

UNIVERSITÉ DE NANTES

FACULTÉ DE MÉDECINE

Année: 2020

N°

THÈSE

pour le

DIPLÔME D'ÉTAT DE DOCTEUR EN MÉDECINE

Spécialité Médecine Nucléaire

par

Cyrille MORVANT

né le 29/07/1993 à PLOEMEUR (56)

Présentée et soutenue publiquement le 13 octobre 2020.

La TEP/TDM aux analogues de la somatostatine marqués au gallium-68 dans l'exploration des paragangliomes et phéochromocytomes. Intérêt de l'association avec d'autres traceurs TEP : retour d'expérience du CHU de Nantes.

Présidente : Madame la Professeure Françoise KRAEBER-BODERE

Directrice de thèse : Madame la Docteur Catherine ANSQUER

Membres du jury: Madame la Docteur Delphine DRUI Madame la Professeure Caroline BODET-MILIN Monsieur le Professeur Eric MIRALLIE Monsieur le Professeur Eric FRAMPAS

Remerciements

Aux membres du Jury

Madame la Professeure Françoise KRAEBER-BODERE

Vous me faites l'honneur de présider cette thèse. Merci pour votre bienveillance sans pareil et pour la place et l'importance que vous nous donnez au sein de votre service. C'est un véritable privilège d'apprendre et d'évoluer à vos côtés.

Madame la Docteur Catherine ANSQUER

Merci de m'avoir proposé ce travail et d'avoir accepté de le diriger. Il est né de ta parfaite connaissance du sujet traité. Ton accompagnement, tes conseils et tes enseignements tout au long de l'internat et de la rédaction de cette thèse universitaire m'ont été et me seront précieux.

Madame la Docteur Delphine DRUI

Merci pour votre enthousiasme et votre collaboration à ce projet. Pour cela je vous resterai reconnaissant.

Madame la Professeure Caroline BODET-MILIN

Je te remercie d'avoir accepté de faire partie de ce jury. Merci pour ta disponibilité au quotidien et pour le partage passé et futur de tes connaissances. Ta rigueur et ton raisonnement scientifique servent d'exemple.

Monsieur le Professeur Eric MIRALLIE

Merci de me faire l'honneur de juger ce travail et d'y apporter votre expertise. Soyez assuré de mon profond respect.

Monsieur le Professeur Eric FRAMPAS

Merci de me faire l'honneur de participer à ce jury de thèse. J'espère que ce travail aura suscité votre intérêt.

A celles et ceux avec qui j'ai eu la chance et le plaisir de travailler au sein des différents services de médecine nucléaire, d'hématologie 4ème Sud, de radiothérapie et de radiologie.

A celles et ceux qui ont partagé avec moi de leur temps et de leurs connaissances:

Avant tout à Clément Bailly, pour ton accueil des premiers jours et ton omniprésence en cas de besoin, à Bastien Jamet the War Machine Next% et à Vincent Fleury, Deus ex Machina.

Également à Antoine Bonnet, Thomas Gastinne, Anne Lok, Cyrille Touzeau, Thomas Carlier, Thomas Eugène, Mathilde Colombie, Maëlle Le Thiec, Bruno Maucherat, Agnès Morel, Caroline Rousseau, Daniela Rusu, Amandine Pallardy, Nicolas Piriou, Frédéric Valette.

Merci pour ce que vous m'avez apporté.

A Élodie et Nathalie pour ces 6 mois de collocation en début d'internat. Et pour les 12 à venir.

A mes cointernes de ces 3 dernières années :

Aux PC, des premières heures du jour aux dernières de la nuit : à Roms, à Dahns, à Arthur(ito), à Pauline, à Chloé, à Alexandre et à Tanguy.

Aux cointernes de médecine nucléaire Nantais, chefs pour certains et amis pour tous:

à Matthieu, Jean-Charles, Anne-Victoire et Thomas.

Aux cointernes de médecine nucléaire promo 2017, de Paris à Madrid, en passant par Saclay. Tout particulièrement à Gauth, Ag. et Juls. Sans oublier Laurent, Célia, Olivier, Alexia, Jean, Alexandra, Pierre-Adrien et Maximillien.

A Gildas Le Monstrueux, pour ton enseignement du stakhanovisme. A Tanguy, prince du royaume quantique.

Et aussi à Thomas, Lina, Ophélie, Flora, Yalin, Marion, Jérôme, Jean, Takiedinne.

Au S2P Rennais : Alban, Anaïs, Benjamin, Eloi, Éloïse, Mehdi, PA, Robin, Tristan, Vincent, Yanis A Cécile, Gus, Aurélie, Cécilia

A Guillaume, à cheval entre famille et amis. Même si souvent loin des yeux toujours près du cœur.

A ma famille,

A mes frères et sœurs pour leurs encouragements,

A ma mère pour son soutien indéfectible et sa compréhension de l'inaccessible.

A Clara

A Bertrand, Pablo, Jacques, Jack, Martin et à tous les autres.

Table of contents

Abstract	5
Introduction	6
Methods	7
1. Patients	7
2. PET/CT procedures	7
3. PET/CT analysis	8
4. Statistical analysis	8
Results	9
1. Population characteristics	9
2. Lesions	10
3. PET analysis in the population with confirmed lesions	11
3.1 PET per-patient sensitivities	12
3.2 PET per-lesion sensitivities	12
4. Subgroup analysis	13
4.1 Patients who underwent 2 or 3 PET explorations	13
4.2 Analysis according to the lesional location	16
4.3 Analysis depending on the mutation status	16
5. PET semi-quantitative analysis	18
Discussion	19
Conclusion	22
Bibliography	23
Summary	26

Abstract

Introduction

PET/CT with gallium-68-labelled somatostatin analogues (⁶⁸Ga-SMSa PET/CT) is recommended in patients with paraganglioma (PGL) and pheochromocytoma (PHEO). Our retrospective study analyzed the sensitivity of ⁶⁸Ga-SMSa PET/CT in PGL/PHEO patients explored in the University Hospital of Nantes between 2014 and 2020, in comparison with the other PET/CT procedures.

Methods

Consecutive patients with PGL/PHEO who underwent a ⁶⁸Ga-SMSa-PET/CT in addition to morphological imaging (at least thoraco-abdomino-pelvic CT, head and neck MR-angiography) for pre-symptomatic screening, initial staging or follow-up were included. When performed, data from ¹⁸F-DOPA-PET/CT and ¹⁸FDG-PET/CT were also analyzed and compared to ⁶⁸Ga-SMSa-PET/CT. For each tracer, uptake higher than physiological background was considered as pathological and was confronted to the gold standard (histopathology, positivity of at least another imaging modality or follow-up).

Results

A total of 48 patients (25 women, 23 men; median age 53,5 years) were explored by ⁶⁸Ga-SMSa PET/CT: 9 for presymptomatic screening, 17 for initial staging and 22 for follow-up. Eight patients were free of disease and at least one lesion had been confirmed in 40 patients: 20 localized PGL/PHEO, 13 metastatic or multifocal PGL and 7 metastatic or multifocal PHEO. A total of 197 lesions were confirmed by the gold standard corresponding to 59 primary tumors or local recurrences and 138 metastases. Germline mutations were identified in 19 out of these 40 patients (1 SDHA, 12 SDHB, 2 SDHC, 4 SDHD), not identified in 18 patients and remained indeterminate in 3 patients. Among the 8 disease-free patients, ⁶⁸Ga-SMSa-PET/CT was true negative in seven and false positive in one case.

In the whole population, per-patient sensitivities were 95% (38/40) with ⁶⁸Ga-SMSa PET/CT, 86% (12/14) with ¹⁸F-DOPA PET/CT and 96% (27/28) with ¹⁸FDG PET/CT and per-lesion sensitivities were 92% (181/197) with ⁶⁸Ga-SMSa PET/CT, 93% (40/43) with ¹⁸F-DOPA PET/CT and 84% (138/164) with ¹⁸FDG PET/CT. ⁶⁸Ga-SMSa-PET/CT detected all the 30 HNPGLs, 16 out of 17 (94%) PHEOs, 10 out of 13 (77%) subdiaphragmatic PGLs and 126 out of 138 (91%) metastases. The 16 false negative of ⁶⁸Ga-SMSa PET/CT were 5 pulmonary and 5 liver metastases, 4 subdiaphragmatic primaries, 1 subdiaphragmatic and 1 supra-diaphragmatic lymph node. Eight out of 16 (50%) were detected by ¹⁸FDG PET/CT as well as 9 out of the 10 lesions (90 %) explored with ¹⁸F-DOPA PET/CT.

In the eleven patients who underwent both the 3 exams, ¹⁸F-DOPA PET/CT detected significantly more lesions than ⁶⁸Ga-SMSa PET/CT (95% (38/40) vs 75% (30/40); p = 0,02) and than ¹⁸FDG PET/CT (95% (38/40) vs 70% (28/40); p = 0,006).

Conclusion

Our study confirms the high sensitivity of ⁶⁸Ga-SMSa PET/CT for the exploration of PGL and PHEO and highlights some limits for the detection of lung and liver metastases as well as subdiaphragmatic lesions. Best performances are obtained by combining nuclear imaging modalities, especially in sporadic diseases, in

metastatic or multifocal diseases and subdiaphragmatic PGLs.

Introduction

Following the World Health Organization Classification of Tumor, paragangliomas (PGLs) are chromaffin cell tumors developing from the sympathetic and parasympathetic ganglia throughout head and neck and the abdomen, whereas pheochromocytomas (PHEOs) are chromaffin cell tumors developing within the adrenal medulla (1). Histopathology does not permit to differentiate these two entities: therefore, diagnosis is based on anatomical location (2) and malignancy is defined as the presence of chromaffin tumors in locations where chromaffin cells are not usually present (3).

These are rare tumors with an estimated annual incidence between 4 and 6 per million, with PGLs probably more numerous than PHEOs (3) (4).

These tumors can occur at any age but are more frequently observed in the fourth and fifth decades. Gender distribution seems to be equal. In young patients, PGLs or PHEOs are more oftenly linked to a germline mutation, particularly in the autosomal genes encoding for the Succinate Deshydrogenase (SDH) enzyme: subunits A, B, C and D. Inherited genetic mutations occur in more than 40% of cases and expose patients to multifocal or metastastic disease (especially in cases of SDHB mutation). Many kinds of clinical presentations are observed, depending on tumor location, ability to secrete methoxyamines, and spread of the disease.

Accurate imaging is mandatory at any stage of the disease for an optimal clinical management of affected patients and also for earlier diagnosis and treatment of family members. Functional imaging has been used for several decades for the staging of PHEOs/PGLs, with metaiodobenzylguanidine radiolabeled with the gamma-emitters 131 or 123 iodine (5) (6) or ¹⁸F-fluorodeoxyglucose (¹⁸FDG) (7) (8) (9) and more recently with ¹⁸F-fluorodihydroxyphenylalanine (¹⁸F-FDOPA) positron emission tomography/computed tomography (PET/CT) (10) (11) (12) As PGLs overexpress somatostatin receptors (SSTR), especially the subtype 2 (SSTR2) (13), these tumors are targetable by radiolabeled somatostatin analogues (SMSa). Initially radiolabeled with the gamma emitters Indium 111 or pertechnetate, several SMSa radiolabeled with gallium-68, a positron emitter (68Ga-DOTA-TATE, 68Ga-DOTA-NOC and 68Ga-DOTA-TOC) became available for clinical use, and manufactured authorization has been recently obtained in EU and US for ⁶⁸Ga-DOTA-TOC and ⁶⁸Ga-DOTA-NOC respectively. In the first reports of literature ⁶⁸Ga-SMSa PET/CT showed with very promising results in SDHD head and neck PGLs (HNPGL) (14) (15), in metastatic PGL and PHEO (16), and especially SDHx-related metastatic PGL (17). The choice between the different monophotonic and PET tracers may be guided by the tumor location (tightly linked to embryological origin) and the genetic background (18) (19) (20). The revised 2019 European Association of Nuclear Medicine practice guideline/Society of Nuclear Medicine and Molecular Imaging procedure standard has proposed ⁶⁸Ga-SMSa PET/CT as the first line imaging strategy for PGLs and as the second line imaging strategy for sporadic or inherited PHEOs, after ¹⁸FDOPA PET/CT (18).

Our retrospective monocentric study reports our first experience in patients with PGLs and PHEOs explored with ⁶⁸Ga-SMSa PET/CT in our institution, in complementary to morphological imaging and in many cases, to ¹⁸FDG-PET/CT and ¹⁸F-DOPA PET/CT. The impact of mutation status, tumoral locations, multifocality or malignancy on the diagnostic performances of the different PET tracers was analyzed.

Methods

1. Patients

Consecutive patients with suspected or histologically proven PGL or PHEO who underwent a ⁶⁸Ga-SMSa PET/CT at the University Hospital of Nantes, between September 2014 and April 2020 were retrospectively included.

⁶⁸Ga-SMSa PET/CT were performed in complementary to morphological imaging, including thoracoabdomino-pelvic CT with contrast injection; head and neck MR angiography and, when indicated, bone and/or liver MR.

The sensitivity of ⁶⁸Ga-SMSa PET/CT was calculated and compared to the sensitivity of ¹⁸FDG PET/CT or ¹⁸F-DOPA PET/CT when performed.

For the comparative analysis, the delay accepted between the different PET/CT was adapted to the natural evolution of the disease and to its malignancy. Were included in the intra-individual comparative study only the exams performed in a period without therapeutic modification and with perfect lesional stability on morphological imaging.

Patients were explored before July 2017 with ⁶⁸Ga-DOTANOC PET/CT as part of a transitional authorization for nominative use (ATU) obtained from the ANSM and, after July 2017, by the manufactured ⁶⁸Ga-DOTATOC (Somakit®TOC, AAA).

Due to the retrospective nature of this study, ethical approval was given by the local institutional ethics committee. Informed consent was obtained for each patient before genetic analysis (with parental agreement obtained for minors) and surgery. Patient information was de-identified before data analysis.

2. PET/CT procedures

 68 Ga-DOTANOC was prepared using fully automated synthesis method, with Modular-Lab PharmTracer (Eckert & Ziegler) as previously described (Decristoforo et al. 2007) and 68 Ga-DOTATOC is prepared according to the specificities of the SPC of the Advance Accelerator Applications laboratory. The product used is Somakit TOC 40 µg of edotreotide labelled with a gallium chloride solution (68 Ga).The generator used is the GalliaPharm 1.85 GBq from Eckert & Ziegler Radiopharma Gmb.

All imagings were performed on a dedicated PET-CT system: Biograph mCT (40 or 64) or Biograph Vision 450 (Siemens Healthcare Molecular Imaging USA, Inc.).

Images were acquired 60 minutes after the injection of 150 MBq of ⁶⁸Ga-SMSa or 3 MBq/Kg of ¹⁸F-DOPA or ¹⁸FDG. The time acquisition was 3 min per step, for the 3 tracers. No premedication by Carbidopa was performed before ¹⁸F-DOPA PET/CT and a 6-hour fasting was required before intraveinous injection of ¹⁸FDG.

If patients were treated by long-acting SMSa, ⁶⁸Ga-SMSa PET/CT was performed as far as possible from the last injection.

Low-dose CT 3D was performed for attenuation correction, without contrast product injection for all

patients, from vertex to mid-thighs, automatic mA according to the patient weight (80-140 kV) with 3mm slice thickness.

Iterative reconstruction had been applied: OP-OSEM-PSF-TOF HD and TOF: 3 iterations, 21 subsets with a Gaussien 3D filter (FWHM 4 mm).

3. PET/CT analysis

⁶⁸Ga-SMSa PET/CT, ¹⁸F-DOPA PET/CT and ¹⁸FDG PET/CT were interpreted independently by two experienced nuclear medicine physicians (CA and CM). If the result between the two physicians was discordant, a third reader was consulted.

Focal uptake was considered to be pathological if it did not correspond to the physiological biodistribution of the tracers (pituitary gland, spleen, adrenals, urinary tract for ⁶⁸Ga-SMSa; central grey nuclei, pancreas, biliary and urinary tracts for ¹⁸F-DOPA and brain, heart, urinary and digestive tracts for ¹⁸FDG).

Nine anatomical areas were defined for per-regional analysis. There were, for primary tumors: HNPGL, subdiaphragmatic PGL and PHEO or adrenal-bed recurrence; and for metastases: bone, sub-diaphragmatic lymph nodes, supra-diaphragmatic lymph nodes, lungs, liver and peritoneal carcinomatosis.

In case of spread disease, a maximum of 5 lesions per site involved were considered for sensitivity analysis.

A comparative semi-quantitative analysis between tracers was performed at site level, taking into account tumor maximal standard uptake value (SUVmax) of each pathological site per patient. A ratio was calculated between tumor SUVmax and liver background SUVmean, taken as the reference (measured with a 100cm2 circle in right liver).

4. Statistical analysis

Due to the high frequency of multifocal or metastatic diseases, histological proof could not be obtained for each lesion. Hence, a true positive (TP) was defined as a lesion detected by an imaging method and confirmed by gold-standard, meaning confirmation by another imaging method (anatomical or functional), by histopathology or by follow-up clearly consistent with natural evolution of disease. A false negative (FN) was defined as a negative finding on an imaging method, but positive with the gold standard. A false positive (FP) was defined as a positive finding on an imaging method, but negative with the gold standard. A true negative (TN) was defined as a negative finding on an imaging method, but negative with the gold standard. A true negative (TN) was defined as a negative finding on an imaging method, also negative with the other imaging modalities, biology and/or histopathology.

Sensitivity (Se) was calculated for each tracer, in a per-patient and per-lesion level and were compared all together using the Fisher's exact test for count data or McNemar's test if paired data.

The differences between mean SUVmax values were tested using the Wilcoxon signed rank test or Student T test for paired data with normal distribution. P values less than 0.05 were considered to be statistically significant.

Results

1. Population characteristics

A total of 48 patients were explored by ⁶⁸Ga-SMSa PET/CT: 9 for presymptomatic screening and 39 with histologically proven PGL or PHEO (17 for initial staging and 22 for follow-up).

• Patients explored for presymptomatic screening

Nine patients (5 women and 4 men, median age 40 years) underwent a ⁶⁸Ga-SMSa PET/CT for screening in a context of a familial SDHx germline mutation (6 SDHB, 2 SDHC, 1 SDHD). Five patients underwent a ⁶⁸Ga-DOTANOC PET/CT and 6 patients a ⁶⁸Ga-DOTATOC PET/CT.

Seven of them had a negative exploration and were considered as true negative results. In the 2 other patients, ⁶⁸Ga-SMSa PET/CT was considered as positive (figure 1).

In the first case, ⁶⁸Ga-DOTA-TOC PET/CT showed twice, one year apart, an intense and unchanged focal uptake next to carotid bifurcation, in a 26-year-old female, with germline familial SDHD mutation. As this small focus could not be confirmed by two MR-angiography performed in a one-year period, and despite a high clinical presumption of infra radiological PGL, we have decided to consider this focus as uncertain and, consequently, this result as a false positive of SMSa-PET/CT (figure 1).

The second case (patient 31 in table 1) had a positive PET/CT, confirmed as pathological by gold-standard and had been included in the statistical analysis, thus, he is described in the subsequent paragraph.

Figure 1: 26 year-old female, with germline familial SDHD mutation.

MIP 3D coro MRangiography did not show any anomaly (**a**.)

68Ga-DOTATOC PET/CT showed an intense focal uptake next to carotid bifurcation in 2019 and 2020 (c.) while contrast-enhanced T1-weighted fat-suppressed did not show any anomaly, one year apart (b.)

• Patients with confirmed PGL/PHEO

The case above-mentioned (patient 31) is a 13-year-old patient with SDHB mutation inherited from his mother, followed annually by biology assessment and whole-body MR. Due to an increase of biological markers, he underwent a ⁶⁸Ga-DOTATOC PET/CT which found a left para-adrenal focal uptake, confirmed with CT-scan and MRI. The histological analysis confirmed the diagnosis of PGL. He was considered as a true positive and had been included in the statistical analysis.

By adding this patient, a total of 40 patients were included in the analysis: 20 women and 20 men, median age 55 years (from 13 to 85).

32 patients had a histologically proven PGL and 8 a PHEO (1 primary and 7 recurrences).

Methoxyamines secretion was present in 19 patients (45%): 7 patients with a PHEO and 12 patients with a PGL.

Nineteen patients had a localized PGL, 13 patients had a multifocal/ metastatic PGL, 7 had an adrenal-bed or metastatic recurrence of PHEO and 1 patient had a localized PHEO.

The characteristics of these 40 patients are summarized in table 1.

Fourteen patients underwent a ⁶⁸Ga-DOTANOC PET/CT and 26 patients a ⁶⁸Ga-DOTATOC PET/CT. Among the 40 patients, 28 patients (70%) also underwent a ¹⁸FDG PET/CT and 14 patients (35%) a ¹⁸F-DOPA PET/CT.

Median delay between the modalities was 1 month between ⁶⁸Ga-SMSa PET/CT and ¹⁸FDG PET/CT (from 2 days to 64 months) and 2 months between ⁶⁸Ga-SMSa PET/CT and ¹⁸F-DOPA PET/CT (from 3 days to 40 months).

Only 2 patients (patient 23 and patient 37 in table 1) had a median delay superior to six months between ⁶⁸Ga-SMSa PET/CT and ¹⁸F-DOPA PET/CT or ¹⁸FDG PET/CT. We decided to keep their data for the comparative analysis as these two patients had a perfectly stable disease (localized HNPGL for one and multifocal HNPGL for the other) for many years confirmed by both anatomical and functional imaging follow-up.

Genetic testing results were available for 37/40 patients. Mutations on the succinate dehydrogenase complex were identified in 19 patients (48%): 1 SDHA, 12 SDHB, 2 SHDC, 4 SDHD. No germline mutation was identified in 18 patients (45%) and results remained indeterminate in 3 patients (7%).

2. Lesions

A total of 197 lesions were confirmed by the gold standard. There were 59 primary lesions: 30 HNPGLs, 17 PHEOs (1 primary and 16 adrenal-bed recurrences) and 12 subdiaphragmatic PGLs (7 retroperitoneum, 2 para-adrenal, 2 pelvic and 1 gallblader) and 138 metastases: in bone (n = 48), supradiaphragmatic lymph nodes (n = 25), subdiaphragmatic lymph nodes (n = 24), lungs (n = 17), liver (n = 14) and peritoneal carcinomatosis (n = 10).

Table 1: characteristics of patients with confirmed lesions

Patient	Sex	Age	Germline mutation	Location of primary or local recurrence	Location of metastases	Hormone release
1	М	63	Sporadic	L adrenal	SbD lymph node	Adr, Noradr
2	F	66	Sporadic	R jugulo-tympanicum	None	None
3	F	85	Sporadic	L adrenal-bed	PC	Noradr
4	F	60	Sporadic	L carotid body	None	None
5	М	41	Sporadic	L adrenal	SpD & SbD lymph node, liver, bone	Adr, Noradr
6	F	54	Sporadic	Retroperitoneum	None	ChromA
7	М	70	Sporadic	L adrenal-bed	Bone	Noradr, ChromA
8	F	56	Sporadic	L carotid body	None	None
9	М	53	Sporadic	L adrenal-bed, Pelvic	None	None
10	F	72	Sporadic	R jugular foramen	None	ChromA
11	F	70	Sporadic	Pelvic	SubD lymph node	Noradr
12	F	38	Sporadic	R adrenal	Liver	Adr, Noradr
13	F	70	Sporadic	L adrenal-bed	SpD & SbD lymph node, lung, bone	Noradr, ChromA
14	М	58	Sporadic	R jugular foramen	None	None
15	F	84	Sporadic	L jugulo-tympanicum	None	None
16	М	62	Sporadic	Retroperitoneum	SpD & SbD lymph node, lung, bone	Noradr, ChromA
17	F	44	Sporadic	R jugulo-tympanicum	None	None
18	F	54	Sporadic	L jugulo-tympanicum	None	None
19	М	52	SDHA	Retroperitoneum, Pelvic	None	Noradr, ChromA, Dop
20	М	47	SDHB	L carotid body	SpD & SbD lymph node, lung, liver, bone	None
21	М	36	SDHB	R body carotid	Bone	ChromA
22	М	42	SDHB	Retroperitoneum	Bone	ChromA
23	М	77	SDHB	R jugulo-tympanicum	None	ChromA
24	F	48	SDHB	L jugular foramen	None	Adr, Noradr, ChromA
25	М	32	SDHB	Retroperitoneum	SpD & SbD lymph node, PC, bone	ChromA
26	F	34	SDHB	R jugulo-tympanicum	None	None
27	F	47	SDHB	R frontal sinus	Liver	Noradr, ChromA
28	F	28	SDHB	L carotid body	Liver, Bone	None
29	М	46	SDHB	Inferior cervical	None	None
30	М	55	SDHB	R jugular	None	None
31	М	13	SDHB	L para-adrenal	None	Adr, Norad, ChromA
32	М	30	SDHC	L jugular foramen	None	None
33	М	51	SDHC	R jugulo-tympanicum	None	None
34	F	62	SDHD	R&L jugulo-tympanicum, L jugular foramen, L carotid body, Gallblader	Lung, Liver, Bone	None
35	F	57	SDHD	R&L carotid body, Inferior cervical, R para-adrenal	lung	None
36	М	58	SDHD	R vagal, R carotid body	SpD & SbD lymph node	None
37	F	63	SDHD	R jugular foramen, R&L carotid body	None	None
38	F	32	Unknown	R carotid body	None	None
39	М	71	Unknown	R adrenal	None	Noradr, ChromA
40	М	64	Unknown	Retroperitoneum	None	None

Adr Adrenaline Noradrenaline ChromA Chromogranine A Dop Dopamine SpD Supradiaphragmatic SbD Subdiaphragmatic PC Peritoneal carcinomatosis

3. PET analysis in the population with confirmed lesions

3.1 PET per-patient sensitivities

⁶⁸Ga-SMSa PET/CT were positive in 38/40 patients (Se = 95%), ¹⁸FDG PET/CT in 27/28 patients (Se = 96%) and ¹⁸F-DOPA PET/CT in 12/14 patients (Se = 86%).

The two patients false negative in ⁶⁸Ga-SMSa PET/CT had a metastatic disease with, in the first case, four liver metastases from a PHEO, all confirmed by MRI and per-operative contrast-enhanced ultrasound, three out of four were detected by ¹⁸F-DOPA PET/CT and one by ¹⁸FDG PET/CT. In the second case, one pelvic PGL plus one external iliac lymph node, confirmed by histopathology, CT-scan, ¹⁸FDG PET/CT and ¹⁸F-DOPA PET/CT.

The only patient false negative in ¹⁸FDG PET/CT had a HNPGL confirmed by histopathology, MRangiography, CT-scan, ⁶⁸Ga-SMSa PET/CT and ¹⁸FDOPA PET/CT.

The two patients false negative in ¹⁸F-DOPA PET/CT had respectively, a right localized PHEO confirmed by histopathology, CT-scan, ⁶⁸Ga-SMSa PET/CT and ¹⁸FDG PET/CT and, in the other case, a right juxtaadrenal PGL, confirmed by histopathology, CT-scan, ⁶⁸Ga-SMSa PET/CT and ¹⁸FDG PET/CT.

3.2 PET per-lesion sensitivities

⁶⁸Ga-SMSa PET/CT identified 181/197 confirmed lesions (Se = 92%); ¹⁸FDG PET/CT identified 139/164 confirmed lesions (Se = 85%) and ¹⁸F-DOPA PET/CT identified 40/43 confirmed lesions (Se = 93%). Combination of 2 or 3 PET modalities increased the sensitivity of detection as indicate in table 2, especially the combination with ¹⁸FDOPA PET/CT with a 98% sensitivity for the associations ⁶⁸Ga-SMSa PET/CT or ¹⁸FDG PET/CT and ¹⁸FDOPA PET/CT.

In the whole population, there were 16 false negative lesions with ⁶⁸Ga-SMSa PET/CT: 5 pulmonary metastases, 5 liver metastases, 3 subdiaphragmatic primaries (2 pelvic PGLs and 1 retroperitoneum PGL), 1 adrenal-bed recurrence, 1 subdiaphragmatic and 1 supra-diaphragmatic lymph node.

- All of the 16 ⁶⁸Ga-SMSa PET/CT false negative lesions were explored with ¹⁸FDG PET/CT and 8 (50%) out of them were positive: 2/5 liver metastases, 4/5 lung metastases, 1/2 pelvic PGL, and 1/1 subdiaphragmatic lymph node.
- 10 out of these 16 lesions were explored with ¹⁸F-DOPA PET/CT, and 9 (90%) were detected (3/3 subdiaphragmatic primaries, 1/1 adrenal-bed recurrence, 4/5 liver metastases and 1/1 subdiaphragmatic lymph node) (figure 2 & 3).

There were 25 ¹⁸FDG PET/CT false negative lesions: 3 subdiaphragmatic PGLs (2 retroperitoneum and 1 pelvic), 4 recurences in adrenal-bed, 6 HNPGLs, 7 lung metastases, 4 liver metastases and 1 supradiaphragmatic lymph node.

- ⁶⁸Ga-SMSa PET/CT detected 17 of them (68%): 1/3 subdiaphragmatic PGL and 4 adrenal-bed recurrences, 6/6 HNPGLs, 6/7 lung metastases, 1/4 liver metastases and 0/1 supradiaphragmatic lymph node.
- 12 lesions were explored by ¹⁸F-DOPA PET/CT, and 11 were detected (92%): 4/4 subdiaphragmatic PGLs (2 retroperitoneum PGL and 2 pelvic PGL), 2 recurrences in adrenal-bed, 2/2 HNPGLs, 1/1 lung metastasis and 2/3 liver metastases.

There were 3 ¹⁸F-DOPA PET/CT false negative lesions: 1 PHEO, 1 para-adrenal PGL and 1 liver metastasis.

- ⁶⁸Ga-SMSa PET/CT detected the 2 subdiaphragmatic primaries but not the liver metastasis.
- ¹⁸FDG PET/CT explored 1 PHEO and the liver metastasis and detected only the PHEO.

4. Subgroup analysis

4.1 Patients who underwent 2 or 3 PET explorations

Fourteen patients with a total of 43 lesions underwent both ⁶⁸Ga-SMSa PET/CT and ¹⁸F-DOPA PET/CT. ⁶⁸Ga-SMSa PET/CT per-patient sensitivity was similar to ¹⁸F-DOPA PET/CT : 86% (12/14) vs 86% (12/14). In per-lesion analysis, ⁶⁸Ga-SMSa PET/CT showed a lower sensitivity than ¹⁸F-DOPA PET/CT : 77% (33/43) vs 93% (40/43). Nontheless, this difference was not significant ; p = 0,06.

Twenty-eight patients with a total of 164 lesions underwent both ⁶⁸Ga-SMSa PET/CT and ¹⁸FDG PET/CT (n = 164 lesions). ⁶⁸Ga-SMSa PET/CT and ¹⁸FDG PET/CT showed similar efficiency in per-patient analysis: 93% (26/28) vs 96% (27/28) and ⁶⁸Ga-SMSa PET/CT showed a significant higher per-lesion sensitivity : 90% (148/164) vs 85% (139/164) p < 0,0001.

Eleven patients underwent the 3 PET explorations (patients 2, 3, 4, 9, 11, 12, 19, 21, 27, 35 and 39 in table 1).

There were: 3 patients with localized disease (2 HNPGLs and 1 PHEO) and 8 patients with multifocal/metastatic disease (3 metastatic HNPGLs, 1 multifocal retroperitoneum PGL, 1 metastatic pelvic PGL and 3 recurrent PHEO).

Six of these patients had a sporadic disease, 4 had a SDHB mutation and 1 remained indeterminate.

Fourty lesions were identified in the 11 patients. There were 23 primaries: 13 PGLs (6 HNPGLs, 4 retroperitoneum PGLs, 2 pelvic PGLs and 1 para-adrenal PGL), 1 PHEO and 9 adrenal-bed recurrences and 17 metastases (5 liver metastases, 5 bone metastases, 5 peritoneal carcinomatosis lesions, 1 lung metastasis and 1 subdiaphragmatic lymph node).

¹⁸F-DOPA PET/CT and ¹⁸FDG PET/CT were negative in 1 patient each, and ⁶⁸Ga-SMSa PET/CT in 2 patients corresponding to a per-patient sensitivities of 91%, 91%, and 82% respectively ; p = 1,00 (table 2).

On a per-lesion basis, ¹⁸F-DOPA PET/CT [1] detected significantly more lesions than ⁶⁸Ga-SMSa PET/CT [2] and ¹⁸FDG PET/CT [3], respectively 95% (38/40) vs 75% (30/40) and 70% (28/40): [1] vs [2] p = 0,02; [1] vs [3] p = 0,006; [2] vs [3] p = 0,8.

Indeed, 10 ⁶⁸Ga-SMSa PET/CT false negative lesions were found in 5 patients, corresponding to 3 subdiaphragmatic PGLs (2 pelvic PGLs and 1 retroperitoneum PGL), 1 recrurrent PHEO, 5 liver metastases and 1 subdiaphragmatic lymph node. These 5 patients presented several mutation status: 1 SDHA, 1 SDHB and 3 not mutated.

¹⁸FDG PET/CT missed 12 lesions: 2 HNPGLs, 3 subdiaphragmatic PGLs (1 pelvic PGL and 2 retroperitoneum PGLs), 3 recurrent PHEOs, 3 liver metastases, and 1 lung metastase; while ¹⁸F-DOPA PET/CT missed only 2 lesions: 1 PHEO and 1 liver metastase. The higher sensitivity was obtained when combining ¹⁸F-DOPA PET/CT with ⁶⁸Ga-SMSa PET/CT or ¹⁸F-DOPA PET/CT with ¹⁸FDG PET/CT [1]. These associations had led to obtain a 98% detection rate on per-lesion basis (9 more lesions detected in comparison with ⁶⁸Ga-SMSa PET/CT alone) and 100% on per-patient basis; whereas the association of ⁶⁸Ga-SMSa PET/CT with ¹⁸FDG PET/CT [2] detected only 4 more lesions than ⁶⁸Ga-SMSa PET/CT alone (figure 4). [1] vs [2] p = 2,3.10⁻⁵

The only lesion which is not detected by any tracer was a millimetric liver metastase in segment IV, only seen with specific MRI sequences and with per-operative contrast-enhanced ultrasound (during radiofrequency ablation). The three other liver metastases in this patient are detected with ¹⁸F-DOPA PET/CT (figure 2).

.	Whole population		Eleven patients subgroup	
	Per-patient Se	Per-lesion Se	Per-patient Se	Per-lesion Se
⁶⁸ Ga-SMSa	95% (38/40)	92% (181/197)	82% (9/11)	75% (30/40)
¹⁸ F-DOPA	86% (12/14)	93% (40/43)	91% (10/11)	95% (38/40)
¹⁸ FDG	96% (27/28)	85% (139/164)	91% (10/11)	70% (28/40)
⁶⁸ Ga-SMSa + ¹⁸ F-DOPA	100% (14/14)	98% (42/43)	100% (11/11)	98% (39/40)
⁶⁸ Ga-SMSa + ¹⁸ FDG	100% (28/28)	95% (156/164)	100% (11/11)	85% (34/40)
¹⁸ F-DOPA + ¹⁸ FDG	100% (11/11)	98% (39/40)	100% (11/11)	98% (39/40)
⁶⁸ Ga-SMSa + ¹⁸ F-DOPA + ¹⁸ FDG	100% (11/11)	98% (39/40)	100% (11/11)	98% (39/40)

Table 2: PET per-patient and per-lesion analysis in the whole population and in the 11 patients who underwent the three PET/CT explorations.

Figure 2: 38-year-old female with liver metastases from a sporadic PHEO (patient 12 in table 1).

a.⁶⁸*Ga*-DOTATOC PET/CT maximal intensity projection (MIP) and axialslice failed to show any uptake in pathological area.

b.¹⁸*F*-DOPA PET/CT MIP and axialslice showed intense focal uptakes corresponding to liver metastases.

c.¹⁸*FDG PET/CT MIP and axial-slice* was barely normal with only a heterogenous uptake in the pathological area.

Figure 3: 70-year-old female with a sporadic retrovesical PGL and one external iliac lymph node (patient 11 in table 1).

a. ⁶⁸Ga-DOTANOC PET/CT axialslices failed to show any uptake in bladder and in external iliac area.

b. ¹⁸*F*-DOPA PET/CT axial-slices clearly showed an intense uptake in posterior bladder wall and in external iliac lymph node.

c. ¹⁸FDG PET/CT did not detected the bladder lesion but was positive in external iliac lymph node with low intense uptake.

4.2 Analysis according to the lesional location

Sensitivities of the tracers according to the lesions location are summarized in table 3.

 68 Ga-SMSa PET/CT as well as 18 F-DOPA PET/CT detected all the HNPGLs explored and showed higher sensitivity than 18 FDG PET/CT in this indication (Se = 74%).

In patient with an initial diagnosis of PHEO, ⁶⁸Ga-SMSa PET/CT detected 16/17 PHEO or adrenal-bed recurrences, corresponding to a sensitivity of 94%, similar to ¹⁸F-DOPA PET/CT (Se=90%; 9/10). ¹⁸FDG PET/CT detected fewer lesions, with a sensitivity of 76% (13/17).

The lowest detection rate of ¹⁸Ga-SMSa PET/CT and ¹⁸FDG PET/CT were observed for pelvic PGLs and for lung and liver metastases.

	⁶⁸ Ga-SMSa	¹⁸ F-DOPA	¹⁸ FDG
HNPGL	100% (30/30)	100% (6/6)	74% (17/23)
Subdiaphragmatic PGL	77% (10/13)	89% (8/9)	70% (7/10)
Retroperitoneum	83% (5/6)	100% (10/10)	60% (3/5)
Para-adrenal	100% (2/2)	50% (1/2)	100% (1/1)
Pelvic	33% (1/3)	100% (2/2)	66% (2/3)
Gallblader	100% (1/1)	NA	100% (1/1)
PHEO or local recurrence	94% (16/17)	90% (9/10)	76% (13/17)
Metastases	91% (126/138)	94% (17/18)	89% (102/114)
SpD lymph nodes	96% (24/25)	NA	95% (19/20)
SbD lymph nodes	96% (23/24)	100% (2/2)	100% (18/18)
Bone	100% (48/48)	100% (5/5)	100% (38/38)
Liver	64% (9/14)	80% (4/5)	64% (7/11)
Lung	71% (12/17)	100% (1/1)	59% (10/17)
Peritoneal carcinomatosis	100% (10/10)	100% (5/5)	100 (10/10)
All lesion	92% (181/197)	93% (40/43)	85% (139/164)

 Table 3: Per-regional analysis

NA Not available

4.3 Analysis depending on the mutation status

A 100% per-patient sensitivity was obtained with ⁶⁸Ga-SMSa PET/CT and ¹⁸FDG PET/CT in pooled SDHxmutated patients. At the lesion level, ⁶⁸Ga-SMSa PET/CT and ¹⁸F-DOPA PET/CT showed higher sensitivities than ¹⁸FDG PET/CT: 97% and 94% vs 85% (table 4).

In the SDHB subgroup, and especially in the 6 patients with metastatic SDHB-related disease, all three

tracers showed very high per-patient and per-lesion sensitivities: 68 Ga-SMSa PET/CT per-patient Se = 100% (6/6), per-lesion Se = 98% (59/60); 18 F-DOPA PET/CT per-patient Se = 100% (2/2), per-lesion Se = 100% (7/7) and 18 FDG PET/CT per-patient Se = 100% (5/5), per-lesion Se = 100% (53/53). The only 68 Ga-SMSa PET/CT false negative was a liver metastasis.

In sporadic cases, ¹⁸F-DOPA PET/CT had better per-patient and per-lesion sensitivities than ⁶⁸Ga-SMSa PET/CT and ¹⁸FDG PET/CT: respectively 100% (7/7) and 96% (22/23) vs 89% (16/18) and 85% (73/86) vs 91% (10/11) and 84% (54/64).

No significant difference was observed with 68 Ga-SMSa PET/CT between sporadic and SDHx-mutated populations (p = 0,24).

Table 4 : Per-patient analy	sis according t	to mutation status.
-----------------------------	-----------------	---------------------

	Sporadic cases		SDHx mutated	
	Per-patient Se	Per-lesion Se	Per-patient Se	Per-lesion Se
⁶⁸ Ga-SMSa	89% (16/18)	85% (73/86)	100% (19/19)	97% (105/108)
¹⁸ F-DOPA	100% (7/7)	96% (22/23)	80% (4/5)	94% (17/18)
¹⁸ FDG	91% (10/11)	84% (54/64)	100% (16/16)	85% (84/99)
⁶⁸ Ga-SMSa + ¹⁸ F-DOPA	100% (7/7)	96% (22/23)	100% (5/5)	100% (18/18)
⁶⁸ Ga-SMSa + ¹⁸ FDG	100% (11/11)	91% (58/64)	100% (16/16)	98% (97/99)
⁶⁸ Ga-SMSa + ¹⁸ F-DOPA + ¹⁸ FDG	100% (6/6)	95% (21/22)	100% (4/4)	100% (17/17)

Figure 4: 62-year-old female with metastatic PGL (lungs, liver, bone) related to SDHD mutation (patient 34 in table 1). She underwent both ⁶⁸Ga-DOTANOC PET/CT (left) and ¹⁸FDG PET/CT (right).

a. b. Several lesions are observed on ⁶⁸Ga-DOTANOC PET/CT and ¹⁸FDG PET/CT MIP, more or less well seen. Some lesions are detectable with one tracer but not with the other (arrows show 2 bone metastases on ribs, each tracer only detected one out of these two lesions, not detected by the other tracer).

This patient had, bilateral jugulo-tympanicum PGL, clearly positive with ^{68}Ga -DOTANOC PET/CT (**c.**) and negative with ^{18}FDG PET/CT (**d.**)

For this kind of patient, tracers combination is relevant and even essential.

5. PET semi-quantitative analysis

The mean SUVmax per site was significantly higher with ⁶⁸Ga-SMSa PET/CT than with ¹⁸FDG, respectively at 53,7 [range 1,0 – 344,0] vs 16,6 [range 2,8 – 53,6]; p = 0,00019. We observed a difference between ⁶⁸Ga-SMSa and ¹⁸F-DOPA : 53,7 [range 1,0 – 344,0] vs 19,0 [range 2,1 – 103,2] although it is non significant: p = 0,232 (table 5).

In HNPGL, ⁶⁸Ga-SMSa PET/CT and ¹⁸F-DOPA PET/CT showed a 100% sensitivity, superior to ¹⁸FDG PET/CT (74%). The mean SUVmax was significantly higher with ⁶⁸Ga-SMSa PET/CT than ¹⁸F-DOPA PET/CT (84,9 vs 15,5; p = 0,0015) and than ¹⁸FDG PET/CT (84,9 vs 13,0; $p = 7,5.10^{-4}$).

In PHEO or adrenal-bed recurrence, ⁶⁸Ga-SMSa PET/CT showed a higher mean SUVmax than ¹⁸F-DOPA PET/CT: 32,9 vs 19,5 ; and than ¹⁸FDG PET/CT: 32,9 vs 11,4 even though it was not significant : p = 0,305 and p = 0,056 respectively.

A significantly higher liver background was noted with ⁶⁸Ga-SMSa PET/CT than with ¹⁸F-DOPA PET/CT (5,4 vs 1,6; $p = 1,3.10^{-8}$) and than with ¹⁸FDG PET/CT (5,4 vs 2,3; p = 0,0084).

Nevertheless, when they are detected, no significant difference was found between the ratios [SUVmax of liver metastases / SUVmean of liver background], in particular between ⁶⁸Ga-SMSa PET/CT and ¹⁸F-DOPA PET/CT (5,7 vs 4,7 ; p = 0,69) nor between ⁶⁸Ga-SMSa PET/CT and ¹⁸FDG PET/CT (5,7 vs 6,0 ; p = 0,94).

	⁶⁸ Ga-SMSa (1)	¹⁸ F-DOPA (2)	¹⁸ FDG (3)	
All sites involved mean SUVmax	53,7	19	16,6	(1) vs (2) p = 0,232 (1) vs (3) p = 1,9.10 ⁻⁴
HNPGL mean SUVmax	84,9	15,5	13,0	(1) vs (2) p = 0,001 (1) vs (3) p = 7,5.10 ⁻⁴
PHEO/adrenal-bed mean SUVmax	32,9	19,5	11,4	(1) vs (2) p = 0,305 (1) vs (3) p = 0,056
Liver metastases mean SUVmax	19,0	5,3	10,6	(1) vs (2) p = 1,00 (1) vs (3) p = 0,39
Liver background mean SUVmax	5,4	1,6	2,3	(1) vs (2) $p = 1,3.10^{-8}$ (1) vs (3) $p = 0,008$
Ratio liver metastases / liver background	5,7	4,7	6,0	(1) vs (2) $p = 0,690$ (1) vs (3) $p = 0,940$

Table 5: Semi-quantitative analysis depending on the lesions locations

Discussion

Nuclear imaging modalities as ⁶⁸Ga-SMSa PET/CT, ¹⁸F-DOPA PET/CT and ¹⁸FDG PET/CT are accurate exams in PGLs and PHEOs allowing a whole-body exploration and providing both anatomical and functional information.

¹⁸FDG is a very sensitive tracer for the detection of high carbohydrates consumption areas. This is commonly considered as the reflect of metabolic activity and biologic aggressiveness in oncology and haematology. Its interest for the exploration of PGLs and PHEO has been published since the 1990s (7), reaffirmed in the beginning of the previous decade (8) and its performances can, in some cases, compete with other PET/CT tracers (21). However, ¹⁸FDG may lack of specificity particularly to differentiate between tumoral and inflammatory diseases or to identify a specific tumoral histotype. ¹⁸F-DOPA and, more recently, ⁶⁸Ga-SMSa are both specific tracers for neuroendocrine tumors including those derived from chromafin cells as PGLs and PHEOs. These two tracers have very different mechanisms of cellular uptake and pharmacokinetics, explaining different physiological uptakes and thus different detection efficiencies depending on the tumor location and characteristics. ¹⁸F-DOPA penetrates in chromaffin cells via amino acid membrane transporter and, is then transformed in ¹⁸F-FDA by the L-aromatic amino acid decarboxylase, to be stored in catecholamine vesicles. Uptake and retention depend on all these players.

PGLs overexpress somatostatin receptors (SSTR), especially SSTR2 (13). SMSa tracers uptake and retention depend on the density of SST receptors on the cell membrane and the SSTR subtype expression. Despite some differences in terms of SSTRs affinities, the different SMSa available for imaging (DOTATOC, DOTANOC and DOTATE) are all characterized by a high affinity for the subtype SSTR2 (the mainly express SST among the 5 SST subtypes) without demonstrated clinical difference between them (22).

These different mechanisms mean different physiological uptakes and thus differences for interpretation criteria. For example, ⁶⁸Ga-SMSa PET/CT might be less efficient for detection of PHEO due to the high physiological uptake in adrenals, which is not the case with ¹⁸F-DOPAPET/CT, more hamper in pancreas and biliary areas due to its pharmacokinetics.

Moreover, and despite the high specificity of these tracers, false positives had been described, particularly with ⁶⁸Ga-SMSa PET/CT due to inflammation, other solid tumors, hemopathies, meningiomas, oncogenic osteomalacia or simply due to physiological uncinate process of pancreas uptake (23) (24) (25)

The interest of somatostatin receptors imaging in PGL and PHEO has been documented in the past with 111n-pentetreotide (Octreoscan®). In particular, Gimenez-Roqueplo et al. (26) has explored prospectively the efficiency of Octreoscan® in presymptomatic screening for SDHx mutations, comparatively to MIBG scintigraphy and morphological imaging (head and neck MR-angiography and TAP-CT scan). They showed a lower sensitivity with somatostatin receptor scintigraphy in abdominal and pelvic PGL than with MIBG or anatomical imaging and concluded to the interest of combining functional and anatomical imaging for a better detection rate.

PET imaging with ⁶⁸Ga-SMSa has demonstrated higher accuracy in the detection of neuroendocrine tumors compared with Octreoscan® (27) (28). Relatively few studies have been conducted in PGL/PHEO with ⁶⁸Ga-SMSa, but showed very promising results. In particular, a clear superiority of ⁶⁸Ga-SMSa PET/CT on

¹⁸F-DOPA PET/CT has been demonstrated in metastatic PGLs/PHEOs (16,29), especially in SDHBassociated metastatic ones (30) and also in HNPGLs (14,15). A clear superiority of ⁶⁸Ga-SMSa PET/CT was also noted when compared to ¹⁸FDG PET/CT in metastatic PGL/PHEO with germline mutation (17).

Our study reports our first experience of ⁶⁸Ga-SMSa PET/CT in the exploration PGL and PHEO and is, to our knowledge, the first series that compare in the same patients ¹⁸FDG PET/CT, ¹⁸F-DOPA PET/CT and ⁶⁸Ga-SMSa PET/CT. We confirm the high diagnostic performances of the 3 PET tracers in the whole population, with a per-lesion sensitivity of 92%, 93% and 84%, for ⁶⁸Ga-SMSa PET/CT, ¹⁸F-DOPA PET/CT and ¹⁸FDG PET/CT respectively.

When compared with the others tracers, ⁶⁸Ga-SMSa PET/CT showed a significant higher per-lesion sensitivity than ¹⁸FDG PET/CT (90% vs 85%) in 28 patient, but a lower per-lesion sensitivity when compared to ¹⁸F-DOPA PET/CT (77% vs 93%; p = 0,06) in 14 patients who underwent both exams, indicating that ⁶⁸Ga-SMSa PET/CT is not always the more accurate tracer for PGL/PHEO exploration.

Our results are nevertheless consistent with the recommendation of the Guideline for radionuclide imaging of pheochromocytoma and paraganglioma (EANM 2019) (18) situating ⁶⁸Ga-SMSa PET/CT as the first-choice of imaging procedure for HNPGLs. Indeed, we confirmed the excellent per-lesion sensitivity of ⁶⁸Ga-SMSa PET/CT in HNPGL (Se = 100%) that was, nevertheless, similar to ¹⁸F-DOPA PET/CT sensitivity, but with a significantly higher uptake for ⁶⁸Ga-SMSa PET/CT (meanSUV max = 84,9 vs 15,5, p = 0,0015). Among the 3 tracers, ¹⁸FDG was clearly the less accurate, in terms of sensitivity and uptake intensity for HNPGL exploration. Moreover, in our series, we have considered as a false positive of ⁶⁸Ga-SMSa PET/CT result a focal uptake next to carotid bifurcation, that was not confirmed by 2 MR-angiographies in a 26-year-old female carrying a germline SDHD mutation. Nevertheless, the probability of a sub-clinical and sub-radiological PGL is very high in this case because of the high frequency of HNPGL associated with SDHD mutation and the persistence of this focus in a one-year interval (figure 1).

Our study pointed out some limits of ⁶⁸Ga-SMSa PET/CT in the detection of subdiaphragmatic lesions as already observed in the "PGL.EVA" study with Octreoscan® (26) as well as in the detection of pulmonary and liver metastases. Our results demonstrate a complementarity with others PET/CT tracers and encourage association between them.

Indeed, half of ⁶⁸Ga-SMSa PET/CT's false negative lesions were detected by ¹⁸FDG PET/CT and most of those explored with ¹⁸FDOPA PET/CT were detected too.

In the subgroup of patients who underwent the 3 PET/CT exams, ¹⁸F-DOPA PET/CT demonstrated the best per-lesion sensitivity and the combination ¹⁸F-DOPA PET/CT plus ⁶⁸Ga-SMSa PET/CT or ¹⁸FDG PET/CT showed equal performances in terms of lesion detection rate.

It is difficult to confirm the superiority of ¹⁸F-DOPA PET/CT over ⁶⁸Ga-SMSa PET/CT because of the retrospective design of the study and the potential bias in the selection of patients, with an overestimation of ⁶⁸Ga-SMSa PET/CT false results in the patients who underwent the 3 PET/CTs. Nevertheless, these data

illustrated the complementarity of ⁶⁸Ga-SMSa with the others PET tracers and especially with ¹⁸F-DOPA, particularly in patients with subdiaphragmatic primaries or metastases.

It is well recognised that genetic status has an impact on imaging in PGL and PHEO, with higher SUV max observed in cluster 1-related gene mutations including SDHx mutations (8) (9). Furthermore, better detection rate of ⁶⁸Ga-SMSa PET/CT over ¹⁸FDG PET/CT had been described in metastastic SDHB-mutated patients (30) (17).

That was not verifiable in our series in SDHB-mutated patients, with very high and similar sensitivities observed with the 3 tracers. Only ⁶⁸Ga-SMSa PET/CT missed a liver metastasis on the 60 lesions explored.

In the sporadic cases of our series, ¹⁸F-DOPA PET/CT trended to have a higher per-patient and per-lesion sensitivity than ⁶⁸Ga-SMSa PET/CT and ¹⁸FDG PET/CT (respectively 96% vs 87% vs 83%). These different results should be taken with caution because ¹⁸F-DOPA PET/CT were less frequently performed than ¹⁸FDG PET/CT or ⁶⁸Ga-SMSa PET/CT in the analyzed populations. Nevertheless, in the eleven patients who underwent both the 3 exams, 60% of patients with ⁶⁸Ga-SMSa PET/CT false negative lesions had a sporadic disease. This trend was not highlighted by Archier et al. (15) in their emphasis on sporadic cases.

In their studies, Archier et al. made the hypothesis that ⁶⁸Ga-SMSa PET/CT might be inferior to ¹⁸F-FDOPA PET/CT in the detection of primary PHEOs and adrenal-bed recurrences, with respectively 8 and 11 lesions detected with each tracer. Our results do not confirm that trend: ⁶⁸Ga-SMSa PET/CT showed a high sensitivity by detecting 16 out of 17 PHEOs (1 primary and 15 adrenal-bed recurrences) (Se = 94%), similar to ¹⁸F-DOPA (Se=90%; 9/10) and superior to ¹⁸FDG PET/CT (Se = 76%; 13/17). However, our population in more heterogeneous, with much more local recurrences than primaries, and a different number of lesions explored with each tracers.

One of the advantage of nuclear medicine exams is that they allow a precise quantification of uptake intensities, which can be very informative. In the second time of our study, we performed a semi-quantitative analysis between tracers. This analysis showed a significantly higher liver background with ⁶⁸Ga-SMSa PET/CT compared to ¹⁸F-DOPA PET/CT or ¹⁸FDG PET/CT (mean SUVmean at 5,4 vs 1,6 vs 2,3 respectively). Nevertheless, and despite this higher liver background, the tumor-to-liver ratio in liver metastases were not significantly different between the 3 tracers: 5,7 with ⁶⁸Ga-SMSa PET/CT versus 4,7 with ¹⁸F-DOPA PET/CT and versus 6,0 with ¹⁸FDG PET/CT, due to higher SUVmax of liver metastases with SMSa. These results do not explain low ⁶⁸Ga-SMSa PET/CT's sensitivity in liver metastases detection but concerns only detected lesions. PGLs and PHEOs are inter and intra-individual heterogeneous diseases (19) with a heterogeneity in size and potentially in SSTR expression within pathological sites. The ratios had been calculated taking into account the liver background and the most intense lesion per site, but, there was frequently an intra-individual heterogeneity in size and uptake intensity between metastases. We couldn't reasonably exclude that the higher liver background is not responsible for a lower detection rate of small or moderate expressing SSTR liver metastasis in our patients. The very low ¹⁸F-DOPA PET/CT liver

background is probably an advantage for liver lesion detection. Yet again, tracers association with ⁶⁸Ga-SMSa and ¹⁸F-DOPA appears relevant in these cases.

Our study presents some limitations, such as the retrospective nature of the analysis, the limited number of patients and the heterogeneous characteristics of the population analyzed (with localized and metastatic diseases, and different genetic status). Nevertheless, our population reflects the real life and the usual indications for imaging in these rare and heterogeneous diseases. Two different SMSa tracers had been used depending on their availability in time: ⁶⁸Ga-DOTANOC and ⁶⁸Ga-DOTATOC. In our serie, several patients underwent repeated ⁶⁸Ga-SMSa PET/CT with the two radiopharmaceuticals and no evident differences were noted, as previously reported in literature (22).

As all patients did not underwent the 3 PET exams, bias in the tracers selection and the number of PET performed were not excluded, with especially more imaging methods performed in multifocal or metastastic PGL/PHEO and in case of ⁶⁸Ga-SMSa PET/CT false negative. The comparative PET analysis was almost pertinent in the patients who underwent the 3 PET/CTs, but the small number of lesions might limit the results.

Prospective studies with larger and more homogeneous populations are requested to obtain more robust and reliable findings, especially to evaluate the clinical impact of performing several PET imaging in the staging and follow-up for patients with PGL/PHEO. If documented, an inter-lesional heterogeneity may have an impact on the selection of patients for therapy, and especially for peptide receptor radionuclide therapy with radiolabelled SMSa.

Conclusion

Our study confirms the accuracy of ⁶⁸Ga-SMSa PET/CT for the exploration of paragangliomas and pheochromocytomas.

Nevertheless, and as already reported with ¹⁸FDG PET/CT and ¹⁸F-DOPA PET/CT, ⁶⁸Ga-SMSa PET/CT alone does not detect all the lesions. Best performances are obtained by combining nuclear imaging modalities, particularly in sporadic diseases, in metastatic or multifocal diseases and subdiaphragmatic PGLs.

Bibliography

- 1. DeLellis RA, Lloyd RV, Heitz PU, Eng C. Pathology and Genetics of Tumours of Endocrine Organs WHO Classification of Tumours, 3rd Edition, Volume 8.
- 2. Turchini J, Cheung VKY, Tischler AS, De Krijger RR, Gill AJ. Pathology and genetics of phaeochromocytoma and paraganglioma. Histopathology. janv 2018;72(1):97-105.
- Neumann HPH, Young WF, Eng C. Pheochromocytoma and Paraganglioma. Longo DL, éditeur. N Engl J Med. 8 août 2019;381(6):552-65.
- 4. Martins R, Bugalho MJ. Paragangliomas/Pheochromocytomas: Clinically Oriented Genetic Testing. Int J Endocrinol [Internet]. 2014 [cité 8 juill 2020];2014. Disponible sur: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4037125/
- 5. Lenders JWM, Duh Q-Y, Eisenhofer G, Gimenez-Roqueplo A-P, Grebe SKG, Murad MH, et al. Pheochromocytoma and paraganglioma: an endocrine society clinical practice guideline. J Clin Endocrinol Metab. juin 2014;99(6):1915-42.
- 6. Jacobson AF, Deng H, Lombard J, Lessig HJ, Black RR. 123I-Meta-Iodobenzylguanidine Scintigraphy for the Detection of Neuroblastoma and Pheochromocytoma: Results of a Meta-Analysis. J Clin Endocrinol Metab. 1 juin 2010;95(6):2596-606.
- 7. Shulkin BL, Koeppe RA, Francis IR, Deeb GM, Lloyd RV, Thompson NW. Pheochromocytomas that do not accumulate metaiodobenzylguanidine: localization with PET and administration of FDG. Radiology. mars 1993;186(3):711-5.
- 8. Timmers HJLM, Chen CC, Carrasquillo JA, Whatley M, Ling A, Eisenhofer G, et al. Staging and functional characterization of pheochromocytoma and paraganglioma by 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography. J Natl Cancer Inst. 2 mai 2012;104(9):700-8.
- 9. Ansquer C, Drui D, Mirallié E, Renaudin-Autain K, Denis A, Gimenez-Roqueplo A-P, et al. Usefulness of FDG-PET/CT-Based Radiomics for the Characterization and Genetic Orientation of Pheochromocytomas Before Surgery. Cancers. 26 août 2020;12(9).
- 10. Taïeb D, Tessonnier L, Sebag F, Niccoli-Sire P, Morange I, Colavolpe C, et al. The role of 18F-FDOPA and 18F-FDG-PET in the management of malignant and multifocal phaeochromocytomas. Clin Endocrinol (Oxf). oct 2008;69(4):580-6.
- 11. Fiebrich H-B, Brouwers AH, Kerstens MN, Pijl MEJ, Kema IP, de Jong JR, et al. 6-[F-18]Fluoro-Ldihydroxyphenylalanine positron emission tomography is superior to conventional imaging with (123)Imetaiodobenzylguanidine scintigraphy, computer tomography, and magnetic resonance imaging in localizing tumors causing catecholamine excess. J Clin Endocrinol Metab. oct 2009;94(10):3922-30.
- King KS, Chen CC, Alexopoulos DK, Whatley MA, Reynolds JC, Patronas N, et al. Functional imaging of SDHx-related head and neck paragangliomas: comparison of 18F-fluorodihydroxyphenylalanine, 18Ffluorodopamine, 18F-fluoro-2-deoxy-D-glucose PET, 123I-metaiodobenzylguanidine scintigraphy, and 111In-pentetreotide scintigraphy. J Clin Endocrinol Metab. sept 2011;96(9):2779-85.
- 13. Reubi JC, Waser B, Schaer JC, Laissue JA. Somatostatin receptor sst1-sst5 expression in normal and neoplastic human tissues using receptor autoradiography with subtype-selective ligands. Eur J Nucl Med. juill 2001;28(7):836-46.
- 14. Janssen I, Taieb D, Patronas NJ, Millo CM, Adams K, Nambuba J, et al. [68Ga]-DOTATATE PET/CT in the localization of head and neck paragangliomas compared to other functional imaging modalities and CT/MRI. J Nucl Med Off Publ Soc Nucl Med. févr 2016;57(2):186-91.
- 15. Archier A, Varoquaux A, Garrigue P, Montava M, Guerin C, Gabriel S, et al. Prospective comparison of 68Ga-DOTATATE and 18F-FDOPA PET/CT in patients with various pheochromocytomas and paragangliomas with emphasis on sporadic cases. Eur J Nucl Med Mol Imaging. juill 2016;43(7):1248-57.

- Kroiss AS, Uprimny C, Shulkin BL, Gruber L, Frech A, Jazbec T, et al. 68Ga-DOTATOC PET/CT in the localization of metastatic extra-adrenal paraganglioma and pheochromocytoma compared with 18F-DOPA PET/CT. Rev Espanola Med Nucl E Imagen Mol. avr 2019;38(2):94-9.
- 17. Kan Y, Zhang S, Wang W, Liu J, Yang J, Wang Z. ⁶⁸ Ga-somatostatin receptor analogs and ¹⁸ F-FDG PET/CT in the localization of metastatic pheochromocytomas and paragangliomas with germline mutations: a metaanalysis. Acta Radiol. déc 2018;59(12):1466-74.
- Taïeb D, Hicks RJ, Hindié E, Guillet BA, Avram A, Ghedini P, et al. European Association of Nuclear Medicine Practice Guideline/Society of Nuclear Medicine and Molecular Imaging Procedure Standard 2019 for radionuclide imaging of phaeochromocytoma and paraganglioma. Eur J Nucl Med Mol Imaging. sept 2019;46(10):2112-37.
- 19. Taïeb D, Pacak K. Genetic Determinants of Pheochromocytoma and Paraganglioma Imaging Phenotypes. J Nucl Med Off Publ Soc Nucl Med. mai 2020;61(5):643-5.
- 20. Antonio K, Valdez MMN, Mercado-Asis L, Taïeb D, Pacak K. Pheochromocytoma/paraganglioma: recent updates in genetics, biochemistry, immunohistochemistry, metabolomics, imaging and therapeutic options. Gland Surg. févr 2020;9(1):105-23.
- 21. Chang CA, Pattison DA, Tothill RW, Kong G, Akhurst TJ, Hicks RJ, et al. (68)Ga-DOTATATE and (18)F-FDG PET/CT in Paraganglioma and Pheochromocytoma: utility, patterns and heterogeneity. Cancer Imaging Off Publ Int Cancer Imaging Soc. 17 août 2016;16(1):22.
- 22. Mf B, I V, S B, M B, D R, C D, et al. Guideline for PET/CT imaging of neuroendocrine neoplasms with 68 Ga-DOTA-conjugated somatostatin receptor targeting peptides and 18 F-DOPA [Internet]. Vol. 44, European journal of nuclear medicine and molecular imaging. Eur J Nucl Med Mol Imaging; 2017 [cité 30 août 2020]. Disponible sur: https://pubmed.ncbi.nlm.nih.gov/28547177/
- 23. Hofman MS, Lau WFE, Hicks RJ. Somatostatin receptor imaging with 68Ga DOTATATE PET/CT: clinical utility, normal patterns, pearls, and pitfalls in interpretation. Radiogr Rev Publ Radiol Soc N Am Inc. avr 2015;35(2):500-16.
- 24. Yamaga LYI, Wagner J, Funari MB de G. 68Ga-DOTATATE PET/CT in Nonneuroendocrine Tumors: A Pictorial Essay. Clin Nucl Med. juin 2017;42(6):e313-6.
- 25. Nadebaum DP, Lee ST, Nikfarjam M, Scott AM. Metastatic clear cell renal cell carcinoma demonstrating intense uptake on 68Ga-DOTATATE positron emission tomography: Three case reports and a review of the literature. World J Nucl Med. sept 2018;17(3):195-7.
- 26. Gimenez-Roqueplo A-P, Caumont-Prim A, Houzard C, Hignette C, Hernigou A, Halimi P, et al. Imaging work-up for screening of paraganglioma and pheochromocytoma in SDHx mutation carriers: a multicenter prospective study from the PGL.EVA Investigators. J Clin Endocrinol Metab. janv 2013;98(1):E162-173.
- 27. Gabriel M, Decristoforo C, Kendler D, Dobrozemsky G, Heute D, Uprimny C, et al. 68Ga-DOTA-Tyr3octreotide PET in neuroendocrine tumors: comparison with somatostatin receptor scintigraphy and CT. J Nucl Med Off Publ Soc Nucl Med. avr 2007;48(4):508-18.
- 28. Buchmann I, Henze M, Engelbrecht S, Eisenhut M, Runz A, Schäfer M, et al. Comparison of 68Ga-DOTATOC PET and 1111n-DTPAOC (Octreoscan) SPECT in patients with neuroendocrine tumours. Eur J Nucl Med Mol Imaging. oct 2007;34(10):1617-26.
- 29. Kroiss A, Putzer D, Frech A, Decristoforo C, Uprimny C, Gasser RW, et al. A retrospective comparison between 68Ga-DOTA-TOC PET/CT and 18F-DOPA PET/CT in patients with extra-adrenal paraganglioma. Eur J Nucl Med Mol Imaging. déc 2013;40(12):1800-8.
- 30. Janssen I, Blanchet EM, Adams K, Chen CC, Millo CM, Herscovitch P, et al. Superiority of [68Ga]-DOTATATE PET/CT to Other Functional Imaging Modalities in the Localization of SDHB-Associated Metastatic Pheochromocytoma and Paraganglioma. Clin Cancer Res. 1 sept 2015;21(17):3888-95.

Titre de Thèse : La TEP/TDM aux analogues de la somatostatine marqués au gallium-68 dans l'exploration des paragangliomes et phéochromocytomes.

Intérêt de l'association avec d'autres traceurs TEP : retour d'expérience du CHU de Nantes.

RESUME

Introduction

La TEP/TDM aux analogues de la somatostatine marqués au gallium-68 (⁶⁸Ga-SMSa) est recommandée chez les patients porteurs de paragangliome (PGL) et de phéochromocytome (PHEO). Notre étude rétrospective a analysé la sensibilité de la TEP-⁶⁸Ga-SMSa réalisée pour l'exploration des PGL et PHEO au CHU de Nantes entre septembre 2014 et avril 2020.

Matériels et méthodes

Ont été inclus consécutivement les patients explorés dans le cadre de l'évaluation initiale ou du suivi de leur maladie. La TEP-⁶⁸Ga-SMSa était systématiquement réalisée en complément d'un examen d'imagerie morphologique et souvent en association à une TEP/TDM à la ¹⁸F-DOPA et/ou au ¹⁸FDG. Le cas échéant, les données des différents examens TEP ont été comparées. Les foyers ne correspondant pas à des zones de captation physiologique des différents traceurs étaient considérés comme pathologiques et confirmés par l'étalon de vérité (anatomopathologie, positivité d'au moins une autre modalité d'imagerie ou évolution au cours du suivi).

Résultats

40 patients ont été inclus: 32 porteurs d'un PGL et 8 d'un PHEO. 20 maladies étaient localisées et 20 métastatiques ou multifocales.

19 de ces 40 patients étaient porteurs d'une mutation génétique (1 SDHA, 12 SDHB, 2 SDHC, 4 SDHD). Au total, 197 lésions étaient confirmées par l'étalon de vérité, correspondant à 59 primitifs ou récidives locales et 138 métastases.

Dans l'ensemble de la population, les sensibilités par patient des examens TEP/TDM étaient de 95% (38/40) pour le ⁶⁸Ga-SMSa, 86% (12/14) pour la ¹⁸F-DOPA et 96% (27/28) pour le ¹⁸F-FDG. Les sensibilités par lésion étaient respectivement de 92% (181/197), 93% (40/43) et 84% (138/164).

La TEP-⁶⁸Ga-SMSa détectait l'ensemble des 30 PGL de la tête et du cou, 16 sur 17 (94%) PHEO primitifs ou récidives locales, 10 sur 13 (77%) PGL sous-diaphragmatiques et 126 sur 138 (91%) métastases.

Les 16 faux négatifs correspondaient à 5 métastases pulmonaires, 5 métastases hépatiques, 4 primitifs sousdiaphragmatiques, 1 adénopathie sus et 1 adénopathie sous-diaphragmatique. Huit de ces 16 faux négatifs (50%) étaient détectés par la TEP-¹⁸FDG de même que 9 des 10 faux négatifs (90%) explorés par la TEP-¹⁸F-DOPA.

Parmi les 11 patients qui avaient été explorés par les trois traceurs, la TEP-¹⁸F-DOPA détectait significativement plus de lésions que la TEP-⁶⁸Ga-SMSa (95% (38/40) vs 75% (30/40); p = 0,02) et que la TEP-¹⁸FDG (95% (38/40) vs 70% (28/40); p = 0,006).

Conclusion

Notre expérience préliminaire confirme la très bonne sensibilité de la TEP/TDM au ⁶⁸Ga-SMSa pour l'exploration des PGL et des PHEO. Toutefois, comme il a déjà été rapporté pour les TEP/TDM au ¹⁸FDG et à la ¹⁸F-DOPA, la TEP-⁶⁸Ga-SMSa seule ne détecte pas toutes les lésions. Les meilleures performances sont obtenues en combinant plusieurs traceurs TEP notamment pour les maladies sporadiques, pour les maladies métastatiques ou multifocales et pour les paragangliomes sous-diaphragmatiques.

Mots clés: ⁶⁸*Ga-DOTA-NOC*; ⁶⁸*Ga-DOTA-TOC*; ¹⁸*F-DOPA*; ¹⁸*FDG*; *Paragangliome*; *Phéochromocytome*; *PET/CT*