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Acronyms

The reader will find below the main acronyms used throughout of this thesis.

ABBREVIATION DEFINITION

ARL Average Run Length

SDRL Standard deviation of the run length

MCUSUM Multivariate Cumulative sum

MEWMA Multivariate Exponentially Weighted Moving Average

SPM Statistical Process Monitoring

LCL Lower Control Limit

UCL Upper Control Limit

CoDa Compositional data

DDMA Data Depth Moving Average

MNOR Multivariate normal

Notations Descriptions
Sp Simplex sample space
Rp Real space
⊕ Perturbation operator defined in Aitchison’s geometry
� Powering operator defined in Aitchison’s geometry
a Perturbation constant
b Powering constant
yi Independent multivariate normal random compositions
xi,j Observable quality characteristics used to measure yi
εi,j Random error term
x∗ Ilr transformed value of x
µ∗ Composition mean
Σ∗ Composition variance
µ∗x̄ Composition mean of x̄
Σ∗x̄ Composition variance of x̄
σM Standard-deviation measurement error common in all directions
Σ∗M Measurement error variance-covariance matrix
δ Non centerality parameter without measurement error
δM Non centerality parameter in the presence of measurement error
λ Eigenvalues
∆ Percentage improvement operator
µ∗0 Composition mean of yi when the process is in-control
µ∗1 Composition mean when the process is out-of-control
H Upper control limit
r Smoothing parameter
ξ Clr transformed values of x
C(x) Closure function of x
κ Constant sum of composition
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General Introduction

SPM (Statistical Process Monitoring) is a methodology used to improve manufacturing processes by
detecting process shifts (due to assignable causes) using control charts and by fixing the problems before
a large number of nonconforming units is manufactured. The selection of a suitable control chart depends
on the type and distribution of the data. When there are several quality characteristics, multivariate control
charts have to be adopted. CoDa (for Compositional Data) is a specific category of multivariate data which
are constrained by definition. CoDa are defined as vectors of strictly positive real numbers and they only
convey relative information.

There are many contributions concerning CoDa in different fields like, health sciences, geology, statis-
tical analysis and modeling of industrial data etc. Among them, there are several papers discussing SPM
using control charts for CoDa. This thesis makes an attempt to study new control charts for CoDa. This
thesis is divided into six chapters.

— The Chapter 1 introduces the Statistical process monitoring and defines some of the Univariate,
nonparametric and multivariate control charts along with the performance measure of the control
charts.

— The Chapter 2 introduces the CoDa along with some previous researches on CoDa.
— The Chapter 3 studies the performance of the Hotelling T 2 control chart for CoDa in the presence

of measurement errors.
— The Chapter 4 studies the performance of the MEWMA-CoDa control chart in the presence of

measurement errors.
— The Chapter 5 studies the performance of some nonparametric charts for compositional data using

data depth.
— Finally the Chapter 6 contains the general conclusions of the thesis along with the perspective for

future research for CoDa.
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1
Introduction to Statistical Process Control

In this chapter we discuss introduction to statistical process monitoring along with control charts in
details. We present some basic univariate, multivariate and nonparametric control charts and also discuss
how to check the performance of control charts.

1.1 Introduction
SPM (Statistical Process Monitoring) is a widely used methodology, based on the implementation of

control charts, for achieving process stability and improving capability through the reduction of the process
variability .

The concept of statistical process control was introduced by Shewhart in 1920. Further Shewhart (1930)
developed control charts to evaluate whether a process is in control or not. The charts introduced by She-
whart are also known as the Shewhart control charts. In 1946 the American society for quality control was
established.

Statistical process control is a method used to differentiate between causes of variation (i.e. assignable
or common causes). There are three main phases of statistical process control.

1. Emphasize on the process and find the control limits.

2. Eliminate the variation which are assignable to make the process stable.

3. Use control charts to monitor the production process by detecting changes in the mean or variance.

The basic tools of statistical process control are histograms, scatter diagrams, check sheets, pareto
charts, cause and effect diagrams and control charts.

During the last decade, an enormous number of new advanced control charts have been proposed for
univariate and multivariate processes with many applications in manufacturing and service sectors. Some
of them are listed below.

1.2 Univariate control charts
There are different types of control charts. For example (X̄, R) control chart, (X̄, S) control chart, u

chart, p chart etc. The Shewhart control charts are also known as memory less control charts as they only
rely on the current information and they are less sensitive to detect small shifts but they are most efficient
at detecting the large shifts.

9
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Figure 1.1 – X̄ control chart

1.2.1 Control Charts for the Position

Suppose that the quality characteristic X is normally distributed with known mean µ and known stan-
dard deviation σ then a sample {X1, . . . , Xn} of n observations has an average,

X̄ =
1

n

n∑
i=1

Xi

and its standard deviation is,

σX̄ =
σ√
n

The confidence interval for the population mean µ can be written as,

X̄ + Zα
2
σX̄ and X̄ − Zα

2
σX̄

where Zα/2 is the α/2 quantile of the standard normal distribution which can be found in the table of
standard deviation or evaluated with a software like R Core Team (2020). The control limits for the
sample mean X̄ can also be written as,

µ+ Zα
2

σ√
n

and µ+ Zα
2

σ√
n

(1.1)

The confidence interval is also used as upper and lower control limits for the sample means and if the
sample values X̄ fall within the control limits and do not exhibit any systematic pattern, the process is said
to be in-control.

While dealing with real life data the value of the real mean µ and standard deviation σ is unknown then
the in-control sample statistics can be used instead of the real ones and the quality characteristics of the data
can be studied using a subsample. Suppose there are m samples and each sample have n observations.
Table 1.1 on the facing page shows subgroup data of m samples having n observations each. The mean of
the sample means X̄j can be written as,

¯̄X =
1

m

m∑
j=1

X̄j
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Table 1.1 – Table of m× n measures of Xi,j

Samples Measures
1 X1,1 X1,2 · · · X1,n

2 X2,1 X2,2 · · · X2,n
...

...
... · · · ...

m Xm,1 Xm,2 · · · Xm,n

The mean of the sample median X̃j can be written as,

¯̃X =
1

m

m∑
j=1

X̃j

The above mentioned limits in Equation 1.1 were the control limits for phase II Shewhart control chart
when µ and σ were known. The control limits for sample mean X̄ when µ and σ are known for phase I
Shewhart control limit can be written as,

LCL = ¯̄X − kσ̂/
√
n

UCL = ¯̄X + kσ̂/
√
n

where k is the “distance” of the control limits from the center line, expressed in standard deviation units.
In general k = 3 has been used. As discussed earlier when the mean and standard deviation are unknown
we use the above mean and standard deviations to determine the control limits for the sample mean. The
averages can be written as,

µ̂ = ¯̄X

or
µ̂ = ¯̃X

There are three different estimators for dispersion,
1. The first estimator of dispersion is the range (R). Suppose R1, R2, . . . , Rm are the ranges of m

samples then the mean of R is R̄ can be written as,

R̄ =
1

m

m∑
j=1

Rj

The control limits for the (X̄, R) chart can be written as,

LCL(X̄,R) = ¯̄X − A(X̄,R)(n)× R̄
UCL(X̄,R) = ¯̄X + A(X̄,R)(n)× R̄

where A(X̄,R)(n) = 3/d2

√
n with d2 depends on value of n. The values of A(X̄,R)(n) for different

values of sample size n are listed in Table 1.2 on the next page.
If we use X̃ instead of X̄ , then the control limits for the chart (X̃, R) can be written as,

LCL(X̃,R) = ¯̃X − A(X̃,R)(n)× R̄

UCL(X̃,R) = ¯̃X + A(X̃,R)(n)× R̄

where A(X̃,R)(n) is a coefficient listed in Table 1.2 on the following page.
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n A(X̄,R)(n) A(X̄,S)(n) A(X̃,R)(n) LS(n) US(n) LR(n) UR(n) KS(n) KR(n)

2 1.8800 2.6587 0.0021 4.0171 0.0021 4.0171 0.7979 1.1284
3 1.0233 1.9544 1.1972 0.0415 2.9006 0.0414 2.9247 0.8862 1.6926
4 0.7286 1.6281 0.1080 2.4775 0.1071 2.5257 0.9213 2.0588
5 0.5768 1.4273 0.6962 0.1730 2.2442 0.1705 2.3119 0.9400 2.3259
6 0.4832 1.2871 0.2293 2.0925 0.2245 2.1761 0.9515 2.5344
7 0.4193 1.1819 0.5123 0.2769 1.9841 0.2695 2.0808 0.9594 2.7044
8 0.3725 1.0991 0.3173 1.9019 0.3071 2.0095 0.9650 2.8472
9 0.3367 1.0317 0.4140 0.3519 1.8369 0.3389 1.9538 0.9693 2.9700

10 0.3083 0.9754 0.3818 1.7838 0.3660 1.9087 0.9727 3.0775
11 0.2851 0.9274 0.3519 0.4080 1.7395 0.3895 1.8714 0.9754 3.1729
12 0.2658 0.8859 0.4312 1.7018 0.4100 1.8398 0.9776 3.2585
13 0.2494 0.8495 0.3087 0.4518 1.6691 0.4281 1.8127 0.9794 3.3360
14 0.2354 0.8173 0.4704 1.6406 0.4442 1.7890 0.9810 3.4068
15 0.2231 0.7885 0.2766 0.4872 1.6153 0.4587 1.7681 0.9823 3.4718
16 0.2123 0.7626 0.5024 1.5928 0.4717 1.7495 0.9835 3.5320
17 0.2028 0.7391 0.2518 0.5164 1.5725 0.4836 1.7329 0.9845 3.5879
18 0.1943 0.7176 0.5292 1.5541 0.4944 1.7178 0.9854 3.6401
19 0.1866 0.6979 0.2319 0.5411 1.5374 0.5044 1.7041 0.9862 3.6890
20 0.1796 0.6797 0.5521 1.5220 0.5135 1.6915 0.9869 3.7350
21 0.1733 0.6629 0.2155 0.5623 1.5079 0.5220 1.6800 0.9876 3.7783
22 0.1675 0.6473 0.5719 1.4948 0.5299 1.6693 0.9882 3.8194
23 0.1621 0.6327 0.2018 0.5808 1.4827 0.5373 1.6595 0.9887 3.8583
24 0.1572 0.6191 0.5893 1.4714 0.5442 1.6503 0.9892 3.8953
25 0.1526 0.6063 0.1901 0.5972 1.4609 0.5506 1.6417 0.9896 3.9306

Table 1.2 – Coefficients used to calculate control limits for Shewhart control charts

2. The second estimator of dispersion is the standard deviation. Suppose S1, S2, . . . Sm are the standard
deviations of m samples then the mean of S is S̄ can be written as,

S̄ =
1

m

m∑
j=1

Sj

The control limits for (X̄, S) can be written as,

LCL(X̄,S) = ¯̄X − A(X̄,S)(n)× S̄
UCL(X̄,S) = ¯̄X + A(X̄,S)(n)× S̄

where A(X̄,S)(n) is a coefficient listed in Table 1.2.
3. The third estimator of dispersion is U . The mean of U can be written as,

Ū =

√√√√ 1

m

m∑
j=1

S2
j

The control limits can be written as,

LCL = ¯̄X − kŪ/(c4,m

√
n)

UCL = ¯̄X + kŪ/(c4,m

√
n)

where c4,m can be found using the given formula,

c4,m =

√
2Γ((m(n− 1) + 1)/2)√
m(n− 1)Γ(m(n− 1)/2)

where Γ is the gamma function.
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1.2.2 Control Charts for the dispersion
Let a quality characteristics X is normally distributed with known parameter σ, then the control limits

for range chart can be written as,

LCLR = LR(n)× R̄
UCLR = UR(n)× R̄

where LR(n) and UR(n) are coefficients listed in Table 1.2 on the facing page.
When the standard deviation is used as an estimator, then the control limits of the S chart can be written

as,

LCLS = LS(n)× S̄
UCLS = US(n)× S̄

where LS(n) and US(n) are coefficients listed in Table 1.2 on the preceding page.

1.2.3 Control Charts for Nonconformity
There are some specific requirements of every thing being produced. Suppose glass bottles are being

produced in a company. The company analyse a sample of the bottle according to the air bubbles on the
bottle and they split the final product into two categories, i.e. conforming(good) item, when there is no air
buble and nonconforming(defective) item, when there is air buble . This type of data that deals with quality
of products is known as attributes data. Control charts for attributes proposed by Yang and Hillier (1970)
further Woodall (1997), Stoumbos et al. (2000) and Montgomery (2001) worked on these charts to avoid
the problem of nonconforming product and to minimize loss.
The fraction nonconforming is defined as the number of defective items (D) divided by total number of
items (n). The probability of defective items is p.The random variable D follows a binomial distribution
with parameters n and p.

P (D = X) =

(
n

X

)
pX(1− p)n−X , X = 0, 1, 2, . . . , n

where p̂ is defined as ratio of defectives in the sample (D) to sample size (n).

p̂ =
D

n

where the mean and variance of p̂ are,

µp̂ = p and σp̂2 =
p(1− p)

n

The control limits for the p chart using Shewhart type control limits are,

LCL = max

(
0, p− 3

√
p(1− p)

n

)

UCL = p+ 3

√
p(1− p)

n

These limits are also known as phase II control limits. As in real life data the value of p is not known so
it is estimated from a Phase I sample. Then the average of m samples each containing n observations is,

p̄ =

∑m
i=1Di

mn
=

∑m
i=1 p̂i
m
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The phase I control limits of the p chart are,

LCL = max

(
0, p̄− 3

√
p̄(1− p̄)

n

)

UCL = p̄+ 3

√
p̄(1− p̄)

n

If the number of nonconforming units is plotted instead of the fraction nonconforming then another
chart, the np control chart, is used with the following control limits,

LCL = max
(

0, np− 3
√
np(1− np)

)
UCL = np+ 3

√
np(1− np)

These limits are known as phase II control limits but if true value of p is not known then phase I limits
will be used instead, they are,

LCL = max
(

0, np̄− 3
√
np̄(1− np̄)

)
UCL = np̄+ 3

√
np̄(1− np̄)

1.2.4 Control Charts for the number of Defects
The p and np chart plots only the number of defective items without taking into account the number

of defects within a item. For example if we take the same example of a company producing glass bottles.
A bottle may have one or more than one defects, so it is also important to control the number of defects
within the item. The c chart is used to study the number of defects within an item. The number of defects
are denoted by “c” and is assumed to follow a Poisson distribution. The c chart is applied only when the
sample size is a constant. The average number of defects per item is denoted by c̄ and is defined as,

c̄ =
Sum of defects

Total number of samples inspected
=

1

k

k∑
i=1

ci

where k is the total number of samples inspected. The control limits of the c chart are,

LCL = max(0, c̄− 3
√
c̄)

CL = c̄

UCL = c̄+ 3
√
c̄

As discussed above that the c chart can only be used when the sample size a constant, but sometimes
the sample size varies from one sample to another and, in this case, we use a u chart. The u chart can also
be applied on data with constant sample size as well as variable sample size. The major difference between
c and u chart is, in the u charts instead of monitoring the number of defects per sample, we monitor the
number of defects per item. First we compute the number of defects per sample as,

u1 =
c1

n1

, u2 =
c2

n2

, . . . , uk =
ck
nk

The average number of defects per item is denoted by ū and is defined as,

ū =
1

k

k∑
i=1

ui
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The control limits of the u chart are,

LCL = max

(
0, ū− 3

√
ū

n̄

)
CL = ū

UCL = ū+ 3

√
ū

n̄

1.2.5 Cumulative Sum Control Charts
Page (1954) introduced Cumulative sum (CUSUM) control charts. Further, many other scientist like

Ewan (1963) , Gan (1991) and Adam et al. (1992) worked on these charts. These charts overcome the
problem of Shewhart chart as they are not memory less and they can be used to detect small as well as large
shift in the values of the variables. As shown by the name “cumulative sum” these charts use successive
sums of the observations.

Let Xj,k be a independently identically distributed normal random variables with parameters (µ0, σ0).
Let X̄1, . . . , X̄k, . . . be the averages calculated for samples of size n. The CUSUM -X̄ chart uses the sum
of deviations between the averages X̄j and the target value µ0, such that if the process deviates significantly
from this target value, the cumulative difference will increase, and will detect the shift even if it is very
small. Using X̄1, . . . , X̄k, . . ., we get,

Y +
k = max{0, X̄k − (µ0 +H) + Y +

k−1}
Y −k = max{0, (µ0 −H)− X̄k + Y −k−1}

where H = H0σ0 is a reference value and H0 is a constant which depends on n. The sequence of random
variables Y +

1 , . . . , Y
+
k , . . . allows to detect a positive shift in the mean, while the series of random variables

Y −1 , . . . , Y
−
k , . . . allows to detect a negative shift. We usually takes Y −0 = Y +

0 = 0. A shift will be detected
if,

max(Y −k , Y
+
k ) > UCL

where UCL = Kσ0 is a threshold and K is a constant that depends on n.

1.2.6 Exponentially weighted moving average control chart
Roberts (1958) introduced the Exponentially weighted moving average(EWMA) in order to improve

the sensitivity for small shifts and to overcome the drawbacks of traditional Shewhart control charts. The
control limits of the EWMA chart are given by,

LCL = µ0 −Kσ0,

UCL = µ0 +Kσ0,

where K > 0. The statistic to be monitored is:

Yi = (1− λ)Yi−1 + λX̄i,

where λ ∈ (0, 1] is a smoothing constant.

An EWMA-X̄ chart considers the process is in control if Yi ∈ [LCL,UCL]. If we replace Yi−1 in
function of Yi−2, then Yi−2 in function of Yi−3, etc, we get,

Yi = (1− λ)iY0 + λ

i−1∑
j=0

(1− λ)jX̄i−j.
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Thus, we can clearly see that Yi is a linear combination of the initial random variable Y0 weighted by
a coefficient (1 − λ)i, and random variables X̄1, . . . , X̄i weighted by the coefficients λ(1 − λ)i−1, λ(1 −
λ)i−2, . . . , λ. It is the reason that the series Y1, . . . , Yi, . . . is called EWMA series (Exponentially Weighted
Moving Average). When the value of λ is close to 0, the series Y1, . . . , Yi, . . . is “ smoothed ” version of
the series X̄1, . . . , X̄i, . . .. Ultimately, for λ = 0, we have Yi = Yi−1 = · · · = Y0. Conversely, when λ is
close to 1, the series Y1, . . . , Yi, . . . looks similar to the series X̄1, . . . , X̄i, . . .. Ultimately, for λ = 1, we
have Yi = X̄i, i ≥ 1.

When the process is under control, we have E(X̄i) = µ0 and therefore the mathematical expectation of
the random variable Yi,i ≥ 1 is equal to,

E(Yi) = (1− λ)iE(Y0) + λµ0

i−1∑
j=0

(1− λ)j

= (1− λ)iE(Y0) + λµ0

(
1− (1− λ)i

λ

)
.

After simplification, we get,

E(Yi) = (1− λ)iE(Y0) + µ0 − µ0(1− λ)i.

If we assume that E(Y0) = µ0, then it simply remains,

E(Yi) = µ0.

We can notice that even if E(Y0) 6= µ0, then the asymptotic mathematical expectation from the series
Y1, . . . , Yi, . . . is equal to,

lim
i→+∞

E(Yi) = µ0.

When the process is under control, we have V (X̄i) =
σ2
0

n
and, the random variables X̄1, X̄2, . . . being

independent, the variance of the random variable Yi is equal to,

V (Yi) = (1− λ)2iV (Y0) + λ2σ
2
0

n

i−1∑
j=0

(1− λ)2j

= (1− λ)2iV (Y0) + λ2σ
2
0

n

(
1− (1− λ)2i

λ(2− λ)

)
.

After simplification, we get,

V (Yi) = (1− λ)2iV (Y0) +

(
λ

2− λ

)
σ2

0

n
(1− (1− λ)2i).

We can consider that,
1. let Y0 = µ0 be a constant and therefore V (Y0) = 0. In this case, we get

V (Yi) =

(
λ

2− λ

)
σ2

0

n
(1− (1− λ)2i).

2. either Y0 is a random variable such that E(Y0) = µ0 and V (Y0) =
σ2
0

n
. In this case, we get

V (Yi) =

(
λ+ 2(1− λ)2i+1

2− λ

)
σ2

0

n
.

This expression seems to us the most logical as it implies that V (Yi) is a decreasing function of i.
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We can notice that whatever the value of V (Y0), the asymptotic variance of the series Y1, . . . , Yi, . . . is
equal to,

lim
i→+∞

V (Yi) =

(
λ

2− λ

)
σ2

0

n

For this reason, some authors prefer to use the following control limits for the EWMA −X̄ chart:

LCL = µ0 −K ′
√

λ

n(2− λ)
σ0,

UCL = µ0 +K ′

√
λ

n(2− λ)
σ0.

1.3 Nonparametric control charts
The vast majority of control chart depends on the assumptions of the underlying distribution. In most of

the literature about statistical process monitoring the data are assumed to be normally distributed. However
in real world situations, many times the data are not normally distributed. To deal with this type of data
which does not fulfill the assumptions of normality some nonparametric control charts have been proposed
during the last decades. Some of them are discussed below.

1.3.1 Signed-Rank (SR) Charts
Suppose a random sample (Xt1, Xt2, . . . , Xtm) of subgroup size n > 1 collected at interval t = 1, 2, . . .

is independent and follows a continuous symmetric distribution with an in-control median θ0. Then the
Shewhart-type chart based on the Signed-Rank (SR) is defined as,

ψ =
n∑
j=1

sign(Xtj − θ0)R+
tj t = 1, 2, . . .

where

R+
tj = 1 +

n∑
j=1

I(|Xti − θ0| < Xtj − θ0)

where R+
tj is Wilcoxon signed-rank statistic (see for instance Gibbons and Chakraborti (2010)) and I is the

indicator function with

sign(X) =


1 if X > 0,
0 if X = 0,
−1 if X, 0,

The test statistics ψ is the the sum of the ranks of absolute values of the deviations corresponding to the
negative deviations from the sum of the ranks of the absolute values of the deviations corresponding to the
positive deviations.

1.3.2 Mann Whitney control charts
Let us assume that a reference sample X = (X1, X2, . . . , Xm) is an in-control independent random

sample of size m, Let us also assume an arbitrary test sample Y = (Y1, Y2, . . . , Yn) of size n, where X and
Y are independent of each other. Then, the Mann Whitney statistics defined by Mann and Whitney (1947)
is,

MXY =
m∑
i=1

n∑
j=1

I(Xi < Yj)
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where I(Xi < Yj) is the indicator function for the event Xi < Yj with 0 ≤MXY ≤ mn. The shift is said to
be positive when the value of MXY is large, whereas the shift is said to be negative when the value of MXY

is small. The nonparametric Shewhart chart for location based on the MW statistics was first proposed by
Chakraborti and de Wiel (2008).

1.3.3 Ansari and Bradley control chart
Suppose we have two independent sample X = (X1, X2, . . . , Xm) and Y = (Y1, Y2, . . . , Yn) with

size m and n with continuous distribution function FX(u), and FY (u) respectively with assumption of the
known median difference µX − µY . Let us assume µX = µY = 0, thus FX(u), and FY (u) have the same
form. Same ranks are assigned to the smallest and the largest values after arranging the sample data in
ascending order. So the rank scheme is,{

1, 2, . . . , m+n
2
, m+n

2
, . . . , 2, 1 for m+ n even

1, 2, . . . , m+n−1
2

, m+n−1
2

, . . . , 2, 1 for m+ n odd

The test statistics defined by Ansari and Bradley (1960) is,

W =
n∑
i

R(Xi)

where the rank sum is associated with the X sample. The standardized test statistics is defined as,

U =
W − E(W )√

V [W ]

where

E[W ] =

{
m(m+n+2)

4
for m+ n even

2m(m+n+1)
4(m+n)

for m+ n odd

V [W ] =

{
mn(m+n+2)(m+n+2)

48(m+n−1)
for m+ n even

mn(m+n+1)(3+(m+n)2)
48(m+n)2

for m+ n odd

The chart based on this statistics follows the basic Shewhart scheme. The central line is equal toCL = 0,
with the upper and lower control limits being UCL = 3 and LCL = −3 respectively. This chart has been
proposed by Das (2008).

1.4 Multivariate Control charts
During the last decade, an enormous number of new advanced control charts has been proposed for

univariate as well as for multivariate processes. When there are several quality characteristics, multivariate
control charts have to be adopted. Montgomery and Wadsworth (1972), Crosier (1988), Pignatiello and
Runger (1990), Lowry et al. (1992a), Lowry and Montgomery (1995) and many other contributed in Mul-
tivariate control charts. The selection of a suitable control chart depends on the type and distribution of the
data. When there are several quality characteristics, multivariate control charts have to be adopted.

1.4.1 Hotelling T 2 control chart
Suppose that the quality characteristics X follows multivariate normal distributionNp (µ,Σ) in Rp with

mean vector µ and variance-covariance matrix Σ. By definition, the Mahalanobis distance is
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T 2 = (X̄− µ)ᵀΣ−1(X̄− µ).

This distance quantifies the closeness of the point X to the means µ by considering the covariances.
The T 2 control chart is a multivariate control chart for the process mean developed by Hotelling (1947).

— For groups of observations, the statistic T 2
i is equal to,

T 2
i = n(X̄− µ)

ᵀ
Σ−1(X̄− µ),

The upper control limit UCL is equal to,

UCL =
p(m+ 1)(n− 1)

m(n− 1)− p+ 1
F−1
F (1− α|p,m(n− 1)− p+ 1),

where, F−1
F (1−α|p,m(n− 1)− p+ 1) is the inverse cumulative function of the F distribution with

parameters p and m(n− 1)− p+ 1 with sample of size m and p number of variables.
— For individual observations (n = 1), the statistic T 2 is equal to,

T 2
i = (X− µ)ᵀΣ−1(X− µ),

The statistic T 2
i follows χ2 distribution with p degrees of freedom, if the parameters µ and Σ are

known. Therefore, the upper control limit of the Hotelling T 2 chart is given by,

UCL = F−1
χ2 (1− α|p),

where α is the type I error and F−1
χ2 (. . . |p) is the inverse distribution function of the χ2 distribution

with p degrees of freedom.

1.4.2 Multivariate EWMA control chart
Lowry et al. (1992b) proposed a multivariate EWMA control chart (MEWMA) to monitor the mean

vectors. Suppose that the quality measure X follows a multivariate normal distribution with mean vector µ
and variance-covariance matrix Σ. The MEWMA statistics is defined as,

Qi = Yi
ᵀΣ−1

Yi
Yi,

with
ΣYi =

r

2− r
Σ,

and
Yi = r(Xi − µ) + (1− r)Yi−1,

where r ∈ (0, 1) (equivalent to λ for the EWMA chart) and Y0 = 0. The MEWMA control charts is said
to be out of control when Qi > H , where H > 0 is the specified control limit.

1.4.3 Multivariate CUSUM control chart
Crosier (1988) developed multivariate cumulative sum (MCUSUM) control charts as a multivariate

generalization of the univariate CUSUM chart. Suppose a multivariate variable X follows multivariate
normal distributionNp (µ,Σ) in Rp with mean vectorµ and variance-covariance matrix Σ. The MCUSUM
control chart is based on statistic,

Yi = (SH,i
ᵀΣ−1SH,i)

1/2

with

SH,i =

{
0 if Ci ≤ k,
(X̄i − µ+ SH,i−1) if Ci > k,

where Ci = (X̄i − µ+ SH,i−1)
ᵀ
Σ−1(X̄i − µ + SH,i−1). The MCUSUM control chart is said to be out of

control when Yi > H where H > 0 is the specified control limit.
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1.5 Performance of control charts
There are two objectives for designing control charts: i) the false alarm rate should be minimum in an in-

control process and ii) the false alarm rate should be higher in an out-of-control process. Different measures
have been proposed to evaluate the performance of control charts. Arorian and Levene (1950) used the Run
Length (RL) distribution to study the performance of control chart. The RL is number of points on a chart
until a control chart signals. Average run length (ARL) is the average of RL and is commonly used to
measure the performance of control charts. When the process is in-control then ARL is denoted by ARL0

while it is denoted by ARL1 when the process is out-of-control. To check the performance of a chart ARL0

is set to be fixed, while ARL1 is used to detect whether the chart is effective or not. The smaller the value
of ARL1 the more effective is the chart. When the process is in control the ARL is defined as,

ARL0 =
1

α

where α is the Type I error and when the process is out of control the ARL is defined as,

ARL1 =
1

1− β

where β is the Type II error. When we have to estimate process parameters EARL have been considered
to study the performance of control charts. In most of the cases the distribution of RL is skewed so the
Median Run Length MRL can be preferred. As the mean and the median are measures of central tendency,
to evaluate the dispersion of the Run Length, hereafter referred to as SDRL is evaluated as,

SDRL =

√
β

1− β
.

In this chapter we have presented control charts (in general) along with their performance measures. In
the next chapter we will introduce the compositional data along with the methods to monitor these kind of
data. Also we will discuss the past papers which deal with control charts on compositional data.



2
Compositional Data - Definition and Monitoring

This chapter is divided into three sections: in first section we have the introduction of compositional
data along with the Aitchison’s geometry and in the second section we discuss the transformations that can
be made to transform compositional data and in the third section we have included some previous studies
about control charts on compositional data.

2.1 Introduction to Compositional data
In statistics, while dealing with the case of continuous multivariate processes, the vast majority of sta-

tistical methods assumes that the data are unconstrained. But there is a specific category of multivariate
data which are constrained by definition. This kind of data is called CoDa (for Compositional Data) is
represented by vectors whose strictly positive components only convey relative information. CoDa includes
measurements in probability, proportions, percentages and parts. Usually the sum of the components of
CoDa vector is expressed as some constant κ being equal to 1 if we are working with proportions, 100 if we
are working with percentages, 106 if we are working with parts per million (ppm), and so on. If we apply
statistical methods for unconstrained data on CoDa then we get inappropriate inference. As we will see, the
sample space of CoDa is not the same as the Euclidean space for unconstrained data.

Pearson (1897) identified the problem of interpreting correlation between the variables x, y, z that are
uncorrelated then we cannot make an inference about correlation between x/y, y/z or z/x, because there is
a possibility of correlation between the ratio of variables. This is known as spurious correlation which was
further adjusted by Pearson through scaling. But, the scaling ignores a range of data as it is useful only if the
scaling variable is either strictly positive or strictly negative. Tanner (1949) suggested a log transformation
and to check the normality of the transformed and original values to know whether the transformation is
advantageous or not. Later on Chayes (1960) showed that while working with CoDa some of the correlation
must be negative because of the constraint that the sum must be equal to unity. But he does not find any
model to remove the effect of unity constraint because according to him multivariate tests for unconstrained
data should not be used for constrained data.

After the effort of many scientists the first rigorous mathematical definition for CoDa analysis was given
by Aitchison (1986). He developed an “adequate” geometry to model and transform such data. It provides
only relative information so, we can say that the composition is scale invariant, i.e. if it is multiplied by a
positive number it remains the same as it was before.

21
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Figure 2.1 – Graphical representation of compositional data

A simple example of CoDa is the composition of chocolate. Talbot (2012) conducted a study on the com-
position of chocolate using different amount of all the ingredients to make different types of chocolates. The
typical plain chocolate is composed of 32.5 % cocoa powder, 15.5% cocoa butter, 51.6% sugar and 0.4%
lecithin, hence this composition can be written as [32.5,15.5,51.6,0.4]. A chocolate with low fat contains
of 20 % cocoa powder, 18.25% cocoa butter, 15% full cream milk powder, 46.3% sugar and 0.4% lecithin,
i.e. [20,18.25,15,46.3,0.4]. While, a high fat milk chocolate is composed of 20 % cocoa powder, 15.75%
cocoa butter, 25% full cream milk powder, 38.85% sugar and 0.4% lecithin, i.e. [20,15.75,25,38.85,0.4].

Another example of CoDa is the composition of the earth crust studied by Lutgens and Tarbuck (2000).
The earth crust is composed of 46.6% oxygen, 27.7% silicon, 8.1% aluminum, 5% iron, 3.6% potassium
and 2.1% magnesium, i.e. [46.6,27.7,8.1,5,3.6,2.8, 2.6,2.1].

2.1.1 Definition
The first mathematical definition for CoDa analysis, given by Aitchison (1986), is as follows,

A p-part composition is defined as a row vector x = (x1, . . . , xp) that belongs to the simplex Sp defined as,

Sp =

{
x = (x1, x2, . . . , xp)|xi > 0, i = 1, 2, . . . , p and

p∑
i=1

xi = κ

}
,

where κ > 0 is a constant (for example, κ = 1 if components x1, x2, . . . , xp are proportions and κ = 100
if they are percentages). Important remark: In order to avoid any misunderstanding, all the vectors in this
paper are considered as row vectors, not as column vectors. By definition, two compositions x and y can
be different (for instance x = (0.2, 0.5, 0.3) and y = (20, 50, 30)) but they are compositionally equivalent
(i.e. they carry the same relative information) if C(x) = C(y), where the closure function is defined as,

C(x) =

(
κx1∑p
i=1 xi

,
κx2∑p
i=1 xi

, . . . ,
κxp∑p
i=1 xi

)
.

2.1.2 Principles of Compositional Data Analysis
There are three basic principles that should be kept in mind while dealing with CoDa analysis. These

are as follows,
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a Scale invariance
b Permutation invariance
c Subcompositional coherence

a. Scale Invariance

If we have two compositions x = (0.2, 0.5, 0.3) and y = (20, 50, 30), it is clearly visible that x 6= y.
But, compositionally they are equivalent because they carry the same relative information and can be written
as C(x) = C(y).

This characteristic is also applicable on more than two compositions, as if we have compositions of
grocery items like lentils, cereals, dairy and fruits etc. whatever will be the unit of measurements of the
compositions like g, kg, L, or ounces etc. and it can be 20 grams, 50 grams and 5 liters of the prod-
uct in a composition, it does not affect the results of the composition. Similarly the proportion of dia-
mond, heart, spade and club cards in a poker hand and bridge can be compared with the help of closure
property. If a 3 dimensional positive real sample space R3

+ have five different compositions such that
a = [4, 2, 9], b = [12, 6, 27], c = [40, 20, 90], d = [4/13, 2/13, 9/13] and e = [8/17, 4/17, 18/17], all these
results gives same relative information because the ratios between their components are same.

b. Permutation Invariance

A composition is said to be permutation invariant if it gives the same results after changing the order of
the parts of the composition. For example if the sandstone grain is composed of only quartz (Q), feldspar
(F) and rock fragments (R). If the order of the composition is changed from [Q, F, R] to [F, R, Q] or [R, F,
Q], the results will remain the same. While studying the size of grains and its relationship with sediment, it
is not very important to have all the components in a fix order, as the order does not affect the percentages
of each component in the composition.

c. Subcompositional Coherence

In multivariate data analysis, marginal is used to represent a subspace of the data using fewer values to
make analysis easier. Using the same strategy, subcomposition in CoDa analysis are used to make the anal-
ysis easier instead of dealing with all data. Subcompositional Coherence have some consequences, some of
them are discussed below,
First is known as subcompositional dominance, i.e. if the distance between two subcompositions is mea-
sured it has to be less than the distance between two full compositions. The classical Euclidean distance
formula is not useful for CoDa, because it does not fulfill the condition of subcompositional coherence as it
does not gives larger values for distance between two compositions than the value of the distances between
two subcompositions.
Secondly, the value of the dispersion of the subcomposition has to be lower than the value of dispersion of
the full composition.
Finally, the results of the subcomposition should remain unchanged after removing any non-informative
part from the composition and the result must remain the same if in a p-part composition another non-
informative part is included. The results will be same for p-part composition as for p− 1 part composition
and also for p+ 1 part composition.
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2.1.3 Aitchison Geometry
The standard Euclidean geometry that defines a vector space with a metric structure in Rp (unconstrained

space) cannot be used for compositions in Sp (constrained space). For instance, if x = (0.2, 0.5, 0.3) ∈ Sp
and y = (0.3, 0.6, 0.1) ∈ Sp then x + y = (0.5, 1.1, 0.4) 6∈ Sp and 2.x = (0.4, 1, 0.6) 6∈ Sp (i.e. the
traditional operators + and . are useless). Consequently, if we want a vector space with a metric structure
for Sp, there is a need to define a geometry. This specific geometry, proposed by Aitchison (2011) (and
called the Aitchison’s geometry) defines two new operators.

i. The perturbation operator ⊕ of x ∈ Sp by y ∈ Sp (analogous to the translation in Rp) defined as,

x⊕ y = C(x1y1, x2y2, . . . , xpyp),

ii. The powering operator � of x ∈ Sp by a constant a ∈ R (analogous to the scalar multiplication in
Rp by a constant) defined as,

a� x = C(xa1, xa2, . . . , xap).
Being a vector space, the simplex with perturbation and powering property should fulfill the following
properties.

a. Commutative property of addition

x⊕ y = y ⊕ x where x,y ∈ Sp

b. Associative property of addition

(x⊕ y)⊕ z = x⊕ (y ⊕ z) where x,y, z ∈ Sp

c. Neutral element for ⊕
C(1, 1, . . . , 1) = (

1

p
, . . . ,

1

p
) = 0Sp

d. Additive inverse of the composition x

x−1 = C(x−1
1 , x−1

2 , . . . , x−1
p )

e. Associative property of multiplication

α� (β � x) = (α.β)� x

where α, β ∈ R and x,y ∈ Sp

f. Distributive property of multiplication over addition

α� (x⊕ y) = (α� x)⊕ (α� y)

(α + β)� x = (α� x)⊕ (β � x)

g. Neutral element for �
1� x = x

2.1.4 Difference between the Euclidean and Aitchison Geometries
a. Inner product

Aitchison’s inner product is defined as,

〈x,y〉A =
1

2D

D∑
i=1

D∑
i=1

ln
xi
xj

ln
yi
yj
.

where subindex A stands for Aitchison and 〈· , ·〉 is the inner product in Rp. x and y are compositionally
orthogonal if 〈x,y〉A = 0.
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b. Norm

Aitchison’s norm is defined as,

||x||A =

√√√√ 1

2D

D∑
i=1

D∑
i=1

(
ln
xi
xj

)2

.

where || · ||2 is the L2-norm in Rp.

c. Distance

Aitchison’s distance is defined as,

dA(x,y) = ||x	 y||a =

√√√√ 1

2D

D∑
i=1

D∑
i=1

(
ln
xi
xj
− ln

yi
yj

)2

.

2.2 Transformation of Compositional data

CoDa are always in form of part of some whole with the constraint of a constant sum. It is not possible
to apply standard statistical procedures on these data because of the constraint. To remove the constraint of
constant sum, the data should be transformed using some transformation. Firstly, Aitchison (1986) gives a
transformation to deal with CoDa. As the CoDa does not gives us the exact values and only gives us the
relative information, then the ratios between the elements of the composition have to be used.

There are three main transformations used to transform CoDa.

i. Centered log-ratio (clr) transformation
ii. Additive log-ratio (alr) transformation
iii. Isometric log-ratio (ilr) transformation

2.2.1 Centered log-ratio transformation

The centered log-ratio (clr) transformation is defined by Aitchison (1986) is defined as,

clr(x) =

(
ln
x1

x̄G
, ln

x2

x̄G
, . . . , ln

xp
x̄G

)
,

where x̄G is the componentwise geometric mean of x, i.e.

x̄G =

(
p∏
i=1

xi

) 1
p

= exp

(
1

p

p∑
i=1

lnxi

)
.

This formula transforms a composition x ∈ Sp into a vector clr(x) = ξ = (ξ1, ξ2, . . . , ξp) ∈ Rp satisfy-
ing the constraint ξ1 + ξ2 + · · ·+ ξp = 0.
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2.2.2 Additive log-ratio transformation

The additive log-ratio (alr) transformation was defined by Billheimer et al. (2001), who developed
the algebra for compositions and the proof of the Hilbert space structure of the simplex in terms of this
transformation. The additive log-ratio alr transformation for a composition in the simplex sample space can
be written as,

alr(x) =

(
ln
x1

xD
, ln

x2

xD
, . . . , ln

xD−1

xD

)
= ζ

where x = [x1, x2, . . . , xD] is a composition in simplex sample space and xD can be any arbitrary value
from the composition x.

To find the value of x from the above transformation, the inverse alr transformation is used that is,

x = alr−1(ζ) = C[exp(ζ1), exp(ζ2), . . . , exp(ζD−1), 1]

where
ζ = [ζ1, ζ2, . . . , ζD−1]

The alr provides different results for different value of xD. The alr transformation is also known as the
asymmetric transformation.

2.2.3 Isometric log-ratio transformation

The isometric log-ratio (ilr) transformation for a composition x ∈ Sp is defined as,

ilr(x) = x∗ = clr(x)Bᵀ

where B is a (p − 1, p) matrix. There are many possible choices for B (for more explanations, see for
instance, Pawlowsky-Glahn et al. (2015, page 40)), one of them is given below:

Bi,j =


√

1
(p−i)(p−i+1)

j ≤ p− i

−
√

p−i
p−i+1

j = p− i+ 1

0 j > p− i+ 1

The ilr transformation is fundamental because it is an isometry that allows a unique transformation
of the (constrained) coordinates of a composition x into the (unconstrained) ilr-coordinates x∗ ∈ Rp−1.
Conversely, if we want to obtain the composition coordinates x from the ilr-coordinates x∗ we have to use
the inverse isometric log-ratio transformation defined as,

ilr−1(x∗) = x = C(exp(x∗B)).

There are two ways to deal with CoDa, one is to work with the Aitchison geometry on the simplex
and use the power and perturbation operator and the second is to transform the data into the real space
by means of log-ratio coordinates, then apply classical statistics and use backward transformation to the
simplex for interpretation, if necessary. Finally, by definition (see Pawlowsky-Glahn et al. (2015, page
114)), x is a multivariate normal random composition on the simplex Sp, denoted as MNORSp(µ

∗,Σ∗), if
x∗ = ilr(x) ∼ MNORRp−1(µ∗,Σ∗), i.e. x∗ is a multivariate normal random vector on Rp−1, where µ∗ and
Σ∗ are the (1, p− 1) mean (row) vector and (p− 1, p− 1) variance-covariance matrix, respectively.
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2.3 Control Charts for Compositional Data
In statistical process control literature one can find few contributions of control charts devoted to CoDa.

Some of them are listed in the following sections of this chapter.

2.3.1 Chi-square statistic to monitor compositional process data
Boyles (1997) attempted to propose a control chart for CoDa for the first time. He developed a Chi-

square control chart to monitor CoDa. This chart has been found to be useful for multinomial data, as
the properties of the Dirichlet distribution are very restricted and, sometimes, CoDa arise from a Dirichlet
distribution so he found this chart also valid for CoDa. He used the sample means to estimate the process
averages π1, π2, . . . , πk and he determined the statistic X2 as,

X2 =
(u1 − π1)2

π1

+
(u2 − π2)2

π2

+ · · ·+ (uk − πk)2

πk
where X2 ∼ χ2

k−1

where X2 follows a χ2 distribution with k − 1 degrees of freedom. This chart have been compared with
the T 2 control chart based on log-ratio transformation using the last component of CoDa. To check the
performance of the X2 chart and to compare it with the T 2 chart, Boyles (1997) plotted both charts. He
founds that there are few out-of-control points that are detected by the X2 chart but not by the T 2 chart but
also there are some points that are detected by the T 2 chart but not by X2 chart. He used some examples
to show the performance of the X2 chart and he found it more sensitive in one example but less sensitive in
the another one. The main advantage of this study is its simplicity.

2.3.2 T 2 control chart for a p = 3 part composition
Vives-Mestres et al. (2014a) studied the out-of-control signal for three part CoDa. Let the row vector

x = (x1, . . . , xp) belong to the simplex Sp and zi = (z1, z2, . . . , zp−1) be the corresponding coordinates
obtained as zi = ilr(x) in Rp−1 with µz the mean vector and Σz the variance covariance matrix of zi. Then
the T 2 control chart for p = 3 part compostional data is defined as

T 2
c = (z− µz)TΣ−1

z (z− µz).

They found this chart better than the T 2 chart as it gives a better fit is constructed on zi that, differently
from xi, tends to be normally distributed, and the control region back transformed into Sp through ilr is
consistent with the compositional (restricted) sample space. It also fulfills the sub-compositional coherence
property.

2.3.3 Control chart for individual observations for compositional data
As an extension of the T 2 control chart for a p = 3 part composition, Vives-Mestres et al. (2014b)

proposed a control chart for individual observations for compositionl data by deleting one observation from
the raw CoDa. Then the CoDa T 2 statistic T 2

c is defined as,

(T 2
c )t = (zt − µz)TΣ−1

z (zt − µz).

If the values of the mean µz and variance Σz are known then T 2
C ∼ χ2(p − 1) and the upper control limit

will be,
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UCL = F−1
χ2 (α|p− 1)

where α is type I error. If the values of parameters µz and Σz is not known then the phase I control limits
are

UCL =
(m− 1)2

m
F−1
β (α|(p− 1)/2, (m− p− 2)/2)

where m is the sample size and (p− 1) is the number of variables. F−1
β is the inverse distribution function

of the Beta distribution with parameters (p − 1)/2 and (m − p − 2)/2. The typical T 2 control chart after
deleting one variable is not consistent while dealing with CoDa. This method fails when the data sets have
some specific shapes. Vives-Mestres et al. (2014b) showed that when the samples are close to a vertex the
T 2
C chart has a better performance than the T 2 control charts in terms of in-control ARL. But, when the

samples are homogeneous both T 2 and T 2
C gave good performance in terms of in-control ARL.

2.3.4 Phase II MEWMA control chart for compositional data
? monitored CoDa using a Multivariate Exponentially Weighted Moving Average Scheme.
Let xi,1, . . . ,xi,n be a p-part compositions at specific sampling periods i = 1, 2, . . . and x∗i,j be the

ilr coordinates of xi,j which are supposed to follow a multivariate normal distribution with mean µ∗ and
variance Σ∗. As µ∗ = ilr(µ) and µ is the center of composition, then

x̄i =
1

n
� (xi,1 ⊕ . . .⊕ xi,n)

and

x̄∗i = ilr(x̄i).

Then according to Lowry et al. (1992a),

Qi = yTi Σ−1
Yi

yi

where

ΣYi =
r

2− r
Σ

The control chart is said to be out of control when Qi > H , where UCL = H > 0. They used a Markov
chain method to evaluate the performance of the proposed control chart. They defined the out-of-control
ARL of MEWMA-CoDa control chart as,

ARL = sᵀ(I−P)−11

where
P = T(α, β) ~ P2

where ~ is the element wise multiplication of matrices and T is the (2m1 + 1,m2 + 1) matrix defined as,
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T(α, β) =

{
1 if state (α, β) is transient
0 otherwise

and s is the m1 + 1 initial probability vector with first element equal to one and zero otherwise. When
the number of states is large, the approximation of the ARL is more accurate. As using a large number of
states needs more computing resources and time, they selected m1 = m2 = 30. After selecting a particular
value for the in-control ARL0 = 370, the values of the optimal couples (r,H) have been calculated when
there is no shift. Using a particular value of the shift for the mean, they select the optimal couple (r∗, H∗)
from the set of designed couples such that the value of the out-of-control ARL is minimum. They found
the MEWMA-CoDa chart to be more sensitive than T 2

C control chart.

In this chapter we discussed the CoDa and their transformations. Also we have presented the previous
efforts on development of control charts using CoDa. In the next chapter we will discuss the control charts
on CoDa in the presence of measurement error.
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3
Performance of the Hotelling T 2-CoDa Control
Chart in the Presence of Measurement Errors

In quality control application, there are two sources of variation: the first one is from the production
process and the second one is due to the measuring devices. The difference between the actual values and
the observed ones is known as measurement errors. Many researchers have already worked on different
control charts in the presence of measurement errors. Different types of measurement error models are used
by the researcher, such as additive model, multiplicative model, two component model and four component
model. Most of the researchers used additive covariate model y = a+bx+ε, where a and b are two constant
and ε is the error term that follows normal distribution with zero mean and a given variance. There are also
different variance behaviour assumptions for measurement error such as constant, increasing or constant
and linearly increasing. Most of the researchers assumed constant variance of measurement error. Bennett
(1954) was one of the first to work on the Shewhart x̄ chart in the presence of measurement errors. He used
the simple model y = x+ε, where ε is the measurement error term. Linna and Woodall (2001) investigated
the effect of measurement errors on the Shewhart x̄ chart using the additive covariate model with constant
error variance. Yang et al. (2007) used additive covariate model with constant error variance to study the
performance of EWMA x̄ chart in the presence of measurement errors. Hu et al. (2016c) also used additive
covariate model with constant error variance to study economic design of the upper-sided synthetic chart
with measurement errors. Further Tran et al. (2016) studied the performance of the Shewhart-RZ control
chart in the presence of measurement error using the additive covariate model with constant error variance.
Hu et al. (2016a) also used the additive model with constant variance of measurement error to study the
performance of the variable sampling interval x̄ charts in the presence of measurement errors.

There are a few researchers who used linearly increasing variance of measurement error such as Diz-
abadi et al. (2016) who studied the effect of measurement error with linearly increasing variance on simul-
taneous monitoring of process mean and variability under additive covariate model. Maleki et al. (2016)
also worked on simultaneous monitoring of multivariate process mean and variability in the presence of
measurement error with linearly increasing variance under additive covariate model. Tang et al. (2018) also
used the additive model with linearly increasing error variance to study the effect of measurement errors on
the adaptive EWMA x̄ charts.

There are also many contributions where the additive covariate model is used with constant and linearly
increasing variance of measurement error. Linna et al. (2001) studied the multivariate χ2 control chart in
the presence of measurement errors using the additive model with constant and linearly increasing error
variance. Hu et al. (2016b) studied the performance of the variable sample size x̄ charts using the additive
model with constant and linearly increasing error variance. Cheng and Wang (2018a) also used the additive
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model with constant and linearly increasing error variance to analyze the performance of EWMA median
and CUSUM median control charts for a normal process. Further, Cheng and Wang (2018b) studied VSSI
median control chart with estimated parameters using the additive model with constant and linearly increas-
ing error variance. For a detailed literature review on measurement errors in statistical process monitoring,
see Maleki et al. (2017).

Even though many researches have been conducted on the evaluation of control charts in the presence
of measurement errors, few of them have been devoted to multivariate data and, as far as we know, none
of them have been devoted to CoDa. The goal of this chapter is to fill this gap and, therefore, to study
the effect of measurement errors on the T 2

C control chart proposed by Vives-Mestres et al. (2014b). The
remainder of this chapter is organized as follows: in Section 3.1, the linearly covariate measurement error
model for CoDa is introduced. Section 3.2 details the Hotelling CoDa T 2 control chart in the presence
of measurement errors and Section 3.3 investigates the performance of this control chart. Finally, a very
detailed illustrative example is provided in Section 3.4 and conclusions and future research directions are
presented in Section 3.5.

3.1 Linearly covariate measurement error model for CoDa

Let us assume that, at time i = 1, 2, . . ., the quality characteristic is a p-part composition yi =
(yi,1, . . . , yi,p) ∈ Sp and y1,y2, . . . are independent MNORSp(µ

∗,Σ∗) random compositions with p = d+1.
Moreover, let us also assume that the quality characteristic yi is not directly observable, but can only
be assessed from the results xi,1, . . . ,xi,m of a set of m ≥ 1 measurement operations with each xi,j ,
j = 1, . . . ,m, being equal to (linearly covariate measurement error model):

xi,j = a⊕ (b� yi)⊕ εi,j, (3.1)

where a ∈ Sp and b ∈ R are known (perturbation and powering) constants and where εi,j is a multivariate
normal MNORSp(0,Σ

∗
M) random error term due to the measurement inaccuracy, which is independent of

yi and Σ∗M is the unknown measurement error variance-covariance matrix.

This measurement error model for CoDa is inspired by the one proposed by Linna and Woodall (2001)
and Linna et al. (2001) for “classical” univariate and multivariate data, respectively. In these papers, these
authors advocate taking multiple (m) measurements and for averaging them in order to compensate for the
effect of measurement errors and to decrease the variance of the measurement error component. Of course,
the quality practitioner will have to find the right balance between the extra costs and time associated with
too many measurements and an acceptable level of measurement error. Consequently, similar to Linna and
Woodall (2001) and Linna et al. (2001), we suggest to define, at time i = 1, 2, . . ., the composition sample
mean as (see (Pawlowsky-Glahn et al., 2015, page 132)):

x̄i =
1

m
� (xi,1 ⊕ · · · ⊕ xi,m),

= a⊕ (b� yi)⊕
(

1

m
� (εi,1 ⊕ · · · ⊕ εi,m)

)
.

Let us define a∗ = ilr(a). Using theorem 6.20 in (Pawlowsky-Glahn et al., 2015, page 117), we have
x̄i ∼ MNORSp(µ

∗
x̄,Σ

∗
x̄) with

µ∗x̄ = a∗ + bµ∗, (3.2)

Σ∗x̄ = b2Σ∗ +
1

m
Σ∗M. (3.3)
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3.2 Hotelling CoDa T 2 control chart in the presence of measurement
errors

Let us assume that at time i = 1, 2, . . ., we have m measures xi,1, . . . ,xi,m of the quality characteristic
yi. When the process is in-control, we have yi ∼ MNORSp(µ

∗
0,Σ

∗) and, when the process is out-of-
control, we have yi ∼ MNORSp(µ

∗
1,Σ

∗), where µ∗0 and µ∗1 are the in- and out-of-control mean vectors,
respectively (Σ∗ is supposed to be unchanged). Let x̄∗i = ilr(x̄i). Using a similar approach as in Vives-
Mestres et al. (2014b), a Hotelling T 2 control chart for CoDa, which takes into account of measurement
errors, can be proposed. According to the results obtained at the end of the previous section, the statistic
monitored by the Hotelling CoDa T 2 control chart with measurement errors is (remember that the vectors
are considered as row vectors)

Zi = (x̄∗i − a∗ − bµ∗0)

(
b2Σ∗ +

1

m
Σ∗M

)−1

(x̄∗i − a∗ − bµ∗0)ᵀ. (3.4)

When the process is in-control, we have Zi ∼ χ2(p − 1), i.e. a χ2 distribution with p − 1 degrees of
freedom. As a consequence, an upper control limit UCL can be defined for this Hotelling T 2 control chart
as

UCL = F−1
χ2 (1− α0|p− 1),

where F−1
χ2 (. . . |p − 1) is the inverse c.d.f. (cumulative distribution function) of the χ2(p − 1) distribution

and α0 = 1
ARL0

is the Type I error, ARL0 being the in-control ARL. When the process is out-of-control,
the statistic Zi ∼ χ2(p − 1, δM), i.e. a non-central χ2 distribution with p − 1 degrees of freedom and
non-centrality parameter δM equal to

δM = b2(µ∗1 − µ∗0)

(
b2Σ∗ +

1

m
Σ∗M

)−1

(µ∗1 − µ∗0)ᵀ.

It should be noted that δM depends on b but it does not depend on a∗. A particular value of δM is
δ = (µ∗1 − µ∗0)(Σ∗)−1(µ∗1 − µ∗0)ᵀ corresponding to the “without measurement error” case, i.e. when
Σ∗M = 0 and b = 1

The Type II error of the Hotelling CoDa T 2 control chart with measurement errors is β = Fχ2(UCL|p−
1, δM) and the corresponding out-of-control ARL is ARL1 = 1

1−β . Ideally we want a high ARL0 when the
process is in control and a low ARL1 when the process is out of control.

As pointed out in Linna et al. (2001), multivariate control charts based on covariates (i.e. Equation 3.1
on the facing page) do not generally possess the property of directional invariance to shifts in the mean
vector (here x̄∗i ) and, in the presence of measurement errors, these multivariate control charts are therefore,
more powerful at detecting shifts in some directions than in others. In order to overcome this problem, Linna
et al. (2001) suggested to compute δmin and δmax as the minimum and maximum values of δM corresponding
to a fixed value of δ.

Let G and H > 0 be a symmetric and a positive definite (p, p) matrix, respectively. Let xmin be the row
(1, p) vector satisfying

xmin = argmin
x

(xGxᵀ),

subject to the constraint
xminHxᵀ

min = c > 0.

Based on Theorem A.9.2 in Mardia et al. (1979)(page 479), it can be easily proven that if λ1 ≤ λ2 ≤
· · · ≤ λp and v1,v2, . . . ,vp are the ordered eigenvalues and the corresponding eigenvectors of H−1G,
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respectively, then

xmin = v1

√
c

v1Hvᵀ
1

,

and
min
x

(xGxᵀ) = xminGxᵀ
min = cλ1.

Mardia et al. (1979)(page 479), c = 1. Now, if xmax is the row vector satisfying

xmax = argmax
x

(xGxᵀ),

subject to the constraint
xmaxHxᵀ

max = c > 0

then it can be proven that

xmax = vp

√
c

vpHvᵀ
p
,

and
max

x
(xGxᵀ) = xmaxGxᵀ

max = cλp.

So it can be proven that

δmin = δλ1,

δmax = δλp−1,

where λ1 and λp−1 are the smallest and the largest eigenvalues of the (p − 1, p − 1) matrix b2Σ∗(b2Σ∗ +
1
m

Σ∗M)−1, respectively. Once δmin and δmax are evaluated, it is possible to compute the minimum and
maximum Type II errors βmin = Fχ2(UCL|p − 1, δmin) and βmax = Fχ2(UCL|p − 1, δmax) as well as the
corresponding minimum and maximum out-of-control ARL’s, ARL1,min = 1

1−βmin
and ARL1,max = 1

1−βmax
.

These values have to be considered as being the “best” and “worst” out-of-control ARL values of the
Hotelling CoDa T 2 control chart in the presence of measurement errors for a fixed value of δ.

3.3 Performance of the Hotelling CoDa T 2 control chart in the pres-
ence of measurement errors

The goal of this section is to investigate the performance of the Hotelling CoDa T 2 control chart in
the presence of measurement errors. For simplicity, we assume that p = 3 and the measurement errors
variance-covariance matrix is Σ∗M = σ2

MI, where σM is the standard-deviation measurement error (common
for all dimensions) and I is the (2, 2) identity matrix. Similar to Linna et al. (2001), the two following
situations are considered for the CoDa variance-covariance matrix Σ∗

Case #1 uncorrelated case

Σ∗ =

(
0.005 0

0 0.01

)
,

Case #2 correlated case

Σ∗ =

(
0.005 0.002
0.002 0.01

)
.

We will now separately investigate the influence of parameters σM, b and m on the performance of the
Hotelling CoDa T 2 control chart in the presence of measurement errors.
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3.3.1 Influence of parameter σM
In this subsection, we investigate the influence of the parameter σM ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6} for

fixed values b = 1 and m = 3. For shifts δ ∈ [0, 2], values of ARL are given in Table 3.1 on the next page
also with the different ARL curves are plotted in Figure 3.1 on page 39 for the Hotelling CoDa T 2 control
chart without and in the presence of measurement errors. The ARL curve corresponding to the without
measurement error case is shown using a solid line, the ARL curves (best and worst situations) correspond-
ing to the Case #1 are shown using dashed lines and the ones (best and worst situations) corresponding
to the Case #2 are shown using dotted lines. From the plots in Figure 3.1 on page 39, we can draw the
following conclusions:

1. the out-of-control ARL difference between the best ARL1,min and worst ARL1,max situations is al-
ways larger for Case #2 than for Case #1 . For instance, when σM = 0.1 and δ = 1.4, the best and
worst ARL values are (ARL1,min = 101.46,ARL1,max = 131.54) for Case #1, while for Case #2,
they are equal to (ARL1,min = 98.56,ARL1,max = 137.77).

2. as expected, when σM increases the out-of-control ARL also increases (i.e. an increase in σM has a
negative impact on the Hotelling CoDa T 2 control chart). For instance, if σM = 0.3 and δ = 1.4,
the best and worst ARL values are (ARL1,min = 147.61,ARL1,max = 169.28) for Case #1 and
(ARL1,min = 145.07,ARL1,max = 172.94) for Case #2. But, when σM = 0.5 (increase), the best
and worst ARL values are (ARL1,min = 164.36,ARL1,max = 180.21) for Case #1 and (ARL1,min =
162.39,ARL1,max = 182.71) for Case #2.

3.3.2 Influence of parameter b
In this subsection, we investigate the influence of the parameter b ∈ {0.25, 0.5, 1, 2, 4, 8} for fixed

values σM = 0.3 and m = 3. All the values of ARL are given in Table 3.2 on page 40 and similar to
Figure 3.1 on page 39, we plotted in Figure 3.2 on page 41 several ARL curves for shifts δ ∈ [0, 2]. From
these plots we can conclude that when b increases the out-of-control ARL decreases (i.e. an increase of
b has a positive impact on the Hotelling CoDa T 2 control chart). For instance, if δ = 1.4 and b = 1, the
best and worst ARL values are (ARL1,min = 147.61,ARL1,max = 169.28) for Case #1 and (ARL1,min =
145.07,ARL1,max = 172.94) for Case #2. But, when b = 4 (increase), the best and worst ARL values are
(ARL1,min = 48.62,ARL1,max = 64.94) for Case #1 and (ARL1,min = 47.44,ARL1,max = 69.61) for Case
#2.

3.3.3 Influence of parameter m
In this subsection, we investigate the influence of the parameter m ∈ {1, 2, 3, 4, 5, 6} for fixed values

σM = 0.3 and b = 1. All the values of ARL are given in Table 3.3 on page 42 and similar to Figures
3.1 and 3.2, we plotted in Figure 3.3 on page 43 several ARL curves for shifts δ ∈ [0, 2]. From these
plots we can see that when m increases the out-of-control ARL slowly decreases (i.e. an increase in m
has a positive impact on the Hotelling CoDa T 2 control chart). For instance, if δ = 1.4 and m = 3, the
best and worst ARL values are (ARL1,min = 147.61,ARL1,max = 169.28) for Case #1 and (ARL1,min =
145.07,ARL1,max = 172.94) for Case #2. But, when m = 5 (increase), the best and worst ARL values are
(ARL1,min = 127.08,ARL1,max = 154.08) for Case #1 and (ARL1,min = 124.16,ARL1,max = 159.04) for
Case #2.

3.4 Illustrative example
A company produces a muesli (for breakfast), where every 100 grams contains: (A) 66% of whole-

grain cereals (barley flakes, oat flakes, wheat flakes), (B) 24% of dried fruits (raisin, papaya, banana) and
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Table 3.1 – Influence of parameter σM

Without correlation

ARL
delta without M.E σM = 0.1 σM = 0.2 σM = 0.3 σM = 0.4 σM = 0.5 σM = 0.6

0.00 200.00 ( 200.00 , 200.00 ) ( 200.00 , 200.00 ) ( 200.00 , 200.00 ) ( 200.00 , 200.00 ) ( 200.00 , 200.00 ) ( 200.00 , 200.00 )
0.10 156.75 ( 188.37 , 193.29 ) ( 193.29 , 196.36 ) ( 195.28 , 197.50 ) ( 196.36 , 198.10 ) ( 197.04 , 198.47 ) ( 197.50 , 198.71 )
0.20 127.08 ( 177.84 , 186.94 ) ( 186.94 , 192.83 ) ( 190.74 , 195.06 ) ( 192.83 , 196.23 ) ( 194.15 , 196.95 ) ( 195.06 , 197.44 )
0.30 105.59 ( 168.26 , 180.94 ) ( 180.94 , 189.41 ) ( 186.38 , 192.67 ) ( 189.41 , 194.39 ) ( 191.33 , 195.46 ) ( 192.67 , 196.19 )
0.40 89.41 ( 159.51 , 175.25 ) ( 175.25 , 186.08 ) ( 182.19 , 190.32 ) ( 186.08 , 192.58 ) ( 188.58 , 193.98 ) ( 190.32 , 194.94 )
0.50 76.86 ( 151.48 , 169.86 ) ( 169.86 , 182.86 ) ( 178.15 , 188.02 ) ( 182.86 , 190.80 ) ( 185.90 , 192.53 ) ( 188.02 , 193.71 )
0.60 66.88 ( 144.11 , 164.74 ) ( 164.74 , 179.72 ) ( 174.25 , 185.77 ) ( 179.72 , 189.04 ) ( 183.28 , 191.09 ) ( 185.77 , 192.49 )
0.70 58.80 ( 137.30 , 159.87 ) ( 159.87 , 176.68 ) ( 170.50 , 183.57 ) ( 176.68 , 187.31 ) ( 180.72 , 189.67 ) ( 183.57 , 191.29 )
0.80 52.15 ( 131.01 , 155.23 ) ( 155.23 , 173.72 ) ( 166.88 , 181.40 ) ( 173.72 , 185.61 ) ( 178.22 , 188.27 ) ( 181.40 , 190.09 )
0.90 46.60 ( 125.18 , 150.82 ) ( 150.82 , 170.84 ) ( 163.39 , 179.28 ) ( 170.84 , 183.94 ) ( 175.78 , 186.88 ) ( 179.28 , 188.91 )
1.00 41.92 ( 119.76 , 146.60 ) ( 146.60 , 168.04 ) ( 160.01 , 177.21 ) ( 168.04 , 182.29 ) ( 173.39 , 185.51 ) ( 177.21 , 187.75 )
1.10 37.92 ( 114.71 , 142.58 ) ( 142.58 , 165.32 ) ( 156.75 , 175.17 ) ( 165.32 , 180.66 ) ( 171.06 , 184.16 ) ( 175.17 , 186.59 )
1.20 34.48 ( 110.00 , 138.74 ) ( 138.74 , 162.67 ) ( 153.60 , 173.17 ) ( 162.67 , 179.06 ) ( 168.78 , 182.83 ) ( 173.17 , 185.45 )
1.30 31.50 ( 105.59 , 135.06 ) ( 135.06 , 160.09 ) ( 150.56 , 171.20 ) ( 160.09 , 177.48 ) ( 166.54 , 181.51 ) ( 171.20 , 184.32 )
1.40 28.90 ( 101.46 , 131.54 ) ( 131.54 , 157.58 ) ( 147.61 , 169.28 ) ( 157.58 , 175.92 ) ( 164.36 , 180.21 ) ( 169.28 , 183.19 )
1.50 26.62 ( 97.59 , 128.17 ) ( 128.17 , 155.13 ) ( 144.75 , 167.39 ) ( 155.13 , 174.39 ) ( 162.23 , 178.92 ) ( 167.39 , 182.09 )
1.60 24.60 ( 93.94 , 124.94 ) ( 124.94 , 152.74 ) ( 141.99 , 165.53 ) ( 152.74 , 172.88 ) ( 160.14 , 177.65 ) ( 165.53 , 180.99 )
1.70 22.81 ( 90.51 , 121.84 ) ( 121.84 , 150.42 ) ( 139.31 , 163.71 ) ( 150.42 , 171.39 ) ( 158.09 , 176.39 ) ( 163.71 , 179.90 )
1.80 21.21 ( 87.28 , 118.86 ) ( 118.86 , 148.15 ) ( 136.71 , 161.93 ) ( 148.15 , 169.92 ) ( 156.09 , 175.15 ) ( 161.93 , 178.82 )
1.90 19.77 ( 84.22 , 115.99 ) ( 115.99 , 145.94 ) ( 134.19 , 160.17 ) ( 145.94 , 168.48 ) ( 154.13 , 173.92 ) ( 160.17 , 177.76 )
2.00 18.48 ( 81.34 , 113.24 ) ( 113.24 , 143.78 ) ( 131.75 , 158.45 ) ( 143.78 , 167.05 ) ( 152.21 , 172.71 ) ( 158.45 , 176.70 )

With correlation

ARL
delta without M.E σM = 0.1 σM = 0.2 σM = 0.3 σM = 0.4 σM = 0.5 σM = 0.6

0.00 200.00 ( 200.00 , 200.00 ) ( 200.00 , 200.00 ) ( 200.00 , 200.00 ) ( 200.00 , 200.00 ) ( 200.00 , 200.00 ) ( 200.00 , 200.00 )
0.10 156.75 ( 187.79 , 194.10 ) ( 192.89 , 196.83 ) ( 194.99 , 197.84 ) ( 196.13 , 198.36 ) ( 196.85 , 198.68 ) ( 197.34 , 198.89 )
0.20 127.08 ( 176.78 , 188.49 ) ( 186.20 , 193.75 ) ( 190.18 , 195.71 ) ( 192.38 , 196.74 ) ( 193.77 , 197.37 ) ( 194.74 , 197.79 )
0.30 105.59 ( 166.81 , 183.14 ) ( 179.89 , 190.75 ) ( 185.57 , 193.63 ) ( 188.75 , 195.14 ) ( 190.78 , 196.07 ) ( 192.19 , 196.70 )
0.40 89.41 ( 157.74 , 178.04 ) ( 173.92 , 187.82 ) ( 181.15 , 191.58 ) ( 185.24 , 193.56 ) ( 187.87 , 194.79 ) ( 189.70 , 195.62 )
0.50 76.86 ( 149.47 , 173.18 ) ( 168.28 , 184.97 ) ( 176.90 , 189.56 ) ( 181.83 , 192.01 ) ( 185.03 , 193.52 ) ( 187.27 , 194.55 )
0.60 66.88 ( 141.88 , 168.53 ) ( 162.94 , 182.20 ) ( 172.81 , 187.59 ) ( 178.53 , 190.47 ) ( 182.26 , 192.27 ) ( 184.89 , 193.50 )
0.70 58.80 ( 134.91 , 164.09 ) ( 157.88 , 179.49 ) ( 168.88 , 185.64 ) ( 175.32 , 188.96 ) ( 179.56 , 191.03 ) ( 182.55 , 192.45 )
0.80 52.15 ( 128.48 , 159.84 ) ( 153.07 , 176.84 ) ( 165.09 , 183.73 ) ( 172.22 , 187.46 ) ( 176.93 , 189.80 ) ( 180.27 , 191.41 )
0.90 46.60 ( 122.54 , 155.77 ) ( 148.50 , 174.27 ) ( 161.45 , 181.86 ) ( 169.20 , 185.99 ) ( 174.36 , 188.59 ) ( 178.03 , 190.38 )
1.00 41.92 ( 117.03 , 151.87 ) ( 144.15 , 171.75 ) ( 157.94 , 180.01 ) ( 166.27 , 184.54 ) ( 171.85 , 187.39 ) ( 175.84 , 189.35 )
1.10 37.92 ( 111.92 , 148.13 ) ( 140.01 , 169.29 ) ( 154.55 , 178.20 ) ( 163.42 , 183.10 ) ( 169.40 , 186.20 ) ( 173.70 , 188.34 )
1.20 34.48 ( 107.16 , 144.54 ) ( 136.05 , 166.90 ) ( 151.28 , 176.41 ) ( 160.65 , 181.68 ) ( 167.01 , 185.03 ) ( 171.60 , 187.34 )
1.30 31.50 ( 102.71 , 141.08 ) ( 132.28 , 164.55 ) ( 148.12 , 174.66 ) ( 157.97 , 180.28 ) ( 164.67 , 183.86 ) ( 169.54 , 186.35 )
1.40 28.90 ( 98.56 , 137.77 ) ( 128.68 , 162.27 ) ( 145.07 , 172.94 ) ( 155.35 , 178.90 ) ( 162.39 , 182.71 ) ( 167.52 , 185.36 )
1.50 26.62 ( 94.67 , 134.57 ) ( 125.23 , 160.03 ) ( 142.12 , 171.24 ) ( 152.80 , 177.54 ) ( 160.16 , 181.58 ) ( 165.54 , 184.38 )
1.60 24.60 ( 91.02 , 131.50 ) ( 121.93 , 157.85 ) ( 139.27 , 169.57 ) ( 150.33 , 176.19 ) ( 157.98 , 180.45 ) ( 163.60 , 183.42 )
1.70 22.81 ( 87.58 , 128.54 ) ( 118.78 , 155.71 ) ( 136.52 , 167.93 ) ( 147.92 , 174.86 ) ( 155.85 , 179.34 ) ( 161.69 , 182.46 )
1.80 21.21 ( 84.35 , 125.69 ) ( 115.75 , 153.63 ) ( 133.85 , 166.31 ) ( 145.57 , 173.55 ) ( 153.77 , 178.23 ) ( 159.83 , 181.50 )
1.90 19.77 ( 81.31 , 122.94 ) ( 112.84 , 151.58 ) ( 131.26 , 164.72 ) ( 143.28 , 172.26 ) ( 151.73 , 177.14 ) ( 158.00 , 180.56 )
2.00 18.48 ( 78.44 , 120.29 ) ( 110.05 , 149.59 ) ( 128.76 , 163.16 ) ( 141.05 , 170.98 ) ( 149.74 , 176.06 ) ( 156.20 , 179.63 )
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Figure 3.1 – ARL curves corresponding to the without measurement error case (solid line), Case #1 (dashed
lines) and Case #2 (dotted lines), for b = 1, m = 3 and σM ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6}
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Table 3.2 – Influence of parameter b

Without correlation

ARL
delta without M.E b = 0.25 b = 0.5 b = 1 b = 2 b = 4 b = 8

0 200.00 ( 200.00 , 200.00 ) ( 200.00 , 200.00 ) ( 200.00 , 200.00 ) ( 200.00 , 200.00 ) ( 200.00 , 200.00 ) ( 200.00 , 200.00 )
0.1 156.75 ( 199.67 , 199.84 ) ( 198.71 , 199.35 ) ( 195.28 , 197.50 ) ( 185.77 , 191.49 ) ( 171.35 , 178.59 ) ( 161.64 , 165.53 )
0.2 127.08 ( 199.34 , 199.67 ) ( 197.44 , 198.70 ) ( 190.74 , 195.06 ) ( 173.17 , 183.57 ) ( 148.96 , 160.75 ) ( 134.13 , 139.94 )
0.3 105.59 ( 199.02 , 199.51 ) ( 196.19 , 198.05 ) ( 186.38 , 192.67 ) ( 161.93 , 176.18 ) ( 131.01 , 145.69 ) ( 113.53 , 120.26 )
0.4 89.41 ( 198.69 , 199.34 ) ( 194.94 , 197.41 ) ( 182.19 , 190.32 ) ( 151.85 , 169.28 ) ( 116.35 , 132.83 ) ( 97.62 , 104.72 )
0.5 76.86 ( 198.37 , 199.18 ) ( 193.71 , 196.77 ) ( 178.15 , 188.02 ) ( 142.77 , 162.82 ) ( 104.19 , 121.72 ) ( 85.01 , 92.18 )
0.6 66.88 ( 198.04 , 199.01 ) ( 192.49 , 196.14 ) ( 174.25 , 185.77 ) ( 134.55 , 156.75 ) ( 93.94 , 112.05 ) ( 74.80 , 81.87 )
0.7 58.80 ( 197.72 , 198.85 ) ( 191.29 , 195.51 ) ( 170.50 , 183.57 ) ( 127.08 , 151.06 ) ( 85.22 , 103.57 ) ( 66.40 , 73.29 )
0.8 52.15 ( 197.40 , 198.69 ) ( 190.09 , 194.88 ) ( 166.88 , 181.40 ) ( 120.26 , 145.69 ) ( 77.72 , 96.08 ) ( 59.40 , 66.04 )
0.9 46.60 ( 197.07 , 198.52 ) ( 188.91 , 194.26 ) ( 163.39 , 179.28 ) ( 114.02 , 140.64 ) ( 71.22 , 89.41 ) ( 53.49 , 59.86 )
1.0 41.92 ( 196.75 , 198.36 ) ( 187.75 , 193.63 ) ( 160.01 , 177.21 ) ( 108.28 , 135.86 ) ( 65.53 , 83.46 ) ( 48.44 , 54.54 )
1.1 37.92 ( 196.43 , 198.20 ) ( 186.59 , 193.02 ) ( 156.75 , 175.17 ) ( 103.00 , 131.35 ) ( 60.53 , 78.11 ) ( 44.10 , 49.92 )
1.2 34.48 ( 196.12 , 198.04 ) ( 185.45 , 192.40 ) ( 153.60 , 173.17 ) ( 98.13 , 127.08 ) ( 56.10 , 73.29 ) ( 40.33 , 45.88 )
1.3 31.50 ( 195.80 , 197.87 ) ( 184.32 , 191.79 ) ( 150.56 , 171.20 ) ( 93.61 , 123.03 ) ( 52.15 , 68.92 ) ( 37.04 , 42.33 )
1.4 28.90 ( 195.48 , 197.71 ) ( 183.19 , 191.18 ) ( 147.61 , 169.28 ) ( 89.41 , 119.18 ) ( 48.62 , 64.94 ) ( 34.14 , 39.18 )
1.5 26.62 ( 195.16 , 197.55 ) ( 182.09 , 190.58 ) ( 144.75 , 167.39 ) ( 85.51 , 115.53 ) ( 45.45 , 61.32 ) ( 31.58 , 36.39 )
1.6 24.60 ( 194.85 , 197.39 ) ( 180.99 , 189.98 ) ( 141.99 , 165.53 ) ( 81.87 , 112.05 ) ( 42.59 , 58.00 ) ( 29.30 , 33.88 )
1.7 22.81 ( 194.53 , 197.23 ) ( 179.90 , 189.38 ) ( 139.31 , 163.71 ) ( 78.48 , 108.74 ) ( 39.99 , 54.96 ) ( 27.27 , 31.64 )
1.8 21.21 ( 194.22 , 197.07 ) ( 178.82 , 188.78 ) ( 136.71 , 161.93 ) ( 75.30 , 105.59 ) ( 37.64 , 52.15 ) ( 25.44 , 29.61 )
1.9 19.77 ( 193.91 , 196.90 ) ( 177.76 , 188.19 ) ( 134.19 , 160.17 ) ( 72.32 , 102.58 ) ( 35.49 , 49.56 ) ( 23.80 , 27.78 )
2.0 18.48 ( 193.60 , 196.74 ) ( 176.70 , 187.60 ) ( 131.75 , 158.45 ) ( 69.52 , 99.71 ) ( 33.52 , 47.17 ) ( 22.31 , 26.11 )

With correlation

ARL
delta without M.E b = 0.25 b = 0.5 b = 1 b = 2 b = 4 b = 8

0 200.00 ( 200.00 , 200.00 ) ( 200.00 , 200.00 ) ( 200.00 , 200.00 ) ( 200.00 , 200.00 ) ( 200.00 , 200.00 ) ( 200.00 , 200.00 )
0.10 156.75 ( 199.65 , 199.86 ) ( 198.63 , 199.44 ) ( 194.99 , 197.84 ) ( 185.12 , 192.47 ) ( 170.71 , 180.22 ) ( 161.35 , 166.64 )
0.20 127.08 ( 199.30 , 199.72 ) ( 197.27 , 198.88 ) ( 190.18 , 195.71 ) ( 172.01 , 185.41 ) ( 147.93 , 163.51 ) ( 133.71 , 141.62 )
0.30 105.59 ( 198.95 , 199.57 ) ( 195.93 , 198.32 ) ( 185.57 , 193.63 ) ( 160.37 , 178.78 ) ( 129.77 , 149.23 ) ( 113.05 , 122.24 )
0.40 89.41 ( 198.60 , 199.43 ) ( 194.60 , 197.77 ) ( 181.15 , 191.58 ) ( 149.99 , 172.53 ) ( 114.99 , 136.89 ) ( 97.12 , 106.83 )
0.50 76.86 ( 198.25 , 199.29 ) ( 193.29 , 197.22 ) ( 176.90 , 189.56 ) ( 140.68 , 166.63 ) ( 102.76 , 126.15 ) ( 84.50 , 94.33 )
0.60 66.88 ( 197.91 , 199.15 ) ( 192.00 , 196.67 ) ( 172.81 , 187.59 ) ( 132.27 , 161.07 ) ( 92.50 , 116.71 ) ( 74.31 , 84.02 )
0.70 58.80 ( 197.56 , 199.01 ) ( 190.72 , 196.12 ) ( 168.88 , 185.64 ) ( 124.66 , 155.81 ) ( 83.78 , 108.37 ) ( 65.93 , 75.39 )
0.80 52.15 ( 197.22 , 198.87 ) ( 189.45 , 195.58 ) ( 165.09 , 183.73 ) ( 117.74 , 150.82 ) ( 76.30 , 100.96 ) ( 58.94 , 68.09 )
0.90 46.60 ( 196.87 , 198.73 ) ( 188.20 , 195.04 ) ( 161.45 , 181.86 ) ( 111.42 , 146.10 ) ( 69.83 , 94.33 ) ( 53.05 , 61.84 )
1.00 41.92 ( 196.53 , 198.59 ) ( 186.96 , 194.50 ) ( 157.94 , 180.01 ) ( 105.64 , 141.61 ) ( 64.18 , 88.36 ) ( 48.03 , 56.44 )
1.10 37.92 ( 196.19 , 198.45 ) ( 185.73 , 193.96 ) ( 154.55 , 178.20 ) ( 100.32 , 137.35 ) ( 59.21 , 82.98 ) ( 43.71 , 51.75 )
1.20 34.48 ( 195.85 , 198.31 ) ( 184.52 , 193.43 ) ( 151.28 , 176.41 ) ( 95.42 , 133.29 ) ( 54.82 , 78.10 ) ( 39.96 , 47.63 )
1.30 31.50 ( 195.51 , 198.17 ) ( 183.32 , 192.90 ) ( 148.12 , 174.66 ) ( 90.89 , 129.43 ) ( 50.92 , 73.66 ) ( 36.68 , 44.00 )
1.40 28.90 ( 195.17 , 198.03 ) ( 182.13 , 192.37 ) ( 145.07 , 172.94 ) ( 86.70 , 125.74 ) ( 47.44 , 69.61 ) ( 33.80 , 40.78 )
1.50 26.62 ( 194.83 , 197.89 ) ( 180.96 , 191.84 ) ( 142.12 , 171.24 ) ( 82.81 , 122.23 ) ( 44.31 , 65.89 ) ( 31.26 , 37.92 )
1.60 24.60 ( 194.50 , 197.75 ) ( 179.80 , 191.32 ) ( 139.27 , 169.57 ) ( 79.18 , 118.87 ) ( 41.48 , 62.48 ) ( 29.00 , 35.35 )
1.70 22.81 ( 194.16 , 197.61 ) ( 178.65 , 190.80 ) ( 136.52 , 167.93 ) ( 75.81 , 115.65 ) ( 38.93 , 59.34 ) ( 26.98 , 33.04 )
1.80 21.21 ( 193.83 , 197.47 ) ( 177.52 , 190.28 ) ( 133.85 , 166.31 ) ( 72.65 , 112.58 ) ( 36.61 , 56.44 ) ( 25.17 , 30.95 )
1.90 19.77 ( 193.50 , 197.33 ) ( 176.39 , 189.76 ) ( 131.26 , 164.72 ) ( 69.70 , 109.64 ) ( 34.50 , 53.75 ) ( 23.53 , 29.06 )
2.00 18.48 ( 193.16 , 197.19 ) ( 175.28 , 189.25 ) ( 128.76 , 163.16 ) ( 66.93 , 106.82 ) ( 32.57 , 51.26 ) ( 22.06 , 27.34 )
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Figure 3.2 – ARL curves corresponding to the without measurement error case (solid line), Case #1 (dashed
lines) and Case #2 (dotted lines), for σM = 0.3, m = 3 and b ∈ {0.25, 0.5, 1, 2, 4, 8}
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Table 3.3 – Influence of parameter m

Without correlation

ARL
delta without M.E m = 1 m = 2 m = 3 m = 4 m = 5 m = 6

0 200.00 ( 200.00 , 200.00 ) ( 200.00 , 200.00 ) ( 200.00 , 200.00 ) ( 200.00 , 200.00 ) ( 200.00 , 200.00 ) ( 200.00 , 200.00 )
0.10 156.75 ( 198.30 , 199.13 ) ( 196.73 , 198.30 ) ( 195.28 , 197.50 ) ( 193.93 , 196.73 ) ( 192.67 , 195.99 ) ( 191.49 , 195.28 )
0.20 127.08 ( 196.63 , 198.28 ) ( 193.56 , 196.63 ) ( 190.74 , 195.06 ) ( 188.16 , 193.56 ) ( 185.77 , 192.12 ) ( 183.57 , 190.74 )
0.30 105.59 ( 194.98 , 197.42 ) ( 190.47 , 194.98 ) ( 186.38 , 192.67 ) ( 182.67 , 190.47 ) ( 179.28 , 188.37 ) ( 176.18 , 186.38 )
0.40 89.41 ( 193.36 , 196.58 ) ( 187.46 , 193.36 ) ( 182.19 , 190.32 ) ( 177.45 , 187.46 ) ( 173.17 , 184.75 ) ( 169.28 , 182.19 )
0.50 76.86 ( 191.75 , 195.74 ) ( 184.53 , 191.75 ) ( 178.15 , 188.02 ) ( 172.47 , 184.53 ) ( 167.39 , 181.24 ) ( 162.82 , 178.15 )
0.60 66.88 ( 190.17 , 194.90 ) ( 181.67 , 190.17 ) ( 174.25 , 185.77 ) ( 167.72 , 181.67 ) ( 161.93 , 177.84 ) ( 156.75 , 174.25 )
0.70 58.80 ( 188.61 , 194.07 ) ( 178.89 , 188.61 ) ( 170.50 , 183.57 ) ( 163.18 , 178.89 ) ( 156.75 , 174.55 ) ( 151.06 , 170.50 )
0.80 52.15 ( 187.07 , 193.25 ) ( 176.18 , 187.07 ) ( 166.88 , 181.40 ) ( 158.85 , 176.18 ) ( 151.85 , 171.35 ) ( 145.69 , 166.88 )
0.90 46.60 ( 185.56 , 192.43 ) ( 173.54 , 185.56 ) ( 163.39 , 179.28 ) ( 154.70 , 173.54 ) ( 147.19 , 168.26 ) ( 140.64 , 163.39 )
1.00 41.92 ( 184.06 , 191.62 ) ( 170.96 , 184.06 ) ( 160.01 , 177.21 ) ( 150.73 , 170.96 ) ( 142.77 , 165.25 ) ( 135.86 , 160.01 )
1.10 37.92 ( 182.59 , 190.82 ) ( 168.45 , 182.59 ) ( 156.75 , 175.17 ) ( 146.93 , 168.45 ) ( 138.56 , 162.34 ) ( 131.35 , 156.75 )
1.20 34.48 ( 181.13 , 190.02 ) ( 165.99 , 181.13 ) ( 153.60 , 173.17 ) ( 143.28 , 165.99 ) ( 134.55 , 159.51 ) ( 127.08 , 153.60 )
1.30 31.50 ( 179.69 , 189.22 ) ( 163.60 , 179.69 ) ( 150.56 , 171.20 ) ( 139.78 , 163.60 ) ( 130.73 , 156.75 ) ( 123.03 , 150.56 )
1.40 28.90 ( 178.27 , 188.43 ) ( 161.27 , 178.27 ) ( 147.61 , 169.28 ) ( 136.41 , 161.27 ) ( 127.08 , 154.08 ) ( 119.18 , 147.61 )
1.50 26.62 ( 176.87 , 187.65 ) ( 158.98 , 176.87 ) ( 144.75 , 167.39 ) ( 133.18 , 158.98 ) ( 123.59 , 151.48 ) ( 115.53 , 144.75 )
1.60 24.60 ( 175.49 , 186.87 ) ( 156.75 , 175.49 ) ( 141.99 , 165.53 ) ( 130.07 , 156.75 ) ( 120.26 , 148.96 ) ( 112.05 , 141.99 )
1.70 22.81 ( 174.13 , 186.10 ) ( 154.58 , 174.13 ) ( 139.31 , 163.71 ) ( 127.08 , 154.58 ) ( 117.07 , 146.50 ) ( 108.74 , 139.31 )
1.80 21.21 ( 172.78 , 185.34 ) ( 152.45 , 172.78 ) ( 136.71 , 161.93 ) ( 124.20 , 152.45 ) ( 114.02 , 144.11 ) ( 105.59 , 136.71 )
1.90 19.77 ( 171.46 , 184.57 ) ( 150.37 , 171.46 ) ( 134.19 , 160.17 ) ( 121.42 , 150.37 ) ( 111.09 , 141.78 ) ( 102.58 , 134.19 )
2.00 18.48 ( 170.14 , 183.82 ) ( 148.34 , 170.14 ) ( 131.75 , 158.45 ) ( 118.74 , 148.34 ) ( 108.28 , 139.51 ) ( 99.71 , 131.75 )

With correlation

ARL
delta without M.E m = 1 m = 2 m = 3 m = 4 m = 5 m = 6

0.0 200.00 ( 200.00 , 200.00 ) ( 200.00 , 200.00 ) ( 200.00 , 200.00 ) ( 200.00 , 200.00 ) ( 200.00 , 200.00 ) ( 200.00 , 200.00 )
0.1 156.75 ( 198.19 , 199.25 ) ( 196.52 , 198.53 ) ( 194.99 , 197.84 ) ( 193.56 , 197.16 ) ( 192.24 , 196.51 ) ( 191.01 , 195.88 )
0.2 127.08 ( 196.41 , 198.51 ) ( 193.15 , 197.08 ) ( 190.18 , 195.71 ) ( 187.47 , 194.39 ) ( 184.98 , 193.12 ) ( 182.69 , 191.90 )
0.3 105.59 ( 194.65 , 197.78 ) ( 189.87 , 195.65 ) ( 185.57 , 193.63 ) ( 181.69 , 191.69 ) ( 178.17 , 189.83 ) ( 174.95 , 188.05 )
0.4 89.41 ( 192.92 , 197.04 ) ( 186.68 , 194.24 ) ( 181.15 , 191.58 ) ( 176.20 , 189.04 ) ( 171.76 , 186.63 ) ( 167.75 , 184.33 )
0.5 76.86 ( 191.21 , 196.32 ) ( 183.58 , 192.84 ) ( 176.90 , 189.56 ) ( 170.99 , 186.46 ) ( 165.73 , 183.52 ) ( 161.03 , 180.74 )
0.6 66.88 ( 189.53 , 195.59 ) ( 180.57 , 191.46 ) ( 172.81 , 187.59 ) ( 166.02 , 183.94 ) ( 160.05 , 180.50 ) ( 154.74 , 177.26 )
0.7 58.80 ( 187.88 , 194.87 ) ( 177.64 , 190.10 ) ( 168.88 , 185.64 ) ( 161.30 , 181.47 ) ( 154.68 , 177.56 ) ( 148.85 , 173.89 )
0.8 52.15 ( 186.25 , 194.16 ) ( 174.79 , 188.75 ) ( 165.09 , 183.73 ) ( 156.79 , 179.06 ) ( 149.60 , 174.70 ) ( 143.32 , 170.62 )
0.9 46.60 ( 184.64 , 193.45 ) ( 172.01 , 187.42 ) ( 161.45 , 181.86 ) ( 152.49 , 176.70 ) ( 144.80 , 171.92 ) ( 138.12 , 167.46 )
1.0 41.92 ( 183.06 , 192.75 ) ( 169.31 , 186.11 ) ( 157.94 , 180.01 ) ( 148.38 , 174.40 ) ( 140.24 , 169.20 ) ( 133.23 , 164.39 )
1.1 37.92 ( 181.50 , 192.04 ) ( 166.67 , 184.81 ) ( 154.55 , 178.20 ) ( 144.45 , 172.14 ) ( 135.91 , 166.56 ) ( 128.61 , 161.42 )
1.2 34.48 ( 179.96 , 191.35 ) ( 164.11 , 183.52 ) ( 151.28 , 176.41 ) ( 140.68 , 169.93 ) ( 131.80 , 163.99 ) ( 124.25 , 158.54 )
1.3 31.50 ( 178.44 , 190.65 ) ( 161.61 , 182.25 ) ( 148.12 , 174.66 ) ( 137.08 , 167.77 ) ( 127.89 , 161.48 ) ( 120.12 , 155.73 )
1.4 28.90 ( 176.95 , 189.97 ) ( 159.17 , 181.00 ) ( 145.07 , 172.94 ) ( 133.63 , 165.65 ) ( 124.16 , 159.04 ) ( 116.21 , 153.01 )
1.5 26.62 ( 175.47 , 189.28 ) ( 156.79 , 179.76 ) ( 142.12 , 171.24 ) ( 130.31 , 163.58 ) ( 120.61 , 156.66 ) ( 112.51 , 150.37 )
1.6 24.60 ( 174.02 , 188.60 ) ( 154.47 , 178.53 ) ( 139.27 , 169.57 ) ( 127.13 , 161.55 ) ( 117.22 , 154.33 ) ( 108.99 , 147.80 )
1.7 22.81 ( 172.58 , 187.93 ) ( 152.21 , 177.32 ) ( 136.52 , 167.93 ) ( 124.07 , 159.56 ) ( 113.98 , 152.06 ) ( 105.65 , 145.31 )
1.8 21.21 ( 171.17 , 187.25 ) ( 150.00 , 176.12 ) ( 133.85 , 166.31 ) ( 121.13 , 157.61 ) ( 110.89 , 149.85 ) ( 102.47 , 142.88 )
1.9 19.77 ( 169.77 , 186.59 ) ( 147.85 , 174.93 ) ( 131.26 , 164.72 ) ( 118.31 , 155.71 ) ( 107.92 , 147.69 ) ( 99.44 , 140.52 )
2.0 18.48 ( 168.39 , 185.92 ) ( 145.74 , 173.76 ) ( 128.76 , 163.16 ) ( 115.58 , 153.84 ) ( 105.09 , 145.58 ) ( 96.55 , 138.22 )
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Figure 3.3 – ARL curves corresponding to the without measurement error case (solid line), Case #1 (dashed
lines) and Case #2 (dotted lines), for σM = 0.3, b = 1 and m ∈ {1, 2, 3, 4, 5, 6}
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(C) 10% of nuts (almond, hazelnut, coconut). In the first step, the company has decided to calibrate the
measurement device in charge of measuring the percentage of each components of the produced muesli
(i.e. estimate a, b and Σ∗M). In order to do this calibration, the company carefully prepared k = 4 samples
with percentages for each component perfectly known in advance and measured them n = 7 times. The
results of this calibation procedure are in Table 3.4 on the next page as well as in Figure 3.4 on the facing
page. The values y1, . . . ,y4 correspond to the k = 4 samples with a known composition (represented by
“+” in Figure 3.4 on the next page) and the values x1,1, . . . ,x4,7 correspond to the k × n = 28 observed
values obtained using the measurement device (represented by “◦” in Figure 3.4 on the facing page). In
Table 3.4 on the next page, x and y refers to row data. Table 3.4 on the facing page also provides the ilr
transformed values y∗i = ilr(yi) and x∗i,j = ilr(xi,j) (plotted in the right side of Figure 3.4 on the next
page). An estimate â, b̂ and Σ̂∗M of a, b and Σ∗M with d = 2, vi = y∗i and ui,j = x∗i,j for i = 1, . . . , 4 and
j = 1, . . . , 7, can be obtained using the method given below,

Let v1, . . . ,vk be k known row vectors in Rd. For each vector vi, i = 1, . . . , k, we observe n random
vectors ui,1, . . . ,ui,n and we assume that ui,j = a + bvi + εi,j , where a ∈ Rd and b ∈ R are a constant
row vector and a constant scalar, respectively, while εi,j is a random error term which follows a multivariate
normal distribution MNORRd(0,Σ

∗
M). In order to estimate a and b, based on the k known vectors v1, . . . ,vk

and on the k × n observations u1,1, . . . ,u1,n, u2,1, . . . ,u2,n, . . . ,uk,1, . . . ,uk,n, we suggest to define the
(d× k × n, 1) column vector u and the (d× k × n, d+ 1) matrix V as

u =



uᵀ
1,1
...

uᵀ
1,n

uᵀ
2,1
...

uᵀ
2,n
...

uᵀ
k,1
...

uᵀ
k,n
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,

where I is the (d, d) identity matrix, we can compute the (d + 1, 1) column vector ĉ using ordinary least
square estimation for minimizing the sum of square of residuals Σ that is

ĉ = (VᵀV)−1Vᵀu.

Then, an estimate â of a can be obtained as the first d components of ĉ = (c1, c2, . . . , cd, cd+1)ᵀ and an
estimate b̂ of b can be obtained as the (d + 1)th(last) component of ĉ, i.e. â = (c1, . . . , cd) and b̂ = cd+1.
An estimator Σ̂ can simply be obtained using

Σ̂ =
1

k × n

k∑
i=1

n∑
j=1

(ui,j − â− b̂vi)ᵀ(ui,j − â− b̂vi).

Using this method, we obtain the following estimates:
1. â = (0.3354, 0.3357, 0.3289) or, equivalently, â∗ = (0.0162972,−0.0006318),
2. b̂ = 1.1070,

3. Σ̂∗M =

(
0.0014346 0.0007812
0.0007812 0.0102893

)
.

As we can see, the value of â is very close from the center 0S3 = (1
3
, 1

3
, 1

3
) of the simplex S3 but the

value of b̂ is a bit larger than 1.
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Table 3.4 – Data used for calibrating the measurement system

i j yi xi,j y∗i x∗i,j
1 1 0.33 0.33 0.33 0.34 0.33 0.33 0.0000 0.0000 0.0122 0.0211

2 0.32 0.35 0.33 0.0115 -0.0634
3 0.33 0.35 0.32 0.0491 -0.0416
4 0.31 0.35 0.34 -0.0259 -0.0858
5 0.36 0.34 0.30 0.1255 0.0404
6 0.34 0.32 0.34 -0.0247 0.0429
7 0.31 0.36 0.33 0.0100 -0.1057

2 1 0.60 0.20 0.20 0.62 0.19 0.19 0.4485 0.7768 0.4828 0.8363
2 0.65 0.17 0.18 0.5009 0.9484
3 0.59 0.22 0.19 0.5224 0.6976
4 0.61 0.20 0.19 0.4971 0.7885
5 0.67 0.15 0.18 0.4621 1.0583
6 0.65 0.17 0.18 0.5009 0.9484
7 0.61 0.19 0.20 0.4343 0.8248

3 1 0.20 0.60 0.20 0.17 0.65 0.18 0.4485 -0.7768 0.5009 -0.9484
2 0.14 0.69 0.17 0.4926 -1.1279
3 0.21 0.60 0.19 0.5103 -0.7423
4 0.19 0.62 0.19 0.4828 -0.8363
5 0.20 0.62 0.18 0.5479 -0.8000
6 0.16 0.66 0.18 0.4823 -1.0020
7 0.20 0.62 0.18 0.5479 -0.8000

4 1 0.20 0.20 0.60 0.18 0.20 0.62 -0.8970 0.0000 -0.9668 -0.0745
2 0.19 0.19 0.62 -0.9657 0.0000
3 0.21 0.19 0.60 -0.8980 0.0708
4 0.21 0.18 0.61 -0.9336 0.1090
5 0.20 0.18 0.62 -0.9668 0.0745
6 0.19 0.19 0.62 -0.9657 0.0000
7 0.21 0.17 0.62 -0.9702 0.1494
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Figure 3.4 – Data used for calibrating the measurement system: yi and xi,j in Sp (left side), y∗i and x∗i,j in
R2 (right side)
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Figure 3.5 – Phase I data for the muesli example: x̄i (left side) and x̄∗i (right side)
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Figure 3.6 – Hotelling CoDa T 2 control chart for muesli Phase I data

In order to obtain an estimate µ̂∗0 and Σ̂∗ of the in-control composition parameters µ∗0 and Σ∗, i =
1, . . . , 20 batches of muesli have been sampled and measured m = 3 times (Phase I). The results are in
Table 3.5 on the facing page with the values xi,j , x̄i and x̄∗i , i = 1, . . . , 20. The values x̄i and x̄∗i are also
plotted in Figure 3.5. From the values x̄∗i , it is easy to obtain

1. µ̂∗x̄ = (1.2766, 0.7657),

2. Σ̂∗x̄ =

(
0.0146362 0.0105839
0.0105839 0.0510887

)
.

Then solving Equations 3.2 on page 34 and 3.3 on page 34 for µ̂∗0 and Σ̂∗, we have

1. µ̂∗0 = 1

b̂
(µ̂∗x̄ − â∗) = (1.1385, 0.6922),

2. Σ̂∗ = 1

b̂2

(
Σ̂∗x̄ − 1

m
Σ̂∗M

)
=

(
0.0115533 0.0084242
0.0084242 0.038891

)
.

In Table 3.5 on the facing page, we have also listed the Hotelling CoDa T 2 statistics Zi, i = 1, . . . , 20,
computed using Equation 3.4 on page 35. These values are also plotted in Figure 3.6 with the upper control
limit UCL = F−1

χ2 (1 − 0.0027|3 − 1) = 11.829. As it can be noticed, all the values Zi are smaller than
UCL = 11.829, confirming that the data in Table 3.5 on the next page are actually in-control.
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Table 3.5 – Phase I data for the muesli example

i j xi,j x̄i x̄∗i Zi
1 1 0.77 0.16 0.07 0.7090 0.2078 0.0832 1.2483 0.8678 0.4008

2 0.67 0.24 0.09
3 0.68 0.23 0.09

2 1 0.64 0.27 0.09 0.6301 0.2767 0.0932 1.2241 0.5819 0.6777
2 0.63 0.28 0.09
3 0.62 0.28 0.10

3 1 0.76 0.16 0.08 0.6958 0.2108 0.0934 1.1523 0.8445 1.7118
2 0.65 0.25 0.10
3 0.67 0.23 0.10

4 1 0.65 0.27 0.08 0.6434 0.2766 0.0800 1.3575 0.5968 1.6376
2 0.64 0.28 0.08
3 0.64 0.28 0.08

5 1 0.50 0.38 0.12 0.5268 0.3634 0.1098 1.1289 0.2625 5.1085
2 0.54 0.36 0.10
3 0.54 0.35 0.11

6 1 0.80 0.14 0.06 0.7677 0.1657 0.0666 1.3699 1.0843 2.0462
2 0.74 0.19 0.07
3 0.76 0.17 0.07

7 1 0.75 0.18 0.07 0.7304 0.1995 0.0701 1.3843 0.9177 0.9184
2 0.71 0.22 0.07
3 0.73 0.20 0.07

8 1 0.65 0.26 0.09 0.6534 0.2533 0.0932 1.2030 0.6700 0.4119
2 0.65 0.25 0.10
3 0.66 0.25 0.09

9 1 0.65 0.27 0.08 0.6635 0.2565 0.0800 1.3389 0.6721 0.7071
2 0.66 0.26 0.08
3 0.68 0.24 0.08

10 1 0.76 0.17 0.07 0.7534 0.1766 0.0700 1.3478 1.0257 1.3477
2 0.75 0.18 0.07
3 0.75 0.18 0.07

11 1 0.67 0.24 0.09 0.6601 0.2499 0.0900 1.2302 0.6868 0.1944
2 0.65 0.26 0.09
3 0.66 0.25 0.09

12 1 0.53 0.36 0.11 0.5367 0.3533 0.1100 1.1234 0.2956 4.5764
2 0.54 0.35 0.11
3 0.54 0.35 0.11

13 1 0.75 0.16 0.09 0.7251 0.1813 0.0936 1.1058 0.9803 4.6248
2 0.67 0.23 0.10
3 0.75 0.16 0.09

14 1 0.67 0.24 0.09 0.6701 0.2333 0.0966 1.1510 0.7460 1.1944
2 0.67 0.23 0.10
3 0.67 0.23 0.10

15 1 0.64 0.27 0.09 0.6468 0.2632 0.0900 1.2431 0.6357 0.3344
2 0.64 0.27 0.09
3 0.66 0.25 0.09

16 1 0.72 0.21 0.07 0.7440 0.1928 0.0632 1.4614 0.9548 2.4039
2 0.74 0.20 0.06
3 0.77 0.17 0.06

17 1 0.73 0.20 0.07 0.7436 0.1899 0.0665 1.4137 0.9652 1.5162
2 0.75 0.18 0.07
3 0.75 0.19 0.06

18 1 0.65 0.28 0.07 0.6568 0.2767 0.0665 1.5169 0.6112 6.4220
2 0.65 0.28 0.07
3 0.67 0.27 0.06

19 1 0.76 0.17 0.07 0.7604 0.1730 0.0665 1.3846 1.0468 1.7457
2 0.74 0.19 0.07
3 0.78 0.16 0.06

20 1 0.67 0.23 0.10 0.7013 0.2055 0.0931 1.1475 0.8678 2.0202
2 0.68 0.22 0.10
3 0.75 0.17 0.08
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Figure 3.7 – Phase II data for the muesli example: x̄i (left side) and x̄∗i (right side)
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Figure 3.8 – Hotelling CoDa T 2 control chart for muesli Phase II data

During a Phase II of the production, i = 1, . . . , 20 batches of muesli have been sampled and measured
m = 3 times. The results are in Table 3.6 on the facing page with the values xi,j , x̄i and x̄∗i , i = 1, . . . , 20.
The values of x̄i and x̄∗i are plotted in Figure 3.7 and the values Zi are also plotted in Figure 3.8. As it can
be seen, the process seems to be in-control up to sample #14 but , #15 is clearly out-of-control (see the “•”
in Figures 3.7 and 3.8). Investigations showed that the level of whole-grain cereals dropped down suddenly
due to a malfunction of the hatch regulating the quantity of whole-grain cereals. After having repaired this
hatch, the process restarted without any out-control situations.

3.5 Conclusions

In this chapter, the influence of measurement errors on the Hotelling CoDa T 2 control chart has been
investigated. A linearly covariate measurement error model for CoDa has been presented, where the quality
characteristics yi is not directly observable and can only be assessed using several independent measure-
ments xi,j . Two situations have been considered for the CoDa variance-covariance matrix: a correlated case
and an uncorrelated one. Different combinations of the parameters σM, b and m have been selected in order
to study their influence on the performance of the Hotelling CoDa T 2 control chart. The main conclusions
drawn from these investigations are: i) if b and m are kept constant, the ARL increases when the value of
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Table 3.6 – Phase II data for the muesli example

i j xi,j x̄i x̄∗i Zi
1 1 0.68 0.23 0.09 0.6504 0.2563 0.0933 1.2050 0.6586 0.4213

2 0.63 0.27 0.10
3 0.64 0.27 0.09

2 1 0.68 0.24 0.08 0.6734 0.2433 0.0832 1.2916 0.7198 0.0893
2 0.66 0.25 0.09
3 0.68 0.24 0.08

3 1 0.62 0.31 0.07 0.6538 0.2761 0.0701 1.4712 0.6096 4.6133
2 0.67 0.26 0.07
3 0.67 0.26 0.07

4 1 0.67 0.22 0.11 0.6634 0.2265 0.1100 1.0283 0.7598 4.9092
2 0.65 0.24 0.11
3 0.67 0.22 0.11

5 1 0.63 0.27 0.10 0.6501 0.2566 0.0933 1.2060 0.6573 0.4168
2 0.66 0.25 0.09
3 0.66 0.25 0.09

6 1 0.77 0.15 0.08 0.7702 0.1498 0.0800 1.1804 1.1577 5.5390
2 0.76 0.16 0.08
3 0.78 0.14 0.08

7 1 0.67 0.24 0.09 0.6570 0.2498 0.0933 1.1990 0.6838 0.4268
2 0.66 0.24 0.10
3 0.64 0.27 0.09

8 1 0.64 0.28 0.08 0.6777 0.2456 0.0767 1.3644 0.7176 0.8119
2 0.72 0.21 0.07
3 0.67 0.25 0.08

9 1 0.72 0.21 0.07 0.7003 0.2265 0.0732 1.3826 0.7982 0.8118
2 0.68 0.24 0.08
3 0.70 0.23 0.07

10 1 0.64 0.26 0.10 0.6501 0.2567 0.0932 1.2062 0.6571 0.4153
2 0.66 0.25 0.09
3 0.65 0.26 0.09

11 1 0.73 0.20 0.07 0.7436 0.1863 0.0700 1.3640 0.9786 1.0378
2 0.74 0.19 0.07
3 0.76 0.17 0.07

12 1 0.81 0.12 0.07 0.8034 0.1266 0.0700 1.2381 1.3067 7.5542
2 0.80 0.13 0.07
3 0.80 0.13 0.07

13 1 0.64 0.28 0.08 0.6570 0.2630 0.0801 1.3448 0.6474 0.9632
2 0.68 0.24 0.08
3 0.65 0.27 0.08

14 1 0.82 0.11 0.07 0.7786 0.1415 0.0799 1.1633 1.2057 7.1523
2 0.74 0.17 0.09
3 0.77 0.15 0.08

15 1 0.61 0.25 0.14 0.6405 0.2193 0.1402 0.8028 0.7580 17.9220
2 0.66 0.20 0.14
3 0.65 0.21 0.14

16 1 0.70 0.23 0.07 0.6936 0.2332 0.0732 1.3906 0.7709 1.0240
2 0.71 0.22 0.07
3 0.67 0.25 0.08

17 1 0.74 0.19 0.07 0.7401 0.1899 0.0700 1.3700 0.9620 0.9773
2 0.73 0.20 0.07
3 0.75 0.18 0.07

18 1 0.56 0.35 0.09 0.5335 0.3765 0.0901 1.3099 0.2465 6.8694
2 0.51 0.40 0.09
3 0.53 0.38 0.09

19 1 0.55 0.35 0.10 0.5468 0.3600 0.0932 1.2736 0.2955 5.0413
2 0.55 0.36 0.09
3 0.54 0.37 0.09

20 1 0.77 0.16 0.07 0.7539 0.1760 0.0701 1.3460 1.0285 1.3701
2 0.76 0.17 0.07
3 0.73 0.20 0.07
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σM increases, ii) if σM and m are kept constant, the ARL decreases as the value of b increases, iii) if σM

and b are kept constant, the ARL decreases (slowly) as the value of m increases.

The work presented in this chapter has been published in Zaidi et al. (2019).

In this chapter we discussed the effect of measurement errors on the T 2
C control chart proposed by

Vives-Mestres et al. (2014b). In next chapter we will discuss the effect of measurement errors on the
MEWMA-CoDa control chart proposed by TRAN et al. (2018).



4
Performance of the MEWMA-CoDa Control
Chart in the Presence of Measurement Errors

During the last decade, an enormous number of new advanced control charts have been proposed for
univariate as well as for multivariate processes. Among them, Costa and Rahim (2006) studied a single
EWMA (Exponentially Weighted Moving Average) chart for the simultaneous monitoring of the process
mean and variance. They are also many researches done on nonparametric EWMA type control charts, such
as Graham et al. (2011) who proposed a nonparametric exponentially weighted moving average signed-rank
chart for monitoring the process location, and Yang et al. (2011) who studied a new nonparametric EWMA
sign chart. The MEWMA control chart was first developed by Lowry et al. (1992b) as an extension of
the univariate EWMA control chart developed by Roberts (1958). Many researchers worked on MEWMA
control charts for different situations, some of them are discussed in this chapter. Linderman and Love
(2000) presented several economic statistical designs for the MEWMA control chart. Khoo (2003), in order
to increase the sensitivity of this chart, proposed a MEWMA control chart based on the exact variance-
covariance matrix of the MEWMA statistic instead of its asymptotic version. Hawkins et al. (2007) used a
full smoothing matrix instead of a diagonal-only one to improve the general performance of the MEWMA
control chart and they found that this approach outperforms the diagonal version of the MEWMA chart.
Mahmoud and Maravelakis (2010) studied the estimated parameter case for the MEWMA control chart.
Wu et al. (2015) proposed various estimators based MEWMA control charts for process monitoring. Bilen
et al. (2017) investigated an autoregressive time series model with a time-correlated output variable which
depends on many multicorrelated input variables. They used a dual monitoring scheme with EWMA charts
for the output variable and a MEWMA chart for the input variables to increase the sensitivity of this chart.
Liu et al. (2017) studied the parameter optimization for a modified MEWMA control chart based on a PSO
(Particle Swarm Optimization) algorithm. Epprecht et al. (2018) proposed an optimum variable dimension
EWMA chart for multivariate statistical process control and Khusna et al. (2018) studied a multi-output
least square SVR based MEWMA control chart. Furthermore Abbas et al. (2019) used phase II MEWMA
control chart to monitor linear profiles with random explanatory variable under Bayesian framework.

The goal of this chapter is to study the effect of measurement errors on the MEWMA-CoDa control
chart proposed by TRAN et al. (2018). The remainder of this chapter is organized as follows: in Section 4.1
details the MEWMA-CoDa control chart in the presence of measurement errors and Section 4.2 investigates
the performance of this control chart. Finally, a very detailed illustrative example is provided in Section 4.3
and conclusions and future research directions are presented in Section 4.4.
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4.1 MEWMA-CoDa control charts in the presence of measurement
errors

When the process is in-control, we assume that yi ∼ MNORSp(µ
∗
0,Σ

∗) and, when the process is out-
of-control, we assume that yi ∼ MNORSp(µ

∗
1,Σ

∗) where µ∗0 and µ∗1 are the in- and out-of-control mean
vectors, respectively, and Σ∗ is the variance-covariance matrix assumed to be unchanged in both cases.
According to the linearly covariate measurement error model described in the previous section, the statistic
monitored by the MEWMA-CoDa control chart with measurement errors is

Q∗i = w∗iΣ
−1
w∗i

w∗ᵀi , (4.1)

with
w∗i = r(x̄∗i − a∗ − bµ∗0) + (1− r)w∗i−1, (4.2)

where x̄∗i = ilr(x̄i), w∗0 = 0 and 0 < r ≤ 1 is a smoothing parameter. The MEWMA-CoDa control
chart with measurement errors issues a warning signal when Q∗i > H where H > 0 is a specified upper
control limit and Σw∗i

is the variance-covariance matrix of w∗i . The asymptotic variance-covariance matrix
proposed by Lowry et al. (1992b) will be used in the rest of chapter, i.e.

Σw∗i
=

r

(2− r)
Σx̄∗ =

r

(2− r)

(
b2Σ∗ +

1

m
Σ∗M

)
. (4.3)

In practice, the MEWMA-CoDa control chart with measurement errors can be implemented in 3 phases:

1. A “Phase 0” (calibration) where the measurement parameters a∗ (or a), b and Σ∗M have to be estimated
from a specific reference sample, measured m times for the purpose of calibration and using the
estimation method provided in chapter 3 page 44. The practical implementation of this phase will be
illustrated in the Illustrative example section.

2. A Phase I where the in-control chart parameters µ∗0 and Σ∗ have to be estimated from a assumed
in-control CoDa dataset xi,j . These estimators can be obtained by computing x̄i and x̄∗i , by esti-
mating the mean vector µ̂∗x̄ and the variance-covariance matrix Σ̂∗x̄ of the x̄∗i and, finally, by solving
Equations 3.2 on page 34 and 3.3 on page 34 for µ̂∗0 and Σ̂∗M, i.e.

µ̂∗0 =
1

b̂
(µ̂∗x̄ − â∗), (4.4)

Σ̂∗ =
1

b̂2

(
Σ̂∗x̄ −

1

m
Σ̂∗M

)
. (4.5)

3. A Phase II where an incoming CoDa data set xi,j (measured m times) must be monitored for detect-
ing possible changes in the process. At each time i = 1, 2, . . ., the monitoring procedure involves
computing x̄i, x̄∗i , w∗i using Equation 4.2 recursively, Q∗i using Equation 4.1 and an out-of-control
signal is triggered at time i if Q∗i > H > 0.

Lowry et al. (1992b) proved that the run length performance of MEWMA charts depends on the non-
centrality parameter δ. When there is no measurement error the value of δ is equal to

δ = (µ∗1 − µ∗0)(Σ∗)−1(µ∗1 − µ∗0)ᵀ.

When there are measurement errors present in the process, the non centrality parameter will be denoted
by δM and it is equal to

δM = b2(µ∗1 − µ∗0)

(
b2Σ∗ +

1

m
Σ∗M

)−1

(µ∗1 − µ∗0)ᵀ. (4.6)
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As it can be noted, the value of δM only depends on b but not on a∗. Linna et al. (2001) explained
that, in presence of measurement errors, multivariate control charts are unfortunately not equally powerful
in detecting shifts δ, in all possible directions. This means that, in presence of measurement errors, for a
fixed shift δ, they are an infinite number of possible shifts δM and, as it is impossible to investigate them all,
Linna et al. (2001) suggested to only focus on two extreme values δmin (best case) and δmax (worst case) of
δM. These values can be obtained using the results given on pages 35-36 of chapter 3 as,

δmin = δλ1,

δmax = δλp−1,

where λ1 and λp−1 are the smallest and the largest eigenvalues of the (p− 1, p− 1) matrix b2Σ∗(b2Σ∗+
1
m

Σ∗M)−1, respectively.

The ARL of the MEWMA-CoDa control chart (with or without measurement errors) can be obtained
using a dedicated Markov chain method. The implementation of this Markov chain has been taken from
TRAN et al. (2018) and is explained below.

As explained in Lowry et al. (1992b), the run length performance of the MEWMA-X̄ chart is a function
of the sample size n, the in-control mean vector µ∗0, the out-of-control mean vector µ∗1 and the variance-
covariance matrix Σ∗ only through the non centrality parameter δ defined as

δ =
√
n(µ∗1 − µ∗0)ᵀ(Σ∗)−1(µ∗1 − µ∗0).

Without loss of generality, TRAN et al. (2018) restrict the numerical study to n = 1, µ∗0 = 0 (i.e. the
in-control mean is centered to the homogeneous composition µ0 = (1

p
, 1
p
, . . . , 1

p
)) and Σ∗ = Ip−1 (identity

covariance matrix in Rp−1). In this standardized case, Qi in Equation 4.1 on the preceding page reduces to
Qi = b||Yi||22 with b = 2−r

r
and the parameter δ reduces to δ = ||µ∗1||2 = || ilr(µ1)||2. In order to evaluate

the in- and out-of-control run length distributions of the MEWMA-X̄ chart, Runger and Prabhu (1996)
suggested to approximate its calculation for the statistic qi = ||Yi||2 by using the following Markov chain
models.

Concerning the in-control case, Runger and Prabhu (1996) showed that the run length distribution of
qi can be approximated by using a one dimensional Markov chain in which the interval [0,UCL′], where
UCL′ = (H/b)1/2, is divided into m + 1 subintervals/states: the first subinterval/state has length g

2
and

the others have length g, where the width g = 2UCL′

2m+1
. Concerning the MEWMA-CoDa control chart, the

elements p(i, j) (probability of transition from state i to state j) of the (m+ 1,m+ 1) transition matrix P1

corresponding to the transient states are equal to:
— for i = 0, 1, . . . ,m and j = 1, 2, . . . ,m,

p(i, j) = P

((
(j − 0.5)g

r

)2

< χ2(p− 1, c) <

(
(j + 0.5)g

r

)2
)

where χ2(p − 1, c) is a non central chi-square random variable with p − 1 degrees of freedom and

noncentrality parameter c =
(

(1−r)ig
r

)2

which depends on state i,
— for j = 0,

p(i, 0) = P

(
χ2(p− 1, c) <

( g
2r

)2
)
.

The zero-state in-control ARL of the MEWMA-CoDa control chart is equal to

ARL = sᵀ(Im+1 −P1)−11m+1,
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where 1m+1 = (1, 1, . . . , 1)ᵀ is the m + 1 column vector of 1’s and s is the starting probability vector,
i.e. s = (1, 0, 0, . . . , 0)ᵀ.

Concerning the out-of-control case, Runger and Prabhu (1996) proposed to approximate the run length
distribution of qi using a two dimensional Markov chain with Yi ∈ Rp−1 partitioned into Yi1 ∈ R with
nonzero mean δ and Yi2 ∈ Rp−2 with zero mean. Then qi = ||Yi||2 = (Y 2

i1 + Yᵀ
i2Yi2)

1
2 . Like in Runger

and Prabhu (1996), they also use for the MEWMA-CoDa chart a two-dimensional Markov chain for Y 2
i1

and ||Yi2||2. The component Y 2
i1 can be approximated using the Markov chain based approach proposed by

Lucas and Saccucci (1990). The values of ||Yi2||2 can be approximated by the same method as that used
for the in-control case, described above, with p− 2 replacing p− 1, see Runger and Prabhu (1996).

Concerning Yi1, the transition probability h(i, j) from state i to state j is used to analyze the out-of-
control component. In this case, the number of states of the Markov chain is chosen to be equal to 2m1 + 1.
Consequently, for i = 1, 2, . . . , 2m1 + 1 and j = 1, 2, . . . , 2m1 + 1 we have

h(i, j) = Φ

(
−UCL′ + jg1 − (1− r)ci

r
− δ
)
− Φ

(
−UCL′ + (j − 1)g1 − (1− r)ci

r
− δ
)

where Φ represents the cumulative standard normal distribution function and where ci = −UCL′+ (i−
0.5)g1 is the centerpoint of state i with g1 = 2UCL′

2m1+1
as the width of each state.

Concerning Yi2, the transition probability v(i, j) from state i to state j is used to analyze the in-control
component. In this case, the control region is partitioned into m2 + 1 transient states. The transition
probability v(i, j) has the same expression as in the in-control case, except that p− 2 replaces p− 1, i.e.

— for i = 0, 1, 2, . . . ,m2 and j = 1, 2, . . . ,m2, we have

v(i, j) = P

((
(j − 0.5)g2

r

)2

< χ2(p− 2, c) <

(
(j + 0.5)g2

r

)2
)

where c =
(

(1−r)ig2
r

)2

and the width of the states is g2 = 2UCL′

2m2+1
.

— for j = 0,

v(i, 0) = P

(
χ2(p− 2, c) <

( g2

2r

)2
)

Let P2 be the transition probability matrix of the two dimensional Markov chain. Since Yi1 is indepen-
dent of Yi2, we have P2 = H ⊗ V, where H is the (2m1 + 1, 2m1 + 1) transition probability matrix of
Yi1 with elements h(i, j), V is the (m2 + 1,m2 + 1) transition probability matrix of ||Yi2||2 with elements
v(i, j) and ⊗ denotes the Kronecker’s matrices product. The transition probability matrix P2 consists of
the transition probabilities between all transient and some absorbing states of the Markov chain.

Let T be the (2m1 + 1)× (m2 + 1) dimensional matrix defined as

T(α, β) =

{
1 if state (α, β) is transient
0 otherwise

Let P be the transition probability matrix that contains all the transient states of the Markov chain. Then
we have P = T(α, β) ~ P2 where the symbol ~ indicates the elementwise matrices multiplication.

Finally, the out-of-control ARL of the MEWMA-CoDa control chart is defined as ARL = sᵀ(I−P)−11
where s is the initial probability vector with all components equal to zero except the component correspond-
ing to the state (α, β) = (m1 + 1, 0) which is equal to one. In the particular case where m1 = m2 = m,
the component of s which is equal to 1 is the (m(m + 1) + 1)th entry (see Lee and Khoo (2006)). Like
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in Molnau et al. (2001), the method used for the computation of the ARL of the MEWMA-CoDa control
chart depends on the number of states m1 and m2 used in the approximation. More specifically, the larger
the number of states, the more accurate is the ARL approximation. However, a large number of states will
require more computing resources and time. Motivated by the performance of the program used for the
computation of the ARL in Molnau et al. (2001), we have decided to use m1 = m2 = 30.

At time i = 1, 2, . . ., the sample size is assumed to be n = 1 and we are only able to monitor shifts in
the composition mean vector using the MEWMA approach. Now, if we relax this constraint and we allow
n > p, then it becomes also possible to monitor (without the MEWMA feature) the composition variability
using the approach derived from Gnanadesikan and Gupta (1970) who suggest to use the statisticWi defined
as

Wi =
(n− 1)|Σ̂∗i |1/p

|b2Σ∗ + 1
m

Σ∗M|1/p
.

This statistic is known to exactly follow a gamma distribution of parameters a = p(n−p)
2

and b =

2
p

(
1− (p−1)(p−2)

2n

)−1/p

when p ≤ 2 and, to approximately follow this distribution, when p > 2. This

allows to define an upper control limit for Wi as UCL = F−1
Γ (1− α0|a, b) where α0 is the type I error and

F−1
Γ (. . . |a, b) is the inverse cummulative distribution function of the gamma distribution of parameters a

and b and, therefore, this approach allows to monitor the multivariate variability of Coda.

4.2 Performance of the MEWMA-CoDa control chart in the pres-
ence of measurement errors

The goal of this section is to investigate the performance of the MEWMA-CoDa control chart in the
presence of measurement errors. The measurement error variance-covariance matrix is equal to Σ∗M = σ2

MI,
where σM is the standard-deviation measurement error (common for all dimensions) and I is the (2, 2)
identity matrix. The first step involved in the design of the MEWMA-CoDa control chart is to select the
optimal couple (r,H) which minimizes the out-of-control ARL for a fixed value of the shift δM subject to
a constrained value for the in-control ARL. The procedure to obtain the optimal couple is based on the
following three steps:

— Select a particular value for the in-control ARL0. In our case we select ARL0 = 370.
— Find the set of design couples (r,H) such that ARL = ARL0 when there is no shift, i.e. when

δ = δM = 0.
— For a particular value of the shift δ forµ∗, select the optimal couple (r∗, H∗) from the set of designed

couples such that the value of the out-of-control ARL is minimum (in order to obtain the best
statistical performance).

If the value of the smoothing parameter r is too small, the Markov Chain approach is known to diverge
leading to unreliable results (see for instance Castagliola et al. (2011) and Tran et al. (2015)). For this
reason, we have chosen to constrain the value of r ≥ 0.05. Smaller values for r can actually be used if the
number of states (h1 and h2, see TRAN et al. (2018)) of the Markov chain is large enough but, in this case,
it will require more time to obtain the optimal couples.

The following four situations for the CoDa variance-covariance matrix Σ∗ are considered,

Case #1 uncorrelated case with equal variances

Σ∗ =

(
3 0
0 3

)
,



56 CHAPTER 4. MEWMA-CODA CONTROL CHART

Case #2 negatively correlated case with equal variances

Σ∗ =

(
3 −1/2
−1/2 3

)
.

Case #3 uncorrelated case with unequal variances

Σ∗ =

(
1.5 0
0 3

)
,

Case #4 positively correlated case with unequal variances

Σ∗ =

(
1.5 1/2
1/2 3

)
.

We will now separately investigate the influence of parameters σM, b, m and p on the performance of
the MEWMA-CoDa control chart in the presence of measurement errors.

4.2.1 Influence of parameter σM
This subsection is further divided into two parts, the first one studies the effect of σM on the optimal

values of r and H and, the second one studies the effect of σM on the ARL. We have used values of
σM ∈ {0.1, 0.3, 0.6} and fixed values b = 1, m = 3 and p = 3. For different values of the shift δ ∈ [0, 2],
the values of δM along with the optimal values of ARL, r and H are listed in Table 4.1 on page 58 for the
MEWMA-CoDa control chart with (min and max) and without the presence of measurement errors. The
first rows in Table 4.1 on page 58 shows the values for Case #1, i.e. when the variance-covariance matrix
Σ∗ is uncorrelated with equal variances and the second row represents the Case #2, i.e. when the variance-
covariance matrix Σ∗ is negatively correlated with equal variances. The third row represents the Case #3,
i.e. when the variance-covariance matrix Σ∗ is uncorrelated with unequal variances and the fourth row
represents the Case #4, i.e. when the variance-covariance matrix Σ∗ is positively correlated with unequal
variances. From Table 4.1 on page 58, we can conclude that:

— All the out-of-control ARL values of the “best” ARLmin are larger for Case #4 rather than for all
other cases while, the out-of-control ARL values of the “worst” ARLmax are larger for Case #2 rather
than for all other cases. For instance, when σM = 0.1 and δ = 1.75 the “best” and “worst” ARL
values are (ARLmin = 4.881,ARLmax = 4.898) for Case #1 while, for Case #2, they are equal to
(ARLmin = 4.873,ARLmax = 4.912). For Case #3, they are equal to (ARLmin = 4.962,ARLmax =
4.878) while, for Case #4, they are equal to (ARLmin = 4.981,ARLmax = 4.874).

— The out-of-control ARL values also increase with the increase in the value of σM. For instance,
when σM = 0.3 and δ = 1.75 the “best” and “worst” ARL values are (ARLmin = 5.049,ARLmax =
5.099) for Case #1, (ARLmin = 5.025,ARLmax = 5.142) for Case #2, (ARLmin = 5.301,ARLmax =
5.046) and for Case #4 they are equal to (ARLmin = 5.359,ARLmax = 5.034) But, when σM = 0.6
(i.e. σM increased), the “best” and “worst” ARL values are (ARLmin = 5.304,ARLmax = 5.407) for
Case #1 , (ARLmin = 5.256,ARLmax = 5.496) for Case #2 , (ARLmin = 5.825,ARLmax = 5.301)
for Case #3 and (ARLmin = 5.945,ARLmax = 5.276) for Case #4.

— When σM is small the values of the optimal couples corresponding to the maximum and minimum
values of δM are the same in first two Cases. For instance, when σM = 0.1 and δ = 1.75 the max-
imum and minimum values of the optimal couples (r,H) are (rmax = 0.276, Hmax = 11.336)
and (rmin = 0.278, Hmin = 11.344) for the first two cases, while they are equal to (rmax =
0.276, Hmax = 11.33) and (rmin = 0.273, Hmin = 11.322) for Case #3 and (rmax = 0.276, Hmax =
11.33) and (rmin = 0.271, Hmin = 11.314) for Case #4. But, when σM = 0.6 (increase) the
values of the optimal couples for Case #1 are (rmin = 0.257, Hmin = 11.273) and (rmax =
0.252, Hmax = 11.256) while, for case #2 their values are (rmin = 0.259, Hmin = 11.281) and
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(rmax = 0.25, Hmax = 11.274), for Case #3 they are equal to (rmin = 0.235, Hmin = 11.182) and
(rmax = 0.257, Hmax = 11.265) and for Case #4 the are equal to (rmin = 0.231, Hmin = 11.161)
and (rmax = 0.257, Hmax = 11.265). So we can conclude that the values of the optimal couple
(r,H) decreases with an increase in σM.

4.2.2 Influence of parameter b

In this subsection, the influence of parameter b ∈ {0.25, 1, 8} for fixed values σM = 0.3 ,m = 3 and p =
3 is investigated. Similar to Table 4.1 on the next page, we listed in Table 4.2 on page 61 values for δM, ARL,
r and H . Based on this table, it is concluded that b has a positive impact on the MEWMA-CoDa control
chart, that is the out-of-control ARL values decrease with an increase in the value of b. For instance, when
δ = 1.75 and b = 1, the “best” and “worst” ARL values are (ARLmin = 5.049,ARLmax = 5.099) for Case
#1, (ARLmin = 5.025,ARLmax = 5.142) for Case #2, (ARLmin = 5.301,ARLmax = 5.046) for Case #3
and (ARLmin = 5.359,ARLmax = 5.034) for Case #4 . But, when b = 8 (increase), the “best” and “worst”
ARL values are (ARLmin = 4.802,ARLmax = 4.801) for Case #1, (ARLmin = 4.801,ARLmax = 4.803)
for Case #2, (ARLmin = 4.803,ARLmax = 4.799) for Case #3 and (ARLmin = 4.804,ARLmax = 4.799)
for Case #4.

The value of the optimal couples (r,H) increases with an increase in the value of b in all cases. For
example, when δ = 1.75 and b = 0.25 the maximum and minimum values for the optimal couple (r,H) are
(rmax = 0.138, Hmax = 10.563) and (rmin = 0.152, Hmin = 10.693) for Case #1, while we have (rmax =
0.128, Hmax = 10.465) and (rmin = 0.159, Hmin = 10.752) for Case #2, we have (rmax = 0.152, Hmax =
10.679) and (rmin = 0.098, Hmin = 10.036) and for Case #3 and we have (rmax = 0.155, Hmax = 10.699)
and (rmin = 0.090, Hmin = 9.914) and for Case #4. But when b = 8 (increase) the values for the optimal
couple for minimum and maximum values of δM also increases, i.e. (rmin = rmax = 0.280, Hmin = Hmax =
11.351) for Case #1 and Case #2, while (rmin = rmax = 0.280, Hmin = Hmax = 11.344) for Case #3 and
Case #4.

4.2.3 Influence of parameter m

In this subsection, we investigate the influence of the parameterm ∈ {1, 3, 6} for fixed values σM = 0.3,
b = 1 and p = 3. Similar to Tables 4.1 and 4.2, we listed in Table 4.3 on page 65 the ARL values along
with the optimal couples (r,H) for shifts δ ∈ [0, 2]. From this table we can see that when m increases
the out-of-control ARL slowly decreases (i.e. an increase in m has a positive impact on the MEWMA-
CoDa control chart). For instance, if δ = 1.75 and m = 1, the “best” and “worst” ARL values are
(ARLmin = 5.564,ARLmax = 5.723) for Case #1 , (ARLmin = 5.491,ARLmax = 5.858) for Case #2 ,
(ARLmin = 6.367,ARLmax = 5.561) for Case #3 and (ARLmin = 6.553,ARLmax = 5.523) for Case #4.
But, when m = 6 (increase), the “best” and “worst” ARL values are (ARLmin = 4.923,ARLmax = 4.948)
for Case #1 , (ARLmin = 4.911,ARLmax = 4.969) for Case #2 , (ARLmin = 5.046,ARLmax = 4.920) for
Case #3 and (ARLmin = 5.074,ARLmax = 4.914) for Case #4.

The value of the optimal couples (r,H) increases with an increase in the value of m for all the cases.
When δ = 1.75 and m = 1, the maximum and minimum values of the optimal couples (r,H) are
(rmax = 0.240, Hmax = 11.210) and (rmin = 0.245, Hmin = 11.229) for Case #1, while they are (rmax =
0.235, Hmax = 11.190) and (rmin = 0.250, Hmin = 11.247) for Case #2. For Case #3, they are equal
to (rmax = 0.245, Hmax = 11.221) and (rmin = 0.216, Hmin = 11.095) and, for Case #4, they are
(rmax = 0.247, Hmax = 11.230) and (rmin = 0.212, Hmin = 11.072).

But when m = 6 (increase) the values of the optimal couples for minimum and maximum values of δM
also increase, i.e. (rmax = 0.273, Hmax = 11.329) and (rmin = 0.276, Hmin = 11.337) for the first two
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Table 4.1 – Influence of parameter σM

σM = 0.1

δM ARL r H
δ min max without min max without min max without min max

0 0.000 0.000 370.000 370.000 370.000 0.050 0.050 0.050 8.895 8.895 8.895
0.000 0.000 370.000 370.000 370.000 0.050 0.050 0.050 8.895 8.895 8.895
0.000 0.000 370.000 370.000 370.000 0.050 0.050 0.050 8.895 8.895 8.895
0.000 0.000 370.000 370.000 370.000 0.050 0.050 0.050 8.895 8.895 8.895

0.25 0.247 0.247 91.212 92.682 92.976 0.050 0.050 0.050 8.895 8.895 8.895
0.246 0.247 91.212 92.625 92.976 0.050 0.050 0.050 8.895 8.895 8.895
0.245 0.247 91.212 93.462 92.007 0.050 0.050 0.050 8.895 8.895 8.895
0.244 0.247 91.212 93.789 91.937 0.050 0.050 0.050 8.895 8.895 8.895

0.5 0.495 0.493 32.162 32.686 32.792 0.050 0.050 0.050 8.895 8.895 8.895
0.495 0.493 32.162 32.637 32.881 0.050 0.050 0.050 8.895 8.895 8.895
0.489 0.495 32.162 33.077 32.552 0.050 0.050 0.050 8.895 8.895 8.895
0.488 0.495 32.162 33.196 32.527 0.050 0.050 0.050 8.895 8.895 8.895

0.75 0.742 0.740 17.720 18.016 18.075 0.083 0.081 0.081 9.802 9.754 9.754
0.743 0.739 17.720 17.988 18.126 0.083 0.081 0.081 9.802 9.754 9.754
0.734 0.742 17.720 18.268 17.972 0.083 0.079 0.081 9.802 9.679 9.730
0.732 0.742 17.720 18.335 17.957 0.083 0.079 0.081 9.802 9.679 9.730

1 0.989 0.987 11.437 11.633 11.672 0.126 0.124 0.124 10.438 10.412 10.412
0.990 0.985 11.437 11.614 11.705 0.126 0.124 0.124 10.438 10.412 10.412
0.978 0.989 11.437 11.811 11.614 0.126 0.121 0.124 10.438 10.366 10.394
0.976 0.990 11.437 11.855 11.605 0.126 0.121 0.124 10.438 10.366 10.394

1.25 1.236 1.234 8.099 8.239 8.267 0.174 0.171 0.171 10.857 10.841 10.841
1.238 1.231 8.099 8.226 8.291 0.174 0.171 0.171 10.857 10.841 10.841
1.223 1.236 8.099 8.371 8.230 0.174 0.169 0.171 10.857 10.811 10.828
1.220 1.237 8.099 8.403 8.224 0.174 0.166 0.171 10.857 10.793 10.828

1.5 1.484 1.480 6.098 6.204 6.225 0.226 0.223 0.221 11.149 11.138 11.128
1.485 1.478 6.098 6.194 6.243 0.226 0.223 0.221 11.149 11.138 11.128
1.467 1.484 6.098 6.306 6.200 0.226 0.219 0.223 11.149 11.107 11.129
1.464 1.484 6.098 6.330 6.195 0.226 0.219 0.223 11.149 11.107 11.129

1.75 1.731 1.727 4.798 4.881 4.898 0.280 0.278 0.276 11.351 11.344 11.337
1.733 1.724 4.798 4.873 4.912 0.280 0.278 0.276 11.351 11.344 11.337
1.712 1.731 4.798 4.962 4.878 0.280 0.273 0.276 11.351 11.322 11.330
1.708 1.732 4.798 4.981 4.874 0.280 0.271 0.276 11.351 11.314 11.330

2 1.978 1.974 3.902 3.969 3.983 0.337 0.333 0.333 11.495 11.485 11.485
1.980 1.970 3.902 3.963 3.994 0.337 0.333 0.330 11.495 11.485 11.480
1.957 1.978 3.902 4.035 3.968 0.337 0.328 0.333 11.495 11.469 11.480
1.952 1.979 3.902 4.050 3.964 0.337 0.326 0.333 11.495 11.464 11.480
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σM = 0.3

δM ARL r H
δ min max without min max without min max without min max

0 0.000 0.000 370.000 370.000 370.000 0.050 0.050 0.050 8.895 8.895 8.895
0.000 0.000 370.000 370.000 370.000 0.050 0.050 0.050 8.895 8.895 8.895
0.000 0.000 370.000 370.000 370.000 0.050 0.050 0.050 8.895 8.895 8.895
0.000 0.000 370.000 370.000 370.000 0.050 0.050 0.050 8.895 8.895 8.895

0.25 0.242 0.240 91.212 95.626 96.510 0.050 0.050 0.050 8.895 8.895 8.895
0.243 0.239 91.212 95.213 97.258 0.050 0.050 0.050 8.895 8.895 8.895
0.234 0.242 91.212 99.291 94.918 0.050 0.050 0.050 8.895 8.895 8.895
0.233 0.242 91.212 100.273 94.708 0.050 0.050 0.050 8.895 8.895 8.895

0.5 0.484 0.481 32.162 33.747 34.068 0.050 0.050 0.050 8.895 8.895 8.895
0.485 0.478 32.162 33.598 34.341 0.050 0.050 0.050 8.895 8.895 8.895
0.469 0.484 32.162 35.216 33.606 0.050 0.050 0.050 8.895 8.895 8.895
0.465 0.485 32.162 35.582 33.530 0.050 0.050 0.050 8.895 8.895 8.895

0.75 0.726 0.721 17.720 18.613 18.793 0.083 0.079 0.079 9.802 9.704 9.704
0.728 0.717 17.720 18.529 18.946 0.083 0.079 0.076 9.802 9.704 9.652
0.703 0.726 17.720 19.467 18.566 0.083 0.074 0.079 9.802 9.572 9.679
0.698 0.727 17.720 19.670 18.523 0.083 0.074 0.079 9.802 9.572 9.679

1 0.968 0.962 11.437 12.028 12.147 0.126 0.119 0.119 10.438 10.355 10.355
0.971 0.956 11.437 11.972 12.248 0.126 0.121 0.117 10.438 10.384 10.326
0.938 0.968 11.437 12.606 12.008 0.126 0.114 0.119 10.438 10.277 10.338
0.931 0.969 11.437 12.742 11.980 0.126 0.112 0.119 10.438 10.246 10.338

1.25 1.210 1.202 8.099 8.522 8.607 0.174 0.166 0.164 10.857 10.806 10.788
1.213 1.195 8.099 8.482 8.680 0.174 0.166 0.162 10.857 10.806 10.770
1.172 1.210 8.099 8.941 8.512 0.174 0.157 0.166 10.857 10.719 10.793
1.164 1.212 8.099 9.039 8.492 0.174 0.157 0.166 10.857 10.719 10.793

1.5 1.452 1.442 6.098 6.418 6.482 0.226 0.216 0.214 11.149 11.105 11.093
1.456 1.435 6.098 6.388 6.537 0.226 0.216 0.212 11.149 11.105 11.082
1.406 1.452 6.098 6.738 6.413 0.226 0.207 0.216 11.149 11.047 11.095
1.396 1.454 6.098 6.811 6.397 0.226 0.204 0.216 11.149 11.035 11.095

1.75 1.694 1.683 4.798 5.049 5.099 0.280 0.269 0.266 11.351 11.314 11.306
1.699 1.674 4.798 5.025 5.142 0.280 0.271 0.264 11.351 11.321 11.298
1.641 1.694 4.798 5.301 5.046 0.280 0.257 0.269 11.351 11.265 11.307
1.629 1.696 4.798 5.359 5.034 0.280 0.254 0.269 11.351 11.257 11.307

2 1.935 1.923 3.902 4.105 4.146 0.337 0.323 0.321 11.495 11.464 11.458
1.941 1.913 3.902 4.086 4.180 0.337 0.323 0.318 11.495 11.464 11.453
1.875 1.935 3.902 4.309 4.103 0.337 0.309 0.323 11.495 11.424 11.458
1.862 1.938 3.902 4.356 4.093 0.337 0.307 0.323 11.495 11.418 11.458
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σM = 0.6

δM ARL r H
δ min max without min max without min max without min max

0 0.000 0.000 370.000 370.000 370.000 0.050 0.050 0.050 8.895 8.895 8.895
0.000 0.000 370.000 370.000 370.000 0.050 0.050 0.050 8.895 8.895 8.895
0.000 0.000 370.000 370.000 370.000 0.050 0.050 0.050 8.895 8.895 8.895
0.000 0.000 370.000 370.000 370.000 0.050 0.050 0.050 8.895 8.895 8.895

0.25 0.234 0.231 91.212 100.049 101.819 0.050 0.050 0.050 8.895 8.895 8.895
0.236 0.229 91.212 99.222 103.317 0.050 0.050 0.050 8.895 8.895 8.895
0.221 0.234 91.212 108.032 99.291 0.050 0.050 0.050 8.895 8.895 8.895
0.218 0.235 91.212 109.989 98.871 0.050 0.050 0.050 8.895 8.895 8.895

0.5 0.469 0.463 32.162 35.368 36.026 0.050 0.050 0.050 8.895 8.895 8.895
0.472 0.458 32.162 35.062 36.587 0.050 0.050 0.050 8.895 8.895 8.895
0.441 0.469 32.162 38.537 35.216 0.050 0.050 0.050 8.895 8.895 8.895
0.435 0.470 32.162 39.301 35.060 0.050 0.050 0.050 8.895 8.895 8.895

0.75 0.703 0.694 17.720 19.518 19.883 0.083 0.074 0.074 9.802 9.598 9.598
0.707 0.687 17.720 19.348 20.194 0.083 0.076 0.071 9.802 9.652 9.542
0.662 0.703 17.720 21.299 19.467 0.083 0.069 0.074 9.802 9.455 9.572
0.653 0.705 17.720 21.716 19.380 0.083 0.067 0.074 9.802 9.393 9.572

1 0.938 0.926 11.437 12.628 12.870 0.126 0.114 0.112 10.438 10.296 10.265
0.943 0.916 11.437 12.515 13.076 0.126 0.114 0.109 10.438 10.296 10.233
0.882 0.938 11.437 13.828 12.606 0.126 0.105 0.114 10.438 10.146 10.277
0.871 0.940 11.437 14.106 12.548 0.126 0.102 0.114 10.438 10.110 10.277

1.25 1.172 1.157 8.099 8.952 9.126 0.174 0.157 0.155 10.857 10.733 10.713
1.179 1.145 8.099 8.871 9.274 0.174 0.159 0.152 10.857 10.752 10.693
1.103 1.172 8.099 9.820 8.941 0.174 0.145 0.157 10.857 10.616 10.719
1.089 1.175 8.099 10.021 8.900 0.174 0.143 0.159 10.857 10.594 10.738

1.5 1.406 1.389 6.098 6.743 6.875 0.226 0.207 0.202 11.149 11.057 11.032
1.415 1.375 6.098 6.682 6.987 0.226 0.207 0.200 11.149 11.057 11.019
1.324 1.406 6.098 7.403 6.738 0.226 0.188 0.207 11.149 10.939 11.047
1.306 1.410 6.098 7.556 6.706 0.226 0.185 0.207 11.149 10.924 11.047

1.75 1.641 1.620 4.798 5.304 5.408 0.280 0.257 0.252 11.351 11.273 11.256
1.650 1.604 4.798 5.256 5.496 0.280 0.259 0.250 11.351 11.281 11.247
1.544 1.641 4.798 5.825 5.301 0.280 0.235 0.257 11.351 11.182 11.265
1.524 1.646 4.798 5.945 5.276 0.280 0.231 0.257 11.351 11.161 11.265

2 1.875 1.852 3.902 4.311 4.395 0.337 0.309 0.304 11.495 11.430 11.418
1.886 1.833 3.902 4.272 4.466 0.337 0.311 0.299 11.495 11.435 11.405
1.765 1.875 3.902 4.733 4.309 0.337 0.285 0.309 11.495 11.359 11.424
1.742 1.881 3.902 4.831 4.289 0.337 0.278 0.311 11.495 1.337 11.430
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Table 4.2 – Influence of parameter b

b = 0.25

δM ARL r H
δ min max without min max without min max without min max

0 0.000 0.000 370.000 370.000 370.000 0.050 0.050 0.050 8.895 8.895 8.895
0.000 0.000 370.000 370.000 370.000 0.050 0.050 0.050 8.895 8.895 8.895
0.000 0.000 370.000 370.000 370.000 0.050 0.050 0.050 8.895 8.895 8.895
0.000 0.000 370.000 370.000 370.000 0.050 0.050 0.050 8.895 8.895 8.895

0.25 0.163 0.152 91.212 159.506 171.770 0.050 0.050 0.050 8.895 8.895 8.895
0.169 0.144 91.212 153.570 181.647 0.050 0.050 0.050 8.895 8.895 8.895
0.121 0.163 91.212 211.959 157.991 0.050 0.050 0.050 8.895 8.895 8.895
0.114 0.166 91.212 221.875 154.996 0.050 0.050 0.050 8.895 8.895 8.895

0.5 0.326 0.305 32.162 61.295 67.898 0.050 0.050 0.050 8.895 8.895 8.895
0.337 0.289 32.162 58.281 73.620 0.050 0.050 0.050 8.895 8.895 8.895
0.242 0.326 32.162 94.918 60.937 0.050 0.050 0.050 8.895 8.895 8.895
0.229 0.332 32.162 102.773 59.395 0.050 0.050 0.050 8.895 8.895 8.895

0.75 0.489 0.457 17.720 33.215 36.689 0.083 0.050 0.050 9.802 8.894 8.894
0.506 0.433 17.720 31.647 39.750 0.083 0.050 0.050 9.802 8.894 8.894
0.363 0.489 17.720 51.775 33.077 0.083 0.050 0.050 9.802 8.894 8.894
0.343 0.497 17.720 56.415 32.272 0.083 0.050 0.050 9.802 8.894 8.894

1 0.652 0.610 11.437 21.827 24.103 0.126 0.067 0.062 10.438 9.421 9.289
0.674 0.578 11.437 20.785 26.067 0.126 0.071 0.057 10.438 9.542 9.144
0.484 0.652 11.437 33.606 21.763 0.126 0.050 0.067 10.438 8.894 9.393
0.457 0.663 11.437 36.522 21.228 0.126 0.050 0.069 10.438 8.894 9.455

1.25 0.815 0.762 8.099 15.624 17.295 0.174 0.093 0.083 10.857 9.978 9.802
0.843 0.722 8.099 14.861 18.743 0.174 0.098 0.079 10.857 10.057 9.704
0.605 0.815 8.099 24.311 15.591 0.174 0.060 0.093 10.857 9.188 9.956
0.572 0.829 8.099 26.389 15.199 0.174 0.055 0.095 10.857 9.033 9.996

1.5 0.978 0.915 6.098 11.830 13.114 0.226 0.121 0.109 11.149 10.384 10.233
1.011 0.867 6.098 11.244 14.231 0.226 0.128 0.102 11.149 10.465 10.130
0.726 0.978 6.098 18.566 11.811 0.226 0.079 0.121 11.149 9.679 10.360
0.686 0.995 6.098 20.191 11.509 0.226 0.071 0.124 11.149 9.515 10.394

1.75 1.141 1.067 4.798 9.326 10.348 0.280 0.152 0.138 11.351 10.693 10.563
1.180 1.011 4.798 8.861 11.239 0.280 0.159 0.128 11.351 10.752 10.465
0.847 1.141 4.798 14.720 9.315 0.280 0.098 0.152 11.351 10.036 10.679
0.800 1.161 4.798 16.029 9.075 0.280 0.090 0.155 11.351 9.914 10.699

2 1.304 1.220 3.902 7.580 8.415 0.337 0.185 0.169 11.495 10.935 10.824
1.348 1.156 3.902 7.201 9.144 0.337 0.195 0.155 11.495 10.992 10.713
0.968 1.304 3.902 12.008 7.573 0.337 0.119 0.185 11.495 10.338 10.924
0.915 1.327 3.902 13.088 7.378 0.337 0.109 0.190 11.495 10.214 10.953
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b = 1

δM ARL r H
δ min max without min max without min max without min max

0 0.000 0.000 370.000 370.000 370.000 0.050 0.050 0.050 8.895 8.895 8.895
0.000 0.000 370.000 370.000 370.000 0.050 0.050 0.050 8.895 8.895 8.895
0.000 0.000 370.000 370.000 370.000 0.050 0.050 0.050 8.895 8.895 8.895
0.000 0.000 370.000 370.000 370.000 0.050 0.050 0.050 8.895 8.895 8.895

0.25 0.242 0.240 91.212 95.626 96.510 0.050 0.050 0.050 8.895 8.895 8.895
0.243 0.239 91.212 95.213 97.258 0.050 0.050 0.050 8.895 8.895 8.895
0.234 0.242 91.212 99.291 94.918 0.050 0.050 0.050 8.895 8.895 8.895
0.233 0.242 91.212 100.273 94.708 0.050 0.050 0.050 8.895 8.895 8.895

0.5 0.484 0.481 32.162 33.747 34.068 0.050 0.050 0.050 8.895 8.895 8.895
0.485 0.478 32.162 33.598 34.341 0.050 0.050 0.050 8.895 8.895 8.895
0.469 0.484 32.162 35.216 33.606 0.050 0.050 0.050 8.895 8.895 8.895
0.465 0.485 32.162 35.582 33.530 0.050 0.050 0.050 8.895 8.895 8.895

0.75 0.726 0.721 17.720 18.613 18.793 0.083 0.079 0.079 9.802 9.704 9.704
0.728 0.717 17.720 18.529 18.946 0.083 0.079 0.076 9.802 9.704 9.652
0.703 0.726 17.720 19.467 18.566 0.083 0.074 0.079 9.802 9.572 9.679
0.698 0.727 17.720 19.670 18.523 0.083 0.074 0.079 9.802 9.572 9.679

1 0.968 0.962 11.437 12.028 12.147 0.126 0.119 0.119 10.438 10.355 10.355
0.971 0.956 11.437 11.972 12.248 0.126 0.121 0.117 10.438 10.384 10.326
0.938 0.968 11.437 12.606 12.008 0.126 0.114 0.119 10.438 10.277 10.338
0.931 0.969 11.437 12.742 11.980 0.126 0.112 0.119 10.438 10.246 10.338

1.25 1.210 1.202 8.099 8.522 8.607 0.174 0.166 0.164 10.857 10.806 10.788
1.213 1.195 8.099 8.482 8.680 0.174 0.166 0.162 10.857 10.806 10.770
1.172 1.210 8.099 8.941 8.512 0.174 0.157 0.166 10.857 10.719 10.793
1.164 1.212 8.099 9.039 8.492 0.174 0.157 0.166 10.857 10.719 10.793

1.5 1.452 1.442 6.098 6.418 6.482 0.226 0.216 0.214 11.149 11.105 11.093
1.456 1.435 6.098 6.388 6.537 0.226 0.216 0.212 11.149 11.105 11.082
1.406 1.452 6.098 6.738 6.413 0.226 0.207 0.216 11.149 11.047 11.095
1.396 1.454 6.098 6.811 6.397 0.226 0.204 0.216 11.149 11.035 11.095

1.75 1.694 1.683 4.798 5.049 5.099 0.280 0.269 0.266 11.351 11.314 11.306
1.699 1.674 4.798 5.025 5.142 0.280 0.271 0.264 11.351 11.321 11.298
1.641 1.694 4.798 5.301 5.046 0.280 0.257 0.269 11.351 11.265 11.307
1.629 1.696 4.798 5.359 5.034 0.280 0.254 0.269 11.351 11.257 11.307

2 1.935 1.923 3.902 4.105 4.146 0.337 0.323 0.321 11.495 11.464 11.458
1.941 1.913 3.902 4.086 4.180 0.337 0.323 0.318 11.495 11.464 11.453
1.875 1.935 3.902 4.309 4.103 0.337 0.309 0.323 11.495 11.424 11.458
1.862 1.938 3.902 4.356 4.093 0.337 0.307 0.323 11.495 11.418 11.458
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b = 8

δM ARL r H
δ min max without min max without min max without min max

0 0.000 0.000 370.000 370.000 370.000 0.050 0.050 0.050 8.895 8.895 8.895
0.000 0.000 370.000 370.000 370.000 0.050 0.050 0.050 8.895 8.895 8.895
0.000 0.000 370.000 370.000 370.000 0.050 0.050 0.050 8.895 8.895 8.895
0.000 0.000 370.000 370.000 370.000 0.050 0.050 0.050 8.895 8.895 8.895

0.25 0.250 0.250 91.212 91.281 91.295 0.050 0.050 0.050 8.895 8.895 8.895
0.250 0.250 91.212 91.275 91.307 0.050 0.050 0.050 8.895 8.895 8.895
0.250 0.250 91.212 90.689 90.621 0.050 0.050 0.050 8.895 8.895 8.895
0.250 0.250 91.212 90.705 90.618 0.050 0.050 0.050 8.895 8.895 8.895

0.5 0.500 0.500 32.162 32.186 32.191 0.050 0.050 0.050 8.895 8.895 8.895
0.500 0.500 32.162 32.184 32.195 0.050 0.050 0.050 8.895 8.895 8.895
0.499 0.500 32.162 32.080 32.055 0.050 0.050 0.050 8.895 8.895 8.895
0.499 0.500 32.162 32.085 32.054 0.050 0.050 0.050 8.895 8.895 8.895

0.75 0.750 0.750 17.720 17.734 17.736 0.083 0.083 0.083 9.802 9.802 9.802
0.750 0.749 17.720 17.732 17.739 0.083 0.083 0.083 9.802 9.802 9.802
0.749 0.750 17.720 17.704 17.691 0.083 0.081 0.081 9.802 9.730 9.730
0.749 0.750 17.720 17.708 17.690 0.083 0.081 0.081 9.802 9.730 9.730

1 0.999 0.999 11.437 11.446 11.448 0.126 0.126 0.126 10.438 10.438 10.438
1.000 0.999 11.437 11.445 11.449 0.126 0.126 0.126 10.438 10.438 10.438
0.999 0.999 11.437 11.438 11.428 0.126 0.126 0.126 10.438 10.422 10.422
0.999 1.000 11.437 11.440 11.428 0.126 0.126 0.126 10.438 10.422 10.422

1.25 1.249 1.249 8.099 8.105 8.107 0.174 0.174 0.174 10.857 10.857 10.857
1.249 1.249 8.099 8.105 8.108 0.174 0.174 0.174 10.857 10.857 10.857
1.249 1.249 8.099 8.103 8.097 0.174 0.174 0.174 10.857 10.845 10.845
1.249 1.249 8.099 8.105 8.097 0.174 0.174 0.174 10.857 10.845 10.845

1.5 1.499 1.499 6.098 6.103 6.104 0.226 0.226 0.226 11.149 11.149 11.149
1.499 1.499 6.098 6.103 6.105 0.226 0.226 0.226 11.149 11.149 11.149
1.498 1.499 6.098 6.104 6.099 0.226 0.226 0.226 11.149 11.140 11.140
1.498 1.499 6.098 6.105 6.099 0.226 0.226 0.226 11.149 11.140 11.140

1.75 1.749 1.749 4.798 4.802 4.802 0.280 0.280 0.280 11.351 11.351 11.351
1.749 1.749 4.798 4.801 4.803 0.280 0.280 0.280 11.351 11.351 11.351
1.748 1.749 4.798 4.803 4.799 0.280 0.280 0.280 11.351 11.344 11.344
1.748 1.749 4.798 4.804 4.799 0.280 0.280 0.280 11.351 11.344 11.344

2 1.999 1.999 3.902 3.905 3.906 0.337 0.337 0.337 11.495 11.495 11.495
1.999 1.999 3.902 3.905 3.906 0.337 0.337 0.337 11.495 11.495 11.495
1.998 1.999 3.902 3.905 3.906 0.337 0.337 0.337 11.495 11.490 11.490
1.998 1.999 3.902 3.908 3.904 0.337 0.337 0.337 11.495 11.490 11.490
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cases, while they are (rmax = 0.269, Hmax = 11.330) and (rmin = 0.269, Hmin = 11.307) for Case #3 and
(rmax = 0.276, Hmax = 11.330) and (rmin = 0.266, Hmin = 11.299) for Case #4.

4.2.4 Influence of number of variables p

In this subsection, we investigate the influence of the parameter p ∈ {3, 5, 7, 9} for fixed values
σM = 0.3, b = 1 and m = 3. Here we have only considered Case #1 for the variance-covariance ma-
trix Σ∗, i.e when Σ∗ is uncorrelated with equal variances. For different values of the shift δ ∈ [0, 2], the
values of δM along with the optimal values of ARL, r and H are listed in Table 4.4 on page 68 for the
MEWMA-CoDa control chart with (min and max) and without the presence of measurement errors. The
first rows in Table 4.4 on page 68 show the values when p = 3, the second row represents the values for
p = 5, the third row represents the values when p = 7 and the forth row shows the values when p = 9.
From this table we can see that when p increases the out-of-control ARL also increases. (i.e. an increase
in p has a negative impact on the MEWMA-CoDa control chart). For instance, if δ = 1.75 and p = 3, the
“best” and “worst” ARL values are (ARLmin = 5.049,ARLmax = 5.099). But, when p = 5 (increase), the
“best” and “worst” ARL values are (ARLmin = 7.319,ARLmax = 7.319).

The value of the optimal couples (r,H) decreases with an increase in the value of p. When δ = 1.75 and
p = 3, the maximum and minimum values of the optimal couple (r,H) are (rmax = 0.266, Hmax = 11.306)
and (rmin = 0.269, Hmin = 11.314). But when p = 9 (increase) the values of the optimal couple for
minimum and maximum decreases, i.e (rmin = rmax = 0.207, Hmin = Hmax = 22.726).

4.2.5 Comparison between Hotelling CoDa T 2 and MEWMA-CoDa control charts
in the presence of measurement errors

In this section first we fix the in-control ARL of the Hotelling CoDa T 2 and MEWMA-CoDa control
charts in the presence of measurement errors to be 370.In Table 4.5 on page 70, we compare the out-
of-control performances of the Hotelling CoDa T 2 and MEWMA-CoDa control charts in the presence of
measurement errors for several combinations of σM ∈ {0.1, 0.3, 0.6}, b ∈ {0.25, 1, 8}, m ∈ {1, 3, 6} (one
of these parameters varies and the others remain fixed) and for several values of the shift δ ∈ {0.25, 0.75, 2}.
For both Hotelling CoDa T 2 and MEWMA-CoDa control charts, the best (ARLmin) and worst (ARLmax)
ARL values are provided for both case #1 (uncorrelated) and case #2 (correlated) as well as their percentage

improvement indicators ∆min =
100(ARL

(T2)
min −ARL

(MEWMA)
min )

ARL
(T2)
min

and ∆max = 100(ARL
(T2)
max −ARL

(MEWMA)
max )

ARL
(T2)
max

. The ARL

values for the Hotelling T 2 CoDa control chart have already been obtained in Zaidi et al. (2019). From
Table 4.5 on page 70, we can draw the following conclusions:

1. No matter the case (correlated or uncorrelated), the MEWMA-CoDa control chart clearly has the
smaller best ARLmin and the smaller worst ARLmax values compared to the Hotelling CoDa T 2

control chart. For instance, when σM = 0.3, b = 1, m = 3 and δ = 0.25 the best and worst
ARL values for the Hotelling CoDa T 2 control chart are (ARLmin = 346.46,ARLmax = 357.35)
for Case #1 and (ARLmin = 345.05,ARLmax = 359.01) for Case #2 while, for the MEWMA-CoDa
control chart, these values are (ARLmin = 95.65,ARLmax = 96.51) for Case #1 and (ARLmin =
95.21,ARLmax = 97.26) for Case #2.

2. In terms of their percentage improvement indicators we can see that, depending on the parameters
σM, b, m and the level of shift δ, the MEWMA-CoDa control chart is between 70% to 90% more
efficient than the Hotelling CoDa T 2 control chart. More precisely (see the last row of 4.5), for Case
#1, the MEWMA-CoDa control chart is 86.59% in average more efficient than the Hotelling CoDa
T 2 chart for ARLmin and 87.01% more efficient for ARLmax and, for Case #2, the latter is 86.19%
in average more efficient than the former for ARLmin and 86.5% more efficient for ARLmax (i.e.
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Table 4.3 – Influence of parameter m

m = 1

δM ARL r H
δ min max without min max without min max without min max

0 0.000 0.000 370.000 370.000 370.000 0.050 0.050 0.050 8.895 8.895 8.895
0.000 0.000 370.000 370.000 370.000 0.050 0.050 0.050 8.895 8.895 8.895
0.000 0.000 370.000 370.000 370.000 0.050 0.050 0.050 8.895 8.895 8.895
0.000 0.000 370.000 370.000 370.000 0.050 0.050 0.050 8.895 8.895 8.895

0.25 0.227 0.223 91.212 104.473 107.126 0.050 0.050 0.050 8.895 8.895 8.895
0.229 0.220 91.212 103.234 109.368 0.050 0.050 0.050 8.895 8.895 8.895
0.208 0.227 91.212 116.721 103.665 0.050 0.050 0.050 8.895 8.895 8.895
0.205 0.228 91.212 119.627 103.035 0.050 0.050 0.050 8.895 8.895 8.895

0.5 0.455 0.446 32.162 37.023 38.032 0.050 0.050 0.050 8.895 8.895 8.895
0.458 0.440 32.162 36.556 38.896 0.050 0.050 0.050 8.895 8.895 8.895
0.417 0.455 32.162 41.989 36.860 0.050 0.050 0.050 8.895 8.895 8.895
0.409 0.457 32.162 43.179 36.621 0.050 0.050 0.050 8.895 8.895 8.895

0.75 0.682 0.670 17.720 20.434 20.989 0.083 0.071 0.069 9.802 9.542 9.483
0.688 0.660 17.720 20.177 21.461 0.083 0.071 0.069 9.802 9.542 8.894
0.625 0.682 17.720 23.171 20.377 0.083 0.062 0.071 9.802 9.259 9.515
0.614 0.685 17.720 23.809 20.245 0.083 0.062 0.071 9.802 9.259 9.515

1 0.909 0.893 11.437 13.236 13.606 0.126 0.109 0.107 10.438 10.233 10.199
0.917 0.880 11.437 13.065 13.921 0.126 0.109 0.105 10.438 10.233 10.165
0.833 0.909 11.437 15.081 13.213 0.126 0.095 0.109 10.438 9.996 10.214
0.818 0.913 11.437 15.510 13.125 0.126 0.093 0.109 10.438 9.956 10.214

1.25 1.136 1.116 8.099 9.389 9.654 0.174 0.152 0.147 10.857 10.693 10.652
1.146 1.099 8.099 9.266 9.881 0.174 0.152 0.145 10.857 10.693 10.631
1.042 1.136 8.099 10.724 9.377 0.174 0.133 0.150 10.857 10.499 10.659
1.023 1.141 8.099 11.035 9.314 0.174 0.128 0.152 10.857 10.448 10.679

1.5 1.364 1.339 6.098 7.074 7.275 0.226 0.197 0.193 11.149 11.006 10.978
1.375 1.319 6.098 6.981 7.447 0.226 0.200 0.188 11.149 11.019 10.950
1.250 1.364 6.098 8.090 7.068 0.226 0.174 0.197 11.149 10.845 10.995
1.227 1.370 6.098 8.326 7.020 0.226 0.169 0.197 11.149 10.811 10.995

1.75 1.591 1.563 4.798 5.564 5.723 0.280 0.245 0.240 11.351 11.229 11.210
1.605 1.539 4.798 5.491 5.858 0.280 0.250 0.235 11.351 11.247 11.190
1.458 1.591 4.798 6.367 5.561 0.280 0.216 0.245 11.351 11.095 11.221
1.432 1.598 4.798 6.553 5.523 0.280 0.212 0.247 11.351 11.072 11.230

2 1.818 1.786 3.902 4.522 4.650 0.337 0.297 0.290 11.495 11.399 11.379
1.834 1.759 3.902 4.462 4.759 0.337 0.299 0.283 11.495 11.405 11.358
1.667 1.818 3.902 5.173 4.519 0.337 0.261 0.297 11.495 11.282 11.393
1.636 1.826 3.902 5.324 4.489 0.337 0.257 0.299 11.495 11.265 11.399
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m = 3

δM ARL r H
δ min max without min max without min max without min max

0 0.000 0.000 370.000 370.000 370.000 0.050 0.050 0.050 8.895 8.895 8.895
0.000 0.000 370.000 370.000 370.000 0.050 0.050 0.050 8.895 8.895 8.895
0.000 0.000 370.000 370.000 370.000 0.050 0.050 0.050 8.895 8.895 8.895
0.000 0.000 370.000 370.000 370.000 0.050 0.050 0.050 8.895 8.895 8.895

0.25 0.242 0.240 91.212 95.626 96.510 0.050 0.050 0.050 8.895 8.895 8.895
0.243 0.239 91.212 95.213 97.258 0.050 0.050 0.050 8.895 8.895 8.895
0.234 0.242 91.212 99.291 94.918 0.050 0.050 0.050 8.895 8.895 8.895
0.233 0.242 91.212 100.273 94.708 0.050 0.050 0.050 8.895 8.895 8.895

0.5 0.484 0.481 32.162 33.747 34.068 0.050 0.050 0.050 8.895 8.895 8.895
0.485 0.478 32.162 33.598 34.341 0.050 0.050 0.050 8.895 8.895 8.895
0.469 0.484 32.162 35.216 33.606 0.050 0.050 0.050 8.895 8.895 8.895
0.465 0.485 32.162 35.582 33.530 0.050 0.050 0.050 8.895 8.895 8.895

0.75 0.726 0.721 17.720 18.613 18.793 0.083 0.079 0.079 9.802 9.704 9.704
0.728 0.717 17.720 18.529 18.946 0.083 0.079 0.076 9.802 9.704 9.652
0.703 0.726 17.720 19.467 18.566 0.083 0.074 0.079 9.802 9.572 9.679
0.698 0.727 17.720 19.670 18.523 0.083 0.074 0.079 9.802 9.572 9.679

1 0.968 0.962 11.437 12.028 12.147 0.126 0.119 0.119 10.438 10.355 10.355
0.971 0.956 11.437 11.972 12.248 0.126 0.121 0.117 10.438 10.384 10.326
0.938 0.968 11.437 12.606 12.008 0.126 0.114 0.119 10.438 10.277 10.338
0.931 0.969 11.437 12.742 11.980 0.126 0.112 0.119 10.438 10.246 10.338

1.25 1.210 1.202 8.099 8.522 8.607 0.174 0.166 0.164 10.857 10.806 10.788
1.213 1.195 8.099 8.482 8.680 0.174 0.166 0.162 10.857 10.806 10.770
1.172 1.210 8.099 8.941 8.512 0.174 0.157 0.166 10.857 10.719 10.793
1.164 1.212 8.099 9.039 8.492 0.174 0.157 0.166 10.857 10.719 10.793

1.5 1.452 1.442 6.098 6.418 6.482 0.226 0.216 0.214 11.149 11.105 11.093
1.456 1.435 6.098 6.388 6.537 0.226 0.216 0.212 11.149 11.105 11.082
1.406 1.452 6.098 6.738 6.413 0.226 0.207 0.216 11.149 11.047 11.095
1.396 1.454 6.098 6.811 6.397 0.226 0.204 0.216 11.149 11.035 11.095

1.75 1.694 1.683 4.798 5.049 5.099 0.280 0.269 0.266 11.351 11.314 11.306
1.699 1.674 4.798 5.025 5.142 0.280 0.271 0.264 11.351 11.321 11.298
1.641 1.694 4.798 5.301 5.046 0.280 0.257 0.269 11.351 11.265 11.307
1.629 1.696 4.798 5.359 5.034 0.280 0.254 0.269 11.351 11.257 11.307

2 1.935 1.923 3.902 4.105 4.146 0.337 0.323 0.321 11.495 11.464 11.458
1.941 1.913 3.902 4.086 4.180 0.337 0.323 0.318 11.495 11.464 11.453
1.875 1.935 3.902 4.309 4.103 0.337 0.309 0.323 11.495 11.424 11.458
1.862 1.938 3.902 4.356 4.093 0.337 0.307 0.323 11.495 11.418 11.458
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m = 6

δM ARL r H
δ min max without min max without min max without min max

0 0.000 0.000 370.000 370.000 370.000 0.050 0.050 0.050 8.895 8.895 8.895
0.000 0.000 370.000 370.000 370.000 0.050 0.050 0.050 8.895 8.895 8.895
0.000 0.000 370.000 370.000 370.000 0.050 0.050 0.050 8.895 8.895 8.895
0.000 0.000 370.000 370.000 370.000 0.050 0.050 0.050 8.895 8.895 8.895

0.25 0.246 0.245 91.212 93.418 93.859 0.050 0.050 0.050 8.895 8.895 8.895
0.246 0.244 91.212 93.211 94.233 0.050 0.050 0.050 8.895 8.895 8.895
0.242 0.246 91.212 94.918 92.734 0.050 0.050 0.050 8.895 8.895 8.895
0.241 0.246 91.212 95.409 92.629 0.050 0.050 0.050 8.895 8.895 8.895

0.5 0.492 0.490 32.162 32.950 33.109 0.050 0.050 0.050 8.895 8.895 8.895
0.493 0.489 32.162 32.876 33.243 0.050 0.050 0.050 8.895 8.895 8.895
0.484 0.492 32.162 33.606 32.814 0.050 0.050 0.050 8.895 8.895 8.895
0.482 0.492 32.162 33.785 32.776 0.050 0.050 0.050 8.895 8.895 8.895

0.75 0.738 0.735 17.720 18.165 18.255 0.083 0.081 0.081 9.802 9.754 9.754
0.739 0.733 17.720 18.123 18.330 0.083 0.081 0.079 9.802 9.754 9.704
0.726 0.738 17.720 18.566 18.120 0.083 0.079 0.079 9.802 9.679 9.730
0.723 0.738 17.720 18.667 18.099 0.083 0.079 0.081 9.802 9.679 9.730

1 0.984 0.980 11.437 11.731 11.790 0.126 0.121 0.121 10.438 10.384 10.384
0.985 0.978 11.437 11.704 11.840 0.126 0.124 0.121 10.438 10.412 10.384
0.968 0.984 11.437 12.008 11.713 0.126 0.119 0.119 10.438 10.338 10.366
0.964 0.984 11.437 12.075 11.699 0.126 0.119 0.121 10.438 10.338 10.366

1.25 1.230 1.225 8.099 8.309 8.352 0.174 0.169 0.169 10.857 10.824 10.824
1.231 1.222 8.099 8.290 8.388 0.174 0.171 0.169 10.857 10.841 10.824
1.210 1.230 8.099 8.512 8.300 0.174 0.166 0.166 10.857 10.793 10.811
1.205 1.230 8.099 8.560 8.290 0.174 0.164 0.169 10.857 10.776 10.811

1.5 1.475 1.471 6.098 6.257 6.289 0.226 0.221 0.219 11.149 11.128 11.116
1.478 1.467 6.098 6.242 6.316 0.226 0.221 0.219 11.149 11.128 11.116
1.452 1.475 6.098 6.413 6.253 0.226 0.216 0.216 11.149 11.095 11.118
1.446 1.477 6.098 6.449 6.245 0.226 0.214 0.221 11.149 11.084 11.118

1.75 1.721 1.716 4.798 4.923 4.948 0.280 0.276 0.273 11.351 11.337 11.329
1.724 1.711 4.798 4.911 4.969 0.280 0.276 0.273 11.351 11.337 11.329
1.694 1.721 4.798 5.046 4.920 0.280 0.269 0.269 11.351 11.307 11.330
1.687 1.723 4.798 5.074 4.914 0.280 0.266 0.276 11.351 11.299 11.330

2 1.967 1.961 3.902 4.003 4.023 0.337 0.330 0.328 11.495 11.480 11.474
1.970 1.955 3.902 3.993 4.040 0.337 0.330 0.328 11.495 11.480 11.474
1.935 1.967 3.902 4.103 4.001 0.337 0.323 0.323 11.495 11.458 11.474
1.929 1.969 3.902 4.126 3.996 0.337 0.321 0.330 11.495 11.453 11.474
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Table 4.4 – Influence of parameter p

δM ARL r H
δ min max without min max without min max without min max

0 0.000 0.000 370.000 370.000 370.000 0.050 0.050 0.050 8.895 8.895 8.895
0.000 0.000 370.000 370.000 370.000 0.050 0.050 0.050 8.895 8.895 8.895
0.000 0.000 370.000 370.000 370.000 0.050 0.050 0.050 8.895 8.895 8.895
0.000 0.000 370.000 370.000 370.000 0.050 0.050 0.050 8.895 8.895 8.895

0.25 0.242 0.240 91.212 95.626 96.510 0.050 0.050 0.050 8.895 8.895 8.895
0.242 0.242 91.212 117.688 117.688 0.050 0.050 0.050 8.895 13.011 13.011
0.242 0.242 91.212 133.422 133.422 0.050 0.050 0.050 8.895 16.599 16.599
0.242 0.242 91.212 145.456 145.456 0.050 0.050 0.050 8.895 19.915 19.915

0.5 0.484 0.481 32.162 33.747 34.068 0.050 0.050 0.050 8.895 8.895 8.895
0.484 0.484 32.162 41.166 41.166 0.050 0.050 0.050 8.895 13.011 13.011
0.484 0.484 32.162 46.800 46.800 0.050 0.050 0.050 8.895 16.599 16.599
0.484 0.484 32.162 51.498 51.498 0.050 0.050 0.050 8.895 19.915 19.915

0.75 0.726 0.721 17.720 18.613 18.793 0.083 0.079 0.079 9.802 9.704 9.704
0.726 0.726 17.720 22.508 22.508 0.083 0.069 0.069 9.802 13.693 13.693
0.726 0.726 17.720 25.401 25.401 0.083 0.064 0.064 9.802 17.187 17.187
0.726 0.726 17.720 27.784 27.784 0.083 0.060 0.060 9.802 20.360 20.360

1 0.968 0.962 11.437 12.028 12.147 0.126 0.119 0.119 10.438 10.355 10.355
0.968 0.968 11.437 14.489 14.489 0.126 0.105 0.105 10.438 14.468 14.468
0.968 0.968 11.437 16.324 16.324 0.126 0.098 0.098 10.438 18.054 18.054
0.968 0.968 11.437 17.845 17.845 0.126 0.090 0.090 10.438 21.318 21.318

1.25 1.210 1.202 8.099 8.522 8.607 0.174 0.166 0.164 10.857 10.806 10.788
1.210 1.210 8.099 10.221 10.221 0.174 0.145 0.145 10.857 14.986 14.986
1.210 1.210 8.099 11.492 11.492 0.174 0.136 0.136 10.857 18.635 18.635
1.210 1.210 8.099 12.548 12.548 0.174 0.126 0.126 10.857 21.964 21.964

1.5 1.452 1.442 6.098 6.418 6.482 0.226 0.216 0.214 11.149 11.105 11.093
1.452 1.452 6.098 7.665 7.665 0.226 0.190 0.190 11.149 15.352 15.352
1.452 1.452 6.098 8.599 8.599 0.226 0.176 0.176 11.149 19.027 19.027
1.452 1.452 6.098 9.376 9.376 0.226 0.166 0.166 11.149 22.422 22.422

1.75 1.694 1.683 4.798 5.049 5.099 0.280 0.269 0.266 11.351 11.314 11.306
1.694 1.694 4.798 6.004 6.004 0.280 0.238 0.238 11.351 15.606 15.606
1.694 1.694 4.798 6.721 6.721 0.280 0.219 0.219 11.351 19.306 19.306
1.694 1.694 4.798 7.319 7.319 0.280 0.207 0.207 11.351 22.726 22.726

2 1.935 1.923 3.902 4.105 4.146 0.337 0.323 0.321 11.495 11.464 11.458
1.935 1.935 3.902 4.860 4.860 0.337 0.288 0.288 11.495 15.789 15.789
1.935 1.935 3.902 5.430 5.430 0.337 0.264 0.264 11.495 19.510 19.510
1.935 1.935 3.902 5.904 5.904 0.337 0.250 0.250 11.495 22.950 22.950
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MEWMA-CoDa control chart is about 86%-87% more efficient than the Hotelling CoDa T 2 chart in
the presence of measurement errors).

4.3 Illustrative example
Let us take the example that we have discussed in chapter 3 of a company produces muesli (for break-

fast), where every 100 grams contain: (A) 66% of whole-grain cereals (barley flakes, oat flakes, wheat
flakes), (B) 24% of dried fruits (raisin, papaya, banana) and (C) 10% of nuts (almond, hazelnut, co-
conut).(Note that the data used in this example are simulated realistic data depicting a practical situation).
Firstly, the measurement device used to measure the percentages of the components in the produced muesli,
is calibrated by the company to estimate the values of parameters a, b and Σ∗M. In order to do that, k = 4 ref-
erence samples of muesli have been prepared by the company with known percentages of each component
and they have been measured m = 7 times for the purpose of calibration. Table 3.4 on page 45 shows the
results obtained by this calibration along with the ilr transformed values y∗i = ilr(yi) and x∗i,j = ilr(xi,j). In
Figure 3.4 on page 45, the values of known composition y1, . . . ,y4 are marked with a “+”. The observed
values of the compositions x1,1, . . . ,x4,7 are plotted on the left side of Figure 3.4 on page 45 and their
corresponding ilr transformed values y∗i and x∗i,j are plotted on the right side of Figure 3.4 on page 45.

Using the estimation method provided in chapter 3 on page 44 with d = 2, vi = y∗i and ui,j = x∗i,j for
i = 1, . . . , 4 and j = 1, . . . , 7, As we saw in chapter 3 page 46, we get the following estimators â, b̂ and
Σ̂∗M for a, b and Σ∗M:

1. â = (0.3354, 0.3357, 0.3289) or, equivalently, â∗ = (0.0162972,−0.0006318),
2. b̂ = 1.1070,

3. Σ̂∗M =

(
0.0014346 0.0007812
0.0007812 0.0102893

)
.

4. µ̂∗x̄ = (1.2766, 0.7657),

5. Σ̂∗x̄ =

(
0.0146362 0.0105839
0.0105839 0.0510887

)
.

6. µ̂∗0 = 1

b̂
(µ̂∗x̄ − â∗) = (1.1385, 0.6922),

7. Σ̂∗ = 1

b̂2

(
Σ̂∗x̄ − 1

m
Σ̂∗M

)
=

(
0.0115533 0.0084242
0.0084242 0.038891

)
.

We have computed the MEWMA-CoDa statistics Q∗i for i = 1, . . . , 20 using Equation 4.1 on page 52.
The optimal couple for δ = 1.5 is (r = 0.226, H = 11.149). The values of the MEWMA-CoDa statistics
Q∗i are listed in Table 4.6 on page 71 and also plotted in Figure 4.1 on page 72 with the upper control limit
UCL = H = 11.149. One can see that the process is in control, as all the values in Figure 4.1 on page 72
are smaller than the upper control limit.

Concerning the Phase II, i = 1, . . . , 20 batches of muesli have also been measured m = 3 times. Ta-
ble 4.7 on page 73 shows the results with the values xi,j , x̄i and x̄∗i , i = 1, . . . , 20. The values of the
MEWMA-CoDa statistics Q∗i in the presence of measurement error are listed in Table 4.7 on page 73 and
also plotted in Figure 4.2 on page 72 with the upper control limit UCL = H = 11.149 obtained in Phase I.

The process seems to be in-control up to sample #14 but sample #15 is clearly out-of-control. Then,
in samples #15 and #16 we found that the level of whole-grain cereals dropped down suddenly due to
a malfunction of the hatch regulating the quantity of whole grain cereals causing a shift from µ̂∗0 =
(1.1385, 0.6922) to µ̂∗x̄ = (1.2766, 0.7657). Using Equation 4.6 on page 52, we found that δ = 1.62.
Here, a shift of size δ = 1.5 in µ̂∗x̄ has been interpreted. For m = 3 and δ = 1.5, the optimal parameters of
MEWMA-CoDa chart are r = 0.226, H = 11.149.
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Table 4.6 – Phase I data for the muesli example

i j xi,j x̄i x̄∗i Qi

1 1 0.77 0.16 0.07 0.7090 0.2078 0.0832 1.2483 0.8678 0.1530
2 0.67 0.24 0.09
3 0.68 0.23 0.09

2 1 0.64 0.27 0.09 0.6301 0.2767 0.0932 1.2241 0.5819 0.1672
2 0.63 0.28 0.09
3 0.62 0.28 0.10

3 1 0.76 0.16 0.08 0.6958 0.2108 0.0934 1.1523 0.8445 1.0106
2 0.65 0.25 0.10
3 0.67 0.23 0.10

4 1 0.65 0.27 0.08 0.6434 0.2766 0.0800 1.3575 0.5968 0.2361
2 0.64 0.28 0.08
3 0.64 0.28 0.08

5 1 0.50 0.38 0.12 0.5268 0.3634 0.1098 1.1289 0.2625 3.1357
2 0.54 0.36 0.10
3 0.54 0.35 0.11

6 1 0.80 0.14 0.06 0.7677 0.1657 0.0666 1.3699 1.0843 0.2382
2 0.74 0.19 0.07
3 0.76 0.17 0.07

7 1 0.75 0.18 0.07 0.7304 0.1995 0.0701 1.3843 0.9177 0.1118
2 0.71 0.22 0.07
3 0.73 0.20 0.07

8 1 0.65 0.26 0.09 0.6534 0.2533 0.0932 1.2030 0.6700 0.0518
2 0.65 0.25 0.10
3 0.66 0.25 0.09

9 1 0.65 0.27 0.08 0.6635 0.2565 0.0800 1.3389 0.6721 0.3602
2 0.66 0.26 0.08
3 0.68 0.24 0.08

10 1 0.76 0.17 0.07 0.7534 0.1766 0.0700 1.3478 1.0257 0.3204
2 0.75 0.18 0.07
3 0.75 0.18 0.07

11 1 0.67 0.24 0.09 0.6601 0.2499 0.0900 1.2302 0.6868 0.0314
2 0.65 0.26 0.09
3 0.66 0.25 0.09

12 1 0.53 0.36 0.11 0.5367 0.3533 0.1100 1.1234 0.2956 1.5351
2 0.54 0.35 0.11
3 0.54 0.35 0.11

13 1 0.75 0.16 0.09 0.7251 0.1813 0.0936 1.1058 0.9803 1.9162
2 0.67 0.23 0.10
3 0.75 0.16 0.09

14 1 0.67 0.24 0.09 0.6701 0.2333 0.0966 1.1510 0.7460 3.0274
2 0.67 0.23 0.10
3 0.67 0.23 0.10

15 1 0.64 0.27 0.09 0.6468 0.2632 0.0900 1.2431 0.6357 2.2233
2 0.64 0.27 0.09
3 0.66 0.25 0.09

16 1 0.72 0.21 0.07 0.7440 0.1928 0.0632 1.4614 0.9548 0.0621
2 0.74 0.20 0.06
3 0.77 0.17 0.06

17 1 0.73 0.20 0.07 0.7436 0.1899 0.0665 1.4137 0.9652 0.4494
2 0.75 0.18 0.07
3 0.75 0.19 0.06

18 1 0.65 0.28 0.07 0.6568 0.2767 0.0665 1.5169 0.6112 3.1374
2 0.65 0.28 0.07
3 0.67 0.27 0.06

19 1 0.76 0.17 0.07 0.7604 0.1730 0.0665 1.3846 1.0468 3.3321
2 0.74 0.19 0.07
3 0.78 0.16 0.06

20 1 0.67 0.23 0.10 0.7013 0.2055 0.0931 1.1475 0.8678 0.9865
2 0.68 0.22 0.10
3 0.75 0.17 0.08
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Figure 4.1 – MEWMA-CoDa control chart for muesli Phase I data
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Figure 4.2 – MEWMA-CoDa control chart for muesli Phase II data
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Table 4.7 – Phase II data for the muesli example

i j xi,j x̄i x̄∗i Qi

1 1 0.68 0.23 0.09 0.6504 0.2563 0.0933 1.2050 0.6586 0.1608
2 0.63 0.27 0.10
3 0.64 0.27 0.09

2 1 0.68 0.24 0.08 0.6734 0.2433 0.0832 1.2916 0.7198 0.1297
2 0.66 0.25 0.09
3 0.68 0.24 0.08

3 1 0.62 0.31 0.07 0.6538 0.2761 0.0701 1.4712 0.6096 1.9213
2 0.67 0.26 0.07
3 0.67 0.26 0.07

4 1 0.67 0.22 0.11 0.6634 0.2265 0.1100 1.0283 0.7598 0.5056
2 0.65 0.24 0.11
3 0.67 0.22 0.11

5 1 0.63 0.27 0.10 0.6501 0.2566 0.0933 1.2060 0.6573 0.9005
2 0.66 0.25 0.09
3 0.66 0.25 0.09

6 1 0.77 0.15 0.08 0.7702 0.1498 0.0800 1.1804 1.1577 2.3750
2 0.76 0.16 0.08
3 0.78 0.14 0.08

7 1 0.67 0.24 0.09 0.6570 0.2498 0.0933 1.1990 0.6838 2.1677
2 0.66 0.24 0.10
3 0.64 0.27 0.09

8 1 0.64 0.28 0.08 0.6777 0.2456 0.0767 1.3644 0.7176 0.3496
2 0.72 0.21 0.07
3 0.67 0.25 0.08

9 1 0.72 0.21 0.07 0.7003 0.2265 0.0732 1.3826 0.7982 0.0164
2 0.68 0.24 0.08
3 0.70 0.23 0.07

10 1 0.64 0.26 0.10 0.6501 0.2567 0.0932 1.2062 0.6571 0.0896
2 0.66 0.25 0.09
3 0.65 0.26 0.09

11 1 0.73 0.20 0.07 0.7436 0.1863 0.0700 1.3640 0.9786 0.1728
2 0.74 0.19 0.07
3 0.76 0.17 0.07

12 1 0.81 0.12 0.07 0.8034 0.1266 0.0700 1.2381 1.3067 3.8026
2 0.80 0.13 0.07
3 0.80 0.13 0.07

13 1 0.64 0.28 0.08 0.6570 0.2630 0.0801 1.3448 0.6474 1.1412
2 0.68 0.24 0.08
3 0.65 0.27 0.08

14 1 0.82 0.11 0.07 0.7786 0.1415 0.0799 1.1633 1.2057 5.5389
2 0.74 0.17 0.09
3 0.77 0.15 0.08

15 1 0.61 0.25 0.14 0.6405 0.2193 0.1402 0.8028 0.7580 14.9341
2 0.66 0.20 0.14
3 0.65 0.21 0.14

16 1 0.70 0.23 0.07 0.6936 0.2332 0.0732 1.3906 0.7709 5.9509
2 0.71 0.22 0.07
3 0.67 0.25 0.08

17 1 0.74 0.19 0.07 0.7401 0.1899 0.0700 1.3700 0.9620 3.9943
2 0.73 0.20 0.07
3 0.75 0.18 0.07

18 1 0.56 0.35 0.09 0.5335 0.3765 0.0901 1.3099 0.2465 0.1454
2 0.51 0.40 0.09
3 0.53 0.38 0.09

19 1 0.55 0.35 0.10 0.5468 0.3600 0.0932 1.2736 0.2955 2.3477
2 0.55 0.36 0.09
3 0.54 0.37 0.09

20 1 0.77 0.16 0.07 0.7539 0.1760 0.0701 1.3460 1.0285 0.3038
2 0.76 0.17 0.07
3 0.73 0.20 0.07
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4.4 Conclusions
Measurement errors have a large impact on control charts. This chapter deals with the MEWMA-CoDa

control chart in the presence of measurement errors. We assumed that the quality characteristics Yi is not
directly observable but can be measured through an observable quantity Xi,j . An additive model has been
used to study the influence of measurement errors on the MEWMA-CoDa control chart. For the variance
covariance matrix of CoDa, four cases have been taken into account. To study the influence of the param-
eters σM, b , m and p on the MEWMA-CoDa control chart, different values of each parameter have been
studied. The main conclusions are: i) σM has a negative impact on the ARL performance of the MEWMA-
CoDa control chart keeping b , m and p constant, ii) b has a positive impact on the ARL performance of the
MEWMA-CoDa control chart keeping σM , m and p constant, iii) m has a positive but mild impact on the
ARL performance of the MEWMA-CoDa control chart keeping σM , b and p constant, iv) p has a negative
impact on the ARL performance of the MEWMA-CoDa control chart keeping σM ,b and m constant. A
comparison with the Hotelling CoDa T 2 control chart also proved that the MEWMA-CoDa control chart is
between 70% to 90% more efficient than the Hotelling CoDa T 2 control chart in the presence of measure-
ment errors. Future research about control charts for monitoring CoDa can focus on studying the effect of
the estimation of the parameters on the statistical properties of CoDa type control charts.

The work presented in this chapter has been accepted for publication in Journal of Quality and Reliabil-
ity Engineering International.

In this chapter we discussed the effect of measurement errors on the MEWMA-CoDa control chart
proposed by TRAN et al. (2018). In next chapter we will discuss some nonparametric control charts for
compositional data using data depth.



5
Nonparametric control charts for
Compositional Data

In Multivariate situations, a data depth is used to measure how deep or how centred is a given point
in a given data cloud. While dealing with data depth, there is no distributional requirement of any kind
concerning the data. There are many studies that deals with control charts using data depth to overcome the
problem of non normality of the data. Among them Liu et al. (2004) studied a nonparametric multivariate
moving average control charts based on data depth. Bae et al. (2016) studied multivariate control charts for
depth-based data that provide dimension reduction for high-dimensional data in a completely nonparamet-
ric way. Also Yue and Liu (2017) proposed an adaptive multivariate nonparametric exponentially weighted
moving average control chart with variable sampling interval using the Mahalanobis depth. Further Idris
et al. (2019) studied a control chart using data depth based on an influence function of a variance vector and
they found that the disadvantage of the Mahalanobis distance lies in the generalized variance and using a
vector variance is proved to be a better option instead of using the generalized variance. Recently, Barale
and Shirke (2019) proposed a nonparametric chart based on a data depth for location parameter.

The goal of this chapter is to study some nonparametric control charts for compositional data using
data depth. The remainder of this chapter is organized as follows: in Section 5.1, an Introduction to Data
Depth is briefly presented. Section 5.2 details the nonparametric control charts and Section 5.3 investigates
the performance of the r chart, Q chart and DDMA chart applied to Compositional Data and Section 5.4
describes an application of the three charts. Finally, an illustrative example is provided in Section 5.5 and
conclusions and future research directions are presented in Section 5.6.

5.1 Introduction to Data Depth
The notion of data depth was first introduced by Mahalanobis (1936), then Tukey (1975) defined the

half space depth as a graphical representation of bivariate data sets. Further Donoho and Gasko (1992)
extended the concept of depth to multivariate data sets. A data depth is described as how centered or deep
is a given point from a multivariate distribution. The data depth gives the outward ordering of the data set
from the center of the distribution. While dealing with data depth there is no need to fulfill any assumption
of statistical distribution, hence it can be considered as a nonparametric statistical data analysis tool. Data
depth is suitable for high dimensional data with outliers as depth functions are known to be robust.

75
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Let us assume that xi = (xi,1, . . . ,xi,p) ∈ Sp are p-part compositions at time i = 1, 2, . . . and x1,x2, . . .
are independent multivariate random compositions with mean µ and variance-covariance matrix Σ, Let us
also assume another sample y1,y2, . . . ,ym be m compositions where yi follows certain distribution G and
is referred to as the reference sample. Based on the observations xi, we have to find whether it is meeting
the properties of the prescribed distribution G or not. Assuming F as the distribution of xi, the objective is
to see, if any differences exist between the distributions F and G. In this situation, the notion of data depth
can be used.

Some of the depth functions are discussed below,

1. The Mahalanobis depth was introduced by Mahalanobis (1936). Let a point xi = (xi,1, . . . ,xi,p) ∈
Sn ⊂ Rp, then the Mahalanobis depth of x having p-dimensional data set Sn will be

MhD(x;Sn) = [1 + (x− x̄)ᵀS−1(x− x̄)]−1

where x̄ and S are the mean vector and dispersion matrix of Sn, respectively.
Unfortunately, this function depends on non robust measures such as the mean and dispersion matrix.
Also, this function depends on the second moment, so it makes no sense to compute it in the case
when the second moment does not exist.

2. The location depth, also known as the Tukey’s depth or half space depth has been defined by Tukey
(1975). If a point x = (x1,x2, . . . ,xp) ∈ Sn, then its location depth will be the smallest number of
data points in a closed halfspace with boundary through the point x.
The depth of a point x can easily be found using the median in case of univariate data. In case
of multivariate data the generalized form of the median is used as the point with maximal depth.
Therefore, the formula to find Tukey’s depth is,

TD(F,x) = inf
H
F (H) : H is a closed half space containing x

3. The simplicial depth was defined by Liu (1990). Let x1,x2, . . . ,xp+1 be (p+1) iid observations from
F . The simplicial depth at point x is,

Dm(x) =

(
m

p+ 1

)−1 ∑
1≤i1<...<ip+1≤m

I(x ∈ S[xi1 , . . . ,xip+1 ]) (5.1)

4. Projection depth was introduced by Zuo (2003) as,

PD(F,x) = [1 +Op(F,x)]−1

where Op(F,x) = sup‖u‖=1
‖u′x−µFu‖

σFu
, Fu denotes the distribution of u′x

5. Spatial depth was defined by Gao (2003) as,

PD(F,x) = 1− ‖ E(S(x− y)) ‖2

where y ∼ F and S(x) =

{ x
‖x‖ x 6= 0,

0 x 6 0.

5.2 Nonparametric Control charts
In this section we will discuss the statistics that can be derived from data depth which are suitable for

plotting control charts. Let us assume a sample y1,y2, . . . ,ym be m random compositions from certain
distribution G then the relative rank of y is,
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rG(y) = P{DG(y) < DG(y) | y ∼ G}

where DG(y) is the depth of y under certain distribution G.

rGm(y) = #{yj | DGm(yj) < DGm(y), j = 1, 2, . . . ,m}/m (5.2)

where rG(y) is an estimation of the probability of points that are more outlying than the given point y in
the space Rk under a certain distribution G. It gives the relative outward ranks of y and rGm(y) is used for
the sample points. If the values of rGm(y) are very small, it shows that y comes from the same distribution
like yi’s. After representing all the observations by their relative ranks rGm(y) , we can construct control
charts based on these ranks.

5.2.1 r charts
The r charts deals with the relative ranks of {x1,x2, . . .} instead of dealing directly with the values of

xi’s. Here rGm(y) will be plotted against the time i = 1, 2, . . . with a center line CL = 0.5 and the lower
control limit LCL = α. If the value of rGm(y) is less than LCL it means that the process is out-of-control
and the distribution of x is not same as the distribution of reference sample y. If the values of rGm(y) are
larger than CL then we can conclude that the distribution of x is the same as the distribution of y

5.2.2 Q charts
According to Liu (1995) the multivariate chart Q is the equivalent of the univariate x̄ chart, in which the

test statistic is the subgroup average of the statistics rGm(x)i taking a fixed subgroup size. Let us assume q
subgroup size. The average of rGm(x)i is denoted by Q(Gm, F

j
q ) where F j

q is the empirical distribution of
xi in the jth subgroup with j = 1, 2, . . .. The Q statistics can be defined as

Q(G,F ) = P{DG(y) ≤ DG(x)|y ∼ G,x ∼ F} (5.3)

with sample approximation of Q being equals to,

Q(Gm, Fq) =
1

q

q∑
i=1

rGm(xi) (5.4)

For the Q chart, we have CL = 0.5 and,

LCL =
(αq!)1/q

q
(5.5)

5.2.3 DDMA charts
Liu et al. (2004) defined the DDMA chart. Let us assume that a reference sample y = {y1,y2, . . . ,ym}

follows a distribution G and another sample of new observations x = {x1,x2, . . . ,xn} follows another
distribution F . So the DDMA charts can be used to deal with moving averages of the new observed
sample, where q is the length of the moving average, such that x̃q = (x1 + . . . + xq)/q, x̃q+1 =
(x2 + . . . + xq+1)/q, . . . , x̃n = (xn−q+1 + . . . + xn)/q. Let x̃ = (x̃q, x̃q+1, . . . , x̃n). Then the corre-
sponding reference sample will be ỹq = (y1 + . . .+ yq)/q, ỹq+1 = (y2 + . . .+ yq+1)/q, . . . , ỹm =
(ym−q+1 + . . . + ym)/q. Let ỹ = (ỹq, ỹq+1, . . . , ỹm). For each x̃i ∈ x̃, we calculate the relative ranks
(ỹq, ỹq+1, . . . , ỹm), that is

rG̃m−q+1
(x̃i) =

#{ỹj|DG̃m−q+1
(yj) < DG̃m−q+1

(xi), j = q, . . . ,m}
m− q + 1

(5.6)
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where G̃m−q+1 is the empirical distribution of ỹ and DG̃m−q+1
(·) is the empirical depth computed with

respect to G̃m−q+1 . The DDMA chart is simply the plot of rG̃m−q+1
(x̃i) along with the indices i = q, . . . , n.

Similarly to the r chart, the LCL of the DDMA control chart is equal to α.

5.3 Performance of the control charts
The goal of this section is to investigate the performance of all the three control charts defined above for

the specific case of CoDa. As for the other chapters, we assume a p = 3 part composition. Three different
multivariate distributions are taken into consideration for the ilr coordinates i.e the multivariate normal ,
exponential and Cauchy distributions. The pdf of these distributions are as follows,

1. The bivariate normal distribution

f(x1, x2) =
1

(2π)σ1σ2

√
1− ρ2

exp

(
− 1

2(1− ρ2)

[
(x1 − µ1)2

σ2
1

+
(x2 − µ2)2

σ2
2

− 2ρ(x1 − µ1)(x2 − µ2)

σ1σ2

])
where ρ is the correlation between x1 and x2 and where σ1 > 0 and σ2 > 0.

2. The bivariate exponential distribution

f(x1, x2) =

(
(1− θ)λ1λ2 + θλ1

2λ2

(
x1 +

1

λ1

)
+ θλ1λ2

2

(
x2 +

1

λ2

)
+ θ2λ1

2λ2
2

(
x1 +

1

λ1

)(
x2 +

1

λ2

))
exp

(
λ1

(
x1 +

1

λ1

)
+ λ2

(
x2 +

1

λ2

)
+ θλ1λ2

(
x1 +

1

λ1

)(
x2 +

1

λ2

))
3. The bivariate Cauchy distribution

f(x1, x2) =
1

2π

[
γ

((x1 − x1,0)2 + (x2 − x2,0)2 + γ2)1.5

]
where x1,0 and x2,0 are the location parameters and γ is the scale parameter.

First 1000 random samples of p = 3 part CoDa are generated using the above mentioned distributions
with mean µ∗ = [0, 0] and, similar to Zaidi et al. (2019), the following two situations are considered for the
ilr CoDa variance-covariance matrix Σ∗

Case #1 uncorrelated case

Σ∗ =

(
1 0
0 1

)
,

Case #2 correlated case

Σ∗ =

(
1 1/2

1/2 1

)
.

These 1000 samples are being considered as the reference sample to find the data depth. To simulate
the ARL of the control charts 10000 new samples of size 40 are being generated, among each sample 20
observations are from the original distribution and the other 20 observations are from a shifted distribution.
Then the simplicial depths of all the samples have been calculated with respect to the reference sample and
then using the depth values of the ilr transformed values of CoDa instead of the original values we can
simulate the performance of the above mention charts.

To find the ARL we first select the LCL of all the three charts. For the r and DDMA charts, we have
LCL = 0.0027 = α while, for theQ chart using Equation 5.5 we have LCL = 0.01596. Using these control
limits we can simulate the ARL of all the three charts. For the Q chart q = 5 has been taken, also for the
DDMA chart q = 5 has been studied.

The different shifts in the means being considered are as follows,
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Table 5.1 – ARL values

With Correlation
Shifted mean r chart Q chart DDMA chart

Normal Exponential Cauchy Normal Exponential Cauchy Normal Exponential Cauchy
[0, 0] 19.23 17.98 19.42 7.93 7.93 7.93 14.09 9.44 15.11

[0.5, 0.5] 21.16 10.42 19.63 7.93 7.40 7.93 10.38 10.60 17.71
[0.5, 0.0] 21.18 17.38 19.15 7.94 7.89 7.93 10.09 9.77 16.01
[1.0, 0.5] 22.39 10.48 19.14 7.90 7.32 7.93 10.76 9.30 16.39
[0.0, 1.0] 22.55 17.55 19.02 7.78 7.86 7.93 10.43 9.32 16.01
[1.0, 1.0] 22.14 9.55 19.60 7.90 7.08 7.93 10.83 9.39 18.07

Without Correlation
[0, 0] 19.78 18.56 19.30 7.95 7.93 7.93 12.20 10.90 20.97

[0.5, 0.5] 22.02 10.18 19.66 7.95 7.32 7.93 10.90 9.98 22.04
[0.5, 0.0] 20.73 9.91 19.27 7.97 7.07 7.93 11.23 10.53 20.40
[1.0, 0.5] 23.43 15.24 19.61 7.93 7.82 7.93 10.87 10.05 23.19
[0.0, 1.0] 24.39 9.52 19.63 7.85 6.87 7.93 10.92 10.03 22.78
[1.0, 1.0] 24.36 9.63 19.64 7.92 6.94 7.94 10.32 9.28 21.85

1. From µ∗0 = [0, 0] to µ∗1 = [0.5, 0.5],

2. From µ∗0 = [0, 0] to µ∗2 = [0.5, 0],

3. From µ∗0 = [0, 0] to µ∗3 = [1, 0.5],

4. From µ∗0 = [0, 0] to µ∗4 = [0, 1],

5. From µ∗0 = [0, 0] to µ∗5 = [1, 1].

The values of ARL are listed in Table 5.1

From Table 5.1 we can see that, when the sample is normally distributed the values of ARL for the r
chart increases with an increase in the values of the shift so, we can say that in both Cases #1 and #2 the r
charts do not give a better performance when the sample is normally distributed. While the ARL for both
the Q and DDMA charts decreases with an increase in the values of the shift. So it is clearly visible from
Table 5.1 that the Q and DDMA charts performs better in case of normal distribution. When the sample is
exponentially distributed the ARL of the r, Q and DDMA charts decreases with an increase in the values
of the shift. So it is clearly visible from Table 5.1 that the three charts performs better in both Cases #1 and
#2 with an increase in shift.

When the sample follows the Cauchy distribution the ARL of the r, Q and DDMA charts increases with
an increase in the values of the shift. So it is clearly visible from Table 5.1 that all the three charts do not
performs better in both Cases #1 and #2 with an increase in the values of shift.

5.4 Application of the chart

The goal of this section is to study the application of the control charts defined above using data depth for
compositional data. We assume that at time i = 1, 2, . . . , we collect a sample of size n = 1000 with p = 3
part composition from a multivariate normal distribution with mean µ∗ = [0, 0] and variance-covariance
Σ∗ = (1, 0.05; 0.05, 1). We use this sample as reference sample. Then we generate another sample of size
n = 40 with p = 3 from a multivariate normal distribution, among these n = 40 values 20 are with same
mean and variance like the reference sample while the other 20 are with a shift in the mean from µ∗ = [0, 0]
to µ∗ = [1, 1] and same variance. The first step is to transform the data from the simplex sample space Sp
to the real space Rp−1 using the ilr transformation, then the data depth of the samples have been computed
using the simplicial depth given in Equation 5.1. Then using Equation 5.2 values of the r statistic have been
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obtained.

Firstly for the r charts, the statistics r is directly being plotted. Secondly for theQ chart we use the Equa-
tion 5.4. We have presented the Q chart with four different possibilities for average q = 2, 3, 5 and 10.
Similarly we have also plotted the DDMA charts with four different possibilities for the moving average pa-
rameter q = 2, 3, 5 and 10. For the sake of comparison of the Q and DDMA charts we have plotted both
the charts in Figure 5.1 on the next page using different values of averages together to see the performance
of these ones more clearly.

From Figure 5.1 on the facing page we can clearly see that when the value of the subgroup size q = 2
and the length of the moving average q = 2 is selected, the DDMA charts shows more out of control points
than the Q charts. The Q chart shows the first out of control point on the 40th observation while the DDMA
chart shows it on the 17th observation. On total there are five out of control points in the DDMA chart while
just one out of control point in the Q chart. Similarly when the value of the subgroup size q = 3 and the
length of the moving average q = 3 are selected the Q chart gives no out of control point, while the DDMA
chart shows six out of control points with the first point on the 18th observation. Also for q = 10, the Q
chart gives no out of control point, while the DDMA chart shows six out of control points with the first
point on the 25th observation. So we can conclude that the DDMA charts are more efficient in detecting
out of control points than the Q charts.

Next we plotted the r chart along with the DDMA chart with the length of the moving average q = 2
to see the efficiency of the DDMA chart over the r chart and we can see in Figure 5.2 on page 82 that the
r chart shows two out of control points with the first point at the 21st observation while the DDMA chart
shows five out of control points with the first one on the 17th observation.

5.5 Illustrative Example

A pathologist is interested in introducing a new method to determine the composition of white blood
cells in his laboratory (i.e granulocytes, lymphocytes, monocytes). First he used a predetermined method
known as microscopic inspection for 30 samples of white blood cells and he recorded the 3-part composi-
tions and then he used a quick new method known as image analysis on another set of 30 samples. The data
has been taken from Aitchison (1986, page 366, Data 11) . Here we used the first sample of 30 composi-
tions as the reference sample as it is known to be an accurate procedure to study the composition of white
blood cells and the other samples of 30 compositions as a new sample under study. First, we will apply
the normality test on the sample data to see if the data is normally distributed or not. For this purpose we
have applied the Henze-Zirkler test for multivariate normality on the new data set and we have found that
the p-value of Henze-Zirkler test comes out to be 0.000080 , so we can say that the data are not normally
distributed as the p-values is less than the minimum threshold (i.e 0.05). In this case, the Hotelling T 2 chart
is not reliable as the data are not normally distributed so we have all the three charts, with the Q chart using
the subgroup sizes 2 and 5 as well as the DDMA chart using the length of the moving average to be 2 and
5 along with the values of the Hotelling T 2 statistics.

We fixed α = 0.05 as, if we take smaller than that, the lower control limit will be very small for the
DDMA charts LCL = α, so by selecting LCL = 0.05 we can clearly see from Table 5.2 on page 82 that the
r chart shows six out of control points having the first point on the first observation, while for the Q chart ,
using Equation 5.5, hence LCL = 0.158 (when q = 2) and LCL = 0.286 (when q = 5). From Table 5.2 on
page 82 we can see that the Q chart shows only two out of control points for both q = 2 and q = 5 with the
first out of control point on the 10th observation. In case of the DDMA charts, when q = 2 the chart shows
a total of sixteen out of control points with the first one on the first observation. Also when q = 5 has been
selected the DDMA chart gives fourteen out of control points with the first one on the first observation. This
can also be seen in Figure 5.3 on page 84. For the sake of comparison we have also plotted the Hotelling T 2
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Figure 5.1 – Q chart and DDMA charts with different values of q
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Figure 5.2 – r chart and DDMA chart

Table 5.2 – White cell compositions of 30 blood cells

i xi x∗i r Q(2) Q(5) DDMA(2) DDMA(5) T 2

1 0.73 0.26 0.01 2.93 0.74 0.00 - - - - 1.79
2 0.66 0.28 0.06 1.67 0.61 0.90 0.62 - 0.00 - 0.01
3 0.73 0.21 0.07 1.45 0.86 0.80 - - 0.69 - 0.10
4 0.81 0.18 0.02 2.44 1.08 0.43 0.67 - 0.66 - 0.80
5 0.62 0.35 0.03 2.27 0.40 0.70 - 0.63 0.31 0.00 0.55
6 0.86 0.11 0.03 1.88 1.43 0.93 0.62 - 0.34 0.65 0.70
7 0.96 0.03 0.01 2.10 2.45 0.33 - - 0.34 0.62 4.05
8 0.93 0.05 0.02 1.96 2.02 0.53 0.18 - 0.00 0.31 2.29
9 0.90 0.07 0.03 1.90 1.79 0.63 - - 0.00 0.35 1.54

10 0.94 0.06 0.01 2.64 2.00 0.00 0.13 0.25 0.00 0.35 3.08
11 0.87 0.11 0.02 2.49 1.44 0.37 - - 0.00 0.00 1.36
12 0.45 0.52 0.03 2.22 -0.11 0.57 0.67 - 0.00 0.00 1.28
13 0.24 0.74 0.02 2.34 -0.79 0.00 - - 0.69 0.00 3.59
14 0.48 0.47 0.05 1.79 0.00 0.67 0.60 - 0.00 0.00 0.68
15 0.32 0.66 0.02 2.60 -0.52 0.00 - 0.55 0.69 0.00 3.11
16 0.46 0.52 0.02 2.53 -0.08 0.20 0.40 - 0.00 0.65 1.74
17 0.38 0.25 0.37 -0.15 0.28 0.30 - - 0.31 0.00 4.08
18 0.44 0.24 0.32 0.01 0.43 0.43 0.22 - 0.00 0.65 3.30
19 0.58 0.14 0.28 0.04 1.00 0.50 - - 0.00 0.00 3.33
20 0.40 0.17 0.43 -0.42 0.61 0.27 0.00 0.20 0.00 0.31 5.12
21 0.80 0.15 0.04 1.69 1.18 0.83 - - 0.00 0.00 0.28
22 0.66 0.26 0.08 1.32 0.65 0.73 0.82 - 0.69 0.00 0.15
23 0.73 0.22 0.06 1.59 0.85 0.77 - - 0.59 0.00 0.04
24 0.65 0.30 0.05 1.74 0.55 0.97 0.87 - 0.66 0.00 0.04
25 0.37 0.17 0.46 -0.51 0.57 0.00 - 0.67 0.72 0.65 5.60
26 0.18 0.80 0.02 2.28 -1.08 0.00 0.23 - 0.00 0.58 4.74
27 0.33 0.63 0.05 1.89 -0.46 0.40 - - 0.00 0.62 1.87
28 0.43 0.51 0.06 1.65 -0.13 0.60 0.53 - 0.38 0.69 0.92
29 0.94 0.05 0.01 2.40 2.14 0.23 - - 0.00 0.00 3.12
30 0.86 0.11 0.03 1.84 1.47 0.87 0.45 0.49 0.00 0.00 0.76
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chart to see if nonparametric control charts performs better than when the data is not normally distributed.
For UCL of Hotelling T 2 chart we know that UCL = F−1

χ2 (1− α0|p− 1) so UCL = 5.99 using α = 0.05.
We can see from Table 5.2 on the preceding page that there is no out of control point in the data. From this
study we can conclude that the new method introduced by the the pathologist does not seems to be very
effective as there are many out of control points using the sample with predetermined accurate observations
as the reference sample. In conclusion, there is no evidence of substituting the microscopic inspection with
image analysis.

5.6 Conclusions
In this chapter, nonparametric control charts has been investigated for compositional data. These charts

have been previously used on regular multivariate data. This chapter makes an attempt to use these non-
parametric control charts on compositional data. To study the performance of all the three charts along with
their efficiency, three different multivariate distributions i.e. normal, exponential and Cauchy have been
studied with two different cases for the variance-covariance matrix, one uncorrelated and the other one
correlated. Different combinations of the mean shift have been selected in order to study the performance
of these charts. The main conclusion drawn from the performance study is that the DDMA and Q charts
perform better in the case of a normal distribution, while in the case of the Cauchy distribution all the three
charts does not perform very well while, in the case of the exponential distribution, all the three charts
perform better when the shift in mean increases. In case of a Cauchy distribution none of all the three charts
under study gives a good performance with different values of the shift. Future research about control charts
monitoring CoDa should be focused on another new nonparametric chart that can perform better in case of
Cauchy distribution, on studying the control charts on compositional data when some of the information
is missing or, on studying the effect of the estimation of parameters on the statistical properties of control
charts.
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Figure 5.3 – DDMA ,Q , r and Hotelling T 2 charts



6
General Conclusions & Perspectives

6.1 General Conclusions

During the last decade, an enormous number of new advanced control charts have been proposed for
univariate and multivariate processes with many applications in manufacturing and service sectors. Chapter
1 of this thesis is divided into three major parts. Part one consists of Univariate control charts, in the second
part we discussed some nonparametric control charts and the third part describes some multivariate control
charts.

In the case of continuous multivariate processes, the vast majority of control charts assumes that the data
are unconstrained. But there is a specific category of multivariate data which are constrained by definition.
This kind of data is called CoDa and they are represented by vectors whose strictly positive components
only convey relative information. Chapter 2 deals with the literature of CoDa. This chapter is also divided
into three major parts: in first part we have an introduction of compositional data along with principles and
geometry of CoDa , in second part we discuss the transformations of CoDa from the simplex sample space
to the real space, all the three main types of transformation have been discussed, while in third part we have
discussed some of the previous researches about control charts on compositional data.

Concerning the statistical process monitoring of CoDa, there are few contributions by now. Even though
many researches have been conducted on the evaluation of control charts in the presence of measurement
errors, few of them have been devoted to multivariate data and, as far as we know, none of them have been
devoted to CoDa. Chapter 3 deals with the effect of measurement errors on control chart for CoDa. The
goal of this chapter is to impose measurement error on the T 2

C control chart proposed by Vives-Mestres
et al. (2014b). A linearly covariate measurement error model for CoDa has been presented, where the
quality characteristics yi is not directly observable and can only be assessed using several independent
measurements xi,j . Two situations have been considered for the CoDa variance-covariance matrix: a cor-
related case and an uncorrelated one. Different combinations of the parameters involved in the model have
been selected in order to study their influence on the performance of the Hotelling CoDa T 2 control chart.
The main conclusions drawn from these investigations are if b and m are kept constant, the ARL increases
when the value of σM increases, and if σM and m are kept constant, the ARL decreases as the value of b
increases, if σM and b are kept constant, the ARL decreases (slowly) as the value of m increases. At the
end of the Chapter 3 a realistic illustrative example based on the production of muesli is used to illustrate
the estimation of the measurement device parameters and the in-control process parameters, as well as to
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demonstrate the ability of this control chart to efficiently detect changes in the muesli composition.

The Chapter 4 can be considered as an extension of the work of TRAN et al. (2018) (for monitoring
compositional data using a multivariate EWMA, i.e. a MEWMA-CoDa chart) by taking into account po-
tential measurement errors that are known to highly affect production processes. Similar to Chapter 3 a
linearly covariate error model with a constant error variance is also used in this chapter to study the impact
of measurement errors on the MEWMA-CoDa control chart. For the variance covariance matrix of CoDa,
four cases have been taken into account to study the influence of the involved parameters. The main conclu-
sions are, σM has negative impact on the performance of the MEWMA-CoDa control chart keeping b and
m constant, b has positive impact on the performance of the MEWMA-CoDa control chart keeping σM and
m constant, m has positive but mild impact on the performance of MEWMA-CoDa control chart keeping
σM and b constant. A comparison with the Hotelling CoDa T 2 control chart also proved that the MEWMA-
CoDa control chart is between 70% to 90% more efficient than the Hotelling CoDa T 2 control chart in the
presence of measurement errors. At the end of Chapter 4 a real life example of muesli production, using
multiple measurements for each composition is presented in order to estimate the parameters and also to
demonstrate how the MEWMA-CoDa can handle measurement errors to detect shifts in the process.

As discussed above, there are very few contributions that deals with control charts for CoDa. A vast ma-
jority of control charts deals with the assumption of multivariate-normality of the data, but it is not the case
in many real world examples. Most of the time the data does not fulfill the assumption of normality, and
there is a need to investigate some non parametric charts, in which the knowledge of the underlying distribu-
tion of the data is not required. In Chapter 5 we have investigated the performance of some nonparametric
charts on compositional data using data depth. These charts have been previously used on multivariate data.
In this chapter we have made an attempt to use the predefined nonparametric control charts on composi-
tional data. Three charts have been used, the r chart, Q chart and DDMA charts. To study the performance
of all the three charts along with their efficiency, three different multivariate distributions normal, expo-
nential and Cauchy have been studied with two different cases for the variance-covariance similar to the
previous chapters. Different combinations of the mean shift have been selected in order to study the effect
of the shift on the performance of these charts. The main conclusion drawn from the performance study is
that DDMA and Q charts perform better in the case of the normal distribution, while in case of the Cauchy
distribution all the three charts does not perform very well. While in the case of the exponential distribution,
all the three charts perform better when the shift in mean increases. In case of the Cauchy distribution none
of the charts under study give a good performance no matter the values of shift.

6.2 Perspectives
As discussed in the previous chapters there is a big gap for control charts for CoDa in the literature so

there are many different possibilities of carrying several research works on control charts for CoDa. Some
of the good ideas to work on this aspect can be,

1. MCUSUM type chart for CoDa.

2. MCUSUM type chart for CoDa in presence of measurement error.

3. Study of the effect of the estimation of parameters on the statistical properties of control charts.

4. An extension to T 2 chart with subgroup (n > 1).

5. Charts for missing values in CoDa.

Furthermore, in this thesis we have discussed just three types of nonparametric control charts for CoDa
using data depth. Another idea can be to develop nonparametric control charts for CoDa directly without
using the data depth. Also there is possibility to study the same charts by using CoDa itself instead of using
the transformation of data.



References

T. Abbas, S. A. Abbasi, M. Riaz, and Z. Qian. Phase II Monitoring of Linear Profiles with Random
Explanatory Variable under Bayesian Framework. Computers & Industrial Engineering, 127:1115 –
1129, 2019. 51

B. M. Adam, C. Lowry, and W. H. Woodall. The Use (and Misuse) of False Alarm Probabilities in Control
Chart Design in Frontier in Statistical Qaulity Control. Physica Verlag, Heidelberg, 1992. 15

J. Aitchison. The Statistical Analysis of Compositional Data. Monographs on Statistics and Applied Proba-
bility. Reprinted 2003 with additional material by Blackburn Press. Chapman and Hall Ltd, London(UK),
1986. 21, 22, 25, 80

J. Aitchison. The Statistical Analysis of Compositional Data. Monographs on Statistics and Applied Prob-
ability. Springer Netherlands, 2011. 24

A. R. Ansari and R. A. Bradley. Rank Sum Test for Dispersion. Annals of Mathematical Statistics, 31:
1174–1189, 1960. 18

L. A. Arorian and H. Levene. The Effectivenes of Quality Control Charts. Journal of American Statistical
Association, 45:520–529, 1950. 20

S. J. Bae, G. Do, and Paul P. Kvam. On Data Depth and the Application of Nonparametric Multivariate
Statistical Process Control Charts. Applied Stochastic Models in Business and Industry, 32(5):660–676,
2016. 75

S. M. Barale and D. T. Shirke. Nonparametric Control Charts Based on Data Depth for Location Parameter.
J Stat Theory, 13(41), 2019. 75

C.A. Bennett. Effect of Measurement Error on Chemical Process Control. Industrial Quality Control, 10
(4):17–20, 1954. 33

C. Bilen, A. Khan, and W. Chattinnawat. Dual-Monitoring Scheme for Multivariate Autocorrelated Cascade
Processes with EWMA and MEWMA Charts. Quality Technology & Quantitative Management, 14(2):
156–177, 2017. 51

D. Billheimer, P. Guttorp, and W.F. Fagan. Statistical Interpretation of Species Composition. Journal of the
American Statistical Association, 96(456):1205–1214, 2001. 26

R.A. Boyles. Using the Chi-Square Statistic to Monitor Compositional Process Data. Journal of Applied
Statistics, 24(5):589–602, 1997. 27

P. Castagliola, G. Celano, and S. Psarakis. Monitoring the Coefficient of Variation Using EWMA Charts.
Journal of Quality Technology, 43(3):249–265, 2011. 55

S. Chakraborti and M. A. Van de Wiel. A New Nonparametric Control Chart Based on the MannâĂŞWhit-
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Titre : Développement de procédures de suivi statistique de données compositionnelles  

Mots clés : Maîtrise statistique des procédés, Carte de contrôle,  données compositionnelles, 
erreur de mesure, nonparamétrique. 

Résumé : La Maîtrise Statistique des Procédés  
(MSP) est une méthodologie largement utilisée, 
basée sur la mise en œuvre des cartes de 
contrôle, permettant de s'assurer de la stabilité 
du processus et d'améliorer sa capabilité grâce 
à la réduction de la variabilité du processus. La 
sélection d'une carte de contrôle appropriée 
dépend du type et de la distribution des 
données. Lorsqu'il existe plusieurs 
caractéristiques de qualité, des cartes de 
contrôle multivariées doivent être adoptées. 
Mais il existe une catégorie spécifique de 
données multivariées qui sont contraintes par 
définition et connues sous le nom de données 
compositionnelles (CoDa). Le but de cette 
thèse est de proposer et 
d'étudiersystématiquement de nouvelles cartes 
de contrôle pour les données 
compositionnelles qui n'ont pas encore été 
proposées jusqu'à présent dans la littérature. 

La carte de contrôle de Hotelling T2-CoDa en 
présence d'erreur de mesure et la carte de 
contrôle MEWMA-CoDa en présence d'erreur 
de mesure ont été proposées surveiller des 
données compositionnelles. En outre, certaines 
méthodes non paramétriques pour la 
surveillace de données compositionnelles ont 
également été proposés. Les performances de 
chaque carte de contrôle ont été étudiées et les 
paramètres optimaux ont été 
systématiquement évalués. Des exemples de 
données compositionnelles réelles ont été 
utilisés afin d'étudier les performances des 
cartes proposées. 
 

 

Title : Development of statistical monitoring procedures for compositional data 

Keywords : Statistical control of processes, control chart, composition data, measurement error, 
nonparametric. 

Abstract : Statistical Process Monitoring  
(SPM) is a widely used methodology, based on 
the implementation of control charts, for  
achieving process stability and improving 
capability through the reduction of the process 
variability. The selection of a suitable control 
chart depends on the type and distribution of  
he data. When there are several quality 
characteristics, multivariate control charts have 
to be adopted.  But there is a specific category 
of multivariate data which are constrained by 
definition and known as Compositional Data 
(CoDa). This thesis makes an attempt to 
systematically propose new control charts for 
the for compositional data that have not yet 
been proposed so far in the literature.  
 

Hotelling T2-CoDa control chart in the 
presence of measurement error and MEWMA-
CoDa control chart in the presence of 
measurement error has been proposed for 
compositional data. Furthermore, some 
nonparametric charts to monitor compositional 
data has also been proposed. The 
performance of each control chart has been 
studied and the optimal parameters have 
systematically been evaluated. Real life 
compositional data examples have been used 
in order to study the performances of the 
proposed charts. 
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