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drants Stéphane Jobic et Camille Latouche pour m’avoir accompagné et aidé à cultiver
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également l’ensemble des doctorants et post-doctorants avec lesquels j’ai pu échanger
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Introduction

Context

The long-range periodic arrangement of atoms in crystalline materials has been
proven since the beginning of the 20th century by the observation of the diffraction of
a X-ray beam by a crystal.[1, 2] Several features of the diffraction patterns obtained,
such as the number and spacing of spots 1, can be correlated to those of the atomic
lattice encountered by the beam, in this case symmetry and cell parameters. This
technique has been extensively developed to determine the crystal structure of solids.
It yields an ideal description of the arrangement of matter at the microscopic scale as
the periodic repetition in the three directions in space of an irreducible pattern, the
unit cell.

The impact of the microscopic arrangement of atoms on the macroscopic proper-
ties of crystalline materials was highlighted early on.[1] For instance, the occurrence of
cleavage planes when breaking a crystal is a direct manifestation at the macroscopic
scale of the microscopic organisation of matter. Given this very strong structure-
property link and the observation by early mineralogists of many macroscopic imper-
fections in natural samples, such as, among others, inclusions and cracks, it had soon
been imagined that defects may exist at the microscopic level as well. The real mi-
croscopic structure is well described by the ideal model on average but local disorders
exist, as illustrated in Figure 1.[3, 4] The first and most obvious ones are the surfaces
delimiting the finite-size monocrystal, in opposition to the infinite ideal solid. Note
that for the thermodynamic reasons exposed in Chapter 1, the equilibrium state of the
material includes a non-zero intrinsic defect concentration related to the synthesis pro-
cess. Defects appear from the early stages and throughout crystal growth. Of course
in real materials which may not be in equilibrium conditions, they may evolve in time
depending on the environment it is subjected to (temperature, corrosion, radiations,
external solicitations such as electric fields and mechanical constraints, etc).

Large discrepancies between theoretical predictions based on the ideal crystal model
and measurements of several mechanical (crack propagation, plastic deformations, etc),
optical (color, luminescence, etc), ionic and electronic transport (electron/hole con-
ductivities, carrier recombinations, thermal conductivities, etc) properties could only
be explained via the presence of defects and their propagation. A synthesis of the
different works leading to the acceptance of the concept of crystalline point defects is
given hereafter. Such an importance of defects on the properties makes them of vital
importance in applicative materials. Metallurgists have long been studying dislocations
for their impact on the mechanical properties of metals, most notably to explain the
transition from reversible deformation in the elastic regime to plastic deformations[5–
8] and in the study of crack propagations and fractures.[9–12] The use of precipita-

1. in the case of diffraction by a monocrystal, peaks by a powder

1



tion hardening has allowed the development of ultrahard light alloys for the aeronautic
industry.[13, 14] Since the early days of the development of the semiconductor industry,
engineers and scientists have highlighted the importance of the control of impurities
and dopants in semiconducting materials onto the electronic properties (hole/electron
conductivity, hole-electron recombination rates, etc) of the different layers within a
device.[15–17] The importance of defects in this field is illustrated in Figure 2. The
process of aliovalent doping of silicon, the base material of the semiconductor industry,
developed since its rise in the 1960s is one of the most educative examples for this. Hole
(electron) doping is typically obtained by boron (phosphorus) substitutions of silicon
atoms.[18, 19] The importance of point defects is not limited to silicon. Bulk point de-
fects are still under extensive investigations in chalcopyrite and related 2nd generation
photovoltaic (PV) thin-film materials.[20–24] Defect-related transport mechanisms are
of paramount importance for battery materials.[25, 26] Crystal defects appear ubiquit-
ous in applicative materials 2 thus their study and understanding appears as a field of
both fundamental and technological importance.

Figure 1: Different deviations from the crystallographic structure: from point to
volume defects.

Different types of crystal defects exist and can be classified on a geometric argument.
The “most elementary” defects are point defects (0D) involving a single atom. They
are the most local lattice disorders. They are traditionally classified into three types,
namely vacancies, interstitials and substitutions. Vacancies are atoms missing from
their crystallographic position within the ideal structure as illustrated in Figure 3a. The
notation employed throughout the manuscript for a vacancy ofX is VX. Interstitials are
atoms sitting in a position normally unoccupied within the ideal host lattice, as shown
in Figure 3b and noted Xi. Last, in compounds involving two or more atomic species,
substitutions consist in atoms of a given chemical species occupying the crystallographic
position of another species. The substitution of X by Y is noted YX herein. The
association of several point defects within a few interatomic distances is referred to as a
defect complex. It can be envisioned as a 3D defect (an inclusion) when so many point

2. with the exception of amorphous materials
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defects aggregate that another structure appears locally. When involving extrinsic
defects, it can be viewed as a sort of “pseudo-inclusion” to some respect. Defects
involving only the chemical species of the compounds are intrinsic point defects and
inherent to the material. Impurities and other voluntarily added species (dopants) may
form extrinsic point defects. Fundamentally, substitutions can be viewed as the result
of two primary operations on the lattice. Indeed, there are only two such operations
possible on the lattice, that are either removing (creating a vacancy) or adding an atom.
The substitution can be viewed conceptually as the result of the creation of a vacancy
and the addition of an atom onto the vacant site. The insertion of an additional atom
onto a vacancy also seems the most energetically favourable process for substitution
formation. The typical point defect concentrations in non-degenerate semiconductors
is 10-100 ppm[18] 3.

Figure 2: From defect control at the scale of the material to the engineering application.

(a)
(b)

Figure 3: Illustration of point defects in a hypothetical lattice containing two types of
atoms: a) a vacancy (a green atom is missing from the perfect lattice) b) an interstitial
(an additional blue atom is added to the ideal atomic arrangement).

Line (1D) defects are called dislocations and can be separated into two types: screw-
and edge-dislocations, both represented in Figure 4.[3] An edge dislocation can be
regarded as an additional atomic plane. The screw dislocation can be described as

3. Part per million. For instance, a 10 ppm defect concentration in silicon, with a crystallographic
cell of 20 Å containing 8 atoms, corresponds to a 5× 1017 cm−3 volume defect concentration.
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one block of atoms ripping onto another by one or more interatomic distance(s), for
instance due to shear stress.

(a)

(b)

Figure 4: Line defects, i.e. dislocations. The axis is drawn in blue. a) Edge-dislocation
can be seen as an extra atomic plane, here in the upper half of the figure. b) Screw
dislocation can be seen as the result of shear stress on the lattice.

Planar defects (2D), such as stacking faults, crystal surfaces, twinning and grain
boundaries 4 also exist. One example of the latter is drawn in Figure 5. Finally, volume
defects such as inclusions have also been studied by material scientists. As mentioned
earlier, point defect complexes involving a very large number of defects can also be
viewed as 3D defects.

Figure 5: An example of surface defect: a twinning defect (red plane) in a hexagonal
lattice. Blue spheres represent atoms.

Our research group focuses on optical and electronic properties of inorganic and
hybrid materials and has a strong interest in structure-property relationship. Point

4. There is an underlying ambiguity behind the term “grain boundary”, as it can mean for some
communities the surface separating two crystallites (regions of homogeneous lattice orientations) and
for others the region between two grains (coherent entities). We accept the first and most stringent
definition.
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defects are known to play a major role in many physical phenomena involved in the
field of optics, for instance as optical centres in luminescence mechanisms[27, 28] or
electron/hole donors in optoelectronic devices.[3] Thus, of all the different types of
defects presented beforehand, the field of point defect is of main interest for the group
and is the object of this work. Of course, defects of higher dimensions exist in the
materials investigated but are not studied herein, as the opto-electronic properties of
interest are first driven by point defects. Given the fact that metals reflect most of
the incoming light and insulators have a bandgap too large to absorb sunlight, the
materials investigated in the present manuscript are all semiconductors. A particular
emphasis was put on materials related to the PV field, i.e. generation of electricity from
sunlight absorption. Indeed, in addition to the current need for more sustainable ways
of generating electricity, they provide interesting technical and scientific challenges.
Systems studied were not limited to this application and materials of fundamental
scientific interest were also studied.

The idea of the existence of point defects dates back from the beginning of the
previous century, when Frenkel measured a lower ionic conductivity than theoretic-
ally expected and imagined pre-existing vacancies to explain the easier than predicted
displacement of ions.[29] Schottky and Wagner among others further investigated the
possible types of point defects within a crystal.[30, 31] Koch and Wagner pioneered the
experimental control of defect concentrations via doping on AgBr and CdBr2.[32] The
following decade saw the application of these scientific discoveries to the development
of the semiconductor industry.[33–35] By the beginning of the 1960s, defect chemistry
had become an important field in the area of material growth.[36–39] The existence
of a forbidden band in the electronic structure of semiconductors and insulators im-
plies that point defects may be charged. Conceptually, the emphasis was then put on
charge balance by compensating defects. In particular, the idea of Schottky and Fren-
kel defects were widely used. A Schottky defect is a neutral defect complex involving
cationic and anionic vacancies, such as V –2

Cd +V +2
S in PV buffer material CdIn2S4. A

Frenkel defect is an atom displaced from its crystallographic position in the host cell to
a neighbouring interstitial site, such as V –2

Cd +Cd +2
i in the same material. Literature

from this period most probably employs the notation introduced by Kroger and Vink
(V +2

S = V ••
S and V –2

Cd =V ′′
Cd ).[40]

The importance of point defects in the design of an electronic device has been
illustrated in Figure 2. Let us now cover the physical mechanisms at stake through the
well-known example of silicon, the historical material of the semiconducting industry.
As mentioned previously, the first step to master is the elaboration of hole (electron)
doped semiconductors. It is obtained via the incorporation of acceptor (donor) dopants,
such as boron (phosphorus), as represented in the lower half of Figure 6. The boron
atom represented by the green sphere in the bottom-left corner (q= 0) has three valence
electrons (2s22p1 electronic configuration), one less than silicon constituting the host
lattice (3s23p2). In silicon, the formation of four covalent bonds ensures the stabilising
filling of the outer 3p orbitals of Si in a tetrahedral conformation. The boron atom
sitting in place of a silicon atom can also form four covalent bonds with the neighbouring
silicons. However, it has one less valence electron than silicon. Thus, it can be ionised
by the thermal kinetic energy to accept one electron from the host lattice (q= -1). The
corresponding charge is represented in yellow. It is localised and fixed on the defect.
The electron excited from the Valence Band of the host leaves an empty electronic
state, a “hole” quasi-particle, represented in cyan. It is delocalised and may leave
the defect site. It acts as a free positive charge carrier. The defect ionisation energy
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positions the “defect level” in the bandgap, represented by a solid black line on the band
structure of Figure 6. This micro-process involving one defect and one electron can be
apprehended from a global point of view using concepts of statistical physics. At very
low temperatures, the chemical potential of the electrons, i.e. the Fermi level µEF

, lies
halfway between the defect level and the Valence Band Maximum (VBM). The defect
bears no charge (q= 0) at low temperature. 5 As stated in semiconductor textbooks,
the Fermi level in this p-doped material increases with temperature to stabilise mid-
gap once the entire acceptor defect population is ionised. Electron doping, for instance
thanks to substitution of silicon by phosphorus, works similarly, mutatis mutandis.

Figure 6: Thermal activation of shallow defects. A schematic electronic band diagram
featuring the band extrema is shown in the top half. The Charge Transition Level is
represented by the solid line near the VBM (CBM) for the acceptor (donor) defect.
Variations of the Fermi level µEF

with respect to the temperature T are embedded
in the bands. The well-known examples of Si:B (0/-1) and Si:P (0/+1) introduced
in Figure 2 are kept here. As discussed in Chapter 1, it can be generalised to any
acceptor/donor defect in semiconductors. The q = 0 (left) and the ionised, q 6= 0,
(right) states of the defect are illustrated in direct space in the lower half of the Figure.
The substitutional dopant atom is visible in darkgreen (acceptor) and pink (donor).
Cyan (yellow) symbolises positive (negative) charges.

The next step towards device fabrication consists in the creation of a p-n junction,
schematically by putting in contact a p- with an n-doped semiconductor, as illustrated
in Figure 7. 6 Near the junction in the p-doped material (darkgreen), the free holes are
repelled by the positive fixed charges (cyan) on the n-side (pink). Similarly, electrons in
the n-side are repelled by the fixed negative charges on the other side of the interface. It

5. Four covalent bonds are formed with the neighbouring silicon atoms. The thermal kinetic
energy at very low temperature is unsufficient to ionise an electron from the host lattice and the
system remains in this configuration. The charge of the three valence electrons, one less than in
silicon atoms, is exactly compensated by that of the nuclei of the boron atom, hence the neutral
charge of the defect.

6. In practice, the two materials are not grown separately and then assembled. For a heterojunc-
tion, i.e. different p- and n-type materials, one material is directly grown on top of the other. For
a homojunction, i.e. same p- and n-type material, different dopants, it is often more appropriate to
implant one dopant in the material already doped with the other. For instance, p-n junction in silicon
are often obtained by implanting donor dopants in a p-doped silicon ingot.
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creates a region in the vicinity of the interface depleted in free charge carriers (electrons
and holes), the space charge region, inducing a build-in electric field as represented. In
terms of band structure, the populations of electrons and holes equilibrate, fixing the
Fermi level to a single value within both semiconductors.

Figure 7: p-n junction at equilibrium. A schematic electronic band diagram featuring
the band extrema is shown in the top half. The Fermi level EF is represented by the
dotted line. The spatial distribution of fixed (ionised defects) and free charges (carriers)
in the junction is represented in the lower half. The p(n)-doped material is drawn in
green (pink). Cyan (yellow) symbolises positive (negative) charges.

Finally, one or more junction(s) is(are) embedded into an electronic component
(diode, solar cell, transistor...) by adding some functional layers not described herein
and connecting it to an external electric circuit. The focus in the present work is
set on solar cells, with most results of interest for other optic, electronic and opto-
electronic applications. A simplified solar cell under illumination and its associated
schematic band diagram are presented in Figure 8. A photon of energy higher than
the bandgap of a semiconductor may excite an electron from the Valence Band (VB)
into the Conduction Band (CB), generating an electron-hole pair. This is known as the
photoelectric effect and is represented in the left half of Figure 8. It drives the splitting
of the Fermi level into two quasi-Fermi levels, Ep

F (En
F ) for holes (electrons) in the p(n)-

side as represented by the two dotted lines of Figure 8, and the rise of an electrostatic
potential energy difference V . 7 The potential in the n-doped region is inferior to the
potential in the p-doped side. Due to the presence of the electric field (sum of the build-
in field and the one induced by V ), the electron-hole pairs separate themselves. Holes
(electrons) in the Valence (Conduction) Band of the p(n)-doped material flow to the left

7. The generation of electron-hole pairs under illumination due to the photoelectric effect leads
the system out of equilibrium. The free hole (top of VB) and electron (bottom of CB) populations in
such case are described not anymore by one but by two independent Fermi distributions centered on
two quasi-Fermi levels.
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(right) side of the drawing. The charge current may be hindered by different physical
processes. Defects at the p/n interface may lead to carriers recombinations.[41] Free
electrons at the bottom of the Conduction Band may spontaneously recombine with
holes, i.e. changing their electronic state to lower their energy to that of the Valence
Band. The total conservation of the momentums is guaranteed by the release of some
energy to the lattice, often viewed as the creation of a phonon of momentum ~qp. This
situation is represented in Figure 8. The recombination may also re-emit a photon (not
represented). The propagation of free charge carriers may also be hindered by deep
defects in the gap. The defect-assisted electron-hole recombination creates a phonon, as
represented in Figure 8. Last, charge carriers may interact with the lattice vibrations
(phonons). This phenomena is known as electron-phonon scattering. The related
mesoscopic variables are carrier mobility and mean free path, which can be evaluated
experimentally.[42, 43] In spite of the different mechanisms listed previously, some free
carriers reach the electrodes leading to the formation of an electric current I within
the external circuit, as represented in the lower half of the Figure. This demonstrates
that different point defects, acceptors, donors, deep defects, intervene at all stages of
the material use, from the design of a single semiconductor to its operation within a
device.

In order to develop a deeper understanding of the physical mechanisms involved,
several experimental techniques were tried out to characterise point defects.[44–47]
The reference materials to test new developments soon became diamond, silicon, and
to a lower extent GaAs 8 thanks to the extensive literature accumulated on these com-
pounds. Numerous measurement techniques emerged from decades of trials for the
experimental investigation of point defects, listed in the two comprehensive reviews on
the matter by Freysoldt et al. and Alkauskas et al.[48, 49] All have specific constraints
on the defects investigated. Extended X-ray Absorption Fine Structure (EXAFS) can
potentially be used to study the distortions induced by heavy impurities. Scanning
Tunneling Microscopy (STM) may give structural information on the surface as well.
Secondary Ion Mass Spectroscopy (SIMS) provides extrinsic defect concentrations with
respect to the depth, but is irrelevant for intrinsic defects. The detection threshold var-
ies from one element to the other. Electron Paramagnetic Resonance (EPR) relies on
the presence of unpaired electrons and their interaction with an applied magnetic field
to give valuable insight on symmetry and chemical species within the environment of
a defect. Hall effect measurements yield charge carrier concentrations and mobilities.
Photoluminescence (PL) measurements can be used to search for the fingerprints of spe-
cific impurities. Deep Level Transient Spectroscopy (DLTS) and Positron Annihilation
Spectroscopy (PAS) are among the most used. DLTS[50–54] allows the determination
of the concentration of deep level defects (carrier traps) through the measure of transi-
ent capacitance of the material. One or more voltage pulses are applied to the material
at different temperatures and the rate of the return to equilibrium is measured.[50]
It is limited to the study of deep 9 defects. PAS[55–57] consists in bombarding the
sample with positrons, the antiparticle associated to the electron, and measuring their
lifetime. When encountering electrons from the ions of the sample, positrons are an-
nihilated. Therefore, any void, and for the present interest, vacancies, increase their
lifetime.[56, 57] Each technique will globally sum all detected defects at the scale of the
sample. Moreover, most of them do not allow the identification of the defect without
any prior knowledge of its nature (DLTS, Hall, PL, PAS) and their practical imple-

8. the III-V semiconductor used in PV panels of space exploration
9. in the electronic sense
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mentation may be cumbersome, often involving the use of large and complex apparatus
(EXAFS, PAS, STM, EPR). Thus, a complementary method allowing the comprehens-
ive determination of all defects would prove a valuable asset for the community.

Figure 8: Simplified solar cell under illumination. Photons of energy hν higher than
the bandgap may transmit their energy to electrons e− at the top of the VB, generat-
ing an electron-hole pair (left). The hole h+ (electron) quasi-Fermi level Ep

F (En
F ) is

represented in dotted line. The difference constitutes the voltage V . The electric field
generated in the space charge zone separates the carriers, giving rise to a hole (electron)
current to the left (right) of the Figure towards the anod (cathod) of the device. Some
physical processes potentially lowering the carrier lifetime are represented on the right
side. ~qp stands for the phonon momentum. The corresponding electric circuit when
the cell is connected to a resistor is drawn in the lower half.

As discussed before, point defects are the smallest lattice imperfections that one can
imagine and are objects of atomic scale. The behaviour of matter at this scale, or at
least of the electronic cloud, is most appropriately described by quantum mechanics.
Theoreticians have developed the physical models and mathematical tools enabling
simulations of matter at this scale. Early on, defects have been subjects of interest for
theoreticians. Let one draw a quick portrait of the different modeling strategies which
were tried out as the joint evolution of simulation techniques and computational power
unfolded.

First, Debye-Hückel model for electrolytes[58] introduced in 1923 was generalised
to calculate the activity of point defects in solid-state and used throughout the 1960s
as a model to calculate defect concentrations semi-empirically.[38, 59–62] As quantum
chemistry developed, the Extended Hückel Theory (EHT) for molecular orbitals allowed
to compute small clusters in the presence of a defect.[63–65] Dangling bonds at the
edges of the cluster were usually passivated by adding additional hydrogen atoms. In
spite of being at the state of the art of possible simulations at the time, researchers
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wondered whether the model would be close enough to the real system to get physical
trends.

The impurity problem continued to puzzle the community and the late 1970s saw
the practical application of early ideas of Koster, Slater and others to tackle it. They
proposed to consider the point defect problem as a perturbation of the wavefunction of
the ideal host lattice and to follow a Green’s function framework to find the wavefunc-
tion of the faulted system.[66, 67] This method may be referred to as Defect Green’s
Function (DGF) in literature of this period. In more concrete terms, this is the math-
ematical translation of embedding a defect within the ideal lattice.[68] As for every
new development, silicon was the most studied material using these methods.[69–73]
In practice, it was either implemented within a Tight-Binding (TB) model or using
pseudopotentials, although it was demonstrated later on that the latter was to be
preferred.[74] The drawbacks of the DGF method were the use of localised basis sets,
with the associated forces and basis set convergence issues, and early implementation
not allowing relaxation of the defect geometry.[68]

The following decade took a radically different approach to solve this issue. Dens-
ity Functional Theory (DFT) had established itself as a valuable tool for solid-state
calculations and provided a convenient way to compute total energy and various other
properties, including band structure (in spite of the bandgap problem discussed in
Chapter 1). Planewave basis set along with Periodic Boundary Conditions (PBC) had
been implemented in codes routinely used by a growing community and under constant
improvements. In the mid-1980s, the computational power had become sufficient to
build supercells of tens of atoms and faulted systems were simulated.[75–78] This new
method quickly gained popularity and overtook the DGF method. It has since been
constantly evaluated and improved and remains so far the standard approach to model
point defects. Its main advantages compared to DGF are the fact that relaxation is
taken into account, and on a more practical basis, that it builds upon the strengths of
the numerous planewave DFT codes available. Of course, the method is not without
its imperfections, discussed in details in Chapter 1, but allowed to gain valuable in-
sights in applicative materials such as, among others, traditional III-V semiconduct-
ors (GaN,[79–82] GaAs[83, 84]), oxides (ZnO[85–88]), chalcogenides for PV solar cells
(CuInSe2,[89, 90] CuGaSe2[91, 92]). This propelled the supercell approach to become
a key technique complementary to experiment with a predictive power.

Aim, scope and organisation of the present work

The aim of the present work is to determine the key defects in materials with po-
tential applications for their optical and/or their electronic properties or more broadly
with a fundamental interest. The impact of point defects regarding the targeted prop-
erties is studied through the supercell approach within the DFT framework.

The present manuscript is organised as follows. The supercell methodology is de-
tailed in Chapter 1 using mainly Sb2Se3, a binary chalcogenide with potential applic-
ation as a PV absorber, as the running example. A detailed computational study
on the intrinsic and extrinsic point defects of β-In2S3, a buffer material for thin-film
chalcogen solar cells, is presented in Chapter 2. Experimental trials are briefly dis-
cussed. Then, TiS2 provides an interesting system to assess the limits of the study
on the fundamental question of its semiconducting or semimetallic nature, as detailed
in Chapter 3. Selenium, an element at the heart of current research on chalcogenides
for PV, is also considered as a potential absorber, and offers the opportunity to tackle
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some simulation challenges, as reported in Chapter 4. Finally, a general conclusion
closes the present manuscript and brings perspectives for future work on the subject.
During the three years of research leading to this manuscript, a portfolio of seven ma-
terials investigated for their defect properties was constituted, namely β-In2S3, Sb2Se3,
CsCu5Se3, TiS2, ZrSe2, β- and γ-Se. For the sake of clarity, only β-In2S3, TiS2 and
Se results are discussed in detail herein. Sb2Se3 is extensively used as an example to
explain the supercell methodology throughout Chapter 1.
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Chapter 1

Point defects simulations in solids

1.1 Thermodynamics: from Gibbs’ free energy to

enthalpy of defect formation

As discussed in the introduction, the microscopic structure of real-life compounds
deviates from the (ideal) crystallographic structure due to the presence of defects.
They can be classified depending on their dimensionality (0D to 3D) and have a major
impact on the properties of materials. The present work focuses on the simulation of
point defects, which are defects involving one single atomic site, and their impact on
opto-electronic properties. The central question the model presented herein aims to
answer is the amount of energy required to create a single point defect. The fictional
reaction of defect formation considered for the following thermodynamic reasoning is
illustrated in Figure 1.1. The initial state is the ideal lattice and the final state is the
lattice after introduction of a single point defect. This is formally the problem we want
to simulate. We will see hereafter that the application of periodic boundary conditions
on a system of reasonable size for DFT calculations slightly modifies our system.

Figure 1.1: Reaction of point defect formation considered illustrated in the case of an
interstitial defect. Blue spheres represent the atoms. The initial state (left) is the ideal
lattice and the final state (right) is the ideal lattice after introduction of a single point
defect.

The process of defect creation stems from the competition between the stability of
the ideal crystal on the one hand and the increase in entropy due to defect creation
on the other hand. The stability of the periodically-organised system, the ideal crys-
tal, is due to the formation of chemical bonds and the minimisation of electrostatic
interactions. The increase in entropy comes from the breaking of symmetry induced
by the point defect, the appearance of a disorder.[3, 93] It is due to the thermal kinetic
energy. In more conceptual terms, the creation of defects allows to lower the Gibbs’
free energy of the system by increasing the entropic contribution. Indeed, entropy is
a measure of the microscopic disorder. Formally, the Gibbs’ free energy of formation
of a defect D in charge state q noted ∆GD,q is given by equation 1.1 as a function of
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pressure P and temperature T .

∆GD,q
form(P, T ) = ∆HD,q(P, T )− T∆Sform(P, T ) (1.1)

By using the definition of the enthalpy, it can be stated as in equation 1.2.

∆GD,q
form(P, T ) = ∆ED,q

form(P, T ) + ∆(PV (P, T ))− T∆Sform(P, T ) (1.2)

Strictly speaking, the direct application of thermodynamics entices us to evaluate
∆GD,q(P, T ), nevertheless, it might prove a challenging task in practice.

DFT, the workhorse of computationally-oriented material scientists, is a ground-
state theory well-adapted to total energy computations at absolute zero temperature.
Taking into account the internal variables (P and T ) does not seem as direct. Despite
such obstacle, the weight differences between each contribution might give a valuable
help to overcome this difficulty. In order to approach this state function, the quant-
itative importance of each term should be evaluated to discard negligible terms if
appropriate.

Let us start with the importance of the pressure-volume term. The object of the
model is diluted point defects. One can view it as one single isolated defect formed
in an otherwise ideal crystal. Hence, the variation of volume due to the creation of
the defect is negligible in this dilute case. Thus, the formation enthalpy can reas-
onably be approximated by the internal energy, noted here ∆E. Additionally, the
frequently-used Birch-Murnaghan third order equation of state 1.3 allows to assess nu-
merically the weight of the contribution of the ∆(PV (P, T )) term.[94] In equation 1.3,
we introduce the volume ratio r = V0

V
where V0 is the equilibrium volume without

any external pressure. We note B0 = −V
(
∂P
∂V

)∣∣∣
P=0, T

the equilibrium bulk modulus

and B′0 = −V
(
∂B0

∂P

)∣∣∣
P=0, T

its derivative with respect to pressure. As highlighted in

Figure 1.2, one must apply tremendous pressures of several gigapascals to get a PV (P )-
energy significantly higher than a tenth of electronvolt, corresponding to a variation
of volume of no more than a few per cent. The “chemical pressure” induced by the
introduction of a dilute defect in the ideal lattice is in no way comparable to such pres-
sures. This intuition can be cross-checked against calculation results, as the relaxation
of the faulted supercells with periodic boundary conditions yields a pressure value.
This value corresponds to a largely overestimated upper-bond for the true pressure
induced by the defect, as the ratio of defect in the supercell model is largely higher
than the real concentration. In the example case of Sb2Se3, the pressure calculated
during geometry optimisation does not exceed 30 kbar= 3 GPa. Figure 1.2b shows
that, although the exact value of ∆PV (P ) varies from one material to another, the or-
der of magnitude is the same. So the upper-limit for ∆PV (P ) in Sb2Se3 is indeed a few
tenth of electronvolts. 1 From these numerical verification, one can conclude that the
pressure-volume term can safely be neglected in the expression of ∆GD,q to tackle the
modelling of defects. ∆GD,q then simplifies to the Helmholtz free energy of formation
as expressed in equation 1.4. Note that if one is interested in such properties, as can
the metallurgist community be, the effect of point defects on mechanical properties can
be assessed through elastic theory from the field of continuum mechanics, as illustrated

1. Note also the practical difficulty to evaluate the variation ∆PV as the optimisation of both
atomic positions and cell parameters will yield a pressure of zero and also conflicts with the dilute defect
picture, whereas imposing cell parameters constant to the ideal ones during relaxation is equivalent
to a constant volume, ∆V = 0. In this case, P∆V = 0, yielding ∆PV = V∆P .
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by the works of Varvenne et al.[95, 96]. However, in semiconductors this is rarely the
main interest of the community.
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Figure 1.2: a) Relative variations of volume of 1T -TiS2 (in red) and γ-Se (in green)
with respect to pressure calculated by fitting equations 1.3 onto series of dispersed-
corrected PBE calculations at different volumes, b) amplitude of the pressure-volume
term in the expression of the enthalpy for 1T -TiS2 (in red) and γ-Se (in green) with
respect to pressure calculated by fitting equations 1.3 onto series of dispersed-corrected
PBE calculations at different volumes.
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∆F = ∆E(P, T )− T∆S(P, T ) (1.4)

Then, one should assess the weight of the entropic term. Intuitively, solid-state is a
highly organised state of matter and, as stated before, entropy is a measure of disorder.
One can foresee that the enthalpy contribution to ∆GD,q will be predominant. Rigor-
ously from statistical physics, the entropy of a closed system is defined as expressed
in equation 1.5, where Ω stands for the microscopic distribution function and kB, the
Boltzmann constant (' 8.617 10−5 eV.K−1) .

S = kBln(Ω) (1.5)

In a crystalline solid, the entropic term comes from three contributions ; by de-
creasing order of magnitude, the configurational entropy, the vibrational entropy and
the electronic entropy.[48, 93] Let us address the configurational entropy first. To as-
sess it, one must evaluate the number of microscopic states of the system arising from
the different configurations which can be explored by the system. Due to the large
number of particles n involved in the system (a crystallite typically), the Stirling ap-
proximation 2 stands. It allows to express the configurational entropy in the form of

2. ln(n!) ∼
n→+∞

n ln(n)− n
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equation 1.6 where kB stands for the Boltzmann constant, [Dq] stands for the concen-
tration of defect D expressed not as a volume concentration as usually is but as the
ratio of the number of defects (faulted crystallographic cells) over the total number of
cells constituting the system and Nsites stands for the degeneracy of the defect, i.e. the
multiplicity of the available sites for the defect in the structure. Fundamentally, this
expression is based on the mathematical function x 7→ x(1− lnx) with x ∈ [0, 1]. The
statistical physics behind it are technically valid for any defect concentration (inferior
to one to keep a physical meaning), but since the defect model presented is based on
the dilute defect assumption, the x ratios will be largely inferior to one (concentrations
of a few hundreds ppm).

∆Sconf = kB([Dq]− [Dq] ln[Dq] + [Dq] ln(Nsites)) (1.6)

As shown in Figure 1.3, it weights no more than 0.12 eV at high temperatures, and
can thus be safely neglected unless a highly accurate picture is desired.
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Figure 1.3: Product of configurational entropy and temperature as a function of
defect concentration for different synthesis temperatures. The entropy is calculated
using equation 1.6. Note than even at high temperatures, it is inferior to 0.12 eV.

In the framework of periodic boundary condition ab initio calculations using DFT,
the number of particles is fixed, there is no exchange with a particle reservoir, and
the temperature is also fixed to zero, as only the equilibrium position of the nuclei
is determined in a static picture at T= 0 K. It is however, possible to evaluate the
increase in energy due to the displacement of the nuclei from the equilibrium position,
either using perturbation theory or finite differences. As pointed out by Neugebauer
et al., one could compute the vibrational entropy term for a very high, most of the
time prohibitive, computational cost.[48, 97] The importance of this term is expected
to vary with the class of materials and the physical process leading to defect forma-
tion, especially the synthesis temperature. In any case, it is quantitatively even less
important than the configurational entropy so can in turn be neglected as well. The
electronic contribution to the entropy comes from the additional electronic states avail-
able to the system of electrons due to the introduction of the defect. The number of
new configurations available to the distribution function Ω in equation 1.5 is small and
the logarithmic relationship between S and Ω makes the electronic defect formation
entropy negligible.

This quantitative assessment of the weight of the different terms contributing to the
Gibbs’ free energy of formation of a defect allows us to reasonably simplify the calcu-
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lation of this thermodynamic state function to the calculation of the defect formation
energy. It will be hereafter referenced either as Defect Formation Energy or Defect
Formation Enthalpy (DFE) due to the absence of variations in volume in the case of
dilute defects.

So far, the community’s efforts focusing on the defect formation energies have
already led to qualitative and quantitative results for a wide range of applicative mater-
ials, i.e. Si,[98–100] GaN,[49, 80, 101, 102] GaAs,[103–106] ZnO,[103, 107] PbTe [108–
111] and CIGS derivatives.[112–114]

DFE expression

Now that we have simplified the problem to the determination of an energy, we
can come back to our model reaction sketched in Figure 1.1. The process of forming
a point defect in a lattice can be seen as the exchange of atoms with an ”atomic”
reservoir (within the reactor, the source of the chemical species involved in the defect)
and electrons with an ”electronic” reservoir, as illustrated in Figure 1.4. This elec-
tronic reservoir can be envisioned as the result of the reducing/oxidizing power of the
synthesis conditions. In the case of solid-state synthesis for instance, it is linked to the
atmosphere under which the reaction occurs. Thus it derives from the oxygen partial
pressure in the reactor for the synthesis of an oxide, the use of argon, hydrogen or ni-
trogen atmospheres when relevant for other classes of materials. The defect formation
enthalpy ∆HD,q

form is expressed [48, 115] as a linear function of the chemical potential
of the electrons (Fermi level), noted in this work µEF

, and of the chemical potentials
of the elements involved in the defect D as stated in equation 1.7.

Figure 1.4: Illustration of the concept of reservoirs during the formation of a defect
with the example of Sb2Se3.

∆HD,q
form(µEF

) = ED,q
total − E

host
total +

∑
Xi

nXi
(µ0

Xi
+ ∆µXi

)

+q(Ehost
V BM + µEF

) + corr(D, q)

(1.7)

where
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— ED,q
total is the total energy of the faulted supercell (the supercell containing the

defect) after relaxation of the atomic positions at fixed cell parameters 3 without
symmetry constrains 4

— Ehost
total is the total energy of the ideal supercell (also referred to as the host cell)

— µ0
Xi

is the chemical potential of element Xi in its standard phase (for instance,
crystal α−S8, indium metal and O2(g) in the case of sulphur, indium and oxygen,
respectively)

— ∆µXi
is the variation of the chemical potential of element Xi from its chemical

potential in the thermodynamic standard phase (∆µXi
< 0), induced by the

crystal growth conditions as detailed in the next paragraph
— nXi

is the number of atoms of speciesXi added to the ideal host lattice (nXi
< 0),

for instance, n = −1 in the case of an interstitial or substitutional defect, or
removed from the lattice (nXi

> 0) in the case of a vacancy
— Ehost

V BM is the energy corresponding to the valence band maximum (VBM). It is
the reference energy for µEF

— µEF
is the chemical potential of the electrons, the so-called Fermi level

— corr(D, q) correspond to various corrections to take into account and detailed
hereafter in section 1.3.

Possible states of charge

The possible charges for the defect can be determined through the following reas-
oning. Let us detail the three examples of VSb, Sei and ISe in Sb2Se3. From an atomic
perspective, removing an Sb atom, inserting an Se atom and substituting an Se atom
by an I one is charge neutral. This gives us the state of charge q = 0 for the defect. The
opposite extreme picture of the lattice is the ionic one. In this case, removing an Sb3+

ion will create a q = −3 vacancy. Inserting an Se2– anion will create an interstitial of
charge q = −2. Substituting an I– to an Se2– ion results in a q = −(−2) + (−1) = +1
charge. As stated before, the substitution can be viewed as the combination of the
vacancy VSe and the interstitial Ii on the vacant site. It seems the most probable
physical mechanism by the way, as it is energetically easier to fill a vacant site with
an interstitial than for the interstitial to “push” the original atom from its equilibrium
site to replace it.

Note that the charge q is the charge of the supercell resulting from the number of
electrons of the system, it may not be localised only on the defect. To summarise, the
atomic and ionic models of the lattice give the most extreme possible charges for the
defect. All intermediate charge should also be calculated as a more refined description
may be in the middle of those two extremes. In this case, q = −1 and q = −2 should
also be computed for VSb and q = −1 for Sei. Please also mind that the number of
electrons of the q = 0 state of charge for a defect may well be different from the one of
the supercell as is visible in Table 1.1. In itself, the number of electrons of the pristine
supercell is of no use to build the inputs of the calculations, it just gives a clue to the
computational cost of the calculation.

Taking explicitly into account the 4s24p4 valence electrons for Se and 5s25p3 for Sb,
respectively, in the 1 × 3 × 1 supercell of 60 atoms, we obtain the values reported in

3. As mentioned beforehand, in the dilute defect limit the change in volume is none so that the
supercell parameters are kept identical to those of the host throughout the optimisation.

4. The dilute defect locally breaks the symmetry of the crystal. Keeping the symmetry in the PBC
calculation could artificially reduce the degrees of freedom for the defect, especially if the initial defect
position is located on a special position of the space group of the host.
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Table 1.1 for the example developed beforehand.

Table 1.1: States of charge and associated electronic counts for VSb, VSe, Sei and ISe

in a 60-atom supercell of Sb2Se3.

Defect Charge q Explicit number of e−

Host 0 336

VSb

0 331
-1 332
-2 333
-3 334

VSe

0 330
1 329
2 328

Sei

0 342
-1 343
-2 344

ISe

0 337
+1 336

1.2 Choice of chemical potentials

As shown in the expression of the defect formation enthalpy ∆HD,q
form stated in

equation 1.7, one of the most quantitatively important simulation parameters are the
values of the chemical potentials. They are needed to compensate the difference in
number of atoms between the ideal supercell and the faulted supercell due to the
introduction of the defect. This translates as a linear dependence of ∆HD,q

form in chemical
potentials through the

∑
Xi
nXi

(µ0
Xi

+ ∆µXi
) term. For instance, when considering an

interstitial defect Xi, one needs to compare the energy of the host cell composed of N
atoms with the one of the faulted cell containing N +1 atoms. Before relaxation of the
atomic positions, the energy is shifted by the negative value µX because of the presence
of the additional atom Xi. One compensates such energy difference by adding −µXi

to the total energy difference ED,q
total−Ehost

total. This can also be interpreted as the energy
required to retrieve an atom of X from the corresponding atomic reservoir. Such
a reasoning extends to vacancies, and naturally substitutional defects and complex
defects and justifies the signs of nXi

. It is negative in the case of an added atom,
nXi

< 0, and positive for an atom removed from the lattice, nXi
> 0. This linear

relation implies that any change in chemical potential will proportionately affect the
defect formation enthalpy ∆HD,q

form. Thus, they must be chosen with care.
The chemical potential µX of chemical element X is defined as the variation of

Gibbs’ free energy of the system when changing the quantity of matter of such element
X (µX = ∂G

∂nX
). It is often expressed as the sum of the chemical potential of reference

µ0
X , taken for the most thermodynamically stable phase of pure X in normal conditions,

(vide supra) and the deviation from this value in the considered conditions, ∆µX , which
leads one to write µX = µ0

X+∆µX . Stevanovic et al. report these values for 50 chemical
species assessed by least square minimisation of experimental vs. GGA+U formation
enthalpy difference for 252 compounds (metals, pnictides, chalcogenides, and halides
to cite a few).[116]
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The thermodynamically allowed values are given by the stability domain of the
host. We proposed the generalized expression 1.8 to describe the stability domain of
crystalline material X1,n1X2,n2 ...Xp,np .[117] It basically states that the targeted host
material is formed, hence satisfying the formation enthalpy equation, to the exception
of all other possible compounds within the stability domain (undesired phases). This
translates as the inequations in system 1.8.


p∑
i=1

ntargeti ∆µi = ∆Hf (target)(constrain due to the formation of target)

∀i ∈ [1;N ],∆µi ≤ 0

∀undesired ∈ {competing phases},
p∑
i=1

nundesiredi ∆µi ≤ ∆Hf (undesired)

(1.8)

For instance, when studying intrinsic defects of antimony selenide Sb2Se3, one must
write first the formation enthalpy of the host material Sb2Se3, as stated in equation 1.9.

Hf (Sb2Se3) = E
Sb2Se3
total − 2µSb − 3µSe (1.9)

Given the expression of the chemical potentials (equation 1.10), where the reference
chemical potentials can be calculated as the energy per atom of the reference phase

(µ0
Sb = E

Sb(s)

total and µ0
Se = 1

8
E

Se(s)

total ), one can subtract the reference formation enthalpy
(equation 1.11) to the formation enthalpy in the conditions considered in equation 1.9
to obtain equation 1.12. It strictly corresponds to the application of equation 1.8 to
the example case of Sb2Se3. {

µSb = µ0
Sb + ∆µSb

µSe = µ0
Se + ∆µSe

(1.10)

H0
f (Sb2Se3) = E

Sb2Se3
total − 2µ0

Sb − 3µ0
Se (1.11)

∆Hf (Sb2Se3) = 2∆µSb + 3∆µSe (1.12)

Additionally, one must ensure that the other phases which exist in the Sb-Se system
do not form. Here, only two such competing compound are thermodynamically stable,
namely metallic antimony and crystalline Se (in γ form made of chains of Se atoms).
This translates as the two inequation given in expression 1.13.{

∆µSb ≤ 0
∆µSe ≤ 0

(1.13)

The frontiers defined by such inequations can be plotted in a (∆µSb, ∆µSe) plane
as shown in Figure 1.5. Thus, the limits of the stability domain of the host Sb2Se3 can
be obtained from the total energies of Table 1.2 as reported in Table 1.3. The case of
Sb2Se3 presents the simplest situation as there is only one thermodynamically stable
binary compound in the Sb-Se system. Thus the graph only contains three phases:
the two elemental phases and Sb2Se3. In more complex cases, all thermodynamically
stable phases within the system ought to be taken into account. One must keep in
mind that the only accessible points at the thermodynamic limit within this space lie
on one of the three lines. Hence, there is only one independent variable, fixing one
of the two ∆µ will mechanically fix the other. To summarize the situation, only the
extreme cases are used to calculate DFE, nevertheless, the whole stability domain can
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be accessed experimentally. Realistic synthesis conditions may be anywhere in the
stability domain.

−1.0 −0.8 −0.6 −0.4 −0.2 0.0
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Sb-rich/Se-poor

Se
Sb2S3
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Figure 1.5: Sb2Se3 stability domain in a (∆µSb, ∆µSe) plane.

Table 1.2: Energy per formula unit for each compound (eV) computed with PBE-GD3.
Z is the number of formula unit per crystallographic cell.

Phase Etot (eV/Z)
Sb2Se3 -24.95

Sb -4.40
Se -3.70

Table 1.3: Limits of Sb2Se stability domain (eV) calculated using PBE-GD3.

µSb (∆µSb) µSe (∆µSe)
Sb-rich/Se-poor -4.40 (-0.00) -4.15 (-0.45)
Sb-poor/Se-rich -5.06 (-0.67) -3.70 (-0.00)

Let us now consider a more complex example with the case of CsCu5Se3, a ternary
compound.[118] There are now three chemical potentials to determine (µCs, µCu, µSe).
Let us keep in mind that due to equation 1.14 being satisfied, there are only two
independent variables as the third chemical potential is deduced by equation 1.14. The
two chemical potentials can be arbitrarily chosen.

∆Hf (CsCu5Se3) = ∆µCs + 5∆µCu + 3∆µSe (1.14)

From a chemical point of view, playing with three chemical species instead of two
will combinatorially allow to form much more different phases (elemental solids, binaries
and possible competing ternaries). Indeed, in this case, no less than 16 phases were
considered. To clarify, only the phases setting the boundaries of CsCu5Se3 stability
domain are discussed.
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First, the stability domain can be represented in the 3D chemical potential space,
as shown in Figure 1.6. As mentioned previously, it is a 2D polyhedron, because the
formation of each compound defines a plane. This representation, although aesthetic-
ally gratifying, is difficult to handle. In general, the representation of numerical data
in 3D is advised to be avoided. To get a clearer idea of the stability domain, one can
work with a 2D projection as presented in Figure 1.7.
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Cu3Se2
CuSe
Cs3Cu8Se6
Cs2Cu5Se4
CsCuSe4
Cu
CsCu5Se3

Figure 1.6: CsCu5Se3 stability domain in a (µCs, µCu, µSe) space, calculated using
PBE + U (U = 6 eV for 3 dCu electrons).

Rigorously, one ought to take into account all the summits of the stability domain as
different extremal synthesis conditions in the DFE study, however, Figure 1.7 allow to
notice the short chemical potential range separating some summits. It seems appropri-
ate to simplify the shape of the stability domain and consider fewer conditions for the
DFE, in this example three. This framework is practically necessary when increasing
the dimensionality of the system. For instance, the stability domain of a quaternary
compound such as kesterite Cu2ZnSnS4 is a 3D volume. More generally speaking, it is
a subset of a hyperplane (dim= N − 1) for a compound involving N chemical species.

∆µ = ∂G
∂n

is rigorously a function of pressure and temperature, macroscopic vari-
ables which can be measured experimentally. This appears clearly in the widespread
equation 1.15, where aX is the activity of chemical species X. A lot of efforts has been
dedicated in the field of process engineering to develop activity models for the gaseous
and liquid states of matter, the most practical to manipulate in industrial processes.
The gas form version of equation 1.15 is often used in the case of the synthesis of ox-
ides to draw a link between the chemical potential of oxygen µO and the oxygen partial
pressure pO2(g)

. However, such a definition of the activity lacks in the solid-state. The
fundamental reason for this is the intrinsic inhomogeneity of such a medium, contrary
to a liquid or gaseous mixture which can be considered at least locally as homogen-
eous (constituting the basis of all finite-elements methods). Conversely, in solid-state
reaction where slow diffusion through site-to-site hopping is the main physical phenom-
ena involved in opposition to convection quickly leading to equilibrium, the chemical
potential could only be defined rigorously at a very local scale, i.e. in each grain.
Chalcopyrites used for 2nd generation photovoltaic solar cells even exhibit differences
in composition within the same grain with a gradient between the grain boundary
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and the bulk. Based on those considerations, it seems very difficult to realistically
account for the dependence in pressure and temperature of chemical potentials in the
solid state. Besides, we have demonstrated beforehand that these dependencies can
satisfactorily be neglected in the case of solid-state synthesis.


µX = µ0

X +RT ln(aX)
µX = µ0

X +RT ln(pX
p0 ) (ideal mixture of gases)

µX = µ0
X +RT ln(CX

C0 ) (dilute solution)

(1.15)

Freysoldt et al. point out that such calculations may yield different results depend-
ing on the level of theory used.[119] Thus, performing them using the same methodology
as the whole point defect study is compulsory. Interestingly, as reported in [120], this
can be applied to extrinsic defects as well, adding the chemical potential of the impurity
as an additional dimension.

(a)

(b)

Figure 1.7: CsCu5Se3 stability domain calculated using PBE + U (U3d(Cu)=6 eV)
and a proposed simplification (dotted red triangle) for the different atmospheres to
consider within a DFE study. a) Projection onto a (µCs, µCu) plane. b) Projection
onto a (µSe, µCu) plane.
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1.3 Formation enthalpy corrections

Following the previous demonstration, we have shown that the defect Gibbs’ free
energy of formation can be approximated by the defect formation enthalpy (energy as
the PV term is negligible). Furthermore, the practical implementation of the calcu-
lation of this quantity in itself has limitations which can be quantified and addressed
by including various corrections. Basically, these corrections derive from two different
limitations.[48, 121] On the one hand, the model describing the underlying physics
ruling the behaviour of electrons, i.e. Density Functional Theory (DFT), limits the
precision of the energy calculation because of the approximations made to the true
electron behaviour, in short, the exchange-correlation issue. On the other hand, finite-
size supercell construction with periodic boundary conditions gives rise to spurious
artefacts detailed hereafter.

1.3.1 Limitations of DFT

Band-edges correction

When using functionals at the LDA or GGA levels of theory, the bandgap is severely
underestimated,[122] commonly up to 50%, leading sometimes to a wrongly simulated
metallic behaviour, as in the case of CuInSe2.[89, 122] Indeed, the GGA is a local
(Taylor) expansion of the Fermi electron gas (LDA) where electrons are delocalised, as
in a metal. Thus, it tends to overdelocalise the electrons, which translates as empty
states composing the conduction band being too low in energy.[123] As the chemical
potential of the electrons (Fermi level) µEF

takes values between the Valence Band
Maximum (VBM) and the Conduction Band Minimum (CBM), one needs to correctly
assess the bandgap in a point defect study. Besides, we will see further on that the
position of the defect levels with respect to the band edges is of capital importance,
so that we need to know where the CBM lies in the most accurate way available.To
do so and taking advantage of the ideal cell’s small size and symmetry, a more refined
description can be used to perform an accurate bandgap calculation, such as a hybrid
functional, typically HSE06 or PBE0, or leaving DFT for a quasiparticle many-body
approach, the so-called GW ansatz. Such methods are described at the end of the
paragraph. Nevertheless, the calculations on the faulted cells are performed at lower
levels of theory. They can then all be corrected thanks to the position of the VBM in
the most refined description. In order to recover the correct description, the VB (CB)
of the host in GGA is shifted down (up) by ∆EV (∆EC), as sketched in Figure 1.8. For
the rest of the study, this will be referred to as the host band structure. It allows to
recover the most precisely calculated bandgap Eg = EGGA

g +∆EV +∆EC = E
hybrid/GW
g .

As previously said, the Fermi level takes value in the bandgap, i.e. the reference
µEF

= 0 corresponds to the Fermi level sitting at the top of the VB. This is captured in
equation 1.7 through the q(Ehost

V BM +µEF
) term. Note that in fact, Ehost

V BM = Ehost,GGA
V BM −

q∆EV , so that the DFE expression ∆HD,q
form(µEF

) includes the quantity q∆EV . In this
way, the correction of the bands (energetic) positions also induces a correction on the
DFE by q∆EV .

Going beyond GGA: meta-GGA, hybrids and GW

Among the different numerical schemes available to the computationally-oriented
chemist or physicist, DFT has emerged as the tool of choice with the best computational
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Figure 1.8: Band-edge correction principle. In the present work, we adopt the
convention of positive band energy shifts (∆EV > 0) so that the final gap is
Eg = EGGA

g + ∆EV + ∆EC .

time over precision ratio.[124, 125] One could add that most other methods used by
molecular theoretical chemists (double hybrids, coupled cluster, multi-configurational
self-consistent fields...) are often far too demanding for solid-state. Even in DFT, as
the exchange-correlation part of the energy functional is unknown, different families of
approximations have been developed to approach it, leading to different precisions and
computational costs. It ranges from the cheap gas of free electrons description of the
Local Density Approximation (LDA) to the much more refined double-hybrids, such as
B2PLYP.[126] This progression has been metaphorically described by Perdew [127] as
the Jacob’s ladder of ab initio simulations. As far as solid-state is concerned, the level
of theory currently used reaches up to hybrid functional (including a share of exact
Hartree-Fock exchange). In the specific case of point defects, because the supercells
are quite large (usually several hundreds of atoms and most importantly up to a thou-
sand electrons) and symmetry reduction is forbidden during geometry optimization,
most modern studies resort to the Generalized-Gradient Approximation (GGA [128])
approximation.[82, 129–133] A step higher, at the hybrid level, screened hybrid func-
tionals like HSE06 are on the rise for point defect studies.[81, 134–139] Let us shortly
review the main differences between some of these advanced methodologies. 5

As stated before, the GGA approximation is an improvement over the LDA Fermi
free electron gas which corresponds to a first-order Taylor expansion of the electronic
density. A natural step to improve the description further is to take into account the
gradient of the density into the exchange correlation EXC(ρ,∇ρ,∇2ρ). The derived
class of functionals is called the “meta-GGA” functionals. As usual in DFT, there are
several paradigm on which to build a functional. One can try to match experimental
values such as ionisation energies on a set of compounds such as the AE6 set, 6[141, 142]
or try to match post-Hartree Fock calculation results on a given test set of molecules
and properties such as the G3 test set. 7[143] Yet another approach is to try to respect
theoretical constraints such as conditions on the norm, asymptotic behaviours and
boundary conditions. This gives rise to a jungle of functional for each class of approx-
imation, and meta-GGA is no exception. For instance, several different meta-GGA
density functionals are implemented in VASP. The most famous ones are TPSS,[144]
M06L,[145] MBJ[146, 147] and SCAN.[148] In our work which uses meta-GGA func-

5. This paragraph is largely taken from our work published in reference.[140]
6. Atomisation Energies of SiH4, S2, SiO, C3H4 (propyne), C2H2O2 (glyoxal), and C4H8 (cyclobu-

tane)
7. Gaussian-3 is a calculation scheme and by extension a test set of thermochemical data for

validation of quantum chemical methods proposed by Pople et al. which includes more than 200
enthalpies of formation for a wide range of molecules.[143]
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tionals, we select the Strongly Constrained and Appropriately Normed (SCAN) density
functional which satisfies all known constraints for meta-GGA functionals. There are
also clues that it outperforms both GGA and older meta-GGA such as TPSS in the
prediction of solid-state properties.[149]

Starting from the observation that the Hartree-Fock theory is the limit of electronic
localisation, taking into account only exact analytic physical terms, and that LDA is
the opposite limit of the free electron gas with electrons delocalized over the crystals,
mixing GGA, an improvement over LDA, with Hartree-Fock expression is a seducing
idea to try to correct the bandgap problem. This is the fundamental principle of
construction of hybrid functionals.

The PBE0 functional adds 1
4

of exact Hartree-Fock (HF) exchange to the GGA-PBE
functional and tends to slightly overestimate the observed band gap (around 10-15%)
according to a benchmark from Marsman et al. on a set of elemental solids and binary
compounds.[150] We also obtain such a deviation for ternary compounds.[140] This can
be condensed into equation 1.16.

EPBE0
XC =

1

4
EHF
X +

3

4
EPBE
X + EPBE

C (1.16)

Deriving from it, the aforementioned HSE family has become a popular screened
functional in solid-state.[151, 152] To reproduce the screening of the Coulomb interac-
tion in semiconducting materials, the Coulomb kernel of the HF exchange was decom-
posed into a short-range (SR) and a long-range (LR) tuned by the ω inverse distance
as expressed in equation 1.17. Only the short-range part of the functional includes a
fraction α of HF exchange, so that the computational cost is reduced, and the general
expression yields equation 1.18.[151]

1

r
=

1− erf(ωr)

r︸ ︷︷ ︸
SR

+
erf(ωr)

r︸ ︷︷ ︸
LR

(1.17)

E
HSE(α,ω)
XC = αEHF−SR

X + (1− α)EPBE−SR
X + EPBE−LR

X + EPBE
C (1.18)

As far as the HSE06 flavour of the HSE functional family is concerned, the HF
exchange part is the same as in PBE0, α = 1

4
and the screening parameter ω is equal

to 0.2 Å−1.
All these approaches (meta-GGA, hybrid, screened-hybrid) start from DFT, tra-

ditionally the realm of quantum chemists. The condensed-matter physics community
has proposed a different approach, dropping DFT in favour of a many-body scheme.
Our intention here is not to give a deep understanding of the quasiparticle method
as it is not the scope of this work, nevertheless, we provide a brief insight into the
basic underlying mechanisms.[153–156] The calculated bandgap using DFT is strictly
speaking the Kohn-Sham gap. It is the difference between the eigenvalue associated to
the lowest empty state (CBM) and the one corresponding to the highest occupied state
(VBM). Conversely, the many-body approach models the addition and removal of an
electron from the system, comparable to photoemission spectroscopy experiments, to
compute the bandgap.

The theoretical problem is the following. How do N electrons behave when sub-
mitted to the electrostatic potential generated by the ions, located at the equilibrium
positions in the crystal? The central quantity one will be interested in is the Green’s
function G, also called the one-particle propagator. It is the probability amplitude
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for the propagation of an added or removed electron in the many-body system from
the position in space r1 at instant t1 in spin σ1, which form a five-coordinates vector
(r1, t1, σ1), to (r2, σ2, t2), as illustrated in Figure 1.9. To lighten the equations and
as usually done in this field, we will use the notation originally proposed by Hedin
in 1965, [157] which introduces 1 = (r1, σ1, t1). Determining the exact time-ordered
one-particle interacting Green’s function G(1, 2) would give the exact solution to the
behaviour of the N electron system.

The interacting Green’s function G is developed as a sum of the independent-
particle Green’s function G0 and the product of G0, the self-energy Σ and itself, in the
so-called Dyson equation 1.19. The self-energy includes all interaction effects.

G(1, 2) = G0(1, 2) +

∫
G0(1, 3)Σ(3, 4)G(4, 2)d34 (1.19)

Figure 1.9: Illustration of the physical interpretation of G(1, 2) as the propagator of
an electron from 1 to 2.

Hedin derived a set of interdependent equations expressing the relationship between
G, Σ and material-related quantities, as reported in equation 1.20.[157]


Σ(1, 2) = i

∫
G(1, 3)W (1, 4)Γ(4, 2, 3)d34

Γ(1, 2, 3) = δ(1, 2)δ(1, 3) +
∫ δΣ(1,2)

δG(4,5)
G(4, 6)G(5, 7)Γ(3, 6, 7)d4567

χ0(1, 2) = −i
∫
G(1, 3)G(4, 1)Γ(2, 3, 4)d3

W (1, 2) =
∫
ε−1(1, 3)v(3, 2)d3

(1.20)

Let us explain the remaining terms within equation 1.20. δ is the Dirac function.
Γ, known as the vertex function, describes the interaction between the virtual hole and
the electron. χ0 is the irreducible polarisability of the material, describing the linear
response of the material to an electric field. W is the dynamically screened Coulomb
interaction. Due to the presence of the other electrons in the material, the electron
can be seen as evolving in a dielectric medium. W captures the potential felt by the
electron from the others through such screening as illustrated in Figure 1.10. This
is a frequency-dependent quantity. The vertex function Γ also corrects the fact that
W corresponds to the interaction between classical particles as opposed to the real
ones which are fermions, and thus obey Pauli exclusion principle.[156] Its expression
naturally introduces the dielectric tensor ε, linked to the polarisability by equation 1.21,
where v is the bare coulombic potential occurring between two charges in the vacuum.

ε(1, 2) = δ(1, 2)−
∫
v(1, 3)χ0(3, 2)d3 (1.21)
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Figure 1.10: Schematic representation of the dynamically-screened coulombic potential
felt by quasiparticles in a general dielectric medium.

This would theoretically allow to calculate iteratively G as summarised in the well-
spread Figure 1.11a. However, there is an important difficulty emerging from the
three-point vertex Γ and the derivative within its expression. The GW approximation
consists in replacing Γ by a simple point function Γ(1, 2, 3) ' δ(1, 2)δ(1, 3). This is
known as the Random Phase Approximation (RPA). Then, χ0 describes non-interacting
excitons, which seem a fair approximation as the excitons are charge-neutral. Then
the self-energy Σ is expressed as Σ = iGW , giving its name to the approximation.
It corresponds to skipping the vertex Γ summit in the pentagon of Figure 1.11a as
sketched in Figure 1.11b. Starting by injecting the independent Green’s function G0

and iterating the four-step loop of Figure 1.11b is an algorithm implemented in several
quantum codes. This is sometimes referred to as “self-consistent” GW . However,
it is still a cumbersome computational task and an additional simplification is often
made, the so-called G0W0 scheme. It consists in starting from the independent Green’s
function G0 as before and going only once through each step, stopping the calculation
at the self-energy, as illustrated in Figure 1.11c.

As stated before, these advanced methods allow to correct the band-edges positions.

Figure 1.11: a) Hedin’s pentagon: solving self-consistently the represented system of
equations would yield the fully-dependent Green’s function G. b) The GW approxim-
ation to the many-body problem is obtained by skipping the vertex summit of Hedin’s
pentagon. One starts by injecting the independent Green’s function G0 and iterates the
four-step loop. c) The G0W0 ansatz consists in a single loop without further iteration.

Potential alignment (PA)

The introduction of a charged defect shifts the electrostatic potential by an unknown
value.[121, 158] In practice, a homogeneous background charge (jellium) is added in the
otherwise divergent charged DFT calculation.[48, 121] In order to be able to compare
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the energies of the host and charged cells, one needs to recover the reference energy for
the charged calculations.

The electrostatic potential induced by charges qi can be expressed as stated in
equation 1.22. This is the bare coulombic potential v discussed in the GW section.
The inverse distance dependence of the potential, added to the screening due to the
neighbouring ions, leads to the fact that further from the second coordination sphere
of the defect, the electrostatic potential felt by the ions is the same with or without
the defect. This is illustrated in Figure 1.12 in a model one dimensional case with an
interstitial defect. One can see that the difference between the electrostatic potential
before defect introduction (black line) and after (red line) becomes negligible further
than the second neighbour of the defect. Generalising to the 3D case most of interest
for material science, outside of an exclusion sphere centred on the defect, the atoms
feel the same potential as in the host cell. Thus, the shift in potential introduced by
the defect can be obtained by recalibrating the charged cells energies by the average of
the difference weighted by the charge as written in equation 1.23. This is illustrated in
Figure 1.13 where the excluded region is represented in white and the region over which
the potential is averaged in blue. The difference between the two situations provides
the correction mentioned before.

V (r) =
1

4πε0

∑
i

qqi
|r − rqi |

(1.22)

∆EPA = q × (V r
D,q − V r

host) (1.23)

Figure 1.12: Electrostatic potential before (black line) and after (red line) introduction
of a defect (red sphere) in a model 1D case. The blue spheres symbolise the ions.
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Figure 1.13: Potential alignment correction principle. The difference of electrostatic
potential felt by the ions between the faulted supercell (left) and ideal host supercell
(right) is averaged over the blue region excluding the white sphere centred on the
defect.

1.3.2 Finite size corrections

Moss Burstein type band filling

Typical defect concentrations in semiconductors are of 10 ppm (10−5, equivalent to
1017 cm−3 for a 100 Å3 cell).[93] When applying a supercell approach, one cannot choose
a (super)cell so large that it naturally reflects such low level concentrations because of
computational limitations. Indeed, the biggest systems which can be calculated using
DFT are of a few hundreds of atoms, as pointed out previously. Thus, one has to
work with a smaller cell. But how small can it be? The first limitation comes from
the periodic boundary conditions. In the real material, defects approach the infinitely
diluted limit and can be considered isolated. If the supercell is too small, the defect can
feel the electrostatic interaction of its periodic images in the neighbouring cell. A simple
calculation gives an idea of the minimum distance between a defect and its periodic
image required to have them feel no electrostatic interactions from one another. One
can use the classical expression of the norm of an electrostatic force exerted on one
another by two point charges q1 and q2 separated by a distance r in a homogeneous
dielectric medium of permittivity ε = ε0εr reported in equation 1.24, which can be
inverted as equation 1.25 for non-zero forces.

F (r) =
1

4πε

q1q2

r2
(1.24)

r =

√
q1q2

4πεrε0F
(1.25)

For the test values q1 = q2 = +e and εr = 10 (as a reference, εr(β−In2S3) ' 13.82),[159]
if one wants to satisfy the criterion F < 5.10−2 eV/Å, equation 1.25 yields r ' 5 Å.
Note that the rule-of-thumb for the minimum distance between defects when building
the supercell is usually 10 Å, which nicely matches this result. It means that in the
case of our 100 Å3 cell example, supposed to be cubic (a ' 4.6 Å), a 3×3×3 supercell
will be big enough to respect this constraint. Nevertheless, this 1

9
' 0.11 concentration

is very far from the realistic 10 ppm mentioned above. Of course, one could argue
that a bigger supercell is required, and that convergence with respect to the size of
the supercell should be checked. 8 As discussed by Lany et al.,[103] the convergence

8. by comparing defect energies with respect to the supercell size, i.e. calculating the energy
difference for the same defect using successively a 2 × 2 × 2, 3 × 3 × 3-supercell and so on, to make
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with supercell size is slow [75, 160] and the finite-size corrections allow accurate energy
predictions while guaranteeing affordable computational costs.

Yet, Moss and Burstein have reported in the 1950s a band-filling effect in heavily
doped semiconductors due to low effective mass charge carriers thermally filling the
bottom(top) of the conduction(valence) band for a n(p)-type semiconductor.[161, 162]
As the computationally affordable supercells are quite small, these effects can be ar-
tificially induced in the model. One needs to correct this artefact by removing the
contribution to the total energy of electrons spuriously located in the CB of the host
and of holes in the VB. It can be done by applying the following correction[48, 79, 103]

∆Ee−
MB = −

∑
n,k

ωkηn,kẼ
CBM
n,k H(ẼCBM

n,k )

∆Eh+

MB = −
∑
n,k

ωk(2− ηn,k)ẼV BM
n,k H(ẼV BM

n,k )
(1.26)

where {
ẼCBM
n,k = En,k − (EH

CBM + ∆V )

ẼV BM
n,k = (EH

V BM + ∆V )− En,k
and the n index refers to a summation over the bands, k over the k-points, ωk the kth

k-point weight, En,k the nth band energy at the kth k-point in the faulted cell, ηn,k is
the occupation of the nth band at k-point k, H is the Heaviside function and ∆V the
difference in electrostatic potential as defined by the PA correction. It expresses the
removal of the spuriously filled energy levels within the host VB and CB as illustrated
in Figure 1.14. Note that the Heaviside function H acts as a filter to ensure that the
correction only removes spurious filling of the host bands and not defect levels located
inside the gap, hence the use of the shifted band energies Ẽn,k taking into account
the band-edge and PA correction and not directly the GGA eigenvalues for the faulted
supercell.

Makov Payne type electrostatic correction

In the real material, point defects are well separated from one another, whereas
in the supercell model with periodic boundary conditions, the defect and its images
in the neighbouring cells may interact electrostatically, as illustrated in Figure 1.15.
Indeed, unlike the simple picture of punctual charges used above to get a first idea of
the necessary supercell dimensions, the charge distribution may in fact be (partially)
delocalized. In order to eliminate the spurious interactions which may emerge from
them, different corrections [163] have been proposed, first by Makov and Payne,[164]
followed by a different scheme by Freysoldt, Neugebauer and Van de Walle [165] and a
simplified version of the first by Lany and Zunger.[121] Implementations from Freysoldt
et. al. and Lany and Zunger[121] were compared in the case of CsCu5Se3 cationic
vacancies and found to give rise to a discrepancy of ' 0.07 eV for the sum of the PA
and MP correction. This encouraged us to use the expression proposed by the latter
two derived from the first, expressed as

∆EMP = (1 + csh(1− ε−1))
q2αM

2εV
1
3

(1.27)

where csh is a geometry dependent correction term, of which the different values are lis-
ted in Table 1.4, ε is the dielectric constant of the material, αM the Madelung constant

sure that the asymptotic limit is reached.
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Figure 1.14: Illustration of the Moss-Burstein type correction for the spurious filling
of the CB by three electrons from the faulted supercell (a single electron on band
nCBM +2 at k-point k1 and one pair on band nCBM +1 at k-point k2). The correction
is calculated by multiplying the different columns and summing the lines as displayed
on the left-hand side of the Figure.

and q the charge of the defect. The different versions of this correction can be found in
different programs[166]: Pylada[167] and PyDEF[117, 168] implement the Lany-Zunger
flavour, CoFFEE[169] and sxdefectalign[165] propose the Freysoldt, Neugebauer and
Van de Walle version and PyCDT[170] even includes a further refinement by Kumagai
and Oba.[158]

Figure 1.15: Electrostatic interactions between the defect and its periodic images.

Perturbed Host States (PHS)

Deep defects have transition levels located inside the bandgap, far from the band
edges. They lead to localized electronic states which can be viewed as electron/holes
traps. The electronic state associated to a deep defect is often called a Defect Localised
State (DLS). For a shallow defect, the mechanism is different.[48, 79, 103, 112] It is
described in Figure 1.16 for the case of a shallow donor. The creation of the point
defect creates a DLS inside the CB which is populated by one or several electrons
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Table 1.4: Values of the adimensional csh parameter in the Makov-Payne like correction
with respect to the geometry.

Geometry csh
Simple cubic -0.369

Face-centred cubic -0.343
Body-centred cubic -0.342
Hexagonal compact -0.478

Other -1
3

(left-hand side of Figure 1.16). The electron is then released to the CB by ionising
the defect. This creates a hole-electron pair and lowers the energy of the defect state
to a value just below the CBM. The screened coulombic potential resulting from the
addition/removal of an ion perturbs the host conduction band, so that the dispersion
of the newly created defect state in the supercell model is that of the CBM. The final
state is a Perturbed Host State (PHS). The mechanism is similar for a shallow acceptor
with the liberation of a hole at the top of the VB, creating a PHS just above the VBM.
Shallow defects are responsible for the electronic conductivity of the material, n-type
for shallow donors and p-type for shallow acceptors.

Figure 1.16: Perturbed Host State creation in the case of a shallow donor. First, an
occupied DLS is created in the CB (left-hand side). The electron is released to the
CB, which creates a PHS lying in the gap just below CBM (right-hand side). The red
colour symbolises the initial state before defect ionisation and the blue one the final
state. Dashed lines indicate the band dispersion induced by the finite-size supercell
whereas solid lines refer to single isolated defect states.

The energetic position of the PHS in the gap is closely linked to the one of the
relevant band-edge, so that the correction of the band-gap affects the energy of the
level. More precisely, one should correct the DFE by the band-edge shift (∆EC/∆EV )
weighted by the number of electrons ze−/holes zh+ populating the DLS as reported in
equation 1.28 as illustrated in the case of a shallow donor in Figure 1.17.[48, 103, 112]

∆EPHS = ze−∆EC − zh+∆EV (1.28)

Numerous reviews discuss these energetic corrections.[48, 79, 103, 121]
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1.3.3 Quantitative impact of the corrections

Let us have a look at a numerical example on two vacancies in Sb2Se3 to grasp the
relative importance of each correction. Note that there are several crystallographically
distinct vacancies for anions and cations, however, for clarity we arbitrarily display only
one site for each type of vacancy (anionic or cationic). The amplitude in electronvolt
of the different terms composing ∆Hf (0) are presented in the form of a cumulated bar
chart in Figure 1.18 and available in Table 1.5. First, the host cell here is composed of 60
atoms, so the total energy is several hundreds of electronvolts. However, the difference
of energy between the faulted and the host cell, displayed in blue in Figure 1.18, is
only a few electronvolts. It stems from the difference in the number of ions and the
difference in energy due to the structural rearrangement. This order of magnitude of a
few electronvolts highlights the need for precise (enough) DFT calculations. Secondly,
note the weight of the chemical potentials presented in orange in Figure 1.18. Their
values are in the same order of magnitude as the difference in energies. Note that the
term

∑
i niµi is negative in the case of a vacancy (ni = 1 to compensate for the atom

removed and µi < 0 eV) but can be positive in other cases, such as an interstitial
(ni = −1 to compensate the supplementary ion and µi < 0 eV).

Figure 1.17: Schematic representation of the PHS enthalpy correction for a shallow
donor defect. The red lines represent the VBM, calculated at the GGA level in dotted
line and at the advanced theory level (GW or hybrid) in dashed line. The blue lines
represent the CBM using the same convention with linestyles.

Let us now detail the corrections to see numerically their weights. The values are
summarized in Table 1.5. The most important correction in this case is the PA correc-
tion with up to ' 0.6 eV. The following corrections in decreasing order of magnitude
are the electrostatic Makov-Payne like correction and the VBM correction. Then the
MB and PHS corrections punctually correct spurious effects on designated cells. Fig-
ures 1.19a to 1.19d show the share of the non-zero corrections in the sum of the absolute
values of the energy corrections ( |∆Ecorr|∑

|∆Ecorr|). This quantity allows us to assess which
corrections are the most important in terms of amplitude, regardless of the sign. In-
deed, the signed correction are summated and can reduce the total correction due to
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the presence of negative ∆Ecorr values. Figures 1.19a to 1.19d highlight the importance
of the PA as the most important correction in the case of VSb1, representing '40% of∑
|∆Ecorr|. It also stresses out the fact that VBM correction and electrostatic correc-

tions are equally important. Whenever the LDA or GGA levels of theory are used for
the faulted cell calculations, the VBM correction is deemed to be very important due
to the unrealistic exchange-correlation behaviour of such energy functionals.
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Figure 1.18: Amplitude of the different contributions to the DFE of VSb1 and VSe1 in Sb2Se3 in Sb-poor/Se-rich synthesis conditions at
µEF

= 0 eV.

Table 1.5: Energy corrections to the defect formation enthalpy of two vacancies in Sb2Se3 in Se-rich/Sb-poor atmosphere. All values are
presented in electronvolt.

Name ED,q
tot − Ehost

tot

∑
niµi q∆EV ∆EPA zh+∆EV ze−∆EC ∆EMP ∆Eh+

MB ∆Ee−
MB Total corr

VSb1 (q=-3) 6.083 -5.064 0.330 0.621 0.000 0.000 0.552 0.000 0.000 1.503
VSb1 (q=-2) 6.318 -5.064 0.220 0.446 0.110 0.000 0.245 -0.034 0.000 0.987
VSb1 (q=-1) 6.631 -5.064 0.110 0.239 0.110 0.000 0.061 -0.116 0.000 0.405
VSb1 (q=0) 7.005 -5.064 0.000 0.000 0.110 0.000 0.000 -0.220 0.000 -0.110
VSe1 (q=0) 5.286 -3.702 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
VSe1 (q=+1) 5.053 -3.702 -0.110 -0.132 0.000 0.000 0.061 0.000 0.000 -0.181
VSe1 (q=+2) 4.423 -3.702 -0.220 -0.298 0.000 0.000 0.245 0.000 0.000 -0.273
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(a) (b)

(c) (d)

Figure 1.19: |∆Ecorr∑
|∆Ecorr| ratio for each state of charge of VSb1 in Sb2Se3 a) q = 0 b)

q = −1 c) q = −2 d) q = −3.

1.3.4 DFE plots, transition levels and dopability domain

This type of calculations allows one to represent the DFE with respect to the Fermi
level. As expressed in equation 1.7, ∆HD,q

f (µEF
) is a linear function of µEF

. A graphical

representation of ∆H
VSb1

f (µEF
) in Sb2Se3 is given in Figure 1.20 as an example. For

each value of µEF
, the state of charge of the defect is determined by the lowest formation

enthalpy. Thus, the minimum useful information is contained in the lowest formation
enthalpy within the bandgap (coloured in brown in Figure 1.20).

The charge may change depending on the position of µEF
in the gap. The special

Fermi level values at which these switches happen are called transition level. For a
transition between state of charge q1 and q2, it is noted εq1/q2 . Because of the linear

relation between ∆HD,q
f (µEF

) and µEF
shown in equation 1.29, straightforward algebra

yields the expression 1.30 for the transition level.

∆HD,q
f (µEF

) = ∆HD,q
f (0) + qµEF

(1.29)

εq1/q2 = −
∆HD,q1

f (0)−∆HD,q2
f (0)

q1 − q2

(1.30)

For chemists, an analogy can be drawn between the transition level εq1/q2 and the
pKa of an acid/base species, where the Fermi level µEF

corresponds to the pH. When
pH = pKa, [acid] = [base]. Identically, when µEF

= εq1/q2 , [Dq1 ] = [Dq2 ] as the

formation energies ∆HD,q1
f (εq1/q2) and ∆HD,q2

f (εq1/q2) are equal. As discussed in the

defect concentration section, as for pH > pKa, the ratio [Dq1 ]
[Dq2 ]

decreases sharply for
µEF

values above εq1/q2 so that one can consider that the whole population of defect D
switches charge from q1 to q2 when the Fermi level jumps over εq1/q2 particular value.
Of course, the same is true for µEF

< εq1/q2 . Note that the position of transition level
within the gap is independent from the synthesis conditions, i.e. chemical potential in
the model, it is a property of the defect itself. In the model, it is visible in equation 1.30
as the chemical potentials hidden in ∆HD,q

f (0) simplify in the energy difference.
The ∆Hf (µEF

) plots as presented in Figure 1.20 gives us two types of information.
The most obvious one is the energetic cost associated to the creation of the defect,
and this associated state of charge (exhibiting the lowest formation enthalpy of all
possible states of charge of the considered defect at the value µEF

of interest). The
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more important ∆Hf is, the less concentrated the defect will be in the material. The
concentration can be approximated as will be discussed in the dedicated section of the
manuscript. This information is available on the y axis of the plot and allows to see
which defects will be the most present. As we consider semiconducting hosts, defects
can be charged and we have just introduced the related charge transition level εq1/q2 .
The second type of information which can be extracted from this type of plot lies in
the analysis of the position of the transition levels with respect to the bandgap. They
give clues of the electronic activity of the defect, more precisely its ability to create
charge carriers. This analysis will allow us to characterise the defect as a donor or an
acceptor, and as a shallow or deep defect.
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Figure 1.20: VSb1
in Sb2Se3 formation enthalpy (Sb-rich/Se-poor synthesis conditions).

The defect is a donor defect favouring electron conductivity if it exhibits a transition
level between a state of charge q and another q′ < q close to the CBM (which can be
thermally activated). Conversely, it is an acceptor defect a transition level between
charges q and q′ < q in the vicinity of the VBM, as sketched in Figure 1.21. In a
n-type semiconductor at low temperature, the Fermi level is pinned between the donor
level and the CBM and decreases with temperature increase. The ionization of the
defect frees an electron in the system and can be written as Dq′ = Dq + (q − q′)e−.
In a p-type material, the Fermi level is located close to the VBM at low temperature
and then increases with temperature. The acceptor defect ionization is written as
Dq + (q − q′)e− = Dq′ . Defects exhibiting transition levels close to the band edges
are called shallow defect and participate in the electronic properties of the materials
desired for its application. Conversely, defects which have transition levels buried in
the bandgap far from the band edges are called deep defect. In the best case, they are
electrically passive. In the worst, they act as recombination centres for the electron-hole
pairs and are detrimental to the conductivity.

Our example presented in Figure 1.20, VSb1 in Sb2Se3, is an acceptor defect because
of the 0/-1 charge transition level located 0.15 eV above the VBM. In Se-poor/Sb-rich
conditions, it is quite high in enthalpy with more than 2.5 eV, so will not be very
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concentrated in the material in absolute value. However, the analysis of only one
potential candidate is a weak argument to try to rationalise the properties of the
material and it seems relevant to try to take into account as many realistic defects as
possible altogether.

Figure 1.21: Example of donor and acceptor defects DFE.

Then, all defect formation enthalpies can be summarized in Figure 1.22. Note that
these enthalpies correspond to a set of synthesis conditions reflected by the choice of
chemical potentials as highlighted previously. In the case of a binary material, there
are two atmospheres to consider as explained previously, which will result in two sets
of DFE to analyse, here Se-poor/Sb-rich and conversely Se-rich/Sb-poor conditions.

As mentioned earlier, there are several distinct crystallographic sites to consider
for the vacancies, more precisely two for VSb and three for VSe, due to low crystal
symmetry of the pristine material. Let us start with a few general comments. The
behaviour of VSb1 and VSb2 is quite close, both in terms of enthalpy and position of
the transition levels. VSe1 and VSe2 are very close to one another (∆H ' 0.07 eV) and
the transition level +2/0 of VSe3 is quite distinguished from the other two. Selenium
vacancies display a negative U behaviour as the intermediate charge level +1 is not
thermodynamically stable (not visible on the plot). 9 This is the case for chalcogenide
vacancies (sulphur and selenide) in most of the different materials studied (β−In2S3,
TiS2, CsCu5Se3). Then, let us focus our attention on the electronic properties of the
defects by looking at the position of the transition levels. As mentioned before, both
cationic vacancies are acceptor defect, but they are quite high in formation enthalpy so
will not be very concentrated. The anionic vacancies have a +2/0 transition level, so
should be donor defects thanks to the mechanism V 0

Se = V +2
Se + 2 e−. However, they

are very deep, with ε+2/0 more than 0.6 eV below the CBM, so will not give electrons
to the CB of the host material. Nevertheless, they may very well capture the holes
liberated by the formation of VSb, even more so as they are higher in concentration
due to a lower formation enthalpy.

Experimentally, Sb2Se3 is known to be a p-type semiconductor.[171] The vacancies
do not quite explain the origin of the properties of the material. Other defects need
to be considered in order to rationalise the origin of the p-type. Interstitials were
studied and both found to be very high in enthalpy. Antisites were also considered.
Thanks to the ability of antimony to act both as a cation Sb3+ (5p0) as in the host
lattice and an anion Sb3– (5p6), the substitution SbSe is very likely, especially in Se-
poor conditions logically (more VSe), as shown in Figure 1.23. Usually, the coulombic
repulsion energetically hinders the presence of an cation on an anionic site and the

9. Although not thermodynamically stable, the metastable state of charge may intervene in some
optical phenomena. Defect-induced luminescence can be related to electrons trapped in such state for
a finite time.
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Figure 1.22: Sb2Se3 vacancies formation enthalpies.
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other way around. SbSe3 is the best acceptor of all three SbSe antisites as its charge
transition level is the closest to the VBM. However, it is not a very shallow defect as
ε0/−1 ' 0.2 eV and it explains the fair but insufficient for application p-type of the
material. This highlights the amount of information which can be extracted from such
plots and the power of rationalisation of such method.
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Figure 1.23: Antisites in Sb2Se3 formation enthalpy (Sb-rich/Se-poor synthesis condi-
tions).

Finally, the dopability limit of the material can be deduced from the defect form-
ation enthalpies. Indeed, a negative formation enthalpy means that the defect will
always be created. For example, in the case of an interstitial atom, it means that any
extra atoms added during the crystal growth process will favour the interstitial position
over its “normal” crystallographic site. Thus, the host material in such conditions is not
stable: as more and more defects add up during growth, the crystal’s stoichiometry
drives away from the desired one and the material will ultimately undergo a phase
transition towards another compound. As one is looking at the stabilisation of defects
in the host, this forbids for µEF

all the domains where at least one defect has a negative
defect formation enthalpy. Thus, the defect with the lowest DFE sets the limits of the
range allowed for µEF

. This is the principle of the determination of the dopability
domain of a material, as sketched in Figure 1.24.
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VBM CBM

VBM CBM

Figure 1.24: Dopability domain (green) and forbidden domain for µEF
(red). The

black dotted line is the zero enthalpy limit. The first material (top) cannot be p-doped
because the Fermi level cannot approach the VBM. Conversely, p-doping of the second
(bottom) is allowed because the vicinity of the VBM is an allowed region for µEF

.

1.4 Fermi level and defect concentrations

Following the hypothesis that all defects are formed during synthesis and that the
structure is then quenched to room temperature, the concentration nD of defect D
appearing during crystal growth is modelled by a Boltzmann statistic,[172] as expressed
in equation 1.31 (N sites

D is the number of sites available for the defect, Tgr the growth
temperature and Egr

F the Fermi level at growth temperature).

nD = N sites
D .(e

−∆H
D,q(E

gr
F

)

form
(E

gr
F

)

kBTgr ) (1.31)

The other underlying assumption is that the whole population of this defect is in
one stage of charge q(Egr

F ) determined by the Fermi level during synthesis Egr
F . A

quick calculation confirms that this approximation is fairly reasonable. The difference
in energy of two states of charge q and q′ can be expressed as (q−q′)(µEF

−εq/q′), hence

ln [Dq ]

[Dq′ ]
=

(q−q′)(µEF
−εq/q′ )

kBT
. Numerical application gives 2% for µEF

− εq/q′ = 0.1 eV at

300 K.
To do so, one must first know the position of the Fermi level during crystal growth

Egr
F . The material must stay globally electrically neutral, so the balance of charge must

be zero. This is formalised as equation 1.32 which can be solved iteratively with any
standard root-finding algorithm.

−ne−(Egr
F ) + nh+(Egr

F ) +
∑
D

qDnD,q,Tgr(E
gr
F ) = 0 (1.32)

where ne− and nh+ are the concentrations of free electrons and holes expressed as
Fermi-Dirac distribution as given in equation 1.33. The effective masses needed in the
theoretical expression of the DOS given in equation 1.34 can be obtained through the
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popular parabolic band hypothesis by fitting equation 1.35 to the band extrema. ne− =
∫ +∞
ECBM

ge−(µ)fFD(µ)dµ

nh+ =
∫ EV BM

−∞ gh+(µ)(1− fFD(µ))dµ
(1.33)

gp(µ) =
1

4π2

(2m∗p
h̄2

) 3
2
√

(µ) with p ∈ {e−, h+} (1.34)

 EV B = EV BM − h̄2

2m∗
h+
k2

ECB = ECBM + h̄2

2m∗
e−
k2

(1.35)

Defect concentrations for the Sb2Se3 example are shown in Figure 1.25.
The material is then considered quenched: all the defects are formed during syn-

thesis and the population is supposed not to evolve. Only the charges can change. This
approach remains valid for quite a long period of time, as long as oxidation caused by
O2 and water in the environment and migration/clustering of defects are negligible.
The same approach can be used to deduce the Fermi level at work temperature Tw E

w
F

(with Tw < Tgr). In the previous expression 1.32, the defect concentration is kept con-
stant to nD,Tgr , which yields equation 1.36. The behaviour of the Fermi level in Sb2Se3

is plotted against room temperature in Figure 1.26. One can recognise the typical
behaviour of a p-type semiconductor with the Fermi level located near the VBM at low
temperature and increasing towards the middle of the bandgap at higher temperature
as the defects are ionised.

−ne−(Ew
F ) + nh+(Ew

F ) +
∑
D

qDnD,Tgr = 0 (1.36)

Noteworthily, this methodology is not limited to the study of point defects in the
bulk material (3D). It can be easily adapted to materials with lower dimensionality 10

provided that the theoretical expressions of the DOS given for the 3D case in equa-
tion 1.34 are replaced by the appropriate ones. Such method has been applied for
instance to single layer of MoS2.[173, 174]

1.5 Integration into PyDEF 2.0

As seen in the previous part, one must compute a set of calculations per defect
and per charge, quickly leading to quite a handful of files to manipulate. An auto-
mated solution may come quite handy. Several open source tools exist, most notably
Pymatgen, [175]. However, one must have programming skills to use it. In order to
promote point defect modelling among a broader community and possibly enlarging
the users to experimentalists, PyDEF, featuring a Graphical User Interface (GUI), was
developed in the laboratory. Version 1.1 [176] offered useful post-treatments such as
band diagrams, density of states...

We proposed PyDEF 2.0 [117] in 2018, featuring a brand new GUI to enable a
better user experience with an advanced file management system and new functional-
ities (band diagram for hybrid functionals, optical indices, multiple defect formation
energies...). The source code is available on the sharing platform GitHub 11.

10. For instance, 2D materials such as single layers of Transition Metal Dichalcogenides (TMD)
11. https://github.com/PyDEF2/PyDEF-2.0
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Figure 1.25: Sb2Se3 intrinsic defect concentrations.
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Figure 1.26: Sb2Se3 Fermi level plotted against room temperature as determined by
solving equation 1.36.

The chosen programming language is Python to enhance readability and flexibility.
The detailed list of functionalities offered by PyDEF 2 is the following:

— electronic properties (band diagram, DOS)
— optical indices
— stability domain plots
— defect formation enthalpies
— parabolic fit of band extrema
— defect concentrations
— Fermi level variations
Additionally, the following functionalities are under test for PyDEF 3:
— Birch-Murnaghan equation of states
— phonon-related properties via the incorporation of Phonopy[177] and Phonopy-

Spectroscopy[178]
— calculation of the stability domain in any dimension
— post-treatment of TD-DFT[179] computations
— Bethe-Salpeter equation[180] compatibility
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Chapter 2

Intrinsic and extrinsic point defects
in β-In2S3

2.1 Introduction

As mentioned in the introduction, the electronic properties of applicative materials
are often driven by point defects. Now that relevant tools for their modelling has
been introduced in Chapter 1, let us apply this methodology to materials exhibiting
interesting properties for potential applications.

One current motivation behind the search for new materials is to tackle the issue
of sustainable energy generation faced by our societies. Photovoltaic (PV) electri-
city generation has emerged as one key technology in the portfolio of potential tools
to address this problem. The first generation of industrial PV solar cell is built on
the knowledge acquired by the electronic industry on silicon. However, the indirect
character of its bandgap results in thermal losses under light absorption. The thick-
ness of the active layer, and subsequently the amount of material used, is more im-
portant than for other types of absorbers. For these reasons, competing technologies
have been developed. Among the 2nd generation materials, CdTe and chalcopyrite
CuIn1-xGax(SySe1-y)2 (CIGS) thin films are the most mature technologies with efficien-
cies routinely outperforming the 20% threshold.[181]

Our research team has an expertise in the second, CIGS-based, thin film technology
with the French record of 20.0% for the CIGS technology.[182] The typical architec-
ture SLG 1/Mo/CIGS/CdS/ZnO/Ni:Al of such device is visible in Figure 2.1a. 2 The
role of each layer is detailed in Figure 2.1b. The active layer of the solar cell is the
chalcopyrite p-type absorber, in which the absorbed light generates electron-hole pairs
due to the photovoltaic effect. To generate the p − n junction which will allow the
charge separation, a n-type buffer layer is deposited on top of it. In industrial architec-
tures, the usual buffer material is cadmium sulphide.[183] However, this choice has two
main drawbacks. Cd is a rare and toxic element. Environmental concerns, potential
future legislation and additional worker protection costs constitute a risk for industrial
production. Secondly, the Chemical Bath Deposition (CBD) 3 required to synthes-
ise the buffer breaks the otherwise all-vacuum deposition process, raising production
costs.[184]

1. Soda-Lime Glass
2. courtesy of Dr. S. Harel
3. CBD consists in dipping the substrate in a solution containing the dissolved precursors, which

react to form the desired material onto the substrate.
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(a)
(b)

Figure 2.1: a) Scanning electron microscope cross-section of a typical CIGS photovol-
taic solar cell b) CIGS photovoltaic solar cell.

For these two reasons, alternative buffer materials have been considered, such as ZnS,
Zn1-xMgxO, (Zn,Sn)Oy and In2S3.[183, 185] The latter is of longstanding interest within
our team.[186–191]

In2S3 was suggested for use as a buffer after the presence of CdIn2S4 compounds was
noticed at the interface between the CIGS absorber and the traditional CdS buffer.[192,
193] The role of intrinsic defects in the parent compound CdIn2S4 was investigated
within our team prior to this work.[168] Removing cadmium from this structure, it is
possible to obtain the solid-solution Cd1-xIn2+ 2x

3
S4 for x ∈ [0, 1], which undergoes a

phase transition from the CdIn2S4 spinel structure to the tetragonal one of β-In2S3 at
x ' 0.7.[194] Although a wet chemistry process is possible to synthesise In2S3, [195]
Physical Vapour Deposition (PVD) is of practical interest to prepare devices. The
principle of this technique is reminded in Figure 2.2.

(a)

(b)

Figure 2.2: a) Principle of PVD. Under vacuum, the elemental sources are heated
to evaporate the elements which react together to form a thin film of material on the
substrate. b) Picture of the experimental setup.

In spite of the applicative potential of In2S3, a study of intrinsic point defects of
indium trisulphide was still missing at the time. This study aims at filling this gap to
provide the missing elements to rationalise the electronic properties of buffer material
β-In2S3.

48



2.2 Computational details

DFT calculations were performed within the GGA approximation using the PBE
functional[196] in a planewave scheme as implemented in the Vienna Ab Initio Simu-
lation Package (VASP).[197–200] The planewave energy cutoff was set to 550 eV. The
energy difference between steps in the cycle was converged down to 10−5 Å together
with a stopping criteria on forces inferior of 10−2 eV/Å. 4 × 4 × 2 and 9 × 9 × 3
Monkhorst-Pack grids[201] were used to sample the first Brillouin zone for structural
relaxation and DOS calculations, respectively. The fairly big conventional cell of ideal
β-In2S3 (roughly 7.6× 7.6× 32 Å) containing 80 atoms was used throughout the point
defect study. A calculation was performed on a 2 × 2 × 1 supercell of 320 atoms and
confirmed the supercell convergence size. 5s25p1, 3s23p4, (n-1)p6ns1, (n-1)s2(n-1)p6ns2

valence electrons were explicitly treated for In, S, Na (n= 3), K (n= 4), Rb (n= 5),
Cs (n= 6), and Mg (n= 3), Ca (n= 4) and Sr (n= 5) atoms, respectively. Careful
checks were carried out to ensure that In-4d10 electrons can be safely neglected. Test
calculations demonstrated that spin-polarisation is negligible.

In order to correct the band edge positions, a PBE0 DOS calculation was per-
formed on top of the PBE geometry, a scheme often referred to as PBE0@PBE. It
yields a bandgap 8% higher than the experimental one, much more appropriate than
the 60% underestimation of PBE. To validate our methodology, we checked the ob-
tained DFE against full hybrid PBE0@PBE0 calculation for VS. These results are also
fully consistent with an independent and simultaneous study reported by Ghorbani et
al.[202] performed at the hybrid level of theory with a tuned HSE functional (α = 1

4
,

ω = 0.13 Å–1). As described in details in Chapter 1, a potential alignment ener-
getic correction was employed, along with electrostatic Makov-Payne like correction,
Moss-Burstein-type spurious band filling and Perturbed Host States (PHS) correction.

All post-treatments were performed using our in-house code PyDEF.[117, 176]

2.3 Results and discussion

2.3.1 Properties of the pristine material

Before studying point defects, one must first pay attention to the properties of the
pristine material and make sure that the model captures enough physics to reliably
reproduce experimental data. The starting point is of course a good description of
the system, i.e. of the crystallographic structure. Three different phases are reported
for the In2S3 stoichiometry, depending on synthesis temperature.[203] At the relatively
low temperatures used during the solar cell elaboration, the compound adopts the
tetragonal form β, following the I41/amd-141 space group symmetry as presented in
Figure 2.3b. Indium atoms occupy three distinct crystallographic positions, namely 8c,
16h and 8e Wyckoff sites, split between octahedral environment (green) for two-thirds
(8c and 16h) and the remaining third in tetrahedral environment (orange) (8e Wyckoff
position). The S2– anions occupy the same crystallographic position (16h). Three
different environments can be distinguished. S1 refers to 4 folded S atom, coordinated
to three In in octahedral environment (Oh) and one In in tetrahedral environment
(Td). S2 is tricoordinated (3Oh), as well as S3, (2Oh + 1 Td). The structure derives
from the spinel structure with an organisation of the vacancies leading to an empty Td

4a site. Noteworthily, a high-temperature α-phase with random occupations of this site
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exhibits a spinel structure,[203] which is also the structural type adopted by the parent
compound CdIn2S4 as discussed at the beginning of the present chapter.[168] The
computed β-In2S3 cell parameters of a = b = 7.776 Å and c = 33.097 Å overestimate
the experimental ones by no more than 2.5%. As discussed previously, this good
reproduction of the structure is consistent with general trends in GGA.

(a)

(b)

(c)

Figure 2.3: a) Crystallographic structure of spinel α-In2S3 high temperature phase.
Vacancies are randomly distributed on the tetrahedral sites, resulting in a Fm3m (no
225) space group symmetry. a = 10.8315(2) Å.[203] b) Crystallographic structure of
β-In2S3 (I41/amd, no 141). It is obtained from the α spinel structure by an ordering
of the vacancies along the c axis, and can thus be viewed as a faulted spinel struc-
ture (� 1

3
In 2

3
)Td

In2(Oh)S4. Yellow spheres represent sulphur atoms while dark spheres

represent indium atoms. Two-thirds of the In sit in octahedral environment (green)
and the remaining third in tetrahedral environment (orange). a = b = 7.6205(2) Å,
c = 32.3603(7) Å.[204] c) Relationship between α spinel cell (black and grey) and β
cell (red).

Next, we investigate the electronic properties of the ideal material. The GGA-PBE
electronic band structure and associated DOS of the pristine material are presented in
Figure 2.4. It exhibits a direct bandgap of 0.79 eV reached at the Γ point. As expected,
this value is largely underestimated by roughly 60% compared to the experimental gap
of 2.05 eV[205]. The top of the VB is very flat while the bottom of the CB is highly
dispersed. This will induce high hole effective mass and low mobility, and conversely
high electron mobility. The effective masses of the charge carriers are obtained by
fitting a parabola onto the band edges as stated in equation 1.35 of Chapter 1, yielding
m∗h = 23.14me and m∗e = 0.082me. The top of the VB is mainly build on sulphur p
orbitals while In s orbitals fairly contribute to the CB in the vicinity of the CBM.

As the positioning of the Defect Transition Levels (DTL) with respect to the band
edges is key to evaluate the propensity of the defects to create free charge carriers,
it is necessary to correct the energetic level of the VBM and CBM. Herein, we use
PBE0@PBE band structure to do so. PBE0@PBE DOS calculation yields a more
appropriate bandgap value of 2.22 eV, overestimating the experimental by only 8%.
This leads us to shift the bands by ∆EV = −0.99 eV and ∆EC = 0.48 eV.
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Figure 2.4: Electronic band diagram and DOS of ideal β-In2S3 calculated using GGA-
PBE functional. The VBM has been taken as reference for the energies, corresponding
to the horizontal dashed line. The vertical dashed lines correspond to high symmetry
k-points in reciprocal space.

2.3.2 Intrinsic defects

As mentioned in Chapter 1, one needs to evaluate the possible range of chemical
potentials of the two chemical species involved, In and S, by calculating the stability
domain. Consistently with the rest of the study, it is computed at the GGA level. The
calculated stability domain is presented in Table 2.1 and Figure 2.5. The sulphur rich
limit is determined by the formation of the first grain of crystalline sulphur S8. In this
case, the chemical potential of sulphur µS remains equal to the reference thermody-
namic potential of this element µ0

S and the deviation is zero ∆µS = 0. Conversely, the
existence of another possible binary compound within the In-S system, InS, pushes the
S-poor/In-rich limit above the ∆µIn = 0 limit case set by the formation of In grains
during synthesis. In summary, the stability domain of β-In2S3 is bounded by the ones
of sulphur on the S-rich/In-poor side and of InS on the S-poor/In-rich side.

Table 2.1: Chemical potential limits of β-In2S3 stability domain. (µ0
S = −4.00 eV,

µ0
In = −2.31 eV).

(eV) µS (∆µS) µIn (∆µIn)
S-poor/In-rich -4.90 (-0.90) -2.78 (-0.47)
S-rich/In-poor -4.00 (0.00) -4.12 (-1.81)

Both anionic and cationic vacancies are studied. Rigorously, crystallographic po-
sitions must be distinguished, leading to three different sulphur vacancies and three
indium ones. Additionally, as we are looking for electron donor defects, we also study
cation self-interstitials within the two different environments, octahedral and tetrahed-
ral, labelled accordingly. The DFE curves plotted against Fermi level are presented in
Figure 2.6.

Let one start the analysis with the S-rich/In-poor limit synthesis conditions. β-
In2S3 is known experimentally to be a n-type material, thus we look at potential donor
defects, namely the three sulphur vacancies and the indium interstitials. Ini(Td) has a
transition level +2/+1 0.2 eV under the CBM. ε+2/+1 and ε+3/+2 are also very close,
so that the simplification to +3/+1 states of charge appears as a reasonable shortcut.
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Figure 2.5: Stability domain of β-In2S3 presented in (∆µIn, ∆µS) chemical potential
plane.

VS transition levels are a bit further from the CBM, roughly 0.3 eV under the CBM.
The best donor defect thus appears to be Ini(Td), and then to a lower extent VS1

.
However, in S-rich/In-poor synthesis conditions, the DFE of both donors is fairly high,
above 2 eV. Most importantly, a (very deep) acceptor, VIn(16 h), has a lower DFE. It
means that VIn(16 h) will be more concentrated in the material than the donors, and
will act as an electron killer, annihilating the electrons formed during the creation of
Ini(Td) and VS1

. The electronic conductivity of a β-In2S3 sample synthesised in such
conditions is thus expected to be quite low.

All intermediate synthesis conditions between the S-rich/In-poor and S-poor/In-rich
limits are reachable given the appropriate setup, but looking at the two limit cases is
enough to get the trends. Indeed, any intermediate atmosphere is a linear combination
of the two. This is why we then focus our attention onto the S-poor/In-rich limit
condition set by the formation of InS. First, let us note that the DFE of VS and VIn

is lower, respectively higher, than in the previous conditions. The model is coherent
with the intuition that VS are easier to form in S-poor atmosphere. Interestingly, the
formation of Ini(Td) and VS1

donors is now energetically favoured over that of electron
killer VIn(16 h). From these results, one can conclude that one should synthesise β-
In2S3 in S-poor/In-rich conditions in order to get more free electrons in the CB and a
material of better n-type character.

Noteworthily, one can notice that, although the crystallographic site of the defect
induces some differences in DFE between defects of the same type, the coordination
of the ion is the driving force for the different defect behaviour. This can be seen
especially on VIn here, with six-folded vacancies VIn(16 h) and VIn(8 c) having roughly
the same transition levels, quite distinct from those of VIn(Td). This can help reduce
the number of computations when necessary.
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Figure 2.6: β-In2S3 intrinsic defects formation enthalpy vs. Fermi level a) in S-rich/In-
poor synthesis conditions (∆µIn = −1.81 eV, ∆µS = 0.00 eV) b) in S-poor/In-rich
synthesis conditions (∆µIn = −0.47 eV, ∆µS = −0.90 eV).
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Then, defect concentrations can be calculated, as presented in Chapter 1. The
evolution of simulated defect concentrations with respect to crystal growth temper-
ature is presented in Figures 2.7b and 2.7a. The temperature range is chosen very
wide to highlight the trends, although some temperatures are unrealistic for real-life
synthesis. More specifically, temperatures below 300 K and above the sublimation
temperature of the material at synthesis pressure are shown only to check the con-
sistency of the model. Defect concentrations increase with temperature, consistently
with the Boltzmann distribution of equation 1.31 presented in Chapter 1. It translates
the intuition that disorder increases with temperature, or conceptually the entropic
contribution increases with temperature. In S-poor atmosphere, VS become more con-
centrated than Ini(Td) over ' 750 K. At a realistic temperature for PVD of 550 K,
the concentration of the majority defect Ini(Td) is ' 1015 cm−3 in S-poor synthesis
conditions with the Fermi level lying ' 0.10 eV below the CBM. This concentration is
coherent with orders of magnitude given in the introduction of the manuscript. The
free electron carrier concentration of the same order of magnitude indicates a fair but
not exceptional electronic conductivity which matches experimental knowledge on this
material.[192]

2.3.3 Partial conclusion on intrinsic defects

Based on our calculation, we have identified a plausible origin of the n-type con-
ductivity of buffer material β-In2S3. Ini(Td) and to a lesser extent VS1

are the major
donor defects in the material. In S-rich/In-poor conditions, VIn(16 h) plays the role of
an electron killer and is detrimental for the targeted properties. Thus, it appears more
favourable to synthesise the material in S-poor/In-rich conditions for the solar cell ap-
plication. Due to the low vapour pressure of sulphur, these conditions are realistically
achievable experimentally when using PVD.

2.3.4 Study of the impact of alkali on the buffer layer

So far, our study has focused on intrinsic defects, inherent to the structure. How-
ever, in real materials, impurities can exist. In the CIGS community, a current interest
is the impact of alkali on the cell efficiencies. Historically, Stolt et al. first noticed a
significant positive effect of sodium and potassium diffusion from the SLG substrate to
the solar cell’s upper layers on its conversion yield.[206, 207]. A chemical bath post-
deposition step with concentrated sodium/potassium fluoride (NaF/KF) was added
to the process, driving performance upwards.[208–213] Ab initio investigations on the
effects of alkali have recently been carried out [91, 139, 202, 214–217]. Meanwhile,
the experimental community has been pushing further on this track. Heavier alkali
elements namely rubidium [218–222] and caesium have even been tried out with suc-
cess [223, 224]. Thus, we decided to study the impact of alkali defects on In2S3, for
Na, K, Rb and Cs. This is a subject of interest for experimentalists in our team[225–
229] and still a relevant topic for the community as the mechanisms are still not fully
understood [230, 231] It also raised interesting technical questions on the modelling de-
tails. The point defect model should give clues to distinguish between two scenarii: the
formation of an alkali-rich phase at the grain boundaries or the stabilisation of alkali
atoms as impurities in the bulk β-In2S3 as point defects, as depicted in Figure 2.8.
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Figure 2.7: β-In2S3 intrinsic defect concentrations vs. synthesis temperature a) in S-
rich/In-poor synthesis conditions (∆µIn = −1.81 eV, ∆µS = 0.00 eV) b) in S-poor/In-
rich synthesis conditions (∆µIn = −0.47 eV, ∆µS = −0.90 eV).
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The same methodology as for intrinsic defects is employed. Note that the meth-
odology presented in Chapter 1 only relies on the diluted hypothesis. The intrinsic or
extrinsic character of the defect does not matter, as long as the defect concentration
remains low. Of course, when the extrinsic species is intentionally introduced in the
material, the amounts may be more important than in the case of impurities. As long
as the dilute approximation stands, the methodology can provide relevant information.
The case of solid-solutions ought to be distinguished. However, even in the dilute case
for an extrinsic defect, a conceptual problem emerges for the model. Whereas it was
clear that host element chemical potentials are obtained from the computation of the
stability domain of the host phase, In2S3, how to chose the chemical potential of the
impurity is a bit less clear. In several DFT point defect studies involving extrinsic de-
fects, the chemical potential of the impurity is taken as the reference thermodynamic
value.[232, 233] Some other authors recommend to calculate a wider stability domain
including potential compounds formed by the host chemical species reacting with the
impurity.[234, 235] Based on the method presented in Chapter 1, the latter seems more
theoretically justified. This study gives us an opportunity to clarify this technical point
on a matter of applicative interest.

Figure 2.8: Considered scenarii for the effect of alkali diffusion in CIGS solar cells.
The diffusion was first coming from the soda-lime glass substrate (primary source) and
following its positive impact on the cell efficiency, an additional CBD treatment was
added to the fabrication process (secondary source), as depicted in the left-hand side.
Two different physical mechanisms can be triggered by the presence of extrinsic sodium
in the buffer layer, as represented in the right-hand side. Green regions represent new
phases and black dots the insertion of the alkali atoms in the β−In2S3 host lattice.
The calculations aim at understanding which one most probably happens during the
deposition process.

For the sake of clarity, the chemical potentials issue is presented first for the cases
of Na and K impurities in β-In2S3. The analysis on Rb and Cs will be included within
the discussion once the chemical potential choice problem is settled. The first method
consists in keeping the In-S chemical space to compute the stability domain of In2S3 as
obtained in Figure 2.5 and using the reference value for Na µ0

Na = −1.06 eV (∆µNa = 0)
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and K µ0
K = −0.80 eV (∆µK = 0), as calculated by Stevanovic et al. within the FERE

scheme.[236] Alternatively, one can work within the Na/K-In-S system. This bigger
system additionally includes binary and ternary compounds containing the impurity
element such as NaS2 and NaInS2. The stability domain of In2S3 in this system is
defined by the limit of formation of all possible phases, as expressed for the Na-case in
equation 2.1, and plotted in Figure 2.9. NaInS2 exhibits the lowest formation enthalpy.
Thus, it sets the upper limit for µNa in In2S3 stability domain. This way, we obtain the
maximum possible value for ∆µmaxNa = −1.79 eV, corresponding to µmaxNa = −2.85 eV.
This is significantly lower than the FERE value µ0

Na = −1.06 eV taken as the reference
for metallic sodium. A similar scheme yields ∆µmaxK = −1.99 eV set by KInS2.

∆µNa + ∆µS ≤ ∆Hf (NaS)
∆µNa + 2∆µS ≤ ∆Hf (NaS2)
∆µNa + ∆µIn ≤ ∆Hf (InNa)
2∆µNa + ∆µIn ≤ ∆Hf (InNa2)
∆µNa + 3∆µIn ≤ ∆Hf (NaIn3)
2∆µNa + 5∆µS ≤ ∆Hf (Na2S5)
2∆µNa + ∆µS ≤ ∆Hf (Na2S)
3∆µNa + ∆µIn + 3∆µS ≤ ∆Hf (InNa3S3)
5∆µNa + ∆µIn + 4∆µS ≤ ∆Hf (InNa5S4)

(2.1)

Figure 2.9: Na - In - S phase diagram intersection with β−In2S3 stability domain
(encapsulated) shown in the (θ,∆µX) plane, with θ the progression from S-rich to
S-poor in the stability domain of β−In2S3 (θ ∈ [0, 1]).

The DFE of Nai and Ki with each choice of chemical potentials are compared in
Figure 2.10. The analysis of the DFE of Nai is not so straightforward, so let one start
with Ki. When taking ∆µK = 0, the DFE is negative for the whole bandgap. It
means that the formation of Ki would be energetically favoured over that of the host.
Any additional potassium atom added to the In2S3 matrix would necessarily take the
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interstitial position and the stoichiometry of the crystal under formation would not
grow to be In2S3 but another compound. However, let one keep in mind that the
situation ∆µK = 0 represents growth conditions so K-rich that they are on the edge
of forming solid potassium. This is hardly representing the situation of an impurity
element in a matrix, and intuitively consists in taking a chemical potential value far
too high (too small in absolute value). Then, let one take the chemical potential
calculated within the K-In-S system. This time, ∆µK < 0. The value set by the lowest
formation enthalpy compound KInS2 is ∆µK = −1.99 eV. Since µ = µ0 + ∆µ and the
chemical potential of an interstitial atom is subtracted to the total supercell (nK = −1
in equation 1.7), going from ∆µ = 0 to ∆µ < 0 lifts the DFE up. As can be seen in
Figure 2.10, for ∆µK = −1.99 eV corresponding to the upper µK limit of the stability
domain of β-In2S3, the DFE of Ki is positive. Thus, it should be possible to stabilise
Ki interstitial defects within the β-In2S3 matrix. However, the limit of solubility of
K in β-In2S3 is not set by solid potassium but by KInS2. This has a strong impact
on the behaviour of the point defect model. Taking ∆µK = 0 (µK = µ0

K) as a value
leads to an inappropriate conclusion of destabilisation of the host, because it represents
growth conditions at the limit of forming K(s). It is much more justified to calculate
the stability domain of the host within the K-In-S system and use the (much lower)
value obtained this way.
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Figure 2.10: DFE plotted against Fermi level for the main intrinsic defects of β-In2S3,
Nai and Ki in S-poor atmosphere. The chemical potential of the impurity is taken as
the reference thermodynamic potential (FERE) value (dashed line) and at the limit of
formation of AInS2 (A= Na,K) (solid line).

Now that this technical point has been clarified and before moving on to Rb and
Cs, let one examine the Na case. As for K, using ∆µNa = 0 in the point defect model
leads to a negative DFE. As exposed for K, it is more realistic to take into account
the possible formation of competing compounds. The same stoichiometry 1:1:2 sets
the boundaries of the domain as for the K case. The resulting DFE is improved,
however is still negative (∆HNai,0 = −0.44 eV). One can provide an explanation for
this behaviour. The host structure grown in S-poor conditions is the one containing
the most defects, as highlighted by the previously calculated defect concentration. The
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stability domain however is calculated using only ideal structures. The true boundary
of In2S3 stability domain on the µNa axis should ideally be calculated while taking
defects into account. However, as practically it is needed for the DFE, it would be an
iterative process, and would multiply the already high number of calculations by the
number of phases in the ternary system.

The limit chemical potential value can be calculated for Rb and Cs as well. All
values are summarised in Table 2.2. They decrease (increase in absolute value) with
the atomic number and the cation size. From these values, one can calculate the
DFE of other extrinsic defects. AIn substitutions DFE were calculated, as presented
in Figure 2.11. They are found to be much higher in enthalpy than intrinsic defects
and thus will not play a major role. Noteworthily, the transition levels do not depend
much on the atomic number within the alkali column, and the DFE increases with the
atomic number.

Table 2.2: Maximum chemical potentials for extrinsic alkali dopants in β−In2S3 in
S-poor atmosphere.

Alkali ∆µmax (eV) Phase
Na -1.79 NaInS2

K -1.99 KInS2

Rb -2.03 RbInS2

Cs -2.11 CsInS2
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Figure 2.11: DFE plotted against Fermi level for the main intrinsic defects of β-In2S3,
and AIn (A=Na,K,Rb,Cs) substitutions in S-poor atmosphere. Once the lowest DFE
substitutional site has been identified for Na, it is the only site shown for the remaining
alkali elements.

A study of Ghorbani and Albe was published shortly before the end of the present
work on this matter.[202] The DFE of interstitials and substitutional defects obtained
in this work match those from ref[202]. However, since ref[202] discussed an unlikely
cation impurity on anionic site substitutional defect, we investigated this NaS defect
as well. We found that the structural relaxation leads to a VS + Nai complex.
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2.3.5 Partial conclusion on alkali defects

On the simulation side, the investigation of alkali impurities in buffer material β-
In2S3 clearly shows that it is necessary to take into account all possible competing
compounds containing the impurity element and not only its thermodynamic state
of reference to provide realistic chemical potential values. It should be highlighted
that this task is now made easier by open access simulation databases which offer pre-
converged starting geometries for numerous structures.[237] The values were obtained
for all alkali from Na to Cs and the AInS2 (A= Na,K,Rb,Cs) phase always incriminated
for limiting the host stability domain. All four alkali exhibit interstitial defects as
the major extrinsic defect in the material. From the electronic point of view, their
transition level does not depend on the atomic number. However, the DFE increases
with Z, probably due to size effects. The negative DFE of Nai in S-poor atmosphere
singles out but can be correlated to a different crystallographic structure, as NaInS2

crystallises within the R-3mH (166)[238] space group whereas all AInS2 (A=K, Rb,
Cs) structures are isostructural and within the C2/c (15) space group.[239, 240] This
negative DFE suggests the decomposition of the host matrix following the reaction 2.2.

β − In2S3+Na→ NaInS2+InS. (2.2)

In fact, the maximum chemical potential value allowed for the host is so small (very
negative), even for the other alkali elements, that one can wonder whether the concen-
trations used experimentally do not overcome it, and lead to a similar decomposition for
the other alkali as well. This interpretation is corroborated by experimental data on the
presence of related compounds such as RbInSe2 at the interface with the absorber[241]
and the subsequent use of similar compound as alternative buffer.[242, 243] The study
of the extrinsic point defects involved allow to identify the mechanism of degradation
as an attack of the alkali element on the vacant interstitial site of the structure.

2.3.6 Further investigations on chemical potentials: experi-
mental clues with the case of alkali-earth

Following this principle to calculate more relevant chemical potential values for ex-
trinsic elements, one can wonder if it is possible to forecast difficult doping (in the
thermodynamic limit) from very negative limit values of chemical potentials before
starting the point defect calculations. We embarked on a joint experimental and theor-
etical study on alkali-earth doping of β-In2S3 to try to give food for thought regarding
this question. The stability domain of β-In2S3 was calculated for alkali-earth dop-
ing from Mg to Sr using the same methodology as described in section 2.2. Ba was
not studied to alleviate the computational cost, as spin-polarisation effects ought to
be taken into account for such element. Mg-doping of β-In2S3 was also investigated
experimentally.

2.3.7 Experimental setup

Synthesis

First trials were conducted by PVD on a SLG substrate successively deposing MgF2

then InxSy, in the hope that Mg would migrate from the middle layer to the upper layer.
These trials proved unsuccessful. Joint evaporation of MgS, In and S on three different
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substrates, namely SLG/SiN, SLG/Mo and directly upon SLG allowed to synthesise
thin-film samples, but the film morphology proved to be inappropriate for several char-
acterisation techniques on questions related to doping. In particular, X-Ray Diffraction
(XRD) patterns were unexploitable, and Transmission Electronic Microscopy (TEM)
as well.

In the end, it was found most appropriate to synthesise powder in sealed silica
tubes, from MgS and β-In2S3. Several synthesis protocols were tested on a combina-
tion of different heating programs, carbonated silica tubes or pure silica tubes, use of
MgS+In+S or MgS+β-In2S3 as precursors and with and without an annealing step.

β-In2S3 was prepared in sealed silica tubes from In (pellets, Sigma-Aldrich, 99.99%
purity) and S (powder, Fluka, 99.999% purity) heated at 20◦C.h−1 up to 450◦C.h−1.
They were kept at this temperature for 1h, then underwent a temperature ramp of
100◦C.h−1 up to 1000◦C. The obtained bulk material was manually grinded to powder
and mixed with MgS (200 mesh powder, Cerac, 99.9% purity) and placed in a carbon-
ated silica tube. Heating steps were the same as for obtaining the β-In2S3 precursor.

Target compositions including different amounts of Mg were tested during the suc-
cessive trials (%mol = 1, 5, 10, 15, 40). Typical sample masses were roughly 1 g.

Analysis

Diffraction patterns were first recorded at ambient temperature using a Bruker
D8 Advance diffractometer (Bragg-Brentano geometry, Cu-Kα1 X-ray source emission
wavelength) with a Ge (111) monochromator. However, Rietveld refinements, per-
formed with the Jana2006 program[244], could not converged due to very important β-
In2S3 grain anisotropy. Subsequently, diffractograms were obtained on an Inel CPS120
diffractometer (Debye-Scherrer geometry, Cu-Kα1 X-ray source emission wavelength)
using a 0.1 mm capillary.

Energy-dispersive X-ray spectroscopy (EDX) was performed on polished sections
of samples embedded in epoxy using a Scanning Electron Microscope (SEM)(5800LV
from Jeol) operating at 7 kV. In Lα, S Kα, Mg Kα and O Kα spectral lines were used
for elemental mapping.

2.3.8 Results and discussion

The stability domain of the β-In2S3 host within the AE-In-S (AE=Mg, Ca, Sr) chem-
ical space as for the alkali case. The upper chemical potential limit for the impurity is
shown at the S-poor end of β-In2S3 stability domain in Figure 2.12. It corresponds to
the θ = 1 end of the encapsulated domain in Figure 2.9. The chemical potential limits
for Mg to Sr are summarised in Table 2.3. They are once more found to be of a few
electronvolts, a significant value as commented before. The behaviour of the alkali-
earth family is not as consistent as for the alkali-case. In both cases of Mg and Sr, the
compound limiting the stability domain of the host is the spinel AEIn2S4 (AE=Mg, Sr).
However, in spite of the existence of isostructural CaIn2S4, the CaS material exhibits a
lower formation enthalpy, setting the maximum chemical potential limit of Ca within
the host stability domain.

Now that the most probable competing compounds for alkali-earth doping of β-
In2S3 have been determined, this can be investigated experimentally. One can expect
to observe one single (doped) β-In2S3 phase for very low alkali-earth contents, growth
conditions modelled by a chemical potential of dopant inferior to the calculated limit,
and a material containing two phases, namely the host β-In2S3 and the competing
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Figure 2.12: Limit of β-In2S3 stability domain in S-poor atmosphere (µIn = −2.70 eV,
µS = −4.90 eV) for a) µMg b) µCa c) µSr.
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compounds, MgIn2S4, CaS and SrIn2S4, respectively. In this work, we focus on the
Mg-doping case.

Table 2.3: Maximum chemical potentials for extrinsic alkali-earth dopants in β−In2S3

in S-poor atmosphere.

Elt. µmax (eV) µFERE (eV) ∆µmax (eV) Phase
Mg -3.69 -0.99 -2.70 MgIn2S4

Ca -5.47 -1.64 -3.83 CaS
Sr -5.43 -1.17 -4.26 SrIn2S4

Five different target compositions were tested (%mol =1,5,10,15,40). As EDX ana-
lysis showed the presence of Si and O from the tube inside the samples synthesised
with simple silica tubes, carbonated tubes were selected for the final synthesis. The
annealing step did not seem to bring much change in behaviour (XRD and EDX) and
was removed from the final synthesis process. The behaviour discussed hereafter was
found to be independent from the composition tried out, so we use the most concen-
trated one (%Mg

mol = 0.4) for the discussion, as they provide clearer pictures and more
accurate analysis. The trends are the same for the lower contents tested.

A typical XRD pattern along with the residual from Rietveld refinement are presen-
ted in Figure 2.13. The behaviour is similar for all samples. All diffraction peaks can
be explained by the β-In2S3 structure (I41amd, no. 141) drawn in Figure 2.3, as proven
by the Rietveld refinement. Either the sample is composed of one crystallised phase
Mg-doped β-In2S3 or the crystals contain a tiny amount of Mg to none at all and co-
exist with a second non-diffracting phase (amorphous or with too small crystallites).
Given the compositions targeted, with quite large amounts of Mg, the first scenario
seems unprobable or could only happen with a loss of Mg. The MEB and EDX analysis
help to discriminate between those two possibilities.
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Figure 2.13: X-ray diffraction pattern (top, black solid line) of one sample. All present
similar features. The pattern is explained by the β-In2S3 structure (I41amd, no. 141)
presented in Figure 2.3. Rietveld refinement was performed using Jana2006. The
difference between the measured and simulated signal (bottom, blue solid line) as well
as the position of the diffraction peaks (top, red ticks) are plotted against 2θ (◦).
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Figure 2.14 (top) shows MEB images of the sample, mostly using secondary elec-
trons. It displays grains several tens of micrometres wide, seemingly of an approximate
parallelepiped shape. They are very similar to what was observed for the β-In2S3 pre-
cursor used as a reference, both in terms of size and shining. Light colour is a clue of
the presence of heavy elements, here most probably In, due to the higher number of
electrons re-emitted after irradiation of the sample. The smaller scales allow to notice
a second type of grains, which appear much darker in term of chemical contrast and are
smaller, typically no more than a few tens of micrometers. These grains are much less
concentrated in the sample than the previous ones, by at least one order of magnitude.

In order to clarify what distinguishes the two and locate the Mg element in the
sample, EDX elemental mapping was performed on areas of roughly 225 µm2 containing
a few grains of which at least one was of the second smaller and darker type. One of
such maps is presented in Figure 2.14 (bottom). Two completely different compositions
emerge from this picture. The large light-grey grains contain no Mg or O above the
detection thresholds, only In and S. As could be suspected from the similarity with
the indium sulphide precursor reference, quantification reported in Table 2.4 confirm
the In2S3 composition. Mg is located in detectable amounts only in the second smaller
grains, where O is also present. Quantification summarised in Table 2.4 clearly points
toward MgO.

Figure 2.14: MEB images of the MgS+β-In2S3 (Mg0.4) samples at different scales (top)
and EDX elemental mapping (bottom). All images are taken using secondary electrons
except at the 50 µm scale (backscattered ones). The elemental mapping corresponds
to the MEB picture at the top right.

Table 2.4: EDX quantification, given in atomic percentage. (7 kV)

Grain type In (%at) S (%at) Mg (%at) O (%at)
1 39.96 55.73 0.00 4.32
1 37.57 55.79 0.14 6.50
2 0.72 1.84 51.03 46.41
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The source of oxygen was identified. The magnesium sulphide reactant appeared
to have been hydrated. It is already interesting to note that the formation of MgO is
favoured over the stabilisation of Mg in β-In2S3.

As we did not manage to avoid O presence in the sample experimentally, we en-
larged the chemical space initially considered for the calculation of the stability domain
to Mg-In-S-O. The computed domain corresponds to the hatched area presented in Fig-
ure 2.15. The Mg-rich (O-poor) boundary is set by MgIn2S4 as calculated previously,
and the O-rich (Mg-poor) boundary quite intuitively by the oxide In2O3. The top right
corner of this domain, i.e. the most O-rich and simultaneously Mg-rich conditions, is
delimited by MgO.
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Figure 2.15: β-In2S3 stability domain (hatched area) in S-poor atmosphere within the
Mg-O-In-S system.

It matches the observation of β-In2S3 and MgO grains in our samples. It seems
that for all the compositions tried out, the experimental synthesis conditions corres-
pond to the Mg-rich/O-rich limit within the model. It is consistent with the intuition
formulated beforehand of a very negative impurity chemical potential limit making the
appearance of competing phases easy, making in turn solubilisation of the impurity as
a defect within the host (doping) difficult.

The same extrinsic defects DFE were calculated as in the alkali case, namely in-
terstitials, cationic and (pseudo) anionic substitutions. As for the alkali case, the
interstitials largely dominate the defect landscape. The DFE in S-poor atmosphere
are presented in Figure 2.16. The same behaviour as before appears, with a slightly
negative DFE in spite of the refined scheme to evaluate the impurity chemical poten-
tial. As discussed previously, this is probably linked to the fact that ideal structures
are used to compute the different stability domains. Note that the DTL of alkali-earth
interstitials are deeper than those of alkali interstitials.

The β-In2S3 structure seems to have a large propensity to tolerate interstitial defects
in the Td 4a vacant site without inducing destabilisation. The idea of exploiting voids in
the structure to place interstitials has been explored in Sb2Se3 through charge density
plots, and will be further discussed for the Transition Metal Dichalcogenide (TMD)
investigated in the next Chapter, TiS2.

65



0.0 0.5 1.0 1.5 2.0
μEF (eV)

−6

−4

−2

0

2

4
ΔH

fo
rm
 (e

V)

Δ3

Δ2Δ1 0
−1

−2 Δ2
0

Δ2

0

Δ2

0

Δ2

0

Ini
VS

VIn

Mgi

Cai
Sri
Calculated gap

Figure 2.16: DFE plotted against Fermi level for alkali-earth interstitials in β-In2S3

synthesised in S-poor atmosphere.

2.4 Conclusion on defects in β-In2S3

The point defect methodology introduced in Chapter 1 was successfully applied
to the determination of intrinsic point defects in buffer material β-In2S3. The n-type
conductivity was linked to indium interstitial defects in tetrahedral environment and
to a lesser extent to a sulphur vacancy. The most favourable synthesis conditions
for electronic applications such as PV solar cells was found to be the S-poor/In-rich
limit of the stability domain. The PV application often involves the presence of alkali
elements in the absorber and buffer layer. This second subject was naturally treated
subsequently. After showing that all phases in the extended A-In-S stability domain
must be taken into account in the computation of the chemical potential of the dopant,
the alkali extrinsic defects were investigated. The vacant Td 4a site in the structure
was found to be very suited for the insertion of alkali interstitials in the structure. This
defect creation was found to be so energetically cheap that the formation of AInS2 is
very likely in realistic conditions. It was suspected that the very negative chemical
potential values could have indicated this prior to the defect study. This question
was investigated by joint computational and experimental means. It was verified on
Mg doping that very negative values of impurity chemical potential are matched in
experiments by the easy formation of competing compound, here MgO as the oxygen
presence could not be avoided.
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Chapter 3

Elucidating the versatile electronic
behaviour of TiS2 with the help of
the point defect model

3.1 Interest of TiS2

The next system we investigated is a transition-metal dichalcogenide (TMD), TiS2.
Since the discovery of graphene in 2004,[245, 246] 2D materials have attracted the
attention of researchers due to the new physics they open.[247–250] In particular, non-
metallic 2D materials are of interest to develop new optoelectronic devices.[251–253]
Some TMD, such as the archetypal MoS2,[254] fall into this category. Titanium di-
sulphide TiS2 is another TMD of long-standing scientific interest, in particular, at the
Jean Rouxel Material Institute. It was first studied as an intercalation material for lith-
ium battery electrodes.[255–258] This field of research has seen its pioneers awarded
the Nobel prize in Chemistry in 2019. 1 Its layered structure allows the intercalation
of various chemical species other than lithium, among which can be cited other alkali
such as caesium [259, 260] and sodium [261–264] and also metals like mercury,[256, 265]
and silver.[266, 267] Then, other types of applications were considered for TiS2, such as
hydrogen production [268] and storage [269] or more recently thermoelectricity.[270–
273] However, despite several decades of scientific studies on the subject, the question
of the metallic or semiconducting character of TiS2 remains controversial.[274–283]
This is of capital importance for the latter application, as the properties of interest of
the material captured through the Seebeck coefficient depend deeply on its electronic
behaviour.

TiS2 has been characterised as a semi-metal (SM) by some groups,[278, 284] while
others report it as a semiconductor (SC).[281, 285] The discrepancies continue on the
theoretical side, some simulations leading to a SM behaviour[284, 286, 287] while others
yield a SC.[288–290] Specifically, two simulation difficulties emerge for this compound,
namely the importance of long-range van der Waals type interactions and the very small
(if existing at all) band gap. This has prompted computationally-oriented scientists to
adopt a wide range of modelling strategies with various degrees of theoretical reliabil-
ity to tackle these issues. Structures following the ideal stoichiometry are sometimes
built using the experimental parameters without any relaxation to keep the observed
c
a

ratio.[291] The use of such non optimal 2 structure with respect to the functional

1. Laureates were John Goodenough, Stanley Wittingham and Akira Yoshino.
2. in terms of Potential Energy Surface (PES)
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used does not guarantee the quality of the obtained electronic structure. Additionally,
as discussed hereafter, the stoichiometry of the experimental reference is sometimes
difficult to ensure. Other studies rely on semi-empirical total energy corrections such
as DFT-D2 proposed by Grimme[292] to account for long-range interactions.[293] How-
ever, it is unclear whether the simulated semimetallic behaviour spuriously comes from
the underestimation of the electronic band gap within the GGA approximation or is
an intrinsic property of the material.

Besides, TiS2 is known to have a large propensity for off-stoichiometry and its
control during synthesis was early on identified as a challenge.[281, 285, 294, 295] It
is a layered material with a van der Waals gap which can tolerate self-interstitials
titanium atoms at low enthalpy cost.[285] Due to the heavy impact of point defects
on electronic properties of materials, this has prompted us to investigate its intrinsic
defects. First, we evaluate the different available and affordable methodologies before
conducting the defect study itself.

3.2 Structure and position of the problem

TiS2 crystallises within the CdI2 structure type within the space group P3m1 space
group (164), as shown in Figure 3.1. The primitive (and conventional) cell contains
only one formula unit, i.e. three atoms. The Ti and S atoms sit in 1a (0,0,0) and 2d
(1

3
, 2

3
, z) with z ' 1

4
Wyckoff positions, building TiS2 slabs upon [TiS6] edge-sharing

polyhedra.

(a) (b)

Figure 3.1: Conventional cell of TiS2 (P3m1 space group, no 164). Blue spheres
represent cations Ti4+ while yellow spheres stand for the chalcogen anions S2– . Solid
black lines represent cell boundaries. TiS2: a = b = 3.4097(5) Å and c = 5.7052(5) Å,
V = 57.44 Å3[296]. a) Side view of the CdI2 structure type highlighting its layered
character with a van der Waals gap along the c axis separating the layers. Ti4+ cations
sit in an octahedral environment b) Top view showing the hexagonal lattice type.

Two different S-S distances appear: the intra- and the interslab S-S distances. To
correctly model the system one must reproduce accurately enough the interlayer S-S
distance. This can be assessed by ensuring the value of the c

a
ratio is close to the

experimental one.
The first issue to model this system is to account for the van der Waals interactions

which are responsible for the cohesion between layers. To address it, we include in our

68



calculations Grimme’s semi-empirical dispersion scheme of pair-wise corrections with
Becke-Johnson damping (GD3-BJ). [297–299] Note that other dispersion schemes were
also tested, namely dDsC proposed by Corminboeuf,[300–303] Tkatchenko-Scheffler
and Tkatchenko-Scheffler with iterative Hirshfeld partitioning,[304] giving similar res-
ults.

The second issue is classically the bandgap problem, all the more here because of the
uncertainty on the actual existence of a bandgap. To evaluate it, we climb the Jacob’s
ladder of ab initio simulations, trying GGA functional PBE,[128] hybrid functional
PBE0[152] and the dispersion corrected versions using GD3-BJ scheme, noted hereafter
PBE-D and PBE0-D. To conclude on the electronic properties of ideal TiS2, many-body
computation, namely GW, was conducted using PBE0-D wavefunctions as a starting
point. To obtain reliable results on the optoelectronic properties, optical indices were
simulated by solving the Bethe-Salpeter equation (BSE).[180]

3.3 Assessment of the different methodologies

Before starting the point-defect study, we must make sure we choose a relevant
methodology to describe TiS2 with ab initio techniques. Thus, we start with the
identification of the most suitable method on the ideal 3 atom cell.

3.3.1 Computational details

We performed the ab initio simulations using the Vienna Ab Initio Simulation
Package[197–200] using functionals PBE,[128] PBE0[152] in a Plane Augmented Waves
(PAW) scheme. Dispersion effects were taken into account using the GD3-BJ dispersion
scheme as mentioned previously.[297–299] The cutoff energy for the plane waves was set
to 400 eV. GGA (hybrid) optimisations were conducted using a 7× 7× 7 (5× 5× 5) k-
points mesh generated following a Monkhorst-Pack scheme.[201] For Density of States
calculations (DOS), we used a 17 × 17 × 11, 7 × 7 × 7, grid for GGA and hybrid
functional, respectively. The Self-Consistent Field (SCF) stopping criterion was set to
10−6 eV and the forces stopping criterion for relaxation to 10−2 eV.Å−1. Spin Orbit
Coupling (SOC) effects were checked to be negligible (less than 10−2 eV) and were thus
not taken into account.

3.3.2 Geometry

Structural parameters of the optimised geometries are summarised in Table 3.1.
As expected, the GGA reproduces well the a parameter with a deviation towards ex-
periment inferior to 1%. Indeed, the absence of van der Waals interactions does not
influence this length and cell parameters are usually well described in GGA. However,
the c parameters is severely overestimated (by 15%). There are no long-range cohesive
forces to maintain the layers close to one another. The resulting c

a
ratio is overestim-

ated by 16%. Climbing Jacob’s ladder using PBE0 functional improves this picture
by a few per cent but still without giving satisfactory parameters. On the contrary,
the inclusion of the dispersion correction GD3-BJ underestimates the parameters but
gives values much closer to experiment (within 3%). Both PBE-D and PBE0-D yield
convincing relaxed geometries. The contraction when going from PBE to PBE0 can be
anticipated as hybrid functional provide a more localised electronic description than
GGA functionals.
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It shows that van der Waals forces must be accounted for in a TiS2 model in order
to reproduce the (structural) properties of the material.

Table 3.1: Simulated and experimental geometric parameters of TiS2, relative devi-
ation of simulation with respect to experiment in brackets.[305]

PBE PBE0 PBE-D PBE0-D Expt.[306]

a(Å) 3.390 (-0.5%) 3.402 (-0.1%) 3.340 (-2.0%) 3.356 (-1.5%) 3.407
c(Å) 6.527 (-15%) 6.317 (-11%) 5.536 (-3%) 5.492 (-3.5%) 5.693
c
a

1.93 (16%) 1.86 (11%) 1.66 (-0.6%) 1.64 (-1.8%) 1.67
Ti-S(Å) 2.427 (-0.1%) 2.410 (-0.8%) 2.407 (-0.9%) 2.389 (-1.6%) 2.429

S-Sinter (Å) 4.150 (20%) 4.042 (17%) 3.282 (-5%) 3.319 (-4%) 3.460
S-Sintra (Å) 3.472 (0.3%) 3.407 (-1.6%) 3.466 (0.1%) 3.402 (-1.7%) 3.462

V(Å3) 64.97 (-14%) 63.30 (-11%) 53.48 (-6.6%) 53.57 (-6.4%) 57.26

3.3.3 Electronic structure

Then, we look into the electronic band structure of ideal TiS2 described using the
four methodologies as shown in Figures 3.2a-3.2d. The Fermi level is used as reference
energy. The chosen path in the first Brillouin zone is Γ(0, 0, 0), A(0, 0, 1

2
), H(1

3
, 1

3
, 1

2
),

K(1
3
, 1

3
, 0), L(1

2
, 0, 1

2
),M(1

2
, 0, 0). Note that the Γ− A segment is oriented along the c∗

axis, perpendicular to the sheets.

The PBE band structure (Figure 3.2a) shows a SM behaviour. The CBM is reached
at L and is 0.2 eV below the VBM. The Fermi level enters the CBM, forming a hole
pocket. The VBM is reached at Γ and A. Interestingly, both the VBM and the CBM
bands are constant on the Γ-A segment, as expected as no dispersion was included. The
PBE-D band structure (Figure 3.2b) exhibits similar features. The behaviour is still
SM. The VBM band is this time dispersed along the vertical direction, the maximum
being reached at Γ. The energy has increased at Γ with respect to pure PBE and
has been lowered at A. Indeed, an electron in a quantum state similar to a plane-
wave of vertical wavector (Γ-A segment along c∗) has a lower energy in the picture
including dispersion corrections as the layers are closer to one another, reducing the
distance between core electronic clouds. A tiny hole pocket appears at the summit of
the Valence Band (at Γ).

However, GGA functionals are known to severely underestimate bandgaps,[122]
whereas hybrid functionals give better predictions of this parameter. PBE0 gives a
band structure (Figure 3.2c) closely related to the PBE one in shape but opening
an indirect bandgap of 1.07 eV. Once more, without dispersion the VBM and CBM
bands are flat between Γ and A. The inclusion of dispersion (Figure 3.2d) reduces the
bandgap to 0.71 eV but the material is still SC. The impact on band dispersion is the
same as in GGA.

To summarise, the GGA description of ideal TiS2 is SM whereas PBE0 indicates a
low (indirect Γ−L) bandgap SC. As GGA is known to severely underestimate bandgaps
and hybrid functionals to yield more accurate bandgaps, one is enticed to see the ideal
TiS2 as a SC.
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Figure 3.2: TiS2 electronic band structure described with the a) PBE functional b)
PBE-D approach c) PBE0 functional d) PBE0-D approach.

3.3.4 Comparison with experiment

To determine with confidence whether TiS2 is indeed a SC, we proceed with the
comparison of optoelectronic properties with available experimental data and more
refined theories.

First, we compare the DOS obtained with PBE-D, PBE0-D and a many-body
Green function calculation (GW) to XPS data,[307] as shown on Figure 3.3. To ease
the comparison, simulated data has been smoothed through a moving average 3. In
the vicinity of the VBM (E − EF close to 0), the latter two methodologies reproduce
the foot of the summit obtained experimentally, whereas PBE-D yields an incorrect
rising trend, due to the SM behaviour obtained with such a level of theory. All three
simulations exhibit two local maxima and a shoulder like the measurements.

Secondly, we compare the imaginary part of the dielectric function ε2 obtained
with PBE0-D hybrid density functional and solving BSE[180] with EELS spectrum,
as shown in Figure 3.4.[308] One lacks experimental data between 0 and 2 eV. To
improve the comparison, simulated curves were shifted to fit the position of the first
local maximum around 4.5 eV. Both computations nicely reproduce the shape of the
spectrum. The position of the PBE0-D curve with respect to the experimental data
is a bit uncertain. Our simulations predict a first maximum reached around 2 eV,
however this corresponds to the unsampled region of the experimental spectrum. By
extending the foot of the first peak, one can notice that the BSE computation yields a
gap. This confirms the SC behaviour calculated using PBE0 and PBE0-D.

3. A moving average of the data y of order n is given for each index p by the expression yp =

1
n

p∑
i=p−n+1

yi
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Figure 3.3: Comparison of smoothed DOS calculated using PBE-D (blue), PBE0-D
(red) and GW (orange) with experimental XPS spectrum.[307] 300th, 400th and 250th

orders were employed for the moving average smoothing of PBE-D, PBE0-D and GW
curves, respectively.
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Figure 3.4: Comparison of the imaginary part of the dielectric function ε2 obtained
using PBE0-D hybrid density functional (red) and solving Bethe-Salpeter equation[180]
(orange) with EELS spectrum.[308]

3.4 Point defects

3.4.1 Computational details

We have shown in the previous part that an ab initio model of TiS2 must account
for van der Waals forces and in order to reproduce electronic properties has to climb
the Jacob’s ladder at least up to hybrid functionals. Now that a relevant methodology
has been identified, we can study the intrinsic point defects of the material using the
PBE0-D approach. The computations are performed in a 4×2×2 supercell containing
48 atoms using the same parameters as mentioned previously. We sampled the first
Brillouin zone with a 3 × 3 × 3 mesh following a Monkhorst-Pack scheme.[201] The
4 × 2 × 2 supercell corresponds to a raw fraction of defect in the model of 1

48
' 2%

which is fair, especially given the high computational cost of a full study using a global
hybrid.
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3.4.2 Stability domain and chemical potentials

First, we need to assess the chemical potentials of the elements involved, namely
titanium and sulphur. We screen stable phases around the ideal stoichiometry 1:2
on the experimental database ICSD[309], yielding TiS3 (P21/m), Ti2S3 (C2/m) and
TiS (P6m2). In order to be as comprehensive as possible, we complete this set of
compounds with a hypothetical compound Ti7S12 (P1) obtained via high-throughput
calculations.[237, 310] The latter structure results from the stabilisation of two inter-
stitial titanium atoms in the van der Waals gap. The stability domain is shown in
Figure 3.5, the different total energies are summarised in Table 3.2 and the obtained
chemical potentials in Table 3.3.

The stability domain of TiS2 is limited by the formation of TiS3 on the Ti-poor/S-
rich side and of Ti7S12 on the Ti-rich/S-poor limit. 4 These are binary phases so the
deviation of chemical potential from the standard phases (α−S8 and Ti metal) is non
zero.
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Figure 3.5: TiS2 stability domain with respect to competitive phases and the chemical
potentials in Ti and S in the (∆µT i,∆µS) plane. It is highlighted by the black segment
in the (∆µT i,∆µS) plane and its projections onto the axis by the hashed domains.

Table 3.2: Total energies of the phases of TiS2 stability domain calculated with PBE0-
D.

Total energy per formula unit (eV)
TiS -20.537
TiS2 -27.245
TiS3 -33.459

Ti7S12 -177.332
Ti2S3 -47.676

4. Ignoring Ti7S12 sets the Ti-rich/S-poor limit at the frontier of formation of TiS, which corres-
ponds to a '0.01 eV change in µS and ' 0.03 eV in µIn. This will not impact the results.
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Table 3.3: Computed extrema chemical potentials to form TiS2 (µ0
S = −5.976 eV and

µ0
T i = −10.987 eV).

(eV) µS (∆µS) µT i (∆µT i)
S-poor/Ti-rich -6.692 (-0.716) -13.862 (-2.875)
S-rich/Ti-poor -6.214 (-0.238) -14.817 (-3.830)

3.4.3 Defect formation enthalpies and origin of the versatility
of the electronic properties of TiS2

The obtained defect formation enthalpies are presented in Figure 3.6. In S-rich/Ti-
poor synthesis atmosphere (frontier with TiS3), the defect exhibiting the lowest form-
ation enthalpy is the titanium interstitial inserted in the van der Waals gap, Tii (Oh).
Its transition level ε+4/+2 is very close to the CBM, around 0.04 eV below the CBM,
with a quite low formation enthalpy (< 1 eV). The position of the transition level
associated with a low formation enthalpy translate a good donor defect which induces
a very good n-type material. The two vacancies VS and VTi are quite high in enthalpy,
thus the most concentrated defect will overwhelmingly be the titanium interstitial.

In S-poor/Ti-rich atmosphere, at the frontier with Ti7S12, the sulphur vacancy VS

is logically lower in enthalpy than in the previous atmosphere and VTi even higher.
The majority defect is still Tii. However, in S-poor/Ti-rich conditions the situation
has changed: whatever the position of the Fermi level in the bandgap, the formation
enthalpy of Tii is negative. As explained in Chapter 1, if the Fermi level during crystal
growth were to fall into a region of the gap where a defect has a negative formation
enthalpy, the creation of such a defect is no more a rare event but fatally happens and
the resulting composition is driven away from the expected stoichiometry, leading to a
phase transition towards a new structure. It means that in the present case µEF

cannot
be located inside the gap and must enter the CBM. This is permitted by the fact that
∆HT ii

form reaches the zero enthalpy not far above the CBM (' 0.1 eV). The resulting
TiS2 has by definition a SM behaviour. The same logic applies for VTi to determine the
other limit of the dopability domain. As this vacancy is the only potentially accepting
defect, it would set the n-type limit of the dopability domain to the Fermi level value
where it reaches the zero enthalpy. Because VTi is very high in enthalpy in both
synthesis conditions, this value falls very high into the conduction band, so that there
is effectively no limitation to the n-type dopability of the material.

The low formation enthalpies reflect well the experimentally reported propensity
of the material to be off-stoichiometric.[285] The evaluated defect concentrations are
summarised in Table 3.4. For a TiS2 synthesised in S-rich/Ti-poor conditions, the con-
centration of titanium self-interstitials is ' 1019 cm−3 and is two orders of magnitude
higher in S-poor/Ti-rich atmosphere.

Table 3.4: Defect concentrations of the investigated defects: Tii, VS and VTi.

(cm−3) Tii VS VTi

S-rich/Ti-poor (Tgr = 900 K) 1.3× 1019 1.4× 108 3.2× 109

S-rich/Ti-poor (Tgr = 1200 K) 4.4× 1019 5.3× 1011 1.5× 1012

S-poor/Ti-rich (Tgr = 900 K) 5.1× 1021 9.2× 1010 2.9× 109

S-poor/Ti-rich (Tgr = 1200 K) 9.1× 1021 8.5× 1013 1.0× 1013
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Figure 3.6: TiS2 defect formation enthalpies vs. Fermi level, S-rich/Ti-poor (top) and
S-poor/Ti-rich (bottom).

So far we have shown that by taking into account the intrinsic point defects of TiS2

and the synthesis conditions, the S-rich/Ti-poor end of the stability domain leads to a
(faulted) TiS2 exhibiting (good intrinsic) n-type conductivity whereas the other limit
synthesis conditions, namely S-poor/Ti-rich, lead to a SM.

The two limit cases giving opposite behaviour, one would like to know at which
point of the stability domain the synthesis switches from yielding a SM to a SC. The
limit situation between SM/SC is the point at which the Fermi level during synthesis
equals the CBM. This can be implemented numerically as solving µgrEF

= ECBM where
the gr subscript denotes crystal growth. As pointed out in Chapter 1, this also depends
on the synthesis temperature.

The position of the SM/SC frontier with respect to growth temperature and position
in the stability domain of TiS2 is shown in Figure 3.7. Low temperatures lead to low
energy, highly ordered, structures with low defect concentrations and the ranges of the
SM and SC domain are approximately the same. Disorder, or conceptually, the weight
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of the entropic part of the Gibb’s energy of the system increases with the temperature,
leading to more crystal defects, in particular, more titanium self-interstitials. The SM
stability domain grows with temperature. The experimental synthesis temperature
typically lies around 1000 K. Our simulation shows that at such temperature, if the
growth conditions (Ti/S ratio) are not fully controlled, the probability of forming a
SM compound is higher than a SC one. However, with appropriate carefully controlled
conditions, obtaining a SC is still achievable. This explains the discrepancies observed
in the literature regarding the electronic properties of TiS2.[274–284, 286–290]

Figure 3.7: TiS2 temperature of semiconductor/(semi)metal transition vs. atmosphere.
The α parameter corresponds to the progression within the stability domain from the
S-rich/Ti-poor limit (α = 0) to the S-poor/Ti-rich one (α = 1).

3.5 Simulation of thermoelectric properties

TiS2 has recently (re)gained attention from the scientific community thanks to its
thermoelectric properties.[273, 311, 312] The thermoelectric performance of a material
is often assessed through its figure of merit ZT = σS2

κ
T where σ is the electrical

conductivity of the material, S its Seebeck coefficient, κ its thermal conductivity and
T the temperature.

Boltzmann semi-classical transport theory[313–315] allows one to evaluate the trans-
port properties of a material from its electronic band structure. In the present study,
the BoltzTraP implementation was used.[316] The band structure is calculated on the
ideal cell. The impact of defect is modelled through the position of the Fermi level µ (ri-
gid band model). Positive values correspond to the Fermi level entering the conduction
band and negative values the valence band.
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With this tool, we compute the Seebeck coefficient of the ideal TiS2 structure,
that is the amplitude of the response of the material to a gradient of temperature.
The resulting simulation is shown in Figure 3.8. The symmetric shape of the Seebeck
coefficient curve compares well with other compounds reported in the literature, such
as Bi2Te3.[316] Experimentally, the order of magnitude of the Seebeck coefficient of
TiS2 is 200-280 µ.K−1 in absolute value.[273] Our simulation yields maximum values
three times more important. As highlighted in the previous part, the ideality of the
model may be responsible for this discrepancy. Furthermore, the Fermi level is pinned
by defects. There is no particular reason for it to allow to get the maximum Seebeck
value. Figure 3.9 highlights the detrimental effect of defects on the value of the Seebeck
coefficient. Note that both Bourgès et al.[273] and our ab initio defect study point
towards an order of magnitude of defect concentration of 1020 cm−3, which according
to Figure 3.8, leads to a Fermi level value of 0.05 eV. This is compatible with the
picture given by Figure 3.9 and most importantly the defect formation enthalpies in
S-poor/Ti-rich conditions given previously.
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Figure 3.8: Simulated Seebeck coefficient of TiS2 with PBE0-D functional at T =
700K.
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Figure 3.9: Simulated Seebeck coefficient of TiS2 with PBE0-D functional vs. defect
concentration.
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To go one step further, one can simulate the figure of merit of TiS2. To do so, one
must assess the electrical σ and thermal κ conductivities from Boltzmann equations.
Physically, the thermal conductivity comes from the sum of two contributions, one
from the electronic cloud of the ionic lattice κelec and the other from the vibration
of the atomic cores κlattice (phonons). Naturally, a method based on the electronic
band structure keeping fixed ionic positions like the method described previously only
yields a value of the electronic thermal conductivity. Here, as a first approximation,
the ratio between the lattice part of the thermal conductivity and the electronic part
was estimated to κlatt ' 11κelec from experimental literature.[272] The resulting ZT vs.
Fermi level curve is shown in Figure 3.10 Note that the previously highlighted value
of µ = 0.05 eV yields poor ZT value (' 0.2), comparable with experimental data of
0.3.[273]
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3.6 Conclusion on TiS2

A careful investigation of the different simulation means available leads to the con-
clusion that dispersion effects must be taken into account when studying TiS2. The
total energy semi-empirical correction scheme GD3-BJ is adapted to this case. Elec-
tronic structure calculations performed with hybrid functional PBE0-GD3-BJ unam-
biguously show that the ideal 1:2 stoichiometry has a semiconducting behaviour with
an indirect bandgap of ' 0.7 eV. The semimetallic character obtained on the ideal
structure at the GGA level is due to the band gap underestimation. The ideal com-
pound if it existed would be a semiconductor. The study of the intrinsic defects of the
material using PBE0-GD3-BJ shows that irrespective of the synthesis conditions, Tii
is the major defect and is present in huge amounts in the material. The very low calcu-
lated DFE confirms the experimental intuition of an overstoichiometry in titanium in
this material. Depending on the synthesis conditions, the material is a semiconductor
with a very pronounced n-type character (S-rich/Ti-poor limit) or the Fermi level falls
within the CB, sign of a semimetallic behaviour (S-poor/Ti-rich limit). This totally ex-
plains the controversy around the electronic properties of the material. Note also that
due to the high vapour pressure of sulphur, experimental conditions are expected to
correspond in most cases to a situation closer to the S-poor/Ti-rich limit. In this case,
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the material synthesised is semimetallic. Only very well controlled synthesis conditions
may allow the formation of a semiconducting compound. This is coherent with the
experimental literature. The peculiar properties of TiS2 cannot be understood without
taking into account point defects. Finally, thermoelectric properties of the material
are simulated.
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Chapter 4

Towards free energy - the work case
of selenium

4.1 Context

The next material investigated is elemental selenium. This material has recently
regained attention for its opto-electronic properties.[317] In the world of PV in par-
ticular, selenium is of historical interest as photoconductivity was first noticed in this
material in 1873,[318] leading to the first PV solar cells[319] and in the first half of the
next century to the Nobel-winning work of Einstein. The cell efficiency was improved
from a few per cent to culminate in 1985 at the record efficiency of 5.0%.[320] Its high
bandgap and the parallel development and success of the silicon industry resulted in it
being set aside for PV application. However, it was very recently pointed out that the
material could provide a convenient absorber for the top-cell of a tandem solar cell.
Indeed, synthesising a unary material is much easier than ternary or quaternary mater-
ials now used in thin-film technologies such as CIGS and CZTS. In this vein, Todorov
et al. optimised a selenium-based single-junction device and broke the previous record,
reaching 6.5% efficiency.[317] The record architecture is Glass/FTO 1/ZnxMg1-xO/γ-
Se/MoOx/Au as illustrated in Figure 4.1. This so-called “superstrate” configuration
with the back contact deposited last is chosen due to synthesis constraints and benefits
from the experience acquired by the perovskite community routinely using it.[321] The
FTO acts as an electron collector, n-type ZnxMg1-xO as a buffer layer, crystallised grey
selenium as an absorber, MoOx as a hole selective layer and gold as the back contact.
Todorov et al. note that the Open-Circuit Voltage (VOC) is almost 1 V under the
theoretical Shockley–Queisser limit, leaving much room for improvement, especially
through the limitation of charge carriers recombinations. This issue is typically linked
to point defects, both in the bulk and/or at the heterojunction. This brand new re-
cord translates the recent research activity around the application of selenium for solar
devices, be it as an absorber for photoelectrochemical solar cells[322] and PV cells, in
thin-films[323], as nanoparticules,[324] or as a hole conducting layer.[325, 326] More
generally, the nanoscale forms have also attracted a fair deal of interest, partly due to
its potential application in the fields of medicine and optical devices.[327, 328]

Looking at the material itself in more details, the phase diagram is quite com-
plex even at low pressure and temperatures, with the coexistence of several allotropic
forms due to the competition between short range covalent bonds and long range van

1. Fluorine-doped Tin Dioxide SnO2:F
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der Waals interactions.[329, 330] The same mechanism allows the existence of various
structures at high pressures. Parthasarathy and Holzapfel reported a structural study
up to 50 GPa, [331] later completed by Akahama et al. up to 140 GPa.[332] The results
of the two differ on several points, however it can be reliably concluded that the first
pressure-induced transition occurs at 14 GPa. The intermediate structure is unclear,
but the material adopts a monoclinic lattice between 23 and 28 GPa. Both studies
agree on the existence of a transition at 28 GPa but differ on the structural form
directly above this limit. At higher pressures, a rhombohedral phase isostructural to
β-polonium appears and a structural transition towards a Body-Centred Cubic (BCC)
phase occurs at 140 GPa. The highest pressure phases have been more thoroughly
studied, most notably for supraconducting properties, so that the existence of the two
latter structures is corroborated by different teams.[332–335] The nomenclature of the
different phases seems to have evolved within the literature and it is often a bit confus-
ing which structure is being referred to. In ambient conditions, more of interest for the
optoelectronic applications this work focuses on, the material can adopt three different
forms, namely an amorphous form, and two crystalline ones. The first crystal phase,
hereafter referred to as γ-Se, crystallises in a trigonal lattice, exhibiting a bandgap
reported between 1.83 eV [336] and 2 eV.[337] This is without doubt the most stable
phase of selenium at ambient pressure,[330, 338] and is often incorrectly referred to
as “hexagonal” selenium in the literature. The crystallographic structure is described
more in details hereafter. The second crystal form can be stabilised in ambient condi-
tions, adopting a monoclinic lattice and labelled herein β-Se.[339, 340] The bandgap is
reported as direct and is equal to 2.53 eV.[341]

The purpose of the work is to determine the intrinsic defects present in the two
main crystal forms of selenium in order to identify the origin of the observed p-type
conductivity. Extrinsic doping strategies are also investigated.

Figure 4.1: “Superstrate” architecture of efficiency record-breaking PV solar cell with
selenium absorber.[317]
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4.2 Defect formation energies

4.2.1 Computational details

Computations were performed using the plane-augmented waves scheme implemen-
ted in VASP.[197–200] Several approximations were tested, namely “pure” GGA func-
tional PBE,[196] and including dispersion corrections GD3[297, 298] and GD3-BJ[297–
299], meta-GGA functional SCAN[148] both without and with GD3 correction[297,
298] and screened hybrid functional HSE06,[151, 152] The calculation settings for the
geometrical optimisation (optim.) and DOS for the two phases are summarised in
Table 4.1.

Table 4.1: Computational details of the study of ideal cells. Number of irreducible
K-points specified between brackets.

β-Se (rings) γ-Se (chains)

General
Ecut (eV) 265

Force conv. (eV.Å−1) 10−2

SCF conv. (optim.) (eV) 10−5

SCF conv. (DOS) (eV) 10−6

PBE/PBE-GD3(BJ)/SCAN(-GD3)
K-points grid (optim.) MP 5× 5× 4 (30) MP 10× 10× 8 (220)
K-points grid (DOS) Γ-centred 5× 5× 4 (33) Γ-centred 15× 15× 12 (284)

HSE06(-GD3)
K-points grid (optim.) Γ-centred 2× 2× 2 (8) MP 5× 5× 4 (14)
K-points grid (DOS) Γ-centred 3× 3× 3 (10) Γ-centred 5× 5× 4 (17)

Based on the results presented hereafter, faulted supercells were built on the SCAN
geometry. The cutoff energy was increased to 500 eV due to the study of extrinsic
defects. The computational details are summarised in Table 4.2. All corrections de-
scribed in Chapter 1 were taken into account. The band-edge references were taken
from HSE06-GD3 calculations. The post-treatments were performed using our in-house
software PyDEF.[117, 168]

Table 4.2: Computational details for the defect study. Number of irreducible K-points
specified between brackets.

β-Se (rings) γ-Se (chains)

General
Ecut (eV) 500

Force conv. (eV.Å−1) 10−2

SCF conv. (optim.) (eV) 10−5

SCF conv. (DOS) (eV) 10−6

Electronic density functional SCAN
Supercell 2× 2× 1 (128 atoms) 3× 3× 3 (81 atoms)

K-points grid (optim.) MP 2× 2× 2 (4) MP 3× 3× 3 (14)
K-points grid (DOS) Γ-centred 2× 2× 2 (8) Γ-centred 5× 5× 4 (51)
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4.2.2 Ground state properties of the two allotropic crystal
phases

As mentioned beforehand, selenium in solid-state can adopt several allotropic forms.
The crystallographic structures of the two main crystal phases β-Se and γ-Se are drawn
in Figures 4.2 and 4.3. The first crystallises in a monoclinic lattice following space
group symmetry P21/c (no 14), forming Se8 crown-like rings. It is isostructural to
α-S8. The rings consist in two (almost) parallel squares of four Se atoms shifted by
45◦ with a small deformation from this ideal description.[338] The conventional cell
contains Z = 4 Se8 rings for a total of 32 atoms. The 3 atom conventional cell of γ-Se
is highly anisotropic with infinite helical chains of bicoordinated Se along the c axis
of a trigonal lattice. The helical chain is so that every third Se atom is ' 5 Å above
the starting one. The structure exhibits a P3121 (no 152) space group symmetry. The
amorphous form, noted a-Se, might be apprehended as a mixture of the two moieties,
chains and Se8 rings, or a glass of either one. However, no structural model could be
determined with certainty for a-Se and the amorphous structure may well vary with
the synthesis process,[342–344] although a recent Nuclear Magnetic Resonance (NMR)
spectroscopy study by Marple et al. suggest that their samples of a-Se contained only
1/∞ [Se] chains.[345] Hereafter, only the two β- and γ-Se forms are discussed.

(a)

(b)

Figure 4.2: Crystallographic structure of β-Se, exhibiting a monoclinic lattice within
P21/c (no 14) space group symmetry. It is isostructural to α-S8. Green spheres rep-
resent selenium atoms. a) Conventional cell. Cell boundaries are represented in black.
b) One isolated crown-shaped Se8 ring moiety. a = 8.894(2) Å, b = 9.000(2) Å,
c = 11.383(2) Å, α = γ = 90◦, β = 90.68(2)◦, V = 911.1 Å3.[340]

The two structures present voids (van der Waals gaps) between the chemical entities
(Se8 rings or infinite chains), a clue of the importance of weak interactions to maintain
the cohesion of the microscopic organisation of matter. Computed geometric paramet-
ers are reported in Tables 4.3 and 4.4. Let one start the analysis of the ability of the
different functionals to reproduce a correct geometry with β-Se. The large overestim-
ation of the b and c lattice parameters using “pure” 2 PBE and HSE06, corrected by
the use of dispersion schemes GD3 and GD3-BJ, demonstrates the importance of weak
interactions in the structure. At the GGA level, PBE-GD3-BJ outperforms PBE and
PBE-GD3 in terms of structural description. Note that going from GD3 to GD3-BJ

2. without any dispersion correction
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shrinks the cell parameters and van der Waals distances. This trend was also observed
on TiS2 as mentioned in Chapter 3. Regarding nearest-neighbour Se-Se distance, the
shortest Se-Se distance of the Se8 is more overestimated than the longest one, all of
them being close by less than 3% to the experimental one. The overall good prediction
of nearest-neighbour distance with poor cell parameters and van der Waals distance
predictions for the uncorrected functionals means that each moiety (chain or ring) is
correctly reproduced, however the different entities are too far apart one another, i.e.
the size of the van der Waals gap is overestimated. This can be explained by the fact
that DFT functionals account well for short-range interactions but not long-range ones.
Thus, separate non-interacting moieties in the uncorrected models tend to drift apart.
It confirms the importance of weak interactions in the structures.

(a)

(b)

Figure 4.3: Crystallographic structure of γ-Se. The structure crystallises in a trigonal
lattice, within the P3121 (no 152) space group symmetry. It consists of 1/∞ [Se] helical
chains along the c axis. a) Conventional cell. Cell boundaries are represented in black
and green spheres represent selenium atoms. b) Top-view of the cell. The projection
of the chains in the (a, b) plane draws isosceles triangles whose barycentres correspond
to the cell corners. a = b = 4.368(3) Å, c = 4.958(4) Å, V = 81.9 Å3.[346]

The computational effort required for a hybrid functional calculation being very
heavy, it is important to consider reliable and efficient methodologies. Going beyond
the first order of the Taylor expansion of the electronic density as does the GGA
approximation, meta-GGA takes into account the laplacian of the density, while offering
an affordable computational cost. The SCAN functional, which gains in popularity
among computationally-oriented material scientists,[149] was tested here. Interestingly,
uncorrected SCAN leads to a relatively satisfying optimised geometry for β-Se, with
a maximum relative deviation towards experimental cell parameters of 3.50%. The
agreement with experiment is even improved with the addition of the GD3 scheme. 3

To summarise, when considering the minimisation of cell parameters deviation
between simulation and experiment for β-Se, PBE-GD3-BJ, SCAN and HS06-GD3
provide similarly satisfying results with a ' 3% maximum deviation in absolute value,
and SCAN-GD3 an even closer description.

3. GD3 semi-empirical parameters are not yet available for the SCAN functional, so the values
were kept identical to the PBE ones as the most closely related to SCAN.
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Table 4.3: β-Se structure parameters calculated using different methodologies com-
pared with experimental data. The van der Waals distance dvdW corresponds to
the inter-ring distance, while dSe-Se corresponds to closest neighbour distances (bonds
within the same ring).

Source a (Å) b (Å) c (Å) β (◦) dSe-Se (Å) dvdW (Å)
ICSD 280666[340] 8.894(2) 9.000(2) 11.383(2) 90.68(2) 2.292-2.358 (2.345) 3.396

PBE 9.363 10.136 12.339 91.38 2.357-2.373 (2.364) 3.779
PBE-GD3 9.094 9.278 11.812 90.60 2.353-2.382 (2.367) 3.485

PBE-GD3-BJ 8.925 8.744 11.503 90.91 2.354-2.394 (2.372) 3.287
SCAN 9.187 9.255 11.784 91.14 2.335-2.358 (2.345) 3.519

SCAN-GD3 9.050 8.923 11.553 90.66 2.325-2.363 (2.344) 3.404
HSE06 9.365 10.213 12.531 91.76 2.322-2.331 (2.325) 3.882

HSE06-GD3 9.131 9.173 11.729 89.99 2.315-2.340 (2.326) 3.540

∆a ∆b ∆c ∆β ∆dSe-Se (%) ∆dvdW (%)
PBE 5.30% 12.60% 8.40% 0.77% 2.8-1.5 (2.3) 11.3

PBE-GD3 2.30% 3.10% 3.80% -0.09% 2.6-1.9 (2.4) 2.6
PBE-GD3-BJ 0.30% -2.80% 1.10% 0.25% 2.7-2.4 (2.6) -3.2

SCAN 3.30% 2.80% 3.50% 0.51% 1.9-0.8 (1.5) 3.6
SCAN-GD3 1.80% -0.90% 1.50% -0.02% 1.4-1.0 (1.4) 0.2

HSE06 5.30% 13.50% 10.10% 1.19% 1.3- -0.3 (0.6) 14.3
HSE06-GD3 2.70% 1.90% 3.00% -0.76% 1.0-0.0 (0.6) 4.2

Before discussing the bandgap values, let us investigate the γ-Se 1D structure.
Once more, pure HSE06 severely overestimates the a = b parameter due to weak
interactions. Surprisingly, pure PBE does not have such a problem. The cell parameters
decrease when adding dispersion schemes GD3 and GD3-BJ as expected. The GD3-BJ
correction to PBE is inappropriate in the case of γ-Se, shrinking a = b too much leading
to a 7% underestimation with respect to experiment. The long range interactions seem
less strong than in the β-Se case. The trend is the same at the meta-GGA level with
SCAN-GD3 underestimating a = b by 3.4% against a slight overestimation of 1.7% by
SCAN. Overall the c parameter, i.e. the spatial period along the chain direction, is
satisfyingly described with all methods. The closest geometry to experiment is the one
calculated with HSE06-GD3 with less than one percent deviation in absolute value.

However, the choice of methodology to describe the two materials would not be
complete without taking into consideration the bandgap prediction. The bandgap
of β-Se ring-like structure is reported experimentally at 2.53 eV.[341] The chain-
like structure γ-Se has a smaller bandgap reported between 1.83 and 2.00 eV in the
literature.[336, 337, 347]

Before comparing the bandgap values for the different density functionals, we com-
ment on the electronic band diagrams of the two structures as it is an important
electronic ground state characteristic of the compounds. As mentioned in the intro-
duction, the direct or indirect nature of the bandgap varies from one allotropic form to
the other. Moreover, as highlighted beforehand, the γ-phase is strongly anisotropic. It
is thus of interest to study the electronic band diagram of the relaxed structures before
further investigations.

The electronic band structure of both β- and γ-Se computed with the SCAN func-
tional are reported in Figure 4.4. Both compounds are semiconductors. The gap values
are discussed more in details hereafter, however it should be mentioned here that the
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Table 4.4: γ-Se structure parameters calculated using different methodologies com-
pared with experimental data. The van der Waals distance dvdW corresponds to the
inter-chain distance, while dSe-Se corresponds to closest neighbour distances (bonds
within the same chain).

Source a = b (Å) c (Å) dSe-Se (Å) dvdW (Å)
ICSD 40018[346] 4.368(3) 4.958(4) 2.375 3.438

PBE 4.475 5.052 2.407 3.533
PBE-GD3 4.173 5.132 2.432 3.291

PBE-GD3-BJ 4.058 5.138 2.446 3.190
SCAN 4.443 4.987 2.379 3.509

SCAN-GD3 4.218 5.057 2.389 3.337
HSE06 4.785 4.892 2.345 3.799

HSE06-GD3 4.334 4.964 2.361 3.423

∆a ∆c ∆dSe-Se ∆dvdW

PBE 2.40% 1.90% 1.3% 2.8%
PBE-GD3 -4.50% 3.50% 1.0% -4.3%

PBE-GD3-BJ -7.10% 3.60% 0.6% -7.2%
SCAN 1.70% 0.60% -2.7% 2.1%

SCAN-GD3 -3.43% 2.00% 0.4% -2.9%
HSE06 9.50% -1.30% -1.8% 10.5%

HSE06-GD3 -0.80% 0.10% 0.7% -0.4%

existence of an electronic gap is preserved with all the functionals tested, even un-
corrected GGA-PBE. β-Se (rings) exhibits a direct bandgap of 1.74 eV on the Γ − Y
segment while γ-Se shows an indirect L−H bandgap of 1.29 eV. The electronic bands
of β-Se are quite flat, which translates as high charge carrier effective masses and low
mobility. This can be understood as the electronic states are localised onto a Se8 ring
and the inter-ring interaction is weak and of van der Waals nature. The flatness of
the bands can be correlated to the pseudo-0D character of the structure which exhibits
separate moieties. On the contrary, the dispersion of the electronic bands of γ-Se is
much more important due to its pseudo 1D structure.

A parabolic fit of the vicinity of the band extrema yield the effective mass values
reported in Table 4.5. They are used as input parameters for the computation of the
defect concentrations.

The most substantial modification of the band diagram when changing the approx-
imation for the electronic exchange correlation is the opening of the gap when climbing
Jacob’s ladder of ab initio simulations. Now the quality of the gap simulation is dis-
cussed with respect to the choice of functional. The experimental and computed DOS
gap values are reported in Table 4.6.

The well-known bandgap problem at the GGA level is visible with a bandgap un-
derestimation of ' 40% for β-Se and 50% for γ-Se. In the case of the GGA description
of β-Se, the closer to experiment the cell parameters are, the more underestimated the
bandgap is. At the meta-GGA level, pure SCAN is in both cases closer to the experi-
mental value than SCAN-GD3 with a ' 30% gap underestimation. The addition of the
laplacian term in the Taylor expansion of the electronic density (kinetic term) is not
enough to recover entirely the localised character of the chemical bonds from the semi-
local GGA description, but provides a fair improvement at negligible computational
cost. The HSE06 geometries being very distorted compared to the experimental ones,
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they will not provide suitable models for these materials, even if the bandgap can be
by coincidence quite close to the experimental one, as is the case for β-Se. The HSE06-
GD3 gap simulation is quite good with an 8% underestimation in the case of β-Se and
6% overestimation in that of the γ-phase. The introduction of 25% of Hartree-Fock
exchange allows to recover the gap, along with a structure closer to experiment thanks
to the GD3 scheme.
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Figure 4.4: Electronic band structure and DOS computed using meta-GGA SCAN
functional for a) β-Se exhibiting a direct bandgap of 1.74 eV on the Γ− Y segment (Γ
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HSE06-GD3 provides the most reliable structural and electronic description com-
bined for both compounds and are thus retained as the reference calculations to posi-
tion the band-edges in the later defect study. However, relaxing the faulted supercells
at this level of approximation would be too cumbersome and a less demanding func-
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tional is required for the defect study. SCAN provides a convenient way to describe
reliably both compounds using state-of-the-art functional of affordable computational
cost, thus is retained for the defect study.

4.2.3 Defect formation energies

Then, point defects are investigated in both β- and γ-phase in order to understand
the origin of the conductivity of the materials and explore potential dopants which
may prove useful for their application in optical devices. The SCAN functional is used
throughout the defect study as mentioned previously. Note that in addition to the
SCAN lattice parameters being in good agreement with the experimental ones, the
interatomic distances are also very well reproduced, with a deviation with respect to
experiment inferior to 3%. As summarised in Table 4.2, a 2×2×1, 3×3×3, supercell
is used for β-, γ-Se, respectively.

Computational studies allow to screen the periodic table for dopants in an afford-
able and efficient way, prior to experiment in order to give valuable insights to guide
synthesis. In that spirit, the following extrinsic defects were also considered. It is useful
to make an analogy with Si, the most studied elemental material, in order to choose
relevant dopants. Aliovalent doping in Si usually relies on boron substitutions to induce
p-type and phosphorus for n-type doping, as B possesses one less valence electron than
Si and P one more. Following the same line of thoughts, any V (VII) element substitu-
tion to Se should induce p-type (n-type) doping. Due to prior investigation of Sb2Se3,
Sb was selected over P and As. Bromine was considered for electron doping. Due to
the similarities with the study of Sb2Se3, where copper interstitial, among others, was
potentially an electron donor defect, it was also investigated to dope selenium. Cop-
per having a 3d104s1 electronic configuration, it appears as a potential n-type dopant,
giving an electron to the system to reach the 3d104s0 full electronic layer configuration.

β- and γ-Se are unary compounds, so the chemical potential of selenium is taken
as the energy per atom, and only one synthesis condition is represented in the in-

Table 4.5: Effective masses obtained by fitting parabola onto SCAN band extrema
displayed in Figure 4.4 following equation 1.35.

β-Se (rings) γ-Se (chains)
m∗e
me

1.8 0.6
m∗h
me

1.3 0.6

Table 4.6: β- and γ-Se electronic DOS bandgap (eV) calculated using different meth-
odologies compared with experimental data.

β-Se (rings) γ-Se (chains)
ICSD 280666[340]/40018[346] 2.53[341] 1.83-2.00 (1.91)[336, 337, 347]

PBE 1.55 (-39%) 0.96 (-50%)
PBE-GD3 1.29 (-49%) 0.57 (-70%)

PBE-GD3-BJ 1.07 (-58%) 0.45 (-76%)
SCAN 1.75 (-31%) 1.32 (-31%)

SCAN-GD3 1.62 (-36%) 1.00 (-48%)
HSE06 2.75 (9%) 2.58 (35%)

HSE06-GD3 2.33 (-8%) 2.02 (6%)
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trinsic defect model. The difference in selenium chemical potential between the two
phases is small (9.0 meV/atom), highlighting the fact that the two coexist at ambient
temperature and pressure. The chemical potential values are available in Table 4.7.

Only the total energy of one binary needs to be computed for each dopant considered
in order to obtain the maximum possible dopant chemical potential value. The binary
compound with the lowest dopant content will set this limit. This is verified with
copper by comparing the values obtained for µCu with CuSe2 (µCu = −15.437 eV),
CuSe (µCu = −15.433 eV) and Cu2Se (µCu = −15.139 eV). Thus, CuSe2 (Pnnm,
no 58), Sb2Se3

4 (Pnma, no 62) and SeBr4 (P31c, no 159) were considered for copper,
antimony and bromine, respectively.

Table 4.7: Chemical potential values in electronvolts, as computed with the SCAN
functional. The competing binary phase limiting the stability domain of the selenium
phase is indicated in brackets.

β-Se (rings) γ-Se (chains)
µSe -20.076 -20.085

µCu (CuSe2) -15.455 -15.438
µSb (Sb2Se3) -37.873 -37.860
µBr (SeBr4) -19.548 -19.546

In this unary compound, only two types of intrinsic defects can be considered,
namely vacancies and interstitials. β-Se exhibits 8 distinct crystallographic sites, how-
ever they are very similar in terms of environment, all being bicoordinated. As our
previous work has shown that the environment is the driving force for important va-
cancy DFE difference, only one vacancy was considered in β-Se. The structure of
γ-Se offers only one crystallographic position, so there is no ambiguity on the vacancy
position. A Frenkel defect (Sei + VSe) was build for the γ-phase, but could not be
stabilised. This relaxation leads the displaced atom back to its initial position within
the ideal arrangement.

Two different initial positions were considered for the Sei in β-Se, both in low
electronic density regions found through charge density plots. The first position cor-
responds to the barycentre of a Se8 ring and the second is initialised between two
rings. The total energy difference between both supercells is 0.13 eV in favour of the
in-ring initialisation. Although the difference is small, only this first initial position
was retained in order to alleviate the computational burden.

As far as γ-Se is concerned, the charge density plot confirms the intuition of the
shape of the charge density and the interstitial initial position is set in the middle of
the interchain region.

Let us examine the DFE of the intrinsic defects, as reported in Figure 4.5. In both
cases, VSe is lower in enthalpy than Sei, and both defects exhibit quite low enthalpy
of formations, inferior to 2 eV. However, the negative U behaviour of the chalcogen
vacancy 5 observed in the other chalcogen compounds studied (In2S3, Sb2Se3, TiS2,
CsCu5Se3) is found only in the γ-phase. VSe is potentially an electron donor defect,
however the formation enthalpies of the non-zero charge states are too high for the
transition level +2/+1 in β-, +1/0 in γ-Se, to be above the VBM. Interestingly, there
is only a 0.05 eV difference between the transition level εβ+2/+1 = −0.07 eV and εγ+1/0 =

4. This is the only binary compound in the Sb-Se system anyway.
5. +2/0 charge transition with the intermediate +1 charge not thermodynamically stable.
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−0.12 eV. The εβ+1/0 transition level is located 0.015 eV above the VBM, i.e. 2.25 eV
under the CBM. Consequently, VSe is totally unable to give any electron to the CB.
However, it may act as a hole killer, a recombination site, and may be detrimental to
the hole conductivity.

0.0 0.5 1.0 1.5 2.0
μEF (eV)

−3

−2

−1

0

1

2

3

ΔH
fo
rm
 (e

V)

β-Se

Sei
VSe

Calculated gap

(a)

0.0 0.5 1.0 1.5 2.0
μEF (eV)

−3

−2

−1

0

1

2

3

ΔH
fo
rm
 (e

V)

γ-Se
Sei
VSe

Calculated gap

(b)

Figure 4.5: DFE of intrinsic defects plotted against Fermi level µEF
a) in β-Se b) in γ-

Se. The vertical black and blue dotted line stand for the VBM and CBM, respectively.

The energetic cost associated to the creation of a selenium vacancy in the two
phases is quite different. For the neutral state of charge, it is of 0.46 eV in β-Se
against roughly three times more in γ-Se, more precisely 1.39 eV. Counterintuitively, it
cannot be directly related to the bond lengths. Indeed, the Se-Se interatomic distance is
2.345 Å (2.335-2.358 Å) in β-Se, 1.4% shorter than 2.378 Å in γ-Se. The strength of the
chemical bond is expected to increase when the interatomic distance decreases. Thus,
the vacancy is lower in formation enthalpy in the allotropic form with the stronger Se-
Se bonds (β-Se). The comparison between perfect and faulted geometries provides an
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interesting insight into reason for the DFE difference for VSe between the two allotropic
forms. They are represented in Figure 4.6. The variation in interatomic distance after
introduction of the vacancy is presented in Figure 4.6. Although the Se-Se distance is
shorter in β-Se indicating stronger chemical bonding than in γ-Se, the relaxation of the
structures after the vacancy formation occurred leads to two very distinct situations.
Atoms are arbitrarily numbered starting at zero for the atom missing as shown in
Figure 4.6. In β-Se, once the two chemical bonds Se0−Se1 and Se0−Se7 and the Se0

atom gone, the structure is able to recover a ring shape. In doing so, the Se1−Se7

is now 5% longer than Se0−Se1 was, and Se1−Se2 2.4% shorter than in the ideal Se8

ring. The impact on the second neighbours and following is less than 1.5% variation
in interatomic distances. On the other hand, in γ-Se the infinite chain is broken. The
covalent bond Se0−Se1 is replaced by a long range interaction Se1−Se8 with a distance
between nuclei of 2.784 Å. Se1−Se2 shrinks by 2.4%. Thus, Se1 in γ-Se in the final
configuration exhibits a radical change in environment, with one covalent bond replaced
by a long range interaction. This configuration is energetically very unfavoured. This
explains why, in spite of stronger Se-Se bonds in β-Se, it is easier to create a vacancy
in β- than in γ-Se.

As the γ-Se phase is very anisotropic and periodic boundary conditions are applied,
the DFE of VSe was validated against another supercell (2×2×7) to ensure the quality
of the result.

The behaviour of Sei however is very different between the two phases. In β-Se,
the -2/0 transition level stands far above the VBM at 1.48 eV, whereas in γ-Se ε0/−1

exists and is located only 0.31 eV above it. ε−1/−2 sits 0.77 eV above the VBM. Thus,
the self-interstitial is expected to be electrically inactive in the ring form while being
a fair acceptor defect in the linear allotropic form. The DFE also varies significantly
from one structure to the other. While the DFE of Sei in the neutral state of charge
is only of 0.45 eV in β-Se, it is 1.64 eV in γ-Se, roughly three times higher. It is very
clear that the ring structure is far more prone to intrinsic defects than the linear one.
However, the very concentrated defects of β-Se are very deep defects and do not give
rise to free charge carriers, while Sei in γ-Se is a fair acceptor.

Although the Fermi level µEF
is often taken as a variable, it is important to keep

in mind that for an isolated material 6, the charge neutrality imposes one single pos-
sible value for the Fermi level at a considered growth temperature. As mentioned in
Chapter 1, it is necessary to calculate the effective masses of the charge carriers. By
fitting a parabolic model onto the band extrema, the effective masses summarised in
Table 4.5 are obtained for the two phases. For β-Se, a difficulty emerges. The N
prefactor in the expression of the defect concentration, as written in equation 1.31 of
Chapter 1, is the number of available sites for the defect. Although its value is obvious
in the case of vacancies, it is much more ambiguous in the case of an interstitial in
β-Se for two reasons discussed hereafter. In the materials investigated so far (In2S3,
TiS2), unoccupied crystallographic sites provide potential host sites for interstitials
which are both obvious to the physico-chemist’s eye and prove significantly (several
tenth of electronvolts) lower in energy than other potential interstitial sites in DFT
calculations. In β-Se, due to the flexibility of the structure which can be seen as a very
soft/flat potential energy surface, the energy difference between different interstitial
sites is much lower, making it harder to discriminate between sites. The second reason
is that the structure is usually quite “rigid”, i.e. the environments are maintained after
relaxation in the presence of an additional atom. The neighbouring atoms are locally

6. Particularly, in the absence of an electric potential.
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slightly displaced, but the global structure is preserved even if locally the symmetry is
broken.

(a)

(b)

Figure 4.6: Relative variations of closest-neighbours’ interatomic distances after intro-
duction of VSe in a) β-Se b) γ-Se. Atoms are arbitrarily numbered from 0, the atom
which will be missing. The position of the vacancy is highlighted with a black square.
The cell borders appear in solid lines.
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For interstitial selenium atoms in γ-Se, Nsites was considered equal to one per
conventional cell (N = 27 for the 3 × 3 × 3 supercell). This allows the determination
of the Fermi level at growth temperature and after quenching at room temperature,
as well as the defect concentrations, as presented in Chapter 1. The simulation results
are summarised in Table 4.8. The Fermi level during crystal growth is one third of
the bandgap above the VBM, near the crossing point of the formation enthalpy curves
of the two intrinsic defects (0.66 eV for Tgrowth = 500 K, which corresponds to the
synthesis temperature of Todorov et al.).[317] Then, once the defect concentrations
are frozen to model a quenching of the material, the Fermi level is dragged down
towards the VBM. This is due to the following mechanism. The charge neutrality
condition during synthesis imposes the 0.66 eV value for Egrowth

F . Then the point
defect concentrations are kept constant. As the number of free charge carriers is the
product of the distribution and the DOS, the Fermi level is bound to come closer to
the band-edges, as discussed in Chapter 1. Here, the p-type behaviour of the material
due to the selenium interstitial is reproduced for the Fermi level as well. It highlights
the fact that increasing the synthesis temperature will increase the concentration of
charge carriers and by extension the conductivity, as the concentration of charged point
defects increases with temperature. Note that the maximum hole concentration is quite
low (1014 cm−3 for Tgrowth = 1000K). This calculated value is in perfect agreement with
experimental data.[348] Interestingly, whereas at low synthesis temperature interstitials
are more concentrated than vacancies, for growth temperatures above'570K, vacancies
become the major defect in pure γ-Se. Defect concentrations are calculated to be
inferior to 1015 cm−3, comparably to In2S3.[159]

Table 4.8: Fermi level (eV) at growth temperature (K) and after quenching at room
temperature (300K), free hole and electron concentrations at room temperature and
intrinsic defect concentrations (cm−3) in γ-Se with respect to growth temperature.

Tgrowth Egr
F Eroom

F nh ne [VSe] [Sei]
500 0.66 0.37 1.0.109 1.6.10−12 3.6.108 1.0.109

800 0.49 0.15 7.3.1012 2.3.10−16 6.3.1013 7.3.1012

1000 0.38 0.07 1.5.1014 1.1.10−17 3.5.1015 1.5.1014

Now that intrinsic defects properties have been thoroughly investigated, the po-
tential dopants mentioned previously are discussed (Cu, Sb, Br). The extrinsic DFE
curves are reported in Figure 4.7. Copper interstitial proves to be a deep-defect for
both phases, with a +1/0 CTL 0.68 eV (0.92 eV) below the CBM for the β-phase
(γ-phase). Once more, β-Se proves quite defect tolerant with low (1-2 eV) DFE for all
considered defects, except for antimony interstitial. Antimony (4d105s25p3) can both
exhibit the cationic form Sb3+ emptying the 5p orbitals as in Sb2Se3 and the anionic
form Sb3– saturating the same orbitals, as in AlSb. Thus, six different non neutral
states of charge were considered for Sbi. The transition levels unfortunately are buried
deep inside the gap. The -2/-3 transition level of Sbi is only 0.25 eV below CBM in
β-Se but is an acceptor level, not a donor one. Its position should thus be considered
with respect to the VBM and not the CBM. Bromine can lead to Bri acceptor and
BrSe donor defects. In β-Se, both are deep defects. In γ-Se, the +1/0 CTL of BrSe is
1.62 eV below the CBM and is thus very deep. The 0/-1 CTL of Bri makes it a good
acceptor, however it is more than 0.9 eV higher in formation enthalpy than deep donor
BrSe. BrSe is expected to act as a “hole killer” defect as it is much more concentrated
than Bri. To summarise, no efficient dopant for β-Se was found in the list of chemical
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species we selected. Copper and bromine doping of γ-Se are ineffective with respect to
the improvement of the conductivity. SbSe in γ-Se is the lowest enthalpy defect in a
γ-Se material containing antimony. Its DFE of 1.14 eV in the neutral state of charge,
and its 0/-1 transition level 0.10 eV above the VBM makes it a far better acceptor
defect than the intrinsic Sei.

From those calculations, it can be concluded that the formation of the metastable
phase β-Se should be avoided because of its extremely poor conductivity. It appears
that Sb-doping of γ-Se may be an efficient way to improve the conductivity of selenium
layers in optoelectronic devices. The other two species tried out, namely bromine and
copper, seem irrelevant for such purpose.
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Figure 4.7: DFE plotted against Fermi level µEF
for intrinsic defects and a) Cui in

β-Se b) Cui in γ-Se c) Sb defects in β-Se d) Sb defects in γ-Se e) Br defects in β-Se f)
Br defects in γ-Se.

The relative simplicity of the two selenium phases studied (only one chemical species
involved) offers the opportunity to try to go beyond the static model at zero temper-
ature. This would allow to link the simulated variables to experimentally relevant
macroscopic quantities, here pressure and temperature. The state function to simulate
is no more the enthalpy but the free energy, as discussed hereafter.
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4.3 Free energies

As discussed in Chapter 1, including the entropy allows to calculate the free energy
F = E − T × S and considering both pressure/volume effects and temperature to go
up to the Gibbs’ energy G of the system, the thermodynamic quantity which should
ideally be evaluated. The relative simplicity of the systems considered provides the
opportunity to check the amplitude of the entropic and volume terms ignored in the
model. The Gibbs’ energy for the two ideal structures is calculated first, followed by
the free energy of formation of intrinsic defects in γ-Se.

4.3.1 Computational details

To take into account the effect of pressure, a series of 6 additional cells with different
V
V0

ratios were built from the relaxed structure of volume V0 (PBE-GD3-BJ for β-Se and
PBE-GD3 for γ-Se). They were optimised at constant volume. The values reported
in Tables 4.3 and 4.4 show that these functionals can be satisfactorily used for such
purpose. The E(V ) data was fitted using Birch-Murnaghan equation of state 1.3 as
implemented in PyDEF[117] and described in Chapter 1.

Density Functional Perturbation Theory (DFPT)[349] could not be used to calcu-
late the phonon properties as the dispersion corrections are not included yet in the
Hessian matrix in VASP. Thus, the finite-displacement method was used with 2×2×2
supercells. The related post-treatment was performed using the phonopy code.[177]

4.3.2 Pressure and temperature effects

In order to calculate the Gibbs’ energy G for the determination of pressure and
temperature dependent phase diagram of crystalline selenium, both pressure and tem-
perature contributions to G, namely P × V (P ) and T × S(T ), must be calculated. It
is assumed that at low pressure and temperature, the two variables P and T can be
decorrelated so that the two dependencies can be studied separately. The results are
then linearly extrapolated to complete the ab initio data determined at P (T = 0) and
T (P = 0).

To take into account pressure effects, Birch-Murnaghan equation of states was fitted
on a series of energy vs. pressure ab initio data points. They were obtained by relaxing
at constant volume and calculating the energy of compressed/dilated models with PBE-
GD3. It was chosen to use the same dispersion scheme for both allotropic forms to
enable comparison of the obtained energies. The fit is shown in Figure 4.8. Birch-
Murnaghan equation of state has been previously used for high-pressure phases of
Se.[335] Young modulus B0 and its derivative with respect to pressure B′0 are extracted
from the fit. B0 is found to be 3 times bigger for the β- than for the γ-phase. As only
the total energy from the ab initio simulation is extracted to fit the equation of state,
PBE-GD3 ought to provide reliable data.

Then, in order to reflect temperature effects, phonon properties are investigated
within the harmonic approximation. In the ideally ordered structures, the configura-
tional entropy is zero as there is only one possible configuration for the atoms within
each structure. The only configuration is the crystallographic arrangement, where all
atoms sit at their equilibrium position. Thus, the entropy in the ideal systems only
consists in the vibrational entropy. Of course, the situation is fairly different when con-
sidering possible crystallographic point defects as will be discussed in the next section.
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Thus, computing phonon properties of the ideal cells is enough to obtain the entropy of
such ordered system. Due to overdelocalisation, GGA phonon frequencies are usually
underestimated.[350]
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Figure 4.8: Birch-Murnaghan equation of state fitted onto PBE-GD3 calculation series.
a) E(V) curve for β-Se yields B0 = 0.16 GPa and B′0 = 5.51. E(V) curve for γ-Se yields
B0 = 0.05 GPa and B′0 = 8.08. Data points correspond to ab initio results while solid
lines correspond to fitted Birch-Murnaghan equation of state. The square corresponds
to the (V0, E0) minimum obtained without pressure. b) P(V) curves for β- and γ-Se.

Phonon band structure and DOS are presented in Figure 4.9. As expected from
theory,[351] 3N acoustic phonon branches and 3N − 3 optical branches are obtained,
where N stands for the number of atoms in the conventional cell. Acoustic phonon
branches reach zero frequency within the infinite wavelength limit, i.e. the Γ-point of
the first Brillouin zone, corresponding to rigid body translation of the whole crystal
without deformation of the crystal lattice. They exhibit a linear behaviour in the
vicinity of the Γ-point as expected. They decompose into one longitudinal and two

97



transverse modes. Vibrational frequencies of the acoustic modes are lower for the β-
phase (< 25 cm−1) than for the γ-phase (< 80 cm−1). It means that the chemical bond
in the chain-like structure is more “rigid” than in the ring-like one. This is coherent
with the previous interpretation of β-Se being the most flexible structure of the two.
The forbidden frequency gap in the infinite wavelength limit (Γ-point) is computed
to be 21 cm−1 in β-Se and 113 cm−1 in γ-Se. The DOS gap between the medium-
and high-frequency optical phonons is three times more important for the β- than for
the γ-phase (' 60 cm−1 vs. ' 20 cm−1). Finally, β-Se exhibits phonon modes of
frequencies higher than 250 cm−1 while γ-Se does not. All these distinctive features
can help identify the allotropic form of Se using Raman spectroscopy.
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Figure 4.9: Phonon band structure and DOS for a) β-Se (Γ (0,0,0), Y(1
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7. 3 negligible imaginary frequencies at 2.5 10−6eV (doubly degenerated) and 7.6 10−7 eV were
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This allows us to obtain free energy dependency with respect to temperature, as
depicted in Figure 4.10. The entropic contribution is more important for β-Se. This
may be due to the fact more degrees of freedom are available for the vibrations of the
ions as the rings are roughly free to vibrate independently from one another, whereas
the chain structure of γ-Se constrains the vibrations in the c crystallographic axis.
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Figure 4.10: Free energy of each phase, in electronvolts, plotted against temperature.

The dependency in temperature and pressure of the ideal structures Gibbs’ energies
can be extrapolated from the obtained data, following equation 4.1. The thermal
dependency is modelled via the simulation of phonons. Expressions of E(T ), S(T ) and
free energy F (T ) = E(T )− T × S(T ) can be found in reference [177] (equations 8, 10
and 11). The inversion of the V (P ) relation from Birch-Murnaghan EOS as expressed
in Chapter 1 equation 1.3. Of course, this is appropriate far below the melting point,
near melting point studies would require molecular dynamic simulations.

G(P, T ) ' E(T )− T × S(T )︸ ︷︷ ︸
Phonons

+ P
∂E

∂P

∣∣∣∣
T=0

(P ) + P × V (P )︸ ︷︷ ︸
Birch−Murnaghan

(4.1)

The Gibbs’ energy difference gives the calculated pressure-temperature phase dia-
gram presented in Figure 4.11. The 1D phase γ-Se is the low-temperature phase, as
observed experimentally.[353] This is consistent with the fact that thin film synthesis,
during which temperature is typically of a few hundreds of degrees, always lead to
the formation of γ-Se.[322, 323] It should be noted that due to the strong assumptions
made to come to such result, the absolute values of pressure and temperature should be
considered with care. Only the studied phases are represented in Figure 4.11. As men-
tioned previously, a phase transition towards a monoclinic system is expected at a few
dozen GPa, as reported in the experimental literature. However, the exact structure
as well as the pressure at which the transition occurs remains a matter of debate.

found in the finite difference VASP/phonopy process. This is a known issue related to numerical
interpolation in the vicinity of the Γ high symmetry K-point of no physical importance. It might be
eliminated when using other implementations such as ABINIT.[352]
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Note that the entropic contribution to the Gibbs’ energy is more important than
the volume term here. It may explain why, counterintuitively, the low-pressure phase
γ-Se has a slightly higher density of 4.80 8 than that of 4.61 of β-Se.

Figure 4.11: Calculated phase diagram of crystal selenium against pressure and tem-
perature. ∆Gβ−γ(T, P ) = Gβ(T, P )−Gγ(T, P ).

4.3.3 Free formation energies of intrinsic interstitial defect of
γ-Se, the standard phase of Se

The relative simplicity of the structures offers the opportunity to test the model
further and to get closer to the Gibbs’ free energy of formation which is rigorously the
thermodynamic quantity to aim for. This will allow us to check the validity of the
approximation made in Chapter 1 which consists in ignoring the entropic contribution.
In the dilute defect limit, volume change due to the defect is supposed to be zero. Hence,
so is the change in the volume term of the Gibbs’ energy ∆(P × V ). In any case, it
could hardly be taken into account using our methodology. Thus, the free formation
energy of formation ∆FD,q

f (µEF
, T ) is computed, in order to quantify the error made by

ignoring the entropic part. In the following discussion, T always refers to the crystal
growth temperature noted Tgrowth previously. The notation is simplified to lighten
the expressions. As noted by Freysoldt et al.,[48] it is rigorously the thermodynamic
quantity to calculate. In metals, where the bandgap problem does not occur, and
subsequently avoids the determination of the Fermi level at growth temperature, free
energy of defect creation has been calculated for systems such as Al and Cu, taking
into account both configurational and vibrational entropies.[97, 354] Similar studies in
semiconductors remain scarce and limited to well-known materials such as Si, diamond,
Ge and GaN.[355, 356]

8. As calculated from the XRD structure.
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The computation of the configuration entropy requires no additional DFT calcula-
tion compared to a standard DFE study but only a refinement of the post-treatment
step, while accounting for the most important part of the entropy. Thus, first only the
configurational entropy will be taken into account, not the vibrational entropy. The
treatment of the disordered (faulted) system is very different from that of the ordered
(ideal) system regarding the computation of entropy. Only the configurational entropy
as expressed in equation 1.6 of Chapter 1 needs to be taken into account in a first
approximation. As expressed in the system of equations 4.2, the free energy depends
on the entropy among other things. In turn, the configurational entropy is a function
of the defect concentration, which is a function of the free energy among other things.
This triangular dependency causes a practical difficulty. It can be overcome by solving
the first equation of 4.2 of unknown quantity ∆F using a standard root-finding al-
gorithm. It implies that the fundamental quantity in the model is no more determined
in a single step from µEF

but using a self-consistent loop.
∆FD,q

f (µEF
, T ) = ∆ED,q

f (µEF
)− T∆Sconf (∆F

D,q
f )

∆Sconf ([D
q]) = kB([Dq]− [Dq] ln[Dq] + [Dq] ln(N sites))

[Dq](∆FD,q
f ) = N sites

D .(1 + e
∆F

D,q
f

kBT )−1

(4.2)

In Chapter 1, the configurational entropy was plotted against the defect concentra-
tion (ratio). Here, it is applied first to Sei in γ-Se and plotted against volume defect
concentration in Figure 4.12a. Let one keep in mind that the expression of ∆Sconf ([D

q])
used in equation 4.2 is obtained by considering the possible configurations of a system
containing n defects and N atoms, then by simplifying the obtained expression using
the Stirling approximation lnN ! ' N lnN − N and exploiting n

N
� 1. Furthermore,

for high defect concentrations, the dilute defect model becomes irrelevant as the sys-
tem tends to become a solid solution. This is a different problem which should be
addressed using an appropriate methodology which differs from the one used in this
work. Thus, the model employed here becomes gradually irrelevant as the defect con-
centration in the system reaches the solid-solution domain. 9 Of course, above a defect
ratio of 100% represented by the dotted blue line in Figure 4.12a, the model loses any
physical meaning. For realistic defect concentrations, the T × ∆S product is inferior
to 0.10 eV for temperatures up to 1250 K. The range of growth temperatures con-
sidered (500 - 1250 K) corresponds to typical temperatures encountered in different
growth/deposition processes. Low temperatures would be employed in vacuum pro-
cesses such as PVD and high temperatures in ceramic routes. So far, merely by looking
at the expression of the configurational entropy used in the model, one can see that
in the most extreme limit the T × ∆S product would weight no more than 0.10 eV.
One would like to go further and estimate the actual dependency in Fermi level µEF

and see whether this value is actually met. Note that the very low maximum values
for the configurational entropy validate the assumption that the vibrational entropy
associated to the defect creation can be safely ignored.

Then, the system of equations 4.2 is solved self-consistently to obtain the variations
of entropy with respect to the position of the Fermi-level µEF

. The weight of the
product of the temperature by the configurational entropy T ×∆S is inferior to 5 meV

9. The value at which a solid-solution should be considered is a matter of discussion and depends
both on the physical system investigated and the research communities. For certain, a defect concen-
tration above 10% is definitely not a mere perturbation of the ideal host lattice.
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throughout the bandgap, far below the maximum 0.10 eV noticed during the previous
analysis of S([D]). As the formation enthalpy of Sei in β-Se, which is the main term
of the free energy, decreases with increasing Fermi level, the calculated defect concen-
tration increases with the Fermi level. It leads to an increase in the entropic term.
Although it is experimentally known that the real γ-Se material is a p-type one, it is
still interesting to look at the range of Fermi level values for which the entropic term
would weight the most. For values of the Fermi level within the bandgap, the entropic
term is of the order of magnitude of the millielectronvolt or less. The approximation
of the free energy by the enthalpy of formation appears thus entirely justified for this
defect. It is only for very high values of µEF

that the DFE of Sei becomes low enough
for the entropic term to increase significantly. Let one keep in mind that the formation
enthalpy of this defect is quite high, ∆HSei

−2
(µEF

= 0) = 3.02 eV 10.
Thus, one can wonder under which formation enthalpy value the configurational

entropy becomes substantial. This is investigated by considering hypothetical defects
of constant charge -2 and increasing formation enthalpy within the range 0 to 3 eV 11.
Let us arbitrarily fix this criteria as T ×∆S ≥ 0.10 eV. The Nsites prefactor is set to
one in the defect concentration expression. Note that as the defect concentration is
necessarily inferior to one (100%), the [D] ln[D] term dominates in the expression of
the configurational entropy. The dependency in Fermi level is computed and shown
in Figure 4.13. Figure 4.13 can be read as an abacus showing the importance of the
entropic term with respect to the Fermi level for different DFE and constant charge
q=-2. The curves are slightly distorted Fermi-Dirac distribution, as derived from 4.2.
Increasing the defect formation enthalpy shifts them up towards the CB. The opposite
charge would reverse the picture, with a maximum value near the VB and a transition
to negligible T × ∆S(µEF

) in the gap. The maximum value is 0.11 eV for Nsites =
1. Depending on the crystallography, this curve is scaled by Nsites. In short, the
configurational entropy ought to be taken into account for defects exhibiting both low
formation enthalpies and high Nsites. It shows the importance which must be taken
in the evaluation of Nsites to decide whether the entropy is needed. It also maps the
values for which the configurational entropy becomes significant.

4.4 Partial conclusion on selenium

Ab initio simulations on two allotropic forms of selenium encountered at ambient
pressure and temperature were performed. Birch-Murnaghan equation of state fitted
onto series of ideal models and phonon calculations allowed to get the contribution to
the Gibbs’ free energy of pressure and temperature, respectively, for the ideal struc-
tures. It shows that the infinite chains of γ-Se are favoured over the metastable ring
structure β-Se at low pressure and temperature.

Then, intrinsic point defects of both phases were investigated, revealing that β-Se
has practically no conductivity while the fair hole conductivity of γ-Se originates from
selenium interstitials. Geometric modifications induced by selenium vacancies were
studied in detail. It was shown that the ability of the rings to relax to a structure rel-
atively close in terms of environment after the introduction of the vacancy compensates

10. The DFE value at the top of the VBM is the intercept of the ∆Hq(µEF
) line. For Sei in the

q=-2 state of charge, it can be obtained by prolonging the red line of slope -2 in Figure 4.5 and reading
the enthalpy value at the intersection with the vertical black dotted line of equation µEF

= 0.
11. A 0.01 eV shift is added to the k× 0.5 eV, k ∈ 0, 6 energy values to avoid numerical divergence

for ∆H = 0.
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Figure 4.12: Sei in β-Se q=-2 a) Product of the configurational entropy and crystal
growth temperature with respect to defect concentration as obtained from the second
equation in 4.2. The blue dotted line stands for Nsites

V0
, the maximum possible limit for

the defect ratio (100% faulted). b) Product of the configurational entropy and crys-
tal growth temperature with respect to Fermi level µEF

obtained by self-consistently
solving the system of equations 4.2.

the energy required to break two Se-Se chemical bonds. Comparatively, breaking two
such bonds in the chains is easier but results in a very different structure, replacing a
covalent bond by a long range interaction, which is not favoured energetically. These
considerations provide an explanation for the lower VSe DFE in β-Se than in γ-Se
despite stronger Se-Se bonds (shorter Se-Se distances).

The problem of counting potential interstitial sites in β-Se was discussed and it was
preferred not to calculate the Fermi level in this phase. In γ-Se, such issue does not
appear and the simulations were performed, exhibiting a typical p-type behaviour.

Then, antimony, bromine and copper doping were investigated. All proved ineffect-
ive in β-Se, whereas antimony was found to improve significantly the hole conductivity
in γ-Se via the creation of SbSe substitutional defects. Given these results, one can
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Figure 4.13: Product of the configurational entropy and crystal growth temperature
with respect to Fermi level µEF

obtained by self-consistently solving the system of
equations 4.2 for hypothetical defects of charge q=-2 with increasing formation enthal-
pies. The black line marks the 0.1 eV, arbitrarily considered as significant. The Nsites

prefactor is set to one in the defect concentration expression.

advise for selenium used in optoelectronic devices to be grown rather at high temperat-
ure as long as the γ-phase can be maintained, and conductivity improved by antimony
doping.

Pressure and temperature effects were taken into account for the phase diagram
based on the ideal structures. Sei provided a test case to investigate the impact of
configurational entropy. The calculation proves that for selenium, it can be safely
neglected. An abacus of configurational entropy values is calculated to provide the
quantitative data needed for the decision on the need for the configurational entropy
in a defect study.
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Conclusion

As exposed in introduction, lattice defects are ubiquitous in real materials and
have a strong impact on their properties. Mechanical properties are driven mostly by
line defects, while the optoelectronic ones arise from point defects. The present work
focuses on the impact of the latter on the optoelectronic properties of materials. Thus,
it is necessary to identify the nature and role of each defect in applicative compounds
in order to design a device fabrication process which favours the desired defects to
optimise performances. Herein, the focus was set on chalcogenide PV solar cells, in
which the conductivity of the absorber and buffer layers composing the p-n junction and
the identification of potential recombination centres is key. However, the microscopic
scale of point defects and indirect measurement techniques make them difficult to study
comprehensively through experiments. Thus, ab initio simulations appear as a tool of
choice to complement the experimental process. By extension, their reliability means
that this method can now also be used prior to experiment in order to envision the
feasibility of some concepts.

This methodology is applied to investigate the native and extrinsic point defects
in β-In2S3, a buffer material for chalcopyrite solar cells, as reported in Chapter 2.
The interstitial indium atom in tetrahedral environment is the main driver of the n-
type conductivity of the material, along with a sulphur vacancy to a lower extent.
Given our simulation results, sulphur-poor synthesis conditions appear more suited to
enhance the concentration of free electrons within the layer. Then, the impact of alkali-
doping on the host is investigated. On the computational side, this case highlights the
necessity for the competing binary and ternary compounds involving the dopant to be
taken into account into the computation of the chemical potentials. Gathered evidence
show that the observed positive impact of alkali on the conversion efficiency of PV
cells is most probably due to the formation of AInS2 (A= Na, K, Rb, Cs) rather
than the stabilisation of extrinsic alkali defects in the In2S3 lattice due to the large
amount of alkali introduced. The mass balance of the In2S3 host reacting with the
alkali element to form AInS2 is probably guaranteed by the co-formation of InS. The
main approximations in this model are the thermodynamic limit which may not be
reached in the real system and the absence of any interface, as all calculations were
conducted on bulk structures. The destabilisation of the host In2S3 by the insertion of
incoming alkali A in the vacant tetrahedral site leads to the formation of a new phase
AInS2 and subsequently of an interface between the remaining host in excess In2S3

and the newly formed phase. It can be imagined that this discontinuity leads to a
situation where the chemical potentials cannot anymore be considered as single-valued
throughout the system which is now constituted of at least two different grains. The
chemical potentials can undergo a brutal shift when considering two points on both
sides of this interface. It seems possible that due to the continuing diffusion of alkali
atoms, the situation inside the remaining host grain is so that the chemical potential
of the dopant is lower than the calculated limit and some alkali atoms can be stabilised
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as interstitials in the remaining host grain. In any case, the major change which the
system has underwent after exposure to large amounts of alkali is the apparition of the
AInS2 phase. One intuition is that the absolute limit value of dopant chemical potential
found through the computation of the stability domain prior to defect studies may give
a clue a priori on the difficulty to achieve doping. This is confirmed by experimental
means.

A material of fundamental interest, TiS2, is presented in Chapter 3. Large intrinsic
defect concentrations are suspected to be responsible for the controversy on the semi-
metallic or semiconducting character of this transition-metal dichalcogenide. Prior to
studying defects, the difficulties to find a relevant methodology to describe the prop-
erties of the ideal material are discussed. The importance of long-range interactions
in such a layered compound and the need for the use of a hybrid electronic density
functional are highlighted. The intrinsic point defects of the material are studied using
PBE0-GD3-BJ. It shows that regardless of the growth conditions, titanium intersti-
tials stabilised in octahedral environment in the interlayer structural gap are the major
defects. Based on our computations, titanium interstitial do not adopt the tetrahed-
ral configuration. Most importantly, in sulphur-poor conditions, the interstitial Defect
Formation Enthalpy is so low that the Fermi level must enter the CB to satisfy the
charge equilibrium, leading to a semimetallic behaviour. Conversely, in sulphur-rich
atmosphere, it lies under the CBM, sign of a semiconducting character. This shift in
behaviour between the two limits of the stability domain remains unchanged if the hy-
pothetical phase Ti7S12 is not considered. Indeed, considering the S-poor/Ti-rich end
of TiS2 stability domain as fixed by Ti7S12 or TiS only changes the chemical potentials
of a few tenths of electronvolt. The simulated transition obtained via a slight change
in growth conditions explains the controversy around the semimetallic/semiconductor
property of the material.

Finally, due to the current surge in interest for elemental selenium for its potential
use as an active layer in next generation chalcogenide PV cells, be it as an absorber
or a hole conductive layer, this material is investigated. More broadly, the import-
ance of the chemical species of selenium in the field of chalcogenides for PV make it a
relevant compound to investigate. The complexity of the phase diagram, even at am-
bient pressure, is discussed, and two allotropic forms are chosen for the study, namely
0D β-Se consisting in Se8 rings and 1D γ-Se of infinite helical chains. Intrinsic and
extrinsic point defects are studied within the meta-GGA approximation through the
SCAN functional. The difficulty to model interstitial defects within such low-density
and versatile structures is addressed. The 0D form proves to have no shallow defect,
with VSe and Sei showing a deep Charge Transition Level. For the 1D form, neut-
rally charged selenium vacancies, irrespective of the position of the Fermi level in the
electronic bandgap, do not affect the electronic properties, while acceptor defect Sei

possesses a 0/+1 Charge Transition Level close to the VBM. Thus, the native p-type
conductivity in γ-Se is due to selenium interstitials. Then, the apparent simplicity
of those elemental compounds is exploited to test the capacity to take into account
entropy in the model. By performing Birch-Murnaghan Equation of States fits and
phonon studies, the pressure and temperature impact on the two ideal structures is
modelled. Then, the point defect model is refined to include configurational entropy.
Calculating the defect configuration entropy does not require any supplementary ab
initio calculation and the post-treatment was refined to include it. In the light of
those calculations, the general assumption that the defect configurational entropy is
negligible seems valid in most cases, provided that the Defect Formation Enthalpy is
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not too low (≥1 eV). An abacus is also computed in order to get an idea of the order
of magnitude of this quantity with respect to different variables (Defect Formation
Enthalpy, Fermi level). It also strengthens the confidence regarding the reliability of
the results obtained previously on the other materials studied.

This research work allowed our group to acquire the knowledge necessary to handle
the supercell approach to point defects, especially regarding the meaning and impact
of the different energetic corrections. Appropriate tools gathered in the PyDEF 2 pro-
gram were developed and deployed. Additional hindsights on the model was gained
through the constitution of a portfolio of material test cases. The methodology was
applied to identify the key intrinsic point defects, screen extrinsic dopants and evaluate
their impact on the opto-electronic properties of applicative materials for the field of
photovoltaics, β-In2S3, Sb2Se3, β- and γ-Se, CsCu5Se3

12, and also reveal some peculiar
defect-related properties in compounds of fundamental scientific interest, namely TiS2

and ZrSe2
13. In addition to following the now well-established framework to obtain

Defect Formation Enthalpies, the limits of the model were tested when possible. In
particular, Fermi level positioning and defect concentrations were simulated when rel-
evant. Problematic cases such as TiS2 were investigated. The configurational defect
entropy was quantified for selenium.

In the light of the different results obtained throughout this work and also gathered
from the literature, it appears that the supercell approach towards point defects is now
a mature methodology which can provide reliable results complementary to experiment
and even forecast trends in silico. The computational load, mainly due to the high
number of ab initio calculations to conduct, requires adequate power to carry out. 14

Care and organisation is necessary for the post-treatment step, which is now made
easier by the aforementioned tools. Based on our experience, the study of the intrinsic
and a few extrinsic point defects of a non-problematic material can reasonably hope to
get reliable results within a handful of months. This should be compared to the few
years require to conduct and analyse Positron Annihilation Spectroscopy experiments.
The quantities routinely via the supercell framework assessed are Defect Formation
Enthalpies and concentrations in the dilute approximation and thermodynamic limit.
Great care should be taken in the systematic investigation of all possible intrinsic point
defects, considering when possible for instance all different crystallographic sites. When
not, the influence of the chemical environment should at least be taken into account.
The example of tetrahedral and octahedral indium environments in β-In2S3 proves this.
This is of particular importance when investigating doping, as intrinsic defects, or at
least the most concentrated ones, should not be forgotten in the model. They will
always be present in the real material and influence the Fermi level position. It is quite
clear that the approach can only give results on the defects investigated. The unusual
self-substitutions in Sb2Se3 are a great example for this. All the other more conventional
intrinsic defects fail to explain the conductivity of the material. Not considering them
would not allow to understand the origin of this property. Also, the importance of
correctly describing the physics of the system has extensively been illustrated through
the example of TiS2. In particular, small bandgap semiconductors may require the
mandatory use of hybrid functionals. In the same spirit, long-range interactions in

12. Not described in the present manuscript see reference[118] for more details.
13. Not described in the present manuscript, undergoing experimental investigation prior to public-

ation.
14. In our case, supercell calculations were performed using typically 3 computing nodes of Xeon

dual-processors XE340 of 6 cores (12 cores per node in total) working at 2.66 GHz frequency.
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van der Waals compounds must be addressed. Semi-empirical schemes appropriately
chosen case-specifically can handle this. The corollary for these remarks is that GGA
energy differences with band positions corrected with higher levels of theory is often
sufficient to quickly provide useful insights for materials with high-enough bandgaps.
This is quite logical as the methodology is based on thermodynamics and GGA is most
of the time appropriate to calculate total energies. Lastly, this method is appropriate
to study point defects. Studies were conducted in the bulk in this work. A parent
framework can be derived for interface defects,[357] a subject of interest to raise the
barriers in electronic device operations. Higher-dimensionality defects require of course
different and appropriate approaches and must be considered as a different problem
from a simulation point of view, although they probably appear simultaneously in the
real material. Finally, only ground state properties are investigated in the version of
the methodology proposed herein.

Defect physics and chemistry is a field of current interest for its vast implications
on both fundamental and applicative research. Crystallographic defects of all dimen-
sionalities exist, from point to volume defects. They have an impact on different types
of material properties. Hence, depending on the application desired, researchers in
different fields will focus on defects of different dimensionalities. On the subject of
electronics, in particular solar photovoltaics, point defects especially are of vital im-
portance, due to their dramatic impact on the electronic and optical properties of
materials. Simulations in the form of DFT within the supercell approach offers a
mature and powerful method complementary to experiments to investigate them. Al-
though this methodology is now well established to investigate the thermodynamics of
both intrinsic and extrinsic point defects, some exciting challenges remain. The meth-
odology used in this work has already been employed to investigate the deep defects
which could potentially be responsible for the luminescence of some compounds, such
as ZnO,[88] when electron-trapping mechanisms are involved. In particular, trap depth
can be estimated by positioning transition levels within the bandgap. One more re-
finement has been proposed on ZnS which allows the computation of emitting energies
by simulating a charge transfer.[358] However, on-site transitions remain elusive for
these methods. The use of constrained DFT has recently been successfully employed
to lift this limitation and simulate the 4f → 5f excitations,[359, 360] paving the way
for further theoretical investigations. Another challenge is the simulation of doping of
amorphous materials which is of particular interest in the field of optics. Amorphous
silica for instance, is of great importance in the fabrication of optical fibres, and col-
oured glasses are often found in optical devices. Traditionally, amorphous materials
are apprehended via (often classical) molecular dynamics, which does not include any
electronic property, or the polymeric chains studied separately. With the increase in
computational power, building large supercells of realistic structural models coherent
with Pair Distribution Function analysis for instance would become affordable. This
would allow the determination of preferred oxidation states of dopants and help to
understand and predict optical properties of disordered systems.[361, 362] Finally, the
current excitement around high-throughput simulations[237, 363, 364] may lead to the
increase in reliability needed for systematic and automatic defect investigations[167]
to accelerate discoveries of properties of potential interest within the next one or two
decades. Dedicated databases should logically become one additional tool for the com-
munity in the next decades.
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[189] Barreau, N., Bernède, J., Deudon, C., Brohan, L. and Marsillac, S., Journal of

Crystal Growth 241, 4 (2002).
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[232] Erhart, P., Åberg, D. and Lordi, V., Physical Review B 81, 195216 (2010).

[233] Virkkala, V., Havu, V., Tuomisto, F. and Puska, M. J., Physical Review B 86,
144101 (2012).

[234] Persson, C., Zhao, Y.-J., Lany, S. and Zunger, A., Physical Review B 72, 035211
(2005).

[235] Malone, B. D., Gali, A. and Kaxiras, E., Physical Chemistry Chemical Physics
16, 26176 (2014).
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Titre :  Modélisation ab initio des défauts ponctuels chargés et de leur impact sur les propriétés opto-
électroniques de matériaux semiconducteurs cristallins.  

Mots clés : DFT, défauts ponctuels, semiconducteurs, simulations ab initio 

Résumé :  Les défauts cristallographiques sont à 
l'origine de nombreuses propriétés d'intérêt pour les 
matériaux applicatifs. Dans le domaine de 
l'électronique, et du solaire photovoltaïque en 
particulier, un grand nombre de propriétés opto-
électroniques (conductivité électronique, nature et 
concentration des porteurs de charges...) sont 
pilotées par les défauts cristallographiques ponctuels 
dans les matériaux mis en jeu et aux interfaces. Aussi 
il est crucial de caractériser les défauts prépondérants 
et leur impact sur les propriétés recherchées afin de 
pouvoir améliorer les performances des dispositifs. 
L'étude expérimentale des défauts, objets 
microscopiques, étant complexe et ne donnant qu'une 
image partielle et sujette à interprétations, les 
méthodes de simulation ab initio apparaissent comme 
un outil puissant pour la compléter.  

Une approche dite de supercellules permet avec 
l'aide de la théorie de la fonctionnelle de la densité 
(DFT) d'étudier un à un chaque défaut dans tous ses 
états de charge, et au moyen du calcul de son 
enthalpie de formation en fonction du niveau de 
Fermi d'établir sa concentration et son impact sur la 
conductivité. Ainsi l'origine du type n du matériau β-
In2S3 étudié au laboratoire comme potentielle couche 
tampon dans des cellules photovoltaïques de 
deuxième génération est déterminée. Le problème 
d'intérêt fondamental du caractère 
semimétallique/semiconducteur de TiS2 est élucidé. 
Enfin, les limites de la méthode sont éprouvées par 
l'étude de l'entropie dans différentes formes de 
sélénium cristallin 

 

Title: Ab initio modeling of charged point defect and their impact on opto-electronic properties of crystalline 
semiconductor materials 

Keywords:  DFT, point defects, semiconductors, ab initio simulations 

Abstract:  Numerous applicative properties of 
materials originate from crystallographic defects. In 
the field of electronics and solar photovoltaic in 
particular, several opto-electronic properties 
(electronic conductivity, nature and concentration of 
the charge carries...) are driven by point defects in the 
different materials in place and at the interfaces. 
Thus, it is crucial to characterise the most 
concentrated defects and their impact on the targeted 
properties in order to enhance the device 
performances. Studying microscopic defects 
experimentally is a complex task which only brings 
partial answers requiring interpretation. Ab initio 
simulation techniques appear as a powerful tool to 
complete experiments. 

The supercell approach along with Density 
Functional Theory (DFT) allows to study each defect 
in all its states of charge. Evaluating the formation 
enthalpy of defects with respect to the Fermi level 
allows to obtain its concentration and impact on the 
conductivity. This way, the origin of the n-type 
conductivity of β-In2S3, a buffer material for 2nd 
generation photovoltaic solar cells studied at the 
laboratory, is determined. The problem of 
fundamental interest of whether TiS2 is a 
semiconductor or a semimetal is elucidated. Finally, 
the limits of the method are tested by studying 
entropy in different allotropic forms of crystalline 
selenium.  
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