Lu ['université 7
nantes [ l
nam .
le mans

POLE DE RECHERCHE ET D'ENSEIGNEMENT SUPERIEUR UNIVERSITE DE NANTES

These de Doctorat

Jinpeng LI

Mémoire présenté en vue de I'obtention du
grade de Docteur de I’'Université de Nantes
sous le label de I'Université de Nantes Angers Le Mans

Discipline : Informatique
Spécialité : Automatique et Informatique Appliquée
Laboratoire : Institut de Recherche en Communications et Cybernétique de Nantes (IRCCyN)

Soutenue prévue le 23 Octobre 2012

Ecole doctorale : 503 (STIM)
Thése n°:

Extraction de connaissances symboliques et
relationnelles appliquée aux tracés manuscrits

structurés en-ligne
Symbol and Spatial Relation Knowledge Extraction Applied to
On-Line Handwritten Scripts

JURY

Rapporteurs : M. Eric ANQUETIL, Professeur des Universités, Institut National des Sciences Appliquées de Rennes
M. Salvatore-Antoine TABBONE, Professeur des Universités, Université de Lorraine

Examinateur : M. Jean-Marc OGIER, Professeur des Universités, Université de La Rochelle
Directeur de thése : M. Christian VIARD-GAUDIN, Professeur des Universités, Université de Nantes

Co-encadrant de thése : M. Harold MOUCHERE, Maitre de conférences, Université de Nantes






Acknowledgements

The subject of this thesis was originally proposed by my supervisors, Prof. C.
Viard-Gaudin and Doct. H. Mouchere. Therefore, specially thank you for my su-
pervisors’ thesis, suggestions, correcting of all my papers, funding of “Allocation
de Recherche du Ministere” and “Projet DEPART™, etc. It is a really new and
challenging subject, which has been largely unexplored until now. Knowledge ex-
traction is not only for prediction, but also for human understanding. In addition,
thanks to many chances of international conference participations (CIFED2010, IC-
DAR2011, KDIR2011, DRR2012, CIFED2012, ICFHR2012), I earned experiences
to talk to people from different countries and known what the other people are do-
ing. Thanks to an opportunity to organize a small seminar “séminaire au vert”
with Sofiane and help a seminar “franco-chinois” in Polytech’Nantes. Thanks also
to academic suggestions from Guoxian, Montaser, Sofiane, and Zhaoxin. Further-
more, thank you for all the people from the team IVC of IRCCyN, e.g. for small
delicious drinkings (“pot” in French) from different countries. I am grateful for ju-
ries and examinator, Prof. Anquetil, Prof. Tabbone and Prof. Ogier, to take the time
to review my thesis.

Concerning living in Nantes, thank you for my friends who helped me: Jiefu,
Hongkun, Junle, LiJing, Jiazi, Dingbo, Zhujie, Baobao, Chuanlin, Fengjie, Hugo,
Baptiste, Zhangyu, Wenzi, He HongYang, Junbin, Zhangyang, Biyi, Shuangjie,
Zhaoxin, Tan Jiajie, Cédric, Dan, Zeeshan, Pierre, Emilie, and so on.

At the end, really thank you for my wife Huanru coming at Nantes for the end

of my thesis, and allowing me that always focus on my interesting works.






Contents

Acknowledgements
Contents
1 Introduction

2 State of the Art
2.1 Symbol Segmentation Using the MDL principle . . . . . . ... ..
2.1.1 ASequenceCase . . . ... ... ... ... ...
212 AGraphCase. .. ... ... ... ... ... ...,
2.2 Spatial Relations . . .. ... ... ... ... ... .. ...,
2.2.1 Distance Relations . . . . .. ... ... ..........
2.2.2 Orientation Relations . . . . . .. ... .. ... ......

2.2.3 Topological Relations . . . ... ... ... ........
2.3 Clustering Techniques . . . . . ... ... ... ... .......
23.1 K-Means . . .. .. ...
2.3.2  Agglomerative Hierarchical Clustering . . . ... ... ..
2.3.3 EvaluatingClusters . . . . . . . ... ... .........
2.4 Codebook Extraction in Handwriting . . . . . . ... ... .....
25 Conclusion . . . . ...

Quantifying Isolated Graphical Symbols
3.1 Introduction . . . . . . .. ...
3.2 Hierarchical Clustering . . . . .. ... ... .. ..........
3.3 Extracting Features for Each Point . . . . .. ... ... ......
3.4 Matching between Two Single-Stroke Symbols . . . . . . ... ..
34.1 Dynamic Time Warping . . . .. ... .. ... ......
3.5 Matching between Two Multi-Stroke Symbols . . . . . . . ... ..
3.5.1 Concatenating Several Strokes . . . . . .. ... ... ...
352 DTWAStar . ... ... ...
3.5.3 Modified Hausdorff Distance . . . . . ... ... ... ...
3.6 Existing On-line Graphical Language Datasets . . . . . .. .. ...
377 Experiments . . . . . . .. ...
3.7.1 Qualitative Study of DTW A* . . . . ... ... ... ...

3.7.2  Comparing Multi-Stroke Symbol Distances Using Cluster-
INg ASSESSMENt . . . . . . . ..o e

3.8 Conclusion . . . . . . . . . .

il

23
24
25
26
28
30
31



v

CONTENTS

4

Discovering Graphical Symbols Using the MDL Principle On Relational

Sequences 63
4.1 Introduction . . . . . . . . .. ... 64
42 OVeIVIEW . . . . . i i e e e 65
4.3 Extraction of Graphemes and Relational Graph Construction . . . . 66
4.4 Extraction and Utilization of the Lexicon . . . .. ... ... ... 68

4.4.1 Segmentation Using Optimal Lexicon . . . . ... ... .. 68

4.4.2 Segmentation Measures . . . .. ... ... ... .. ... 70
4.5 Experiment Results and Discussion. . . . . . .. ... ... .... 72
4.6 Conclusion . .. ... ... . e 74

Discovering Graphical Symbols Using the MDL Principle On Relational

Graphs 75
5.1 Introduction . . . . . . .. ... 76
5.2 SystemOverview . . . . . . . . ... e 77
5.3 Relational Graph Construction . . . . ... ... ... ....... 79
5.3.1 Spatial Composition Normalization . . . ... ... .. .. 79
5.3.2  Constructing a Relational Graph using Closest Neighbors . . 80
5.3.3  Extracting Features for Each Spatial Relation Couple . . . . 82
5.3.4 Quantifying Spatial Relation Couples . . . . . .. ... .. 83
5.4 Lexicon Extraction Using the Minimum Description Length Princi-
ple on Relational Graphs . . . . . ... ... ... ... ...... 84
5.5 Experiments . . . . . . ... 86
5.5.1 Parameter Optimization on the Calc Corpus . . . . . . . .. 87
5.5.2 Parameter Optimization on the FC Corpus . . . . . . . . .. 91
5.6 Conclusion . . . ... ... . 94

Reducing Symbol Labeling Workload using a Multi-Stroke Symbol Code-

book with a Ready-Made Segmentation 99
6.1 Introduction . . . . . . . . . . ... ... 100
6.2 OVerview . . . . . . .. e 102
6.3 Codebook Generation using Hierarchical Clustering . . . . . . . . . 103
6.4 Codebook Mapping from a Visual Codebook to Raw Scripts . . . . 104
6.5 LabelingCost . . . . ... ... ... .. 106
6.6 Evaluation . . . . ... ... ... ... .. ... . 107
6.6.1 Evaluation of Codebook Size: . . . ... .......... 107
6.6.2 Evaluation on Hierarchical Clustering Metrics: . . . . . . . 108
6.6.3  Evaluation on Merging Top-N Frequent Bigrams: . . . . . . 108
6.6.4 Evaluationon TestParts: . . . . .. ... ... ....... 109
6.6.5 Visual Codebook: . . . ... ... ... ... ........ 110
6.7 Conclusion . . . .. ... ... ... e 110

Reducing Symbol Labeling Workload using a Multi-Stroke Symbol Code-

book with an Unsupervised Segmentation 113
7.1 Introduction . . . . . . . ... 114
7.2 Unsupervised Multi-stroke Symbol Codebook Learning framework . 116
7.2.1 Relational Graph Construction Between Segments . . . . . 117
7.2.2  Quantization of Segments (Nodes) . . . . . ... ... ... 118

7.2.3  Quantization of Spatial Relations (Edges) Between Segments 119



CONTENTS A%

7.2.4  Discover Repetitive Sub-graphs Using Minimum Descrip-

tionLength . . . ... ... ... .. .. ... .. ... 119
7.2.5 Iterative Learning . . . . . . . . ... ... ... ... ... 121
7.3 Annotation Using the Codebook . . . . . ... .. ... ...... 122
7.4 Experiments . . . . . . .. ... 125
7.4.1 LabelingCost. . .. ... ... ... .. .. .. ...... 125
742 Results . ... ... .. 127
7.5 Conclusion . .. ... ... ... 131
8 Conclusions 133
9 Résumé Francais 139
9.1 Introduction . . . . . . .. .. ... 139
9.2 Techniquesde Clustering . . . . . . . ... ... ... ....... 145
9.3 Distance Entre Deux Symboles Multi-Traits . . . . .. .. ... .. 146
9.3.1 Définition de la Problématique . . . . . ... ... .. ... 149
9.3.2 Algorithme A* . . . ... ... ... ... ......... 154
9.3.3 Etude Expérimentale . . . .. ... ... ... ....... 156
934 Conclusion . . . ... .. ... 157
9.4 Découverte des Symboles Multi-Traits . . . . . .. ... ... ... 160
9.4.1 Découverte non supervisée des symboles graphiques . . . . 161
9.4.2 Quantificationdes Traits . . . . . ... ... ... ..... 162
9.4.3 Construction du Graphe Relationnel . . . . . ... ... .. 162

9.4.4 Extraction du Lexique par Utilisation du Principe de Longueur
de Description Minimale . . . . . .. ... ... ... ... 163
9.4.5 Evaluation des Segmentations . . . . . ... ........ 165
94.6 Conclusion . . . .. ... ... ... 165
9.5 Description des Bases Utilisées . . . . ... ... .......... 166
9.6 RésultatsetDiscussions . . . . . . . . ... ... L. 167
9.7 Conclusions . . . . . . . . .. e 170
List of Tables 173
List of Figures 178
Abbreviations 179
Symbols 181
Publications 183

Bibliography 190






Introduction

Since paper and pen invention, we human begin to write traces on pieces of pa-
per to save information using different graphical language forms, e.g. text lines
including letters and characters, flowcharts, mathematical equations, ideograms,
schema, etc. The graphical language forms are understandable for human being.
With computer emergence, this information is saved in human-predefined “bit” for-
mat data (e.g. Unicode and UTF for letters and characters, ISIEX for mathematical
equations, markup language standards), which are machine “understandable”. A
machine can easily use bit-format data to display corresponding handwritten traces.
The contrary process is a more-challenging handwriting recognition process, which

automatically translates human handwriting into bit-format data via the machine.

A traditional handwriting recognition system (machine) [1, 2] usually takes ad-
vantage of a training dataset, referred as a ground-truth dataset, to perform some
machine learning algorithms. These algorithms are in charge of two main tasks,
one is to segment the ink traces in relevant segments (segmentation task), then the
second task is to recognize the corresponding segments [2] by assigning them a
label from a set of symbols defined by a given graphical language (classification
task). The problem of symbol segmentation is by itself a very though job. Usually,

to alleviate the difficulties, segmentation and classification tasks are tied so that the



2 INTRODUCTION

classifier can optimize the output of the segmentation stage. In our case, we do not
want to rely on such schema since at that point we ignore the underlying graphical
language, and thus no symbol classifier can be invoked. Our work concerns knowl-
edge extraction from graphical languages whose symbols are a priori unknown. We
are assuming that the observation of a large quantity of documents should allow to
discover the symbols of the considered language. The difficulty of the problem is
the two-dimensional and handwritten nature of the graphical languages that we are
studying.

To deal with the segmentation problem, a naive approach would rely on the
connected strokes. However, a simple symbol equal “=" is composed of two non-
connected strokes. More elaborated works, (symbol relation tree [3], recursive hor-
izontal and vertical projection profile cutting [4], recursive X-Y cut [5], grouping
strokes by a maximizing confidence level [6], etc.) are proposed to study the seg-
mentation problem.

Concerning the recognition of isolated segmented symbols, many classifiers can
be applied: KNN (K-Nearest Neighbor) [7], ANN (Artificial Neural Networks) [8],
SVM (Support Vector Machine) [9], HMM (Hidden Markov Model) [10], etc.

With a traditional approach, and if we are considering the example of math-
ematical expressions as displayed in Fig. 1.1, the graphical symbols are defined
beforehand in the ground-truth dataset. Classifiers are trained to recognize graphi-
cal symbols. After that, unlabeled graphical documents on the left side of Fig. 1.1
can be segmented and recognized as labeled symbol sets shown on the right side.

In other words, many existing recognition systems [1] require the definition of
the character or symbol set, and rely on a training dataset which defines the ground-
truth at the symbol level. Such datasets are essential for the training, evaluation, and
testing stages of the recognition systems. However, collecting all the ink samples
and labeling them at the symbol level is a very long and tedious task, especially for
an unknown language. Hence, it would be very interesting to be able to assist this
process, so that most of the tedious work can be done automatically, and that only a
high-level supervision needs to be done to conclude the labeling process.

Without knowing any symbol of an unknown two-dimensional graphical lan-
guage, creating the high-level supervision is an unsupervised symbol learning pro-

cedure. For instance, given the set of expressions as shown on the left side of



Ground-truth

Classifiers O 06 :5
e.g. KNN IS S
ANN Training | 1 2 2
HMM — 3

Unlabeled | : ==
handwritten symbols

QO+s5=1
S¢1=2 v,
24 1=3 egmae;nda ion
S4+a2=9 recognition

Figure 1.1: Traditional handwriting recognition

Fig. 1.2, we would like to extract the presence of 7 different symbols, represented
by 20 different instances. Thus, only 7 symbol sets instead of 20 symbols have to

be labeled so that symbol labeling workload can be reduced in this example.

Unlabeled
handwritten symbols

QO+Ss5=|
S+1=2

2 + | :2 Symbgl
S + 3___ S Extraction

20 symbols 7 symbol sets
have to be labeled have to be labeled

Figure 1.2: Extracting the symbol set from a graphical language

But the unsupervised symbol extraction procedure is quite difficult. First of
all, no symbol segmentation is defined in a dataset. We consider that a stroke, a
sequence of points between a pen-down and a pen-up, is the basic unit. Should
this assumption not be verified, then an additional segmentation process will have
to be undergone, so that every basic graphical unit, termed as a grapheme, belongs
to a unique symbol. Conversely, a symbol can be made of one or several strokes,

which are not necessarily drawn consecutively, i.e. we do not exclude interspersed



4 INTRODUCTION

symbols.

Fig. 1.3 displays a horizontal stroke which may belong to a single symbol (mi-
nus, “—"), or belong to a part of symbol with the same horizontal stroke (equal,
“=") or another stroke (plus, “+). The difficulty is to find out which combination
of strokes is a symbol. In other words, we first require an unsupervised symbol seg-
mentation method. It is obvious to observe that symbols are somehow “frequent”
spatial compositions of strokes in handwritten equations. For instance, “=", “+4”,
“5” are repeated four times, and “1” is present three times in Fig. 1.2, while there
is a total of 8 vertical strokes including those belonging to the five “+”. Comparing
a repetitive pattern “+1” (three strokes repeated twice) and its sub-part “+” (two
strokes repeated four times), both of them can be a symbol. But which of them is
more likely to be a symbol? In this thesis, we will introduce a criterion, the Mini-

mum Description Length (MDL) principle [11], to determine which of them is more

likely to be a symbol.

Only one stroke

/> — A symbol: minus
A horizontal Duplicated

— —bupicaed, — — A part of symbol: equal

stroke -

With another stroke +  Apart of symbol: plus

Figure 1.3: A stroke may be a symbol or a part of symbol

As the MDL criterion depends on symbol frequencies, it is necessary to count
the number of symbol occurrences. In order to be able to count (or search) effi-
ciently how many instances of single-stroke symbol or multi-stroke symbol (e.g. a
combination of two strokes “+” has four instances in Fig. 1.2), we propose to orga-
nize the two-dimensional graphical language as relational graphs between strokes.
In a graphical language, the symbol counting (searching) problem therefore be-
comes a sub-graph searching problem.

For example, the first two mathematical expressions of Fig. 1.2 could be repre-
sented by the two graphs in Fig. 1.4, and the symbols are sub-graphs in the graphs.
To avoid an ambiguity with the strokes coded by the same representative grapheme,

all the strokes are indexed by a different number (.). A relative problem is how to



learn relationships (e.g., Right, Intersection, Below, etc.) between strokes, called
spatial relation, in the relational graphs. If such relations are exhibited in a graph,
we can see that multi-stroke symbols “+”, “5”, and “=" will be present. The multi-
stroke symbols could be sought in graphs. Hence, with the help of a discovery

criterion based on a graph description, we should be able to produce a symbol seg-

mentation.
Expressions Relational Graphs Legend
R, I @R -"5"
,,,,,,,,, Q—»== »| =5, - Segmentation
PN i T— SR AT A ,
D) —|® b n_n ¢ R | [ Intersection
® S R o B w R Y | R Right
o| < — - =0 - NIg
B: Below
ngn
¢ R w R 7 1(12'; "I (): Stroke Index
S — = |

Figure 1.4: Expressions and corresponding relational graphs

Once the segmentation is available, as shown in Fig. 1.5, a clustering technique
is needed for sorting symbols according to different shapes (right side of Fig. 1.5).
In order to implement the clustering technique, a distance should be developed be-
tween two graphical symbols. According to the number of symbol strokes, we can
divide the distance computation approaches into two kinds of problems, two single-
stroke symbol comparison (a simple case) and two multi-stroke symbol comparison
(a more complicated case). Two single-stroke symbols comparison can be well
solved by Dynamic Time Warping (DTW) [12].

Nevertheless computing the distance between two multi-stroke symbols is more
difficult since two writers may write a visually same symbol with different stroke or-
ders, different stroke directions, and even different stroke numbers. It seems appro-
priate that the distance should be independent of these variations. To reach this goal,
we will introduce a stroke-order-free, stroke-direction-free, and stroke-number-free
distance.

Taking a two-stroke symbol “+” as an example, it could be written with four



6 INTRODUCTION

Unlabeled
correctly segmented symbols

Clustering
between
symbols
20 symbols 7 symbol sets
have to be labeled have to be labeled

Figure 1.5: Correctly segmented symbols are grouped into clusters

different ways (four instances of a symbol “+”") as shown in Fig. 1.6. The number
of handwritten ways increase fast in terms of stroke number. Traditionally in on-
line handwriting, we will concatenate strokes in a symbol instance by a natural
written order, and then a distance between two symbol instances can be obtained
by Dynamic Time Warping (DTW) algorithm [12]. However, with different written
orders and written directions, the distance between same symbols will become large.

We will discuss the complexity of this problem later in this thesis.

(1)—% (1)4-&’ (2)—% (2)4%

@ @ (M (@)

Figure 1.6: Four different handwriting trajectories for a two-stroke symbol “+”

Once we have selected a distance between symbols, we use a clustering tech-
nique for grouping symbols into several sets. From each set, we choose a repre-
sentative sample. The representative samples are stored in a visual codebook as a
visual interface for human being, in which we can manually annotate symbols. Nev-
ertheless unsupervised symbol segmentation is non-trivial. It is difficult to generate
perfect symbol segments; each of them containing exactly one symbol instance. A
segment may contain several symbol instances, or a symbol instance and half in
case of under segmentation problem. In the visual codebook, a user (human being)
can easily separate symbol instances. Nevertheless the system has to find a correct
stroke mapping from labeled samples to raw samples.

Fig. 1.7 shows the case where a frequent pattern “4-1” is considered as a symbol



instance. In fact, this segment contains two symbol instances. A visual codebook
produced from this segmentation is illustrated in Fig. 1.8. A user can easily separate
the segment “+1” into two isolated symbol instances, “+” and “1” in the visual
codebook. This will require a multi-symbol mapping from labeled samples to raw

samples.

Unlabeled
not perfect segmented symbols

Clustering
between
symbols
20 symbols _
have to be labeled 8 symbol sets

have to be labeled

Figure 1.7: A not perfect symbol segmentation (“+1” is defined as a symbol)

Visual Codebook

=+ + 113]2[01&10

+1 3 2 0 5 1

Figure 1.8: A visual codebook for user labeling

After the presentation of the problems that we want to address with the help
of this example of mathematical expressions, we can introduce the general scheme
that will be developped all along this document. It is presented in Fig. 1.9, and we
will refer to this figure to position the different contributions that are described in
the following chapters of this document.

In this thesis, Chapter 2 discusses works relevant to our topic. It contains several
parts: symbol segmentation using the MDL principle, spatial relation modeling,
clustering techniques and its evaluation, codebook extraction. In a graphical lan-
guage, we need to first segment symbols, and then give labels to them. The MDL
principle will be introduced to extract symbols. We propose to model the graphi-

cal language as relational graphs by defining nodes as strokes and edges as spatial



8 INTRODUCTION

relations. After that, we group symbols into sets (a codebook) with similar shapes

using clustering techniques.

Graphical sentences
r N
Strokes Hierarchical
clustering
Chapter 3 < ¢
! —
Quantization of strokes Quantization of segments
\ Graphemes
A
» 4 ¥’
Graph construction Graph construction using
starting with top-left stroke neighbor strokes (segments)
Using 3 predefined spatial relations: #
right, below, intersection
Edge labelling
with unsupervised
spatial relations
Sequences ¢
# Graphical symbol
Graphical symbol extraction extraction based on
based on the MDL principle the MDL principle (SUBDUE) |
Chapter 4 Chapter 5 | Chapter 7
\ / New
Topn symbols | segmentation
Graphical symbols : ™ Vvia
; merging strokes
¢ in new symbols
Symbol Recall Rate
Chapter 6
Ground-truth Connected-Stroke Symbol segmentation
Segmentation Segmentation based on
the MDL principle
Respectively 1 | (MDL+Iteration)

and compared

P

Symbol Codebook

_>

User Labeling
and mapping to raw data,

Labeling cost

Figure 1.9: Thesis global view




Chapter 3 introduces the problem of quantifying isolated graphical symbols. We
first choose a clustering technique for quantifying graphical symbols. The clustering
technique requires a similarity between two symbols. Feature extraction in our
system will be discussed for the similarity between two single-stroke symbols (a
simple case) and two multi-stroke symbols (a complex case).

We try to set up a graphical language as relational graphs using predefined spa-
tial relations, which are limited as Directed Acyclic Graphs (DAG). DAG are then
transformed into sequences in Chapter 4 so that text mining technique can be ap-
plied. Chapter 4 shows some encouraging results where some lexical units are suc-
cessfully extracted.

In order to be capable to process a more general two-dimension graphical lan-
guage, we extract spatial relation features within three levels in Chapter 5: distance
relation, orientation relation, and topological relation. The spatial relations can be
embedded into a fix-length feature space. In feature space, we can cluster spatial
relations into several prototypes. Furthermore, a more general relational graph (not
limited to a DAG) can be produced. Chapter 5 shows how to extract sub-graphs in
these produced relation graphs using the Minimum Description Length (MDL) prin-
ciple, which is an algorithm that minimizes the description length of an extracted
lexicon and relational graphs using the extracted lexicon. The lexical units could
have a hierarchical structure.

We can use this unsupervised symbol learning method for an application that re-
duces symbol labeling workload. During symbol extraction, a symbol segmentation
will be generated. We can use the symbol segmentation to generate a codebook. A
tentative test with ready-made segmentations is shown in Chapter 6. We also pro-
pose a multi-symbol mapping method to solve the situation where several symbols
are mixed in a cluster, and propose a labeling cost to evaluate how much work has
been reduced. Chapter 7 finally presents an experiment very closed to a real context:
it uses the unsupervised symbol segmentation to reduce symbol labeling workload.
In this chapter we show that the spatial relations and symbol definitions are linked
and we propose an iterative extraction of them.

In the next chapter, we will present the state of the art about relative works.






State of the Art

In this chapter, we will present relevant works linked to the background of this
thesis. As mentioned in the introduction, traditional handwriting recognition sys-
tems rely on ground-truth datasets, which contain correctly segmented and correctly
labeled symbols. However, the tasks consisting in the segmentation and annotation
of a document at the stroke level is non trivial. The Minimum Description Length
(MDL) principle is a possible solution to produce an unsupervised segmentation
with a labeling at the symbol level. Thus, we will first present in Section 2.1 the
MDL principle. Since as mentioned in the introduction, a graphical language will
be modeled as relational sequences and relational graphs, the MDL principle will be
explained with two simple examples on relational sequences and relational graphs
respectively. These two examples are inspired by [11] and [13]. Secondly, the mod-
eling of sequences and of graphs need spatial relations. Section 2.2 presents how
to model spatial relations between objects used in current recognition systems. Af-
ter the unsupervised symbol segmentation using the MDL principle, we propose to
group segmented symbols into a codebook using a clustering technique. Several
clustering techniques and their evaluation will be discussed in Section 2.3. We can
therefore label symbols from the codebook rather than each symbol in the dataset.

The codebook generation will be presented in Section 2.4. Consequently, more

11



12 STATE OF THE ART

symbol labeling workload could be saved, and the ground-truth dataset could be

built more easily.

2.1 Symbol Segmentation Using the MDL principle

In offline handwritten annotation, [14] proposes a similar concept that helps to
give labels to Lampung characters from an Indian language. Few people know this
language. During the creation of training datasets which contains labeled charac-
ters, it is time-consuming to assign large-scale characters with corresponding cor-
rect labels by limited number of people who understand Lampung characters. The
proposed system in [14] groups Lampung characters into several clusters accord-
ing to different shapes. We can therefore give labels to clusters rather than to each
character. The experiment results show that this procedure can save most of hu-
man work. However, the critical problem of symbol segmentation has not been
discussed[15]; all the isolated characters were correctly segmented in advance. In
this thesis, an important contribution is to automatically generate a segmentation at
the symbol level so that we can give labels on each cluster to reduce human symbol
labeling cost.

To tackle the symbol segmentation problem, [16] uses convolutional deep belief
networks for a hierarchical representation (segmentation) on two-dimensional im-
ages. Some meaningful frequent patterns (faces, cars, airplanes, etc.) are extracted
at different levels. Moreover, several other works are using heuristic approaches
[17] for text segmentation. One famous approach is using the Minimum Descrip-
tion Length (MDL) principle [18]. The MDL principle’s fundamental idea is that
any regularity can be used for compressing a given data [19]. In our case, we would
like to extract lexical units that compress a graphical language. An iterative al-
gorithm is proposed in Marcken’s thesis [11, 20] to build the lexicon from texts,
which are character sequences. The principal idea of this algorithm is to minimize
the description length of sequences by iteratively trying to add and delete a word,
in terms of the MDL principle [18]. Ref. [11] reports a recall rate of 90.5% for text
words [20] on the Brown English corpus [21], which is a text dataset. We propose
to extend this kind of approach on real graphical languages where not only left

to right layouts have to be considered.



SYMBOL SEGMENTATION USING THE MDL PRINCIPLE 13

Formally, given an observation U, we try to choose the lexical unit v which

minimizes the description length:

DL(U,u) = I(u) + I(U|u) @2.1)

where I(u) is the number of bits to encode the lexical unit v and I(Ulu) is the
number of bits to encode the observation U using the lexical unit u. To understand
the MDL principle on texts, in the next section, we will give an example showing

the general idea.

2.1.1 A Sequence Case

We describe a simple example inspired by [11] to give the general idea of the
MDL principle. The aim is to find a lexicon [20] using the MDL principle. We

analyze the expression “1234 — 2/1234” as a sequence of graphemes:

U=1(1,2,3,4,—,2,/,1,2,3,4). (2.2)

For simplicity, spatial relations are omitted, but they have to be taken into ac-
count in a real algorithm. The description length of U in MDL can be represented
by DL(U) = I(U), where I(U) is a code length function that is equal to the
number of characters, e.g. I(U) = 11. We assume that u is a lexical unit, ob-
tained by a simple concatenation of elementary symbols of the language alphabet.
DL(U|u) = I(U|u) + I(u) represents the sum of the code length after U is com-
pressed by replacing instances of u (Viterbi representation in Fig. 2.1 [11]), and the
code length of .

To have a better understanding, we try to analyze the description length with
three different lexicons, (1) a lexicon without any lexical unit, (2) a lexicon includ-

ing the discovered lexical unit

LU_2=(1,2,3,4),

and (3) the lexicon including the discovered lexical unit (the whole expression):

LU_3=(1,2,3,4,—,2,/,1,2,3,4).



14 STATE OF THE ART

In Tab. 2.1, we have three lexicons, Ly, L, and L3 to interpret U by Viterbi

representation [11]. Intuitively Lo is the best lexicon since L, contains a word

“1234”.

Table 2.1: Three lexicons
<1a273747 _727/7 1a27374)

for the sequence of graphemes U

L {}

Description Length of U: DL(U) =11

Ly {LU_2=(1,2,3,4)}

Viterbi representation (U|LU_2): | LU_20 (=)o (2)o (/) o LU_2
Code length of (U|LU_2) I(UILU_2) =5

Code length of (LU_2): I(LU_2) =4

Description length:

DL(U[LU_2) = I(U|LU_2) + I(LU_2) = 9

L

{LU_3=1(1,2,3,4,—,2,/,1,2,3,4)}

Viterbi representation (U|LU_3):

LU_3

Code length of (U|LU_3):

I(UILU_3) =1

Code length of (LU_3):

I(LU_3) =11

Description length:

DL(UILU_3) = I(U|LU_3) + I(LU_3) = 12

The Viterbi representation is used to interpret U by matching the longest se-

quence in Ly shown in Fig. 2.1. For example, U is interpreted by L as (1,2,3,4) o

(—)o(2)o(/)o(1,2,3,4) where o is a concatenation. Comparing the three lexicons

in Tab. 2.1, we found that L, reports the minimum description length, which means

(1,2,3,4) is the best lexical unit.

An algorithm to build the optimal lexicon is presented in [20] using the MDL

principle. In this algorithm, a word is iteratively added or removed in order to

minimize the description length until the lexicon cannot be changed. Thus, we get

an optimal lexicon L on the training handwriting database containing the sequences

of graphemes/relations. In the next section, we will introduce an example using the

MDL principle on graphs.

U (L2,3,4)0(=)o(2)o(/

(1,2,3,4)

Figure 2.1: Viterbi representation




SYMBOL SEGMENTATION USING THE MDL PRINCIPLE 15

2.1.2 A Graph Case

A graph is an interesting data structure to describe documents at different lev-
els. For instance, in off-line data (images), [22] first groups basic units (pixels) into
regions, and then defines graphs between regions. A colour segmentation process
is therefore proposed based on the graphs. Similarly, we can describe an on-line
graphical language with a graph approach; strokes, which are the basic graphical
units, define the nodes and they are connected by edges according to some spatial
relations. In this situation, unlike the sequence case, the search space for the combi-
nation of units which makes up possible lexical units is much more complex since
it is no longer a linear one. Thus, a graph mining technique is required to extract
repetitive patterns in the graphs. To perform such as task, SUBDUE (SUBstructure
Discovery Using Examples) system [23] will be introduced. It is a graph based
knowledge discovery method which extracts substructures (sub-graphs) in graphs
using the MDL principle. Ref. [13] gives the precise definition of DL(G,u) on
graphs. The system SUBDUE iteratively extracts the best lexical unit (substruc-
ture) using the MDL principle. A unit could be a hierarchical structure [24] built
with a recursive approach.

Formally, we assume that /(u) denotes the sum of the number of nodes and
edges for encoding (description length) a graph u. (G|u) represents a graph whose
instances of sub-graph u are replaced by a new node. I(G|u) means the sum of
the number of nodes and edges from a graph (G|u). The strokes in the expressions
as shown in Fig. 1.4 are labeled with a codebook defined in Fig. 2.2. Note that a
label (grapheme) from the codebook may be used for several strokes. For instance,
the label “b” will be used for several different strokes of the expressions, a piece of
the ‘4’ sign, a bar of the ‘5’, the ‘=" symbol. The corresponding labeled graphs G
are displayed in Fig. 2.3. We can find that DL(G) = I(G) = 30. Now we try to
compress GG by replacing instances of a symbol u*“=" as shown in Fig. 2.4 (I (u)=3),
and then a compressed graph (G/|u) is obtained in Fig. 2.5 where I(G|u) = 26. Thus
DL(G,u) = I(u)+I(G|u) = 29. We have reduced by 1. Hence, the token u =“="
could be taken into account as a lexical unit.

In order to assess two extraction methods (in the sequence case and in the graph
case), two graphical languages will be presented in Section 3.6: a single-line math-

ematical expression corpus and a more general two-dimension flowchart corpus.



16 STATE OF THE ART

Codebook
Shape | ) | — | | S 2

Label a ' b c|d e

Figure 2.2: Example of codebook used for coding expressions of Fig. 1.4

1(G)=30
(g R (12)c
aop R amp T R I @ R
P - - > (3)b
- ‘ O > — > ‘ > S(4)d
R (Da
(16) " " n_mn ¢ R
e oy e SOOI
B R R B
(15)b (14) i (7b (6)b -
2 < e (8)"‘ = ' er

Figure 2.3: Original Graphs

Lexical unit "=": Iw)=3 L ¢~ 2

Figure 2.4: An extracted lexical unit

1(Glu)=26
R o (b (3e R I @ R
St s T o fhe L,
LR (1a
(16)e R R . ¢ R
2<~ n_n < ‘(13)0 (g)c‘ < n_n  q——=0Gb

Figure 2.5: Compressed Original Graphs



SPATIAL RELATIONS 17

Single-line mathematical expressions are suitable for sequence mining. Flowcharts
are more challenging, and they will require to develop graph mining approaches.
As a preliminary step, it is necessary to transform the set of strokes into a relational
graph. To obtain such a representation, we need to define and model the spatial

relations that link strokes together. This points will be presented in the next section.

2.2 Spatial Relations

All communication is based on a fact that participants share conventions that
determine how messages are constructed and interpreted. For graphical communi-
cation these conventions indicates how arrangements, or layouts, of graphical ob-
jects encode information. For instance, graphical languages (sketch, mathematical
or chemical expressions, etc.) are composed of a set of symbols within some con-
straints. These constraints could be the grammar of this language, the layout of
symbols, and so on. Furthermore, the symbols are also composed of a layout of
strokes. The layout means that elements (symbols, strokes) are arranged in the two
dimensional space, so that we can build a coherent document. Fig. 2.6 illustrates
two handwritten documents, a handwritten mathematical expression and a hand-
written flowchart. Spatial relations specify how these elements are located in the

layout.

N\
Yoo =20 1L
(a) (b)

Figure 2.6: Two different handwritten graphical documents: (a) a handwritten math-
ematical expression, (b) a handwritten flowchart.

As an example, suppose that we have a set of two different shapes of strokes
called graphemes {\, /}. We assume that these graphemes are well detected by a
clustering algorithm as discussed in Chapter 3. Using these two graphemes, we can
compose two different symbols:“A” and “V”. A difference between “A” and “V” is
the spatial relation; “\” is put on the right side in “A” and on the left side in “V”".

These spatial relations, left and right, are easily defined manually.



18 STATE OF THE ART

With more graphemes and more spatial relations, it is possible to design new
symbols. For instance, using a set of graphemes {\, —, /}, we can compose a sym-
bol “V” with three strokes “\(1)”, “—(2)”, and “/(3)”. We can say “—)” is between
“\(y” and “/(3)”. In this case, between implies a relationship among three strokes,
which is a cardinality of this spatial relation [25]. In this work, we limit the cardinal-
ity of spatial relation to two strokes, from a reference stroke to an argument stroke.
However, with only three strokes, we have to consider six different stroke pairs to
envisage all appropriate alternatives, for example “\(1) = —2)”, “—@2) = \@)"»
“\ay = /(3)”, etc. The number of spatial relation couples will grow rapidly with an

increasing number of strokes in the layout [26].

A traditional modeling of spatial relation is represented at three levels [25, 27]:
topological relations, orientation relations, and distance relations. The topological
characteristics are preserved under topological transformations, for example trans-
lation, rotation, and scaling [28]. The orientation relations calculate directional
information between two strokes [29]. For instance a stroke A is on the right of

another stroke B. The distance relations describe how far two strokes are.

Most of existing systems dealing with handwriting need some spatial relations
between strokes. For instance, [29] uses a fuzzy relation position (orientation re-
lations) for an analysis of diacritics on on-line handwritten text. In [30], authors
add a distance information to design a structural recognition system for Chinese
characters. In the context of handwritten mathematical expression recognition in
[31, 32], authors use the three levels of spatial relations to create a Symbol Relation
Tree (SRT) using six predefined spatial relations: inside, over, under, superscript,
subscript and right. Spatial relations are also useful in automatic symbol extrac-
tion as in our work [26, 33]. In short, we automatically extract graphical symbols
from a graphical language with a simple set of predefined spatial relations. Our ap-
proach was successfully tested on a simple mathematical expression database. We
predefined three domain specific relations (right, below, and intersection) to create
a relational graph between strokes. The creation of this relational graph starts with
the top-left stroke because of the left to right handwriting orientation. In the rela-
tional graph, repetitive sub-graphs composed of graphemes and predefined spatial

relations are considered graphical symbols.

Using a simple set of predefined spatial relations obviously is not enough for



SPATIAL RELATIONS 19

describing “a new” (or “an unknown”) complex graphical language. We may lose
some unknown spatial relations which are important for a specified graphical lan-
guage. Let us consider differences between 9 different layouts of the 2 previous
strokes {\,/}: “\/” “Vv7, “/\7, CA7, 0, <, 427 4> and “x”. We want to
distinguish these 9 layouts. We assume “\” as the reference stroke and “/” as the
argument stroke. If we categorize these layouts by intersection, two groups will
be obtained: {*\/”,/\”, “<”, “="} and {“V”, “A”, “<7, “>7, “x”}. If we cat-
egorize these layouts by four predefined directions (right, left, above, and below)
of “\”, four groups will be obtained: {“\/”,“V”}, {“A”, “/\”}, {*<7, “<”}, and
{“=”, “>7} with the confusing layout “x”. The combination of left (directional
relations) and intersection (topological relations) allows the distinction of these 9
layouts. However, there are many combinations of spatial relations in a complex
graphical language. It is hard to manually predefine all the useful combinations of
spatial relations.

As mentioned in this section, topological relations, orientation relations, and
distance relations are the three levels of traditional modeling of spatial relation. In
order to understand this traditional modeling, we will introduce the three levels of

spatial relations in the next three sub-sections.

2.2.1 Distance Relations

A distance relation denotes how far apart two objects are. In a simple case,
we can assume that two objects are considered as two points pt; = (z1,y;) and
pta = (x2,7y2). In analytic geometry [34], the distance between two points is given

by the Euclidean distance:

dist(pty, pta) = \/(x1 — 22)% — (1 — 12)2. (2.3)

However, when two objects are very near, their shapes cannot be ignored. Each
object in on-line handwriting is a set of points. To describe how far apart two objects
are, we need a distance between two point sets. The Hausdorff distance H D(.,.) is

a metric between two point sets obj; = {pt;} and obj; = {pt;} [35]:

H D(0bj;, 0bj;) = max(hd(obyj;, 0bj;), hd(obj;, 0bj;)) (2.4)



20 STATE OF THE ART

where hd(obj,,obj,) = max min (dist(pt,,pt,)). Nevertheless in general,
Pta€0bjz ptyEobjy

Hausdorff distance is used for matching two pattern shapes instead of measuring

how far apart two objects are. In this thesis, we will meet many graphical symbols

arrows which connect symbols. If the Hausdorff distance is used, it will generate

a large distance. We prefer a distance by choosing the closest point pair C PP(.,.)

between two point sets:

CPP(obj;,obj;) = min min (dist(pt;,pt;)). (2.5)

pl;€obj; pt;Eobj;

Fig. 2.7 shows an example for explaining why we choose the closest point pair.
Three graphical symbols in a flowchart are illustrated in Fig. 2.7. For a logical, or
functional interpretation of this flowchart, from the circle symbol we have to move
to the arrow and then to the rectangle. To obtain this sequence, it will be necessary
to consider that the arrow is closer to the circle than the rectangle. It will be the case

if CPP(, ) is used as the distance instead of HD( , ) since

CPP(“Clircle”, “Arrow”) < CPP(“Circle”, “Rectangle”) (2.6)

while

HD(“Clircle”, “Arrow”) > HD(“Clircle”, “Rectangle”), (2.7)

we can choose “Arrow” as the next symbol.

Circle

Rectangle

Figure 2.7: Which is the closest symbol from the symbol “Circle”?

In the next section, we will introduce orientation relation describing directional

information between objects.



SPATIAL RELATIONS 21

2.2.2 Orientation Relations

Orientation represents some directional information, e.g. east, west, south,
north, etc. We can say a symbol is located at the south side of another symbol
[25]. In this section, we will introduce a fuzzy directional relation between two
graphical symbols [29, 36]. Ref. [29] shows that the directional relation not only
depends on the positions of two symbols, but also on the shapes of two symbols.

In a fuzzy directional relation, we have to define a reference symbol R and an
argument symbol A with respect to a reference direction U .. The angle function

varying in the boundary [0, 7| is defined by:

B(P,Q) = arccos(c?’;2 H ) (2.8)

where (P, P) = 0. Thus taking an argument point P into account, we use the
minimum value ,,;, among all the reference points () € R for defining a directional

angle:

Bmin(P) = argmin ||5(P, Q)]|. (2.9)
QER

In order to normalize it from [0, 7| to [0, 1], a simple linear function is applied:

2ﬂmin(P)

™

fo(R)(P) = max(0,1 — ). (2.10)

Considering the whole argument point set A, we can accumulate y,(R)(P) for all
the points, and then normalize it. Thus, we can compute a relative direction value
MZE(A) between a reference symbol R and an argument symbol A, with respect to

a reference direction u_a):

MEA) = 20 ol R)@) @.11)

zeA

Taking a reference symbol “2”” comparing an argument symbol “5” as an exam-

ple in Fig. 2.8 and a reference point P, we search for the minimum f angle. After

that, we accumulate 1, (R)(P) for all the points in an argument symbol A using
Eq. 2.11).

Eq. (2.11) works well for comparing two objects in raster graphics (image) [36].



22 STATE OF THE ART

Figure 2.8: Fuzzy relative directional relationship from a reference symbol to an
argument symbol with respect to a reference direction in Ref. [29].

In images, each object is composed of pixels. Two consecutive points in each stroke
is connected. Nevertheless in on-line handwriting, in each stroke, two consecutive
discrete points have some space between them according to resampling frequency.
Ref. [29] points out that using Eq. (2.9) between two consecutive points will gener-

ate a “comb effect”.

In order to avoid this effect, Ref. [29] redefines (3 (see Eq. (2.9)) from , to
Q? by the counter-clockwise direction. Hence, 3 is located in the range [0, 27].
Considering a stroke composed of only one point, we just use the original definition
B shown in Eq. (2.9). Usually a stroke are composed of several points. Each time,
we consider a pair of consecutive points. We go through all the pairs of consecutive
points (); and (), to compute two angles [3; and (3, respectively. If one 3 is in
[0, 7/2] while the other is in [7/2, %], B,,;,(P) will be zero. Otherwise, By, (P)

will be computed as usual using Eq. (2.9).

Fig. 2.9 shows two general cases for § computation. The first case is when [
is in the range [0, /2] while 3, is in the range [7/2, 27| on left side of Fig. 2.9.
It means P is located between two consecutive points at the reference direction i,
side. It implies that there is a middle point between (); and (). The middle point
makes that f3,,,,(P) = 0. The second case is that both 3 are in the range [7/2, 2]

and then (3,,;,, is computed as usual using Eq. (2.9).

In this subsection, the orientation relation have been introduced. In the next

section, we will study the last topological relation.



SPATIAL RELATIONS 23

Figure 2.9: New /[ function to avoid a comb effect Ref. [29]

2.2.3 Topological Relations

The topological characteristics are preserved under topological transformations
for example translation, rotation, and scaling [28]. A simple example of topological

relation in Fig. 2.10 is the intersection of two strokes.

Topological

transformations
1. Translation
/—\R>
Intersection
A
2. Rotation
=

A
3. Scaling

Figure 2.10: Topological transformations

\J

To automatically generate topological relations, [37] develops formal catego-
rization of binary topological relations between regions, lines, and points. Given
a geometric object A, we can define the set-theoretic closure as A, the bound-
ary as 0A, the exterior A~ = U — A (where U is the universe), and the interior
A° = A — OA. A could be any geometric object, e.g. regions, lines, points, etc.
In on-line handwriting, we will analyze spatial relations between strokes (lines).
We use an example for explaining how to categorize binary topological relations
between two lines. Eq. (2.12) shows a binary relation matrix between two objects
(lines) A and B where () means no intersection between them while they are inter-
sected using —(). Fig. 2.11 shows a corresponding topological relation between two

lines. Ref. [37] deduces 33 relations which can be realized between simple lines



24 STATE OF THE ART

using the binary relation matrix.

B° 0B B~
A° -0 0 -0 2.12)
0A o 0 -0

g
J
=
J
=
J
=

Figure 2.11: Corresponding topological relations between two lines in [37]

In our work [38], we first define spatial relation features at the three levels,
and then use a clustering technique to discover spatial relations rather than some
predefined spatial relations. The learned spatial relations (edges) are applied to
discover the graphical symbols in relational graphs. In the next section, we will
discuss the clustering techniques which will be used to generate spatial relation

prototypes and to generate graphical symbol prototypes.

2.3 Clustering Techniques

It exists many clustering methods in the state of the art: k-means [39], Self-
Organizing Map (SOM) [40], Neural Gas (NG) [41], Growing Neural Gas (GNQG),
hierarchical clustering [42], etc. The clustering algorithm k-means consists in iter-
atively seeking k mean feature vectors (prototypes), and then n samples are parti-
tioned into £ clusters in which each sample belongs to the cluster with the nearest
prototype (center). The sample space is divided into Voronoi cells. However, the
k prototypes are independent from each other. SOM, NG, and GNG contain some
topological relationships between prototypes. SOM, a kind of artificial neural net-
work, can produce a discretized representation as a fixed lattice in a low-dimension
(typically two-dimension) space of the input space of training samples. We can

see the lattice as a map for data visualization. Rather than the fixed lattice, NG



CLUSTERING TECHNIQUES 25

has a more flexible topological relationship between prototypes. In the fixed lat-
tice, neighbors of a prototype are fixed while neighbors of a prototype in NG can
be changed. A modified version of NG is GNG whose prototype number can be
changed. It starts with a small prototype number, and prototypes could be added or
be removed in each iteration. Hierarchical clustering seeks to build a hierarchy of
clusters. Two general approaches exist: agglomerative (bottom up) and divisive (top
down). Divisive clustering is conceptually more complex than agglomerative clus-
tering [43]. In this thesis, only two clustering techniques will be used, k-means for
spatial relation learning and agglomerative hierarchical clustering for multi-stroke

symbol learning. In the next section, k-means will be presented in detail.

2.3.1 K-Means

The algorithm k-means is seeking k mean vectors (prototypes) M = (pu1, fta, - fik),
which correspond to k classes, Q2 = {C,Cs,...Cy}. We assume n samples X =
(21,9, ..., v, ) and know the number of clusters % in advance. Firstly, & samples are
randomly selected for the cluster centers to initialize the k-means iterative proce-
dure. For each iteration, we have to update each sample membership and recalculate
the prototypes M.

In order to simplify the description of this problem, only the square Euclidean
distance has been considered. We define the membership function P(C;|x,) that
determines whether z,, € X belongs to the class C; with the mean vector f; using

the nearest squared Euclidean distance ||z, — 1|

1 if p; = argmin ||z, — py|?
P(Cilx,) = Hi €M (2.13)

0 otherwise
Eq. (2.13) is applied for allocating each sample for its cluster. After each sample
gains a cluster, we have to update all the mean values ) using an iterative equation

Eq. (2.14).

(2.14)

> P(Cilzy)xy,
pi = =
k

il P(Cilay)

A pseudo algorithm for k-means clustering is defined as:



26 STATE OF THE ART

1. Begin.
2. Initializing a number of clusters k, and (M = p, ya, ...1x) randomly.

3. Allocating all the samples with its cluster using the square Euclidean metric

via Eq. (2.13).
4. Updating mean values via Eq. (2.14).
5. If mean values are changed, we go to the step 3.

6. End.

Consequently, & prototypes are attained until means values are stable. The algo-
rithm A-means can be easily implemented. Once we embed data into a fixed-length
feature space, k-means can be used for clustering. In the next section, we will

introduce agglomerative hierarchical clustering.

2.3.2 Agglomerative Hierarchical Clustering

Rather than embedding data into a fixed-length feature space, agglomerative hi-
erarchical clustering require only a pair-wise distance matrix between all the data.
It starts a clustering procedure with singleton clusters; every single data is a cluster.
Given data X = {1, 29, ..., 2, }, each of them is a cluster Q = {C1,Cy, ...,C,}
where C; = {z}. The algorithm of agglomerative hierarchical clustering is de-

scribed as:

1. Begin.

\S)

. Searching for the cluster pair with the closest distance, (7, j) = arg min dist(C;, C}).

Ci,C]‘GQ
3. Merging two sets C; and C; becomes a new cluster C, and 2 = (2 — C; —
C;) U Cy.
4. Return to the step 2 until clustering results satisfy a criterion.
5. End.

In this algorithm, dist(C;, C;) represents a distance between two clusters. At
the end, we will get a dendrogram that records each distance when two clusters
are merged. In this thesis, six distances will be used, Single, Average, Complete,

Centroid, Median, and Ward.



CLUSTERING TECHNIQUES 27

1. Single: Single metric computes the smallest distance between two clusters.

dist(C;, C;, Single’) = min ||z — /|| (2.15)

zeC; ,I/EC]'

2. Average: Average metric computes the average distance between two clusters.

dist(C;, C;," Average') = min ||z — 2'|| (2.16)

n;n; zeC;,2'eCj
3. Complete: Complete metric computes the largest distance between two clus-
ters.

dist(C;, C;, Complete’) = max ||z — || (2.17)

acECi,a:’ECj

4. Centroid: Centroid metric computes the Euclidean distance between the cen-

troids of two clusters.

dist(C;, C;,' Centroid') = ||m(C;) — m(C})|| (2.18)

where m(C;) = ‘01,| > .
! zeC

5. Median: Median metric computes the Euclidean distance between weighted

centroids of two clusters.
dist(Cy, Cy,' Median') = ||z — 7'|| (2.19)
where 7 is created by a fusion of two clusters p and ¢ and 7 is recursively
defined as:
B
T = 5(% +z,) (2.20)

6. Ward:

Ward uses an increase of sum of squares as a result of joining two clusters.

2|Cy] |G|

dlSt(C“ Cj,, WCLTd,) = m
? J

[Im(Cs) —m(C5)]] (2.21)

In this thesis, we will use these six metrics for grouping multi-stroke symbols.

In the next section, two criteria will be introduced for evaluating clustering results.



28 STATE OF THE ART

2.3.3 [Evaluating Clusters

After generating clusters, we need measures for evaluating quality of the dis-
tances mentioned in this chapter. A better clustering method should attain a high
intra-cluster similarity and a low inter-cluster similarity. In this thesis, we will apply
both Purity and Normalized Mutual Information (NMI) [43, 44] for quality assess-
ment.

We accumulate the biggest numbers of major class in each cluster, and Purity
is equal to a ratio of the sum of accumulation and the total data number. A for-
mal definition of Purity is described as following. Given a set of clusters {2 =

{w1,wa, ..., wy, } and a set of classes C = {c1, ¢y, ..., ¢;}, Purity is defined by:

1
purity($2,C) = N Z rcr_lgéqwk N¢jl, (2.22)

w €N
where /N is the number of all the data (symbols). We can see that more clusters, and
a higher purity. Singleton clusters reach the highest purity of 1.
Rather than a simple criterion Purity, NMI will be penalized by an increasing

number of clusters. NMI is defined by:

I1(92;C)
NMI(Q,C) = ’ : 2.23
N (O RSP 229
I is the mutual information between € and C ! defined by:
P(wiNe;
H90) = % 5 Plue)log i,
— Z Z |wkr"|cj| 10 N|wkr"|c]-| (2.24)
ol V & Twrlles|

where NN is the number of all the symbols, and P(wj, N ¢;) denotes a probability of
a symbol being in the cluster wy, and in the class c; (the intersection of wy, and c;).

H is the entropy as defined by:

H(Q) =— > P(wy)log P(wy)
wi €S . (2.25)
== 3 gy

wi €N

NMI in Eq. (2.23) is in a range between 0 and 1 [43]. NMI= 0 means a random

1. In this thesis, log uses a base of 2 as default.



CLUSTERING TECHNIQUES 29

choice on classes. A higher value is preferable. We can see that NMI in Eq. (2.23)
is normalized by [H (2) 4+ H(C)]/2, a function in terms of the cluster number where
H(C) is invariant with the cluster number and H (2) reaches the maximum value
log N forn, = N.

However, for two clustering results with the same number of clusters || =
||, a higher Purity(Purity(2;,C) > Purity(s,C)) does not mean a higher
NML. It is possible that: NMI(€y,C) < NMI1(,,C).

For example, Fig. 2.12 displays |€2;| = 3 clusters containing digits with |C| = 3
labels (classes), C = { “27, “4”, “7” }. In total, there are N = 18 instances of

symbol.

Cluster 1 Cluster 2 Cluster 3

Figure 2.12: Example of three clusters for three classes (three handwritten digits
662”’ 664”, and 667”)

Purity can be easily computed by:

A+5+4
Purity(Qy,C) = % = 0.72, (2.26)

and the mutual information between €2; and C is defined by:

1 18 x 4 18 x 1 18 x 1
1(0,:C) = —(4 x 1 1x1 1x1
(2;€) = g xlog 7= + 1 x log 7=m 4 1 x log =
18 % 1 18 % 5 18 % 1
1x1 1 1x1 227
Hlxlog ===+ 0 ) log === 4 1 X log === (2.27)
18 % 1 18 x 4
1x1 0+4x1 — 0.33.
1 xlog == 40+ 4 xlog ——=)

The entropies of €2, and C are computed by:

6 6 7 7 5 5
H(Q)=—-1x —log(—=) —1x —log(—=) — 1 x —log(—) = 1.57, (2.28



30 STATE OF THE ART

and

6. 6 6. 6 6 6
H(C) = —1x —log(—=) — 1 x —log(==) — 1 x —log(~=) = 1.59. (2.29
(C) X 1glog(3g) =1 x gglos(yg) — 1 x g log(g) (2.29)

At the end, the normalized mutual information is obtained by:

0.33
NMI(Qy,C) = =0.21. 2.
(1, C) (1.57 + 1.59)/2 0 (2.30)

Fig. 2.13 shows two distribution matrix for two clustering results respectively.
The example in Fig. 2.12 is represented by the distribution matrix in Fig. 2.13a. We
change the distribution from €2y to {25 in Fig. 2.13b by keeping 3 clusters. Purity
and NMI are obtained in Fig. 2.13c. The scatter non-major classes result in lower

NMI(€q,C) even £ has a higher purity.

C C
ONYIREH R O 2| 4| 7 Purity NMI
I 41 1 11410 Q1072 021
2 1|5 2 2053 Q067 | 037
301 /04 3]0 03
(a) (b) (©

Figure 2.13: Two clustering results (a) and (b) with a same number of 3 clusters

In the next section, we will present relative works on generating a codebook
in handwriting using clustering. The interest of this codebook, when available, is
to allow the user to manually labeled each symbol, eventually containing several

strokes, and then to propagate this labeling to the raw data.

2.4 Codebook Extraction in Handwriting

In this section, we discuss the codebook generation at two levels: the single-
stroke symbol level and the multi-stroke symbol level.

Extracting a codebook from single strokes in the field of both offline and on-line
handwriting has gained increased attention. Many offline biometric systems [45—

47] generate a codebook using a clustering method (e.g. k-means, self-organizing



CONCLUSION 31

map, etc.) so that a codebook-based probability distribution function can be em-
ployed to identify or verify the writers. It is necessary to cut the offline ink (to
segment it) beforehand [45, 46], then basic components are extracted for generating
the codebook. In these cases the codebook aims to be representative of a writer,
but not to match to language symbols. Considering the on-line handwriting, basic
elements are the strokes, so we can build directly a codebook at the single-stroke
level in this thesis.

A multi-stroke codebook based on the k-means algorithm is built in [39] for
clustering the different allographs of the same letter but beforehand a complete seg-
mentation and recognition tool is applied on the text document. Varied features are
used for this clustering. The two-dimensional graphical symbols containing sev-
eral strokes are re-sampled into a fixed number of points, and then embedded in
a feature vector space so that we can compute a distance between two graphical
symbols. However, the order of strokes has not been discussed; the embedding
is stroke-order-sensitive. We need a stroke-order-free algorithm to obtain the dis-
tance between two graphical symbols composed of many strokes; writers may copy
a same symbol with different stroke orders and different stroke directions. More-
over, segments comprising different numbers of strokes would be the same symbol
(stroke-number-free problem). In our work, we make use of a Modified Hausdorff
Distance (MHD), which is widely used in contour matching on offline data (im-
ages) [35, 48], in order to avoid the problem of stroke-order, stroke-direction, and
stroke-number (see Section 3.5.3 in detail).

After codebook generation, we have to manually label symbols. [14, 15] only
give a label to a correctly segmented character. In reality, it is difficult to build
clusters that contain only well segmented symbols. Many clusters would mix the
symbols with the sub-parts of other symbols. We have to create a symbol mapping
from labeled symbol instances to raw symbol instances. Furthermore, we need a

criterion for evaluating how much work we have been reduced.

2.5 Conclusion

Building the ground-truth dataset at the symbol level is a tedious work. Two

main steps exist in the ground-truth dataset creation: symbol segmentation and sym-



32 STATE OF THE ART

bol labeling. We propose to organize the graphical language as relational sequences
and relational graphs. The MDL principle on sequences and on graphs have been
presented to automatically generate the symbol segmentation. We can group seg-
mented symbols into a codebook using clustering algorithms. A codebook will be
generated so that we can label symbols at the codebook level, which can save sym-
bol annotation workload. In the next chapter, we start to discuss several similarities
between two isolated symbols and symbol quantization using hierarchical cluster-

ing. The multi-stroke symbol codebook can be generated for labeling.



Quantifying Isolated Graphical
Symbols

As every instance of a handwritten graphical symbol is different one from the
other because of the variability of human handwriting, it is of prime importance to
be able to compare two patterns and further more to define clusters in the feature
space of patterns which are very similar. In this chapter, we introduce a hierar-
chical clustering which is convenient in a context of unsupervised clustering. This
clustering algorithm requires a pairwise distance matrix between all the graphical
symbols. We mainly discuss a distance between two graphical symbols which are
two sets of sequences. According to the composition of graphical symbol, we can
divide discussion into two categories, a distance between two single-stroke symbols
and a distance between two multi-stroke symbols. With respect to the first category,
the famous Dynamic Time Warping (DTW) based distance allows an elastic match-
ing between two strokes. It is considered as an efficient algorithm for single stroke
patterns. To deal with multi-stroke patterns, a first solution consists in a simple con-
catenation of the strokes respecting a natural order, which is most of the time the
temporal order. However, as we will see with some examples introduced later in this

chapter, this solution is not always satisfying. To allow more flexibility in the con-

33



34 QUANTIFYING ISOLATED GRAPHICAL SYMBOLS

struction of the stroke sequence we will propose a novel algorithm, called DTW-A*
(DTW A star). As it turns out to be a very time consuming method, we have also
proposed a modified Hausdorff distance (MHD) to allow even more flexibility in
the matching process while reducing the computation time. In that last case, all the
temporal constraints of the point sequences are ignored. To analyze the behavior of
these distances and of the hierarchical clustering algorithm, two datasets have been
considered. One is the Calc dataset, it is composed of single line mathematical ex-
pressions, the second one is more challenging, it is the FC dataset with handwritten

flowcharts.

3.1 Introduction

In on-line handwriting, basic elements are strokes. Each stroke contains a se-
quence of points, from a pen-down point to a pen-up point. Hence, the stroke is
oriented. A graphical symbol is composed of one or several strokes. To automat-
ically quantify graphical symbols, a clustering technique is required for grouping
symbol shapes. As reminded in the state of the art section, it exists many clustering
methods, hierarchical clustering [42], k-means [39], self-organizing map [40, 49],
neural gas [41], etc. For implementing the clustering, a common necessary condi-
tion is to be able calculate a distance (or a similarity) between two symbols. In this
chapter, we will discuss the distance between two isolated multi-stroke graphical
symbols, equivalently between two sets of point sequences.

Different people may write a visually same symbol with different stroke direc-
tions and different stroke orders. In writer identification, these characteristics can
efficiently distinguish writers [39]. However, to understand or communicate the
same symbol written by different writers, stroke direction and stroke order should
be ignored. We human read handwritten symbols without knowing the stroke direc-
tion and the stroke order. For instance, a symbol containing a horizontal stroke “—”

can be written by two different approaches, from left to right “—” or an inverse way

13 2

7.
DTW (Dynamic Time Warping) is an algorithm which computes a distance be-
tween two single-stroke symbols. It obeys a continuity constraint and a boundary

constraint during point-to-point matching [12]. These two constraints will be elabo-



INTRODUCTION 35

rated in Section 3.4.1. Comparing two opposed direction strokes, the distance DTW
dist prw (—, <) naturally produce a large value because of two inverse directions.
A simple solution is to choose the smallest distance between two possible direc-
tions of one stroke: min(dist prw (—, <), distprw (inv(—), <)) where inv(.) is
an operator of reversing stroke trajectory direction.

However, when comparing two multi-stroke symbols, the number of possible di-
rections and orders increases very fast in terms of a growing stroke number. Tab. 3.1
illustrates an example of how to write “E” within four strokes. With this example,
384 different writing sequences are possible. This example shows the complexity
of combinations of different stroke directions and stroke orders. In general, the

number of different temporal writing ways for a symbol is given by:

Sy =N!x2V=2x N x Sn_ (3.1

where N is the stroke number of a symbol. For calculating the distance DTW
between two multi-stroke symbols, a simple solution is to concatenate the strokes

using different stroke directions and stroke orders.

Stroke Combination
Number | Example|  Nymber Writing Method Temporal Illustration
™) ®
1 —_— 2 —_— -
2 — 8 andudih — = > < ¢
- e = — = | —p — —) —
— — = :
IS 48 — | > :
4 |— 384

Table 3.1: Variability of stroke order and direction in an on-line handwritten symbol

For example, for the distance DTW between |: (4 strokes) and E (2 strokes),
we should calculate 384 x 8 = 3092 possible combinations. This large combina-
tion number is due to different writing orders of N strokes (/V!) and due to the two
directions of each written order (27V).

In a more extreme case, we can get rid of all the temporal information and con-
sider the symbols as a set of points ignoring the sequences they produce. This leads

to use the Hausdorff distance [35]. This metric is used in image processing domain



36 QUANTIFYING ISOLATED GRAPHICAL SYMBOLS

[35]. More formally the Hausdorff distance is defined in Eq. (2.4). Furthermore,
another varied version is a modified Hausdorff distance [48]. But the matching of
these two distances does not verify the intra-sequence continuity constraint.

The continuity constraint mentioned before concerns the temporal dimension.
Many works [50-52] extend the temporal continuity constraint (temporal sequence
warping) to a spatial continuity constraint in two spatial dimensions (two-dimension
warping). But the temporal continuity constraint of sequences is ignored. In this
chapter, we proposed a distance DTW A* between two multi-stroke symbols by
keeping the temporal continuity constraints.

Once a distance is selected, hierarchical clustering is used to group symbols
into n,, clusters. At the end, we will introduce cluster quality criteria for comparing
performance between distances.

In this chapter, we will first present the clustering technique for grouping sym-
bols in Section 3.2. To implement the clustering technique, we will study three
distances using proposed local features between two symbols in Section 3.4 at a
single-stroke symbol level and in Section 3.5 at a multi-stroke symbol level, and
then the distances will be compared in Section 3.7 using cluster quality criteria in-

troduced in Section 2.3.3.

3.2 Hierarchical Clustering

At that stage, we assume that all the symbol instances are well segmented in
the handwritten documents. The goal of this chapter is to quantify these symbol
instances; grouping the instances into n, symbols. A clustering technique is used
for producing a codebook (a symbol set), which is then brought into play for com-
puting the membership of each symbol instance. We have chosen an agglomerative
hierarchical clustering [42] since it only needs a pairwise distance matrix between
all the segments. Furthermore, we can also easily tune the number of prototypes
from the dendrogram. We use the Lance-Williams formula [42] which provides an
efficient computational algorithm to generate a dendrogram. Then, the membership
of symbol instance is generated: all the instances are grouped into n,, clusters (sym-
bols). In the next section, we will present local features for each point, and then

three distances using these features will be introduced for implementing hierarchi-



EXTRACTING FEATURES FOR EACH POINT 37

cal clustering.

3.3 Extracting Features for Each Point

In this section, for designing a distance between two symbols, 12 local features
for each point will be extracted. We assume a multi-stroke symbol which is a set of
point sequences (strokes) sym = {stry, strq, ...}. Each stroke is a point sequence,
str = (p(1),...,p(¢ — 1),p(i), p(i + 1), ...) where a point p is defined by its coor-
dinates (x, y). For being size independent, the symbol should be normalized into a
reference bounding box {z € [—1, 1],y € [—1, 1]} by keeping an original ratio, and
re-sampled into a fixed number of points. During re-sampling, handwriting velocity
information is lost since we only need a shape characteristic.

The designed features should be independent of a written trajectory direction.
In addition to raw data (x, y), we use local orientation features, a local curvature
(cosine) and a binary pen-up and pen-down information to have a 12-feature local
description of a point. We assume three consecutive points: p(i — 1), p(7), and
p(i + 1). Three levels of features are defined: coordinate level, orientation level,
and curvature level. The coordinate level uses only x and y coordinates.

We assume a reference orientation. Usually between a written orientation and
the reference orientation, two supplementary angles can be easily found: one is in
the range [0, 7/2] and another is in the range /2, 7|. The sum of these two angles
is equal to 7. We define the angle located in the range [0, 7/2] as . A similar-
ity is computed as cos(f) for a reference orientation. We can observe that when
6 = 0,cos(0) = 1 (the same orientation), and when 6 = 7/2, cos(7/2) = 0 (two
orthogonal orientations). Hence, concerning a reference orientation, a directional
feature will be obtained.

Fig. 3.1 shows an example for the written direction “p(i — 1) — p(i + 1)”
and a reference orientation. Two supplementary angles are found, 6 € [0, 7/2] and
0" € [r/2,7]. We choose 6 to calculate the similarity as cos(#) with respect to the
reference orientation. One reference orientation corresponds to one similarity of
written direction. In this example, we can see the reference orientation separates
the directional space into two symmetry spaces, left and right. Obviously, for each

written direction, we can find another written direction with the same similarity



38 QUANTIFYING ISOLATED GRAPHICAL SYMBOLS

value. For instance, two different written directions, “p(i — 1) — p(i + 1)” and
“p(i — 1)) — p(i + 1), have the same similarity of the reference orientation.

Thus, to avoid this ambiguity, we add another orthogonal reference orienta-
tion as shown in Fig. 3.2. In this figure, two reference orientations (Refl, and
Ref2) are used to measure the written direction “p(i — 1) — p(i + 1)”. We as-
sume that 6 = 7/4. Considering the two reference orientations, a feature vector
(cos(m/4), cos(m/4)) will be obtained. However, we can also find another sym-
metry written direction, which can contribute the same feature vector (cos(mw/4),
cos(m/4)). This written direction is illustrated in Fig. 3.3. We can use “p(i — 1) —
p(i+1)”and “q(i — 1) — ¢(i + 1) as the two new reference orientations. Hence,
this ambiguity can be avoided.

Similarly, adding more reference orientations can avoid this ambiguity. In this
thesis, we use eight reference orientations to define 8 features. The reference ori-
entations are defined in Fig. 3.4. Each reference orientation shifts to another by

/8.

A written orientation: cos(e)

p(i+l) & where o=[0,7/2]

p(iJ;I)'

Figure 3.1: Defining a reference orientation, and its similarity value between the
reference orientation and a written orientation

The curvature angle ¢ in Fig. 3.5 is between “p(i) — p(i — 1)” and “p(i) —
p(i + 1)”. The curvature angle here is only expressed in cosine, but not in sine.
Since the curvature angle varies only in [0, 7] and its corresponding cosine value
range is in [—1, 1] which is a bijective function.

A binary pen-up (-1) and pen-down (1) information is the last feature. To com-

pare two multi-stroke symbols, the basic DTW algorithm first links the different



EXTRACTING FEATURES FOR EACH POINT 39

A Feature Vector
Ref1 Ref2

p(i+1) O

Ref = Reference Orientation

cos(n/4)

A Feature Vector

Ref1l Ref2
——=> (cos(n/4), cos(n/4) )

Ref = Reference Orientation

q(i+1)

Figure 3.3: The symmetry written direction with the written direction as shown in
Fig. 3.2

strokes together to form a unique stroke. Fig. 3.6 shows an example of a two-stroke
symbol “4”. The two strokes are concatenated to one stroke. A new stroke is inter-
polated. Points in the two original strokes are marked with a pen-down (+1), and

interpolated points in the new stroke are marked as a pen-up feature (-1).

Using these 12 features, the Euclidean distance dist(pt, pt2) between two points
pty and pt, can be calculated in a 12-dimension feature space. In the next two sec-
tions (Section 3.4 and Section 3.5), we will discuss distances between two symbols

(single-stroke and multi-stroke) applying the Euclidean distance dist(pty, pts).



40 QUANTIFYING ISOLATED GRAPHICAL SYMBOLS

Ref 5

Ref 6 Z Ref 4

Ref7 22.5° Ref3
22.5°
Ref 8 22.5 Ref 2
22.5° 22.5°
p x Refl

Figure 3.4: Eight reference orientations

p(i-1)

p(i+1)O

Figure 3.5: A curvature feature of the point p(3)

3.4 Matching between Two Single-Stroke Symbols

In on-line handwriting, basic elements are strokes. Each stroke is a point se-
quence. A simple case is when each symbol contains only one stroke. Therefore,
we can consider each stroke as a temporal sequence. Calculating a distance between
two strokes is then possible using the DTW (Dynamic Time Warping) algorithm
[12]. In this section, we will give a brief description of DTW as an introduction for

the multi-stroke symbol matching case.

3.4.1 Dynamic Time Warping

We assume that two strokes (two time-varying-data sequences) denoted as:



MATCHING BETWEEN TWO SINGLE-STROKE SYMBOLS 41

Interpolated Points
. Pen-up: -1

(1) Pen-down: 1

(2) Pen-down: 1

Figure 3.6: A binary pen-up (-1) and pen-down (1) feature

S1 = (p1(1), ..., p1(N1))

and

Sy = (p2(1), ..., p2(Na2))

will be compared. The algorithm DTW can be used for calculating the distance
between two sequences whose data vary in time. This method has been applied first
in speech processing aiming at matching two temporal varing acoustic samples.
Analogously, on-line handwritten strokes contain temporal varing information, and
can be matched by the algorithm DTW. Even it is time-consuming, many works

[12, 53, 54] have shown its efficiency.

Main principles of the algorithm DTW [12] are summarized as follows. Given
a warping path P(h) = (i(h),j(h)),1 < h < H defining point-to-point associated
pairs where h is a pair index from the i(h)zh point in S} and from the j(h)th point

in SQ.

P(h) should respect a boundary constraint and a continuity constraint. The first

boundary constraint is defined by:

P(1) = (i(1),4(1)) = (1,1),
P(H) = P(i(H), j(H)) = (N1, Ny).

(3.2)

It means that the first two beginning points should be matched in the two strokes,
and so do the two ending points. Eq. (3.3) explains the second temporal continuity

constraint:



42 QUANTIFYING ISOLATED GRAPHICAL SYMBOLS

(1,0)or
(& i(h), 8 j(h)) = (i(h) —i(h = 1),j(h) = j(h = 1)) = 4 (0,1)or  (3.3)
(1,1).

This constraint implies the point-to-point matching shift between two sequences
is at most and at least one. In addition, all the points are matched at least once.
Calculating the distance between two sequences involves the search of a warping
path (a point-to-point associated pair sequence) that minimizes the sum of the point-

to-point associated cost function:

D(S1, 85) = min > dist(py(i(h)), p2(i(h)); (3.4)

where dist(.,.) is the Euclidean distance in the point feature space as defined in
Section 3.3. This classical DTW distance should be normalized by the number of

couples:

DIW(S1, ) = 3 min'S" dist(py (i(1)) p2 (1) (35)

The solution for Eq. (3.4) can be resolved by dynamic programming. The dy-
namic programming searches the minimum warping path from a cumulative dis-

tance matrix :

D(i—1,j;h—1)
D, jih) = d(ps(i), p2(j)) + min{  D(i,j— 1;h— 1) (3.6)
D(i—1,j—1;h—1),

with D(4, j;0) = O for initialization. Once the cumulative distance matrix is com-
puted, we can use backtracking to find the minimum warping path.

Fig. 3.7 illustrates an example of matching two single-stroke symbols. The start-
ing point couple is marked with two red circles. We search the minimum warping
path with Eq. (3.6). We first compute a cumulative distance matrix as explained in
Fig. 3.8. The best warping path can be found by backtracking [55] from the end-
ing point couple to the starting point couple to obtain: P(1),...,P(9) = (1,1), (2,2),
(3,3), (3,4), (4,5), (5,5), (6,6), (6,7), (6,8). We can see that once we define the start-



MATCHING BETWEEN TWO MULTI-STROKE SYMBOLS 43

ing point couple and the ending point couple, the best warping path will be found.
In the next section, we will introduce a comparison between two sets of point se-

quences.

The Starting
Point Couple

Figure 3.7: Two point sequences (two single-stroke symbols)

The Starting

Point Couple ' S L o R S : 2
S
2 2 133
s aoe3 5
P 45 122
5 5.5 69 112
N=6 95 © 8 7 68 67 82102 Backtracking

Figure 3.8: The cumulative distance matrix D(i, j; h) of Eq. (3.6) illustration and
the best warping path.

3.5 Matching between Two Multi-Stroke Symbols

At the beginning of this chapter, we have analyzed the complexity of the com-
parison between two multi-stroke symbols. In this thesis, we will discuss three
different methods for measuring the distance between two multi-stroke symbols.
The first one is when all the strokes in a symbol are concatenated by a natural
handwritten order. Thus, the multi-stroke comparison problem is converted to the
single-stroke comparison problem. We proposed a second method, named DTW A*

(DTW A star), which searches the best warping path between two stroke sets [56].



44 QUANTIFYING ISOLATED GRAPHICAL SYMBOLS

The third distance, modified Hausdorff distance (MHD) which usually measure the
distance between two raster graphics, will be used for matching two handwritten
graphical symbols. In the next three sub-sections, these three approaches are dis-

cussed respectively.

3.5.1 Concatenating Several Strokes

The first method is to simply concatenate several strokes in the symbol by a
natural handwriting order. A simple example of concatenation is shown in Fig. 3.6,
and the symbol “4” is converted into an single-stroke symbol. The information of
pen-up is designed for penalizing the different number of strokes. After concate-
nating strokes, we can use DTW to compute the distance between two single-stroke

symbols using the features in Section 3.3. We call this method as classical DTW.

3.5.2 DTW A Star

People write a multi-stroke symbol with different specified handwriting orders.
The handwriting order and direction depend on many factors, e.g. education, habi-
tation, personal habits, etc. The stroke order of symbol is not invariant to different
people handwriting habits. As analyzed in Tab. 3.1, the combination number of
stroke orders and stroke directions is too large. It is too time-consuming to try all
the concatenations of a multi-stroke symbol. In this section, we propose a new
distance comparing two multi-stroke symbols by keeping the continuity constraint.

For explaining our distance, we use as dynamic programming a point-to-point
distance matrix. Given two multi-stroke symbols as shown in Fig. 3.9, rows and
columns of this matrix represent the two symbols respectively. The strokes of one
symbol are placed in one side (rows or columns). The respective position of the
strokes in the two sequences is irrelevant and has not to respect the temporal order.

The main idea consists in iteratively constructing a small warping path until all
the points are used. Once we choose a starting point couple, four possible directions
of warping path are possible. Each direction represents a point-to-point distance
matrix for matching two strokes or two sub-parts from two strokes. In each iteration,
we search a warping path, which minimizes warping cost and which finishes at least

one stroke (the classical DTW shown in Fig. 3.8). For finding the best warping



MATCHING BETWEEN TWO MULTI-STROKE SYMBOLS 45

path, four cumulative distance matrices (Fig. 3.9) are explored for four directions
respectively.

For example, given two symbols, one contains two strokes while the other con-
tains one stroke. The two strokes of the first symbol are placed in rows and the
stroke of the second symbol is placed in columns (one for each point) as shown in
Fig. 3.9. Once we defined a starting point (the blue rectangle in Fig. 3.9), there are

four possible matching directions (four possible warping paths).

Symbol 2
Str3

CDM L — » CDM2

Strl e Four directions
Symbol 1 CDM4‘/ é YCDM3

Possible Ending Point
Str2 CDM:
Cumulative Distance Matrix

Figure 3.9: Defining a starting point couple (the blue rectangle) and finding a warp-
ing path between a 2-stroke symbol (symbol 1) and a single-stroke symbol (symbol
2) in four directions.

In each cumulative matrix, we can apply the classical DTW algorithm as men-
tioned in Section 3.4.1 to find the minimum cost warping path. We allow, however,
DTW to not stop at the diagonal opposed point (the ending point) in the cumulative
distance matrix, but along the borders of the matrix (red squares).

In fact in Fig. 3.8 we can find that the warping path stopping at P(9)=(6,8) is
not the best as the distance increases after P(7). We can cut this warping path by

choosing the minimum distance among the points of the cumulative matrix edges:

D(1,Ns), D(2, Na), ..., D(N1, N2)

and

D(N17 1>7D(N172)7 "'7D(N17N2)‘

In reality, we first calculate the whole cumulative distance matrix until the end of
both two strokes. Then the warping path will stop at finishing at least one of two

strokes. Thus a new ending point couple will be obtained. For example in Fig. 3.8,



46 QUANTIFYING ISOLATED GRAPHICAL SYMBOLS

we choose the sub-path:(1,1),(2,2),(3,3),(3.4),(4,5),(5,5),(6,6).

With this strategy, starting point couples are chosen for associating the two sub-
sequences with respect to the continuity constraint in each step. In each step, we
repeat to choose a starting point couple from non-used points from the two strokes.
The searching procedure will be finished until all the points are associated in the
warping path. Our objective is to find the warping path that minimizes the associ-
ated cost in Eq. (3.4). The distance of DTW A* also is normalized by the number
of couples in Eq. (3.5).

Fig. 3.10 shows the best warping path for associating two sets of point se-
quences. This solution contains four DTW sub-warping paths, which are obtained
from step 1 to step 4. The matching directions are not necessary the same. We will
search a set of sub-warping paths which minimizes the associated cost (the sum of
point-to-point distances).

However, there is a large number of possibilities. For searching the best warping
path, we will use an A* algorithm [57] which accelerates the search as discussed in

the next section.

A* Algorithm

In this section, we will use an A* algorithm (A star) [57] to limit some futureless
explorations. The A* algorithm iteratively searches the best path in a graph (a tree
in our case) from the starting node (empty associated point) to the ending node (all
associated points). However, not all the possible trees are generated because of a
heuristic function in the A* algorithm. In each step, only the best hypothesis is
explored for the next step.

Fig. 3.11 shows the problem complexity. In fact, there is a large number of
possibilities for choosing the starting point couples. From these point couples, there
are many potential ending point couples. Since the warping path will cut a stroke
into several pieces, the number of possible combinations becomes larger than that
in Tab. 3.1.

The A* algorithm uses a distance-plus-cost heuristic function f(z) = g(x) +
h(z) of each step x. The cost g(x) gives the cost of best warping path from the
starting step to the current step x, and the heuristic cost h(z) estimates the minimum

distance to the ending step. Ref. [57] describes the A* algorithm in detail. In this



MATCHING BETWEEN TWO MULTI-STROKE SYMBOLS

47

Strl

Str2

Syml Sym?2

Str3

(a) First step

Syml Sym?2

Strl

Str2

Syml Sym?2

Str2
S S N
@ A
S a0

(b) Second step

Syml Sym?2

@ ; ; ;
L ; | |
L . : :
L i . .
[ wv.w : :
® A i
L i
L :
L H
s =
(c) Third step

Strl

Str2

o0 000 0000

(d) Fourth step

Figure 3.10: A solution of warping path between two symbols (graphic and matrix

views)



QUANTIFYING ISOLATED GRAPHICAL SYMBOLS

Best warping path

Str3|

Syml Sym2

Strl?ux'

Str3|

Syml1

N *
Strl?i &

Figure 3.11: An illustration of searching complexity for the best warping path



MATCHING BETWEEN TWO MULTI-STROKE SYMBOLS 49

section, we define the two functions, g(x) and h(z) for our problem. Considering
the heuristic distance h(.), it should be as larger as possible but equal to or less than
the optimal distance (no estimation) for going to the ending step, which means that
h(.) is admissible.

We first define each step x by a warping path P,(h) = (i.(h),j.(h)), 1 <
h < H, between the two symbols Syml = (pi(1),...,p1(N1)) and Sym2 =
(p2(1), ..., p2(N2)). The warping path is a sequence of associated index pairs. Its

cost is defined by the sum of pair costs:

g@) = 3 dist(p: (i(h)), pali(h))). 3.7)

We define a set of non-used points NU Pt(Sym, x) for a symbol Sym in a step x.

The heuristic cost h(.) therefore can be defined by :

1
h(z) = §(hsub(x, Syml1, Sym2) + hg(x, Sym2, Sym1l)), (3.8)
where
hauw (2, SymA, SymB) = > dist(p (i), ppv(p1, SymB))
p1(1)ENUPt(SymA,x) (39)
ppu(p1, SymB) = argmin  dist(py, p2(J))-

p2(3)ENUPt(SymB,x)

This heuristic distance h(.) is admissible because we always choose the minimum
distance between the two sets of non-used pair points during associating the point
pairs.

Even using the A* algorithm to accelerate the searching, the number of combi-
nations is still large. In order to furthermore reduce the number of combinations,
we try to limit the number of choosing starting point couples rather than using all

the non-used point couples. This strategy will be developed in the next section.

Choosing Starting Point Couples

Generating next steps from the step x, we have to choose a non-used starting
point couple, which is used for starting up two sequences with a matching in four
directions in maximum. For each direction, a new step will be obtained. Even the

A* algorithm can reduce the searching complexity, there are still many possibilities



50 QUANTIFYING ISOLATED GRAPHICAL SYMBOLS

using all the non-used points for a next step. In this section, we propose a strategy
for limiting the starting point couple generation.

We define the non-used segments in the step x for each stroke in a symbol
Sym by Segs(Sym,x). The boundary points of these segments are defined by
FSeg(Sym,z). A set of new starting point couples {(p;,p,)} between two sym-
bols, Sym1 and Sym2, are produced from F'Seg(Syml, z) to the closest points in

Segs(Sym, x), and vice versa :

{(pi,pj)} =
{Vp; € FSeg(Syml,x),Vseg € Segs(Sym2,x), (pi, ppv(pi, seg))} (3.10)
u

{Vp; € FSeg(Sym2,x),Vseg € Segs(Syml,x), (ppv(p;, seg),p;)}

Fig. 3.12 shows the possible starting point couples of the first step in Fig. 3.10
which is as considered as the step z. In this case, it exists three starting couples,
they are (P1, P6) with only one direction, (P1, P8) with two possible directions and
(P5, P11) with only one possible direction. In the general case, up to four directions
have to be considered. All the possibilities will be explored by the A* algorithm for

searching the best warping path.

Syml Sym?2

P10
P11 <> Boundary points

Step x

Figure 3.12: Three starting point couples of the first step in Fig. 3.10

Note that the starting point selection (and also for the ending points) leads to
two properties of DTW A* :

— Quality of the final solution: if some possibilities are too limited, we cannot



MATCHING BETWEEN TWO MULTI-STROKE SYMBOLS 51

arrive at the best solution,

— Running speed: limiting the possibilities and the branches explored from the

current step can make the system faster.

The proposed method in this section is named DTW A*. Even we have opti-
mized a lot the A* algorithm in term of time, it is still time-consuming and memory-
consuming (storing a large number of hypotheses). More details will be given in the
experimental Section 3.7. Beam searching is a possible solution. It is still difficult
to use it in practice. In the next section, we will discuss a faster distance, a modified

Hausdorff distance, which is similar to the heuristic function of Eq. (3.8).

3.5.3 Modified Hausdorff Distance

The algorithm DTW A* is too slow and too much memory cost in practice. In
this section, we will introduce a modified Hausdorff distance (MHD) [35, 48, 58]
that is faster with a low memory cost between two multi-stroke symbols.

We assume two multi-stroke symbols, Sym1 = {p;(1), ..., p1(N1)} and Sym?2 =
{p2(1),...,p2(N2)}. MHD is defined by:

MHDsym(Symb Sme) = m(SUbhan(Symb Sme) (3.11)

+subhauw f(Syms, Sym,))

where

subhauf(Symy, Syms) = Z min (dist(pt;, pt;)). (3.12)

pt; ESyma
pt; €Sym1 J

In this thesis, MHD is slightly different from the MHD definition given in [48].
We choose an average distance rather than a maximum distance between two point
sets to prevent the effect of outliers. In off-line data (images), Hausdorff distance
is used for computing the distance using only x and y coordinates of pixels. In on-
line data, we can easily fuse the local direction features and the curvature feature
in Section 3.3 for the point-to-point distance dist(pt;, pt;). By doing this, MHD
can distinguish “[J” and “O”, which have similar x and y coordinates, but different
directions and curvatures for each point.

Using the mentioned distances, we can implement the hierarchical clustering



52 QUANTIFYING ISOLATED GRAPHICAL SYMBOLS

to quantify symbols. In order to evaluate these distances, we will introduce two
existing datasets, single-line mathematical expressions and flowcharts in the next

section.

3.6 Existing On-line Graphical Language Datasets

The first simple database is a synthetic handwriting database named Calc (Cal-
culate) [59] of realistic handwritten expressions synthesized from isolated symbols.
The expressions in Calc are produced according to the grammar Ny op No = Nj
where Ny, Ny and N3 are numbers composed of 1, 2 or 3 real isolated handwritten
digits. The distribution of the number of digits for N;—_¢; 23y is 70% of 1 digit, 20%
of 2 digits and 10% of 3 digits randomly. Furthermore, op represents one of the
operators {+, —, X, +}. Fig. 3.13a shows an example picked from Calc with Ny,
N5, N3 and op containing 3 digits, 1 digit, 2 digits and “x” respectively. Fifteen
classes exist in total.

The second handwriting database is a realistic handwritten flowchart database
named F'C database [60]. We use only the six different graphical symbols that rep-
resent the basic operations (data, terminator, process, decision, connection, arrows)
without any handwritten text, as displayed in Figure 3.13b. It contains six classes.

Tab. 3.2 shows statistical information on the two databases. Each of them is
composed of a training part and a test part. Although Calc has more symbols than
that of FC, but FC has a larger number of strokes. Furthermore, Fig. 3.14 shows a
symbol distribution on different stroke numbers in each symbol. Most of symbols
in Calc (54.9%) are single-stroke symbols, and 40.2% of symbols in total are two-
stroke symbols. By contraries F'C obviously contains more multi-stroke symbols in
proportion. In addition to a high proportion of multi-stroke symbols, F'C use a more
general two-dimension language, flowcharts, rather than single-line mathematical
expressions in Calc. FC therefore is more challenging for unsupervised multi-stroke
symbol learning.

In the next section, because the DTW A* algorithm is very slow, only qualitative
experiments and a symbol classification task with a limited number of classes will
be tested. Classical DTW and MHD will be compared using clustering quality

assessment Purity ang NMI on these two datasets.



EXISTING ON-LINE GRAPHICAL LANGUAGE DATASETS 53

COHHCCthIl
$ow
Z arrow

e dccmon process
Ny row )

D —

oY PLOCESS

|
I

e AFLOW.

L T R |
3 \g 5>Q #:Aé‘_ cc@ctwn
(a) b)

Figure 3.13: Two different handwritten graphical languages: (a) a synthetic expres-
sion from Calc composed of real isolated symbols, (b) an example of flowchart in
FC database.

Symbol Number | Stroke Number| Strokes/Symbol| Class Number| Writer Number
Training 5472 8185 1.50 15 180
Calc
Test 3035 4547 1.50 15 100
Trainin 3641 8827 242 6
FC g 31
Test 2494 6059 2.43 6 15

Table 3.2: Symbol number and class number on two databases



54 QUANTIFYING ISOLATED GRAPHICAL SYMBOLS

3000 T T T
I Training (Calc)
3 [ Test (Calc)
_\é 2500 | l:l Training (FC) ||
7 I Test (FC)
B
kS
S 2000} 1
3]
[%2]
o
Q.
IS
S 1500} .
Is)
Q
€
@
« 1000 b
o
@
Ke)
IS
Z 500 il
._m i — - I

2 3 4 5 6 7 8 9
Stroke number N, in each symbol

Figure 3.14: Symbol distribution in terms of stroke number in each symbol

3.7 Experiments

In this section, we first qualitatively study the proposed DTW A*, and then
the two distances (classical DTW and MHD) are compared using NMI and purity

during clustering on the two different datasets, Calc and FC.

3.7.1 Qualitative Study of DTW A*

Since the DTW A* algorithm is time-consuming and memory-consuming even
when the starting couples of points are limited. In this section, we study a quali-
tative assessment for a point-to-point matching between two multi-stroke symbols.
More precisely, we have selected some representative cases where the computation
of DTW A* is feasible and we compare it with the classical DTW. A deeper op-
timization of the metric in the context of a KNN classifier shows that the metric

DTW A* can reach equivalent results as Hausdroff or DTW in a tractable time [61].

Matching Multi-Stroke Symbols

Before matching, all the symbols are normalized into a reference bounding box
{z € [-1,1],y € [—1, 1]} by keeping the ratio, and re-sampled to a fixed number of

20 points. In order to simply observe the behavior of DTW A*, in this experiment,



EXPERIMENTS 55

only two coordinates (x,y) are used for calculating the Euclidean distance between
two points; the other features will be used in the later classification application.
Fig. 3.15 compares results obtained by the classical DTW (Section 3.5.1) and by
our proposed method DTW A* (Section 3.5.2) between two similar symbol shapes,
but written with different orders and different directions.

Fig. 3.15a presents an example with two strokes written by two different direc-
tions. The distance computed by DTW A*, displayed in Fig. 3.15¢, is much smaller
than that obtained by the classical DTW, in Fig. 3.15b. The examples presented
from the case 2, (Fig. 3.15d), to the case 4 (Fig. 3.15j) compare a symbol “<”
composed of one stroke, and the same symbol “<” written with two strokes in the
opposed direction. Our algorithm searches the best warping path among possible
different directions and different orders. The last case, Fig. 3.15m, shows a capacity
of the system to match two multi-stroke symbols with different written directions
and orders. These examples illustrate that DTW A* is independent of written direc-
tions and orders of strokes composing the symbols.

A more complex example as shown in Fig. 3.16 compares two allographs of x.
Our algorithm found the best solution in 5 steps which are 5 sub-warping paths.
The first two steps show the point-to-point matching of the top-left branch of z.
The bottom-right branch is matched in the third step, etc. Our algorithm can cut the
strokes into sub-graphemes which minimize the distance DTW between segments

from two symbols.

Classifying Multi-Stroke Symbols

With the previous experiments we shown that the DTW A* distance was inter-
esting for giving a small distance for similar static patterns but written in different
ways. Complementary, it is useful to examine its discriminative power, i.e. its ca-
pacity of giving larger distances for pattern of other classes than for those of the
same class.

Here again, some selected cases are proposed in Tab. 3.3. In Tab. 3.3, all the
examples are re-sampled into 30 points since this number of points are already
applied in some classification applications [39, 60]. We can see that the shapes ‘4’
et ‘8’ are correctly found even they have different strokes. The calculating time

and the number of hypotheses are shown in Tab. 3.3 and depend on a complexity of



56 QUANTIFYING ISOLATED GRAPHICAL SYMBOLS

(a) Case 1 (b) Classical DTW (c) DTW A*
(distance=1.08) (distance=0.10)

E

(d) Case 2 (e) Classical DTW (f) DTW A*
(distance=1.09) (distance=0.11)

L

(h) Classical DTW (1) DTW A*
(distance=0.214) (distance=0.15)

(j) Case 4 (k) Classical DTW (1) DTW A*
(distance=0.69) (distance=0.10)

(m) Case 5 (n) Classical DTW (o) DTW A*
(distance=0.55) (distance=0.10)

Figure 3.15: Tests on matching two multi-stroke symbols (Classical DTW vs DTW
A*)



EXPERIMENTS 57

(a) Case 6

(b) Step 1

(c) Step 2

(e) Step 4

(f) Step 5

Figure 3.16: The best solution between two x

shape and specially on the number of resampling points.

D (1 str)

QL‘ (2 str)

? (2 str)

g (1 str)

(ee)) dist=0.29 dist=0.37 dist=0.23 dist=0 17
~7~ (2 str)| time=127 sec | time<lsec |time=787sec | time<lsec
‘ 77304hyp | 3749 hyp | 238193 hyp 218 hyp
dist=0.15 dist=0.44 dist=0.27 dist=0.37
o4 (Lstr)] time<l sec time<l sec |time=176 sec | time<lsec
112 hyp 699 hyp 88 820 hyp 16 hyp

Table 3.3: Classification between symbols (dist=distance, sec=second, str=stroke et
hyp=hypothese)

Tab. 3.3 reveals that although DTW A* is good at matching two sequence sets, it
is time-consuming and memory-consuming (a large number of hypotheses). Chen’s
master thesis [61] optimizes this method, and runs a KNN classifier on the FC
dataset to compare the three distances DTW A*, classical DTW and MHD. The
proposed 12-features have been applied in this application. Fig. 3.4 shows the
recognition rates. DTW A* is only slightly better (97.47%) than classical DTW
(96,79%), and more surprisingly MHD is also very efficient (97.31%). One expla-

nation is that for flowchart the sequence information is very irrelevant, and that it is



58 QUANTIFYING ISOLATED GRAPHICAL SYMBOLS

better not to rely on. To study the sensitivity with respect to the training size set, a
5-fold cross validation is also proposed. We can notice that DTW A* is quite stable
(96.90%) although only one fifth of the training samples were available. Conversely,
performances of classical DTW drops to 91.93%, in that case missing samples of

the training set are not compensated by the flexibility of the matching process.

DTW A* | DTW MHD
Normal KNN 97.47% | 96.79% | 97.31%
Cross-Validation 96.90% | 91.93% | 95.65%
Decrease 0.57% 4.86% | 1.66%

Table 3.4: KNN classification and cross-validation on the dataset F'C [61].

In the next section, we will assess the clustering quality when comparing clas-

sical DTW with multi-stroke concatenation and MHD.

3.7.2 Comparing Multi-Stroke Symbol Distances Using Cluster-

ing Assessment

In this section, we will compare two distances, classical DTW with multi-stroke
concatenation and MHD on the two training parts of the two datasets, Calc and
FC, mentioned in Section 3.6. The comparison is based on MHI (Eq. (2.23)) in
terms of different numbers of clusters (n,) using the hierarchical clustering. The
link metric of Average [62] between clusters in the hierarchical clustering is used in
this evaluation.

Fig. 3.17 shows the purity using classical DTW and MHD on the training part
of Calc. At the beginning of learning (n, = {50,100}), the purity of MHD is
higher than that of classical DTW. After that, with a larger number of clusters, the
purity of MHD is slightly lower (around 1%). Fig. 3.18 shows a similar case using
an evaluation of MHD. NMI of MHD on 50 clusters is higher, and then is slightly
lower. Clustering with 100 clusters shows a higher Purity but a lower NMI.

On the more challenging dataset FC, Fig. 3.19 first displays Purity on the train-
ing part. MHD largely outperforms classical DTW by more than 10% after 100



EXPERIMENTS 59

0.81 i

0.5 i

Purity

0.3 b

——©— Classical DTW(Calc)
0.1r —— MHD(Calc)

0 L L L L L
50 100 150 200 250 300 350 400 450 500

Cluster Number (np)

Figure 3.17: Evaluating Purity using classical DTW and MHD on the training part
of Calc

1 T \

—©— Classical DTW(Calc)
0.91 —+— MHD(Calc) I

0.5F i

0.3 b

NMI (Normalized Mutual Information)

0.1 i

0 | | | | | | | |
50 100 150 200 250 300 350 400 450 500

Cluster Number (np)

Figure 3.18: Evaluating NMI using classical DTW and MHD on the training part
of Calc



60 QUANTIFYING ISOLATED GRAPHICAL SYMBOLS

clusters. A similar situation is illustrated in Fig. 3.20.

On the training part of the simple dataset Calc, 54.9% of symbols contain one
stroke. On the training part of FC, there are 79.7% of more-than-one-stroke sym-
bols. The stroke order in Calc is more stable than that of FC. With a larger number
of clusters, it is possible to get a higher Purity on Calc using classical DTW. But
on the more challenging dataset F'C, with a complex stroke order problem, classical
DTW is defeated. To tackle the complex stroke order problem, we prefer MHD to

compare the distance between two multi-stroke symbols in this thesis.

1 T T T T T T T T

091 b
0.8 M
0.7 b
0.6 b

0.5 i

Purity

0.4r b

0.3 b

0.2 b

—©— Classical DTW(FC) | |
—*— MHD(FC)

0.1

O | |
50 100 150 200 250 300 350 400 450 500
Cluster Number (np)

Figure 3.19: Evaluating Purity using classical DTW and MHD on the training part
of FC

3.8 Conclusion

In this chapter, we have discussed how to quantify multi-stroke symbols using
a clustering technique. Among different clustering techniques, we have chosen the
hierarchical clustering since it allows an easy adaptation to the number of desired
clusters. In order to implement the hierarchical clustering, we have studied three
distances between multi-stroke symbols.

First of all, we proposed 12 local features of each point for these distances.
These features are independent of written direction. Using these features, we have

described a classical distance DTW between two single-stroke symbols, and then a



CONCLUSION 61

[y

—©— Classical DTW(FC)
—%— MHD(FC)

o
©
T
1

o
@
T
I

o
]
T

|

o
o

NMI (Normalized Mutual Information)
o o o
w IS ol
Il

o
N
T
I

o
=
T

|

Il Il
100 150 200 250 300 350 400 450 500
Cluster Number (np)

@
o

Figure 3.20: Evaluating NMI using classical DTW and MHD on the training part
of FC

complex stroke-order problem in multi-stroke symbol comparison have been pro-

posed.

An easy solution is when multi-stroke symbols are concatenated into single-
stroke symbols by a natural order. The problem of multi-stroke symbol comparison
is reduced to the problem of single-stroke symbol comparison. We therefore can

use the algorithm DTW for comparing two symbols (classical DTW).

Rather than the natural stroke order concatenation, we proposed a distance
DTW A* for searching the minimum sum of point-to-point associated costs be-
tween two multi-stroke symbols by a continuity constraint of DTW. To reduce the
large number of possible stroke order concatenations, the A* algorithm is used for
accelerating the search. Limiting the starting point couples during the matching re-
duce searching complexity. In the experiment part, we qualitatively study DTW A*
by a visual point-to-point matching between two multi-stroke symbols, and then
a simple classification application has been proposed to illustrate the discriminant

ability of this distance.

Despite the proposed optimizations, DTW A* is too slow to use. We have de-
scribed another distance MHD for comparing two multi-stroke symbols. In order
to compare performance between classical DTW and MHD, we have discussed two

clustering criteria, Purity and NMI. In the experiments, the distance MHD obviously



62 QUANTIFYING ISOLATED GRAPHICAL SYMBOLS

outperforms the distance classical DTW on the more challenging dataset FC.

In the next chapter, we will analyze how to extract multi-stroke symbols from
relational sequences, a distance between two single-stroke symbols. Since the ba-
sic units are single strokes and the evaluated dataset is only the Calcdataset, the

classical DTW algorithm will be applied.



Discovering Graphical Symbols
Using the MDL Principle On

Relational Sequences

This chapter deals with the problem of symbol knowledge extraction from a
mass of handwritten documents. We assume that some unknown symbols are used
to compose a handwritten message, and from a dataset of handwritten samples, we
would like to recover the symbol set used in the corresponding language. We ap-
plied our approach in on-line handwriting, and select a domain of numerical expres-
sions, mixing digits and operators, to test the ability to retrieve the corresponding
symbol classes. The proposed method is based on three steps: a quantization of
the stroke space, a description of the layout of strokes with a relational graph, and
the extraction of an optimal lexicon using the Minimum Description Length (MDL)

algorithm.

63



64 DISCOVERING GRAPHICAL SYMBOLS USING THE MDL PRINCIPLE ON
RELATIONAL SEQUENCES

4.1 Introduction

The knowledge of symbols which compose a given language is something es-
sential to recognize, and then to interpret a handwritten message based on this lan-
guage. For this reason, most of the existing recognition systems, if not all, need the
definition of the character or symbol set, and require a training dataset. The training
dataset defines the ground-truth at the symbol level so that a machine learning algo-
rithm can be trained on this task to recognize symbols from handwritten informa-
tion. Many recognition systems take advantage from the creation of large, realistic
corpora of ground-truthed input. Such datasets are valuable for the training, evalua-
tion, and testing stages of the recognition systems. They also allow for comparison
between state-of-the-art recognizers. However, collecting all the ink samples and
labeling them at the stroke level is a very long and tedious task. Hence, it would be
very interesting to be able to assist this process, so that most of the tedious work can
be done automatically. Only a high-level supervision need to be defined to conclude

the labeling process.

In this respect, we propose to extract automatically the relevant patterns which
will define the lexical units of a language. This process is carried out from the
redundancy in appearance of basic regular shapes and regular layout of these shapes

in a large collection of handwritten scripts.

For the targeted application, which will be defined in more details further and
which is related to online numerical expressions, we consider that the strokes are the
basic units. Then, these units are composed with some specific composition rules,

to produce a symbol of the language, this symbol being an instance of a lexical unit.

The problem is to identify from a large collection of handwritten scripts, all the
lexical units based on the observation of the strokes. Some of them corresponding
directly to a symbol, others are only a part of a symbol. Eventually, the same kind
of stroke according to the context will be either a single symbol or a piece of a more

complex symbol.

Let us illustrate the concept with a simplified example. Assume that we observe

only two kinds of strokes: horizontal strokes and vertical strokes {‘—’, ‘|’}. In a

first model, consider also, that the only composition rule is the left to Right rule

(R). Then, it is possible to produce this kind of string : “| — | | | = ||| = | | |



OVERVIEW 65

” . Based on all the available strings in the training dataset, we would like to be
able to define a lexicon, i.e. a list of lexical units, which will allow to describe in an
optimal way the entire corpus. With this example, two possible lexicons would be L
={" — “JorL={"—

language acquisition [11]; the lexicon is extracted from texts, considered a sequence

99 ¢
9

99 ¢
9

”}. A similar problem is studied in unsupervised

of characters.

Suppose now, that we add two new composition rules: the Below rule () and
the Intersection rule (I). Then, with these two-dimensional spatial relations in
addition to sequences of strokes, we are able to compose more complex messages,

such as “

+ | = ||”. In this case, the search space for the combination of strokes
which forms possible symbols is much more complex since it is no longer a linear
one.

We give an overview of the proposed system in Section 4.2, then the extraction
of the graphemes and of their spatial relationships are presented in Section 4.3. We
describe the algorithm which is used to build the lexicon in Section 4.4, before

presenting the experimental results in Section 4.5.

4.2 Overview

This section introduces an overview of the extraction of the lexicon, which will
be described deeper in next sections. Given a handwriting database, Fig. 4.1 de-
scribes the proposed scheme to extract the lexicon of symbols. This scheme con-
tains three principal steps, quantization of strokes, building relational graphs be-
tween strokes and converting them into relational sequences, and lexicon extraction.

First, we code each stroke using a finite set of graphemes, called codebook.
This is the quantization step, which will rely on the algorithms presented in Chap-
ter 3. The second step, the extraction of spatial relations, analyzes spatial relations
between the strokes. For instance, “="" is composed of the two same graphemes
“—" with the spatial relation below “B” which corresponds to the following subse-
quence (—, B, —).

These graphemes and spatial relations are organized in a relational graph. From
the relational graph, the sequences containing graphemes and spatial relations are

extracted, they are next processed by the third step, which computes the lexicon.



66 DISCOVERING GRAPHICAL SYMBOLS USING THE MDL PRINCIPLE ON
RELATIONAL SEQUENCES

Database

’’’’’ C|UStering\ 1.Quantization
Codebook [ 2 3 £ — " S

P e
82 | —8——;
2 Building Relational Graphs "
Relational Graphs ‘4~~~ \A

A/

O B Relational Sequences
:Grapheme

. MDL
‘Below Lexicon /S.Extraction of lexicon

Figure 4.1: Lexicon extraction overview

The main idea of the developed algorithm is to use the frequency of sub-sequence
of graphemes/relations to detect symbols. If the subsequence (—, B, —) is very
frequent, we could consider (—, B, —) as a lexical unit. In fact, a lexical unit usually
represents a symbol.

The focus in this chapter is mainly on the extraction of the lexicon from the rela-
tional sequences, which are produced from relational graphs. We start by presenting

briefly the construction of the relational graph.

4.3 Extraction of Graphemes and Relational Graph

Construction

For the quantization of strokes, we firstly extract the graphemes. Since the DTW
distance as shown in Section 3.7.2 slightly outperforms the MHD distance on the
Calc dataset, the DTW distance will be used to calculate the shape similarity be-
tween two strokes. Clustering techniques are used for the generation of the code-
book. Many different algorithms are available for this task. As described in the
previous chapter, we select an agglomerative hierarchical clustering based on the

Lance-William formula [42] for its computation efficiency. Once the graphemes



EXTRACTION OF GRAPHEMES AND RELATIONAL GRAPH CONSTRUCTION 67

(prototypes) are selected with the hierarchical clustering on the training part, all the
strokes on the test part and on the training part are tagged with the virtual label of
the closest grapheme using the DTW distance.

The second step extracts the spatial relations between the strokes. To start with a
limited complexity example, we will predefine three generic spatial relations, right
(R), below (B) and intersection (/) and test the method on the Calc dataset. Fig. 4.2
illustrates an example of the predefined Right relation of the stroke “2” in an expres-

sion “2 + 8 = 4”. The right projection of “2” contains “+8 = 4.

Right

)

Figure 4.2: From a reference stroke "2", Right spatial relation is defined using the
projection on the right side.

Because of the orientation of these three relations, we choose the top-left stroke
as the first stroke to start building a Directed Acyclic Graph (DAG) in this chapter.
To build the DAG, we have considered from each node (stroke) the outcome of
at most two possible edges when relation B and/or R are satisfied and only one
edge when relation / (with a higher priority) is encountered. In other words, I is
exclusive with R and B. The edges are oriented towards the nearest strokes for the
considered relation.

We don’t predefine left and above spatial relations. Thus, no loop in the graph
will be created. It is a breadth-first-like graph building. In this way, we obtain
a DAG. All the nodes in the DAG can be traveled by several possible paths (se-
quences). Thus, given a handwriting database containing expressions {e;}, it is
transformed into a set of sequences of graphemes/relations {sg; }. This transforma-
tion bridges the gap between the graph and descriptions as sequences.

An example of the DAG construction from an expression is presented in Fig. 4.3.
The graphemes are marked by the indices of strokes in equation to avoid any am-
biguity since several strokes share the same grapheme. In this example, two paths
(sequences) are necessary to traveled through all the nodes in the graph : (2, R,
s =), B, Z(6), I, |(7)) and (2(0), R, ..., — 1), B, —5), R, Z(6) I, |(7))- In the next

section, we explain how to extract the lexicon from these sequences.



68 DISCOVERING GRAPHICAL SYMBOLS USING THE MDL PRINCIPLE ON
RELATIONAL SEQUENCES

() :Grapheme
[]:Spatial Relation
[R]:Right

‘Below
:Intersection

i :Segmentation

»@»

Figure 4.3: Example of the relational graph of the expression “2 + 8 = 4”

4.4 Extraction and Utilization of the Lexicon

We use the iterative algorithm proposed in [20] to build the lexicon from the
sequence of graphemes/relations. The principal idea of this algorithm is to minimize
the description length of sequences by iteratively trying to add and delete a word,
in terms of Rissanen’s Minimum Description Length (MDL) principle [18]. The
MDL principle means that the best lexicon minimizes the description length of the
lexicon and that of the observation; in our case the observation is the sequence
of graphemes/relations, this is a big difference with Marcken’s work [20] where
electronic texts are processed.

A simple example was shown in Section 2.1.1 to understand this process. In the
end, we get an optimal lexicon L on the training handwriting database containing

the sequences of graphemes/relations {sg; }.

4.4.1 Segmentation Using Optimal Lexicon

Here we explain how to obtain a segmentation of a new expression using the
computed optimal lexicon L. A new expression e is transformed into one or more
sequences {sqy} of graphemes/relations from the relational graph, e — {sq,}. We
get the segmentation from the sequences {sq;} by the Viterbi representation with
the optimal lexicon L. In fact, the segmentation from {sq;} contains the spatial
relations, /, R, and B. These spatial relations are used to define the lexicon at the
symbol level. For instance, the sequence (—, B, —) which defines the symbol “="
is different from the sequence (—, I, —) which corresponds to the “+” symbol. The

segmentation of the complete expression is the result of merging segmentation from



EXTRACTION AND UTILIZATION OF THE LEXICON 69

each path.

To illustrate this segmentation step, let us consider a lexicon with the following

15 elements:

{(R),(B),(1),(2), (=), (1), (8), (L),
(27 R)? (_7Ia Dv (R’&Rv _7R)7 (4717 |)>
<R787R)7 <_7 B? _)7 (47[7 D}

The two paths extracted from the graph given in Fig. 4.3 can be coded using this

lexicon according to:

{(2(0)7 R)7 (_(1)7 [7 ‘(2))a (R7 8(3)7 R7 —(4) R)a (4(6)7 [7 ’(7))}

and

{20y, R), (—1): 1, |(2)), (R, 8(3), R), (—(a), B, —(5)), (R), (Lig): 1, | (7))

Then, it is possible to remove the spatial relations from these sequences, they
do not hold any information regarding the segmentation, so that to keep only the
graphemes and their grouping. Thus, the following two sets of segments are pro-

duced:

{20} {—w: 1@} {86), —w} {Zwe), lm }}

and

{20} {0 leh 8 {—w. —e)} {Ze): 0}

The union of these two sets is the segmentation of the equation, { {2y}, {—1), |2}
{8y, —@wh 8@t {—w, —c)} {Z©): |} }- We define this union of segmenta-
tions as s(e, L) given a lexicon L.

However, there may be two members in s(e, L) which are intersected, but not
self-included which means conflict. For example, the two sets of {83), —(4)} and
{—@),—(5} are in conflict due to the presence of the stroke —(4 in both sets:

CB({8s), =)}, {—@), —(5)}). We call the conflict as C'B since the brackets are



70 DISCOVERING GRAPHICAL SYMBOLS USING THE MDL PRINCIPLE ON
RELATIONAL SEQUENCES

crossing. We define the function C(.) as the number of occurrences for a sequence
in the training dataset. We solve this conflict by tracing back to C((83), R, —(4)))
and C((—qu), B, —(5))) in lexicon and by keeping the bigger C(.) in sequences of
graphemes/relations; the other set is deleted. Probably we will keep {— (1), —(5)}
since C'((—), B, —5))) > C((8(3); R, —(1))). Therefore, we get the segmentation
for the equation in Fig. 4.3, { {20y}, {— 1), |2} {8 }» {—), = }» {Zw), |1} }-

We keep the single strokes in the symbol segmentation since some symbols
have a hierarchical meaning. For instance, the symbol “+” are composed of “+”
and “—". In the future work, it may be useful. We build the segmentation as a
hierarchical structure from the hierarchical lexicon L. Finally, we get the segmen-
tation defined by S(e, L) = ({20}, {—}> {lo} 8@} {—wh {—e} {Zw)}
{lo} {—0. ot {—w, =} {Ze), lm}}. This hierarchical structure provides
us grammar information, i.e. {{Z), |(n}} = ({Z@}s {Im}}-

In a word, given a handwriting database {¢; }, we transformed {¢; } to sequences
of graphemes/relations {sg;} and then extracted an optimal lexicon L from these
sequences. Considering a new expression e, we obtained the segmentation S/(e, L)
in terms of the lexicon L. At the end we clean the conflict in segmentation and made

the segmentation as the hierarchical structure S(e, L).

4.4.2 Segmentation Measures

Our objective is to verify if our extracted segmentation corresponds to a hu-
man made segmentation S(e, G) (ground-truths). We evaluate the performance of

segmentation with lexicon L by four measures from [11]. The first is the recall rate:

|S(e,G) N S(e, L)

= 4.1
RRecall |S(6, G)| ) ( )

where |.| is the cardinality of a set. The recall rate evaluates the percentage of right
segmentation which are found in ground-truths. On the contrary the second measure

Rcp calculates the percentage of crossing brackets in S(e, G) compared with the

S(e, L). Rep is defined by:

_ {A|A € S(e,G),3B € S(e, L),CB(A, B)}|

fics 50, @)

(4.2)

R p reveals the errors of the segmentation of L compared with ground-truths.



EXTRACTION AND UTILIZATION OF THE LEXICON 71

The third measure is defined by R;,ss = 1 — Rrecan — Rop. Rpost means the
percentage of segments (symbols) in S(e, G) which are not found. Note that these
three measures are justified because of the hierarchical structure of the resulting
segmentation. In addition, we define a fourth measure based on the segmentation

found by the Viterbi representation using the longest words:

{A|A € S(e,G),3dB € Top(S(e, L)), B = A}|
S (e, G

where T'op(S) = {D|D € S,VYE € S, E # D,D ¢ E} which extracts a set of the

4.3)

RTop =

longest possible segments without inclusion. Thus, Rr,, evaluates the performance
of Viterbi representation.

To explain the proposed measures, we use, as illustrated in Fig. 4.4, a lexi-
con Ly, giving the hierarchical structure segmentation S(e, L,,) = { {|()}, {—©2 },
{lor {-w} 2ok {-e}h {—obh (Zob loh e ek {-o: e —w}
{2(5), —(6)}}- The ground-truth is defined by S(e,G) = {{|)}, {—©), @) —@}>
{260} {=©6) =} {Z(8): |(9) } }- In this case, the recall rate is that Rgecan = 3/5 =
0.6; since three symbols of the ground-truths {|q)}, {—(2), |(3), — (1)} and {2(5)} are
found. The crossing bracket rate Rcp is 1/5 = 0.2 as the ground-truth {— ), —(») }
is crossing with the segmentation {2(5), —(6)}. Rpos 18 0.2 since the ground-truth
{Z8)

by the longest of hierarchical segmentation.

(9)} is lost. Ry, is 2/5 = 0.4 because {|(1)} and {—(2), |(3), —(1)} are found

RT op RRecall RCB RLost

Figure 4.4: Hierarchical segmentation of a lexicon evaluated by four measures

Measures at Multi-Stroke Symbol Level

A dataset may contain many single-stroke symbols. Since we are using a hier-
archical symbol segmentation. All the single-stroke symbols are found in the recall
rate. So the Rg...; advantages the dataset with lot of single stroke symbols. That is

why we introduce a Multi-stroke Recall rate :



72 DISCOVERING GRAPHICAL SYMBOLS USING THE MDL PRINCIPLE ON
RELATIONAL SEQUENCES

o |S(e,Ga) N S, L)
MRecall — |S(€, G)’

(4.4)

where S(e, Gpr) represents ground-truth segments which contain more than two
strokes, S(e, Gar) = {glg € S(e,G),|g| > 2}. RyRrecan = 1/3 = 0.333 in Fig. 4.4

where only + is found among three symbols £, =, and 4.

4.5 Experiment Results and Discussion

On the training part of Calc presented in Section 3.6, we firstly extract all the
prototypes of strokes (graphemes). In the proposed approach, the main parameter
is the number of prototypes in the grapheme clustering and the number of iteration
(i.e. symbols) in the MDL algorithm. Fig. 3.18 and Fig. 3.17 show that the DTW
distance works better than the MHD distance using 150 prototypes. To illustrate the
full chain, we first set the number of prototype to 150 and study the effect of the
number of iterations. Then we search for the optimal number of prototypes. Finally
the optimal configuration is tested on the test dataset.

Using 150 prototypes, we try iteratively to add and delete a word with the lex-
icon in terms of the algorithm in [20]. The lexicon starts with 153 words. In our
case, a word is in fact at the beginning a prototype (150) or a spatial relation (3).
Fig. 4.5 shows the accuracy of segmentation for the four measures, Rrecqir, Rrop,
Rep and Ry s during the unsupervised learning of the lexicon on the training part
of the database. The best accuracy Ry, of 65% is reported in the 20th iteration and
then it decreases slowly. The convergence of the algorithm is obtained at iteration
number 498. No more decrease in the description length is possible, and the num-
ber of words is then 504. According to Rcp and the overlap of Rr,, and Rrecairs
our system does not make any error before the 20th iteration, but it leaves 35% of
symbols lost in terms of R,s. After 20th iteration, Rg...; keeps increasing un-
til the end of iteration, but Ry, decreases gradually. It means that the new added
word does not represent symbols, but frequent sequences of symbols or of parts of
symbol. At the end of iteration Rrecqu, e, Riost and Ry, are 77%, 10%, 13%
and 61% respectively.

To find the optimal number of prototypes of strokes, Fig. 4.6 shows the rates for

different numbers of prototypes at the end of the lexicon extraction; no more word



EXPERIMENT RESULTS AND DISCUSSION 73

0.8

—-—0©

Recall Rate

0.65
0.6

£l
Top rate

0.5+
(]
< 0.4
[ad
0.31
0.2r
CB Rate
0.1r
Lost Rate

0 1 1 1 1 1 1 1 1 1 |
28 50 100 150 200 250 300 350 400 450 500
Number of iterations

Figure 4.5: Accuracy of segmentation

can be added and deleted. The best Rrccqn Of 78% (RyiRecal = 51.2%) is reported
using 120 prototypes (Rcp = 10%, Rpost = 12%, Rrop = 62%). Rcp always
decreases since more and more different prototypes of strokes are found. Rr,,
remains fluctuating roughly around 60% after 75 prototypes. The best compromise
in term of the number of prototypes is 120 because of the high Rp..q; and Rr,, and

the low Rcp and Ry, ..

Next, we test the learned lexicon using 120 prototypes of strokes on the test part
of Calc. We obtain the following results: Rprecqn 0f 74% (RyRecann = 41.2%), Rep
of 10%, Rp,st of 16%, R,y of 63%. Ry, is comparable to the one computed on
the learning part. These results show the robustness of our lexicon. In the field
of unsupervised learning on texts, the similar problem of segmentation is studied
a lot. Thus, we compare the recall rate in handwritten expressions with that in
texts. The alphabet (a, b, c,..., z) size is fixed to 26 while our grapheme number
is unknown. Learning a lexicon in texts is more stable. Using the same learning
method of description length in [20], R gecan 0f 90.5% and R¢p of 1.7% are reported
respectively on an English corpus, Brown corpus [21]. Although our Rcop of 10%

is much higher than that in texts, but we get a fair Rpecq of 74%.



74 DISCOVERING GRAPHICAL SYMBOLS USING THE MDL PRINCIPLE ON
RELATIONAL SEQUENCES

1

ool | I RecallRate ] cBRate Il LostRate [ TopRate | |

0.81 4

0.7

0.6

0.5

Rate

0.4

0.3

0.2

0.1

15 30 75_ 120 150 225 300 450
Number of prototypes

Figure 4.6: Rates for different numbers of prototypes on the training part

4.6 Conclusion

In this chapter we presented an unsupervised learning method of lexicon on
simple handwritten mathematical expressions. Firstly, the graphemes are extracted
by agglomerative hierarchical clustering. Secondly, the graphs of spatial relation
are generated inspired by SRT, and these graphs are transformed into sequences.
We extracted the lexicon from these sequences by reducing the description length.

At the end, we got a recall rate of 74% (Ryrecann = 41.2%) on the test part of our
database Calc. The grammar of Calc is very simple and only one-line expressions
exist. Therefore, if we increase the complexity of handwriting database, we may
need some new spatial relations. Then, the relational graph becomes more com-
plicated and we will need some graph mining techniques as for example in [13].
This is the issue which will be addressed in the next chapter with the work on the

flowchart language.



Discovering Graphical Symbols
Using the MDL Principle On

Relational Graphs

In the previous chapter, we have embedded the spatial relations into a string,
i.e. a sequence of symbols, to be able to derive the presence of composed graphical
symbols using the MDL principle. However, the spatial relations were limited to
some predefined spatial relations and the structure is limited to linear sequences. In
this chapter, we will extend the predefined spatial relations to unsupervised spatial
relations, and extend the relational sequences to relational graphs for being able to
process more general graphical languages. Unsupervised spatial relations are pro-
duced by a clustering technique. In order to implement this clustering, we extract
spatial relation features at three levels [25]: topological relations, orientation rela-
tions, and distance relations. The spatial relations are embedded into a feature space
of a fixed-length dimension, and then we apply the k-means clustering algorithm to
generate spatial relation prototypes. Therefore, more typical spatial relations of the
considered language will be used to build the relational graph. Using the MDL

principle directly on the relational graphs, we can extract relevant sub-graphs as the

75



76 DISCOVERING GRAPHICAL SYMBOLS USING THE MDL PRINCIPLE ON
RELATIONAL GRAPHS

graphical symbols.

5.1 Introduction

Handwritten scripts derive from a graphical language. In other words, a lan-
guage, which uses a set of rules, generates some handwritten scripts. A language
could be Context Free Grammar (CFG) generator [63], but certainly the human nat-
ural language is more complex than CFG [64]. On textual corpora, which can be
considered as a subform of simple graphical languages, unsupervised learning of
CFG has been discussed and considered as a non-trivial task [17, 65, 66].

In the previous chapter, we proposed to convert the graphical language into se-
quences, so that the MDL principle on texts could be applied. We have applied this
method on the single-line mathematical expressions, but not on the more more com-
plex flowcharts yet. In this chapter, we propose to extend this kind of approach on
real graphical languages where not only left to right layouts have to be considered.

In this case, the search space for the combination of units which makes up pos-
sible lexical units is much more complex since it is no longer a linear one as in texts.
We can describe these two-dimensional spatial relations with a graph. The problem
is to search the repetitive sub-graphs in the graphs. Note that searching a repet-
itive graph in graphs is different from searching a repetitive sub-graph in graphs.
We can embed the graphs into a feature space [67] so that the graphs can be in-
dexed. The graph searching can be very fast. Sub-graph searching requires that all
the sub-graphs should be derived from graphs beforehand. However, the sub-graph
generation would be time-consuming and memory-consuming. Imagining a graph
containing 10 nodes, there are Cj, + C)+ C7, + ... + CYy + Cif = 1023 sub-graphs
where C)" = % [68], and C%, means how many ways we choose i
nodes from 10 nodes. Thus, a sub-graph mining technique is required to extract
the repetitive patterns in the graphs. Such a task is performed with the SUBDUE
(SUBstructure Discovery Using Examples) system using a beam searching [23]. It
is a sub-graph based knowledge discovery system which extracts substructures in
the graphs using the MDL principle.

This chapter proposes a solution to model the two-dimensional graphical lan-

guage with a graph. We first present a system overview in Section 5.2, and then the



SYSTEM OVERVIEW 77

relation graph construction of graphical language will be presented in Section 5.3.
At the end, we will discover the repetitive sub-graphs as the multi-stroke symbols

using the MDL principle.

5.2 System Overview

In this section, we give an overview of the proposed method for extracting
graphical symbols (lexicon) from a handwriting corpus as shown in Fig. 5.1. We
use four principal steps: i) building the relational graphs using neighbor strokes,
1) quantization of strokes into grapheme prototypes as presented in Chapter 3,
1i1) quantization of spatial relations, and iv) extraction of the lexicon composed
of graphemes and spatial relations which will be presented in this chapter. Com-
pared with the previous chapter, the spatial relations are unsupervised and the MDL
principle is applied in graphs without converting them into relational sequences.

As shown in Fig. 5.1, given a new graphical document, we first build the rela-
tional graphs using the n.y, closest strokes without labeling nodes and edges. In
order to give labels for the edges and the nodes, the stroke quantization and the
spatial relation quantization will be done as shown in Fig. 5.1. Thus, we will obtain
a quantified relational graph. The MDL principle will be applied directly on the
relational graphs to search sub-graphs as the graphical symbols.

As an example in Figure 5.1, we assume a handwriting database containing
a flowchart “00 — O — [J”. Each stroke is marked by the index (.) to avoid
ambiguity. We first build the relational graph using the closest neighbor strokes.
To quantify the nodes, we will use an unsupervised clustering algorithm to obtain

the following set of graphemes {a‘—’,b*=", ¢|”,d*\’, e/’ } defining the codebook.

Then, we code each stroke (node) using this codebook. Afterward, we quantify
the spatial relations (edges), which will be discussed later. We assume that two

spatial relations SR1 and S R2 have been found. As a simple example, the frequent
SR1

C/>b
sub-graphs ( " ) could be discovered from the relational graph using the MDL
principle. We can consider this sub-graph as a graphical symbol.
We have presented the stroke quantization in Chapter 3. In this chapter, we will

use the hierarchical clustering based on the MHD distance since the MHD distance



78 DISCOVERING GRAPHICAL SYMBOLS USING THE MDL PRINCIPLE ON
RELATIONAL GRAPHS

®—— 6L __® a2 _as Handwriting
/\ o
AR P R database

[©) (1) (14)

A "8 M Spo00%
be g N | ,‘ i

e —

Codebook %o 4w

2. Quantization

[ — 3. Unsupervised
m\ o o T spatial relation learning
(e ®a  — P
Co@e @ N e | 10—
B — ©e -~ ®b ] (he 7 SRl SR2
\\\“\\;(‘]‘Z)d Noasp (¥ [ (4 / I ——

Labeling Edges and Nodes in Graphs

A \ TTTeell

USRI 4 SRI
A e A
5 V™

© SR2 on » SR2(9?§:}~y

Reiétional éfaphs
(.) :Stroke Index

MDL

Lexical unit | |

¢

a

4.]Lexicon extraction

Figure 5.1: Overview for unsupervised graphical symbol learning



RELATIONAL GRAPH CONSTRUCTION 79

outperforms the DTW distance on the FC dataset as studied in Chapter 3. The FC
dataset will be one of evaluated datasets. In this chapter, we mainly focus on the
problem of building relational graphs between strokes, and then extracting multi-
stroke symbols (a lexicon) from these graphs. In the next section, we will introduce
the relational graph building, which is different from the method as presented in

Section 4.3.

5.3 Relational Graph Construction

In this section, we will build the relational graphs between strokes, and then
edges in the relational graphs will be quantified. In the next subsection, we will

normalize spatial composition to build the relational graphs.

5.3.1 Spatial Composition Normalization

First of all, given some graphical evidences (a set of strokes {str;}), a strokes
pre-processing is required. Since the strokes may be collected by different input
devices or written by different individuals, a same layout may be found at different
scales. We define a graphical sentence as a layout organized by a set of strokes
where this set contains only full graphical symbols, not a part of symbol. Each
graphical sentence is independent of the other graphical sentences in terms of the
spatial relations, but all the graphical sentences use the same graphical symbol set.
For example, a set of graphical sentences can be a set of pages that are homo-
geneous, but independent. Fig. 5.2 shows two graphical sentences produced by a
handwritten flowchart language. Two graphical sentences are independent in terms
of the spatial relations. All the strokes in a graphical sentence have to be normal-
ized by local average diagonal size of stroke bounding boxes. We analyze the spatial
relations on this normalized layout. Considering the shape of strokes, we use the
hierarchical clustering in Chapter 3 to regroup the strokes (single-stroke symbols)
into a finite set of n, graphemes, named codebook, and the strokes are labeled with
the nearest grapheme [33]. This step is the quantization of strokes (single-stroke
symbols). In the generation of codebook, we do not consider the size of strokes, but
only the shape of strokes is considered. In the next sections, we first construct the

relational graph between strokes, and then quantify spatial relations (edges in the



80 DISCOVERING GRAPHICAL SYMBOLS USING THE MDL PRINCIPLE ON
RELATIONAL GRAPHS

relational graph) to discover multi-stroke graphical symbols.

Two Graphical Sentences in

Handwritten Corpus
1. Normalizatio

V ‘ ‘ \I 2. Clustering

Graphical Sentences

Figure 5.2: Stroke Pre-processing

5.3.2 Constructing a Relational Graph using Closest Neighbors

In this section, we will build a relation graph between strokes for a graphical
sentence, and then the spatial relations (edges) can be quantified.

Given a graphical sentence, we describe the layout of strokes with a relational
graph. We consider nodes as the strokes and edges as the spatial relations, as shown
in Fig. 5.3. A spatial relation is defined from a reference stroke to an argument
stroke. In other words, an edge is directed. This allows for instance to distinguish
between two different layouts, such as “— > and “> —”. Concerning the com-
plexity, suppose we have n;, different strokes, to create a complete directed graph

for all the nodes (strokes), the number of directed edges is

2-C? =g (ng, —1). (5.1)

Nstr



RELATIONAL GRAPH CONSTRUCTION 81

In that case, the search space would be far more too complex to search patterns
in the complete directed graph. Therefore, the number of out-directed edges from
a reference stroke should be limited to n., closest strokes where n s, < Mgty —
1 since we, human, have a limited perceived visual angle [69]; we prefer some
symbols composed of the closest strokes. Consequently, strokes which are far away
from the reference stroke are not necessary to be linked with the reference stroke.

The reduced number of directed edges is:

Nstr * Nestr - (5 2)

However, if n.g, is too small, we could lose some symbols. A spatial distance dist,
for the closest strokes is defined by the Euclidean distance between two closest
points in the two sequences of points (two strokes) respectively. Formally, suppose
that we have two strokes, str, = (...,py(¢),...) and str, = (...,p,(j),...) where
p.(7) and p,(j) are the points of two strokes, we define the distance between two

strokes as:

distsy(stry, stry) = min dist(ps (i), py(5)) 2, y') (5.3)

Dz (1) EStra,py(§)Estry

where dist(p, (%), py,(j), z,y’) is the Euclidean distance between two points using
only x and y features in Section 3.3. Considering a reference stroke str,.;, we
can find the closest stroke, C'Str(str,.;) = argmin distg,(str,es, str,) where
CStr(str,.¢) is not necessary equal to OStr((i%;{*EZ%e 7). At the end, we can
extract the spatial relation couples from the edges of relational graph for clustering

to find the spatial relation prototypes.

For instance, we consider the stroke (1) as the reference stroke in Fig. 5.3.
We can see that the reference stroke (1) has intuitively some obscure symbol re-
lationships with the nearby strokes (2) and (3). As an example, we choose the
nestr = 1 closest stroke to create the relational graph. The relation graph shows that
(CStr(Stroke(1)) = Stroke(2)) # (CStr(Stroke(2)) = Stroke(4)). If we had
created a complete directed graph between all the 14 strokes, the number of edges
would be using Eq. (5.1) 14 - (14 — 1) = 182. Since we choose only the n.s, = 1
closest stroke from a reference stroke, only 15 edges exist in the relational graph.

The number of edges have been significantly reduced. We have 15 spatial relation



82 DISCOVERING GRAPHICAL SYMBOLS USING THE MDL PRINCIPLE ON
RELATIONAL GRAPHS

couples at the end for clustering.

. (5d I

A Agraphical sentence ‘ ;)b—}m)a/v /v(lz)d P St

2b Gd @b 12d_asp 0 a3 f ‘

‘ _y @ (0a !

‘Cﬂ T @a (7)? (10) (11)em | (3a (ne / / (14)a ‘

S @a _ Me@pa . @ _ @ aye ‘
(a) A graphical sentence (b) Corresponding relational graph

Figure 5.3: Creation of the relational graph (b) for a graphical sentence (a)

In another graphical sentence in Fig. 5.4a with a small difference that the strokes
(5) and (6) are moved to right a little. If we still use the 7.5, = 1 closest stroke for
producing the relational graph, the arrow {(4), (5), (6)} will be separated into two
parts as described in Fig. 5.4b. It means that this arrow will be lost in discovering

symbol procedure. We can raise n., for resolving this problem.

e (12)d 15

A graphical sentence ) (7)},*;(4)3
(|)c\@\(5)d @b (lz)d asp || . Y /‘ (13)c / [
@a (7)? Size | e Y S P 1o
‘ (10)?1/1)e (43 b @ e /' (s
- = - - — _ B - B e a (e _
(a)  Another graphical sentence (b) Corresponding relational graph

flowchart

Figure 5.4: The stroke (4) is far away from the strokes (5) and (6) in a graphical
sentence (a). An arrow {(4),(5),(6)} is separated into two parts in the relational

graph (b)

In the next section, we will continue to use the flowchart in Fig. 5.3, and embed

the spatial relations in fixed-dimension feature space for clustering.

5.3.3 Extracting Features for Each Spatial Relation Couple

We have created a relational graph for a graphical sentence and many spatial
relation couples are extracted. In this section, we first extract features of a spatial
relation couple between two strokes.

The spatial relation can be represented in three levels: distance relations, ori-
entation relations, and topological relations [25]. In our case, the distance re-
lation describes how far an argument stroke is from a reference stroke. We use
distsp(Strres, Strarg) as the distance relation (1 feature). The orientation relations

illustrate some directional relations. A fuzzy model of directional relations between



RELATIONAL GRAPH CONSTRUCTION 83

two strokes can be applied [29]. Using this fuzzy model, we choose eight fuzzy
reference directional relations, left, right, above, below, above-left, above-right,
below-left, and below-right which define 8 features in the range [0,1]. Concern-
ing the topological relations, many different relations may be considered [37]. We
use only a topological relation of intersection (1 binary feature). Since sizes of
grapheme are ignored in the step of quantization of strokes, we add a relative size
from a reference stroke to an argument stroke (1 feature). We define the diagonal
length of the bounding box of a stroke str; as Dig(str;). The relative size from a ref-
erence stroke to an argument stroke is RS (st7ef, st7arg) =Dig(strarg)/Dig(stryes).
Tab. 5.1 summarizes the value range of each feature. Four groups of features are

extracted: Relative Size (S), Distance (D), Fuzzy Directions (F8), and Intersection

(D).

Relative Size (RS) Distance(D) F8 1

RS(stryef, Strarg) | distsy (Stryef, Strary) | Fuzzy Directions | Intersection

Range (0, +00) [0, +00) [0,1] Oorl

Table 5.1: Value range of each feature in spatial relation

Considering the different value ranges of each feature, we use a double sigmoid
function [70] to normalize RS (str,cf, Strary) and distg, (stryes, Strayg) into [0, 1].
The double sigmoid function reduces the effect of the extreme large and small val-
ues (outliers). Thus, the 11 features are balanced in terms of their dynamics. Finally,
we get a spatial relation vector of 11 dimensions to model a spatial relation couple
between two strokes. In addition, those spatial relation features are also compatible
with two multi-stroke symbols. The distance between two spatial relation vectors is
simply defined as the Euclidean distance.

In fact, there are usually many relational graphs in a training part. In the next
section, we will use the these spatial relation vectors extracted from relational

graphs for clustering, and then we will get the spatial relation prototypes.

5.3.4 Quantifying Spatial Relation Couples

We have obtained many spatial relation vectors. In this section, we simply use
k-means clustering algorithm to generate n, spatial relation prototypes. Therefore,

edges (spatial relations) in relational graphs can be labeled with the closest spatial



84 DISCOVERING GRAPHICAL SYMBOLS USING THE MDL PRINCIPLE ON
RELATIONAL GRAPHS

relation prototype. This labeling step is the quantization of spatial relations. After
the quantization of edges, we got labeled-edge relational graphs between strokes
from graphical sentences.

Fig. 5.5 shows an example where ny. = 4 spatial relation prototypes (SR1 to
SR4) are used. We quantify the spatial relations of the relational graph in Fig. 5.3b.
As a targeted application, we will discover symbols which are repetitive sub-graphs

on the relational graph in the next section.

5] SR1. ¥ (O)d |
5 @ R Gy SN - SRLYR | ‘
SR SRiV (®b—P (102 lSR‘l :(13)08Rf 3:R4:

(7 / SR1 (4a
(G)e/SF':Ql (9aSR1 M ‘

(a) Spatial relation prototypes (b) Quantified relational graph and repetitive sub-graphs

Figure 5.5: Quantization of spatial relations and an example of repetitive sub-graphs

5.4 Lexicon Extraction Using the Minimum Descrip-

tion Length Principle on Relational Graphs

In the previous section, we get the relational graph for a graphical document.
This section presents an algorithm from [13] using the Minimum Description Length
(MDL) principle [18] to extract repetitive substructures (sub-graphs) in graphs,
which will be considered in our context as the lexical units. A simple example
is presented in Section 2.1.2. The system SUBDUE (SUBstructure Discovery Us-
ing Examples) [23] iteratively extracts the best lexical unit (substructure) using the
MDL principle. We will apply this system to extract lexical units, which could be
hierarchical structure [24].

For explaining the iterative procedure and the hierarchical structure, we continue
to use the example from the previous section as shown in Fig. 5.6. We have obtained
arelational graph with the learned spatial relations for a graphical sentence, and then
we try to extract a lexicon in this flowchart which contains a repetitive hierarchical
structure “— [J”.

There are three instances of “[J” which is the most frequent sub-graphs in this



LEXICON EXTRACTION USING THE MINIMUM DESCRIPTION LENGTH PRINCIPLE ON
RELATIONAL GRAPHS 85

(l)c o (S)d ()b '(12)71 (15
\f T @ e | S 3 ||

(10)a—~
(3 a (6)e (9)a ?ll)e (14)a :

SRI/V(S)d (12)d 15)

S&y (2)b4> 4)a SR SRI/' SRI/V( |

(e SRI SR4  SRly g P (100 SR4 (13)cSRy< SR4.

: (3)a /'(7)° SR1 (14 |
6 SR (97,SR1 (11)e

(b) Corresponding learned relational graph

Figure 5.6: A corresponding relational graph (b) for a graphical sentence (a)

flowchart. Probably we could discover “L1” as the first lexical unit LU_1 (“[J”)
in the first iteration. In the second iteration, another frequent lexical unit LU _2
(“—"") will be extracted. LU _: designates a discovered lexical unit in it" iteration,
as shown in Fig. 5.7. Obviously, this flowchart has to be a part of a training dataset
which allows to compute frequency of possible lexical units. If LU_2 (“—7) is
more frequent in the training dataset, LU _2 will be extracted in the first iteration

according to the MDL principle.

LU_1 . Luz2 LU 1
sei, "@;i;;;m)/“’d, L RN P R
é(l)c SRli i SR4 SR)' (S)ELRE; (10 SRéil ?(13)08Rf ESR4
N S P N SR (4p

- ©)e SR (9)a

Figure 5.7: Two discovered lexical units LU _1 (3 instances of “[J”) and LU_2 (2
instances of “—”) in the first and the second iteration respectively

In each iteration, we replace all the instances of a lexical unit with its name in the
relational graph. In the third iteration, we can get a new relational graph as shown
in Fig. 5.8. Keeping the lexical unit discovering procedure, we could probably get
a hierarchical lexical unit LU_3, which contains LU_1 and LU_2. When no more
lexical unit can reduce the description length, we get a lexicon which is a list of

lexical units L =(LU_1, LU_2, LU_3,...) in terms of DL(G, u).



86 DISCOVERING GRAPHICAL SYMBOLS USING THE MDL PRINCIPLE ON
RELATIONAL GRAPHS

LU 3 T T LU 2

T - LU_1 gRr2 LU_2 {(13),(14),(15)}
LU 1 grp LU2 %{(7)(8)(9)}4} {(10)(11)(12)1/

Figure 5.8: A hierarchical lexical unit LU _3 composed of LU_1 and LU_2 is ex-
tracted

At the end, we extract a sorted list of lexical units from the relational graphs
using MDL principle. We call this list of lexical units as a lexicon. In the next
section, we evaluate the extracted lexicon using a task of hierarchical segmentation
of new graphical evidences from the same graphical language. To evaluate this
hierarchical segmentation, we will used the already defined metric Mpgeqq; from

Section 4.4.2. The experiment results will be presented in the next section.

5.5 Experiments

There are many parameters have been defined in our discovery system. We
found a problem that is how to optimize the parameters (noted as a configuration) in
order to get a higher recall rate. We will use the greedy optimization algorithm [71]
to optimize the configuration. In our experiment, the greedy optimization algorithm

is described as:

1. Initialize all the parameters in a configuration.
2. One epoch:
(a) Choose a parameter p in the configuration.

(b) Find the value p with the maximum recall rate, and keep it in the con-

figuration.
(c) Until all the parameters are tested.

3. Check if the epoch number arrives the maximum number or if the best recall
rate remains stable. If yes, the algorithm will stop. Otherwise it will go to the

step 2.

We use the word “epoch” instead of “iteration” to avoid an ambiguity of SUB-

DUE iterative learning. The configuration contains four main parameters:



EXPERIMENTS 87

1. n, denotes the prototype number during hierarchical clustering. In this exper-

iment, we call the generated prototypes as graphemes.
2. SRF (Spatial Relation Feature) denotes which spatial relations have been
used.
(a) Distance (Dist)
(b) Relative Surface (RS)
(c) Eight Fuzzy Relations (F8)
(d) Intersection (I)
3. n denotes the spatial relation prototype number during the k-means cluster-
ing.
4. n.s denotes how many edges from a reference stroke to 7.y, closest argu-

ment strokes.

Since each epoch is time-consuming, we have finished two epochs. Because
there are too many figures from experiments, the figures from 15 epoch have been
skipped. We only show the experimental figures from 2"¢ epoch. In the 1% epoch,
we got an optimized configuration as shown below:

- n, = 50,

— SRF =“Dist|RS|F8|I”,

— ng = 10,

— Nestr = 3.

We use this configuration for the two datasets, Calc and FC. We will evaluate an
optimized configuration on the training part, and then the optimized configuration

will be assessed on the test part.

5.5.1 Parameter Optimization on the Calc Corpus

In this section, we will optimize the configuration obtained in the 1°¢ epoch on
the training part of Calc corpus. The configuration is shown in the previous section.
We try a range of codebook size from 5 to 500. Fig. 5.9 shows recall rates at the
multi-stroke symbol level Mg..,; during the discovery procedure. As mentioned in
Section 5.4, SUBDUE iteratively discovers lexical units (sub-graphs) from graphs.
The x-axis denotes the SUBDUE iteration number. Each curve represents an it-

erative learning using a fixed codebook size (see figure legend). Mpe.q; always



88 DISCOVERING GRAPHICAL SYMBOLS USING THE MDL PRINCIPLE ON
RELATIONAL GRAPHS

increases since SUBDUE discovers more and more graphical symbols. Among
these curves, green curves outperform the others. It means that the best codebook
size is locate between 40 and 90. Comparing the best M.y = 51.2% attained in
Section 4.5 using the MDL principle on relational sequences, the proposed method

on relational graphs got obviously higher recall rates at a range of 70%.

0.8 T

0.7 * 15

o o
o o
T T

o
~
—

0.

Recall Rate (Multi-Stroke Symbols)
o
i
1
o

i
*
N
8

0.2 e 250

01

O+ <o 0O x
N
o
o
|

0 | | | | |
0 50 100 150 200 250 300

SUBDUE lteration Number

Figure 5.9: SUBDUE iterative discovery procedure in the 2" epoch (Calc, Code-
book Size Selection 7,,)

Final recall rates are illustrated in Fig. 5.10 when no more lexical units are found
by SUBDUE. The best recall rate is 71.3% using the number of 70 graphemes
(codebook size). This recall rate is much more better than a recall rate of 52.1%
mentioned in Section 4. It got a higher Mpg.c.; by 19.2%; 470 more multi-stroke
symbols are found. In this segmentation task, constructing relational graphs succeed
to find more multi-stroke symbols.

During hierarchical clustering as studied in Section 2.3.2, we can obtain the
dendrogram that describes how to merge two clusters. Hierarchical clustering is to
merge two clusters with the minimum distance among all the cluster pairs. Fig. 5.11
shows this linkage distance that is used to reach the wanted prototype number. We
can see in this figure that for the optimal n, = 70 the linkage distance is 0.576.
In this experiment, we use MHD for the similarity between two graphical symbols.

If MHD between two graphical symbols is larger than 0.576, the two graphical



EXPERIMENTS 89

0.9

0.8 b

Max Recall Rate:0.7134

07F L

0.6

0.5

0.3

Recall Rate (Multi-Stroke Symbols)

0.2

0.1

OO OV 2 2 O X OO DO OO DO 0L
'\/'\/'1/'1/’5"5VV@%W%Q,@@@,@,@%}@&G@Q

Codebook Size

Figure 5.10: Recall rate at multi-stroke symbol level when a discovery procedure is
finished in the 2"? epoch (Calc, Codebook Size Selection nyp)

symbols won’t be considered as the same symbol.

Using 70 graphemes to discover graphical symbols, we continue the optimiza-
tion by looking for the best set of spatial relation features. Fifteen spatial relation
feature sets (all the possible combinations) are chosen for discovering graphical
symbols. Fig. 5.12 shows that a combination of F8 and I, which obtains a recall
rate of 78.9%, outperforms the others. We improve again the recall rate by 7.4%.
It means that the unsupervised learned spatial relation is good for discovering the
graphical symbols.

As mentioned in Section 5.3.4, we use k-means to generate the spatial relation
prototypes. The number of spatial relation prototypes is an important parameter.
Fig. 5.13 shows multi-stroke symbol recall rates according to different spatial re-
lation feature prototype numbers. A maximum recall rate of 77.2% is obtained
using the same 10 spatial relation feature prototypes. Since random initialization
in k-means, recall rate may change with the same configuration. The recall rate is
slightly lower than that in Fig. 5.12 with the same configuration. The recall rate is
reduced by 1.5% but it is still stable.

Keeping the 10 spatial relation feature prototypes, we test different n .. closest

strokes from a reference stroke during relational graph construction. Fig. 5.14 illus-



90 DISCOVERING GRAPHICAL SYMBOLS USING THE MDL PRINCIPLE ON
RELATIONAL GRAPHS

3

N
T
|

Threshold in Hierarchical Clustering
P
(62}
|

I
I

I

I

| | | | | | | | |

50 70 100 150 200 250 300 350 400 450 500
Codebook Size

Figure 5.11: Linkage distance during hierarchical clustering in the 2" epoch (Calc,
Codebook Size Selection n,,)

trates recall rates according to different n.g,. closest strokes. We find the maximum
value recall rate when 7.y, = 4. It means that most of symbols can be found by
4 nearest strokes on this dataset. It achieves at a recall rate of 78%. This recall
rate is almost same with the spatial relation prototype number test as illustrated in

Fig. 5.13.

The whole system seems reach a stable state because the best recall rate does not
change much in the two previous figures (Fig. 5.13 and Fig. 5.14). At the end of 2"¢

epoch, we get an optimal configuration specified for the training of Calc dataset.

— n, = 70 (Corresponding Threshold: 0.576)

_ SRF =“F8|I"
— ng = 10
= Nestr = 4

Using the optimal configuration, we obtained the same recall rate of 78% at the
multi-stroke symbol level on the test part of Calc dataset. On this simple dataset,
we can keep the same recall rate. That means our proposed discovery method is
stable. Our previous work [26] reported the recall rate of 62.3% (84.2% including
all the symbols) on the test part. We got a much higher recall rate by 15.7% at the

multi-stroke symbol level in this thesis. In the next section, we will run the same



EXPERIMENTS 91

o
©

Max Recall Rate:0.787
H

© o
~ 0]
T T

o
(e}
T

Recall Rate (Multi-Stroke Symbols)
o o o o
) w IN ol

o
[EEY
T

4 (< %/Q?/

X
O\6

F 8 R’ Col TP 5L &7
\

F e’ A 0\9\/@/ e’
E’

Spatial Relation Selections

Figure 5.12: Recall rate at multi-stroke symbol level when a discovery procedure is
finished in the 2"? epoch (Calc, Spatial Relation Feature Selection)

experiment protocol on the more challenging FC corpus.

5.5.2 Parameter Optimization on the FC Corpus

In this section, we run our symbol discovery system on the FC dataset. As
displayed in Fig. 3.14 (see Section 3.6), the F'C dataset contains much more propor-
tion of multi-stroke symbols. This high proportion of multi-stroke symbols leads
to a higher complexity on the FC dataset. The same experiment protocol is car-
ried out on this dataset with the initial configuration as defined at the beginning of
Section 5.5.

The codebook size n, is first tested in a range of [5, 500], and the learning curves
are shown in Fig. 5.15. The red curves and the green curves attain better recall rates.
Fig. 5.16 reports a maximum recall rate of 53.1% with the same final best codebook
size of 70. We can see that the FC dataset contains more strokes per symbol on
average as shown in Tab. 3.2. Thus, it is more difficult to discover multi-stroke
symbols. The maximum recall rate will be lower in theory.

Comparing the recall rates on the Calc dataset (see Fig. 5.15 vs Fig. 5.9), it



92 DISCOVERING GRAPHICAL SYMBOLS USING THE MDL PRINCIPLE ON
RELATIONAL GRAPHS

0.9 T T T T T T T T T T T T T

0.8 Max Recall Rate:0.7723
' [ |

0.7

0.6

0.5F

0.4

0.3

0.2F

Recall Rate (Multi-Stroke Symbols)

0.1

0
VIR RSN R © S
Spatial Relation Prototype Number

Figure 5.13: Recall rate at multi-stroke symbol level when a discovery procedure is
finished in the 2"? epoch (Calc, Spatial Relation Feature Prototype Number n;,.)

seems that a smaller codebook size (larger MHD distance) was preferable on FC
dataset. However, Fig. 5.17 reports a smaller MHD distance of 0.533 than 0.576
shown in Fig. 5.11. This smaller MHD distance is used to control the codebook size
in the hierarchical dendrogram. It means that we need a more sensitive distance to
group graphical symbols on a more complex dataset. A more distinguished distance
function is preferable on the FC dataset.

Using 70 graphemes for the codebook, we try to select the best set of spatial
relations. The recall rates are shown in Fig. 5.18. F'8 achieves the maximum recall
rate of 55.2%. Comparing the best feature set { '8 , I} of Calc shown in Fig. 5.12,
Calc need the “Intersection” (/) spatial relation. In fact, many symbols on Calc can
be detected by connected strokes, e.g. “+7, “4”, etc. However, on the FC dataset,
the “intersection” spatial relation is not so important. Moreover, the directional
information F'8 is more important, for instance the symbol arrow “— >,

Keeping selected features, we test different spatial relation prototype numbers in
arange [2,300]. Using 30 prototypes, a maximum recall rate of 55.5% is illustrated
in Fig. 5.19. The number of spatial relation prototypes is larger than that on the

Calc dataset. In fact, the spatial relations are more complex on the FC dataset.



EXPERIMENTS 93

0.9

0.8 . Max Recall Rate:0.78

Recall Rate (Multi-Stroke Symbols)

v > v E2)
Nootr Closest Strokes From a Reference Stroke

Figure 5.14: Recall rate at multi-stroke symbol level when a discovery procedure is
finished in the 2"? epoch (Calc, Closest Stroke Number 7.;,.)

We test different numbers of closest strokes n.q, during the relational graph
construction. We attain a maximum recall rate of 55.5% (1103 multi-stroke sym-
bols) when n.s,. = 3 as shown in Fig. 5.20. Most of symbols are composed of 3

neighbor strokes. This parameter is quiet close to that on the Calc.

At end of the 2"? epoch, we get an optimal configuration that is specified for the
FC dataset. We can see the recall rates from the last two experiments (Fig. 5.19 and

Fig. 5.20) become stable. The configuration is illustrated as below:

— n, = 70 (Corresponding Threshold: 0.533)

— SRF =“F8§”
— Ng = 30
= Nestr = 3

Using the optimized configuration in the previous section, we obtained a recall
rate of 45.1% at the multi-stroke symbol level on the test part of FC dataset. On the
more complex FC dataset, the recall rate is much lower than that on the Calc dataset.
However, comparing the recall rate of 40.8% (52.8% including all the symbols) on
the test part in our previous work [38], the recall rate of 45.1% is much higher in

this thesis.



94 DISCOVERING GRAPHICAL SYMBOLS USING THE MDL PRINCIPLE ON
RELATIONAL GRAPHS

0.7

+ 5
0.6 © 10 -
%15
20
25
~ 05 030 B
3 o 35
Qo
€ 40
@ 45
% 0.4 50 B
& 60
= 70
2 80
:“;’/ 0.3 90 B
s +- 100
3 o 150
g * - 200
0.2 . 250 -
X 300
B 350
O 400
+ - 450 ]
o 500
0 50 100 150 200 250 300 350 400 450

SUBDUE lIteration Number

Figure 5.15: SUBDUE iterative discovery procedure in the 2"¢ epoch (FC, Code-
book Size Selection n,,)

5.6 Conclusion

In this chapter, we have proposed a multi-stroke symbol extraction approach on
relational graphs between strokes using the MDL principle. An edge in the rela-
tional graphs represents a spatial relationship between two strokes. The proposed
approach contains four main steps: (i) construction of a relational graph based on
the closest strokes, (ii) quantifying single strokes into graphemes as presented in
Chapter 3, (iii) quantifying spatial relations for labeling the edges of the graph,
and (iv) discovering multi-stroke symbols (lexical units) on relational graphs using
the MDL principle. We build the relational graph between strokes using the 7.,
closest strokes. Quantifying strokes consist in finding graphemes using hierarchi-
cal clustering and label them using the closest prototype. In order to quantify the
edges in relational graphs using clustering, we extract spatial relation features at
three levels: distance relation, orientation relation, and distance relation. Rather
than a simple predefined spatial relation set, we generate spatial relation prototypes
using clustering, which can be adapted for any graphical language. At the end, we
will extract sub-graphs in relational graphs as multi-stroke symbols using the MDL

principle. In the meantime, a symbol segmentation will be obtained. Evaluating



CONCLUSION 95

0.7

0.6 N

Max Recall Rate:0.5307
]

o o o
w » 2
T T T

Recall Rate (Multi-Stroke Symbols)
o
[N
T

0.1}

B O @ RV @ X 2 XL P OO O O O O O O
'\/\r']/’l/“)’bvbt%b/\‘bcb,\,b (]/Q,f),bQ,,gab‘Qb?)%Q

Codebook Size

Figure 5.16: Recall rate at multi-stroke symbol level when a discovery procedure is
finished in the 2" epoch (FC, Codebook Size Selection nyp)

by the segmentation measures proposed in the previous chapter, the MDL principle
on the relational graphs works much better. Two optimal configurations are found
on two datasets respectively, Calc and FC. Testing on the Calc dataset, we achieve
recall rates at the multi-stroke symbol level, 78% on both the training part and the
test part. On the more challenging F'C dataset, recall rates of 55.5% and 45.1% are
reported respectively on training part and test part. Those interesting results shows
that we can get a correct hierarchical symbol segmentation to some extent. In the

next two chapters, we will introduce an application based on this method.



96 DISCOVERING GRAPHICAL SYMBOLS USING THE MDL PRINCIPLE ON
RELATIONAL GRAPHS

25F b

N
u
|

Threshold in Hierarchical Clustering
=
(6]
|

| | | | | | | | |
0 50 70 100 150 200 250 300 350 400 450 500
Number of Prototypes

Figure 5.17: Linkage distance during hierarchical clustering in the 2" epoch (FC,
Codebook Size Selection n,,)

0.7

0.6 E
Max Recall Rate:0.552

° N o
w > o

Recall Rate (Multi-Stroke Symbols)
o
)

0.1

Spatial Feature Selection

Figure 5.18: Recall rate at multi-stroke symbol level when a discovery procedure is
finished in the 2"? epoch (FC, Spatial Relation Feature Selection)



CONCLUSION 97

0.7

0.6 7
Max Recall Rate:0.5548
]

o © o
w > o
T T T

Recall Rate (Multi-Stroke Symbols)
o

N

T

0.1

DO O O I OV O N O DO
\%‘Bb\%%/\‘b%,&,\fbfﬁ

Spatial Relation Prototype Number

Figure 5.19: Recall rate at multi-stroke symbol level when a discovery procedure is
finished in the 2"? epoch (FC, Spatial Relation Feature Prototype Number 7,,.)

0.7 T T T T T T

©
»
T
1

Max Recall Rate:0.5548

Recall Rate (Multi-Stroke Symbols)
o o o o
N w ~ o

o
[EEY
T

0 oy % > o ©
N Closest Strokes From a Reference Stroke

Figure 5.20: Recall rate at multi-stroke symbol level when a discovery procedure is
finished in the 2"? epoch (FC, Closest Stroke Number 7.,






Reducing Symbol Labeling
Workload using a Multi-Stroke
Symbol Codebook with a

Ready-Made Segmentation

The training of most of the existing recognition systems requires availability of
large datasets labeled at the symbol level. However, producing ground-truth datasets
is a tedious work. Two repetitive tasks have to be chained. One is to select a subset
of strokes that belong to the same symbol, the next step is to assign a label to this
stroke group. In this chapter, we discuss a framework to reduce the human workload
for labeling at the symbol level a large set of documents based on any graphical
language. This chapter towards a the first step in fully unsupervised process. Indeed
here we use an existing segmentation and focus on the clustering algorithm and its
evaluation. A hierarchical clustering is used to produce a codebook with one or
several strokes per symbol. Then the codebook is used for a mapping on the raw
handwritten data. Evaluation is proposed on the two different datasets, Calc and FC

as shown in Section 3.6.

99



100 REDUCING SYMBOL LABELING WORKLOAD USING A MULTI-STROKE
SYMBOL CODEBOOK WITH A READY-MADE SEGMENTATION

6.1 Introduction

Many existing recognition systems [1] need a training dataset which defines the
ground-truth at the symbol level. To build the training dataset, we have to collect
all the ink samples and label them at the symbol level, whereas it is a very long and
tedious task. Hence, we propose to reduce this workload, so that most of the tedious
works can be done automatically, by this way only a high-level supervision needs
to be done to conclude the labeling process.

We can divide such a process into two steps, (a) segmenting handwritten scripts
into symbols using the unsupervised symbol extraction method as shown in Chap-
ter 5, and (b) grouping them into a codebook in which a user can label symbols in
order to reduce human effort. This chapter is limited to the second step: the code-
book generation, annotation and its assessment. An offline handwriting annotation
system [14] proposes a similar idea to label a large number of well segmented iso-
lated characters: clustering them into several clusters of characters, and labeling the
clusters in order to reduce human effort.

Let us show an example to introduce the problem. Fig. 6.1 considers an exam-
ple of a graphical language. For clarity, all the strokes are indexed “(.)”. Fig. 6.2a
displays the correct segmentation into symbols. The dashed rectangles represent the
proposed segments in this figure. In the ideal case, each segment contains exactly
one graphical symbol. A symbol shape usually represents a kind of symbol (the
same label). Hence, according to their shapes, we group the segments in clusters.
The corresponding clusters are shown in Fig. 6.2b. Choosing a pattern representa-
tive of each cluster yields a visual codebook used by a human to be labeled as “4”,
“+7, “=", and “8” respectively (see Fig. 6.2c). Strokes in the pattern representative
are marked by an index “(*.)”. In this chapter, we choose, as the pattern represen-
tative, the segment which minimizes the sum of distances to the other segments in
the same cluster. Hence, we can label the handwritten scripts at the codebook level
(the high-level supervision) from the perfect symbol segmentation.

1) € (7) (10 (12) 14)
l , I © —
(_/(_27 @ o) %)L/;m 8“5)

Figure 6.1: A raw handwritten expression



INTRODUCTION 101

(1) ( (7) 1o ‘
( o/ (|

B 8 :
(2) (4 (5)_ (,9,5,,, I(m

(a) Well segmented handwritten symbols to be la-

beled in the expression (Fig. 6.1)
5 m)
}{ a3y }{

(b) Grouping the segments in clusters

Cl 2

{“z 3) ) (10)
E
(2 4) 9) 1,1,1,),,

Cl1

(*

(*4)

Labeling: 4 + — 8
(c) Visual codebook for the user labeling

Figure 6.2: Reducing the human labeling workload in on-line handwritten graphical
language in the perfect case.

However, generating the perfect segmentation (each segment being precisely
composed of a symbol) is far from being trivial as discussed in Chapter 5. For
instance, if we assume that the segmentation is based on an unsupervised learn-
ing scheme to extract frequent patterns, then some segments that contain a symbol
plus sub-parts of another symbol, or even several symbols (multi-symbols) will be
produced.

Similarly, if the segmentation is based on the connected strokes as displayed
in the example of Fig. 6.3a, the same problem of multi-symbol segment will be
present. In that case, the cluster C3 contains the digit “4” and a sub-part of “=”,
while the cluster C2 contains two symbols, “4” and “+”. A user can separate the
symbols, and then label them in the visual codebook (see Fig. 6.3c). The cluster
C3 can be labeled as “4-". If we cannot recognize the sub-part of symbol “-”, the
user will leave it unlabeled. In addition, the multi-symbol mapping problem will be
studied, e.g. the cluster C2 mapping.

After mapping the pattern representatives to the raw handwritten scripts with the
codebook, some mistakes will be present. For example, we can find that the label
“ —” (minus) is wrong and we have to correct it. Thus, we also propose a criterion
that measures how much work has been reduced. This criterion assesses the work-

load at the stroke level since in a manual labeling process, the ink is manipulated at



102 REDUCING SYMBOL LABELING WORKLOAD USING A MULTI-STROKE
SYMBOL CODEBOOK WITH A READY-MADE SEGMENTATION

@y V1T oY
3 N i 15)
(2) (4) l(5) {9(\ (13)..

(a) A connected-stroke segmentation in the ex-

pression (Fig. 6.1)
i .,.(,13)}{

(b) Grouping the segments in clusters

C

L o |
T |
[ 100N (CONLIG)

Cl c2 Cs
C (g :
[ | 6 (:12).
i 102) (*4) l(*5)§ """"""""
Labeling: 4 4+ -

(c) Visual codebook for the user labeling

Figure 6.3: A connected-stroke segmentation and its labeling

the stroke level.

In this chapter, we introduce the proposed strategy for reducing workload on
symbol labeling in Section 6.2. The codebook generation, its mapping and assess-
ment are presented in Sections 6.3, 6.4, and 6.5 respectively. Experiment results

and a conclusion will be given in Section 6.6 and in Section 6.7.

6.2 Overview

First of all, we introduce an overview of our annotation system in Fig. 6.5. The
system is divided into three main steps: generating the segmentation (segments),
clustering the segments and producing the codebook (different segment shapes),
and codebook mapping from the user labeled codebook to the raw data.

In the first step, we need to generate a segmentation in order to apply our map-
ping procedure. Three different segmentations are used in this chapter. The first
segmentation is user defined and corresponds to the ground-truth, i.e. the perfect
segmentation. To study the ability of our algorithm to deal with multi-symbol seg-
ments, we produced an under-segmentation by merging the top-n frequent bigrams
at the symbol level. A segment in a cluster can contain several symbols. It is a

kind of side effects produced by our proposed method. Thus, this segmentation can



CODEBOOK GENERATION USING HIERARCHICAL CLUSTERING 103

evaluate the ability of multi-symbol mapping. This segmentation can be produced
easily with the Calc dataset (presented in Section 3.6) where symbols can be or-
dered from left to right. For instance, top-1 frequent bigram as shown in Fig. 6.1 is

“44”, and Fig. 6.4 shows the segmentation by merging “44” at the symbol level.

(1(3 VVVVVVVVVVVVVVVV 7) 77777777777 (IO 7777777777777 (12) VVVVVVVVVV }4)
8
: I ; (15)
i (©) (4 5). ! ® | — :

,,,,,,,,, ©)_ Ny i3y

Figure 6.4: Merging the top-1 frequent bigram in Fig. 6.1

The two previous segmentations are original from the ground-truth segmenta-
tion, which is not available in real applications. To consider a real segmentation
algorithm, the third segmentation is considered. It relies on the connected strokes
to define a segment (like in Fig. 6.3a). Using these three segmentations, we will
generate three different codebooks in the next section and then use them for the

labeling stage.

2. Clustering 3. Codebook

1. Generating
' Mapping

Segmentation Shapes
Segments Codebook Labeling Cost

—

Figure 6.5: Three main steps on the annotation system

6.3 Codebook Generation using Hierarchical Clus-
tering

In this section, we generate the codebook from the ready-made segmentation
using the hierarchical clustering. Each segment may contain several strokes. In
addition, because of the nature of on-line handwriting, two instances of the same
symbol can be drawn with a different number of strokes, a different stroke order
and different stroke orientations. To overcome this problem, we propose to use the
Modified Hausdorff Distance (MHD) [35, 48] as presented in Section 3.5.3.

Thus we consider each segment as a set of points, seg = {pt}. For being
size independent, all the segments should be normalized into a reference bounding

box {z € [-1,1],y € [—1,1]} by keeping the ratio. In addition to raw data (X,



104 REDUCING SYMBOL LABELING WORKLOAD USING A MULTI-STROKE
SYMBOL CODEBOOK WITH A READY-MADE SEGMENTATION

y), we used the eight orientations, and the local curvature (cosine) to have the 11-
feature local description of a point as described in Section 3.3. The MHD distance
will be used in this chapter for the two datasets, Calc and FC, because the MHD
distance largely outperforms the DTW distance on the F'C dataset as presented in
Section 3.7.2.

A clustering technique is needed for producing the codebook, which is then
brought into play for computing the membership of each segment. As mentioned
in the Section 3.2, we have chosen the hierarchical clustering since its convenience
of tuning the number of prototypes from dendrogram. The membership of each
segment is then generated: all the segments are grouped into n,, clusters.

We select, as the pattern representative, the sample seg. which minimizes the

sum of MHD distances to the other samples of the same cluster C":

seg. = argmin( Z MHDy.4(segyp, segq))- (6.1)

segp€C segq€C

The pattern representatives will be organized as the visual codebook, an example
is displayed in Fig. 6.2c. For example, a segment “4” is selected for the pattern
representative among four segments “4”. We need the mapping process from the
visual codebook to the raw scripts. In the next section, the codebook mapping

problem will be discussed.

6.4 Codebook Mapping from a Visual Codebook to

Raw Scripts

In the previous section, the codebook composed of multi-stroke segments has
been obtained. A representative sample has been selected from each cluster to gen-
erate the visual codebook. A user labels therefore these chosen segments stroke by
stroke in the visual codebook. In this section, we discuss how to label raw scripts
with the labeled visual codebook.

In the visual codebook, segments in a cluster are not always from the same
single symbol, e.g. the segment “4+” as shown in Fig. 6.3c represents more than
one symbol. If we meet unknown symbols (sub-parts of symbol), we will leave them

unlabeled. This task of segmentation and partial labeling of the representatives is



CODEBOOK MAPPING FROM A VISUAL CODEBOOK TO RAW SCRIPTS 105

quite simple. A mapping algorithm has been developed to complete the labeling
of all unlabeled strokes in the original cluster. The mapping procedure involves
normalizing a segment into a bounding box, and then searching for all unlabeled
strokes with the closest labeled stroke using the MHD distance. After this mapping
process, the symbols are segmented and labeled.

With the example of the cluster C2 and the visual codebook given in Fig. 6.3c,
we assume a new instance of two symbols “4+” as displayed in Fig. 6.6b for better
explanation. This instance contains one more stroke (5 instead of 4), and belongs
to the cluster C2. A user has first to manually label the two symbols contained in
the representative of the C2 cluster, i.e. the symbol “4” for the two strokes (*3, *4)
and the symbol “+” for the two strokes (*5, *6), as displayed in Tab. 6.1a. In our
system, each stroke is associated with a symbol index and its label. The symbol

index denotes the symbol to which the stroke belongs (symbol segment).

fe) |
! 5 24)
| |
@ ey
s I
(-1’_1)
(a) User Manually Labeling in C2 (b) Raw Scripts

Figure 6.6: The user manually labels the cluster C2 (a), and then the system finds a
mapping for raw scripts (b).

Then we have to automatically label the remaining strokes (20 to 24) belonging
to C2. This is done by a mapping procedure to find the best match between the unla-
beled strokes and the labeled ones. Considering the two segments {(*3), (x4), (x5), (x6)}
and {(20), (21), (22), (23), (24)}, Tab. 6.1 shows the mapping procedure which nor-
malizes the segments and looks for the corresponding labeled stroke. The numbers
of strokes between two mapping segments are not necessarily equal. The mapping
pairs {{(20) — (x3)}, {(21) = (+3)},{(22) — (+4)},{(23) — (+5)},{(24) —
(%6)}} are achieved. The symbol “4” {{(20) — (*x3)},{(21) — (*3)},{(22) —
(x4)}} and the symbol “+” {{(23) — (x5)},{(24) — (x6)}} are segmented and
labeled.

We have presented the whole annotation process. Since there may be some



106 REDUCING SYMBOL LABELING WORKLOAD USING A MULTI-STROKE
SYMBOL CODEBOOK WITH A READY-MADE SEGMENTATION

Str  Sym _ Label Str  Sym Label
¢y 1 0| 1 4
(*4) 1 4 ‘< 1) 1 2
(*5) 2 + \ (22) 1 4
*6) | 2 + s @) 2 "
Str: stroke index ) 2 +

Sym: symbol index

(a) The representative labeled by the user (b) A raw segment in the cluster

Table 6.1: Each stroke in raw segment (b) is given the label contained in its closest
stroke of labeled representative (a).

errors produced from the symbol segmentation (e.g. the connected-stroke segmen-
tation), we will introduce a labeling cost to evaluate how much annotation work has

been reduced in the next section.

6.5 Labeling Cost

In the previous section, the visual codebook was manually labeled. We then
execute the mapping procedure to label all the other segments. As the segmentation
and clustering are not perfect, some errors have to be manually corrected by the
user. These corrections increase the cost of symbol labeling. Since the user labels
the segments and raw handwritten scripts in a dataset stroke by stroke, we define
the labeling cost (', at the stroke level by:

Ne + Nap — Neoprect

Clabel = Ndb ) (62)

where NNV, is the number of strokes in the proposed codebook, Ny, is the number
of strokes in the dataset, and N, 1 the number of strokes which are correctly
labeled in the original dataset. Thus, Ny — Negrreer 18 the number of strokes for
which the label has to be corrected or filled in the original dataset. N, and N, can be
easily obtained by counting how many strokes are in the codebook’s representatives
and in the dataset respectively. We compute N,,...x according to the number of
strokes which correspond to correctly segmented and correctly labeled symbols. If
Claper < 1, the system reduces the human effort for labeling. The lower labeling cost
is preferable. In fact, we can consider (., as the percentage of strokes in dataset

which still need a manual operation. For instance, after labeling the visual codebook



EVALUATION 107

and mapping as shown in Fig. 6.3, the labeling cost is Ciape = 25212 = 0.933,
which is not an interesting rate because of the small size of the example (15 strokes).

In the next section, our proposed method will be tested on the two different
datasets as presented in Section 3.6, the single-line mathematical expressions (Calc)

and the flowchart dataset (FC).

6.6 Evaluation

In this section, we evaluate different codebook sizes (prototype numbers) during
the hierarchical clustering on the two datasets (Calc) and (FC) as introduced in
Section 3.6, and with different segmentation methods. As an illustration, we also

display a subset of the visual codebook.

6.6.1 Evaluation of Codebook Size:

As proposed in Section 2.3.2 [62], six different metrics can be used to control the
hierarchical clustering. As the initialization, we use the Average metric to calculate
the codebook. The comparison between the metrics will be discussed later.

Fig. 6.7 shows the labeling costs on the two datasets with two segmentations:
the ground-truth segmentation and the connected-stroke segmentation. Using the
ground-truth segmentation, the labeling cost is very low on both datasets respec-
tively: 6.4% with 150 prototypes on the Calc dataset training part and 4.3% with
100 prototypes on the FC dataset training part. It shows that in the ideal case we
can reduce most of the human workload. The FC dataset contains only 6 classes.
Among the 6 classes, the arrows have a high shape variation. The Calc dataset is
composed of more classes of symbols, but more stable for each symbol. That is
why the Calc dataset needs less number of prototypes using the ground-truth seg-
mentation.

Using the connected-stroke segmentation, the labeling cost on the training part
of FC dataset reports a high value, 97.5% with 40 prototypes. It means that most of
graphical symbols on the FC dataset are not connected-stroke component. On the
training part of Calc dataset, the labeling cost is much lower, 46.9% with 250 proto-
types, since the most of graphical symbols, digits, are connected-stroke component.

Hence, the segmentation quality is vital for the labeling cost.



108 REDUCING SYMBOL LABELING WORKLOAD USING A MULTI-STROKE
SYMBOL CODEBOOK WITH A READY-MADE SEGMENTATION

R = e— ———- S
0.975
09 4

—¥— Connected-Stroke(Calc)
0.8 —©— Connected-Stroke(FC) |7
—8— Ground-Truth(Calc)
0.71 —#— Ground-Truth(FC)
‘g 0.6
@]
2o5f |
©
G
S 04f

0.3f

0.2f

0.1f

£

0.043

! | | ! !
0 4050 100 150 200 250 300
Codebook Size (Prototype Number)

0

Figure 6.7: Labeling cost with different codebook sizes on the training parts of two
datasets with the ground-truth segmentation and the connected-stroke segmentation

6.6.2 Evaluation on Hierarchical Clustering Metrics:

As the initialization configuration, we use the Average metric in the hierarchi-
cal clustering. In this section, we compare the six hierarchical clustering metrics
on the two datasets respectively using their respective best codebook size: (1) Sin-
gle, (2) Average, (3) Complete, (4) Centroid, (5) Median, and (6) Ward (minimum
variance) as shown in Section 2.3.2. Fig. 6.8 shows the labeling cost for the six
metrics using the ground-truth segmentation. Clearly, the Average metric reports
the lowest labeling cost on the training parts of both datasets. The Single metric
can be easily infected by outliers since it chooses the closest sample to compute
the distance between two clusters. Hence, this metric got the highest labeling cost.
The simple Average metric outperforms the others since the larger MHD distance in
average means that larger dis-similarity in average between two clusters. As shown
in Section 2.3.2, the others not only depends on not the MHD distance, but they
also depends on other criterion, e.g. the Ward metric depends on the increment of

variance.

6.6.3 Evaluation on Merging Top-N Frequent Bigrams:

In this section, we want to test the performance of multi-symbol codebook map-
ping in the system. A synthesis segmentation for this mapping will be created on

the Calc dataset. The mathematical expressions are arranged from left to right. Us-



EVALUATION 109

ool I Caiculate
' I -c

0.8 J

0.7 b

0.6 b

Labeling Cost
o
o
1

Single Average Complete Centroid Median Ward
Hierarchical Clustering Metrics

Figure 6.8: Evaluating the hierarchical clustering metrics on the training parts

ing the ground-truth segmentation, we can calculate the bigram distribution. The
top-n (¢,,) frequent bigrams are merged as new multi-symbol segments to test multi-
symbol mapping in the codebook.

Fig. 6.9 shows the labeling cost on the training part of Calc dataset during the
merging of the top-n (¢,,) frequent bigrams produced from 0 to 50 with a step of
10. As shown in Fig. 6.9, two mapping methods are used. The first is the proposed
multi-symbol mapping of this chapter. The second is the single-symbol mapping;
each cluster are associated with only one label. The zero in x-axis means that the
ground-truth segmentation is used. It shows that the multi-symbol mapping obvi-
ously works better, and is more stable. If two symbols are merged in one during

the segmentation step, this error can be “saved” or “corrected” by the multi-symbol

mapping.

6.6.4 Evaluation on Test Parts:

In the previous experiments, we use the training parts, actually used as valida-
tion sets, from the two datasets to choose the best parameter setting: 150 prototypes
on the Calc dataset and the 100 prototypes on the F'C dataset with the Average met-
ric. Using these parameters and the connected-stroke segmentation, we obtain fair
labeling costs of 50.4% (2292 strokes) and 97.2% (5889 strokes) on the test parts
of the two datasets respectively. Nevertheless, using the ground-truth segmentation,

labeling costs of 13.1% (596 strokes) and 13.5% (818 strokes) are achieved respec-



110 REDUCING SYMBOL LABELING WORKLOAD USING A MULTI-STROKE
SYMBOL CODEBOOK WITH A READY-MADE SEGMENTATION

1 T T T T T T T T T
—&— Multi-symbol mapping
091 —— Single—-symbol mapping [

Labeling Cost
© o o o o o
w > v o N
T : T
1 1

o
[N}

0.1

Il Il Il
0 5 10 15 20 25 30 35 40 45 50
Merging t frequent bigrams

0 I I I

Figure 6.9: Labeling cost on merging the top-n (¢,,) frequent bigrams on the training
part of Calc dataset

tively. These values show that the method is quite effective and that a lot of the

annotation task can be saved.

6.6.5 Visual Codebook:

An illustration of the results of the clustering based on the ground-truth seg-
mentation is displayed in Fig. 6.10. In these selected examples, we can see that
the segment shapes are well grouped in the clusters. In each segment, a red point
represents the starting point of a stroke. As displayed in Fig. 6.10a, several digits
“8” with different writing orientations and different pen-down positions are actually
grouped in the same cluster. It means that the proposed features can distinguish the

symbol shapes very efficiently and correctly.

6.7 Conclusion

In this chapter, we proposed a framework for reducing the annotation work-
load using the codebook mapping for online graphical languages. Starting with a
ready-made segmentation, the segments are grouped into the codebook using the
hierarchical clustering. The visual codebook is generated for the user labeling. To
evaluate the system performance, we define the labeling cost to evaluate how much

labeling work has to be done by the user. On the test part of two datasets, Calc



CONCLUSION 111

0 33373333333
{8858 SYER8T

— PR | P — ||| —
c3 ‘ ‘ “'——* ""‘— — | e—=|l—— | — | T
Visual codebook: ‘3 — |
C2

(a) Clusters and pattern representatives from the Calc dataset

<SS

o =gl ==l o

o WULLUPLLILTLL

Visual codebook: <> = J/ ,,,,,,,,,,,,,

Cl1 C2 C3

(b) Clusters and pattern representatives from the F'C dataset

Figure 6.10: Clusters and pattern representatives

dataset and FC dataset, the low labeling costs of 13.1% and 13.5% are reported
respectively using the ground-truth segmentation. Much of work has been reduced
thanks to a good segmentation.

However, generating a good quality of segmentation is difficult by an unsu-
pervised method. As shown in the experiment part, the labeling cost of connected-
stroke symbol segmentation, which is a real segmentation method in state-of-the-art
works, is still very high. Our approach as presented in Chapter 5 based on the MDL
principle is a possible option for generating the unsupervised segmentation. In the
next chapter, we will apply this unsupervised segmentation method to reduce the

symbol labeling cost in this case.






Reducing Symbol Labeling
Workload using a Multi-Stroke
Symbol Codebook with an

Unsupervised Segmentation

In the previous chapter, we have presented a method to reduce the symbol la-
beling cost using a mapping from the codebook to the raw scripts. Therefore, the
ground-truth dataset can be more easily built for a recognition system. However, if
when using the connected stroke segmentation, we can largely reduce the labeling
cost on the Calc dataset, it was not the case not on the FFC dataset. The key problem
is how to produce a more precise symbol segmentation with an unsupervised way.
In this chapter, we propose an iterative unsupervised handwritten graphical sym-
bols learning framework which can be used for assisting such a labeling task. This
framework mainly uses the symbol segmentation method as presented in Chapter 5.
Initializing each stroke as a segment, we construct a relational graph between the
segments where nodes are the segments and edges are spatial relations between

them. To extract relevant patterns, quantization of segments and quantization of

113



114 REDUCING SYMBOL LABELING WORKLOAD USING A MULTI-STROKE
SYMBOL CODEBOOK WITH AN UNSUPERVISED SEGMENTATION

spatial relations are implemented. Discovering graphical symbols is then the prob-
lem of finding sub-graphs according to the Minimum Description Length (MDL)
principle.

The discovered graphical symbols will become new segments for the next iter-
ation. In each iteration, the quantization of segments yields the codebook in which
the user can label graphical symbols. To evaluate this method, the labeling cost as
defined in the previous chapter has been used. This method will be applied on the

Calc dataset and the more challenging F'C dataset.

7.1 Introduction

Graphical symbols, which are the lexical units of graphical languages, are com-
posed of a spatial layout of single or several strokes. Usually everybody share
some conventions about symbol shapes. The conventions allow individuals to read
graphical messages comprising similar symbols. The ground-truth dataset, which
contains those symbols, is vital for the current recognition system training. How-
ever, it is a tedious and time-consuming task to collect all the ink samples and label
them at the symbol level.

In the previous chapter, we have proposed a codebook mapping method which
is a high-level supervision. This method can assist symbol labeling process with
a correct symbol segmentation. Therefore, most of the tedious works can be done
automatically. We remind that the basic units in on-line handwriting are strokes.
A symbol is made of a single stroke or several strokes within confines of specific
spatial composition. The key point is to identify the symbols from a large collection
of handwritten strokes in spatial layouts. Let us illustrate some simple examples to
understand the problem.

Imagine a document with only two different stroke shapes, e.g. “—"" and “>".

3 2

Without any context, and “>" might be regarded as two different symbols “mi-
nus” and “greater than” respectively. Each stroke corresponds directly to a single
symbol. If the two strokes are placed together like “—”, they will becomes another
symbol “arrow”. The stroke is only a part of symbol. Eventually, the same kind of
stroke according to the context will be either a single symbol or a piece of a more

complex symbol. Searching the different shapes of strokes, termed as graphemes,



INTRODUCTION 115

has been studied in Chapter 3. In this case, we have two graphemes “—" and *“>”

for the two strokes respectively.

Let us put the two strokes together: it exists many composition rules named spa-
tial relations. Two different symbols, “>~" and “—”, can be constructed. The only

13 2

difference between them is that the grapheme is arranged on the right side in
“>~"" while on the left side in “—”. These relations (left and right) are easily defined
manually, but not for a complex graphical language, e.g. the FC dataset. Chap-
ter 2.2 has studied the spatial relation learning. The spatial relation is defined from

a reference stroke to an argument stroke at the three levels: distance, orientation,

and topology.

Considering a more complicated example, Fig. 7.1a shows four different sym-
bols, “arrow”, “connection”, “process”’, and “terminator”. But the ground-truth
is unknown in advance. To avoid an ambiguity that some strokes share the same
grapheme, the stroke is referenced by their index (.). Which set of strokes (a seg-
ment) represents a symbol? Why the combination of the strokes {(1),(2),(3)} is
a valid symbol (actually “arrow”)? An intuitive answer is that the spatial compo-
sition is “frequent”; it exists two similar patterns in the layout, {(1),(2),(3)} and
{(5),(6),(7)}, comprising same graphemes and same spatial relations respectively.
Nevertheless, the equally frequent combination of less strokes {(1),(2)} does not
mean a symbol. Moreover, the third arrow {(11),(12)} only contains two strokes,
but its shape is similar with the previous two arrows. Graphical symbols with
the same label (ground-truth) can contain different number of strokes and differ-
ent graphemes. Hence, the problem is to search some repetitive patterns in a lay-
out yielding to the graphical symbols. Chapter 5 presented the symbol searching
method using the Minimum Description Length (MDL) principle. Therefore, a seg-

mentation will be generated at the symbol level.

From the produced segmentation, we group segments in a small finite set of
symbol hypothesis called a codebook with a higher semantic level. The codebook
requires less annotation operations like in Fig. 7.1b. Only 3 segments have to be
labeled instead of 6 symbols including 13 strokes in Fig. 7.1a. But all similar seg-
ments in a cluster of the codebook do not contain the same ground-truth: different
symbols can be mixed in one cluster. For instance, the stroke (4) of symbol “con-

nection” and the stroke (13) of symbol “terminator” are merged in the same cluster



116 REDUCING SYMBOL LABELING WORKLOAD USING A MULTI-STROKE
SYMBOL CODEBOOK WITH AN UNSUPERVISED SEGMENTATION

because of two similar shapes. Chapter 6 introduced a multi-symbol codebook map-
ping which is tolerant to some symbol segmentation errors produced by the MDL

principle.

Process Arrow Terminator

Arrow Connection

LLINNTS

(a) A handwritten flowchart contains four different graphical symbols, “arrow”, “con-

9 <.

nection”, “process”, and “terminator”.

n ‘ | ©
Dt —~Q a2) | 3
L L an S | | -2

{ “ <3>§’?<5) —® > },{ <><4>§, Q)},{ ® I(IO)}

i i 2
Arrow Connection or terminator ? Process

(b) A generated code book from the handwritten flowchart in Fig. 7.1a includes three sets of
segments.

Figure 7.1: Reducing the human effort on labeling symbols

In this chapter, the proposed learning framework is revealed in Section 7.2.
In this framework, we extract the codebook composed of multi-stroke symbols in
which a user can label. The framework iteratively executes the symbol extraction
method proposed in Chapter 5. The iterative learning process is explained using
examples. Section 7.4 shows the system performance evaluated by the labeling cost

as defined in Section 6.5.

7.2 Unsupervised Multi-stroke Symbol Codebook Learn-
ing framework

Our proposed automatic multi-stroke symbol extraction system is illustrated in
Fig. 7.2. The on-line handwriting is imported in system, and the codebook is then
exported for the annotation. Six main steps have to be taken into account in the sys-
tem, which is an iterative learning. In the iterative learning framework, we consider
the segment as the basic unit which may contain a complex multi-stroke structure
or a simple one-stroke grapheme. The initial segmentation is set up with each sin-
gle stroke. Using the symbol discovery method proposed in Chapter 5, we build
firstly the relational graph with the segment as nodes and the spatial relations as

edges. After the quantization of segments and of spatial relations, we make use of



UNSUPERVISED MULTI-STROKE SYMBOL CODEBOOK LEARNING FRAMEWORK
117

the SUBDUE system to discover the new symbols (sub-graphs). The segments in a

new symbol will be merged into a new segment for the next iteration.

6. Merging Segments in

< > Input (). Initializati f
P 4 ZLCIE 1:;101]2);1 © | p»| I. Segmentation |«¢—| the Discovered Symbols
scripts

(Nodes in the Sub-graphs)

as a segment / f

2 Relational Graphs | yarative learning 5. SUBDUE Discovers
Between Segments New Symbols
\ (Sub-graphs)
3. Quantization 4. Quantization
Codebook |- Output of segments —————m| of spatial relations
(Nodes) (Edges)

Figure 7.2: Automatic multi-stroke symbol extraction system

7.2.1 Relational Graph Construction Between Segments

For the initialization step as shown in Fig. 7.2, we consider each stroke as a seg-
ment. In later steps, new segmentations will be generated from discovered symbols.
The new segmentations will be discussed later. After obtaining the segmentation,
we construct the relational graph between segments as presented in Section 5.3. The
node is defined as the segment and the edge is defined as the spatial relation. The
spatial relation is considered as a relationship from a reference segment to an argu-
ment segment. In other words, the relational graph is directed. We define n,., as the
number of segments. The number of out-directed edges from a reference segment
should be limited to 7., closest segments where 7.4, <= N4y — 1. This limitation
can avoid a complete graph building. Furthermore, a limited perceived visual angle
[69] exists in our eye; the symbols composed of the closest segments are preferable.
However, if 1.4, is too small, we could lose some stroke compositions, and so some
symbols.

As an example, Fig. 7.3a illustrates the generated relational graph (n.s, = 2)
in the first iteration for the flowchart in Fig. 7.1a. The relational graph contains
26 edges and 13 nodes. In the first iteration, each segment is composed of a single
stroke. To search the patterns in the graph, we have to quantify the segments (nodes)

and the spatial relations (edges). In the next section, we remind how to quantify the



118 REDUCING SYMBOL LABELING WORKLOAD USING A MULTI-STROKE
SYMBOL CODEBOOK WITH AN UNSUPERVISED SEGMENTATION

segments using the hierarchical clustering.

7.2.2 Quantization of Segments (Nodes)

In the previous section, the relational graph between the segments have been
constructed. In this section, the segments will be quantified so that we can generate
a codebook in which we can annotate the clusters.

We first choose a distance to calculate the dis-similarity between two segments
for the clustering. As shown in Chapter 3.7.2, the MHD distance is the best dis-
similarity function for the hierarchical clustering on the more complex FC dataset.
Therefore, we propose to use the MHD distance as defined in Section 3.5.3. For the
shape matching, the MHD distance between two segments is defined in Eq. (3.11).

In off-line data (images), the MHD distance uses usually only x and y coordi-
nates of pixels (two features). In on-line data, we have fused local direction features
and one curvature feature as described in Section 3.3 by computing the Euclidean
distance dist(pt;, pt;) between two feature vectors. The MHD distance therefore
can distinguish “[J” and “O”, which have similar x and y coordinates, but different
directions and curvatures for each point.

As studied in Chapter 3, we proposed to use the hierarchical clustering to re-
group the segments. During the hierarchical clustering, the dendrogram will be
produced. The dendrogram is a binary tree to describe how to merge two clusters
in the hierarchical clustering. The number of clusters 7, can be determined by a
distance threshold in the dendrogram. If the MHD distance between two clusters is
less than the threshold, the two clusters will be merged into a new cluster.

The codebook size will be changed since more and more discovered symbols
will be added into the codebook. In this chapter, we will find the best threshold to
control the number of clusters. Therefore, in each iteration of system, the codebook
size will be changed in terms of the threshold. Using the threshold, we assume that
all the segments will be grouped into n, clusters in an iteration.

We define the center sample seg. who minimizes the sum of MHD distances
to the other samples in the cluster C' using Eq. (6.1). The center samples will be
organized as a visual codebook. According to the iterative algorithm in Fig. 7.2,
this quantization step can also be the last step before the output.

For instance, Fig. 7.3b displays that the segments are partitioned into n,, = 7



UNSUPERVISED MULTI-STROKE SYMBOL CODEBOOK LEARNING FRAMEWORK
119

clusters in the first iteration from the segments in Fig. 7.3a. In reality, it exists a
great number of samples in a cluster. We choose the center sample in each cluster,
so that a visual codebook in Fig. 7.3c is generated. The user can therefore label these
samples in the codebook at the higher level. This procedure is the quantization of

segments. Afterward, we quantify the spatial relations in the relational graph.

7.2.3 Quantization of Spatial Relations (Edges) Between Seg-

ments

As studied in Section 7.2.1, we have created a relational graph between the
segments. In the previous example, the number of edges in the relational graph is 26
as mentioned in Section 7.2.1 which means that it exists 26 spatial relation couples
between two segments. In this section, we quantify the spatial relation couples
into ng,. categories. We first extract the features of spatial relations. Section 5.3.3
proposed 11 features aiming at describing the three level spatial relations. The K-
means clustering algorithm is applied to generate ng, spatial relation prototypes,
and then all the edges in relational graph are grouped into n,, categories.

As an example, Fig. 7.3d shows that the nodes and the edges from relational
graph as shown in Fig. 7.3b are quantified into n, = 7 different shapes of segment
(C1, C2,...,C7) and n,. = 8 different spatial relations (SR1, SR2....,SR8). To better
understand the method, all the spatial relations are marked with spatial significations
as displayed in Fig. 7.3d. In reality, such significations do not exist.

In the next section, we introduce a short remind using examples for the graphical

symbol (sub-graph) extraction using the MDL principle as described in Chapter 5.

7.2.4 Discover Repetitive Sub-graphs Using Minimum Descrip-
tion Length

In the previous section, we have obtained the relational graph from a graphical
language. Using the MDL principle presented in Chapter 5, we will extract repet-
itive substructures in the graph, which will be considered in our context as lexical
units. Formally given a graph GG, we choose the lexical unit © which minimizes the
description length. We consider this lexical unit « as the graphical symbol.

For explaining a discovery procedure, we extract a lexical unit from the same



120 REDUCING SYMBOL LABELING WORKLOAD USING A MULTI-STROKE
SYMBOL CODEBOOK WITH AN UNSUPERVISED SEGMENTATION

Segment
Seg9 -
Seg2 Seg? o
(RS e Py Seg8 S o Segll Segl2__ . Segl3
T - o S e ¢ R A T G S
Seel \ . 7 S \\\ N ’/’ \\\ RN \(]3)
* /“>/' gél\/' See? \‘/(w/" N [(0)] A
Seg3 Seg6 Segl0

(a) The relational graph is produced in the first iteration for the flowchart as shown in Fig. 7.1a. Each single
stroke is considered as a segment in the first iteration.

77777777 | 77777ﬁ o T e
\ |/ ‘ | T ) N
(8) i N -7
o W e e ORI G
S;w8 ‘ ‘ Seg3 Seg6 | ! Seg2 Seg7 | ! Segl Seg5 Seg9 Segll |
[ 5707 . ‘ L fffffff L - L- -
Cl1 Cc2 C3 C4
} 7777777 777‘ I ‘hfﬁi\
T {Con e el e
AN AR | Cluster
} @7 a3) | } Sealz | | Seglo | Lo
g=}
| Segd Segl3 | c6 C7

(b) The segments are grouped into n,, = 7 clusters in the first iteration from the segments (nodes) as
displayed in Fig. 7.3a

Cl1 Cc2 C3 Cc4 C5 C6 C7
[0 A e S
(c) The codebook is illustrated by choosing the center sample in each cluster. In the
last iteration, the user can label all these chosen samples.

Seg9
Seg2  gRo Seg? <
SRS (C,%)A/\ ke SR (9) Segll gy Segl S(i;lf
N sry O\ (C1)/V j (C4) (C6) _SRI
Cor i e ST o A

P YO 4 K i =
RO R @R%f () TSR"Q SR37 SRﬁ 6{2 an \sg;<1z> )

Segl&_/»/ eRic. @ wra e SR S N S B 13)
R {_~ “SRhy"....-~" SRI Seg5 A
) Syl ) Y o o <6>/' \‘ Jaoy, Ve
S g SR2
Seg3 (C5) Seo6 SeﬂlO
(€2 €2) (&)}
SR1: Right SR2: Left SR3: Above SR4: Below N
. ! Segment
SR5: Above-Right ~ SR6: Above-Left SR7: Below-Right SR8: Below-Left

(d) The relational graph generated from Fig. 7.3a after the quantization of segments into n,, = 7 graphemes
and the quantization of spatial relations into n,, = 8 categories.

Figure 7.3: The learning procedure during the first iteration



UNSUPERVISED MULTI-STROKE SYMBOL CODEBOOK LEARNING FRAMEWORK
121

example as displayed in Fig. 7.3d. The flowchart as shown in Fig. 7.3d is only one
flowchart in the training set, but obviously in real data it exists many other varied
flowcharts using the same symbol set. Fig. 7.4a and Fig. 7.4d illustrate two possible
lexical units: two instances of “—” and two instance of “>”. Considering all the
flowcharts in the training set, if the occurrence number of “>” and the occurrence
number of “—” are almost equal, the MDL principle will prefer the substructure
“—” composed of more nodes and edges which can get a higher compression ratio
in the graph. Similarly, if the occurrence number of “>" is much larger than that
of “—”, we will extract “>" as the lexical unit according to the MDL principle. In
each iteration, we can discover n, > 1 lexical units as the multi-stroke symbols
using the SUBDUE system.

In the next section, we will present the iterative learning by merging the seg-

ments in a new symbol instance into a segment.

Seg2 Seg7

©3) (€3)

~ e @) . P
«"/l\\“~‘SR4Q*~S—§'37 (D Em f G _,,7'SR4< 3ii37
—— . Segl A
c4 }A{/ o (C@%’\\/@’)j ?8‘?8 sk g,

Seg3 Segb

&) (&) ()

(a) An extracted substructure “—”  (b) The 1°¢ instance of “—”

2

(c) The 2™ instance of “—

Seg2 Seg7

o (C3) (93?
R4/ oy SR4 SRL& SR3
s} o R
o o), L@/
\\“7/,," S Sen6

Seg3 °

() ) €

(d) An extracted substructure “>"  (e) The 1%¢ instance of “>"

(f) The 2"¢ instance of “>"

Figure 7.4: Two possible symbols in the first iteration as shown in Fig. 7.3d.

7.2.5 Iterative Learning

In the previous section, we have discovered one new symbol. However, these

new symbols will change the original spatial relations which were between their
subparts and the rest of the relational graph. Moreover, the new symbols and old

segments may be similar. It would be better to redo the learning procedure.



122 REDUCING SYMBOL LABELING WORKLOAD USING A MULTI-STROKE
SYMBOL CODEBOOK WITH AN UNSUPERVISED SEGMENTATION

Let’s illustrate an example to understand the problem. We suppose that the
symbol “>"" as shown in Fig. 7.4d is extracted rather than “—"" as shown in Fig. 7.4a.
The segments in the symbol instance will be integrated to another object. We can
consider such object as a new segment. For instance as shown in Fig. 7.5a, two new
segments Segl4 (Seg2 and Seg3) and Segl5 (Seg7 and Segb) are created. We find
that the shapes of the new segments Seg14 and Seg15 are similar with that of the old
segment Seg12 which has only one stroke (12). Thus, a new codebook is needed to
be calculated.

Considering the spatial relations as shown in Fig. 7.5a, Seg1 associates no longer
the relation SR5(Above-Right) nor SR7(Below-Right) with Segl4, which is the
combination of Seg2 and Seg3. Neither do the relation between Seg5 and Segl5. In
fact, Segl4 is put on the right (SR1) side of Segl. Therefore, it would be better to
recalculate the relations between the all segments.

After merging, the second iteration begins. We group the segments into the sec-
ond iteration codebook as shown in Fig. 7.5b. We can see that three “>", which
are composed of different numbers of strokes, are in the cluster “C6”. Similarly,
a new relational graph in the second iteration is generated in Fig. 7.5c. The spa-
tial relations (edges) have been rebuilt. Fig. 7.5d illustrates three extracted arrows
from the relational graph in second iteration. We combine the segments from the
instances of arrow to the new segments, Segl6, Segl7, and Segl8. The codebook
in the third iteration is obtained in Fig. 7.6a. The user can label the symbols in this
visual codebook.

The system will stop the iterative learning procedure when the SUBDUE cannot
find any new symbols in the relational graph. Nevertheless, the previous steps,
quantization of segments and of spatial relations, are time-consuming. Increasing
the number of discovered symbols in each iteration n, can speed up the system

running.

7.3 Annotation Using the Codebook

In the previous section, the codebook composed of multi-stroke symbols has
been obtained. We choose the center segment in the cluster to generate the visual

codebook, and then the user labels these chosen segments stroke by stroke. We will



ANNOTATION USING THE CODEBOOK 123

Change them as SR1 (Right) Change them as SR1 and SR2 respectively

P Seg9
// * / // (c4)
SR2 / Seg8 SR3 / Segl2 Segl3
/ , V T Seall gy Se
| SRS A/\ (Cl) C4 (Co)_sRI (€5)
e SR A OR2 ; ( );K\ AT

T e ) (. “”4 f.s/m g oD, (O

Segl p (X SRE b:‘é'ef&s *\* ()’ SR1 s\\‘ [

(C4 SR7 Segl4 Seg . s S® Segl5 (10) s
(C5) Segl0
(€N
SRI: Right SR2: Left SR3: Above SR4: Below |
P S t
SRS: AboveRight ~ SR6: Above-Left SR7: Below-Right SRS: Below-Left ;oeemen
(a) A new relational graph after merging the segments in the symbol instance
T T T LT T T T oEl T oEuIT [ R -l
AENETO © PN BRTINY
| S ® A T Ty a0y
‘ ss } ! Segl Segs Seg9 Segll | } @7 a3 } Seglo |
eg ' B - -
b b = = 7o | Seg4 Segl3 | c7
ct e e e
L 777_-77" CS
| Q) cl 4 G5 C6 7
| (12> By e |
(OO R Visual codebook ‘ ‘ — ‘Q ‘ > ‘ I ‘
\ Seg12 Segl4 Segl5 X
C6
(b) A codebook in the second iteration
Seg9
(C4)
Seg8 SR3 Seoll Segl Segl13
/ (9) < SR2 CS
«n W ) c4 C6) SRi1 ( )
,,,,, SR2 . (C4) (\( )/‘

2y SRL SRe-_
o AT AT A asRE
Py O (& SRS @ SR7£ 75 S SR1(12> Q

k€. . TP (6 SRl e (13)
oo Seg5
©) SRl Segld | .o, 5 SRl Segls I(m) SRI SRf/
(Ce) (C5) (Ce6) Seglo
(CT)
(c) A quantified relational graph in the second iteration
I T (2) I (D Segll Segl2
I~ Ty ® | e < ; ©y (C6)
S o i (1)7\_/'6} ~(5 \) é} R
O Segl . (3) Seg5 ~(6)
“ \S_Rl/> 6 (C4)  SRI  Segl4 ca SR segls  ah SR (12>/’
(C6) (C6)
The extracted substructure The 1" instance The 2" instance The 3" instance

(d) An extracted substructure in the relational graph in the second iteration

Figure 7.5: A learning procedure in the second iteration



124 REDUCING SYMBOL LABELING WORKLOAD USING A MULTI-STROKE
SYMBOL CODEBOOK WITH AN UNSUPERVISED SEGMENTATION

apply the codebook mapping proposed in Chapter 6 to label raw scripts. Several
examples will be given to explain.

In the visual codebook, the segments in a cluster are not always the same single
symbol. Different symbols may be mixed in a cluster since the label is dependent
on the context. Only the shape of segment cannot decide the label.

For instance, the two different labels “Connection” and “Terminator” are mixed
in the cluster “C5” of the codebook illustrated in Fig. 7.6a since the label is depen-
dent on the context. If we learn a cluster “— o —”, “0” will be easily recognized
as the label “Connection”.

Another frequent phenomenon is that a segment, which contains several sym-
bols (e.g. “— o —7), is over learned. The user can separate and label in the
codebook representative. A mapping algorithm has been developed in Section 6.4
to search for the corresponding labeled stroke from the unlabeled segment to the
labeled segment. The mapping procedure is involved in normalizing segments into
a reference bounding box, and then in searching for the labeled stroke with the clos-
est MHD distance as the corresponding stroke. After the mapping process, symbols

are segmented and labeled.

| e [
I v N | | -
® O — o ! ~Q —~ (12)
| T | - EScraN Y i“*r(lo) N N e CYERRTTy
Sees |51 ST sl Segl6 sl Segl8
—_— —— - | Segd Segl3 | C7 8
Cl ¢ - cs T

C4

Cl Cs Cc7 C8
Visual codebook ’L ‘ - }O ‘ I ’ 4> ‘

(a) A codebook in the third iteration

\ -
©) I \ \

| (®) P [ i g 1(10) \ & >(7) } | " >(2) (12) |
! ) - | e ® @ an o

Seg9 | | SeglO ‘ Seal? T @ e |

L Seg8 I | S .~ Segl7 | Segld Seg20 |

o T e C7 c8 oo |

Cl C4 5

C8

7 . ©
[ "13)
Visual codebook ‘ ‘ — ‘ r ‘ 7> AO ‘

(*11)

(b) A codebook in the fourth iteration

Figure 7.6: codebooks in later iterations

As an example, using the third iteration codebook in Fig. 7.6a, we continue with



EXPERIMENTS 125

the learning procedure and the fourth iteration codebook is attained in Fig. 7.6b.
Segments in a cluster “C9”, which include two symbols “—” and “O”, are over
learned. A user label segments in a visual codebook stroke by stroke. A labeled
segment of “C9” in the visual codebook is shown on the left side in Fig. 7.7a. How-
ever, the other segments in “C9” are unlabeled on right side in Fig. 7.7a. A map-
ping procedure is required to find the corresponding labeled stroke. Considering
two segments {(x11), (x12), (x13)} and {(1), (2), (3), (4)} with different numbers
of strokes, Fig. 7.7b shows the mapping procedure which normalizes the segments
and looks for the corresponding labeled stroke using the closest MHD distance. The
numbers of strokes between two mapping segments are not necessary equal. The
mapping pairs {{(1) — (+11)},{(2) = (x12)},{(3) = (+12)},{(4) — (+13)}}
are achieved. The symbol “Arrow” {{(1) — (x11)},{(2) — (*12)},{(3) —
(¥12)}} and the symbol “Terminator” {{(4) — (x13)}} are segmented and labeled.

7.4 Experiments

In this section, we first show the labeling cost as presented in Section 6.5 using
the examples in this chapter. Then, the labeling procedure using different learned

codebooks is tested on the two datasets, Calc and FC as shown in Section 3.6.

7.4.1 Labeling Cost

In the previous section, the visual codebook is manually labeled. To evaluate
the system performance, the chosen segments in the visual codebook are automat-
ically labeled according to the available ground-truths (instead of a manual opera-
tion). We then execute the mapping procedure described in Section 7.3 to label all
other segments. Since the user labels the segments and raw handwritten scripts in
dataset stroke by stroke, Section 6.5 defines the labeling cost at the stroke level. If
Claper < 1, the system reduces the human effort of labeling. The lower labeling cost
is preferable. In fact, we can consider Cj,; as the percentage of strokes in dataset
which still need a manual operation.

As an example, Fig. 7.7c shows that the handwritten flowchart in Fig. 7.1a
is segmented and labeled using the codebook in the fourth iteration as shown in

Fig. 7.6b. Some segments in the visual codebook are unknown; it is a part of sym-



126 REDUCING SYMBOL LABELING WORKLOAD USING A MULTI-STROKE
SYMBOL CODEBOOK WITH AN UNSUPERVISED SEGMENTATION

I(1,1) I(1,D)

\ ‘ \ \
‘ !

)
G @ }
| |
( 1,-1)? 77777777777

User Manually Labeling in a Cluster Raw Scripts

(a) A labeled segment on the left side, and a raw segment on the right

side
Str Sym Label Str Sym Label
(*11) 1 Arrow  |4— (1) 1 Arrow
(*12) 1 Arrow ‘< ?) 1 Arrow
(*13) | 2 Terminator 3) 1 Arrow
Str: stroke index '\ 4) 2 Terminator

Sym: symbol index

(b) Searching for the closest corresponding stroke

‘ L1 | | \ """ Tl e |
® 9 oy ! L Q) - 12) |
} — L x I() NG 6. | } 0 /(3)C(% an >@
C ses | Segd | | Seglo | a7 e S (- =ty
LS8y T e A | Segl9 Seg20 |
C7 C8 L |
Cl s 7 Ememm e o T T T

C8

7 "
T (13)
Visual codebook ‘ L ‘ - } r ‘ 7> W§© ‘

(c) The labeled handwritten flowchart derived from Fig. 7.1a using the fourth iteration codebook in
Fig. 7.6b

Figure 7.7: System labeling in the fourth iteration



EXPERIMENTS 127

bol. We leave them as unlabeled. The number of strokes Ny in this handwritten
flowchart is 13, the number of strokes V. in the fourth iteration codebook is 9, and

the number of strokes N,y et iIn Well segmented and labeled symbols is 9. The

labeling cost is, therefore, Cype; = 9+§_9 = 1. This labeling cost is not interesting

due to the symbol segmentation is not good as shown in Fig. 7.7c.

7.4.2 Results

As shown in Section 3.7.2, we have optimized four parameters to get a higher
symbol segmentation: n,, (the number of graphemes), S RF'(the spatial relation fea-
ture set), ng,. (the spatial relation prototype number), n.s, (the number of edges
from a reference stroke to an argument stroke). Since the labeling cost depends
on the quality of symbol segmentation. We will use partly the optimal parameters
obtained from Section 3.7.2.

In this experiment, we test only three parameters, threshold (equivalent to n,,),
Ny, and n;. Using the SUBDUE system, the number of discovered lexical units
is denoted by n,, in each iteration of the whole system. n; means the number of
iterations of the whole system as shown in Fig. 7.2. Thus, the total number of
discovered lexical units is n,, * (ng; — 1).

The other parameters are chosen from Section 3.7.2. The same optimization
protocol as shown in Section 5.5 is run in this experiment. We first define an initial-
ization configuration which is the optimal configuration obtained in Section 5.5, and

then find an optimal configuration by minimizing labeling cost for each parameter.

Parameter Optimization on the Calc Dataset

As mentioned in the previous section, we start with the optimal configuration
attained in Section 5.5. The optimal configuration is illustrated as:

1. n, = 70 (Corresponding Threshold: 0.576),

2. SRFT =“F8|I”,

3. ng = 10,

4. negty = 4.

We will find an optimal configuration of threshold ,n,, and n;. As the first

attempt, initializing n,, = 20 and n; = 2, we test different thresholds during



128 REDUCING SYMBOL LABELING WORKLOAD USING A MULTI-STROKE
SYMBOL CODEBOOK WITH AN UNSUPERVISED SEGMENTATION

the hierarchical clustering. Fig. 7.8 shows labeling costs according to threshold=
[0.50,0.76] (around the previous optimal threshold 0.576). The y-axis shows the
labeling cost and the x-axis means the different thresholds. A threshold 0.59 reports
a minimum labeling cost of 0.423. This threshold is very close to the threshold
(0.576) attained in Section 5.5.

Lowest

Labeling Cost
o o o o
N w » (53]

o
o

o

Threshold in Hierarchical Clustering

Figure 7.8: Labeling cost with different thresholds during hierarchical clustering
(Calc, nyy = 2, n,, = 20)

Keeping the threshold = 0.59, we test n,, = [10,50]. The x-axis denote the
total number of discovered lexical units, 7, * (n; — 1). This number is limited to
less than 100. At most 100 symbols will be discovered. Each curve represents each
n,, which is the number of discovered lexical units in each iteration. We achieve
a minimum labeling cost 42.3% using the same n, = 20 and n;; = 2 as shown
in Fig. 7.9. The labeling cost 42.3% is much lower than the labeling cost 47.4%
using a connected-stroke segmentation as studied in Chapter 6. The unsupervised
segmentation outperforms the connected-stroke symbol on the training part of Calc

dataset.

Since the optimal n,, = 20 is not changed, we can consider that threshold=0.59,
n, = 20, and n;; = 2 are optimal configuration. Using this optimal configuration
on the test part of Calc, a labeling cost of 0.624 is obtained. This labeling cost is
higher than the labeling cost obtained in Fig. 6.6.1. It means that the configuration
cannot be automatically best fitted for all the corpus. Some automatic configuration

method is still need to be developed.



EXPERIMENTS 129

0.9

0.85 - q
—+— 10

Labeling Cost

0.4228 |
|

04 I I I I I I I I I
0

10 20 30 40 50 60 70 80 90 100

Figure 7.9: Labeling cost with different n,, (Calc, threshold=0.59)

In the next section, we run the same experiment protocol on the training part
of FC dataset in order to get the optimal configuration. The obtained configuration

will be assessed on the test part of FC dataset.

Parameter Optimization on the FC Dataset

To obtain the optimal configuration for the FFC dataset, we inherit the optimal

configuration obtained in Section 5.5:

1. n, = 70 (Corresponding Threshold: 0.53),
2. SRFT =“F8”,

3. ng =30,

4. Negtr = 3.

Based on the optimal configuration, we try to find the optimal configuration
of three parameters: threshold, n.,, and n;. Similarly, we attempt to compute the
labeling cost for different thresholds in the dendrogram with an initialization con-
figuration: n, = 20 and n;; = 2. The threshold values are located in the range of
[0.50, 0.76]. The corresponding labeling costs are shown in Fig. 7.10. The minimum
labeling cost of 88.6% is reported using the threshold = 0.53. This is exactly the
same with the threshold obtained in Section 5.5. It means the segmentation quality
is vital to decrease the labeling cost.

Keeping threshold= 0.53, we test different n, and n; in Fig. 7.11. We can

find a big labeling cost decrease when n,, = 30 and n;; = 3. Our method succeed



130 REDUCING SYMBOL LABELING WORKLOAD USING A MULTI-STROKE
SYMBOL CODEBOOK WITH AN UNSUPERVISED SEGMENTATION

1 T T
Lowest

09

Labeling Cost
o o o o o o o
N w S o = ~ oo
T T T T T T T

o
[
T

o

& S

S =) ©
Q Qf Qb Q?’ °

Q" Qr Q" Q- Q"
Threshold in Hierarchical Clustering

Figure 7.10: Labeling cost with different thresholds during hierarchical clustering
(FC,n, =20, ny = 2)

to produce many correct symbol segments so that the labeling cost has reduced to
74.1%. 26.9% annotation workload have been saved. Since n, and n; have been
changed, we continue to test the threshold. It may can reduce the labeling cost

again.

Labeling Cost

Il
10 20 30 40 50 60 70 80 90 100
nu*(n“fl)

Figure 7.11: Labeling cost with different n,, (F'C, threshold=0.53)

Using n,, = 30 and n;; = 3, Fig. 7.12 shows labeling cost according to different
thresholds that control the codebook size in each iteration. In this figure, 0.53 is
still the best threshold. Since the three parameters become stable, we can consider

the optimal configuration as: threshold = 0.53, n,, = 30, and n;; = 3.



CONCLUSION 131

4
©

Labeling Cost
o N o o o o
w S Gl = ~ =
T T T T T T

I
[N}
T

o
[
T

)
°

Threshold in Hierarchical Clustering

Figure 7.12: Labeling cost with different thresholds during hierarchical clustering
(FC, ny = 30,n; = 3)

The labeling cost of 0.741 is attained on the training part of /'C. Comparing the
lowest labeling cost 0.94 using connected-stroke segmentation as shown in Chap-
ter 6, our labeling cost 0.741 is much lower and better. It means that our proposed
method can find many correct symbol segments in the codebook so that the lower
labeling cost is revealed.

On the test part of FC Corpus, we use the optimal configuration to compute
labeling cost. We achieve a labeling cost 0.878, which is also lower than the labeling
cost 0.972 as shown in Section 6.6.4. However, the labeling cost 0.878 is much
higher than a labeling cost 0.741 on the training part. We still need a method that

automatically optimizes system parameters on a dataset.

7.5 Conclusion

In the previous chapter, we proposed a system to reduce the symbol labeling
cost with the codebook mapping. This method is relied on the symbol segmentation
quality. In order to generate the symbol segmentation, the previous chapter uses
the connected-stroke symbol segmentation to reduce the labeling cost. However, it
works very bad on the challenging F'C dataset. This chapter proposed to combine
the symbol extraction using the MDL principle as studied in Chapter 5. The system

extracts n,, symbols in each iteration so that the new discovered symbols become



132 REDUCING SYMBOL LABELING WORKLOAD USING A MULTI-STROKE
SYMBOL CODEBOOK WITH AN UNSUPERVISED SEGMENTATION

the new segments. Therefore, an unsupervised symbol segmentation can be pro-
duced. Producing the segment codebook from this segmentation, we can reduce the
labeling cost via the codebook mapping.

Our approach reports the lower labeling cost of 42.3% on the training part of
Calc dataset. It means that our work can ease the human workload largely. This
mathematical expression dataset contains 54.9% single-stroke symbols. The single-
stroke codebook reports the labeling cost 81.6% in 1% iteration. Our multi-stroke
symbol discovery procedure can reduce the labeling cost by 39.3%. The result
is very attractive and interesting on this database. Nevertheless, the labeling cost
is higher on the more challenging FC database which contains more multi-stroke
symbols: 79.7% symbols are multi-stroke on the training part. The crucial problem
is how to find out a better symbol segmentation. Indeed our experiments show that
many clusters contain the most frequent combinations of sub-parts of symbol on
complex database. To avoid such nonsense combinations, we have to study the
more precise graphical symbol detection criteria based on the MDL principle.

Moreover, one critical point of our approach is the choice of threshold, the num-
ber of extracted lexical units (n,) and the number of iteration n;;. For this moment
these parameters are fixed during the training phase which needs ground-truthed
data; it would be more interesting to be able to tune them at each iteration sepa-

rately using only current unlabeled data.



Conclusions

The creation of training dataset at the symbol level is a tedious work. In this the-
sis, we proposed an iterative framework to automatically extract graphical symbols
using the MDL (Minimum Description Length) principle. The proposed framework
can reduce isolated symbol labeling workload. The framework contains three main
phases: (a) quantifying the graphical symbols, (b) quantifying the spatial relations,
and (c) discovering the graphical symbols using the MDL principle.

We propose to model a graphical language as relational graphs between strokes
(or symbols). The nodes are defined as the strokes and the edges are defined as the
spatial relations. We try to quantify the nodes and the edges so that we can extract
frequent sub-graphs as the graphical symbols using the MDL principle. The strokes
(nodes) and the spatial relations (edges) can be quantified via clustering.

(a) To quantify the graphical symbols, we have chosen the hierarchical clus-
tering, which requires the distance between two graphical symbols. We have in-
vestigated three distances: the classical Dynamic Time Warping (DTW) distance,
the proposed DTW A* distance, and the Modified Hausdorff Distance (MHD). The
classical DTW distance is a famous distance to compare two sequences by keep-
ing the continuity constraint. It is good to match two single-stroke symbols which

are two sequences. When matching two multi-stroke symbols, we proposed a new

133



134 CONCLUSIONS

distance DTW A*, which keeps the continuity constraint of stroke-to-stroke warp-
ing and minimize the sum of associated pair distance. Nevertheless, the DTW A*
distance is too slow to run in clustering. We propose to use the MHD distance
to compare two graphical symbols. The MHD distance uses the average distance
(instead of the maximum distance) of point-to-set minimum distances to avoid the

effect of outliers.

To assess the clustering quality, we use two criterion, Purity and Normalized
Mutual Information (NMI), to compare the Classical DTW distance and the MHD
distance on two datasets: synthetic single-line mathematical expressions (Calc) and
real more general two-dimension flowcharts (FC). We found that the Classical DTW
distance slightly outperforms the MHD distance on the Calc dataset. Nevertheless,
on the FC dataset, the MHD distance works much more better than the Classical
DTW distance. In fact, more strokes per symbol exist on the FC dataset so that the
stroke order becomes an important problem. The MHD distance does not consider
the stroke order during the symbol comparison. The MHD distance therefore works

much better on the FC dataset.

(b) To quantify the spatial relations, we first model them at three levels: distance
relations, orientation relations, and topological relations. We define a pairwise spa-
tial relation as a relationship from a reference symbol to an argument symbol. The
distance relation means how far apart two objects are. The orientation relation illus-
trates some directional information, e.g. west, east, south, north, etc. In our case, we
define eight fuzzy spatial relations from the reference symbol to the argument sym-
bol: left, right, above, below, above-left, above-right, below-left, and below-right.
Only an intersection relation is defined among the topological relations. Using the
extracted features at the three levels, we can embed the extracted pairwise spatial
relations into the fixed-length feature space. The k-means clustering is then used to
compute the spatial relation prototypes. So the spatial relations can be quantified
(classified).

(c) The nodes (symbols) and the edges (spatial relations) have been quantified
in the relational graphs. We discover the sub-graphs as the multi-stroke symbols
using the sub-graph mining SUBDUE (SUBstructure Discovery Using Examples)
system based on the MDL principle.

During the symbol extraction, a symbol segmentation based on the MDL prin-



135

ciple will be produced. In addition, we have mentioned two other symbol segmen-
tation methods. The first is the ground-truth segmentation where each segment is
composed of only one symbol. The second is the connected-stroke segmentation
often used in recognition systems. To compare the three segmentation quality, we
have proposed the recall rate at the multi-stroke symbol level Ryirecan, Which eval-

uates how many multi-stroke symbols are found in the segmentation.

After these three possible segmentation steps, the same labeling process is used:
unsupervised clustering to build the codebook which is then labeled by the user and
map to the raw data. The proposed iterative learning framework will update the
spatial relations and the codebook size in each iteration. We call this framework as
“MDL+iteration”. To assess how much symbol labeling work has been saved, we

have proposed the labeling cost criteria.

Tab. 8.1 compares the performances between the three symbol segmentation
methods considering the two measures on the two handwriting datasets, Calc and
FC. It contains two parts, Ry/recqy and the labeling cost, according to the three

segmentation methods respectively.

As shown in the first part of Rj;gecan, the ground-truth segmentation certainly
give the perfect recall rate 100% since each segment contains exactly one symbol.
The connected-stroke segmentation method contributes the recall rate of roughly
44% on the training and test parts of Calc dataset. Almost half symbols have been
found. On the more complex FC dataset, the recall rates, only 14.6% and 17.4%,
have been reported on the two parts respectively. Not too many symbols have been
found. The main reasons are that the symbols are separated and most symbols
contain connected strokes on the Calc dataset, but on the F'C dataset the symbols
are often touching and some symbols are compound of untouched strokes.

The proposed segmentation method based on the MDL principle can largely
improve the recall rates at the multi-stroke symbol level. This method found 78%
multi-stroke symbols on the training and test parts of Calc dataset. We improve
Ryrrecan by 34% on the Calc dataset. On the more challenging FC dataset, we
can achieve the recall rates 55.5% and 45% on the two parts respectively. Approxi-
mately half multi-stroke symbols have been found.

Considering the second part of results (the labeling cost) as shown in Tab. 8.1,

the symbol segmentation using the ground-truth shows certainly the lowest labeling



136 CONCLUSIONS

Calc FC
Training Test | Training Test

R l(Multi-Stroke Symbols)

MRecal

Ground-truth 100% | 100% | 100% | 100%

Segmentation

Connected-stroke | 44.1% | 44.7% | 14.6% | 17.4%

MDL (Alone) 78% 78% | 55.5% | 45%

Labeling Cost
Ground-truth 6.4% | 13.1% 4.3% |13.5%
Connected-stroke | 46.9% | 50.4%  97.5% | 97.2%

MDL+Iteration | 42.8% | 62.4%| 74.1% |87.8%

Table 8.1: Result Summarization on the Two Datasets

cost, but in a real case, we do not know the real ground-truth. It shows the best
possible labeling cost with the used clustering algorithm. The usage of connected
strokes increases a lot the labeling cost. We can also observe this method work
better on the Calc dataset than on the F'C dataset. The reason comes from the big

difference in the segmentation recall rates.

Lets us now consider the iterative learning framework as presented in Chapter 7
using the MDL principle. It obtains better results on the two training parts compared
to the test parts respectively. The reason is that there are many parameters in our
system. The number of iteration n;; and the number discovered lexical units n,, are
optimized only for the training part, not for the test part. Finally, we can see that
our proposed method can reduce more the labeling cost comparing the labeling cost
using connected strokes. On the FC dataset, the recall rate is low so that there is still
large possible progress in two perspectives: discovering the symbols and clustering

according to its homogeneity.

Our framework is a good first step in this huge task. Some perspective works
could be done to improve the proposed framework. As we can see that the pro-
posed framework is a complex system, which contains many parameters. The first
problem is how to reduce the number of parameters. For instance, how to auto-

matically determine the number of iterations n;; of the whole system. During the



137

SUBDUE symbol discovery, we have to determine when the discovery procedure
will be stopped. Furthermore, extracting symbol and spatial relation knowledge in
the graphical language is a non-trivial task. Although we succeed to extract symbol
segmentation, the human is still difficult to do same as the human understanding.

More complex knowledge with less description could be explored in the future.






Résumé Francais

9.1 Introduction

Tout langage graphique comporte d’une part des symboles élémentaires, par
exemple un alphabet ou des formes graphiques propres a un langage métier (or-
ganigramme, schéma électrique, ...), et d’autre part des regles de composition per-
mettant de donner globalement un sens au document produit. La connaissance des
symboles élémentaires et de leurs relations nous permet d’interpréter ces messages
manuscrits (tracés). De méme les systemes de reconnaissance ont besoin de ces
connaissances symboliques pour leur apprentissage [72—74]. Cette connaissance
est disponible sous forme de bases d’apprentissage contenant des documents com-
pletement étiquetés au niveau des leur symboles et de leurs relations. De nombreux
systemes de reconnaissance profitent ainsi d’un large corpus de données réelles
permettant 1’apprentissage de classifieurs, citons par exemples les K-PPV (K-Plus
Proche Voisins) [7], ANN (Réseaux de Neurones) [8], SVM (Systémes a Vastes
Marges) [9], HMM (Modele de Markov Cachés) [10]. Enfin ces corpus permettent
de comparer les performances des différents systeémes de reconnaissance existants.
Les données étiquetées sont donc utiles pour 1’apprentissage, le test et I’évaluation

des systemes de reconnaissance.

139



140 RESUME FRANCAIS

La Figure 9.1 montre un modele classique de reconnaissance de symboles pour
des expressions mathématiques. Tout d’abord le classifieur est entrainé en utilisant
la base d’apprentissage (la vérité-terrain), ce classifieur est ensuite capable alors

reconnaitre des symboles graphiques non étiquetés comme ceux a gauche de la

Figure 9.1.

Vérité-terrain

Classifieurs O 04 :5

e.g. KNN Entrainer. | - s

ANN nra1ner§| 122

SVM +:+3:3

HMM - |

Symboles | T
non-étiquetés

S
O+s5=|
Sy1=2 v

2 + l =g Reconnus

Figure 9.1: Reconnaissance traditionnelle de symboles

Cependant, la collecte d’échantillons d’écritures et 1’étiquetage au niveau de
chaque trait sont des taches difficiles et fastidieuses surtout sur un langage graphique
inconnu (i.e. sans systeme de reconnaissance automatique existant). Ce constat a
motivé le développement d’un systeme de plus haut niveau permettant d’automatiser
cette procédure d’étiquetage fastidieuse.

Notre approche consiste dans un premier temps a regrouper les symboles en
des ensembles homogenes. Ces ensembles de symboles peuvent ensuite étre facile-
ment étiquetés ce qui réduit le colit de I’étiquetage symbolique. Sans connaissances
symboliques a priori du langage graphique cette tache nécessite des approches non
supervisées permettant de découvrir 1’alphabet des symboles. Dans I’exemple de la
Figure 9.2 imaginons que les 20 symboles de gauche soient a étiqueter, si nous pou-
vons regrouper ces 20 symboles en 7 ensembles de symboles, tels que représentés
sur la figure de droite, alors il suffira d’effectuer 7 assignations d’étiquettes et de les
propager sur les 20 symboles.

Cet apprentissage non supervisée est difficile. Tout d’abord, aucune segmen-

tation de I’écriture en symboles n’est disponible. Ces travaux sont appliqués a de



INTRODUCTION 141

Symboles
non-étiquetés

QO+s5=|
S¢1=2
24 1=2 Ext(rlaction %
5 +3:S symft:)soles + + S S """""""""""

S T

20 symboles a étiqueter 7 ensembles de symboles
a étiqueter

Figure 9.2: Réduction du travail d’étiquetage symbolique

I’écriture manuscrite en ligne, 1’élément de base de 1’écriture est donc le trait, qui
correspond a une séquence de points (X, y) entre un poser et un lever de stylo. Nous
supposerons ici qu’un trait n’appartient qu’a un seul symbole, si ce n’est pas le cas,
il conviendrait de pratiquer une étape préalable de segmentation. Par contre, un
symbole peut comporter plusieurs traits n’étant pas nécessairement écrits consécu-
tivement.

L’exemple de la Figure 9.3 montre qu’un trait horizontal peut représenter a lui
seul un symbole (moins, “—""), ou étre composé avec d’autres traits (plus, “+”) ou
encore avec lui-méme (égal, “=""). Cet exemple montre que détecter les différentes
formes de trait n’est pas suffisant : la difficulté réside dans la recherche des com-
binaisons de traits qui sont des symboles. En d’autres termes, nous avons besoin
d’une méthode non supervisée permettant de trouver une segmentation correspon-
dant a une segmentation en symboles. Notre approche se base sur I’hypothese que
les symboles graphiques sont des combinaisons fréquentes de traits. Par exemple
dans la Figure 9.2, les combinaisons “=", “47, “5” se répetent quatre fois, et “1”
est répété trois fois. En comparant un motif fréquent “+1” (trois traits répétés trois
fois) et une sous partie fréquente “+” (deux traits répétés quatre fois), ces deux
hypotheses de segmentation peuvent étre un symbole. La question se pose alors de
savoir comment choisir les bonnes combinaisons de traits pour former les symboles.
Dans cette these, nous introduisons un critere, le principe de longueur minimum de
description (Minimum Description Length, MDL) [11], pour permettre d’extraire
automatiquement les meilleurs représentants du lexique des symboles.

La fréquence d’une hypothese de symbole dépend du nombre d’occurrences



142 RESUME FRANCAIS

Qu'un trait Un symbole: moins

Un trait horizontal

Reproduire .

Un morceau de symbole : égal

Avec l'autre trait 4  Un morceau de symbole : plus

Figure 9.3: Un trait peut étre un symbole ou une partie de symbole

de cette hypothese. Pour €tre capable de compter (i.e. chercher) rapidement les
différentes instances d’un méme symbole mono- ou multi-traits, nous proposons
d’organiser le langage bidimensionnel en un graphe relationnel de traits. Le prob-
leme du décompte (ou de la recherche) d’une hypothese de symbole devient alors
un probleme de recherche de sous-graphes.

Par exemple, les deux premieres expressions mathématiques de la Figure 9.2
sont représentées par les deux graphes de la Figure 9.4. Nous pouvons y voir les
symboles représentés par les sous-graphes encadrés. Pour éviter toute ambiguité
entre les traits se ressemblant fortement (appartenant donc au méme grapheme),
chaque trait est indexé par son numéro d’indice (.). Nous pouvons constater que
pour produire ce type de graphes, il faut étre capable de définir ou apprendre les re-
lations liant ces traits (e.g. Right, Intersection, Below, etc.) appelées “relations spa-
tiales”. Une fois ces relations spatiales apprises et appliquées entre les traits, nous
pouvons voir que les symboles multi-traits “+”, “5”, and “=" existent et sont définis
par un sous-graphe de traits reliés par des relations. L’objectif est de rechercher
automatiquement ces symboles multi-trait dans les graphes en utilisant un critere
MDL.

Supposons maintenant que grace a ce critere de découverte des symboles, nous
obtenions une segmentation correcte des traits (comme dans la partie gauche de la
Figure 9.5). 1l s’agit maintenant de trier ces hypotheses de symboles en fonction de
leur formes : regrouper les symboles qui se ressemblent fortement. Ce regroupe-
ment non supervisé (clustering en anglais) nécessite de définir une distance entre
deux symboles graphiques multi-traits. En fonction du nombre de traits composant
les symboles, nous pouvons diviser les types de distances en deux catégories : une

distances entre deux symboles mono-trait (le cas simple) ou une distance entre deux



INTRODUCTION 143

Expressions Graphes Relationnels Légende
R, T @R "5"
I ()4 — | 25(4) - Segmentation
4. S@-‘& i S N :
T = |® n_n ¢ R | I: Intersection
R o B w R Y | R Admoite
| - —<+—= <=0 :
B: Dessous
S nyn .
@ R W R 1@ (.): Indice de
T S =) trait
O PERRL) E '
L a2 a3y 1D Ge | a6 T
Lo 2 Ry B 4 R
o - ‘(13)

Figure 9.4: Expressions mathématiques et leur graphe relationnel correspondant.

symboles multi-traits (cas plus complexe).

Une segmentation
parfaite

Clustering
entre
symboles
20 symboles 7 ensembles de symboles
a étiqueter a étiqueter

Figure 9.5: Les symboles correctement segmentés sont regroupés en ensembles
homogenes.

Deux symboles mono-trait peuvent étre comparés par la distance DTW (Dy-
namic Time Warping) [12] tres utilisée dans les domaines traitant un signal tem-
porel (de I’écriture en-ligne ou un signal audio par exemple). Par contre la distance
entre deux symboles multi-trait est plus complexe car deux scripteurs peuvent écrire
un méme symbole de différentes facons : en changeant le nombre de traits, 1’ordre
des traits et leur sens d’écriture. Nous préférerons une distance indépendante du
nombre de traits, de leur ordre et de leur direction.

Par exemple considérons les symboles “+” de la Figure 9.6, ils peuvent étre

écrits de quatre fagcons différentes. Le nombre de possibilités augmente rapidement



144 RESUME FRANCAIS

avec le nombre de traits d’'un symbole. Dans la plupart des systemes traitant de
I’écriture en-ligne, les traits d’un symbole sont concaténés en conservant leur ordre
naturel d’écriture. Ainsi la métrique DTW peut étre directement utilisée. Néan-
moins, la distance entre deux symboles visiblement identiques mais avec des ordres
ou directions de traits différents sera trés importante. Nous discuterons de ce prob-

leme et proposerons des solutions dans la Section 9.3.

(1)—% (l)ﬂ-k/ (2)—% (2)4&/

@) @ (M M

Figure 9.6: Quatre écritures possibles du symbole “+”

Une fois la distance inter-symboles définie, nous utilisons une technique de
regroupement non supervisée pour créer des ensembles homogenes de symboles.
Pour chaque ensemble nous choisissons un exemple représentatif du groupe. Ces
représentants sont ensuite regroupé€s dans un dictionnaire visuel. Ce dictionnaire
pourrait alors étre affiché dans une interface adaptée pour permettre un étiquetage
manuel de chaque ensemble de symboles. La limite de cette approche est qu’il
faut que les regroupements effectués ne contiennent que des symboles de la méme
classe. Sinon, I’utilisateur aura a corriger un certain nombre d’erreurs ce qui aug-
mente le colit de I’étiquetage. De plus les segmentations proposées ne seront pas
toujours parfaites. Par exemple la Figure 9.7 montre que la séquence “+1” est con-
sidérée comme un symbole. En fait ce segment est composé d’instances de deux
symboles distincts. Le dictionnaire visuel de la Figure 9.8 permet a 1’utilisateur
d’étiqueter facilement les regroupements et de détecter ce probleme. Il pourra alors
séparer I’hypothese “+1” en deux instances de symboles isolés “+” et “1”. Une
fois chaque représentant du dictionnaire étiqueté, il faut transférer les étiquettes de
chaque trait a toutes les données de la base. Ce transfert n’est pas toujours trivial
lorsque tous les symboles d’un regroupement n’ont pas le méme nombre traits.

Dans ces travaux de theése nous présenterons tout d’abord différentes approches
de regroupement non supervisé. Pour implémenter ces approches, les distances
entre symboles graphiques seront discutées et une approche originale sera présen-
tée. Ensuite nous proposerons de modéliser un langage graphique par un graphe

relationnel ou les noeuds sont des traits et les arcs des relations spatiales. Nous



TECHNIQUES DE CLUSTERING 145

Une segmentation

__ imparfaite
v

Clustering
entre
symboles

20 symboles
a étiqueter

8 ensembles de symboles
a étiqueter

Figure 9.7: Exemple de segmentation imparfaite d’un symbole.

Dictionnaire visuel

=+ [+ 1[2[2/0/S]]

+1 3 2 0 5 1

Figure 9.8: Dictionnaire visuel pour I’étiquetage manuel.

proposons alors d’utiliser une approche d’extraction de sous-graphes basée sur le
principe de la longueur minimum de description (MDL) pour détecter les symboles
fréquents. Enfin nous présenterons des résultats expérimentaux d’étiquetage au-

tomatique de deux bases d’écritures manuscrites en-ligne.

9.2 Techniques de Clustering

Il existe plusieurs méthodes de clustering dans 1’état de 1’art : k-moyennes [39],
Carte Auto Adaptative (Self-Organizing Map, SOM) [40], Neural Gas (NG) [41],
Growing Neural Gas (GNG), clustering hiérarchique [42], etc. L’algorithme le
plus connu et le plus utilisé, I’algorithme des k-moyennes consiste a rechercher
k vecteurs moyens (prototypes) divisant les n échantillons en k clusters. Chaque
échantillon est donc assigné au groupement (cluster) le plus proche considérant une
certaine distance. L’espace des échantillons est donc divisé en k cellules de Voronoi
(Voronoi cells). Néanmoins, les k prototypes sont indépendants.

Les algorithmes SOM, NG, et GNG fonctionnent de la méme manieére mais

ajoutent des relations de voisinage entre les prototypes. SOM impose une topologie



146 RESUME FRANCAIS

(généralement en deux dimensions) a ce réseau de prototypes. Si nous visualisons
les prototypes de ce réseau, nous obtenons une carte auto adaptative en deux di-
mensions des échantillons. L’algorithme NG utilise quant a lui une structure plus
flexible entre les prototypes. En effet les relations de voisinage des prototypes peu-
vent évoluer pendant I’apprentissage. L’algorithme GNG peut ajouter ou supprimer
des prototypes (donc des voisins) pendant I’apprentissage.

Contrairement aux autres approches, le clustering hiérarchique de type ascen-
dant fusionne a chaque étape de 1’apprentissage les deux prototypes les plus proches
pour générer un dendrogramme. Cette structure hiérarchique permet en fin d’apprenti-
ssage de choisir facilement le nombre de prototypes finaux.

Dans cette these, nous utiliserons seulement les algorithmes des k-moyennes et
le clustering hiérarchique, mais d’autres approches peuvent sans probléme les rem-
placer. Dans la section suivante, nous discuterons du choix de la métrique utilisée
pour évaluer la distance entre deux symboles multi-traits dans les algorithmes de

clustering.

9.3 Distance Entre Deux Symboles Multi-Traits

Le processus de reconnaissance d’écritures en-ligne peut étre divisé en deux
étapes principales, la segmentation de symboles et la reconnaissance des symboles
1solés [2]. Dans cette section, nous discutons de la similarité entre deux symboles
isolés. Le symbole isolé est composé d’un ensemble de traits. Chaque trait (stroke
en anglais) est représenté par une séquence de points, du point de départ (posé) au
point d’arrivée (levé). Un trait est donc orienté. Calculer la distance entre deux sym-
boles isolés est donc un probleme de comparaison de deux ensembles de séquences
orientées de points.

Différentes personnes peuvent écrire un méme symbole avec des sens différents
pour chaque trait et utilisant des ordres différents entre les traits. Dans la recherche
d’identification de scripteurs, cette caractéristique peut distinguer efficacement les
scripteurs [39]. Néanmoins, pour comprendre ou communiquer avec un méme sym-
bole écrit par les personnes différentes, le sens et 1’ordre des traits doivent étre ig-
norés. Nous lisons des symboles manuscrits sans avoir acces ni au sens ni a 1’ordre.

b

Par exemple, un symbole contenant un trait horizontal“—"" peut étre écrit de deux



DISTANCE ENTRE DEUX SYMBOLES MULTI-TRAITS 147

maniéres, de gauche a droite “—” ou I’inverse “<.

Lors de la comparaison de deux symboles chacun écrit d’un seul trait, I’algorithme
DTW (Dynamic Time Warping) permet une mise en correspondance point a point
en respectant des contraintes de séquentialité pendant 1’alignement entre les deux
séquences [12]. Cet alignement décrit dans la section suivante respecte la contrainte

de continuité temporelle de 1’alignement.

SiI’on calcule I’alignement de deux traits avec deux directions opposées, la dis-
tance DTW distprw (—, <) produit naturellement une valeur importante du fait
de I’inversion du sens de parcours. Une solution consiste a choisir la plus petite
distance DTW entre les deux directions possibles d’un trait : min(dist pry (—, <
), distprw (inv(—), <)) ol inv(.) est un opérateur d’inversion de I’ordre de par-
cours des points d’un trait. Cependant, le nombre de combinaisons augmente tres
rapidement par rapport au nombre de traits dans un symbole. Le Tableau 9.1 montre
la complexité des ordonnancements et des sens de parcours des traits d’un tracé en-

ligne. D’une maniere générale, le nombre de séquences est donnée par la formule:

S = NIx2V, 9.1)

Pour calculer la distance DTW entre deux symboles multi-traits, une solution di-

recte consiste a concaténer les différents traits en prenant en compte un certain ordre

de tracé. Ainsi pour calculer la distance entre |: (4 traits) et E (2 traits) il faut
calculer 384 x 8 = 3092 appariements possibles. Ce grand nombre d’appariements
est dii a deux causes complémentaires : 1’ordonnancement respectif des traits (en
nombre N!) et le sens de parcours de chaque trait (pour chaque ordonnancement,

2V variantes de parcours).

Pour calculer la distance entre deux symboles multi-traits une autre approche
consiste a considérer ces deux ensembles de séquences de points comme deux
ensembles de points, en ignorant I’information temporelle. Nous pouvons alors
utiliser une métrique du domaine du traitement d’images, comme par exemple la
distance de Hausdorff [35] qui permet de mesurer 1’éloignement de deux ensem-

bles de séquences de points comme deux ensembles de points, S; = {p;(i)} et

Sy ={p207)}:



148 RESUME FRANCAIS

Nombre | Exemple| Nombre
de de [llustration des tracés
traits(N) séquences(S)
1 — 2 — <
2 — 3 | m— — e e ) —) —) e
- ) e — | — o —)
— — = 2
3o 48 l_" «— i ::]
4 l -_ 384

Table 9.1: Variabilité des ordonnancements et des sens de parcours des traits dans
un tracé en-ligne

dH(Sl,SQ) = max{dh(Sl,Sg),dh(S%Sl)}, (92)

ou dn(Sa,Sp) = max min d(pa,pg) et d(pa, pp) est de la distance euclidienne
PA€SA PBESE
entre deux points. Mais cette distance ne vérifie pas la contrainte de continuité

temporelle intra-séquence.

De nombreux travaux [50-52] étendent cette contrainte de continuité d’une di-
mension (time warping) aux deux dimensions spatiales (two-dimensional warping).
Ils mettent en correspondance deux ensembles de points (pixels) avec la contrainte

de continuité spatiale. Mais la continuité de séquences n’est pas considérée.

Dans cette these, nous discutons de I’alignement entre deux ensembles de séquen-
ces de points avec la contrainte de continuité intra-séquence. Le meilleur aligne-
ment doit étre trouvé a partir d’'un grand nombre possible d’appariements. Une
procédure de recherche directe serait tres lente a cause des nombreuses possibil-
ités. Pour estimer rapidement le meilleur alignement, 1’algorithme de recherche A*
(A étoile) [57] permettant de réduire le nombre d’appariements est utilisé. Cet al-
gorithme est basé sur une évaluation heuristique du cofit de chaque appariement.
Pour optimiser I’algorithme A*, nous proposons aussi une stratégie particuliere de

parcours du graphe des possibilités d’alignement.

Dans la suite de cette these nous introduisons la problématique de la distance
entre deux ensembles de séquences. Puis ’algorithme A* et notre stratégie de
recherche sont présentés. Dans la derniere section de cette theése nous présentons

des résultats qualitatifs et concluons notre travail.



DISTANCE ENTRE DEUX SYMBOLES MULTI-TRAITS 149

9.3.1 Définition de la Problématique

Nous commencons ici par présenter la version classique de 1’alignement de deux
séquences de points en utilisant DTW. Puis nous présentons la problématique de

I’extension de 1’algorithme DTW & un ensemble de séquences.

DTW entre Deux Séquences de Points

Notre objectif est de comparer deux symboles isolés. Nous commengons pas
présenter le cas simple ou les deux symboles contiennent chacun un seul trait. Deux
traits S1 = (p1(1),...,p1(N1)) et So = (pa(1), ..., p2(N2)) seront donc comparés.
L’algorithme DTW (Dynamic Time Warping) permet de calculer la distance entre
deux séquences de données qui varient temporellement. Cette méthode a d’abord
été appliquée dans le domaine du traitement de la parole afin de mettre en correspon-
dance des échantillons acoustiques. Comme pour la parole, les données manuscrites
en-ligne contiennent une information temporelle. Bien que coliteuse en temps de
calcul, cette distance a déja montré son efficacité dans plusieurs travaux [12, 53, 54].

Les grands principes de 1’algorithme DTW [12] sont résumés ci-apres. Soit le
chemin P(h) = (i(h),j(h)),1 < h < H permettant de décrire I’alignement point
a point ou & est de I’indice d’ordre d’appariement du i(h)eme point et du j(h)eme
point des traits S; et S, respectivement.

P(h) doit respecter la contrainte de fronti¢re et la contrainte de continuité. La

premiere contrainte de frontiere est définie par :

P(1) = (i(1),5(1)) = (1,1),
P(H) = P(i(H), j(H)) = (N1, Ny).

9.3)

Les deux points de départ et les deux points de fin doivent étre appareillés respec-
tivement dans les deux traits. L’Equation 9.4 ci-dessous explicite la seconde con-

trainte, la contrainte de continuité temporelle de 1’alignement :

(1,0)ou
(& i(h), & j(h)) = (i(h) —i(h = 1),j(h) = j(h—=1)) = ¢ (0,1)ou  (94)
(1,1).



150 RESUME FRANCAIS

Cette relation montre que le décalage entre paires de points dans I’appariement est
au maximum de 1. De plus tous les points sont utilisés au moins une fois. Calculer la
distance entre deux séquences consiste donc a chercher parmi tous les appariements

possibles celui minimisant la somme des distances point a point :

D(S1, ) = min > d(py(i(h)), p(i(h)): 9.5)
h=1

ol d(.,.) est en général la distance euclidienne entre deux points. La solution a
1’Equation 9.5 peut étre résolue récursivement par programmation dynamique en

définissant la matrice D(3, j; h) des distances cumulées :

D(i,j;h) = d(p1(i), p2(j)) + min D(i,j—1;h —1) (9.6)
D(i—1,j—1h—1),

avec D(i, j;0) = 0 pour I’initialisation.

La Figure 9.9 donne un exemple de deux séquences de points a comparer. Les
points de départ des traits sont représentés par les ronds rouges. Nous cherchons
le chemin avec le colit minimum avec I’Equation 9.6. Nous calculons d’abord
la matrice d’accumulation montrée dans la Figure 9.10. Le meilleur chemin (i.e.
alignement) peut €tre déduit par retour arricre a partir du couple de points termi-
nal : P(1),....P(8) = (1,1),(2,2),(3,3),(4,4),(5,5),(6,6),(7,6),(8,6). Si nous définissons
un couple de points de départ et un couple de points de fin, le meilleur alignement
sera trouvé. Dans la section suivante, nous introduirons la comparaison entre deux

ensembles de séquences.

Le couple de
points de départ

Figure 9.9: Deux séquences de points (deux traits)



DISTANCE ENTRE DEUX SYMBOLES MULTI-TRAITS 151

Le couple de

Figure 9.10: Représentation de la matrice d’accumulation D(i, j; k) de 1’'Equation
9.6 et d’un chemin de mise en correspondance.

DTW avec Deux Ensembles de Séquences

Cette section décrit 1’alignement entre deux ensembles de séquences de points.
Nous utilisons pour illustrer notre explication la matrice des distances point a point.
Soit deux symboles contenant un certain nombre de traits, les cotés de cette matrice
représentent les traits des deux symboles respectivement en ligne et en colonne.

L’ordre des traits dans la matrice n’est pas obligatoirement I’ordre du tracé effectif.

Le principe de notre approche consiste a construire itérativement un alignement
par partie jusqu’a utilisation de tous les points. Si nous choisissons un couple de
points de départ, quatre directions d’alignement sont possibles, elles correspondent
aux quatre orientations diagonales qui définissent les quatre possibilités d’aligner
deux traits. A chaque fois il faut chercher le meilleur chemin consommant au
moins un des deux traits. Pour trouver ce meilleur chemin, les quatre matrices
d’accumulation (la Figure 9.11) sont calculées pour chacune de ces directions. Les

bornes de ces matrices sont définies par la fin de chaque trait.

Par exemple, soit deux symboles contenant respectivement deux et trois traits,
les traits de ces deux symboles sont représentés respectivement en ligne et en colonne
dans la matrice de la Figure 9.11. Nous pouvons voir qu’a partir d’un couple de
points de départ (le rectangle bleu dans la figure) il existe quatre directions possi-

bles d’alignement.

Dans chacune de ces quatre matrices d’accumulation, nous pouvons appliquer
I’algorithme DTW classique comme présenté dans la section précédente. Toutefois,

nous permettons a DTW de ne pas finir forcément dans 1’angle opposé au point de



152 RESUME FRANCAIS

Symbole 2
Str3 _ Strd | Str5
Strl
Symbole 1 A Y

Str2

Figure 9.11: Exemple de matrice de distance entre deux symboles avec 2 et 3 traits
respectivement.

départ.

En effet, dans la Figure 9.10 nous pouvons constater que 1’alignement se ter-
minant par P(8)=(8,6) n’est pas le meilleur en termes de distances cumulées. Nous
pouvons couper 1’alignement en choisissant la valeur minimum sur les c6tés de la
matrice : D(1, Ny), D(2, Ns), ..., D(Ny, No) et D(Ny,1), D(Ny,2), ..., D(Ny, Ns).
Concretement, nous calculons d’abord la matrice d’accumulation complete jusqu’a
la fin des deux traits. Puis 1’alignement sera arrété sur la consommation complete
d’un des deux traits. Un nouveau couple de points de fin est donc défini. Par exem-
ple dans la Figure 9.10, nous choisissons le sous-chemin : (1,1), (2,2), (3,3), (4,4),
(5,5), (6,6).

Dans cette stratégie, les couples de points de départ sont choisis pour associer
les deux sous-séquences en respectant la contrainte de continuité dans chaque étape.
A chaque étape nous répétons le choix de couple de points parmi les points non-
utilisés. La procédure sera finie lorsque tous les points seront utilisés une fois.
Notre objectif est de trouver la somme minimum de colit du chemin d’appariements
(Equation 9.5). Enfin la distance entre deux ensembles de séquences, Syml =
(p1(1),...;p1(N1)) et Sym2 = (p2(1),...,p2(N2)), est normalisée par le nombre

d’associations :

D(SymL Sym2) = 2 win S dn (). GO O

La Figure 9.12 montre une solution pour associer deux ensembles de séquences,
c’est-a-dire un chemin. Cette solution contient quatre sous-chemins de DTW. Les
sens d’alignement entre deux traits ne sont pas forcément identiques. Nous allons

chercher I’ensemble de sous-chemins qui minimise le colt d’association (somme



DISTANCE ENTRE DEUX SYMBOLES MULTI-TRAITS 153

des distances point a point).

Nous pouvons maintenant comprendre la complexité du probleme. En effet,

pour commencer chaque sous-chemin il existe un grand nombre de possibilités pour

choisir le couple de départ. A partir de ces point de départ il existe encore beau-

coup de chemins potentiels (choix du point d’arrivée). Pour rechercher la meilleure

combinaison de sous-chemins, nous choisissons 1’algorithme A* [57] qui permet

d’accélérer la recherche, celle-ci est décrite dans la section suivante.

Syml Sym?2
®

Strl

¥ Strs

Str3 _Str4 SuS

o T @& o o

Strl

Str2

....i\....m\:‘;\

(a) Premiere étape

Syml Sym?2

Strl

Str2

sosenrere®

(c) Troisieme étape

Strl

Str2

Strl

Syml Sym?2
Gl 1S3
Str4
Str2 .
{ Str5

o0 09

]

(b) Deuxieme étape

Syml Sym2
Gl 1sw3
- Str4
Str2
ol S
L

(d) Quatrieme étape

Figure 9.12: Une solution pour associer deux ensembles de séquences (vues ma-

tricielles et graphiques)



154 RESUME FRANCAIS

9.3.2 Algorithme A*

L’algorithme A* recherche itérativement un chemin dans un graphe (ici un arbre
n-aire) en partant d’un état de départ (aucun point aligné) a un état d’arrivée (tous
les points alignés). Tout I’arbre de recherche n’est pas généré (c’est ce qui fait
I’efficacité de A*). A chaque itération, seule la meilleure hypothese est explorée
par génération des états suivants.

Pour accélérer la recherche, 1’algorithme de recherche A* utilise une évaluation
heuristique f(z) = g(x) + h(z) du colit de chaque étape « : un coit g(z) donnant
le cott du meilleur chemin arrivant a x plus h(x) pour estimer le colit permettant
d’atteindre le but final. La référence [57] précise cet algorithme. Dans cette section,
nous définissons les fonctions g(z) et h(x) adaptées a notre probleme ainsi que le

choix des points de départ permettant de créer les étapes qui suivront x.

Le Coiit de Chemin g(.) et ’Heuristique h(.)

Nous définissons chaque étape x par le chemin P, (h) = (i, (h), j.(h)), 1 < h <
H, entre deux symboles Sym1 = (p1(1),...,p1(N1)) et Sym2 = (p2(1), ..., p2(N2)).
Le cofit du chemin est défini par la somme de la distance entre deux points d’appariement :

H,

g(x) = d(pi(i(h)), p2(j(h))). 9.8)

1
Concernant 1’heuristique h(.), elle correspond au cofit nécessaire minimum pour
aller de I’étape actuelle x a I’étape du but. L’heuristique A(.) doit étre admissible,
i.e. h(.) ne surestime jamais la distance a I’étape finale. Pour I’admissibilité, nous
définissons 1’ensemble des points non-utilisés NU Pt(Sym,x) pour un symbole

Sym a’étape x. Lheuristique h(z) est donc définie par

1
h(z) = é(hsub(:z;, Sym1, Sym2) + hg(x, Sym2, Syml)), (9.9
ol
hsup(z, SymA, SymB) = > d(p1(2), ppv(p1, SymB))
p1(1)ENUPt(SymA,x) (910)
ppv(p1, SymB) = arg min d(p1,p2(7))-

p2(j)ENU Pt(SymB,x)

Cette heuristique est admissible car nous choisissons toujours la distance minimum

entre tous les points non-utilisés (le cofit de 1’alignement de ces points sera forcé-



DISTANCE ENTRE DEUX SYMBOLES MULTI-TRAITS 155

ment supérieur).

Le Choix des Points de Départ

Pour générer les étapes suivantes, il faut choisir un couple de points non-utilisés
qui permettra de démarrer la mise en correspondance suivant quatre directions au
maximum. Pour chaque direction, une nouvelle étape est obtenue. Bien que 1’algori-
thme A* puisse réduire la complexité de recherche, il existera encore de nombreuses
possibilités si toutes les combinaisons entre les points non-utilisés sont choisies (cas
le plus général). Dans cette section, une stratégie est donc proposée pour limiter la

complexité en limitant les possibilités de points de départ.

Nous définissons les segments non-utilisés a 1’étape x pour chaque trait dans un
symbole par Segs(Sym, x) ainsi que les points de frontiere de ces segments par
FSeg(Sym,z). L'ensemble des nouveaux couples de points {(p;,p;)} entre deux
symboles, Sym1 et Sym2, sont produits depuis F'Seg(Sym]1,x) vers les points

plus proches dans Segs(Sym, =) et inversement :

{(pispy)} =
[¥p: € FSeg(Sym1, ), ¥seg € Segs(Sym?2, ), (s, ppv(pi, seg))}

9.11)
U

{Vp; € FSeg(Sym2,x),Vseg € Segs(Syml,x), (ppv(p;, seg),p;)}

La Figure 9.13 montre les couples de départ possibles a partir de I’alignement
de la Figure 9.12b. Il existe six couples de points qui peuvent s’étendre dans quatre
directions respectivement. Toutes ces possibilités sont exploitées par 1’algorithme

de recherche A* pour trouver le meilleur alignement complet.

Notons que le choix des points de départ (mais aussi des points d’arrivée) agit

sur deux propriétés de DTW A* :

— la qualité de la solution finale : si certaines possibilités sont trop limitées,
elles ne pourront pas apparaitre dans les alignements finaux,
— la rapidité d’exécution : moins il y a de possibilités, moins il y a de branches

a évaluer et plus la recherche est rapide.



156 RESUME FRANCAIS

Str3
Strl Les points
utilisés

Str4 :

Pl & Les points

P2 de frontiére

Str2 P3
P4 Str5

Figure 9.13: Six couples de points de départ (P1,P6), (P1,P8), (P5,P7), (P5,P10),
(P2,P7) et (P3,P8) pour continuer la mise en correspondance démarrée dans la Fig-
ure 9.12b

9.3.3 Etude Expérimentale

[algorithme est encore coliteux en temps et en mémoire pour le calcul malgré la
réduction des points de départ présentée dans la section précédente. Nous proposons

dans cette section une étude qualitative qui montre la qualité de 1’alignement obtenu.

L’ Alignement entre Deux Sembles de Séquences

Avant la mise en correspondance, tous les symboles sont re-échantillonnés en
un nombre fixe de 20 points et sont mis a la méme échelle. Les seules coordonnées
(x,y) sont utilisées pour calculer la distance euclidienne entre deux points. La Fig-
ure 9.14 compare les résultats obtenus par I’algorithme DTW classique et par notre
DTW A* entre deux formes similaires mais écrites utilisant des sens d’écriture
et des ordres de traits différents. La Figure 9.14a présente un exemple de deux
séquences avec deux sens différents.

La distance trouvée avec I’algorithme DTW A* proposé ici, visible sur la Fig-
ure 9.14c est plus petite que celle obtenue avec la DTW classique, Figure 9.14b.

Les exemples présentés des cas 2 (Figure 9.14d) au cas 4 (Figure 9.14j) compar-
ent un symbole composé d’un trait avec le méme symbole composés de deux traits
écrits dans différents sens et ordres. Notre algorithme choisit le meilleur alignement

parmi les différents sens et ordres possibles. Le dernier cas, Figure 9.14m, montre



DISTANCE ENTRE DEUX SYMBOLES MULTI-TRAITS 157

la capacité du systeme a aligner deux symboles multi-traits avec inversion du sens
et de ’ordre. Ces exemples montrent bien que notre algorithme est indépendant du
sens et de I’ordre des traits composant les symboles.

La Figure 9.15 montre un exemple plus compliqué de comparaison de deux
allographes de x. Notre algorithme a trouvé la meilleure solution en cinq étapes.
Les deux premieres étapes montrent 1I’alignement de la branche en haut a gauche.
La branche en bas a droite est alignée dans la troisieme étape, etc. Notre algorithme
peut couper les traits en sous-segments qui minimisent la distance DTW avec le

segment correspondant dans I’autre symbole.

Distance entre Symboles Différents

Nous choisissons six symboles pour illustrer I utilisation de cette distance (Equa-
tion 9.7) dans une application de type classifieur basé plus-proche-voisin. Les ex-
emples sont ré-échantillonnés en 30 points. Nous pouvons constater que les formes
’4’ et 8’ sont bien classifiées bien que les allographes n’aient pas le méme nom-
bre de traits. Le temps de calcul et le nombre d’hypotheses (la mémoire requise)
sont donnés a titre indicatif et dépendent de la complexité de la forme et surtout du

nombre de points utilisés pour le ré-échantillonnage.

QL‘ (2 str) D (1 str) ? (2 str) g (1 str)

i dist=029 | dist=0,37 | dist=0,23 dist=0,17
T~ (2str)| temps=127 sec| temps<lsec |temps=787sec | temps<lsec
“ 77.304 hyp 3.749 hyp 238.193 hyp 218 hyp

dist=0,15 dist=0,44 dist=0,27 dist=0,37
¢ (Lstr)) temps<1 sec | temps<I sec |temps=176 sec| temps<lsec

112 hyp 699 hyp | 88.820 hyp 16 hyp

Table 9.2: Distance entre deux symboles et quatre symboles (dist=distance,
sec=seconde, str=trait et hyp=hypothese).

9.3.4 Conclusion

Dans cette theése, nous avons proposé une distance entre deux ensembles de

séquences en préservant la continuité intra-séquence. En procédant directement,



158 RESUME FRANCAIS

(a) Cas 1 (b) DTW classique (c) DTW A* (distance=0,10)
(distance=1,08)

(d) Cas 2(e) DTW classique () DTW A* (distance=0,11)
(distance=1,09)

1

(g) Cas 3(h) DTW classique (i) DTW A* (distance=0,15)
(distance=0,214)

1

(j) Cas 4 (k) DTW classique
(distance=0,69)

(m) Cas 5(n) DTW classique (o) DTW A* (distance=0,10)
(distance=0,55)

Figure 9.14: Tests sur la mise en correspondance entre deux ensembles de se-
quences



DISTANCE ENTRE DEUX SYMBOLES MULTI-TRAITS 159

(b) Etape 1

(c) Etape 2 (d) Etape 3

(e) Etape 4 ®) Etape 5

Figure 9.15: La meilleure solution entre deux x

il faudrait trouver le meilleur alignement parmi un nombre exponentiel de combi-
naisons. Notre approche nommée DTW A*, basée sur la distance DTW et 1’algorithme
de A*, permet de réduire cette complexité en explorant les sous-alignements possi-
bles. Nous limitons notamment les points de départ des alignements possibles pour
réduire la combinatoire. Cette stratégie permet aussi d’obtenir des alignements qui
n’aurait pas été possible par un simple ré-ordonnancement des traits. Les résultats
qualitatifs présentés montrent I’'intérét de DTW A*. Il s’agit maintenant de réaliser
une implémentation permettant la mise en ceuvre d’un classifieur. En particulier il
sera utile d’arréter le calcul de la distance des qu’elle dépasse la plus petite déja

disponible.

Signalons toutefois que I’algorithme DTW A* malgré les optimisations qui y
ont été apportées est pénalisé par un temps d’exécution important. Dans la suite
de cette these, nous lui préférerons un algorithme plus rapide basé sur la Distance
de Hausdorft Modifiée (DHM) [48]. Dans la section suivante, nous présentons la

méthode permettant globalement de découvrir des symboles multi-traits.



160 RESUME FRANCAIS

9.4 Découverte des Symboles Multi-Traits

Dans cette section, nous donnons un apercu général de la méthode proposée
pour extraire I’ensemble des symboles graphiques qui composent le lexique utilisé
dans un corpus de documents manuscrits. La méthode comporte trois étapes princi-
pales: 1) la quantification des traits élémentaires (stroke) en graphemes prototypes,
ii) la construction d’un graphe décrivant les relations spatiales entre les traits, et fi-
nalement iii) la définition des éléments du lexique en s’appuyant sur les graphemes

et leurs relations.

Comme le montre la Figure 9.16, a partir d’un nouveau document graphique,
il est d’abord important de rechercher les différents graphémes qui correspondent
aux différentes formes élémentaires en usage dans le document. Pour cela, une
technique de clustering est mise en ceuvre pour construire les représentants de ces
graphémes, ces prototypes permettent de définir les éléments de base d’un dictio-
nnaire. Celui-ci est ensuite utilisé pour annoter chaque trait élémentaire a 1’aide
de son représentant. Dans un second temps, un graphe de relations spatiales est
construit, celui-ci se base sur I’approche des SRT (Symbol Relation Tree approach)
[31]. Dans une troisieme étape, les motifs fréquents présents dans le graphe rela-
tionnel sont extraits en s’appuyant sur le principe de longueur de description min-
imale (MDL) [13, 18]. Ce principe permet d’identifier un modele a partir de don-
nées, en considérant le probleme du choix du modele comme celui permettant de
déceler les régularités des données. Les éléments ayant produit le code le plus com-
pact sont considérés comme les éléments de base du langage considéré et donc les

symboles ou encore I’alphabet de ce langage graphique.

Dans I’exemple de la Figure 9.16, nous supposons qu’une base de documents
manuscrits contienne le diagramme «[] — [J — [». Chaque trait est marqué de
maniére unique par un index (i) de 1 a 15. A un moment donné, il est possible

', d*\", e*/’}. Celui-ci

’

de disposer du lexique de grapheémes suivant {a‘—", b*=’, ¢

pouvant résulter comme indiqué plus haut d’un clustering non supervisé. Il est alors
possible de coder le schéma en s’appuyant sur ce lexique. Cela correspond a une
étape de quantification sur I’ensemble des graphemes prototypes du schéma étudié.
Ensuite, les relations spatiales qui sont présentes entre ces composantes permettent

de produire un graphe relationnel. Les relations spatiales que I’on peut considérer



DECOUVERTE DES SYMBOLES MULTI-TRAITS 161

1) 2) ) ® (12 _q@s)
) N
Corpus | | PG5 | i) |
(3) (6) /_/( )(”)/
©) (14)

- T ® It Clustering \l‘.Quantiﬁcation

ie N Rt )

R - ,~"‘<'1/>‘é | @ — T g —
Gd N\ (e 10 ——

Graphemes G I | aon

Ga — (e ~— @b | (bhe 7

2.Constr’1}_7c_§179_r‘1”de graphs relationnel Samd N asp Tl ade | e —

e P4 Unité lexicale ||

B\,. B TR
‘ 3 ’ \(O)av \ CB\ b

4 777777
Relational graphs e 8-
() :Stroke Index B:Dessous R:A droite  3.Extraction de lexie en untilisant

le MDL principe

Figure 9.16: Schéma général de la méthode découverte des symboles graphiques

sont nombreuses ainsi que nous le verrons dans la Chapter 5. Dans cet exemple

R
e b

simplifié, la sous-structure ( B\a ) apparait fréquemment, elle peut étre mise a
jour a partir du graphe relationnel. Cette sous-structure correspond a la présence
d’un trait de type a ‘—’ placé en dessous d’un trait de type c‘|” qui possede sur sa
droite un trait de type b*—’. Nous pourrions considérer cette sous-structure comme
un élément du lexique du langage graphique. Dans ce cas, cet élément correspond
a un symbole rectangle (‘[J°).

Dans cette section, nous détaillons comment obtenir le lexique a partir du graphe

relationnel et nous évaluons la qualité du lexique dans une tache de segmentation

hiérarchique.

9.4.1 Découverte non supervisée des symboles graphiques

Pour découvrir les symboles graphiques, nous commencons par produire les
grapheémes prototypes a partir d’un clustering hiérarchique. Apres avoir quantifié
chaque trait, le graphe relationnel est construit, il permet de modéliser le contexte
spatial de chaque trait. Les structures répétitives que 1’on considérera comme les
unités lexicales seront ensuite extraites par application d’un algorithme par codage

du graphe par principe de longueur de description minimale.



162 RESUME FRANCAIS

9.4.2 Quantification des Traits

Nous nous intéressons ici a des tracés graphiques de type en-ligne disponibles
sous la forme d’une séquence de traits, eux-mémes constitués d’une séquence de
points provenant du plan 2D. Du fait de la variabilité des formes produites par les
tracés manuscrits, il est utile de rapprocher chaque forme d’un tracé de référence
disponible dans le lexique des graphemes. Pour cela, nous utiliserons la Distance
Modifiée de Hausdorff (DMH) [48], elle permet de mesurer la dissimilarité entre
deux formes. Rappelons que le lexique résulte d’une opération de clustering. Plutdt
que d’utiliser un classique algorithme de type k-moyennes qui est tres sensible a
I’initialisation et qui nécessite de fixer le nombre de classes, nous avons préféré une
technique de clustering hiérarchique ascendante qui permet d’obtenir une structure
d’arbre propice pour fixer a posteriori le nombre de classes, c’est-a-dire de pro-
totypes de graphémes. Ce nombre n, de graphé¢mes étant fixé et les prototypes
correspondants calculés, tous les traits sont marqués du label virtuel du prototype le
plus proche dans I’espace des caractéristiques, la distance utilisée étant encore ici la
DMH. Cela réalise donc I’étape de quantification des traits. A partir de 1a, le graphe

relationnel définissant les relations spatiales entre les traits est construit.

9.4.3 Construction du Graphe Relationnel

On présente dans cette section la méthode de construction du graphe relationnel,
celle-ci est inspiré du formalisme SRT [31] permettant de décrire les relations spa-
tiales entre les traits d’'un document graphique. Dans ce graphe, les nceuds représen-
tent les traits, chacun étant étiqueté par son prototype de grapheémes, les arcs cor-
respondant a des relations spatiales spécifiques. Une relation spatiale met en corre-
spondance un trait de référence avec un trait cible. Il en résulte un graphe orienté,
celui-ci est décrit plus en détails dans la Section 5. Nous allons maintenant présen-
ter dans la section suivante, la fagcon de procéder pour extraire de facon hiérarchique
les sous-structures, c’est-a-dire les sous-graphes, a partir de ce graphe relation-
nel. L’ensemble des sous-structures fréquentes, en considérant différents niveaux
de hiérarchie, permettra de composer le lexique recherché, c’est-a-dire I’ensemble
des symboles utilisés dans le langage qui a servi a composer tous les documents

dont on dispose dans la base de documents.



DECOUVERTE DES SYMBOLES MULTI-TRAITS 163

9.4.4 Extraction du Lexique par Utilisation du Principe de Longueur

de Description Minimale

Nous avons vu dans la section précédente comment construire le graphe re-
lationnel décrivant un document graphique. Dans cette section, nous présentons
un algorithme s’appuyant sur les travaux [13] et utilisant le principe de longueur
de description minimale (MDL) [18] pour I’extraction des sous-structures répéti-
tives (sous-graphes) dans un graphe, celles-ci étant considérées dans notre contexte
comme des unités lexicales. De fagcon non supervisée, I’apprentissage d’un langage
par le principe MDL propose de retenir les unités lexicales qui minimisent globale-
ment la description du lexique et du graphe décrit par le lexique [11]. Formellement,
étant donné un graphe G, cela revient a retenir les unités lexicales u qui minimisent

la longueur de description de la grandeur.

DL(G,u) = I(u) + I(Gu) (9.12)

Ou I(u) représente le nombre bits nécessaire pour encoder le lexique u et 1(G|u)
est le nombre de bits pour encoder le graphe GG en utilisant le lexique u. Une
définition précise de DL(G, u) est proposée dans [23]. Pour solutionner ce prob-
leme, la méthode SUBDUE (SUBstructure Discovery Using Examples) [23] ex-
trait de facon itérative les meilleures unités lexicales (sous-structures) en utilisant le
principe MDL. 1l est possible de concevoir des unités lexicales composites griace a
I’application itérative de la méthode [24].

Pour illustrer la mise en ceuvre de cette procédure itérative et la structure hiérar-
chique résultante, nous proposons de continuer a nous appuyer sur I’exemple du
diagramme de la Figure 9.17. A ce niveau, nous avons pu décrire une représenta-
tion graphique par un graphe relationnel utilisant les étiquettes (noeuds) issues du
clustering hiérarchique et les arcs définissant des relations spatiales privilégiées. A
partir de ce schéma graphique, nous souhaitons extraire les motifs répétitifs, et cela
sous la forme d’une éventuelle structure multi niveaux. Dans I’exemple proposé,
nous voyons apparaitre la structure hiérarchique suivante : “— [1”.

Il y a trois instances du rectangle “L]” dans ce diagramme, il s’agit du motif le
plus fréquent. Probablement que le sous-graphe “[]” correspondant sera extrait des

la premiere itération et permettra de définir la premiere unité lexicale, soit LU _1



164 RESUME FRANCAIS

(l)c 2)b (5)d (8)b (12)d (15)b.
P — T @n - o ()7103/\( 3e ||

(3)a (9)a (ll)e (14)a :
(a) Un schéma graphique
QR2  SRLY Gd d e R
| v Y SRy: ) SRLWGS
m)c R SR4 SRl (8)§R2, aoa |SR4 (13>cSRy4 SR4.
| (3)a (e SR1  (14) |
(6) SR (9 SR1 (11)e

(b) Le graphe relationnel correspondant

Figure 9.17: Le graphe relationnel (b) correspondant au schéma (a)

(“LJ”). Lors de la seconde itération, un autre motif répétitif devrait étre extrait, il
s’agit de la seconde unité lexicale, soit LU_2 (“—”’). On convient de noter LU _i
I’unité lexicale extraite lors de 1’:eéme itération. Bien entendu, 1’extraction ne se
fait pas sur la base d’un seul schéma tel que celui de la Figure 9.18 mais résulte
d’une analyse de I’ensemble des productions graphiques afin de pouvoir s’appuyer
un calcul de fréquence significatif de la production langagiere et donc de 1’alphabet
sous-jacent. S’il se trouvait que la sous-structure LU_2(*“—") est plus fréquente
que la sous-structure LU _1 (“0J”), alors ce serait elle qui serait extraite lors de la

premicere itération, et cela selon le principe MDL.

LU_l o LUZ ””” B LU2 LU 1
e 3 (5)d 3 12)d | T e ;
- SR <2)bﬂ(4)a/ ”””L”[’J”_’!””Rz: SR - SRLW®
3 ;3 S SR4 (13
e w | SM SRLy(S)b '(lO)a % :< )CSR/ §SR4
: Ga | ' (7)¢ - ARI (14 !

Figure 9.18: Extraction de deux unités lexicales, LU_1 (3 instances de “[]”) et
LU_2 (2 instances de “—”), obtenues lors de la premiere et seconde itération

Apres chaque itération, les sous-structures extraites sont remplacées par un
nceud global étiqueté par 1’unité lexicale virtuelle mise a jour. Ainsi, a I’issue
de I'itération 2, le graphe relationnel est défini par la Figure 9.19. En continuant

une itération de plus, I’algorithme proposerait une nouvelle unité lexicale LU _3



DECOUVERTE DES SYMBOLES MULTI-TRAITS 165

résultant du sous-graphe contenant LU_1 et LU_2. Cet exemple illustre bien la
notion de hiérarchie dans les unités lexicales. Lorsqu’il n’est plus possible de ré-
duire la longueur de description, la construction du lexique s’arréte et celui-ci est
composé d’une liste d’éléments L =(LU_1, LU_2, LU _3,...) contribuant au calcul
de DL(G, u).

LU 3 rananaznn s T SR1  LU2
- LUl gR2 LU 2 7y i03.304.09)
- LU_1 gsr2 LU2 i%{(7),(8),(9)}4} {10),(11),(12)}!

HD.2),(0 — {@),(5),6)} '

Figure 9.19: Extraction d’une unité lexicale hiérarchique, LU_3 composée des €lé-
ments LU_1 et LU_2

9.4.5 Evaluation des Segmentations

Nous allons introduire dans cette theése une mesure de rappel au niveau symbole
multi-traits [11, 33], celle-ci se base sur I’intersection entre la segmentation de la
vérité terrain et la segmentation hiérarchique obtenue précédemment. Le taux de
rappel Ryrecann évalue le pourcentage de segmentation correcte qui est présent dans

la vérité terrain des symboles multi-traits.

9.4.6 Conclusion

Nous avons proposé dans cette section une méthode permettant d’extraire des
symboles multi-traits en se basant sur une représentation de graphe relationnel et
sur le principe MDL. L’approche proposée comporte trois étapes : i) la quantifica-
tion des traits élémentaires en grapheme prototype, ii) la quantification des relations
spatiales entre les paires de traits, ii1) et pour finir I’extraction des symboles multi-
traits (les unités lexicales) a partir du graphe des relations spatiales par mise en
ceuvre du principe MDL. Il en résulte un ensemble d’unités lexicales qui possedent
la propriété de se définir par une structure hiérarchique, ce qui correspond bien a
la perception humaine de la composition de symboles. Dans la mesure ou la con-
struction du lexique conduit a une segmentation en symboles, nous avons proposé
une mesure permettant d’évaluer la qualité des symboles extraits. Pour mener a

bien des expérimentations pour évaluer cette méthodologie, nous allons introduire



166 RESUME FRANCAIS

dans la section suivante deux bases de données intégrant des données manuscrites

graphiques de type en-ligne.

9.5 Description des Bases Utilisées

La premiere base d’expérimentation que nous considérerons sera la base Calc
(Calculette) qui correspond a un ensemble d’expressions mathématiques simples
produites par syntheése automatique a partir de symboles manuscrits isolés [59]. Les
expressions de Calc respectent la grammaire Ny op No = N3 ou Ny, Ny ou Ny, N,
et /N3 sont des nombres composés de 1, 2 ou 3 digits manuscrits. La distribution du
nombre des digits pour les N; = {1, 2,3} est de 70% de 1 digit, 20% de 2 digits et
10% de 3 digits, chaque digit est tiré suivant une loi uniforme sur [0..9]. De méme op
représente 1’un des opérateurs de ’ensemble {+, —, x, +}. La Figure 9.20a montre
un exemple d’expression de cette base Calc, dans ce cas Ny, N, et N3 comportent
3 digits, 1 digit et 2 digits respectivement, tandis que 1’opérateur est le symbole ‘z’.
Le nombre de classes de symboles est de 15, a savoir les 10 digits, les 4 opérateurs
arithmétiques et le symbole ‘=".

La seconde base d’expérimentation est une base de graphiques manuscrits de
type organigramme, elle est dénommée FC (flowchart) [60]. Ces organigrammes
comportent 6 types de symboles qui représentent les opérations basiques suivantes
: donnée, fin, process, choix, connexion, fleche, a I’exclusion de tout texte. Un
exemple est présenté en Figure 9.20b. Pour cette application, le nombre de classes
est donc de 6.

Le Tableau 9.3 présente quelques statistique sur deux bases. Chacune est com-
posée d’une partie apprentissage et d’une partie de test. Bien que la base Calc ait
plus de classes que la base F'C, derniere a plus de traits par symbole. De plus, la
Figure 9.21 montre la distribution du nombre de symboles par rapport du nombre
de traits par symbole. La plupart des symboles (54,9%) de la base Calc sont des
symboles mono-trait, et 40,2% de symboles contiennent deux traits. Par contre la
base FC contient évidemment plus de symboles multi-traits. En plus de la forte
proportion de symboles multi-traits, la composition spatiale entre les symboles de
la base FC est plus variée par comparaison aux expressions mathématiques mono-

lignes de la base Calc. La base FC représente donc un challenge plus difficile pour



RESULTATS ET DISCUSSIONS 167

connection

\J;fow
: eSS

ﬁ \—,—,4;7 arrow
e AELOW
o dccisioﬁ process

B
: ALTOW
=
1

Trow
/ -..process

I

S AFEOW
N op N = N
/—J% ,—L,Z /_/i\

3 \ﬂ 5)& #:AZ,L cwction
(a) (b)

Figure 9.20: Deux corpus pour deux langages graphiques: (a) une expression syn-
thétique de la base Calc, (b) un exemple d’organigramme de programmation de la
base FC.

I’extraction des symboles isolés.

N. = Nombre
N. de N. Fie Traits/Symbole | N. de Classes |N. de Scripteurs
Symboles traits
Apprentissage| 5472 8185 1.50 15 180
Calc
Test 3035 4547 1.50 15 100
FC Apprentissage| 3641 8827 242 6 31
Test 2494 6059 2.43 6 15

Table 9.3: Nombre de symboles et nombre de classes dans les deux bases d’écriture
manuscrite.

Dans la section suivante, nous présentons les résultats sur les deux bases de

données respectivement. Puis nous concluons nos travaux.

9.6 Résultats et Discussions

Dans cette section, nous comparons différentes approches d’extraction des sym-

boles dans le cadre de I’aide a I’ étiquetage au niveau symboles d’une base d’écriture



168 RESUME FRANCAIS

3000 T T T
I Training (Calc)
® [ Test (Calc)
_\é 2500 | l:l Training (FC) ||
7 I Test (FC)
:'3
S
S 2000 1
3]
[%2]
o
Q.
IS
S 1500f -
Is)
Q
£
@
« 1000 b
o
@
Ke)
£
Z 500 il
0 ._m i — - I

2 3 4 5 6 7 8 9
Stroke number N, in each symbol

Figure 9.21: Distribution des symboles par nombre de traits

manuscrite. Nous évaluons donc les résultats en considérant deux mesures présen-
tées précédement. La premiere compte le nombre de symboles multi-traits correcte-
ment retrouvés automatiquement (taux de rappel Ryrecan). La seconde mesure
compte le nombre d’opérations manuelles nécessaires a I’opérateur humain pour
étiqueter toute la base : il faut étiqueter chaque trait du dictionnaire visuel puis cette
information est automatiquement transférée a toute la base, I’utilisateur devra en-
suite corriger chaque trait des symboles mal catégorisés par le clustering. Le cofit
d’étiquetage est donc égale au nombre de traits des représents du dictionnaire et au

nombre de traits mal étiquetés automatiquement.

Trois stratégies de segmentations sont comparées. La premiere utlisera directe-
ment la segmentation disponible dans la vérité terrain de la base. Il s’agira d’une
référence maximum car il n’est pas possible de faire une meilleure segmentation.
La seconde utilise les composantes connexes (i.e. les traits se touchant sont dans le
méme symbole) comme critere de segmentation. Cette approche simple est coure-
ment utilisées dans les systemes existants, il s’agira d’une référence de base. La
derniere stratégie est notre meilleure approche : utilisation de 1’exploration des

graphes relationnels pour découvrir les symboles fréquents (voir la section 9.4.4).

Le Tableau 9.4 présente les résultats de ces trois approches pour les deux mesures

considérées, sur les deux bases d’écriture manuscrites présentées précédemment.



RESULTATS ET DISCUSSIONS 169

App.= Apprentissage

Calc FC
App.  Test | App.  Test
R et (Symboles de multi-traits)

Vérité Terrain 100% | 100% | 100% | 100%

Stratégies

Composantes 44.1% | 44.7% | 14.6% | 17.4%

Connexes

MDL (Seul) 78% 78% | 55.5% | 45%
Cot d'étiquetage

Vérité terrain 6.4% | 13.1%| 4.3% | 13.5%

COmPOSANES | 46.9% | 50.4% 97.5% | 97.2%

MDL (Itération) | 42.8% | 62.4%| 74.1% |87.8%

Table 9.4: Résultats sur les deux bases de données

La premiere partie de résultats Ry;ecqu dans le Tableau 9.4 montre que beau-
coup de symboles dans les deux bases sont automatiquement extraits par notre
stratégie et confirme que la base F'C est plus complexe puisque seulement la moitié
des symboles y sont retrouvés. Notre segmentation proposée fonctionne bien que la

stratégie de composantes.

Concernant les résultats de taux d’étiquetage manuel, la segmentation utilisant
la vérité terrain montre évidement le plus faible colit d’étiquetage, mais dans un
cas réel nous ne connaissons pas cette vérité terrain. L’utilisation des composantes
connexes fait augmenter de beaucoup le taux d’étiquetage, ce qui montre qu’une
approche simple ne permet pas de résoudre le probleme. Nous pouvons aussi
constater que cette approche fonctionne mieux dans un contexte de base ou les
symboles sont généralement séparés (Calc), ce qui n’est pas le cas dans la base
FC. Notre stratégie de segmentation proposée donne de meilleurs résultats que
les composantes connexes dans la partie apprentissage. Dans la partie de test, la
stratégie de composantes connexes fonctionne mieux que notre segmentation pro-
posée. Cette différenc peut s’expliquer par le fait qu’il y a beaucoup de parametres
dans notre systeme et que les parametres utilisés en test sont ceux optimisés sur la

base d’apprentissage. Enfin nous pouvons constater que sur la base plus complexe



170 RESUME FRANCAIS

FC, notre stratégie permet de réduire le colit d’étiquetage par rapport a la segmenta-
tion en composantes connexes. Le taux de rappelle étant nettement plus faible que
le taux d’étiquetage, nous pouvons affirmer qu’il existe une forte marge de progres-
sion dans les deux axes : la découverte des symboles et le clustering en symboles

homogenes.

9.7 Conclusions

La création d’une base d’apprentissage étiquetée au niveau de chaque symbole
est d’une tache coliteuse. Dans cette these, nous avons proposé€ un schéma qui ex-
trait des symboles graphiques en utilisant le principe MDL. Le schéma proposé peut
réduire le travail d’étiquetage des symboles. Notre approche contient trois étapes
principales : quantifier des traits ou symboles graphiques, construire un graphe re-
lationel, découvrir des symboles multi-traits.

Dans les données en ligne, les éléments basiques sont des traits. Nous pro-
posons de modéliser un langage graphique par un graphe relationnel. Les noeuds
sont définis par les traits et les arcs sont définis par les relations spatiales. Les
traits et les relations spatiales sont quantifiés par clustering. Nous pouvons donc
extraire des symboles multi-traits (sous-graphes) dans les graphes. Apres la dé-
couverte des symboles multi-traits, nous produisons un dictionnaire visuel des dif-
férents regroupements obtenus par clustering. Cette opération nécessite la définition
d’une une distance adaptée aux symboles multi-traits. Nous proposons une distance
nommée DTW A* basée sur la distance d’alignement élastique DTW mais perme-
ttant I’alignement optimal de deux symboles multi-traits. Cette distance DTW A*
est indépendante du nombre de traits, de leurs sens et de leur ordre d’écriture. Sig-
nalons toutefois que cet algorithme DTW A* malgré les optimisations qui y ont été
apportées est pénalisé par un temps d’exécution important. Dans cette these, nous
préférerons une métrique plus rapide mais moins stable basée sur la Distance de
Hausdorff Modifiée (DHM).

Apres la quantification des traits et la construction de graphes relationnels, nous
recherchons les sous-graphes fréquents en utilisant le principe MDL. Ces sous-
graphes sont alors considérés comme des hypotheses de symboles multi-traits. Et

puis ces symboles multi-traits sont groupés dans un dictionnaire visuel ou nous éti-



CONCLUSIONS 171

quetons ces symboles a la main. Le systeme transfere les étiquettes de chaque trait
a toutes les données de la base.

Nous avons testé notre méthode d’étiquetage automatique sur deux bases d’écri-
tures manuscrites, Calc (assez simple) et FC (plus difficile car avec plus de variabil-
ité). Nous avons réussi a réduire significativement le travail d’étiquetage manuel
des symboles. La comparaison de notre approche avec une stratégie plus classique
(utilisation des composantes connexes) montre que notre systeme est adapté aux

données complexes mais qu’il reste une marge de progression importante.






List of Tables

2.1 Three lexicons for the sequence of graphemes U = (1,2,3,4,—,2,/,1,2,3,4) 14

3.1 Variability of stroke order and direction in an on-line handwritten

symbol . . . . ... 35
3.2 Symbol number and class number on two databases . . . . . . . .. 53
3.3 Classification between symbols (dist=distance, sec=second, str=stroke

et hyp=hypothese) . . . . . . ... ... ... .. ... ...... 57
3.4 KNN classification and cross-validation on the dataset FC [61].. . . 58
5.1 Value range of each feature in spatial relation . . . . .. ... ... 83

6.1 Each stroke in raw segment (b) is given the label contained in its
closest stroke of labeled representative (a). . . . . . . . .. .. ... 106

8.1 Result Summarization on the Two Datasets . . . . . . .. ... .. 136

9.1 Variabilité des ordonnancements et des sens de parcours des traits

dansuntracéen-ligne . . . . .. ... ..o L 148
9.2 Distance entre deux symboles et quatre symboles (dist=distance,

sec=seconde, str=trait et hyp=hypothese). . . ... ... ... ... 157
9.3 Nombre de symboles et nombre de classes dans les deux bases

d’écriture manuscrite. . . . . ... . L. Lo oL 167
9.4 Résultats sur les deux bases de données . . . . . ... .. ... .. 169

173






List of Figures

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

2.1
2.2
2.3
24
2.5
2.6

2.7
2.8

29

2.10
2.11
2.12

2.13

3.1

3.2

33

34
3.5
3.6
3.7
3.8

Traditional handwriting recognition . . . . . . ... ... .. ...
Extracting the symbol set from a graphical language . . . . . . . ..
A stroke may be a symbol or a part of symbol . . . . ... ... ..
Expressions and corresponding relational graphs . . . . . . . .. ..
Correctly segmented symbols are grouped into clusters . . . . . . .
Four different handwriting trajectories for a two-stroke symbol “+”

A not perfect symbol segmentation (“+1” is defined as a symbol) . .
A visual codebook for user labeling . . . ... ... ........
Thesis global view . . . . . . ... ... L oL

Viterbi representation . . . . ... ... oL
Example of codebook used for coding expressions of Fig. 1.4 . . . .
Original Graphs . . . . . . . . . . . ... ..
An extracted lexicalunit . . . . . . ... ... Lo
Compressed Original Graphs . . . . . . ... ... ... ......
Two different handwritten graphical documents: (a) a handwritten
mathematical expression, (b) a handwritten flowchart. . . . . . . ..
Which is the closest symbol from the symbol “Circle”? . . . . . ..
Fuzzy relative directional relationship from a reference symbol to
an argument symbol with respect to a reference direction in Ref. [29].
New [ function to avoid a comb effect Ref. [29] . . . . . . .. . ..
Topological transformations . . . . . . .. ... ... ... ....
Corresponding topological relations between two lines in [37]
Example of three clusters for three classes (three handwritten digits
B 1 T )
Two clustering results (a) and (b) with a same number of 3 clusters .

Defining a reference orientation, and its similarity value between
the reference orientation and a written orientation . . . . . . . . ..
Two orthogonal reference orientations are defined to get a feature
VECIOT . . . v v it e e e e e e e
The symmetry written direction with the written direction as shown
mFig.32 ...
Eight reference orientations . . . . . . . . ... .. ... ... ...
A curvature feature of the point p(¢) . . . . . . .. ... ... ...
A binary pen-up (-1) and pen-down (1) feature . . . . . . . ... ..
Two point sequences (two single-stroke symbols) . . . . . ... ..
The cumulative distance matrix D(i, j; h) of Eq. (3.6) illustration
and the best warping path. . . . . . .. ... L L oL



176

LIST OF FIGURES

3.9

3.10
3.11

3.12
3.13

3.14

3.15

3.16
3.17

3.18

3.19

3.20

4.1
4.2

4.3
4.4
4.5
4.6

5.1
5.2
53
54
5.5

5.6
5.7

5.8

59

5.10

5.11

Defining a starting point couple (the blue rectangle) and finding a
warping path between a 2-stroke symbol (symbol 1) and a single-
stroke symbol (symbol 2) in four directions. . . . . .. .. ... ..
A solution of warping path between two symbols (graphic and ma-
X VIEWS) & o v v v o e e e e e e e e e e e e e
An illustration of searching complexity for the best warping path . .
Three starting point couples of the first step in Fig. 3.10 . . . . . . .
Two different handwritten graphical languages: (a) a synthetic ex-
pression from Calc composed of real isolated symbols, (b) an ex-
ample of flowchart in F'C database. . . . . . ... ... ... ....
Symbol distribution in terms of stroke number in each symbol

Tests on matching two multi-stroke symbols (Classical DTW vs
DTW A*) o e
The best solution betweentwoz . . . . ... ... ... ... ...
Evaluating Purity using classical DTW and MHD on the training
partof Calc . . . . . . . . . .
Evaluating NMI using classical DTW and MHD on the training part
of Calc . . . . . . .. .
Evaluating Purity using classical DTW and MHD on the training
partof FC . . . . . . . .
Evaluating NMI using classical DTW and MHD on the training part
of FC . . . . e

Lexicon extraction OVerview . . . . . . . . . . . . . ... ... ..
From a reference stroke "2", Right spatial relation is defined using
the projection on the rightside. . . . . . .. ... ... ... ....
Example of the relational graph of the expression “2 4+ 8 = 4”
Hierarchical segmentation of a lexicon evaluated by four measures .
Accuracy of segmentation . . . . . ... ... Lo
Rates for different numbers of prototypes on the training part . . . .

Overview for unsupervised graphical symbol learning . . . . . . . .
Stroke Pre-processing . . . . . .. ... ..o Lo
Creation of the relational graph (b) for a graphical sentence (a) . . .
The stroke (4) is far away from the strokes (5) and (6) in a graphical
sentence (a). An arrow {(4), (5), (6)} is separated into two parts in
the relational graph (b) . . . . . . ... ... .. oL
Quantization of spatial relations and an example of repetitive sub-
graphs . . . . ..
A corresponding relational graph (b) for a graphical sentence (a) . .
Two discovered lexical units LU _1 (3 instances of “[J”) and LU _2
(2 instances of “—”) in the first and the second iteration respectively
A hierarchical lexical unit LU _3 composed of LU_1 and LU_2 is
extracted . . . . ... L
SUBDUE iterative discovery procedure in the 2"¢ epoch (Calc, Code-
book Size Selectionmny,) . . . . ...
Recall rate at multi-stroke symbol level when a discovery procedure
is finished in the 2"¢ epoch (Calc, Codebook Size Selection ny) . . .
Linkage distance during hierarchical clustering in the 2"¢ epoch
(Calc, Codebook Size Selectionmn,) . . . ... ... ... ... ..

45

82

84
85

85

86

88

89



LIST OF FIGURES 177

5.12

5.13

5.14

5.15

5.16

5.17

5.18

5.19

5.20

6.1
6.2

6.3
6.4
6.5
6.6

6.7

6.8
6.9

6.10

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8

7.9
7.10

7.11

Recall rate at multi-stroke symbol level when a discovery procedure
is finished in the 2" epoch (Calc, Spatial Relation Feature Selection) 91
Recall rate at multi-stroke symbol level when a discovery procedure
is finished in the 2"¢ epoch (Calc, Spatial Relation Feature Proto-

type Number ng.) . . . . . . ... e 92
Recall rate at multi-stroke symbol level when a discovery procedure
is finished in the 2"¢ epoch (Calc, Closest Stroke Number n.y,) . . 93
SUBDUE iterative discovery procedure in the 2"¢ epoch (FC, Code-
book Size Selectionn,) . . . . ... 94
Recall rate at multi-stroke symbol level when a discovery procedure
is finished in the 2" epoch (FC, Codebook Size Selection ny) ... 95
Linkage distance during hierarchical clustering in the 2"¢ epoch
(FC, Codebook Size Selectionny) . .. ... ... ... ... ... 96

Recall rate at multi-stroke symbol level when a discovery procedure
is finished in the 2"? epoch (FC, Spatial Relation Feature Selection) 96
Recall rate at multi-stroke symbol level when a discovery procedure
is finished in the 2"¢ epoch (FC, Spatial Relation Feature Prototype

Number ng.) . . . . o o o e e e 97
Recall rate at multi-stroke symbol level when a discovery procedure

is finished in the 2" epoch (FC, Closest Stroke Number n¢g,) . . . 97
A raw handwritten expression . . . . . ... ... ... 100
Reducing the human labeling workload in on-line handwritten graph-

ical language in the perfectcase. . . . . . .. ... ... ... ... 101
A connected-stroke segmentation and its labeling . . . . . ... .. 102
Merging the top-1 frequent bigram in Fig. 6.1 . . . . ... ... .. 103
Three main steps on the annotation system . . . . . . ... ... .. 103
The user manually labels the cluster C2 (a), and then the system

finds a mapping forraw scripts (b). . . . . .. ... oL L 105

Labeling cost with different codebook sizes on the training parts of
two datasets with the ground-truth segmentation and the connected-
stroke segmentation . . . . . . ... ... 108
Evaluating the hierarchical clustering metrics on the training parts . 109
Labeling cost on merging the top-n (¢,,) frequent bigrams on the

training part of Calc dataset . . . . . . . . .. ... ... ...... 110
Clusters and pattern representatives . . . . . . . . . . .. .. ... 111
Reducing the human effort on labeling symbols . . . . .. ... .. 116
Automatic multi-stroke symbol extraction system . . . . . .. ... 117
The learning procedure during the first iteration . . . . . . . . . .. 120
Two possible symbols in the first iteration as shown in Fig. 7.3d. . . 121
A learning procedure in the second iteration . . . . . ... ... .. 123
codebooks in later iterations . . . . . ... ... 124
System labeling in the fourth iteration . . . . ... ... ... ... 126
Labeling cost with different thresholds during hierarchical cluster-

ing (Calc,nyy =2,n,=20) . ... ... 128
Labeling cost with different n,, (Calc, threshold=0.59) . . ... .. 129
Labeling cost with different thresholds during hierarchical cluster-

ing (FC,ny =20, =2) . o oo v v v i it e e 130

Labeling cost with different n,, (FC, threshold=0.53) . . . . . . .. 130



178

LIST OF FIGURES

7.12

9.1
9.2
9.3
94
9.5

9.6
9.7
9.8
9.9
9.10
9.11
9.12

9.13

9.14
9.15
9.16
9.17
9.18
9.19

9.20

9.21

Labeling cost with different thresholds during hierarchical cluster-

ing (FC,ny =30,n; =3) . o o v v i i i e e 131
Reconnaissance traditionnelle de symboles . . . . . . . .. .. ... 140
Réduction du travail d’étiquetage symbolique . . . . .. ... ... 141
Un trait peut €tre un symbole ou une partie de symbole . . . . . . . 142

Expressions mathématiques et leur graphe relationnel correspondant. 143
Les symboles correctement segmentés sont regroupés en ensembles

homogenes. . . . . . . . . ... 143
Quatre écritures possibles du symbole “+7 . . . . . ... ... ... 144
Exemple de segmentation imparfaite d’'un symbole. . . . . . . . .. 145
Dictionnaire visuel pour I’étiquetage manuel. . . . . . ... .. .. 145
Deux séquences de points (deux traits) . . . . . . .. ... .. ... 150
Représentation de la matrice d’accumulation D(i, j; k) de 1’Equation

9.6 et d’un chemin de mise en correspondance. . . . . .. ... .. 151
Exemple de matrice de distance entre deux symboles avec 2 et 3

traits respectivement. . . . . . . . ... .. e e 152
Une solution pour associer deux ensembles de séquences (vues ma-
tricielles et graphiques) . . . . . . ... .. Lo oL 153

Six couples de points de départ (P1,P6), (P1,P8), (P5,P7), (P5,P10),
(P2,P7) et (P3,P8) pour continuer la mise en correspondance démar-

réedanslaFigure 9.12b. . . . . . . .. ... oL 156
Tests sur la mise en correspondance entre deux ensembles de se-

QUENCES . . . v v v et e e e e e e e e e e e 158
La meilleure solutionentredeux x . . . . . .. ... ... ..... 159
Schéma général de la méthode découverte des symboles graphiques 161
Le graphe relationnel (b) correspondant au schéma (a) . . . . . . . . 164

Extraction de deux unités lexicales, LU _1 (3 instances de “[1”) et
LU_2 (2 instances de “—"), obtenues lors de la premiere et seconde

Eration . . . . ... e 164
Extraction d’une unité lexicale hiérarchique, LU_3 composée des
éléments LU 1etLU 2. .. . . . . . . . .. . ... .... 165

Deux corpus pour deux langages graphiques: (a) une expression
synthétique de la base Calc, (b) un exemple d’organigramme de
programmationde labase FC. . . . . .. ... ... ... ..... 167
Distribution des symboles par nombre de traits . . . . . ... ... 168



Abbreviations

ANN
DAG
DTW
HD
HMM
KNN
MDL
MHD
NMI
OCR
SRT
SOM
SVM
NG
GNG

Artificial Neural Networks
Directed Acyclic Graph
Dynamic Time Warping
Hausdorff Distance

Hidden Markov Model
K-Nearest Neighbor

Minimun Description Length
Modified Hausdorff Distance
Normalized Mutual Information
Optical Character Recognition
Symbol Relation Tree

Self Organizing Map

Support Vector Machine
Neural Gas

Growing Neural Gas

179






Symbols

Ngp
Nstr
7lseg

Nestr

Prototype Number During Clustering for Multi-stroke symbols
Prototype Number During Clustering for Spatial Relations

Number of strokes

Number of segments

Number closest stroke(s) or symbol(s) from a reference stroke or symbol
for generating a relational graph

Number of discovered lexical units using SUBDUE in each iteration.

Number of iteration in a codebook mapping system.

181






Publications

[1] Jinpeng Li, Harold Mouchere and Christian Viard-Gaudin. Reducing Anno-
tation Workload Using a Codebook Mapping and its Evaluation in On-Line Hand-
writing, ICFHR2012.

[2] Jinpeng Li, Harold Mouchere and Christian Viard-Gaudin. Une distance
entre deux ensembles de séquences avec la contrainte de continuité (A distance
between two sequence sets with the continuity constraint), Semaine du document
numérique et de la recherche d’information 2012, CIFED2012, Bordeaux, France
(Oral presentation)

[3] Jinpeng Li, Harold Mouchere and Christian Viard-Gaudin. Quantifying spa-
tial relations to discover handwritten graphical symbols, Document Recognition
and Retrieval XIX, Part of the IS&T/SPIE 24th Annual Symposium on Electronic
Imaging, 22-26 January 2012, San Francisco, CA USA. (Oral presentation)

[4] Jinpeng Li, Harold Mouchere and Christian Viard-Gaudin. Unsupervised
Handwritten Graphical Symbol Learning Using Minimum Description Length Prin-
ciple on Relational Graph, International Conference on Knowledge Discovery and
Information Retrieval, KDIR 2011, Paris, France. (Oral presentation)

[5] Jinpeng Li, Harold Mouchere and Christian Viard-Gaudin. Symbol Knowl-
edge Extraction from a Simple Graphical Language, 11th International Conference
on Document Analysis and Recognition, ICDAR2011, Beijing, China. (Oral pre-

sentation)

183






Bibliography

[1]

[9]

[11]

R. Plamondon and S.N. Srihari. Online and off-line handwriting recognition:
a comprehensive survey. IEEE Transactions on Pattern Analysis and Machine
Intelligence, pages 63—84, 2000.

Kam-Fai Chan and Dit-Yan Yeung. Mathematical expression recognition: A
survey. International Journal on Document Analysis and Recognition, 3(1):
3-15, 2000.

Claudie Fraure and Zi Xiong Wang. Automatic perception of the structure of
handwritten mathematical expressions. In Computer Porcessing of Handwrit-
ing, 1990.

M. Okamoto and A. Miyazaki. An experimental implementation of a doc-
ument recognition system for papers containing mathematical expressions.
Structured Document Image Analysis, pages 36-53, 1992.

Jaekyu Ha, R. M. Haralick, and I. T. Phillips. Understanding mathematical
expressions from document images. In Proceedings of the Third International

Conference on Document Analysis and Recognition, Washington, DC, USA,
1995. IEEE Computer Society.

Steve Smithies and et al. A handwriting-based equation editor. Proceedings
of Graphics Interface, pages 84-91, 1999.

Brijmohan Singh, Ankush Mittal, and Debashis Ghosh. An evaluation of dif-
ferent feature extractors and classifiers for offline handwritten devnagari char-
acter recognition. Journal of Pattern Recognition Research, 2:269-277, 2011.

Sumit Saha and Tanmoy Som. Handwritten character recognition by using
neural-network and euclidean distance metric. In International Journal of
Computer Science and Intelligent Computing, 2010.

Abdul R. Ahmad, M. Khalia, C. Viard-Gaudin, and E. Poisson. Online hand-
writing recognition using support vector machine. In /EEE Region 10 Confer-
ence : proceedings : analog and digital techniques in electrical engineering
(TENCON), volume A, pages 311-314 Vol. 1, 2004.

Yonggiang Wang, Qiang Huo, and Yu Shi. A study of discriminative training
for hmm-based online handwritten chinese/japanese character recognition. In
Frontiers in Handwriting Recognition (ICFHR), 2010 International Confer-
ence on, pages 518 —523, nov. 2010.

Carl De Marcken. Unsupervised Language Acquisition. PhD thesis, Mas-
sachusetts Institute of Technology, 1996.

185



186

BIBLIOGRAPHY

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

Vuokko Vuori. Adaptive Methods for On-Line Recognition of Isolated Hand-
written Characters. PhD thesis, Helsinki University of Technology (Espoo,
Finland), 2002.

Diane J. Cook and Lawrence B. Holder. Substructure discovery using min-
imum description length and background knowledge. Journal of Artificial
Intelligence Research, 1:231-255, February 1994.

S. Vajda, A. Junaidi, and G. A. Fink. A semi-supervised ensemble learning
approach for character labeling with minimal human effort. In International
Conference on Document Analysis and Recognition, pages 259-263, 2011.

J. Richarz, S. Vajda, and G. A. Fink. Annotating handwritten characters with
minimal human involvement in a semi-supervised learning strategy. In Proc.
Int. Conf. on Frontiers in Handwriting Recognition, Bari, Italy, 2012. to ap-
pear.

Honglak Lee, Roger Grosse, Rajesh Ranganath, and Andrew Y. Ng. Convolu-
tional deep belief networks for scalable unsupervised learning of hierarchical
representations. In Proceedings of the 26th Annual International Conference
on Machine Learning, ICML °09, pages 609-616, New York, NY, USA, 2009.
ACM.

Chris Fox Alexander Clark and Shalom Lappin. The Handbook of Computa-
tional Linguistics and Natural Language Processing. Wiley-Blackwell, 2010.

J. Rissanen. Modeling by shortest data description. Automatica, 14(5):465 —
471, 1978.

Andrew R. Barron, Jorma Rissanen, and Bin Yu. The minimum description
length principle in coding and modeling. IEEE Transactions on Information
Theory, 44(6):2743-2749, 1998.

Carl De Marcken. Linguistic structure as composition and perturbation. In
In Meeting of the Association for Computational Linguistics, pages 335-341.
Morgan Kaufmann Publishers, 1996.

Nelson W. Francis and Henry Kucera. Frequency Analysis of English Usage:
Lexicon and Grammar., volume 18. Houghton Mifflin, Boston, April 1982.

Romain Raveaux, Jean-Christophe Burie, and Jean-Marc Ogier. Graphics
recognition. recent advances and new opportunities. chapter A Segmenta-
tion Scheme Based on a Multi-graph Representation: Application to Colour
Cadastral Maps, pages 202-212. Springer-Verlag, Berlin, Heidelberg, 2008.

Diane J. Cook and Lawrence B. Holder. SUBstructure Discovery Using Ex-
amples, ailab.wsu.edu/subdue/. 2011.

Istvan Jonyer, Lawrence B. Holder, and Diane J. Cook. Graph-based hierar-
chical conceptual clustering. International Journal on Artificial Intelligence
Tools, 2:107-135, 2000.

Eliseo Clementini. A Conceptual Framework for Modelling Spatial Relations.
PhD thesis, INSA, LYON, 2009.



BIBLIOGRAPHY 187

[26]

[32]

[33]

[36]

Jinpeng Li, Harold Mouchere, and Christian Viard-Gaudin. Unsupervised
handwritten graphical symbol learning-using minimum description length
principle on relational graph. In Proceeding of the International Conference
on Knowledge Discovery and Information Retrieval, KDIR, 2011.

Santosh K.C., Laurent Wendling, and Bart Lamiroy. Unified Pairwise Spatial
Relations: An Application to Graphical Symbol Retrieval. In Graphics Recog-
nition. Achievements, Challenges, and Evolution, pages 163—174. Springer
Berlin / Heidelberg, 2010.

Max J. Egenhofer. A formal definition of binary topological relationships.
In Third International Conference on Foundations of Data Organization and
Algorithms (FODO), pages 457472, 1989.

Frangois Bouteruche, Sébastien Macé, and Eric Anquetil. Fuzzy relative posi-
tioning for on-line handwritten stroke analysis. In Tenth International Work-
shop on Frontiers in Handwriting Recognition (IWFHR’06), La Baule, France,
October 2006.

Adrien Delaye, Sébastien Macé, and Eric Anquetil. Modeling relative posi-
tioning of handwritten patterns. In /4th Biennial Conference of the Interna-
tional Graphonomics Society (IGS 2009), pages 152-156, 2009.

Taik Heon Rhee and Jin Hyung Kim. Efficient search strategy in structural
analysis for handwritten mathematical expression recognition. Pattern Recog-
nition, 42(12):3192 — 3201, 2009.

Ahmad-Montaser Awal, Harold Moucheére, and Christian Viard-Gaudin. Im-
proving online handwritten mathematical expressions recognition with con-

textual modeling. In International Conference on Frontiers in Handwriting
Recognition, pages 427-432, 2010.

Jinpeng Li, Harold Mouchere, and Christian Viard-Gaudin. Symbol knowl-
edge extraction from a simple graphical language. In International Conference
on Document Analysis and Recognition, 2011.

V.J. Katz. A history of mathematics: an introduction. Addison-Wesley, 2009.

D. P. Huttenlocher, G. A. Klanderman, and W. A. Rucklidge. Comparing Im-
ages Using the Hausdorff Distance. IEEE Trans. Pattern Anal. Mach. Intell.,
15(9):850-863, 1993.

Isabelle Bloch. Fuzzy relative position between objects in image processing:
A morphological approach. IEEE Trans. Pattern Anal. Mach. Intell., 21(7):
657-664, 1999.

M. Egenhofer and J. Herring. Categorizing Binary Topological Relationships
Between Regions, Lines, and Points in Geographic Databases. Department of
Surveying Engineering, University of Maine, Orono, ME, 1991.

Jinpeng Li, Harold Mouchere, and Christian Viard-Gaudin. Quantify spatial
relations to discover handwritten graphical symbols. In Document Recognition
and Retrieval XIX, 2012.



188 BIBLIOGRAPHY

[39] Guo Xian Tan, Christian Viard-Gaudin, and Alex C. Kot. Automatic writer
identification framework for online handwritten documents using character
prototypes. Pattern Recogn., 42(12):3313-3323, 20009.

[40] T. Kohonen. Self-organization and associative memory. Springer, Berlin.

[41] Thomas Martinetz and Klaus Schulten. A "neural gas" network learns topolo-
gies. Elsevier, 1991.

[42] G. N. Lance and W. T. Williams. A General Theory of Classificatory Sorting
Strategies: 1. Hierarchical Systems. The Computer Journal, 9(4):373-380,
1967.

[43] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schtze. Introduc-
tion to Information Retrieval. Cambridge University Press, New York, NY,
USA, 2008.

[44] Bartosz Broda and Wojciech Mazur. Evaluation of clustering algorithms for
polish word sense disambiguation. In International Multiconference on Com-
puter Science and Information Technology (IMCSIT), pages 25-32, 2010.

[45] Marius Bulacu and Lambert Schomaker. Combining multiple features for text-
independent writer identification and verification. In In Proc. of 10th Interna-
tional Workshop on Frontiers in Handwriting Recognition, pages 281-286,
2006.

[46] Marius Bulacu, Lambert Schomaker, and Axel Brink. Text-independent writer
identification and verification on offline arabic handwriting. In International
Conference on Document Analysis and Recognition, pages 769-773, 2007.

[47] Rajiv Jain and David Doermann. Offline Writer Identification using K-
Adjacent Segments. In International Conference on Document Analysis and
Recognition, pages 769773, 2011.

[48] M.-P. Dubuisson and A.K. Jain. A modified Hausdorff distance for object
matching. In Computer Vision Image Processing, 1994.

[49] Teuvo Kohonen and Panu Somervuo. Self-organizing maps of symbol strings.
Neurocomputing, 21(1-3):19-30, 1998.

[50] Seiichi Uchida and Hiroaki Sakoe. A survey of elastic matching techniques for
handwritten character recognition. The Institute of Electronics, Information
and Communication Engineers (IEICE) Transactions, 88-D(8):1781-1790,
2005.

[51] E. Levin and R. Pieraccini. Dynamic planar warping for optical character
recognition. Acoustics, Speech, and Signal Processing, 1992. IEEE Interna-
tional Conference on, 3:149-152 vol.3, 1992.

[52] Seiichi Uchida and Hiroaki Sakoe. Handwritten character recognition using
monotonic and continuous two-dimensional warping. In International Con-
ference on Document Analysis and Recognition, pages 499-502, 1999.



BIBLIOGRAPHY 189

[53]

[58]

[61]

[62]

[63]

[66]

Enrique Vidal Ruiz, Francisco Casacuberta, and Hector Rulot Segovia. Is
the dtw "distance" really a metric? an algorithm reducing the number of dtw
comparisons in isolated word recognition. Speech Communication, 4(4):333—
344, 1985.

Hiroyuki Narita, Yasumasa Sawamura, and Akira Hayashi. Learning a kernel
matrix for time series data from dtw distances. Neural Information Processing,
pages 336-345, 2008.

Eitan Gurari. Backtracking algorithms. CIS 680: DATA STRUCTURES:
Chapter 19: Backtracking Algorithms, 1999.

Jinpeng Li, Harold Mouchere, and Christian Viard-Gaudin. Une distance entre
deux ensembles de séquences avec la contrainte de continuité. In Colloque In-
ternational Francophone sur I’Ecrit et le Document (CIFED2010), Bordeausx,
France, 2012.

Peter Hart, Nils Nilsson, and Bertram Raphael. A Formal Basis for the Heuris-
tic Determination of Minimum Cost Paths. [EEE Transactions on Systems
Science and Cybernetics, 4(2):100-107, February 1968.

Bo Gun Park, Kyoung Mu Lee, and Sang Uk Lee. Color-based image re-
trieval using perceptually modified hausdorff distance. J. Image Video Pro-
cess., pages 4:1-4:10, January 2008.

Ahmad Montaser Awal. Reconnaissance de structures bidimensionnelles :
application aux expressions mathématiques manuscrites en-ligne. PhD thesis,
Ecole polytechnique de 1’université de Nantes, France, 2010.

Ahmad Montaser Awal, Guihuan Feng, Harold Mouchere, and Christian
Viard-Gaudin. First experiments on a new online handwritten flowchart
database. In Document Recognition and Retrieval XVIII, 2011.

Zhaoxin Chen. A dynamic time warping - a* handwriting recognition system.
Master’s thesis, Polytech’Nantes, 2012.

Clark F. Olson. Parallel algorithms for hierarchical clustering. Parallel Com-

puting, 1995.

Zach Solan, David Horn, Eytan Ruppin, and Shimon Edelman. Unsupervised
learning of natural languages. Proceedings of the National Academy of Sci-
ences of the United States of America, 102(33):11629-11634, 2005.

Noam Chomsky. Three models for the description of language. IRE Transac-
tions on Information Theory, 2:113-124, 1956.

Glenn Carroll, Glenn Carroll, Eugene Charniak, and Eugene Charniak. Two
experiments on learning probabilistic dependency grammars from corpora. In
Working Notes of the Workshop Statistically-Based NLP Techniques, pages 1—
13. AAAI 1992.

E. Mark Gold. Language identification in the limit. Information and Control,
10(5):447-474, 1967.



190 BIBLIOGRAPHY

[67] Salim Jouili and Salvatore Tabbone. Graph embedding using constant shift
embedding. In Proceedings of the 20th International conference on Recogniz-
ing patterns in signals, speech, images, and videos, ICPR’10, pages 83-92,
Berlin, Heidelberg, 2010. Springer-Verlag.

[68] G. Chartrand. Introductory Graph Theory. Dover Publications, 1985.

[69] J. C. Baird. Psychophysical analysis of visual space. Oxford, London: Perga-
mon Press, 1970.

[70] A. Jain, K. Nandakumar, and A. Ross. Score normalization in multimodal
biometric systems. Pattern Recognition, 38(12):2270-2285, December 2005.

[71] T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein. Introduction To Al-
gorithms. MIT Press, 2001.

[72] Jianying Hu, Michael K. Brown, and William Turin. Hmm based on-line
handwriting recognition. /[EEE Transactions on Pattern Analysis and Machine
Intelligence, 18:1039—-1045, 1996.

[73] C. C. Tappert, C. Y. Suen, and T. Wakahara. The state of the art in online
handwriting recognition. /[EEE Transactions on Pattern Analysis and Machine
Intelligence, 12(8):787-808, 1990.

[74] A. Graves, S. Fernandez, J. Schmidhuber, M. Liwicki, and H. Bunke. Un-
constrained online handwriting recognition with recurrent neural networks. In
Advances in Neural Information Processing Systems 21, 2007.






LU

POLE DE RECHERCHE ET D'ENSEIGNEMENT SUPERIEUR

L]

UNIVERSITE DE NANTES

These de Doctorat

Jinpeng Li

Extraction de connaissances symboliques et relationnelles appliquée aux tracés

manuscrits structurés en-ligne

Symbol and Spatial Relation Knowledge Extraction Applied to On-Line Handwritten

Scripts

Résumé

Notre travail porte sur I'extraction de connaissances
sur des langages graphiques dont les symboles sont a
priori inconnus. Nous formons I'hypothése que
I'observation d’'une grande quantité de documents doit
permettre de découvrir les symboles composant
I'alphabet du langage considéré. La difficulté du
probléme réside dans la nature bidimensionnelle et
manuscrite des langages graphiques étudiés. Nous
nous plagons dans le cadre de tracés en-ligne produit
par des interfaces de saisie de type écrans tactiles,
tableaux interactifs ou stylos électroniques. Le signal
disponible est alors une trajectoire échantillonnée
produisant une séquence de traits, eux-mémes
composés d’'une séquence de points. Un symbole,
élément de base de l'alphabet du langage, est donc
composé d’un ensemble de traits possédant des
propriétés structurelles et relationnelles spécifiques.
Lextraction des symboles est réalisée par la
découverte de sous-graphes répétitifs dans un graphe
global modélisant les traits (nceuds) et leur relations
spatiales (arcs) de 'ensemble des documents. Le
principe de description de longueur minimum (MDL :
Minimum Description Length) est mis en ceuvre pour
choisir les meilleurs représentants du lexique des
symboles. Ces travaux ont été validés sur deux bases
expérimentales. La premiére est une base
d’expressions mathématiques simples, la seconde
représente des graphiques de type organigramme.
Sur ces bases, nous pouvons évaluer la qualité des
symboles extraits et comparer a la vérité terrain.
Enfin, nous nous sommes intéressés a la réduction de
la tdche d’annotation d’'une base en considérant a la
fois les problématiques de segmentation et
d’étiquetage des différents traits.

Mots clés

Langages graphiques, Extraction de connaissances symboliques,
Exploration de graphes, Longueur de Description Minimale,
Clustering, Dynamic Time Warping, Apprentissage de relations
spatiales

Abstract

Our work concerns knowledge extraction from
graphical languages whose symbols are a priori
unknown. We are assuming that the observation of a
large quantity of documents should allow to discover
the symbols of the considered language. The difficulty
of the problem is the two-dimensional and handwritten
nature of the graphical languages that we are
studying.

We are considering online handwriting produced by
interfaces like touch-screens, interactive whiteboards
or electronic pens. The signal is then available as a
sampled trajectory of the pen or finger tip, producing a
sequence of strokes, themselves composed of a
sequence of points. A symbol, the basic element of
the alphabet of the language, is composed of a set of
strokes with specific structural and relational
properties.

The extraction of symbols is performed by unveiling
the presence of repetitive subgraphs in a global graph
modeling the strokes (nodes) and their spatial
relationships (arcs) of the entire document set. The
principle of minimum description length (MDL) is used
to select the best representatives of the symbol set.
This work was validated on two experimental datasets.
The first one is a dataset of simple mathematical
expressions, the second is composed of graphical
flowcharts. On these datasets, we can assess the
quality of the extracted symbols and compared them
to the ground truth. Finally, we were interested in
reducing the annotation workload of a database by
considering both the problems of segmentation and
labeling of the different strokes.

Key Words

Graphical languages, Symbol knowledge extraction, Graph Mining,
Clustering, Minimum Description Length, Dynamic Time Warping,
Spatial Relation Learning



	Acknowledgements
	Contents
	Introduction
	State of the Art
	Symbol Segmentation Using the MDL principle
	A Sequence Case
	A Graph Case

	Spatial Relations
	Distance Relations
	Orientation Relations
	Topological Relations

	Clustering Techniques
	K-Means
	Agglomerative Hierarchical Clustering
	Evaluating Clusters

	Codebook Extraction in Handwriting
	Conclusion

	Quantifying Isolated Graphical Symbols
	Introduction
	Hierarchical Clustering
	Extracting Features for Each Point
	Matching between Two Single-Stroke Symbols
	Dynamic Time Warping

	Matching between Two Multi-Stroke Symbols
	Concatenating Several Strokes
	DTW A Star
	Modified Hausdorff Distance

	Existing On-line Graphical Language Datasets
	Experiments
	Qualitative Study of DTW A*
	Comparing Multi-Stroke Symbol Distances Using Clustering Assessment

	Conclusion

	Discovering Graphical Symbols Using the MDL Principle On Relational Sequences
	Introduction
	Overview
	Extraction of Graphemes and Relational Graph Construction
	Extraction and Utilization of the Lexicon
	Segmentation Using Optimal Lexicon
	Segmentation Measures

	Experiment Results and Discussion
	Conclusion

	Discovering Graphical Symbols Using the MDL Principle On Relational Graphs
	Introduction
	System Overview
	Relational Graph Construction
	Spatial Composition Normalization
	Constructing a Relational Graph using Closest Neighbors
	Extracting Features for Each Spatial Relation Couple
	Quantifying Spatial Relation Couples

	Lexicon Extraction Using the Minimum Description Length Principle on Relational Graphs
	Experiments
	Parameter Optimization on the Calc Corpus
	Parameter Optimization on the FC Corpus

	Conclusion

	Reducing Symbol Labeling Workload using a Multi-Stroke Symbol Codebook with a Ready-Made Segmentation
	Introduction
	Overview
	Codebook Generation using Hierarchical Clustering
	Codebook Mapping from a Visual Codebook to Raw Scripts
	Labeling Cost
	Evaluation
	Evaluation of Codebook Size:
	Evaluation on Hierarchical Clustering Metrics:
	Evaluation on Merging Top-N Frequent Bigrams:
	Evaluation on Test Parts:
	Visual Codebook:

	Conclusion

	Reducing Symbol Labeling Workload using a Multi-Stroke Symbol Codebook with an Unsupervised Segmentation
	Introduction
	Unsupervised Multi-stroke Symbol Codebook Learning framework
	Relational Graph Construction Between Segments
	Quantization of Segments (Nodes)
	Quantization of Spatial Relations (Edges) Between Segments
	Discover Repetitive Sub-graphs Using Minimum Description Length
	Iterative Learning

	Annotation Using the Codebook
	Experiments
	Labeling Cost
	Results

	Conclusion

	Conclusions
	Résumé Français
	Introduction
	Techniques de Clustering
	Distance Entre Deux Symboles Multi-Traits
	Définition de la Problématique
	Algorithme A*
	Etude Expérimentale
	Conclusion

	Découverte des Symboles Multi-Traits
	Découverte non supervisée des symboles graphiques
	Quantification des Traits
	Construction du Graphe Relationnel
	Extraction du Lexique par Utilisation du Principe de Longueur de Description Minimale
	Évaluation des Segmentations
	Conclusion

	Description des Bases Utilisées
	Résultats et Discussions
	Conclusions

	List of Tables
	List of Figures
	Abbreviations
	Symbols
	Publications
	Bibliography

