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Abstract

The most fundamental aspect of applied colorimetrythe trichromacy of our visual system.

Trichromacy leads to observer metamerism, in witnet stimuli with very different spectral power

distribution can produce a color match for a gieéserver, but will result in a mismatch for another
observer with different color vision characteristi@his variability among observers with normal
color vision poses a challenge to various modedustrial applications, including wide-gamut

displays with narrow-band primaries, and Light-Emg Diode (LED) or Laser based applications.
Thus, the main objective of this thesis is to ofiguractical solution to this problem for colortical

industrial applications.

This work starts by conducting a comprehensive rite@l analysis on various aspects of the
physiologically-based observer model (CIEPOO06) psa by the Technical Committee TC 1-36 of
the Commission Internationale de I'Eclairage (CIE).the context of color perception on modern
narrow-band displays, the performances of the ClEP@odel and of the CIE 10° standard
colorimetric observer in predicting average Stide®wl Burch (1959) observer data were evaluated.
Some weaknesses of both observer models were fiddntand an improvement of the CIEPO06

model was proposed based on a nonlinear optimizatio

In the next stage, several color-matching experimevere performed on two displays with very
different spectral characteristics, one was a GhilRay Tube (CRT) display, and the other was a
Liquid Crystal Display (LCD). The results confirmélge effect of observer metamerism in display

color matches.

Working toward a solution, a statistical analysiaswperformed on existing experimental and
physiological datasets of color-matching functioAsset of eight colorimetric observer categories
was proposed for use in color science and visionbs&quently, an experimental observer
classification method using two displays was degwetb Through visual experiments it was proved
that human observers with normal color vision canclassified into a small number of categories
based on their color vision. This was followedtbg development of a compact, inexpensive proof-
of-concept prototype, described as tieserver Calibratorin this thesis. Using this prototype, two

collaborative observer classification experimemgolving a total of 49 observers were performed
with researchers in Germany and Hungary. A coli@laganalysis was performed on observer
classification data from the experiment in Germaayd suprathreshold color difference judgments
obtained from an independent experiment involvihng same set of observers. The consistency
between observer categories and color different¢a gave an indirect validation of the observer

classification method.



Finally, an implementation of colorimetric obsereategories in a practical color imaging workflow
has been proposed. This workflow, described in tthésis as thebserver dependent color imaging
(ODCI), involves conversion of tristimulus valuesrresponding to CIE 10° standard colorimetric
observer, into the tristimulus values correspondiagindividual observer categories. Nonlinear

transformations that result in accurate color tiemsations have been derived.

The observer classification method, together with tompact and economical prototype, is the
enabling factor for the practical implementationatiserver dependent color imagimgprkflow in
industrial applications. It is also hoped that #entributions of this thesis will be valuable for

scientific research in the domains of color andibvisciences.
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Twenty years from now you will be more disappoitugthe things you didn't do than by the
ones you did do. So throw off the bowlines. Sa#lyafrom the safe harbor. Catch the trade

winds in your sails. Explore. Dream. Discover.

- Mark Twain



When we walk to the edge of all the light we hanabtake the step into the darkness of the unknown,
we must believe that one of two things will happkere will be something solid for us to stand on o

we will be taught to fly. ~ Patrick Overton, Faith

1. Introduction

1.1 Motivation

When two color stimuli produce the same visual oesg, a visual match is obtained. Two stimuli
with very different spectral power distribution cgive rise to identical cone response, leading to a
color match. However, such a match establishedneyabserver can, and quite often does lead to a
mismatch for a different observer, as the secorskemier has a different set of color-matching

functions (CMFs) than the former. This phenomemsotommonly termed as observer metamerism.

Various studies in the past, both classical andieghphave provided significant amount of insight
into the issue of observer variability in color-etaihg, and its ramifications in basic color scienod
applied color technology. While over the past ceupf decades our knowledge of underlying
physiological reasons for individual variability uman color vision has been enriched considerably,
we are yet to come up with a practical solutionoaoting for variability in applied colorimetry.
Being constrained to a single average observer inocalerimetry is unable to predict how individual
color matches might differ from those of an averagdch. The consequence is non-trivial for certain

color-critical industrial applications.

One example is the color adjustment process (calbdol grading in industrial parlance) in cinema
and television post-production applications whéeeraw movie content at the post-shooting stage is
modified to achieve the right color effect. The @t has to work with the Director of Photography
(DP) to adjust the colors in the original contentas to achieve color coherence and homogeneity
throughout various scenes, while maintaining thestar expressions originally envisioned by the
Film Director and the DP. However, if the Coloriahd the DP have different color vision
characteristics, they will perceive colors diffefgnand the colors that look similar to one walok
perceptibly different to the other. While the afrcolorists fills the gap, conventional colorimetryil

fail to account for this difference in color vision

The broad objective of this work is to proposeanfework and a color imaging workflow that takes
individual observer variability into account, andoyides a practical solution for industrial

applications.
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1.2 Research hypothesis

A principal hypothesis of this work is that humasservers with normal color vision can be classified
into a small number of categories based on théar aision. These observer categories, characetrize
by specific color-matching functions, can be idigedi through an appropriate statistical analysis of

large set of individual observer data. Based o siategorization of the whole observer population,

multiple colorimetric observer models can be eshbld for use in applied colorimetry.

An associated hypothesis, without which a practaggdlication of colorimetric observer categories
will be impossible, is that such categories canaldequately identified. In other words, it is

hypothesized that there exists a simple, practicEns to experimentally determine which of several
categories can be assigned to a certain color ndramaan observer. A keystone of this work is the
premise thathe solution lies in the problem itselfmeaning that devices that are fraught with
observer variability and metamerism issues, arebast bet in coming up with a solution to these
problems. Examples of such devices include modeirtesgamut displays with narrow-band

primaries.

With regard to the first hypothesis, it is expedieat the spectral characteristics of the coloretmag
functions specific to a given observer category ot match exactly to individual observers who
are assigned that category. However, with propergeay identification, overall colorimetric results
obtained by using the assigned category for angrgobserver can be expected to be more accurate
than the results yielded by any other category staadard colorimetric observer. Accordingly, usage

of colorimetric observer categories in colorimetan reduce the problem of observer metamerism.

Another point needs to be made with regard to #worsd hypothesis. While the application of
colorimetric observer categories may not be meduing an application where several observers are
simultaneously viewing colors on a device or mediunder certain conditions it might be useful. As
an example, when all the observers concerned ardenhigher age group, it would be more
appropriate to use the categories that are moralare among higher age-group observers. Indeed,
prevalence of certain categories among higher agepgobservers is supported by the results
obtained in this thesis. However, more direct bierméfthe concept of observer categories seems to

exist in applications where accurate color reprtidador individual observers is desired.

1.3 Organization of the thesis

This thesis is organized in eight chapters.

Chapter 2 reviews several fundamental conceptspaindiples of color science and color vision,

focusing mainly on those aspects that are reldaanhis thesis. It starts with a review of the t&may

11



and physiology of the human visual system. Thededls with various aspects of the perception of
color, followed by an introduction to the colorimetand visual color-matching. The universally
accepted colorimetric system proposed by the ClHeiscribed next. The chapter concludes with

enumerating various physiological sources of irdinail differences in color-matching.

Chapter 3 presents a literature review on the phenon of observer metamerism, and how
individual observer variability can affect color-tolaing. Both classical color matching experiments
involving monochromatic stimuli and applied coloetthing experiments involving narrow-band and

broad-band stimuli are reviewed.

A comprehensive theoretical analysis on the agesw@gnt physiological observer model recently
proposed by the CIE Technical Committee 1-36 (hiemtte CIEPOO06) constitutes Chapter 4. The
chapter starts by discussing the colorimetric olessr Next, various physiological factors on digpla

color perception are discussed, followed by a coatpe analysis on the performance of the
CIEPOO06 model and 1964 CIE 10° standard colorimetiiserver in predicting the average observer
data within a given age group. The analysis comnsidpectral sensitivity data as well as coloringetri

data in the context of displays. A nonlinear optiation of the CIEPO06 model is performed, and the

results are analyzed.

Chapter 5 explores the issue of observer varighilithe context of display color-matching. A celor
matching experiment is performed on two displaythwiery different spectral characteristics, one
with narrow-band primaries, and the other with brband characteristics. Detailed description of the

experimental design is presented, as well as thdtseand analysis.

The most important contribution of this work, nayné¢he development of colorimetric observer
categories, is presented in Chapter 6. An obsetassification method using two displays (the same
two described in Chapter 5) is proposed. FurtherQbserver Calibratoprototype developed during
the course of this work is described. Finally, tesstrom collaborative experiments performed with
two research laboratories in Germany and Hungarypeesented. One of these experiments provides

indirect validation of observer classification madh

Chapter 7 presents the concept of Observer-dependkm imaging workflow. The implementation

aspects of the workflow are described. The advastaf such a workflow are discussed.

Finally Chapter 8 draws conclusions from this work.
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I would rather live in a world where my life is sounded by mystery than live in a world so small

that my mind could comprehend it. ~ Harry EmerBordick

2. A review of color vision and color science

fundamentals

In this chapter, several fundamental concepts amttiples of color science and color vision are
reviewed, focusing mainly on those aspects thaingpertant for a good comprehension of this thesis.
It is not meant for experts in the topical arethid thesis, but for those interested readersféaagiar
with the field. The chapter starts with a reviewtlné anatomy and physiology of the human visual
system. Then, it deals with various aspects ofpireeption of color, followed by an introduction to
the colorimetry and visual color-matching. The @msally accepted colorimetric system proposed by
the CIE is described next. Finally, various physjital sources of individual differences in color-

matching are described.

2.1  The human visual system

The human visual system is an enormously complebsaphisticated biological organ. It is estimated
that around 80-90% of all neurons in the human nbriateract with visual signals [1]. Not
surprisingly, it took us many centuries to devedogcientific understanding of the functioning of th
visual system. Galen (AD 130 - 200), a Roman pligsicsurgeon, and philosopher considered to be
the most accomplished of all medical researchentfjuity, attempted to explain this functioning.
He proposed that the light rays emanated from yleeiateracted with the object, and then returimed t
the eye, wherein the rays interacted with a “vismtit” that flowed from the brain to the eye and
back, carrying with it the replicas of perceivedeals [2] (page 24). As amusingly unscientific las t
proposition was, to Galen’s credit, he at leastesily anticipated the involvement of brain in our

visual functioning, as has been established byrib@ern day vision science.

2.1.1 The eye: anatomy and physiological optics

Hubel, co-winner of the Nobel Prize in Physiologgficine in 1981 for mapping the visual cortex,
elegantly describes [3] the sophistication of ey@ gensory organThe eye has often been compared
to a cameralt would be more appropriate to compare it to a damera attached to an automatically
tracking tripod—a machine that is self-focusingjuats automatically for light intensity, has a self
cleaning lens and feeds into a computer with patglfocessing capabilities so advanced that

engineers are only just starting to consider sim#fxategies for the hardware they design
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The two eyes in a human, sitting in the hemisphénye sockets, are able to undergo rotations
through three pairs aéxtraocular muscleswhich are controlled by the brain. Voluntary fixe
mechanism allows high speed movements to steagyiinérom one direction to the other, commonly
known as saccades. An involuntary fixation mechraraiows the eye to fixate at a point. The visual

fields from the two eyes overlap, allowing binoculsion and depth perception.

The optical system of the human eye is composeleotornea, the aqueous humor, the lens, and the

vitreous humor, as shown in Fig. 2-1.
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Ciliary body
Posterior chamber
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Fovea centralis
Central retinal a. Pupil

Iris

Zonules

Optic Nerve
Central retinal v.

y x Sclera

Inferior rectus m.
Fig. 2-1. An anatomical drawing of a human eye inross-section fittp://www.newsomeye.com/patient-

education/anatomy-of-the-eyé/

First, light enters the transparent layercofnea behind which is the anterior chamber filled with
transparent liquid calledqueous humorAbout two-third of the optical power of the eybq ability

to bend incoming light) needed for focusing takize@ at the air-cornea transition. Tleashas only

a third of the total refractive power of the eyaiedo optically similar characteristics (refractive
indices) of the surrounding elements. However, ritain responsibility is to make necessary
adjustment in order to focus objects at variousadises. Thdens has an automatic, adjustable
focusing ability through theiliary muscles This ability, commonly calleédiccommodationallows
the eye to focus at objects at various distanaas the eye. When the axial length of the eye doés n
fall within the range ofaccommodationthe eye is unable to focus on near objects. ¢fsewxial
length is too long, the subject is unlikely to H#eato focus on nearby objects, a condition called
myopia If eye’s axial length is too short, the subjedll Wwe unable to focus on distant objects, a
condition callechyperopia With age, the lens can gradually lose its edagtio be able to focus on
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nearby objects, a condition known peesbyopia All these conditions can be rectified by using

corrective eyeglasses.

Beyond theaqueous humorthe light passes through tpepil, the eye’s aperture. It is the circular
opening in the opaquies, a set of involuntary muscles controlling the amtoof light entering the
eye, and giving the eye its color. After the itise light passes through thens and then through
another transparent liquid calleitreous humar Finally, after passing throughtreous humarthe
light strikes the retina at the back of the eyaiser wall.

Since the cornea is not perfectly symmetric, thigcapproperties of the eye are not homogeneous in
different directions. Thus, the light stimuli corgifirom different directions cannot all be focused
with same accuracy, a condition callagtigmatism When this condition is significant enough to
interfere with perception, corrective eyeglassesraeded. Like the directional inhomogeneity, the
optical properties of the eye are not spectrallynbgeneous either. Thus stimuli of different
wavelengths do not get focused in the same wagffant known aghromatic aberrationChromatic
aberration is not a unique characteristic of the, @yhappens in any lens in general.

There are many other sources of eye malfunctiofihgse are beyond the scope of this chapter.

Pagmpented vell

e
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Fig. 2-2. A cross section of the retina, about miday between the fovea and far periphery, where rodare
more numerous than cones. From top to bottom is alu 0.25 mm. (illustration from [3])
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2.1.2 The retina

The retina, whose cross-section is shown in Fig, & part of the central nervous system that
converts light (in the form of packets of energy pbotons) into neural signals. This conversion is
carried out by two types of photoreceptor celtsls andcones residing at the back of the retina. The
receptors’ names reflect their shape. Thds are more numerous (120 million as opposed to 8
million cones), and are responsible for our visiorer low-light level (scotopic condition), thus
highly sensitive to lightConesdo not function under dim light, but are respolesilor color vision
and visual acuity under normal light level (photopondition). Right at the center of the eye ther@
small region of about 0.5 mm diameter calledea(see Fig. 2-1). This region contains a high density
of conesbut virtually norods Conversely, as we move away from fovea, the tertdi cones
decreases rapidly (see Fig. 2-3), although theypeesent throughout the retina. This contributes to
the fact that we see fine details of objects thatathe center of the visual field, whereas dbjseen
through peripheral vision are relatively blurry. wiever, the brain structure also plays a role ifflie
central area of the visual field gets greater regmeation than the periphery in the visual pathway
from retina leading to the brain, and later in tisual cortex of the brain. Visual pathway and wsisu

cortex are briefly discussed in the next subsection

Because of the higher concentration of the rodthénperiphery of the retina, and as they have a
higher sensitivity than cones at low light levels&e see better with our peripheral vision in thekdar

than with our central or foveal vision.
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Fig. 2-3. Distribution of rods and cones on the huan retina
(http://www.rci.rutgers.edu/~uzwiak/NBSummer11l/NBSummerLect4.html)
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The middle layer of retina contains three types@ive cells, calledbipolar cells horizontal cells
and amacrine cells while the front layer contains ttretinal ganglion cells Bipolar cells receive
inputs from the receptors, and pass ontor#imal ganglion cells However, this transmission can
also take place through an indirect path, throug involvement of other two types of cells.
Horizontal cellsconnect receptors argpolar cells while amacrine celldink bipolar cellsand
retinal ganglion cells Near the fovea, a single cone connects topalar cell which in turn
connects to a singleetinal ganglion cell However, moving away from fovea toward the
periphery, several receptors feed dmgolar cell, and manybipolar cellsconnect to a ganglion
cells. This allows around 1 millioganglion cellsn the retina to interface with nearly 128 million

rodsandcones

Coming back to the photoreceptors, both rods amgé<oontain light-sensitive pigments. Rods have
only one type of pigment (called rhodopsin), white cones are of three types, with each type has a
different pigment absorbing different wavelengtlidight. The receptors respond to light through a
process calledransduction in which a molecule of visual pigment absorbshatpn, and through a
complex biochemical reaction results in changeléttacal potential in the outer membrane of the
photoreceptor. This leads to the release of a dartransmitter that then affects the next nerie ce
or neuron. In this regard, it is relevant to ddseranother process callpdyment bleachingwhere a

large amount of rhodopsin molecules is isomerizetbb much light.

When many photons are absorbed within the sameptacethe response is not linear, but a
logarithmic function of the number of photons albeak [4]. This explains why our eye is relatively

less sensitive to brightness change at high lunciméavel, compared to that at low luminance level.

On absorbing a photon, a pigment molecule canrsgrtadditional photons. It can be restored to the
prior unbleached state through the action of enzyimehe pigment epithelium behind the retina (see
Fig. 2-2), containing a black pigment calletlanin[3] (Chapter 3). This pigment layer also absorbs
any photons that remain unabsorbed past the rackpter. The retinal structure is such that the
photoreceptors are located at the back of theagtiacessitating light to pass through other eghis

in the front and middle layers of retina beforedh reach the receptors in the back. This oddithef
retinal structure originates from the organogenefkthe eye and brain. The retina which is pathef
central nervous system sprouts from the embryorampwith the future photoreceptor cells in the
front, which reach the ocular cavity of the eye aitiinately lands in the back of the eye. All the
nerve cellshorizontal bipolar andamacrine cellsin the front of the retina are transparent anaalo
interfere with the incoming light. Further, in tfevea where the visual acuity is the highest, tluedle
layers are displaced to the side to expose thesci@jeresulting in the fovea taking the shape of a
shallow pit (Fig. 2-1).
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The long, thin projections (or axons) of the gamglcell bodies pass across the surface of retina,
collect in a bundle at theptic disc(or optical nerve head) (Fig. 2-1) and leave the ® form the
optic nerve Theoptic discforms theblind spotlocated at 10 to 15 degree from the foveal dioectin

the nasal side (Fig. 2-3). It does not containraegptor cells.

2.1.3 Visual pathway and visual cortex

The optic nerve, on coming out of thptic dis¢ forms what is known agptic chiasm(chiasm means
crossing in Greek), shown in Fig. 2-4. This resinta cross-mapping of the visual field , left pairt
the visual field goes to the right half of the esttand vice versa. In each cerebral hemisphere, tw
pathways emerge from tloptic chiasm The smaller pathway ends in a visual center éxtautside
the cerebral hemisphere callagperior colliculus and is thought to be responsible for eye movement
The other pathway goes through the lateral gertieutaicleus (LGN) to the occipital cortex, also
known as primary visual cortex or V1, and situatadhe occipital lobe (Fig. 2-5). Individual neuson
(nerve cells) in the LGN can be activated by argngfe in brightness or color within the area of view
(receptive field) of any one eye. Neurons in Vhsmit visual information to various distinct codic
regions located in the posterior temporal and paElreortex. Almost half of the cortex is involved i

visual function [2] (page 24).
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Fig. 2-4. Human visual pathway carrying sensationrbm the eye to the cerebral cortex
(http://www.edoctoronline.com/medical-atlas.asp?c=4&=21964
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Fig. 2-5. Various regions of visual cortex responisie for vision (illustration from [5])

As the visual function of brain is not within theope of this thesis work, this review does not delv
any further into various anatomical, physiological functional aspects of the visual system that
extends beyond the eye and the retina. Howevisrjritportant to point out the higher order processe
beyond the retina are equally important for visuaictions. For a discussion on those aspects of
visual function, and also for an in-depth discussio the topics reviewed here, the reader is didect
to more comprehensive references by Palmer [2],d&th{6], Hubel [3] and chapters 2 [7] and 6 [8]

of the bookThe Science of Color
2.2 Perception of color

2.2.1 Light as a physical quantity and its photometricicterpart

Color is a result of complex interactions betwedaysical light and our visual system. Different
aspects of the visual system as it relates to godwception have been reviewed in the previous
section. However, it is important to describe ligsta physical quantity in order to better understa

color perception.

Modern color science started its journey in th® é@ntury when the legendary English physicist Sir
Isaac Newton conducted experiments with his glassng and incident sunlight, and concluded in his
“New Theory of Colours” (1671): The Rays to speak properly are not coloured. Inmthibere is

nothing else than a certain Power and Dispositiorstir up a Sensation of this or that Colour...So

Colours in the object are nothing but a Disposittorreflect this or that sort of Rays more copigusl
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than the rest.[2] This explanation of the physical propertieslight might seem obvious and rather
simplistic given how much we know today, but thiasathe first fundamental insight of the role of
light in interacting with objects to stimulate owolor vision. Today, the dual nature of light asvera

and particles is well established. The quantumreattilight is important to understand how a photon
with a given energy has a probability to generateekectric signal in a cone, given the pigment
absorptance. The wave nature of light is importanthe understanding of color vision. In its most

basic representation photonis a very small packet of vibrating electromagnetiergy characterized
by its wavelength (the photon energyEs=%, whereh is Plank’s constant the speed of light in

vacuum,A the wavelength). Its unit is 1 nanometers (or nrahiort), which is 1® meters. Sometimes
wavenumber, which is reciprocal of wavelength=( 107 1, where wavenumber is in cnmi* and
wavelengthl is in nm), is also used (typical unit ¢jn Light from any source can be described in
terms of the relative power emitted at each wawghenVisible energy forms only a small part of

electromagnetic spectrum, as shown in Fig. 2-6.
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Fig. 2-6. Electromagnetic spectrumlttp://www.yorku.ca/eye/spectru.htm)

A stimulus is an event that induces some respor@® bur visual system. The light stimulus
(whether visible or not) is such an event, anduantfied by radiometry. The most fundamental
radiometric quantity is radiant energy, which imaasure of the total amount of light and expressed
in joules. Radiant power in a particular locatiard goropagating in a particular direction is called
radiance, whose unit is watts per steradian peemsgjuared (watts = joules/second). Photometry on
the other hand relates to the quantification ofiblés stimuli, taking into account the spectral
sensitivity of the visual system. There are seveafarences with a detailed discussion on radiometr
and photometry [9] [7]. Here, a couple of photoieeguantities need to be described since they have

been used quite frequently in this thesis.
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Luminanceis the luminous flux (i.e. visible radiant powdn)a beam emanating from a surface or
falling on a surface in a given direction, expresper unit of projected area of the surface as etew
from that direction, per unit solid angle [10] (ga63). The luminance values are obtained by using
luminous efficiency functions, discussed latbuminanceis the luminous flux incident per unit area
[10] (page 63).

It is useful to express stimuli seen by the visysitem in terms of a metric that takes into accthuamt
effect of eye’s pupil. Retinal iluminandeolandis obtained by multiplying the luminance of a \daku
stimulus (in cd/M) by the area of the pupil in mirRetinal illuminance can be photopic or scotopic,
depending on which luminous efficiency functiorused. When the luminance is below 0.001 cd/m?
the condition is said to be scotopic, above 10 &dhe condition is considered as photopic, and in

between the two, the condition is considered aopies

2.2.2 Color resulting from cones responses

Each photoreceptor in our retina, rod or each ettinee cones, contains a different kind of visual
pigment. As explained in Section 2.1.2, the thtgees of cones are responsible for our
trichromatic vision. The photoreceptors transduce&iag photons into the temporal and spatial
patterns of electrical signals that eventually léacolor perception [11]. The pigments in the
photoreceptors have different chemical composifi@ml consequently vary in their relative
ability to absorb light of different wavelengthshuds, color is the consequence of unequal
stimulation of the three types of cones. Havingéhtypes of cone receptors help us discriminate
colored light from white light. The pigments in ttigee cone types have their peak absorptions at
about 430, 530, and 560 nanometers, and are tfersee to as short-, medium- and long-wave
sensitive cones respectively. The peak wavelerngtisfall in the violet, green and yellow-green
parts of the spectrum respectively. The absorptimves of the cones, plotted in a logarithmic
scale against the wavelengths and normalized tty anithe peak wavelength, are commonly
referred to as the spectral sensitivity functios.will be explained in Section 2.2.5, spectral

sensitivity functions of the cones at the corndahe are referred to as cone fundamentals.

2.2.3 Color as a psychological phenomenon and its degorip

Color is a psychological phenomenon that simplynoarnbe described without considering an
observer. Color can be defined as a perceptiondbpends on the response of the human visual

system to light, or a physical stimulus resultimeni the interaction of light with objects.

Thus color is essentially a subjective experiegs. color experienced by an observer with normal

color vision can be expressed in terms of threeedsions. These dimensions form a three-
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dimensional coordinate system defininga@or space A mode of representation close to the usual

description of colors by observers ubeg saturation lightnessas dimensions.

2.2.3.1 Hue

Hue is defined as the attribute of a visual peioagbased on which an area appears to be similar to
one of the colors: red, yellow, green and bluetooa combination of adjacent pairs of these colors
considered in a close ring [10] (page 22). In thkendrical color space, it corresponds to the aagul

direction around the central vertical axis, as smhawFig. 2-7.

2.2.3.2 Lightness

Lightness is defined as the attribute by which ecgiged color is judged as equivalent to one of the
series of grays ranging from black to white [104gp 22). Lightness, sometimes referred to as value,

is the vertical axis in the color space (Fig. 2-7).

2.2.3.3 Saturation

Saturation can be defined as the chroma dividelighyness. Chroma is defined as the color attribute
that indicates the degree of departure of the dobon a gray of the same lightness [10] (page RR).
color space, saturation corresponds to the distauteard from the central axis to the point

representing a given color (Fig. 2-7).
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Fig. 2-7. Color space showing three dimensions, naty hue, saturation and lightness
(http://www.ccs.neu.edu/course/cs4300/L5/L5.htrl
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The mean wavelength of the physical stimulus cpords to hue. Here, the mean wavelength refers
to the peak of the normal spectral distributiorttaf stimulus. Likewise, the area under the spectral
function represents the lightness, and the varigmlieked to the saturation of the stimulus. Hehe,

variance refers to the width of the normal disttido.

2.2.4 Theories of color vision

In the late 18th century, two major theories emeithat attempted to describe the complex process of
color perception. According to Mollon [12], it w&eorge Palmer [1740-1795] who first proposed in
1777 that there were “three physical kinds of lightl three corresponding particles in the retina”.
This proposition took a more concrete shape whelB02 Thomas Young suggested a link between
the three primaries and sensory physiology. Folgwmajor contributions from Hermann von
Helmhotz in 1852 and James Clerk Maxwell in 185 trichromatic theory was established. This
theory, often called Young-Helmholtz trichromatiebry, says that there are three types of color
receptors in the eye with overlapping functions,asy given wavelength can stimulate the three
receptor systems to different degrees [2]. Théhtomatic theory is able to explain why the color
space is three-dimensional, how physically distamnbinations of wavelengths can lead to the same
pattern of activation across the three receptoegyphe latter is probably the most important
fundamental property of the visual system: metasneriThe trichromatic theory also explains the
basic forms of color blindness resulting from oeeeptor type missing, namely protanopia (long
wavelength receptor missing), deuteranopia (medivemelength receptor missing) and tritanopia

(short wavelength receptor missing).

The trichromatic theory based on Young, Helmholtd aMaxwell’'s work was not universally
accepted. It was observed that colors missing ftben perception of color blind people always
occurred in pairs, for example, red and green,lee bnd yellow. Further, subjective experience of
yellow seemed to suggest that it was more likeimany color, and not a mixture of red and green.
The trichromatic theory was also unable to explality a color does not appear to be simultaneously
red and green, or simultaneously blue and yelldwsPlogist Ewald Hering proposed in 1878 three
opponent mechanisms involving three receptor typas, of which responded oppositely to red and
green colors, the other responded oppositely te lalnd yellow colors, and the third responded
oppositely to white and black. Hering thought eatlthese antagonistic pairs were associated with

the dissimilation or assimilation of a “specificual substance in the eye or visual system” [12].

Hering's opponent process theory could explaintaofophenomenological facts mentioned before
that the trichromatic theory could not. Howevemvis evident that both competing theories had some
merits, and there was severe disagreement on adoptie over the other. However, reconciliation

came through the proposition of dual process thegrieo Hurvich and Dorothea Jameson in 1957
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[13]. The theory stated that color processing hapgein two stages, the first stage involving an
embodiment of Young-Helmholtz's trichromatic theoaynd the second stage employing a version of
Hering's opponent process theory. Both stages efdiiial process theory have been confirmed to

occur in the retina.

2.2.5 Cone spectral sensitivities and cone fundamentals

The study of cone spectral sensitivities dwell e trealm of many allied fields, including
psychophysics, biophysics, physiology, electroptigsjy, anatomy, physics, and molecular genetics.
Out of these, Psychophysics gives the most relisdpectral sensitivity data [11]. While
psychophysical methods attempt to measure thetisitygsdf the eye toward the entering light at the
corneal level, other methods do the same measutatirently at the photoreceptor level. As we have
seen in Section 2.1, light has to travel throughdbular media before reaching the photoreceptor. |
the course of this travel, light gets absorbed Hwy lens and macular pigment at the fovea. This
reduces the overall sensitivity of the eye withpeed to the cones’ absorption (see Section 2.5 for
review of various physiological factors influencitige cone spectral sensitivity). Thus, it is impatt

to define cone spectral sensitivity in such a wet takes into account this light loss.

Cone fundamentals are defined as the spectraltiségsiunctions of long-wave sensitive (LWS),
medium-wave sensitive (MWS) and short-wave sers{{8BMWS) cones, measured in the corneal plane
[14]. According to the principle of univariancephotoreceptor is essentially a sophisticated photon
counter, the output of which varies according te ttumber of photons it absorbs, independent of
their wavelengths [11]. Brindley proposed the qabhypothesis [15], which states that a foveal icolo
match is obtained when the quantal catch rateusralgnt for each of the three active photopigments
thus making such a match trichromatic and photopigrimited. Any linear transformation of color-
matching data obtained from a color-matching expent (see Section 2.3) describes the color-
matching properties of the eye. Thus, cone fundéaencan be obtained through a linear

transformation of the color-matching functionssaswn in Fig. 2-8.
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Mean cone spectral sensitivity data are shown g Ei9. The data were collected from normal
trichromats (people with normal color vision) adlvas dichromats (people with color deficiency due
to a missing receptor). This will be further eladted after discussing some aspects of color
deficiency in the next subsection. In Chapter detiled discussion on cone fundamentals and their

derivation has been presented.

2.2.6 Color deficiency

Color deficiency can be congenital or acquired.quied color deficiency is outside the scope of thi
discussion. Congenital color deficiency represeatshereditary, permanent condition that is
characterized by an abnormality of color matching/ar color discrimination ability. It is thoughd t

be due to mutation, rearrangement and deletiomefopsin genes that determine the structure and
function of the cone visual photopigments [16] @dB8). There are three major types of color
deficiencies (dichromacy) resulting from a missingceptor type, namely protanopia (long
wavelength receptor missing), deuteranopia (medivamelength receptor missing) and tritanopia
(short wavelength receptor missing). The first tal@ more common than the tritan defect, and
mainly affect male population as they are X-chroomos linked defects. For example, in Europe, 8%
of male and 0.4% of female population are affettgthese deficiencies [16] (page 138). Apart from
the most frequent dichromacy, another color deficyeis monochromacy, where two out of three
cones are missing, or rod monochromatism (achrgms&tp due to the absence of all three cones.
Both are extremely rare in the human populatio. [A-10 shows how the color spectrum is

perceived by someone with normal color vision, tase with various color deficiencies.
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Fig. 2-9. Mean cone spectral sensitivity data obtaed from different experiments. Mean long- (L-),
medium- (M-) and short-wave (S-) sensitive functiogwere obtained from several deuteranopes,
protanopes, and monochromats respectively, in adddn to normal trichromats ([11], page 59)
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Color defects have been studied since the 180(s Thé famous English chemist, John Dalton
himself was a deuteranope and according to Moll@j (page 23), was the first to give an account of
the phenomenon of dichromacy in 1794 . Even thobighhypothesis of the presence of a blue-
colored filter in the eye was later proved to beaiid, his name is forever associated with thigaop
through the term daltonism, which refers to colefidency in many languages. Konig, a student of
Helmholtz, hypothesized that the dichromatic foohsolor defect represent reduced forms of normal
trichromatic color vision. This hypothesis is @il in the field of color vision. Since the spettra
sensitivities of the three cone types overlap esttefy throughout the spectrum, measurement of a
single cone type of a normal trichromat poses grbatlenge, and requires employment of special
isolation procedure to measure a single cone ty@{11]. Assuming that two unaffected cone
spectral sensitivities in a dichromat resembleglhafsa normal trichromat allows scientists to measu
individual cone spectral sensitivities. Modern chmedamentals are based on Konig hypothesis [16]
(page 117) and are thus called Konig fundameni&lp [

Quantitative and qualitative anomalies in colorcegtion can be measured using an instrument called
an anomaloscope. This instrument, introduced iretirey 28" century by W. A. Nagel (according to

Mollon [12]), can be used for classification of @obieficiency.

Too G50 {=fulu} 540

Protanopia

Foo G650 {={ulu} 550

Deuteranopia

Foo G50 {=fulu} 580

1 1
Fo0 B50 00 550 500 450 400

Fig. 2-10. The spectrum as perceived by individualwith normal color vision, protanopia, deuteranopia
and tritanopia (http://www.internettg.org/mar99/accessibility _color challenged.htm| [20], [21])

With the recent advances in molecular geneticsis inow possible to select protanopes and
deuteranopes with the appropriate M- or L-cone @bigiment gene(s), for spectral sensitivity

measurements [22]. Fig. 2-9 introduced in Sectidh52 summarizes results from various such
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experiments. Long-, medium- and short-wave semsifilnctions were obtained from a number of
deuteranopes, protanopes, and monochromats resgcth each case, cone spectral sensitivity data
from normal trichromats were also collected by emiplg special cone isolation procedures [11]. The

means of various experimental datasets are plotted). 2-9.

Some trichromats show less severe color visiorcidgfibut exhibit some similarities with protanopes
and deuteranopes. These trichromats have all tmee types present, but exhibit an altered form of
normal color vision. Such color vision is known @asomalous trichromacy, or more specifically

protanomaly and deuteranomaly, signifying protafects and deutan defects respectively. The
defects can be simple or extreme, depending osdkerity. A protanomalous trichromat is said to

have a short-wave sensitive (SWS) cone photopigraadttwo medium-wave sensitive (MWS or

MWS-like) cone photopigments, usually differing &ysmall shift in spectral peak [23]. On the other
hand, the deuteranomalous trichromacy, the mostrmmmform of all congenital color deficiencies, is

characterized by the presence of SWS cone photepigand two LWS-type cone photopigments.

Interestingly, while deuteranomalous trichromatsndb have MWS-cone functionality (according to

Neitz and Neitz [23], two-thirds of deuteranomalowsn did not have MWS-cone functionality), they

still have the genes responsible for the MWS cdmegpigment. This is considered to be one of the
most important unanswered questions with regarthéomolecular genetics of color vision defects
[23].

In the recent decades, we have come to know a desdtabout the role of molecular genetics of the
opsin genes in causing these color deficienciesoyprehensive treatise on this topic is offered by
Sharpe et al. [24] and Neitz and Neitz [23].

2.3 Colorimetry and visual color-matching

Colorimetry is the branch of color science thatlsledth numerical specification of the color of a
physically defined visual stimulus [9] (page 11)provides a system of color measurement and
specification based upon the concept of equivaepearing stimuli. At the core of colorimetry i®th
concept of metamerism, whereby lights of dissimdpectral characteristics appear identical to a
given observer. Two stimuli that result in identicane signals will match in color, irrespective of
their spectral characteristics. Metamerism is dised in detail in Chapter 3. In the current section
several fundamental laws constituting the prin@pé colorimetry will be reviewed. But before that,

the notions of additive and subtractive mixing musipresented.
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2.3.1 Color mixture

Color can be mixed in two different ways, additiméxing and subtractive mixing [25]. When two
light stimuli are added together from different tganf the spectrum or of different spectral
composition, it is called additive mixing. As a uésthe radiant power of the output stimuli at any
wavelength interval is equal to the sum of the pswaf the constituent stimuli. Additive mixing
occurs when displays, projectors or optical devmregect beams of colored light on to the same,area

and individual colors merge at the retinal recej#gel to form a unified perception of color.

On the other hand, subtractive mixing occurs whggsr pigments are mixed together, or when two
or more color filters are placed in series. If amneof white light is projected on to such pigmemnts
filters, a part of the spectrum is absorbed (otrsgbed) by each component dye or pigment which in

turn determines the color of the reflected, difflise transmitted light.

2.3.2 Principles of colorimetry: Grassmann’s laws

A fundamental concept in colorimetry isichromatic generalization which follows from the
trichromacy theory described in Section 2.2 Bichromatic generalizatiorstates that over a wide
range of viewing conditions, several color stimzdn be matched completely by mixing three fixed
primary stimuli whose powers have been appropsiadjustedTrichromatic generalizatioteads to
the following four linearity laws first proposed blermann Grassmann in his laws of additive color

mixture [26]:

Symmetry: IfA = B thenB = A

Transitivity: If A=B andB = CthenA=C

Proportionality: IfA = B thenkA = kB

Additivity: If A=BandC=DthenA+C=B+D
IfA=BandA+C=B+DthenC=D

WhereA, B, CandD are color stimuli.

These laws are some of the most fundamental ptaxim color science, and thus have been
subjected to intense scrutiny for many decadesebtuodrtain circumstances, these laws do not hold
well [27] [28]. One instance of such failure hasdtowith the technique used in establishing a color

match, and will be discussed in Section 2.3.3.2tAer instance is the condition under which the rod
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photoreceptors in the retina actively contributettie color perception. This will be described in
Section 2.5.4.

2.3.3 Color-matching experiments

Color-matching experiments are of fundamental irtgrare in colorimetry and color science, since
from color-matching data we can obtain color-matghiunctions (CMFs) of individual observers,
from which we can obtain the average CMFs that banused in colorimetric computations.

Colorimetric systems are described later in SeQidn

Different matching procedures can be followed wigtablishing a color match. These procedures
differ in their objectives and implications. Sonfettee key procedures are described in the following
subsections. A more detailed description can badan Wyszecki and Stiles’ color science book [9]
(page 279).

2.3.3.1 Asymmetric and quasi-symmetric matching

Asymmetric matchingefers to the situation where the two test stirbeing viewed are not the same
in all respects, for example if they are not imagedidentical areas of the same retina, if their
physical characteristics differ, if the conditiogistimuli are different compared to the test stipd

if the viewing of the two test stimuli are not indent [9] (page 281). Most color-matching viewing
conditions are asymmetric. Determination of equmak by strict substitution is the ordymmetric
matching condition. An asymmetric match could badirect, where two test stimuli are judged
independently based on their appearance qualigy Hike, chromaticness etc, or it could diect,
where the appearances of the two test stimulilatgdgd in the same observationdirect asymmetric
match is an extension of aymmetric matchMost color-matching experiments emplaoljrect
asymmetric matchingor example in a bipartite field. Note that irchua case, the stimuli are imaged

in closely adjacent, but different areas in thaneet

In many cases however, one can assume that twalstimatched asymmetrically, would also match
in a symmetric matching procedure by strict substin. Such a matching procedure is termed as
guasi-symmetricA carefully designed color-matching experimenthva bipartite field is likely to fall

in this category.
2.3.3.2 Maxwell and maximum saturation techniques

There are two main methods typically used in cahatching experiments, the Maxwell method and
the maximum saturation method. Fig. 2-11 expldmstivo methods. Both use a bipartite field, either

horizontal or vertical, and a mixture of three éifnt monochromatic primary stimdii G andB in

29



the blue, green and red regions of the spectrutihdrivaxwell method, a mixture of monochromatic
test stimulus L with variable wavelengths mixed with any two primariefk(andG in the figure) to
match the fixed reference white stimulé Here, R@), G(1) and L(1) represent the amount of
primariesR andG, and the test stimulus needed to arrive at the match. On the other hanthe
maximum saturation method, one primaByif the figure) is desaturated with the test stumsl in
order to match a mixture of the remaining two fixadimary stimuli R andG in the figure). The

amountsR(#), G(1) andB(4) of the three primary stimuli are called the traflus values of the test
stimulusL. Ther(A), g(4),b(A) color-matching functions can then be obtained by(E€l) in case of

maximum saturation method and by Eq. (2-2) in adddaxwell method. In the latter equatidRy,
Gw andBy, are the radiant powers of the primary stiniiG andB providing the fixed reference
white stimulusw.

w.W R(A).R + G(A).G

R(A).R + G(A).G +

LOL L(\).L + B(\).B

Fig. 2-11. Color-matching by the Maxwell method (Iff) and the maximum saturation method (right) (9],

page 384)
- RA) — i _GUA) - B(A)
r(/l)—LM), g(/l)—l_(/]), b(/l)—LM) (2-1)
=R -RMA)  — 0 Gy —G() ¢ _ By —B(4) _
r(A)= oy g(4) oy b(A) ) (2-2)

Out of the two methods, the maximum saturation oeis more common. Both the CIE 2° and CIE
10° standard colorimetric observers are based ¢a dalected from color-matching experiments
employing the maximum saturation method. AccordiogGrassmann’s laws of additivity and
proportionality [26], both methods should resulttie same color-matching functions for a given
observer. However, this is not always the casaal first shown by Blottiau [29] that adding an
equal amount of red desaturating stimulus to batkds of a matching bipartite field resulted in a

mismatch particularly in the blue part of the spatt Blottiau’s color-matching experiment involved
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a modified version of Donaldson instrument ([9]gea 78) employing the Maxwell method. Trezona
later [30] [31] replicated Blottiau's experimenting his Wright colorimeter ([9], page 476) and
confirmed the failure of additivity in the blue dtimulus values. However, the deviations were
thought to be not significant in comparison to jdgcriminable color differences, leading to the

conclusion that the failure was due to poor disration in the blue region.

Nonetheless, subsequent studies by Crawford [82] fallowed by Lozano and Palmer [33] showed
that failure of additivity in large field color-matting was indeed real. The spectrum loci obtained b
the Maxwell method and the maximum saturation nettheviated from each other in the blue-green
region of the spectrum (Fig. 2-12). For a fieldesemaller than 10°, say 1° or 2°, the effect was
somewhat reduced, but did not disappear. Thusntoalsion alone could not explain this effect.

Obs.:BHC (10°) Obs.: ROL (10°)
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Fig. 2-12. Spectrum loci derived from color matchesade in a 10° bipartite field by one individual
observer using the Maxwell method and the maximumaturation method. Left figure is from Crawford’s
study [32] and the right figure is from Lozano andPalmer’s study [33] (Reproduced from[9], page 385)

If the validity of the additivity and proportiongfilaws is in question, then Maxwell method should

be preferred since in this case the matches are maalfield of constant luminance and chromatjcity

ruling out the possibility of nonlinearity introded by a change of these attributes. However, matche
for the white reference stimulus in the Maxwell huet have been reported [32] [33] as having higher
uncertainty compared to a match derived throughrthgimum saturation method. This uncertainty is
further amplified when the corresponding point loa $pectrum locus is derived from the white match
[9] (page 386).

Several attempts have been made to explain theegesecies in the color-matching data obtained by
the Maxwell vs. maximum saturation method [34]. Bloecently, the CIE Technical Committee TC
1-56 [28] has taken an in-depth look into this aspas part of its investigation into the problefn o

failure of Grassmann additivity. The committee madweral observations. It noted that at low
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luminance (~3 cd/m2) the Grassmann’s additivity migot hold, potentially due to Mesopic color

mechanisms. But even at high luminance (~300 cd/anéiscrepancy of the spectrum locus derived
from the Maxwell vs. maximum saturation color m&shwas observed. However, the issue of
discrepancies between the results from the Maxwsll maximum saturation method remains

unresolved.

2.3.4 Chromaticity diagram

The data from a color-matching experiment can bpressed in terms of vectors in a three-
dimensional space, representing the tristimulusesl(sayCy, C,, C). The three primaries form the
axes in the three-dimensional space. The tristimwklues can be converted into quantities whose

sum always equals unity, as shown in Eq. (2-3).

c - S
C,+C,+C, (2-3)
Cy
c,=—1——
7 C,+C, +C,
C

C = C,+ C; +C,
The quantitiesq, ¢, c,) are called chromaticity coordinates. Since tBaim is always unity, any two
sufficiently describes a color in a two-dimensiosplce. The two-dimensional representation of
color-matching data is called a chromaticity diagr&ig. 2-13 is an example. The horseshoe shape is
called the spectrum locus, representing the chihoiti@s of monochromatic stimuli at various
wavelengths. The line joining the two ends of thgecdrum locus is called the purple line,

representing the locus of the chromaticities ofitademixtures of deep blue and deep red stimuli.

The curved line at the center is the locus of claticity coordinates of a blackbody radiator at
various color temperatures. A blackbody radiataang surface that emits radiant energy identical in
all respects with that from a small aperture iroastant temperature energy absorbing enclosure. The
correlated color temperature is defined as the ¢éeatpre of an ideal blackbody radiator whose

chromaticity most nearly resembles that of thetlggurce.
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Fig. 2-13. An example of a chromaticity diagram
(http://encyclopedia2.thefreedictionary.com/Color+Mesuremen)

2.3.5 Physiologically based Chromaticity diagram

A physiologically based chromaticity diagram can @enstructed in which the cone spectral
sensitivities, i.e. the cone fundamentals form tleetangular axes. An advantage of such a
chromaticity diagram is that it represents relatieee excitation. One such chromaticity diagram was
proposed by MacLeod and Boynton [35], where thgeptive plane is an equiluminant chromaticity

plane with coordinatesy, Sus) [See Eq. 2-4]. A basic assumption in forming k&cLeod-Boynton

chromaticity diagram is that short-wavelength siresicone fundamenta;?(’]) does not contribute to
luminance. In this diagram, as a consequence of @ssumption, the absciskg = L/(L+M)
represents the equal and opposite change in LW3V& cone excitations, i.e. an increase in the
LWS luminance is counterbalanced by an equal deereaMWS luminance, but the sum is unity.
The ordinatesys = S(L+M) denotes the level of short-wave sensitive (SWS)ecexcitation at a

constant retinal illuminance.

L S
L+|\/|’SMB L+M

(2-4)

IMB

Here, L, M, and S represent tristimulus values obtained by integcatthe respective cone
fundamentals by the relative spectral power of shmulus. WhenL, M, and S are obtained by
integrating long-wave, medium-wave and short-waaesiive cone fundamentals respectively with a
monochromatic stimulus of unity length, coordinafks, sus) will be a function of wavelength,

defining the spectrum locus.
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Boynton and Kambe proposed a new unit for the cexwtation space called cone trolands [36].
Cone troland is obtained by multiplying cone exaitas, expressed in terms of chromaticity
coordinates I{;s, sus), by retinal illuminance expressed in troland. $hthe amount of L-cone
trolands and M-cone trolands indicates the respectntribution of LWS and MWS cone excitations
to the retinal illuminance. Since SWS cones doaoottribute to luminance in this represntation, the
scale for S-cone troland must be appropriatelynéefi In the representation proposed by Boynton and

Kambe [36], one troland of the equal energy spetiamounts to one S-cone troland.

Fig. 2-14 is the Macleod-Boynton chromaticity diagr obtained by using Smith and Pokorny 2°
cone fundamentals [37], where the ordinaig bas been arbitrarily set at unity at its peak. The
spectrum locus for the Smith and Pokorny 2° obseiveshown in the diagram, along with the

chromaticities of monochromatic stimuli at variouavelengths. To understand the meaning of the

straight lines, we need to first descridmpunctal points

Based on Konig's hypothesis introduced in Secti@&? a dichromat (an observer missing one of the
three cones) needs only two primary colors to nake color match. Normalized dichromatic data,
when plotted on the chromaticity diagram, resulsiraight lines called¢onfusion linesConfusion
linesconverge at a point in the chromaticity spacesdalbpunctal pointsRecall that protanopes lack
long-wave sensitive (L-) cones, deuteranopes lagtfiom-wave sensitive (M-) cones, and tritanopes
lack short-wave sensitive (S-) cones. The copuniaits for each of these categories of dichromats
represent the cone spectral sensitivities of thesimj fundamentals. Thus protan, deutan and tritan

copunctal points define the three cone-based ploggtal primaries L, M and S respectively [38].

In Fig. 2-14, coordinates (1, 0) and (0, 0) repnégeotan and deutan copunctal points. Protan and
deutan confusion lines are represented by dashedsarTritan confusion lines are represented by a
set of parallel, vertical lines (not shown). Themp&ES represents the chromaticities of hypothaétic

equal energy spectrynwith unity spectral power at all wavelengths.
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Fig. 2-14. Macleod Boynton chromaticity diagram (Rproduced from [16], page 119)

Derivation of Macleod-Boynton chromaticity coordies for Stockman-Sharpe 10° cone

fundamentals [22] will be described in Chapter 4.

2.4 CIE colorimetric system

At the heart of colorimetry is the concept of amaltrichromatic observer, whose color-matching
properties are expressed by three independentidasodf wavelength. These are the color-matching
functions (CMFs) of the ideal observer. Color mathmade by the ideal observer always follow
Grassmann’s laws (see Section 2.3.2). The ideatrebs is an average of a group of normal
trichromats, and so this observer's CMFs are likelgliffer from those of individual observers. The

extent of the difference depends on individual oles, for some observers it can be negligible, for
some others it can be rather significant. Thus, itteal observer is essentially a mathematical

construct.

For the color science community, it is important universally agree upon an ideal observer,
established by an internationally recognized sidientbody. With this goal, Commission
Internationale de I'Eclairage (CIE) was set up B3 [9] (page 131). The CIE specifications of
standard observers are discussed next.
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2.4.1 CIE standard colorimetric observers

In 1931, the CIE defined a standard observer faoritoetry. In doing so, it decided to combine the
photometric and colorimetric properties of the d&d colorimetric observer into one set of function
Accordingly, 2° bipartite color-matching data fraffright’s [39] and Guild’s [40] studies were used,
along with the luminous efficiency function defineég CIE in 1924 [41] based on the works of
Coblentz and Emerson [42] and Gibson and Tynd&)]. [(/right measured CMFs of ten observers
using monochromatic primary lights of 650 nm, 530 and 460 nm wavelengths [39]. Guild on the
other hand measured CMFs of seven observers usbagliband lights as primaries. The units of the
primary stimuli were based on equal-energy whitespacific white stimulus of 4800 K color

temperature (designated as NPL white), whose tbheematicity coordinates were equal to each
other [40]. Additionally, for the ease of computais, the tristimulus values were converted sodhat

values were positive. THelE 1931 Standard Colorimetric Obseryshown in Fig. 2-15, is the main

observer model on which much of colorimetry is lbageven though it is recommended only for

small fields of 1° - 4° field-of-view, this resttion is not always followed very strictly in thedinstry.

400 500 600 700
A/mm

Fig. 2-15. Color-matching functions of the CIE 1932° standard colorimetric observer

Fig. 2-13 presented earlier is actually the CIE1108y) chromaticity diagram. The points A, E, € et
on the blackbody locus represent chromaticity cioetés corresponding to various CIE standard
illuminant (A, E, C etc) and CIE 1931 standard cohetric observer.

In 1964, the CIE recommended an alternative settaridard CMFsxw(A) , 910()I) ,z10(A) as a

supplement to the 1931 standard observer for adjlits involving large-field visual color-matching.
These functions were based on the 10° color-magchiperiments of Stiles and Burch [44] and
Speranskaya [45] and are referred taCds 1964 Supplementanstandard Colorimetric Observer

Stiles and Burch used a trichromatic colorimeters(dibed later in Chapter 3) with monochromatic
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primary stimuli at wavelengths 645.2 nm, 526.3 nnd &44.4 nm, and measured CMFs of 49
observers. A different set of primary stimuli wdscaemployed for certain part of the spectrum, but
the final results were all transformed to the priemmentioned above. To reduce rod intrusion (see
Section 2.5.4), the luminance of the matching figlts kept high. A minor mathematical correction

was also applied to reduce rod intrusion.

On the other hand, Speranskaya [45] used 27 obseiareher experiment with broadband primaries.
The central 2° of the field was masked off to avitied maxwell spot (a central nonuniformity in the
field-of-view due to the contributions of maculagment, which is highly concentrated in the fovea).
The luminance of the visual field was 30-40 timesdr than that of Stiles and Burch study, thus the

results were significantly affected by the rod usion, particularly in the longer wavelengths o th

B(A)function. Although Speranskaya used 640 nm, 54%nt465 nm as primary wavelengths, the

data were later transformed to the same systemrofges as used by Stiles and Burch.

Judd [46] [47] averaged the two sets of data aferecting for rod intrusion in Speranskaya’s data.
ratio of 3:1 weighting was assigned to the two,sgith more weight assigned to the Stiles and Burch
data. The ratio was also changed toward the enldeo$pectrum since Stiles and Burch dataset had
greater spectral range. Smoothing and extrapolatiene also used to arrive at the final all-positive
average CMF. Thus, the CIE 1964 standard colorimetsserver does not come directly from the

original Stiles and Burch data, but after signifitamount of mathematical processing.

Note that the precision of large-field color-matahiis generally more than that of small-field color
matching. For example, for 10° field-of-view, coloratching is expected to be two or three times
more precise than the 2° field-of-view [9] (pag&)L3The precision of color matching is indicated by

reduced intra-observer variability.

2.4.2 CIE XYZ tristimulus values

The most commonly used mathematical way of desagibolor is through the CIE tristimulus values,
X, Y and Z, using the CIE 1931 colorimetric systefim compute these values, contributions of

relative spectral power of a CIE standard lightreelS¢{)], the spectral reflectance of the viewed

object [RQ)], and the CIE 1931 standard colorimetric obsef\;férd) . y(A) ,E(A)] are multiplied at

each wavelength, product weighted by the differdret@veen two subsequent wavelengths, and then
summed over all wavelengthy.( The computation is shown in Eq. (2-5), whieie a normalization

factor. HereQ(1) represents spectral power distribution of thetligiflected from the object.
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Q(A) = S(A)R(A)
X =k> QU)x(A)A1 (2-5)

Y =k Q) y(A)A
Z=k>.Q(N)z(A)A

If we replace k(1) , Y(1), z(1)] in Eq. (2-5) by [xw(A), ylo(A) ,710(A) ], we obtainXo, Y, and

Zy0, the tristimulus values for CIE 1964 colorimetsicstem.

The first line in Eq. (2-5) is used for object-calstimuli, when the spectral reflectance of theeath
is known, from which we can compute the spectravgrodistribution of the light reflected from the
object. For self-luminous stimuli however, spectpgiwer distribution of the stimuluQ[i)] is

known, so the first line is skipped.

The factork is generally defined as in Eq. (2-6). The expassn the denominator is computed as
explained before. This assigns the tristimulus @&fuof white stimulus an arbitrary value of 100. In
case of object-color stimulus, this white has acspkreflectance of unity at all wavelengiR(]) =

1], and is called a perfect reflecting diffuser. dase of CIE 1931 colorimetric system, the Y

tristimulus value represents the luminance fastaeims of cd/rh

_ 100
3 S(A)y(A)ai (2-6)

2.4.3 CIELAB color space

CIELAB is one of the most common color space usetbior applications. The CIELAB coordinates
can be obtained from CIEXYZ values of an objectecdtimulus (either CIE 1931 or CIE 1964
colorimetric system) by using Eq. (2-7).

L* =116f (ij
Y,

a* =500 LJ

-G o

2]
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WhereX, Y andZ are the CIEXYZtristimulus valuesX,, Y, andZ, are the tristimulus values of the
reference white, and the functifim), wherew is (X/X,), (Y/Y;) or (Z/Z,), is given by Eqg. (2-8).

f(a) = W™ w> (6/29)°
7.787(w) +16/116  w< (6/29)° (2-8)

The perceptual correlates of chroma and hue asndiy Eq. (2-9).

Gy, =Ja*? +b*2

h, = tan‘l(b—j (2-:9)
a*

However, the CIELAB color space is not quite petaefty uniform, particularly in the blue region of
the color space. As a result, the Euclidean distancCIELAB space between two colors does not
always correspond to the perceived color differefites non-uniformity issue was addressed by the

CIE by establishing an advanced color differenagaéign, as described below.

2.4.4 CIEDE2000 advanced color difference formula

In 2000, CIE proposed an advanced color differdaomula [48] (henceforth CIEDE2000). The aim
was to improve the correlation between computed pateived color differences in industrial
applications compared to what was provided by tisendnile color difference formula of 1994 [49]

(henceforth CIEDE94). Like CIEDE94, CIEDE2000 inporates specific corrections for non-
uniformity of CIELAB space, namely the weightingnfttionsS, S, S, for lightness, chroma, and

hue respectively. Three parametric factkrsk:, ky account for the influence of illuminating and
viewing conditions in color-difference evaluatidfor these formulas, parametric factors are setGas 1

for a given set of reference conditions. The CIED&2 color difference formula is given by Eg. (2-

10).
ALY (ac Y (AR Y AC' TR
AEOO: X _
Kkﬁj +(sz¢) ’{kHsJ +RT(szcj (k&j] (2:10)

CIEDE2000 includes a rotation term [the last tenrEig. (2-10)] that accounts for the interaction

between chroma and hue differences in the blu@medfi also alters theaf) axis of CIELAB, which
mainly affects colors with low chroma (neutral aglo The primes in the color difference termk'},
(4C", and ¢H") denote corrections for neutral colors in lighgyeshroma, and hue differences

respectively.

39



CIEDE2000 (also indicated by symhtiEyg) has been used in this thesis as the color difterenetric
whenever appropriate. Note however that this méranly valid for 2° or 10° standard colorimetric

observer.

2.5 Sources of individual differences in color-matching

In Section 2.4.1, the standard colorimetric obssrweere introduced. However, the color-matching
properties of individual observers differ from tkoaf a standard or an average observer. The extent
of this variation depends on the individual obsesv@his section presents a brief review of some of
the most important physiological factors respomsibl the individual deviations in color-matching.
Further discussions on pre-retinal filters, phagopent optical density and photopigment absorption
spectra can be found in Chapter 4. A more completeussion on different sources of individual

variability can be found in [9] (page 347).

2.5.1 Pre-receptoral filters in the eye

Two major sources of variations in color-matching due to lens and other ocular media optical

density and macular pigment optical density.

2.5.1.1 Lens optical density

Lens absorption constitutes almost all of totallacmedia absorption. The lens optical densityasri
significantly from one individual to the other, aatko increases substantially with age [50]. Van
Norren and Vos [51] showed that individual oculadia absorption of Crawford’s [52] 50 observers
aged between 17 and 30 years varied from the awveemsglts by about 25% at the short wavelengths.
Adult lens transmission is thought to have two comgnts, one being age-dependent, and the other
being age-independent. After age 30, lens trangmis®duces at all wavelengths because of an
increase in the internal scattering of light. Addiglly, there is an increase in the pigment dgribit
causes strong absorption to take place at shor¢lesagths, as well as an increase in lens thickness

[7]. Mathematical model of lens optical densitylvbié presented in Chapter 4.

2.5.1.2 macular pigment optical density

The macular region in the human retina (see Se&idr?) contains a photo-insensitive pigment that
selectively filters light arriving at the base bétphotoreceptors, absorbing most strongly fromt400
550 nm with a peak near 458 nm. The macular pigmptital density has a high degree of individual
variability, with most of the variability occurrinigetween 400 and 525 nm and peak optical density
varying from O to over 1.2 log units [7]. The opilicdensity of the macular pigment is highest at the

center of the fovea, and decreases exponentiatly rgtinal eccentricity [16]. As a result, macular
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pigment can cause the color-matching data to vapedding on the retinal position used in
establishing the color-match [53] [54] [55]. As arample, in case of color-matching in a 30°
bipartite field, the observer match was found t@lmlance between a peripheral and a central match

with a slight bias toward peripheral assessmerit [56

High density of macular pigment in the central 2°f@veal region gives rise to a well-documented
perceptual effect called thilaxwell spot[9] (page 133). For certain color stimuli in larfyeld
viewing (say 10° or larger), a color inhomogeneitgy appear at the area of fixation in the formrof a
ill-defined ellipse with major axis horizontal asdanning 1° or 2° [16] (page 116). It has beendoun
that the exclusion of the affected central regiorsdnot have a significant impact on color matching

[56]. In color-matching experiments, the obsenaesoften instructed to ignore the Maxwell spot.

As we conclude the discussion on the effect prepteal filters on color-matching, it is worthwhile
to mention the seminal works of Moreland [57] [58ho showed that specific pairs of wavelengths
allow one to obtain matches that are robust tovémgation of lens and macular pigment. These
wavelengths were obtained through optimizationloéland green primaries, and were intended to be
used in tritanomaloscopy. Following a thorough gtad tritan matches, Moreland developed a new
type of anomaloscope employing Moreland equatidiiereland anomaloscope is used quite

frequently in the field of color vision.

2.5.2 Photopigment optical density

Once light (in the form of photons) reaches thetplezeptor layer at the back of the retina (see
Section 2.1.2), it must be absorbed in the photopigs in order to enable the visual perception. The
concentration of the pigments and the length of pi®topigment-filed outer segments of
photoreceptors affect the absorption spectrum. &he® factors determine the effective optical
density of the photopigment. Due to the longer ptesteptors in the center of the fovea, the effectiv
optical density of photopigments is the highedhatfoveal center and decreased exponentially with
retinal eccentricity independent of age and come.tyAs a result, the effective optical densities of
photopigments decrease as the field sizes incié&kewWhile some psychophysical studies suggested
[59] [60] that LWS-cone photopigment optical depsitas higher than that of MWS-cones, some
other researchers [61] concluded that the LWS-MWS-cone photopigment optical density did not

differ across the population.

The effective optical density of photopigments alswies among individuals [62]. Differences in
optical density of the LWS and the MWS photopigmsecdin account for variability in chromaticity
coordinates normalized in the manner described byDNWright [63]. This method, generally

referred to as WDW normalization [9] (page 134)he literature, discounts individual variabilityelu
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to prereceptoral filtering (due to ocular medianosacular pigment optical densities), leaving the
variability that is only due to the photoreceptgstem, However, this is true only for monochromatic

stimuli.

High axial photopigment optical density resultstire flattening of the spectral absorptance of
photopigments. This happens since the absorptiavaielength dependent, with absorption at the
peak being maximum. According to Rodieck [4], maxim absorption efficiency is around 2/3, out
of three photons that reach the molecules of rheidep two trigger an isomerization. When axial
photopigment optical density increases, absorptainthe longer and shorter wavelengths increase
while at the peak wavelength it is still at its nmaum, resulting in a flatter absorption functiorhid

in turn broadens the underlying spectral sensiisiof the photoreceptors. The dependence of the
photopigment spectrum on optical density is knoweedf-screening7]. Once a pigment molecule is
bleached, it can no longer absorb photon. Lighellean substantially affect the concentration of
unbleached pigment molecules. Thus, as the liglef lacreases, for example when the eye goes from
the dark-adapted state to the light-adapted diaespectral absorptance functions of cones narrow.

This change in the shape of the absorptance spedreeflected in the color matching functions.

2.5.3 Variability in the photopigment peak wavelength.f due to genetic polymorphism

In recent years, significant progress has been nmadederstanding molecular biology responsible
for human color vision, including the identificatiof the genes that encode the LWS- and the MWS-
cone photopigments. These photopigments can shéuwnpphism in the amino-acid sequences of
their opsin genes [64] [65] [24]. Such polymorphssoan affect théq..of the photopigment spectra.
The most common polymorphism is a single amino-agtilistitution (Alanine for Serine or vice
versa) at position 180 of the LWS-photopigment owggnes, resulting in a peak wavelength shift of
up to 4 nm [66] [67]. As an example, Sharpe efGl] estimated the difference in photopigménix
from the mean L(s&f) and L(ald®) spectral sensitivities as around 2.7 nm. The degaplotted in

Fig. 2-9 as gray and black circles.

Other than serine-alanine polymorphism, the largkHts inAy.are produced by substituting alanine
for threonine at position 285 (up to 14 nm) andrtedanine for tyrosine at position 277 (up to 7)nm
[24] (page 9). An LWS photopigment has a tyrosim@asition 277 and a Threonine in position 285.
On the other hand, an MWS pigment has a phenytadaini position 277 and an Alanine in position
285. These two substitutions contribute the moghéolarge shift between the LWS and the MWS
photopigments. Moreover, the substitution of amiaka for a serine in position 180 in LWS and/or
MWS pigments may exaggerate the difference betwasin peak wavelengths, as a serine makes the

peak wavelength shift a little toward longer waweihs in either pigment [69].
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2.5.4 Rod patrticipation

A color mixture is treated as a linear system iloiémetry, following several key properties incladi
additivity and proportionality (Grassmann’s law$his is particularly true for small (e.g. 2°) fovea
fields. According to Brindley’s quantal hypothe§i%], a foveal color match is obtained when the
quantal catch rate is equivalent for each of theetfactive photopigments, thus making such a match
trichromatic and photopigment-limited. However, farger matching field or in case of parafoveal
viewing (where the field is imaged outside the fova the eye), a fourth photoreceptor, the rod,
becomes active under certain viewing conditionsaAesult, color-matching may not always follow
Grassmann'’s laws [26] (see Section 2.3.2), eveuagthahey remain trichromatic [70]. Nevertheless,
for a pair of matching stimuli in a bipartite field the spectral radiant power in both half-fieldere
reduced or increased by the same amount indepeonfi¢ghé wavelength, the match would still be
valid [9] (page 356), provided the match is photopi

In large-field color-matching, a hypothetical matghere the rod receptors are somehow suppressed
from responding to the stimuli is called rod-sumgesl match. CIE 1964 supplementary standard
colorimetric observer, described in Section 2.4tiempts to define the matching properties of a rod

suppressed retina by mathematically correctingddrintrusion [9] (page 357).

Several experimental studies have attempted touatcfor rod intrusion by balancing for rod
responses in the matching fields in a large bitgafield, so that color matches remain stable at
various stimulus levels. The color-matching proctsss becomes tetrachromatic [71] [72] [73].
Wyszecki and Stiles’ reference contains a detadisdussion on tetrachromatic color matching [9]
(page 366).

2.6 Conclusions

In this chapter, various fundamental concepts amtkrstanding of color science and color vision
were reviewed. Starting with a discussion on thg ¢é@mponents of the human visual system, we
reviewed the basic theories and established kn@eled the perception of color as we know today,
followed by a discussion on the principles of colatry and visual color matching. Then various
aspects of the CIE colorimetric system were revievi@nally, some of the most common sources of
individual differences in color matching were enuated. The goal of this chapter was not a
complete and comprehensive discussion on all ttogses, but to provide a concise review of them,

with appropriate references for further reading.

Accordingly, this chapter sets the foundation farenin-depth discussions on the issue of observer

variability in color science and color applicatipmdich will be presented in the subsequent chapter
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The most exciting phrase to hear in science, tleetbat heralds new discoveries, is not "Eurekal” (*

found it!"), but rather "Hmmm... that's funny...'Isaac Asimov

3. Observer Metamerism and Individual Observer

Variability in Color-Matching: A Review

3.1 Introduction

When two color stimuli produce the same visual oesg, a visual match is obtained. Two stimuli
with very different spectral power distribution cgive rise to identical cone response, leading to a
color match. However, such a match establishedngyabserver can, and quite often does lead to a
mismatch for a different observer, as the secorsktmier has a different set of color-matching

functions (CMFs) than the former. This phenomermsoeoimmonly termed as observer metamerism.

:-‘.Q_U Observer A

Spectra 1 Spectra 2

Zl - 22
Theintegralsare identical
400nm 700 nm 400 nm 700 nm

Variations in
Observer Color Vision

Spectra 1 Spectra 2

700nm

Theintegralsare different 400nm 700nm

Fig. 3-16. llluminant (top) and observer (bottom) netamerism (Courtesy: Laurent Blondé)

The origin of the metamerism lies in the trichropna€ the visual system. A metameric color match
between two stimuli, either objects or illuminasoms conditional. If the stimuli do not match upon
change in illumination, the pair is said to exhiitminant metamerism (Fig. 3-16 top), which resul
from a change in the spectral power distributiontte# illuminant. If changing observer causes a
mismatch, the pair is said to exhibit observer metasm (Fig. 3-16 bottom), since the mismatch is
caused by a change in the CMFs of the observethdfspectral characteristics of the primary
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colorants of two color reproduction devices arethetsame, any color match made on these devices

is metameric in nature, and thus may not hold wdr@observer is replaced by another.

While in literature some researchers have used ténms observer metamerism and observer
variability interchangeably, there is a subtle a@lifince between them. Observer metamerism
implicitly assumes the existence of two stimuli. Wnply cannot define or describe observer
metamerism without the context of color stimuli. 98bver variability on the other hand is a more
generic term, implying differences in the coloriers characteristics (in this context, the CMFs)
among individual observers. We can think of observariability as the cause, and observer

metamerism as the effect.

In the next section, various studies aimed at wstdeding, quantifying and modeling observer
metamerism are reviewed. In the two sections tikivi, several color-matching experiments leading
to a better understanding of the individual obsemagiability are reviewed. Of these, Section 3.3
deals with classical color-matching experiments 8edtion 3.4 deals with applied color-matching
experiments. Here, classical color-matching expenits refer to those that involve monochromatic
stimuli generated by a monochromator or a similkstrument, while applied color-matching

experiments refer to those that involve displayssiamilar devices employing either broadband or

narrow-band primaries.

3.2 Quantifying observer metamerism

The practical consequence of individual variability CMFs is observer metamerism. It poses a
significant challenge in many industrial applicagp since its effect is that a satisfactory color
reproduction across various devices and mediatén afot guaranteed for all consumers and clients.
Therefore, from practical applications’ point oéwi, it is of interest to somehow model and quantify

observer metamerism. Following subsections sumeagdrious attempts toward achieving this goal.

3.2.1 Color Rule as a metric of observer metamerism

The D&H Color Rule is a device in which two seriek paint patches with different spectral
characteristics slide against each other. It waginally produced by Davidson & Hemmendinger,
subsequently by the Munsell Color Co., but is nogkr available [74]. In this Color Rule, the
observer can view two patches, one from each seside by side in a rectangular window. The
patches were selected in such a way that for angieenbination of illuminant and an observer, two
patches from the two series would make a metamaaich. Either with change in illuminant or with
change in observer the matching pair changed. Dherger’s task was thus to slide the rules to find

the right matching pair under a given illumination.
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In one of the early attempts to quantify variatiomebserver color vision, Kaiser and Hemmendinger
[75] analyzed D&H Color Rule data from various pastdies and argued that normal trichromats
made responses with the Color Rule that were demermh age. They found that the yellowing of the
lens in the human eye resulted in similar changesponses on the Color Rule as by an illuminant
change of 50-75 reciprocal mega Kelvins (Y}KThus, Kaiser and Hemmendinger found a strong

correlation between age and lens density in theamuaye.

3.2.2 Spectral characteristics as metrics of metamerism

There have also been attempts to quantify the erfesbserver metamerism possible for a given set
of two stimuli. A widely popular theory is that twoetameric stimuli with identical tristimulus vakie
for a standard colorimetric observer require astidhree crossovers of the stimulus functions at
different wavelengths in the spectral domain [78][78][79]. Berns and Kuehni [80] argued that
these crossover locations depend exclusively orspleetral properties of the metameric stimuli, and
that: “any relationship between crossover wavelenhgnd properties of the visual system such as
maximal responsivities appears coincidental”. Hosvewthere is a disagreement in the scientific
community over this assertion, with a counter-argotrthat a crossover near the peak sensitivity and
a crossover far away from the peak sensitivity largkely to have similar implications on observer

metamerism [81].

In a related mathematical approach by Kuehni andd®ath [82], observer CMFs were interpreted as
dimension reduction functions. The magnitude ofasgd difference between stimulus functions was
considered to be an approximate measure of theedegfrmetamerism. Consequently, the maximal
three-crossover metameric pair was defined as tahgmay with uniform function value of 0.5 and a
metamer with three sharp transitions between 0 Jan@lhe wavelengths at which such transition
occurred were called transition wavelengths. Défees between observer CMFs were predicted with
the help of transition wavelengths for such metanpair, and it was shown that the transition

wavelengths could be used effectively in compaangd distinguishing CMFs of individual observers.

However, an essential requirement of the above adstliis that the observer CMFs must be known.
These methods aim to identify either the obseni@iF€ or the stimuli that lead to high observer
metamerism. Their purpose is not to offer a solutto the problems encountered in practical

applications, but to provide a better understandintpe phenomenon of observer metamerism.

3.2.3 CIE standard deviate observer (1989)

Starting from the early eighties, several reseaschéempted to quantify the extent of metamerism

using the color-matching data from 20 observergcted out of the 49 observers of the Stiles and
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Burch’s experiment [44]. The observers were setettased on their reliability and experience in

trichromatic matching, not based on their actusiilts [9] (page 346).

Allen [83] was the first to propose the conceptdftandard deviate observer and a general index of
metamerism. The idea was to derive a standard t@eglaserver who has color-matching functions
differing from the standard observer by amountsaétu standard deviations among the 20 sets of
CMFs. It was a statistical construct involving asals of variances and covariances of 20 sets of
CMFs.

In a different statistical approach, Nayatani et[84] performed a singular-value decomposition
analysis on the 20-observer data and derived feuiatdon functions characterizing the variations of
color-matching functions of color normal observaise new standard deviate observer was tested on
two sets of metameric spectral reflectance valdes2oand 68 metamers. Only the first deviation
function was used to evaluate the degree of obsemegamerism. A subsequent study by Takahama
et al. [85] expanded the method by using the fistiation to evaluate the index of observer
metamerism. All four deviations were used to cargdtthe confidence ellipsoids defining the range of
mismatches expected for a given pair of metamdesyed by actual observers with normal color
vision but different from the reference. In an ipdedent study, Ohta [86] performed a nonlinear
optimization of the 20-observer data to formulatandard deviate observer model. The model was

close to the one obtained by Nayatani, and wasssddo well represent the original 20 observers.

Mainly based on the works of Nayatani et al. [843 &akahama et al. [85], the CIE published in
1989 a technical report title@pecial Metamerism Index: Change in Obseri&f] (henceforth
referred to as the CIE standard deviate observédm®. index was based on the computed color
difference between the standard deviate obsendeaay of the standard colorimetric observers under
a specified standard illuminant. Till date, it isetonly official model that attempts to quantify

observer metamerism.

However, the CIE standard deviate observer model rdit perform well when evaluated with
independent experimental data. As we will see Bhartany researchers reported [88] [74] [89] [90]
that the model under-estimated the variations lorematching data of real observers. The suggested
explanations for this failure were exclusion of goof the Stiles-Burch observers from the analysis
which led to the development of the CIE standandade observer [88] and improper mathematical
treatment of the original colour matching data [88]this regard, it is interesting to note thatdsés

like those of Katori and Fuwa [91] and Nayatani][8at reported much smaller observer variability
compared to other studies in the US and Europe aleoenducted in Japan, prompting some authors
[74] to speculate genetic or ethnic influence ie Hpparent contradiction of experimental results.

However, there is no substantial evidence to suppis speculation as yet. Looking from the poiht o
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view of practical industrial applications, in patiar hard-copy vs. soft-copy color-matching, some
researchers [90] [27] have questioned the purpadeisefulness of an index of observer metamerism,
and a standard deviate observer. They suggestédnthigidual variability in these conditions is

governed by mechanisms of chromatic discriminatimg could be modeled by advanced color

difference formulae with suitably adjusted parametoefficients.

3.3 Observer variability in classical color-matching eyeriments

Numerous researchers have conducted color-matahpgriments with a variety of experimental
setups and goals [9] (page 288). Many experimeet® werformed with a small field-of-view. For
example, the 2° color-matching experiments by Gj4] and Wright [39] [93] are some of the most
authoritative experimental works in color scienteading to 1931 CIE 2° standard colorimetric
observer functions [94] [95]. These studies andt thebsequent evaluations have shown a great deal
of observer variability [9] (page 343). In one bétfirst attempts to model the uncertainties ingdlv

in the color-matching data, Nimeroff et al. [96pposed a statistical model they termed as Complete
Standard Colorimetric Observer System. The modeluded the mean of the color-matching
functions of various observers, as well as variaara® covariance of these functions derived from the
intra- and inter-observer variability. Their anadyshowed the ratio of inter- and intra-observer
variability was about 5.7. More recently, in a cantgtional analysis of CIE 2° standard colorimetric
observer and other CMFs, Shaw and Fairchild [9@dhibthat the magnitude of observer variability
was nearly eight times that of the variability fdubetween various CMFs, and concluded that the
problem of observer metamerism was more of a conttean the accuracy of the CIE 2° standard

colorimetric observer itself.

Similarly, a preliminary experiment conducted byleSt [98] showed that the CMFs of different
observers varied by as much as two log units. Meeadl standard deviation of the collected data was
found to be much larger than the standard deviatfane or two individual observers. Unlike Kaiser
and Hemmendinger [75], Stiles found only a weakalation between age and lens density in the
human eye, and also stronger influence of macutangnt on observer variability compared to the

aging of the eye lens.

The following subsections outline some of the masable classical large-field, trichromatic color-
matching experiments. Note that small-field (foaemple 2°) color-matching experiments, as well as
various theoretical studies on color-matching da not reviewed here. Also excluded from the
scope of this discussion are the tetrachromatioranhtching experiments with four primary stimuli,

aimed at investigating rod participation in largeed color-matching.
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3.3.1 Stiles and Burch’s experiment (1959)

More than fifty years ago from the time of writitigjs thesis, Stiles and Burch [44] conducted at the
National Physics Laboratory at Teddington, Englérelmost comprehensive, and arguably the most
authoritative large-field color-matching experimetii date involving a total of 49 normal
trichnromats. These data, together with those obthlyy Speranskaya [45] eventually led to the CIE
1964 supplementary standard observer for largd-fiséwing, which is referred to as CIE 10°
standard colorimetric observer throughout thisithésee Chapter 4 for further discussion). Stiles$ a
Burch used three double monochromators with sulbteadispersion. Such configuration ensures that
the spectral dispersion at the exit slit of theoseicmonochromator is essentially zero, and the ligh
leaving its exit slit is spectrally uniform. The mahromators were mounted vertically on top of each
other, as shown in Fig. 3-17. A movable, narrow iglithe middle level was used to select the
monochromatic primary stimulus to form one halftloé test field provided in the photometer cube.
Three fixed slits in the upper level selected trmathromatic primaries, which after recombination
in the second level provided the comparison fialthe photometer cube. The lower level employed a
similar mechanism as the top level using the sarmeapies, with the effect of de-saturating the test

stimulus.

The radiances of primary stimuli could be indeperigecontrolled by several neutral density filters
placed next to the slits in the middle level. Baydhe photometric cube, all the light concentrated
within a square area of two millimeter size andemtkd in the pupil of the observer. The observer
saw the horizontally divided bipartite field by theethod of Maxwellian view [9] (page 478). A 14°

surround with the same spectral composition asestestimulus was provided.

Color-matching functions of the observers were mess at wave-numbers from 14000 trio
25500 crit at intervals of 250 cih The monochromatic red, green and blue primamustiwere
located at wavenumbers 15500, 19000 and 22509 mEspectively, which translate to wavelengths
of 645.2 nm, 526.3 nm and 444.4 nm respectivelg fEtinal illuminance values of the test stimuli at
these wavelengths were around 794, 1585 and 63omikotrolands respectively. A detailed

description of the experimental variables is gireff] (page 338).

Stiles and Burch investigated intra-observer vartglby repeating measurements for two observers
four and five times respectively. Intra-observeriation was large in the blue region of the color
space and relatively low in regions where corredpan tristimulus values were the largest.
Variability between individual observers is illustied in Fig. 3-18. Singularities at the wavelengths
primary stimuli indicate the locations of the prities. For example, for all observers the short-wave
sensitive color-matching function was set to a eatd unity at 444.4 nm, and other two color-

matching functions had the value zero, thus rewylin zero standard deviations. In analyzing the

49



variability in the individual observer data, Stilaed Burch considered possible contributions from
various physiological factors. They noted thatwhgations could not be completely explained by the
absorption due to the filter pigments in the eyleeylalso took into account rod participation irgkr

field color-matching [9] (page 354) and tried t@agnt for it.
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Fig. 3-18. 10° color-matching functions of 49 StiteBurch observers (from[44])
The data from the large-field experiment by Stdes Burch [44] have been used extensively in this
thesis. The results are discussed in Chapter 4aiitie Stiles and Burch dataset has recently been
recompiled and made available electronically on Gmdor & Vision Research Laboratory website
[99].
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3.3.2 Viénot's experiments (1977)

Viénot [100] designed an optoelectronic instrumfenthe measurement of color-matching functions
using the Maxwell method (see Section 2.3.3). Aditac mixture of two color primaries were used
on one side of the 10° bipartite field, while or thther side an additive mixture of a third primary
and a monochromatic light was used. A 30° surrowad used, along with an intermittent white
stimulus alternating with the colored beam by meahsa flicker device. The white stimulus was
meant to break temporal adaptation. The primarieewbtained through several interference filters
held before a high-pressure xenon arc lamp. Therebss (two observers participated) were able to
make the two halves of the bipartite field matchnbgving three photometric wedges to control the
colors on both halves, and the luminance on thenf.
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Fig. 3-19. Viénot's color-matching instrument (lefj and its schematic diagram (right) (from [100])

The instrument, shown in Fig. 3-19, was subsequesttd to measure color-matching functions of 10
observers [101]. The luminance levels of the tedtl fvaried widely from 150 trolands for 695 nm
stimulus to 4250 trolands for 480 nm stimulus. Tiea- and inter-observer variations in the data
were compared with the results of Stiles and Burb#], and their possible explanations were
explored. Inter-observer variations were signifttamore than those reported by Stiles and Burch
[44] in the red and blue extremities of the colpectrum, while for other parts of the spectrum they
were comparable. The high variability in the highevelengths (red extremity) was attributed to low
luminance of blue flux and the relative insensiyivof the short-wave sensitive color-matching
function. For the blue extremity of the spectruhre effect of Maxwell spot (see Section 2.5.1), and
differences in the experimental method used in tthe studies, particularly different operating
luminance levels, were thought to be the reasoméntiehigher inter-observer variability. Viénot
further analyzed and concluded that (r, g) chrotitgtdiagram was not convenient for comparison of
such inter-individual variability. With regard totra-observer variations, the retinal heterogeneity
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over the 10° field was proposed as a possible dausich variability. According to Pokorny et al.
[102], the color-matching is determined neithettly fovea nor by the perimeter of the retina, but b
the intermediate area between them. Viénot [10dded that variations of inert filter pigments ire th

eye and cone length in this intermediate area trésulhe balance between two half-fields being

unstable, leading to intra-observer variationsryidgolor-matching.

3.3.3 Katori and Fuwa’s experiment (1979)

With an instrument similar to that of Stiles andr&y Katori and Fuwa [91] conducted a 10° color-
matching experiment with 10 normal trichromatshet Electrotechnical Laboratory in Tokyo, Japan.
The aim was to derive a 10° luminous efficiency diion from the measured color-matching
functions and heterochromatic brightness matchés flicker photometry. Some discrepancies were
observed in the mean results as compared to tha owar-matching functions from the Stiles and
Burch study, particularly in the short- and longweesensitive regions. This was attributed to the

differences in the luminance level and to rod ision.

3.3.4 Thornton’s experiments (1992)

Thornton [103] [104] [105] performed several 10°lozematching experiments with his visual
colorimeter-spectroradiometer instrument, usingaliate sets of spectral primaries. Maxwell method
of color-matching was used (see Section 2.3.3) revkige reference field was always white. Three
primary sets were used: “prime-color” (PC) in thedral region of 452-533-607 nm, “antiprime”
(AP) in the spectral region of 497-579-653 nm, amahprime” (NP) in the spectral region of 477-
558-638 nm. Thornton observed that the CIE 1Q3d=ted colorimetric observer performed relatively
poorly in the presence of spectral content in tiRerdgion whereas better performance was achieved
when incoming light was composed of a matching doatibn of the PC primaries. He further
observed that “a single computed chromaticity fanlsepresent a set of lights pronounced metameric
by a normal human observer. Conversely, some memiien set pronounced metameric by the

Standard Observer may mismatch grossly to a ndnarabkn observer.” [104]

While some of the discrepancies in the resultsrodgg perceived brightness or matching condition
of two lights were attributed to the mathematicahstruct that is the CIE standard colorimetric
observers, the discrepancies reported in Thorntpajsers went well beyond observer metamerism.
For example, he noted that “the large chromatieitprs among the 28 Maxwell-Method matching
lights...are present even in color diagrams consrufitom the observer’s own maximum-saturation
matching data from the same (PC) primary-set.” klestconcluded “errors in computation of the
tristimulus values (which should be identical fasually-matching lights) must thus be due to some

basic shortcoming in the use of CMFs as weightintcfions on the SPD of the incoming light.” A
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major inference from his work was that Grassmatawsof additivity [26], the very basis of much of
colorimetry as we know, did not hold for transfotioa of certain primaries. In other words, when
color-matching data obtained by using one set ahames were used to predict color matches
obtained by using a different set of primariescidipancies were observed between computed and
measured tristimulus values. Thornton’s findings tie an intense debate in the scientific community.
In fact, an entire CIE Symposium [106] was devdted@hornton’s findings, and led to the formation
of the CIE Technical Committee TC 1-56 [28] andesal independent investigations [107] [108]
[109]. While this aspect of Thornton’s work, thepapent additivity failure of color-matching data, i
outside the scope of this thesis, it has been ded#tail in Oicherman’s PhD thesis [27].

3.3.5 Color-matching experiments to compare the Maxweld anaximum saturation
method (1965-72)

The two different methods of color-matching, naméte Maxwell method and the maximum
saturation method, were discussed in Chapter 2er8kvarge-field classical color-matching
experiments to probe the discrepancies in the aatzined using these two methods were conducted
back in the 1970’s, which are briefly mentionedehtar the sake of completeness. Implications of the

results from these experiments were already discussChapter 2.
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Fig. 3-20. Spectrum loci derived from color matchesade in a 10° bipartite field by one individual
observer using the Maxwell method and the maximumaturation method. Left figure is from Crawford’s
study [32] and the right figure is from Lozano andPalmer’s study [33] (Reproduced from[9], page 385)

Crawford [32] conducted a color-matching experimemith six observers using the same
monochromator used by Stiles and Burch. Results fits experiments, described earlier in Chapter
2, are reproduced here in Fig. 3-20 (left). Bothxiell and maximum saturation methods were
employed on large 10° field as well as 1° and 2&& field color-matching. Narrow-band primaries

at 650, 530 and 460 nm were used in the experim&hts spectrum loci obtained by the Maxwell
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method and the maximum saturation method deviated €ach other in the blue-green region of the
spectrum. The effect was smaller with 1° and 2Rifibut nonetheless present, thus Crawford ruled

out the possibility of rod intrusion playing a rafethis discrepancy.

Lozano and Palmer [110] also conducted similar grpmts using the Stiles and Burch’s
colorimeter. CMFs were measured for four obserumiag the maximum saturation method. The
observers additionally matched 20 broadband stilmuling a wide range of chromaticities using the
Maxwell method. Results similar to those of Crawfovere reported, and are shown in Fig. 3-20
(right). Observed blue tristimulus values for sorobservers were often underestimated in
computations. While the intra-observer variabilitsts found to be around 3%, the discrepancies were
around 20%. In a subsequent study [33], the CMFmefobserver were measured using the Maxwell
method at high luminance level of 160 Td, and usimgmaximum saturation methods at both high

(160 Td) and low (10 Td) luminance levels. Simtl@ands in the results were observed as before.

In several pilot tests, Wyszecki [9] (page 386)dsimilar results using a color-matching instrutmen
at the National Research Council, Canada havingdnee design as Stiles’ monochromator (Fig. 3-
17). 2° and 9° visual fields, at an illuminancedeaf 1000 Td, were used. The data showed similar
features as those of Crawford [32] and Lozano aich& [33], even though Crawford’s finding that
the effect of additivity failure was less pronoudder smaller field size could not be confirmedeTh

magnitude of the effect was found to be dependeh® wavelength.

3.4 Observer variability in applied color-matching expeiments

While a huge amount of research has been conduntdtle past to identify the sources and
magnitudes of individual variations in color-matufpi the evidence of a significant effect of these
variations from the perspective of applied colotitpevas scarcely documented until early 1990’s. In

the following subsection, several key applied stadin observer variability are reviewed.

3.4.1 Maxwell-type color-matching experiment using a GRd@ a tungsten-halogen lamp

North and Fairchild [111] conducted a Maxwell-tygp@or-matching experiment using an instrument
utilizing Cathode Ray Tube (CRT) display primari@s one half of a 2° bipartite field, and a
tungsten-halogen lamp with interference filterstio@ other half, simulating daylight. The observers
controlled the CRT primaries in the lower half tatoh the daylight reference in the top half. Filter
wavelengths were mixed with the CRT primaries ideorto determine the color-matching data at
specific wavelengths. Color-matching data at sevavelengths were obtained for 18 observers in the

age range of 20 to 40, including one observer wdrdopmed 20 repetitions. The authors estimated
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the color-matching functions of each observer thlowa mathematical model, starting from

experimental data obtained at the seven wavelengths

In the analysis of their data, the authors madersd¢¢onclusions [88]. First, they found that theam
data for the 18 observers were consistent witiL@81 CIE 2° standard observer and Stile’s 2° mean
observer [98], and concluded that the CIE standaslbrimetric observer was an appropriate
representation of the average color normal humaserver. Second, they concluded that inter-
observer variability in their data, which was sfgrantly more than the intra-observer variabilioy &
single observer, was much larger than what wasigieetiby the CIE standard deviate observer [87].
Next, their method showed little difference in t@or-matching data of two individuals over a 20-
year period. Finally, no correlation was found bstw the observer age and any of the model
coefficients for lens and macular optical densiiyie researcher [112] subsequently questioned the
accuracy of North and Fairchild’s method and soesdnof their conclusions. Indeed, the inter-
observer variability reported by North and Fairdi{gee Fig. 6 of [88]) seem to be significantly enor
than what has been observed in subsequent stirthsding in this thesis research. Further, color-
matching functions of an individual can reasonabéy expected to vary over a 20-year period,
particularly in the short wavelengths. While theexymected results could have originated from the
approximations in the mathematical modeling, thisreenough documented evidence that color-
matching data obtained by the Maxwell method haweenuncertainty than the data obtained by the
maximum saturation method [9] (page 386). HoweNXarth and Fairchild’s conclusion about the
CIE standard deviate observer's [87] under-estimmatof the inter-observer variability was

corroborated by Rich and Jalijai [74], and in othebsequent studies reviewed below.

3.4.2 Cross-media color-matching experiment using a CRI @lor prints/transparencies

In order to better quantify observer variability dolor matches between CRT displays and printed
materials, Alfvin and Fairchild [89] conducted aswal experiment on color matches between color
prints or transparencies and a CRT display. Theable was to quantify the precision and accuracy
of three sets of color-matching functions, and alse magnitude of inter- and intra-observer
variability. An optical apparatus consisting of aguilateral glass prism was used to allow the
observers to view simultaneously both the soft- &add-copy stimuli in a vertically symmetric
bipartite field. The equiluminant stimuli with arfbsolute luminance of 50 cd/m2 were viewed as
unrelated and self-luminous colors at a visual amdl2.9°. The observers were asked to adjust the
color appearance of the soft-copy stimulus by diligsthe color along CIELAB (L*, a*, b¥*)
dimensions in order to create an exact color-mditcheach of the hard-copy stimuli. Spectral
radiances of the stimuli were measured after eatichmResults from the experiment showed that the
variability of inter-observer color matches was rappmately twice as large as the intra-observer

variability in the color matches. The mean coldfedence from mean (MCDM) for inter-observer
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variation was 2.7 CIELAB units. The results refutedrevious study by Pobboravsky [113] where the
effect of observer metamerism on color-matchingvieen hardcopies and soft-proofs was shown to
be insignificant. Alfvin and Fairchild concludedatithe existing CIE 2° and 10° standard colorinaetri

observers were a good representation of the populaf normal trichromats, but the inter-observer

variability was significantly larger than the preiitbn of the CIE observer metamerism index [87].

3.4.3 Observer variability prediction using Davidson & Menendinger Color Rule

Diaz et al. [114] studied how the metameric matblanged when each physiological parameter
responsible for variations in color vision was @tk The authors used Davidson & Hemmendinger
(D&H) Color Rule [75] to predict the matches of leedretical observer with normal color vision.
Color matches were also predicted for deviate olessiby first deriving the cone fundamentals of the
theoretical normal observers, then by changing raxeatally determined values of lens and macular
pigment density, and finally by accounting for #ftsh the long-wavelength sensitive photopigments.
For determining the lens density, a Maxwellian viaw8 td was used in a 10° foveal field. For
estimating the macular pigment density, heterochtanflicker photometry matches of 466 nm test
stimulus and 558 nm reference stimulus were medsomethe periphery of a 10° foveal field and
were compared with their values on a 2° fovealdfigt photopic illuminance. Observations were
made in Maxwellian view at 2.40 log td. Matchesnir@ight observers obtained under monocular
vision using D&H Color Rule were compared to thetehas predicted by computing their
personalized cone fundamentals from several indégerpsychophysical measurements. The authors
performed a quantitative assessment of the effgorarious sources of individual variation in color
vision on a metameric color match. In conclusiamyvas suggested that a match could be better
predicted by using personalized corrections of otexiphysiological parameters than by using a

theoretical model.

3.4.4 Cross-media color-matching experiment using paamygles and two displays

Oicherman et al. [115] investigated the contributiof various sources of variability in color-
matching by conducting a color-matching experimsnmaximum-saturation type. They conducted
an asymmetric color-matching experiment [107] whel@/en observers were asked to match the
colors displayed on a CRT and an LCD to the cofdrsvo achromatic and eight chromatic paint
samples placed inside a light booth one at a thné° viewing angle was used, with the maximum
luminance level set at 120 cd/m2. As in the stuflyAlvin and Fairchild [89], the colors were
adjusted in CIELAB (L*, C¥%, h*,,) for chromatic stimuli and (L*, a*, b*) for achraatic stimuli.

The results showed a discrepancy between the CiEth@idard colorimetric observer and the mean
of real observer data in the form of a blue sAifie authors hypothesized that this discrepancy was

due to additivity failure caused by adaptation.
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Large variability was observed between the Stile$ Burch (1958) color-matching dataset and the
results obtained by the authors. They also repaatesignificant under-prediction of the observer
variations of color-matching data by the CIE stadd#eviate observer [87], accounting for only 15%
of inter-observer variability. The main differenoetween the inter- and intra-observer variabiligsw
found to be in the lightness dimension. Since diffices in physiological factors have a major effect
on color perception and relatively minor effect lgghtness perception, the authors argued that the
inter-observer variability in this case (i.e. crmsadia color-matching) was not governed by observer
metamerism.  As per their argument, mechanisms atipgr asymmetric color-matching are
potentially different from those of direct compansof cone signals, and thus the degree of observer
metamerism does not correspond to the degree @bilety of matches between spatially separated
stimuli. They suggested that an optimization of @&EDE2000 AEy) parametric coefficients was

more appropriate approach to model the observéhibity in cross-media color reproduction.

3.4.5 Color-matching experiment using broad-band stirankil LEDs

Csuti and Schanda [116] conducted a Maxwell-tyderematching experiment in a 2° x 3° bipartite
field, where one half of the field was illuminatby filtered incandescent lamp, while the other half
was illuminated by an additive mixture of RGB LEO$ie dominant wavelengths of LED primaries
were 626 nm, 525 nm, and 476 nm. Colored filtersewgsed to generate specific colors on the
reference field with the incandescent lamp. Lumasaaf the reference field varied between 90 and
400 cd/m?. Six observers performed color-matchipgianging hue, brightness and saturation (the
color space used was not mentioned in the papdaheoLED primaries. The authors reported large
visual mismatches, particularly in the blue parthef chromaticity diagram, when the CIE 2° standard
colorimetric observer was used in the computatidowever, the chromaticity error in (u', v')
coordinate system could be reduced by around 504sing color-matching functions derived from
CIE 2° physiological cone fundamentals [14]. Inubsequent step, the authors optimized the 2°

physiological cone fundamentals to obtain furtimepriovement in the results [117].

3.4.6 A new generation of color-matching instruments

Before concluding this discussion on applied cohatching experiments, it is pertinent to mention
the new spectrally programmable light engines Hrat likely candidates for a new generation of
colorimeters, which could be used in near futune donducting color-matching experiments. One
such instrument is OneLight Specttg118]. It is based on Texas Instruments’ DY.Prechnology
[119], which employs a microprocessor fitted wifhto two million tiny, hinge-mounted microscopic
mirrors with precision digital control. In case®feLight Spectra’, these mirrors reflect light with a
specific spectral power distribution into a liquight pipe with 5 nm aperture. The instrument

operates in the 380 nm - 720 nm range and provitdsvare control of the intensity at each
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wavelength independently. While the instrument daapectral accuracy of 1 nm, the current spectral

bandwidth is 14 nm. Thus the output stimulus idyfaiarrow-band, but hot monochromatic.

The advantage of such an instrument is the inciedibxibility in spectrum generation without
requiring several expensive optical components piketometric wedges and interference filters, and
their elaborate and cumbersome mounting. The disadges, at least for the time being, are the high
price (we will require two instruments for genemgtia bipartite field), and a relative high signal
bandwidth (cannot be used in classical experimeiNsyertheless, these instruments demonstrate

high prospect for being adaptable for the purpdsmior-matching experiments.

3.5 Conclusions

As this chapter demonstrates, various studiesenptst, both classical and applied, have provided
significant amount of insight into the issue of eh®r variability in large-field color-matching, én

its ramifications in basic color science and agplelor technology. While over the past couple of
decades our knowledge of underlying physiologiealsons for individual variability in human color
vision has enriched considerably, we are yet to ecamp with a practical solution in applied
colorimetry. Being constrained to a single averaggserver model, colorimetry is unable to predict
how individual color matches might differ from tleosf an average match. The consequence is non-

trivial for certain color-critical industrial apjglations.

Oicherman in his PhD thesis [27] (Chapter 2.7)yaptghlights the lack of progress with regard to
offering an industrially viable solution to the ptem of observer metamerism: ‘almost complete
absence of studies on evaluation of observer metammén industrially-relevant conditions is very
surprising. It seems that there is a marked disaney between the declared significance of observer
metamerism in industry, and interest of researchiarsarrying out studies on quantifying and

characterising the phenomendn

Current thesis research attempts to bridge this gap
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The wonder of science is not in the answers itides/but in the questions it uncovers. For every
miracle it finally explains, ten thousand more noiess come into being. ~ John Pielmeier, Agnes of
God (1978)

4. Colorimetric Observers and Observer Variability

4.1 Introduction

The most fundamental aspect of applied colorimetrghe trichromacy of our visual system, which
allows us to represent any color in terms of itstimulus values. Computing tristimulus values for
any object color requires the use of the specefi¢ctance of the object color, the spectral power
distribution of the scene illuminant, and the spdatharacteristics of a colorimetric observer.r the
color imaging community, it is of interest to intigate which is a better representation of real
observer data, CMFs derived from CIE 2006 physichigobserver model, or the CIE 10° standard
colorimetric observer. This issue has been expltneaugh a theoretical analysis performed in the

context of display colorimetry.

4.1.1 CIE 2° and 10° Standard Colorimetric Observers

In 1931, the CIE (Commission Internationale de lk#iage) defined a standard observer for
colorimetry, based on Wright's [39] and Guild’s [4®° color matching data. However, the basic
datasets were transformed to incorporatk&) Mhe luminous efficiency function of the CIE stiand
photometric observer [41], into the standard cabetric observer. Incorporating both photometric
and colorimetric characteristics was motivated lmead to simplify hardware computations [10], but
this has been a major source of criticism of ClB118tandard colorimetric observer, since the CIE
standard photometric observer was based on arlgrdifferent set of psychophysical task than color
matching [16] (page 110). CIE 1931 standard colettio observer led to spectral estimation error
caused by the underestimation of luminosity at tsivawvelengths with the CIE standard photometric
observer. Revisions of the CIE standard photometbserverV(A) function below 460 nm were
proposed by Judd [120] in 1951, and further reviddelow 410 nm was proposed by Vos [121] in
1978. The former was widely accepted in the visoience community, and the latter resulted in a
CIE recommendation in 1988 in the form of a supgpetary observer M(A) for photometry [122],
but the color imaging industry continued to usedhginal CIE 1931 standard colorimetric observer

derived from 2° color matching data, applicablsnmall fields.
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In 1964, CIE recommended a large-field standardrouoktric observer based on the work of Stiles
and Burch [44] and Speranskaya [45]. Stiles ancciBumaintained high photopic luminance of the

matching fields and incorporated mathematical atizas to exclude the effect of rod intrusion in

long-wavelength color matches. The color-matchiangction y(4) represents the relative spectral

luminous efficiency function of the CIE 10° standlazolorimetric observer, but the photometric

standard still use¥2() from the CIE 2° standard colorimetric observer éfirte luminance, even for

large-field stimuli.

For many practical industrial applications, the wsfethe 2° standard colorimetric observer is

guestionable, as the field-of-view is typically rhuarger than 2°. Indeed, many industrial engineers

have chosen to us&o“ in colorimetric applications. However, becausetlté absence of rod
contribution, and more importantly, because ofvittlial differences in the visual system, it hasrbee
observed that even the CIE 10° standard colorimetiserver does not always correspond to real

observer matches for large fields.

4.1.2 CIE 2006 Physiologically-Based Observer

In 2006, CIE’s technical committee TC 1-36 publidlzereport [14] (described hereafter as CIEPOO06,
an abbreviation of CIE 2006 physiological obseryays the choice of a set of Color-matching
functions (CMFs) and estimates of cone fundameriitalishe color-normal observer. The CIEPO06
model is largely based on the work of Stockman 8hdrpe [22]. Starting from 10° CMFs of 47
Stiles-Burch observers [44], the model defines 2@ 40° fundamental observers and provides a
convenient framework for calculating average camedémentals for any field size between 1° and

10° and for an age between 20 and 80.

4.1.3 Individual cone fundamentals

In its approach to construct a fundamental obseteehnical committee CIE TC 1-36 has ignored
individual variability [14] [123]. A few studies P¥] have dealt with individual variations of color-
matching functions, analyzing the data collectedstiles and Burch using 10° fields, examining the
differences between the CMFs of the CIE 1931 stahdalorimetric observer, the Judd’s revision of
this set and the set of 2° CMFs collected by Stiled Burch [125], comparing inter-individual and
intra-individual variability of experimental CMF4&Q1]. Wyszecki and Stiles [9] (page 348) produced
a global statistical analysis of the dispersiothefdata collected by Stiles and Burch using 1€lgi$.

In the last ten years, a few sets of matching te$idve been generated at low or moderate luminance
levels to investigate intra- and inter- observerialdlity [111] [88] and test additivity and

transformability of color matches [115] [108]. Osieidy of nine observers’ color-matching functions
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concluded that a main cause of the individual défifiee was the difference of individual spectraklen
density [126]. Individual variations of Rayleigh tolaes have also been examined experimentally [64]
[127] [128] [129] or theoretically [130]. Althougihese studies have attempted to relate the variatio
of color matches to underlying physiological fastahey failed to model individual effects of these

factors in a practical manner that could be implet®@ in industrial applications.

This chapter takes advantage of the framework deeel in CIEPOO06 to examine through theoretical
analysis the effect of age on the CMFs of individelaservers and on individual color matches as

viewed on displays.

4.1.4 General colorimetric transforms

Each set of CIEPOO06 cone fundamentals can be deavey CMFs through a linear transformation.
At the time of this work, the final 3x3 transforrmat matrix for such conversion was not yet made
available by CIE TC 1-36. Two approaches could dyi@l proper linear transformation. An

approximate 3x3 LMS-to-XYZ transformation matrix sveomputed from the available CIE 1964 10°
;<10(/1) : ;110(/1) ,Elo(/]) standard colorimetric observer functions and therage I_ga10 (A),

ES% (A), 5230 (A) cone fundamentals of 47 Stiles-Burch observers eacmalized to unity. The

transformation matrix is given below:

xw0(A)| [1.905378 -1.321620 0.419517] Isg, (1)
y,(A) | =| 0.698648 0.333043 -0.013360 mss, (1) (4-11)
210(A) | |-0.024300 0.040453 2.073582| ssg, (1)

The above matrix was used at all times for conwgriiny normalized L, M, S cone fundamentals
from Stiles-Burch dataset into CIE XYZ like CMFsnsfiar to 10° Xio(A) 910()I) , 210(A) functions.

It is reasonably close to the matrix publishedieally other researchers [116]. Note that in [136],
negative sign was accidentally omitted in tierdw, 2 column of the transformation matrix (Eq. 4-
11).

Another approximate 3x3 LMS-to-XYZ transformatiomatmix was computed from the CIE 10°

standard colorimetric observer functions and thER©06 modekone fundamentals*:cmoa10 A).

ﬁcquem (A), 50|E0510 (A) applicablefor an age of 32 and 10° field size without anynmalization of

the cone fundamentals, as shown in Eq. 4-12.
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xw0(A)| [ 0.006873 -0.005386 0.005550] Icicos, (1)
y,(A) [=] 0.002520 0.001358 -0.000181 Mcieos, (1) (4-12)
210(A) | |-0.000089 0.000167 0.027432| Scicos, (1)

This transformation matrix was used in the analg$ithe effect of various physiological factors on
CIEPOO06 cone fundamentals, where normalizationois desirable. If normalized CIEPO06 cone
fundamentals are used, the resulting transformamiatmix is very close to that of Eq. 4-11.

4.1.5 The CIEPO06 model

The CIEPO06 model is a convenient and effectiveherattical tool for understanding how various
physiological factors affect the cone fundamentats] thus the CMFs. A brief review of the model

will be helpful in better understanding the anaybiat follows.

Cone Fundamentals
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CIEPOO6 framework [14], shown in Fig. 4-21, invadvevo parameters, namely, the field-size,
varying between 1° and 10°, and the observer aayging between 20 and 80. Three physiological
factors have been incorporated in the CIEPO06 madethe form of spectral optical density

functions for: a) lens and other ocular media gitsam, b) macular pigment absorption, and c) visual
pigments in the outer segments of photoreceptous. d these, the ocular media optical density

function has an age-dependent and an age-indepgendemponent. The macular pigment optical
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density function consists of a peak function ancklative function, where only the peak function
varies with the field size. Similarly, the visuagment optical density has two components, the peak
as a function of the field size, and the low-dgnsipectral absorbance that is independent of any

parameters.

The CIEPOO06 cone fundamentals can be written impldied form as in Eq. 4-13 [14)(4), An(A),
A1) are the low-optical density spectral absorbanceldog-, medium- and short-wave sensitive
cones respectivel\D;s;, Dvism and Djss are peak optical densities of the visual pigmédatsthree
cones.Dnad2) and Dyu(4) are the optical densities of the macular pigment the ocular media
(including the lens) respectively, with the opticnsity (or absorbance) being the;loginction of

the inversed transmission of the media:
I_(A) = Il—lO_DVisl A (/])J D-O_Dmac(/‘) lj.O_Docul(/‘)
r_T'( A) = [1_ 10‘Dvism-pm(/‘)] [0 Pmad [ g Pocu ) (4-13)
_qA) — [1_10_Q/i35'&“)] Elo_Dma(,(/]) I:lO_Docul(/‘)

While these three physiological factors are imparteontributors to observer variability, there is
another important but more complex source of vditalthat has not been included in the CIEPO06
model. A number of studies have suggested thatithéhl differences in the color vision are partly
due to the variations in the peak wavelength,( of the cone photopigment [131]. These differences
can be due to individual variability, but can als® due to a variation in genetic composition or
polymorphism, for example, a single amino-acid stign (Alanine for Serine) at position 180 of

the long-wave sensitive (LWS) photopigment opsinage[24].

The rest of the chapter is organized as followshénext section, a theoretical analysis investiga
the relative importance of various physiologicatttes on display color perception is presented. In
Section 4.3, the average Stiles-Burch observerfdatathree different age-groups are compared with
the corresponding CIEPO06 model predictions andaiie10° standard colorimetric observer. The
perceptual effect of the prediction errors in thiese cases are then explored in the context ofi@ysp
colorimetry in Section 4.4. Next, Section 4.5 prgsea constrained nonlinear optimization of the
CIEPOO06 model, performed in an attempt to imprdwe prediction errors for various age-groups.
The chapter concludes by summarizing the resulimimdd from these theoretical analyses in Section
4.6.

4.2 Effect of various physiological factors on displayolor perception

Individual variation in color perception depends thie spectral characteristics of the stimuli. As

Smith and Pokorny [132] have observedyith the generally broadband spectra of reflective
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materials, factors such as lens transmission or uteacpigment density provide correlated changes
in the spectral distribution of light arriving ah¢ retina from different samples. Thus there mag be
translation of color axes but little rotation...Spegation based on narrow-band trichromatic
primaries may be more or less subject to individeadation, depending on the relation between the
spectra of the biological variables and the speatfathe colorimetric primari€s In view of this
observation, two questions arise: i) how do varipbgsiological factors described in the previous
section affect the color perception on a given ldgp And, ii) how do these effects vary between a
display with broadband primaries and another witlirow-band primaries? The purpose of the

analysis described in this section was to invesgitfzese two issues.

4.2.1 Displays used in the analysis

The effects of various factors were compared imseof color perception on two displays with
different spectral characteristics. The first waSay BVM32 Cathode Ray Tube (CRT) display
widely used as a reference studio display (heneaétferred to as Ref-CRT). The second was a
Hewlett-Packard DreamColor LP2480zx professionabiB0Wide-Gamut Liquid Crystal Display
(LCD) with LED backlight (hereafter referred to\A&5-LCD).

The spectral power distributions of the primariéshe two displays are shown in Fig. 4-22. There is
a significant difference in the spectral charasters between the two displays. WG-LCD is
representative of modern wide-gamut displays withky primaries, and Ref-CRT is representative of
a typical CRT display, and of HDTV broadcastingnstard references. 3x3 primary tristimulus
matrices of the two displays were computed, whigbresented the linear relationship between the
XYZ tristimulus values and the RGB channel valuéste that normally the digital counts first need
to be corrected (linearized) for the display noedinty (gamma correction) before computing the
primary tristimulus matrix. However, since thisalysis is strictly theoretical, and since gamma
correction does not affect rest of the computatidigplay nonlinearity has been ignored in this kvor
Thus, using the primary tristimulus matrix of a @ivdisplay, any set of XYZ values could be

converted into the corresponding set of RGB chawaleies and vice versa.
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Fig. 4-22. Spectral Power Distributions of the twalisplays used in the analysis

4.2.2 Method of analysis

In this work, the relative importance of the fourypiological factors described earlier on the cone
fundamentals were explored within the frameworlC&EPOO06. Cone fundamentals for 10° field size

and an age of 32 were computed by independentlyfymogl the contribution of individual factors as
follows:

)] mean optical density of ocular media varied by +25%
i) peak optical density of macular pigment varied B$%
iii) peak optical density term for low-density photopérrelative absorption spectra varied

by £25% (0.38 is nominal)

iv) peak wavelength shift of the cone photopigmentcaptilensity in the outer segment of
the photoreceptor: a) LWS peak shift by -4 nm (talwshorter wavelength), b) medium

wave-sensitive (MWS) peak shift by +4 nm (towandder wavelength)

Such modifications of optical densities by the sgmecentage allow us to compare the effect of
various factors. For cases (i) and (iv), the niodtfons are the same as those reported by Smith an
Pokorny [132]. A high optical density in case (iijgnifies higher photoreceptor self-screening,
resulting in the broadening of the photopigmenatre¢ absorption spectra [7] (page 65-66), while
case (iv) signifies LWS and MWS polymorphism ddsed earlier. For case (iv), the peak wavelength
. was first shifted in the wavenumber scale< 107 1, wherev is in cnmi* and/ is in nm), the cone

absorptance spectra were re-sampled, modified deam#amentals were computed and converted
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from the quanta to energy units, and finally wengarmalized. Note that case (iv) considers LWS and

MWS peak wavelength shifts independently.

For each planned variation of these four factorsetaof modified CIEPOO06 cone fundamentals was
computed, and compared to corresponding CIEPO0O@& éamdamentals under normal conditions.
The difference between the two sets of functiomlicates the contribution of a given physiological
factor. The difference was computed in terms ofliBaan distance in the cone fundamental space.
Note also that CIEPOO06 10° cone fundamentals haea lused here, unlike Smith and Pokorny 2°

cone fundamentals as in [132].

In order to simulate the effect of various physgtal factors when viewing color stimuli on diffeite
displays, chromaticities of these stimuli for aegiwdisplay and a given set of modified CIEPOO06 cone
fundamentals must be computed. In this analysigrséest stimuli were selected from various parts
of the common gamut of the CRT and the LCD. Théseu# were chosen such that they covered the
whole common display gamut in the CIE 1946 ) coordinate system (Fig. 4-23). The chromaticity
of the seventh stimulus was close to that of displhite. These coordinates were converted to XYZ
colorimetric system through a straightforward tfanmation, as shown in Eq. 4-14 below. The

chromaticity coordinates are listed in Table 4-1.

= au' y= 4v' )
6u'-16v'+12’ 6U'-16v'+12’ (4-14)
y y

Table 4-1. CIE 1964 xy and CIE 1976 (u', v') chromicity coordinates for seven test stimuli and the
display whites

Stimulus X10 Y10 Y U'1o V'io
(cd/m?)

TS-1 0.3t 0.4¢ 25 0.173: 0.53¢
TS-2 0.4t 0.3¢ 25 0.265¢ 0.517:
TS-3 0.5: 0.3 25 0.366¢ 0.498:
TS-4 0.24 0.27 25 0.166" 0.421¢
TS5 0.3 0.21 25 0.262: 0.387:
TS-6 0.1¢ 0.14 25 0.166" 0.291;
TS-7 0.3 0.3¢4 25 0.198¢ 0.475:

Full White- 0.309: 0.326( 97.3¢ 0.196¢ 0.466:
CRT

Full White- 0.307( 0.324( 97.01 0.195: 0.464¢
LCD
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Fig. 4-23. Seven test stimuli in (U', v') chromatiity diagram

Smith and Pokorny [132] investigated the effectsdifferent physiological factors on two sets of
chromaticities at a nominal luminance of 8 cd/n#ying along the horizontal and vertical lines in
the cone-troland chromaticity diagram. This lumicenlevel is rather low for most industrial
applications, thus a constant luminance of 25 cdAm3 used for seven distinct chromaticities
described in the next section. Further increagkariuminance resulted in out-of-gamut colors F& t

displays in the Macleod-Boynton space.

From tristimulus valuesXjo, Y10, Z10) Of the test stimuli, the RGB channel valuBs G, B required to
produce these colors on the two displays were ctedpusing the display primary tristimulus
matrices, as shown in Eqg. 4-15. The primary tristim matrix for a display is formed by the

tristimulus values of peak primaries.

-1

R xr,max xg,max xb,max X10
G = Yr,max Yg,max Yb,max YlO (4_15)
B Zr,max Zg,max Zb,max ZlO

The product of the RGB values for each channelthadspectral data of the corresponding display
primaries Ppir(4), Puic (4), Pois(4)], when added for all three channels, gave thetsgegower
distribution of the test stimuli for a given displaas per Eq. 4-16. These spectral data were wsed t
compute tristimulus values in the subsequent stegcribed next. In computing the spectral power
distribution of the test stimuli, it is assumed tthae displays have perfect additivity and
proportionality, and also stable primaries.

Poi-r(4)

Pin()=[R G B0 P, o(4) (4-16)
Poi-s(4)
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4.2.3 Derivation of cone troland coordinates from a givgat of display channel values

The derivation of cone troland coordinates from tBrmiokorny 2° cone fundamentals has been
described in detail elsewhere [38] [133] [35]. Tihethod used in this study for deriving the cone
troland coordinates corresponding to a given selisgilaychannel valuesnd the CIEPO06 10° cone

fundamentals is described now.

As mentioned in Chapter 2, MacLeod and Boynton [@®posed a chromaticity diagrafgg, Sus)
[see Eq. 2-4], where the projective plane is anlegunant chromaticity plane. A basic assumption in

forming the MaclLeod-Boynton chromaticity diagram ftisat short-wavelength sensitive cone

fundamental S(1) does not contribute to luminance. In this diagrdine, abscissdys = L/(L+M)
represents the equal and opposite change in LW3V&k& cone excitations, i.e. an increase in the
LWS luminance is counterbalanced by an equal deeraa MWS luminance, but the sum is unity.

The ordinatesyg = S(L+M) denotes the level of short-wave sensitive (SWiBeaexcitation.

oo L .. __s
Me L+|\/|’SMB L+M (4-17)

In order to scale the ordinate axis, the concepbog trolands has been introduced. Since thenttola
is a unit used to express a quantity proportioaaktinal illuminance, the amount of L-cone troland
and M-cone trolands indicates the respective daution of LWS and MWS cone excitations to the
retinal illuminance. Since it is assumed that tNéSScones do not contribute to luminance, S-cone
troland must be appropriately defined. In the repngation proposed by Boynton and Kambe [36],

one troland of the equal energy spectrum amounisedS-cone troland.

In case of CIEPOO06 cone fundamentals which are dshme as Stockman-Sharpe 10° cone
fundamentals [22] each scaled to unity peak, th@rdaus efficiency function [99] is given by E4:

18 However, as this analysis involves comparing radrand modified cone fundamentals, any
normalization must be avoided since it can unduiift she peak wavelength of modified cone
fundamentals, making it difficult to infer whethsurch shift is due to a physiological factor or heea

of normalization.

When cone fundamentals are not normalized to uméigk, luminous efficiency function can be
obtained by adding LWS and MWS cone fundamental$.98:1 ratio (same ratio as in Eq. 4-18),
thus LWS cone fundamentals were scaled by 1.9&g¢inbwith (Eq. 4-19). No scaling was used for
SWS cone fundamentals. Next, the product of sczdee@ fundamentals and the test stimulus spectral
power distribution Ps;m(4)] obtained from Eq. 4-16 was computed for each veagth and summed

over the whole wavelength range, resulting in LMS&titmulus values in the cone fundamental space
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(Eqg. 4-20). The resulting tristimulus values wepedfic to a given display and a given set of
modified cone fundamentals, computed from varioesmal and modified CIEPO06 10° cone
fundamentals. Macleod-Boynton chromaticity coortisalys, Sus) were then obtained from LMS

tristimulus values as described before (Eq. 2-4).

Vse10(4) = 0.692839(A) +0.3496761(1) (4-18)
lo(A) =1(1) 0198 (4-19)

L1 |lsc(A)
M | =| m(A) |OP,, () (4-20)

S (1)

Again, to comply with the definition of S-cone taods, Macleod-Boynton s-coordinategg] were
scaled such that s-coordinate of equal energy winidd be equal to unity. In case of CIEPO06 10°

cone fundamentals, the computed scale factor wa2Q9.

The luminance value¥{;,| of the test stimuli were obtained by vectoriadgding the peak primary

luminance valueSYgmax Yomax Yemad Scaled by the respective channel values, as showg.4-21

YR max

Ystim = [R G B] YG max (4'21)
Y,

B max

Using the above method, relative cone trolands weeraputed for the seven test stimuli and are
plotted in Fig4-24

Using an observer model different from the 10° déad colorimetric observer is likely to distort the
uniformity of u'v'Y color space, the extent of whidepends on the specific observer model used.
However, in this analysis it is hypothesized tima&ismall region of three-dimensional space ar@und
given color, the Euclidean distances for variouseober CMFs can be compared. Because of this
issue, use of more complex color space like CIELaH color difference equations was avoided as
they could possibly amplify uniformity distortions:v'Y was chosen over xyY because of better

visual uniformity.
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Fig. 4-24. Seven test stimuli in Boynton-Kambe retave cone troland coordinates based on CIEPO06 10°
cone fundamentals

4.2.4 Results

In Fig. 4-25 the {, V') chromaticity shifts of the seven test stimuk ahown, depicting the effects of
modified cone fundamentals on chromaticities ofdbkrs on the CRT (green symbols) and the LCD
(red symbols). The squares represent a 25% inciedise optical density of the ocular media (Fig. 4
25a), of the macular pigment (Fig. 4-25b) and ef tbne photopigment (Fig. 4-25c), and in Fig. 4-
25d, a shift of the peak LWS cone wavelength byrdtoward shorter wavelengths (see Section 3B).
The triangles represent a 25% decrease in theabpliEnsity of the ocular media (Fig. 4-25a), of the
macular pigment (Fig. 4-25b) and of the cone phgtopnt (Fig. 4-25c¢), and in Fig. 4-25d, a shift of
the peak MWS cone wavelength by 4 nm toward lorngavelengths. Fig. 4-26 shows the same
chromaticity shifts in the cone troland chromagicitiagram. Table 4-2 represents the root-mean-
square (RMS) of theu(, v') coordinate shifts of seven displayed stimuli ttueach of the four factors

(scaled by 1000). Mean and maximum RMS differemresshown for both displays.
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Table 4-2. (', v') RMS distance (x1000) from average cone fundamegit

Source of Variability RMS (x 1000) RMS (x 1000)
[CRT] [LCD]
Mean Max Mean Max
Ocular Media 0.25% 10.2¢ 16.4f 9.4( 14.5:
Peglénzﬁ;lcal -0.25% 11.2¢ 17.7¢ 9.6¢ 14.8¢
Macular Pigment 0.25% 2.9¢ 4.6¢ 3.2t 5.0¢
Peg'én%ﬁ;'ca' 025% | 296 47 3.2¢ 5.0¢
Photopigment 0.25% 13.51 26.5¢ 13.8¢ 25.6(
Peg';n%ft’;'ca' 025% | 202¢ 3651 2031 3547
Photopiament L-4 8.4z 19.9i 10.0¢ 22.5(
Peak W%\E/Jelen th
Shift I M4 8.7% 20.01 5.8¢ 15.0¢
nm

All four factors do not affect the target specifioa to the same extent. Out of all four factors,
photopigment peak optical density affects the olesecolor perception the most, as evident from
Table 4-2. In case of ocular media and macular pignabsorption, the change in color perception
occurs along the same direction: toward yellow-greéien the optical density is increased and
toward blue when it is decreased (Figs. 4-25a aR8bj. This is true even for the test stimulus elos
to the display white. These directions of changeiardine with Wyszecki and Stiles’ results [9] (pp
352). However, the effect of macular pigment absonpis significantly less than ocular media
absorption, in fact it is the least significant plojogical factor when compared to the others,&s p
Table 4-2. The change due to macular pigment abearis marginally larger for LCD as compared
to the CRT, and is the opposite in case of ocukedienabsorption. That ocular media optical density
plays a dominant role in observer variability, eweithin the same age-group, has been reported by
several vision researchers. Pokorny et al [50] fasthat ‘studies which include a large number of
observers of similar age indicate that there issidarable variability in estimated lens densityaay
given age. For example, van Norren and Vos notadttie difference between the five highest and
five lowest of Crawford's 12 observers was grettian one log unit at 400 nm. This variation may be
even more pronounced in an older group of subjettste that in terms of cone excitation, largest
change due to modification of ocular media and raquigment absorption occurs for the blue color

(test stimulus 6).
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Fig. 4-25. Simulated chromaticity shift for sevendst stimuli due to modified cone fundamentals in (")
chromaticity diagram. Increase (squares) and decres (triangles) of the peak optical density by 25%re
shown for ocular media (a), for macular pigment (bJand for photopigment peak optical density (c). Pda
wavelength shift of LWS cone photopigment by 4 nmoward shorter wavelengths (squares) and of MWS

cone photopigment by 4 nm toward longer wavelength@riangles) are shown in (d). Green symbols
correspond to the CRT and red symbols to LCD.
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Fig. 4-26. Simulated chromaticity shift for sevendst stimuli due to modified cone fundamentals in
relative cone troland space. Increase (squares) amlcrease (triangles) of the peak optical densityt25%
are shown for ocular media (a), for macular pigmeni{b) and for photopigment peak optical density (c).
Peak wavelength shift of LWS cone photopigment by Am toward shorter wavelengths (squares) and of
MWS cone photopigment by 4 nm toward longer wavelagths (triangles) are shown in (d). Green symbols
correspond to the CRT and red symbols to LCD.

Finally, in case of CRT, the effect of photopigmpetk wavelength shift is as large as that of acula
media absorption, particularly the LWS cone shiftcase of LCD, the LWS cone peak wavelength
shift is by far the second most important factorimfiluencing display color perception, after

photopigment peak optical density.

4.2.5 Analysis of results

Interestingly, the direction of change due to thaification of the photopigment peak optical densit
is different for the CRT and the LCD, both in terofs(u', v') chromaticity coordinates (Fig. 4-25c)
and relative cone trolands (Fig. 4-26c¢). This dédfee is more apparent in green-red region of color
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space and reduces as we go toward blue. We camadbat relative position of display primaries

with respect to the cone fundamentals has an imfleieon such difference in directional effects
between the two displays. However, other physialaigfactors do not show such trend. Another
observation is that for the reddish-yellow (teséinstus #2), red (test stimulus #3) and magentd (tes
stimulus #5), the directions of change due to LW8& IRIWS peak wavelength shifts (Figs. 5d and 6d)
are the same. An explanation of this observatighas the LWS and MWS peaks move toward each

other. For other stimuli, the effect of peak waneld shifts is not significant

Since the photopigment peak optical density hassttengest influence in display color perception
compared to other factors, and since largest chioitysshift due to this factor occurs in blue, wan
assume that individual variations in the coloratisof a large population of real observers will dav

significant impact on the perception of blue.

This analysis also shows that the photopigment pealelength shift is an important physiological

factor affecting display color perception, partanly in case of modern displays with narrow-band
primaries (Table 4-2). The difficulty in modelingi¢ factor imposes serious limitation on the age-
dependent observers of CIEPO06. Observer variahifithin a given age-group due to such factors
cannot be predicted, even though this variabildg be more significant than the effects of some of

the factors already included in the model.

This analysis has some inevitable constraintss Mifficult to predict the extent to which various
physiological factors affect the color perceptioham individual observer. It is also difficult to
ascertain what amount of peak wavelength shift lshphysiologically correspond to a 25% change
in peak optical densities. A peak wavelength gbfiff nm was assumed since this is the largest shift
observed due to the serine-alanine amino acid isutis at position 180 of the photopigment opsin
genes, a common form of polymorphism [24]. Itypdthesized that the conditions analyzed here all
represent extreme changes in four physiologicabfacand thus are reasonable to compare. In spite
of the above constraint, this analysis highlights telative importance of various factors in affegt

color perception on displays.

4.3 Intra-age group average observer prediction with CEPO06 model

and the CIE 10° standard colorimetric observer

As already suggested in the past, question avibether it could be worthwhile to explore if the
observed inter-subject differences in color matatwdd be predicted by adjustment of more of the
CIEPOQ6 parameters. In this study, experimentah dedm the 1959 Stiles-Burch study [44]
involving 47 observers were re-examined, since ithithe most comprehensive visual dataset for

color vision available to date.
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4.3.1 CIEPOO06 Age Parameters for Real Observers

The age parameter was introduced in the CIEPOO6ehtmdtake into account the difference in
absorption in the ocular media, in particular thes| between the aged and the young observers. At
this time, the age dependencies of the absorptyaind macular pigment as well as the densities of
the visual pigments were considered of minor infeee The two-component age function of the
CIEPOO06 model originated from several experimebéses which were thought to be representative
of large groups of observer [50]. Thus, the CIEP@@6é parameter does not necessarily correspond to
the age of the real Stiles-Burch observers. Inrotverds, predicted model functions that best match
the real observer data may not always be obtaisegd) ueal observer ages. This may happen because
of random observer variability, and/or becauseheféxclusion of one or more physiological factors
from the CIEPOO06 model. These factors could beiadependent, like the peak wavelength shift of
the LWS or MWS cone photopigment as discussed eeartir these could be age-dependent
physiological factors not considered in CIEPOO6E @ommittee TC 1-36 also recognized this
restriction by pointing out that CIEPO06 fundamémtaserver was a theoretical construct [14]. In
this analysis, the CIEPO06 age parameters thattedsin the best predictions of each individual
Stiles-Burch observer cone fundamental data wetermiened. For each individual Stiles-Burch
observer, three CIEPO06 age parameters were desivad to fit as closely as possible the three cone
fundamentals, respectively. Two different methodsrevused. In the first method, the correlation
coefficients were computed between the normalizedecfundamentals for each Stiles-Burch
observer, using Eq. 4-11 as explained in SectidM4.and those corresponding to all possible
CIEPOO06 age parameter values between 20 and &B®afeof 61). The corresponding CIEPO06 age
was the one yielding the highest correlation cogffit for a given cone fundamental. This process
was repeated for all three cone fundamentals ana@lfod7 Stiles-Burch observers. In the second
method, corresponding CIEPOO06 age for each StilestBobserver was predicted by minimizing the
RMS errors between the normalized cone fundamefdalgach Stiles-Burch observer, and those

corresponding to all possible CIEPOO06 age parametees between 20 and 80.

4.3.2 Comparison of CIEPOO06 predicted and real ages idé$sBurch observers

In Fig. 4-27, the CIEPOO06 predicted ages obtairgdguthe correlation coefficient (CORR) method
have been plotted against the actual ages of 4&s&urch observers. The second method (RMSE)
produced very similar results. No direct corresmrug was found between the real and predicted

ages.

The gain offered by the adjusted CIEPOO06 age dwereal age could be validated by examining the
prediction of matches of equal-energy white. Fig284shows X, y) chromaticity of equal-energy

white computed with CMFs derived from CIEPOO6 cduedamentals for each Stiles-Burch
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observer. CIEPOQ06 cone fundamentals were obtaipedibg corresponding ages from both methods
(CORR and RMSE) as well as by using actual obseages. Matches obtained with real observer
cone fundamentals are also plotted. While CIEPO@B age correspondence (with either method)
yields greater observer variability than CIEPOO@wactual observer ages, it fails to explain adl th

variability in the real observer data, particulaalgng the ordinate.
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Fig. 4-27. Age correspondence between CIEPO06 moddbest prediction and 47 Stiles-Burch observers
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Fig. 4-28. Chromaticities of matches of equal-eneygwhite, computed using cone fundamentals from the
47 Stiles-Burch observer data and CIEPOO06 predictios, with two adjustment methods for age (CORR
and RMSE) as well as with actual observer age
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Fig. 4-29. Mean standard deviation of CIEPO06 conftindamentals from the 47 Stiles-Burch observer
data, with two adjustment methods for age (CORR andRMSE) as well as with actual observer age. On
each box, the central mark is the median, the edges$ the box are the 25 and 75" percentiles, the
whiskers extend to the most extreme data points thiare not considered outliers, while outliers are
plotted individually as small circles.

The mean standard deviations of the CIEPO06 comgafmentals from the 47 Stiles-Burch observer
data averaged over all observers are plotted in Big9. The LWS, MWS and SWS cone
fundamentals obtained by using corresponding ages the two methods (CORR and RMSE) and
by using actual observer ages are shown. Meanrétenark), as well as the 9&nd 75' percentiles
(dotted bars) of standard deviations are highernwieal observer ages are used in the model. The
error is higher for LWS and MWS cone fundamenthntfor SWS cone fundamental. This further
shows that by adjusting the age parameter, the @0BRprediction of real Stiles-Burch observer data

is improved.

4.3.3 Grouping Stiles-Burch Observers with respect to age

To conform to the age-dependent observer modelBPO06, three dominant age-groups among the
Stiles-Burch observers were identified. The growpse formed in such a way that the age difference
between observers within any group was not more tha years. This constraint allowed grouping
of only 22 out of 47 observers. Six observers eities between 22 and 23 formed Group-1, ten
observers with ages between 27 and 29 consistedp&cand another six observers with ages
between 49 and 50 were placed in Group-3. In thieafethe analysis, these three observer groups are
used. For each group, CIEPOO06 age correspondenthefaverage data was established using the
correlation coefficient method for the averageeStiBurch cone fundamentals for the group and

CIEPOO06 cone fundamentals for all possible ageshénfollowing sections, two sets of CIEPO06
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CMFs for each observer group were obtained, CIEPOMs obtained by using adjusted age
parameter values given by the correlation coefliiciaethod, and CIEPO06 CMFs obtained by using

actual average observer ages.

4.3.4 Comparing CIEPO06 Model Prediction and 10° Stand&dlorimetric Observer
with Intra-Group Average

Once three groups of observers were identified ver@bility of CMFs was examined within each

group. The examination put more emphasis on theiomeg of the spectrum

where Xlo("),ylo(/]),zm(") peak. In Fig. 4-30, intra-group minimum, maximumd aaverage
CMF values are shown along with the 10° standaloricoetric observer CMFs, the CIEPO06 model
predictions, with age correspondence and with agals. Table 4-3 lists the results of a statistical

comparison of the Stiles-Burch observer CMFs, @hdard colorimetric observer and CIEPO06
model predictions with age correspondence and veti ages. Values corresponding )fbo("),

Y10(4) : 210(4) functions, in the corresponding long-, medium- ahdrt- wavelength ranges for each
group are shown. Thé“Zolumn in Table 4-3 shows the intra-group standdation of the Stiles-
Burch data (note that standard deviation has tmeesanits as the data), signifying intra-group
observer variability. Following three columns latsolute difference of various functions from the
intra-group mean, averaged over all wavelength® ffinee functions considered here are i) 10°
standard colorimetric observer, ii) CIEPO06 withalr@bserver ages as input, and iii) adjusted
CIEPOO06 ages with age correspondence as input.abkelute differences of the functions were
multiplied by three weighting functions (for LWS,WE and SWS respectively) before averaging
over all wavelengths. The weighting functions wemnputed by dividing the three intra-group
average Stiles-Burch observer CMFs by their respgectum over all wavelengths. The role of the
weighting functions was to assign more weighthtovalues around the peak than those in the lower

end of the ordinate, while ensuring the weightsengoportional to original observer data. Note that

since theXlO(") , ylo(/‘) , Z10(A) CMFs do not have the same ordinate scale, the shawsld not be

compared as such.

As shown in Fig. 4-30 and Table 4-3, in case ofMHS for Group-1 and -3, both original CIEPO06
model predictions with real ages and 10° standalarinetric observer deviate from the intra-group

average. CIEPO06 model with real observer agesrgiéneerforms similar to or worse than the 10°

standard colorimetric observelxw(") and Y10(4) CMFs. For Group-1 and -3, the age
correspondence method mostly improves CIEPOO06 gieds, and is mostly better than the standard

colorimetric observer. For Group-2, the predictiemror is relatively low even without age
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correspondence, indicating CIEPO06 model’'s agenpeter works well for the age group of 27-29.
This is not surprising since the average obsergerim the Stiles-Burch study, on which CIEPOOQ6 is

based, was 32. For Group-3 concerning aged obse@HEPO06 performs worse than the standard

colorimetric observer fo?(lo(")and Y1o(4) CMFs. The errors in the original model predictiae a
comparable to the intra-group standard deviatiogicating that the prediction errors are statifliica

significant.

Table 4-3. Deviations of CMF data from intra-group average Stiles-Burch observer, 10° standard
colorimetric observer and CIEPO06 model predictionswith age correspondence and with real ages

Mean Scaled Abs. Diff. From
Mean Mean Intra-group Stiles-Burch
Intra- Data
CME Grp. group CIE CIEPOO06
No. Stiles- 10° Model Model
Burch Std. with with
Std. Dev. Col. Real Age
Obs. Ages Corres.
;((/1) 1 10.11 5.6¢ 6.53 2.51
2 11.2¢ 2.5¢ 1.7¢ 1.9¢
3 9.12 9.9:¢ 10.5¢ 6.0¢
)_/(/1) 1 6.02 2.81 4.7 1.1
2 6.6¢ 2.2¢ 2.4z2 2.4:
3 5.41 2.12 4.21 2.5
W, me o 6: e
. . 2 6.17
3 21.4% 11.71 5.21 3.9¢

As far as thezm(’D CMF is concerned, the CIEPO06 model produces mérlkedter results

compared to the CIE 10° standard colorimetric oleereven without age correspondence.

On an average, the reduction in mean absoluteréifée is more than 5096°(41) cMF also

shows high standard deviation comparedxﬂﬁ(")and le(A), indicating that the high

prediction error of the standard colorimetric obseris, at least partially, due to observers
having short wavelength cone sensitivity signifibandifferent from the average. As

explained in Section 4.2.4, there is high vari@piln ocular media optical density among
observers, which is more pronounced among highergagup observers [50]. Presumably,
this variability will manifest more significantlyithe blue region of color space. It is logical
to hypothesize that in the process of averaging edwle population of all ages, observers
significantly different from the majority undulyfatt the average. Within the constraints of
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current analysis, CIEPO06 seems to offer an impr@re over the 10° standard colorimetric

observer in predicting intra-age group averagenciions.
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Fig. 4-30. CMFs for the Stiles-Burch intra-group aerage observer (green line with squares), CIEPO06
model predictions (blue triangles), CIEPO06 model gedictions with age correspondence (red filled
circles) and CIE 10° standard colorimetric observe(black star) for Group-1 (top row), -2 (middle row)
and -3 (bottom row). Stiles-Burch Observers’ intragroup minimum (black line) and maximum (black
line with circles) are also shown. Each plot showtse CMFs around the peak only.
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4.4 Display colorimetry: comparison of CIEPO06 CMFs andthe CIE 10°

standard colorimetric observer

Any statistical method used to compare the modediptions with real observer data is incomplete
without an analysis of the perceptual effect of phediction errors. Thus, an additional analysis wa
performed to simulate the effect of the deviatioh<CIEPO06 model predictions and the CIE 10°
standard colorimetric observer from the averagaigtoup observer data on display color perception.
The same method of computation of {) tristimulus values for the seven test stimulsviallowed

as was used for analyzing the effect of variousclpghpgical factors, described earlier. The only
difference in this case is in the last step. Thecspl power distributions of the test stimuli, @bed
from thechannel valuesind the spectral data of the display primariesgvegrated with either the
CIEPOO6 CMFs with age correspondence, or the CIBPOWBIFs with real ages, or the CIE 10°
standard colorimetric observer to obtain thg ¢) specification. (', v) RMS distances were
computed between coordinates corresponding tosSBilech intra-group average'{,ss Vav,s9 and
those corresponding to various model predictiongd Vired, as shown in Eq. 4-22. In this equation,
the distances are normalized hy.(ss Vav.sd, the coordinates for Stiles-Burch intra-group rage

data. Such normalization allows us a comparisaelative magnitudes of various distances.

1 1 2 1 1 2
rms= 100 [U pred —-u av,SBJ + [V pred -V av,SBJ (4_22)

u av,SB \Y av,SB

Table 4-4 lists these normalized distances compigtethe LCD. For the CRT, the RMS distance
differences between chromaticities predicted by @E 10° standard colorimetric observer and
CIEPOO06 model were less apparent and are not shdeta.that all these distances are computational
color differences between actual and model-predicteromaticities, and simply help us compare
model prediction errors in a perceptual space. dik@nces in different parts of the color space are
not comparable since the',(v') space is not perceptually uniform, but smaltatises corresponding
to various CMFs can be compared. So the valudseimable 4-4 should be compared row-wise, and

not column-wise.

The shaded entries in Table 4-4 represent the egsa® the original CIEPO06 model with real ages
predicted the intra-group averages better thanetlwbsthe CIE 10° standard colorimetric observer
(lighter shade), as well as cases where CIEPOOGhwith age correspondence predicted the intra-
group averages better than the original CIEPOO6ein(hrker shade). While for Group -1 and -3,

original CIEPO06 model predictions are generallytdvethan the CIE 10° standard colorimetric
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observer, the model mostly performs worse in cds&roup-2. Applying the age correspondence
generally improves the model prediction in caseGobup-1 and -2. For Group-3 however, age
correspondence mostly degrades the original modetligtion quite significantly. This shows
reducing overall RMS error in the cone fundameatdtistimulus space does not necessarily result in
improved prediction of color perception in a chroicity space. Another possible explanation is that
the observer variability in higher age-group obsesvs not well modeled in CIEPOO6 (see Fig. 4-
30), thus intra-group average prediction is adgrafected by the poor prediction of color matches
for observers significantly different from the aage.

Table 4-4. ¢/, V) normalized RMS distances (x100) of predicted clamaticity values from Stiles-Burch
intra-group average CMFs, computed for seven testtisuli as viewed on the LCD. Predicted
chromaticity values were obtained using CIE 10° stadard colorimetric observer CMFs, CIEPO06 model
CMFs with real ages and CIEPO06 model CMFs with ageorrespondence. Shaded values indicate
improvement in the prediction of chromaticities coresponding to intra-group average CMFs, either by
the CIEPOO06 original model compared to the CIE 10%tandard colorimetric observer (lighter shade), or

by the CIEPO06 model with age correspondence comped to the original CIEPO06 model (darker
shade).

Group-1 Group-2 Group-3
T CIE CIE CIE
St(_ast 10° CIEPOO6 CIEPOO6 10° CIEPOO6 CIEPOO06 10° Std CIEPO06 CIEPOO06
M- 1 std  withreal WithAge Std withreal With Age Col | Withreal  With Age
Col. ages Corres. Col. ages Corres. Obé ages Corres.
Obs Obs
TS-1| 4.52 5.23 2.00 2.89 2.80 2.43 1.79 0.41 3.70
TS-2 | 2.36 1.85 1.90 1.47 1.84 1.74 1.77 1.79 1.83
TS-3| 1.11 0.49 1.40 0.82 1.16 1.22 1.46 1.89 0.79
TS-4 | 4.19 4.34 0.61 2.68 2.72 1.84 0.81 0.63 4.62
TS-5| 1.97 0.81 0.92 1.29 191 1.42 1.30 2.15 2.59
TS-6 | 3.54 3.13 1.15 2.27 2.64 1.23 1.80 1.47 5.42
TS-7 | 3.51 3.35 1.48 2.22 2.43 1.96 1.37 0.68 3.35

Now, how could we correlate the observations frabl€ 4-3 (see Section 4.3.4) and Table 4-4? Note
that Table 4-3 lists scaled prediction errors adotive peak regions of individual x-, y- and z- CMFs
while Table 4-4 lists normalized RMS distances liadicting several test stimuli reproduced on the
LCD in two-dimensionaly, v') chromaticity space. Although it is not surprigithat the observations

are not always congruent with each other, two erfees can be drawn by taking into account results
from both analyses.

Overall, the CIEPO06 model in its original form da®ot always offer an improvement over the 10°
standard colorimetric observer in predicting irdge group average observer data. Using values
different from actual observer ages in CIEPOO06 rhoda achieve better overall correlation between

actual and model predicted CMFs in the tristimuluscone fundamental space, but does not
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necessarily result in improved prediction of indival color matches, particularly when the stimali d
not have a flat spectral characteristics. While shert wavelength CIEPO06 CMFs consistently
perform better than the 10° standard colorimettisesver for all three age-groups, the model’s
prediction errors in medium and long wavelengtlessignificantly higher for Group-3. Why does the
model not work well for higher age-group Stiles-8Bupobservers at longer wavelengths? This issue is

further investigated in the next section.

4.5 Optimized CIEPOO06 cone fundamentals for Stiles-Bura observer

groups
As discussed in the preceding sections, CIEPOOGhumes not satisfactorily predict the intra-group

Stiles-Burch average observer color-matching fuomsti Xlo(/])and Y10(4) in the long- and
medium- wavelength range, particularly for highge-group observers. These observations thus raise
the question: can we improve the model performandée longer wavelengths? If so, how can we

achieve that?

This prediction error can result from many potdnsaurces. For example, it could be due to
individual observer's LWS or MWS photopigment peakvelength shift resulting from genetic
polymorphism (as discussed in Section 4.2), ooitldt be due to poor modeling of cone absorptance
spectra in longer wavelengths. As far as the ptiedierror at higher wavelengths is concerned, we
can rule out the role of ocular media and maculgmpnt optical density factors, since their
influences are insignificant beyond 550 nm. Notat tbcular media optical density is the only
physiological factor in CIEPO06 model that changék age. To probe possible ways to improve the
CIEPOO06 model prediction at higher wavelengths, cmstrained nonlinear optimization was

performed under two different conditions.

4.5.1 Method of optimization

In the first case, only the peak wavelength slufthe LWS or MWS photopigments were allowed to
vary, keeping all other parameters constant. Insteond case, a weighting function for the low-
optical density absorption spectra was introdusghich was then optimized. In both cases, the

original CIEPOO06 functions at the short-wavelengtiese not altered.

The equations for CIEPO06 cone fundamentals weredaced in Eqg. 4-13. In the first optimization,
only the peak wavelength d&(1) and A.(%2) functions were allowed to shift, keeping all other

parameters constant. The optimized cone fundansecaal thus be represented by Eq. 4-23:
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ropt(A) — |.1_1O_Dvis,l -Ashited) (/])JEI.O—DmaC(A) D.O—Docul(/])

— (4-23)
rrbpt (A) = [1_ 1O_DViS'm'AShmEd'm(/‘) ] D_O_Dmac(/]) D.O_Docul(/])

Here, DuisAshifiea(A)] @nd Duis rPshied,{A)] terms are mathematical representation of the peak
wavelength shift due to polymorphism. In the aciogllementation of the optimization method, the
peak wavelength was first shifted in the wavenumber scale= (107 2, wherev is in cni* and is in

nm) independently for LWS and MWS photopigment, trigre cone absorptance spectra were re-
sampled, then modified cone fundamentals were ctedpand converted from the quanta to energy
units, and finally were renormalized. In the obieetfunction, the Root Mean Square Error (RMSE)
over the whole wavelength range was computed betwee modified CIEPO06 cone fundamentals
and Stiles-Burch intra-group average cone fundaalenand was minimized iteratively by changing
the amount of peak shift. This shift was constrained between +250 &% cm, with a starting
value of 100 c. Thus, the optimization process left the contiiimg of macular pigment and ocular
media unaltered; only the contributions of LWS Mi/S cone absorption spectra were changed. The
SWS cone fundamental was not modified. The optitiiravas terminated after 10000 iterations, or

below an error of 16 whichever was earlier.

In the second optimization, weighting functiongl) andw(1) for the low-optical density spectral
absorbance term& (1) andAn(1) respectively were introduced beyond 550 nm [EQ4}-As before,

the SWS cone fundamental was unaltered.

ropt(A) - [1_1O—Dvis,| A (A)0y (A)JDLO—DmaC(A) [0 ocu)

ﬁoptu) — [1_10—Dvis,m'An(/‘)me(/])]Ij.o—DmaC(/]) (1.0 Poeu ) (4-24)

While some authors have already questioned the QUBEPSWS cone fundamental at short
wavelengths [117], for the current work, there tave reasons for restricting optimization above 550
nm. Firstly, we are primarily interested in redurprediction errors at higher wavelengths. Secaondly
the ocular media and macular pigment optical dexssihave significant contributions to the cone
fundamentals below 550 nm. Thus, even if we intoeda weighting function below 550 nm and
obtain better results, it is difficult to isolatesengle physiological factor as the source of priaoin

error.

As in the first optimization, the Root Mean Squé&mror (RMSE) between the modified CIEPO06
cone fundamentals and Stiles-Burch intra-group ayercone fundamentals were minimized in the

objective function.
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45.2 Results

As a result of the first optimization, the peak wei@mngths ofA (1) and A1) functions were shifted
differently for different groups. For Group-1, LW&d MWS peak wavelength shifts were 3.6 nm
and 1.3nm respectively, both toward shorter wagtlen For Group-2, only the LWS function was
shifted by 0.1 nm toward shorter wavelengths. Fau@-3 on the other hand, the shifts were toward
longer wavelengths, 4.1 nm and 0.3 nm for respelgtivWWS and MWS functions.

The second optimization resulted in different LWl aMWS weighting functions for the three
groups. These functions are shown in Fig. 4-31.dptenized function is obtained by multiplying the
original CIEPO06 model function by the respectiveighting function. Thus a weighting of unity
does not affect the original model function. Aswhan Fig. 4-31, the LWS weighting functions have
higher values than those of MWS cones. What igesteng is that for both LWS and MWS, the
weighting functions for Group-1 and -3 are somewsanhmetrical around the unity weights. To
remind the reader, these two groups consist of geurf22-23 years) and older (49-50 years)
observers respectively, while Group-2 observerelaerage age in the middle (27-29 years). For

higher age group observers, peak optical densitsedgiced by the optimization process, and is
increased for the lower-age group.

— Group-‘i' [—— Gr.oup-f
Group-2 Group-2 |
12| ——Group-3| 1.2 | ——GCroup-3}

Weights

Weights

0.8} 1 0.8

§20 540 560 580 600 620 640 660 680 700 g2D 540 560 580 600 620 640 660 680 700
Wavelength (nm) Wavelength (nm)

Fig. 4-31. Weighting functions for optimizing the LIWS (left) and MWS (right) low density spectral
absorbance. Optimization was performed above 550 nm

Results of both optimization processes are incatgarin Table 4-5, introduced earlier in Section 3D

(see Table 4-3). Bott;(()l) and ;l(/]) intra-age group average color-matching functionsSties-
Burch observers of Group-1 and -3 are better prediioy the optimized model.
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Table 4-5. Comparison of deviations of CMF data fro intra-group average Stiles-Burch observer, 10°
standard colorimetric observer, CIEPO06 original malel predictions and optimized CIEPO06 model
with modified low density absorbance spectra

Mean Scaled Abs. Diff. From Mean
Mean Intra-group Stiles-Burch Data
G Intra-group
CMF ,'QIOUP Stiles- CIE CIEPO06 Model
0. -
Burch Std. 10° Std. Optimized
Dev. Obs. Original (Low Density
Abs. Spectra)
x(1) 1 10.11 5.6¢ 6.52 2.01
2 11.2¢ 2.5¢ 1.7¢ 2.17
3 9.1Z 9.9: 10.5¢ 2.01
o 1 6.0z 2.81 4.7¢ 1.3¢
y(4) : ;
2 6.6¢ 2.2¢ 2.4: 1.4
3 5.41 2.1z 4.21] 1.1z

The improvement in model performance is also sutistieéd in Table 4-6. The shaded entries in
Table 4-6 represent the cases where the origirtelPOD6 model with real ages predicted the intra-
group average data better than those of the CIEtHbfdard colorimetric observer (lighter shade), as
well as cases where the optimized CIEPO06 moddligiesl the intra-group averages better than the
original CIEPO06 model as well as the CIE 10° staidatolorimetric observer (darker shade). These
values were computed in the same way as describ8ddtion 4.4. Overall, the peak wavelength shift
optimization did not lead to better prediction ofeeage data. An effect of polymorphism on the
average data is not apparent in any of the threepgr This supports Webster's conclusion [131] that
no polymorphism effect among the Stiles-Burch obsex could be confirmed. However, this
depends on the observer group involved in the stdignot [128] showed that a shift in the
wavelength of peak sensitivity of the cone photopgts could account for the variability in multiple
Rayleigh matches from color normal observers.

In the analysis reported here, significant improgatrwas achieved by optimizing the low-density

photopigment spectral absorbance functions for @fbwnd -3. On an average, for Group-1, the

average RMS prediction error for the seven stimediuced by more than 70% as compared to the
CIE 10° standard colorimetric observer, while fao@®-3, the improvement was around 45%. Only

exception is the blue test color (TS-6) for groypadich in any case does not have significant

spectral power in the wavelengths beyond 550 nrgetreral in case of Group-2, the optimization did

not improve the results.
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Table 4-6. (', V) normalized RMS distances (x100) from Stiles-Bure intra-group average chromaticities
computed for seven test stimuli as viewed on the L& Results are shown for the CIE 10° standard
colorimetric observer, original CIEPO06 model predctions and optimized model prediction through
peak wavelength shift and weighted low-density phopigment spectral absorbance. Shaded values
indicate improvement in the prediction of chromatidties corresponding to intra-group average CMFs,
either by the CIEPOO06 original model compared to tle CIE 10° standard colorimetric observer (lighter
shade), or by the optimized CIEPO06 model comparetb both original CIEPO06 model and CIE 10°
standard colorimetric observer (darker shade).

Group-1 Group-2 Group-3

= |8 . o @ Slo . I Sl o . I ©
5 |5g 838889568 8 88-885|8g8 8 885 883
3 |0 O DEE0Tg|o0 O OLEO0T2|20 O OLE O0%g
o |97 @2 150|197 & a-Facsd|Se o a-F acgk
Fologe W HECWEDne W WEN WS T w wEYD wsQ

GO ©) _)8_ OO'S: GO O (.)8. OO'S: GO @) 08. Oo_:i
TS-1|452 523 521 058 |289 280 354 296 |1.79 041 218 0.11
TS-21236 1.85 3.88] 0.25 |1.47 184 223 112 | 1.77 179 223 0.26

TS-3]1.11 049 286 0.72 |0.82 116 108 | 011 | 146 189 1.60 0.46
TS-414.19 434 399 086 |268 272 3.06 284 | 081 0.63 0.97 0.73
TS-5]197 081 270 0.77 |1.29 191 225 130|130 215 1.78 1.10
TS6]3.54 3.13 247 086 |2.27 264 236 243 | 180 147 216 2.36
TS-7]13.51 3.35 418 052 |222 243 295 223 | 137 068 1.76 0.36

4 5.3 Discussion

Foregoing discussion leads to a hypothesis thagrnsource of the CIEPO06 model prediction
errors at higher wavelengths is in the model’s calosorptance spectra, which has two components,
photopigment low-density spectral absorbance fonctnd the peak optical density of visual
pigment. Fig. 4-31 indicates that cone absorptapeetra should have an age-dependent component,
which would cause the cone absorptance spectradiace as the age is increased. This component

should have different values in the long- and mediwavelength range.

What could be the physiological explanation forlrseccomponent, which is missing from the model?
As explained in section 5.8 of the CIE TC 1-36 mepd4], there are some indications that the peak
optical density of the visual pigment decreaseslugily as a function of age. However, because of
insufficient or contradictory data to support thigoothesis [134] [62] [61], such dependence has bee
ignored in the model. A logical argument would battthe age dependence of this factor has a
significant effect on cone fundamentals and colataines, and that its exclusion from the CIEPO06
model leads to prediction errors of intra-age gremprage at higher wavelengths. This argument
appears to contradict Webster and Macleod’s [13Beovation that none of the factors extracted
through a factor analysis of the Stiles-Burch 1@fadcorresponded to differences in photopigment

density, and only a weak role of density differenees suggested by the fits to the correlation
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matrix. They concluded the peak wavelength shiftpbbtopigment density was a more salient
determinant of individual differences in the math& key difference between that study and current
analysis is that Webster and Macleod were invetitigandividual variability without regard to age

groups, while current analysis focused on intra-ggeup average prediction. For the latter,

differences in photopigment optical density doesséo be an important factor.

It should be emphasized that the optimization nethescribed in this section is purely mathematical.
Deriving a physiologically-based correction funatiavas beyond the scope of current study.
However, this analysis isolates the likely sourEa onajor flaw in the CIEPO06 model, correcting
which can lead to a significant improvement in mogerformance, particularly for observers in

higher age-groups compared to the Stiles-Burchrebs® average age of 32.

4.6 Conclusions

In this chapter, a theoretical analysis on variasgects of the physiologically-based observer model
proposed by CIE TC 1-36 (CIEPOO06) was presentedhdncontext of color perception on modern

narrow-band displays, we evaluated the performahtiee CIEPO06 model in predicting the average
data for three different age-groups of Stiles-Buotiservers and compared the results with the CIE
10° standard colorimetric observer. Here, the guad to determine if an age-dependent observer
provides an advantage over a single average olis@ggeral conclusions can be drawn from the

current study as listed below:

i) The photopigment peak optical density has thengfest influence in display color perception
compared to other physiological factors. This firgdassumes further significance in light of Smith e
al.’s [63] [132] observation that a variation of.20unit of photopigment optical density from the
mean could account for 99% of the individual vacenin the Stiles-Burch pilot data [44].
Photopigment peak wavelength shift is another fabtaving significant contribution to observer
variability, but is not within the scope of the ®806 model. ii) Using real observer ages in the
model leads to large errors in intra-age group ayeIStiles-Burch observer CMF prediction, making
it difficult to use this model in practical appltaans. iii) CIE 10° standard colorimetric obserzer
function has a large error with respect to intra-ggoup average z-functions of all three StileseBur
age-groups studied, namely 6, 10 and 6 observersgén range 22-23, 27-29 and 49-50 years
respectively; in all three cases, CIEPO06 modelidaes significant improvement, iv) x- and y-
CMFs derived from the CIEPOO06 model for the obserage group of 49-50 years show high
deviation from the intra-group average, the erming comparable to intra-group standard deviation.
v) In terms of predicting average color percepfiondifferent age-groups on a display with narrow-
band primaries, the CIEPO06 model in its origirahf does not always offer an improvement over

the 10° standard colorimetric observer. This litioia is particularly apparent for higher age-group
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observers in the red-green part of the color spai¢ed constrained nonlinear optimization of the
CIEPOO06 model shows that only peak wavelengthssbifthe LWS and MWS photopigment density
fails to improve intra-age group average predigtiwhile weighting functions for the photopigment
density functions above 550 nm significantly impgevthis prediction both in the spectral domain and
chromaticity space, for both age groups of 22-284850 years. This weighting function is different
for different age-groups and also different for LVBd MWS cone photopigment densities. It is
proposed that the peak optical density of visugingnts be made an age-dependent function in the
CIEPOO06 model and be defined independently for LAW& MWS cone photopigments.

As a final note, the above conclusions are basedroanalysis of the Stiles-Burch observer data.
While this is the most comprehensive visual datlable till date, it will be of interest to valitta

these conclusions using an independent visual etatas
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A couple of months in the laboratory can frequestlye a couple of hours in the library. ~

Westheimer's Discovery

5. Aninvestigation of Observer Variability in

Display Color Matching

5.1 Introduction

In Chapter 3, a detailed review of various studie®bserver variability in visual color matchingsva
presented. The effect of inter-observer variabitias often been found to be significant in sciantif
studies on color matching, both in the classical anapplied contexts. Observer variability and
metamerism can also be a nontrivial issue in imddsapplications involving critical color matching
tasks. This is particularly true for those appimas$ that involve various kinds of modern display
devices. One example is the color adjustment psogealled color grading) in post-production
applications where the raw movie content at thé-plasoting stage is modified to achieve the right
color effect. The Colorist has to work with the &itor of Photography (DP) to adjust the colors in
the original content so as to achieve color colmreand homogeneity throughout various scenes,
while maintaining the artistic expressions origimadnvisioned by the Film Director and the DP.
However, if the Colorist and the DP have differentor vision characteristics, they will perceive
colors differently, and the colors that look simita one will look perceptibly different to the eth

Conventional colorimetry will fail to account fdnis difference.

Further, the film may have to be converted to asieer suitable for television or DVD (a process
known as digital mastering). This then becomesas=media color reproduction issue, where we are
trying to reproduce the colors, as seen on a theateen, to equivalent colors on a specific refare
display with a certain color gamut. Processes tkéor grading and digital mastering are color
critical, requiring high-fidelity color reproductip often involving displays. Presently in the post
production stage, two digital mastering tasks angeataken — one is for the large-screen (film and/o
digital), and the other is for the small-screea.(ielevision, DVD). Because of the wide dispaitity
the color gamuts of theatre projectors and telemistlisplays, significant/complete digital re-
mastering is required for the small-screen versibren though film studios have principally relied
upon reference CRTSs, a rapid market adoption oéwg@mut, high-definition displays and projectors
and gradual discontinuation of manufacture of CRy soon require the studios to employ these

modern displays for post-production operations.
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Very recently, studios have also started offerimmmate color grading services, which means multiple
devices being used by various professionals atipteilocations for color grading, a trend thatuses

to make the issue of observer variability even npaginent in the media and entertainment industry.

Thus, it is of interest to study the effect of alvse variability in color matching across conventb
and modern displays, and to acquire experimental idasuch a context. The data so collected can
subsequently be used to better model the obseargability, and to find solutions to associated

problems.

5.2 Investigating observer variability: color matching experiments using

two displays

Observer metamerism is not only an important camatibn in cross-media color reproduction where
the primary objective is to achieve faithful coleproduction, but it is also a critical color imagi
issue when various devices of the same categoryegreducing colors using primaries with widely
varying spectral characteristics. As explainechiprevious section, the primary focus of this wisrk
on modern display systems, where observer metamdrdppens to be more evident than traditional
industrial applications like printing, paint, tdetietc. Cathode Ray Tube (CRT) displays of the past
decades used primaries that were relatively fldickv allowed minimal spectral differences during
color reproduction, thereby reducing observer metém. However, many modern displays tend to
use narrow-band primaries in order to achieve widor gamuts and greater luminance contrast.
This makes these displays more susceptible to wlisenetamerism. This was the motivation to
investigate the effect of observer metamerism indeno display applications through visual

experiments. In the next subsections, the expetamhdasign aspects are discussed in detail.

5.2.1 The setup

Two displays were used in these experiments. Tisé ias a 32” Sony BVM Cathode Ray Tube
(CRT) display widely used as a studio referenceldis and the second was an HP Dreamcolor
(LP2480zx) Wide-Gamut Liquid Crystal Display (LCRjth LED backlight. For both displays, the
luminance of the full white was set close to 97n€d/The spectral power distributions of the two
displays are shown in Fig. 5-32. There is a sigaiit difference in the spectral characteristics
between the two displays, so, a color match madtheriwo displays is metameric in nature. This
justifies the choice of these two displays for thserver variability study. The LCD is representati

of modern wide-gamut displays with peaky primariese CRT has a 10-bit HD/SDI input and the
LCD has an 8-bit DVI input. The two displays wemntolled independently through a specially-

designed hardware, integrated with the softwareldg@ed for the color matching experiments.
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Spectral Power Distribution of the Display Primaries
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Fig. 5-32. Spectral Power Distribution of the CRT ad the LCD used in the experiments

The displays were placed perpendicular to eachrotée shown in Figh-33 A front-surface
reflection mirror was placed in front of the CRT44° to the observer’s line-of-sight, which was
perpendicular to the LCD screen to avoid the dioeetity issue of the LCD. The observer’s visual
field consisted of a 10° bipartite field, the ridhdlf of which was the LCD screen, and the leff hal
was the CRT screen, seen through the mirror. A mweask placed between the observer and the
displays to block the view of the displays andmeror, allowing the observer to see only two solid
self-luminous color patches on the two sides offibid when looking at the mask from its centered
normal. The mirror also blocked lights from the C®Tall on the LCD screen. The distance between
the observer and the mask was 69 cm (2.3 ft), laaidtetween the mask and the LCD screen was 68
cm (2.2 ft).

Mirror

Projector

Mask

Fig. 5-33. Experimental setup
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The width of the mirror formed a 0.02° vertical diafield separation at the observer's eyes,
unavoidable for mechanical reasons. Luminance idigzation is best when the two half fields are
precisely juxtaposed. By introducing the field sepian, red-green chromatic discrimination remains
the same, but discrimination based on differenshbrt-wavelength sensitive cone excitation
improves [16] (page 136). The effect of the sepamaintroduced by the mirror edge on the color

matching was outside the scope of current study.

The displays were characterized before the expetimehe display lookup tables (LUTSs) thus
obtained were used to determine the initial RGBitaligcounts that would result in specific
chromaticities on the displays for the CIE standaotbrimetric observer. However, during the
adjustment of the CRT color by the observer, a Enlipear transform from XYZ to RGB was
preferred over the display LUT, as this allowed thieserver to have a better control over the
adjustment in a linear scale. The mirror was inetuéch the characterization of the CRT, to account
for any spectral absorption or transmission byntireor surface. At the beginning of each sessibe, t
luminance of the full-white of both displays wasasered to ensure that they were close. While both
displays were found to be quite stable in termgudifwhite luminance, radiometric data for both
displays were collected after each color matchdpkéor the pilot test, as explained later). Thhs,
experimental results were independent of the #tyabil display characterization, or of the assurmipti

of the validity of the display additivity and prapionality. For the measurement, a spectroradiomete
was placed directly behind the observer at the leyel, and two displays were measured in
succession. The spectroradiometer PhotoReseardd7@Rised in this work was factory-calibrated
three months before the experiment with a NISTeaate light source. The luminance as well as
radiometric uncertainty relative to NIST was +2% apectral wavelength uncertainty was less than

+2 nm.

5.2.2 Observer task

The observer was asked to adjust the color orethdalf of the bipartite field (matching field -RT)

to match the color on the right half (test field €D). The observers were aware that they were
matching colors on two displays. Since the CRT &d8-bit channel resolution (i.e. 1024 levels of R,

G and B channels), it was chosen as the matchatdy fand the LCD was used as the test field. Thus,

the color matching task was a quasi-symmetric niagchrocedure.

However several experimental design issues wereugered.

5.2.2.1 Which parameters to adjust?

Several possibilities for adjustment of the colamsre explored. Adjustment in chroma, hue and

lightness was thought to be more intuitive and p&derred over the direct RGB channel adjustment
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[111], or the adjustment of opponent colors (redrgreenness and yellowness-blueness), as has been
done in previous works using the CIELAB color sp@8€][89] [115]. In this work, the IPT color
space was used, which is perceptually more unittian CIELAB, particularly in the blue region of

the color space [136]. The color in the test figbdild be adjusted in three dimensions of chroma, hu

and lightness, derived in the IPT color space.

To make the color matching task less daunting lier dbserver, the starting color in the matching
field (CRT) was set to hue and lightness valueshef test field (LCD) as predicted by display
characterization (except in the pilot test, as axjd later). However the initial matching field
chroma was randomly varied between 75% and 90%eofdst field chroma. This was done because
preliminary tests revealed that for observers uilfamwith color, the task of matching was more
difficult when both hue and chroma were completdifferent in the two fields. However, the
observers generally made an adjustment in all td@ensions, which was expected since a display
characterization is essentially based on an averstgedard observer data (in this case, CIE 10°
standard colorimetric observer) and does not camfeo individual observer characteristics. In
addition to setting the initial color, the hue anghnge was set to +30° of the initial value tovpre

the observer from deviating too far from the regiginere a match could be located. The smallest
possible changes in the chroma, hue and lightniessndions were set to 0.001, 0.1° and 0.0001,

respectively.

5.2.2.2 How to adjust?

A ShuttleXpress® multimedia control by Contour @psiwas used in this experiment for color
adjustment. This control has five buttons, one Wlaeel a jog that were programmed to specific
functionalities (Fig. 5-33), and was connected ke tcomputer through USB interface. The
Chroma/Hue/Lightness button allowed switching frome dimension to the other by subsequent
pressing. The jog and the shuttle allowed chantiegralue of the current dimension. Two additional
features that were found to be quite helpful intdveéxecuting the color matching task were also
implemented. The first was a Save-Undo feature dlatved the observer to temporarily save the
matching field color before adjusting it furtherrefine the match, and to go back to the savedarers

if needed. The second feature was a Reset funtitignehich allowed the observer to go back to the
initial setting of the current dimension (Chromaje-or Lightness) if encountered with the difficulty
in getting closer to a match. The Commit buttonficored observer's match and saved the current
display RGB and IPT values for both fields. Raditnimeneasurements were launched by a separate

command once the match was confirmed.
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5.2.2.3 To fixate or not to fixate?

No head restraint was used in the experiment. Widiggpting stimuli were presented in both fields for
a couple of seconds before launching a new triakiig the course of the trial, the observer was
encouraged to move his/her head sideways from tiintiene, or to look away, in order to reduce the
effect of local adaptation. When test and matcHietd luminance is greater than the surround,
adaptation to the bipartite field is likely. Thefest of this adaptation is to reduce the perceived
difference between the two halves of the biparfiééd after viewing them for several seconds.
Another way to avoid the adaptation to the bipartield stimuli is to present the fields for a sinal

percent (e.g. 20%) of the duty cycle, and replaeentby the surround chromaticity for the rest ef th

time [137]. However, this method is more cumbersoamsl time-consuming, and may cause

annoyance to the observer.

The other issue occasionally encountered by tiserobrs was a halo effect, wherein the peripheral
part of the bipartite field appeared to be lightean the rest of the field. This was likely due to
simultaneous contrast induced at the border offidfld when dark surround was used. Sideways
movement of the head or looking away from the fielda couple of seconds significantly helped in
reducing both adaptation and contrast effects. Mewdt must be emphasized that the final match

was always made while focusing on the bipartitielfiand not through peripheral vision.

For some stimuli, a color inhomogeneity in the eemtf the field, commonly known as the Maxwell
spot, was noticed by some observers. This is a-deelimented effect due to higher density of
macular pigment in the central fovea and graduditginishing outward [9] (page 133) (see also

Chapter 2). The observers were asked to ignoretmisuniformity.

5.2.2.4 What about adaptation and surround?

For a small field, the surround serves to maintireasonably steady-state of adaptation for the
observer [16] (page 137). Note that the term adiaptdnere refers to the luminance adaptation and
not the chromatic adaptation. The effect of a clatensurround on color matching was outside the
scope of current study. To study the effect ofptatdon on large-field display color matches,
observers were asked to perform color matchingvim separate experiments, one in dark surround
and the other with an achromatic surround with htyiginiform luminance. For the surround test, a
diffuse white mask was used instead of a black maskrojector (Optoma EP747 with DLP™
technology) placed behind the observer overheaduseg to uniformly illuminate the mask. A black
circle in the middle of the projected image oveplegh with the 10° bipartite field on the mask, satth
light from the projector passing through the hobelld be minimized. The projector was carefully

positioned such that the observer’'s head did nett &ghadow on the mask, and the small amount of
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light passing through the hole fell on the blackaroon the table in front of the displays, and oot
the mirror or the displays themselves. The lumieapicthe surround was 15 cd/mz2 in the middle, and
had a horizontal fall-off of about 10% on the fadef both sides. The correlated color temperatfire
the surround was close to 7400K. The 102cm x 60amosnd field formed an angle of 73°

horizontally and 47° vertically in the observenses.

Table 5-7 lists the full-white chromaticities, lumince values and the Correlated Color Temperatures

(CCTs) of CRT, LCD and the projector as measurethbyspectroradiometer.

Table 5-7. Chromaticities, luminance values and Coelated Color Temperatures of the two displays and
the projector

CRT LCD Projector
X 0.307¢ 0.30¢ 0.295¢
y 0.325¢ 0.324¢ 0.335¢
Y(cd/m?) 96.0< 96.6¢ 14.9¢
CCT (K) 682¢ 691¢ 736:

5.2.3 Selection of test stimuli

The basis of stimuli selection in the current watiffers from previous studies with similar
experimental setups, where either the primary oorsgary colors were selected as stimuli [87][89],
or the color space was sampled in equal hue abgps $115]. Such choices are useful in comparing
observer variability in color matching in differerggions of the color space. However, they do not
have a physiological basis, and do not consider ti@astimuli may affect the long-, medium- and
short- wavelength sensitive cone excitations (Hereaeferred to as LWS, MWS and SWS
respectively), which is an issue of fundamentalangnce in color matching. Since a major goal of
the current study is to evaluate the merits ofatagicolor matching functions and cone fundamentals
in the context of modern display colorimetry, it svaf interest to select the test stimuli for the
experiments in such a way that they varied alonggiplogically significant axes. Thus, MacLeod-
Boynton chromaticity diagram [35] was used for sfyang the chromaticity coordinates of nine test
stimuli. In this diagram, the cone spectral sevisitis form rectangular axes in a constant lumieanc
plane. The abscissa represents the equal and tpbsinge in LWS and MWS cone excitations
(such that the sum is unity), and the ordinate esgmts the level of SWS cone excitation. It is
possible to derive the MacLeod-Boynton chromaticibprdinates from Stockman-Sharpe 10° cone
fundamentals [22], on which much of this thesis kvand CIE 2006 cone fundamentals [14] are
based. However, transforming MacLeod-Boynton chitais of a test stimulus into 10° XYZ
tristimulus values is not straightforward (see Ghag). This transformation is relatively simplengs

MacLeod-Boynton chromaticities based on Smith-Poka2®° cone fundamentals [37], since LWS
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and MWS are appropriately scaled so that (L+M) giveminous efficiency function Y. The
transformation has been described elsewhere [H8je(218). However, the (X, y) chromaticity values
so obtained correspond to 1951 Judd modified ClBkaerver. Thus, for the purpose of selecting the
test stimuli, the Judd-revised observer was usgetform display characterization computations and
to derive the RGB digital counts for both displalyat would result in the specific MacLeod-Boynton
chromaticities. Note that, with the exception afmstli selection, 1964 CIE 10° standard colorimetric

observer was used for all colorimetric computations
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Fig. 5-34. Nine test stimuli in (a) Judd chromatidy diagram, and (b) MacLeod-Boynton chromaticity
diagram based on Smith-Pokorny 2° cone fundamentalspectrum locus not shown)

Four of the nine selected stimuli varied alongvéth |- being constantl (= 0.64) in the MacLeod-
Boynton chromaticity diagram, while four othersiedralong I- axis with constant s£ 0.007). The

ninth test color was an isolated point close tonskine. Fig. 5-34 shows the stimuli in Judd
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chromaticity diagram (top) and the MacLeod-Boyntiagram (bottom). All nine stimuli had a
luminance close to 25 cd/m2. The luminance couldbeoincreased any further since it caused some

boundary points (e.g. stimulus #5 in Fig. 5-34afatboutside the gamut of the CRT.

5.2.4 Experiments

Three experiments were conducted, of which the fivas a pilot test. All experiments were

conducted in a dark room, with all visible surfabeing covered by black paper/cloth. In each test,
there were nine test stimuli as described befard,emch observer performed three repetitions. Thus,
there were 27 trials in each test. Each repetiasted 45 min — 1 hour, between which, and between
two consecutive matches, the observers took a Hoeadeveral minutes. Each observer participated

in the three tests within a span of two weeks.

Specific details of the three experiments follow.

5.2.4.1 Pilot test using only one display

In this test, only the LCD was used for color maigh A window with two rectangles separated by a
thin black strip (simulating the mirror edge in thetual experiment) filled the full screen of the.

The right rectangle formed the test field, andléferectangle, whose color could be adjusted ley th
observer, formed the matching field. When seenutfinathe 10° mask, the visual appearance of the
10° bipartite field was exactly the same as in azsthe tests involving two displays. The test was
performed in the dark surround condition. The obmetask has already been described in Section
5.2.2.

Comparing the results of intra- and inter-obsenarability in this pilot test, the validity of the
experimental protocol could be ascertained. Fomgke, if for the majority of the observers, the
intra-observer variability is more than the intéserver variability, this would mean the experinaént
setup is unsuitable for acquiring color matchingadas the uncertainty of observer color matches
would not be within acceptable range. In fact, gitleat the experiment was being performed on a
single display, the observer metamerism aspectddwant apply, so inter-observer variability should
be of the same order as intra-observer variability the other hand, if the intra-observer variibib

high only for a limited number of observers, we camclude that these observers are not adept at
using the experimental tool for obtaining color ames with adequate certainty, either because of
their lower color matching precision (i.e. higheletance), or because of their unfamiliarity witle t

color matching task.
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This test offered an advantage over the previouslies [89][115][111], in which it was not
straightforward to ascertain whether and to whaemxobserver variability was influenced by the

experimental protocol itself.

In this pilot test, the initial lightness, chromadahue values of the matching field were randoraly s
to values significantly different from those of ttest field. Note that this was not the case inatmer

two experiments (see Section 5.2.2.1). Also, whama&ch was confirmed by the observers, the
lightness, chroma and hue control settings wererdecl, but the spectral measurement was not

performed, unlike in the other two experiments.

5.2.4.2 Experiment with dark surround

This test was performed using the two displaysissudsed before, in the dark surround conditions.

No light source other than the bipartite field yassent.

5.2.4.3 Experiment with white surround

This test was conducted with white surround coaodijtias described in Section 5.2.2.4. Comparing
the results of this experiment with those of dark@und experiment would enable us to assess the
potential role of steady-state, luminance adaptatio display color matches. This is of interestasin

in practical, real-life situation, the display vieg condition generally includes a lit surround.

Ten observers participated in each of the threem@xents. The observers were in the age range of 30
— 50, and all were color normal, as confirmed bkiHara pseudo-isochromatic plates and a

Farnsworth-Munsell 100 hue test.

5.2.5 Results and Discussion

5.2.5.1 Intra- and inter- observer variability in pilot tes

As explained before, a comparison of the intra- iabtetr-observer variability in the data from théopi

test with single display will indicate the suitatyilof the experimental setup for conducting color
matching experiments and the ability of observerpérform the color matching task. The intra-
observer variability refers to the deviations intohas for a given test color made by a single oleser
during different trials. The inter-observer variapirefers to the deviations in mean observer tmesc
(averaged over several repetitions) for a givehdekwr from one observer to the other. To deteemin
the intra- and inter-observer variability in théopitest data, the root-mean-square (RMS) errore we
computed for the color matches in the lightnessprmola and hue dimensions in the IPT space. These

were the original dimensions adjusted by the olessrvThe display used in this experiment was
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stable enough so that it can be assumed the tkst qesented to the observers were reasonably

constant across different sessions. This issuatisef clarified afterward.

For computing the intra- observer variability, fithe RMS values of the differences between all
match repetitions by a given observer and the nmeatich for that observer were obtained for each
test stimulus. For each test stimulus, the meathefe RMS values over all observers gives the
average intra-observer RMS error. Similarly foremt observer variability, RMS errors were

computed between the mean of all observer colocimeatfor each test stimulus, and the mean of

each observer matches is computed over all reqaiti

Results of one of the ten observers showed sigmfig higher (2.5 times) intra-observer variations
than the others for the test stimulus #8 (red), and lesser extent for test stimulus #4 (bluehisT
observer was excluded from the analysis of thet palst data. Fig. 5-35 shows the plots of intrad an
inter-observer variability in three color space éirsions for the rest of the nine observers. On an
average, the intra- and inter-observer RMS erroesl@av. Mean intra-observer RMS errors were
1.2% in lightness, 3.0% in chroma and 1.2% in taweraged over all test colors. For mean inter-
observer RMS error, these values were 1.8%, 4.1861a8P6 respectively. As explained earlier, in
this particular experiment the main difference kewintra- and inter- observer variations come from
the differences among observers in their precisiod repeatability, not from any physiological
reasons related to observer metamerism. Thus, ritra-iand inter- observer variability are
understandably similar. We can expect that in #periment, the uncertainty of color matches

contributed by the experimental setup itself dassemceed the mean intra-observer RMS errors.

Test stimulus #4 (blue) shows significantly higih@er-observer variability in lightness and chroma
compared to other stimuli. This indicates that ¢lian/blue region is particularly susceptible tdklac
of precision in observer color matches. It is passihat the Maxwell spot [9] (page 133) plays la ro
in this, since the effect of macular pigment abgorpis likely to be more pronounced for this test

stimulus.

The hue in case of test stimulus #2, which wasdmoanatic color close to the LCD white point,
shows relatively high intra- (4.5°) and inter-oh&ar(3.9°) RMS errors in hue. However, for five out
of ten observers, the mean intra-observer RMS ewas only 2.7°, indicating that the high error
resulted from individual observer uncertainty intohéng achromatic colors, and was not caused by

the experimental setup itself.

Overall, the results from Pilot Test 1 indicatetthth observers were able to adjust the matchielgl fi
to get satisfactorily close to the test field colédl observers expressed satisfaction over their

matches, and over the method of adjustment. Thasgam conclude that the experimental setup is
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suitable for acquiring valid metameric color matchidata. The observer who showed higher
variations for test stimuli #4 and #8 was abledbieve satisfactory results for other stimuli, dimals,

although excluded from the above analysis, he wasxcluded in subsequent experiments.
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Fig. 5-35. Results from the pilot test with singlelisplay: mean intra- and inter-observer RMS errorsin
lightness (top), chroma (middle) and hue (bottom)computed in IPT color space

5.2.5.2 Intra- and inter- observer variability in two experents

The intra- and inter-observer variability was atliermined for the experiments with dark surround
and white surround. In both cases, measured sp@awser distributions of the matching field for
each observer match were used. Note that in tisis, @@ do not compare the LCD and CRT colors,
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but rather inspect the variability in the CRT coloatches, assuming the test colors on the LCD
stayed approximately constant during the experim@merage color difference on the LCD side
across all trials was less than QK (CIE 2000 advanced color difference metric [138)), the
assumption is acceptable. From the spectral da{@, distimulus values and CIELAB coordinates
were calculated using the 1964 CIE 10° standardricoétric observer and display white points.
Mean Color Difference from the Mean (MCDM) [10] wesmputed across three repetitions for each
observer in case of intra- observer variability] across the mean matches of all observers inafase

inter- observer variability.

Table 5-8 lists the MCDM values for all nine stimubr both tests, calculated based My, As

expected, inter-observer variability is larger ththe intra-observer variability, on an average 1.75
times in case of dark surround experiment andigh@stin case of white surround experiment. Inter-
observer variability is the higher for test stim#R, #6 and #9 compared to other colors, for both

experiments.

The surround has the effect of a steady-state afi@ptduring the color matching. Intra-observer
variability slightly reduced on the introduction af white surround, but the effect on the inter-
observer variability is less apparent. The aversgguction is 0.13AEy for the intra-observer
variability, and 0.02AE, for the inter-observer variability. Overall, noatg effect of surround on

the observer color matches was observed.

Table 5-8. Mean Color Differences from the Mean (MOM) for intra- and inter-observer data from the
experiments with dark surround and white surround

Stimulus Dark Surround White Surround
ID Intra- Inter- Intra- Inter-
1 0.61 0.9z 0.5z 1.1¢
2 0.6¢ 1.4¢ 0.5t 1.67
3 0.6C 1.0z 0.51 0.9¢
4 0.6Z 1.01 0.4¢ 0.8t
5 0.5¢ 0.7¢ 0.5z 0.9¢
6 0.5¢ 1.4¢ 0.44 1.3C
7 0.51 0.9¢ 0.3¢ 0.9C
8 0.47 0.7t 0.4¢ 0.5z
9 0.94 1.3¢€ 0.5z 1.2¢

5.2.5.3 Color match prediction error with CIE 10° standacdlorimetric observer

As mentioned before, spectral data were collectedbbth displays after each trial in which the
observer performed a color match. This allowed agadon of chromaticities of colors on two sides

of the bipartite field that matched for individuabservers. Two different methods were used to
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compare CIE 10° standard colorimetric observeriptieths with individual color matches. In the first
method, display characterization data were usquddict a CRT color match of the LCD test color.
For each trial, XYZ tristimulus values were compglfeom the spectral data of the LCD test colors,
using CIE 10° standard colorimetric observer. TiZXalues were averaged over all repetitions for
a given observer. These are the XYZ values to peodeiced on the CRT. The CRT inverse model
predicted the digital counts that would generateilar XYZ values. For better accuracy, and as
verification, the CRT forward model was then usedampute the XYZ values that could actually be
reproduced on the CRT. Thus, these XYZ values sporded to a “standard observer” color match
on the CRT, as predicted by the 10° standard cokdric observer. XYZ values were also computed
from the spectral data of the observer color matdrethe CRT. These two sets of XYZ values were
converted to CIELAB, and\Ey, color difference values were computed. The secand third
columns of Table 5-9 list the 8(ercentile of thesaEy, values between the predicted and actual

observer matches on the CRT side for each of tie stimulus, averaged over all observers.

The second method was more straightforward. AsrbefdYZ values were computed from the
spectral data for both the LCD test colors and @RI matching colors, using CIE 10° standard
colorimetric observer. For each observer, the Xdlugs over all repetitions were averaged, and then
were converted to CIELAB values. FinallyEq, color difference between the LCD and CRT sets of
CIELAB values were computed. ThesEy, values signify the differences that would be peex by

a “standard observer” between the LCD and CRT coilatches of individual observers. The last

two columns of Table 5-9 list the t9©ercentile of thesaE,, values.

Table 5-9. 98" percentile color difference AEq) values computed between i) the CIE 10° standard
colorimetric observer predicted matches and observecolor matches on the CRT side, and ii) the test
colors on LCD and observer matches on CRT

Ob Predic;c\i/lor; a;]nd Observer Matches
Stimulus server Matches (on (LCD and CRT)

ID )

Dark White Dark White

Surround Surround Surround Surround

1 2.3€ 3.0C 2.0t 2.81

2 3.21 3.1t 2.81 3.0¢

3 2.17 2.12 2.2C 2.5C

4 2.87 2.5¢ 3.1¢ 3.07

5 2.3C 2.4C 2.1¢ 2.3¢

6 3.62 3.4t 3.2¢ 2.8¢

7 1.7C 1.7z 1.6: 1.7t

8 1.3¢ 1.01 1.42 1.2z

9 3.2t 2.3¢ 2.82 2.3¢

ComputedAEy, color difference between the CIE 10° standardraoletric observer predictions and

observer color matches on the CRT are generallyehithan the color difference between the actual
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observer matches on the two displays. This is noprising since the former is affected by the
computational approximations of display modelingg @& dependent on the assumptions of display

additivity and proportionality.

Fig. 5-36 plots the\Eqy, color difference values corresponding to individolaserver matches on LCD
and CRT, and the predicted and real observer coltiches on the CRT side, both for the dark
surround experiment. On each box, the central nsatke median, the edges of the box are tHe 25
and 7% percentilesd, andqs respectively), the whiskers extend to the mosteexé data points not
considered outliers, and outliers are plotted itiglly as red circles. Points are drawn as owtlier
they are larger thargf + 0.5 * (s - )] or smaller thand; - 0.5 * (gs - g;)]. Thus for a given
stimulus, the size of the box and the length ofwiesker indicates inter-observer variability for a
given test color, while together with the red @=indicates the range of variability among obssrve

for a given test color. Fig. 5-37 shows the sansesgdbr white surround.

From the data in Table 5-9 and the plots in Fig86%and 5-37, it is clear that for some observers,
some of the colors on the two displays that matehrfdividual observers are predicted by the CIE
10° standard colorimetric observer as having aifsdgmt color difference, and similarly, the colors
that are predicted by the standard colorimetrienles to be a match when shown on the two displays
are sometimes unacceptable to individual observdris. discrepancy is the highest for the test color
#2 and #4, an achromatic color and a saturatedrbipectively (Table 5-9). In case of dark surround
experiment, the mean, maximum and thd' percentileAEy values between individual observer
matches on LCD and CRT, across all stimuli analdervers, are 1.4, 3.4 and 2.6 respectively (1.4,

3.5 and 2.7 respectively for the white surroundegixpent).

In case of Alfvin and Fairchild’s [89] experimetite mean color difference from mean (MCDM) for
inter-observer variation was 2.5 CIELAB units. Gdoman et al. [107] on the other hand reported a
mean variability of observer matches of around BL@IB units (note that it was not a split-field
color-matching). Compared to previous studies, rtigan variability among observers might seem
relatively low, but there are several caveats imgicomputedAEy, color difference values for

making that inference.
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Fig. 5-36. Box plot of inter-observer variability in the results from the_dark surround color matching

experiment. Top figure shows theAEq,color difference between CRT and LCD observer matabs as

predicted by the CIE 10° standard colorimetric obsever, and the bottom figure shows theAEq,color

difference between CRT observer matches and corregpding CRT match predictions by the CIE 10°
standard colorimetric observer.

The significance of thAEy values depends on the context, viewing conditargs the observer. The
values reported here are possibly low for compteages and surrounds, and even cross-media color
matching. However, in the experimental setup imgleted in this study uniform color stimuli are
matched by non-novice observers under strictlyrotlet! viewing conditions. In such a scenario, a
AEqy, color difference much larger than 1.0 is likely he perceptible. An average color match
prediction error of 1.4AEy, over all colors and all observers is likely to &eceptable in most
application contexts, but the maximuki,, value of 3.4, and the @(bercentileAEoo value of 2.6
between individual observer matches predicted leyGhE 10° standard colorimetric observer are

rather high, particularly in applications that requstringent color matches. This indicates that fo
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some colors, color match prediction by an averdgpgever results in significant color match errors
for many individual observers. In color critical pdipations involving modern displays, expert
observers will likely find such differences unadedgpe. The degree of the prediction error is
dependent on the spectral characteristics of thgladi, and also on how close an individual's color
vision characteristics are to an average. Thisgdésanent was apparent during informal visual tests
prior to the experiment reported here, when colatames obtained by some observers were rejected

by others, and vice versa.
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Fig. 5-37. Box plot of inter-observer variability in the results from the white surroundcolor matching

experiment. Top figure shows theAEy,color difference between CRT and LCD observer matabs as

predicted by the CIE 10° standard colorimetric obsever, and the bottom figure shows theAEy,color

difference between CRT observer matches and corregpding CRT match predictions by the CIE 10°
standard colorimetric observer.
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5.3 Conclusions

This chapter reviewed some of the most significiatlies on observer variability and metamerism
conducted in the last two or three decades. Sughbiiity arises from the differences in individisal
color vision, and thus is of fundamental naturee Efffect of observer variability in color perceptio
has been investigated over the years both throlagsical color matching experiments and through
more applied studies, as reviewed in this chajpiest addition to this body of scientific studies
the display-based color matching experiment cormtlias part of this thesis work. The experimental
design took into account several important aspafckarge-field color matching. The results obtained
from the experiments involving ten observers showed while average prediction errors for all
observers and all stimuli was lower than some ef shmilar studies performed in the past, the
differences were significant for some stimuli. Thaximum color difference between the predictions
of CIE 10° standard colorimetric observer and maserver matches was 3MEq, and the 96
percentile value was 2.8Eq,. For a color critical application like in color agting for post-

production, such kind of color differences woulddomsidered high.

Unfortunately, an evaluation of observer variapilitased on computetEy, values is not objective
enough. In applications involving highly metamedalor matches (for example, those involving
narrow-band stimuli obtained from LEDS), assessingeptability of color matches based My,
values may not always be realistic. This arisesafgn inherent limitation of an average observer
model like the CIE 10° standard colorimetric obsemn representing individuals widely differing in
their color vision. Since all color difference mesrare essentially based on an average obsenesr, t
do not represent Euclidean distances in a perdeggnae for observers sufficiently different frame t
average. As a result, they fail as a quantitatieasnre of perceived difference for highly metameric

color matches, posing serious restrictions on guoketric computations and analysis.

An advanced colorimetric system might be imperatfee studies and industrial applications
involving highly metameric color stimuli. The gradinvork for such a system is already underway
[14] [116]. It is hoped that this thesis researdtheontribute to that end.
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You see things; and you say "Why?" But | dreangththat never were; and | say "Why not?" ~
George Bernard Shaw, Back to Methuselah (1921)

6. Colorimetric Observer Categories

6.1 Introduction

Conventional color reproduction relies on colorineetdata for a single “standard colorimetric
observer”, representing an average colorimetriendes with normal color vision. The 1931 CIE 2°
standard colorimetric observer and 1964 CIE 10Adsed colorimetric observer (see Chapter 4) are
widely used in the industry. The use of a standdskrver in colorimetric computations is essentiall
based on the assumption that the whole populatfocolor normal observers can be reasonably
represented by a single colorimetric observer modefined by a set of three Color Matching
Functions (CMFs). In 1989, CIE recognized the \lilg among individual observers by introducing
the concept of standard deviate observer [87], tbat model significantly under-predicted inter-
observer variability [89], and was never adoptedthyy industry. Thus, applied colorimetry in its
current form does not have any provision for incoghing observer variability (commonly termed as
observer metamerism, see Chapter 5) into the catipns. The limitation, as explained in Chapter 5,
has become non-trivial with the advent and wideeagradoption of modern wide-gamut consumer
displays with narrow-band primaries. Light Emittibjode (LED) based applications are similarly
affected. Thus, it is important to find a practicalution to this problem that can be effectively

implemented in industrial applications.

A principal hypothesis of this work is that humarservers with normal color vision can be classified
into a small number of categories based on thdorogsion. Based on such categorization of the
whole observer population, multiple colorimetricsebver models can be established for use in
applied colorimetry. However, such categories rvesappropriately identified and universally agreed
upon, and there must be a means to determine wdatdgories should be used under a given

circumstance.

There could be multiple ways through which a setepiresentative colorimetric observer categories
can be derived. In this work, a two-step method dexgeloped for deriving these categories. In the
first step, five representative L, M and S conedamentals (a total of 125 combinations) were
derived through a cluster analysis on the combsetdof 47-observer data from 1959 Stiles-Burch
study, and 61 color matching functions derived frtv& CIE 2006 model corresponding to 20-80 age

parameter range. A squared Euclidean distance meéewcone fundamental space) was used in this
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analysis, and thus was fundamental in nature. énsdicond step, a reduced set of representative
observer models were derived from the 125 comhinatithrough an iterative algorithm. For this,
several predefined criteria on perceptual colofed#inces delta E 200A ) with respect to actual
color matching functions of the 47 Stiles-Burch evers were used. Color differences were
computed for the 240 Colorchecker BGamples viewed under D65 illumination. Thus thel gaes

to come up with a minimum set of observer modeds tould satisfy all predefined color difference
criteria for each Stiles-Burch observer. The ddrovaof the reduced set of observer models is more
applied in nature in comparison to the model camelimentals derived in the first step. Sections 6.2

and 6.3 describe the two-step method in more detail

An experimental method was also developed in otdessign colorimetric observer categories to
individual observers. The method was first impletadron a test setup with two displays, which was
later replaced by a proof-of-concept prototype dase LEDs. Sections 6.4 and 6.5 discuss these two

implementations respectively.

Finally, Section 6.6 presents results from a caoltabve experiment aimed at validating the observer
classification method, followed by some concludimegnarks on standard and deviate colorimetric

observers in Sectidarror! Reference source not found.

6.2 Deriving colorimetric observer categories — Step-Icluster analysis

An assumption of this work is that the CIEO6 mogetdictions and the experimentally obtained
visual color matching data from the 1959 StilesdBustudy, when combined together, incorporate
most of the variability that can be found among ¢br normal population. The combined data set
used in this study thus included 61 CIEOQ6 cone dnmehtals corresponding to 20-80 age parameter
range, and the cone fundamentals corresponding tStiles-Burch observers, a total of 108 cone
fundamentals. A theoretical analysis was perforntedfind a minimal set of average cone

fundamentals that cover all possible variationthis combined dataset.

In terms of statistics, this is a problem of clfisation (i.e. grouping) within a complex data gehe

of the methods appropriate for solving this problsntluster analysis [139]. The purpose of the
analysis is to arrange the functions into relajivebmogeneous groups based on multivariate
observations. In this analysis, the total numbervafiables was 35 (normalized values at 35
wavelengths) and total number of observations v@8s A cluster analysis starts with undifferentiated
groups and attempts to create clusters of objeeistie CMFs) based on the similarities observed
among a set of variables (i.e. CMF values at eaalielength). Variables must be selected that
maximally discriminate among objects. Increasintasket size results in increased cluster reliability

One of the cluster analysis methods commonly engalag the partitioning method, also known as
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the K-means method. It begins by partitioning tbiial data (rather than similarity measures) into a
specific number of clusters. Then, objects aregassi and reassigned in an iterative method to
simultaneously minimize intra-cluster variabilityhch maximize inter-cluster variability. K-means

method was chosen as it is one of the more popuolahnierarchical clustering methods, and is capable
of handling a large amount of data [139]. Othestdting methods were not investigated, since there

is no direct way to ascertain which method produoess results.

In the two-phase computational implementation iatleb®, the first phase used batch updates, in
which each iteration consisted of reassigning dbjéc their nearest cluster centroid, all at once,
followed by recalculation of cluster centroids. ezond phase used online updates, in which objects
were individually reassigned if doing so would reeuhe sum of distances. Cluster centroids were
recomputed after each reassignment. Each clusteeipartition was defined by its member objects
and by its centroid, or center. As explained lasentable wavelength ranges (i.e. the number of
variables) were chosen for long-wave sensitive (lWfedium-wave sensitive (MWS) and short-
wave sensitive (SWS) cone fundamentals to avoidntiheence of variations where functions had low
amplitudes. In this regard, it is worthwhile to ti®aul A. Gore [140]: “Researchers are encouraged
to select variables based on sound theoretical ngisyuto select variables that will maximally

discriminate among objects, and to avoid the indisoate inclusion of variables”.

Initial cluster centroid locations were selecteddiyiding 20-80 age range in equal parts and using
corresponding CIEQ6 functions. Squared Euclideatadce measure (in cone fundamental space)
was used in this analysis. The clustering was tede20 times (with different initial cluster ceritto

positions described above). Model functions wertiokd by taking the mean of cluster members. At
first, r g bCMFs of Stiles-Burch observers were convertetl ton scone fundamentals through
a linear transformation. An approximate 3x3 RGB-MS transformation matrix (Eq. 6-25) was
computed from the available average g b CMFs and average m s cone fundamentals of 47
Stiles-Burch observers.

l10(A) | [0.192325 0.749549 0.067573) rio(A)

mio(A) | = 0.019229 0.940909 0.113830| g,,(A) (6-25)
sw0(A) | |0.000054 0.0103B 0.991441| bio(A)

The cluster analysis was performed on the coneafimeatals, and the model cone fundamental
functions were then converted into CIE 10° standaidrimetric observer equivalent CMFs through

a 3x3 transformation. Again, an approximate 3x3 LdXYZ transformation matrix (Eq. 6-26) was

computed from the available 1964 18° y z standard colorimetric observer functions and the

averagd m s cone fundamentals of 47 Stiles-Burch observers.
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X10(A) 1.905378 -1.321620 0.4195127 11(A)
V,o(A) [=| 0698648 0.333043 -0.013601) mMio(A) (6-26)
Z10(A) | | -0.024300 0.040453 2.073582 || s10(A)

Derived model sets of CMFs were then used to pretlic Stiles-Burch observer data. CIELAB
coordinates were computed for all 240 color pataifeke ColorChecker D& reference color chart
with a CIE illuminant D65, by using i) real Stil&irch observer CMF data, ii) CIE 1964 10°
standard colorimetric observer functions and llipassible combinations of each of the model séts
CMFs derived from the above cluster analysis. Taneach observer, color differenced=(y) were
computed between the CIELAB values obtained from m@bserver CMFs [case (i)] and those
obtained from the predicted CMFs [case (ii) anil] (iThus for each of the 47 Stiles-Burch obseryers
average color differencaEy, was computed out of the 240 patches. Lower theageecolor
difference, the better is the model prediction. @halysis was repeated for 3, 4, 5 and 6 modelb$ets
CMFs. All combinations of the CMFs (3 to 6) are qared to CIE 1964 10° observer (giving
respectively 3= 27 to = 216 total possibilities). Note that for the reb@€MFs, the combination
yielding best result was considered for individohkervers (thus, each of the 47 observers had a
corresponding best combination). Then the averaddlae maximunhEy, were computed, as shown
in Table 6-10. Based on the accuracy of predictiime, model sets of CMFs were found to be the
minimal to meet the goal of achieving close to ané of maximum color differenceAEqg) for the
240 color patches of the ColorChecker Maeference color chart and the CIE illuminant D65,
averaged over all 47 Stiles-Burch observers. Widse¢ five model sets of x-, y- and z- CMFs (or L-,
M- and S- cone fundamentals) there can be 5x5x3,26rpossible classes of observers. Fig. 6-38

through 6-40 show the five cone fundamentals.

Note that the criterion of one unit of maximum cothfference is somewhat arbitrary. A different
criterion will likely result in a different numberf model sets. Generally speaking, a color diffeeen
of less than 1 unihEy is not perceived as significant in most situatj@tsit is a reasonable criterion
for the purpose of choosing the model sets. Furtimereasing the number of model sets rapidly

increases the total number of possible combinatwdmsodel functions, resulting in too many CMFs.

It should be pointed out here that for each comgldmental, the cluster analysis was performed on
data points in a restricted wavelength range tlatuded the lower 10% spectral sensitivities or

more. This was to ensure higher noise level irotteerver data in either end of wavelength range did
not affect the final clusters. For LWS cone fundataks, the wavelength range of 520 nm - 650 nm
was used, for MWS cone fundamentals, the waveleragtbe of 470 nm - 610 nm was used and for

SWS cone fundamentals, the wavelength range oh#10490 nm was used.
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Table 6-10. Comparison of average and maximum coldatifferences AEqy) with respect to real observer
(averaged over all 47 observers) for various averagCMF sets

Maximum
CMFs Under Q\éeraflgre AE, for
Comparison 00 240
240 patches
patches
CIE 10° standard
colorimetric observer 0.9 21
3 Model functions
(total 27 0.7 1.5
4 Model functions
(total 64 06 1.5
5 Model functions
(total 125) 0.5 11
6 Model functions
(total 216 04 0.7

Further, SWS spectral sensitivity values of thgiogl Stiles-Burch observer data have poor accuracy
at the wavelengths beyond 505 nm [14], which reslilh non-monotonic SWS model functions after
cluster formation. To avoid this issue, SWS valoésStiles-Burch observer data below 0.005 in

magnitude were ignored in the cluster analysis.
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6.3 Deriving Colorimetric Observer Categories — Step-2:identifying

reduced sets of model CMFs

6.3.1 Preliminary reduced set of seven CMFs

Out of the above-mentioned 125 possible observegoaes (i.e. combinations of each of five x-, y-
and z- CMFs), several categories can meet theaf@ahieving any predefined set of color difference
(AEqo) criteria for a given observer. Thus, for the seamhstraints, fewer than 125 categories will
suffice for achieving satisfactory result for allet47 observers. Thus in this 2nd step, an iterativ
algorithm was implemented to pick the minimal numbkobserver categories such that at least one
out of these categories satisfies #ft&,~1 criteria for any Stiles-Burch observer. The dation of
such reduced sets does not result in a uniquei@oldtut is dependent on the color data set and the
color difference criteria. As before, the 240 cgbatches of the ColorChecker samples with the CIE

illuminant D65 were used, since the samples cowveida range of colors.

Note that while Euclidean distances in the LMS spaere used in deriving the model CMB&,
color difference equations have been used for ugyithe reduced sets of model CMFs. While these
AEqy equations correspond to CIE 10° standard colorimebserver and do not fully hold for other
observer models, it is hypothesized thatABg, metric can be used as a reasonable baselinegfor th
purpose of comparing the performance of variougaes models. The error introduced in doing so
cannot be more than that in case of usiiig, on the visual data of individual observers, whigh
done routinely. The use afEy, was motivated by the need to use a perceptualawetiile deriving

the reduced set. Euclidean distance in the corgafuental space does not satisfy that need.

Several criteria were established for selecting rdduced sets of CMFs. The samBy, values
computed in the previous step were used [casen(l) (di)], but they were not averaged over all
observers. Instead, for each observer the 90theptiie of theAEy, values for all the 240 color
patches were considered. Thus, for each of theb&éreers there were 125 such percemitg,
values, corresponding to 125 possible observer €btRbinations. We must take into consideration
that for some observers with atypical color visabraracteristics, a giveiEy, criterion may be hard
to achieve with any of the 125 CMFs, while for sootieers, even a stricter criterion can be satisfied
Thus, an observer-dependeti,y, threshold was computed using théd" 10 the ' percentile of the
125 AEy, values, whichever was below 1.2. This meant thesthg? or 10%AE,, values would not
be considered while deciding which observer caiegorould be assigned to a given Stiles-Burch
observer. For six observers, thEy, threshold computed this way was more than 2.0.édew these

thresholds were still less than thd=y, values computed similarly with the CIE 10° stawdar
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colorimetric observer, indicating that these specHtiles-Burch observers were far away from the

average of the population.

The suitability of a given CMF combination for aBtiles-Burch observer was determined by a “CMF
Performance Index” (PI), based on the average pedsviation from the\Ey, threshold (a positive
Pl indicated averagaEy,, was lower than the threshold). A CMF combination the reduced sets
was selected based on the highest number of olssemth positive Pl as well as the largest value of
the PI.

Table 6-11 shows which of the 125 combinations, dredr constituent x-, y-, z- functions were
picked for the reduced sets of 7 observer clagsgsCMFs, 3 y-CMFs and 3 z-CMFs constitute the
reduced sets. Total number of Stiles-Burch obseraasigned to each set, as well as cumulative
percent of observers covered are listed. For exangoimbination 2 is made up df &-CMF, I y-
CMF and 2% z-CMF, satisfying the aforementionaé,, threshold for 17 observers, which is 36.2%
of Stiles-Burch observer pool. Combination 58 ntegt AE,, threshold for another 14 observers, so
combinations 2 and 58 together satisfied 66% ofStikes-Burch observers, so on and so forth. As
shown, these combinations were selected in artiiterprocess, excluding the observers satisfied by

the prior combinations in the subsequent iterations

Table 6-11. The reduced set of seven observer cateigs, their constituent average CMFs, and the tota
number of Stiles-Burch observers assigned to vari@icategories

Iteration Combination X- y- Tgf,i' Cof;\%?zd

1 2 1 1 2 17 36.2
2 58 3 2 3 14 6€

3 6 1 2 1 8 83

4 33 2 2 3 4 91.F
5 81 4 2 1 2 95.7
6 62 3 3 3 1 97.¢
7 76 4 1 1 1 10C

6.3.2 Updated reduced set of eight CMFs

The spectral power distributions of the Colorchedamples under D65 are broadband in nature, and
so are unlikely to manifest significant observeriaaility. For deriving the reduced set of observer
models with more precision, a better dataset waghto and obtained from a color system with
narrow-band primaries. The new Observer Calibrgamtotype, described in Section 6.5, is an
appropriate device for this purpose, since it isatde of producing highly metameric color signals.

Accordingly, the 240 stimuli used in the secong stere replaced by 5832 estimated spectral power
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distributions obtained by using the LED primariesthe right half of the bipartite field of the
prototype. These colors are characterized by hizggeiver variability. As shown in Fig. 6-41, these
color samples cover a wide color gamut formed ey ihototype primaries. Rest of the method to

derive the reduced set of observer models wasatine as before [4].
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Fig. 6-41. Test color set obtained from Observer di@rator Prototype

Using the new set of test colors, a total of eigblbrimetric observer categories were obtained. In
these categories, there are four unique x- funst{®ig. 6-42), three unique y- functions (Fig. §-43

and four unique z- functions (Fig. 6-44), with meegiability in the x- functions than in others.

As before, Table 6-12 shows which of the 125 comiams, and their constituent x-, y-, z- functions
were picked for the reduced sets of 8 observersetasNote that the™4z- CMF from the cluster

analysis was not included in this reduced set.

Table 6-12. The reduced set of eight observer cataies, their constituent average CMFs, and the tota
number of Stiles-Burch observers assigned to vari@icategories

Iteration Combination X- y- T&tgl g{;)\%?gd
1 1C 1 2 5 14 29.8
2 62 3 3 2 14 59.6
4 27 2 1 2 6 85.1
7 83 4 2 3 1 97.9
8 76 4 1 1 1 100
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Fig. 6-42. Reduced set of four x- color matching fictions plotted on Stiles & Burch 47-observer data.
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Fig. 6-43. Reduced set of three y- color matchingifictions plotted on Stiles & Burch 47-observer data
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Fig. 6-44. Reduced set of three z- color matchingrictions plotted on Stiles & Burch 47-observer data

6.4 Experimental method for classifying color-normal olservers using

displays

6.4.1 The setup

An experimental method for observer classificatress implemented using two displays. The first
was a 32" Sony BVM Cathode Ray Tube (CRT) displagiely used as a studio reference display,
and the second was an HP Dreamcolor (LP2480zx) \@mimut Liquid Crystal Display (LCD) with
LED backlight. For both displays, the luminancetie# full white was set close to 97 cd/rSpectral
power distributions of the two displays are showirig. 6-45. These displays were chosen because of
the significant difference in their spectral ch&eaistics, which meant a color match made on the tw
displays would be highly metameric in nature. Tame experimental setup as in the color matching

experiments of Chapter 5 was used, shown in Fit @nd described in detail in the previous chapter.
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Fig. 6-45. Spectral power distributions of the prinaries of the CRT display and LCD

The two displays were characterized using CIE @Adard colorimetric observer and each of the
seven observer categories. Thus, correspondingdo ef the eight sets of CMFs (CIE 10° standard

colorimetric observer + 7 new categories), a disptaward and reverse model were determined.

In order to be able to identify the right categtoy a given observer, it is important that for eaest
color at least some of the seven versions of qudms shown on the two displays are distinguishable
from one another, and one (or possibly more) asehmatches appear perceptibly better compared to
the rest. This selection is limited by the specttahracteristics of the display primaries, sinoe th
displayed metameric colors are greatly affectethiege characteristics. With this restriction in djin
there can be several possible ways to select thie caors. In this work, an algorithm was
implemented to rank various colors based on théawee of tristimulus values corresponding to
various observer categories. As before, the 240rCblecker patches were used. First, using display
characterization data for the CRT and the LCD, seadrs of XYZ tristimulus values were computed
for each color. Thus for each of the 240 coldreré were seven sets of XYZ values predicted for th
CRT, and seven corresponding sets of XYZ valuedigted for the LCD. Root-mean-square (RMS)
distance of the two pairs of XYZ values were coredyivhich indicated how close the colors were in
terms of respective tristimulus values for a giveMF-set. The variance (square of standard
deviation) of these seven rms distances was usednastric to determine if a color is suitable for
observer classification. High variance indicatedreneariability in color matches among the seven
versions of the test color. Note that even thouiytZ Xalues for various observer categories belong to
different color representation spaces, the scaletheo XYZ coordinate system are still the same
(dependent on the wavelengths of monochromatic gsrés in original Stiles-Burch experimental

setup). This allowed us to compare these distances.
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Fig. 6-46. Experimental setup

Once all the colors were ranked based on the \@iametrics, fifteen colors were selected after a
pilot test was performed with three observers temeine the suitability of the colors for the ohaar
classification experiment. This visual test waseassary since the tristimulus space, in which the
variance computation was performed, is not per@pilitypically colors with relatively low chroma
and low lightness turned out to be better candgdasetest colors. Some of these 15 colors hadasimil

hues, but different lightness levels.

Thirty observers took part in the observer clasatfon experiment, including the ten observers who
participated in the preliminary color matching espeents described in Chapter 5. Both naive and
experienced observers participated. Ten observers females. Many observers belonged to the age
group 35-45. In separate trials, each observerpnesented fifteen test colors. Each trial consisfed
eight color-matches corresponding to the CIE 1@hdard colorimetric observer and the seven
observer categories, which were shown on the CRITL&D as uniform colors. The observers were
able to conveniently browse through the eight warsiusing two buttons (forward and reverse) of a
user control. The observer had no knowledge ot#tegories or the order in which they appeared. At

the beginning of each trial, a random sequencegeasrated for the eight categories.

The observers were asked to assign various cagsgatd one of three groups, namelgacceptable
acceptableand satisfactory This was accomplished in several steps, by: ihgyohrough various
category-specific colors to have an idea of thgeasf the color matches, ii) determining which o t
eight color-matches have easily noticeable diffeesrand thus are unacceptable matches; these were
assigned to thanacceptablaggroup and removed from the current trial, iii) efetining which of the

rest of the color-matches have perceptible diffeesn but are still acceptable matches; these were
marked ascceptableand removed from the current trial, if needed, mjdletermining which color-

matches have no perceptible difference; these oressivere allocated to treatisfactorygroup. A
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software tool was developed that allowed the tdstinistrator to assign or reassign any category to
any of the above three groups. The tool also akkbreenoving or adding any category during the trial,

a feature that was used in conjunction with randodering for the verification of observer choices,
when there was a sign of ambiguity or hesitatidme Dbservers were free to assign any number of
categories, none if needed, to any of the groupsekamples, in some cases no category was deemed

as satisfactory.

The full session for each observer took betweem#ites and one hour to finish.

6.4.2 Results

At the end of the test, a scoring table was forfieedach observer by summing the total number of
satisfactory acceptable andunacceptablescores for each of the eight categories, consigaall 15
test colors. Table 6-13 shows two examples of gable for observers #1 and #8. Note that the
category 1 is the CIE 10° standard colorimetricepbar. In determining the suitability of a category
for any given observer, a high negative weight wasigned to th@inacceptablecounts, a small
positive weight was assigned to theceptablecounts and a high positive weight was assigndtido
satisfactorycounts. Accordingly, an empirical performancersedor each category was computed as
per Eqg. 6-27, and included in Table 6-13. H&&\ andU represent fractional count (i.e. total counts
divided by 15) ofsatisfactory acceptable and unacceptablegroups respectivelyR represents
absolute scores of each category Rhdepresents relative scores, such that a scdt8®fs assigned

to the highest ranking category.

Through such scoring, the highest preference wasepl on a category that was at least acceptable
(i.e. acceptable or satisfactory) for most of tlesttcolors, followed by the higher number of
satisfactorycounts. For example, for observer #1, categorya8 preferred over category 5 since it
was selected nine times satisfactory as opposed to seven times for category 5. Farebs#8 on

the other hand, category 2 received lower rankiirag tcategory 4 since the former was rejected once

asunacceptableeven though they were judgsatisfactoryfor the same number of times.

R =80S+20A-10QJ

U=1-S-A (6-27)
— R =180S+120A-100
._100R

R_ZR
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Table 6-13. Results for Observer 1 (top) and Obseev 8 (bottom), showing for each category the total
number of test colors belonging to various groupsral the relative scores R'for each category (category

1: CIE 10° standard colorimetric observer)

. Category
Ranking
1 2 3 4 5 8
Satisfactory 6 0 9 0 7 0 0 5
Acceptable 6 0 6 6 8 4 1 7
Unacceptable 3 15 0 9 0 11 14 3
R’ Score 36 -179 100 -93 86 -121 -164 29
Ranking Category
2 3 4 5 6 7 8
Satisfactory 9 12 2 12 10 0 11 0
Acceptable 5 1 12 2 4 4 3 9
Unacceptable 0 1 0 0 0 10 0 5
R’ Score 82 88 40 100 88 -92 94 -32

Thus, the objective of this analysis was to sekeatategory that is more likely to result in an
acceptable color match, even if it is not alwaye thest possible match. This is graphically
represented in Fig. 6-47, where each bubble carrelspto a category, and the area of a bubble is
proportional to its relative score Ri'. The shatledbles are the assigned categories. Categoribas wit
non-positive scores, resulting from multiple ungatable counts, are not plotted. Thus, the number of
bubbles corresponding to a given observer and tedd@itive sizes are indicative of the level of
certainty with which we can assign a category tat thbserver. For example, there is higher
uncertainty in category selection for observer #8 #ttle in case of observer #29. The observers

belonging to the same categories are placed tagkthketter visual interpretation of the results.
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Fig. 6-47. Observer categories as determined throbghe observer classification experiment (category:
CIE 10° standard colorimetric observer)

For several observers, two categories receivedaimiores, while for observers #17, #22 and #29,
even the best category was rejected for one or testecolors (not shown). These are expected since
actual CMFs of an observer are not likely to exaothtch with one of the categories, a difference
that is manifested differently for various testars| more so because these test colors are sagtific
influenced by the spectral characteristics of tispldy primaries. In such cases of ambiguity, itldo

be assumed that the chromaticities correspondingatibus categories lied within the observer's
tolerance, and so any of these categories, or waghted mean could be used for classifying this
observer. On the other hand, for observer #18,ategory was deemed satisfactory for most colors
(not shown), indicating the most suitable catedorythis observer is probably not included in the
reduced set. It must be emphasized that this expetal setup is only meant to classify a given
observer as belonging to one of the representatitegories, and not to obtain his/her actual CMFs,

which is impossible to achieve with such setup.

From Fig. 6-47, it is clear that the observer catisg follow a definite pattern. For example,
categories 5, 3 and 1 are closer to each othetewhtegories 2, 4 and 7 are closer to each other.
Categories 6 and 8 are distinctly different frone ththers. With very few exceptions, observers
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belonging to categories 3 and 5 rejected categ@ri€s 7 and 8, observers belonging to categories 2

and 7 rejected categories 3, 5, 6 and 8, so os@iffatth.

Also interesting is the fact that the CIE 10° standdcolorimetric observer (category 1) did not thet

highest score for a single observer, although it Wee 2° best category for four observers. For
observers #16, #17, #25 and #29, the standardimetric observer color-matches were rejected for
all 15 test colors (not shown). For all four, tregegories could be determined with high certainty,
indicating that in this experiment, the CIE 10°nstard colorimetric observer model is definitely

outperformed by other categories for these obsgrver

When considered alone, the CIE standard colorimefoserver would probably produce an overall
acceptable result for many of these 30 observarsirBcomparison, other observer models produced
better results relatively more often and thus weneferred over the CIE 10° standard colorimetric
observer. It is possible that given a choice, malgervers would prefer a category different from th

CIE 10° standard colorimetric observer. A posséxplanation for the low preference for the CIE 10°
standard colorimetric observer across the boaglitidgts derivation through the averaging over all
CMFs, which results in a synthetic model that does quite correspond to any real observer.

Observers who are sufficiently different from thege unduly skew the results of the mean.

The two most popular categories are 7 and 5, reptieg 30% and 27% of observers respectively.
Category 5 is somewhat close to the CIE standatdriowetric observer as per the observer
classification experiment. Category 7 is quite elascategory 2, which, as per previous analysis, w

the dominant category for the Stiles-Burch obsexver

These results raise two fundamental questionshajld the standard colorimetric observer be an
average of the whole population, or should it beeldaon a statistical representation that better
represents the majority of the population?, andd@gs a single standard colorimetric observer
continue to satisfy our needs today, or is it timdrave a provision for multiple observer models in

applied colorimetry, and if so, how?

With respect to the first question, it is importamtrecognize that the best possible representafion
the population of color-normal observers is crities the choice fundamentally affects our field. A
far as an average match for all observers ovemthele color space is concerned, the CIE 10°
standard colorimetric observer will probably sti# reasonably good (see Chapter 5), but is ityreall

the best possible representation of the color-nbpmgulation?

This thesis attempts to address the second que#tisrclear that multiple observer models may not
be necessary, or even desirable, for industridicgimns where observer metamerism is not a major

issue, unlike modern wide-gamut displays and LEpliegtions.
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The results from this first phase of observer digssion experiment definitively confirmed the
existence of observer metamerism issue in modesplayis with narrow-band primaries. But more
importantly, they also showed that such displaytesys could be exploited to better predict the

variability in individual observers.
6.5 Observer Classification using Observer Calibrator Pototype

6.5.1 The prototype

The display-based setup was not convenient enooidbe tused in industrial applications. Thus a
portable, LED-based instrument prototype for obsenlassification was conceived. This prototype
replicated the observer classification experimesg¢alip based on two displays (one with broadband

primaries and the other with narrow-band primaride¥ycribed in the previous section.

The prototype configuration is shown in Fig. 6-Z8e actual prototype is shown in Fig. 6-49. The
illumination system in the prototype is primarilgraposed of two clusters of four LEDs. Out of the
four LEDs in each half-field, one is a white LEDdais used only for generating an adaptation field.
Two adjacent integrating boxes (IB1, IB2) are desijfor light mixing so that uniform colors can be

obtained in each half-field. The colors can be @duwnonocularly in the 1Qfipartite field (F1, F2).

LED cluster1 Light guides  LED cluster2

Integrating
Box (IB1)

Integrating
Box (I1B2)

Housing

Monocular hole Bipartite Fields (F1, F2)

Fig. 6-48. Configuration of the Observer CalibratorPrototype

This prototype is made of different materials. Ehare two hollow cubical integrating chambers.
Each cube is made of three layers: the outer lafyblack paper, the middle insulating layer of Myla
and the inner layer of white paper with 85% refiece. On the top of each integrating chamber, there
is a nozzle made of Spectralon (highly diffusingoflo-polymer) which is surrounded outside by
Mylar. LEDs are placed inside the nozzles. The rede of the prototype is made of black paper and
cardboard.
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Fig. 6-49. External and internal views of the Obse#er Calibrator Prototype

A key consideration in the design of the prototyes to achieve high luminance uniformity for both
halves of the bipartite field. Luminance was meegduon four points along the periphery of each
field, as shown in Fig. 6-50. The sizes of the gn#ing chambers and the LED positions were
adjusted until satisfactory luminance uniformityuttb be obtained. The final dimensions of the
prototype are given in Fig. 6-51. A luminance unifdy of 6% was achieved, in other words the max

luminance difference between the four points in Bi§0 was 6%.

Fig. 6-50. Luminance uniformity measurement pointsn each half of the bipartite field

The LEDs for the two fields needed to be selecteduch a way that the peak wavelengths of the
LEDs in one field (F2) fell in the region of higlawability in the observer categories, while those
the LEDs in the other field (F1) coincided with i@y of low variability in the observer categories.
This would ensure that an observer looking at bffié versions of color matches in the prototype
would find the left half of the bipartite field eglvely constant, while the right half would tera t
change. An additional analysis was performed tamtifle the wavelength regions of x-, y- and z-
functions with highest variability among the difet observer classes. Fig. 6-52 shows the x-, ¢- an
z- functions of different observer categories amel €CIE 10° standard colorimetric observer (black
dots). Wavelength ranges where x-, y- and z- CM&ghhighest variability are shown as vertical
shaded lines. The vertical black lines correspandhe wavelengths where variances among the
CMFs are the largest. Wavelengths around 580 nhns2and 426 nm have high variability in case
of x-, y- and z- CMFs respectively.
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Results from this analysis can be compared withriiioa’s [103] “prime-color” and “antiprime”
spectral regions of 452-533-607 nm and 497-5794&53 respectively. Thornton observed that the
CIE 10° standard colorimetric observer performedl wden the incoming light composed of the
spectral regions near the prime colors [104]. Imtexst, it performed poorly in presence of the
spectral content in the antiprime region. The prookr spectral regions fall near the peak
wavelengths of the CMFs in Fig. 6-52. Out of theeéhprime-color wavelengths, 607 nm falls in a
zone where x- CMF has high variability. Out of theee antiprime regions, only 579 nm seems to
coincide with a region of high observer variabiliy primary at 497 nm might have been problematic
not because of observer variability, but becauseeoy low contribution of x- CMF. On the other
hand, 653 nm was chosen as an antiprime waveléngioid other regions already chosen as prime-
color and antiprime regions, while retaining reagza visual response [103]. Thus, the Thornton’s
antiprime wavelengths either fall in the regionsha@fh observer variability or in the regions of low

spectral sensitivity, which can be an explanatibfternton’s observations.
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Fig. 6-51. Dimensions of various parts of the Obseer Calibrator Prototype
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Fig. 6-52. Wavelength regions of x-, y- and z- futions with high variability among various observer
categories

However, selection of LEDs for either of the tweldis (F1 and F2) had two additional constraints.
The first constraint was related to the common dawfuthe two fields. The spectral power
distributions of the three colored LEDs in a giveid at full power determined the chromaticitids o
primaries, which in turn defined the color gamuhiagable for that field. It was important that the
two fields had significant amount of common colanmit, otherwise it would be impossible to find a

color match between the two fields for differensdaolors.

The second constraint was related to the lumindega parity between the two fields. The visual
task of color matching dictated that there be emjaivce in the luminance levels on the two halves of
the bipartite field, which required the total pdakinance due to all LEDs on both fields be similar
This constraint was partly overcome at the hardiarel where current flowing to individual LEDs
could be halved (from 20 mA to 10 mA) by settingpagpriate registers, allowing some level of
control over the peak luminance of individual LES4ill, this imposed a restriction on the choice of
LEDs.

Because of the above two constraints and becauseafailability of LEDs with certain peak

wavelength, not all LEDs matched the desired charistics. For example, no blue LED was found
with a peak wavelength of around 420 nm and withrepriate power level. Thus, some compromise
had to be made in LED selection. Table 6-14 giw#sronetric specifications of the LEDs chosen for

the two fields. Note that the luminance valuegtisn this table are post-hardware adjustment.
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Table 6-14. Colorimetric specifications of LEDs cheen for the two fields

LED Megsel?rl;dx Lurﬁiizll;ce Chromaticities
(nm) (cd/im?) X y
Blue 470 61.4 01186  0.1549
5 Green 506 69.8 01270  0.6665
2 Red 644 26.2 06990  0.3010
White ; 124.3 03369  0.3381
Blue 462 23.4 01349  0.0982
S Green 518 70.2 02315  0.6870
2 Orange 594 59.7 05925  0.4075
White ; 124.3 03369  0.3381

Fig. 6-53 shows the spectral power distributionshefobserver calibrator primaries in the two féeld

and the color gamuts obtained from them is showign 6-54. The central points in the gamut are

obtained by adding up the response of the three sLBD peak power. The color gamuts are

significantly larger than typical display gamutsRRec. 709. Note that the white in Fig. 6-53 is the

white LED used for generating the adaptation stiradibr both half-fields.
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Fig. 6-53. Spectral power distributions of the LEDsused in the Observer Calibrator Prototype

The white LED was more powerful compared to otheosfor the adaptation field only about 50%

power was used. The luminance values of the adaptéeld on the narrow-band and broad-band

side were close to each other.
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Fig. 6-54. Gamuts of the LED primaries in the Obserer Calibrator Prototype

The schematic of the prototype along with the campunterface is shown in Fig. 6-55. The
prototype has an LED driver that controls the LEDise LED driver is interfaced to a computer. A
software application (very similar to the one didsmt in Chapter 5) residing in the computer can
send appropriate signals to the LED driver in ordegenerate specific colors on both sides of the
bipartite field. There is a user control device mected to the computer through Universal Serial Bus
(USB) that allows the observer to browse througtious versions of a color match corresponding to

individual categories.

- Computer

Y
LED driver
l |
: : =

Color

+ Perception
parsing s N

Acceptable?

Fig. 6-55. Schematic of the Observer Calibrator Primtype with computer interface

6.5.2 Observer Classification Method

Nine matching colors were produced in each halthef 10 bipartite field corresponding to nine
observer models, namely the CIE 10° standard cokiric observer and the eight reduced set of

observer categories (as determined in Section)6.8<in the display-based setup, the test software
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allowed the nine versions of color matches to esgmted in a random order in each trial, allowing
the observer to browse through them with the hélthe user control. His or her task was then to
follow a multi-step method and classify these niresions of color matches in®uperior Average

or Inferior categories. The names of the categories were eddafigm the earlietJnacceptable
Acceptableand Satisfactorysince an acceptability judgment was more subjectiompared to a
superiority judgment. The latter can be thought@sfa relative ranking among the available color
matches. Based on several such trials (for diftdbese colors), the category that most often presluc
the best match is identified, and is the categasigaed to the given observer. Eight base colors,
shown in Fig. 6-56, were selected for the experinusimg the same method as described in Section
6.4.1.

Fig. 6-56. Eight test stimuli used in Observer Clasfication test performed with the Observer Calibraor
Prototype

6.5.3 Two experiments with the Observer Calibrator

Two observer classification experiments were penéat using the Observer Calibrator prototype.
The experiments were performed with collaboratiathvwo universities, one in Germany and the

other in Hungary.

The first experiment was performed the Institute of Printing Science and TechnolodgyD),
Technische Universitat Darmstagit Darmstadt, Germany. Twenty-seven observersféfrtale and
17 male observers with an average age of 34.5 Jywaits normal color vision participated in this
experiment. The second experiment was performetheatUniversity of Veszprémn Veszprém,

Hungary. Twenty-two observers (5 female and 17 malle average age of 28.8 years) with normal
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color vision participated in this experiment. Fack observer, the experiment took 40-45 minutes on

an average.

6.5.4 Results

Fig. 6-57 shows the observer categories for albBServers from the two tests obtained using the
same method as outlined in Section 6.4.2. Resuta the Darmstadt experiment are shown on the
left, and those from the Veszprém experiment isvshon the right. Note that these categories are not

the same as in display-based experiment, showiyir6F7.

Table 6-15 summarizes the results obtained fromtile experiments, involving a total of 49
observers. Categories 4, 5 and 6 are the most gtepulTogether they cover 63% of this observer

panel. Categories 3, 7 and 9 are the least poplulate

As before, category 1 (CIE 10° standard colorimsetibserver) was the assigned category for a

minority of observers, only 4 out of 49 (around 8%)

Categories 8 and 9, known to be quite distinct ftbmother categories, were assigned to 6 out of 49
observers (around 12%). A 22-year old observer fs@szprém was assigned to category 8, but for

all other observers belonging to these two categdhie average age was 52.
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Fig. 6-57. Results from observer classification expiment in Darmstadt, Germany (left) and Veszprem,
Hungary (right) using the observer calibrator (category 1: CIE 10° standard colorimetric observer)

Table 6-15. Observer classification result summarpased on 49 observers

Observer No of %
Categories Observers Observers
o tsttéﬁﬁd) 4 8.2

Cat-2 7 14.3
Cat-3 2 4.1
Cat-4 12 24.5
Cat-5 10 20.4
Cat-6 9 184
Cat-7 1 2
Cat-8 5 10.2
Cat-9 1 2
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6.5.5 Limitations of current prototype

The current version of the prototype has two mamitdtions. First, the LED selection for the two
fields was constrained by the availability of LE&h specific wavelengths. Thus, not all LEDs

could satisfy the design criteria.

The second limitation was related to the hardwahe LED driver being 8-bit could provide only 8-
bit resolution for controlling the LED input powerhis imposed a constraint on precise color

reproduction. A 10-bit LED driver would be more apgriate for this prototype.

6.6 Validation of Observer Classification method

An observer classification experiment was planneccallaboration with the IDD in Darmstadt,
Germany with two principal aims. First, to validéite observer classification method with the hélp o
the results obtained from an independent visuakex@nt, and second, to probe an interesting but
unanswered question: do color matching function®K€) influence our perception of small
suprathreshold color differences? If so, what ie #xtent of this influence? The threshold
discrimination (also referred to as just noticeabi#ance or JND), which is a measure of uncestaint
and variability, is typically determined by coloratohing, and thus by individual color matching
functions. For larger color difference (suprathmd)y it is assumed that the influence of the color
matching function on the perceived color differedeereases continuously. Thus, we can assume that
there is some impact of CMFs on perceived smaltahpeshold color differences in addition to
higher order processes. Under this hypothesis,| stollr difference judgments viewed on a display
with narrow-band primaries should be significanithfluenced by individual variability in color
matching functions. Such an experiment was perfdremlier by Urban et al [141]. A significant
correlation between the small color difference jmegts and the observer categories would help
validate the observer classification method, asd akovide support to hypothesis that there exists

relationship between small color difference judgteemd color matching functions.

Prior to describing the correlation analysis of tesults obtained from the two experiments, it wioul

be useful to briefly discuss the setup for the cditference experiment.

6.6.1 Setup for the color difference experiment by Urbaal[141]

A color-difference experiment was performed onaailil crystal display (LCD) prior to conducting
the collaborative observer classification experim&he method of constant stimuli [142] was used to
determine color differences around five CIE colenters (CIE Gray, CIE Red, CIE Yellow, CIE
Green, and CIE Blue [143]). These color differenwese perceived equally to the color difference in

the anchor pair consisting of two neutral gray tom&h a color difference dhE,, = AL* = 2.2. 14

134



directions around each color center were invesity@tig. 6-58). Along each direction five test eslo
were chosen resulting in 14x5 = 70 color compasstor each color center and a total of 350

comparisons for the whole experiment.

Fig. 6-58. Investigated directions around the colocenters [141]

The arrangement of patches is shown in Fig. 6-88hHEest pair was composed of a color center and
one of the test colors. The patches covered apd@X%.of the visual field. The positions of the
displayed test and anchor pairs were switched ratydas well as the color positions within the pairs
Observers were asked to choose the color pair ¢arahtest pair) with the largest perceived color

difference. A detailed description of the experitremd results can be found in [141].

Details of the observer classification experimeateéhalready been explained in the previous sections

Fig. 6-59. Experimental setup on LCD - degree of suial field [141]
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Fig. 6-60. Calculation of the individual thresholdfor a single observer. If there are multiple crossigs of
the 0.5 line, the correspondingAE* ., distances are averaged for thresholding [141]

6.6.2 Correlation of color difference data with colorimietobserver categories

Results from the observer classification experin@vie been presented in Section 6.5.4. In analyzing
the data from the color difference experiment [141) individual threshold was calculated based on
the binary choices of each single observer as sliowig. 6-60. However, note that the computed
individual color difference thresholds are biasgdgbiantization errors due to the small number of
binary choices. The color difference between thiorcoenter and the color, indicated by this
threshold, is perceived by the current observeilairto the color difference of the anchor pairsBa

on the individual thresholds an average observes @aculated for the observer panel. Fig. 6-61
shows the mean deviation of individual observeesholds from the average observer threshold,
where individual data points are marked by thegmesl colorimetric observer categories for each
observer. Note that here average thresholds anddnoel thresholds are calculated in the CIELAB
color space. As shown in the diagram, two obserbetsnged to category 1 (CIE 10° standard
colorimetric observer), one to category 3, eight#aegory 4, six to category 5, six to category 6,
three to category 8 and one in category 9 (seeFitpo6-57 left panel). No observer belonged to
categories 2 and 7. Thus categories 4, 5 and 6 mest popular. The two observers belonging to

category 1 are closer to the standard colorimetsgerver than others in this observer population.
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Fig. 6-61. Mean deviation of individual observer thesholds from the average observer threshold

An interesting observation about Fig. 6-61 is if a@sume the two individual points belonging to
category 1 as references, other categories sebmspmmetrically placed above and below these two
points. For example, category 4 is tightly sprehdva and below the category 1 points, while
category 6 points are further away beyond the cayed points both above and below, and category 5
points are distributed over a wider range. Catedr$ and 9 are farthest away from category 1
points, either above, below or both. This indicatiest there exists a link between the observer

categories and individual observer’s color diffea@perception.

Separate analysis was conducted for investigatiegcorrelation between average observer color
difference thresholds and observer categories. dhaysis involved the use of CMFs for various
categories, thus CIEXYZ color space was prefernast €IELAB since the conversion of CIEXYZ to
CIELAB is valid only for 2° or 10° standard colomtnic observer. The XYZ coordinate system on
the other hand is purely computational, and candegned for any specific CMF. The xyY
chromaticity diagram is defined by the specific momromatic primaries used in obtaining the
original color matching functions. Since all obs®reategories are essentially based on Stiles-Burch
10° CMFs, chromaticity coordinates obtained by gdimdividual categories can be compared and
even plotted on the same diagram. However, it jgoiant to note that the distances in CIEXYZ
color space are not representative of color diffees perception, and the scale is not uniform in
different areas of color space.
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At this point, a perceptual space for these categatoes not exist, and so there is no appropriate
perceptual metric available to us. From the spkeptraver distributions (SPDs) of all test stimulidan
the color matching functions (CMFs) for each of thiee categories (category 1 being CIE 10°
standard colorimetric observer), CIEXYZ and catgegpecific XYZ (henceforth CatXYZ) values
were computed. Since all observer thresholds wegaally computed in CIELAB using the CIE 10°
standard colorimetric observer, these needed toobeerted to catXYZ. For each category, a 3x3
transformation matrix (M) was computed in a least square sense from CIEENZ imuii sty and
CatXYZ (XYZgimuicay data of all color stimuli obtained earlier. Obses’ average color difference
threshold data were then converted from CIELAB @kahks to CIEXYZ, which were then
converted to CatXYZ by multiplying with the transgfioation matrices. Eq. 6-28 explains these two

steps.

M Cat = XYZs_tilmuli,Cat D<sttimuli,8td (6-28)
I—'A‘Bstimuli,Std - XYZobsAv,Std N mt - XYZobsAv,Cat

These computations allow us to plot the observéa daganized by categories with coherence in
scale. In this analysis, root-mean-square (RMSadees between XYZ coordinates of observer color
difference thresholds and color centers have beasidered, with the hypothesis that around a given
color center, small color differences in a giverediion can be assumed to be Euclidean. Figs. 6-63
through 6-67 show the RMS distances between thetésrs along various directions and different
color centers. Fig. 6-62 explains the symbols usdtese figures, showing the five test colorsdor

single direction represented in terms of RMS distarof various category-specific XYZ values.

In each figure, the black central line is the calenter. All XYZ RMS distances are measured from
this color center and represented on two sideheténtral line. The fourteen directions (see Big.
58) are organized in pairs along the ordinate, vattth direction having seven colored lines
corresponding to various categories. Note thatfitse line is for CIE 10° standard colorimetric
observer, and the rest are for categories 3, @, 8,and 9, as shown in Fig. 6-62. Categories 27and
are not present since no observer was assignee thgsgories in this experiment. Each colored line
joins the five test stimuli in a given directionrfany given category, shown as black dots. As
mentioned before, the RMS distances in this figanee not perceptual. But conveniently, comparing
the lengths of these lines gives an idea of thativel distance scales in various directions and
categories for a given color center, thus allowuggto compare the RMS distances of observer
thresholds. For the first colored line in each feguall circles and the star represent CIEXYZ RMS
distances (Cat. 1), while for the rest the circlgsresent the RMS distances in respective CatXYZ
spaces. Note that while the RMS distances correipgnto different categories along a given

direction can be compared, distances along vadoastions should not be compared to each other.
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Fig. 6-62. Explanation of symbols used in Figs. 63&hrough 6-67. Each of the 14 directions has sinait
representation. All distances are RMS distances iGIEXYZ or CatXYZ coordinate systems.

The empty circles represent the color differenceghold (see Fig. 6-60) along a given direction and
a given color center, averaged over all obseriayompute these color difference thresholdgQT

for any given category (CatX), Eqg. 6-29 below wasedi First, all intra-category average thresholds
(Teat, Tecarz €C) Were converted to corresponding CIEXYZ thodd$ for the given category, using
transformations given in Eq. 6-28. The resultingesholds were then multiplied by the number of
observers belonging to the respective categorigs,(N.a €tc), then summed, and then divided by
the total number of observers. Such category-wisghting takes into account the fact that the
categories were not equally populated, so more M®igere assigned to average thresholds coming
from more populated categories. This weighted tioles corresponded to average color difference
threshold in CIEXYZ, which was then multiplied Hyettransformation matrix (M) from Eq. 6-28

to obtain the thresholds {Jx) for the given category CatX.

Z [( M (;itj Ij-Ca’[j ) |:Ncatj ]
-

TCatX - Z N j
j

M c.ix (6-29)

The filled circles represent similar RMS distanedsgere color difference thresholds are computed for
observers grouped by their assigned categorigs, (Tear €1C in EQ. 6-29). So the filled circles in the
1* line are for observers belonging to Category 1E(@0° standard colorimetric observer), filled
circles in the 2' line are for observers belonging to Category Zysand so forth.
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Finally, the blue star on the first line are fotaradifference thresholds computed only for obsesve
belonging to the three dominant categories, naMelp and 6. As before, weightings based on

number of observers were applied.

To summarize the foregoing discussion, the emptgles represent the global average observer
thresholds obtained by transforming all intra-catggaverage threshold values to a given category,
and the filled circles simply represent the intedegiory average observer threshold only for a given
category. The distances between the empty circldgtee filled circles for any category indicate how

different this category is from the averaged obsedata.

Typically, categories 3, 8 and 9 have the largetstidces between the empty and filled circleshén t
observer classification experiment, observers ofeg@ies 8 and 9 rejected color matches
corresponding to the CIE standard colorimetric olesewith high certainty, for all seven test colors
This bolsters the inference that these categoriesirdeed quite different from the standard
colorimetric observer. In this experiment, all alvees belonging to these two categories were in the
highest age-group, but other experiments (see @ed@i5.3) have indicated that some young

observers can also belong to these categories.

Only one observer was assigned category 3. Forctiisgory, distances from the color center are
often less than that in case of other categoridéchwmay indicate the observer had better color
discrimination than average observers in othergoates. However, as per Fig. 6-61, this observer
had the highest deviation from the mean color diffiee threshold, which is also consistent with Figs

6-63 through 6-67. Because of statistical insudficly of the data, these observations cannot be

considered as general inferences with regard &goay 3.

In many cases, RMS distances between global avéhageholds (empty circles) and intra-category
average thresholds (filled circles) for categor§ClE 10° standard colorimetric observer) are larger
than those in case of categories 4, 5 and 6, wihidicates observers belonging to category 1 are
relatively further away from the average observatad This indicates that the perception of such
individuals can still be strongly distinct from te&tistical mean of a certain observer populaiiam.

the other hand, color difference thresholds avetdgeobservers in categories 4, 5 and 6 (bluesktar
are in general significantly closer to the globa¢rage. Over 70% observers belonged to these three

categories.

In a perceptual color space optimized for eachgoaiethe average color difference thresholds (ille
circles) would ideally form a vertical line, allrésholds being at the same distance from the color
center. But this is not the case here. The tramsftbons between CIEXYZ and CatXYZ are

approximate. As explained before, the average cdifference threshold computations were
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performed in the CIELAB space, and was then comdetd CIEXYZ and then to CatXYZ. Thus,
transformed threshold points for some categoriesal@lways fall on the colored lines, implying the
RMS distances in CatXYZ space can in some casesedxthe distance of farthest or nearest test

stimulus.

Table 6-16. Absolute difference between global obser average thresholds and intra-category average
thresholds for Color Center 5 (Blue)

Direction Category

3 4 5 6 8 9
1 0.20 0.20 0.20 0.26 0.35 0.03  2.65
2 0.71 0.29 0.16 0.29 0.28 0.69 1.45
3 0.02 0.10 0.02 0.00 0.02 0.04 0.04
4 0.03 0.07 0.01 0.00 0.00 0.01 0.04
5 0.02 0.90 0.20 0.17 0.44 0.80 0.47
6 0.30 0.06 0.17 0.18 0.06 0.34 0.39
7 0.21 2.24 0.28 0.11 0.05 0.45 1.71
8 0.10 1.66 0.39 0.83 0.09 0.66 0.70
9 0.08 0.11 0.08 0.11 0.08 0.11 0.18
10 0.28 0.24 0.24 0.11 0.24 0.63 0.52
11 0.12 0.47 0.26 0.20 0.77 0.13 0.46
12 0.44 0.92 0.11 0.14 0.44 0.10 0.80
13 0.47 0.47 0.47 0.53 0.06 0.43 0.94
14 0.27 0.52 0.06 0.10 0.12 0.34 0.37

The distances between global average thresholdsasathge thresholds within categories are

typically larger for categories 3, 8 and 9 compaedther categories. This implies that there exist

possibility to improve average color differencediction for observers belonging to these categpries
if we can use color matching functions that are enappropriate than the standard colorimetric

observer. These observers stand to gain the most ffmactical implementation of the concept of

observer classification. Results for the blue caolemter (color center 5) are particularly interggtin

this regard. The absolute difference between glabatage thresholds and average thresholds within
categories for this color center are shown in TablES (see also Fig. 6-67). The shaded values
indicate category-specific average thresholds lgpvamge differences with respect to the global

average thresholds. For categories 3, 8 and 9 tHmstances are relatively large along several
directions, which is an indication that observers these categories will tend to have high

disagreement in color difference judgment in bl{gedor center 5) with the rest of the population.
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6.6.3 Conclusions from correlation analysis

As the observer classification experiment conduetétl the help of Observer Calibrator prototype
suggest, the CIE 10° standard colorimetric obsemaes assigned to only 4 out of 49 observers. This

means only around 8% of the observers conformdatirent standard colorimetric observer.

With regard to the correlation analysis of obsenlassification data and color difference judgments
two main inferences emerge. Firstly, color differerthresholds for categories that are very differen
from the CIE standard colorimetric observer, ascaigd by the observer classification results, have
large differences from the global average threshofkecondly, average thresholds for observers
belonging to dominant categories are generally woge to the global average thresholds. The
consistency between observer categories and cifferethce data give an indirect validation of the
observer classification method. The results alsw les to conclude that colorimetric observer
categories, derived from classical color matchirggad can help in the prediction of average
suprathreshold color difference perception forveegiobserver population. Determining the extent to
which the results can be improved needs furtheestigation, requiring additional visual data and

appropriate metrics.

In his paper on the variability of small supratid color difference perception, Kuehni [144]

comments thatthe results indicate that assessments of the maginf small color differences have
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considerable variability within, but particularlyetween observers. ...From this it is evident that
mean observer data depend to a significant degneth® composition of the observer panel. It is also
evident that color difference formulas fitted toamedata can predict perceived color differences

accurately only for a minority percentage of cotarmal observers

Long ago, Rich and Jalijali [74] also talked abdlie possibility that perception of small color
difference could be observer dependent. They notébfifortunately, it thus appears that the
perception of color-differences are not observateipendent. This implies that color difference or
color acceptance formulas based on single observarse risky ventures. This also implies that
scaling or ranking of color or color-differenceslMbe influenced or affected by observer difference

... The result of scalings by an unreliable observay tve nonlinear, distorted, or just very nofsy

Results obtained from the collaborative experimentforce these assertions, but more importantly,
opens up two important possibilities for futureadission. Firstly, is it possible to customize color
difference equations for individual observer categxy and even derive more uniform color spaces
for these categories? And secondly, can we usekimowledge of observer categories to derive a
better standard colorimetric observer from a lishisanount of visual data, so that we can achieve a
more uniform color space, and simplified color élifnce equations? The relevance of these questions
for the color imaging industry can be better apiatted in the context of Kuehni’'s plea [145] for an
industry-wide, systematic effort to address thestaxg issues with estimation of color differencis:
seems appropriate and useful to color-related imdiess to make a concerted effort at the beginning
of the new century to resolve the issues aroundbgective method of color control to the degred tha
the biggest variable, the observer, allows. Onlyidely controlled and comprehensive effort will

make this possiblée

6.7 Final words on standard and “deviate” colorimetric observers

The fact that the CIE 10° standard colorimetricestasr was the chosen category for only around 8%
of all observers tested, a result in congruench watrlier findings (see Chapter 5 and Section §.4.2

raises the question if the current standard coletriimobserver has room for improvement. A possible
explanation for the low preference for the CIE d&nd colorimetric observer across the board lies in
its derivation through the averaging over all olieelCMFs, which results in a mathematical model of
an average observer that does not quite corresjootie observers who participated in the observer
classification experiments. In other words, obsexweho are sufficiently different from the average

unduly skew the results of the mean.

Considering no single observer category satisfisthea quarter of the observer panel raises another

important question: whether a single observer medel or should indeed be used for the whole
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population of color normal human observers, evererwthe application context demands better
accuracy. The concept of an average observer hais @ fundamental to colorimetry that the
representation of any observer who cannot reaspniabl represented by an average has been
conceived as a “deviate observer”. While the tetstsndard” and “deviate” were likely used by the
scientific community in purely mathematical contekie term “deviate observer” is often interpreted
by non-experts with a negative connotation. Thel@m@nant perception is that a human observer
should have the same or similar color vision asagmted by the “standard”; otherwise he or she has
a color vision problem. In a way, the terminologed traditionally in color science community gives
way to this wrong understanding. It is importantacknowledge that it is perfectly natural for
individual color normal observers to be differemnh each other. As has been shown in this chapter,
observers belonging to a category closer to theageefor a given group of observers do not
necessarily represent the dominant categoriesresibect to a larger population. Over the past s¢ver
decades enough progress has been made in thefdreman color vision to warrant a revisit to the
aspects of definition and usage of observer madet®lorimetry. There is really no unique way of
defining a single “standard observer” or a “deviateserver”, and no such attempt is probably

necessary.

A more appropriate way of defining the colorimetoioserver models could be similar to what CIE
did to define the “standard illuminants”, by ustegms like CIE standard illuminant A, B, C, D65.etc
The observer models could be named based on teqindncy of occurrence in a large population of
color normal observers irrespective of their gendate and genetics. A general agreement could be
reached on using, for example, “colorimetric obsemnodel A” under normal circumstances. One
advantage of this method is no model is claimed'séandard” or “deviate”, just like the CIE
illuminants. The other advantage is that for arietstd population, a color researcher or enginaer ¢
choose to use a more appropriate model. For exanmvjite respect to observer categories introduced
in this chapter, categories 8 and 9 (or their vgdladr improved future versions) will be more
appropriate for an elderly population than the gatees 4 and 5. Of course such colorimetric observe
models cannot represent the color vision of indigidobservers precisely, but a carefully estabtishe
set of representative observer models will givecmenaccurate individual color matching predictions
than what is possible today with a single largé&dfigandard colorimetric observer. It is importéort

the field of colorimetry to offer such improved acacy to applications that need it.

It can also be hoped that an existence of multptegories will encourage the color engineers to be
more attentive to the specific observer model baisgd in their colorimetric computations. At
present, many professionals working in the areaotdr technology tend to use the CIE 2° standard
colorimetric observer and the CIE 10° standard romietric observer interchangeably, failing to

acknowledge the significant impact of the choicetloé colorimetric observer model on their
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computations and designs. For example, many meaasateinstruments use CIE 2° standard
colorimetric observer by default, while the smadld color matching may not be appropriate in the

context in which such measurements are being peéir Such discrepancies often go unnoticed.

Finally, it must to emphasized once more that § V@me observer population must be tested using
the observer classification method before the detepresentative observer categories can be
finalized. Such task can best be handled by a atdrmhtion body like CIE, based on the findings of

this work and of other researchers in the domain.
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Discovery consists of seeing what everybody hasaee thinking what nobody has thought. ~ Albert
von Szent-Gyodrgy. The Scientist Speculates: Arokag of Partly-Baked Ideas

7. Observer-dependent color imaging: workflow,

implementation and benefits

7.1 Introduction

In Chapter 6, a practical method was implementexdassify observers into one of several categories.
This chapter proposes a workflow for color critigatiustrial applications in order to exploit the

knowledge of observer categories to obtain obsespecific color matches.

7.2 Colorimetrically accurate imaging workflow

As explained in the beginning of Chapter 5, obsevagiability and metamerism can be a nontrivial
issue in post-production applications, which ineoleritical color matching tasks, for example the
color grading of the raw movie content at the pmgieting stage. The main goal of color
reproduction in an application such as this is redik different from that in typical consumer
applications. To appreciate this fact, we shoulahsater the set of five objectives of color
reproduction put forth by Fairchild [146]. Thesgealtives are an updated version of Hunt’s original

proposition of six objectives [147], and are a$oi@k:
i) Color reproduction: basic ability of devices toneguce colors.

i) Pleasing color reproduction: ability of devices reproduce acceptable colors, where
observers have no knowledge of original scene,sando expectation beyond a pleasing

image.

iii) Colorimetric color reproduction: ability of devicds produce colorimetrically accurate
colors. Involves reproduction on calibrated andrabtierized devices, allowing the CIE
tristimulus values of the original image to be aately reproduced on any given output
device. Useful only when viewing conditions for thiéginal and reproduced images are

identical.

iv) Color appearance reproduction: ability of devices rhaintain appearance attributes.

Reproduction involves calibrated and characteridedces, requires a color appearance
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model, and also information about viewing condisidor the original and reproduced

images. Poses many challenges to be realized imeocial applications

v) Color preference reproduction: ability of devidtesmanipulate colors to ensure subjective

preference of the user for a given medium and stibje

Color reproduction in post-production applicatidike color grading does not quite match any of the
above, except probably to some extent the colorimelor reproduction or color appearance
reproduction. In most consumer applications, codroduction focuses on user preferences (the last
objective above), but in post-production, the ngaal is generally to preserve the artistic inteint o
the Director of Photography (DP) and the Coloiisgspective of the ultimate consumer’s personal
preferences. Doing so for a variety of media, faareple, large-screen content (film and/or digital),
digital mastered content (television and/or DVIY) pbses a great color reproduction challenge, even
more with wide-gamut displays introduction. At thery least, it is critical that throughout the post

production workflow the colors are represented eately.

Color imaging workflow in any practical applicatiean be organized in three steps [148]: i) device-
dependent representation where colors are spedifie@ given imaging device only, ii) device-
independent representation where colors are spédifi terms of colorimetric coordinates such as
CIEXYZ or CIELAB, and iii) viewing-condition-indepelent representation that take into account the
color appearance of any given scene with specifioving conditions such as luminance level,
surround, chromatic adaptation, etc. and attemgpezify the final image appearance. Even before
considering the appearance attributes of the contéme device-independent colorimetric
representation, which is quite fundamental fronocakcience point of view, need to be perfected in

order to achieve a colorimetrically accurate imggiorkflow.

In this regard, the choice of the color space iticat. Any color space specification essentialges

an average or a standard colorimetric observers,Tindividual variability is an issue that cannet b
overlooked, particularly when this variability isigsificant, either because of the spectral
characteristics of the imaging device employedb@&cause of the observer’s color vision. In fact,
many colorists in the entertainment industry preégework on raw colors (device RGB) instead of
device-independent color specifications like CIELABhus the prost-production workflow can
potentially benefit from an improved, personalipetbr space that is perceptually more uniform for a
certain individual observer (a colorist or a DParthwhat is currently available. This is the ultiat

goal of the workflow discussed in the next section.
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7.3 Observer-dependent color imaging workflow

In a typical color image processing pipeline, asigant part of the processing is device independe
irrespective of the devices involved in the inpubatput side. However, all the processing, whether
device dependent or device independent, is basedsimgle CIE standard colorimetric observer. In
this thesis work, a new term is hereby introduagaserver dependent color imagi@DCI). The
concept is illustrated in Fig. 7-68, applied to gotypical color imaging workflows. However, other
embodiments/applications are also possible. Nott the concept obbserver dependent color
imaging applies only to a small part of the imaging wookf| at the acquisition (input) or rendering

(output) level, keeping the rest of the chain usetkd.

" Device and Observer
Independent Color
Representation

g = \ Camera profile
Display profile .—

"
*  Transform Transform

Observer / Observer \

Setting Observer Specific | Setting - ..| Observer Specific
Transform _ | Transform

>

. Observer Dependent
Color Imaging

-

Observer Dependent
Color Imaging

Professional Camera

Professional Display

Fig. 7-68. Observer dependent color imaging workfle

ODCI workflow will typically be implemented at thautput side, for example, for display processing.
A display profile-specific transform is currentlggied to device independent color representatimn,
obtain display color codes (also described as aysphannel values or digital counts). The proposed
workflow will introduce an additional step (the agge block in the figure) where a further transform
will be applied based on specific observer setinghe device, and will result in modified display
color codes, customized for a specific observers Will ensure that the colors perceived by this
observer on the display are approximately identioathe perception intended for a CIE standard

colorimetric observer, which is the underlying asption in the whole color reproduction chain.

The observer specific transform described abovédcbe implemented in several ways. In a more
device-specific implementation, it could be in flioem of observer-specific display Lookup Tables

(LUT). Such a LUT would convert digital counts agsponding to CIE standard colorimetric observer
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specific colors directly to digital counts corresding to a given observer category specific colbrs.
a more generic, two-step implementation, obserpecific colorimetric transformation can be
applied to convert CIE standard colorimetric obeerspecific values XYZ (henceforth CIEXYZ) to
observer category specific XYZ values (hencefor#tX¥Z) , and then in the next step convert the

CatXYZ values to corresponding digital counts tiglo@appropriate display LUTSs.

ODCI can also be applied on the input side, ongasibnal camera system. Colors seen by the
photographer can be converted to correspondingsthat would have been seen by a CIE standard
colorimetric observer, using a transform similartibhe one described above. In this case, display
primaries are replaced by camera spectral sertigtviRest of the chain remains the same as

conventional processing.

However, this workflow may not be practical in tlwentext of some typical color imaging
applications, for example, for input devices likensumer digital cameras and scanners, and for
output devices like generic printers. These deyiaad/or the content generated by them, are likeely
be viewed by many different users under uncontolMewing conditions. In these application
contexts, a precise, observer-dependent color deption (and perception) is neither practical nor

useful. A standard, average colorimetric obsereens more appropriate in these cases.

7.4 Implementation - derivation of colorimetric transformations between

the CIE 10° standard colorimetric observer and eighcategories

Before discussing the implementation aspects, istnine reiterated that there is an assumption
involved in the computation of the reduced setabicmatching functions. This assumption pertains
to the conversion from the cone fundamentals ofsehoobserver categories to the corresponding

color matching functions equivalent to CIE XYZ syt As described in Chapter 6, a linear
transformation matrix was computed to convert theg bcolor matching functions (CMFs) of
Stiles-Burch observers first to corresponding cfumedamentals, and then to CIE 10° standard

colorimetric observer equivalent CMFs. For thisgmse, approximate transformation matrices were

computed from the average observer data, which thereused on individual observer data.

In reality, deriving an XYZ tristimulus space from given set ofr g bCMFs is not so
straightforward. Recommending a standard procethiréhis derivation is within the scope of CIE
TC 1-36 that published the first part of its repdd] on physiologically-based CMFs. The official
CIE recommendation for the derivation of tristimsilspace will be based on Wold and Valberg’s
method [149], which uses the same principles ad useleveloping CIE 1931[41] standard, while

imposing additional restrictions. At the time tkiigsis research was conducted, this recommendation
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was not available, so an approximate linear transfition was used instead. Note that all observer
categories are based on the Stiles-Burch experifdditinvolving monochromatic stimuli of unit

radiance and wavelengths 645.2 nm, 526.3 nm andt4¥ as primaries, which define the axes of
the chromaticity space. Thus, we can assume thatgle average transformation between the RGB

and XYZ chromaticity spaces for all observer catiggois an acceptable approximation.

7.4.1 Method of transformation

Two methods were used for the transformations &X¥Z values corresponding to the CIE 10°
standard colorimetric observeXd.1 Ycar1 Zeary) into the CatXYZ values corresponding to various
observer categorieX¢aa Ycara Zcaa WhereA denotes one of the eight categories and varies fro
2 through 9). The first method used a linear tramsétion, while the second used a nonlinear spline-
based 3D interpolation. The transformations wemapmded using Eq. 7-30, whellg..a represents
either a linear 3x3 matrix or a three-dimensiomakup table (LUT), and*® represents a matrix

product or a LUT application.

x Cat-A x Catl
Y CatA = TCat—A D YCat—l (7_30)
Z Cat-A Z Catl

Thus, both methods required that the tristimulusiesbe computed for a given set of spectral data.
For this, estimated spectral power distributions ¢drge set of stimuli were used in each casesé@ he
spectral power distributions were obtained by usigLED primaries in the right half of the bipsati
field of the prototype. These colors are charapteriby high observer variability. From the spectral
power distributions, CIEXYZ and CatXYZ values we@mputed for each CMF. From here onward,
this dataset is referred to as modeling dataset.ndeling datasets were slightly different in cafse

linear transformation and in case of 3D interpolatias described later.

For each of the two methods, an independent seigbt tristimulus values (hereafter referred to as
verification dataset) was used for the verificatmnthe accuracy of the transformation. From here
onward, this dataset is referred to as verificatataset. Slightly different verification datasetsre

used in the two methods, as clarified later.

Using [Xi0 Y10 Zio] values from the modeling dataset in Eq. 7-3Xbada Ycara Zcara Values were
predicted using a linear (3x3 matrix) or nonlingeansformation (3D-LUT), which were then
compared to corresponding tristimulus values coegbditom the spectral data. The errors between

the predicted and actual values would indicateatteeiracy of the transformations.

In the following two sections, details of the madgldataset and the verification dataset included,

followed by a discussion of the results obtainedrfreach method.
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7.4.2 Using linear transformation with 3x3 matrices

For computing the transformations, the same s&B8R estimated spectral power distributions used

earlier for deriving the reduced set of CMFs (seayier 6) was selected as the modeling dataset.

Spectral power distributions of the eight test stin{fFig. 6-19) from the observer classification
experiment were used as verification dataset. Fiivese spectral data, tristimulus values
corresponding to the CIE 10° standard colorimatbserver and the eight observer categories were
computed, and are shown in Table 7-17. The stdmulagerver is marked as category 1 as in Chapter
6. Note that different normalization factors werged in the tristimulus value computation for
different CMFs so that in each case the luminaniceviute obtained by setting the LED field

primaries to their maximum powers equals to 100.
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Table 7-17. Modeling dataset for the linear transfamation method. Tristimulus values of eight test
stimuli used in the Observer Calibrator, correspondhg to CIE 10° standard colorimetric observer
(category 1) and the reduced set of eight observeategories

Tristim. Test Stimuli
Values 1 2 3 4 5 6 7 8

CMF

CIE 10° X10 13.7463 13.8509 10.9885 13.2999 18.7832 15.7506 .8613 17.3884

Stg'bgo'- Y,  12.6658 12.6201 95445 16.8156 16.7856 18.3087 7286. 20.8577

(Cat-1) Zio 7.2181 23.7031 3.8872 18.2753 18.7971 7.3985 28.5916.9055

Xcat2 14.0023 13.8334 11.2165 13.4224 18.9771 16.1107.9013 17.6494

Cz?tb?lz Y caw 12.8051 12.6528 9.6731 16.8372 16.9211 18.4421 7236. 20.9417
' Zcaw 8.3687 27.2074 45135 21.1926 21.626 8.7488 27.2529.6731
o Xcats 15.6041 15.8283 12.4576 15.2 21.3762 17.8982 25.8619.8201
Obs.

Cat -3 Y cat3 12.9308 12.6846 9.7894 16.8553 17.0449 18.56017216. 21.0156
. Zcas 7.1404 23.4214 3.8416 18.1131 18.5753 7.3631 P3.3616.7665

Xcata 14.8566 15.0701 11.8609 14.4719 20.3522 17.0409.1046 18.8707

cgtbs.'4 Y cata 12,5697 12.6316 9.4546 16.802 16.7126 18.1969 396.720.7927
' Zcaw 7.2027 23.6955 3.8669 18.3211 18.7751 7.4253 33.6316.9479
o Xcats 12,5712 12.7893 10.0738 11.9451 17.2729 14.1521.5312 15.6421
Obs.

Cat -5 Y cats 12,5697 12.6316 9.4546  16.802 16.7126 18.1969 396.720.7927
. Zcas 7.1859 23,539 3.8696 18.2072 18.6764 7.412  23.4786.8587

Xcas 132037 13.4328 105807 12,5461 18.1419 14.86411619 16.4291
cgtbs-'ﬁ Yeus 129308 12,6846 9.7894 16.8553 17.0449 18.56017216. 21.0156
' Zeaws ~ 7.1404 234214 38416 18.1131 185753 7.3631 D3.3616.7665

Xcat7 14.0676 13.898 11.2688 13.485 19.0656 16.1858 659.9 17.7318
C(;tbs_.7 Y cat7 12.9308 12.6846 9.7894 16.8553 17.0449 18.56017216. 21.0156
. Zcatr 7.1404 23.4214 3.8416 18.1131 18.5753 7.3631 P3.3616.7665

Xcats 13.8802 14.1044 11.1807 12.7397 19.1041 15.2706.43%3 16.8022

c(a)tk.JS-'s Yeus ~ 12.8051 12,6528 9.6731 16.8372 16.9211 18.4421 7286. 20.9417
Zews 753 247721 40426 19.1535 10.6281 7.7627 24.7094.7179
Xcao 132769 13.4914 10.6948 12.186 18.2738 14.60698512. 16.072
Cgfs_'g Yews 125697 12,6316 9.4546  16.802 167126 18.1969 396.720.7927

Zcao 7.2027 23.6955 3.8669 18.3211 18.7751 7.4253 33.6316.9479

As outlined in the previous section, 3x3 matrices dbtaining CatXYZ values from the CIEXYZ
values were computed using the modeling dataset78Bf was solved for each:i in the least
square sense to obtain transformation matricevddous categorieSMcat.o, Mcars €tc). Egs. 7-31

through 7-36 give these matrices.

0980139 0020211 -0.028272
M., =| 0013582 0.958319 0.039481 (7-31)
~0.016043 —0.006330 1.104520
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1.082740 0.039545 -0.00947
Mg, s =| 0.005694 0.945804 0.011083 (7-32)
0.006266 -0.011986 0.949995

1.082740 -0.011363 -0.01261
Mc,a =|0.005694 1.011010 0.012059 (7-34)
0.006266 0.006649 1.010796

[ 0.979985 -0.011363 —0.00903
Mc,.s =| —0.065248 1.011010 0.011730 (7-35)
| 0.007037 0.006649 1.002210

[ 0.979985 0.039545 -0.009477
My =| —0.065248 0.945804 0.011083 (7-33)
0.007037 -0.011986 0.949995

[ 0.980139 0.039545 -0.009477
M., =| 0.013582 0.945804 0.011083 (7-37)
~0.016043 -0.011986 0.949995 |

[1.121113 0.020211 -0.012618
Mc,s =| —0.160701 0.958319 0.012059 (7-38)
| 0.005468 -0.006330 1.010796

1.121113 -0.011363 -0.01261
Moo =|-0.160701 1.011010 0.012059 (7-36)
0.005468 0.006649 1.010796

Using the linear transformations on the verificataataset, predicted CIEXYZ and CatXYZ values
were computed. Fig. 7-69 plots the chromaticityrdotates for the eight test stimuli obtained from
these CIEXYZ and CatXYZ values. Values obtainecatly from the spectral data are plotted as
squares while the values obtained through a limaasformation of the CIEXYZ values are shown as

triangles.

Chromaticity errors between the predicted tristusul/alues and those computed earlier from the

spectral data are given in Fig. 7-70. The errorseve®mputed in terms of Euclidean distances for
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each of the eight stimuli in xy-chromaticity diagraOn each box, the central mark is the median of
eight distances, the edges of the box are tfea8l 7%' percentiles, and the dotted error bars extend
to the most extreme data points not consideredeasitiNote that as in Chapter 6, these categorées a

marked as 2 through 9 and the CIE 10° standardinwtric observer is marked as category 1.
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Fig. 7-69. xy-chromaticities of eight test stimulcorresponding to various observer categories and €l10°
standard colorimetric observer. Squares: coordinags obtained from spectral data. Triangles:
coordinates obtained through linear transformationof CIEXYZ values. The test stimuli were used in the
Observer Calibrator prototype described in Chapter6
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Fig. 7-70. Chromaticity prediction errors due to Inear transformation of observer-specific tristimulus
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As evident in Figs. 7-69 and 7-70, high predictamors exist for the observer categories 7 and 8,
indicating the linear transformation from CIEXYZagsin this computation may not be adequately
accurate for these two categories. Colors in gia®h red have higher prediction errors for these
categories. The prediction errors for categorie3, 2, and 7 are relatively low. Category 4 is ueiq

in the sense that there is almost no differencthénprediction errors among the eight stimuli as
indicated by the similar distances between thereguand the triangles for all test stimuli in Hep9.
This results in category 4 having a flat line imsteof a box in Fig. 7-70. What does it mean for the
observers of this category? It is likely that tlodoc matches obtained through a linear transfownati
of CIEXYZ colors as per Eq. 7-34 would all seemb® equally good or bad for the observers of
category 4. If we ask such an observer to partieipa a color matching experiment involving just
one test color, and then derive a linear transfaomabetween the matched color and the match
predicted by the CIE 10° standard colorimetric obse it is likely that such a transformation will
give a reasonably accurate result for other colBRexall that according to observer classification
experiments, category 4 is the most popular cayegah 24.5% observers belonging to this category
(see Table 6-6 and Fig. 6-20).

It is also interesting to note that a linear transfation for category 3 results in accurate préaficof
chromaticities in the blue regions of the colorcpéFig. 7-69), while other categories show much
more variations. For this category, the errorséase as we move toward the red and green. Note that
there was only one observer in this category, s@atiove observations may not be generalized for all

observers belonging to category 3, at least undilendata specific to this category are available.

Finally, if we compare the distances between whiteles (CIE 10° standard colorimetric observer)
and the squares corresponding to different categdfig. 7-69), the distances for a given category
are similar for different test stimuli, but varyf one category to the other. This is expectedesitic
these points are obtained through the fundamentatimetric equations using the spectral data and
corresponding CMFs. So while the Euclidean distarietween the white circles and the squares for
a given category do not vary appreciably over tifierént parts of the color space, the differences

between various CMFs dictates that the squaresdagdd differently in the color space.

In general for all test stimuli, category 7 is ttlesest point to white circles, which indicatessthi
category results in similar results as the curstandard colorimetric observer in the xy-chromatici
space. As per the observer classification experisnesnly 2% of total observers (1 out of 49)
belonged to this category (see Table 6-6). Thisgmly might thus be redundant. Further experiments

can confirm this assumption.
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7.4.3 Using three-dimensional lookup tables obtained fepiine-based 3D interpolation

For computing the three-dimensional lookup tablasset of 4913 estimated spectral power
distributions (similar to the larger set of 5832disn case of linear transformations) was seleaged

the modeling dataset.

As for the verification dataset, a slightly diffateset of chromaticities were used compared to the
case of linear transformations. This new set, showmable 7-18, was a result of an inadvertent
computational error, which was detected after 3f@rpolations were completed for all observer
categories. Since the computations were highly -toressuming (4 hours for each category), the
verification was not rerun in the interest of tifate however that the chromaticities are clostnéo

original set and the results presented in this@eetre valid and accurate.

Using the 3D interpolations on the verificationakadt of CIEXYZ values, predicted CatXYZ values
were computed. Fig. 7-71 plots the chromaticityrdowates for the eight test stimuli obtained from
these CIEXYZ and CatXYZ values. Values obtaineckatly from the spectral data are plotted as
squares while the values obtained through a litraasformation of the CIEXYZ values are shown as
triangles. The triangles and the squares are supesed, confirming 3D interpolation method

accurately predicts the CatXYZ values.
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Fig. 7-71. xy-chromaticities of eight test stimulcorresponding to various observer categories and €l10°
standard colorimetric observer. Squares: coordinads obtained from spectral data. Triangles:
coordinates obtained through 3D interpolation of CEXYZ values (superimposed on squares due to low
prediction errors). The test stimuli were similar to those used for linear transformation
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Table 7-18. Modeling dataset for the 3D interpolatin method. Tristimulus values of eight test stimuli
corresponding to CIE 10° standard colorimetric obsever (category 1) and the reduced set of eight
observer categories

Tri- Test Stimuli
CMF stimulus 1 2 3 2 5 6 7 3
Values
CIE X 16.6255 16.7520 13.2901 16.0855 22.7173 19.04967636. 21.0305
é?g“clo? Y 153187 15.2634 11.5436 20.3376 20.3013 22.14352280. 25.2264
Obs. z 87300 28.6677 4.7014 22.1030 22.7342 8.9481 28.53.4463
Cat-X 163638 16.1665 13.1082 15.6861 22.1776 18.82782458. 20.6260
cRaet(-ji Cat-Y 14.9647 14.7867 11.3045 19.6768 19.7748 21.55255438. 24.4736

Cat-Z 97801 31.7960 5.2747 24.7668 25.2733 10.2243 90.8422.9911
Cat-X  18.1511 18.4119 14.4910 17.6811 24.8653 20.81974548. 23.0553
gaet‘_jé CatY 150415 14.7550 11.3873 19.6065 19.8271 21.58964518. 24.4459
Cat-Z  8.3059 27.2444 4.4686 21.0696 21.6072 8.5650 28.179.5032
Cat-X  18.1511 18.4119 14.4910 17.6811 24.8653 20.81974548. 23.0553
CRaet‘_jé Cat-Y 153570 15.4327 11.5511 20.5279 20.4187 22.232145Q0. 25.4035
Cat-Z  8.7999 28.9500 4.7243 22.3838 22.9385 9.0719 28.878.7061
Cat-X  15.3589 15.6254 12.3077 14.5939 21.1032 17.29043108. 19.1107
5;5’4 CatY 153570 15.4327 11.5511 20.5279 20.4187 22.232145R0. 25.4035
Cat-Z  8.7793 28.7588 4.7277 22.2446 22.8179 9.0557 28.68D.5972
Cat-X 153589 15.6254 12.3077 14.5939 21.1032 17.29043108. 19.1107
gaet‘_jé CatY 150415 14.7550 11.3873 19.6065 19.8271 21.58964518. 24.4459
Cat-Z  8.3059 27.2444 4.4686 21.0696 21.6072 8.5650 28.17%.5032
Cat-X  16.3638 16.1665 13.1082 15.6861 22.1776 18.827824%8. 20.6260
CRaet‘_jé Cat-Y  15.0415 14.7550 11.3873 19.6065 19.8271 21.58964518. 24.4459
Cat-Z  8.3059 27.2444 4.4686 21.0696 21.6072 8.5650 28.17%.5032
Cat-X  16.2211 16.4831 13.0664 14.8883 22.3260 17.84607009. 19.6360
gaet‘_j% Cat-Y  14.9647 14.7867 11.3045 19.6768 19.7748 21.5525543@. 24.4736
Cat-Z  8.7999 28.9500 4.7243 22.3838 22.9385 9.0719 28.878.7061
Cat-X  16.2211 16.4831 13.0664 14.8883 22.3260 17.84607009. 19.6360
CRaet‘_jé Cat-Y 153570 15.4327 11.5511 20.5279 20.4187 22.232145Q0. 25.4035
Cat-Z  8.7999 28.9500 4.7243 22.3838 22.9385 9.0719 28.878.7061

As before, chromaticity errors between the predic@d actual tristimulus values (CIEXYZ and
CatXYZ), computed in terms of Euclidean distanamsefach of the eight stimuli in xy-chromaticity

diagram, are shown in Fig. 7-72. The absolute smoe less than 0.001, and thus negligible.
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Fig. 7-72. Chromaticity prediction errors due to 3Dinterpolation of observer-specific tristimulus valies

7.5 Advantages of ODCI in an applied context

As explained in the previous chapters, the issugbeérver metamerism has become non-trivial with
the advent and wide-spread adoption of modern wadaut consumer displays. Many modern Liquid
Crystal Displays (LCDs) are fitted with Light Eniitgy Diode (LED) backlight (or sometimes, laser

primaries) in order to achieve more vivid, moreusatied and brighter colors. These displays are
particularly susceptible to observer variabilitypQ] [151] (see also Chapter 5), since their peaky
primaries can cause noticeable shift in the chrimitias of perceived colors with relatively minor

change in the visual characteristics of the obseitewever, the future of televisions and consumer
displays lie in these wide-gamut displays. Even ynatest professional displays are equipped with
such narrow-band primaries. The potential advastajehe ODCI workflow should be assessed in

this context.

The practical advantage of an ODCI workflow is timaan imaging device, e.g. a display, the user can
have a control - just like brightness or saturatontrol typical in today’s displays, which willla
him/her to select a specific observer setting. Tda#ting can be selected based on the observer
classification test described in the previous olapwhich will make the colors appear to him/her
close to what would have appeared to a standardric@tric observer (i.e. observers with
characteristics identical to the CIE standard oleefunctions). Or, the setting can be based on the

default dominant category.
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Thus, by selecting an appropriate observer seftingeach observer, the variability in the color
perception from one observer to the other can bainmied. This will significantly reduce the
uncertainty in color critical tasks introduced bigserver variability. An example could be color
correction by a colorist during post-production.emnany potential disagreement between the colorist
and the Director of Photography can be minimizedsélgcting an appropriate set of CMFs for each

person (through user control).

As an extension, the ODCI workflow can be usedust@mize a device not only for the color normal
observers, but also for the anomalous trichronvalt®, are currently not able to have the same color
experience as a color normal observer, in spitaatf being color blind. An appropriate ODCI
implementation can aid to meet the needs for thid kf special group of consumers, even though
appropriate observer categories would first needbaoestablished. The ODCI workflow can, in
principle, make it possible to allow every obserterperceive a given color in the way it was
originally intended by the content creator, irregpe of individual observer variability, as long a

the observer is a trichromat.

The concept can be applied to any application git8liImage Processing/Digital Video Processing.
It could, in principle, be applied to any indudtrepplication involving color management and

reproduction.

Specific to the application contexts relevant fontent processing, ODCI has potential to help
develop technologies for observer-dependent cadarection method in post-production workflow.
More generally, graphics arts and the use of creatomputer software can benefit from the
workflow proposed here. It is also applicable ighhquality color reproduction for TV/PC end users
as observer dependent calibration can easily bdeimgnted in the form of a Look-Up Table

transform in personal computers, set-top boxesatavepys.

The ODCI workflow is likely to be most useful forgfessional and high-end consumer display

applications.

7.6 Conclusions

This chapter presented the first set of tools faplementing observer categories in a practical
application context. Theobserver dependent color imagin@DCI) workflow was described.
Implementation of this workflow in a display app@lion necessitates that colors corresponding to
CIE 10° standard colorimetric observer be conveiteéd category-specific colors. Simpler linear
transformations as well as three-dimensional Lookaples obtained from nonlinear interpolations

were computed and preliminary analysis of the tsesuds presented. These transformations are in the
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form of very large Lookup Tables, and so could Ipetincluded in the thesis manuscript. However,
they will be made available to the research comtyuttirough the author's personal website

www.abhijitsarkar.com

These results show that for some observer categ@iknear transformation from tristimulus values
corresponding to the CIE 10° standard colorimetixserver to those corresponding to various
categories will result in relatively low chromaticicomputation errors, while for other categories t
error will be more significant. This raises a fumdatally important question. Should CIE XYZ
tristimulus computation be adapted differently fuyservers whose color matching functions are
known to be very different, so that for a givenacoktimulus, similar tristimulus values can be
obtained for these two observers? This questiorsbdar been redundant since colorimetry is based
on a single observer model. However, if we dectdexpand colorimetric computation to provide the
option of multiple-observer models, the most basjaation in color science, computation of the CIE

tristimulus values may need to be modified to m@aaen for such expansion.

In a more applied context, when it comes to the lementation of ODCI workflow, the
transformation from color specification based oa @E 10° standard colorimetric observer to those
based on different observer categories must beeimgted and tested in visual experiments. This

chapter set forth the preliminary approach for exinig that goal.
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We shall not cease from exploration, and the erall @ur exploring will be to arrive where we
started and know the place for the first time. STEliot, Little Gidding (1942)

8. Conclusions

8.1 Contributions

As described in the introduction, the main motimatibehind this thesis was to find a practical
solution to the problem of observer metamerisnnaustrial applications. However, the contributions
of this thesis turn out to be relevant not onlyifatustrial applications where observer metamerssm

an issue, but also for more fundamental studiéisardomain of color and vision sciences.

The most important contribution of this thesis lh@en to prove the main hypothesis, that human
observers with normal color vision can be clasdifrgo a small number of categories based on their
color vision. This work proposes a set of eightoometric observer categories for use in
colorimetry. However, it is important to note thiaére is no unique way to derive these categalties.
is expected that the proposed categories will bthdu tested, and updated as needed, in future
research works of various color and vision sci¢siti€stablishing the most appropriate set of
categories was not the main purpose of this wond this is a task that is better left for a

standardization body like Commission Internatiortsd’ Eclairage (CIE).

Another key contribution of this work is the devahaeent of the observer classification method as
well as the proof-of-concept prototype, describedheObserver Calibratorthroughout this thesis.
This observer classification method, together wita compact and economical prototype, is the
enabling factor for the practical implementation aifserver categories in industrial applications.
Moreover, theDbserver Calibratorcan be an immensely helpful research tool in@érdific studies

in color science and color vision that employ vigusychophysics. This tool, possibly the first tf i
kind, can help in the selection of a small groupla$ervers, such that this group is representafige
large population of color normal observers. This p@ssibly be achieved by selecting observers
belonging to various categories. It is also possitl select observers only from the categories
prevalent or dominant among large population obcabrmal observers. At present, there is no easy
and effective means to do such “observer profilingtolor normal observers, even though multiple
color deficiency tests exist, for example, Ishih&seudolsochromatic Plates or Anomaloscopes
employing Rayleigh matches (for red-green colonaiieficy test) or Moreland matches (for blue-
green color deficiency test). Most scientific saglignore this very important aspect of experinienta

design to ensure representativeness of the obggoeéparticipating in psychophysical experiments.
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Nonetheless, the outcome of some of these expetsneam be critically affected by the choice of

observers.

Final contribution of this thesis is to provide iestf step toward an implementation of colorimetric
observer categories in a practical color imagingkfiow. This workflow, described in this thesis as
the observer dependent color imagi@DCI), will typically be implemented at the outpsitle, for
example, for display processing. The basic idet isonvert color specifications corresponding to
CIE 10° standard colorimetric observer (as theyegalty are) into color specifications corresponding
to individual observer categories. The display deuwnust be characterized to derive forward and
inverse display models separately for each of tlxserver categories. Nonlinear transformations
that result in accurate color transformations aeved. These transformations will be made avagabl

to the research community through the personal #eebkthe authorwww.abhijitsarkar.com

In the next section, various key achievements ettiesis are described in more detail.
8.2 Achievements

8.2.1 Theoretical analysis of CIE TC 1-36 (CIEPOO06) pbimyically-based observer

model

A comprehensive theoretical analysis was conduatedarious aspects of the physiologically-based
observer model proposed by the Technical Commiiteéel-36 of the Commission Internationale de
I'Eclairage (CIE). In the context of color percepti on modern narrow-band displays, the
performance of the CIEPO06 model in predictingdlierage observer data corresponding to various
age-groups was evaluated, and the results were avechpwith those from the CIE 10° standard
colorimetric observer. This analysis used a congmeive, well recognized color-matching dataset

for 47 observers obtained through classical colateting experiment.

The CIEPOO06 model performance was improved signitly upon a nonlinear optimization of the
model. It was proposed that one of the physioldda@ors, namely the photopigment optical density,

be made age-dependent.

8.2.2 Color-matching experiment with two displays to gtusbserver metamerism in
narrow-band displays

The effect of observer metamerism in modern displpplications was investigated through color-
matching experiments. This involved two displayse avas a Cathode Ray Tube (CRT) display with
broad-band primaries, and the other was a Liquigi@r Display (LCD) with narrow-band primaries.

The experimental design took into account sevenglortant aspects of large-field color matching.
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The results obtained from the experiments involvigiy observers showed that while using the CIE
standard colorimetric observer the average prediairors for all observers and all stimuli wasdow
than some of the similar studies performed in thet,pthe differences were significant for some

stimuli.

8.2.3 Derivation of eight colorimetric observer categaigrough statistical analysis

A two-step method was developed for deriving a mali set of colorimetric observer categories
meeting several predefined requirements. In thst ftep, five representative long-wave sensitive
(LWS), medium-wave sensitive (MWS) and short-wagasitive (SWS) cone fundamentals (a total
of 125 combinations) were derived through a cluaterlysis on the combined set of 47-observer data
from 1959 Stiles-Burch study, and 61 color matchingctions derived from the CIEPO06 model
corresponding to 20-80 age parameter range. SquBtedidean distance measure (in cone
fundamental space) was used in this analysis. énsdtond step, a reduced set of representative
observer models (or categories) were derived frbmm 125 combinations through an iterative
algorithm. This derivation was based on severatlgfined criteria on perceptual color differences
with respect to actual color matching functiongtw 47 Stiles-Burch observers and spectral power
distributions of a large set of color stimuli. Aykaspect of the method used in deriving the observe
categories is that both spectral and colorimetdatires of the color-matching functions were

considered to minimize model redundancy and ensuiggieness of the selected categories.

8.2.4 Development of an observer classification method amplementation using two

displays

An experimental method was developed in order tsigascolorimetric observer categories to
individual observers. The two displays used indblr matching experiment described before were
used. They were characterized using CIE 10° standaforimetric observer and each of the
colorimetric observer categories. Pairs of matcluolgrs as predicted by various observer categories
were shown on the two displays, and the observerasked to choose the best matching pair through
a multi-step experimental protocol. The chosen matr pair corresponded to a specific observer
category. This process was repeated for severaldmers. Finally, an empirical ranking system was
used to determine the most appropriate observegeat that resulted in superior color matches for

most base colors for the given observer.

8.2.5 Development and testing of Observer Calibrator ptgpe

A portable, LED-based instrument prototype for obseclassification was conceived. This prototype

replicated the observer classification experimesttup based on two displays described in the
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previous section. The prototype has an LED drivext tcontrols the LEDs. The LED driver is
interfaced to a computer. A software applicaticsiding in the computer can send appropriate signals
to the LED driver in order to generate specificocslon both sides of the bipartite field. A user
control device connected to the computer througlvéteal Serial Bus (USB) allows the observer to

browse through various versions of a color matahesponding to individual categories.

Two collaborative experiments were performed inr@ery and Hungary, involving a total of 49
observers. A correlation analysis was performealoserver classification data from the experiment
in Germany, and suprathreshold color differencgiueints obtained from an independent experiment
involving the same set of observers. The consigtbabiveen observer categories and color difference
data gave an indirect validation of the observessification method. The results also led to the
conclusion that colorimetric observer categoriesived from classical color matching data, can help
in the prediction of average suprathreshold coldferdnce perception for a given observer
population. If this observation is further validaiti& future research, colorimetric observer categor
will have a significant impact on the formulatiook color difference metrics and perceptual color

spaces.

The Observer Calibratorcan be an immensely helpful research tool in @#rgific studies in color
science and color vision that employ visual psytilysics. This tool can help in the selection of a
small group of observers, such that this grougsasentative of a large population of color normal

observers. Of course, it can as well be a toalitthér study color vision variability.

8.2.6 Observer-Dependent Color Imaging (ODCI) workflow

This thesis work provided a first step toward aplementation of colorimetric observer categories in
a practical color imaging workflow. Implementatiai this workflow in a display application

necessitates that colors corresponding to CIE 1&)idsrd colorimetric observer be converted into
category-specific colors. Simpler linear transfotiotas as well as three-dimensional Lookup Tables
obtained from nonlinear interpolations were comguaed preliminary analysis of the results was

presented.

8.3 Perspectives

The use of a standard observer in colorimetric agatpns is essentially based on the assumption
that the whole population of color normal observeas reasonably be represented by a single
colorimetric observer model, defined by a set ak¢hColor Matching Functions (CMFs). This
assumption is arguably the greatest weakness ifothmilation of colorimetry. The constraints ofghi

assumption were known to the color science commuavéer since CIE colorimetry was established,
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and adopted universally. Indeed, such an approiomatid not pose much problem in any of the
conventional industrial applications, until recgntlts weakness has become non-trivial with the
advent and wide-spread adoption of modern wide-gacamsumer displays with narrow-band
primaries, facilitated by the Light Emitting DioddED) technology. Recent studies show that
individual variability in color vision characteriss often lead to disagreement among observers over
color matches, and overall color experience on sleshices is adversely affected. This observation
has been reaffirmed in this work. Thus, more theer defore, there is a need to find a practical
solution to this issue of observer variability (iabserver metamerism). We need a solution that can

be effectively implemented in industrial applicaiso

It is hoped that the concept of colorimetric obsemategories, the method of observer classifinatio
and the Observer Calibrator prototype, all devedogering the course of this thesis, will contribute
toward this goal. Thebserver dependent color imagi(@DCI) workflow proposed in this thesis is
an embodiment of the envisaged solution, which odeeeloped further, it can be hoped, will

significantly reduce the problem of observer metasnefor color critical applications.

As pointed out in the previous section, a correfatianalysis of observer categories and
suprathreshold color difference judgment data okthifor the same group of observers showed
interesting consistency. This raises a questiothi@ifuture researchers of this topic - can coletiin

observer categories have a fundamental impact anwm use visual data to derive color difference
formulae and perceptually uniform color spacesadems doing further research on observer
categories will not only be interesting for colondging applications, but could also prove to be

highly relevant for basic research in color scieacé vision.

This thesis has exploited some of the latest acdhantade in the field of color vision in the pasb tw
decades, and has made a systematic effort to @ffeactical and scientifically sound solution te th
issue of observer variability. In doing so, thisrlwdas attempted to bridge the gap that currently
exists between the scientific community of visi@searchers, and the professional community of

color science specialists.

In perspective, this work tries to move away froomeentional wisdom of “standard” and “deviate”
observers that has dominated colorimetry for masgades. During the course of this thesis it was
observed that the terminology used traditionally color science community gives way to a
misunderstanding, particularly among non-experte umerical constructs of a “standard observer”
and a “standard deviate observer” have facilitatieoligh unintentionally, a conception in the gehera
population that a human observer should have thme €a similar color vision as represented by the
“standard”; otherwise he or she is second-ratengualified as an observer. Many people showed a

reluctance to participate in the observer clasifin test, fearing he or she would “fail” the teghe
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message that needs to be sent across to the dismtoois that it is perfectly fine to have a colo
vision different from that of an average obserwerfact, it is normal. Based on the results obtdine
from the observer classification experiments inw@\v49 observers, no single observer category was
assigned to more than a quarter of the whole ptipalaThis of course depends on the selection of
categories. Also noteworthy is the fact that omyuad 8% of these observers conformed to the CIE

10° standard colorimetric observer.

This thesis research makes a case for an altesippteach in which the colorimetric observer models
would be defined in a way similar to what CIE daddefine the illuminant models, by using terms
like CIE standard illuminant A, B, C, D65 etc. Thbserver models could be named based on their
frequency of occurrence in a large population eabicaormal observers, irrespective of their gender,
race and genetics. A general agreement could behedaon using, for example, “colorimetric
observer model A” under normal circumstances. Qivaatage of this method is no model is claimed
as “standard” or “deviate”, just like the CIE illumants. The other advantage is that for a restticte
population, a color or lighting specialist can cb®®o use a more appropriate model. It is alsodhope
that this approach will encourage the color engimdée be more attentive to the specific observer
model being used in their colorimetric computatiddafortunately, to this date, the observer model

appears to be the most neglected aspect of apgaledmetry.

The proposed paradigm shift in the treatment ool models in colorimetry is easier said than
done. As this three years’ of research is comingntend, a humbling realization is setting in thé
work is but a stepping stone. Resolving all theditag issues with regard to colorimetric obseniers
not a matter of one doctoral thesis, and not evenisolated research initiative. A community-wide,

concerted effort is needed to take this work tortet level.
Following could be a rough guideline for future Wor

1. Reuvisit the observer category derivationthe original dataset of Stiles and Burch observers
did not have sufficient representation of highee-ggoup observers above the age of 50.
Also, the effect of genetic polymorphism due to ethlong- and/or medium-wave sensitive
cone fundamentals undergo a peak shift is notylikelbe present in the combined dataset.
These weaknesses in the underlying dataset caiblyog8ect the derivation of the observer
categories. Further theoretical analysis could dredacted to ascertain the most appropriate

mathematical process and statistical data.

2. Finalize a first set of candidate colorimetric obsever categories: This could be an updated

version of eight observer models proposed in tiesis.
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3. Improve upon and standardize the Observer Calibrato instrument: The prototype
demonstrated a strong Maxwell-spot effect. It cquddsibly be reduced by changing one or
more LED primaries. However, this would affect therent balance of luminance, and the
common color gamut on two sides of the bipartiwddfi This aspect needs investigation.
Further, it will be important to improve the hardedLED driver) from the current 8-bit to

10-bit so that color reproduction can be more geeci

4. Collect a very large amount of observer classificagn data: It will be critical to have
observer classification data from hundreds of olesraround the world, obtained by using

the Observer Calibrator and the first set of caadicdbserver categories.

5. Finalize the set of standard colorimetric observercategories: Based on the observer
classification data collected in the previous step,can determine which of the candidate
categories are most appropriate to be selectethéofinal set. From practical point of view,
the final set should have minimal number of categothat would satisfy one or more pre-
determined criteria with respect to the observgiutettion tested. One of these categories
(probably the most dominant one) would be the esfee category, the basis of all generic
colorimetric computations. This could also be therent CIE 10° standard colorimetric

observer (for large-field applications), or prefdyaits improved version.

6. Establish transformations between categoriesFor applications that need to account for
observer variability, generic color representatioeed to be converted to observer category-
specific color representations, implementidserver-Dependent Color Imagingprkflow.
Nonlinear transformations similar to those est&iglishere could be used, or nonlinear color

conversion equations can be developed.

This clearly involves a lot of efforts. Is it wortill that efforts? For many applications, it midge
sufficient to have a single observer model. But fleose novel applications for which a single
observer model is insufficient, or for which an eage observer model is inappropriate, it is imparta
that there is a practical, scalable solution. Ithe responsibility of us, the color scientists and
researchers, to ensure that modern colorimetryshels adaptability. This thesis concludes with this

vision for our field in the Z1century.
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Résumé Observateurs colorimétriques : identification decatégories et classification.

Applications en sciences de la vision et de la ceur

L'objectif principal de cette thése est de propaser solution pratique aux problemes de variabilité
de perception, ou métamérisme observateur, pouappkcations colorimétriques. Ce travail réalise
tout d’abord une analyse théorique compléte surdiéfiérents aspects du modéle physiologique
d'observateur proposé en 2006 par le CIE TC 1-3@sDe contexte de la perception des couleurs sur
des écrans récents a spectres étroits, nous awahsééet optimisé ce modele pour prédire les
caractéristiques d’'un observateur moyen. Plusiexf®riences de mise en correspondance des
couleurs sur deux écrans, dont un écran a spetid, @nt confirmé l'effet du métamérisme
observateur. A partir de l'analyse statistique djen étendu de données visuelles, nous avons
identifié huit catégories d’observateurs coloringgtes. Une méthode expérimentale de classification
des observateurs a été développée et mise en emmgda forme d’'un prototype compact dénommé
Observer Calibrator.Les tests visuels réalisés avec ce prototype emip de démontrer que les
observateurs a vision normale des couleurs pe@entaffectés a un nombre restreint de catégories.
La méthode de classification des observateurspbletype, constituent des contributions utilearpo
les applications industrielles de la couleur afust pour la recherche dans les domaines de lauwoule
et de la vision. Nous lillustrons pour des apgimas critiques de gestion colorimétrique grace a
I'utilisation de transformées couleur restituantégisément les variations entre catégories
d’observateurs.

Abstract: Identification and Assignment of Colorimetric Observer Categories and Their

Applications in Color Science and Vision

The main objective of this thesis is to offer agical solution to the problems encountered in colo
critical industrial applications, caused by indwad variability among observers with normal color
vision, commonly referred to as observer metameridthis work starts by conducting a
comprehensive theoretical analysis on various aspEcthe physiologically-based observer model
proposed in 2006. In the context of color perceptan modern narrow-band displays, the
performance of this model in predicting averageeobs data was evaluated, and based on a
nonlinear optimization, an improvement of the models proposed. Next, several color-matching
experiments were performed on two displays, configrthe effect of observer metamerism in
display color matches. Then, based on a statisticalysis of a comprehensive visual dataset, eight
colorimetric observer categories were identified. @perimental observer classification method was
developed, and was implemented by means of a cdrppatotype, theDbserver Calibrator Visual
experiments performed on the prototype proved dhahall number of categories can be assigned to
color-normal observers based on their color visiBmally, an implementation of colorimetric
observer categories in relevant industrial appbecest has been proposed, and nonlinear
transformations that result in accurate color tiagmmsations between categories have been derived. It
is hoped that the observer classification methagkther with the compact and economical prototype,
will be valuable contributions not only for induatrapplications, but also for scientific reseamh

the domains of color science and vision.

Mots-clés: Vision des couleurs, Comparaison deslecos, Métamérisme observateur, Catégories
d’observateurs, Colorimétrie des écrans
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