.

A torus T foliated by Reeb orbits all in the same class of H1(T ) (like for ex-
ample a Morse-Bott torus) can be used to obtain constraints about the behaviour
of a holomorphic curve near T .

Following [9, Section 5], if γ is any of the Reeb orbits in T , we can define
the slope of T as the equivalence class s(T ) of [γ] ∈ H1(T,R) − {0} up to
multiplication by positive real numbers.

Let T × [−ε, ε] be a neighborhood of T = T × {0} in Y with coordinates
(ϑ, t, y) such that (∂ϑ, ∂t) is a positive basis for T (T ) and ∂y is directed as a
positive normal vector to T .

Suppose that u : (F, j) → (R × Y, J) is a holomorphic curve in the sym-
plectization of (Y, α); by Theorem 1.10, there exist at most finitely many points
in T × [−ε, ε] where uY (F ) is not transverse to Rα. Then, if Ty := T ×{y} and
u(F ) intersects R× Ty, we can associate a slope sTy(u) to uY (F ) ∩ Ty, for any
y ∈ [−ε, ε]: this is defined exactly like s(T ), where uY (F ) ∩ Ty is considered
with the orientation induced by ∂ (uY (F ) ∩ (T × [−ε, y])).

Observation 1.15. Note that if u has no ends in T × [y, y′], then

∂(uY (F ) ∩ T × [y, y′]) = uY (F ) ∩ Ty′ − uY (F ) ∩ Ty

and sTy(u) = sT ′y(u).

The following Lemma is a consequence of the positivity of intersection in
dimension four (see [9, Lemma 5.2.3]).

Lemma 1.16 (Blocking Lemma). Let T be linearly foliated by Reeb trajectories
with slope s = s(T ) and u a holomorphic curve be as above.

1. If u is homotopic, by a compactly supported homotopy, to a map whose
image is disjoint from R× T , then uY (F ) ∩ T = ∅.

2. Let T× [−ε, ε] be a neighborhood of T = T×{0}. Suppose that, for some
y ∈ [−ε, ε] \ {0}, u has no ends in T × (0, y] if y ∈ (0, ε] or in T × [y, 0)
if y ∈ [−ε, 0). If sTy(u) = ±s(T ) then u has an end which is a Reeb orbit
in T .

Let now x be a puncture of F whose associated end is an orbit γ in T ; if
there exists a neighborhood U(x) of x in F such that uY (U(x) \ {x}) ∩ T = ∅
then γ is a one sided end of u in x. This is equivalent to requiring that uY (U(x))
is contained either in T × (−ε, 0) or in T × (0, ε).

The following is proved in [9] (Lemma 5.3.2).
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Lemma 1.17 (Trapping Lemma). If T is a positive (resp. negative) M-B torus
and γ ⊂ T is a one sided end of u associated to the puncture x, then x is positive
(resp. negative).

Even if we do not give here the proofs of the last two lemmas, we will
extensively use similar arguments later (in particular in Chapter 7).

1.4 Open books
Definition 1.18. Given a surface S and a diffeomorphism φ : S → S, the map-
ping torus of (S, φ) is the three dimensional manifold

N(S, φ) :=
S × [0, 2]

(x, 2) ∼ (φ(x), 0)
.

In this paper we use the following definition of open book decomposition of
a 3-manifold Y . This is not the original definition but a more specific version
based on [9].

Definition 1.19. An open book decomposition for Y is a triple (L, S, φ) such
that

– L = K1 t . . . tKn is an n-component link in Y ;
– S is a smooth, compact, connected, oriented surface with an n-components

boundary;
– φ : S → S is an orientation preserving diffeomorphism such that on a

small neighborhood {1, . . . , n}× [0, 1]×S1 of ∂S = {1, . . . , n}×{1}×
S1, with coordinates (y, ϑ) near each component, it acts by

(y, ϑ)
φ7−→ (y, ϑ− y + 1) (1.1)

(and in particular φ|∂S = id∂S);
– for each Ki there exists a tubular neighborhood N (Ki) ⊂ Y of Ki such

that Y is diffeomorphic to N(S, φ) tni=1 N (Ki) where the union symbol
means that for any i, {i} × {1} × S1 × [0,2]

0∼2
is glued to N (Ki) in a way

that, for any ϑ ∈ S1, {i}×{1}×{ϑ}× [0,2]
(0∼2)

is identified with a meridian
of Ki in ∂N (Ki).

The link L is called the binding, the surfaces S × {t} are the pages and the
diffeomorphism φ is the monodromy of the open book.

When we are interested mostly in the mapping torus part of an open book
decomposition we will use a notation of the form (S, φ), omitting the reference
to its binding. Sometimes we will call (S, φ) an abstract open book.

Following [9], we will often consider each N (Ki) as a union of a copy of
[0,2]

(0∼2)
× [1, 2]×S1, endowed with the extension of the coordinates (t, y, ϑ), glued
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along {y = 2} to a smaller neighborhood V (Ki) of Ki. The gluing is done in a
way that the sets {ϑ = const.} are identified with meridians for K and the sets
{t = const.} are identified to longitudes.

By the Giroux’s work in [19] there is a one to one correspondence between
contact structures (up to isotopy) and open book decompositions (up to Giroux
stabilizations) of Y . In order to simplify the notations, we consider here open
books with connected binding.

Given (K,S, φ) we can follow the Thurston-Wilkenkemper construction ([57])
to associate to it an adapted contact form α on Y as explained in [9, section 2].
In N the resulting Reeb vector field R = Rα enjoys the following properties:

– R is transverse to the pages S × {t} ∀t ∈ [0, 2];
– the first return map of R is isotopic to φ;
– each torus Ty = S1 × [0,2]

(0∼2)
× {y}, for y ∈ [0, 1], is linearly foliated by

Reeb orbits and the first return map of R on Ty is

(y, ϑ) 7→ (y, ϑ− y + 1).

The last implies that when the set of orbits foliating Ty comes in an S1-
family, T is Morse-Bott.

To explain the behaviour of R on N (K), let us extend the coordinates
(ϑ, t, y) to V \K ∼= [0,2]

(0∼2)
× [2, 3)× S1, where K = {y = 3}. For y ∈ [0, 3) set

Ty = [0,2]
(0∼2)

× {y} × S1. Given a curve γ(x) = (γt(x), y, γϑ(x)) in Ty we can
define the slope of γ in x0 by

sTy(γ, x0) =
γ′t(x0)

γ′ϑ(x0)
∈ R ∪ {±∞}.

In particular if a meridian has constant slope, this must be +∞ and ∂S has slope
0. Note that the slope of Ty as given by

s(Ty) =
γt(x)

γϑ(x)
∈ R ∪ {±∞},

where now γ is a parametrization of a Reeb trajectory in Ty and x ∈ Im(γ).
Note in particular that if s(Ty) is irrational then Ty does not contain Reeb orbits,
and if Ty is foliated by meridians (like T1) then s(Ty) = +∞.

On [0,2]
(0∼2)

× [1, 2]× S1 the contact form will depend on a small real constant
δ > 0: call αδ the contact form on all Y . Let fδ : [1, 3) → R be a smooth
function such that:

– fδ has minimum in y = 1.5 of value −δ;
– fδ(1) = fδ(2) = 0;
– fδ(y) = −y + 1 near {y = 1};
– f ′δ(y) < 0 for y ∈ [1, 1.5) and f ′δ(y) > 0 for y ∈ (1.5, 3).



1.4. OPEN BOOKS 29

Then the Reeb vector field R of αδ in N (K) \ int(V ) is such that:
– R is transverse to the annuli {t} × [1, 2]× S1 ∀t ∈ [0,2]

0∼2
;

– the tori Ty, y ∈ [1, 2] are foliated by Reeb orbits with constant slope and
first return map given by (y, ϑ) 7→ (y, ϑ+ fδ(y)).

Finally in V each torus Ty is linearly foliated by Reeb orbits whose slope
vary in (C,+∞] for y going from 3 (not included) to 2 and, whereC is a positive
real number. Moreover K is also a Reeb orbit.

Note that for every δ, T1 is a negative M-B torus foliated by orbits with
constant slope +∞. As explained in 1.3 we can perturb the associated S1-
family of orbits into a pair of simple Reeb orbits (e, h), where e is an elliptic
orbit with C-Z index −1 and h is positive hyperbolic with index 0 (the indexes
are computed with respect to the trivialization given by the torus).

Similarly the positive M-B torus T2 is also foliated by orbits with constant
slope +∞ and a M-B perturbation gives a pair of simple Reeb orbits (e+, h+) in
T2, where e+ is elliptic of index 1 and h+ is hyperbolic of index 0 (in the papers
[9]-[12] the orbits e+ and h+ are called e′ and h′ respectively).

Figure 1.1: Reeb dynamic before and after a M-B perturbation of the tori T1

and T2. Both pictures take place in a page of the open book. Each flow line
represents an invariant subset of S under the Reeb flow near K; the orientation
gives the direction in which any point is mapped under the first return map of
the flow.

In the rest of the paper, if not stated otherwise, when we talk about contact
forms and their Reeb vector fields adapted to an open book we will always refer
to them assuming the notations and the properties explained in this subsection.
In particular the M-B tori T1 and T2 will be always assumed to be perturbed into
the respective pairs of simple orbits.

Observation 1.20. In the case of open books with non-connected binding L, the
Reeb vector field of an adapted contact form satisfies the same properties above
near each component of L.
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We saw that to any open book decomposition (L, S, φ) of Y it is possible to
associate an adapted contact form. Let us now say something about the inverse
map of the Giroux correspondence.

Theorem 1.21 (Giroux). Given a contact three-manifold (Y, ξ), there exists an
open book decomposition (L, S, φ) of Y and an adapted contact form α such
that ker(α) = ξ.

Sketch of the proof. Given any contact structure ξ on Y , in [19] Giroux explic-
itly constructs an open book decomposition (L, S, φ) of Y for which there exists
a compatible contact form α such that ker(α) = ξ. Following [6, Section 3], the
proof can be carried on in three main steps.

The first step consists in providing a cellular decomposition D of Y that is,
in a precise sense, “compatible with ξ”. It is important to remark that, up to
take a refinement (in a way that each 3-cell is contained in a Darboux ball) any
cellular decomposition of Y can be isotoped to make it compatible with ξ.

In the second step, D is used to explicitly build (L, S, φ). We describe now
some of the properties of S, seen as the embedded 0-page of the open book.
Let Di be the i-skeleton of D and let N (D1) be a tubular neighborhood of
D1. Suppose that N (D0) ⊂ N (D1) is a tubular neighborhood of D0 such that
N (D1) \ N (D0) is homeomorphic to a tubular neighborhood of D1 \ N (D0).
Then:

1. S ⊂ N (D1), L := ∂S ⊂ ∂N (D1) and D1 ⊂ int(S);

2. S∩(N (D1)\N (D0)) is a disjoint union of strips which are diffeomorphic
to (D1 \ N (D0)) × [−1, 1] with D1 \ N (D0) corresponding to (D1 \
N (D0))× {0};

The fact that D is compatible with ξ implies that L intersects each 2-simplex
exactly twice and it is possible to use this fact to prove that the complement of
L in Y fibers in circles over S, which implies that L is the binding of an open
book with 0-page the complement in S of a small neighborhood of S.

The third step consists finally in defining the contact form α with the re-
quired properties.

Theorem 1.22 (Giroux correspondence). Let α and α′ be contact structures on
Y that are adapted to the open books (L, S, φ) and, respectively, (L′, S ′, φ′).
Then α and α′ are isotopic if and only if (L′, S ′, φ′) can be obtained from
(L, S, φ) by a sequence of Giroux stabilizations and destabilizations.

A Giroux stabilization of an open book is an operation that associates to
an open book decomposition (L, S, φ) of Y another open book decomposition
(L′, S ′, φ′) of Y , obtained as follows. Choose two points P1 and P2 in ∂S (not
necessarily in the same connected component) and let γ be an oriented em-
bedded path in S from P1 to P2. Let now S ′ be the oriented surface obtained



1.4. OPEN BOOKS 31

by attaching a 1-handle to S along the attaching sphere (P1, P2). Consider the
closed oriented loop γ̄ ⊂ S ′ defined by γ̄ := γ t c, where c is the core curve of
the 1-handle, oriented from P2 to P1, and the gluing is done along the common
boundary (P1, P2) of the two paths.

By the definition of monodromy of open book that we gave, the φ is the
identity along ∂S. So φ extends to the identity map on the handle: we keep
calling φ the resulting diffeomorphism on S ′. If τγ̄ is a positive Dehn twist
along γ̄, define φ′ = τγ̄ ◦ φ.

It results thatN ′ := N(S ′, φ′) embeds in Y and that Y \N ′ is a disjoint union
of solid tori. Then, if L′ is the set of the core curves of these tori, (L′, S ′, φ′)
is an open book decomposition of Y , which is said to be obtained by Giroux
stabilization of (L, S, φ) along γ.

There is an obvious inverse operation of the stabilization: with the notations
above, we say that (L, S, φ) is obtained by Giroux destabilization of (L′, S ′, φ′)
along γ′.

Note that a Giroux stabilization does not change the components of L that
do not intersect the attaching sphere. Moreover it is not difficult to see that
the number of connected components of L and L′ differs by 1: if P1 and P2

are chosen in the same component then L′ has one component more than L;
otherwise L′ has one component less then L.





2
Embedded contact homology

This chapter is devoted to recalling some basic facts about embedded contact
homology theory.

In the first section we briefly remind the Hutchings’ original definition of
ECH(Y, α) and ÊCH(Y, α) for a closed contact three-manifold (Y, α). In Sec-
tion 2.2 we summarize some definitions and results given in [9]. We present in
particular the definition of the embedded contact homology groupsECH(N,α)

and ÊCH(N,α) for contact three-manifolds (N,α) with torus boundary. More-
over, if N is the complement of a neighborhood of a knot K in a closed three
manifold Y , we recall the definition of the relative versions ECH(N, ∂N, α)

and ÊCH(N, ∂N, α), which are proved (still in [9]) to be isomorphic to the
homologies ECH(Y, α) and ÊCH(Y, α) respectively.

In Section 2.3 we remind the definition of the periodic Floer homology
groups for open books. As we will see their definition is closely related to that
of ECH .

Finally in Section 2.4 we remind the definition of the version of ÊCH for
homologically trivial knots. We will not give the original definition in terms of
sutures as appears in [13] but the reinterpretation given in the end of Chapter 9
of [8].

2.1 ECH for closed three-manifolds

Let (Y, α) be a closed contact three-manifold and assume that α is non-
degenerate (i.e., that any Reeb orbit of α is non-degenerate).

33
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For a fixed Γ ∈ H1(Y ), define ECC(Y, α,Γ) to be the free Z2-module
generated by the orbit sets of Y in the homology class Γ and pose

ECC(Y, α) =
⊕

Γ∈H1(Y )

ECC(Y, α,Γ).

This is the ECH chain group of (Y, α).
The ECH-differential ∂ECH (called simply ∂ when no risk of confusion

occurs) is defined in [27] in terms of holomorphic curves in the symplectization
(R× Y, dα, J) of (Y, α) as follows.

Given γ, δ ∈ O(Y ), letM(γ, δ) be the set of (possibly disconnected) holo-
morphic curves u : (Ḟ , j) → (R × Y, J) from γ to δ, where (Ḟ , j) is a punc-
tured compact Rieamannian surface. It is clear that u determines a relative ho-
mology class [Im(u)] ∈ H2(R × Y ; γ, δ) and that if such a curve exists then
[γ] = [δ] ∈ H1(Y ).

If ξ = ker(α) and a trivialization τ of ξ|γ∪δ is given, to any surface C ⊂
R× Y with ∂C = γ − δ it is possible to associate an ECH-index

I(C) := cτ (C) +Qτ (C) + µIτ (γ, δ),

which depends only on the relative homology class of C. Here
– cτ (C) := c1(ξ|C , τ) is the first relative Chern class of C;
– Qτ (C) is the τ -relative intersection paring of R× Y applied to C;
– µIτ (γ, δ) :=

∑
i

∑ki
j=1 µτ (γ

j
i )−

∑
i

∑ki
j=1 µτ (δ

j
i ), where µτ is the Conley-

Zehnder index defined in Section 1.1.
We refer the reader to [28] for the details about these quantities. If u is a holo-
morphic curve from γ to δ set I(u) = I(Im(u)) (well defined up to approximat-
ing Im(u) with a surface in the same homology class).

DefineMk(γ, δ) := {u ∈ M(γ, δ) | I(u) = k}. The ECH-differential is
then defined on the generators of ECC(Y, α) by

∂ECH(γ) =
∑

δ∈O(Y )

]

(
M1(γ, δ)

R

)
· δ (2.1)

where the fraction means that we quotient M1(γ, δ) by the R-action on the
curves given by the translation in the R-direction in R × Y . In [28, Section
5] Hutchings proves that M1(γ,δ)

R is a compact 0-dimensional manifold, so that
∂ECH(γ) is well defined.

The (full) embedded contact homology of (Y, α) is

ECH∗(Y, α) := H∗(ECC(Y, α), ∂ECH).

It turns out that these groups do not depend either on the choices J in the sym-
plectization or the contact form for ξ.
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The index ∗ denotes a relative index induced on the generators by I . On the
other hand it is possible to endow ECH(Y, ξ) also with a canonical absolute
Z/2-grading as follows. If γ =

∏
i γ

ki
i set

ε(γ) =
∏
i

ε(γi)
ki ,

where ε(γi) is the Lefschetz sign of the simple orbit γi. Note that ε(γ) is given
by the parity of the number of positive hyperbolic simple orbits in γ.

If u is a holomorphic curve from γ to δ, by simple computations it is possible
to prove the following index parity formula (see for example Section 3.4 in [28]):

(−1)I(u) = ε(γ)ε(δ). (2.2)

It follows then that the Lefschetz sign endows embedded contact homology
with a well defined absolute grading.

Fix now a generic point (0, z) ∈ Im(u) ⊂ R × Y . Given two orbit sets γ
and δ, let

Uz : ECC∗(Y, α) −→ ECC∗−2(Y, α)

be the map defined on the generators by

Uz(γ) =
∑

δ∈O(Y )

# {u ∈M2(γ, δ) | (0, z) ∈ Im(u)} · δ.

Hutchings proves that Uz is a chain map that counts only a finite number of
holomorphic curves and that this count does not depend on the choice of z. So
it makes sense to define the map U := Uz for any z as above. This is called the
U-map.

The hat version of embedded contact homology of (Y, α) is defined as the
homology ÊCH(Y, α) of the mapping cone of the U-map. By this we mean
that ÊCH(Y, α) is defined to be the homology of the chain complex

ECC∗−1(Y, α)⊕ ECC∗(Y, α)

with differential defined by the matrix(
−∂∗−1 0
U ∂∗

)
where the element of the complex are thought as columns. Also ÊCH(Y, α)
has the relative and the absolute gradings above.

Observation 2.1. Note that ∂ECH and U respect the homology class of the gen-
erators of ECC∗(Y, α). This implies that there are natural splits:

ECH(Y, ξ) =
⊕

Γ∈H1(Y ) ECC(Y, ξ,Γ);

ÊCH(Y, ξ) =
⊕

Γ∈H1(Y ) ÊCH(Y, ξ,Γ).
(2.3)
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We end this section by stating the following result (see for example [28]).

Theorem 2.2. Let ∅ be the empty orbit. Then [∅] ∈ ECH(Y, ξ) is an invariant
of the contact structure ξ.

The class [∅] is called ECH contact invariant of ξ.

2.2 ECH for manifolds with torus boundary
In order to define ECH for contact three-manifolds (N,α) with nonempty

boundary, some compatibility between α and ∂N should be assumed. In this
paper we are particularly interested in three-manifolds whose boundary is a col-
lection of disjoint tori.

In [9, Section 7] Colin, Ghiggini and Honda analyze this situation when ∂N
is connected. If T = ∂N is homeomorphic to a torus, then they prove that the
ECH-complex and the differential can be defined almost as in the closed case,
provided that R = Rα is tangent to T and that α is non-degenerate in int(N).

If the flow of R|T is irrational they define ECH(N,α) = ECH(int(N), α)
while, if it is rational, they consider the case of T Morse-Bott and do a M-B
perturbation of α near T ; this gives two Reeb orbits h and e on T and, since α
is now a M-B contact form, the ECH-differential counts special holomorphic
curves, called M-B buildings.

Definition 2.3. Let α be a Morse-Bott contact form on the three manifold Y and
J a regular almost complex structure on R× Y . Suppose that any M-B torus T
in (Y, α) comes with a fixed a Morse function fT . Let P(Y ) be the set of simple
Reeb orbits in Y minus the set of the orbits which correspond to some regular
point of some fT .

A nice Morse-Bott building in (Y, α) is a disjoint union of objects u of one
of the following two types:

1. u is the submanifold of a M-B torus T corresponding to a gradient flow
line of fT : in this case the positive and negative end of u are the positive
and, respectively, the negative end of the flow line;

2. u is a union of curves ũ ∪ u1 ∪ . . . ∪ un of the following kind. ũ is a
J-holomorphic curve in R×Y with n ends {δ1, . . . , δn} corresponding to
regular values of some {fT1 , . . . , fTn}. Then, for each i, ũ is augmented
by a gradient flow trajectory ui of fTi: ui goes from the maximum ε+i of
fTi to δi if δi is a positive end and goes from δi to the minimum ε−i of fTi
if δi is a negative end. The ends of u are obtained from the ends of ũ by
substituting each δi with the respective ε+i or ε−i .

Suppose now that Y is closed and N ∼= D2 × S1 is a solid torus embedded
in Y . If N = Y \ int(N ), under some assumption on the behaviour of α in a
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neighborhood ofN , in [9] the authors define relative versions ECH(N, ∂N, α)

and ÊCH(N, ∂N, α) of embedded contact homology groups and prove that

ECH(N, ∂N, α) ∼= ECH(Y, α); (2.4)

ÊCH(N, ∂N, α) ∼= ÊCH(Y, α). (2.5)

The notation suggests that these new homology groups are obtained by counting
only orbits in N and quotienting by orbits on ∂N . Let us see the definition of
these homologies in more details.

As mentioned above, to define these versions of embedded contact homol-
ogy and prove the isomorphisms above, some compatibility between α and N
is required. We refer the reader to [9, Section 6] for the details. Essentially two
conditions are required. The first one fixes α near N in a way that R behaves
similarly to the Reeb vector field defined in Section 1.4 near N (K), where K
was the binding of an open book decomposition of Y .
Briefly, this means that there exists a smaller closed solid torus V ⊂ N and a
neighborhood T 2 × [0, 2] of ∂N = T 2 × {1} in Y such that:

1. T 2 × [0, 1] ⊂ N , N = (T 2 × [1, 2]) ∪ V and ∂V = T 2 × {2};
2. T 2 × {y} is foliated by Reeb trajectories for any y ∈ [0, 2];

3. if K = {0} × S1 ⊂ N , then K is a Reeb orbit and int(V ) \K is foliated
by concentric tori, which in turn are linearly foliated by Reeb trajectories
that intersect positively a meridian disk for K in V .

4. T1 := T 2×{1} and T2 := T 2×{2} are negative and, respectively, positive
M-B tori foliated by Reeb orbits which are meridians of K.

As in Section 1.4, the families of Reeb orbits in T1 and T2 are perturbed into
two pairs of Reeb orbits (e, h) and, respectively, (e+, h+): here e and e+ are
elliptic and h and h+ are positive hyperbolic (see figure 1.1). If α satisfies the
conditions above we say that α is adapted to K.

The second condition of compatibility is that there must exist a Seifert sur-
face S ⊂ Y for K such that R is positively transverse to int(S). In this case we
say that α is adapted to S.

Lemma 2.4. (see Theorem 10.3.2 in [9]) Given a null-homologous knot K and
a contact structure ξ on Y there exists a contact form α for ξ and a genus
minimizing Seifert surface S for K such that:

1. α is adapted to K;

2. α is adapted to S.

Proof. We give here only the proof of 1), referring the reader to [9] for 2).
Up to isotopy, we can assume that K is transverse to ξ and let α′ be any

contact form for ξ. Up to isotopy of α′ we can suppose that K is a Reeb orbit.
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Since the compatibility condition with K can be arranged on a neighborhood
of K, by the Darboux-Weinstein neighborhood theorem (see for example [20])
there exists a contact form α which is compatible with K and contactomorphic
to α′.

Example 2.5. If (K,S, φ) is an open book decomposition of Y and α is a contact
form adapted to (K,S, φ), then it is adapted also to K and to any page of
(K,S, φ).

In [9] the authors prove that it is possible to define the ECH-chain groups
without taking into account the orbits in int(V ) and in T 2 × (1, 2), so that
the only interesting orbits in N (K) are the four orbits above (plus, obviously,
the empty orbit). Moreover the only curves counted by the (restriction of the)
ECH-differential ∂ have projection on Y as depicted in figure 2.1. These curves
give the following relations:

∂(e) = 0
∂(h) = 0
∂(h+) = e+ ∅
∂(e+) = h.

(2.6)

Note that the two holomorphic curves from h to e, as well as the two from e+ to
h+, cancel one each other since we work with coefficients in Z/2.

Observation 2.6. The compactification of the projection of the holomorphic
curve that limits to the empty orbit is topologically a disk with boundary h+,
which should be seen as a cylinder closing on some point of K. This curve
contribute to the “∅ part” of the third of the equations above, which gives [e] =
[∅] in ECH-homology. In the rest of this manuscript the fact that this disk is
the only ECH index 1 connected holomorphic curve that crosses K will be
essential.

Notation. From now on we will use the following notation. If (Y, α) is under-
stood, given a submanifold X ⊂ Y and a set of Reeb orbits {γ1, . . . , γn} ⊂
P(Y \X), we will denote ECCγ1,...,γn(X,α) the free Z/2-module generated by
orbit sets in O(X t {γ1, . . . , γn}).

Unless stated otherwise, the group ECCγ1,...,γn(X,α) will come with the
natural restriction, still denoted ∂ECH , of the ECH-differential of ECC(Y, α):
if this restriction is still a differential the associated homology is

ECHγ1,...,γn(X,α) := H∗(ECC
γ1,...,γn(X,α), ∂ECH).
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Figure 2.1: Orbits and holomorphic curves near K. Here the marked points
denote the simple Reeb orbits and the flow lines represent projections of the
holomorphic curves counted by ∂ECH . The two flow lines arriving from the
top on e and h are depicted only to remember that, by the Trapping Lemma,
holomorphic curves can only arrive to T1.

This notation is not used in [9], where the authors introduced a specific
notation for each relevant ECH-group. In particular with their notation:

ECC[(N,α) = ECCe(int(N), α);

ECC](N,α) = ECCh(int(N), α);

ECC\(N,α) = ECCh+(N,α).

As mentioned before, even if in N there are other Reeb orbits, it is possible
to define chain complexes for the ECH homology of (Y, α) only taking into
account the orbits {e, h, e+, h+}.

The Blocking and Trapping lemmas and the relations above imply that the
restriction of the fullECH-differential of Y to theECH-chain groupECHe+,h+(N,α)
is given by:

∂(ea+h
b
+γ) = ea−1

+ hb+hγ + ea+h
b−1
+ (1 + e)γ + ea+h

b
+∂γ, (2.7)

where γ ∈ O(N) and a term in the sum is meant to be zero if it contains some
elliptic orbit with negative total multiplicity or a hyperbolic orbit with total mul-
tiplicity not in {0, 1} (see [9, Section 9.5]). We remark that the Blocking Lemma
implies also that ∂γ ∈ O(N).

The further restriction of the differential to ECHh+(N,α) is then given by

∂(hb+γ) = hb−1
+ (1 + e)γ + hb+∂γ. (2.8)

Combining the computations of sections 8 and 9 of [9] the authors get the
following result.
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Theorem 2.7. Suppose that α is adapted to K and there exists a Seifert surface
S for K such that α is adapted to S. Then

ECH(Y, α) ∼= ECHe+,h+(N,α); (2.9)

ÊCH(Y, α) ∼= ECHh+(N,α). (2.10)

Observation 2.8. It is important to remark that the empty orbit is always taken
into account as a generator of the groups above. This implies that if orbit sets
with h+ are considered, ∂ECH counts also the holomorphic “plane” that con-
tributes to the third of relations 2.6. Later we will give the definition of another
differential, that we will call ∂ECK , which is obtained from ∂ECH by simply
deleting that plane.

Define now the relative embedded contact homology groups of (N, ∂N) by

ECH(N, ∂N, α) =
ECHe(int(N), α)

[eγ] ∼ [γ]

ÊCH(N, ∂N, α) =
ECH(N,α)

[eγ] ∼ [γ]
.

Since here h+ is not counted in the definition of the chain complexes, theECH-
differentials count only holomorphic curves inN . This “lack” is balanced by the
quotient by the equivalence relation

[eγ] ∼ [γ]. (2.11)

The reason behind this claim lie in the third of the relations 2.6. Indeed we can
prove the following:

Lemma 2.9.
ECHe+,h+(N,α) ∼=

ECHe+(N,α)

[eγ] ∼ [γ]
.

Proof. Using the fact that h+ can have multiplicity at most 1, it is not difficult
to see that the long exact homology sequence associated to the pair(

ECCe+(N,α), ECCe+,h+(N,α)
)

is
. . . −→ ECHe+(N,α)

i∗−→ ECHe+,h+(N,α)
π∗−→

π∗−→ H(h+ECC
e+(N,α), ∂)

d−→ ECHe+(N,α)
i∗−→ . . .

where:
– i : ECCe+(N,α) ↪→ ECCe+,h+(N,α) is the inclusion map;
– h+ECC

e+(N) is the module generated by orbit sets of the form h+γ with
γ ∈ O(N t e+);
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– π : ECCe+,h+(N,α) � h+ECC
e+(N) is the quotient map sending to 0

all generators having no contributions of h+;
– d is the standard connecting morphism, that in this case is defined by

d([h+γ]) = [γ + eγ].

We can then extract the short exact sequence

0 −→ coker(d)
i∗−→ ECHe+,h+(N,α)

π∗−→ ker(d) −→ 0

where

coker(d) =
ECHe+(N,α)

[eγ] ∼ [γ]
.

Since ker(d) = {0}, the map i∗ is an isomorphism.

Similarly, the fourth line of Equation 2.6 “explains” why we can avoid con-
sidering h in the full ECH(Y, α). In fact with similar arguments of the proof of
last lemma, we can prove:

Lemma 2.10 ([9], Section 9). ECHe+(N,α) ∼= ECHe(int(N), α).

Observe that since ∂(eγ) = e∂(γ), the differential is compatible with the
equivalence relation. So, instead of take the quotient by [eγ] ∼ [γ] of the ho-
mology, we could take the homology of the quotient of the chain groups under
the relation eγ ∼ γ, and we would obtain the same homology groups. We will
use this fact later. Note moreover that for every k, [ek] = [∅].

Equations 2.4 and 2.5 follow then from last two lemmas and Theorem 2.7.

2.2.1 ECH and ÊCH from open books
An important example of the situation depicted above is whenK is the bind-

ing of an open book decomposition (K,S, φ) of a closed three manifold Y , and
N is the associated mapping torus considered in section 1.4. Using the same
notations, define the extended pages of (S, φ) to be the surfaces

S ′ × {t} := (S × {t}) t∂S×{t} (S1 × {t} × [1, 3)), t ∈ [0, 2]

0 ∼ 2
.

Let α be a contact form on Y compatible with (K,S, φ). In particular α is
adapted to both K and any page of (K,S, φ).

Definition 2.11. If γ is a Reeb orbit in Y \K, define the degree of γ by

deg(γ) = 〈γ, S ′ × {0}〉

If γ =
∏

i γ
ki
i is some orbit set, we define deg(γ) =

∑
i kideg(γi). If X ⊂

(Y \K), we indicate by Oi(X) (resp. O≤i(X)) the set of multiorbits in X with
degree equal (resp. less or equal) to i.
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Note that deg(γ) depends only on the homology class of γ in Y \K. In this
context the relative embedded contact homology groups can also be defined in
terms of limits as follows.

Define ECCe
j (int(N), α) to be the free Z2-module generated by orbit sets

in Oj(int(N) ∪ {e}). Similarly let ECCj(N,α) be generated by orbit sets in
Oj(N). Define the inclusions

Iej : ECCe
j (int(N), α)→ ECCe

j+1(int(N), α)

Ij : ECCj(N,α)→ ECCj+1(N,α)

given by the map γ 7→ eγ. Each of these chain groups can be endowed with (the
restriction of) the ECH-differential, which counts M-B buildings in N . Let
ECHe

j (N,α) and ECHj(N,α) be the associated homology groups. Then the
relative embedded contact homology groups above can be defined also by

ECH(N, ∂N, α) = lim
j→∞

ECHe
j (int(N), α);

ÊCH(N, ∂N, α) = lim
j→∞

ECHj(N,α).

Observation 2.12. If ECC≤k(N,α) :=
⊕k

j=0ECCj(N,α), let ECH≤k(N,α)
be the homology of ECC≤k(N,α) with the ECH-boundary map. The “stabi-
lization” Theorem 1.0.2 of [11] implies that for the definition of ÊCH(N, ∂N, α)
it is sufficient to take into account just orbit sets in O≤2g(N). Then:

ÊCH(N, ∂N, α) ∼=
ECH≤2g(N,α)

[eγ] ∼ [γ]
. (2.12)

2.3 Periodic Floer homology for open books
Another Floer homology theory closely related to ECH is the periodic

Floer homology, denoted by PFH , and defined by Hutchings (see [26]). Given
a symplectic surface (S, ω) (here with possibly empty boundary) and a symplec-
tomorphism φ : S → S, consider the mapping torus

N(S, φ) =
S × [0, 2]

(x, 2) ∼ (φ(x), 0)
.

Then PFH(N(S, φ)) is defined in an analogous way than ECH for an open
book but replacing the Reeb vector field with a stable Hamiltonian vector field
R parallel to ∂t, where t is the coordinate of [0, 2]: we refer the reader to [26] or
[31] for the details.

The chain group PFC(N(S, φ)) is the free Z2 module generated by or-
bit sets of R and the boundary map counts index 1 holomorphic curves in the
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symplectization; then, under some condition on φ, the associated homology
PFH(N(S, φ)) is well defined. Homology groups PFHi(Y (S, φ)) associated
to the chain groups PFCi(N(S, φ)) generated by degree-i multiorbits are also
well defined.

If (S, φ) is an open book as in the sections above, ∂S is connected and N is
the associated mapping torus, in [10] the following is proved:

Theorem 2.13. If α is a contact form adapted to (S, φ) then there exists a stable
Hamiltonian structure such that for any i ≥ 0,

PFHi(N) ∼= ECHi(N,α) (2.13)

(here we are using a simplified notation which is different from that used in
[10]).

Defining

P̂FH(N, ∂N) =
PFH≤2g(N)

[eγ] ∼ [γ]
,

then
P̂FH(N, ∂N) ∼= ÊCH(N, ∂N, α),

where contact form and stable Hamiltonian structure are as in the last theorem.
It is interesting to remark that PFC1(N(S, φ)) is generated by orbits of

period 1, which are in bijective correspondence with the set Fix(φ) of the fixed
points of φ via the map

O1(int(N)) −→ Fix(φ)
γ 7−→ γ ∩ S, (2.14)

which moreover evidently respects the Lefschetz signs. Then this correspon-
dence induces an isomorphism between PFC1(N(S, φ)) and the chain complex
SC(S, φ) of the standard symplectic Floer homology SH(S, φ) of (S, φ) (see for
example [7] and [17]). Indeed the following holds (see for example [31]):

Proposition 2.14. The correspondence above induces an isomorphism

PFH1(N(S, φ)) ∼= SH(S, φ).

2.4 ÊCH for knots
Let K be a homologically trivial knot in a contact three-manifold (Y, α). In

this section we recall the definition of a hat version of contact homology for the
triple (K,Y, α). This was first defined in [13, Section 7] as a particular case of
sutured contact homology. On the other hand, following [9, Section 10], it is
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possible to proceed without dealing directly with sutures: we follow here this
approach.

Let S be a Seifert surface for K. By standard arguments in homology, it is
easy to compute that

H1(Y \K) −→ H1(Y )× Z
[a] 7−→ (i∗[a] , 〈a, S〉) (2.15)

is an isomorphism. Here i : Y \K → Y is the inclusion and 〈a, S〉 denotes the
intersection number between a and S: this is a homological invariant of the pair
(a, S) and is well defined up to a slight perturbation of S (to make it transverse
to a). Note that a preferred generator of Z is given by the homology class of a
meridian for K, positively oriented with respect to the orientations of S and Y .

Example 2.15. If Y is a homology three-sphere, the number 〈a, S〉 depends
only on a and K. This is the linking number between a and K and it is usually
denoted by lk(a,K).

If γ =
∏

i γ
ki
i is a finite formal product of closed curves in Y \ K, then

〈γ, S〉 =
∑

i ki〈γi, S〉.

Example 2.16. If (K,S, φ) is an open book decomposition of Y and α is an
adapted contact form, then 〈γ, S〉 = deg(γ) for any orbit set γ ∈ O(Y \ K),
where deg is given in Definition 2.11.

Proposition 2.17 (See Proposition 7.1 in [13]). Suppose that K is an orbit of
Rα and let S be any Seifert surface for K. If γ and δ are two orbit sets in Y \K
and u : (F, j)→ (R× Y, J) is a holomorphic curve from γ to δ, then

〈γ, S〉 ≥ 〈δ, S〉.

Proof. Let û be the compactification of u in [−1, 1]× Y . Since u has no limits
in K, then

〈û, [−1, 1]×K〉 = 〈u,R×K〉 ≥ 0, (2.16)

where the inequality follows by the positivity of intersection in dimension 4
(since K is a Reeb orbit, R×K is holomorphic). Consider the two surfaces

L−1 = {−1} × S and L1 = {1} × −S

and define the closed surface

L = L−1 ∪ ([−1, 1]×K) ∪ L1

where the first gluing is made along {−1} ×K and the second along {1} × −K.
Since 0 = [L] ∈ H2([−1, 1]× Y ), then:

0 = 〈û, L〉 =
= 〈û, L−1〉+ 〈û, [−1, 1]×K〉+ 〈û, L1〉 =
= 〈δ, S〉+ 〈û, [−1, 1]×K〉 − 〈γ, S〉.
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The result then follows by observing that the last equation implies that

〈γ, S〉 − 〈δ, S〉 = 〈û, [−1, 1]×K〉 ≥ 0. (2.17)

Suppose that α is adapted to K in the sense of Section 2.2; a choice of (a ho-
mology class for) the Seifert surface S for the orbitK defines a knot filtration on
the chain complex (ECCh+(N,α), ∂ECH) for ÊCH(Y, α), where, recall, N is
the complement of a neighborhood N (K) of K in which the only “interesting”
orbits and holomorphic curves are the ones represented in Figure 2.1.

Let ECCh+

d (N,α) be the free sub-module of ECCh+(N,α) generated by
orbit sets γ in O(N t {h+}) such that 〈γ, S〉 = d. Define moreover

ECC
h+

≤d (N,α) :=
⊕
j≤d

ECC
h+

j (N,α).

Observation 2.18. The direct sum above is not in general finite. On the other
hand if α is adapted to S then 〈γ, S〉 ≥ 0 for any γ and the sum is finite for any
d.

Even if α is not adapted to S, the intersection number induces an exhaustive
filtration

. . . ⊆ ECC
h+

≤d−1(N,α) ⊆ ECC
h+

≤d (N,α) ⊆ ECC
h+

≤d+1(N,α) ⊆ . . .

on ECCh+(N,α).

Definition 2.19. The filtration above is the knot filtration induced by K. If γ is
a generator of ECCh+

d (N,α), the integer d is the filtration degree of γ.

Corollary 2.20. The differential ∂ECH of ECCh+(N,α) respects the knot fil-
tration.

Proof. Proposition 2.17 applied to the M-B buildings counted by ∂ECH implies
immediately that

∂ECH
(
ECC

h+

≤d (N,α)
)
⊆ ECC

h+

≤d (N,α)

for any d and the result follows.

Suppose now that α is adapted to S. By standard arguments in algebra,
the filtration above induces a spectral sequence whose page∞ is isomorphic to
ECHh+(N,α) ∼= ÊCH(Y, α) and whose page 0 is the chain complex⊕

d

(
ECC

h+

d (N,α), ∂ECKd

)
(2.18)



46 CHAPTER 2. EMBEDDED CONTACT HOMOLOGY

where ECCh+

d (N,α) should be seen as
ECC

h+
≤d (N,α)

ECC
h+
≤d−1(N,α)

and

∂ECKd : ECC
h+

d (N,α)→ ECC
h+

d (N,α)

is the map induced by ∂ECH on the quotient, i.e, it is the part of ∂ECH |
ECC

h+
d (N,α)

that strictly preserves the filtration degree.

Observation 2.21. The proof of Proposition 2.17 implies that the holomorphic
curves counted by ∂ECH that strictly decrease the degree are exactly the curves
that intersect K. So we can interpret ∂ECK as the restriction of ∂ECH (given
by Equation 2.7) to the count of curves that do not cross a thin neighborhood of
K. This is indeed the proper ECH-differential of the manifold Y \ int(V (K))
(and not the restriction of the ECH-differential of Y to the orbit sets in Y \
int(V (K))).

Note that, by definition of ECCh+(N,α), all the holomorphic curves con-
tained in R×N strictly preserve the filtration degree. In fact the only holomor-
phic curve that contributes to ∂ECH |ECCh+ (N,α) and decreases the degree (by 1)
is the disk from h+ to ∅. Equation 2.8 gives then

∂(hd+γ) = hd−1
+ eγ + hd+∂γ. (2.19)

where γ ∈ O(N) and any term is meant to be zero if it contains some orbit with
total multiplicity that is negative or not in {0, 1} if the orbit is hyperbolic

Definition 2.22. The hat version of embedded contact (knot) homology of the
triple (K,Y, α) is

ÊCK∗(K,Y, α) := H∗
(
ECCh+(N,α), ∂ECK

)
.

Observation 2.23. In [9] ÊCK(K,Y, α) is called ECH(M(K), α) and in
Theorem 10.3.2 it is proved that

ÊCK(K,Y, α) = ECH](N,α)

where, recall, with our notation ECH](N,α) = ECHh(int(N), α). On the
other hand, by using exactly the same arguments of Lemma 2.9, it is easy to see
that

ECHh(int(N), α) ∼= H∗
(
ECCh+(N,α), ∂ECK

)
.

Observation 2.24. Note that in order to define ÊCK(K,Y, α), we supposed
that α is compatible with S. This hypothesis is not present in the original def-
inition (via sutures) in [13]. Indeed, without this condition we can still apply
all the arguments above and define the knot filtration on ECCh+(N,α) exactly
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in the same way. The page 1 of the spectral sequence is again the well de-
fined homology in the definition above, and the page ∞ is still isomorphic to
ECHh+(N,α).

The only difference is that now we do not know that ECHh+(N,α) ∼=
ÊCH(Y, α), since in Theorem 2.7 the hypothesis that α is adapted to S is as-
sumed.

This homology comes naturally with a further relative degree, inherited by
the filtered degree: if ÊCK∗,d(K,Y, α) := H∗

(
ECC

h+

d (N,α), ∂ECKd

)
then

ÊCK∗(K,Y, α) =
⊕
d

ÊCK∗,d(K,Y, α).

Sometimes, in analogy with Heegaard Floer, we will call this degree the Alexan-
der degree.

Example 2.25. Suppose that (K,S, φ) is an open book decomposition of Y and
that α is an adapted contact form. Since any non-empty Reeb orbit in Y \K has
strictly positive intersection number with S,

ÊCK∗,0(K,Y, α) ∼= 〈[∅]〉Z/2.

This is the ECH-analogue of the fact that if K is fibered, then

ĤFK∗,−g(K,Y ) ∼= 〈[c]〉Z/2,

where g is the genus of K and c is the associated contact element (see [45]).

Observation 2.26. We remark that the Alexander degree can be considered as
an absolute degree only once a relative homology class in H2(Y,K) for S has
been fixed, since the function 〈·, S〉 defined on H1(Y \K) changes if [S] varies.

On the other hand, suppose that [γ] = [δ] ∈ H1(Y \K) and let F ⊂ Y be
a surface such that ∂F = γ − δ. Computations analogue to that in the proof of
Proposition 2.17 imply that

〈γ, S〉 − 〈δ, S〉 = 〈F,K〉, (2.20)

and the Alexander degree, considered as a relative degree, does not depend on
the choice of a homology class for S.

Obviously if H2(Y ) = 0, the Alexander degree can be lifted to an absolute
degree.

In [13] the authors conjectured that their sutured embedded contact homol-
ogy is isomorphic to sutured Heegaard-Floer homology. Both the hat version of
embedded contact knot homology and of Heegaard Floer knot homology can be
defined in terms of sutures. In this case their conjecture becomes
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Conjecture 2.27. For any knot K in Y :

ÊCK(K,Y, α) ∼= ĤFK(−K,−Y ),

where α is a contact form on Y adapted to K.



3
Heegaard Floer homology and
Alexander polynomial

Heegaard-Floer homology was developed by Ozsváth and Szabó in an at-
tempt to provide a more combinatorial version of Kronheimer and Mrowka’s
Seiberg-Witten-Floer homology ([33]). Heegaard-Floer theory has been able
to yield powerful invariants for closed three and four manifolds, as well as for
knots and links in three-manifolds.

In section 3.1 we introduce Heegaard-Floer theory for three-manifolds. Be-
cause of the abundance of literature about the argument we will show only some
of the aspects of the construction. We refer the reader to the original papers by
Ozsváth and Szabó ([42], [43]) for all the details. Other presentations of the
subject can be found in [48] and [53].

In addition to the original definition , there exists also another possible def-
inition of Heegaard Floer homology. This is the “cylindrical formulation” of
HF , which is due to Lipshitz ([36]). This has been used by Colin, Ghiggini and
Honda to prove the equivalence between ECH and HF . Only in Chapter 4 we
will shortly recall this alternative construction in the special case of Heegaard
diagrams arising from open books, as presented in [10].

In Section 3.2 we briefly recall definition and basic properties of Heegaard
Floer homology for knots and links in three-manifolds. Some details will be
provided about the relations with the Alexander polynomial.

Finally, in Section 3.3 we recall the interpretation of the multivariable Alexan-
der polynomial ∆L of a link L ⊂ S3 in terms of the dynamics of suitable vector
fields in S3 \L. This characterisation of ∆L originates from the work of Franks
(see e.g. [15]), later generalised by Fried ([16]). This will be a key ingredient

49



50 CHAPTER 3. HF-HOMOLOGY AND ALEXANDER POLYNOMIAL

for the results in Chapter 6.
Even if Heegaard Floer homologies can be defined using integer coefficients,

in this chapter, as well as in the rest of the paper, we will always use coefficients
in Z/2.

3.1 HF for three manifolds
Let Y be a closed, compact and oriented three-manifold. Heegaard-Floer

theory assigns to Y four homology groups

HF∞(Y ), HF+(Y ), HF−(Y ), ĤF (Y ).

Let (Σ,α,β, w) be a pointed Heegaard diagram for Y . This means that:
– Σ is an oriented compact and closed surface of genus g, called “Heegaard

surface for Y ”;
– there exists a Heegaard decomposition Y = Y1 ∪ Y2 of Y , where Y1 and
Y2 are handlebodies such that ∂Y1 = ∂Y2 = Σ;

– α = {α1, . . . , αg} and β = {β1, . . . , βg} are sets of attaching circles for
Y1 and, respectively, Y2;

– w is a point in Σ \ (α ∪ β).
Let Symg(Σ) be the g-fold symmetric product of Σ. If Σ is endowed with a

fixed almost complex structure, Symg(Σ) inherits a product complex structure
J . The two g-dimensional submanifolds

Tα := α1 × . . .× αg Tβ := β1 × . . .× βg.

of Symg(Σ) are Lagrangian (see [49]). Any point x ∈ Tα ∩Tβ can be seen as a
g-tuple of points {x1, . . . , xg} in Σ for which there exists a permutation σ ∈ Sg
such that xi ∈ αi ∩ βσ(i).

Define the associated (infinite version of) Heegaard Floer chain group by

CF∞(Σ,α,β, w) := 〈{[x, i] | x ∈ Tα ∩ Tβ, i ∈ Z}〉Z/2.

This chain group can be endowed with a differential ∂HF defined by

∂HF ([x, i]) =
∑

y∈Tα∩Tβ

∑
[u]∈M1([x,y])/R

([y, i− nw(u)]),

where nw(u) is the intersection number 〈u, {w}×Symg−1(Σ)〉 andM1(x,y)/R
is the set of equivalence classes (modulo R-translations) of holomorphic strips
u : [0, 1]× R→ Symg(Σ) from x to y such that:

– u({1} × R) ⊂ Tα and u({0} × R) ⊂ Tβ;
– lims→−∞ u(t, s) = x and lims→∞ u(t, s) = y;
– u has Maslov index 1 (see [42] for the details).
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Since we are working with Z/2 coefficients, the sum above is understood to be
taken modulo 2.

The associated homology group is the (infinite version of) Heegaard Floer
homology HF∞(Y ) of Y .

Since u and {w}× Symg−1 are both holomorphic, the positivity of intersec-
tion implies nw(u) ≥ 0 and

CF−(Σ,α,β, w) := 〈{[x, i] | x ∈ Tα ∩ Tβ, i ∈ Z<0}〉Z/2

endowed with the (restriction of) ∂HF is a subcomplex of the infinite version.
The associated homology HF−(Y ) is the minus version of Heegaard Floer ho-
mology of Y .

The quotient

CF+(Σ,α,β, w) :=
CF∞(Σ,α,β, w)

CF−(Σ,α,β, w)

gives rise to the plus version of the Heegaard Floer homology of Y , denoted by
HF+(Y ).

Finally, define

ĈF (Σ,α,β, w) := 〈{x | x ∈ Tα ∩ Tβ}〉Z/2

and endow it with the restriction of the differential ∂HF that counts only holo-
morphic curves u with nw(u) = 0. The associated homology group ĤF (Y ) is
the hat version of Heegaard Floer homology of Y .

A priori all homologies defined depend on the choice of the pointed Hee-
gaard diagram and on the almost complex structure J on Symg(Σ), but Ozsváth
and Szabó proved in fact the following:

Theorem 3.1 ([42]). All the Heegaard Floer homology groups of Y do not de-
pend on any of the choices made and are topological invariants of Y .

Observation 3.2. It is important to say that to any x ∈ Tα ∩ Tβ it is possible
to associate a well defined sx ∈ Spinc(Y ). It is possible to prove that if there
exists a surface like the ones counted by ∂HF and whose limits are x and y, then
sx = sy. This is a kind of Poincaré-dual version of the fact that ∂ECH respects
the first homology of the generators of the ECH chain groups.

If CF∞(Σ,α,β, w, s) is the submodule of CF∞(Σ,α,β, w) generated by
the elements x such that sx = s, then its homology HF∞(Y, s) is well defined.
Moreover there is a natural splitting

HF∞(Y ) =
⊕

s∈Spinc(Y )

HF∞(Y, s). (3.1)

Analogous splittings exist also in the other versions of HF (Y ).
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3.2 Heegaard Floer homology for knots and links
In this section we briefly recall the definition of Heegaard-Floer homology

for knots and links in a three manifolds Y . These can be seen as the first page
of a spectral sequence arising from a filtration defined by the knot (or link) on a
suitable complex for HF (Y ).

Heegaard-Floer homology for knots has been defined independently in [44]
by Ozsváth and Szabó and by Rasmussen in his Ph.D. thesis ([50]). The link
version has been defined later in [46].

3.2.1 The knot filtration
Let us begin with the case of knots. Let K be a homologically trivial

knot in a three-manifold Y . We say that a doubly pointed Heegaard diagram
(Σ,α,β, w, z) is compatible with K if:

– (Σ,α,β, w) is a pointed Heegaard diagram for Y ;
– z ∈ Σ \ (α∪β) is a second marked point, different from w and such that,

if a1 (resp. a2) is an oriented arc in Σ \α (resp. Σ \β) from z to w (resp.
from w to z), then the oriented loop a1 ∪ a2 is isotopic in Y to K.

As recalled in last section, a Heegaard-Floer chain complex for Y splits into a
direct sum over the set Spinc(Y ) of the Spinc-structures of Y , and the differen-
tial ∂HF respects this splitting.

Now the corresponding Heegaard Floer chain groups also split into direct
sums over Spinc(Y0(K)), where Y0(K) is the 3-manifold obtained by 0-surgery
of Y along K. In fact, given a doubly pointed Heegaard diagram (Σ,α,β, z, w)
compatible with K, to any generator x = (x1, . . . , xg) of CF (Σ,α,β, z, w) it
is possible to associate (almost canonically) a generator x′ of a Heegaard-Floer
chain group for Y0(K) and a well defined Spinc-structure sw(x) := sw(x′) ∈
Spinc(Y0(K)) depending only on x. One can check that

Spinc(Y0(K)) ∼= Spinc(Y )× Z. (3.2)

and the projection on the second factor is the integer 1
2
〈c1(sw(x)), [F̂ ]〉 where

c1 denotes the first Chern class, F is a Sifert surface for K and F̂ is the surface
obtained by capping off F along K in Y0(K).

This integer can be computed as follows. Let {Ri}i be the set of the con-
nected components (called regions) of Σ \ (α ∪ β). If a projection of F to Σ is
the domain P =

∑
imiRi, then (see [43, Proposition 7.5]):

〈c1(sw(x)), [F̂ ]〉 = χ(P) + 2

g∑
i=1

nxi(P) (3.3)

where:
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– χ(P) is the Euler measure of P (see [43, Section 7.1] or [36, Section
4.1]);

– ny(P) =
∑

iminy(Ri) with ny(Ri) = n
4
, where n is the number of ver-

tices of Ri which are identified with y.

Observation 3.3. Equation 3.2 can be viewed just as a Poincaré-dual of the
version in Y0(K) of Equation 2.15.

Lemma 3.4 ([44], Lemma 2.5). Let (Σ,α,β, w, z) be a doubly pointed Hee-
gaard diagram for (Y,K). Given x, y ∈ Tα ∩ Tβ , for any holomorphic strip u
from x to y counted by ∂HF :

sw(x)− sw(y) = (nz(u)− nw(u))PD([µ]) (3.4)

where [µ] is the homology class in Y0(K) of the (positively oriented) meridian
µ and PD denotes the Poincaré dual.

Note that nz(u), nw(u) ≥ 0 by the positivity of intersection.
Let CFK∞(Σ,α,β, w, z) be the free Z/2-module generated by triples [x, i, j]
with x ∈ Tα ∩ Tβ and i, j ∈ Z. The HF -differential is then given by

∂HF ([x, i, j]) =
∑

y∈Tα∩Tβ

∑
[u]∈M1(x,y)/R

([y, i− nw(u), j − nz(u)]),

whereM1(x,y)/R is the set of equivalence classes (modulo R-translations) of
holomorphic disks with Maslov-index 1 from x to y.

Let ∂HFK be the part of ∂HF that preserves the PD([µ]) component in Equa-
tion 3.4, that is, the map that restricts the sum in ∂HF to the holomorphic curves
u such that nz(u)− nw(u) = 0. The (full) Heegaard Floer knot homology of K
is then

HFK∞(K,Y ) = H
(
CFK∞(Σ,α,β, w, z), ∂HFK

)
.

This homology naturally inherits a relative degree induced by the difference
between the PD([µ])-components of the Spinc-structures in Y0(K) associated
to the generators. Then HFK∞∗,∗(K,Y ) is a bigraded homology: the first degree
is the usual homological degree, while we will call Alexander degree the further
Z-degree given by the filtration.

Suppose now that u is a holomorphic curve counted by ∂HF in the hat ver-
sion. Then nw(u) = 0 and Equation 3.4 becomes

sw(x)− sw(y) = nz(u)PD[µ], (3.5)

where nz(u) ≥ 0 by positivity of intersection. Define the hat version of Hee-
gaard Floer knot homology of K as follows. Let ĈFK(Σ,α,β, w, z) be the
free Z/2-module generated by g-tuples x ∈ Tα ∩ Tβ where, as usual, g is the
genus of Σ. Let now ∂HFK be the part of ∂HF that preserves the filtration given



54 CHAPTER 3. HF-HOMOLOGY AND ALEXANDER POLYNOMIAL

by Equation 3.5, which is in this case the map that restricts the count of ∂HF

to the holomorphic curves u with nz(u) = nw(u) = 0. We call the associated
homology ĤFK(K,Y ).

A further version of HFK is obtained by taking the homology of the sub-
complex CFK−(Σ,α,β, w, z) of CFK∞(Σ,α,β, w, z) freely generated by
the triples [x, i, j] with i < 0. Endowed with the restriction of the differ-
ential, this gives the minus version of Heegaard Floer knot homology of K
HFK−(K,Y ).

Finally, like in the case of closed three-manifolds, the plus version of Hee-
gaard Floer knot homology HFK+(K,Y ) of K is defined to be the homology
of the quotient CFK+(Σ,α,β, w, z) of CFK∞(Σ,α,β, w, z) by the submod-
ule CFK−(Σ,α,β, w, z).

Obviously also these homologies inherit the additional Alexander degree.
This degree induces a splitting of ĤFK(K,Y ):

ĤFK∗(K,Y ) =
⊕
d

ĤFK∗,d(K,Y ) (3.6)

where ĤFK∗,d(K,Y ) is the homology of the subcomplex ĈFKd(Σ,α,β, w, z)

of ĈFK(Σ,α,β, w, z) generated by the x such that sw(x) is sent to (sw(x), d)
by the isomorphism 3.2, i.e., the x with

1

2
〈c1(sw(x)), [F̂ ]〉 = d.

Similar splits hold also for the other versions of HFK.

Observation 3.5. Like in ECK, also here the Alexander degree is in general
only a relative degree and is defined only up an overall shift.

Theorem 3.6 ([44],[50]). HFK∞(K,Y ), HFK−(K,Y ), HFK+(K,Y ) and
ĤFK(K,Y ) are topological invariants of the pair (K,Y ).

In [46], using the Lipshitz’s cylindrical reformulation of HF , Ozsváth and
Szabó generalize the filtration above to the case of links in S3 with a generic
number of components. We give here just the idea of the construction. Given
an n-component oriented link L = K1 t . . . t Kn ⊂ Y , let µi be a positively
oriented meridian of Ki. Then there is an isomorphism

H1(S3 \ L) −→ Z[µ1] ⊕ . . .⊕ Z[µn]

[a] 7−→ (lk(a,K1), . . . , lk(a,Kn)) ,
(3.7)

where Z[µi] is the direct summand generated by [µi] ∈ H1(Y \ L). This is just
the generalization, for Y = S3, of Equation 2.15 and, by taking the Poincaré
dual, of Equation 3.2.
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By arguments similar to the case of knots, Equation 3.7 induces aZn-filtration
on suitable Heegaard-Floer complexes CF−(S3) and ĈF (S3) defined using
special Heegaard diagrams for S3 compatible with L. The first pages of the
spectral sequences in the two versions are the Heegaard-Floer link homologies
HFL−(L, S3) and ĤFL(L, S3).

Now these homology groups inherit (from Equation 3.7) a Zn grading, or,
analogously, n Z-gradings, one for each component of L. We will keep to call
this Zn-degree the Alexander degree.

Theorem 3.7 ([46]). HFL−(L, S3) and ĤFL(L, S3) are topological invari-
ants of the couple (L, S3). Moreover if n = 1 and we write L = K1 = K,
then:

HFL−(K,S3) ∼= HFK−(K,S3) and ĤFL(L, S3) ∼= ĤFK(K,S3)

as bigraded modules.

Knot and link Floer homologies enjoy many interesting properties. For ex-
ample, under a suitable choice of a lifting of the relative degree:

– if g is the genus of K, ĤFK∗,d(K,S3) 6= {0} only if d ∈ {−g, . . . , g}
and in particular ĤFK(K,S3) ∼= Z if and only if K is the unknot ([44]);

– ĤFK∗,g(K,S
3) ∼= Z if and only if K is fibered; the generator is the

homology class of the contact element on HF (see [45] for the “if” part,
[18] for the “only if” in the case g = 1 and [41] in general);

– ĤFK(K,S3) gives a bound for the slice genus of knots in S3 ([47]).

3.2.2 HFL and Alexander polynomial
Another beautiful property of Heegaard Floer knot homology is that it cate-

gorifies the Alexander polynomial of knots and links in S3.
Given a collection of chain complexes

(C, ∂) = {(C∗,(i1,...,in), ∂(i1,...,in))}(i1,...,in)∈Zn ,

where ∗ denotes a relative homological degree, its graded Euler characteristic
is

χ(C) =
∑
i1,...,in

χ
(
C∗,(i1,...,in)

)
ti11 · · · tinn ∈ Z[t±1

1 , . . . , t±1
n ]

where χ
(
C∗,(i1,...,in)

)
is the standard Euler characteristic of C∗,(i1,...,in) and the

tj’s are formal variables. By definition, χ(C) is a Laurent polynomial and the
properties of the standard Euler characteristic imply

χ(C) = χ (H(C, ∂)) .
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In this case the homology H(C, ∂) is a categorification of the polynomial χ(C).

Given any link L = K1 t . . .tKn in S3 we can associate to it its multivari-
able Alexander polynomial

∆L(t1, . . . , tn) ∈ Z[t±1
1 , . . . , t±1

n ]

±ta1
1 · · · tann

.

with ai ∈ Z. The quotient means that the Alexander polynomial is well defined
only up to multiplication by monomials of the form ±ta1

1 · · · tann .
A slightly simplified version is the (classical) Alexander polynomial ∆L(t),

defined by setting t1 = . . . = tn = t, i.e.:

∆L(t) := ∆L(t, . . . , t).

If L is a knot the two notions obviously coincide.

Observation 3.8. The fact that the Alexander polynomial is defined up to mul-
tiplication of terms of the form ±ta1

1 · · · tann depends on the choice of a lifting of
a basis of H1(S3 \L) to a basis for the homology of the universal abelian cover
of S3 \ L. An equivalent ambiguity appears also in HFL and HFK when a
lifting of the relative degrees to absolute degrees must be chosen.

From now on we will use the equivalence symbol “ .=” to indicate that two
polynomials coincide up to a factor of the form ±ta1

1 · · · tann , ai ∈ Z.

Alexander polynomial is a “classical” invariant, and was first introduced by
Alexander in 1928 ([2]). It enjoys a quantity of beautiful properties and admits
many possible definitions. In the next section we will remind a definition of ∆L

in terms of the dynamic of certain vector fields defined in the link complement.
We also refer the reader to [51] for a beautiful treatment of ∆L.

Theorem 3.9 (Ozsváth, Szabó). For any link L = K1 t . . . tKn in S3:

χ
(
HFL−(L, S3)

) .
=


∆L(t1, . . . , tn) if n > 1

∆L(t)/(1− t) if n = 1
(3.8)

and

χ
(
ĤFL(L, S3)

)
.
=

 ∆L ·
∏n

i=1(t
1
2
i − t

− 1
2

i ) if n > 1

∆L(t) if n = 1.

(3.9)

This theorem has been proved in [44] and [50] in the case n = 1: this came
from a direct application of a skein exact sequence in HFK, analogous to the
skein relation for ∆K . The result has been then generalized in [46] to any link: in
this case the proof utilizes the Reidemeister-Franz torsion τ(L) of the universal
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abelian cover of the link complement (see for example [56]). Indeed, for links
in S3

τ(L)
.
=


∆L(t1, . . . , tn) if n > 1

∆L(t)/(1− t) if n = 1
(3.10)

and Equation 3.8 can be restated as

χ
(
HFL−(L, S3)

) .
= τ(L). (3.11)

3.3 A dynamical formulation of ∆(t)

As remarked before, given a link L ∈ S3, there are many possible definitions
of ∆L. In this section we give a formulation of ∆L in terms of the dynamics of
suitable vector fields in S3 \L. The details about the proof of the statements can
be found in the references.

The fact that the Alexander polynomial is related to dynamical properties of
its complement in S3 origins with the study of fibrations of S3. For example in
[1] A’Campo studied the twisted Lefschetz zeta function of the monodromy of
an open book decomposition (S, φ) of S3 associated to a Milnor fibration of a
complex algebraic singularity. More in general, if (K,S, φ) is any open book
decomposition of S3, one can easily prove (see for example [51]) that

∆K(t)
.
= det(1− tφ1

∗),

where 1 and φ1
∗ are the identity map and, respectively, the application induced

by φ, on H1(S,Z). The basic idea in this context is to express the right-hand
side of equation above in terms of traces of iterations of φ1

∗; then to apply the
Lefschetz fixed point theorem to get expressions in terms of periodic points, (i.e.
periodic orbits) for the flow of some vector field in S3 \K whose first return on
a page is φ.

Suppose now that L is not a fibered link, so that its complement is not glob-
ally fibered over S1 and let R be a vector field in S3 \ L. If one wants to apply
arguments like above, it is necessary to decompose S3\L in “fibered-like” pieces
with respect to R, in which it is possible to define at least a local first return map
of the flow φR of R. Obviously some condition on R is required. For example,
in his beautiful paper [15], Franks consider Smale vector fields, that is, vector
fields whose chain recurrent set is one-dimensional and hyperbolic (cf. [52]).

Here we are more interested in the approach used by Fried in [16]. Con-
sider a three-dimensional manifold X . Any abelian cover X̃ π→ X with deck
transformations group isomorphic to a fixed abelian group G is uniquely deter-
mined by the choice of a class ρ = ρ(π) ∈ H1(X,G) ∼= Hom (H1(X,Z), G).
Here ρ is determined by the following property: for any [γ] ∈ H1(X), if
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γ̃ : [0, 1] → X̃ is any lifting of the loop γ : [0, 1] → X , then ρ([γ]) is de-
termined by ρ([γ])(γ̃(0)) = γ̃(1).

Since the correspondence between Abelian covers and cohomology classes
is bijective, with abuse of notation sometimes we will refer to an abelian cover
directly by identifying it with the corresponding ρ.

Example 3.10. The universal abelian cover of X is the abelian cover with deck
transformation group G = H1(X,Z) and corresponding to ρ = id.

Example 3.11. Let L = K1t . . .tKn be an n-components link in a three man-
ifold Y such that Ki is homologically trivial for any i and fix a Seifert surface
Si for Ki. Let moreover µi be a positive meridian for Ki. If i : Y \ L ↪→ Y is
the inclusion, the isomorphism

H1(Y \ L) −→ H1(Y )⊕ Z[µ1] ⊕ . . .⊕ Z[µn]

[γ] 7−→ (i∗([γ]), 〈γ, S1〉, . . . , 〈γ, Sn〉)
(3.12)

gives rise naturally to the abelian cover

ρL ∈ Hom (H1(Y \ L,Z),Zn)

of Y \ L defined by

ρL([γ]) = (〈γ, S1〉, . . . , 〈γ, Sn〉) .

Setting ti = [µi] ∈ H1(Y \ L,Z), we can regard ρL([γ]) as a monomial in the
variables ti:

ρL([γ]) = t
〈γ,S1〉
1 · · · t〈γ,Sn〉n .

In the rest of the paper we will often use this notation.
Note finally that if Y is a homology three-sphere, ρL coincides with the uni-

versal abelian cover of Y \ L.

If R is a vector field on X satisfying some compatibility condition with ρ
(and with ∂X if this is non-empty), the author relates the Reidemeister-Franz
torsion of (X, ∂X) with the twisted Lefschetz zeta function of the flow φR.

3.3.1 Twisted Lefschetz zeta function of flows
Let R be a vector field on X and γ a closed isolated orbit of φR. Pick any

point x ∈ γ and let D be a small disk transverse to γ such that D ∩ γ = {x}.
With this data it is possible to define the Lefschetz sign of γ exactly like we did
in Section 1.1 for orbits of Reeb vector fields associated to a contact structure
ξ, but using now TxD instead of ξx. Indeed it is possible to prove that the
Lefschetz sign of γ does not depend on the choice of x and D and it is an
invariant ε(γ) ∈ {−1, 1} of φR near γ.
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Definition 3.12. The local Lefschetz zeta function of φR near γ is the formal
power series ζγ(t) ∈ Z[[t]] defined by

ζγ(t) := exp

(∑
i≥1

ε(γi)
ti

i

)
.

Let now X̃
π→ X be an abelian cover with deck transformation group G

and let ρ = ρ(π) ∈ H1(X,G). Suppose that all the periodic orbits of φR are
isolated.

Definition 3.13. We define the ρ-twisted Lefschetz zeta function of φR by

ζρ(φR) :=
∏
γ

ζγ (ρ([γ])) ,

where the product is taken over the set of simple periodic orbits of φR.

When ρ is understood we will write directly ζ(φR) and we will call it twisted
Lefschetz zeta function of φR.

We remark that in [16] the author defines ζρ(φR) in a slightly different way
and then he prove (Theorem 2) that, under some assumptions that we will state
in next subsection, the two definitions coincide.

Notation. Suppose that ρ ∈ H1(X,Zn) is an abelian cover of X and chose a
generator (t1, . . . , tn) of Zn. Then, with a similar notation to that of Example
3.11, we can see ζρ(φR) as an element of Z[[t±1

1 , . . . , t±1
n ]].

3.3.2 Torsion and flows
In [16] Fried relates the Reidemeister torsion of an abelian cover ρ of a

(non necessarily closed) three-manifold X with the twisted Lefschetz zeta func-
tion of certain flows. In particular in Section 5 he considers a kind of torsion
that he calls Alexander quotient and denotes by ALEXρ(X): the reason for the
“quotient” comes from the fact that Fried uses a definition of the Reidemeister
torsion only up to the choice of a sign (this is the “refined Reidemeister torsion”
of [56]), while ALEXρ(X) is defined up to an element in the Abelian group of
deck transformations of ρ (see also [5]).

In fact one can check that ALEXρ(X) is exactly the Reidemister-Franz tor-
sion τ considered in [46]. In particular, when X is the complement of an n-
component link L in S3 and ρ is the universal abelian cover of X , then

ALEX(S3 \ L)
.
=


∆L(t1, . . . , tn) if n > 1

∆L(t)/(1− t) if n = 1
. (3.13)
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where we removed ρ = idH1(S3\L,Z) from the notation (see [16, Section 8] and
[56]).

Since the notation “τ” is ambiguous, we follow [16] and we refer to the
Reidemeister-Franz as the Alexander quotient, that will be indicated ALEXρ(X).

In order to relate ALEXρ(X) to the twisted Lefschetz zeta function of the
flow φR of a vector field R, Fried assumes some hypothesis on R.

The first condition that R must satisfy is the circularity.

Definition 3.14. A vector field R on X is circular if there exists a C1 map θ :
X → S1 such that dθ(R) > 0.

If ∂X = ∅ this is equivalent to say that R admits a global cross section.
Intuitively, the circularity condition on R allows to define a kind of first return
map of φR.

Suppose R circular and consider S1 ∼= R
Z with R-coordinate t. The coho-

mology class
uθ := θ∗([dt]) ∈ H1(X,Z)

is then well defined.

Definition 3.15. Given an abelian cover X̃ π→ X with deck transformations
group G, let ρ = ρ(π) ∈ H1(X,G) be the corresponding cohomology class. A
circular vector fieldR onX is compatible with ρ if there exists a homomorphism
v : G→ R such that v ◦ ρ = uθ, where θ and uθ are as above.

Example 3.16. The universal abelian cover corresponds to ρ = id : H1(X,Z)→
H1(X,Z), so it is automatically compatible with any circular vector field on X .

The following theorem is not the most general result in [16] but it will be
enough for our purposes:

Theorem 3.17 (Theorem 7, [16]). LetX be a three manifold and ρ ∈ H1(X,G)
an abelian cover. Let R be a non-singular, circular and non degenerate vector
field on X compatible with ρ. Suppose moreover that, if ∂X 6= ∅, then R is
transverse to ∂X and pointing out of X . Then

ALEXρ(X)
.
= ζρ(φR),

where the symbol .= denotes the equivalence up to multiplication for an element
±g, g ∈ G.

An immediate consequence is the following

Corollary 3.18. If L is any n-component link in S3, let N (L) be a tubular
neighborhood of L and pose N = S3 \ N (L). Let R be a non-singular circular
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vector field on N , transverse to ∂N and pointing out of N . Then

ζ(φR)
.
=


∆L(t1, . . . , tn) if n > 1

∆L(t)/(1− t) if n = 1
. (3.14)





4
The equivalence between ÊCH and
ĤF

In their series of papers [8]-[12], Colin, Ghiggini and Honda proved an
equivalence between Heegaard Floer homology and embedded contact homol-
ogy for three manifolds.

Theorem 4.1 (Colin, Ghiggini, Honda). Given a closed, oriented, three dimen-
sional contact manifold (Y, ξ),

HF+(−Y ) ∼= ECH(Y, α)

ĤF (−Y ) ∼= ÊCH(Y, α),

where −Y is the manifold Y with the inverted orientation and α is a suitable
contact form for ξ.

In this thesis we are mostly interested in the second line. A key ingredient in
the proof is the Giroux equivalence between contact structures and open book
decompositions. In Section 4.1 we present how to define the ĤF (Y ) using
an open book decomposition of Y . In Section 4.2 we remind the definition of
some symplectic cobordisms defined in [10]. Finally in Section 4.3 we recall the
definition of the chain map Φ that induces an isomorphism from ĤF (−Y ) to
ÊCH(Y, α): this chain map is defined by a certain count of holomorphic curves
in one of the symplectic cobordisms defined in the preceding section.

63



64 CHAPTER 4. THE EQUIVALENCE BETWEEN ÊCH AND ĤF

4.1 ĤF for open books
As shown in [25], to an open book decomposition (S, φ) of Y it is possi-

ble associate a particular Heegaard diagram. Let us recall the slightly different
construction given in [10]. Another construction can be found in [45].

Let us denote by St the page S × {t} of the open book. Take a basis of arcs
a = {a1, . . . , a2g} in the page S 1

2
, that is, a set of properly embedded arcs in

S 1
2

such that S 1
2
\ {a1, . . . , a2g} is a topological disk (see figure 4.1 for a g = 1

example).

Figure 4.1: ai’s and bi’s in S 1
2
.

Let ι : S 1
2
→ S0 be the map (x, 1

2
) 7→ (x, 0) where (x, t) ∈ S × S1 and

define the surface
Σ = S 1

2
t∂S0 S0

and the set α of 2g closed curves in Σ by

αi = ai q∂ai ι(ai), i = 1, . . . , 2g.

Consider now the set of arcs φ(ι(ai)) ⊂ S0, for i = 1, . . . , 2g and define
new arcs bi in S 1

2
as obtained by modifying ai by a little isotopy relative to the

boundary, such that
– ai t bi = {Ci} in the interior of S 1

2
;

– ai ∩ bj = ∅ for i 6= j;
– if we orient ai and bi has the orientation induced from the one of ai then
{Ci} has negative sign;

– in a neighborhood of ∂S0 in Σ, bi is a smooth extension of φ(ι(ai)) to S 1
2
.

Note that since φ is the identity map on ∂S, for every i, αi ∩ βi ∩ ∂S consists of
a pair of points, that we will call xi and x′i.

Define the set of 2g curves β by βi = bi q∂bi φ(ι(ai)) and choose a base-
point w ∈ S 1

2
outside of the little strips given by the isotopies from ai’s to bi’s.

(Σ,α,β, w) is the required Heegaard diagram for Y .
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For us it will be convenient to work on −Y and so we will use the diagram
(Σ,β,α, w).

It is easy to see that this diagram is weakly admissible, that is, every periodic
domain has both positive and negative components of Σ\{α∪β} (this condition
is required in the definition of ĤF , see [42, Section 4]). Indeed if a periodic
domain involves αi, then the sign in the thin strip between αi and βi given by
isotopy must change when the domain crosses Ci.

When it is clear from the context that we are working only on S0 we will
omit the use of ι and we will refer to ai and φ(ai) as arcs in S0.

The Heegaard Floer chain complex
(
ĈF (Σ,β,α, w), ∂HF

)
in the hat ver-

sion is then defined as in section 3.1.
From now on we will often switch to the Lipshitz’s four-dimensional defini-

tion of HF (see [36] for a complete dissertation or directly [10, Section 4] for
the case we are treating here). About this reformulation we recall only a few
things in the setting we have in hand.

If g is the genus of S, then in Lipshitz’s formulation of our situation the
auxiliary manifold Sym2g(Σ) is replaced by the the four-dimensional manifold
R × [0, 1] × Σ. First of all recall that a point y ∈ Tα ∩ Tβ can be seen as a
2g-tuple of points in α ∩ β, where now g is the genus of S (so that 2g is the
genus of Σ). In the new formulation y is identified with the set of 2g chords
[0, 1]× y ⊂ [0, 1]× Σ: these are the new generators (over Z/2) of the complex
ĈF (Σ,β,α, w).

Endow R × [0, 1] × Σ with an admissible almost complex structure J (see
[10, Definition 4.2.1]) and the symplectic form

ds ∧ dt+ ω

where s and t are the coordinates of R and, respectively, [0, 1] and ω is a sym-
plectic form on Σ. From now on we will assume that R× [0, 1]×Σ comes with
these data.

For every i ∈ {1, . . . , 2g}, call Lαi and Lβi the Lagrangian submanifolds
R×{1}×αi and, respectively, R×{0}×βi of R× [0, 1]×Σ. Define moreover
Lα =

⊔2g
i=1 Lαi and Lβ =

⊔2g
i=1 Lβi .

Let (F, j) be a compact (possibly disconnected) Riemann surface with two
sets of punctures p+ = {p+

1 , . . . , p
+
k } and p− = {p−1 , . . . , p−k } on ∂F such

that (i) every component of F has nonempty boundary, (ii) every component C
of ∂F contains at least one element of p+ and one of p− in a way that these
alternate along C. Let Ḟ denote F with the sets of punctures removed.

Definition 4.2. Let y = {y1, . . . , yk} and y′ = {y′1, . . . , y′k} be two k-tuple
(k ≤ 2g) of points in Σ with yi ∈ αi ∩ βσ(i) and y′i ∈ αi ∩ βσ′(i) for some
permutations σ, σ′ ∈ Sk.
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A degree-k multisection of R× [0, 1]×Σ from y to y′ is a holomorphic map

u : (Ḟ , j) −→ (R× [0, 1]× Σ, J)

satisfying the following conditions:

1. (Ḟ , j) is a punctured Riemann surface as above;

2. u is a multisection of degree k of the fibration π : R × [0, 1] × Σ →
R× [0, 1];

3. u(∂Ḟ ) ⊂ Lα ∪ Lβ and maps each connected component of ∂Ḟ to a dif-
ferent Lαi or Lβi;

4. limw→p+
i
uR(w) = +∞ and limw→p−i

uR(w) = −∞;

5. near p+
i (resp. p−i ), u converges to the strip over [0, 1]×{yi} (resp. [0, 1]×

{y′i});
6. the energy of u given by Equation 4.1 below is finite.

Definition 4.3. Let (Ḟ , j) be as above. Define the energy of the holomorphic
multisection u : (Ḟ , j)→ (R× [0, 1]× Σ, J) by

E(u) =

∫
Ḟ

u∗ω + sup
ζ∈C

∫
Ḟ

u∗d(ζ(s)dt), (4.1)

where C is the set of non-decreasing smooth functions ζ : R→ [0, 1].

If J is generic, the HF -differential (in the hat version) is then defined by

∂HF (y) =
∑
y′

∑
[u]∈M̂1([y,y′])/R

y′ mod (2),

where the first sum is taken over the set of generators of ĈF (Σ,β,α, w) and
M̂1(y,y′)/R is the set of equivalence classes (modulo R-translations) of holo-
morphic multisections u : (Ḟ , j) −→ (R× [0, 1]×Σ, J) of degree 2g from y to
y′ such that:

1. nw(u) := 〈u(Ḟ ),R× [0, 1]× {w}〉 = 0 ;

2. u has ECH-index 1.

See [10] for details.

Observation 4.4. The positivity of intersection in dimension 4 and the condition
1 above imply that if u is a holomorphic curve counted by ∂HF with a chord at
the positive end associated to xi or x′i, then a connected component of u is a
trivial strip over that chord. See Section 4.9 of [10].
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If N = N(S, φ), in order to define a map from a chain complex for ĤF (Y )

to a chain complex for P̂FH(N, ∂N), in [10] the authors redefine ĤF (Y ) using
only the 0-page S0 of (S, φ) (roughly speaking this is the half of Σ containing
the information about φ).

Let CF ′(S, a, φ(a)) be the submodule of ĈF (Σ,β,α, w) generated by the
2g-tuples of intersection points contained in S0 and endow it with the restriction
of ∂HF . By Observation 4.4 and the property 1 that M̂1(y,y′)/R must satisfy,
this is a subcomplex of

(
ĈF (Σ,β,α), ∂HF

)
. In particular, if u is a holomorphic

curve counted by this restriction of ∂HF to CF ′(S, a, φ(a)), the projection of
Im(u) on Σ gives a domain completely contained in S0.

Let ∼ be the equivalence relation on CF ′(S, a, φ(a)) induced on the gener-
ators by the relation

y ∼ y′ if ∃i | y = {y1, . . . , xi, . . . , y2g} and y′ = {y1, . . . , x
′
i, . . . , y2g}, (4.2)

where, recall, xi and x′i are the intersection points in αi ∩ βi ∩ ∂S0. Define

ĈF (S, a, φ(a)) =
CF ′(S, a, φ(a))

∼
.

In [10, Section 4.9] the authors prove that ĈF (S, a, φ(a)) is a chain complex
if endowed with the differential induced by the one of CF ′(S, a, φ(a)). Call
ĤF (S, a, φ(a)) its homology.

Theorem 4.5. (see [10, Theorem 4.9.4])

ĤF (S, a, φ(a)) ∼= ĤF (Σ,β,α, w).

We end this section by recalling the following theorem, which is an adapta-
tion to this context of the results in [45] and [25].

Theorem 4.6. Let x be (the equivalence class under∼ of) the 2g-tuple {x1, . . . , x2g}.
Then [x] ∈ ĤF (S, a, φ(a)) depends only on the contact structure ξ compatible
with (S, φ).

The generator x is in fact the HF -contact element mentioned in the end of
Subsection 3.2.1 and [x] is the HF -contact invariant of ξ.

4.2 Symplectic cobordisms
In this section we recall the definitions of some symplectic cobordisms use-

ful to define the chain map Φ giving the isomorphism from ĤF (S, a, φ(a)) to
P̂FH(N, ∂N), where N is the mapping torus

N =
S × [0, 2]

(x, 2) ∼ (φ, 0)
.
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Let ω be a symplectic form on S as the one defined in [10, section 3] and
consider the stable Hamiltonian structure (dt, ω) on N ; let us indicate R the
associated Hamiltonian vector field.

Consider now the following trivial cobordisms:

W = R× [0, 1]× S and W ′ = R×N

and define
B = R× [0, 1] and B′ = R× S1.

The first cobordism can be viewed as a (trivial) fibration πB : B × S → B,
while the second as a fibration πB′ : R × N → B′, naturally extending to the
R-component the fibration N → S1 defined by (x, t) 7→ t.

Note that ∂HF is defined by counting ECH-index 1 holomorphic multisec-
tions of the fibration πB, while ∂ECH is defined by counting ECH-index 1 holo-
morphic curves in W ′.

We will indicate by πR the projection on the first component of the cobor-
disms above.

Consider now the subset Bc
+ := [2,∞) × (1, 2) of B′ ∼= R × [0,2]

0∼2
with all

the corners smoothed and define B+ = (R× S1) \Bc
+ (see figure 4.2).

Figure 4.2: B+.

The surface B+ can be seen as the union of its cylinder-part {s < 2} and its
strip-part {s > 2}.

We can then define the cobordism:

W+ = π−1
B′ (B+)

Like before, W+ can be viewed as a fibration with base B+ and fiber S. Ob-
viously W+ is a submanifold with boundary of W ′. The cylinder-part and the
strip-part of W+ are the counter-images under πB′ of the cylinder-part and, re-
spectively, the strip-part ofB+. We will continue to indicate by πR the restriction
to W+ of the projection to the R-component of W ′.

If R is parametrized by s, the 2-form Ω = ds ∧ dt+ ω on W ′ is symplectic.
Moreover this induces, by restriction, a symplectic form Ω+ on W+.
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Endowed with this symplectic structures, the cobordisms defined can be seen
as symplectic fibrations over their bases. Consider now in particular the sym-
plectic fibration

πB+ : (W+,Ω+) −→ (B+, ds ∧ dt).
This defines the symplectic connection given by the Ω+-orthogonal of the tan-
gent space of the fibers: on W+ ∩ {s > 2} this is then spanned by ∂s and ∂t.

Take a copy of a in π−1
B+

(3, 1) and call L+
a the trace of the parallel transport

of a along ∂B+ using the symplectic connection; L+
a is Lagrangian and

L+
a ∩ {s ≥ 3, t = 0} = {s ≥ 3} × {t = 0} × φ(a);

L+
a ∩ {s ≥ 3, t = 1} = {s ≥ 3} × {t = 1} × a.

(4.3)

Note that L+
a has 2g connected components L+

ai
, one for each component ai of

a.

The following definitions will be useful later.

Definition 4.7. Given a point P in S, χP := [0, 1] × {P} will denote the Reeb
chord in [0, 1] × S passing through P . Moreover σP := [0, 1] × R × {P} will
denote the trivial section of W → R× [0, 1] on the chord χP .

Definition 4.8. Given a simple orbit δ in N , σδ = R × δ will denote the trivial
section of W ′ over δ and σ+

δ its restriction to W+.

4.3 The chain map Φ

Because of the huge amount of notations and results necessary, we give here
only a rough explanation and refer again the reader to sections 5 and 6 of [10]
for any detail.

Let (K,S, φ) be an open book decomposition of a three-manifold Y and
consider the mapping torus N = N(S, φ). In [10], the authors define two chain
maps

Φ : ĈF (S, a, φ(a)) −→ PFC2g(N)

Ψ : PFC2g(N) −→ ĈF (S, a, φ(a))
(4.4)

and in [11] they prove that they induce isomorphisms in homology, one the
inverse of the other. In this thesis we will be mostly interested in Φ.

The chain map Φ is defined by counting multisections of the symplectic fi-
bration πB+ : (W+,Ω+) −→ (B+, ds ∧ dt).

Let J+ be a suitable almost complex structure on W+ (see [10, section 5]).
Let (F, j) be a compact (possibly disconnected) Riemann surface with two sets
of punctures p = {p1, . . . , pl} in the interior and q = {q1, . . . , qk} in the bound-
ary of F such that (i) every connected component of F contains at least an
element of p and a connected component of ∂F and (ii) every connected com-
ponent of ∂F contains at least an element of q. We will set Ḟ = F \ {p ∪ q}.
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Definition 4.9. Let y = {y1, . . . , yk} be a k-tuple (k ≤ 2g) of a ∩ φ(a) and
γ =

∏
j γ

mj ∈ Ok(N). A degree k multisection of (W+, J+) is one between:
(i) a holomorphic multisection

u : (Ḟ , j) −→ (W+, J+)

of degree k of the fibration πB+ : W+ → B+, where (F, j) is a Riemann
surface endowed with two sets of punctures p and q as above, and u is
such that

1. u(∂Ḟ ) ⊂ L+
a and maps each connected component of ∂Ḟ to a dif-

ferent L+
ai

;

2. limw→qi πR ◦ u(w) = +∞ and limw→pi πR ◦ u(w) = −∞;

3. near qi, u converges to a strip over [0, 1]× {yi};
4. near each pi, u converges to a cylinder over a multiple of some γj so

that the total multiplicity of γj over all the pi is mi;

5. the energy of u given by Equation 4.1 is finite ;

(ii) a M-B building in W+ that, after a perturbation of R and J+, becomes
a degree k multisection of π+ satisfying 1-5 of (i).

A (W+, J+)-curve is a degree 2g multisection of (W+, J+).

In practice holomorphic multisections in W+ interpolates between multisec-
tions in W and W ′. Moreover in [10, Section 5], the authors define an ECH
index for holomorphic multisections of W+ which interpolates between the Lip-
shitz’s index for holomorphic curves in W and the ECH-index in W ′. See
Observation 4.10 below

As in [10], we will call irreducible component of u a connected component
of Im(u(Ḟ )).

Define the chain map

Φ′ : CF ′(S,a, φ(a)) −→ PFC2g(N)
y 7−→

∑
γ∈O2g(N)〈Φ′(y), γ〉 · γ (4.5)

where 〈Φ′(y), γ〉 is the modulo 2 count of degree 2g, ECH-index 0 multisec-
tions of (W+, J+) from y to γ.

Observation 4.10. Intuitively Φ′ counts holomorphic curves that:

1. “start” in a collection of 2g chords and in the strip-like part {s > 2} of
W+ is topologically like a holomorphic multisection of πB (with bound-
ary) counted by ∂HF ;

2. when the curve “arrives” in {s = 2} ⊂ W+ the components of its bound-
ary (contained in L+

a ) are glued together using the map φ;
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3. the curve in the cylinder-like part is topologically like a holomorphic mul-
tisection of πB′ counted by ∂ECH , which limits to a degree 2g multiorbit
in N .

Given P ∈ ∂S, let δP = [0,2]×{x}
(2,P )∼(0,P )

be the simple Reeb orbit containing P .
In the following theorem we summarize some of the results about Φ proved

in [10]:

Theorem 4.11. The following hold:

1. if u is a holomorphic curve counted by Φ′ which has a xi (resp. x′i) at the
positive end, then it must have σ+

δxi
(resp. σ+

δx′
i

) as an irreducible compo-

nent, so that at the negative end u must have a copy of e for each xi or x′i
lying at the positive end;

2. Φ′ respects the equivalence relation 4.2 and the passage to the quotient
induces a map

Φ : ĈF (S,a, φ(a))→ PFC2g(N),

which send the HF -contact element to the ECH-contact element;

3. let sξ be the Spinc-structure of the plane field ξ; then Φ splits into a direct
sum of chain maps

ΦΓ : ĈF (S,a, φ(a); sξ + PD(Γ))→ PFC≤2g(N, ∂N,Γ),

for Γ ∈ H1(Y ;Z), where PD indicates the Poincaré dual.
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5
Generalizations of ÊCK

Let K be a homologically trivial knot in a contact three-manifold (Y, α).
As recalled in 2.4, if α is adapted to K, a choice of a Seifert surface S for K
induces a filtration on the chain complex

(
ECCh+(N,α), ∂ECH

)
, where int(N)

is homeomorphic to Y \K. Moreover if α is also adapted to S, the homology
of
(
ECCh+(N,α), ∂ECH

)
is isomorphic to ÊCH(Y, α), and the first page of

the spectral sequence associated to the filtration is the hat version of embedded
contact knot homology ÊCK(K,Y, α).

In this chapter we generalise the knot filtration in two natural ways.

In Section 5.1 we extend the filtration induced by K on the chain complex(
ECCh+,e+(N,α), ∂ECH

)
. This filtration is defined in a way completely ana-

logue to the hat case. We define the full version of embedded contact knot ho-
mology of (K,Y, α) to be the first pageECK(K,Y, α) of the associated spectral
sequence. Moreover we remove the condition that αmust be compatible with S,
in order to consider a wider class of contact forms: the knot spectral sequence
is still well defined, but at the price of renouncing to a proof of the existence of
an isomorphism between ECH(Y, α) and the page∞ of the spectral sequence.

In Section 5.2 we generalise the knot filtration to n-components links L. The
resulting homologies, defined in a way analogue to the case of knots, are the
full and hat versions of embedded contact knot homologies of (L, Y, α), which
will be still denoted ECK(L, Y, α) and, respectively, ÊCK(L, Y, α). Simi-
larly to Heegaard-Floer link homology, these homologies come endowed with
an Alexander (relative) Zn-degree.
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5.1 The full ECK

Let K be a homologically trivial knot in a contact three-manifold (Y, α) and
suppose that α is adapted to K in the sense of Section 2.2. Recall in particular
that there exist two concentric neighborhoods V (K) ⊂ N (K) of K whose
boundaries are M-B tori T1 = ∂N (K) and T2 = ∂V (K) foliated by orbits of
Rα in the homology class of meridians for K. These two families of orbits are
modified into the two couples of orbits {e, h} and, respectively, {e+, h+}. Let
moreover N = Y \ int(N (K)).

Consider the chain complex
(
ECCe+,h+(N,α), ∂ECH

)
where, recall, the

chain group is freely generated on Z/2 by the orbit sets γ in O(N) t {h+, e+}
and ∂ECH is the ECH-differential (obtained by restricting the differential on
ECC(Y, α)) given by Equation 2.7.

A Seifert surface S for K induces an Alexander degree 〈·, S〉 on the gen-
erators of ECCh+,e+(N,α) exactly like in the case of ECCh+(N,α). Let
ECC

h+,e+
d (N,α) be the submodule of ECCh+,e+(N,α) generated by the γ ∈

O(N) t {h+, e+} with 〈γ, S〉 = d. If

ECC
h+,e+
≤d (N,α) :=

⊕
j≤d

ECC
h+,e+
j (N,α),

we have the exhaustive filtration

. . . ⊆ ECC
h+,e+
≤d−1 (N,α) ⊆ ECC

h+,e+
≤d (N,α) ⊆ ECC

h+,e+
≤d+1 (N,α) ⊆ . . .

of ECCh+,e+(N,α). Proposition 2.17 again implies that ∂ECH preserves the
filtration. Let

∂ECKd : ECC
h+,e+
d (N,α) −→ ECC

h+,e+
d (N,α)

be the part of ∂ECH that strictly preserves the filtration degree d, that is, the
differential induced by ∂ECH |

ECC
h+,e+
≤d (N,α)

on the quotient

ECC
h+,e+
≤d (N,α)

ECC
h+,e+
≤d−1 (N,α)

= ECC
h+,e+
d (N,α).

Set
∂ECK :=

⊕
d

∂ECKd : ECCe+,h+(N,α) −→ ECCe+,h+(N,α).

Definition 5.1. We define the full embedded contact knot homology of (K,Y, α)
by

ECK(K,Y, α) := H∗
(
ECCe+,h+(N,α), ∂ECK

)
.
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Note that, as in the hat case, the only holomorphic curves counted by ∂ECH

that do not strictly respect the filtration degree are the curves that contain the
plane from h+ to ∅ (see Observation 2.21). Recalling the expression of ∂ECH

given in Equation 2.7, it follows that ∂ECK is given by

∂ECK(ea+h
b
+γ) = ea−1

+ hb+hγ + ea+h
b−1
+ eγ + ea+h

b
+∂γ, (5.1)

where γ ∈ O(N) and any term is meant to be 0 if it contains an orbit with total
multiplicity that is negative or not in {0, 1} if the orbit is hyperbolic.

Again the homology comes with an Alexander degree, which is well defined
once the an homology class for S is fixed. In fact we have the natural splitting:

ECK∗(K,Y, α) ∼=
⊕
d∈Z

ECK∗,d(K,Y, α) (5.2)

where
ECK∗,d(K,Y, α) := H∗(ECC

h+,e+
d (N,α), ∂ECKd ).

Recalling that Y \N (K) is homeomorphic to Y \K, it is interesting to state
the following:

Lemma 5.2. If N (K) is a neighborhood of K as above then

ECK(K,Y, α) ∼= ECH(Y \ N (K), α).

Proof. By arguments similar to those in the proof of Lemma 2.9 it is easy to
prove that:

ECK(K,Y, α) ∼= H∗
(
ECCe+,h+(N,α), ∂ECK

)
∼= H∗

(
ECCe,h+(int(N), α), ∂ECK

)
∼= H∗

(
ECC(int(N), α), ∂ECK

)
∼= ECH(int(N), α),

where the last comes from the fact that ∂ECK(γ) = ∂ECH(γ) for any γ ∈
O(N).

Observation 5.3. Note that so far we only assumed that α is compatible with
K, while we did not suppose the condition

(♠) α is compatible with a Seifert surface S for K.
As remarked in Observation 2.24, without ♠ we can not prove theorem 2.7, and
so we do not know if the spectral sequence whose 0-page is the ECK-chain
complex limits to ECH(Y, α). On the other hand, this spectral sequence is in
any case well defined, as well as ECK(K,Y, α).

Even if, in light of Lemma 2.4 we could assume ♠ here without restrictions
on K, we prefer to avoid it in the general definition of ECK(K,Y, α) in order
to consider a wider class of contact forms.
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We remark that, reading carefully [9], we feel that the requirement ♠ could
be not really necessary to prove Theorem 2.7. We try to roughly motivate our
feeling.

By direct limit arguments the orbits in the no man’s land int(N (K))\V (K)
can be avoided also if ♠ is not assumed, so that we can still write

ECC(Y, α) ∼= ECC(V, α)⊗ ECC(N,α)

(up to some restriction on the action of the orbits, see [9, Section 9]). The com-
putations for ECH(V, α) in [9, Section 8] do not use ♠, and in fact here the
hypothesis is not even assumed. Similarly, ECH(N,α) is still well defined as
in [9, Subsection 7.1] and does not depend on the choice of S. Moreover the
Blocking Lemma still implies that holomorphic curves with positive limit in N
can not cross ∂N , so that ECC(N,α) is again a subcomplex of ECC(Y, α).
This suggests that what happens in N should not influence the direct limits com-
putations in V .

An even more basic motivation behind our perception comes from the intu-
itive approach to Theorem 1.1.1 presented in Subsection 9.1 of [9]: this argu-
ment is evidently local near K and ♠ is not used.

In analogy with Conjecture 2.27 we state the following:

Conjecture 5.4. For any knot K in Y :

ECK(K,Y, α) ∼= HFK+(−K,−Y ),

where α is any contact form on Y adapted to K.

5.2 The generalization to links

In this section we extend the definitions of ECK and ÊCK to the case of
homologically trivial links with more than one component. For us a (strongly)
homologically trivial n-link in Y is a disjoint union of n knots, each of which is
homologically trivial in Y .

Suppose that
L = K1 t . . . tKn

is a homologically trivial n-link in Y . We say that a contact form α on Y is
adapted to L if it is adapted to Ki for each i.

Lemma 5.5. For any link L and contact structure ξ on Y there exists a contact
form compatible with ξ which is adapted to L.

Proof. The proof of part 1) of Lemma 2.4 is local near the knot K and can then
be applied recursively to each Ki.
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Fix L = K1t . . .tKn homologically trivial and α an adapted contact form.
Since α is adapted to each Ki, there exist pairwise disjoint tubular neighbor-
hoods

V (Ki) ⊂ N (Ki)

of Ki where α behaves exactly like in the neighborhoods V (K) ⊂ N (K) in
Section 2.2.

In particular, for each i, the tori Ti,1 := ∂N (Ki) and Ti,2 := ∂V (Ki) are M-
B and foliated by families of orbits of Rα in the homology class of a meridian
of Ki. We will consider these two families as perturbed into two pairs {ei, hi}
and {e+

i , h
+
i } in the usual way.

Let
V (L) :=

⊔
i

V (Ki) and N (L) :=
⊔
i

N (Ki)

and set
N := Y \ int(N (L)).

Define moreover ē :=
⊔
i ei and let h̄, ē+ and h̄+ be similarly defined.

Consider now ECC ē+,h̄+ (N,α) endowed with the restriction ∂ECH of the
ECH differential of (Y, α) and let ECH ē+,h̄+ (N,α) be the associated homol-
ogy.

Lemma 5.6. ECH ē+,h̄+ (N,α) is well defined and the curves counted by ∂ECH

inside each N (Ki) are given by expressions analogue to those in 2.6.

Proof. The Blocking and Trapping lemmas can be applied locally near each
component of ∂N and the proofs of lemmas 7.1.1 and 7.1.2 in [9] work immedi-
ately in this context too. This imply that the homology of

(
ECC(N,α), ∂ECH

)
is well defined.

Again the Blocking and Trapping lemmas together with the local homologi-
cal arguments in lemmas 9.5.1 and 9.5.3 in [9], imply that the only holomorphic
curves counted by ∂ECH inside each N (Ki) are as required (see Figure 2.1),
and so that ECH ē+,h̄+ (N,α) is well defined.

An explicit formula for ∂ECH can be obtained by generalizing Equation 2.7
in the obvious way.

For each i ∈ {1, . . . , n}, fix now a (homology class for a) Seifert surface
Si for Ki. These surfaces are not necessarily pairwise disjoint and it is even
possible that Si ∩Kj 6= ∅ for some i 6= j.

Consider then the Alexander Zn-degree on ECC ē+,h̄+ (N,α) given by the
function

ECC ē+,h̄+ (N,α) −→ Zn
γ 7−→ (〈γ, S1〉, . . . , 〈γ, Sn〉).

(5.3)
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Observation 5.7. Last expression is in fact the generalization to any manifold
of Equation 3.7 for S3 and inducing the Alexander filtration in Heegaard-Floer.

Define the partial ordering on Zn given by

(a1, . . . , an) ≤ (b1, . . . , bn)⇐⇒ ai ≤ bi ∀ i.

Proposition 2.17 applied to each Ki implies that if γ and δ are two orbit sets in
O(N t {ē+, h̄+}), then for any k

Mk(γ, δ)

R
6= 0 =⇒ (〈δ, S1〉, . . . , 〈δ, Sn〉) ≤ (〈γ, S1〉, . . . , 〈γ, Sn〉) .

This implies that ∂ECH does not increase the Alexander degree, which induces
than a Zn-filtration on

(
ECC ē+,h̄+(N,α), ∂ECH

)
.

Reasoning as in the previous section, we are interested in the part of ∂ECH

that strictly respects the filtration degree. This can be defined again in terms of
quotients as follows.

Let d ∈ Zn and let ECC ē+,h̄+

d (N,α) be the submodule of ECC ē+,h̄+(N,α)
freely generated by orbit sets γ ∈ O(N t {ē+, h̄+}) such that

(〈γ, S1〉, . . . , 〈γ, Sn〉) = d.

Define
ECC

ē+,h̄+

≤d (N,α) :=
⊕
j≤d

ECC
ē+,h̄+

d (N,α)

and let ECC ē+,h̄+

<d (N,α) be similarly defined.
Define the full ECK-differential in degree d to be the map

∂ECKd : ECC
ē+,h̄+

d (N,α) −→ ECC
ē+,h̄+

d (N,α)

induced by ∂ECH |
ECC

ē+,h̄+
≤d (N,α)

on the quotient

ECC
ē+,h̄+

≤d (N,α)

ECC
ē+,h̄+

<d (N,α)
∼= ECC

ē+,h̄+

d (N,α).

Define then the full ECK-differential by

∂ECK :=
⊕
d

∂ECKd : ECC ē+,h̄+(N,α) −→ ECC ē+,h̄+(N,α).

Observation 5.8. Observing the form of ∂ECH , it is easy again to see that the
only holomorphic curves that are counted by ∂ECH and not by ∂ECK are the
ones containing a holomorphic plane from some h+

i to ∅.
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Definition 5.9. The full embedded contact knot homology of (L, Y, α) is

ECK(L, Y, α) := H∗

(
ECC ē+,h̄+(N,α), ∂ECK

)
.

The fact that ECK(L, Y, α) is well defined is a direct consequence of the
good definition ofECH ē+,h̄+(N,α) and the fact that ∂ECH respects the Alexan-
der filtration.

Note that also for links we have a natural splitting

ECK∗(L, Y, α) =
⊕
d∈Zn

ECK∗,d(L, Y, α) (5.4)

where
ECK∗,d(L, Y, α) = H∗

(
ECC

ē+,h̄+

d (N,α), ∂ECKd

)
.

The proof of the following lemma is the same of that of the analogous
Lemma 5.2 for knots applied to each component of L.

Lemma 5.10. If N (L) is a neighborhood of L as above then

ECK(L, Y, α) ∼= ECH(Y \ N (L), α).

Consider now the submodule ECC h̄+(N,α) of ECC ē+,h̄+(N,α) endowed
with the restriction of ∂ECH . Again its homology ECH h̄+(N,α) is well de-
fined.

Proceeding exactly like above, the choice of a Seifert surface Si for each
component Ki of L gives (up to small perturbations of S) an Alexander degree
on the orbit sets defined by Equation 5.3. This induces a Zn-filtration on the
chain complex

(
ECC h̄+(N,α), ∂ECH

)
.

For any d ∈ Zn, define ECC h̄+

d (N,α) and

∂ECKd : ECC
h̄+

d (N,α) −→ ECC
h̄+

d (N,α)

exactly as above.

Definition 5.11. The hat version of embedded contact knot homology of (L, Y, α)
is

ÊCK(L, Y, α) := H∗

(
ECC h̄+(N,α), ∂ECK

)
.

Observation 5.8 and a splitting like the one in equation 5.4 hold also for
ÊCK(L, Y, α). Moreover it is easy to see that if L has only one connected
component we get the same theories of sections 2.4 and 5.1.

We state the following
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Conjecture 5.12. If L is a link in Y :

ECK(L, Y, α) ∼= HFK−(L, Y ),

ÊCK(L, Y, α) ∼= ĤFK(L, Y ),

where α is any contact form on Y adapted to L.

Observation 5.13. Note that the analogous conjectures stated before, as well
as Theorem 4.1, suggest that we should use the plus version of HFL and not
the minus one. The problem is that in [46] the authors define Heegaard-Floer
homology for links only in the hat and minus versions.

On the other hand this switch is not really significant. Indeed one could
define Heegaard-Floer cohomology groups by taking the duals, with coefficients
in Z/2, of the chain groups ĈF ∗(Y ), CF+

∗ (Y ) and CF−∗ (Y ) in the usual way
and get cohomology groups (for the three-manifold Y )

ĤF
∗
(Y ), HF ∗+(Y ), HF ∗−(Y ).

Since we are working in Z/2 we have that each of this cohomology group is
isomorphic to its respective homology group.

On the other hand one can prove also that (see Proposition 2.5 in [43]):

ĤF
∗
(Y ) ∼= ĤF ∗(−Y ) and HF ∗±(Y ) ∼= HF∓∗ (−Y ).

Analogous formulae hold for knots also. The conjecture above is then consistent
with those stated in the previous sections.

Observation 5.14. As in the definition of ÊCK(K,Y, α) and ECK(K,Y, α)
also here we used the hypothesis that α is adapted to L, while we dropped
condition ♠ of last section. One could wonder if it is possible to further relax
the assumptions and get still a good definition of the ECK homology groups.

The onjectures above suggest indeed that ECK(L, Y, α) (as well as the
other homologies) would be independent from α and so, in particular, that we
could be able to define it simply as the ECH homology of the complement of
(any neighborhood of) L, provided that L is a disjoint union of Reeb orbits of α.
Indeed, even if we could not have an easy description of the curves counted by
∂ECH that cross L, Proposition 2.17 still holds in this more general case.

On the other hand, technical aspects about contact flows and holomorphic
curves suggest that the components of L should be at least elliptic orbits. This
property will be necessary even in computing Euler characteristics in next chap-
ter, where we will need a circularity property of Rα near L that cannot be as-
sumed in an evident way if a component of L is hyperbolic.
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Notations. In order to simplify the notation, in the rest of the paper we will
indicate theECH chain groups for the knot embedded contact homology groups
of links and knots by:

ECC(L, Y, α) := ECC ē+,h̄+(N,α),

ÊCC(L, Y, α) := ECC h̄+(N,α),

where N and α are as above. In particular, if not stated otherwise, we will
always assume that the contact form α is adapted to L. These groups will im-
plicitly come endowed with the differential ∂ECK .

We end this chapter by saying some word about a further generalization of
ECK to weakly homologically trivial links. We say that L ⊂ Y is a weakly
homologically trivial (or simply weakly trivial) n-component link if there exist
surfaces with boundary S1, . . . , Sm ⊂ Y , withm ≤ n and such that ∂Si∩∂Sj =
∅ if i 6= j and

⊔m
i=1 ∂Si = L. Also here we do not require that Si or even ∂Si is

disjoint from Sj for j 6= i.
Clearly L is a strongly trivial link if and only if it is weakly trivial with

m = n.
In this case we cannot in general define a homology with a filtered n-degree.

If L is a weakly trivial link with m � n and α is an adapted contact form, then
there exists S ∈ {S1, . . . , Sm} such that ∂S has more then one connected com-
ponent. Suppose for instance that ∂S = K1tK2. The arguments of proposition
2.17 say then that if u : (F, j) → (R × Y, J) is a holomorphic curve from γ to
δ, then

〈γ, S〉 − 〈δ, S〉 = 〈Im(u),R× (K1 tK2)〉 ≥ 0.

So in this case we can still apply the arguments above and get well definedECH
invariants for L. However this time they will come only with a filtered (relative)
Zm-degree on the generators γ of an ECH complex of Y , which is given by the
m-tuple (〈γ, S1〉, . . . , 〈γ, Sm〉).

Example 5.15. Let (L, S, φ) be an open book decomposition of Y with, possibly,
disconnected boundary. Using a (connected) page of (L, S, φ) to compute the
Alexander degree and, with the notations of Subsection 2.2.1, we get

ECKd(L, Y, α) ∼= ECHd(int(N), α)

for any d ∈ Z.





6
Euler characteristics

In this chapter we compute the graded Euler characteristics of the embedded
contact homology groups for knots and links in homology three spheres Y with
respect to suitable contact forms. The computations will be done in terms of the
Lefschetz zeta function of the flow of the Reeb vector field.

In the particular case of Y = S3 we relate the resulting expressions to the
corresponding multivariable Alexander polynomial:

Theorem 6.1. Let L be any n-link in S3. Then there exists a contact form α
adapted to L such that:

χ
(
ECK(L, S3, α)

) .
=


∆L(t1, . . . , tn) if n > 1

∆L(t)/(1− t) if n = 1
(6.1)

and

χ
(
ÊCK(L, S3, α)

)
.
=


∆L ·

∏n
i=1(1− ti) if n > 1

∆L(t) if n = 1.
(6.2)

An immediate consequence of theorem above and Theorem 3.9 is:

Corollary 6.2. For any link L in S3 there exists a contact form α such that:

χ(ECK(L, S3, α))
.
= χ(HFL−(L, S3)), (6.3)

χ(ÊCK(L, S3, α))
.
= χ(ĤFL(L, S3)). (6.4)

85
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The last corollary implies that conjecture 5.12 (which generalizes conjec-
tures 2.27 and 5.4) holds for links in S3 at least at the level of Euler characteris-
tic.

As recalled in Section 3.2, graded Euler characteristics are polynomials:
when we want to highlight the variables of these polynomials we will indicate
them as subscripts of the symbol χ. For example if L is an n-link and we want
to express its Euler characteristic by a polynomial in the n variables t1, . . . , tn,
we will write χ (ECK(L, Y, α)) = χt1,...,tn (ECK(L, Y, α)).

Theorem 6.1 is in effect a consequence of the following more general result.
Recall that an n-link L ⊂ Y determines the abelian cover ρL ∈ H1(Y \ L,Zn)
of Y \ L given in Example 3.11. When Y is a homology three-sphere, we have

ρL ≡ 1 : H1(Y \ L) −→ H1(Y \ L) ∼= Zn.

In order to simplify the notations, we remove ρL from the notations of the
Alexander quotient and of the twisted Lefschetz zeta function:

ALEX(Y \ L) := ALEX1(Y \ L);

ζ(φ) := ζ1(φ).

Let (t1, . . . , tn) be a basis for H1(Y \ L), where [µi] = ti for µi positively
oriented meridian of Ki.

Theorem 6.3. Let L be an n-link in a homology three-sphere Y . Then there
exists a contact form α such that

χt1,...,tn(ECK(L, Y, α))
.
= ALEX(Y \ L).

Last two theorems imply that the homologyECK categorifies the Alexander
quotient of knots and links in homology three-spheres. This is the third known
categorification of this kind, after the ones in Heegaard-Floer homology and in
Seiberg-Witten-Floer homology (see [34] and [35]).

The proofs of theorems 6.1 and 6.3 will be carried on in two main steps: in
Section 6.1 we will prove the theorems in the case of fibered links, while the
general case will be treated in Section 6.2.

6.1 Fibered links
In this section we prove theorems 6.1 and 6.3 for fibered links. Let (L, S, φ)

be an open book decomposition of a homology three-sphere Y and let α be an
adapted contact form on Y . In particular, with our definition, α is also adapted
to L.
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In order to prove the theorems above we want to express the Euler charac-
teristic χt1,...,tn(ECK(L, Y, α)) in terms of the twisted Lefschetz zeta function
of the Reeb flow φR of R = Rα and then apply Theorem 3.17. The first thing
that one should do is then to check if φR and ρL satisfy the hypothesis of that
theorem. Unfortunately this is not the case. The needed properties are in fact
the following:

1. R is non-singular and circular;

2. R is compatible with ρL;

3. R is non-degenerate;

4. R is transverse to ∂V (L) and pointing out of Y \ V̊ (L),

where V̊ (L) = int(V (L)).
In our situation only properties 1 and 2 are satisfied. Indeed, by the definition

of open book decomposition, there is a natural fibration θ : Y \ V̊ (L)→ S1 ∼= R
Z

such that the surfaces θ−1(t) are the pages of the open book. The fact that α is
adapted to (L, S, φ) implies that R is always positively transverse to the pages.
This evidently implies that dθ(R) > 0 so that R is circular.

The fact that R is compatible with ρL (that coincides with the universal
abelian cover of Y \ V̊ (L)) comes from Example 3.16.

However properties 3 and 4 above are not satisfied. Indeed, after the M-B
perturbation of T2, R is tangent to ∂V (L) on ē+ and h̄+. Moreover, as observed
in Section 1.3, the M-B perturbations near the two tori T1 and T2 may create
degenerate orbits.

What we will do is then to perturb R to get a new vector field R′. This
vector field will be defined in Y \ V ′(L), where V ′(L) ⊂ V̊ (L) is an open
tubular neighborhood of L defined by V ′(L) = V ′(K1) t . . . t V ′(Kn), where,
using the coordinates of Section 1.4, ∂(V ′(Ki)) = {y = 2.5}.

Lemma 6.4. There exists a (non-contact) vector field R′ such that:

(i) R′ coincides with R outside a neighborhood of N (L);

(ii) R′ satisfies properties 1-4 above with V (L) replaced by V ′(L);

(iii) the only periodic orbits of R′ in N (V ) \ V ′(L) are the four sets of non-
degenerate orbits ē, h̄, ē+, h̄+.

Observe that Property (i) implies that the twisted Lefschetz zeta functions of
the restrictions of the flows φR and φR′ to Y \ N (K) coincide, while Property
(ii) allows to apply Theorem 3.17 to φR′ .

Proof. A perturbation of R into an R′ satisfying the conditions (i)-(iii) can be
obtained in more than one way. An example is pictured in Figure 6.1 (cf. also
Figure 1.1). We briefly explain how it is obtained. Since the modification of R
is non trivial only inside disjoint neighborhoods of each Ki, we will describe it
only for a fixed componentK of L. The characterization of the perturbation will
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be presented in terms of perturbation of the lines in a page S of (L, S, φ) that are
invariant under the first return map φ of φR: we will refer to these curves as to
φ-invariant lines on S. Note that these curves are naturally oriented by the flow.

Outside a neighborhood of ∂V ′ one can see this perturbation in terms of a
perturbation of φ into another monodromy φ′, and R′ is the vector field ∂t in
Y \ V ′(L) ∼= S×[0,1]

(x,1)∼(φ′(x),0)
, where t is the coordinate of [0, 1].

Figure 6.1: The dynamics of the vector fields R and R′ near N (V ) \ V ′(L).
Each oriented line represents an invariant subset of a page of (L, S, φ) under the
first return map φ at the left and φ′ at the right (the invariant lines a1 and a2 are
stressed). The situation at the left is the same depicted in Figure 1.1.

Observe first that the only periodic orbit in the (singular) φ-invariant line
a1 containing h (in correspondence to the singularity) is exactly h. Similarly,
the only periodic orbit in the φ-invariant singular flow line a2 containing h+ is
precisely h+. Denote Ai ⊂ Y the mapping torus of (ai, φ|ai), i = 1, 2. We
modify R separately inside the regions of (Y \ V ′(K)) \ (A1 t A2) as follows.

In the region containing e (and with boundary A1), the set of φ-invariant
lines (the elliptic lines in the picture at left) is perturbed in a set of φ′-invariant
spiral-kind lines (at right), each of which is negatively asymptotic to a1 and
positively asymptotic to e. It is easy to see that after the perturbation the only
periodic orbit in the interior of this region is e. Moreover, we can arrange the
perturbation in a way that the differential LR′e of the first return map on S of φR′
along e, coincides, up to a positive factor smaller then 1, with LRe , so that the
Lefschetz sign ε(e) of e is still +1.

A similar perturbation is done in the region of (Y \ V ′(K)) \ (A1 t A2)
containing e+, in a way that e+ is the only periodic orbit of the perturbed vector
field R′, with still ε(e+) = +1.

The perturbation in the region betweenA1 andA2 is done by slightly pushing
the monodromy in the positive y-direction in a way that the set of φ-invariant
lines is perturbed into a set of φ′-invariant lines, each of which is negatively
asymptotic to a1 and positively asymptotic to a2 (and so in particular there can
not exist periodic orbits in this region).
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A similar perturbation is done also inside the region betweenA2 and ∂V ′(K),
but in this case each φ′-invariant line is negatively asymptotic to a2 and intersects
∂V ′(K) pointing out of the three-manifold.

Finally we leave R′ = R in the rest of the manifold, where R was supposed
having only isolated and non degenerate periodic orbits.

Note that the two basis of eigenvectors of LRh and LRh+
are contained in the

tangent spaces of the curves a1 and, respectively, a2. Since on these curves φR =
φR′ , the Lefschetz signs of the two orbits are not changed by the perturbation.

It is easy to convince ourselves thatR′ satisfies the properties i-iii above.

Call ζ = ζ1. Since the Lefschetz zeta function of a flow depends only on its
periodic orbits and their signs, we have the following:

Corollary 6.5. If R′ is obtained from R as above, then

ζ(φR′) = ζ(φR′ |(Y \N (K)t{ē,h̄,ē+,h̄+})) =

= ζ(φR|(Y \N (K)
) ·

∏
γ∈{ē,h̄,ē+,h̄+}

ζγ([γ])).

where [γ] is the homology class of γ in H1(Y \ N (K)).

Now we want to compute more explicitly the twisted Lefschetz zeta function
ζ(φR′). Let us begin with the local Lefschetz zeta function of the simple orbits
(see Definition 3.12).

Lemma 6.6. Let γ be an orbit of R or R′. Then:

ζγ(t) =


(1− t)−1 = 1 + t+ t2 + . . . if γ elliptic;

1− t if γ positive hyperbolic;
1 + t if γ negative hyperbolic;

(6.5)

Proof. Remember that the Lefschetz number of γ is ε(γ) = +1 if γ is elliptic
or negative hyperbolic and ε(γ) = −1 if γ is positive hyperbolic.

γ elliptic: all the iterated are elliptic, so that ε(γi) = +1 for every i > 0. Then:

ζγ(t) = exp

(∑
i≥1

ti

i

)
=

= exp

(
−
∑

i≥1(−1)i+1 (−t)i

i

)
=

= exp (− log(1− t)) =
= (1− t)−1.
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γ positive hyperbolic: all the iterated are positive hyperbolic, so that ε(γi) =
−1 for every i > 0. Then:

ζγ(t) = exp

(∑
i≥1−

ti

i

)
=

= exp

(∑
i≥1(−1)i+1 (−t)i

i

)
=

= exp (log(1− t)) =
= 1− t.

γ negative hyperbolic: the odd iterated are negative hyperbolic while the even
iterated are positive hyperbolic, so that ε(γi) = (−1)i+1 for any i > 0.
Then:

ζγ(t) = exp

(∑
i≥1(−1)i+1 t

i

i

)
=

= exp (log(1 + t)) =
= 1 + t

Observation 6.7. Note that the equations above are exactly the generating func-
tions given by Hutchings in [28, Chapter 2].

Let µi be a positive meridian of Ki for i ∈ {1, . . . , n} and set ti = [µi] ∈
H1(Y \ K); fix moreover a Seifert surface Si for each Ki. Recall that, for a
given X ⊂ Y , P(X) denotes the set of simple Reeb orbits contained in X .

Corollary 6.8. The twisted Lefschetz zeta function of φR|(Y \N (L))
is

ζ(φR|(Y \N (L))
) =

∏
γ∈P(Y \N (L))

ζγ([γ]),

where ζγ([γ]) is determined as follows:
• if γ is elliptic then:

ζγ(ρL(γ)) =

(
1−

n∏
i=1

t
〈γ,Si〉
i

)−1

=
∞∑
l=0

(
n∏
i=1

t
〈γ,Si〉
i

)l

;

• if γ is positive hyperbolic then:

ζγ(ρL(γ)) = 1−
n∏
i=1

t
〈γ,Si〉
i ;

• if γ is negative hyperbolic then:

ζγ(ρL(γ)) = 1 +
n∏
i=1

t
〈γ,Si〉
i .
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Proof. This is an easy computation. It suffices to substitute the monomial rep-
resentation of ρL([γ)] = [γ] given in Example 3.11 in the expression of the
Lefschetz zeta function of Lemma 6.6.

Proof. (of Theorem 6.3 for fibered links). To finish the proof it remains essen-
tially to prove that

χt1,...,tn (ECC(L, Y, α)) = ζ(φR|(Y \N (L)
) ·

∏
γ∈{ē,h̄,ē+,h̄+}

ζγ([γ])). (6.6)

This is easy to verify recursively on the set of simple orbits. Suppose δ =
∏

j δ
kj
j

is an orbit set and let γ be an orbit such that γ 6= δj for any j. Then the set of
all multiorbits that we can build using δ and γ can be expressed via the product
formulae:

δ · {∅, γ, γ2, . . .} if γ is elliptic;
δ · {∅, γ} if γ is hyperbolic. (6.7)

As remarked in Section 2.1, the index parity formula 2.2 implies that the Lef-
schetz sign endows the ECH-chain complex with an absolute degree and it co-
incides with the parity of the ECH-index. Then the contribution to the graded
Euler characteristic of δ · γl, for any l (l ∈ N if γ is elliptic and l ∈ {0, 1} if γ is
hyperbolic) is:

ε(δ)
n∏
i=1

t
〈δ,Si〉
i ·

(
ε(γ)

n∏
i=1

t
〈γ,Si〉
i

)l

.

Substituting the last formula in Expressions 6.7, the total contribution of the
product formulae to the Euler characteristic are:

• ε(δ)
∏n

i=1 t
〈δ,Si〉
i ·

∑∞
l=0

(∏n
i=1 t

〈γ,Si〉
i

)l
if γ is elliptic,

• ε(δ)
∏n

i=1 t
〈δ,Si〉
i ·

(
1−

∏n
i=1 t

〈γ,Si〉
i

)
if γ is positive hyperbolic,

• ε(δ)
∏n

i=1 t
〈δ,Si〉
i ·

(
1 +

∏n
i=1 t

〈γ,Si〉
i

)
if γ is negative hyperbolic,

that is

ε(δ)
n∏
i=1

t
〈δ,Si〉
i · ζγ([γ]).

Starting from δ = ∅, Equation 6.6 follows by induction on the set of γ ∈
P
(
(Y \ N (L)) t {ē, h̄, ē+, h̄+}

)
.

The theorem follows then by applying Corollary 6.5 and Theorem 3.17 to
the flow of R′.

Proof. (of Theorem 6.1 for fibered links). Theorem 6.3 and Equation 3.13 im-
mediately imply Equation 6.1.
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To prove the result in the hat version we reason again at the level of chain
complexes. Recall that, if N := Y \ N̊ (L), by the definition of the ECK-chain
complexes:

ECC(L, Y, α) = ECC ē+,h̄+(N,α) =

= ECC h̄+(N,α)
n⊗
i=1

〈∅, e+
i , (e

+
i )2, . . .〉 =

= ÊCC(L, Y, α)
n⊗
i=1

〈∅, e+
i , (e

+
i )2, . . .〉

where the second line comes from the product formula 6.7 and the fact that e+
i

is elliptic for any i. Taking the graded Euler characteristics as above we have:

χ(ECC(L, Y, α)) = χ(ÊCC(L, Y, α)) ·
n∏
i=1

ζe+i ([e+
i ]) =

= χ(ÊCC(L, Y, α)) ·
n∏
i=1

1

1− ti
,

where the last equality comes from the fact that [e+
i ] = [µi] = ti ∈ H1(Y \ L).

If Y = S3, last equation and Equation 6.1 evidently imply Equation 6.2.

Note that if (L, S, φ) is an open book decomposition of Y , one can think
of ECK(L, Y, α) and ÊCK(L, Y, α) as invariants of the pair (S, φ) and the
adapted α. It is interesting to note that the Euler characteristic ofECK1(L, Y, α)
with respect to the surface S (see Example 5.15) coincides with the sum of
the Lefschetz signs of the Reeb orbits of period 1 in the interior of S, i.e. the
Lefschetz number Λ(φ) of φ.

In fact, given Y (not necessarily an homology three-sphere) we can say even
more by relating ECK1(L, Y, α) to the Hamiltonian Floer homology SH(S, φ),
whose Euler characteristic is precisely Λ(φ). Here we are considering the ver-
sion of SH(S, φ) for surfaces with boundary that is slightly rotated by φ in the
positive direction, with respect to the orientation induced by S on ∂S (see for
example [7] and [17]).

Proposition 6.9. Let (L, S, φ) be an open book decomposition of a three-manifold
Y and let α be an adapted contact form. Then

ECK1(L, Y, α) ∼= SH(S, φ),

where the degree of ECK(L, Y, α) is computed using a page of the open book.
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Proof. This is an easy consequence of the definitions and of some results in
Chapter 2. By Lemma 5.10 and using the notations of Subsection 2.2.1,

ECK1(L, Y, α) ∼= ECH1(int(N), α).

Observing that the proof of Theorem 2.13 in [10] (Theorem 3.6.1) works also if
∂S is disconnected we get

ECK1(L, Y, α) ∼= PFH1(N(S, φ)).

The result then follows applying Proposition 2.14.

We get an interesting consequence of this fact when also the Alexander
degree of Heegaard-Floer knot homology of a fibered knot is computed with
respect to (the homology class of) a page of the associated open book. In-
deed, using the symmetrized degree adopted by Ozsváth and Szabó, we know
that HFK−−g(K,Y ) is isomorphic to a copy of Z/2 generated by the class of
the corresponding contact element. Moreover, whenever χ(ECK(K,Y, α)) =
χ(HFK−(K,Y )), we have also that HFK−−g+1(K,Y ) categorifies Λ(φ). Ob-
viously, if the conjectures we stated in last chapter hold, thenHFK−−g+1(K,Y ) ∼=
SH(S, φ).

6.2 The general case
In this section we prove theorems 6.1 and 6.3 in the general case.
The first approach that one could attempt to apply Theorem 3.17 to a general

link L ⊂ Y is to look for a contact form on Y that is compatible with L and
whose Reeb vector field is circular outside a neighborhood of L. Unfortunately
we will not be able to find such a contact form. The basic idea to solve the
problem consists in two steps:

Step 1. find a contact form α on Y which is compatible with L and for which
there exists a finite decomposition Y \ L =

⊔
iXi for which R = Rα is

circular in each Xi;

Step 2. apply Theorem 3.17 separately in each Xi to get the result: this can be
done using the (more general results) in Sections 6 of [16].

On the other hand the special decomposition of Y \L that we find in Step 1 will
allow us to follow an easier way and we will substitute Step 2 by:

Step 2′. apply repeatedly the Torres formula for links to get the result.

Torres formula, first proved in [55], is a classical result about Alexander poly-
nomial, which essentially explains how, starting from the Alexander polynomial
of a given link L, to compute the Alexander polynomials of any sub-link of L .
We will recall the formula in the next subsection.
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6.2.1 Preliminary
The key ingredient to solve the Step 1 of our strategy is the following:

Proposition 6.10. Let L = K1t . . .tKn ⊂ Y be an n-components link and let
ξ be any fixed contact structure on Y . Then there exists an m-components link
L′ ⊂ Y with m ≥ n and such that:

1. L′ = L tKn+1 t . . . tKm;

2. L′ is fibered and the associated open book decomposition of Y supports
ξ.

This result has been proved in the case of knots by Guyard in his Ph.D. thesis
(in preparation, [24]). Using part of his arguments, we give here a proof for the
case of links.

Proof. As recalled in Section 1.4, given a contact structure ξ on Y , in [19]
Giroux explicitly constructs an open book decomposition of Y that supports a
contact form α such that ker(α) = ξ. In the proof of Theorem 1.22 we saw that
such an open book decomposition is built starting from a cellular decomposition
D of Y that is compatible with ξ. Moreover we recalled that, up to taking a
refinement, any cellular decomposition of Y can be made compatible with ξ by
an isotopy.

Using the simplicial approximation theorem, it is possible to choose a trian-
gulation D of Y in a way that, up to isotopy, L is contained in the 1-skeleton D1

of D. Up to take a refinement, we can suppose moreover that D is adapted to ξ.
Let S be the 0-page of the associated open book built via Theorem 1.21:

properties 1 and 2 of S reminded during the proof of that theorem, imply that
L ⊂ int(S) and that, if N (D0) is a suitable neighborhood of D0, then it is
possible to push L \ N (D0) inside S to make it contained in ∂S. Note that
in each strip composing S \ N (D0) we have only one possible choice for the
direction in which to push L \ N (D0) to ∂S in a way that the orientation of L
coincides with that of ∂S.

We would like to extend this isotopy also to L ∩ N (D0) to make the whole
L contained in ∂S. Suppose that B is a connected component (homeomorphic
to a ball) of N (D0). In particular we suppose that B ∩ S is connected. Then
L ∩ ∂B consists of two points Q1 and Q2. The extension is done differently in
the following two cases (see figure 6.2):

1. Easy case: this is when Q1 and Q2 belong to the same connected compo-
nent of ∂S ∩ B. The isotopy is then extended to B by pushing L ∩ B to
∂S ∩B inside S ∩B (figure at left);

2. General case: if Q1 and Q2 belong to (the boundary of) different con-
nected components a1 and a2 of ∂S ∩B we proceed as follows.
Let Pi be a point in the interior of ai, i = 1, 2. Let γ be a simple arc in
S∩B from P1 to P2 (there exists only one choice for γ up to isotopy). Let
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Figure 6.2: Making L contained in ∂S in N (D0): easy case at the left and
general case at right. The dotted lines are 1-simplexes in D1, while the bold
segments from Q1 to Q2 represent the push-offs of L in N (D0).

S ′ be obtained by positive Giroux stabilization of S along γ (see figure at
the right).
Now we can connect Q1 with a2 by an arc in ∂S ′ crossing once the belt
sphere of the 1-handle of the stabilization; let Q′2 be the end point of this
arc. Since a Giroux stabilization is compatible with the orientation of ∂S,
Q′2 and Q2 are in the same connected component of a \ {P2}, so that we
can connect them inside ∂S ∩B and we are done.

Pushing L to ∂S (and changing L and S as before where necessary) gives a
link L that is contained in ∂S. To see that L is isotopic to L we have to prove
that, for any B as before, the two kinds of push-offs we use do no change the
isotopy class of L.

Clearly the isotopy class of L is preserved in the easy case. For the general
case, it suffices to show that substituting the arc L∩S∩B fromQ1 toQ2 with an
arc crossing once the belt sphere of the handle does not change the isotopy class
ofL. This is equivalent to proving that, if γ is the path of the Giroux stabilization
and γ̄ = γ ∪ c, where c is the core curve of the handle, then γ̄ bounds a disk in
Y \L. This can be proved for example by using the particular kind of Heegaard
diagrams presented in Section 4.1. Observe that, if b is the co-core of the handle,
then γ̄ is isotopic in S to b ∪ φ′(b), where φ′ is the monodromy on S ′ given by
the Giroux stabilization. We finish by observing that, up to a small perturbation
near ∂S, b ∪ φ′(b) is isotopic to an attaching curve of a Heegaard diagram of
Y .

We recall now the Torres formula that we will use in the second step of our
proof of Theorem 6.3. Since we need to consider the Alexander quotient as a
polynomial, we will use the same convention adopted for the graded Euler char-
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acteristic and we will express the variables as subscripts of the symbol ALEX.

Theorem 6.11 (Torres formula). Let L = K1 t . . . t Kn be an n-link in a
homology three-sphere Y , Kn+1 a knot in Y \ L and L′ = L tKn+1. Let Si be
a Seifert surface for Ki, i ∈ {1, . . . , n+ 1}. Then

ALEXt1,...,tn,1(Y \ L′) .
= ALEXt1,...,tn(Y \ L) ·

(
1−

n∏
i=1

t
〈Kn+1,Si〉
i

)
,

where ALEXt1,...,tn,1(Y \ L′) indicates the polynomial ALEXt1,...,tn+1(Y \ L′)
evaluated in tn+1 = 1.

We refer the reader to [55] for the original proof. See also [15] for a proof
making use of techniques of dynamics. We also mention that in [4] a proof of
this theorem is provided making use only of elementary techniques about Seifert
surfaces; moreover a generalization of the formula to links in any three-manifold
is given in [56].

Sketch of the proof. Apply Theorem 3.17 to ALEX(Y \ L) using a flow φ for
which

1. Kn+1 is the only periodic orbit of φ contained in a neighborhood of Kn+1;

2. Kn+1 is elliptic.

The factor

1−
n∏
i=1

t
〈Kn+1,Si〉
i =

(
ζKn+1(ρL(Kn+1))

)−1 (6.8)

expresses then the fact that Kn+1 is the only orbit counted in ALEX(Y \L) and
not in ALEX(Y \ L′).
The condition tn+1 = 1 comes from the fact that, if µn+1 is a meridian forKn+1,
so that tn+1 = [µn+1], then ζµn+1(ρL([µn+1])) = 1.

Observation 6.12. One can see the condition tn+1 = 1 also from a purely
topological point of view. Image to take the manifold Y \ L′ and then to glue
back Kn+1. The effect on H1(Y \ L′) is that the generator [µn+1] is killed and
now the homology class of a loop γ ⊂ Y \L′ is determined only by the numbers
〈γ, Si〉, Si ∈ {1, . . . , n} (i.e. by ρL(γ)).

6.2.2 Proof of the results
Proof of Theorem 6.3. Let L = K1 t . . .tKn be a given link in Y . Proposition
6.10 implies that there exists an open book decomposition (L′, S, φ) of Y with
binding

L′ = L tKn+1 t . . . tKm
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for some m ≥ n. Let α be a contact form on Y adapted to (L′, S, φ). Let
R = Rα be its Reeb vector field. As remarked in Section 6.1, and using the
same notations, R is circular in Y \ V̊ ′(L′) where, recall, V ′(L) is an union of
tubular neighborhoods V ′(Ki) ( V (Ki), i ∈ {1, . . . ,m} of L.

Since α is also adapted to L′, then each V̊ (Ki) is, by definition, foliated by
concentric tori, which in turn are linearly foliated by Reeb orbits that intersect
positively a meridian disk for Ki in V (Ki). Now, we can choose α in a way that
for each i ∈ {n + 1, . . . ,m} the tori contained in V ′(Ki) are foliated by orbits
of R with fixed irrational slope. This condition can be achieved by applying the
Darboux-Weinstein theorem in V (Ki) to make α|V ′(Ki) like in Example 6.2.3 of
[9].

This implies that, for each i ∈ {n+ 1, . . . ,m}, the only closed orbit of R in
V ′(Ki) is Ki. Define U(L′) =

⊔m
i=1 U(Ki), where

U(Ki) =

{
V (Ki) if i ∈ {1, . . . , n};
V ′(Ki) if i ∈ {n+ 1, . . . ,m};

We have:

χ(ECC(L, Y, α)) = ζρL(φR|Y \V (L))

= ζρL(φR|Y \U(L′))) ·
m∏

i=n+1

∏
γ∈P(V ′(Ki))

ζγ(ρL([γ]))

= ζρL(φR|Y \U(L′))) ·
m∏

i=n+1

ζKi(ρL([Ki]))

= ζρL′ (φR|Y \U(L′)))|t1,...,tn,1,...,1 ·
m∏

i=n+1

ζKi(ρL([Ki]))

.
= ALEXt1,...,tn,1,...,1(Y \ L′) ·

m∏
i=n+1

ζKi(ρL([Ki]))

= ALEXt1,...,tn,1,...,1(Y \ L′) ·
m∏

i=n+1

(
1−

n∏
j=1

t
〈Ki,Sj〉
j

)−1

= ALEXt1,...,tn(Y \ L),

where:
lines 1 and 2 follow reasoning like in the proof of Equation 6.6;
line 3 hold since Ki, for i ∈ {n + 1, . . . ,m}, is the only Reeb orbit of α in
V ′(Ki);

line 4 comes from the idea in Observation 6.12: ρL and ρL′ coincide on
the generators ti of H1(Y \ L) for i ∈ {1, . . . , n} and ti = [µi] = 1 ∈
H1(Y \ L) for i ∈ {n+ 1, . . . ,m};
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line 5 ρL′ and R|Y \U(L′) satisfy hypothesis of Theorem 3.17, up to slightly
perturb R near ∂U(Ki), i ∈ {1, . . . , n}, to make it non degenerate trans-
verse to the boundary like in the proof in Section 6.1;

line 6 is due to the fact that the Ki’s are elliptic;
line 7 is obtained by applying repeatedly the Torres formula on the compo-

nents Kn+1, . . . , Km.

Observation 6.13. As mentioned at the beginning of this section, we could also
apply the more general results in [16] using the fact that the Reeb vector field
R used is circular in each U(Ki), since here R is positively transverse to any
meridian disk of Ki in V̊ (Ki).

The proof of Theorem 6.1 works exactly like in the fibered case.



7
A filtered isomorphism

In this chapter we start to investigate the relations between ECK and HFK
at the homology level. In light of the proof of the equivalence between ECH
and HF given by Colin, Ghiggini and Honda, it is natural to start with the
fibered knots.

Let (K,S, φ) be an open book decomposition of a three manifold Y , α an
adapted contact form and N the mapping torus of (S, φ). Let (ĈF (S, φ), ∂HF )

be a chain complex for ĤF (Y ) as defined in Section 4.1. We ask then how the
chain map

Φ: ĈF (S, φ) −→ PFC≤2g(N, ∂N)

recalled in Section 4.3, and inducing an isomorphism in homology, behaves with
respect to the filtrations induced by K on the chain complexes. The main result
of this chapter (see Theorem 7.29) is

Theorem 7.1. For a suitable choice of the Hamiltonian structure, the chain map
Φ respects the knot filtrations.

The proof of this theorem is carried on in several steps. The main problem
to face is that essentially the differentials of ĈF (S, φ) and PFC≤2g(N, ∂N)
are both defined in the complement of a neighborhood of K in Y . The same
thing holds also for Φ: this implies that none of the holomorphic curves counted
by these maps crosses K, and so we cannot directly apply the methods used to
define the knot filtrations in HF and ECH (see for example Proposition 2.17).
To solve the problem we modify φ by an isotopy into another monodromy φ̃ that
will allow us to “see” the knot filtrations in the complement of K. We do this
in Section 7.1 on the ECH-PFH side and in Section 7.2 on the HF side. In

99
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Section 7.3 we will be finally ready to study the holomorphic curves counted by
Φ with respect to the knot filtrations and we will prove the theorem above.

7.1 Adapting the monodromy to the binding
From now on (Y, ξ) will be a contact 3-manifold and K ⊂ Y an oriented

fibered knot which is the binding of the open book decomposition (S, φ) of Y
compatible with ξ, where S is of fixed genus g. Moreover we will assume all the
conventions given in Chapters 1-4. In particular we use the same conventions
for the parametrization near the neighborhood N (K).

7.1.1 Monodromy and contact form near the binding
In this subsection we want to slightly modify the monodromy φ and the

associated contact form α near ∂S. Before doing this we recall the construction
of a family of contact forms in [a, b] × T 2 given in [9, Section 6], where a < b
are real numbers.

Parametrize [a, b]× S1 × [0,2]
0∼2

by (y, ϑ, t) and consider the 1-form

α = cydϑ+ (C − cF (y))dt (7.1)

depending on c, C ∈ R and F : [a, b]→ R smooth. Then

dα = cdy ∧ dϑ− cF ′(y)dy ∧ dt

and, taking C � c > 0, the 3-form

α ∧ dα = c(C − cF (y) + cyF ′(y))dy ∧ dϑ ∧ dt

is a positive volume form and so α is contact. By simple calculations we find a
basis for the associated contact structure:

ξα = ker(α) = 〈∂y, (C − cF (y))∂ϑ − cy∂t〉

and for the Reeb vector field

Rα =
1

Pα(y)
(F ′(y)∂ϑ + ∂t)

with Pα(y) = α(F ′(y)∂ϑ + ∂t) = C + c(yF ′(y) − F (y)), which is always
positive since C � c > 0.

Call f(y) = F ′(y). All the tori Ty = {y} × S1 × [0,2]
0∼2

are foliated by orbits
of Rα and the first return map of Rα is

(y, ϑ) 7→ (y, ϑ+ f(y)). (7.2)
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If Ty is linearly foliated by closed orbits, define the degree deg(Ty) ∈ N∗∪{∞}
of the torus Ty to be the degree of any of the orbits foliating Ty. The differential
of the first return map of the flow of Rα on ξ(y,ϑ) is(

1 0
deg(Ty)f ′(y)

Pα(y)
1

)
(7.3)

(cf. Section 1.3). Since deg(Ty), Pα(y) 
 0, the torus Ty is M-B negative if
f ′(y) < 0 and positive if f ′(y) > 0.

Example 7.2. The restriction to [0, 3)× S1× [0,2]
0∼2

of the contact form on Y \K
used in Section 1.4 can be obtained as above by using the function fδ : [0, 3)→
R.

Let S̃ be the surface obtained by removing [2, 3)×S1 from the extended page
and then gluing a copy of [2, 4] × S1 along {2} × S1. Now extend fδ|[0,2] to a
new smooth function fδ,ε : [0, 4]→ R depending on a new constant 0 < ε� 2π
and such that:

1. fδ,ε coincides with fδ in [0, 2];
2. fδ,ε has maximum in y = 3 of value ε;
3. fδ,ε(4) = 0;
4. dfδ,ε(y) > 0 in [2, 3) and dfδ,ε(y) < 0 in (3, 4];
5. fδ,ε = −y + 4 in a small neighborhood of {y = 4}.

See Figure 7.1. Call φ̃δ,ε the monodromy on S̃ obtained by extending φ from S

to S̃ via the diffeomorphism given by equation 7.2 using fδ,ε.
Let Ñ be the mapping torus of (S̃, φ̃). Moreover let α̃δ,ε be a contact form

on Ñ obtained by extending αδ to [0, 4]× S1 × [0,2]
0∼2

using the equation 7.1 with
F primitive of fδ,ε. When we are not interested in a particular choice of (δ, ε)

we will write simply φ̃ and α̃.

Figure 7.1: The function fδ,ε on [0, 4].
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Observation 7.3. In the region [2, 4]× S1× [0,2]
∼ , the torus Ty is a positive M-B

for y ∈ [2, 3) and negative for y ∈ (3, 4]. In particular T4 is a negative M.B.
torus foliated by Reeb orbits with slope∞, exactly like T1. Moreover the con-
dition 5 above implies that the behavior of the monodromy and the contact form
near ∂Ñ is the same as near ∂N . In fact we can observe that Ñ is diffeomorphic
to N and that we can see φ̃ as a slight modification of φ by an isotopy which is
the identity outside a neighborhood ({y ∈ (1, 4]}) of the boundary and inside a
smallest neighborhood of the boundary (where the monodromy is given by con-
dition 5). Actually we can consider φ̃ just to be a modification of φ, obtained by
composing the latter with a small “finger move” along {y = 1, 5} in the positive
K-direction and another finger move along {y = 3} in the opposite direction.
It will be useful to keep in mind both interpretations of Ñ .

Throughout the rest of the chapter we will always assume that δ, ε � 2π
2g

:
this will guarantee that, for any y ∈ [0, 4], deg(Ty)� 2g except for the tori T1,
T2 or T4, which have degree 1.

If (S̃, φ̃) is obtained as above we say that it is adapted to the binding.

7.1.2 ÊCH for open books adapted to the binding

In this subsection we analyze the embedded contact homology of (Ñ , α̃).
LetECH≤2g(Ñ , α̃) be the homology of the chain complexECC≤2g(Ñ , α̃) with
the ECH boundary (cf. subsection 2.2.1).

Doing the M-B modification on the tori T1, T2 or T4 we get three couples of
degree 1 Reeb orbits:

(e, h) ⊂ T1;
(e+, h+) ⊂ T2;
(e−, h−) ⊂ T4.

These are the only simple Reeb orbits in Ñ ∩ {y ∈ [0, 4]} with degree less or
equal then 2g and their C-Z indices are µ(e) = µ(e−) = −1 and µ(e+) = 1 for
the elliptic orbits and µ(h) = µ(h+) = µ(h−) = 0 for the hyperbolic orbits.
Moreover we have the immediate identification:

ECH≤2g(Ñ , α̃) ≡ ECH
e+,h+,e−,h−
≤2g (N, α̃). (7.4)

Observation 7.4. We remark that the two orbits e+ and h+ are not the orbits
with the same name in last chapters. On the other hand we decided to call
them in the same way because they will play a somewhat analogue role in the
definition of the knot filtration.

By Observation 7.3 we can see e− ⊂ ∂Ñ as the analogue of e ⊂ ∂N , so
that, by equation 2.12, we have

ÊCH(Ñ , ∂Ñ , α̃) ∼=
ECH≤2g(Ñ , α̃)

e−γ ∼ γ
.
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Since embedded contact homology does not change under isotopy of the
monodromy, we have

Corollary 7.5. ÊCH(Ñ , ∂Ñ , α̃) ∼= ÊCH(N, ∂N, α).

For what follows it is convenient to construct a specific isomorphism be-
tween the two homology groups.

Proposition 7.6. The ECH boundary map on {e, h, e+, h+, e−, h−} acts as fol-
lows:

∂e = ∂e− = 0
∂h = ∂h− = 0
∂h+ = e− + e
∂e+ = h− + h

(7.5)

Figure 7.2: Relevant orbits and holomorphic curves in Ñ ∩ {y ∈ [0, 4]} (cf.
Figure 2.1).

The proof of Proposition 7.6 is similar to that of Equations 2.6 and we dis-
cuss it in the next subsection with some critical details which will be useful later.
For the moment we focus on the consequences.

Any equivalence class of orbit sets γ in Ñ under the relation e−γ ∼ γ is
determined by its element in which e− has exponent 0. If γ ∈ O(Ñ), the equiv-

alence class [γ] ∈ ECC≤2g(Ñ)

e−γ∼γ will be often denoted simply by γ.

Corollary 7.7. The ECH differential ∂ on ÊCH(Ñ , ∂Ñ) is given by:

∂(ea+h
b
−h

c
+γ) = ea−1

+ hb−(h− + h)hc+γ + ea+h
b
−h

c−1
+ (e− + e)γ + ea+h

b
−h

c
+∂γ,

where the terms are understood to be 0 if they contain factors with negative
exponent or hyperbolic orbits with total multiplicity grater then 1.
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Proof. Any orbit in {y ∈ ([1, 4] \ {1, 2, 4})} ⊂ Ñ has degree grater then 2g

and so it does not contribute to the generators of ECC≤2g(Ñ). This fact and the
Blocking and Trapping lemmas prevent holomorphic curves from crossing Ti
along curves with slope ∞, for i ∈ {1, 2, 4}. Moreover applying homological
arguments (like in the proof of Lemma 9.5.1 of [9] or in Lemma 7.28 below)
on holomorphic curves crossing some Ti along different slope, one can see that
these curves would not be contained in Ñ . This implies in particular that our
contact form is nice, i.e. that any ECH-index 1 M.B. building has at most one
connected component of ECH-index grater then 0 (see Definition 4.4.1 and
Corollary 9.5.2 in [9]). The result then follows applying Proposition 7.6.

Observation 7.8. Note in particular that if γ ∈ O(N), then deg(∂γ) = deg(γ).

In the rest of this subsection it will be more convenient to write (equivalence
classes of) orbit sets in Ñ in the form ea+h

b
−γ, with now γ ∈ O(N ∪ {h+}) and,

again, a, b natural numbers with b ∈ {0, 1}.
Note now that

(
ECC

h+,e−
≤2g (N, α̃), ∂

)
is a sub-complex of

(
ECC≤2g(Ñ , α), ∂

)
.

Lemma 7.9. Consider the chain map

i : ECC
h+,e−
≤2g (N, α̃) −→ ECC≤2g(Ñ , α̃)

defined on the generators by
i(γ) = γ.

Then i is a homotopy equivalence with homotopy inverse

π : ECC≤2g(Ñ , α̃) −→ ECC
h+,e−
≤2g (N, α̃)

defined on the generators by

π(ea+h
b
−γ) =

{
0 if a > 0
hbγ if a = 0

.

Proof. It is evident that π ◦ i is the identity map on ECCh+,e−
≤2g (N, α̃). It remains

to prove that i◦π is homotopy equivalent to the identity on ECC≤2g(Ñ , α̃), that
we will call simply id. Let

H : ECC≤2g(Ñ , α̃) −→ ECC≤2g(Ñ , α̃)

be the map defined on the generators by

H(ea+h
b
−γ) =

{
0 if b = 0

ea+1
+ γ if b = 1

.

We want to prove that H is a homotopy between i and π, i.e.

(∂ ◦H +H ◦ ∂)|ker ∂ = (id+ i ◦ π)|ker ∂ (7.6)

We check relation 7.6 for a > 0 and leave to the reader the similar calculation
for a = 0.
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a > 0 and b = 0

(∂ ◦H +H ◦ ∂)(ea+γ) = H
(
ea−1

+ (h+ h−)γ + ea+∂γ
)

= ea+γ

(id+ i ◦ π)(ea+γ) = ea+γ

a > 0 and b = 1

(∂ ◦H +H ◦ ∂)(ea+h−γ) = ∂(ea+1
+ γ) +H

(
ea−1

+ hh−γ + ea+h−∂γ
)

= ea+(h+ h−)γ + ea+1
+ ∂γ + ea+hγ + ea+1

+ ∂γ

= ea+h−γ

(id+ i ◦ π)(ea+h−γ) = ea+h−γ

7.1.3 Holomorphic curves near ∂N

This subsection is devoted to the proof of Proposition 7.6. The key ingredi-
ents are results in [60, Section 4.2] and [59, Chapter 3]: we can summarize what
we need as follows.

Consider [a, b]× T 2 with 0 < a < b, parametrized by (y, ϑ, t) as in subsec-
tion 7.1.1 and endowed with a contact form

λ = g(y)dϑ+ h(y)dt. (7.7)

The contact condition is g′h− gh′ > 0 and the associated Reeb vector field is

Rλ =
1

g′h− gh′
(g′∂t − h′∂ϑ).

Then any torus {y0} × T 2 is foliated by Reeb orbits. Suppose that:

1. g′ is a positive function;

2. g(a), g(b) 6= 0;

3. h′(a) = h′(b) = 0 and h′(y) 6= 0 ∀y ∈ (a, b).

These imply that Ta and Tb are the only tori foliated by Reeb orbits with slope
g′

2πh′
=∞.

Let Cϑ0 be the cylinder {ϑ = ϑ0} ⊂ [a, b] × T 2. For the following two
lemmas see [59, Chapter 3].
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Lemma 7.10. There exists a family of finite energy holomorphic cylinders

{Zs,ϑ}s∈R,ϑ∈S1

that foliate R× [a, b]× T 2 and such that, if πR : R× [a, b]× T 2 −→ [a, b]× T 2

is the projection along the R direction, then ∀(s0, ϑ0)

πR(Zs0,ϑ0) = int(Cϑ0) (7.8)

and
∀s1 ∈ R, Zs0+s1,ϑ0 is the s1-translate of Zs0,ϑ0 . (7.9)

Moreover:

1. if h′′(a) < 0 and h′′(b) > 0, each Zs,ϑ is positively asymptotic to Ta and
negatively asymptotic to Tb;

2. if h′′(a) > 0 and h′′(b) < 0, each Zs,ϑ is positively asymptotic to Tb and
negatively asymptotic to Ta.

The tori Ta and Tb are M-B and their perturbation behaves nicely with re-
spect to the foliation, in the following sense (see [59, 3.3]). Suppose we are in
the case 1 of Lemma above. Then Ta is a positive M-B torus and the correspond-
ing S1-family of Reeb orbits is perturbed into the couple (ea, ha); similarly a
perturbation near the negative M-B torus Tb produces a couple of orbits (eb, hb).
Here µCZ(ea) = 1, µCZ(ha) = µCZ(hb) = 0 and µCZ(eb) = −1.

Lemma 7.11. The perturbation near Ta and Tb induces a perturbation of the
family {Zs,ϑ}s∈R,ϑ∈S1 which gives: a Fredholm index 1 holomorphic cylinder
from ea to hb; another index 1 holomorphic cylinder from ha to eb; an infinite
family of holomorphic cylinders of index 2 from ea to eb.

The case corresponding to situation 2 of Lemma 7.10 is analogue: Ta is now
negative M.B. and Tb is positive and the Conley-Zehnder indices of (ea, ha) and
(eb, hb) are exchanged, as the orientation of the holomorphic cylinders.

A priori there could be other holomorphic curves with image in [a, b]× T 2;
under some conditions on the curves this can not happen.

Lemma 7.12 (Lemma 8.4.8, [9]). Suppose we are in the situation 1 (resp. 2) of
Lemma 7.10. Let u : (F, j)→ (R× [a, b]× T 2, J) be a holomorphic curve with
some ends in {b} × T 2 (resp. {a} × T 2) and without ends in (a, b) × T 2; then
u(F ) is equal to Zs,ϑ for some (s, ϑ).

Proof. Suppose first that πR(u(F )) * Cϑ for any ϑ. Then there exists ϑ0

such that u does not have any end contained in Cϑ0 or crossing it. Let L :=
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πR(u(F )) t int(Cϑ0) 6= ∅. L is a closed 1-dimensional immersed submanifold
of Cϑ0 and π−1

R (L) is a compact submanifold of u(F ) and this implies that

for s large enough Zs,ϑ0 ∩ u(F ) = ∅. (7.10)

On the other hand, since L 6= ∅, ∃s0 ∈ R such that u(F ) intersects nontrivially
Zs0,ϑ0 and the intersection is strictly positive by holomorphicity. By property
7.9 it follows that

∀s1 > 0 #(u t Zs0+s1,ϑ0) = #(u t Zs0,ϑ0) > 0,

which contradicts condition 7.10.
Suppose now that πR(u(F )) ⊆ Cϑ0 for some ϑ0. The 3-dimensional sub-

manifold R × Cϑ0 of R × [a, b] × T 2 is foliated by {Zs,ϑ0}s and must contain
u(F ). If u(F ) 6= Zs,ϑ0 for any s then there exists s0 such that u(f) intersects
transversely and non-trivially Zs0,ϑ0 . The dimension of this intersection must be
1, which is absurd since u(F ) and Zs0,ϑ0 are both holomorphic.

Proof of Proposition 7.6. The contact form α̃ on [1, 4]× T 2 satisfies the condi-
tions at the beginning of this subsection. By the Blocking Lemma and the fact
that all the orbits in [1, 4] × T 2 \ (T1 ∪ T2 ∪ T4) have degree grater than 2g, no
curve counted by ∂ECH can cross Ti, i ∈ {1, 2, 4}.

Lemma 7.11 corresponding to case 1 of Lemma 7.10 applied to [2, 4] × T 2

implies that there exist two Fredholm index 1 families of cylinders, one from
h+ to e− and one from e+ to h−; these cylinders are embedded and the ECH
index inequality (see [27]) implies that also their ECH index is 1. For the same
reason all the other cylinders of the foliation are of ECH index 2 and are not
counted by ∂.

Similarly, applying the lemmas 7.10 (case 2) and 7.11 to [1, 2] × T 2 we see
that there exist other two ECH-index 1 cylinder, one from h+ to e and one from
e+ to h, and no other cylinder of the foliation is counted by ∂. By Lemma 7.12,
since none of the curves can cross T4, these four cylinders are the only curves
counted by ∂ECH and the result follows.

7.1.4 The knot filtration inside the open book
In order to drop the x̃x in the notations, from now on we will assume that an

open book decomposition comes already adapted to its binding, i.e. it is already
like (S̃, φ̃) in last subsections. More precisely:

Definition 7.13. Let (S, φ) be an open book decomposition. If there exists a
neighborhood [0, 4] × ∂S of ∂S in S where φ can be expressed in terms of a
function fδ,ε as above, we say that (S, φ) is adapted to the binding. Moreover
the mapping torus of the neighborhood [0, 4] × ∂S will be called adaptation
neighborhood.
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Notation. Let ∂S× [0, 4] be the neighborhood (of the adaptation) of ∂S in S as
in last sections. Given y ∈ [0, 4], we will call Sy the surface S \ (y, 4]. Moreover
let Ny denote the mapping torus of (Sy, φ|Sy), so that ∂Ny = Ty. In particular
now N = N(S, φ) = N4 is the whole mapping torus (containing the adaptation
neighborhood too).

Let (S, φ) be an open book decomposition of Y whose monodromy is adapted
to the binding K. In this section we explain how to define ÊCK(K,Y, α) in
N . This is obtained essentially by identifying the orbits e+ and h+ with their
counterpars in the definition of ÊCK(K,Y, α) that we gave in Section 2.4. By
definition of the knot filtration, the Alexander degree will be given by the degree
of the orbits as in Definition 2.11.

Consider

ECCh+,e−(N1, ∂N, α) :=
ECCh+,e−(N1, α)

e−γ ∼ γ
.

Endow it with the restriction of the differential ∂ECH given by Corollary 7.7: it is
easy to see that this is a chain complex whose homologyECHh+,e−(N1, ∂N, α)

is isomorphic to ÊCH(N, ∂N, α).
The isomorphism is obtained by using Lemma 7.9 and Theorem 2.7, iden-

tifying e− with the orbit ∅: this makes sense in light of the quotient by the
equivalence relation e−γ ∼ γ.

Using the second interpretation it is easy to see that, if ∂ECK is the differen-
tial on ECCh+,e−(N1, ∂N, α) defined by

∂ECK(ha+γ) = ha−1eγ + ha∂ECHγ, (7.11)

then
H
(
ECCh+,e−(N1, ∂N, α), ∂ECK

) ∼= ÊCK(K,Y, α) (7.12)

Similarly to what done for closed manifolds in Section 2.3, we can switch
from contact structures and Reeb orbits to stable Hamiltonian structures and
periodic orbits. Since the definitions are the same of the case of ECH we avoid
the details. If PFCh+,e−(N1) and PFCh+,e−(N1, ∂N) are defined in the same
way as their counterparts in ECH and the differential ∂PFK is defined by an
expression analogue to Equation 7.11, then the hat version of the periodic Floer
knot homology of the open book (K,S, φ) is:

P̂FK(K,S, φ) := H
(
PFCh+,e−(N1, ∂N), ∂PFK

)
.

Obviously this homology is defined only for fibered knots and indeed it should
be considered as an invariant of the couple (S, φ). In order to simplify the nota-
tions we are avoiding to refer to the stable Hamiltonian structure in the formulas.
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Observation 7.14. Note that the quotient by the relation e−γ ∼ γ is not compat-
ible with the degree defined in Subsection 2.2.1, since deg(e−γ) = deg(γ) + 1.
However, since the orbit e− can be interpreted formally as the empty orbit, the
most reasonable definition for the degree of an orbit set γ is

deg(γ) = min
δ∈[γ]∼

{deg(δ)}.

This is obviously the degree of the (unique) orbit set in [γ]∼ that belongs to
O(N3) and

deg(γ) = 〈γ, S ′〉. (7.13)

Note that for every k, [ek−]∼ = [∅]∼ and, with the last definition of deg, these are
the only orbits with degree 0.

7.2 ĤFK on a page
In Section 7.1 we modified the monodromy of an open book in order to adapt

it to the binding K: this allowed us to “see” the filtration given by K inside the
mapping torus of the open book (and then in the codomain of the chain map Φ).

In this section we want to do something similar in spirit for Heegaard Floer
homology. The classical definition of the knot filtration forHF should require a
stabilization of the Heegaard diagram, as done for example in [25, Section 3.2]:
we want to avoid this stabilization in order to get a diagram compatible with K
and contained in a page of the open book.

Remember the construction of an Heegaard diagrams adapted to an open
book decomposition (K,S, φ) of Y given in Section 4.1. Without loss of gener-
ality we can assume that near ∂S the curves ai are such that

ai ∩ ∂S × [0, 1] = ({r(2i− 1)} ∪ {r(2i+ 1)})× [0, 1] if i odd,
ai ∩ ∂S × [0, 1] = ({r(2i− 2)} ∪ {r(2i)})× [0, 1] if i even, (7.14)

where r is a real number such that, for a fixed metric for which ∂S has length
2π, 0 < r << π

2g
where g is the genus of S (see figure 7.3).

Note in particular that, for any i, ai ∩ ∂S × [0, 1] is an union of two arcs a−i
and a+

i where a−i = rl × [0, 1] and a+
i = r(l + 2)× [0, 1] for some integer l.

Suppose that (S, φ) is adapted to K in the sense of Definition 7.13: in par-
ticular S1 × [0, 4] is a neighborhood of ∂S, S ′ = S3 and φ depends on a fδ,ε as
in 7.1.1.

Fixed δ and ε, choose r such that 4gr < ε and the diagram (S, a, φ(a)) near
∂S is like in figure 7.4 (cf. figure 7.1).

Note in particular that φ acts on the arcs ai ∩ {y ∈ [2, 4]} as a finger move
of length ε in the direction of K: this creates a new bigon in S \ (a ∪ φ(a)) in
which we pick a marked point z. If we choose δ rational, the orbit of z under
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Figure 7.3: The curves ai near ∂S.

the action of φ consists of deg(T3) � 2g points (see 7.1.1) and z is the only
one of them belonging to the bigon, while all the others belong to the region of
the diagram where we put the marked point w. In particular we can assume that
w = φ(z).

Definition 7.15. Let x = (x1, . . . , x2g) be a generator of ĈF (S, a, φ(a)). De-
fine the degree of x by

deg(x) := 〈x, S ′〉 = #{j | xj ∈ S ′}.

Observation 7.16. Note that last definition can be seen as an analogue for set
of chords of the Equation 7.13 for orbit sets.

Observation 7.17 (Orientations). We remark that (K,S, φ) is given as open
book decomposition of Y ; since we are working on −Y , K is now oriented as
the boundary of S in −Y . Since the arc connecting z to w in Σ \ a is oriented
as ∂S, the conventions about the role of z and w in the orientations given in
subsection 3.2.1 imply then that ĈF (S, a, φ(a), z, w) is a Heegaard diagram
for (−Y,−K).

Recall the definition of the cobordism W given in Section 4.2. Define more-
over K ′ = {y = 3} = ∂S ′; note that K ′ is a closed curve on S isotopic to
K.

The proof of the following is analogue to that of Lemma 2.17, avoiding the
considerations about the signs of the intersections.

Lemma 7.18. Let u : F → W be a degree k ≤ 2g holomorphic multisection of
W with positive end x and negative end y. Then for any t0 ∈ (0, 1):

deg(x)− deg(y) = 〈u,R× {t0} ×K ′〉.

We want to prove that this degree coincides, up to a shift, with the Alexander
degree defined using the Spinc-structures.
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Figure 7.4: The diagram (S, a, φ(a)) near ∂S. Note the new bigon in the dia-
gram containing the marked point z.

7.2.1 The knot filtration on the page

Let (Σ,β,α) be the Heegaard diagram for Y compatible with (S, φ) built in
Subsection 4.1. Recall in particular that Σ = S0 t∂S0

S 1
2

and (S, a, φ(a)) can be
identified with (S0,α ∩ S0,β ∩ S0). We will place the marked points later.

Let U1 be a small open disk in the bigon created by the finger move along
K ′ and such that it non trivially intersects K ′. Define U2 = φ(U1) and stabilize
S0 (resp. Σ) by removing U1 and U2 and gluing a handle [0, 1] × S1 as showed
in figure 7.5; let S0 (resp. Σ) be the resulting surface. See [25, Section 3] for an
analogous stabilization.

K ′ \ (U1 ∪ U2) has two connected components, one intersecting the curves
a and not φ(a) and the other one intersecting φ(a) and not a. Define:

– β0 = {1
2
} × S1 contained in the handle [0, 1]× S1;

– α0 obtained by closing the component of K ′ \ (U1∪U2) intersecting φ(a)
with an arc in the handle crossing β0 only once;

– λ′ obtained by closing the component of K ′ \ (U1 ∪ U2) intersecting a
with an arc in the handle intersecting β0 only once and disjoint from α0.
Then modify λ′ by a finger move twisting twice along β0 and call λ the
resulting curve.

Note that α0 does not intersect the other α-curves and that λ does not inter-
sect the β-curves. Place the marked points z and w near β0 like in the picture.
Then (Σ,β ∪ β0,α∪α0, w, z) is a Heegaard diagram for (−Y,−K) with λ and
β0 respectively longitude and meridian of a close copy of K in Y .

We remark that this stabilization is necessary to define a Heegaard diagram
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Figure 7.5: The stabilized Heegaard diagram with the multiplicities of P .

for the three-manifold −Y0(−K) obtained by 0-surgery on −Y along −K: this
will allow us to associate to any generator x of ĈF (Σ,β,α) a Spinc-structure
sx ∈ Spinc(−Y0(−K)) (see Section 3.2).

Let CF (Σ,β∪β0,α∪α0, w) be the free Z2-module generated by (2g+ 1)-
tuples of intersection points as usual and let ĤF (Σ,β ∪ β0,α ∪ α0, w) be the
associated Heegaard Floer homology. By the invariance of HF under stabiliza-
tions of Heegaard diagrams (Theorem 10.1, [42]), we have

ĤF (Σ,β ∪ β0,α ∪ α0, w) ∼= ĤF (Σ,β,α, w).

The isomorphism is induced by the isomorphism between the chain com-
plexes defined on the generators by

ĈF (Σ,β,α, w) −→ ĈF (Σ,β ∪ β0,α ∪ α0, w)

x = (x1, . . . , x2g) 7−→ x := (x0, x1, . . . , x2g),

where x0 is the unique point in β0 ∩α0. Indeed, since x0 is the only intersection
point between {αi}i and µ, this must be a component of all the generators of
ĈF (Σ,β ∪ β0,α ∪ α0, w), and in particular, in any generator, no other point in
µ or α0 can exist.

Now, if v is one of the two points in λ ∩ α0 nearest to x0, to each x we
can univocally associate the (2g + 1)-tuple x′ = (v, x1, . . . , x2g) of intersection
points in the diagram (Σ,β ∪ λ,α ∪ α0, w) for −Y0(−K)

Let P be the periodic domain on (Σ,β∪λ,α∪α0, w) with boundary α0∪λ
with multiplicity 2 in all the regions of S0 \ {y ∈ [3, 4]}, 1 in those of {y ∈
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[3, 4]}∪S 1
2

and as in figure 7.5 in the handle. P is a periodic domain representing

the homology class of Ŝ, obtained by capping off S along K (actually K ′) in
−Y0(−K).

In 3.2.1 we recalled that to this data we can associate a filtration on the
Floer complex, whose degree is given by the integer 1

2
〈c1(sw(x)), [Ŝ]〉, where

sw(x) = sw(x′) is the Spinc structure in −Y0(−K) determined by x′. This
quantity can be calculated in terms of P by using equation 3.3:

〈c1(sw(x′)), [Ŝ]〉 = χ(P) + 2
(
nu(P) +

2g∑
i=1

nxi(P)
)
.

Recalling that we defined S ′ = S \ {y ∈ [3, 4]}, in our case we have:
– nu(P) = 1

4
(0 + 1 + 0− 1) = 0.

– n̄xi(P) =

{
1 if xi ∈ Σ \ S ′
2 if xi ∈ S ′

– χ(P) is calculated by dividing Σ into pieces corresponding to regions
with different multiplicity, we compute (see for example [45, Section 3])
χ(P) =

∑2
i=−1 iχ(Ri) = −6g.

Substituting in the formula above, we have:

〈c1(sw(x)), [Ŝ]〉 = 2
(
− 3g + #

{
i | xi ∈ Σ \ S ′

}
+ 2#

{
i | xi ∈ S ′

})
.

where we consider S ′ as contained in Σ. The following is then straightforward:

Lemma 7.19. Let x = (x1, . . . , x2g) be a generator of ĈF (S, a, φ(a)) with
(S, φ) adapted to K and x = (x0, x1, . . . , x2g). Then

1

2
〈c1(sw(x)), [Ŝ]〉 = deg(x)− g.

7.2.2 The homology
Consider the (non-stabilized) diagram (Σ,β,α, z, w), with z and w placed

as in Figure 7.4. Note that the placement of w is different from that in Section
4.1, but since they are in the same connected component of Σ \ (β ∪ α) the
two choices give the same constraints on the holomorphic curves counted by the
HF -differential.

Define ĈFK∗,i(Σ,β,α, z, w) to be the subcomplex ofCF∗(Σ,β,α, w) gen-
erated by 2g-tuples x of intersection points with deg(x) = i. Note that this is
not the standard symmetrized Alexander grading of knot Floer homology: our
convention differs from the last just by a shift of −g on the degrees. The com-
putation of last subsection implies that ĈFK∗,i(Σ,β,α, z, w) is isomorphic (as
Z2-module) to the standard knot Floer complex as defined in 3.2.
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Notation. Given y0 ∈ [0, 4], we will denote by Ay0 the annulus ([0, 1]× {y0} ×
S1) ⊂ [0, 1]× Σ. For example [0, 1]×K ′ = A3.

Recall that W = R × [0, 1] × Σ and for any P ∈ Σ, χP = [0, 1] × {P} is
the Reeb chord in [0, 1]× Σ passing through P . Define σP = R× χP ⊂ W . If
u : Ḟ → W is a holomorphic curve, call nz(u) the algebraic intersection number
〈u, σz〉. Since u and σz are holomorphic, every intersection point between them
has positive sign.

Define moreover

G3 := R× [0, 1]×K ′ ⊂ R× [0, 1]× S 1
2
.

Σ is the non-stabilized Heegaard surface, so that G3 is connected.

Proposition 7.20. If u : (Ḟ , j) → (W,J) is a holomorphic curve counted by
∂HF , which tends to x for s→ +∞ and to y for s→ −∞ then

deg(x)− deg(y) = nz(u). (7.15)

Proof. This result is the analogue of Equation 3.5 and can be recovered using
the fact that the filtration given by deg is just a translation of the Alexander
filtration, for which the result holds. However it will be convenient for us to
proceed reasoning as follows.

Since the set of the branched points of u is finite, up to slightly pushing K ′

in the y direction, by Theorem 1.10 we can suppose that u is always transverse
to ∂t|G3 and that it has no branched points in G3. By Lemma 7.18, we have

deg(x)− deg(y) = 〈u,R× {t0} ×K ′〉 (7.16)

up to choosing t0 ∈ (0, 1) such that all the intersections are transverse. Let us
prove that

〈u,R× {t0} ×K ′〉 = nz(u). (7.17)

Since in G3 the image of u is always transverse to ∂t, by holomorphicity it
is also transverse to ∂s. Then u intersects G3 transversely along a finite set of
curves C(u) = {c1, . . . , ch} with

∂ci ⊂ (R× {0} × φ(a)) t (R× {1} × a)

for any i. Then ci can be of one of the following two kinds (see Figure 7.6):

1. ∂ci ⊂ R× {0} × (φ(a) ∩K ′) or ∂ci ⊂ R× {1} × (a ∩K ′);

2. ci goes from R× {0} × (φ(a) ∩K ′) to R× {1} × (a ∩K ′).

Consider the homology

H∗(G3) := H∗(G3,R× {0, 1} × (K ′ \ P )),
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Figure 7.6: Examples of curves ci ∈ C(u) projected on [0, 1] × K ′. Note the
curve crossing [0, 1]× {w} can not exists if nw(u) = 0.

where P is a point in K ′ inside the region of w.
Fix the basis (µ, λ) of H1(G3) ∼= Z2 with generators given, in order, by a

copy of a Reeb chord and of K ′. If [ci] = (mi, li), then for the two cases above
we have respectively

1. (mi, li) = (0, 0);

2. (mi, li) = (1, 0).
Indeed, since u is a positive multisection and nw(u) = 0, then ∀i mi ≥ 0 and
li = 0. Moreover in case 1 ci is homotopic, relatively to its boundary, to a curve
contained either in R×{0}×K ′ or in R×{1}×K ′ so that mi = 0. Finally in
case 2 ci is simple (since u has no branched points in G3) and connected and so
mi = 1.

Note now that the curves of type 1 do not give contributions to either of
sides of Equation 7.17. Suppose that ci is of type 2. Since u is always trans-
verse to ∂t|G3 , the placement of z implies #{ci ∩ σz} = 1 and the positivity of
intersections between holomorphic curves gives

nz(u) =
∑

{i|ci of type 2}

1.

On the other hand, by the position of the curves of the diagram, we can parametrize
ci in a way that ċi = (cs, ct, 0, cϑ) has cϑ always strictly negative, where the co-
ordinates are expressed in terms of the positive basis (∂s, ∂t, ∂y, ∂ϑ) for TW . If
P ∈ ci ∩ (R × {t0} ×K ′) then (∂s, ∂ϑ, ċi, J(ċi)) is a positive basis of TPW if
and only if ct > 0 and so

〈u,R× {1} ×K ′〉 =
∑

{i|ci of type 2}

( ∑
{P∈ci∩(R×{t0}×K′)}

sign(ct)

)
.

But the fact that ci has a homology class (mi, li) with mi = 1 implies that∑
{P∈ci∩(R×{t0}×K′)}

sign(ct) = 1
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for any i and the result follows.

Since the signs of the intersections in equation 7.17 are all positive, ∂HF

respects the filtration given by deg. Let ∂HFK be the part of ∂HF that strictly
preserves the (filtration) degree, i.e. ∂HFK counts the holomorphic curves u of
∂HF such that nz(u) = nw(u) = 0. We can see ∂HFK as a family of differentials

∂HFKi : ĈFK∗,i(Σ,β,α, z, w) −→ ĈFK∗,i(Σ,β,α, z, w) (7.18)

for i ∈ {−g, . . . , g}.

Corollary 7.21. H
(
ĈFK∗,i(Σ,β,α, z, w), ∂HFKi

) ∼= ĤFK∗,i(−K,−Y ).

Proof. For any i, Lemma 7.19 implies that the map x 7→ x induces a bijection
between ĈFK∗,i(Σ,β∪β0,α∪α0, z, w) and ĈFK∗,i(Σ,β,α, z, w). The con-
straints imposed by z, w ∈ Σ on the curves counted by ∂HFK imply that the
differential counts holomorphic curves u which are a disjoint union of a trivial
strip on x0 (of index 0) and a 2g-multisection u of index 1 not intersecting the
regions containing z or w. So u can be seen as a curve counted by ∂HFKi . Then
there is a bijection u 7→ u between the curves counted by the differentials, which
is compatible with the bijection on the complexes (in the sense that if u flows
from x to y then u flows from x to y).

In order to define the knot Floer complex on a page (and not on the entire Σ)
it is sufficient to take into account only 2g-tuples in S0 and quotient the groups
by relation 4.2 as done in Section 4.1. We will call ĈFK∗,i(S,a, φ(a), z) the re-
sulting groups. The proof that the homology does not change under the quotient
is the same of that for HF in [10, Section 4.9]. Then we have

ĤFK∗,i(S,a, φ(a), z, w) := H∗(ĈFKi(S,a, φ(a), z), ∂HFKi )
∼= ĤFK∗,i(−K,−Y )

(7.19)

Notation. Similarly to the notation used for ÊCK and P̂FK, we will define

ĈFK∗,≤i(S,a, φ(a), z) =
⊕
j≤i

ĈFK∗,i(S,a, φ(a), z)

7.3 Φ and the degree filtrations
In this section we prove that Φ respects the knot filtrations described. Let us

begin with some definition and notation.

Definition 7.22. We say that ϑ0 is far from the curves of the diagram (S, a, φ(a))
(or simply far from the curves) if ([0, 4]×{ϑ0})∩ φ(a) = ∅. In this case we say
also that, for any y0, P = (y0, ϑ0) is far from the curves.



7.3. Φ AND THE DEGREE FILTRATIONS 117

Observation 7.23. Note that, if φ = φδ,ε and r is like in the definition of the
curves a of the diagram given in Section 4.1, then ϑ0 is far from the curves of
the diagram if and only if ϑ0 ∈ (4gr + ε, 2π − δ).

From now on we consider the M-B perturbations of the tori Ty, y = 1, 2, 4,
such that the orbits h, e+, h− cross S0 far from the curves. By this we mean that,
if

h ∩ S0 = (ϑh, 1),
e+ ∩ S0 = (ϑe+ , 2),
h− ∩ S0 = (ϑh− , 4),

(7.20)

then ϑh, ϑe+ and ϑh− are far from the curves.
Let us introduce some other notations that we will use in this and the next

sections.

Notations. – Given ϑ0 ∈ [0, 2π] and j = 1, 2, 4, let δjϑ0
denote the simple

orbit {ϑ = ϑ0} contained in the M.B. torus Tj (e.g. h = δ1
ϑh

).
– Given X , u : F → R ×X and s0 ∈ R, we denote u≤s0 the restriction of
u to u−1({s ≤ s0}). Similarly defined are the functions u≥s0 , u=s0 , etc.

– Sometimes, given a manifold X and a coordinate x on some subset of X ,
we will denote by X{x∈[x0,x1]} the subset of points of X with coordinate x
included in [x0, x1]. Similarly defined are X{x=x0}, X{x∈(x0,x1)} etc. We
will use a similar notations for subsets ofX defined by conditions on more
then one coordinate like X{x∈[x0,x1],z=z0}, etc. (for example W{t=t0,y=3} =
R× {t0} ×K ′ ⊂ W and N{y=y0} = Ty0 ⊂ N ).

– Given y0 ∈ [0, 4], in analogy with the submanifoldG3 ofW of last section,
we call G+

y0
the 3-dimensional proper submanifold W+{y=y0} of W+.

7.3.1 Properties of the Φ-curves near ∂S

In this subsection we describe some properties about the curves counted by
Φ in N{y∈[1,4]}. We will refer to these curves simply as Φ-curves.

Fix a basis ([µ], [λ]) for H1(N{y∈[0,4]}) where µ is a meridian for K and λ is
a longitude contained in S0. For any y0, consider the chain of maps

G+
y0
↪→ W+{y∈[0,4]} ↪→ W{y∈[0,4]} � N{y∈[0,4]},

where the first two maps are the natural inclusions and the last one is the projec-
tion along the coordinate s. The chain above induces then the following one in
homology:

H1(G+
y0

)→ H1(W+{y∈[0,4]})→ H1(W{y∈[0,4]})→ H1(N{y∈[0,4]}).

These maps are all isomorphisms: we will keep to call ([µ], [λ]) the pre-images
of the generators of H1(N{y∈[0,4]}) in each of the groups above.
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Let u : (Ḟ , j) → (W+, J+) be a degree k multisection and let y0 ∈ [0, 4] be
such that u is always transverse to ∂t|G+

y0
and does not have any branched point

or limit in G+
y0

(the set of the allowed y0 is dense in [0, 4] by Theorem 1.10).
By holomorphicity, u is transverse to G+

y0
and Im(u) ∩ G+

y0
consists in a finite

(possibly empty) collection of properly embedded curves

Cy0(u) = {c1, . . . , ch}

of the following two kinds:
– a curve with boundary in

G+
y0
∩
(
(2,+∞)×

(
(φ(a)× {0}) ∪ (a× {1})

))
⊂ ∂G+

y0

called b-component;
– a close curve, called c-component.

Consider the homology

H∗(G
+
y0

) := H∗(G
+
y0
, {s > 2} × {0, 1} × (K ′ \ P )),

with P a point far from the curves. To any (b- or c-) component ci we can
associate its homology class [ci] = (mi, li) ∈ H1(G+

y0
) with respect to the basis

([µ], [λ]).
Recall that in section 7.1 we saw that N{y∈[2,4]} and N{y∈[1,2]} are foliated by

two families of holomorphic cylinders Zs,ϑ. In N{y∈[2,4]} the cylinders are such
that, ∀(s0, ϑ0):

1. πR(Zs0,ϑ0) = C((2,4),ϑ0);

2. ∀s1 ∈ R Zs0+s1,ϑ0 is the s1-translate of Zs0,ϑ0;

3. lims→+∞ Zs0,ϑ0 = δ2
ϑ0

;

4. lims→−∞ Zs0,ϑ0 = δ4
ϑ0

.

Define
Z+
s,ϑ := Zs,ϑ ∩W+.

The proof of the following Lemma uses similar arguments of that in Lemma
6.6.5 in [10].

Lemma 7.24. Let u be a Φ-curve. Then, for any y0 ∈ [1, 4], u intersects G+
y0

in
a set of curves, each with homology class of the form (m, 0) with respect to the
basis ([µ], [λ]).

Proof. We prove the result for y0 ∈ [2, 4] using the holomorphic foliation in
N{y∈[2,4]}. The proof in y0 ∈ [1, 2] is analogue.

Note first that, since u can not cross T4, the result is true for y0 = 4. Suppose
there exists y0 ∈ (2, 4] for which the statement is false. Then there exists c ∈
Cy0(u) with homology class (m, l) ∈ H1(G+

y0
) in the coordinates ([µ], [λ]) with
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l 6= 0. Then for any ϑ0 such that P = (y0, ϑ0) is far from the curves of the
diagram, there exists s0 ∈ R such that u intersects Z+

s0,ϑ0
and

〈u, Z+
s0,ϑ0
〉 > 0

by the positivity of the intersection.
Since we are far from the curves, for any s < s0 Z

+
s0,ϑ0

is homotopic to Z+
s,ϑ0

through an homotopy whose image Z does not intersect the Lagrangian La, so
that Z does not cross the boundary of u or the chords at the positive ends of u.
Since moreover u can not have negative limits in N{y∈(2,4)} we have

〈u, Z+
s,ϑ0
〉 = 〈u, Z+

s0,ϑ0
〉 > 0

for any s < s0. Since eachZ+
s,ϑ0

has negative limit in T4, this forces u to intersect
all the G+

y for y ∈ [y0, 4). The argument applied to all the ϑ far from the curves
implies that the result is false also for T4, contradiction.

Corollary 7.25. Let u be a Φ-curve. Then, for any y0 ∈ [0, 4], u intersects G+
y0

in a set of curves whose homology class is either (1, 0) or (0, 0).

Proof. By the last lemma any c ∈ Cy0(u) has homology class [c] = (m, 0).
Moreover since c is connected and always transverse to ∂t, then either m = 0 or
m = 1.

Observation 7.26. Note that [c] = (0, 0) only if c is a curve with either ∂c ⊂
R× {0} × (φ(a)∩K ′) or ∂c ⊂ R× {1} × (a∩K ′) (cf. the curves of type 1 in
the proof of Proposition 7.20).

Corollary 7.27. Let u be a Φ-curve. Any negative end of u in T2 is in h+.

Proof. Let u′ be the restriction of u to a neighborhood of the puncture associated
to a negative end in T2. If Im(u′) crosses a torus T2±ε along a closed curve, then
last lemma implies that it must have slope∞ and Trapping Lemma should force
the puncture to be positive. The only possibility is that Im(u′) contains a flow
trajectory of the Morse function of T2, which can have only h+ as negative end.

Let us continue to study how Φ-curves can approach the orbits on Ti for
i ∈ {1, 2, 4}. Now we will use arguments similar to that in the proof of Lemma
9.5.1 in [9].

Fix an orbit δ = δiϑ0
⊂ Ti (we are using the notation introduced at the

beginning of this section). Suppose that u contains δ at its negative limit. Given
a thin tubular neighborhood N (δ) of δ in N , look at

Im(u) ∩ {s = s̄} ⊂ W+{s=s̄}, (7.21)
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where s̄� 2 is fixed. If s̄ is small enough, this is a braid around δ contained in
N (δ) with connected components, say, {b1, . . . , bk}, each of which is associated
to an end in δ. Fix the longitude l ⊂ ∂N (δ) for δ, obtained by taking one of
the two curves of the intersection ∂N (δ)∩N{y∈[0,4],ϑ=ϑ0}, oriented as a positive
meridian forK. If m = ∂N (δ)∩S0 oriented in some way, ([m], [l]) is a basis for
H1(∂N (δ)). Suppose [bj] = (fj, gj) ∈ H1(∂N (δ)) with respect to this basis.

Lemma 7.28. Let u be a Φ-curve having some negative end tending to δ = δiϑ0

and let N (δ) and let ([m], [l]) be defined as above. If {b1, . . . , bk} is the bride
given by Equation 7.21 then for any j:

[bj] = (0, gj).

Proof. To prove that fj = 0 we argue as follows. If 0 < ε << 1, consider the
thickened torus Ti,ε = S1 × {y ∈ [i − ε, i + ε]} × S1 ⊂ N and suppose that
N (δ) is thin enough to be contained in int(Ti,ε). Let ([µ±], [λ±]) be a basis of
H1(G+

i±ε) like the basis ([µ], [λ]) defined in the last subsection. Call H the first
homology group of

(
R× (Ti,ε \N (δ))

)
∩W+ (this can be seen as the product of

B+ with the annulus S{y∈[i−ε,i+ε]} with a small disk near δ ∩ S removed). Then
inH we have the relations

[m] = ±([λ+]− [λ−]) (7.22)
[l] = [µ]. (7.23)

where the sign in the first depends on the choice of the orientation of m. Let Aj
be the connected component of u∩

(
R× (Ti,ε \N (γ))

)
∩W+ such that bj ⊂ Aj .

Then obviously
[∂Aj] = 0 ∈ H.

So if fj 6= 0 for some j and ε is small enough, u should cross both G+
i+ε and

G+
i−ε along curves with non trivial homology along the components λ+ or λ−,

which contradicts Lemma 7.24.

7.3.2 Φ is filtered
We are finally ready to prove that the chain map

Φ : ĈF (S, a, φ(a))→ PFC2g(N, ∂N)

of Subsection 4.3 is filtered with respect to the degrees on the knot chain com-
plexes.

Theorem 7.29. For any i ∈ {0, . . . , 2g}:

Φ
(
ĈFK≤i(S, a, φ(a), z)

)
⊂ PFC

h+,e−
≤i (N1, ∂N).
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Observation 7.30. There is here a slight disambiguation in the use of the degree,
due to the fact that we changed definition in this chapter (see Observation 7.14).
Indeed in the definition of the chain complex PFC2g(N, ∂N), the number “2g”
refers to the total intersection of the orbit sets with S, while in the theorem the
“≤ i” refers to the intersection with S ′. In the rest of this section, unless stated
otherwise, we will always refer to the degree deg as to the second interpretation
(which gives the knot filtration in PFH as defined in Subsection 7.1.4). This
degree is then different from the degree of the multisections of W+ counted by Φ
(which is always 2g).

The first problem to face is the good definition of Φ in the theorem. In
fact the image of Φ is contained in PFC≤2g(N, ∂N) but not a priori in the
subcomplex PFCh+,e−

≤2g (N1, ∂N). We have then to prove that there are no Φ-
curves with some negative end that is asymptotic to either {e+} or {h−}.

So far we made assumptions only on the orbits h−, e+ and h+, requiting
that they must be far from the curves of the diagram. Now we need to make an
assumption also on the position of h+, imposing that it must be near the curves
of the diagram: by this we mean that ϑh+ ∈ (0, 4gr), where r is the value used
in Section 4.1 in the definition of the diagram.

Proposition 7.31. Let u : Ḟ → R × N be a Φ-curve negatively asymptotic to
some γ ∈ O≤2g(N). Under the hypothesis made on the orbits and the Heegaard
diagram in N{y∈[0,4]}, we have

γ ∈ O≤2g(N1 ∪ {h+, e−}).

Proof. By Corollary 7.27 u can not have e+ as negative end. Let us prove now
that u can not even have h− as negative end. The proof uses again Wendl’s
holomorphic foliations of [59] and is similar to that of Lemma 7.24.

Let u′ be an irreducible component of u which limits to h− and study the
intersections of u′ with the holomorphic submanifolds Z+

s,ϑ ofW+ defined in the
previous section.

Note first that πR(u′ ∩ {y ∈ [2, 4]}) can not contain the entire cylinder
C([2,4],ϑh− ). Indeed, since ϑh− is far from the curves, the only possibility is
that u′ contains a flow trajectory of the Morse function associated to T2 flowing
from some chords in the direction of ϑh− . This is not possible because of the
fact that e+ is far from the curves and h+ is the minimum of the Morse function
of T2 and it is near the curves of the diagram. In fact the proof of Corollary 7.27
shows that u′ should contain a gradient line of T2 flowing from the curves of
the diagram in the direction of ϑh+; but this is not possible since h+ is near the
curves and so the flow line can not glue with C([2,4],ϑh− ) ∩ T2 along δ2

ϑh−
(which

is far from the curves).
Since ϑh− is far from the curves of the diagram, there exists then ϑ0 close to

ϑh− (and far from the curves) such that:
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1. u′ does not have any end in C([2,4],θ0);
2. Q := πR(Im(u′) ∩ {s ≤ 2}) t C((2,4),ϑ0) 6= ∅.

Figure 7.7: The projection of Q to N . The image of u should approach
C([2,4],ϑh− ) for s tending to −∞ but also to some ϑ near the curves of the di-
agram for s tending to 2.

By 2 there exists s0 such that

〈u′, Z+
s0,θ0
〉 > 0

(since u′ and Z+
s0,θ0

are both holomorphic), while 1 implies that π−1
R (Q) is com-

pact in u(Ḟ ) and
Im(u′) ∩ Z+

s1,θ0
= ∅

for s1 � s0.
On the other hand, for any s′ < s0, Z+

s′,θ0
is homotopic to Z+

s0,θ0
through a

homotopy whose image Z is the union of the submanifolds Z+
s,θ0

, s ∈ [s′, s0].
Since θ0 is far from the curves and Z does not intersect any end of u′

〈u′, Z+
s′,θ0
〉 = 〈u′, Z+

s0,θ0
〉 > 0

and for s′ = s1 we get a contradiction.

Before giving the final part of the proof of Theorem 7.29 we need a last
lemma, whose proof is very similar to that of Lemma 2.17 (avoiding the consid-
erations about the positivity of intersections).

Lemma 7.32. Let u : Ḟ → W+ be a degree k ≤ 2g holomorphic multisection of
W+ with positive end x and negative end γ. Suppose that u is always transverse
to ∂t|G+

3
and does not have any branched point in G+

3 . Then

deg(x)− deg(γ) = 〈u,R× {t0} ×K ′〉

for any t0 ∈ (0, 1) such that the intersections above are transverse.
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Proof. of Theorem 7.29
The proof is very similar to that of Proposition 7.20. By the last Lemma we

need just to prove that
〈u,R× {t0} ×K ′〉 ≥ 0.

Since u is always transverse to ∂t, by holomorphicity it is also transverse to ∂s.
Then u intersects G+

3 transversely along a finite set of simple curves C3(u) =
{c1, . . . , ch} of the following three kinds

1. ∂ci ⊂ R× {0} × (φ(a) ∩K ′) or ∂ci ⊂ R× {1} × (a ∩K ′);

2. ci goes from R× {0} × (φ(a) ∩K ′) to R× {1} × (a ∩K ′);

3. ci is a closed curve.

By Observation 7.26 ci is homologically trivial in H1(G+
3 ) if it is of type 1 and

a meridian for K if it is of type 2 or 3. In any case we can parametrize ci in a
way that ċi = (cs, ct, 0, cϑ) has cϑ always strictly negative, where the coordinates
are expressed in terms of the positive basis (∂s, ∂t, ∂y, ∂ϑ) for TW : since fδ,ε is
positive on {y = 3}, this orientation makes curves of type 2 and 3 homologically
equivalent to positively oriented meridians. Then

〈u,R× {t0} ×K ′〉 =
∑
i

∑
{P∈ci∩(R×{t0}×K′)}

sign(ct)

=
∑

{i|ci of type 2 or 3}

∑
{P∈ci∩(R×{t0}×K′)}

sign(ct)

=
∑

{i|ci of type 2 or 3}

1 ≥ 0

and the result follows.

We end the chapter by observing that Theorem 7.29 is not only interesting
by itself, but it can be seen as a first step in the proof of Conjecture 2.27 in
the case of fibered knots. Indeed, let Ψ : ÊCC∗(Y, α) → ĈF ∗(−Y ) be the
chain map that induces in homology the inverse isomorphism of Φ. Let H (G)
be chain homotopies between Ψ ◦ Φ (Φ ◦ Ψ) and the identity map of ĈF (−Y )

(ÊCC(Y, α)). All these maps are defined (in [10] and [11]) by counting certain
holomorphic curves in symplectic four manifolds with boundary. By standard
results about spectral sequences, if one can prove that all the maps above are
filtered with respect of the knot filtrations on ĈF ∗(−Y ) and ÊCC∗(Y, α), then
conjecture 0.2 for fibered knots is true. Finally, in light of Proposition 6.10, it
should be possible to generalize the result to any knot.
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Thèse de Doctorat

Gilberto SPANO

Invariants de nœuds en homologie de contact plongée

Knot invariants in embedded contact homology

Résumé
Soit (Y, α) une 3-variété de contact et ĤF (Y ),
ÊCH(Y, α) respectivement les homologies de
Heegaard Floer et de contact plongée associées.
Dans une serie d’articles, Colin, Ghiggini et Honda
prouvent qu’il existe un morphisme de chaînes Φ qui
induit un isomorphisme Φ∗ : ĤF (Y )→ ÊCH(Y, α) en
homologie. Étant donné un nœud K dans Y , une
version chapeau ÊCK(K,Y, α) de l’homologie de
contact plongée pour les nœuds est définie dans [13]
et un isomorphisme avec l’homologie de Heegaard
Floer ĤFK(K,Y ) est conjecturé. Ces deux
homologies peuvent être définies comme la première
page de suites spectrales déterminées par des
filtrations induites par K sur des complexes de
chaînes pour ÊCH(Y, α) et ĤF (Y ).
Le but de cette thèse est de fournir des indices sur la
véracité de cette conjecture. On définie une version
complète ECK de l’homologie ÊCK et on généralise
les définitions de ECK et ÊCK aux entrelacs.
On calcule ensuite les caractéristiques d’Euler de ces
homologies pour les nœuds et entrelacs dans les
trois-sphères d’homologie (munies d’une forme de
contact convenable) et on prouve que, dans S3,
l’homologie ECK est une catégorification du
polynôme d’Alexander à multivariables. Ce fait,
associé à un résultat bien connu analogue en HFK,
implique que la conjecture est vraie au niveau de
caractéristiques d’Euler en S3.
Finalement, nous montrons que, à homotopies de
chaînes près, le morphisme Φ préserve les filtrations
du nœud. Ceci peut être considéré comme la
première étape d’une preuve de la conjecture pour les
nœuds fibrés.

Abstract
Given a contact 3-manifold (Y, α), let ĤF (Y ) and
ÊCH(Y, α) be the associated Heegaard Floer and,
respectively, embedded contact homologies. In a
series of papers Colin, Ghiggini and Honda proved
that there exists a chain map Φ that induces an
isomorphism Φ∗ : ĤF (Y )→ ÊCH(Y, α) in homology.
Given a knot K in Y , in [13] a hat embedded contact
knot homology ÊCK(K,Y, α) is defined and an
isomorphism with the hat Heegaard Floer knot
homology ĤFK(K,Y ) is conjectured. These two
homologies can be defined as first pages of spectral
sequences arising from filtrations induced by K on
chain complexes for ÊCH(Y, α) and ĤF (Y ).
The aim of this thesis is to provide some evidences
about the veracity of this conjecture. We define a full
ECK homology and we generalize the definitions of
ÊCK and ECK to any link.
We compute then the Euler characteristics of these
homologies for knots and links in homology
three-spheres (endowed with a suitable contact form)
and we prove that in S3 the ECK homology is a
categorification of the multivariable Alexander
polynomial. This fact, together with a well known
analogous result in HFK, implies that the conjecture
is true at the level of Euler characteristics in S3.
Finally we show that, up to chain homotopies, the
chain map Φ preserves the knot filtrations. This can
be considered as a first step of a proof of the
conjecture for fibered knots.

Mots clés
Théorie des nœuds, homologie de Heegaard
Floer, homologie de contact plongée, polynôme
d’Alexander.

Key Words
Knot theory, Heegaard Floer homology,
embedded contact homology, Alexander
polynomial.
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