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Notations and Abbreviations

N - the set of natural numbers, N = {0,1,2,...}

N* - the set of positive natural numbers, N = {1,2,...}
Z - the set of integers, Z = {...,—2,—1,0,1,2,...}

R - the set of real numbers

Z% = {(t1,...,ta) €Z%: t; > 0,i=1,...,d}

RY = {(21,...,2q) ER" 12, > 0,i=1,....d}

Ly =17

R; =R}

R = R\ {(0,0)}

a; = max(0,a), for a € R.

a_ = (—a)y = max(0, —a), for a € R.

||| = \/m, for ¥ = (z1,2,) € R%

E = diag(v,...,74) denotes the diagonal d x d matrix with entries 7,...,74 on
the diagonal.

C, C(K), denote generic constants, possibly depending on the variables in brackets,
which may be different at different locations.

EX denotes the mean of random variable X.

Var(X) denotes the variance of random variable X.
D(a) is the domain of attraction of an a—stable law.

L is the lag operator, X (t — 1) = LX(t).

—q  denotes convergence in distribution.

—p  denotes convergence in probability.
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NOTATIONS AND ABBREVIATIONS

—1, denotes convergence of random variables in L, space. We write &, —1, &,
if E|§, — &P — 0.

—1,(4) denotes conditional convergence of random variables in L, space. We write
§n =) & if E“&n — §|p’A} — 0 almost surely.

—aqa denotes weak convergence of finite dimensional distributions.

fdd-lim denotes weak convergence of finite dimensional distributions.

—plo,1] denotes convergence in Skorokhod space with the J; Skorokhod topology.

x T a means that x approaches a from the left.

ad denotes equality of finite dimensional distributions.

4 denotes equality of distributions.

1(-)  denotes the indicator function.

sign(-) 1is the sign function.

[x] denotes integer part of real number z.

x Ay denotes min(z,y) for real numbers x and y.
xVy denotes max(x,y) for real numbers z and y.

™22 ¢ means that ¢ + s is even, for t € Z, s € Z.

mod 2
t # s means that t + sis odd, fort € Z, s € Z.

i.i.d.  independent identicaly distributed

i.d. identicaly distributed
I.v. random variable

a.s. almost surely

a.e. almost every

r.h.s.  right hand side
Lh.s.  left hand side



Résumé long en francais

L’agrégation comme sujet de recherche. On étudie les relations entre les
comportements individuels (micro) et les comportements agrégés (macro). Dif-
férents types d’agrégation existent : a petite échelle, a grande échelle, 'agrégation
temporelle, 'agrégation spatio-temporelle (voir le chapitre 2, également [19], [43]).
Dans cette thése nous nous concentrons sur l'agrégation appelée contemporaine a
grande échelle. Elle a été introduite par C.W.J. Granger (1980, [42]) afin d’expliquer
I’apparition de phénomenes a longue mémoire dans les séries temporelles. Le
principe est le suivant : on dispose de N séries, X;(t), 7 =1,..., N, qui représentent
le comportement de N individus formant un groupe hétérogene. A un temps t fixé,
le processus agrégé est défini comme la somme sur tous les individus, normalisée par
Ay, c’est a dire

Xn(t) =—> X;(t), tez, (1)

Le probleme fondamental de I'agrégation contemporaine a grande échelle est de
déterminer (si elle existe) la limite en loi du processus agrégé {Xy(t), t € Z} défini
en (1), quand le nombre d’individus N tend vers l'infini, puis d’explorer les propriétés
principales du processus agrégé limite X(t) = limy_,oc Xn(t), t € Z. Le processus
agrégé limite {X(t), t € Z} peut avoir une structure totalement différente de celle
des processus individuels. Les principales propriétés que le processus agrégé peut
posséder sont : l'ergodicité et la longue mémoire. L’ergodicité est une propriété
du processus stochastique qui permet d’estimer une caractéristique du processus
en utilisant une seule réalisation suffisamment longue. La propriété de la longue
mémoire caractérise la dépendance a long terme de la série. On trouve dans la
littérature différentes définitions de la longue mémoire, elles sont présentées dans le
chapitre 2 (voir section 2.3).

Un autre probleme important est celui de la désagrégation : on veut estimer les
propriétés des processus individuels {X;(t), t € Z}, i = 1,..., N, ayant observé un
échantillon X(1), X(2), ..., X(n) du processus agrégé limite. Par exemple on suppose
que le processus agrégé limite {X(¢), t € Z} est obtenu a partir de processus AR(1)
indépendants a parametre aléatoire (voir [42]):

ou {e;(t), t € Z} sont des bruits blancs, et a;, i = 1,..., N, sont des variables
aléatoires indépendantes et de méme loi que a. Pour cet exemple, le but de la
désagrégation est d’estimer la loi de variable aléatoire a ayant observé X(1), X(2),
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De nombreux articles traitent de I’agrégation des modeles linéaires (liste non
exhaustive) : [13], [19], [20], [41], [42], [43], [53], [61], [65], [66], [70], [79], [91],
[103]. Une breve revue de la littérature est donnée dans le chapitre 2. Presque
tous les papiers mentionnés ci-dessus analysent les schémas d’agrégation lorsque les
séries individuelles ont une variance finie. Il est bien connu que l'agrégation de
processus indépendants de variance finie conduit a des modeles gaussiens, c’est a
dire le processus agrégé limite est un processus gaussien. Le but de notre étude est
d’étendre ces résultats a des processus de variance finie, mais non nécessairement
gaussien et a des processus de variance infinie.

Motivation. Dans de nombreux domaines tels que 1’économie, la sociologie, la
géographie, I'énergie, etc., tres souvent les données collectées et utilisées sont des
données agrégées. Les données (de type panel) individuelles sont souvent plus diffi-
ciles a obtenir ou non disponibles. Il est donc important d’étudier les caractéristiques
des processus agrégés et de proposer des méthodes de désagrégation.

L’étude de l'agrégation contemporaine est aussi motivée par la possibilité
d’obtenir des phénomenes a longue mémoire. L’agrégation fournit une explication a
la présence de la longue mémoire dans les séries temporelles. L’accumulation de pro-
cessus non ergodiques a une courte mémoire peut conduire a un processus ergodique
a une longue mémoire.

Problemes et principaux résultats. L’un des objectifs de la theése est
d’explorer le schéma d’agrégation des processus et des champs aléatoires de variance
infinie. Un autre objectif est d’obtenir un processus agrégé limite non-gaussien par
I’agrégation des processus indépendants de variance finie. Le probleme de désagré-
gation est aussi abordé dans ce travail.

e L’agrégation de modéles AR(1) avec une variance infinie (voir les chapitres
3 et /). L’objectif principal de cette étude est d’étendre les résultats de P. Zaf-
faroni [103] valident pour les processus avec une variance finie a des processus avec
une variance infinie. Plus précisément, nous étudions l'agrégation de processus au-
torégressifs AR(1) a coefficients aléatoires avec des innovations qui appartiennent au
domaine d’attraction d'une loi a-stable. Nous étudions séparément 'agrégation des
processus AR(1) avec des innovations communes et avec des innovations idiosyn-
cratiques. Nous obtenons les conditions sous lesquelles le processus agrégé limite
existe et présente une longue mémoire dans un certain sens. Les modeles étudiés
n’appartiennent pas a Lo, on ne peut donc pas utiliser les définitions classiques de
la longue mémoire basées sur la densité spectrale ou la fonction de covariance. Par
conséquent, nous utilisons les définitions suivantes de longue mémoire qui ne néces-
sitent pas l'existence d’une variance finie : la longue mémoire en loi, la LRD (SAV),
les codifférences (voir Section 2.3 pour les définitions).
Soit {X(t), t € Z} un processus AR(1) défini par

X(t) =aX(t—1)+e(t), teZz, (3)

ou a € [0, 1) est un coefficient aléatoire dont la densité est une fonction a variation
réguliere d’exposant 5 au voisinage de 1, de la forme

¢(a) ~ Cs(1 —a)’, quand a 11, avec 0 < C3 < o0, B € (—1,00). (4)

8
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La forme de la densité est motivée par le fait que la propriété de la longue mémoire du
processus d’agrégé limite dépend de la facon dont la variable aléatoire a se concentre
a la frontiere avec le régime non stationnaire. Si |a| < C' < 1 p.s., alors le processus
agrégé limite est a courte mémoire. Les innovations €(t), ¢ € Z sont des variables
indépendantes et identiquement distribuées (i.i.d.) suivant la loi de &, qui appartient
au domaine d’attraction d’'une loi a—stable (noté € € D(«)). De plus on suppose
que Ele|P < oo, pour 0 < p < a et Ee =0, si 1 < . Nous étudions I'agrégation des
tels processus AR(1) dans les deux situations suivantes

Premiérement, nous supposons que tous les individus {X;(¢), t € Z},i=1,2,..., N,
sont des copies indépendantes de (3),

Dans ce cas, nous disons que ce sont des innovations idiosyncratiques (spécifique a
chaque unité).

Deuxiémement, nous étudions 'agrégation des processus AR(1) avec des inno-
vations communes {g;(t),t € Z} = {e(t), t € Z}, pour tout i = 1,2,..., N, le
comportement des individus est alors décrit par

Les théoremes 1 et 2 donnent des conditions d’existence du processus agrégé
limite pour les deux schémas d’agrégation présentés.

Théoreme 1. (Chapitre 3, Thm. 3.2.4) Soit {X;(t), t € Z} un processus AR(1)
avec des innovations communes défini en (6). On suppose que la densité de la vari-
able aléatoire a vérifie (4) avec > 1/a— 1. Sous ces hypothéses on a

1 N 00
N SN Xi(t) =, X*(t) = Ed's(t — k); as N — oo. (7)
i=1 k=0

Le processus agrégé limite {X*(t), t € Z} est strictement stationnaire et ergodique.
La série en (7) est convergente presque surement (p.s.) et dans L, avec 0 < p < a.

Iei A := o{aj,as,...} est la o—algebre engendrée par les variables aléatoires
ai,as, . ... La notation —p (4) désigne la convergence dans L, conditionnellement
a A, c’est a dire étant donné & une variable aléatoire et {,, n € N} une suite de
variable aléatoire, on a &, —pr(a) &, si E“fn — §|p‘./4] — 0 p.s., quand n — oo.

Pour —1 < f < 1/a — 1, le processus agrégé défini en (7) n’appartient pas
a L,. Dans cette situation on étudie l'agrégation de processus AR(1) {Y;(¢), t €
Z}, i = 1,2,... avec la condition initiale ¥;(0) = 0. On montre que le processus
agrégé limite Y () = limy_oo N™' SN, Y;(¢) est non stationnaire et le processus
normalisé WY/([HT]), 7 € [0,00) converge, au sens de la convergence des lois
finies dimensionnelles, vers un processus autosimilaire a—stable.

Théoréme 2. (Chapitre 4, Thm. 4.2.1). Soit {X;(t), t € Z} un processus AR(1)
avec des innovations idiosyncratiques défini en (5). On suppose que la densité de la

9
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variable aléatoire a vérifie (4) avec B > 0. Sous ces hypothéses on a

1
N1/a 4

1

S Xill) e (0= 3 /(071) a'=*M,( da), 8)

s<t

Le processus agrégé limite {X(t), t € Z} est stationnaire, ergodique et ses lois finies
dimensionnelles sont des lois a—stables.

Ici {M;, s € Z} sont des copies indépendantes d'une mesure aléatoire a—stable sur
(0,1) dont la mesure de controle est proportionnelle a la fonction de répartition @
de la variable aléatoire a. La fonction caractéristique d’une telle mesure aléatoire
est égale a

Bexp {13 0.M.(4)} = exp{ = X 10.7w(6.)9(4.)}, 0

SEZ SEZ

ou fs € R pour tout s, les A, C (—1,1) sont des boréliens et w — w(f) est une
fonction qui dépend que du signe de 6.

Proposition 3. (Chapitre 4, Prop. 4.2.5) Soit {X;(t), t € Z} un processus AR(1)
avec des innovations idiosyncratiques défini en (5). On suppose que la densité de la
variable aléatoire a vérifie (4) avec B € (—1,0). On a

N
Nﬁl/a(prﬁ) Z Xl(t) —fdd Z,

i=1

ot le processus agrégé limite Z qui ne dépend pas de t suit une loi a(l + p)—stable.
On note que S = 0 est un point critique, les processus agrégés limites sont différents

dans les cas > 0 et < 0. Quand § diminue, la dépendance du processus AR(1) a
parametre aléatoire {X (), t € Z} et du processus d’agrégation limite {X(t), t € Z}
augmente. Pour négative f < 0, la dépendance devient tres forte au sens ou le
processus limite est dégénéré et totalement dépendant (puisqu’il ne dépend pas de
temps t).

Ayant défini les processus agrégés limites, notre but est maintenant d’explorer
leurs propriétés de longue mémoire. De toute évidence, les définitions habituelles
de la longue mémoire en termes de covariance / spectre ne sont pas applicables
puisque les processus ont une variance infinie. Par conséquent, nous utilisons trois
notions alternatives de la longue mémoire, qui sont applicables aux processus avec
une variance infinie. Tout d’abord, nous décrivons les conditions sous lesquelles le
processus agrégé limite a une longue mémoire en loi et la propriété LRD (SAV).
Deuxiemement, nous étudions le taux de décroissance de la fonction de codifférence,
qui peut également définir la propriété de longue mémoire. On note que les deux
premieres définitions sont basées sur le comportement asymptotique des sommes
partielles.

Soit {Y(t),t € Z} un processus stationnaire centré. On dit que le processus
est a longue mémoire en loi, si le processus de ses sommes partielles normalisées
converge vers un processus a accroissements dépendants. On dit que le processus

{Y(t),t € Z}, vérifie la propriété LRD(SAV) si

10
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(S y)
i Y2(t)
Les deux théoremes suivants donnent le comportement des sommes partielles des
processus agrégés limites définis précédemment.
Théoreme 4. (Chapitre 3, Prop. 3.4.1) Soit {X*(t), t € Z} le processus agrégé
limite défini en (7). On suppose que la densité de la loi de la variable aléatoire a
satisfait (4).
(i) Sil<a<2et0>p>1/a—1 alors

—p 00, quand n — 00 (10)

[n7]
1 *
k=1

ot Lo _5(T) est le mouvement fractionnaire de Lévy avec le paramétre autosimi-
laire H = —f 4 1/, ses lois finies dimensionnelles sont des lois a-stables et ses
accroissements sont dépendants stationnaires.

(i) Si0<a<2etf>1/a—1 alors

1 [n7] .
e 2R —raa 20 (1), (12)
k=1

ol {Z;'/Q(t),t > 0} est un processus de Lévy homogéne, a/2—stable avec des sauts
positifs.

Théoreme 5. (Chapitre 4, Thm. 4.3.1) Soit {X(t),t € Z} le processus agrégé
limite défini en (8). On suppose que la densité de la loi de la variable aléatoire a
satisfait (4).

(i) Sil<a<2e0<f<a—1alors

[n7]
anZ.Af(t) —£dd Z(T), (13)

t=1

ot le processus limite est un processus a-stable. {Z(7)} est autosimilaire d’indice
H =1- [/« et ses accroissements sont dépendants stationnaires.
(i) Si0 < a <2 et §>max(a—1,0) alors

1 [n7]
sz(t) —>fdd L(T), (14)
t=1

ot {L(T),7 > 0} est un processus de Lévy a—stable et homogéne.

A partir de ces résultats, nous pouvons faire les conclusions suivantes sur les
propriétés de longue mémoire des processus agrégés limites.

Corollaire 6. Soit {X*(t),t € Z} le processus agrégé limite défini en (7) et la
densité de la variable aléatoire a satisfait (4). On a

11
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(i) si =1 < B < 1/a —1, alors la représentation moyenne mobile de {X*(t), t € Z}
en (7) n’est pas définie dans L,, 0 < p < «a.

(i) sil<a<2etl/a—1<p <0 alors {X*(t), t € Z} a une longue mémoire en
loi et LRD(SAV).

(1i1) si B > 0 alors {X*(t), t € Z} a une courte mémoire en loi et SRD(SAV).

Corollaire 7. Soit {X(t), t € Z} le processus agrégé limite défini en (8) et la densité
de la variable aléatoire a satisfait (4). On a

(i) si =1 < 8 < 0 alors le processus agrégé limite est un processus dégénéré Z, qui
ne dépend pas de t dont la loi est a(1 + 3)—stable.

(i) sil<a<2et0<f<a—1alors {X(t),t € Z} a une longue mémoire en loi
et LRD(SAV).
(iii) si f > max(a — 1,0) alors {X(t),t € Z} a une courte mémoire en loi et

SRD(SAV).

Comme nous 'avons mentionné ci-dessus, la propriété de longue mémoire d’un
processus aléatoire peut aussi se caractériser par le taux de décroissance de la suite
des codifférences. Lorsque le processus est stationnaire du second ordre, on dit que le
processus est a longue mémoire si sa suite des auto-covariances n’est pas absolument
sommable. Pour les processus de variance infinie, la covariance peut étre remplacée
par la codifférence. Une suite de codifférences non absolument sommable indique
la présence de la longue mémoire. Nous avons prouvé (Chapitre 4, Thm 4.3.3), que
le taux de décroissance de la codifférence du processus agrégé limite {X(t), t € Z}
défini en (8) est égal a

Cod(%(0), X(t)) := log Ee!*®)=%O0) _]og Be*®) _log Ee™ (O ~ ¢t~ quand t — occ.

Nous voyons que la codifférence de {X(t), t € Z} n’est pas absolument sommable
pour tout 0 < B < 1 et quelque soit la valeur de a. Ce résultat indique que le
processus agrégé limite est a longue mémoire. Cependant lorsque max(a — 1,0) <
f < 1, ce processus présente la propriété SRD(SAV) et de la courte mémoire en loi.
Cela illustre le fait que les différentes définitions de la longue mémoire ne sont pas
équivalentes. Des faits similaires sont également observés pour la moyenne mobile
{X*(t), t € Z} définie en (7) avec des innovations €(¢) € D(«). Nous avons montré
(Chapitre 3, Prop 3.3.1), que les coefficients de la représentation moyenne mobile
sont Ea/ ~ 57871 Dapres [7], [95], il s’ensuit que :

Cod(X*(0), X*(t)) ~ Cti=Pa=e,

quand ¢t — oo, pour tout 0 < a < 2 et > 1/a — 1.1l n’est pas difficile de voir
que 352, |Cod(X*(0), X*(j))| = oo pour 1/a =1 < 8 < 2/a — 1. D’autre part, le
processus {X*(t), t € Z} a une courte mémoire en loi et SRD(LAV) pour g > 0.
Par conséquent, si 0 < § < 2/a — 1, nous avons une codifférence non absolument
sommable et, dans le méme temps, une courte mémoire en loi et SRD(LAV).

En conclusion, 'accumulation des processus AR(1) a coefficients aléatoires et
de variance infinie peut donner un processus agrégé limite possédant de la longue
mémoire. Cela dépend fortement de la loi du coefficient aléatoire a. Une description

12
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plus détaillée de ces résultats est donnée dans les chapitres 3, 4 ( publiés dans les
articles [87] et [88]).

Le prochain objectif de notre recherche est de développer un systeme d’agrégation
de processus AR(1) avec des innovations appartenant au domaine d’attraction d’une
loi infiniment divisible. C’est une généralisation des résultats précédents pour les
modeles avec des innovations indépendantes car la classe des variables aléatoires
infiniment divisibles est plus large que la classe de variables aléatoires a-stables.

. L’agrégation d’un tableau triangulaire de processus AR(1) (Chapitre 5) .
L’objectif de cette partie est de construire un schéma d’agrégation de processus
AR(1) indépendants, qui généralise les résultats précédents et conduit soit a des
processus agrégés limites de variance finie mais non gaussien, soit a des processus
avec une variance infinie.

Nous considérons I’agrégation de N copies indépendantes

XV =a,xMt-1)+eNw),  tez, i=1,2,...,N (15)

7 7

de processus aléatoires-coefficient AR(1) XM (¢) = a XM (t — 1) + eM(#), t € Z,
oil a est une variable aléatoire, indépendante de {¢N)(t),t € Z} telle que 0 < a < 1
presque siire; et les innovations constituent un tableau triangulaire {¢™)(¢), ¢t €
Z, N =1,2,...} tel que les variables {¢™)(¢), t € Z,} sont i.i.d. et elles appartien-
nent au domaine d’attraction d'une loi infiniment divisible W:

ing““(t) —q W (16)

Ensuite, le processus agrégé limite {X(t),t € Z} est défini (s'il existe) comme la
limite en loi : Ny
Xn(t) =S XN() —wa X(). (17)
i=1
Lorsque les innovations sont de la forme e™)(t) = N~Y2¢(t) avec {((t),t € Z}
des variables i.i.d. de moyenne zéro et de variance finie, le processus agrégé limite

{X(t), t € Z} est un processus gaussien. C’est le modele d’agrégation classique
étudié par Granger (1980, [42]), Zaffaroni (2004, [103]).

Les chapitres 3 et 4 (voir aussi [87], [88]) correspondent au cas e™)(t) =
N=Ye¢(t), on {((t),t € Z} sont des variables i.i.d. appartenant au domaine
d’attraction d’une loi a—stable, 0 < o < 2.

Avant d’étudier le processus agrégé limite, nous formulons une hypothese sup-
plémentaire sur les innovations. On dit que {e™} € T(a) avec a € (0, 2], s'il existe
une constante C' indépendante de N et de x, telle que I'une des deux conditions
suivantes est satisfaite :

(i) a =2, Ee™) =0 et NE(cM)?2 <O,

(i) 0 < a < 2et NP(|le™M| > z) < Cox™, x> 0. De plus EE™¥) =0si 1 < a < 2,
et pour a = 1, on suppose que la loi des e?V) est symétrique.

13
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Théoréme 8. (Chapitre 5, Thm. 5.2.7) Supposons que,

1
E{ ] < 00. 18
T2 00 (18)
et que la suite générique {€(N)} appartient au domaine d’attraction de la loi infini-
ment divisible W dont le logarithme de la fonction caractéristique s’écrit

. ) 1
V(0) = log Be® = /<e19y_ 1= i0yL(y| < D)m(dy) — 50%° + i0p,  (19)
R

ou p € R, 0 >0 et m est une mesure de Lévy. FEn outre, supposons qu’il existe «,
0 < a <2, tel que {c™MY € T(a). Alors, le processus agrégé limite {X(t), t € Z}
défini en (17) existe. Il est stationnaire, ergodique, ses lois finies dimensionnelles
sont infiniment divisibles. Il admet une représentation sous le forme d’une intégrale
stochastique

xt) =Y / o M,(dz),  tez, (20)

s<t [0,1)

ou {Ms,s € Z} sont des copies indépendantes d’une mesure aléatoire infiniment
divisible sur [0,1) de mesure de contrile ®(dz) := P(a € dx) et le triplet de Lévy
(u,0,m) le méme que celui de la variable aléatoire W définie en (19), a savoir, pour
tout borélien A C [0, 1)

FelfM(A) _ 8V peR. (21)

Ensuite, nous discutons des propriétés de longue mémoire du processus agrégé limite
{X(t), t € Z} défini en (20). On sait que la longue mémoire dépend de la loi du
coefficient aléatoire a des processus individuels AR(1). Supposons que la loi de la
variable aléatoire a a pour densité ¢ défini en (4) avec 5 > 0.

Si de plus 0, := Var(W) < oo alors le processus agrégé limite {X(¢), t € Z}

défini en (20) est un processus stationnaire de la fonction de covariance

r(t) = Cov(X(t),X(0)) = o} B[Y a*a| = o} B ¢ | @

_ 2
<0 1—a

qui dépend uniquement de o3, et de la loi de la variable aléatoire a. De (4) et
(22), il sensuit que si 0 < B < 1, r(t) ~ Ct=P(t — o0) avec C > 0. Ainsi, le
processus agrégé limite {X(t), t € Z} a une suite d’auto covariances non sommable,
ez |T(t)| = oo. Il est donc a longue mémoire au sens de la covariance.

Nous étudions maintenant la propriété de longue mémoire introduite par Cox [29]
basée sur le comportement de la limite des sommes partielles (voir la Définition 2.3.6,
Section 2.3). Lorsque la densité du coefficient aléatoire a satisfait (4) et EW? < oo,
le processus des sommes partielles du processus agrégé limite {X(t), ¢t € Z} défini
en (20) possede quatre comportements différents, en fonction des parametres (3, o
et du comportement de la mesure de Lévy 7 a l'origine. Notons W ~ I Dy(0, ) si
EW =0, EW? = 0% + [ z?7(dz) < oo. Dans ce cas, le logarithme de la fonction
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caractéristique V() en (19) peut étre écrit comme

Vo) = [ (" —1ioy)m(dy) - 00 (23)
La mesure 7 de Lévy est completement déterminée par deux fonctions décroissantes
It (z) ;== 7({u > 2}), I (z) = m({u < —z}), x > 0.
Supposons qu’il existe a > 0 et ¢& > 0,ct + ¢~ > 0 tels que

lim z°T1" (z) = ¢, lim 21" (z) = ¢ (24)
z—0 z—0
La condition (24) décrit le comportement de la mesure de Lévy m a l'origine, dont
dépend le comportement des sommes partielles du processus agrégé limite. Le
théoreme donne les différentes limites possibles pour les sommes partielles.

Théoréme 9. (Chapitre 5, Thm. 5.5.1) Soit {X(t),t € Z} le processus agrégé
défini en (20), W ~ IDy(0,m) et la loi du coefficient aléatoire a satisfait (4).
(i) S10< 5 <1eto>0 alors

1 [n7]

—5 > X(t) =y Bulr), (25)

_B
n- 2 ¢=1

ot By est un mouvement brownien fractionnaire de paramétre H := 1 — [3/2 et sa
variance vaut EB% (1) = o?y(1)T(5 — 2)7%1.

(i1) Si0 < B <1,0=0c¢ets%leviste l+<a<2etct>0,c"+c >0 de telle
sorte que (24) est satisfaite. Alors

1 [n7]
—7 2 X(t) =y Aas(r), (26)

n- o ¢=1

ol

Aop(m) = / (f(x,T —s)— f(x, —s))N(dx, ds), 72>0, (27)
R+XR
flx,t) == (1—e™1(z>0,t>0),
N(dx, ds) est une mesure aléatoire a—stable définie sur (0,00) x R et de la mesure

de contréle v(dz, ds) := ¢ (1)zP~*dxds. A,p est un processus a—stable, autosim-
ilaire de paramétre H =1 — 3 /a dont les accroissements sont dépendants.

(i) Si0< < 1,0 =0, 7 #0 et s’il existe 0 < a <1+ 3 de telle sorte que

/ |z|m(dz) < 0. (28)
R
Alors
1 [nT]
1 Z:{(t) —fdd L1+5(T), (29)
nith =1

15
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ot {L145(T), 7 > 0} est un processus de Lévy (1+ ) —stable avec des accroissements
indépendantes.

(v) Si B> 1 alors

[nr

]
nll/QleE(t) —aa CB(7), (30)

ot B est le mouvement Brownien standard, EB?*(1) = 1.

Corollaire 10. Le processus {X(t), t € Z} définie en (20) est a longue mémoire en
loi dans les cas (i) et (ii), et a courte mémoire en loi dans les cas (iii) et (iv).

Corollaire 11. Le processus {X(t), t € Z} défini en (20) est a longue mémoire au
sens des covariance dans les cas (1), (1) et (iii), et a4 courte mémoire dans le cas
(1v).

Lorsque « augmente de 0 a 2, la mesure de Lévy définie en (24) augmente sa
"masse" pres de 'origine. Nous voyons a partir de (i)-(ii) que la longue mémoire en
loi est liée a « qui est assez grand, ou a de petits sauts de la mesure aléatoire M
avec une intensité suffisante. On note que I'exposant critique o = 1 + [ séparant
les "régimes" de la courte et de la longue mémoire dans (ii) et (iii) diminue avec 3,
ce qui est assez naturel puisque S petit correspond a une loi sur a qui met plus de
poids ai voisinage de a = 1.

Les résultats de cette partie sont présentés dans le Chapitre 5 et dans [84]. Il
convient de noter ici, que pour ce schéma d’agrégation des questions intéressantes
restent ouvertes : Quelle est la limite des sommes partielles du processus agrégé
défini en (20) dans le cas de la variance infinie? Quel est le processus agrégé limite
et quelles sont ses propriétés si on inclut des innovations communes appartenant au
domaine d’attraction d’une loi infiniment divisible? Que se passe t’il si le coefficient
aléatoire des modeles AR(1) dépend du temps?

o Agrégation de champs aléatoires (Chapitre 6). 1’objectif de cette partie est
d’étendre le principe de 'agrégation de séries temporelles aux champs aléatoires
bi-dimensionnels. Cette question a été abordée pour les champs aléatoires de vari-
ance finie dans [61], [62], [66]. Notre objectif dans cette these est de décrire le
mécanisme d’agrégation des champs aléatoires autorégressifs par rapport aux plus
proches voisins pour des processus de variance infinie. Nous nous concentrons sur
I’agrégation de copies indépendantes d’un champ aléatoire défini par

X(t,s) = > alu,v)X(t+u,s+v)+e(t,s), (t,s) € 7%, (31)

Jul+lo|=1

ot {&(t,s), (t,s) € Z*} sont des variables i.i.d. dont la loi commune ¢ appartient au
domaine d’une attraction des lois a—stable, ¢ € D(«), 0 < o < 2, et a(t,s) > 0,
|t|+|s| = 1 sont des coefficients aléatoires, indépendamment de {e(¢, s) } qui satisfont
la condition suivante pour assurer 'existence d’une solution stationnaire a (31):

A= ) alts) < 1, p.s. (32)

[tl+]s=1

La solution stationnaire de (31) est donnée par la série convergente dans L,, 0 <
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p<a

X(t,s) = Y glt—u,s—v,a)e(u,v), (t,s) € 72, (33)

(u,v)€Z?

oua = (a(t,s), |t|+]|s| = 1) est le vecteur des coefficients aléatoires; g(t, s, a), (t,s) €
72, est la fonction de Green qui s’écrit sous la forme

gt,s,a) = > AFpi(t, s), (t,s) € 72, ac€ A, (34)
k=0

avec A défini en (32); pi(t,s) = P(Wy = (t,s)|[Wy = (0,0)) est la loi de transition
d’une marche aléatoire au plus proche voisin {Wy, k = 0,1,...} sur le réseau Z?;
A = {a(t,s) € [0,1), X521 alt, s) < 1} C RY

Soit {X;(t,s)}, i = 1,2,..., des copies indépendantes du processus (33). P
désigne la loi du vecteur aléatoire a = (a(t,s),|t| +|s| = 1) € A. P est appelé ci-
apres la loi de mélange. On définit le champ agrégé comme une somme normalisée
a chaque point du réseau :

N

Xn(t,s) == NN Xi(t,s),  (t,s)€Z> (35)
i=1

La proposition suivante nous donne la limite de ce champ agrégé quand le nombre

d’individus N tend vers l'infini.

Proposition 12. (Chapitre 6, Prop. 6.3.3) Sous des conditions faibles sur la loi de
mélange P

Xn(t,s) —a X(t,s), (t,s) € Z?, (36)
ot
X(t,s) = Z / g(t —u,s —v,a)M,,(da), (t,s) € 72, (37)
(u,v)€Z2 A

ou {M,(da), (u,v) € Z*} sont des copies indépendantes d’une mesure aléatoire
a—stable définie sur A et de mesure de contrdle . Le champ aléatoire {X(t,s)}
défini en (37) est a—stable et on Uappelle le champ moyenne mobile stable.

Nous nous intéressons ensuite a la structure de dépendance du champ limite
agrégé (37). La structure de dépendance d'un champ aléatoire est plus complexe
a définir que celle d’un processus univarié, parce que la dépendance des champs
aléatoires s’étend dans toutes les directions, et peut avoir une intensité différente
dans chacune des directions. Nous étudions la propriété de longue mémoire du
champ limite agrégé pour les configurations suivantes des modeles individuels:

X(t,s) = ?(X(t —1,8)+ X(t,s+ 1)+ X(t,s — 1)) +e(t,5), (38)
X(t,s) = j(x@ 1) X(E+ L)+ X (s 4 1)+ X (s — 1)) +(ts), (39)
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On suppose que le coefficient "radial" A € [0,1) est aléatoire et sa loi admet une
densité qui vérifie la condition suivante :

p(a) ~ ¢1(1 —a)?, atl, 36 >0, 0<B<a—-11<a<2, (40)

Le cas 0 < a < 1 ne peut pas produire de la longue mémoire pour les séries
temporelles (voir les Chapitres 3, 4). Dans la suite, nous référons aux (38) et (39)
comme des modeles 3N et 4N, le N signifie "Neighbors'. La solution stationnaire
des équations (38), (39) sont données par (33), respectivement avec les fonctions
de Green g3 et g4. La formule générale de la fonction de Green est donnée par
(34). Pour prouver les propriétés de longue mémoire du champ limite agrégé, nous
utilisons 'asymptotique des fonctions de Green suivantes quand A — oo (Lemmas
6.4.2 et 6.5.1):

—pourt>0,s€ER, z>0,
Vags ([M], [VAs], 1~ i) — hs(t, s, 2), (41)
- pour (t,5) € R?\ {(0,0)}, z > 0,
g1 (IM], [As), 1 — %) — ha(t, s, 2), (42)

ou

3 52
hs(t, s, z) = o/ e (43)

hy(t,s,z) = 72TK0 (ZW)a

ici K est la fonction de Bessel modifiée de seconde espéce.

Afin de décrire la structure de dépendance du champ aléatoire limite agrégé
nous utilisons la définition de la longue mémoire en loi. La longue mémoire en loi
d’un champ aléatoire peut étre anisotropique ou isotropique. On dit qu'un champ
aléatoire stationnaire {Y (¢, s), (¢, s) € Z*} a une longue mémoire en loi anisotropique
avec des parametres Hy, Hy > 0, H| # Hj si

[n] [nH11/ P2y

n_HIZ Z Y(t,s) —a Viz,y), (:U,y)ERi, (44)

ou {V(z,y)} est un champ aléatoire dont les accroissements sont dépendants dans
toutes les directions. On dit que {V(x,y)} a des accroissements indépendants dans la
direction ¢ (¢ est une droite passant par l'origine), si pour toute droite orthogonale
0, 0'LL, et tous rectangles K, K’ C R3 séparés par ', les accroissements V(K)
et V(K’) sont indépendants. Sinon, on dit que {V(z,y)} a des accroissements
dépendants dans la direction ¢. On définit les accroissements de {V (x,y)} sur le
rectangle K := {(s,t) e R3 :u < s <z, v<t<y}, par

V(K) :=V(z,y) — V(u,y) — V(z,v) + V(u,v). (45)
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Un champ aléatoire stationnaire {Y (¢, s), (t,s) € Z?} a une longue mémoire en loi
isotropique de le parametres H > 0 si

[nz] [ny]

n YNV (t,s) = V), (z,y) € R, (46)

t=1 s=1

ou {V(z,y)} est un champ aléatoire ayant des accroissements dépendants dans
toutes les directions.

Soit X3(t,s) et X4(t,s) les champs limites agrégés associés aux modeles 3N et
AN -

Xts) = Y /lgj(t—u,s—v,a)Mu,v(da), (ts) €72 =34 (47)

(u,v)€Z?

ot {M,,(da), (u,v) € Z?} sont des copies indépendantes de mesure aléatoire
a—stable M défini sur (0,1) et de mesure de controle ®(da) = P(A € da).

Théoréme 13. Soit ¢ € D(«), 1 < a < 2. Supposons que la densité de mélange ¢
définie sur [0,1) satisfait (40) avec 0 < B <a —1. On a
(i) (Chapitre 6, Thm. 6.4.3)

[na [y Lig_p
anZ Z %S(ta 3) —7fdd %(-’L',y), T,y > 07 H := QT7 (48)
t=1 s=1

ot

Vs(z,y) ;:/

R2 XR+

M(du, dv, dz) /x /y hs(t —u,s — v, z) dt ds; (49)
o Jo

(7i) (Chapitre 6, Thm. 6.4.4)

[nz] [ny] lta—g
n_H* Zl Zl‘xi%(ta S) —7fdd ‘/i’)*(l',y), xr,y > O, H, = T (50)
t=1 s=
o
Vaule,y) = /RQX]R M(du, dv, d2)1(0 < v < y)/O 12e73021(t —u > 0) dt, (51)
+

ici M est une mesure aléatoire a—stable définie sur R?* x R, et de mesure de
contréle du(u,v,z) = ¢12°dudvdz. Sa fonction caractéristique est Ee®MPB) =
e~ 01" OrB) o B C R? x Ry est un ensemble mesurable avec ju(B) < oo.

On remarque que le champ aléatoire V3(z,y) est un champ a autosimilarité ma-
tricielle (OSRF) c’est a dire

(VaOx, Vay)d & V() (52)

avec H défini en (48).

Le champ aléatoire V3(x,y) a des accroissements dépendants dans toutes les di-
rections, tandis que le champ aléatoire Vs, (z,y) a des accroissements indépendants
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dans une direction verticale. D’apres le Théoréeme 13, nous pouvons faire les conclu-

sions suivantes sur les propriétés de longue mémoire du champ limite agrégé dans le
cas de modele 3N.

Proposition 14. (Chapitre 6, Prop. 6.4.6) Sous les hypothéses du théoréme 13,

le champ aléatoire {X3(t,s)} a une longue mémoire en loi anisotropique pour les
1oz

parametres Hy = H = ztep

1sotropique.

Théoréme 15. (Chapitre 6, Thm. 6.5.2) Soit € € D(a), 1 < a < 2. Supposons

,Hy = 2H, et n’a pas de la longue mémoire en loi

que la densité de mélange ¢ définie sur [0,1) satisfait (40), avec 0 < f < a — 1.
Alors

[nz] [ny]

niHZZ%4(t>S) —7fdd ‘/Zl(xuy>7 x7y>07 (53>

t=1 s=1

ou H := @ est

Vi(z,y) = / M(du, dv, dz) /w/yh4(t—u,s—v,z) dtds (54)
R2 xR 0 Jo

ot M est la méme mesure aléatoire que dans l’énoncé du Théoréme 13 et hy(t, s, z)
est donnée par (43).

Proposition 16. (Chapitre 6, Prop. 6.5.3) ) Sous les hypothéses du théoreme 15,
le champ aléatoire {X4(t,s)} a une longue mémoire en loi isotropique.

En conclusion 'agrégation des modele 3N conduit a une longue mémoire en loi
anisotropique, tandis que l'agrégation des champs 4N conduit a une longue mémoire
en loi isotropique. Des résultats plus détaillés de cette étude sont présentés dans le
Chapitre 6 et [86]. De nombreuses questions restent ouvertes sur l’agrégation des
champs aléatoires, par exemple sur les problémes suivants : le systéeme d’agrégation
des champs aléatoires autorégressifs avec des innovations communes ; les propriétés
de longue mémoire de champ aléatoire limite agrégé lorsque les coefficients aléatoires
sont différentes; I'agrégation d’autres modeles de champs aléatoires.

e Probléme de désagrégation (Section 5.4). Le probléme de désagrégation con-
siste a estimer les propriétés des processus individuels a partir du processus agrégé
limite. On observe une réalisation du processus agrégé limite {X(¢), t € Z}, que
'on suppose provenir de I'agrégation de processus indépendants AR(1) a coefficient
aléatoire :

Xz(t) = CLzXz(t—].)‘i‘éfl(tL tEZ, ’i:].,...,N, (55)

oua, a;, 1 =1,2,..., N sont des variables i.i.d. suivant la loi de densité inconnue
¢(x). Le but est de trouver un "bon" estimateur de ¢(x). Les auteurs des articles
[65], [21] ont proposé un estimateur basé sur le développement de la densité sur
la base des polynomes de Gegenbauer. Ils ont étudié ses propriétés asymptotiques
sous I'hypothese que {g;(¢),t € Z}, i = 1,2,..., N sont des copies indépendantes
d’un bruit blanc de variance finie et de moyenne nulle. Le processus agrégé limite
{X(t), t € Z} est donc gaussien. Notre objectif est de montrer la consistance de
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cet estimateur lorsque le processus agrégé limite {X(t), t € Z} est de la forme (20)
et admet pour fonction de covariance (22). Nous avons étudié l'estimateur de la
fonction de densité ¢(z) dans les deux cas suivants : o3, qui apparait dans (22) est
inconnu ('estimateur ¢y, (z)) et connu (estimateur ¢, (z)):

Gu() = <1—x>q-1]§f6n,kJéq><x>, Gulw) = <1—x>q-1]§f6n,kJéq><x>. (56)

Ici K,,,n € N*, est une suite croissante qui tend vers 'infini; J,iq)(:v), k=1,...,n,
sont les polynémes de Jacobi orthogonaux normalisés dans I'espace des fonctions de
carré intégrable muni la mesure w(?(z) := (1 — 2)97!, ¢ > 0; les coefficients 677‘7]{, et
Emk dépend de la fonction de covariance empirique 7,(j) du processus agrégé limite

{X(t), t € Z},

- 1 D e
X = HZ%U{;)’ Ta(g) = EZ (3{(2)—%) (%(Z—l—j)—:{), j=0,1,...,n, (57)
k=1 i=1
et de o3, ou de son estimateur

Nous prouvons les résultats de convergence suivant :

Théoréme 17. (Chapitre 5, Thm. 5.4.4 ) Soit {X(t), t € Z} un processus agrégé
défini en (20) et admettant un moment d’ordre 4 fini EX(0)* < oo. On suppose que
la densité de mélange ¢(x) satisfait les conditions (18) et

/01 (1?(?;_1 dz < oo, avec une certaine q > 0. (59)
Si
K, =[ylogn] avec 0<~v < (4log(1++v2))7, (60)
alors
TR Ny

Remarque 18. Le choix optimal du parametre ¢ reste une question ouverte. Les
simulations présentées dans [65] et [21] suggerent de choisir ¢ proche de § qui est
généralement inconnu.

Dans le cas gaussien la normalité asymptotique des estimateurs de la densité de
mélange est prouvée dans [21]. Cette question reste ouverte sous les hypotheses du
théoreme 17. Il reste de nombreux problemes intéressants sur la partie estimation,
par exemple, comment résoudre le probleme de désagrégation dans le cas de variance
infinie 7

o Asymptotique de la probabilité de ruine (Chapitre 7) . Le but de cette partie
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est de trouver le comportement asymptotique de la probabilité de ruine

P(u) = P(sup(Y(l) +---+Y(n)—np) > u) (62)

n>0

quand u — oo. Ici p est une constante donnée et {Y(t) = X(t), t € Z} représente
le montant des sinistres que I’on modélise par le processus moyenne mobile a-stable
défini en (8). Ce processus apparait dans l'agrégation de copies indépendantes de
processus AR(1) a de coefficient aléatoire avec des innovations a queue lourde.

Ce probléme a été étudié par Mikosh et Taqqu [76] pour les processus stables
{Y(t), t € Z}, de la forme

Y(t) = /WXRf(v,x—t)M(dv, dz), t=1,2,. .., (63)

ou M est une mesure aléatoire symétrique a—stable (SaS) sur I'espace mesurable
produit W x R et de mesure de controle v x Leb, v est une mesure o—finie sur W,
Leb est la mesure de Lebesgue, et f € L*(W x R) est une fonction mesurable telle
que [y g |f(v,2)|*v(dv) de < co. On introduit la fonction 1y : (0, 00) — (0, 00),

C (Z?zl f(U,ZL'—t)>i
= - dv)d 4
ﬂ)g(U) 2 Jwxr igli (u—l—nc)o‘ V( U) Z (6 )
C (Z?:I f(val‘_t)>a
-« ~ u(dv) dz:
5 W xR i?f (u+nc)® v(dv) dz;
ou z; = max(z,0),z_ := max(—=x,0); C, est une constante. Mikosch and

Samorodnitsky [76] ont prouvé que ¥(u)/vo(u) — 1, quand v — oco. En util-
isant ce résultat, Mikosch et Samorodnitsky [76] ont obtenu le taux de décroissance
Y(u) ~ Cu~@"V pour une large classe de processus SaS faiblement dépendantes,
et le taux ¢ (u) ~ C u~*=H) pour les accroissements du mouvement fractionnaire
SaS d’indice d’autosimilitude H € (1/a,1). Notons que les accroissements d'un
mouvement fractionnaire a—stable satisfont la propriété de longue mémoire en loi.

Théoreme 19. (Chapitre 7, Thm. 7.1.1) Supposons que les montants des sinistres
sont modélisés par le processus moyenne mobile a-stable {X(t), t € Z} défini en (8),
et obtenu par l'agrégation des processus indépendants AR(1) en (5)). On suppose
que la loi du coefficient aléatoire satisfait (4). La probabilité de ruine définie en (62)
du processus {X(t), t € Z} vérifie les propriétés suivantes

(1) Si0 < < a—1 alors
Y(u) ~ Cu 1y o, (65)

ou H=1—-(b/a) € (1/a,1).
(ii) Si B > a —1 alors

Y(w) ~ Cu @V u— . (66)

Ce résultat est en accord avec le taux de décroissance de la probabilité de ruine
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lorsque les montants des sinistres sont modélisés par des accroissements de mouve-
ment linéaire fractionnaire (voir [76] ) et aussi d’autres caractérisations de la longue
mémoire du processus agrégé limite {X(¢), t € Z} avec une variance infinie, décrite
au Chapitre 4.

Les contributions originales développées dans cette these sont :

e le schéma d’agrégation de processus autorégressifs indépendants, qui conduit
a un processus a longue mémoire de variance finie mais non nécessairement
gaussien;

e le schéma d’agrégation des processus aléatoires autorégressifs avec une variance
infinie;

e l'agrégation de champs aléatoires autorégressifs par rapport aux plus proches
voising avec une variance infinie ;

e la notion de la longue mémoire anisotrope et isotrope pour les champs aléa-
toires.
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Introduction

Aggregation as an object of research. The aggregation problem is concerned
with the relationship between individual (micro) behaviour and aggregate (macro)
statistics. There are different types of aggregation: small-scale, large-scale, temporal
aggregation, aggregation in time and space (see Chapter 2, page 31, also [19], [43]).
We concentrate on the large-scale contemporaneous aggregation. The scheme of
contemporaneous aggregation was firstly proposed by P. Robinson (1978, [91]) and
C.W.J. Granger (1980, [42]) in order to obtain the long memory phenomena in
aggregated time series. Suppose we have a group of N heterogeneous individuals,
each of which is described by some model X;(t), i = 1,..., N. Then the aggregated
process is defined as a normalised sum over all individuals at fixed time point ¢:

Xn(t) = —ZXZ-(t), teZ, (1.1)

where Ay is some normalizing sequence. The fundamental statistical problem of
large-scale contemporaneous aggregation is to determine the limit distribution of
the aggregated process {Xy(t), t € Z} in (1.1), as the number of individuals N
grows to infinity, and to explore main properties of the limit aggregated process
X(t) := limy_o Xn(t), t € Z. The limit aggregated process {X(t), t € Z}, may
have a completely different structure than the individual processes have. The most
important properties, which the limit aggregated process may admit, are ergodicity
and long memory. FErgodicity is a quality of the stochastic process that allows
estimation of characteristics of the process using only one sufficiently long realization
of the process, and we do not need to observe separate independent realizations of
this process. Whilemean, the long memory property shows the dependence of a series
at long lags, dependence between observations occurring now and after an amount
of time. In the scientific literature appear various definitions for long memory (see
Section 2.3, page 46). In general, as is written in [94], the memory is something that
lasts.
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Another important problem is so called disaggregation problem: having a sample
X(1), X(2), ..., X(n), n € N*  of the limit aggregated process at hand, to recover the
properties of the individual processes {X;(t),t € Z}, i = 1,..., N. For example,
suppose we have a sample of the limit aggregated process {X(t), t € Z}, which is
accumulated from independent AR(1) random processes:

Xi(t) = a:Xi(t—1)+&(t), te€Z, i=1,... N, (1.2)

where {g;(t), t € Z} is white noise and a;, i = 1, ..., N, are random coefficients with
generic distribution a. The aim of the disaggregation problem in this case is to find
a "good" estimate of the density function of random variable a, using observed data
X(1), X(2), ..., X(n).

The (dis)aggregation problem was discussed in [14], [13], [19], [20], [40], [41], [42],
[43], [53], [54], [61], [65], [64], [66], [70], [79], [91], [103], [104], et al. A short review of
literature is given in Chapter 2, page 31. Almost all of the above-mentioned papers
investigate aggregation schemes when (micro) level data have finite variance. It is
the well known aggregation scheme of independent processes with finite variance,
which leads to the Gaussian case, i.e. the limit aggregated process is the Gaussian
process. The aim of our research was to extend these results to infinite variance case
or finite variance but not necessarily Gaussian case.

Actuality. Aggregated data is most often found, collected and used in many
areas such as economics, applied statistics, sociology, geography, etc. Whilemean,
disaggregate (panel) data are difficult to obtain and not always available. This
motivates an importance of studying the aggregation and disaggregation problem.

One of the most important reasons why the contemporaneous aggregation be-
come an object of research is the possibility of obtaining the long memory phenomena
in processes. The aggregation provides an explanation of the long-memory effect in
time series and a simulation method of such series as well. Accumulation of short-
memory non-ergodic random processes can lead to the long memory ergodic process,
that can be used for the forecasts of the macro and micro variables.

Aims and problems.

One of the main goals of the PhD thesis is to explore the aggregation scheme of
random processes and fields with infinite variance. Another aim of our study is to get
a non-Gaussian limit aggregated process by the aggregation of independent processes
with finite variance (in the scientific literature is given only the aggregation scheme
of independent processes, which leads to the Gaussian case). The disaggregation
problem is also the problem of our interest. More precisely, our aim is to solve the
following problems:

o Aggregation of AR(1) models with infinite variance (Chapters 3 and 4). The
main goal of this research is to extend results of P. Zaffaroni paper [103] from fi-
nite variance case to infinite variance case. Following the idea of this paper, we
discuss the aggregation of autoregressive random-coefficient AR(1) processes with
innovations belonging to the domain of attraction of an a-stable law. We investi-
gate separately the aggregation of AR(1) processes with common innovations and
idiosyncratic innovations. We obtain conditions under which the limit aggregated
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process exists and exhibits long memory in a certain sense. Since in our case the
variance of the aggregated process is infinite and second order properties as spec-
tral density or covariance function are not defined, we use alternative definitions
of long memory which do not require finite variance: distributional long memory,
LRD(SAV) and codifference (see Section 2.3, page 46). Results of this research are
given in Chapters 3, 4 and published in papers [87], [88].

e Aggregation of a triangular array of AR(1) processes (Chapter 5) . The aim
of this research is to investigate the aggregation scheme, which generalize previous re-
sults and leads to the case of the finite variance but not necessary Gaussian or infinite
variance but not necessary stable limit aggregated process X(t) := lim,, o X ~(t),
t € Z. For this reason we discuss an aggregation of independent random-coefficient
AR(1) models with innovations belonging to the domain of attraction of an infinitely
divisible law . We obtain conditions under which the limit aggregated process ex-
ists and is represented as a mixed infinitely divisible moving average X(t) in (5.4),
page 94. Using Cox’s definition of distributional long memory (Definition 2.3.6,
page 49) and assuming that the limit aggregated process admits finite variance, we
investigate its long memory properties. In short, we study partial sums of the limit
aggregated process and show that these partial sums may exhibit four different limit
behaviors depending on the distribution of random coeffitient of AR(1) model and
the Lévy triplet of infinitely divisible law W !. Results of this research are given
in Chapter 5 and in submitted paper [84]. But, it should be noted here that this
generalisation problem is not fully finished. The questions for the future: What is
the limit of partial sums of the limit aggregated process (5.4) in infinite variance
case?” What is the limit aggregated process and what properties it have if we include
common innovations belonging to the domain of attraction of an infinitely divisible
law? What happens if the random coefficient of AR(1) models depends on time?

e Aggregation of random fields (Chapter 6). The goal of this research is to ex-
tend the aggregation scheme from one-dimensional processes to two-dimensional
random fields. The (dis)aggregation problem for finite-variance random fields was
investigated in [61], [62], [66], while we focus on the aggregation of independent
random fields with infinite variance (innovations belong to the domain of attraction
of an a-stable law). First, we explore the aggregation scheme of nearest-neighbor
autoregressive random fields and specify what is the limit aggregated field. Another
question of our interest is the dependence structure of the limit aggregated field.
The dependence structure of random field is more complicated than in a univariate
process case, because dependence for random fields extends in all directions and
can have different intensity in different directions. Since properties of the limit ag-
gregated random field are highly dependent on the assumptions put on micro level
(individual) fields, we investigate the long memory property of the limit aggregated
field in two special cases of individual models (see (6.14)-(6.15), page 122). In order
to describe the dependence structure of the aggregated random field we introduce
the notion of anisotropic/isotropic distributional long memory (see Definition 6.2.2,
page 125, and Definition 6.2.3, page 126). Results of this research are given in Chap-
ter 6 and in submitted paper [86]. The new interesting question for the future: the

1. Lévy triplet (u, o, 7) completely determines the characteristic function of the infinitely divis-
ible law W, see (5.6), page 94.
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aggregation scheme of autoregressive random fields with common innovations.

e Disaggregation problem (Section 5.4). The main idea of the disaggregation
problem is: having data from the limit aggregated process at hand to recover the
distribution of individual processes. Suppose we have sample of the limit aggregated
process, which is obtained via aggregation of independent random-coefficient AR(1)
processes. Let ¢(a) be an unknown density function of random coefficient of AR(1)
model. The disaggregation problem in this case is to find a "good" estimator of
the density function ¢(a). The authors of papers [21], [65] proposed consistent esti-
mator of this density function via Gegenbauer polynomials, under assumption that
the limit aggregated process is Gaussian. Our aim was to show that this density
estimator, proposed in [21], [65] is consistent not only in Gaussian case. We showed
that for the consistency of the density estimator via Gegenbauer polynomials (or
Jacobi polynomials (5.53), page 112) it is enough to have finite fourth moment of
the limit aggregated process. This result is small extension of the disaggregation
problem. It remains many interesting questions for the future. The main of them is
how to solve disaggregation problem in infinite variance case.

o Asymptotics of the ruin probability (Chapter 7). The goal of this research is to
find asymptotics of the ruin probability in a discrete time risk insurance model with
stationary claims modeled by the aggregated heavy-tailed process (4.4) in page 74.
Using the asymptotics of the ruin probability, we can describe the long memory
properties of heavy-tailed claims. Results of this research are given in Chapter 7
and in paper [83].

The novelty of the results presented in this PhD thesis is:
e the scheme of the aggregation of independent autoregressive processes, which
leads to the finite variance but not necessarily Gaussian aggregated process;

e the scheme of the aggregation of autoregressive random processes with infinite
variance.

e the scheme of the aggregation of nearest-neighbor autoregressive random fields
with infinite variance.

e The notion of anisotropic/isotropic long memory for random fields on Z?2.

These problems have not been investigated before in the scientific literature.

Methods. Methods of probability theory, mathematical statistics, functional
analysis and time series analysis are applied. Used tools: Cramér-Wold device (to
prove finite dimensional convergence), Dominated convergence theorem (to prove
convergence of integrals), Kolmogorov tightness criterion (to prove tightness), Law
of large numbers (to show convergence of the sample average), de Moivre-Laplace
theorem (normal approximation to the binomial distribution), Hunt’s interpolation
theorem (a result bounding the norms of operators acting in L, spaces), well-known
inequalities (Minkowski’s, Holder’s, Jensen’s, Hoeffding’s), and etc.

Approbation of results. The main dissertation results were presented in the
following conferences:
e 50th Conference of the Lithuanian Mathematical Society, Vilnius, Lithuania,
June 18 - 19, 2009.
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e 10th international Vilnius conference on probability theory and mathematical
statistics, Vilnius, Lithuania, June 28 - July 2, 2010.

e 1st Conference by Lithuanian Academy of Sciences "Interdisciplinary research
in physical and technological sciences", Vilnius, Lithuania, February 8, 2011.

e 2nd Conference by Lithuanian Academy of Sciences "Interdisciplinary research
in physical and technological sciences', Vilnius, Lithuania, February 14, 2012.

e Journée des doctorants, Nantes, France, April 26, 2012.

e 53rd Conference of the Lithuanian Mathematical Society, Klaipéda, Lithuania,
June 11 - 12, 2012.

e Conference "Non-stationarity in Statistics and Risk Management"', Luminy,
Marseille, France, January 21 - 25, 2013.

e The First German-Polish Joint Conference on Probability Theory and Math-
ematical Statistics, Torun, Poland, June 6-9, 2013.

Publications. The main results are published in the following articles:

1. D. Puplinskaité, D. Surgailis, Aggregation of random-coefficient AR(1) process
with infinite variance and common innovations. Lithuanian Math. J., 49 (4),
446-463, 20009.

2. D. Puplinskaite, D. Surgailis, Aggregation of a random-coefficient AR(1) pro-
cess with infinite variance and idiosyncratic innovations. Adv. Appl. Probab.,
42 (2), 509-527, 2010.

3. K. Perilioglu, D. Puplinskaite, Asymptotics of the ruin probability with claims
modeled by a-stable aggregated AR(1) process. Turkish J. Math., 37 (1), 129-
138, 2013.

4. A. Philippe, D. Puplinskaité, D. Surgailis, Contemporaneous aggregation of
triangular array of random-coefficient AR(1) processes. 2013, to appear in J.
Time Ser. Anal.

5. D. Puplinskaite, D. Surgailis, Aggregation of autoregressive random fields and
anisotropic long memory. 2013 Preprint. Submitted to Bernoulli J.

Structure of the thesis.

Dissertation consists of eight chapters and bibliography. An introduction and
the review of aims and problems is given in Chapter 1. Chapter 2 contains a short
review of the scientific literature on this topic. Chapter 3 provides the aggregation
scheme of autoregressive random-coefficient AR(1) processes with infinite variance
and common innovations. Chapter 4 provides the aggregation scheme of autore-
gressive random-coefficient AR(1) processes with infinite variance and idiosyncratic
innovations. Chapter 5 is dedicated to the contemporaneous aggregation of triangu-
lar array of random-coefficient AR(1) processes. Chapter 6 presents the aggregation
scheme of random fields and the notion of the anisotropic long memory. In Chapter
7 we discuss asymptotics of the ruin probability with claims modeled by a-stable
aggregated AR(1) process. Finally, the main results of the thesis are summarized in
the Chapter 8.
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Review of the State of the Art

In this section, firstly we give a brief review of main types of the aggregation,
then we focus on the main results obtained by other authors, which are dealing with
the problem of aggregation and disaggregation of linear models. Finally, in the last
section of this chapter we review different definitions of long memory.

2.1 Aggregation

The aggregation problem is concerned with the relationship between individual
(micro) behaviour and aggregate (macro) statistics. One of the important properties
of aggregation is the possibility to get long memory phenomenon in the aggregated
series. There are several types of aggregation that occur in the time series analysis:
small-scale aggregation, large-scale aggregation, temporal aggregation, aggregation
in time and space.

A small-scale aggregation involves sums of finite number individual processes.
For example, suppose {X;(t), t € Z} is ARMA(p1,q1) process and {X5(t), t € Z} is
ARMA (p2,q2) process:

Xl(t) + iale(t — ]f) = 81(t) + qzleké“l(t — /C)

k=1 k=1
p2 q2

Xg(t) + Z kaQ(t — k)) = Eg(t) + Z Ck€2(t - k‘),
k=1 k=1

where (€1(t),e2(t))icz is bivariate white noise, then the aggregated process X(t) :=
Xi(t) + Xa(t), t € Z, is autoregressive ARMA (m,n) process with m < p; + py and
n < max(p; + g2, P2 + q1), see [43]. The small-scale aggregation helps us to develop
new time series models. Note, that if the number of individual processes increases,
we get more complicated dynamics. And this is the result of large-scale aggregation.
In the context of large-scale aggregation, the aggregated process is the sum of large
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number of individual processes.

Another type of aggregation is temporal aggregation. The temporal aggregation
is the relationship between high and low frequency. The problem of temporal aggre-
gation arises when the data are observed at a lower frequency than the frequency
of the data generating model. Suppose that the unit is the basic time interval for
which a time series is generated. If observations are fixed every k, k > 1, units,
then it is said that the series is "systematically sampled'. Systematic sampling is
a type of temporal aggregation for "stock" variables (see [43]). The temporal ag-
gregation for "flow" variable is a summation of observations over k unit before the
systematic sampling. Suppose we have time series { X (i), ¢ € Z}, then the temporal
aggregation is summation over k£ units:

Here arises the question, what model can be used to describe temporal aggregated
series, what properties it has. Such questions of temporal aggregation have been
studied in [23], [24] and in other articles.

The combining both spacial and temporal aggregation creates so called time-
space models (see [38], [85] and references therein), which take into account depen-
dence lagged in time and in space.

The main attention in the thesis is devoted to the crosssectional large-scale con-
temporaneous aggregation of linear models, but the aggregation of non-linear and
heteroskedastic models is also an interesting and popular object of research. Con-
temporaneous aggregation of heterogeneous heteroscedastic models was discussed in
[30], [40], [54], [64], [104], [105]. It is proved that the contemporaneous large-scale
aggregation of ARCH/GARCH models do not lead to the long memory processes
in the sense of a non-summable autocovariance function of the squared aggregate.
For the GARCH(1,1) process {X;(t), t € Z} the limit of N~! SN, X2(¢) exhibits
a summable hyperbolically decaying autocovariance function under condition for
covariance stationarity (see [54], [104]). However, stochastic volatility models as a
nonlinear moving average model (see [104]) and linear ARCH/GARCH models (see
[40]) were found to reproduce the long memory via contemporaneous aggregation
(in the sense of summing and averaging across observation).

More detailed review of the types of the aggregation can be found in a doctoral
thesis of D. Celov [19], and in [43]. Now let’s take a look at the main results of the
aggregation of linear models.

2.1.1 Aggregation of ARMA (p, q) processes

First of all, we review here the aggregation of AR(1) processes. Then we describe
the aggregation of AR(p) models and at the end the aggregation of ARMA(p, q)
processes.

Aggregation of AR(1) processes. Observed macroeconomic time series of-
ten represent the result of aggregating over a huge number of heterogeneous units.
An individual (micro) behavior can be described usually by autoregressive model.
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This motivates the importance of investigating the asymptotic behaviour of the ag-
gregated process of heterogeneous autoregressive models. The initial interest for
aggregation was prompted by the possibility of obtaining long memory. This idea
was first introduced by Robinson (1978, [91]) and developed by Granger (1980,
[42]). C.W.J. Granger investigated the contemporaneous aggregation of autoregres-
sive AR(1) models:

where {X;(t), t € Z} describes an evolution of ith micro-unit, N is the number of
units, {g;(t), t € Z} is a white noise specific to each agent (idiosyncratic innova-
tions) and {u(t), t € Z} is a white noise, which is common to all agents (common
innovations); the coefficients 0; := (a;, p;), i = 1,..., N, are i.i.d. drawings from
© := [0, 1) x R; a; and p; are independent and E|p;| # 0, Ep? < oo. Addition-
ally assume that parameters a;, © = 1,..., N, are Beta distributed with the density

function 5
b(a) = B q)a2p_1(1 —a®)t ae[0,1),p>0,q>0. (2.2)

C.W.J. Granger showed that in the case of aggregation of independent series

Xl(t):azX,(t—l)—i—sZ(t), i:1,2,...,N, tGZ,

the aggregated process Xy (t) :== N~/23 ¥ X;(t) can have long memory property,
in the sense of non-summable autocovariance function. He showed that the covari-
ance function of the aggregated process {Xy(t), t € Z} is equal to

!

1 —a?

Cov(Xn(t), Xn(t +h)) = agE[ ] . r(h),

and the conditional covariance

N
Cov(Xn(t), Xn(t +h)|A) = 02— G, r(h), as., as N — oo,

here 02 := Var(g(t)), and A = o{ay,as,...} denote the o—algebra generated by

r.v’s ay,as,.... Assuming that coefficients a; have a density function as in (2.2),
the covariance of the aggregated process decays hyperbolically,

r(h) ~ Ch'™4, as h — 00. (2.3)

From the last relation (2.3), it follows that if 1 < g < 2, > ,cz7(h) = oo and the
process with such covariance function exhibits long memory.! Note, that the decay
rate of the covariance function (2.3) does not depend on parameter p. The long
memory property depends on the behavior of a;’s density near unity.

If individual processes have dependent innovations

Xz(t) :CLZXZ(t—]_>+pZ’LL(t), 1= 1,2,,N, tGZ,

1. If 0 < ¢ < 1, r(h) is not defined because in this case E[(1 — a?)~!] = oco.
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and assumption (2. 2) is satisfied, then the conditional covariance of the aggregated

process Xy(t) := N' N X;(t ) converges a.s., as N — 00,
~ B 1 NN alhl
Cov(Xn(t), Xn(t+R)[A) = uN2 lelzlpng [——
— 02(Ep)? i Ed*Ea"** =: r(h),
k=0
where 02 := Var(u), and Ea® ~ k79 as k — oo. It is not difficult to see, that in

this case r(h) ~ Ch'=24, as h — oo, and the process with such covariance function
exhibits long memory, if 0 < ¢ < 1.

As we see, with contemporaneous aggregation scheme (summing and averaging
across observations), based on the AR(1) model near the nonstationarity regime,
Granger provided an explanation of the long-memory effect. He also showed that
the common and idiosyncratic components exhibit a different degree of long memory.

Zaffaroni (2004, [103]) generalized results obtained in [42]. Rather than limit-
ing the attention to the limit behavior of the autocovariance function, P. Zaffaroni
studies the limit of the aggregated process Ay' SN, X;(t). The author assumes
that units are generated by AR(1) equations of the form (2.1). He does not put an
assumption that a; are Beta distributed, but assumes only that

p(a) ~C(1 —a)’, asatl,with0<C <oo, f€(-1,00). (2.4)

Define the aggregated process as

_ 1 XN
XN(t) = N ZX’L<t) = UN,t —|— EN,t) (25)
i=1
where
Usi— =S e ut), By Ly e (2.6)
N,t—Ni:1p11_aiL ) N’t—Nizl]._CLiLl ) .

are common and idiosyncratic components, respectively. The conditional variances 2
of the idiosyncratic Ey,; and common Uy, components are equal to

al o2 L pup
Z VU;ijlhj,'

=t h,j=1

P. Zaffaroni studied the behavior of the common component Uy, and the id-
iosyncratic component Ey, separately. The following theorems show what is the
limit of common and idiosyncratic components of the aggregated process in (2.5).

Theorem 2.1.1. ([103], Th.3 (stationary case), p. 84) Assume that €;(t), t € Z,
i € N, are i.i.d. innovations with zero mean and finite variance. Assume, the
density function of random coefficient a satisfies (2.4). If B > 0, then for a.e.

2. With respect to o-algebra generated by {(a;, p;), i1 =1,2,...}.

34



REVIEW OF THE STATE OF THE ART

{91 = (ai,pi), 1= 1,2, .. .},
Eng

Vi

where {Fy, t € Z} is a stationary zero-mean Gaussian process with long memory
parameter3 df = (1 — 8)/2 and covariance function:

—a By, as N — oo, (2.7)

1 ~1 |h|
Cov(Ey, Evn) = (E[7—]) E[la_i(ﬂ} hel. (2.8)

To prove the limit in (2.7), P. Zaffaroni use the Lindeberg-Lévy central limit
theorem (CLT) and calculates the limit of the conditional covariance function of
the idiosyncratic component Ey,;. Note, that the Theorem 2.1.1 is proved under
assumption, that 5 > 0. If 5 < 0, the covariance function in (2.8) is not well defined,
because E[(1 — a?)7!] = co. In such case, P. Zaffaroni investigates the truncation of

EN,t:
1 t—1 N

EN,t = N Z Za,lfgz(t — k),

k=0 i=1
which is a non-stationary process. Zaffaroni [103] showed, that the limit of

En4/+/Vary(Ey,) is a non-stationary Gaussian process. Here, Vary(Ey) denotes

the conditional variance of F Nt
Now let’s take a look at what is the limit of common component Uy ;.

Theorem 2.1.2. ([103], Th.5 (stationary case), p. 86). If 3 > —1, then for a.c.
{91 = (ai, pl), Z = 1, 2, .. .},

Unt =100 U = Ep Y Ed"u(t — k), as N — o0, (2.9)
k=0

here —p,9) means conditional convergence in Ly. The process {U;, t € Z} has the
long memory parameter dV = —f and is not Gaussian unless the {u(t), t € Z} is a
Gaussian white-noise.

It is not difficult to see, that 33° (Ea*)? < oo and the moving average U; in
(2.9) is well defined in Lo, if § > —1/2. While for 5 < —1/2, this moving average is
not well defined. Therefore in this case, P. Zaffaroni investigates the truncation of
UN7tZ

. t—1 1 N
Unie =) (N mef)u(t — k).
k=0 i=1

Theorem 2.1.3. (/103], Th.5 (non-stationary case), p. 86). Assume that {u(t), t €
Z} are i.i.d. and E|u(t)|? < oo for real ¢ > max(2, —2/(26+1)). Set dV := —5. If

3. We say, that the stationary stochastic process {Yz, t € Z} has memory parameter d (d < 1/2),
if Cov(Yy, Yiq) ~ cu??=1 as u — oo. It is not difficult to see, that Y; have long memory (in the
sense of non-summable autocovariance function), if d > 0.
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< —1/2, then for a.e. {0; = (a;,p;), i =1,2,...},

t—1
Unt —a U :=Ep Z Ed"u(t — k), as N — oo,
k=0

and, for any real 0 < r <1,
tﬁﬂ/zﬁ[rt] —Dl0,1] (2dU — 1)U(dU;7’), as t — oo.

The process {U;, t € Z} is not Gaussian unless {u(t), t € Z} is Gaussian white-
noise; {U(d;r), r€ Ry}, 1/2 <d < 1, is type II fractional Brownian motion

U(d;r) = /Oroa _ )" 1dB(s), >0,

Here B(s) denotes standard Brownian motion. The process {U(d;r), r € R} is
self-similar with Hurst index H = d —1/2.

Limits of the idiosyncratic and common components have d¥ = (1 — 3)/2 and
dV = —B long memory parameters respectively. The more concentrated is the dis-
tribution of the random coefficient a near the unit, the stronger is the long memory
of the limit aggregated process. If |a| < o < 1 a.s. for some constant «, then
the limit aggregated process has short memory. Note that for § > —1/2 the limit
of the aggregated process in (2.5) is stationary process and depends only on the
common componet. The idiosyncratic component disappears in the limit, because
its variance Vi€ converges a.s. to zero, as N — oo, for 3 > —1/2 (see [103], Th. 1).
The spectral density of the limit aggregated process has the same properties as the
spectral density of the U; process in (2.9):

2(Ep)2 | 22 2 X, B <0,
sY(\) = %(2'0) > Eafe™ W C'log (i), B=0, asA—0.
7T —_
w0 C, 5> 0.

Therefore, in the presence of common innovations, the limit aggregated process is
stationary and exhibits long memory property when —1/2 < 5 < 0. If we aggregate
independent processes only with idiosyncratic innovations, then the limit aggregated
process E; in (2.7) is stationary and has long memory for 0 < 5 < 1.

Following the frame-work of [103], we worked out the aggregation problem of au-
toregressive AR(1) processes with innovations belonging to the domain of attraction
of an a—stable law, 0 < a < 2 (see Chapters 3, 4).

Aggregation of AR(p) processes. The aggregation of AR(p) processes was
investigated by G. Oppenheim and M.C. Viano [79]. Assume that the behavior of
unit is described by the stationary autoregressive model of order p:

X(t) — i wX(t—k) =), tez, (2.10)

2

where {e(t),t € Z} is zero-mean second-order strong white noise with variance oz.
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Let aj, j = 1,...,p, denote the inverse of the roots of the polynomial 1 —>%_, ap2”

and D is the open unit disc. Assume that the random vector a = (a,...,a,) is in
D? almost surely and that « is independent of the innovations {e(t),t € Z}. Given
a, let A,(2) be the characteristic polynomial of the autoregressive process X (t):
p o0
Au(z) = TT (1 — az), Aa(2) ' =14 b2t (2.11)
k=1

k=1

The moving avarage representation of X () is
X(t)=ce(t)+ > be(t—k), teL. (2.12)
k=1

This series converges almost surely?. {X(t),t € Z} is stationary but not ergodic
process with a covariance function

Cov(X (1), X(t + ) = o°E { S bebesn
k=1

—o? /” eME |44(e)] " dh,

and a spectral density

-2

FN) = ;;E |Aa(e™)| (2.13)

The process X (t) is in Lo, i.e. E(X(¢))? < oo, if and only if
E/Tr ‘Aa(ei/\)’_Q d\ < 0.

Now assume, that all units are independent and the behavior of them is described
by N independent copies of (2.10). Define the aggregated process as cross-sectional
average with normalisation v/ N:

Xn(t) = \/1N i_v:X,-(t), t €Z. (2.14)

{Xn(t),t € Z} has the same second order characteristics as {X(t),t € Z} process
(the same covariance function and the same spectral density). In [79] it is proved,
that {Xn(t),t € Z} converges to a zero-mean Gaussian process {X(t),t € Z},

XN(t) —7fdd %(t) (215)

The limit process {X(t),t € Z} is ergodic, has a spectral density as in (2.13) and
can be seasonally long-range-dependent, i.e.

Cov(X(t), X(t+ h)) ~ |n| 71 B(h),  as h— oo,

for some d € (—1/2,0), where 5(h) is an oscillating function. To show that the limit

4. From the independence hypotheses and because P(|a;; < 1|) = 1, the series (2.12) convergece
conditionaly a.s. for almost all a, and consequently it convergeces unconditionaly a.s.
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aggregated process {X(t),t € Z} can obtain seasonal long memory, G. Oppenheim
and M.C. Viano [79] assumed that

p+1
An,(2) = (1 — ai12)(1 — v 22) H(l — piyjeiejz)(l — pij€e 95 2), i=1,...,N,
j=3

are the characteristic polynomials of independent AR(2p) processes {X;(t),t € Z},
i =1,...,N. Here 0;, j = 3,...,p+ 1, are fixed arguments in (—m,7) \ {0};
a; = {1, =2, piss. -, Pipr1}, ¢ = 1,..., N, are independent copies of random
vector a := {ai, —a,p3, ..., Ppr1}, which components are independent and have
the following density functions:

gi(s) = (L =8)%y(s),  j=1,....p+1,

where 1;(a) is a continuous function at the point s = 1, ¢,;(1) > 0, 0 < d; < 1.
In this case, the limit aggregated process {X(t),t € Z} in (2.15) is a zero-mean
Gaussian process with the covariance function

Cov(X(t), X(t + h)) = h—d({ 5 K cos(hfy) + 0(1)>, as h — oo,
k: dp—d

where d = min(d;, 1 <j<p+1)and v, k=1,...,p+ 1, are some constants.

The obtained result shows that if the characteristic polynomial A,(z) has com-
plex conjugate roots, the covariance function of {¥(t),t € Z} has an oscillating
component, the spectral density has singular points other than zero, and the limit
aggregated process {X(t),t € Z} obtains seasonal long memory.

Aggregation of ARMA(p, q) processes. P. Zaffaroni [103] noticed that the
results of aggregation of AR(1) processes generalize to the case of aggregation of
ARMA (p, q) processes. The ARMA(p, ¢) model contains autoregressive AR(p) and
moving average MA(q) models:

A(L)X(t) =TI(L)Z(t), teZ, (2.16)
where

A(L) = (1—-aL—ayl?®—--—a,lP),
(L) = (1+mL+ml?+-- +m,L9).

Assume, that ¢ < p, A(z) has distinct roots, the polynomials A(z) and II(z) have no
common zeroes and A(z) # 0, II(z) # 0 for all z € C such that |z| < 1. Under these
assumptions the process { X (t),t € Z} is causal, invertible and the model (2.16) can
be rewritten as

B B
Xt:< d )Zt, teZ, 2.17
®) 1—041L+ +1—osz ®) ( )
where a;, j = 1,...,p, denotes the inverse of the roots of A(z) and 3;, j =1,...,p,
are constants depending on o, j =1,...,p,and 7;, 7 =1,...,¢.
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Suppose {X;(t),t € Z}, i = 1,..., N, are independent copies of (2.17) with
Zi(t) = pyu(t) + ;(t), where u(t) is a common noise for all units and &;() is a noise
specific to each unit. The aggregated process can be splitted in two parts:

_ 1 X
Xn(t) = N ZXi(t) =Uny + Enyg,
i=1

where

UN¢:1§:P1'(16M+”'+%)“@)’

Ni:l — Oéi’lL 1 —Oél'JJL

1 Bia Bip )
E — P P P L i t .
Nt N;(l—afz,llz—i_ +1—C(i,pL 8()

We can see, that Uy, and Ey; are very similar to components in (2.6). The results
of aggregation of AR(1) processes generalize to the case of aggregation of ARMA (p,
q) processes. The properties of the aggregated process depend on the distribution
of the autoregressive root with the more dense near 1.

If ¢ =0, then the ARMA(p, q) process is the AR(p) process described in (2.10).
In this case, the aggregated process (2.14) is equal to Xy(t) = VNEy,, t € Z,
and the limit aggregated process {X(t),t € Z} obtains seasonal long memory if the
polynomial A(z) has complex conjugate roots. The autocovariance function of the
limit aggregated process has an oscillating component and the spectral density has
singular points other than zero.

It should be noticed here that the moving average component has no effect on
the memory of the limit aggregated process. In [42], [103] it is shown that if p =0
and the behavior of units is described by the moving average MA(q) model

Xi(t) = IL(L) (psu(t) + &(t)), teZ, i=1,...,N,

then the idiosyncratic component Ey,; converges to 0 conditionally in Ly and the
limit of the common component Uy, is equal to

Up = E(p)(u(t) + E(m)u(t — 1) + - - + E(mg)u(t — q)).

2.1.2 Aggregation of random fields

Models of random fields were introduced by P. Whittle in 1954, [102]. Basic
results about random fields can be found in [44], [52]. Long memory properties of
random fields was investigated in [58], [59], [60], [62]. And the aggregation procedure
of autoregressive random fields with finite variance was discussed in [58], [61], [62].

Consider the autoregressive random field

S aX(t—k,s—1)=et,s), (t, s) € 72, (2.18)

k€D

where D is a finite subset of Z2, (akﬁl)(m)eD are real random coefficients and
{e(t,s), (t,s) € Z*} is a white noise in Ly space. Let L; and Ly be lag operators,
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ie. L1 X(t,s)=X(t—1,s), LoX(t,s) = X(t,s — 1), and denote

21722 . Z CLklZlZQ
k,leD

Then (2.18) can be rewritten in more compact form
P(Ly, L)X (t,s) = €(t, s), (t, s) € Z*. (2.19)

If for every (ag;), P(e*,e2) = 0 for all (A, \2) € [—m,7]?, (2.19) admits unique
stationary solution (see [44], [58]), which is given by the series
s)= Y bre(t—ks—1), (t, s) € 7% (2.20)
klez?
1

where (by,)(k)ez2 are random coefficients of the Laurent expansion P(z;,2)"' =
S kieze bzt 24 The series (2.20) converges in Ly if and only if

Z E(|bk75|2) < 0

k,leZ?

The spectral density of the random field (2.20) is

0_2

(2m)?

FO, o) = E|P(e™ e () € [ a2, (2.21)

where 02 is the variance of the white noise.

Now suppose we have N independent copies X;(t,s), j = 1,..., N, of (2.19).
Define the aggregated random field

Tt s) = \/1N Y X(ts), (s ez (2.92)

From the central limit theorem it follows, that the limit of the aggregated process
Xn(t,s), as N — oo, is a Gaussian random field X(¢, s), which has the same spectral
density (2.21) as the aggregated field Xy(¢,s) and individual fields X;(t,s), j =
L,...,N (see [61]).

Long memory properties and the dependence structure of the limit aggregated
random field {X(¢,s), (t,s) € Z?} strongly depends on what model of fields one
uses to describe the behavior of individual fields. Lavancier[61] investigates the
long memory properties of the limit aggregated random field {X(t, s), (¢,s) € Z*}
under assumption that the individual fields are described by the nearest-neighbor
autoregressive random fields with finite variance®. Suppose, for example, we have
N independent copies of the nearest-neighbor random field

X,(t,s) = ‘i(Xj(t—1,s)+Xj(t+ 1,8)+ Xt s — 1)+ X;(t, s+1)) +¢5(t, 5), (2.23)

5. In Section 6, we investigate the aggregation of such fields in the case of infinite variance, i.e.
we assume that innovations belong to the domain of attraction of an a—stable law.
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where (t, s) € Z*, j =1,...,N, A is random coefficient and ¢;(¢, s) is white noise
with variance 02 > 0. If |A| < 1 almost surely, (2.23) admits stationary solution °.
Define the aggregated random field as in (2.22). Then the limit of the aggregated
random field (in the sense of finite dimensional distributions) is Gaussian random
field:

N

X(t,s) = Nligéo\/lw;xj@,s), (t,s) € 2.
Now the main question is: does {X(t, s), (¢, s) € Z*} have the long memory property
and in which sense? It is well known, that in finite variance case, the long memory
property of the stationary random field can be described using its spectral density
or covariance function. When the spectral density of the random field is unbounded
or autocovariance function is non-summable, then the random field is said to exhibit
long memory.

Definition 2.1.4. (/58], Def. 1)A stationary random field exhibits isotropic long
memory if it admits a spectral density which is continuous everywhere except at 0,
i.e. for A= (A1, \g) € [—7,7]?,

1 A1 A
~ *L = /A2 2 2.24
sy~ INPL(pe () e =R o (224)

where =2 < o < 0, L(+) - slowly varying function at infinity and b(-) is continuous
function on the unit sphere in R?.

Lavancier [61] proved, that the limit aggregated random field {X(t,s), (t,s) €
Z?}, accumulated from independent nearest-neighbor random fields (2.23), can ad-
mit isotropic long memory in the sense of Definition 2.1.4. Indeed, assume, that the
density function of the coefficient A has the form

d(a) ~(a)(1 —a)’,  asatl, (2.25)

where 1(a) is a non negative bounded function, continuous at 1 with (1) > 0,
B > —1. Then the spectral density of the limit aggregated field is equal to

2

L @)
JOn ) = 50 I (1= 2a(cos(h) + cos(hg)))2 (2.26)

In [61], it is proved, that this spectral density satisfies the condition (2.24),

CN+ M) if —1<B<1,

A2+ 22— 0,
Cln(X} +)3), ifB=1, VAT A

f(/\h/\?) ~ {

and the limit aggregated random field X(¢,s) exhibits isotropic long memory, if
—1 < B < 1. Note, that when 8 = 1, the asymptotic of the spectral density does
not exactly suit the latter definition, but it is unbounded function of ||A||. Therefore,
in this case, we could also say, that random field exhibits isotropic long memory.

6. Such stationary solution converges conditionally in Ly. Under additional assumptions, it
converges unconditionally in Ls.
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For 8 > 1, the spectral density is continuous everywhere and X(t, s) is short-range
dependent.

To describe the dependence structure of a random field is more complicated than
in a univariate process case, since dependence for a random field extends in all direc-
tion, while a univariate time series has only one direction. Actually, in the scientific
literature there are many definitions of long memory property (see Subsection 2.3
for details). The usual definition of long memory is based on the spectral density
function or the covariance function. However, in infinite variance case these defi-
nitions are not applicable. The best way to describe the dependence structure of
random fields and processes is probably the investigation of partial sums and its
limits under the suitable normalization. In this PhD thesis, the main definition of
long memory is so called distributional long memory (Cox [29]). We say, that the
random process has distributional long memory, if its normalized partial sums tend
to a random process with dependent increments. In Section 6, we discuss the aggre-
gation of nearest-neighbor autoregressive random fields with infinite variance and
introduce the notion of anisotropic/isotropic distributional long memory for random
fields on Z2.

2.2 Disaggregation

Studies of the aggregation problem showed that accumulation of short-memory
processes can lead to long memory phenomena and that the aggregated process may
exhibit long memory property. But the weak point of the aggregation is that by the
accumulation of data we lose some information about the attributes of individual
processes and the aggregated data are not so informative as the micro level data are.
It is clear that if we have the samples of the individual processes, we can easily aggre-
gate them and get an aggregated process. But what can we say about the behavior
of individual processes if we have only a sample of the limiting aggregated process
and samples of the individual processes remain unobserved? This is an interesting
problem, which is so-called disaggregation problem. The disaggregation problem has
been studied in [21], [25], [65], [66], [70] and by other authors under assumption that
the individual processes have known structure, for instance AR(1), GARCH(1,1),
etc. The recovering of the attributes of the individual behavior from panel data
is also called as the disaggregation problem. Such approach of the disaggregation
problem was discussed in [13], [91]. Let’s now review methods of disaggregation in
autoregressive aggregation scheme.

Disaggregation in AR(1) aggregation scheme. Suppose, the behavior of
micro-units is described by AR(1) processes:

where X;(t) describes an evolution of ith micro-unit; N is the number of units; &;(t),
1=1,...,N, t € Z, are independent identically distributed random variables with
Ee;(t) = 0 and 02 = Eg;(t)? < o0; a, a;, i = 1,..., N, are i.i.d. random variables
independent of innovations ¢;(t), supported by [—1, 1] and satisfying
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E[l _1a2} < o0. (2.28)

Under these conditions the equation (2.27) admits a stationary solution and the
aggregated process

3 N

Xn(t) = \/% in(t)

converges to a zero mean Gaussian process X(t). Note, that the limit aggregated
process X(t) and the individual processes X;(t) have the same covariance function

t

r(t) := Cov(X(0), X (t)) = Cov(X(0), X(t)) = o2 Eh a Iaz]. (2.29)
Our goal is to construct an algorithm to estimate the density function ¢(a) of random
coefficient a (we call it a mixing density). The way of solution of this disaggregation
problem depends on the assumptions put on the mixing density function. If we
assume, that distribution of random coefficient belongs to some parametric family
of distributions, for example is Beta distributed, then the main task is to find the
estimate of unknown parameters. Robinson [91], Beran et al [13] gives the solution of
this problem under assumption, that the samples of individual processes are known.
Consider a panel of N independent AR(1) processes, each of length n. Assume also
that a;, 2 =1,..., N, are i.i.d. with a density function

¢p,q(a) = a2p*1(1 o a2)q717 a < [07 1)7p > 17(] > 17 (23())

B(p,q)

where the parameters p and ¢ are unknown. To construct an estimator of these
parameters, first of all define estimates of random coefficients a; of autoregressive
processes X;(t), i =1,..., N, as truncated version of lag-one correlation coefficient

a;pnp = min{max{a;,, h}, 1 —h}, h=h(N,n) >0, h =0, as N,n — oo,

where
T X ()Xt -1
az’,n — thl nz( ) 21( )7 n 2 1.
Yy X7 (1)
In this way we obtain N "pseudo" observations @i, 4, Gonp, -y GNnp Of T.V. @

based on observations X;(t), ¢ = 1,...,N, t = 0,...,n. The unobserved AR(1)
coefficients are replaced by their estimates. In the second step, the parameters p
and ¢ of the mixing distribution in (2.30) are estimated by maximizing the likelihood,
viz. (p,q) = argmax,, [, ¢pq(@inn). Beran et al. [13] proved the consistency in
probability of the above maximum likelihood estimator and its asymptotic normality
with the convergence rate v/N under the following conditions on the sample sizes
and the truncation parameter h: n — oo, N — oo, h — 0, (log(h))?/vV'N — 0,
VNRPPD — 0 and VNA 2n~t — 0.

Now let us discuss the disaggregation problem under assumption that only the
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aggregated data are at hand and samples of the individual processes remain unob-
served. Such disaggregation approach has been studied in [21], [25], [65], [70].

Leipus et al [65] assumed the following semiparametric form of the mixing den-
sity:

d(a) = (1 —a)™ (1 +a)2(a), di >0, dy>0, (2.31)

where 1 (a) is continuous on [—1, 1] and does not vanishes at +1, —1, and proposed
an estimator of ¢(a), which is based on the expansion of the density function on the
basis of orthogonal Gegenbauer polynomials:

dnla) == (1 —a? Z e ) (2.32)

EkO

where R
e The coefficients ¢, ; are defined as follows

k
Cut 2= D2 945 (Fuld) = 7l +2)), (2.33)
=0
where 7,(j) = L Y05 X(4)X(i + j) is the sample covariance of the zero mean
aggregated process {%( ), t € Z} and n is the number of observations, X(1),
X(2), ..., X(n).
o G\W(2) = Yr g,ﬁf})xj, k =0,1,..., a > —1, are orthogonal Gegenbauer
polynomials,

1 ——
[ ¢ @e @ -ty an = b HI=
~1 0, ifj#k;

e 02 = Var(e) = Ee? is known variance of zero mean innovations;

e (K,) is a nondecreasing sequence which tends to infinity at rate [ylog(n)],
0 < v < (2log(1++/2))~!. This assumption on K,, convergence rate is needed
to get convergence to zero of the mean integrated square error of ¢,(z), i.e.

p 1 EGale) - 6(@))

n—oo J_j (1 —a2)

dz = 0. (2.34)

It should be noted here, that the estimator (2.32) is correct under assumption that
the individual process and the aggregated process have the same autocovariance
function in (2.29). If micro-units depend on common innovations, these covariance
functions are not the same. Therefore common innovations in this case are not
allowed here.

Leipus et al [65] showed the consistency of the estimator (2.32) under assumption
that the variance of the noise, 02 = r(0) —r(2), is known. But usually in practice o2
is unknown and we need to estimate it. Celov et al [21] used the following eastimator
of 02,
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where 7,,(h) is a sample covariance function of the aggregated process, and, under
mild conditions on the (semiparametric) form of the mixing density (2.31), proved
the asymptotic normality of the estimator (2.32):

On(w) — Edy ()
Var (¢, (x))

for every fixed x € (—1;1), such that ¢(z) # 0.

Results in [65] and [21] were obtained for Gaussian aggregated processes. In
Section 5.4, we extend these results to the case when the aggregated process is a
mixed ID moving-average (5.4), page 94. Under the finiteness of 4th moment, we
obtained the weak consistensy of the mixing density estimator in a suitable Lo-space
(Theorem 5.4.4, page 116).

As was noticed above, the estimator (2.32) of the mixing density is not correct
in the precence of common innovation, because the covariance functions of the ag-
gregated process and the underlying process do not coincide. Chong [25] proposed
another estimator of the mixing density ¢(x), assuming, that it belongs to the class
of polynomial densities, i.e.

—d N(07 1)7

m 1 m C
¢(l’) = Z Ckxk]-me[o,l)a m e N7 ¢(.’L’) Z 07 / ¢(l’) d.ﬁL’ = Z i . (235)
k=0 0 o k+1
It is not difficult to see, that in this case,
m Cr
Ead" = — r=1....m. 2.36
kz:% E+r+1 (2.36)

In order to have an estimator of mixing density in (2.35), we need to estimate
unknown coefficients ¢, k = 0,...,m, and the polynomial order m. Consider the
case of AR(1) aggregation with common innovations,

The limit of the aggregated process Xy(t) := = Y1V, X;(t) is
X(t):=>_Edu(t —r) = ®(L)u(t),
r=0
where ®(L) := > Ea"L". If X(¢) is invertible, we can rewrite

X(t) = i_oj AX(t - )+ ult).

Since it is impossible to estimate an autoregression of infinite order, we have to make
a truncation at a fixed order H,

X(t) = Z A;X(t— 7)) + ult).
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Given the data of the aggregated process X(t), coefficients A; can be estimated, for
example, by solving the Yule-Walker equations. Then the estimates of u; := Ea’
can be found from recursive equations

s—1
/js = Z ,arAs—rv ,aO = 1.
r=0

(The last equality follows from the relation between coefficients of AR and MA
representations.) Having estimators of moments p, := Ea® and using the relation
(2.36), it is not difficult to calculate estimates of coefficients ¢, in (2.35). The
estimate of an unknown polynomial order m could be defined as a value, which
minimize the distance between empirical and theoretical autocorrelation functions
(for more details the reader is referred to [25]).

The Chong’s estimator of the mixing density function ¢(x) is justified only for
the class of polynomial densities. But the advantage of this estimator is that it
remains correct in the presence of common innovations, whilemean the estimator in
(2.32) is not valid in this case. The comparison of these estimation methods is given
in [22]. Examining results of Monte-Carlo simulations it is shown (in [22]) that none
of the methods was found to outperform another.

Disaggregation of autoregressive fields. The disaggregation problem of
autoregressive random fields was discussed in [66]. N. Leonenko and E. Taufer [66]
extended results of Leipus et al [65] from one-dimensional to spatial autoregressive
processes. The authors assumed that the aggregated Gaussian random field

is obtained by accumulation of i.i.d. random fields:
Xi(t, S) = 0171'Xi(t — 1, S) + 9271'X¢(t, S — 1) — 9171'9272'Xi(t — 1, S — 1) + E(t, S),

where 1 = 1,2,..., N, (t,s) € Z?, {e(t,s), (t,s) € Z*} is a white noise with zero
mean and finite variance o?; coefficients (61;,602;), i = 1,2,..., N are indepen-
dent copies of a random vector (6y,6,) supported on [—1,1]? with density function
¢(01,602). It is proved under some assumptions in [66], that the mean integrated
square error of the estimator <$n(91, ) (which is based on the expansion of the den-
sity funtion on the basis of two-dimensional orthogonal Gegenbauer polynomials)
converges to zero, as in one-dimensional case (2.34). For more details we refer the
reader to [66].

2.3 Long memory

The phenomenon of long memory is a widely studied subject and has long history.
There are many publications addressed to detection of long memory in the data,
limit theorems under long memory, statistical estimation of memory parameters,
simulation of long memory processes, and many others. But the first main question
is what is the long memory. There are many definitions of long memory, they vary

46



REVIEW OF THE STATE OF THE ART

from author to author and are not always equivalent. As it was noted in [94], the
history of long memory as a concrete phenomenon begins in the 1960s with a series
of papers of B. Mandelbrot and his co-authors, when the Hurst phenomenon was
explained. British hydrologist H. Hurst studied the flow of water in Nile river and
wanted to model them so that architects could construct a reservoir system. In
1951, H. Hurst [50] showed that the aggregated water flows in year depends not
only on the flows in recent year but also on flows in year before the present year.
He introduced the rescaled range statistic R/S:

i i<n(30y X; — 1X) — ming<i<n (31 Xi — iX
X Xy X)) = maXo<i<n (27 iX) rmno_g <n(Xiey i )7
i Vi (G - X

where X1, Xy, ..., X, are observations, X = n~' 37| X; is sample mean of the data.

H. Hurst got that the empirical rate of growth of R/S statistic on the Nile river data
is close to n%™. This phenomenon, called Hurst phenomenon, was explain and
advanced by Mandelbrot and co-workers [73], [74], [75]. It is known that if X3, X,
..., X, are finite-variance independent and identically distributed random variables,
then the rate of growth of R/S statistic is n%5. The idea to explain the Hurst
phenomenon was to take a stationary process {X;, t € Z} with slowly decaying
covariance function (see [75]). And this idea was successful. It was proved that for
the fractional Gaussian noise (the unit difference of fractional Brownian motion By )

Xj = Byu(j) — Bu(j — 1),
with the covariance function

Cov(Xjen, X;) = Sln+ 1 + n = 1 — 202")

the R/S statistic grows at the rate n’. In this way the term of 'long memory" came
into being.

Most of the definitions of long memory are based on the second-order properties
(covariance, spectral density) of a stochastic process { X (t), t € Z}. Such properties
are relatively simple and it is not difficult to estimate them from the given data.
However, when the process does not have finite variance, the usual definitions of
long memory in terms of covariance/spectrum are not applicable. Among the al-
ternative notions of long memory, which do not require finite variance, we mention
the (decay rate of) codifference (see Samorodnitsky and Taqqu [95]), distributional
long memory (see Cox, [29]), and long-range dependence (sample Allen variance)
(LRD(SAV)) (see Heyde and Yang[46]), also characteristics of dependence, like co-
variation or a—covariance, for stable processes expressed in terms of the spectral
measure (Samorodnitsky and Taqqu [95], Paulauskas [81]).

Before introducing detailed definitions of long memory, let us take a look to some
properties of functions.

Definition 2.3.1.

— A positive measurable function L(h) defined on some neighborhood |a,o0) of

47



REVIEW OF THE STATE OF THE ART

infinity is said to be slowly varying if for any ¢, ¢ > 0,

— 1, as r — Q.

— Let B C (0,00) be a compact set, the total variation of the real-valued function
f on B is

o(fB) = sup 3 | F(ai)  flaion),

here the supremum is over all finite sequences xg < x1 < -+ < x, in B.

— A function f is said to be of locally bounded variation on (0,00), if v(f, B) <
oo for each compact set B C (0, 00).

— A positive function f of locally bounded variation on (0,00) is said to be
quasi-monotone, if for some § > 0,

/0"” £1df (1)) = O f(x)), asz — oo.

Now we can discuss definitions of long memory.

Definition 2.3.2. A stationary process {X (t), t € Z} has a long memory property,
if the autocovariance function r(h) = Cov(X (t), X (t+h)) is not absolutely summable

> |r(h)] = . (2.37)

heZ

Definition 2.3.3. A stationary process { X (t), t € Z} has a long memory property,
if the autocovariance functions decays hyperbolically, as h — oo,

r(h) ~ B> L(h), 0<d<1/2, (2.38)

where d is long-memory parameter, L(-) is a slowly varying function at infinity.

The covariance function of a stationary process can be written in such form:

r(h) = /W o™ AF(N),

—T

where the function F' is non-decreasing, right-continuous, bounded over [—7, 7], and
F(—m) = 0. Such function F is called the spectral distribution, and if

FO) = [ fw)de,

—T

the function f(-) is called the spectral density of r(-). The spectral density function
can also be used to describe the dependence in time series.

Definition 2.3.4. A stationary process {X (t), t € Z} has a long memory property,
if its spectral density function satisfies

FO) ~ AL/ M), 0<d<1/2,  as|A\ =0, (2.39)
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and L(-) is a slowly varying function at infinity.

Another definition of long memory is based on the X (t)’s Wold decomposition
X(t) = X520 ¥ye(t = J)-

Definition 2.3.5. A stationary time series {X(t), t € Z} is a long memory time
series, if the coefficient 1; in purely non-deterministic part of the X(t)’s Wold de-
composition satisfies

W ~ JL(G), 0<d<1/2, (2.40)

where L(h) is a slowly varying function at infinity.

Palma [80] described all above mentioned Definitions 2.3.2 - 2.3.5 of long memory
and compared them. These four definitions are not necessarily equivalent. Palma
(see [80], Thm 3.1) proved the following relations between these definitions:

— If the process {X (t), t € Z} satisfies (2.38), it also satisfies (2.37).

— If the process {X (), t € Z} satisfies (2.40), it also satisfies (2.38).

— If the function L(-) in (2.38) is quasi-monotone slowly varying, then (2.38)
implies (2.39).

Let us discuss now two definitions of long memory, which are based on limits of
partial sums of the process.

Definition 2.3.6. (See [29]). A strictly stationary time series {X(t), t € Z}, is
said to have distributional long memory (respectively, distributional short memory)
if there exist some constants A, — 0o, n — oo, and B, and a stochastic process
{J(t),t > 0} # 0 with dependent increments (respectively, with independent incre-

ments), such that
[nt]

ALl Y (X (s) = Bn) —a J(1), (2.41)

Lamperti [57] showed that under mild additional assumptions the normalizing

constant A, in (2.41) grows as n'’ (with some H > 0), more precisely, A, = L(n)nf!,

where L(n) is a slowly varying function at infinity, and the limit process {J(t),t > 0}
is self-similar with index H.

Definition 2.3.7. (See [46]). A strictly stationary time series {X(t), t € Z}, is
called LRD(SAV) if

2
(2, X)) N
Y X)) T
otherwise {X(t), t € Z} is called SRD(SAV).

00; (2.42)

Now, for a strictly stationary process {X (t), t € Z}, define a quantity
Cod(X(0), X (1)) := log Be!X¥O=XO) _ 1o Be!X®) _ Jog Ee™ ¥ (), (2.43)

which is called the codifference of random variables’s X (0) and X (¢). Long memory
of {X(t), t € Z} can be characterized by the decay rate of Cod(X(0), X(t)) (see
[95]).
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Definition 2.3.8. A strictly stationary time series {X(t), t € Z} has long memory
property, if its codifference satisfies

3" |Cod(X(0), X (h))] = co. (2.44)

heZ

Note that the existence of Cod(X(0), X (¢)) does not require any moments. For
stationary stable or heavy tailed moving averages and some other processes with
long memory, the asymptotics of Cod(X (0), X (t)) were investigated in [7], [9], [56].
In particularly, if {X(¢), t € Z}, is a stationary Gaussian process, with zero mean,
unit variance, then Cod(X(0), X (¢)) = (1/2)Cov(X(0), X (1)).

The dependence structure of random fields is more complicated than in a uni-
variate processes, because the intensity of long memory can be different for different
directions. In the case of finite variance, the long memory of the stationary random
fields can be described using its second order properties (covariance function or spec-
tral density). We say that a stationary random field X (¢1,%3) has long memory if
its covariance function r(h) := Cov(X (t1,t2), X (t1 + hy, ta + ha)), h = (hy, he) € Z2,
is not absolutely summable,

> r(h)| = oo (2.45)

heZ?

or behaves at infinity as

1 h
()~ (oo ) s Bl = oo, (2.4
[ VAN
where 0 < a < 2, ||.|| denotes the Euclidean norm, L(-) is a slowly varying function

at infinity and b(+) is a continuous function on the unit sphere in R?. An alterna-
tive definition of long memory involves properties of the spectral density function.
A random field is said to exhibit isotropic long memory if its spectral density is
unbounded and

1 A
Oy~ I (g )e(g) a1 =0 (247
where A\ 1= (A, A2), 0 < a < 2, ||.|| denotes the Euclidean norm, L(-) is a slowly

varying function at infinity and b(-) is continuous function on the unit sphere in
R% Note that conditions (2.47) and (2.46) are not equivalent. The random field
exhibits isotropic long memory and its spectral density satisfies condition (2.47) if
the covariance of random field satisfies the condition (2.46) and the spectral density
is continuous outside 0. If spectral density is unbounded and not continuous outside
0, then the long memory is non-isotropic, for example, if we investigate random field

X(t,s) =aX(t+1,s—1)+¢(t,s),

where a is random coefficient with the density function ¢(z) ~ ¢(1 — z)?, as z 1 1,
[ > —1, then the spectral density of the random field X (¢, s) satisfies

FOL ) ~c|ho— N7, as |Ay — M| = 0.
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Therefore, the long memory is non-isotropic in this case (see [58]).

In the Chapter 6 we introduce the new notion of anisotropic/isotropic long mem-
ory for random fields on Z2, which is based on the behavior of partial sums and does
not require finite variance of random field.

The notion of long memory is polysemous, especially for infinite-variance pro-
cesses, and is not limited to the characterization properties mentioned above. There
are many definitions of long memory, and they are not always equivalent.
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Aggregation of AR(1) process
with infinite variance and common
innovations

Abstract. Aggregation of random-coefficient AR(1) processes
Xz(t>:(lZXZ(t—1>+€<t>, tEZ, izl,...,N,

with i.i.d. coefficients a; € (—1,1) and common i.i.d. innovations {e(t), t € Z}
belonging to the domain of attraction of an a—stable law (0 < o < 2) is discussed.
Particular attention is given to the case of slope coefficient having probability density
growing regularly to infinity at points @ = 1 and a = —1. Conditions are obtained
under which the limit aggregated process X(t) = limy oo N1 N, X;(2) exists
and exhibits long memory, in certain sense. In particularly, we show that suitably
normalized partial sums of the X(¢)’s tend to fractional a—stable motion, and that
{X(t), t € Z} satisfies the long-range dependence (sample Allen variance) property
of Heyde and Yang [46], and can have distributional long memory of Cox [29].

3.1 Introduction

The present chapter extends the results of Zaffaroni [103] on aggregation of
random-coefficient AR(1) processes from finite variance case to infinite variance
case. Here, we discuss only the case of common innovations of the aggregated series.
The case of idiosyncratic innovations belonging to the domain of attraction of a
stable distribution will be discussed in Chapter 4 (see also [88]).

Let us describe the main results of this Chapter. Suppose, the behavior of micro
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units is described by random-coefficient AR(1) processes
Xl(t):aZXl(t—1)+€(t), i:1,27..., tGZ,

where {e(t),t € Z} are common i.i.d. innovations with generic distribution e,
satisfying Ele[P < oo, for some 0 < p <2 and Ee =0,1<p<2;{a;,i=1,...,N}
are i.i.d. r.v’s independent of {e(¢), t € Z} and having a common distribution a, a €
(—1,1) almost surely. Theorem 3.2.4 obtains sufficient conditions for convergence
in probability of the aggregated process Xy(t) := N'TN, X;(t) to a stationary
moving average

X(t) = i ae(t —j), a; = Bd’. (3.1)

In the case 1 < p < 2, the sufficient condition for such convergence is

1

E[(l—lalp)”p] < . (3.2)

The last condition also implies 332 (E|a’|)? < oo so that the process {X(t), t € Z}
is well-defined.

In Sections 3.3 - 3.5, we study the case when the innovations {e(t), t € Z} belong
to the domain of attraction of an a—stable law, 0 < o < 2, and the probability
density ¢ of r.v. a € (—1,1) takes the form

p(z) = (1—2) 11 +2)"2y(z), -l<z<l1 (3.3)

where parameters dy, do satisfy 0 < dy,dy < 1 and where ¢ > 0 is an integrable func-
tion on the interval (—1, 1) having finite limits ¢y = lim,_,, ¥(x), 19 = lim,_, ;1 ¥(x).
A particular case of (3.3) is Beta distributed a € (0,1) with the density function

¢(z) = B(dy, 1 — dl)flxdlfl(l — :E)*dl, 0<x<l.
In the latter case,

- 1 Lot —d
o= = 1 1— 1 —
a; (1 —dy) /0 x (1—x)""dx

['(j + dy)

NEESVACAL i=0,1,...(3.4)

are FARIMA(0,d;,0) coefficients. More generally, if (3.3) holds with 0 < dy <
dy < 1, ¢; > 0, then the coefficients a; decay as j9~! similarly as in the case of
FARIMA(0, dy,0) process (see Proposition 3.3.1, page 62). Section 3.3 introduces
a time domain generalization of I(d) filter (Definition 3.3.3, page 64). We show
that, under some regularity conditions of the function v in (3.3) at the ends of the
interval (—1,1), the ‘mixed’ coefficients a; = Ea’ form an I(d;) filter in the sense of
this definition.

The most interesting case which can lead to long memory of the limit aggregated
process {X(t), t € Z} in (3.1) is 1 < a < 2. In this case, condition (3.2) for mixing
density in (3.3) with ¢; > 0,7 = 1,2 is satisfied if and only if

di<1-(1/a), i=1,2. (3.5)

54



COMMON INNOVATIONS

Section 3.4 studies long memory properties of the corresponding limit aggregated
process {X(t), t € Z} in (3.1). Since we are dealing with infinite variance processes,
the usual definitions of long memory in terms of covariance/spectrum are not appli-
cable. According to Corollary 3.4.2, page 69, if (3.5) holds (and 1 < a < 2, 91 > 0),
then {X(t), t € Z} enjoys the so-called long-range dependence (sample Allen vari-
ance) property of Heyde and Yang [46], and the distributional long memory of
Cox [29]; in particularly, its normalized partial sums process converges to a frac-
tional stable motion with self-similarity parameter H = d; + 1/a € (1/a,1). See
Section 3.4 for definitions and precise formulations.

Section 3.5 comnsiders the case of 1 — (1/a) < d; < 1, or nonstationary limit
aggregate. In this case, the stationary infinite order moving average process in (3.1)
is not defined. Following Zaffaroni [103], we consider aggregation of random coeffi-
cient AR(1) processes {Y;(t),t =1,2,...},7=1,..., N, with zero initial condition
Y;(0) = 0. According to Proposition 3.5.1, page 70, in such case the limit aggregated
process Y () = limy_. N"' 3N | Y;(t) is nonstationary and the normalized process
WY/([HT]),T € [0,00) converges, in the sense of weak convergence of finite
dimensional distributions, to an a—stable self-similar process given by a stochastic
integral with respect to stable motion.

3.2 The limit of the aggregated process

Consider a random-coefficient AR(1) process
X(t)=aX(t—1)+¢(t), teZ, (3.6)

where {¢,¢(t),t € Z} areii.d. r.v’s and where a is a r.v., independent of innovations
{e(t),t € Z} and satisfying |a|] < 1 a.s.

Definition 3.2.1. Write e € D(«a), 0 < o < 2, if
(i) a =2 and Ee =0, 0% :=Ee? < 00, or

(77) 0 < a < 2 and there exist some constants c1,co > 0,¢1 + co # 0 such that

lim 2°P(e > 2) = ¢ and ml_i>I_Iloo|$| Ple<z) = c.

moreover, Ee = 0 whenever 1 < a < 2, while, for « = 1, we assume that the
distribution of € is symmetric.

Remark 3.2.2. (i) Condition € € D(«) means that r.v. ¢ belongs to the domain of
normal attraction of an a—stable law; in other words,

neN e =4 Z, (3.7)
=1

where Z is an a—stable r.v., see [37]. The characteristic function of r.v. Z is given
by .
Eel?? = 07«0 g e R, (3.8)
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where
F?‘;”((cl + ¢5) cos(mr/2) — i(er — cp)sign(0) sin(m/2)>, 0412,
W0):= 9 (¢ + e2)(m/2), a1 (39)

0?/2, a=2.
(ii) Condition ¢ € D(«) implies E|e[P < oo for any 0 < p < a.

Proposition 3.2.3. (i) Assume E|e|P < oo, for some 0 <p <2 and Ec =0, p> 1.
Then there exists a unique strict stationary solution to equation (3.6) given by the
series

X(t) = iake(t—k). (3.10)

The series in (3.10) converge conditionally a.s. and in L,, for a.e. a € (—1,1).

Moreover, if
1

1 — |al?

] < oo, (3.11)

then the series in (3.10) converge unconditionally in L,.

(i) Assume that ¢ € D(«), for some a € (0,2], and condition (3.11), for some
0 < p < a. Moreover, if « = 1, assume additionally that E(1 — |a[P)~1720-P)/P < o0
for some 0 <p < 1. Then X(t) € D(«).

Proof. (i) Let us prove first that equation (3.6) admits a unique stationary solution.
Let {X(¢)}, {X'(t)} be two such solutions. By iteration we have that for any n > 0

X(0)=¢(0) +as(=1) + -+ +a"'e(—n+1) + a" X (—n)
and a similar equation holds for X’(0). Hence
X(0) = X'(0) = a"(X(—n) = X'(=n)),

or

1 X(0) = X(0)] < [al"(|X (=n)| + [X"(=n)]).

For any e >0, 0 < <1, K > 0 we can write

P(IX(0) = X'(0)] >¢) < P(la[ >1-0)+P(X(-n)| > K) +P(|X'(-n)| > K)
+P(2(1 - 0)"K > ¢).

Since |a] < 1 a.s., so P(|la| > 1 —§) can be made arbitrarily small by a suitable
choice of §. Next,
P(IX(=n)| > K) = P([X(0)] > K)

and
P(|X'(—n)| > K) = P(|X'(0)| > K)

do not depend on n by stationarity and can be made arbitrarily small by choosing
K large enough. Clearly, P(2(1 — §)"K > ¢) = 0 for n large enough. This proves
P(]X(0) — X'(0)] > 0) =0.
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We shall use the following inequality. Let 0 < p < 2, and let &1, &s, ... be random
variables with E|¢;|P < oo. Moreover, in the case 1 < p < 2 we assume that the
r.v.s & form a martingale difference sequence:

Elginlé, . &1 =0, i=1,2,....

Then there exists a constant C,, < oo, which depends only on p, such that

>

In fact, inequality (3.12) holds with C, = 1 for 0 < p < 1 and with C, = 2 for
1 <p <2 (see [11]).

From (3.12), for any a € (—1,1) we obtain

7

This proves the conditional convergence in L, of the series in (3.10). The a.s.
convergence of (3.10) follows from (3.13). Clearly, (3.13) and (3.11) imply that
(3.10) converges unconditionally in L,. This proves part (i).

(ii) We need to prove that X () € D(a), 0 < o < 2. For this it suffices to prove,
that

p

E < G, S El4P. (3.12)

p

CyElel?

1= |af?

(3.13)

> ae(t —k) a} < CE[e Y Ja? =
k=0 k=0

EX?(t) < oo, for a =2, (3.14)

and for 0 < a0 < 2,

M2

lim 2°P(X(t) > z) =

T—00

E“aﬂ'\‘“ {(a1(d? > 0) + el (a < 0)}] _ € < 0, (3.15)

<.
I
—_

lim |z|*P(X(t) <z)=

T—r—00

NE

E“aj‘a {c11(a? < 0) + o1 (a > 0)}] =C < 0.

.
Il
-

Here, (3.14) immediately follows from the condition (3.11). To prove (3.15), we use
Theorem 3.1 of [49]. Accordingly, it suffices to check that there exists € > 0 such
that

> E ’aj’a_e < 0 and > E ’aj’a+€ < oo, forae(0,2)\{1}, (3.16)
j=1 j=1

a+e

E(Z )aj‘a%)a_g < oo, fora=1. (3.17)
=1

The condition (3.16) is satisfied because of (3.11). And (3.17) follows from

1+e€
11— 2(171(176))

ey 11—e —€
E(Z\af\ ) — (1 — |/ Y <o,
j=1
and from the condition of this proposition in part (ii) with p = 1 — €. Proposi-
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tion 3.2.3 is proved. O

Assume, that the behavior of individuals is described by random-coefficient
AR(1) equations

where {e(t), t € Z} are i.i.d. r.vs satisfying the same conditions as in Proposi-
tion 3.2.3, and where {a;} are i.i.d. r.v.’s independent of {e(t), t € Z} and having a
common distribution a. Define the aggregated process by

Xn(t) = N‘liX,»(t), tez. (3.19)

Let A = 0{ay,as, ...} denote the o—algebra generated by r.v.s aj, as,.... Forr.v’s

£,61,6, ..., we write &, —p,a) & (respectively, &, —p, §) if Eﬂfn - £|p’A} — 0 a.s.
as n — oo (respectively, E|§, — &P — 0). Note the convergence &, — 1,4y § implies
&, — £ in probability. (In general, none of the convergences —, 4y or —,, implies
the other.) For real a, denote a, := max(0,a), a_ := (—a); = max(0, —a).

Theorem 3.2.4. Assume that E|e|P < oo, for some 0 <p <2, and Ee =0, p > 1,
as in Proposition 3.2.3 (page 56).

(i) Let 1 <p <2 and

1
Then for any t € Z, as N — o0,
Xn(t) —r, X(), (3.21)

where the limit process is given by
Z e(t—17), a; := Eld’]. (3.22)
(i1) Let 0 <p <1 and
> (Eld’|)? 0. (3.23)
7=0

Then for any t € Z, as N — o0,
Xn(t) —r, X(1), (3.24)

where the limit process is given by (3.22).

In both cases (i) and (i), the limit process {X(t), t € Z} is strict stationary,
ergodic, and the series in (3.22) converges a.s. and in L,.
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Remark 3.2.5. Note that for 1 < p < 2, condition (3.20) implies convergence of
the series in (3.23), while for 0 < p < 1, condition (3.23) implies finiteness of the
expectation in (3.11). To show the first implication, we use Minkowski’s inequality:
let f; € L,(X,p), j=0,1,..., where (X, p) is a measurable space, p > 1. Then

Z% /ij(x)u(dx)p < (/X (i)lfj(g;)w)l/pu(dx))p. (3.25)

Applying (3.25) with (X, u) = (Q,P), f; = o/ we obtain

1

Si]ﬂaj < (E(ﬁfy@ﬂjlm)p = (Br—ms) <
& & (1= a7
The second implication follows by Jensen’s inequality: since for 0 < p < 1,
(Elal’)” = Ela|™,

we have

Bl —
L= alr

Remark 3.2.6. Assume ¢ € D(«), for some o € (0,2], and condition (3.23), for
some 0 < p < a. Then from Theorem 3.1 of [49] (similarly as in the proof of
Proposition 3.2.3(ii), page 56), follows that X(t) € D(«) and

= > Elaf” < Y (Ela})y”
j=0 j=0

M8

lim 2°P(X(t) > z) =

T—00

( 1(Ea?)% +C2(ECL]))

<.
Il
o

lim |z]*P(X(t) <z) =

rT—r—00

Mg

(e1(Ba’)* + ea(Ea’)}).

<.
I
o

Proof of Theorem 3.2.4. Note that the series in (3.22) converges in L, due to (3.23)
and Remark 3.2.5, and defines a stationary and ergodic process.

(i) Let us prove (3.21). Write

Xy(t)—X@1) = ie(t—j)zN_l(af—Ea{) = ZYNj, (3.26)

where

i=1
00 N
Yno = N_l Z 6(t—])2afl(0<al<1),
j=st+1 i=1
00 N
Yyns = Nt Z €(t —j)Z(lgl(—l < a; < O),
j=st1 i=1
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N
Yys = —N1 Z e(t—17) Z = — Z Eaj
=1

Jj=s+1 j=s+1

and where s > 1 will be chosen later. Here, Yy4 does not depend on N and

B[[Yil?|A] < 2B f} Ea?]” < e (3.27)
j=s+1

can be made arbitrary small in view of (3.23) and Remark 3.2.5, by choosing s large
enough. Next,

E[[Vial|A] < 2NTPE[e] i

Jj=s+1

N o p
> al1(0<a; < 1)’ :

=1

Applying Minkowski’s inequality in (3.25), with X = {1,..., N} and the counting
measure i on X, we obtain

o0

0 . N . 1/p\ p
S Y d10<a<1) < <Z<Z ?p1(0<ai<1)) )
Jj=s+1"1i=1 =1 " j=s+1
N CLS+1 P
= —t 10 <a <1
<Zz:1(1—a)1/1’ ( “ ))

and therefore

_1 N aﬁg+1 p

Note that
G(s) =asT (1 —a)) VP10 <a; < 1), i=1,2,...

are i.i.d. r.v’s, for any s > 1 fixed, and
E&(S) = Ea8+1(1 — ap)—l/pl(o <a< 1) < E(l _ |a|p)—1/p < 00

according to condition (3.20). Moreover, &(s) < &(s') a.s. for any s < s and
therefore lim; o E&;(s) = 0 by the dominated convergence theorem. From these
facts and the strong law of large numbers we infer, that, for any € > 0, there exist
integers so > 1 and Ny(w) > 1 such that

s+1

N
Ny —

i 10<a; <1) < ¢ forany N > Nyo(w) and any s > so.
11 —Cl

The above argument applies also to E[|YN3]79 ‘A} by symmetry. Consequently, we
obtain that for any 1 < p < 2 and any ¢ > 0 there exist integers sqo > 1 and
No(w) > 1 such that

E[|YNi|p‘A} <€ =23, holds for any N > Ny(w) and any s > sq. (3.28)
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Finally, according to (3.12) and the strong law of large numbers,

N

N~'>"(a] — Ed])

=1

E[vwil|4] < 2E|g|f’§8:

J=0

p

- 0 a.s. (3.29)

for any s < co. It is clear that (3.27), (3.28), and (3.29) imply
EH)_(N(t) — %(t)‘p’A] — 0 a.s., as N — oo,

and relation (3.21). This proves part (i).

(ii) Let us prove (3.24). Consider the decomposition as in (3.26). It suffices to show
that for any s < oo, E|Yy1 [P — 0, as N — oo, and that E|Yx;|?, i = 2,3,4, can be
made arbitrary small by an appropriate choice of s uniformly in N. The first fact
follows similarly as in the case (i) above, with the difference that the strong law of
large numbers in (3.29) above must be replaced by the convergence in L,,. The proof
of the second fact for Yy, follows by Jensen’s inequality:

o] N ) P
E|Ynal? < mwvzqulgﬁgm<m<1ﬂ
j=s+1 i—1
o) N ) P
< mw)szN*zpﬁm<%<1ﬂ
j=s+1 i—1
= Bl Y (Ba1(0<a<1)) <Elef Y (Elaf)’
j=s+1 Jj=s+1

and by the convergence of the series in (3.23). Since E|Yy;|P, i = 3,4 can be similarly
estimated, this proves part (ii) and Theorem 3.2.4, too. O

Remark 3.2.7. (i) If condition (3.20) in Theorem 3.2.4 (i) is replaced by condition
(3.11), then similarly as above, the conditional convergence in (3.21) can be replaced
by unconditional convergence as in (3.24). However, condition (3.11) excludes the
case of aggregated process with long memory which is discussed below.

(ii) For p > 1, the limit process X(¢) in Theorem 3.2.4, (3.22) can be defined as
conditional expectation:

X(t) = EX(t)|e(t),tez), tel,

where {X(¢), t € Z} is the random-coeflicient AR(1) process in (3.10).

3.3 Asymptotics of the aggregated moving aver-
age coeflicients

The most interesting case of aggregation occurs when the mixing density is sin-
gular at points +1 and/or —1. From now on, in this chapter, we shall assume that
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the distribution of r.v. a has a density ¢ of the form
p(x) = (1—2) 5 (1 +2)"2y(2), —l<z<1, (3.30)

where parameters dy, dy satisfy 0 < dy,ds < 1 and where ¢ > 0 is an integrable
function on the interval (—1,1) such that the limits

limy(z) =91 >0 and lim (x) =: 1y >0 (3.31)

r—1 r——1

exist.

Proposition 3.3.1, below, describes the asymptotics as 7 — oo of the moving
average coefficients a; = Ea’ of the limit aggregated process in (3.22) under the
assumption (3.30) on the mixing density. Clearly,

Ed/ = Ed1(0<a< 1)+ (=1YE(-a)1(-1<a<0)
= Ed) + (-1)Ed’,

so that it suffices to consider the asymptotics of Ea/. and Ea’ .

Proposition 3.3.1. Let the probability density ¢ of r.v. a satisfy the assumptions
in (3.30)-(3.31). Moreover, assume that there exist B; € (0,1],i = 1,2 such that

v() = = O([1—a™), (@)= = O(|1+a]?). (3.32)

Then, as 7 — o0,
Ed). = Cgfij_’f) (w1+0(j51)>, (3.33)
Ed. = Cglf_’il)(@mo(j—ﬂ?)), (3.34)

where c(dy, dy) := 272T(1—dy). If conditions in (3.32) are replaced by conditions in
(3.31), then relations in (3.33), (3.34) hold with O(j=5) replaced by o(1), i = 1,2.

Proof. We shall discuss the asymptotics of Eai only, since Ed’ is analogous. Write
Ed’. = Y2, 4:(5), where £1(5) := [ 27 ¢(x) dx, ly(5) = 0 27 ¢(x) dz, and where
0 < € < 1is a small number. Since |[l5(j)| < (1 —€)? = o(j4!) for any d < 1, it
suffices to show the limit

lim jl_dlgl(j) = C(dl, dg)wl. (335)

Jj—o0

Rewrite
€j J —da
ihaG) = f (1 - Z,) ¢(1 - Z,) (2 - Z_) 2z
0 J J J
— @Z)12_d2/ e 2 M dz = 4pic(dy, dy)
0
by the dominated convergence theorem, proving the limit in (3.35). Next, write
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17N (5) — bre(dy, do) = Yot vi(j), where

€j J
vi(j) = Py 27% / ’ <1 — 2) - e_z}z_d1 dz,
0 J

ve(j) = —¢12_d2/' e Fzh dz,

J

vs(j) = 27% /OEj (1 - j)j<¢<1 - j) - ¢1>z—d1 dz,
v(j) = /Oej ¢<1 — j) (1 — j)] ((2 — j)_dQ — 2_d2>z_d1 dz.

It suffices to show that

n=00G"), m=o0(""), m=0G"), wu=0(3"). (3.36)

Split v1 = 141 + v19, where

V11

Vej J
Py 27% / ’ [(1 — Z) - efz}z"’l1 dz,
0 J

vig = 27 % /Ej [<1 — Z>j — e_z}z_d1 dz.

Vej J
J
<1 — Z.) —e”
J

z € (0,V¢j), so

Since = e 7|7 tiloal=2/i) _ 1| = ¢~

Q0(2/4) _ 1‘ = e*0(2%/) for

vy = j_lO(/ooz_d1 dz> = 0@ ).
0
Next, since (1 — 2/j)7 < e * for z € (0, ), so
Vig = O(/OO e M dz> = O(e™V9) = o(57
12 Ve ( ) ()

for any € > 0 fixed. Similarly, v5(j) = o(j~!) and

Finally,
vs(7) :j_lO(/O e 7 h dz) = O(j_l)

by Taylor expansion. This proves (3.36) and Proposition 3.3.1, too. O

Remark 3.3.2. Note, for 1 < p < 2 and mixing density ¢ as in (3.30),

Therefore, for 1 < p <2, condition (3.20) is satisfied if
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1
di<l—>,  i=12 (3.37)
p
Moreover, if ¢; > 0 then condition (3.37) is also necessary for (3.20). Also note that,
for 0 < p < 1, conditions (3.20) and (3.23) are not satisfied unless d; < 0 or ¢; =0
hold, i — 1, 2.

Any sequence {a;} = {a;,j = 0,1,...} of real numbers will be called a filter.
Given two filters {a;} and {b;}, their convolution {(a xb);} is the filter defined by
(a%xb); =371 yabj_;. For d € (—1,1), the FARIMA(0,d, 0) filter {b;(d)} is defined
by
['(j+d)

S RO

7=0,1,..., (3.38)

or by the generating series:

S b)) = 1-2)7" <L
j=0

Clearly, b;(0) = dp; ;=1 (j = 0), := 0 (j > 1) is the trivial filter and {(b(d) »
b(—d));} = {b;(0)} for any —1 < d < 1. Since {b;(d)} for 0 < d < 1 is a particular
case of {a;}, see (3.4), Proposition 3.3.1 implies

by(d) = F(ld)jd—l(1 + O(j—1)>, 0<d<l. (3.39)

Let us note that relation (3.39) holds for any d € (—1,1),d # 0, which fact easily
follows from (3.38) and the Stirling formula (see also [55]).

The following definition was inspired by Granger [42].

Definition 3.3.3. A filter {a;} is said an 1(0) filter if 3252 |a;| < 0o and Y52 a; #
0 hold. A filter {a;} will be said an I(d) filter (where —1 < d < 1,d # 0) if the
convolution {axb(—d)} is an I(0) filter.

Proposition 3.3.4. Let the mizing density ¢ have the form as in (3.30), where
0<d; <1,i=12 ¢ > 0,9 = 0 and ) satisfies conditions in (3.32) with
1> p; >d;, i=1,2. Then {a;} is an I(dy) filter.
Proof. Write
&j = C_Zjl -+ C_LjQ, C_ljl = Eai, L_ng = Eajl(—l <a< O) = (—1)]Eaj,
From (3.33), (3.34), and (3.39) we obtain
Gy = mbj(dl)<1+o(j—ﬁl)) = rabi(dy) + wj,

1
k1= ie(dy, do)l(dy), wﬂ:O(W)- (3.40)
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Consider the convolution
k
(&1*b(—d1))k = Zaﬂbk —j

= K1 Z bj(dl)bk_j(—dl) + Z U}jlbk_j<—d1)

J=0 J=0

k
= l€15k + Z U)jlbk_j(—dl).

=0
From (3.39) and (3.40) we obtain
k 1 1

C
jZO (] + 1)1+ﬁ1—d1 (k +1-— j)1+d1
< Ck—l—min(dlﬁl—dl).

<

k
> winbg—j(—dy)
=0

Since min(dy, f; — dy) > 0, this proves the convergence > 72, ’((_11 * b(—dl))k’ < 00.
The convergence > 72, ‘(ZLQ * b(—dl))k‘ < oo follows similarly using the fact that

hy = 0.

It remains to show that

o0

A= Y (axb(—d)) # 0. (3.41)

k=0

Consider the power series A(z) 1= 322 (@ b(—dy))r2", |z| < 1. Since the series in
(3.41) absolutely converges, so

A= 1;%1 A(2).

We have

W, 1 (1 — 2)%9(x) da
= a1 —22)(1 —2)d (1 + x)d

Decompose A(z) = [y -+ [0, -+ =1 A1(2) + Ay(2). Clearly, lim,y; Ay(2) = 0. Let
0=1—2,0. Then

54 dy
1—y)(1—0))yn
1/6 du

= 9
1 /0 (14+u—ud)uh

~ 272 B(dy,1 —dy) # 0.

Az) ~ 2_%1/01 (1=

Proposition 3.3.4 is proved. O
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3.4 Long memory properties of the limit aggre-
gated process

In this chapter, we discuss two notions of long memory which do not require finite
variance. The first notion - distributional long memory - was introduced in Cox [29]
(see Definition 2.3.6, page 49). The second notion - long-range dependence (sample
Allen variance) (LRD(SAV)) and its antonym short-range dependence (sample Allen
variance) (SRD(SAV)) - was introduced in Heyde and Yang [46] (see Definition 2.3.7,
page 49).

For0 < a <2 —-1/a<d<1-1/a,d # 0, introduce fractional Lévy motion,
L. 4, written as stochastic integral

Loalt) = /t (=0 - (-0)h) dZufe), 120, (3.42)

where {Z,(z),z € R} is Lévy a—stable process, with characteristic function

Eeieza(m) _ e—\9|aw(9;a,c1,cz)|ac|’ 971, c R, (343)

where w(0; a, c1,cy) is defined in (3.8). Recall that L, 4 has stationary increments,
a—stable finite dimensional distributions and is H —self-similar with self-similarity
parameter H = d + 1/a. Moreover, for 1 < o« <2and 0 <d < 1— 1/a, the process
L, q has a.s. continuous trajectories, while for —1/a < d < 0, trajectories of L, 4
are a.s. unbounded on any finite interval. See [95] for these and other properties of
fractional Lévy motion.

Proposition 3.4.1. Let {X(t), t € Z} be the limit aggregated process in (3.22),
with i.i.d. innovations £(t) € D(a), 0 < a < 2.

(i) Let 1 < o < 2 and the distribution of r.v. a have a probability density as in
(3.30), such that dy > 0,7, > 0, and

1
di<l——, i=12 (3.44)
«
Then
1 [nT]
—i7i7a 22 X(k) —pp) Filaa(7), (3.45)
k=1

where k1 := P1c(dy, ds)/dy.

(i) Let 0 < o < 2 and 332, (Ela[’)? < oo for some p < o. Then

1 [n7]
> X%(k) —pa Z;F/Q(T), (3.46)
k=1

n2/a —

where {Zc'fm(t), t > 0} is a homogeneous a/2—stable Lévy process with positive jumps
and characteristic function
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Eeiezim(l) _ exp{ o |9|a/2A°‘/2w(9;a/2,C1 + 0270)}7 feR, A:= Z(Eak)z

k=0
Proof. (i) Denote
ag = Ed1(0<a<1), aj = Ed'l(—1<a<0),
X(t) = D> ajue(t—j), i=1,2. (3.47)
j=0

Since X(t) = X1(t) + X2(t), for convergence of finite-dimensional distributions in
(3.45), it suffices to check that

1 nr
—diiija ZL:]I Xi1(k) —taa K1Llaa, (7), (3.48)
S Bk) = 0,0, p<a (3.49)

Relation (3.48) immediately follows from Theorem 1 (ii) of Astrauskas [7] and the
asymptotics of @;; in Proposition 3.3.1 (page 62).
Theorem 1 of Astrauskas [7]: Let { Xy, k € N} have the form

Xk:Za(k—j)ej, kGN,

J
where €; € D(a), 0 < a < 2.

(i) Assume, that the series Y_;a(j) converges absolutely and A = ‘Z]‘ a(j)‘ > 0.
Then

1 [nt]
T > Xk —tad Za(2)

n k=1
where  Z,(t) is a—stable process with independent increments, A, =
CleApt/egqlYe(n), C = (c1 + c)I(|1 — a|)cos(ar/2), H, is a slowly vary-
ing function.
(ii)Let a > 1, 1/a < < 1 and a(k) =0, for k =0,—1,-2,.... Assume, a(k) =
k=PL(k), for k > 0. Here L is a slowly varying function. Then

1 [nt]
> Xk —tad Laj—s(t)

n k=1

A

where A, = |1 — B|7 CYonpt/eH1=BL(n)HY*(n), C = (c; + c2)[(|1 — af) cos(ar/2),
H, is a slowly varying function, and L,1_g(t) is the same as in (3.42).

Next, continuing the proof of Proposition 3.4.1 (i), note that it suffices to show
(3.49) for 1 < p < av and p sufficiently close to v (to have 1/p < d;+1/a). According
to inequality (3.12),

67



COMMON INNOVATIONS

n p
> Ed*1(-1<a<0)

t=max(1,s)

E[> X (k)P < 2E[eP)]
k=1

s<n

= 2E|5|p(2 1> Ed'**1(-1 < a < 0)?

s=0 t=1
+ > 1Y Edl(-1<a< 0)|P>,
s=1 =0
where
00 n P 00 1+5(1 —a" 1) P
YIEY d1(-1<a<0) = > |E 1(-1<a<0)
s=0' t=1 =0 l1—a

IN

23 (Blaly

and the last series converges in view of Proposition 3.3.1 (page 62), provided p is
chosen so that d; <1 —1/p, i =1,2. In a similar way,

n | n—s n—1 t
SIS Eal(-1<a<0) = ZEZail(—1<a<0)‘p
s=1"4i=0 =
1—a+1 P
= z(:)E — (—1<a<0)

t—
n,

VAN

proving (3.49) and the convergence of finite-dimensional distributions in (3.45), too.
The tightness in D|0, 1] follows by the well-known Kolmogorov’s criterion. Namely,
it suffices to show that there exist C,I' > 0 and p < « such that for any n > 1 and
any 0 <t<t+h<1

[n(t+h)]
S Xk l < CRUTpldit1/ep, (3.50)

k=[nt]+1

E

By stationarity of {X(t), t € Z}, it suffices to show (3.50) for t = 0 and h = 1.
Furthermore, it suffices to check (3.50) separately for {X,(t), t € Z} and {Xy(t), t €
Z} as defined in (3.47). Again, for {X,(t), t € Z}, (3.50) follows from Astrauskas|7] !,
while for {X5(t), t € Z}, we have

E\Z%z )| < Cn, for any p < «,

1. In the proof of Theorem 2 of [7], A. Astrauskas proves the tightness in C]0, 1] for processes
such as {X1(t), t € Z}. He uses the well-known Kolmogorov criterion.
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implying (3.50) by the fact that 1 < (d; + 1/a)p for suitably chosen p. This proves
part (i).
(ii) Rewrite z{“ﬂ X%(k) = Ii(7) + 2I5(7), where

[nT] &
L(t) = > > ( (Ea"7)%e%(5),
k=1 j=—00

[nT]

L(r) = Z Z Ed" T Eq* ! e(4)e(i).

k=1 —oco<j<i<k

Note € € D(a/2) and Y52, (Ela}?)? < oo for some p < a. The convergence

nHL(T) =t Z25(7)

follows from (Avram and Taqqu[10] and Astrauskas[7], Theorem 1 (i)). Thus, part
(ii) follows from

E|L,(1)[P = o(n*/*). (3.51)
Using (3.12) and Minkowski’s (3.25) inequalities, for any 1 < p < a we obtain

n i—1

n X X p
ELWP < 2B S E[ Y % Ea’“_JEak_lE(j)‘

i=—oc0 | k= lvij:foo

< (2Ef]P)? > Z > Ea*JEa"~|

t=—00 j=—00 ' k=1Vi

< (2E[¢]?) (i( nﬁf i ‘Ea’“ TRk > /p>p

1=—00 j=—00

< (@EEPPAZr = O(),

where A, := 3%, |Ea’|P < co. Whence, (3.51) follows for 1 < a < 2. For 0 < a < 1,
relation (3.51) follows similarly. Proposition 3.4.1 is proved. O

Corollary 3.4.2. Let {X(t), t € Z} be the limit aggregated process (3.22) satisfying
the conditions as in Proposition 3.4.1 (i). Then

(i) {X(t), t € Z} has distributional long memory.

(ii) {X(t), t € Z} is LRD(SAV).

Proof. Part (i) follows from (3.45) and the fact that the limit process, L, 4,, has
dependent increments. Part (ii) follows from (3.45), (3.46) and the fact that 2/a <
2(d1 + 1/&) 0

Remark 3.4.3. The finite-dimensional convergence in (3.46) can be replaced by
functional convergence in D|0, 1] with M;—topology (see [72]).
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3.5 Nonstationary limit aggregate

Following Zaffaroni [103], consider aggregation of nonstationary AR(1) processes:
t—1
Yi(t) == > ale(t—j), t =1,2,..., i = 1,...,N,
j=0

where {a;} and {e(t), t € Z} satisfy the same conditions as in (3.18). Similarly to
(3.19), define

Proposition 3.5.1. (i) Assume the same conditions as in Proposition 3.2.53. Then
foranyt=1,2,...,

Yn(t) =i, Y(t) and  Yn(t) =, Y(1),
where

t—1
Y(t) = > ae(t—7j), a; == Ed’.
j=0

(7i) Let 1 < o < 2 and let the mizing density have the form as in (3.30) such that
Yy >0 and

1
1— E < dl <1 and dQ < dl. (352)
Then 1
WY([WTD —7fdd wlc(dladﬂUdl,a(T)a (3-53)
where .
Usa(r) = / (r— 8)41dZa(s), T3>0 (3.54)
0

and where Z, is the same Lévy process as in (3.42).

Proof. (i) The proof is analog to the proof of Theorem 3.2.4 (page 58), so we omit
the details.

(ii) Similarly to (3.47), decompose Y (t) = Y;(t) + Y5(t), where
~ t—1
Yi(t):=> aue(t—j) i=12,
=0

and where a;j; are defined as in (3.47). Relation (3.53) follows from

Wﬁ([”ﬂ) —rtad Y1c(dy, da)Uq g, (7)), (3.55)
Ya(n) = op(nhiti/a=ly, (3.56)

The proof of (3.55) follows the argument in [8] and [18]. As in these papers, it
suffices to show the convergence of one-dimensional distributions in (3.55). To this
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end, we write the left-hand side of (3.55) as a ’discrete stochastic integral’

1 B 1 [n7]

— [n7]—j /-
e ) = S 2 Bate)

J
1 T+ ] (o]
= W/l Eal e([s])ds

= /OOO LECLTT]i[nS]l(S c (1/7% [nT]/n])g([n‘SD dns

ndi—1 nl/a

— /0°° 7, 8) Zn(ds)

where Z, (s, 8" = n7Y* Yy <1< € is a discrete random measure defined on finite

intervals (s, "] C (0,00), and where the integrand f,(7,-) is a piecewise constant
function:

falr, s) = Ed" "1 (s € (1/n, [n7]/n)).

From Proposition 3.3.1 (page 62), it is clear that for any 7,5 > 0,7 # s

ndl—l

fulT,8) — aprc(dy,do)(t — s)1 (s € (0,7]) =: f(r.s), asn — oo.

Moreover, the last convergence extends to the convergence in L,+.(R), for any suf-
ficiently small € > 0, i.e.

/+Oo |fu(T,8) — f(1,5)]**“ds — 0, as n — oo.
This guarantees the convergence in finite dimensional distributions of the dis-
crete stochastic integral [° f,.(7,$)Z,(ds) towards the limiting a—stable integral
Io° f(7,8)dZa(s) = ie(dy, d2)Una, (T) (see [8] for details). Next, (3.56) can be
proved analogously as (3.55), using expression of ’discrete stochastic integral’ and
the fact that dy < d;. Proposition 3.5.1 is proved. |

Remark 3.5.2. The process U, 4 in (3.54) is well-defined for any 1 < o < 2,
1 —1/a < d < 1, as a stochastic integral with respect to Lévy process Z,. It
has a—stable finite-dimensional distributions and is self-similar with index H =
d+1/a—1 € (0,1/a). These facts are easy consequences from the definition of
stochastic integral with respect to a—stable random measure and its properties; see
e.g. [95].

Let us also note that, for o = 2, the process U, 4 is a.s. continuous while for
a < 2,1t is a.s. discontinuous and nowhere bounded (a.s. unbounded on every finite
interval). The last fact follows from a general result in [92]. In particularly, the
convergence in (3.53) cannot be replaced by a functional convergence in DI0, 1].

Remark 3.5.3. If inequality do < d; in (3.52) is reversed, then Ya([n7]) =
O,(n®*/2=1) dominates Y;([n7]), and one can ask if the convergence in (3.53)
holds with d; replaced by ds. Somewhat surprisingly, in turns out that the process
n~%=1/2+1Y;([n7]) does not converge in the sense of finite dimensional distributions.

The last fact can be observed for & = 2 and Gaussian innovations e(t) ~ N(0, 1),
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by considering the covariance function

n

COV<n1/2fd2}_/2(n)7 n1/27d2}_/2(2n>) _ n172d2 Z(_l)nfs(_l)ansEarifsEa%nfs

s=1
= (=1)"n'7**3Y" Ea" *Ea>""*
s=1
~ C(—l)nn1_2d2 Z(n . s)d2_1(2n . S)dQ—l
s=1

~ 0(—1)n/0 (1 —2)=~1(2 — 2)%=1dz,

which oscillates with n and has no limit as n — oo.
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Aggregation of AR(1) process
with infinite variance and
idiosyncratic innovations

Abstract. Contemporaneous aggregation of N independent copies of random-
coefficient AR(1) process with random coefficient @ € (—1, 1) and independent iden-
tically distributed innovations belonging to the domain of attraction of an a—stable
law, 0 < a < 2, is discussed. We show that, under normalization N/, the limit
aggregated process exists, in the sense of weak convergence of finite-dimensional
distributions, and is a mixed stable moving average as studied in [101]. We focus on
the case where the slope coefficient a has probability density vanishing regularly
at a = 1 with exponent 5 € (0,a — 1), for o € (1,2). We show that in this case,
the limit aggregated process {X(t), t € Z} exhibits long memory. In particular, for
{X(t), t € Z}, we investigate the decay of codifference, the limit of partial sums, and
the long-range dependence (sample Allen variance) property of Heyde and Yang [46].

4.1 Introduction

In Chapter 3, we discussed contemporaneous aggregation of heterogenous
random-coefficient AR(1) models with common innovations in the domain of attrac-
tion of a—stable law, 0 < o < 2, and long-memory properties of the limit aggregated
process. We showed that in such case, the limit aggregated process is a moving av-
erage with independent identilly distributed innovations, whose coefficients decay
hyperbolically 791 for 0 < d < 1—1/a, 1 < a < 2. Let us note that the above ag-
gregation scheme with a particular choice of beta-distributed slope coefficient leads
to FARIMA(0, d, 0) process with a—stable innovations (see Chapter 3).

In the present chapter (also in [88]) we discuss contemporaneous aggregation of
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infinite-variance heterogencous AR(1) processes with idiosyncratic innovations (in
other words, aggregation of independent copies of random-coefficient AR(1) pro-
cesses). We show that, under some natural assumptions on the AR(1) noise and
distribution of the slope coefficient, the limit aggregated process exists and is a
so-called mized stable moving average given in (4.4) below. The class of mixed sta-
ble moving average processes, introduced in [101] extends (usual) a—stable moving
average processes, and plays an important role in the general theory of stationary
a—stable processes (see [93]).

Let us describe the main results of this chapter. Let {X(¢),t € Z} be a stationary
solution of the AR(1) equation

X(t) = aX(t—1) +e(t), (4.1)

where {e(t),t € Z} are ii.d. random variables in the domain of the (normal)
attraction of an a—stable law, 0 < a < 2, and where a is an r.v., independent of
{e(t),t € Z} and satisfying |a|] < 1 almost surely. Let the

Xl(t) = CLZXZ(t - 1) +5z(t)7 1= ]_,27 .. .,N,

be independent copies of (4.1). If the distribution of a satisfies the condition that,
for some p < a,

E[1_1|a|p] < o0 (4.2)

then N
N7VEST X () —aa X(D), (4.3)

in the sense of weak convergence of finite-dimensional distributions, where the limit
process is written as stochastic integral

=3 [, @ Mi(da) (4.4)

s<t L1)

where {M;, s € Z} are i.i.d. copies of an a—stable random measure M on (—1,1)
with control measure proportional to the distribution ® of r.v. a (Theorem 4.2.1,
page 76). Below, we call ® the mizing distribution of {X(t),t € Z}. The class
of processes in (4.4) is quite numerous since different mixing distributions ® yield
different processes {X(t),t € Z} (Proposition 4.2.4, page 77).

The main incentive of the research was answering the question of whether aggre-
gation of the infinite-variance AR(1) series can lead to long memory. To this end,
similarly to Zaffaroni [103], we assume that the mixing distribution is concentrated
in the interval (0,1) and has a density ¢ such that

p(z) ~ (1) (1 —2)7, as x — 1, (4.5)

for some (1) > 0, 5 > —1. In Section 4.3 we study the long-memory properties of
the mixed a—stable moving average in (4.4).

Clearly, the usual definitions of long memory in terms of covariance/spectrum
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do not apply in infinite-variance case. Therefore, we use alternative notions of long
memory: the decay rate of codifference (see Samorodnitsky and Taqqu [95], pp. 103-
106), distributional long memory (see Cox, [29]), and the long-range dependence
(sample Allen variance) property of Heyde and Yang [46]. These three properties
are established for the aggregated process {X(¢),t € Z} in (4.4) under assumption
(4.5) in the parameter range

0<fB<a—-1, l1l<a<?2

see Theorems 4.3.1, 4.3.2 and 4.3.3 (pages 79, 80). In particular, normalized partial
sums of {X(t),t € Z} in (4.4) tend to an a—stable stationary increment process
{Aap(7), 7 > 0}, which is self-similar with index H = 1 — f/a € (1/a,1) and is
written as a stochastic integral

Aps(r) = /RMR(f(x,T—s)—f(x,—s))N(dx, ds), (4.6)

1—e® ifz>0andt >0,

UC {O, otherwise,
with respect to an independently scattered a—stable random measure N on
(0,00) x R with control measure (1)z°~® dx ds; see Theorem 4.3.1 (page 79) for
precise formulations. The value § = a— 1 seems to separate long memory and short
memory in the above aggregation scheme; indeed, in the case § > o — 1 the aggre-
gated process has the short-range dependence (sample Allen variance) property and
its partial sums tend to an a—stable Lévy process with independent increments (see
Section 4.3). Let us note that a—stable self-similar processes of the type in (4.6)
were discussed in [26], [27], [100]. Also, note that (4.6) is different from the (more
usual) a—stable fractional Lévy motion. Since the latter process arises in a similar
context by aggregating AR(1) processes with common infinite-variance innovations
(see Chapter 3), we can conclude that, in the infinite-variance case, the distinctions
between dependent and independent aggregation schemes are deeper than in the case
of finite variance; see also Remark 4.2.6, page 78. On the other hand, there are cer-
tain similarities between the two aggregation schemes and long-memory properties
of the limit aggregated processes, including the relation in (4.21), below, between
exponents of the mixing density near a = 1. See Remarks 4.3.4 and 4.3.5 (page 81).
The notion of long memory is polysemous, especially for infinite-variance pro-
cesses, and is not limited to the three characterization properties mentioned above.
Another interesting characterization of long memory by the behavior of ruin prob-
abilities in risk insurance models with a—stable claims is given in Mikosch and
Samorodnitsky [76]. See Remark 4.3.6, page 81, also Chapter 7.

4.2 Existence of the limit aggregated process

Let {X;(t),t € Z},i=1,2,..., be independent copies of AR(1) process X (%)
in (4.1). From the Proposition 3.2.3, page 56, it follows that the solution of the
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equation (4.1) is the series

= g: a“e(t — k), (4.7)

which converges conditionally a.s. and in L, for any p < o and almost every

€ (—1,1). Moreover, if the condition (4.2) is satisfied, the series in (4.7) converges
unconditionally in L,.

We are interested in the existence and properties of the limit aggregated process

{X(t), t € Z} defined by (4.3).
Introduce independently scattered a—stable random measure M = {M(da), s €
Z,a € (—1,1)} on Z x (—1,1) with the characteristic functional

Eexp{i X 6.00,(4)} = exp{ = X [0.w(e.)2(4) . (4.8)

SEZ SEL

where 05 € R and A; C (—1,1) are arbitrary Borel sets.
We write ¢ € D(a), 0 < a < 2, when ¢ belongs to the domain of normal
attraction of an a-stable law (see Definition 3.2.1, page 55).

Theorem 4.2.1. Let ¢ € D(a) for some 0 < a < 2, and let condition (4.2) be
satisfied. Then the limit aggregated process {X(t),t € Z} in (4.3) ewists. It is
stationary, ergodic, has a—stable finite-dimensional distributions, and a stochastic
integral representation as in (4.4), where M is an a—stable random measure as

defined in (4.8).
The proof of theorem is given in Section 4.4, page 82.

Remark 4.2.2. If the distribution ® is concentrated at a finite number of points
ai,...,ap € (—1,1) and ¢; := P(a = a;) > 0, the process in (4.4) can be written as
a sum of independent a—stable AR(1) processes:

X(t) =2 Yi(t),  Yi(t) =2 a7 "G(s), (4.9)
i=1 s<t
where {(;(s) = Ms({a;}),s € Z} is an iid. sequence of a—stable r.v’s with
Eel6i(®)0 = ¢=l01%w(®)¢:  For a general mixing distribution ®, the process in (4.4)
can be approximated by finite sums of AR(1) processes as in (4.9). The process in
(4.4) is well defined (see [101]) if and only if

S Elat**1(s < t) ZE|a\°‘k _ { = a} < oo,

SEZL |CL|

which agrees with (4.2). The characteristic function of (4.4) is given by

Eexp{ii@tf{(zﬁ)} —exp{ ZE{ (Zemt “1(s <t)>}}

SEZL
(4.10)

ZHtat 1(s <t)

t=1
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Remark 4.2.3. For oo = 2 the limit process in (4.4) is Gaussian and its covariance
function is given by

(4.11)
and coincides with the covariance of the original series in (4.7). For o = 2, the
statement of Theorem 4.2.1 is well known; see [79] and [103].

It is clear from (4.10) that the distribution (i.e. finite-dimensional distributions)
of {X(t), t € Z} is uniquely determined by the distributions of r.v/s @ and Z in
(3.7), page 55. It is also clear that the distribution of {X(t), t € Z} (particularly, the
marginal a—stable distribution of X(0)) uniquely determines the parameter o. Part
(i) of Proposition 4.2.4, below, shows that the class of mixed stable moving averages
in (4.4) is nonparametric and very large, since different mixing distributions lead to
different processes. Part (ii) says that this class is different from (usual) a—stable
moving averages, except for a trivial mixing distribution ®.

Proposition 4.2.4. Let 0 < a < 2.

(1) The distribution of {X(t), t € Z} in (4.4) uniquely determines the distribution
.

(ii) Let {X(t), t € Z} C{Y (1), t € Z}, Y (t) := =20 ¢;C(t—j), where {C(1), t € Z}
is an i.i.d. sequence having the same distribution as the a—stable r.v. in (3.7),
page 55, and c;,j = 0, are real coefficients with 3272, lc;|* < oo. Then there exist
ap € (—1,1) and e € {—1,1} such that ¢; = eal and ® = .

The proof of the Proposition 4.2.4 is given in Section 4.4, page 83.

Let us note that condition (4.2) is crucial for the existence of nontrivial limit
of aggregated AR(1) processes. Note also that condition (4.2) does not depend on
p > 0 since

1—at
sup

< 00,
0<a<1 1 — a?

for any p,q > 0. Below we show that if condition (4.2) is violated and the mixing
density has a power-law behavior at a = 1 with negative exponent 5 € (—1,0), the
limit aggregated process is a random «(1+ 3)—stable constant whose stability index
a(l + B) < «a. For notational simplicity, we assume that the noise belongs to the
domain of attraction of a symmetric a—stable law.

Proposition 4.2.5. Assume that ¢ € D(a), 0 < a < 2, and that w(0) = 1 in
(4.23), page 82. Moreover, assume that the mixing density has the form

p(a) = Pla)(1—a)’, ac(0,1), (4.12)
where € (—1,0) and ¥ is an integrable function on (0,1) having a limit

(1) := lim () > 0.

a—1
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Then

N
Nﬁl/a(prﬁ) Z Xz(t) —fdd Z,
i=1
where the limit process Z does not depend on t and is an a(l + p)—stable r.v. with
characteristic function Eel?? = ¢~ K0 “where K is given in (4.31), page 84.

The proof of the Proposition 4.2.5 is given in Section 4.4, page 84.

Note that, for the mixing density in (4.12) with 8 > 0, Theorem 4.2.1, page 76,
applies and, therefore, § = 0 is a critical point resulting in completely different
limits of the aggregated process in the cases § > 0 and § < 0. The fact that
the limit is degenerate in the latter case can be explained as follows. It is clear
that, with 5 decreasing, the dependence increases in the random-coefficient AR(1)
process { X (t), t € Z}, as well as in the limit aggregated process {X(t), t € Z}. In
Section 4.3 we show that the dependence in {X(t), ¢t € Z} decays hyperbolically
with the lag, with an exponent which depends on  and a and which tends to 0
as (] 0. Therefore, for negative 5 < 0, the dependence in the aggregated process
becomes extremely strong so that the limit process is degenerate and completely
dependent.

Remark 4.2.6. Let M be the a—stable random measure in (4.8), and {((s) :=
M(—1,1), s € Z} be the corresponding i.i.d. sequence of a—stable r.v’s. Let
{X(t), t € Z} be the aggregated mixed a—stable moving average in (4.4), and let
1 <a < 2. Then

E[X(t)|C(s),s €Z) = S E[a'*|¢(s), teZ. (4.13)

s<t

Relation (4.13) follows from a general ‘interpolation formula’ for independently scat-
tered random measures (see [97], Proposition 1.3). For the reader’s convenience,
we present this formula for the a—stable measure M in Proposition 4.2.7, below.
Recall from Chapter 3 that the right-hand side of (4.13) represents the limit aggre-
gated process in the AR(1) aggregation scheme with common a—stable innovations
£(s) = ((s),s € Z. Thus, (4.13) establishes a link between the aggregated processes
in the two aggregation schemes. It also suggests that the latter aggregation scheme
leads to a simpler aggregated process when compared to the process (4.4) in the
present chapter. In particular, the moving average on the right-hand side of (4.13)
may be invertible (which occurs, e.g. in the case of FARIMA(0,d,0) coefficients
E[a'~*] mentioned in the introduction), while, for the mixed moving average in (4.4)
the usual definition of invertibility does not apply and the possibility of ‘recovering’
M;(A) from X(s),s < t, seems unlikely. On the other hand, in the finite-variance
case, a = 2, the limit aggregated process {X(t), t € Z} is Gaussian with covariance
given in (4.11); hence, it is also invertible under known conditions on the spectral
density. (A particular form of the mixing density ¢ leading to the FARIMA(0, d, 0)
Gaussian process {X(t), t € Z} was found in [20].) The above discussion complies
with the remark in the introduction that the distinctions between dependent and
independent aggregation schemes in the infinite-variance case are deeper than in the
finite-variance case.
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Let L*(Z x (—1,1)) denote the class of all measurable functions h : Zx (—1,1) —
R with
> E|h(s,a)|* < o0, 1 <a <2

SEZ

The stochastic integral

=3/ M, (da)

SEL 1 1)
is well defined for any h € L%(Z x (—1,1)); see ([95], Ch. 3, pp. 111-167).
Proposition 4.2.7. Let M and {((s),s € Z} be the same as in Remark 4.2.6, and
let 1 <a<2. Then, for any h € L*(Z x (—1,1)),

E[M(h)|((s),s € Z] = > h(s h(s) := Eh(s, a). (4.14)

SEZL

The proof of the Proposition 4.2.7 is given in Section 4.4, page 85.

4.3 Long memory properties of the limit aggre-
gated process

Recall the definition of the process {A, 3(7),7 € R} in (4.6). This process is
well defined for any 0 < f < o — 1 and « € (1,2) and its characteristic functional is
given by

Eexp{igeiAa,g(n)} = eXp{—fﬂ(l)//]R+

<§:91 fle, 7 —s) — f(:c,—s)))xﬁ‘“dsdx},(zl.w)

=1

«

il (2,7 — 5) — f(a, —3))

where 7;,0; € R, i = 1,...,m, m = 1,2,.... The process {A,3(7), 7 > 0} is
self-similar with index

H=1-5 ¢ (;1> (4.16)

«

which follows from (4.15) by the change of variables s — As, x — z/\, A > 0,
and has a—stable finite-dimensional distributions and stationary increments. From
these facts and Kolmogorov’s moment criterion, it follows that {A, 3(7), 7 > 0} has
a sample continuous version. See also ([100], Corollary 4).

Theorem 4.3.1. Let {X(t), t € Z} be the aggregated process in (4.4) with mizing
density as in (4.12), where > 0 and v is integrable on (0,1) and has a limit

limg - 9(a) =: (1) > 0.
(i) Let l <a<2and0<f<a—1. Let H=1—F/a, as in (4.16). Then

[n7]
1
nH Z :{ —>fdd Aa’g(T), (417)
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where the limit process is given in (4.6).
(i1) Let 0 < a < 2 and B > max(a — 1,0). Then

1 [n7]
nl/aZ%(t) —>fdd L(T), (418)
t=1

where {L(7),7 > 0} is an a—stable homogeneous Lévy process with characteristic
function

. «@ 1
Ee0H(T) — o= KloI"wO)r ¢ .— / (1 —2) %(x)dx.
0

The proof of Theorem 4.3.1 is given in Section 4.4, page 86.

Since the process {An(7),7 > 0} in (4.17) has dependent increments while
the Lévy process {L(7),7 > 0} in (4.18) has independent increments, from Theo-
rem 4.3.1 we conclude that the limit aggregated process {X(t), t € Z} with mixing
density as in (4.12) has distributional long memory (see Definition 2.3.6, page 49) for
0<pf<a—1,1<a<?2, and distributional short memory for § > max(a — 1,0).

Next, we turn to the study of the LRD(SAV) property defined in Heyde and
Yang [46] (see Definition 2.3.7, page 49).

Theorem 4.3.2. Let {X(t), t € Z} satisfy the conditions of Theorem 4.3.1.
(i) Let 1 <a<2and 0 < < a—1. Then {X(t),t € Z} is LRD(SAV).
(i) Let 1 <a <2 and B> a—1. Then {X(t), t € Z} is SRD(SAV).

The proof of Theorem 4.3.2 is given in Section 4.4, page 88.
The codifference of a strictly stationary process {Y(t), t € Z},

Cod(Y(0),Y (1)) := log Ee!¥ =Y O) _ o0 FeV® _ Jog e~ V()

can also be used to characterize the long memory of {Y (), t € Z} (see [95], pp. 384-
387). Theorem 4.3.3, below, gives the decay rate of the codifference of the mixed
stable moving average in (4.4) and the mixing density in (4.19), below.

Theorem 4.3.3. Let {X(t), t € Z} be the aggregated process in (4.4), with charac-
teristic functional as in (4.10), 0 < a < 2, and mizing density

1-a), 0<a<l,

a€(—1,1), 4.19
(14+a)?, —-1<a<0, ( ) (4.19)

¢(a) = ¢(a) {

where 1 > 87 > 0, 1 > [y > 0, are parameters and 1 is continuous at £1 with
limg 11 9(a) =:¢¥(£1) > 0. Then, ast — oo,

Cod(X(0), X(t)) = (C1+o(1))t~" + (Calt) + o(1) )=, (4.20)
where
Cr = (e [T + w1 - (- )y dy,

Calt) = d(=Da"Re(w(1)) [~ [+ 1= (1= (~1)fe™)y" " dy.
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The proof of Theorem 4.3.3 is given in Section 4.4, page 89.

Remark 4.3.4. For 1 <a <2 and 0 < § < a— 1, introduce the parameter

1=
g =170 (4.21)
a
or f=a—1—ad. Note § =0if and only if d =1—1/a, and f = o — 1 if and only
if d = 0. Recall from ([95], Theorem 7.13.4) that, for the FARIMA(0, d, 0) process
{Y(t), t € Z} with a—stable innovations, 0 < d <1 —1/a, and 1 < a < 2,

Cod(Y(0),Y (t)) ~ Ot as t— c0. (4.22)

Therefore, Theorem 4.3.3 implies that the codifference of the aggregated process
{X(t), t € Z} in (4.4) with the mixing density in (4.12) and 0 < § < a — 1 decays
similarly as the codifference of an a—stable FARIMA(0, d, 0) process with parameter
d given in (4.21). From Theorem 4.3.1 we see that the above similarity between
{X(t), t € Z} and FARIMA(0, d,0) with parameter d in (4.21) also extends to the
normalization exponent H of partial sums of both processes: for the former process,
H =1-f/a and, for the latter process, H = d + 1/a. Clearly, 1 — f/a=d+ 1/«
is equivalent to (4.21). In other words, if § and d are related as in (4.21), then
partial sums of {X(t),t € Z} and partial sums of the FARIMA(0,d,0) process
converge under the same normalization and the limits are self-similar processes with
the same parameter H.

Remark 4.3.5. Recall that a second-order stationary process is said to have covari-
ance long memory if the sum of the absolute values of covariances diverges. In the
case of an infinite-variance process, the divergence of the absolute values of codiffer-
ences also indicates the presence of long memory. From Theorems 4.3.1-4.3.3 we see
that the codifference of {X(t), t € Z} is nonsummable for any 0 < § < 1, irrespec-
tive of the value of a, while at the same time this process may have the SRD(SAV)
property and distributional short memory, provided a —1 < < land 1 < a < 2.
These results might look strange and a peculiarity of the process in (4.4) at first
glance; however, similar facts also hold for moving averages Y (t) = 3272 ¢;e(t — j)
in i.i.d. innovations £(t) € D(«) with regularly decaying coefficients ¢; ~ j*~!. In-
deed, for such {Y'(t), t € Z}, the codifference decays as in (4.22), for any 0 < o < 2
and d < 1 —1/a, so that 3272 [Cod(Y(0), Y (j))| = oo and 372 |¢;| < oo hold for
1 —2/a <d<0. Since {Y(t), t € Z} has distributional short memory for d < 0
and 372, ¢; # 0 (see, e.g. [7]), we have exactly the same situation as in the case of
{X(t), t € Z}, with parameters d and (3 related as in (4.21).

Remark 4.3.6. Mikosch and Samorodnitsky [76] discussed the asymptotic behavior
of the ruin probability

P(u) = P(sup(X(l) + - 4+ X(n) —np) > u)

n>0

as u — oo, where ‘claims’ {X(¢),t € Z} form a stationary a—stable process,
1l < a < 2, and g > EX(1) is a given constant. They associated the ‘clas-
sical’ decay rate 1 (u) = O(u~®"Y) with short-range dependence and the decay
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rate ¥(u) = O(u™") with exponent ¥ < « — 1 with long-range dependence of
the claim sequence {X(t),¢t € Z}. In the case when the X(t)’s are stationary
increments of a linear a—stable fractional motion with self-similarity parameter
H € (1/a, 1), Mikosch and Samorodnitsky ([76], Proposition 4.4) obtained a decay
rate ¥(u) ~ (constant) u=*1=H) of the ruin probability. Let us note that increments
of an a—stable fractional motion satisfy the distributional long-memory property
and also exhibit the decay of codifference as in (4.22), with d and H related as in
Remark 4.3.4 (see ([95], pp. 380-387)). Therefore, the above characterization of long
memory via ruin probabilities seems to agree with other characterizations of long
memory discussed in this paper, at least for a—stable moving averages. In Chap-
ter 7 (see also [83]), we find the asymptotics of the ruin probability, when ’claims’
are modeled by the limit aggregated process {X(t), t € Z} in (4.4).

4.4 Proofs

Proof of Theorem 4.2.1, page 76. The characteristic function of the r.v. ¢ € D(«)
has the following representation in a neighborhood of the origin (see, e.g. ([51],
Theorem 2.6.5)): there exists an € > 0 such that

Eelfc = ¢ l0I"w®)h(0) 0] < e, (4.23)
where h is a positive function tending to 1 as § — 0. Denote

(s a) ==Y 0a""1(s < t). (4.24)
=1
Then N=YVeym 0,X(t) = N~V Y, ., 9(s,a)e(s). Since m and 0;,t = 1,...,m are
fixed and a is bounded, it is clear that |[J(s,a)| < C for a constant C' independent of
a and s, and, therefore, [N~Y/*9(s,a)| < € for all N > Ny large enough. Therefore,
using (4.23), we can write

Eexp { N~ i i GtX,-(t)}

:_ (E exp { N~ f: QtX(t)}>N
= (E exp{ — Nt é ’19(3, a)’ah(N_l/o‘ﬂ(s, a))w(ﬁ(s, a)) })N

Clearly, for any a € (—1,1),

> ‘19(8,a)‘ah(N_l/aﬁ(s,a))w(ﬁ(s,a}) — Z‘ﬁ(s,a)‘aw@(s,a)) (4.25)

SEZ SEL

as N — oo, and
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4.26
~— 1—|al® (4.26)

‘%‘ﬁ(s,a)‘ah(]\f1/0‘19(5,a)>w(19(3,a))’ . _C

for a constant C' < oo independent of a. Define

@N = NE

exp{ —N'Y ‘19(5, a)‘ah<N_1/a19(s, a))w(ﬁ(s, a))} — 1].

SEZL

Using (4.25), (4.26), condition (4.2), the fact that 0 < h(f) < C, the inequality
le* — 1| < |z| z € C, Rez < 0, and the dominated convergence theorem, we obtain

Jm O = = (s, 0) w00
Therefore,
N m ®N N
lim Eexp { NS QtXZ-(t)} = lim (1 + N)
= ew{ - SEWE ol w0 )l

which coincides with (4.10). The properties of {X(t), t € Z} mentioned in the
statement of the theorem follow from [101]. This completes the proof. a

Proof of Proposition 4.2.4, page 77. (i) By separately considering the real and
imaginary parts of the logarithm of the characteristic function in (4.10), we see that
it suffices to prove the proposition for the symmetric case w = 1 only.

Let L%(Z) be the space of all real sequences g = (g;,t € Z) with

gll& =D |gu|* < o0.

teZ

Let B(L*(Z)) be the o—algebra of Borel sets of L*(Z). A Borel set A C L%(Z) is
said to be symmetric if —A = A and shift invariant if Uy A = A for every t € Z, where
Us, s € Z, is the group of shift operators on L*(Z), (Usg): := g1—s. Let Biny(L*(Z))
denote the class of all open symmetric and shift-invariant sets A C L%(Z).

According to ([101], Theorem 2 and Lemma 1), the characteristic function in
(4.10) uniquely determines the measure

— 9 a
pA):= [ (e € 4) gl Mdg), (.27

on open symmetric and shift-invariant sets A € B, (L%(Z)) and vice versa; here

MA)=P((a'1(t<0),teZ) € A),  AeB(L(Z)) (4.28)

is a probability measure concentrated on the set
{9= (9,1 €Z) € L*(Z) : gt = a"1(t <0), there exists a € (—1,1)}
of geometric progressions.
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Let V C (—1,1) be an open set, and let

AWV) = U U 4Ass(V), (4.29)
SEZ d==+1
Ap(V) = {f=(fut€2) € LZ): fy = 6(1 — o)/ *v* "1t < 5), eV},

Note that, Ass(V) are disjoint sets for distinct pairs (s, 0), the set A(V) is open,
symmetric and shift invariant and p(Ass(V)) = 0 unless (s,d) = (0,1). Moreover,

WAV = w(Agn(v)) = B[S [ B )

1= lal* 1 —lal®
according to the definitions in (4.27)-(4.28). Therefore, the characteristic function
in (4.10) uniquely determines the measure G on the interval (—1,1). Since &(V') =
Jv (1 — |a|*)G(da), part (i) of the proposition follows.

(ii) As in (i), it suffices to discuss the case w = 1. Let u = ux be defined in
(4.27), and let

iy (A) = |yc||g1( € A), ¢i= (c1(t < 0),t € Z) € LNZ),

HCHoc

be the measure on the unit sphere of L%(Z), corresponding to the moving average
{Y'(t), t € Z}. By definition, py is concentrated on a single element ¢/||c||, € L*(Z).

As mentioned above in the proof of (i), {X(¢)} (s {Y'(t)} implies that
py (A) = px(A), A € By (LY(Z)). (4.30)

Consider the set A = A(—1,1), as defined in (4.29), consisting of all signed transla-
tions of normalized geometric progressions. Clearly, ¢/||c||, € A(—1,1) if and only
if ¢; = ea}, j >0 for some ag € (—1,1) and € € {—1,1}. It also easily follows from
(4.30) that ® = d,,. This completes the proof. |

Proof of Proposition 4.2.5, page 77. Let

Oy = NE[eXp{ — NHAEAD S 19 s, a)|ah(N_1/a(1+B)19(s, a))} - 1],

SEL

where (s, a) is defined as in (4.24), i.e.

U(s,a) = i@tahsl(s <1).

t=1
Then,
N m ®N N
E exp { N § (N QtXi(t)} = (1 + ) :
i=1t=1 N
Similarly as in the proof of Theorem 4.2.1, it suffices to show that

>0,
t=1

a(1+8)
lim @N = —-K

N—o0

K= ) [T- e )t s (1)
0
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To prove (4.31), split

m

Z|195a|°‘h 1/a1+/519<37a)):Z...+Z...:;El+22'

SEL s<0 s=1

Note that Y is uniformly bounded in @ € [0,1) and N > 1 and N~/0+5) = o(N~1)
for 5 < 0. Therefore, it suffices to prove (4.31) for ©y replaced by

On1 := NE[e N V2 ),

We have

m

12

Oyt = N 11 (exp{—N‘l/(H’B }—1) (1 —a)’y(a)da + o(1)

a(l—a)

1 UL
= N/ (exp{ — R ‘ ;0,; } - 1>¢(1 —2)2’ dz + o(1)
mo o e(148)
= —Kn(0)>_ 6, +o(1),
t=1
where o
Ky(0) = a~C+Dy(1) / 1(z > O (0))(1 — e )23+
0
and

on(0) = (ae) IN"VEFDIN g% 0, as N — oo.

t=1

Since limy oo Kn(#) = K by the dominated convergence theorem, this proves (4.31)
and the proposition. O

Proof of Proposition 4.2.7, page 79. 1t suffices to prove the proposition for simple
functions h € L*(Z x (—1,1)) of the form h(t,a) = X", hy1(|t] < n,a € A;), where
A; C (—1,1),i=1,...,n, are disjoint Borel sets. For such h,

= Y S haMy(A

lt|<n i=1

is a finite sum of a—stable r.v’s. By linearity of both sides of (4.14) in h and
independence of M;(A;) and M (A;),s # t, it suffices to check (4.14) for h(t,a) =
1(t =s,a € A), or

E[M,(A)[Ms(=1,1)] = ®(A)M,(-1,1) (4.32)
for any Borel set A C (—1,1). By standard arguments, (4.32) is equivalent to
E[M,(A)e 1Y) = &(A)E[M,(—1,1)e LD g c R, (4.33)
Let ri4(0) := B|e®M:(10]4(0) 1= 5_1)(0) and A := (~1,1)\A. Then (4.33) can
be rewritten as

K (0)kac(0) = P(A)K'(0).
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The above equality is immediate from x4 (0)rac(0) = x(0) and k4(0) = (k(6))®AW
(the last relation follows from the form of the characteristic functional in (4.8) and
the fact that w(f) in (3.9), page 56, depends only on the sign of ). O

Proof of Theorem 4.5.1, page 79. (i) We will prove the one-dimensional conver-
gence in (4.17) at 7 = 1 only, since the general case in (4.17) follows analogously.
In view of (4.10) and (4.15), it suffices to prove that, for any 6 € R,

Z s<t

t=1

n "3 E w(@iat_sl(s < t)> (4.34)

— c/ / (z,1—5) — f(z,—8)|["w(O(f(x,1 —5) — f(x,—s)))z" > dsdz.

Note that the expressions inside w on both sides of (4.34) are positive or negative
depending on the sign of 6 and w(f) = w(sign(#)). Therefore, it suffices to show
(4.34) for § = 1 alone. To this end, let us denote the left- and right-hand sides of
(4.34) (with # = 1) by J, and J, respectively. Split J = J; + J5, where

J o= / ds/ z,1—5)— f(x,—s)|*s" " dx
= p@ua [T -y dy,
Jo = /ds/ :1:1—5|°‘5ad;1:

1)/ du/ (1 —e—wyagh-aqy
0 0

according to the definition of f in (4.6). Next, write .J,, = Jy,1 + Ju2, where

. 7HO¢
Jo1

—a)’¢(a)da

= nHoy(1) /01 1 —1aa a(i : Zn> ’a(l — a)%p(a) da

T
X w(l — ?:L)l(() <y <en)dy+o(l)

N 1/1(1)00(1) /00(1 o e—y)ayﬁ—a—l dy — Jl

(07 0

by the dominated convergence theorem as n — oo. In a similar way,
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tsl (s <t)

(1 - a)’¥(a)da

Ty = mHoy
_ ey, / 2 0~ a)Py(a) da
_ /°° Ly (1 _ (1 - y)n_s+1)ayﬁ—w<1 = z)1(0 <y < en)dy+o(1)

— / / ( —y(l u > yﬁ—a dy du = JQ.

This proves part (i).

(ii) Denote by {L,(7), 7} the process on the left-hand side of (4.18). It suffices to
prove that, forany m > land any O =: 1o <7y < -+ < T, h €R,...,0,, € R,

gek(Ln(Tk)—L Tl— 1 i (Tk 1))

_ ns+1

Rewrite L, (1) — Ln(7k-1) = AL (1) + AL"(73,), where

AL (1) = n7Ve > > /1at8MS(da),

1] <s<[ny] s<t<[n7] O

ALl(m) = nV* Y > /1at_5M5(da).

s<[nTg—1] [nT—1]<t<[nTK] 0

Since AL (1), k = 1,...,m, are independent, it suffices to prove that, for any
k=1,...,m,

AL;(Tk) —d L(Tk) —L(’Tk_l), ALZ(T]C) = Op(l).

Moreover, it suffices to prove the last relations for £ = 1 and 7, = 1 only; in other
words, to prove that, for any 0 € R,

n 'y E< > at_s) w <9 > at_s) — Kuw(0),
s=1 t=s t=s
n "ty E( > at5> w (9 > ats) — 0.
s<0 Mt=1 t=1
Similarly as in the proof of (4.17), it suffices to prove the above relations for w(f) = 1,

Viz.

Jop =0t ZE( ats>a — 0, Jypi=n" ZE(Zats)a — K. (4.35)

s<0 t=1 s=1 t=s

Consider
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Jog = n /Olmu — (1 - 2)")zP (1 — ) da.

If 8 > « then, clearly,
1
I < Cn’l/ 2P (1 —z)dz = O(n™Y)
0

since the last integral converges. Let 0 < 5 < . Then, for any € > 0, similarly as
above

Ju = nﬂ—laﬂ /on n(1<—1 (_13/_/2)/2)@ (1 - (1 B z>n>ay5aw<1 B j{) dy + O(i)’

where the last integral tends to

vt [T —emeytay < o

implying that J,; = O(1/n~2t1) = o(1). For 8 = «, a similar argument yields
Ju1 = O(n~tlogn) = o(1). This proves the first convergence in (4.35).
Next, by the dominated convergence theorem,

Je = 05 [ q—opui-ade » [P e -0l - K
n2 = 0 0 B ’

proving the second relation in (4.35) and the theorem. O

Proof of Theorem 4.3.2, page 80. (i) In view of Theorem 4.3.1 (i), it suffices to
show that n =2 37 | X2(t) = 0,(1), with H as in (4.16). The last relation follows
from H > 1/« and ([71], p. 387). See also ([46], proof of Theorem 1). This proves

part (i).

(ii) According to Theorem 4.3.1(ii), it suffices to show that D! is bounded in
probability, where

D, i=n"2*3" X%(¢).
=1
Decompose
D, = Z Dnia
i=1

where D,,; are defined in (4.36), below. Then D, ' = O,(1) follows from the following
three facts:

(dl) Dnl = Op(l):
(d2) D2 >0, a.s.,
(d3) Dp3 —q Z, where Z >0 a.s.
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To this end, let X(t) = Xy, Ups, Uss := [y at*My(da)1(s < t), and

n

Dy = n 3" N Uy U, (4.36)
t=1 s1#s9

D,s = n_Q/O‘ZZUfS, D,s = n_2/aZUt2t.
t=1 st =1

Fact (d2) is obvious. Fact (d3) holds since Uy, t = 1,...,n areii.d. a—stable r.v’s,
so that U?, € D(a/2) and Dy —4 Z, where Z is a strictly positive o/2—stable r.v.
Let us prove (d1). Write D,y = >, 'y 5, where

n

Fn,s = 27’L_2/a Z Z Ut,sUt,v-

t=1v<s

Let Fs be the o—algebra generated by r.v's M,(A),v < s,A C (—1,1). Then
{5, Fs, s € Z} is a martingale difference sequence. Hence, for any 1 < r < a, we
have

E[Dn|" <2 EL, "

s<n
By a similar backward martingale property,

n T

ElT,.s" <23 n2/°E| Y U, U, -
1

v<s

t=

Hence, using independence of U; s and Uy, v < s, and Holder’s inequality, for any
1 <r < «a, we obtain

n

E|Dul < 4n ¥/ ¥ E(ZUMUm)T

v<s<n t=1
n

< 4prlapr-l Z ZE‘Ut,s‘TE‘UM‘T

v<s<n t=1
< —2r/o, T
4n n"Q,,

Where
Qr = (D_E|Uso]")*.

s>0

Since r — 2r/a < 0, for (d1), it suffices to show that @, < co. From ([95], Prop-
erty 1.2.17) we have
E|Usol" < C(Ela®[*),

where

1
Ela®|* < C/ 2P (1 —z)**de < Cs™17°
0
and, therefore, @, < oo for a/(1 + ) < r < . This completes the proof. a

Proof of Theorem 4.3.3, page 80. From (4.10) and the definition of the codiffer-
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ence for t > 1, we obtain

Cod(X(0),X(t)) = Re(w(1))A1(t) — iIm(w(1))As(t), (4.37)
where A;(t) := ER;, i = 1,2, and
1—|1—a*+ |a]®

Rl = )

1 —fal

t
Ry = > |a"® —a"|%ign(a"* —a™®*) + > |a""|*sign(a’"*).

s<0 s=1

Next, decompose A;(t) = °7_; Ay;(t), where
Aa(t) =ER1(1—e<a<), Ais(t) =ER10<a<1—¢),
AzQ(t) = ERZ].<—1 <a< -1+ 6), A24<t) = ERzl(—l +e<a< 0),

and € > 0 is a small number. It is easy to check that, for any € > 0,

Aij(t) = O(e™®) = o(t™71VP2) i =1,2, j=3,4, thereexists é>0, (4.38)

decay exponentially and, hence, are negligible in (4.20). Consider the terms
Aij(t),1,7 = 1,2. We have

An(t) _ A161_|1—a|a+|a|a( a)ﬂlzﬁ(a)da

1— |al®
e (1- <11_—(:§> _>Z ;“ =2 il — ) da
= Cu(t)t, (4.39)

where

Cu(t) = w<1)of1/0 flty)(1—(1—e ) 4 e )yt dy,
- (1= —y/t))*+ (1 —y/t)
Il —(1—ev)r4e v
o a(y/t) v —y/t) 1
1—(1—y/t)> ¥(1)

ft,y)

(0 <y <et).

Observe that f(t,y) — 1, t — oo, for any y € (0, 00), and, moreover, | f| is bounded
in y € (0, 00) uniformly in t — oo. Hence, by the dominated convergence theorem,
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Ou(t) = w(l)a /O TA— (=) 4 eyl dy 4 (1), (4.40)

In a similar way,

Ap(t) = /06 i (_11>t_(1(1__$);))z i x>ta$52@/}($ —1)dx

= Op(t)t ", (4.41)

where

Cralt) = p(~Da™ [T 1= (1= (~Dfe) )y dy + o). (4.4

Next, using sign(a’~*) = sign(a‘)sign(a—*) and

sign(a'~% — a™%)
sign(a'™ —a™*) = —((=1)7*), sign(a""")
we can rewrite

1- (1= = (1)l
1+ |al®

_1_(1_at>a_ata

R
2 1—a*

1(a > 0) +

1(a < 0).

Whence, similarly as above,

A (t) = /0E Sl Gl St} et e x)mxﬁldf(l —x)dz

1—(1—2)
- 021 (t)tiﬁl, (443)
where
Con(t) = d(1)a /0°°(1 (1) ey Sy 4oo(1).  (4.44)
Finally,
Ap(t) = /O L= 3= (11J:<gi)_)c;;(—1) U= pe — 1yds

= Oyttt = o(t™), (4.45)
where Cop(t) = Y(=1)271 [°(1 — (1 — (=1)te™¥)* —e ¥ )yP2dy + o(1).
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The asymptotics in (4.20) follows from (4.37) and (4.38) - (4.45).
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Aggregation of a triangular array
of AR(1) processes

Abstract. We discuss contemporaneous aggregation of independent copies of a
triangular array of random-coefficient AR(1) processes with i.i.d. innovations be-
longing to the domain of attraction of an infinitely divisible law W. The limit
aggregated process is shown to exist, under general assumptions on W and the mix-
ing distribution, and is represented as a mixed infinitely divisible moving-average
{X(t), t € Z} in (5.4). Partial sums process of {X(¢), t € Z} is discussed under the
assumption EW? < oo and a mixing density regularly varying at the “unit root”
x = 1 with exponent 5 > 0. We show that the above partial sums process may
exhibit four different limit behaviors depending on § and the Lévy triplet of W.
Finally, we study the disaggregation problem for {¥(t), ¢t € Z} in spirit of Leipus et
al. (2006, [65]) and obtain the weak consistency of the corresponding estimator of
¢(z) in a suitable Ls—space.

5.1 Introduction

The present chapter discusses contemporaneous aggregation of N independent
copies
XMt =axMe-1)+NMw),  tez, i=1,2,... N (5.1)

3 K3

of random-coefficient AR (1) process XM (¢) = a XM (t — 1) +eWM)(t), t € Z, where
{eWM(t),t € Z}, N = 1,2,... is a triangular array of i.i.d. random variables in the
domain of attraction of an infinitely divisible law W:

ingm(t) —q W (5.2)
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and where a is a r.v., independent of {¢™V)(¢),t € Z} and satisfying 0 < a < 1
almost surely. The limit aggregated process {X(t),t € Z} is defined as the limit in
distribution:

N
S X)) - X(1). (5.3)
i=1

A particular case of (5.1)-(5.3) corresponding to ™) (t) = N=1/2((t), where {((t),t €

Z} are i.i.d. r.v’s with zero mean and finite variance, leads to the classical aggre-

gation scheme of Robinson (1978, [91]), Granger (1980, [42]) and a Gaussian limit

process {X(t),t € Z}. Chapters 3 and 4 (see also [87], [88]) discussed aggrega-
tion of random-coefficient AR(1) processes with infinite variance and innovations
eM)(t) = N=YVe((t), where {((t),t € Z} are i.i.d. r.v]s in the domain of attraction

of an a—stable law W, 0 < a < 2.

The present chapter discusses the existence and properties of the limit process
{X(t),t € Z} in the general triangular aggregation scheme (5.1)-(5.3). Let us de-
scribe our main results. Theorem 5.2.7 (Section 5.2) says that under condition (5.2)
and some mild additional conditions, the limit process in (5.3) exists and is written
as a stochastic integral

x(t) =Y / S M(de),  tez, (5.4)
s<t [0,1)

where {M,, s € Z} are i.i.d. copies of an infinitely divisible (ID) random measure

M on [0,1) with control measure ®(dz) := P(a € dx) and Lévy characteristics

(u,0,7) the same as of r.v. W in (5.2) (denote M ~ W), i.e., for any Borel set
AcClo,1)

= WV geR. (5.5)

Here and in the sequel, V' (#) denotes the log-characteristic function of r.v. W:

V() :=logEeV = /(ewy —1—19y1(|ly| < 1))n(dy) — ;9202 + i0u,  (5.6)
R

where 4 € R, 0 > 0 and 7 is a Lévy measure (see Section 5.2 for details). In the
particular case when W is a—stable, 0 < a < 2, Theorem 5.2.7 agrees with the
Theorem 4.2.1 from Chapter 4. We note that the process {X(t),t € Z} in (5.4) is
stationary, ergodic and has ID finite-dimensional distributions. According to the
terminology in [89], (5.4) is called a mized ID moving-average.

Section 5.3 discusses partial sums limits and long memory properties of the
aggregated process {X(t),t € Z} in (5.4) under the assumption that the mixing
distribution ® has a probability density ¢ varying regularly at x = 1 with exponent
g >0:

p(z) ~ C1—x)’, -1 (5.7)

for some C' > 0. In the finite variance case o3, := Var(WW) < oo the aggregated
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process in (5.4) is covariance stationary provided E(1 — a?)™! < oo, with covariance

at

r(t) = Cov(X(t),X(0)) = of B[ a0 = U@E[m} (5.8)

depending on o3, and the mixing distribution only. It is well-known that for 0 <
B <1 (5.7) implies that 7(t) ~ Ct#, t — oo, with some C' > 0, in other words, the
aggregated process {X(t),t € Z} has nonsummable covariances Y ;¢ |r(t)| = oo, or
covariance long memory.

The main result of Section 5.3 is Theorem 5.3.1 which shows that under condi-
tions (5.7) and EW? < oo, partial sums of the limit aggregated process {X(t),t € Z}
in (5.4) may exhibit four different limit behaviors, depending on parameters (3, o and
the behavior of the Lévy measure 7w at the origin. Write

W ~ IDy(o, ), if

EW =0, and EW?=o +/ 22r(de) < oo,
R

in which case V(0) of (5.6) can be written as

. 1
Vo) = [ (" —1-ioyr(dy) - ;0%* (5.9)
R
The Lévy measure 7 is completely determined by two nonincreasing functions

It (x) =7({u > =z}), T (z):=r{u<—-2}), z>0.
Assume that there exist & > 0 and ¢* > 0,¢™ + ¢~ > 0 such that

lim 2T * (z) = ¢*, lim 2" (z) = ¢ (5.10)

z—0 z—0

Under these assumptions, the four limit behaviors of S, (7) := >I" %(t) correspond
to the following parameter regions:

i) 0<p<1, 0>0,

(i) 0<p<l,o=0,1+p<a<?2,

(iii) 0<pf<1l,0=0,0<a<l+0p,

(iv) > 1

According to Theorem 5.3.1, the limit process of {S,,(7), 7 > 0}, in respective cases
(i) - (iv), is a

(i) fractional Brownian motion with parameter H =1 — /2,

(

ii) a—stable self-similar process A, s with dependent increments and self-similarity
parameter H = 1 — §/a, defined in (5.28) below,

(iii) (1 + B)—stable Lévy process with independent increments,

(iv) Brownian motion.
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See Theorem 5.3.1 for precise formulations. Accordingly, the process {X(¢),t € Z}
in (5.4) has distributional long memory in cases (i) and (ii) and distributional short
memory (see Definition 2.3.6, page 49) in case (iii). At the same time, {X(t),t €
Z} has covariance long memory in all three cases (i)-(iii). Case (iv) corresponds
to distributional and covariance short memory. As « increases from 0 to 2, the
Lévy measure in (5.10) increases its “mass” near the origin, the limiting case a =
2 corresponding to ¢ > 0 or a positive “mass” at 0. We see from (i)-(ii) that
distributional long memory is related to a being large enough, or small jumps of the
random measure M having sufficient high intensity. Note that the critical exponent
a = 14 [ separating the long and short memory “regimes” in (ii) and (iii) decreases
with £, which is quite natural since smaller § means the mixing distribution putting
more weight near the unit root a = 1.

Since aggregation leads to a natural loss of information about aggregated “mi-
cro” series, an important statistical problem arises to recover the lost information
from the observed sample of the aggregated process. In the context of the AR(1) ag-
gregation scheme (5.1)-(5.3) this leads to the so-called the disaggregation problem,
or reconstruction of the mixing density ¢(x) from observed sample X(1),...,%X(n)
of the aggregated process in (5.4). For Gaussian process (5.4), the disaggregation
problem was investigated in [21] and [65], who constructed an estimator of the mix-
ing density based on its expansion in an orthogonal polynomial basis. In Section 5.4,
we extend the results in [65] to the case when the aggregated process is a mixed 1D
moving-average of (5.4) with finite 4th moment and obtain the weak consistency of
the mixing density estimator in a suitable Ly—space (Theorem 5.4.4).

These results could be developed in several directions. We expect that Theo-
rem 5.3.1 can be extended to the aggregation scheme with common innovations and
to infinite variance ID moving-averages of (5.4), generalizing the results in Chapters 3
and 4 ( and in [87], [88]). An interesting open problem is generalizing Theorem 5.3.1
to the random field set-up of [61] and [86].

5.2 Existence of the limit aggregated process

Consider random-coefficient AR(1) equation
X(t) =aX(t—1)+e(t), teZ, (5.11)

where {e(t),t € Z} are i.i.d. r.v’s with generic distribution ¢, and a € [0,1) is a
random coefficient independent of {e(t),t € Z}. Assume that E|e|P < oo for some
0 <p<2and Ee =0, p> 1. Then, acording to the Proposition 3.2.3, page 56,
there exists a unique strictly stationary solution to the AR(1) equation (5.11) given
by the series

X(t) = iake(t—k;), (5.12)

which converge conditionally a.s. and in L, for a.e. a € [0,1). Moreover, if

E

] < o0 (5.13)

1—a
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then the series in (5.12) converges unconditionally in L,.
We will write
W ~I1D(u,o,m),
if r.v. W is infinitely divisible having the log-characteristic function in (5.6), where
p € R, o >0and 7 is a measure on R satisfying 7({0}) = 0 and [z(z* A 1)7w(dx) <
00, called the Lévy measure of W. It is well-known that the distribution of W is

completely determined by the (characteristic) triplet (u,o,7) and vice versa. See,
e.g., [96].

Definition 5.2.1. Let {¢™) N € N*} be a sequence of r.v.’s tending to 0 in proba-
bility, and W ~ ID(u,0,7) be an ID r.v. We say that the sequence {e™V), N € N*}
belongs to the domain of attraction of W, denoted {e™), N € N*} € D(W), if

(Cn(0)N — EelWV, Vo eR, (5.14)

where Cy(0) := Eexp{i0e™}, 6 € R, is the characteristic function of ™).

Remark 5.2.2. Sufficient and necessary conditions for {¢™) N € N*} € D(W) in
terms of the distribution functions of ¢™) are well-known. See, e.g., [96], Ch. 17 of
[36]. In particular, these conditions include the convergences

NP(EW > 2) — T (z), NP(E™ < —z) — II" () (5.15)

at each continuity point = > 0 of II*, II7, respectively, where II* are defined as
in (5.10).

Remark 5.2.3. By taking logarithms of both sides, condition (5.14) can be rewrit-
ten as

NlogCn(f) — logEe™ = V(0), V6eR, (5.16)

with the convention that the Lh.s. of (5.16) is defined for N > Ny(0) sufficiently
large only, since for a fixed N, the characteristic function Cy(#) may vanish at some
points #. In the general case, (5.16) can be precised as follows: For any ¢ > 0 and
any K > 0 there exists No(K, €) € N* such that

sup [NlogCu(0) = V()| < ¢ YN > No(K,e). (5.17)
|0|<K

The following definitions introduce some technical conditions, in addition to
{e) N € N*} € D(W), needed to prove the convergence towards the aggregated
process in (5.3).

Definition 5.2.4. Let 0 < a < 2 and {¢™), N € N*} be a sequence of r.v.’s. Write
{e™ N € N*} € T(a) if there exists a constant C' independent of N and x and
such that one of the two following conditions hold: either

(i) a =2 and Ee™) = 0, NE(e™)2 < C, or
(i) 0 < a < 2 and NP(|e™)] > x) < Ca~, x > 0; moreover, Ee™) = 0 whenever
1 < o <2, while, for a =1 we assume that the distribution of ™) is symmetric.
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Definition 5.2.5. Let 0 < o < 2 and W ~ ID(u,0,7). Write W € T(a) if
there exists a constant C' independent of x and such that one of the two following
conditions hold: either

(i) « =2 and EW = 0, EW? < oo, or
(1)) 0 < a < 2 and Tt (z) + 11~ (z) < Cax™®, Ya > 0; moreover, EW = 0 whenever
1 < a < 2, while, for o =1 we assume that the distribution of W is symmetric.

Corollary 5.2.6. Let {e™ N € N*} € D(W), W ~ ID(u,0,7). Assume that
{eM) N € N*} € T(a) for some 0 < a < 2. Then W € T ().

Proof. Let a = 2 and Ry denote the Lh.s. of (5.2). Then R% —4 W? and
EW? < liminf ER% = liminf NE(e™)? < oo
N—o00 N—o00
follows by Fatou’s lemma. Then, relation
EW = lim ERy =0
N—o00

follows by the dominated convergence theorem. For 0 < a < 2, relation IT%(z) <
Cx~® at each continuity point z of II* follows from {¢™), N € N*} € T(a) and
(5.15) and then extends to all > 0 by monotonicity. Verification of the remaining
properties of W in the cases 1 < a < 2 and o = 1 is easy and is omitted. O

The main result of this section is the following theorem. Recall that {X;(t) =
x™M @)}, i = 1,2,..., N are independent copies of AR(1) process in (5.11) with
i.i.d. innovations {e(t) = ™) (t)} and random coefficient a € [0,1). Write M ~ W
if M is an ID random measure on [0, 1) with characteristic function as in (5.5)-(5.6).

Theorem 5.2.7. Let condition (5.13) holds. In addition, assume that the generic
sequence {e™N) N € N*} belongs to the domain of attraction of ID r.v. W ~
ID(p,0,7) and there exists an 0 < a < 2 such that {e™) N € N*} € T(a). Then
the limit aggregated process {X(t), t € Z} in (5.3) exists. It is stationary, ergodic,
has infinitely divisible finite-dimensional distributions, and a stochastic integral rep-
resentation as in (5.4), where M ~ W.

Proof. We follow the proof of Theorem 4.2.1, page 76. Fix m > 1 and
6(1),...,0(m) € R. Denote

Then Y77, G(t)XZ-(N) (1) = > oez 9(s, ai)sl(N)(s), i=1,...,N, and
Eexp{ifj 3 e(t)xgm(t)} _ <Eexp{iZ€(t)X(N)(t)}>N — (1 4 N)N,

i=1t=1

where
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From definitions (5.4), (5.6) it follows that

Eexp{ii@(t)%(t)} = ¢° where © := EY V(d(s,a)). (5.19)

SEZ

The convergence in (5.3) to the aggregated process of (5.4) follows from (5.18), (5.19)
and the limit

lim O(N) = 6, (5.20)

N—oo

which will be proved below.
Note first that

sup  [9(s,a)] < f;w(m — K

a€l0,1),s€Z

is bounded and therefore the logarithm log Cy (¥(s, a)) is well-defined for N > Ny(K)
large enough, see (5.17), and ©(N) can be rewritten as

O(N) = EN(eXp {Nl > NlogCN(ﬁ(s,a))} - 1).

SEZL

Then (5.20) follows if we show that for each a € [0, 1),

lim Y NlogCn(9(s,a)) = > V(I(s,a)), Va€l0,1), (5.21)

N—roo s SEZL

and

C

> |NlogCx(i(s,a))| < . Yael0,1), (5.22)
SEL I —a”
where C' does not depend on N, a.
Let us prove (5.22). It suffices to check the bound
N1 —=Cn(0)] < Cl0|”. (5.23)

Indeed, since [Cn(Y(s,a)) — 1| < € for N large enough (see above), so

[N logCy(9(s,a)| < CN|1—Cn(i(s,a))
and (5.23) implies

C

1—a“>

Z\Nlogczv(%,a))ﬂ < OY [W(s,a)|* <

SEZ SEZ

: (5.24)

see ((4.26), page 83), proving (5.22).
Consider (5.23) for 1 < a < 2. Since Ee®™) =0 so

Cn(f) — 1= / (€ — 1 — iz)dFy(z)

R
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and
NL=cn(0)] < N[ (% 1~ i) dFu()
+ N| /Om(ei% —1— ir)d(1 — Fy()
_ |9|( /O NFy(@)(e — 1) da

| [T N Fy() e - 1)ds))
(J|9|/ “((|6]2) A1) dz < Clo)°, (5.25)

IN

o NFEy(2)1(z < 0) + N(1 — Fy(2))1(z > 0) < Clz|~°

and the integral

> 1/16]
| e A e =1o] [ 2t de+ _adx:\e\o“l( L1 )

1/16] 2—a a-—1

converges. In the case a = 2, we have
1
N[Cy(0) — 1| < 592NE(5<N>)2 < Ch?

and (5.23) follows.
Next, let 0 < o < 1. Then

0 . oo .
N|1—Cn(0)] < N/ |e‘9‘”—1|dFN(x)+N/0 e —1||d(1 - Fy(x))| = I, +1s.
Here,
L < 2N/ (0] 1z]) A 1) dFy ()
1/16| 0
— 2N/ dFx(z) + 2N / oy P AN (@) =2 20000 4 i)

We have I1; = NFy(—1/|0]) < C|0|* and

0
Iy = —|6\N/_1/0|:chN(x):—\9\N<xFN()

— |9|N( — W + /01/9 Fy(x) d:v)

0
C\9|O‘+C’\9|/ | dz < CJg|°.
—-1/16|

—1/16| /1/|9| n() a:)

IN

Since I can be evaluated analogously, this proves (5.23) for 0 < a < 1.

It remains to prove (5.23) for a = 1. Since, by symmetry of ¢,
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/ rdFy(z) =0,
{l=|<1/l61}

SO CN(Q) —1= Jl + JQ + Jg + J4, where

-1,
Jl = / (elm—l)dFN(ZE),

0 i
Ty = / (e — 1 — i0z) dFy(z),
—1/l0|

el ,
J3 = / (e — 1 — ifz)dFy(x),
0
Jy = /OO (e —1)dFy ().
1/16]

We have
N|Ji| < 2N Fy(=1/]6]) < CJ6)

and a similar bound follows for .J;,i = 2,3,4. This proves (5.23). Then (5.21) and
the remaining proof of (5.20) and Theorem 5.2.7 follow as the proof of Thm. 4.2.1
in page 76. O

Remark 5.2.8. Theorem 5.2.7 applies in the case of innovations belonging to the
domain of attraction of an a—stable law. Let ¢¥) = N=Ye(, where ¢ € D(a),
0 < a < 2 (see Definition 3.2.1, page 55). Then {¢™ N € N*} € T(a) and
{e™M N € N*} € D(W), where W is an a—stable r.v. with the characteristic
function

BV = e lflwoac) g e R, (5.26)

here w(f; a, 1, c2) = w(B) is defined in (3.9), page 56. In this case, the statement of
Theorem 5.2.7 coincides with Theorem 4.2.1, page 76.

5.3 Long memory properties of the limit aggre-
gated process

In this section we study partial sums limits and distributional long memory
property of the aggregated mixed ID moving-average in (5.4) under condition (5.7)
on the mixing density ¢. More precisely, we shall assume that ¢ has the form

o(z) =v(x)(1 —x)°, x € (0,1), (5.27)

where > 0 and v¥(z) is a bounded function having a finite limit ¥ (1) =
lim, ;¢ (2) > 0.

Consider an independently scattered a—stable random measure N(dx, ds) on
(0,00) x R with control measure v(dz, ds) := ¥(1)z°~*dxrds and characteristic

function
Eei@N(A) _ e_|9|aw(0;a,c+,c*)u(A)’ = R,
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where A C (0,00) x R is a Borel set with v(A) < oo and w is defined at (3.9),
page 56. For 1 <a <2,0< 8 < a— 1, introduce the process

Aop(T) = /]R+><]R (f(x,T —s)— f(z, —3))N(dm, ds), 72>0, where (5.28)

1—e™ ifz>0andt >0,

f@,t) = {0, otherwise

defined as a stochastic integral with respect to the above random measure N. The
process A, g was also introduced in Chaper 4 (see (4.6), page 75). It has stationary
increments, a—stable finite-dimensional distributions, a.s. continuous sample paths
and is self-similar with parameter H = 1 — §/a € (1/a,1). Note that for o = 2,
Ay g is a fractional Brownian motion.

Theorem 5.3.1. Let {X(t), t € Z} be the limit aggregated process in (5.4), where
M ~ W ~ IDy(o, ) and the mizing distribution satisfies (5.27).

(i) Let 0 < <1 and o > 0. Then

3

T

1 |

n'~

1:{(75) —pp,y Br(T), (5.29)

@

t

where By is a fractional Brownian motion with parameter H := 1— (/2 and variance
EB% (1) = o?¢(1)T(B — 2)7%1.

(i1) Let 0 < 8 < 1,0 = 0 and there erist 1 + B < a < 2 and ¢ >0, ¢c" + ¢ >0
such that (5.10) hold. Then

o]

1

—5 2_X(t) —ppy Aas(7), (5.30)
o t=1

n

where A, g is defined in (5.28).
(177) Let 0 < f < 1,0 =0, m # 0 and there exists 0 < a < 1 + (3 such that

/ lz|o7( ) < oo (5.31)
R
Then
1 [nT]
D2 X(t) —taa Liss(r), (5.32)
ni+s =1

where {Ly45(7), 7 > 0} is an (1 + [)—stable Lévy process with log-characteristic
function given in (5.49) below.

(iv) Let B > 1. Then

nT|

1 |
75 2 X(t) —raa 0w B(7), (5.33)
t=1

where B is a standard Brownian motion with EB?(1) = 1 and o is defined in (5.50)
below. Moreover, if 5 > 2 and 7 satisfies (5.31) with o = 4, the convergence —gqq
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in (5.33) can be replaced by — pyo 1.

Remark 5.3.2. Note that the normalization exponents in Theorem 5.3.1 decrease
from (i) to (iv):
54 o4 1 1
1-2>1-2 > — >
2 e 1+3 2
Hence, we may conclude that the dependence in the aggregated process decreases
from (i) to (iv). Also note that while {X(¢), ¢ € Z} has finite variance in all cases
(i) - (iv), the limit of its partial sums may have infinite variance as it happens in
(ii) and (iii). Apparently, the finite-dimensional convergence in (5.32) cannot be
replaced by the convergence in D[0, 1] with the J;—topology. See ([77], p.40), ([63],

Remark 4.1) for related discussion.
Proof. (i) The statement is true if 7 = 0, or W ~ N(0, 0?). In the case m # 0, split
X(t) = X1(t) + Xa(2),

where X1(t), Xo(t) are defined following the decomposition of the measure M =
M; + My into independent random measures M; ~ Wy ~ [ Dy(0,0) and My ~ Wy ~
IDy(0, 7). Let us prove that

[w

Spy = zn;xz(t) = o,(n'72). (5.34)

Let
V5(6) := log Ee'"2 = /(eiew —1— ifz)r(dx).
R
Then
Va(0)] < C0* VOeR, and Va(0)] = o(6?), |8] — oo. (5.35)

Indeed, for any € > 0,
Va(0)] < 6°11(e) + 2/0|5(e),

where

Li(e) := 9_2/ e — 1 — ifx|r(dx) < 2*r(dz) =0, € = 0,

le|<e lo|<e

and

I(e) = 2lo) " |

|| >e

e — 1 — ifz|r(dx) < / |z|m(dz) < 0o, Ve > 0.

lz|>e

Hence, (5.35) follows.
Relation (5.34) follows from J, := log E exp { i@n’lJrgSng} = o(1). We have

1 n
J, = Z/o \/2(9n1+5/2 Z(l —2)7f1(t > s))zﬁw(l —2)dz = Ju1 + Jno,

SEZ t=1
where Jp,1 :== > <o fol Vo(- - )25@/)(1 —z)dz, Jp2 =30, fol Vo(- - )zﬁz/)(l —z)dz. By
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change of variables: nz = w,n — s+ 1 = nu, J,2 can be rewritten as

1 _ Z)n s+1)

T = Z/ ( nl e )2 (1~ 2)d

- [ o

= 02/0 du/o G (u, w)w w(l—n)dw

where

OnB/2(1 — (1 — w)lun]
L o Gl ) )>1(1/n<u<1,0<w<n)

w

Gy w) = (1= (1— ‘:)[unl)%(

and where k(6) := V,(0)/6? is a bounded function vanishing as || — oo; see (5.35).
Therefore G, (u, w) — 0, n — oo, for any u € (0,1], w > 0 fixed. We also have

G, w)] < C(1— (1~ %)[mlf < O(1 = e )2 = G(u, w),

1 0o _
/ du/ G (u, w)w’ 2 dw < oo.
0 0

Thus, J,2 = o(1) follows by the dominated convergence theorem. The proof of
Jn1 = o(1) using (5.35) follows by a similar argument. This proves J, = o(1), or
(5.34). The tightness of the partial sums process in D]0, 1] follows from 5 < 1 and
Kolmogorov’s criterion since

where

B(3 ()" = 0

=1
the last relation is an easy consequence of 7(t) = O(t=7), see (5.8) and the discussion

below it.

(i) Let So(7) := ") X(¢). Let us prove that for any 0 < 7 < -+ < 7 < 1,
0, eR,....0, R,

Iy = logEexp{i ll_é ié’an(Tj)} — J, where (5.36)
n- oo j=1
J o= —@0(1)/R+X]R g@(f(w,@—u) Fw, —u))| (5.37)
s dwd
x w<;9J(f(w7Tj o u) f<w7 —u)),a,cﬂc ) wwa_g

We have

J = log Ee' =1 e (7)
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by definition (5.28) of A, 3. We shall restrict the proof of (5.36) to m = 7 = 1,
since the general case follows analogously. Let V(6) be defined as in (5.9), where
o = 0. Then,

_ LYl —2)dz + (1 - 2)dz
;0/ W1 = 2)dz z/ ¥(1—2)
+ Z/ ﬂ@/} (1 —=2)dz = Jp1 + Jn2 + Jus,

SEZL

Similarly, split J = J; + J,, where

Ji = —01*Y(Dw(b; o, c” / du/ (w,1 —u) — flw, —u))*w’~* dw,
Jo = —101*Y(1)w(0; a, c, / du/ (w, u))*w? ™ dw.

To prove (5.36) we need to show J,; — Ji, Ju2 — Jo, Ju3 — 0. We shall use the
following facts:

lim )\V()\‘l/ae) = —|f]°w(@:a,ct,c7), VOER (5.38)

A—+0

and
V(©)] < Clg*, VOeR (IC < ). (5.39)

Here, (5.39) follows from (5.10), [p#?m(dz) < oo and integration by parts. To
show (5.38), let x(x),x € R be a bounded continuously differentiable function with
compact support and such that x(x) = 1, |z| < 1. Then the Lh.s. of (5.38) can be
rewritten as

W(Ae0) = [ (e =1 iyx(y)ma(dy) + Bna,
where
m(dy) = Ar(dAVey),
o = /Ry(x(y)—l)m(dy).
The r.h.s. of (5.38) can be rewritten as
—[01rw (@, ¢t en) = Vo(0) = fp(e™ — 1 — i0yx(y))mo(dy) + i0pyo,
where

mo(dy) = —c"dy "1(y >0) +c d(~y) "1y < 0),
fixo = /Ry(x(y) — 1)mo(dy).
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Let C} be the class of all bounded continuous functions on R vanishing in a neigh-
borhood of 0. According to ([96], Thm. 8.7), relation (5.38) follows from

i [ f@)m(dy) = [ f@)mldy), VS e, (5.40)
lim fox = pio,  lim lim |y|§6y2m(dy) = 0. (5.41)

Relations (5.40) is immediate from (5.10) while (5.41) follows from (5.10) by inte-
gration by parts.

Coming back to the proof of (5.36), consider the convergence J,» — Jo. By
change of variables: nz = w,n — s+ 1 = nu, J,2 can be rewritten as

B 51— (1 — w)lun] 5 w
Ty = /1/n du/ (Hna ) w(1 _ n) duw
— 0w (b, ¢ / du/ (1 —C ) m(a;u,w)w%@ _ “’) dw,
n

where f,9(u, w) is written as

é — w\|un
A (e A U )

2\ 8, W)= " 10]°w(0; v, ¢t ™)

x 1(n ' <u<1,0<w<en)

w

- AV (A~Vep) (1 —(1- ;‘;)[unl)a
 —|0lw(8; a, ¢t ) 1 —e wu
x 1(n'<u<1,0<w<en) (5.42)

with

_ B v i

for each v € (0,1],w > 0 fixed. Hence and with (5.38) in mind, it follows that
Fn2(0;u,w) — 1 for each 8 € R,u € (0,1],w > 0 and therefore the convergence

Jno — Jo by the dominated convergence theorem provided we establish a dominating
bound
|Fn2 (05 u,w)| < C (5.43)

with C' independent of n,u € (0,1],w € (0, en). From (5.39) it follows that the first
ratio on the r.h.s. of (5.42) is bounded by an absolute constant. Next, for any
0<xz<1/2,s>0 we have

l—z>e® = (1-2)>e® = 1—(1—2)°<2(1 —e ™)
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and hence

P B
2 < —n <2, forany 0 <w <n/2, u>0
1 —e wu 1 — e wu
so that the second ratio on the r.h.s. of (5.42) is also bounded by 2, provided
€ < 1/2. This proves (5.43) and concludes the proof of J,2 — Jo. The proof of the
convergence J,; — Ji is similar and is omitted. Using inequality (5.39) it is not
difficult to prove that |J,3| < Cnf~(@=Y. Since B — (a — 1) < 0, J,3 — 0. This
concludes the proof of (5.36), and finite-dimensional convergence in (5.30).

To prove the tightness part of (5.30), it suffices to verify the well-known criterion
in ([17], Thm.12.3): there exists C' > 0 such that, foranyn > land 0 <7 < 74+h <
1 B_1 —

SUp uaP(na |Sp (T 4+ h) — Sp(T)| > u) < Ch*", (5.44)
where o« — 8 > 1. By stationarity of increments of {X(¢), t € Z} it suffices to prove
(5.44) for 7 = 0,h = 1, in which case it becomes

Supuo‘P(|Sn| > u) < Cn*P, Sp = Sp(1). (5.45)
u>0

The proof of (5.45), below, requires inequality in (5.46) for tail probabilities of
stochastic integrals with respect to ID random measure. Let L%(Z x (0,1)) be the
class of measurable functions ¢ : Z x (0,1) — R with

lglle == " Elg(s,a)|* < oo,

SEL

Also, introduce the weak space L& (Zx (0, 1)) of measurable functions g : Zx (0,1) —
R with

glle. = supt® ZP(|g(s,a)| > 1) < 0.
t>0 s€Z

Note L*(Z x (0,1)) C Lg(Z x (0,1)) and |[|g||s., < lglla. Let {M,,s € Z} be
the random measure in (5.4), M ~ W ~ IDy(0,7) with zero mean and the Lévy
measure 7 satisfying the assumptions in (ii). It is well-known (see, e.g., [98]) that
the stochastic integral

M(g):=3 [ olsa)M(da)

SEZL

is well-defined for any g € LP(Z x (0,1)), p = 1,2 and satisfies

EM?*(g) = Cellgl3,  and  E[M(g)] < Cillgl,

for some constants C,Cy > 0. The above facts together with Hunt’s interpolation
theorem, see ([90], Theorem IX.19) imply that M(g) extends to all ¢ € L3 (Z x
(0,1)), 1 < a < 2 and satisfies the bound

supu“P(|M(g)| >u) < Clgla. < Clglla (5.46)

u>0
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with some constant C' > 0 depending on «,C;,Cy only. Using (5.46) and the
representation S,, = M (g) with

g(s,a) =Y a""1(t > s)
t=1
we obtain

supuo‘P(|Sn| >u) < CZE(iat_‘S)a = O(n*"),

u>0 s<n t=1

where the last relation is proved in Chapter 4 (proof of Theorem 4.3.1, page 79).
This proves (5.45) and part (ii).

(iii) It suffices to prove that forany 0 <7 <--- <7, <1,6; € R,...,0,, € R,

1 & R
Iy = 1OgEeXp{1n1/(1+3)Z‘9an(Tj)} — J = logEexp{i)_6;L1.5(m;)}.
j=1

j=1

(5.47)
Similarly as in (i)-(ii), we shall restrict the proof of (5.47) to the case m = 1 since
the general case follows analogously. Then

[n7]
S / ( —1/<1+ﬁ>92(1_z>t-81<tzs))z%u—z)dz = It Jua,

SEZL t=1

where

T = Z/ )2P(1 — 2) d,

s<0

[n7]

Ty = Z/ )2P(1 — 2) dz.

Let # > 0. By the change of variables: n'/(*%)z = /y [n1] — s + 1 = nu, Jus can
be rewritten as

b = X[ ( nll/?lfﬁiw_sﬂ))z%(l—z)dz

X @/J( nl/(lJrB)y) (1/n < u < [n7]/n],y > on YO,

where
1,(0;y,u) == 1(1/n < u < [n7]/n],y > On YD) 5100 < u < 7,9 > 0).

As (1 - nl%ﬂa)y)un — 0 for any u,y > 0 due to n/n'/+#) — oo, we see that the
integrand in (5.48) tends to y~#~2V(y)1(1). We will soon prove that this passage
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to the limit under the sign of the integral in (5.48) is legitimate. Therefore,

T = 7= T [TV Ry = o (w(0;1+ 6,757,
(5.49)

) 1 148 — 1 0 143
T = 1—1—5/0 ' Pr(dr), Ty = 1+5/oo|x|+7r(dx),

and the last equality in (5.49) follows from the definition of V(y) and ([51],
Thm. 2.2.2).

For justification of the above passage to the limit, note that the function
V(y) = /(eiym —1— iyz)r(dx)
R
satisfies [V (y)| < Vi(y) + Va(y), where

N =y [ e, Valy) =2l [ (),

|z|>1/1yl

We have
00 s , Vel
L@+ vay ey < [ atn(an) [Ty ay

+2/x7r dx /OO —1-f4
[Jeln(de) [ =y

< C’/ lz|"Pr(dr) < oo.
R

Next,

sup  Vi(ey) <y 2?r(dz) =: Vi(y), sup Va(ey) < Va(y)
1/2<e<1 ] <2/y] 1/2<e<1

and [5° Vi(y)y~?"2dy < co. Denote

(03 y, 1) = (1 — G~/ UFB)y~Lylun],

Then (,(0;y,u) > 0 and we split the integral in (5.48) into two parts corresponding
to Cu(0;y,u) < 1/2 and (,(0;y,u) > 1/2, viz., Juo = J 5 + J 5, where

Jiy = 91%/{: dU/OOOy‘B‘QdyV(y(l—Cn(H;y,U))>
0
< 0(1 = ey ) G .) < 1/2)1,0.9.0),
Juy = 91%/{: dU/OOOy‘B‘QdyV(y(l—Cn(H;y,U))>
0
< 0(1 = ey ) LG ) > 1/2)L,(6:v.0).
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Since

V(y(1 = G055, 1)) 1(Ga(0:y,w) < 1/2)] < Vi) + Valy)

is bounded by an integrable function (see above), so J, — J by the dominated

convergence theorem. It remains to prove J,, — 0. From inequalities 1 —x < e™7,

x>0, and [un] > un/2, u > 1/n, it follows that

CH(QQ Y, U) < e_GUTL/in/(l-‘rﬂ)y

and hence
1(Ga(05y,w) > 1/2) < A(e™ /22570 > 1)9) = 1((u/y) < ein™),

where v := /(1 4+ ) > 0, ¢; := (2log2)/0. Without loss of generality, we can
assume that 1 < o < 1+ f in (5.31). Condition (5.31) implies

vl < [

lzy|<1

ol*n(dn) +2 [ fpal'm(dr) < Oyl WyeR
yx|>
Hence
d
2’ < C/ dU/ <C1n ’y>y2+fj_a S Kni’Y(lJrﬁia) — 0

where

K = C/ w1 P du < 0.
0

This proves J,2 — J, or (5.49). The proof of J,,; — 0 follows similarly and hence is
omitted.

(iv) The proof of finite-dimensional convergence is similar the proof of Theo-
rem 4.3.1 (ii), page 79. Below, we present the proof of the one-dimensional conver-
gence of n71/28, = n=1/2¥"  X(t) towards N(0,02) with ¢2 > 0 given in (5.50),
page 111. Similarly as above, consider

Jn = log Eexp{ i@n_l/QSn} = Jn1 + Jn2,

where
Tt o= ZEV(@n‘l/QZat N = f:Ev(en—l/ijat—S).
= = =
We have
Too = Z / an/gz)k)qsa—z)dz
— %020 1};/0 (1= (1= 2)5)222k,(60; k, 2)6(1 — 2) dz,
where
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a3, 2) = (02U Y ) = veny,

nl/2
and the function x(y) satisfies

lim k(y) = 1, sup |k(y)| < oo.
y—0 yER

These facts together with 5 > 1 imply
_12/ (1—(1—2)%)% /fn(ka)d)l—zdz—)/ o(1—2)dz
and hence J,o — —(1/2)0%03, with
1
o3 = 205‘,/ 27291 — 2)dz = 203,E(1 —a)™2 (5.50)
0

The proof of J,; — 0 follows similarly (see Chapter 4 for details). This proves
(5.33).

Let us prove the tightness part in (iv). It suffices to show the bound
ESY < Cn? (5.51)

We have S,, = M(g), where M is the stochastic integral discussed in the proof of
(ii) above and

g=g(s,a) :Zat *1(t > s) € L*(Z x (0,1)).
t=

Then
EM*(g) = cums(M(g)) + 3(EM*(g))*,

where EM?(g) = ES? satisfies ES? < Cn (the last fact follows by a similar argument
as above). Hence, (EM?(g))? < Cn? in agreement with (5.51). It remains to evaluate
the 4th cumulant

cumy(S,) = cumy(M(g)) = 71 Y_ Eg*(s, a),

SEL
where 7 := [ #'m(dz). Then cumy(S,) = 74(Ln1 + Ln2), where
n 4 n n 4
ZE<Zat_S) . Ly = ZE(Zat_S) .
s<0 t=1 s=1 t=s
We have
n k
nZE(Zat) < nZ/ z)dz < Cn?,
k=1 \t=0
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since 5 > 2. Similarly,

2 S is) s 12721 —2)dz
b < nZE(Za > —”/o 1—(1-2)2

s<0 t=1

Cn?.

A

IN

This proves (5.51) and part (iv). Theorem 5.3.1 is proved. O

5.4 Disaggregation

Following [65], let us define an estimator of ¢, the density of the mixing distri-
bution ®. Its starting point is the equality (5.8), implying

o2 (r(k) — r(k +2)) = /01 Fo(x)de,  k=0,1,..., (5.52)

where (k) = Cov(X(k),X(0)) and o3, = Var(W) = r(0) — r(2). The Lh.s. of
(5.52), hence the integrals on the r.h.s. of (5.52), or moments of ®, can be estimated
from the observed sample, leading to the problem of recovering the density from its
moments, as explained below.

For a given ¢ > 0, consider a finite measure on (0,1) having density w'?(z) :=
(1 —2)% 1. Let Ly(w'?) be the space of functions A : (0,1) — R which are square
integrable with respect to this measure. Denote by {J,gq), n=20,1,.. } the or-

thonormal basis in Ly(w(?) consisting of normalized Jacobi polynomials:

JO@) = Y g0, (5.53)
§=0
with coeflicients
neiV2n+q I'(n+1) TI'(g+n+y
gy = (=1 (n+l) I ) (5.54)

Fn+q)T'(n—j+1) I'(j+1)2 "~
0 <j <mn. See ([1], p.774, formula 22.2.2). Thus,
1 e
@ ¢ 7@, (@) _ )1 ity =k,
/O JO ()9 ()@ (z) da { 0 Higk (5.55)
Any function h € Ly(w'?) can be expanded in Jacobi’s polynomials:

h(z) = i hieJ\ (), (5.56)

with .
1 1 .
hy = / W) (2)w'? (z) de = Zg,gq; h(z)2?w'? (z) dz.
0 9

- O

h.

Below, we call (5.56) the ¢-Jacobi expansion o

112



AGGREGATION OF TRIANGULAR ARRAY

Consider the function

L o(x) q—1 _ ! _
)= g i / )1 —2)idr = /0<z§(x)dx—1. (5.57)

Under the condition

/01 (ldi(?)q_l dz < o0, (5.58)

the function ¢ in (5.57) belongs to Ly(w'?), and has a g—Jacobi expansion with
coefficients

G = Zg@ r)r! doe = Zg,ﬁqj) (r(j) —r(j +2)), E=0,1,...; (5.59)

see (5.52). Equations (5.56), (5.59) lead to the following estimates of the function
¢(2):

~ Kn —~ - Ky -
G() = S G (@),  Gulx) = Y G (), (5.60)
k=0 k=0

where K,,n € N* is a nondecreasing sequence tending to infinity at a rate which is
discussed below, and

Gk 1= 52 ngj Tn(J) — Tl +2)), G, ng] Tn(J) —Tn(j +2))

Tw j=0 iy j=0
(5.61)
are natural estimates of the (;’s in (5.59) in the case when 0%, is unknown or known,
respectively. Here and below,

}nj ?n(j)::1g(x(i)—x)(x(i+j)—3e), i=0,1,....n

iz
(5.62)
are the sample mean and the sample covariance, respectively, and the estimate of
o, =1r(0) — r(2) is defined as

3\'—‘

Goy 1= 7Tn(0) — 7, (2).
The corresponding estimators of ¢(z) is constructed following relation (5.57):

on(@) = G@)(1—2)",  Gula) = Gla)(1—a2)"". (5.63)

The above estimators were essentially constructed in [65] and [21]. The modifications
in (5.63) differ from the original ones in the above mentioned papers by the choice
of the more natural estimate (5.62) of the covariance function r(j), which allows for
non-centered observations and makes both estimators in (5.63) location and scale
invariant. Note also that the first estimator in (5.63) satisfies f; ¢, (z) dz = 1, while
the second one does not have this property and can be used only if 2, is known.
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Proposition 5.4.1. Let {X(t), t € Z} be an aggregated process in (5.4) with finite
4th moment EX(0)* < oo and M ~ W ~ ID(u,0,7). Assume that the mizing
density ¢(x) satisfies conditions (5.13) and (5.58), with some q > 0. Let C,(z) be
the estimator of ((x) as defined in (5.60), where K, satisfy

K, =[ylogn] with 0 <~y < (4log(1++/2))7L. (5.64)

Then .
/O E(C,(z) — C(2))2(1 — 2)7 ' dz — 0. (5.65)

Proof. Denote v, the Lh.s. of (5.65). From the orthonormality property (5.55),
similarly as in ([65], (3.3)),

ZEan—Ck + Z 2, (5.66)

k=Knp+1

where the second sum on the r.h.s. tends to 0. By the location invariance mentioned
above, w.l.g. we can assume below that EX(¢) = 0. Let 75(j) := ~ 007 X(¢)X(i +
j), 0<j <n, then EF}(j) —r(j) = (j/n)r(j) and

B{Cu — G} = o—av4E{ > 9 (Fali) = Puli+2) — () + (G + 2))}2

k
_ o U . ) =22
= oW B{ o) (F2) — 7 +2) — r() + 1 +2) + 207X

where we used the trivial bound EX® < C. The rest of the proof of Proposition 5.4.1
follows from (5.66), (5.67) and Lemmas 5.4.2 and 5.4.3 below. See ([65], pp.2552-
2553) for details. O

Lemma 5.4.2 generalizes ([65], Lemma 4) for a non-Gaussian aggregated process
with finite 4th moment.

Lemma 5.4.2. Let {X(t), t € Z} be an aggregated process in (5.4) with EX(0)*
oo, EX(0) = 0. There exists a constant C > 0 independent of n, k and such that

Var (7, (k) — 7o (k+2)) <

n

= (5.68)
Proof. Let D(k) := X(k) — X(k + 2). Similarly as in ([65], p.2560),

2

Zk: x(j j—i-k))-i-l).

J=1

n

n

Var(F2 (k) — 72(k +2)) < Cn™2 (Var(
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Here,
n—k—2 n—k—2
Var( >> X(j)D( + k) = z_j Cov(X(j)D(j + k), X(1)D(I + k),
where
Cov(X(j)D(j + k), X()D(I + k) = Cum(X(j),D(j + k), X(0), D(l + k))
+ E[X()XD]E[D( + k)D(1 + k)]
+ E[X()D(k + DIEX)D( + k)].

The two last terms in the above representation of the covariance are estimated in
[65]. Hence the lemma follows from

n_ZM Cum(X(5), D(j+ k), X(1),D(l+ k)) < Cn. (5.69)

jl=1
We have for ki, ky > 0,1 > 7,
Cum (X (j), X(j + k1), X(), X(I + ko)) = W4E[Z aj—saj—s+k1al—sal—s+k2]
s<j

ak1+k2+2(l7j)
[t

1—at

and hence

a2k+2(l—j) (1 _ GQ)]

¢k = Cum(X(j), D(j + k), X(1), D+ k)) = mE[ o

where 7 := [ *7(dz). Then

n_z:k_2|6j,z,kz\§0 > E{Mawﬁ)}éc E[ 1 } < on,

2 2
ji=1 1<j<i<n - 110 155<n Lta

proving (5.69) and the lemma, too. O

Lemma 5.4.3. Consider the coefficients g(q) (5.54) of the normalized Jacobi poly-

n,J
nomial J\@ in (5.53). There exists a constant C, > 0 such that for all sufficiently
large n,

G = max |g£Lq;] < On'32e™ with k= 2log(1 + V/2).

0<j<n

Proof is similar to ([65], proof of Lemma 5). We have

(9)
gn,nf(m+1)

(@)

gn,nfm

(n—2)*

= R(m), where  R(z) := CiDim—2-1

(5.70)
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The roots z_, 2z, of |[R(2)| =1, 0r (n—2)?> — (2 +1)(¢+2n — z — 1) = 0, are equal

-2 244q—4
Zi—n—l—Li \/_\/+ +%‘
8n

A straightforward verification shows that for any ¢ > 0 and all sufficiently large n
the following bounds are true:

( ﬁ)_(ﬁ—np

P
" A

-1 < z_
2

i)V

Since z_ is the only root satisfying 0 < z_ < n and

|R(z)| >1 for z<z_; |R(2)|<1 for z_<z<n, (5.72)

(5.71)-(5.72) imply that G = maxoemen |99 | = max(1g -], 109 ey s
where m* is the integer satisfying m* < z_ < m* + 1. Hence the statement of
the lemma follows from Stirling’s formula similarly to [65]. Lemma 5.4.3 is proved. O

The main result of this Section is the following theorem.

Theorem 5.4.4. Let {X(t), t € Z}, ¢(x) and K, satisfy the conditions of Proposi-
tion 5.4.1, and ¢n(x), dn(x) e the estimators of ¢(x) as defined in (5.63). Then,

L () — ¢(x))? LE(¢n(z) — ¢(x))?
/O 1oy A e 0 and /0 A e = 0. (573)

Proof. The second relation in (5.73) is immediate from (5.63) and (5.65). Next,
bn(x) — () = agv(cbn(a:) —o(x)) + o(x) (- — 1),

Ow

where
Ty = 70(0)  70(2) = ) R uo = o [ Q)1 - 2)

see (5.55), (5.56), (5.60), (5.61). Hence the first relation in (5.73) follows from the
second one and the fact that 63, — o, —, 0. We have

EGE —o0h)? = o E< Clx))(1 —2)! d:v)2
< 6V ([@@) ~ @t -y de [0 - oy aa)
= / ())*(1 —2)7'dr — 0, asn — oo,
see (5.65). Theorem 5.4.4 is proved. O
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Remark 5.4.5. The optimal choice of ¢ (minimizing the integrated MISE in (5.73))
is not clear. If ¢ satisfies (5.27) then (5.58) is satisfied with any 0 < ¢ < 2 + 20.
Simulations in [65] and [21] show the “optimal” choice of ¢ might be close to 8 which
is generally unknown.

Remark 5.4.6. An interesting open question is asymptotic normality of the mixing
density estimators in (5.63) for non-Gaussian process {X(t)} (5.4), extending The-
orem 2.1 in [21]. The proof of the last result relies on a central limit theorem for
quadratic forms of moving-average processes due to [15]. Generalizing this theorem
to mixed ID moving averages is an open problem at this moment.
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Aggregation of autoregressive
random-fields and anisotropic long
memory

Abstract. We introduce the notion of anisotropic long memory for random fields on
72 whose partial sums on incommensurate rectangles with sides growing at different
rates O(n) and O(nf1'/H2) [, # H, tend to an operator scaling random field on
R? with two scaling indices H;, H,. The random fields with such behavior are
obtained by aggregating independent copies of a random-coefficient nearest-neighbor
autoregressive random fields on Z? with i.i.d. innovations belonging to the domain
of attraction of an a—stable law, 0 < a < 2, with a scalar random coefficient A
(the spectral radius of the corresponding autoregressive operator) having a regularly
varying probability density near the ‘unit root” A = 1. The proofs are based on a
study of scaling limits of the corresponding lattice Green functions.

6.1 Introduction

Following Biermé et al. [16], a scalar random field {V (z),z € R?} is called
operator scaling random field (OSRF) if there exist a H > 0 and a d X d real matrix
E whose all eigenvalues have positive real parts, such that for any A > 0

{(V(\Pz)} MV ()} (6.1)

(See the end of this section for all unexplained notation.) In the case when £ = I
is the unit matrix, (6.1) agrees with the definition of H —self-similar random field
(SSRF), the latter referred to as self-similar process when d = 1. OSRFs may exhibit
strong anisotropicity and play an important role in various physical theories, see [16]
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and the references therein. Several classes of OSRFs were constructed and discussed
in [16], [28].

It is well-known that the class of self-similar processes is very large, SSRFs and
OSFRs being even more numerous. According to a popular view, the ‘value’ of
a concrete self-similar process depends on its ‘domain of attraction’ In the case
d = 1, the domain of attraction of a self-similar stationary increment (sssi) process
{V(7), 7 > 0} is usually defined as the class of all stationary processes {Y (t),t € Z,}
whose normalized partial sums tend to {V(7), 7 > 0}, viz.,

[n7]

BgIZY(t) —>fdd V(T), TER+. (62)

The classical Lamperti’s theorem [57] says that in the case of (6.2), the normaliz-
ing constants B, necessarily grow as n’ (modulo a slowly varying factor) and the
limit random process in (6.2) is H—sssi. The limit process {V (1), 7 > 0} in (6.2)
characterizes large-scale and dependence properties of {Y (t), t € Z}, leading to the
important concept of distributional short/long memory (Cox [29]). There exists a
large probabilistic literature devoted to studying the partial sums limits of various
classes of strongly and weakly dependent processes and random fields. See, e.g., the
monographs [12], [34], [39] and the references therein. In particular, several works
([31], [32], [67], [99], [33]) discussed the partial sums limits of (stationary) random
fields indexed by t € Z%:

B.' Y Y(t) —taa V), = (z1,...,24) € RYL, (6.3)

LEK [nq]

where Kjpy == {t = (t1,...,ta) € Z* : 1 < t; < na;} is a sequence of rectangles
whose all sides increase as O(n). Related results for Gaussian or linear (shot-noise)
and their subordinated random fields, with a particular emphasis on large-time be-
havior of statistical solutions of partial differential equations, were obtained in [2],
3], [4], [67], [69]. Most of the above mentioned studies deal with ‘nearly isotropic’
models of random fields characterized by a single memory parameter H and a lim-
iting SSRF {V(x)} in (6.3).

In this Chapter we study anisotropic distributional long memory, by exhibiting
a natural class of models whose partial sums tend to OSRFs. Related notion of
anisotropic long memory in spectral domain and its implications is discussed in
[62]. The present study is limited to the case d = 2 and random fields with the
horizontal anisotropicity axis and a diagonal matrix . Note that ford =2 and E =
diag(1,7), 0 < v # 1, relation (6.1) writes as {V(Az, \'y)} = {A\FV (z,9)}, (z,y) €
R2, or
Wz, )} & (VO Hg ANy YA >0, (6.4)
where Hy := H, Hy :== H/v # H;. The OSRFs (6.4) discussed in this Chapter are
obtained by taking the partial sums limits

B! > Y(t,s) —waa V(z,y), (z,y) € RZ (6.5)

(lfvs)GK[mmHl/H2 vl
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on incommensurate rectangles K, mmy = {(t,s) € 2 : 1 <t <nx,1 <5 <
nfi/H29) with sides growing at different rates O(n) and O(nf1/#2). The conver-
gence in (6.5) is established for a natural class of aggregated random-coefficient
autoregressive random fields, see (6.6)-(6.9) below, with finite and infinite variance.

Consider a nearest-neighbor autoregressive random field {X(t,s), (¢t,s) € Z*}
satisfying the difference equation

X(t,s) = > alu,0)X(t+u,s+0v)+e(t,s), (t,s) € Z*,  (6.6)
lul+v]=1

where {e(t,s), (t,s) € Z*} are i.i.d. 1.v's whose generic distribution ¢ belongs to
the domain of (normal) attraction of an a—stable law, 0 < o < 2, and a(t,s) >
0, |t| + |s| = 1, are random coefficients, independent of {e(t,s), (t,s) € Z*} and
satisfying the following condition for the existence of a stationary solution of (6.6):

A=) alt,s) < 1, a.s. (6.7)

[t|+]s|=1

(Note, that this condition is sufficient but not necessary, see [82].) The stationary
solution of (6.6) is given by the convergent series

X(t,s) = Y glt—u,s—v,a)e(u,v), (t,s) € 72, (6.8)

(u,v)€Z?

where a = (a(t, s),|t| + |s| = 1), and g(t, s,a), (t,s) € Z?, is the (random) lattice
Green function solving the equation

gt,s,a) = Y alu,v)g(t +u,s+v.a) =d(t,s),
|ul+[v]=1

where 0(t,s) is the delta function (see Section 6.2 for precise statement). Let
{X;(t,s),(t,s) € Z*}, i =1,2,..., be independent copies of (6.8). The aggregated
field {X(t,s), (t,s) € Z*} is defined as the limit:

N
NN Xt s) —wa X(t,s),  (t,s) € 22 (6.9)
i=1
Let @ denote the distribution of the random vector a = (a(t, s), [t| + |s| = 1) taking
values in A := {a(t,s) € [0,1), Y45z a(t,s) < 1} € R* and called below the
mizing distribution. Under mild additional conditions, the limit in (6.9) exists and
Is written as

X(ts) = Y /Ag(t—u,s—v,a)Mu,v(da), (t,s) €72 (6.10)

(u,v)€Z?

In (6.10), {M,»(da), (u,v) € Z*} are i.i.d. copies of an a—stable random measure
M on A with control measure ®, see (6.37). The random field {X(¢, s), (¢, s) € Z*}
in (6.10) is a—stable and a particular case of mixed stable moving-average fields
introduced in [101]. In the case a = 2, or a Gaussian limit in (6.10), the covariance
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function and the spectral density of this random field are given by

r(t,s) = o° Z(M)EZQE[g(u,v,a)g(t—i—u,s—l—v,a)}, (t,s) € 77, (6.11)
and )
o* .
f(ma y) = @E‘g@fay; CL)’Q, (.%, y) S [_ﬂ-a 7‘-]27 (612>

. -1
respectively, where §(x,y,a) = (1 — Djt+s=1 alt, s)el(‘””ys)) is the Fourier trans-
form of ¢(,s,a) and o2 := Ee?.

It is not surprising that large-scale and long memory properties of the aggregated
field {X(¢,s), (t,s) € Z*} strongly depend on the behavior of ® near the ‘unit root’
A = 1. We assume in Sections 6.4 and 6.5 that A € [0,1) is random and has a
regularly varying probability density ¢ at a = 1:

o(a) ~ ¢1(1 —a)?, atl, 3¢1>0,0<B<a-1,1<a<2 (6.13)

The case 0 < a < 1 apparently cannot lead to long-range dependence (see Capters 3,
4 and papers [87], [88]). The long memory properties of the limit aggregated random
field {X(¢,s), (t,s) € Z*} strongly depend also on the model, which describes the
behavior of individual fields. We investigate long memory properties of the limit
aggregated field in two special cases of individual fields:

X(t,s) = ?(X(t —1,s)+X(t,s+ 1)+ X(t, s — 1)) +e(t, s), (6.14)
X(t,s) = ’j(X(t —1s)+ X(t+1,5)+ X(t,s+ 1)+ X(t,s — 1)) +(t,5). (6.15)

In the sequel, we refer to (6.14) and (6.15) as 3N and 4N models, N standing for
‘Neighbor’. Stationary solution of the above equations in these two cases is given by
(6.8), the Green function being written as

gt,s,a) = > AFpi(t, s), (t,s) € 72, acA, (6.16)
k=0

where p(t, s) = P(Wy = (¢, 5)|Wo = (0,0)) is the k—step probability of the nearest-
neighbor random walk {W;, k= 0,1,...} on the lattice Z* with one-step transition
probabilities shown in Figure 6.1 (b), (c).

Relation (6.12) implies (see also Remark 6.3.4 below) that for these two models
(3N and 4N), a = 2, and a mixing density as in (6.13), the aggregated spectral
density f(z,y) in (6.12) is unbounded for all 0 < § < 1, meaning that the cor-
responding Gaussian random field in (6.10) has long memory. [62] obtained the
asymptotics of f(x,y), as (z,y) — (0,0), in an arbitrary way and showed that the
3N model satisfies spectral anisotropic long memory property (a spectral analog of
the anisotropic distributional long memory property of Definition 6.2.2, page 125),
in contrast to the 4N model having isotropic long memory spectrum ([61], [62]).
The above mentioned works use the spectral approach which is applicable in the
case o = 2 only. Asymptotics of spectral density and covariance functions for some
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¥2 ¥3 V4
2 B a |
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Figure 6.1: One-step transition probabilities

long-range dependent random fields was also studied in [68].

In this Chapter, we study also the asymptotics of the lattice Green function
in (6.16) for models 3N and 4N, using classical probabilistic tools (the de Moivre-
Laplace theorem and the Hoeffding inequality for tails of binomial distribution, see
[36], [37], [47]). In particular, Lemmas 6.4.2 and 6.5.1 obtain the following point-wise
convergences: as A\ — 00,

—fort>0,seR, z>0,
Vags (M) [VAs] 1= 5) = ha(t, s.2), (6.17)

— for (t,s) € R\ {(0,0)}, z > 0,
z
ga(IM], [As], 1 — ﬁ) — hu(t,s, z), (6.18)
respectively, together with dominating bounds of the left-hand sides of (6.17), (6.18)
(see (6.49), page 133, and (6.75), page 146). Here, g3 and g4 denote the Green
functions of the 3N and 4N models, respectively, and the limit functions hs and hy
in (6.17)-(6.18) are given by

3 52 2
hs(t,s, z) = N e hy(t, s, z) == ;KO(Q\/Z(tQ + 52)), (6.19)

where K is the modified Bessel function of second kind. Note that h3 in (6.19) is
the Green function of one-dimensional heat equation (modulus constant coefficients),
while hy4 is the Green function of the Helmholtz equation in R?. Kernels hs and hy
appear in the stochastic integral representation of scaling limits of models (6.14)-
(6.15).

Let us summarize the remaining contents of the Chapter. Section 6.2 introduces
the notions of anisotropic/isotropic distributional long memory, in terms of scaling
behavior of partial sums limits (6.3), (6.5). An important feature of Definitions 6.2.2
and 6.2.3 is the requirement of dependence of increments of the limit random field in
arbitrary direction. This requirement is analogous to the dependence of increments
requirement in the definition of distributional long memory for processes indexed
by t € Z, and helps to separate between isotropic and anisotropic scaling behaviors.
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See also Proposition 6.4.6.

Section 6.3 discusses the existence of stationary solution in L,, 0 < p < 2, of
the nearest-neighbor random-coefficient equation (6.6), and the limit aggregated
field in (6.9) as a mixed a—stable moving average field of (6.10). Sections 6.4
and 6.5 are devoted to the study of scaling limits of the aggregated 3N and 4N
models, respectively. The convergence in (6.5) with B, = nl', H, = %Jrzfg,
H, := 2H; and the anisotropic long memory property are established in Theo-
rem 6.4.3 for the aggregated 3N model {X(t,s) = X3(t,s)} of (6.10). The limit
random field {V5(z,y), (z,y) € R2} is an a—stable OSRF and satisfies (6.1). It is
represented in (6.46) as a stochastic integral with respect to an a—stable random
measure with integrand involving the kernel hs in (6.19). For the same random
field {X3(t,s), (t,s) € Z*}, Theorem 6.4.4 obtains a ‘commensurate’ scaling limit

of (6.3) towards a different random field {Vi,(z,y), (z,y) € R%} in (6.60), which
1+a—0

is self-similar with H, := and has independent increments in the vertical
direction (see Definition 6.2.1). In the finite variance case o = 2, Proposition 6.4.7
obtains the asymptotic decay of the covariance

r3(t, s) = E[X3(0,0)X5(t, s)]

as t — oo and s = O(y/t) increase ‘parabolically’, complementing the result in [62]
on anisotropic asymptotics of the spectral density.

Section 6.5 discusses the lattice isotropic aggregated 4N model {X4(t, s), (t,s) €
Z?}. We show that this field satisfies the isotropic distributional long memory prop-
erty of Definition 6.2.3 and its scaling limit {Vi(z,y), (z,y) € R2} is an a—stable
SSRF with exponent H = @, see Theorem 6.5.2 and Proposition 6.5.3. The
isotropic covariance long memory property for {X4(t,s), (t,s) € Z?} and a = 2
is proved in Proposition 6.5.4. In the Gaussian case a = 2, Theorem 6.5.2 and
Proposition 6.5.4 agree with [61]. Section 6.6 (Appendix) contains the proofs of the
technical Lemmas 6.4.2 and 6.5.1.

Notation. For A > 0 and a d x d matrix E, \¥ := eF18* where e = 3232, A* /k!
is the matrix exponential. F = diag(vi,...,7s) denotes the diagonal d x d matrix
with entries vy, ...,74 on the diagonal. Figure 6.2 shows a simple scaling example

ﬁ
NS

N

(a) (b)

Figure 6.2: Linear scaling z — Az, where E = diag(1, 1/2)
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when F = (1) 192 > . Blue lines show the transformation of black one for different

values of \.
mod 2

For integers t, s, t m2d2 ¢ and ¢t # s means that t + s is even and odd, respec-
tively. All equalities and inequalities between random variables are assumed to hold
almost surely.

6.2 Isotropic and anisotropic long memory of ran-
dom fields in Z?

Let £ = {(z,y) € R? : ax + by = c} be a line in R, A line ¢ = {(z,y) € R? :
a'r+ by =} is said perpendicular to ¢ (denoted ¢ L0) if aa’ +bb' = 0. A rectangle
is a set Koy = {(s,t) €ERE tu<s <z, v<t<y} Kpy:=Kpo)ay We
say that two rectangles K = Ky y);(z,y) and K’ = Ky )2 ) are separated by line
¢ if they lie on different sides of ', in which case K and K’ are necessarily disjoint:
KNK' =0 (see Fig. 6.3 below).

Let {V(z,y)} = {V(z,y), (z,y) € R:} be a random field and K = Ky )(z4) C

R? be a rectangle. By increment of {V (x,y)} on rectangle K we mean the difference
V(K) = V(J?, y) - V(U,y) - V(ZL‘,'U) + V(U, U)'

Definition 6.2.1. Let {V(z,y), (z,y) € RY} be a random field with V(x,0) =
V(0,y) =0, z,y > 0, and { C R?, be a given line passing through the origin. We
say that {V(x,y)} has independent increments in direction ¢ if for any orthogonal
line ¢’ L0 and any two rectangles K, K' C R? separated by (', increments V(K) and
V(K') are independent. FElse, we say that {V(z,y)} has dependent increments in
direction (.

Figure 6.3: Independent increments

Definition 6.2.2. We say that a stationary random field {Y (t,s), (t,s) € Z*} has
anisotropic distributional long memory with parameters Hy, Hy > 0, Hy # Hy if

[na] [n'11/ M2y

nThYT Y Y(ts) e Viey),  (x,y) €RE (6.20)
t=1 =1
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where {V (z,y)} is a random field having dependent increments in arbitrary direc-
tion.

Definition 6.2.3. We say that a stationary random field {Y (t,s), (t,s) € Z*} has
isotropic distributional long memory with parameter H > 0 if

[nz] [ny]

n TN NV (ts) = Viz,y), (z,y) € RZ, (6.21)

t=1 s=1

where {V (z,y)} is a random field having dependent increments in arbitrary direc-
tion.

Proposition 6.2.4. (i) Let {Y (¢, s), (t,s) € Z*} has anisotropic distributional long
memory with parameters Hy # Hy. Then the limit random field {V (x,y)} in (6.20)
satisfies the self-similarity property (6.4). In particular, {V(z,y)} is OSRF corre-
sponding to H := Hy, F := diag(1, H/H,).

(ii) Let {Y (t,s), (t,s) € Z*} has isotropic distributional long memory with param-
eter H. Then the limit random field {V (x,y)} in (6.21) satisfies the self-similarity
property (6.4) with Hy = Hy := H, i.e., {V(x,y)} is SSRF with parameter H.

Proof. Fix A > 0 and let m := [nA\"/#1]. We have

1
VA g A2y = fdd-lim — - 3 Y(t,s)
0<t<zA/Hin 0<s<yAl/HapH1/Hz
A
m 0<t<zm,0<s<ymH1/Hz
fad AV (z,y).
Proposition 6.2.4 is proved. O

6.3 The existence of the limit aggregated random
field

We first discuss the solvability of the nearest-neighbor random-coefficient autore-
gressive equation (6.6) and the convergence of the series (6.8). The Green function
of (6.6) is written as

g(t,s,a) = ia*k(t,s), (6.22)
k=0

where a**(t, s) is the k—fold convolution of the function a(t, s), (¢, s) € Z?, a(t, s) :=
0, [t| + |s| # 1, defined recursively by

a*’(t,s) = 6(t,s) == {
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a¥(t,s) = Y & * D(uv)alt —u,s —v), k> 1.
(u,v)€Z?

Note that (6.22) can be rewritten as (6.16), where
pi(t,s) = P(Wy, = (t,s)|[Wo = (0,0))

is the k—step probability of the nearest-neighbor random walk {Wy, k = 0,1,...}
on Z? with one-step transition probabilities

(6.23)

a(t,s) t.sYeZ? |t|+1s| =1
plt.5) = plt.5.a) = pult.s) = { L) (t5) € Z2, |t] + ||

0,  (ts)eZ? |t|+]|s| #1.

Generally, the p(t,s)’s depend also on a = (a(t,s),|t| + |s| = 1) € A but this
dependence is suppressed for brevity. Write ¢ for generic £(t, s), (¢, s) € Z*. Let

q1 :=p(0,1)+p(0, —=1) = 1—p(1,0)=p(=1,0) =: 1—qs, ¢ = min(q, g2). (6.24)

Note ¢; € [0,1] and ¢; = 0 (respectively, go = 0) means that the random walk {W}
is concentrated on the horizontal (respectively, vertical) axis of the lattice Z2.

Proposition 6.3.1. (i) Assume there exists 0 <p <2 such that
Ele]? < o0 and Ee=0 for 1<p<2, (6.25)

and condition (6.7). Then there exists a stationary solution of random-coefficient
equation (6.6) given by (6.8), where the series converges conditionally a.s. and in
L, for every a € A.

(it) In addition to (6.25), assume that ¢ > 0 a.s. and

1 .
{ E|:q2<p71)(1_A)} < OO? Zf 1 < p S 27 (626)

E[W} < oo, if 0<p<l.

Then the series in (6.8) converges unconditionally in L,.

Proof. (i) Let us prove the convergence of (6.8). We shall use the following inequality.
Let 0 < p < 2, and let &,&,... be random variables with E|{|P < oo. For
1 < p < 2, assume in addition that the &;’s are independent and have zero mean
E& = 0. Then

p
E|Y & < 2) ElGP. (6.27)
Accordingly,
E[[X(t,s)ﬂa} < 2P Y lg(u,v,a). (6.28)
(u,v)€Z2
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By (6.16),

Al+s)

0 < glt,s,a) < > Apltis) < 5—

k=|t|+|s|

(6.29)

From above we obtain

E[;X(t,s)\p\a} < ¢ Y A < Y APUR £ 1) < oo, (6.30)

(u,v)€Z? k=0

proving the conditional convergence in L, of the series in (6.8).

Let prove part (ii). According to the bound in (6.28), it suffices to prove that

E > |g(t,s,a)f) < oo. (6.31)

(t,s)€Z?

Let .
a(r,y) = Y e Wt 5),  (z,y) €%, T :=[-m, 7).
+1s1=1

Then ]

_ i(tz+sy) A

a(t,s) = o) /H2 elte+sv)g(z, y) da dy

and

, dx dy 1 . dx dy
t, 7 _ / i(te+sy) _ / i(tz+sy) ’
9050 = G e Ty @ et 1= Ap(ry)

N d xvy —i(tx+s
Pz, y) = (@:9) _ Yo e itmp(, 5)
[t|+]s|=1

satisfies |p(x, y)| < Xj44 5121 P(t,s) = 1. From Parseval’s identity,

dz dy
g(t,s,a)]*> = C ~ . 6.32
(t,s)ZeZJ &,5,0) 2 |1 — Ap(z,y)|? (652
We shall need the inequality
N 4q
1=Apry)| 2 g |0-+a* 497 (ay) €lP, (6.33)

which is proved below. We have

L—Apry) = 1-A)+A >0 p(t,s)(1— )

[t]+]s|=1
= (1= A) + Afga(1 = cos(w)) + qi(1 — cos(y))]

— 1A > p(t, s)sin(tz + sy)
tl+1sl=1
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and therefore
1= Ap(z,y)| > (1—A)+ Ag[(1 = cos(x)) + (1 — cos(y))],

proving (6.33) (we used the inequalities 1 — cos(z) > 2%/8 and z? < 10, |z] < 7).
From (6.32) and (6.33) we obtain

C dz d
Z |g(t,s,a)\2 S ) 5 Y 2
(t,5)€Z2 g Jn ((1 —A)+ 22+ y2)
rdr C
— . 6.34
/ )+ 7'2) q2(1 —A) ( )

On the other hand, (6.16) immediately gives

Z ’g(tasaa)‘:iO:Ak Z pk<t,8):§Ak = 1_114

(t,s)ez? k=0 (t,5)ez?

Therefore for any 1 < p < 2, by Holder’s inequality,

ST gty s,a)P < ST glt,s,a) PPV gt s,a) P PL(|g(t, s, @) > 1)
(t,5)€z? (t,s)€Z2

+ Y lg(t,s,a)|1(|g(t, s, a)| < 1)

(t,s)ez?
p—1 2—p
< (X wtsal) (X latsaolilytsal> D)
(t,s)ez? (t,s)ez?
+ Z g(t, s, a)l,
(t,s)ez?

Therefore, using (6.34),

Z lg(t,s,a)]P < C«<q2(11_A)>p—1<

(t,5)ez?

2—p
Z lg(t, s,a)|> + Z g(t, s, a)

(t,s)€Z? (t,5)€22

C C C

<
FrD(1—4) T-A° g D(1—A)

proving (6.31) and the unconditional convergence of (6.8) under the first condition
n (6.26).

Next, consider the case 0 < p < 1. Using (6.16) and Hoélder’s inequality, we
obtain

Z lg(t, 5,0)]" < iAkp Z Pt s) < ZAkp{ Z Pk(t,s)}p{ Z 1}1_p

(t,s)€Z? k=0 [t|+[s|<k [t]+Is|<k [t|+]s|<k
C C

- kp1.2(1—p)
< CZA% "< 1_Ap)372p = (1_14)372:0'

k=0 (
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This completes the proof of part (ii) and the proposition. O

In this chapter, we also use the notation ¢ € D(«), 0 < a < 2 (see Definition
3.2.1, page 55), which means that innovations belong to the domain of normal
attraction of an a-stable law.

Remark 6.3.2. Condition € € D(«) implies that the r.v. e belongs to the domain
of normal attraction of an a—stable law; in other words,

N
NN e =y Z, (6.35)
i=1

where Z is an a—stable r.v., see ([36], pp.574-581). The characteristic function of
the r.v. Z in (6.35) is given by

EeiOZ _ e—\6|"‘w(9)’ 9 € R,

where
F(12:aa) <(C1 + ¢3) cos (%) — (e — co)sign(#) sin (”2)), a#1,2
w(0) = (¢1 + )T, a=1,
%2’ o =2
(6.36)

Introduce independently scattered a—stable random measure M on Z? x A with
characteristic functional

Eexp{i 3 9t7th78(As)} - exp{— 3 yet,s\aw<et,s>q>(At,s)}, (6.37)

(t,5)€Z? (t,s)ez?

where 6, € R and A, ; C A are arbitrary Borel sets.

Proposition 6.3.3. Let ¢ € D(a), 0 < a < 2. Assume that the mizing distribution
satisfies condition (6.26) of Proposition 6.3.1 (ii) with some 0 < p < 2 and such
that

p>a, if 1<a<?2,
p<a, if 0<a<l, (6.38)
p=2, if a=2.

In the case o« = 1 we assume that

1
Em < oo for some p > 1. (6.39)

Then the limit aggregated random field in (6.9) exists and has the stochastic integral
representation of (6.10).

Proof. Let T C Z? be a finite set, 6, € R, (t,s) € T. It suffices to prove that
Sy —a S, where S 1= Y oerthX(t,s) is a a—stable r.v. with characteristic
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function

Ee'vS = eXp{ = |w* Y E[’G(“’“’“)‘aw(wG(“’U’a))} }

(u,v)€Z2

G(u,v,a) = Z Or.59(t v, a),
(t,s)eT
and Sy = N~ Ve fvzl U; is a sum of i.i.d. r.v.s with common distribution

U:= > 6,.X = Y G(u,v,a)e(u,v).

(t,s)eT (u,v)ez?

It suffices to prove that r.v. U belongs to the domain of attraction of r.v. S (in the
sense of (6.35)); in other words, that

EU? = ES? < o0 for a = 2, (6.40)
and, for 0 < a < 2,
lim P(U>z) = ) EUG(u,v,a)’a{cll(G >0) 4+ c1(G < O)}], (6.41)
(u,v)€Z2
im z|*P(U <z) = > E[‘G(u,v,(z)‘a{cll(G <0) + 1(G > O)}],
(u,v)EZ?

where, 1(G > 0) = 1(G(u,v,a) > 0) and 1(G < 0) = 1(G(u,v,a) < 0). Here, (6.40)
follows from definitions of U and S. To prove (6.41), we use ([49], Theorem 3.1).
Accordingly, it suffices to check that there exists € > 0 such that

> E‘G(u,v,a)‘wrE <ooand Y E’G(u,v,a)‘%6 < oo, fora € (0,2)\ {1} (6.42)
(u,0)€Z? SEZ2

a+te

E( > ‘G(u,v,a)‘a€> <0, for a=1.

(u,v)€Z?

Since T C Z? is a finite set, it suffices to show (6.42) with G(u,v,a) replaced by
g(u,v,a). Let 1 <a<2and p=a+e>ain (6.38). Then

lﬁl‘g(u,v,a)‘wE < CE[g7 2t V(1 - A) Y < 0

(u,v)ez?

follows from (6.35) and (6.38). Similarly, if l <a<2and 1 <p=a—¢€€ (1,q),
then

> Blguv.a)"" < OBl 01— )7 < OB (1 - 4) 7 < oo

(u,v)€Z?

thus proving (6.42) for 1 < o < 2. In the case 0 < a < 1, relations (6.42) immedi-
ately follow from (6.35) and (6.38) with p = a+e€ € (0,1). Finally, for a« = 1, (6.42)
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follows from (6.35) and (6.39). O

Remark 6.3.4. For the 3N and 4N models in (6.14) and (6.15), we have ¢ = 1/3
and ¢ = 1/2, respectively. Hence, for 1 < a < 2, condition (6.38) of Proposition
6.3.3 for the existence of the aggregated random field {X(¢, s), (¢, s) € Z*} in (6.10)
reduces to

E(1— A" = /[071)(1 —a)"'®(da) < oo (6.43)

For regularly varying mixing density as in (6.13), condition (6.43) is equivalent to
£ > 0. In the Gaussian case o = 2 the spectral density f of (6.9) is given in (6.12).
For the 3N and 4N models we have that

2

o 1
109 = Gt Jo T anie e 2

and hence f(z,y) is bounded at the origin if and only if
£(0,0) = (¢/27)*E(1 — A)™? < oo. (6.44)

In particular, for ® as in (6.13) and any 0 < § < 1, the spectral density f of the
aggregated random field is unbounded.

6.4 Aggregation of the 3N model

In this section we prove the anisotropic long memory properties, in the sense of
Definition 6.2.2 (page 125), of the aggregated 3N model given by

Xlts) = Y /Olgg(t—u,s—v,a)Mu,v(da), (ts) € 72, (6.45)

(u,w)eZ?

where {M, ,(da), (u,v) € Z*} are i.i.d. copies of a—stable random measure M
on [0,1) with control measure ®(da) = P(A € da) and the characteristic function
Ee?M(B) = o l0I*w(O)®(B) ' B  [0,1), see (6.36), (6.37); and where gs(t, s,a) is the
Green function of the random walk {W}.} on Z? with one-step transition probabilities
shown in Figure 6.1 (b). For 1 < o <2, (6.45) is well-defined, provided the mixing
distribution satisfies (6.43).

Introduce a random field {V3(z,y), (z,y) € R3} as a stochastic integral

Vs(z,y) ;:/

R2 XR+

M(du, dv, dz) /x /y hs(t —u,s — v, z) dtds, (6.46)
0 Jo

where M is an a—stable random measure on R? x R, with the control measure
dp(u,v,2) := ¢y 2% dudvdz and characteristic function Ee®M(B) = o=I01"«(©@)n(B)
where B C R? x R, is a measurable set with u(B) < co. As shown in the proof of
Theorem 6.4.3 below, the stochastic integral in (6.46) is well-defined. The random
field in (6.46) has a—stable finite-dimensional distributions and stationary incre-
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ments in the sense that for any (u,v) € R%
(Va(z,9)} L {Va(u+ 2,0 +y) — Va(u, v +y) — Va(u+ z,0) + Va(u, )}, (6.47)
Moreover, (6.46) is OSRF and satisfies (6.4), viz.,
V0w V) = (V) (6.43)
with H given in (6.51). Property (6.48) is immediate from the scaling properties
hs(Au, VA, \712) = A2 hy(u, v, 2)

and
3-8

(M(d, AV, A1) (A M(du, du, d2)},

the last property being a consequence of the scaling property

p( du, dv/\w, d\'z) = )\%_ﬂ,u( du, dv, dz)

of the control measure pu.

Remark 6.4.1. The random field (6.46) is different from the class of a—stable
OSRFs defined in ([16], (3.1)) because the latter fields satisfy a different stationary
increment property, see ([16], (3.5)). Moreover, (6.46) have a mixed moving average
representation in contrast to the moving average representation in ([16], (3.1)).

The main result of this Section is Theorem 6.4.3. Its proof is based on the asymp-
totics of the Green function g3 in Lemma 6.4.2, below. The proof of Lemma 6.4.2
is given in Section 6.6, page 157.

Lemma 6.4.2. For any (t,s,z) € (0,00) x R x (0,00) the point-wise convergence
in (6.17) holds. This convergence is uniform on any relatively compact set

{e<t<l/e,e<|s| <1l/e,e<z<1/e} C(0,00) xR x (0,00), €>0.

Moreover, there exist constants C,c > 0 such that for all sufficiently large A and any
(t,s,2),t>0,s €R, 0< 2z <A\ the following inequality holds:

\/ng([At], [VAs],1— i) < C(ha(t, s, 2) + Ve eVADTE) T (649)

where hs(t, s, z) = %e_“_%, (t,s,2) € (0,00) x R x (0, 00).

Theorem 6.4.3. Assume that the mizing density ¢ is bounded on [0, 1) and satisfies
(6.13), where
0<B<a—1, l<a<2 (6.50)

Let {X5(t,s), (t,5) € Z*} be the aggregated random field in (6.45). Then

[nz] [v/ny] 1o 5
nY TN X3(t,s) —pa Va(z, ), x,y >0, H .= 2

t=1 s=1

(6.51)

«
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Proof. Write S, (x,y) for the Lh.s. of (6.51). We prove the convergence of one-
dimensional distributions in (6.51) at # = y = 1 only, since the general case of
(6.51) is completely analogous. We have

B0 — exp{ — 0" [ (Glu,v,2)w(0G(u0,2)) dpfu,v.2) |,

RQXR+
ReifSn(1L1)  _ eXP{ — |g|on—He Z E[gf:(u,v,A)w(@Qn(u,v,A))}}, 0 €R,
(u,v)€Z2
where
1 1
Gu,v,z) = / / hs(t —u,s — v, z)dt ds, (6.52)
0o Jo
Gn(u,v,a) = Z g3(t —u,s —v,a).

1<t<n, 1<s<[y/n]

Since w(f) in (6.36) depends on the sign of § only and G > 0, G,, > 0, in the rest of
the proof we can assume w(-) = 1 without loss of generality, c.f. (Chapter 4, proof
of Theorem 4.3.1, page 79). Hence, it suffices to show

Jo =01 " B(Ga(u, v, A)* — (G(u,v,2))*dp = J. (6.53)

2
(u,v)eZ? REXR

Let us first check that J < oo, i.e., that V3(1,1) is well-defined as a stochastic
integral with respect to M. We have

(s—v)?/4(t—u) —3z(t u) B8
C . (/ / m 1(u<t)dtd3> 2P dudvdz

= C(J1+ J2),

where, by Minkowski’s inequality,

/ d’LL/ d?}/ /de</ / —(s—v)2/4(t+u)e—3z(t+u) dt dS)a
t—l—u
1/ay «
{/ / dtds(/ du/ dv/ ea(sv)2/4(t+u)e3az(t+u)> }
t—i— (t + u)o/?
1 l/aya
= C{/ dt(/ dU/ 25 dzim eBaz(t+u)) }
0 0 0 (t+u) =
1 00 1/ay a
_ C{/ dt(/ du ) }
0 0 (t—l—u)T“‘H‘ﬂ
1 1 1/ay «
- O{/ dt(a—l) } < o0
0 to 8
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since =2~ < 1 holds because of (6.50) and @ < 3. Next,

Jo = / dy/ dv/ ﬁdz{/ ds/ (s—v)?/4z _3”dx}
/ dy/ dv/ de : +/ / dv/ooz'gdz{---}a
0 ] <2 0 v|>2 0

= Jo1 + Jao.

Here,
00 1 @
Jag < C/ zﬁdz{/ e_?mdx} C/ 1—e Z) dz < o0
0 0
since a > 1+ . Finally, since (s —v)? > v?/4 for |s| < 1, |v| > 2, so
1 2 2 T
/ e (T qg < V10T < C—, v>2 0<z<l,
0 v
and

J22

IN

00 1 a
C |v| 2 dv/ 2P dz{/ D dx}
o] >2 0 0
1 0o l/aya 1 pl/2dp Y@
C{/ xl/zdx</ e_?’o‘zxzﬁdz) } = C{/ :CHB:E} < 00,
0 0 0 T o

since —% + % < 1. This proves J < oo, or G € L*(p).

IN

Let us prove the convergence in (6.53). For notational simplicity we can assume
¢(a) = (1 — a)?, c.f. (Chapter 4, proof of Theorem 4.3.1, page 79). Then

Jn = / (Gn(u,v,2))* du(u, v, 2),
RQXR+
where

Gn(u,v,z) = \/ﬁgg<[nt] — [nul, [v/ns] — [v/nv], 1 — %)1(0 <z <mn)dtds.

(0,12

Let
We i={(u,v,2) ER* xR, : |ul, |v| < 1/e,e < z < 1/e}.

We claim that
lim sup |Gn(u,v,z2)—G(u,v,2) = 0, Ve>0. (6.54)
n—o0 (u,v,2)EWe

To show (6.54), for given €; > 0 split

Gn(u,v,z) — Glu,v,2) = ZFM(U,U,Z),
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where, for 0 < z < n,

Coi(u,v,2) = /(O,IPOD(Q) {\/ﬁgg([nt] — [nu], [v/ns] — [v/nv], 1 — %) -
— h3(t —u,s — v, z)} dt ds,
Coo(u,v,2) = /(071}2OD(€1)C \/ﬁgg([nt] — [nu), [v/ns] — [v/nv], 1 — %) dt ds,

Cos(u,v,2) = — hs(t — u, s — v, z) dtds,
(0,1}2QD(61)C

and where the sets D(e), D(¢)¢ (depending on u,v) are defined by

D(e) = {(t,s) € (0,1 :t—u>¢e, |s—v|> e},
D(e) = (0,1]*\ D(e).

To show (6.54), it suffices to verify that for any € > 0, 6 > 0 there exists ¢; > 0, ny >
1 such that

lim sup [pi(u,v,2) = 0, (6.55)
n—oo (u,v,2)EW,

sup  |Tpi(u,v,2)] < 9, i=2,3, Vn>ny. (6.56)
(u,v,2)EWe

Relation (6.55) follows from Lemma 6.4.2. Next,

€ 1
ITys(u, 0, 2)| < 0/0 L2 g c/ 112 4t ds = O(year),
€1

|s|<er

implying (6.56) for ¢ = 3 with €; = C'§2. Finally, using (6.49) we obtain

1 »
ITya(u, v, 2)| < Cy/er + wﬁ/ e~ 4t < O\ Jer + Cf/n < 6
0
provided /e; < 6/(2C"), n > ny = (2C/§)? hold. This proves (6.56) for ¢ = 2 and

hence (6.54), too.
Let

G (u,v,2) == vVnl1(0< 2z < n)/( - e_z(t_“)_c(”(t_“))1/3_C(ﬁls_”|)l/2l(t > u)dtds,
0,1

where ¢ > 0 is the same as in (6.49). Let us show that
J! ::/ G (w0, 2))dp = of1). 6.57
= [ Gerdn = o) (6.57)
Split J! = 323 | I,;, where
I = | (G ha = [ (G dp.
(—00,0] xRy xR4 (0,1]x[—2,2] xR

L= | () dp
(0,1]x[—2,2]° xR+
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—2,2]¢ = R\|-2,2]. Using the fact that emen'Ms—'? 4y = C/\/n and
R
Minkowski’s inequality,

1/ay a
[nl < Cna/Q{/ dt dS(/ efolz(t+’u)fca(n(t+u))1/37001(\/’);‘871)‘)1/2Zﬁ du du dZ) / }
(0,1}2 R+XRXR+

a1 1 o0 du 1/ay «

<c 2{ / dt( / —ca<n<t+u>>1/3> }

= 0 o © (t +u)tth

< Cn—(aTH—ﬁ)L

where O‘TH — >0 and
00 00 1oy«
I:= {/ dt(/ e_ca(t+“)1/3(t+u)_1_5 du) / } < 00.

0 0

Next,

o
[\
A

Cn®/? /Oo 2P dz{ / , et F=e(vnls)'/? qy ds}a
0 (0,4]

4 ) o) 1/ay «
C’{ / e—cmnt)!/? dt(/ e~ vt dz) }
0 0

< C{ /Ooe—d"t)”‘”’t—% dt} < O~ 18 = o(1).
0

IN

Finally, using e=<(Vals=vD"* < o=(e/2(nlDY? for |y > 2, |s| < 1, it easily follows
Lz = O(e=""")y = 0(1), 3¢’ > 0, thus completing the proof of (6.57).
With (6.54) and (6.57) in mind, write

o= d] <[ 1GE =Gt [ (G du [ |G dp (6.58)
We We We

< [lGi-Gldu+C [ (G du+C [ Gl dut [ |G ap,
W R2 xR we we

where G (u,v, 2) := [y Ji hs(t —u,s — v, z)dtds, W¢:=R? x R, \ W.. Since G, G €
L*(p), the third and fourth terms on the r.h.s. of (6.58) can be made arbitrary small
by choosing ¢ > 0 small enough. Next, for a given € > 0, the first term on the r.h.s.
of (6.58) vanishes in view of (6.54), and the second term tends to zero, see (6.57).
This proves (6.53), thus concluding the proof Theorem 6.4.3. O

The next Theorem 6.4.4 shows that when partial sums of {X3(t, s), (¢,s) € Z*}
in (6.45) are taken on ‘commensurate’ rectangles (the number of summands in the
horizontal and the vertical directions grow at the same rate O(n)) the limit field is
different.

Theorem 6.4.4. Assume the conditions and notation of Theorem 6.4.3. Then

] [y lta—g
n Z Z X3(t,s) —aa Vau(z,9), x,y >0, H, = — (6.59)
t=1 s=1
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where
Vae(z,y) = / M(du, dv, d2)1(0 <v < y)/ ha.(t —u, z) dt, (6.60)
R2 xRy 0

hae(u, z) = /Rhg(u,v,z)dv = 12e7%"*1(u > 0), (6.61)

where M is the same as in Theorem 6.4.35.

Proof. Similarly as in the case of Theorem 6.4.3, we prove one-dimensional conver-
gence in (6.59) at = y = 1 only, and assume ®(da) = (1—a)” da. Correspondingly,
it suffices to show the limit lim J,, = J,, where

T = / (Gux(u, v, 2))*dp(u, v, 2), Ji ::/ (Gy(u,v,2))* dp(u, v, z),
RQXR+ RQXR+

1
Gi(u,v,2) == 1(0<wv< 1)/ dt/ ds hs(t —u, s, z),
0 R

= [ e [ as v gs(ind] — . [ys) 1 - )
x 1(0 < z<n,1—[nw] < [Vns] <n—[nv]),

1
=: / dt/ ds fu(t, s, u,v,2).
0 R

Gs(u,v,2) = /01 dtigg([nt] — [nu], s — [nv], 1 — E)1(0 < z<n),

Define
Jow= [, (Gl ,2))"1(0] < 3)dp,
RQXR+

J! = /R2XR+(GR*(U,U,Z)) 1(Jv| > 3) dp,

J AT = T

Then lim J,,, = J, follows from lim J/, = J, and lim J//, = 0.
Note that for any v € R, u < t, v € R\{0,1}, s, z > 0, we have pointwise
convergence

1(1—[nv] < [Vns] <n—[w]) — 1(0<v<1), asn— oo,
Vn gg([nt] — [nu], [v/ns], 1 — %)1(0 <z<n) — hy(t—u,s,z2), asn— oo,

and therefore
fult, s, u,v,2) = hs(t —u,s,2)1(0 <v < 1), as n — oo. (6.62)
We claim that for any v € R, v € R\{0,1}, z > 0,
Gus(u,v,2) = Gy(u, v, 2), as n — oo. (6.63)
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To show (6.63), for given €; > 0 split

3
Grelu,v,2) — Gy(u,v,2) = Y Thi(u,v,2),

=1

where, for 0 < z < n,
1
o (u,v,2) = / / (fn(t,s,u,v,z) —h3(t —u,s,2)1(0 <v < 1)) dt ds,
0 s|>e1

1
o (u,v,2) = /O/s<e fult,s,u,v,z)dtds,

1
Ira(u,v,2) = —/0 /||< hs(t —u,s,2)1(0 < v < 1)dtds,
s|<er

To show (6.63), it suffices to verify that for any € > 0, 6 > 0 there exists ¢; > 0, ny >
1 such that

T}LI{}OF:Ll(U,,U,Z) = 07 (664)
IThi(w, v, 2)] < 6, i=2,3, Vn2>n. (6.65)

Relation (6.65) follows from Lemma 6.4.2,

1

o, v, 2)] < Cuer + Cuﬁl\/ﬁ/ e—c(m)'? g4
0

< Cuer +Cuer/v/n <6

provided ¢ < §/(2C,). |I'is(u,v,2)| < Cyer, implying (6.65) for i = 3 with ¢, =
d/C,. Relation (6.64) follows from (6.62) and the dominated convergence theorem.
For this we need to find the dominated integrable function for f,, (¢, s, u,v, z). Using
inequality from Lemma 6.4.2 and inequalities

e <z 3% forxz>0, and ze*<e 2% forx >0,

we have for fixed u, t —u > 0, v, z:

2
1 ~tTna]
|fu(t,s,u,0,2)] < C e 16l }_I_C\/ﬁe—cnl/S(t—u)1/3—c|s\1/2

< C|1’e Q4M + C\/ﬁ(ﬂl/B(t _ u)1/3)73/2efc|5|1/2
S
2

< |1|e_24<f+lul> + Ot —u) V2B = f(t,5).
S

It is not difficult to see, that [; Jisi>ar f(t,s)dtds < co. Therefore pointwise conver-
gence in (6.63) is proved. Using (6.49), we also get
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1
Grx(u, v, 2) :/ dt/ ds fu(t,s,u,v,2)
< / dt / ds hg(nﬂ i )+\/_ = A2l —c( )2

< C/ dte W1 (u < t)
0

The integral of the function on the right side of last inequality is finite. Indeed,

1 «
/ (/ dtez(t“)> 1(u<t, Jv| <3)Fdudvdz <
R2xR; \ JO

[es] 1 «
< C’/ du/ dz z5</ dte_z(t_“)> 1(u<t)=:1+ I,
R 0 0

where

1 o) 1 «
I, < C/ du/ dz z*8</ dtez(t“)>
0 0 u
1 [e’s) @
< C/ du/ dz 2P <1 — e_Z(l_“)>
0 0

< C’/oo zﬁa(l—ez> dz < C,
0

C/ dU/oo dz Z,B(/Ol dteZ(t+u))°‘
C{/o dt(/OJ”’O du/ooo dz Zﬁeaz(t+u))1/a}a
oA [ a( [Twrna) Y

1 [e%
< C’{/ t_ﬁ/o‘dt} < C,since 1 — f/a > 0.
0

I

IN

IN

IN

From the last fact, the limit in (6.63) and the dominated convergence theorem follows
limJ], = J,. Now we will show lim J/, = 0. Again using inequality in (6.49), we
have J)!, < I, + I5,, where

:/du/ dv/oodzzﬂ
R [v]>3

y (/ dt/ ds\/_e‘z["t] ] _(ln t]—[nu])l/?’—c(\/ﬁlsl)l/2>aln(t,u,z,s,v),

= /R du/|vl>3 dv/o dz 2*3(/0 dzﬁ/]R ds?Lg([nt]_n[nu],s,z))aln(t,u,z,s,v),

here 1,(t,u, z,s,v) := 1([nt] — [nu] > 0,0 < z < n,1 — [nv] < [y/ns] < n — [nv]).
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Note that
/ ds e~V 1(1  [no] < [v/ms] < n — [m], |v] > 3) <
’ < C/ne~cVn(min(, Ivf2|))1/21(’v‘ > 3).
Therefore,

Ly < Cn / o—cavAmin(ol, [-2DV2 4,
[v[>3

o] 1 «
X / du/ dzzﬁ</ dt e_z(t_“)_c(t_“)l/3> 1(t—u>0,0<z<n)
R 0 0

1 o
< Cna+6+1/ e cavlyl!? dv/ du(/ dt e_c(t_“)1/3> 1(t —u > 0)
o] >1 R 0
< CnotPe—cvn 0, as n — o0,
L, < C /du/ dv/ dzz(/dt Ht—u)—eiZg )
v[>1 Vit—u u
X 1(t —u>0,0<z<n)
2 1 [e]
< Cng</ dt(/ du/ dv/ dz2P(t —u)~2 e_zo‘(t_“)_co‘?—vu> )
0 R o] >1 0
x 1(t—u>0,0<z<n)
< Cn2</ dt(/ du/| dv (t —u)" 2777 f—u) > 1(t —u>0)
0 v|[>1

< Ccn7*? dv v™2 +'B/ dyy 27 te v =Cn P =0, as n — o0,
v>1

since 1 —2(2 + ) <0 and [y 277! ¢~V dy < o0o. This proves lim J!. =0 and
Theorem 6.4.4 too. O

Remark 6.4.5. It is not difficult to show that the random fields {V3(z,y)} and
{Vs.(z,y)} in Theorems 6.4.3 and 6.4.4 are related by

/\—l/a‘/g(x’ )\?J) —7tdd %*(I,y>, T,y > 07 A — o0.

Proposition 6.4.6. Let the conditions of Theorem 6.4.3 be satisfied. Then:

(i) The random field {X3(t,s), (t,s) € Z*} in (6.45) has anisotropic distributional
long memory with parameters Hy = H = %Jrz*ﬁ, H, =2H,.

(ii) The random field {X3(t,s), (t,s) € Z*} in (6.45) does not have isotropic distri-
butional long memory.

Proof. (i) With Theorem 6.4.3 in mind, it suffices to check that the random field

{V5(z,y)} in (6.46) has dependent increments in arbitrary direction. To this end,
consider arbitrary rectangles K; = K¢, ;):(2:.0) C RY,4 = 1,2. Then

V() = [ Grilu2)dM,
XRy
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where

Gk, (u,v, 2) ::/ hs(t —u,s — v, z) dt ds.

i

Note Gk, > 0 and G, (u, v, z) > 0 for any u < z; implying

supp(G'k, ) Nsupp(Gk,) # 0.

Hence and from ([95], Th 3.5.3, p. 128) it follows that the increments V3(K;),i = 1,2
on arbitrary nonempty rectangles K, Ky are dependent, thus concluding the proof
of (i).

(ii) With Theorem 6.4.4 in mind, it suffices to check that the random field {V5,(x,y)}
in (6.60) has independent increments in the vertical directions. Similarly as in the
proof of (i), for any rectangle K = K¢ ).(zy) C R2,

ValK) = [ Gicluv.z)dM,
R2xR4
where ,
Gy (u,v,2) =1n<v < y)/ ha(t — u, z) dt.
3

Clearly, if K;,7 = 1,2 are two rectangle separated by a horizontal line, then

supp(Gg,) Nsupp(Gk,) = 0,

implying the independence of V3, (K;) and Vi, (K3). Proposition 6.4.6 is proved. O

Let a = 2 and r3(t,s) = EX3(t,s)X3(0,0) be the covariance function of the
aggregated Gaussian random field in (6.45). Using the representation of r3(t, s) in
(6.11) and Lemma 6.4.2, the following proposition obtains the asymptotics of r3(¢, s)
as [t| + |s| — oc.

Proposition 6.4.7. Assume a = 2 and the conditions of Theorem 6.4.3. Then for
any (t,s) € R3

Cals| 8- 15(8 + 1/2, 52 AJt]), t# 0,5 £0,
)\11_)111 A2 (], [VAs]) = p(t, s) == { Cs|s| 22 10(8 + 1/2), t=0,
Clt|=P7172, s=0
(6.66)
and
0 s#0
. 5+1/2 — — ) )
Tim N2y (0], [As]) = pu(t,5) { S I
where (o, x) = [§ y*te ¥ dy is incomplete gamma function and

Cs = 7722271310524, D(B + 1), Ci=4"7%(8+1/2)"'Cs.

Notice that under the ‘parabolic scaling’ in (6.66) we have a non-degenerated
limit p(t, s) which is a generalized homogeneous function (see, e.g., [45] for a general
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account) satisfying

Hy
)\2(1+H7—H1)p(/\t, )\Hl/st) = p(t,s), VA >0,

with Hy, Hy as in Proposition 6.4.6 (i) (o = 2). On the other hand, the ‘isotonic
scaling’ in (6.67) leads to a degenerated limit concentrated on the anisotropicity axis
s = 0 of the 3N model and vanishing elsewhere. It is clear that the corresponding
integrated Gaussian random field must have independent increments in the vertical
direction, in accordance with Proposition 6.4.6 (ii).

Proof of Proposition 6.4.7. We have

nts) =0 Y[ galt s v a)gs(uv.a)2(da), (15) €27, (6:68)

(u,v)€Z2

where 02 = Ee2. For ease of notation, assume ¢(a) = (1 —a)?, a € [0,1), in the rest

of the proof. Then
ra(IM], [VAs]) = 02/:0 du/R dv/olu—a)ﬁdagg([u},[v],a)
x gs([M] + [u], [VAs] + [v], @)
A\/2=842 /OOO dx/]R dy/o 2P dz gs(\x], [Vay), 1 — ;)
x ga(M) 4 [, [VAS] + [Vagl 1= D).

Hence,

N2 (I, [VAs]) = /0 - /R /0 Y Kz, y, 2) du,

where du(z,y,2) = 2° dzdydz and
Ka(y.2) = Aogs(Nal, [VAg) 1= D)aga (N + ], [VASH VAL 1-T)1(0 < 2 < ).
By Lemma 6.4.2, for any (x,y, z) € (0,00) x R x (0, 00) fixed,
Ka(z,y,2) = K(z,9, 2) := 0*hs(x,y, 2)hs(x + t,y + s, 2),
where the integral Ix == g . gyr, K(,y,2) dp is equal to

2 3 —3z(t+x)— (st9)?

[e’e) (e’ 3
I = o / de / dy / 2 ds b3 o )’
0 R 0 2/ 2/7(t + )

952 W2 (s=w)

o0 o0 1 2
= — dx{/ 2B e—32(22+t) dz}{/ e 4z ¢ 4tw) dy}
47 /0 0 R /x(t + )

902 [ I'(B+1) 2y 2
Ar Jo dx{(3(2x+t))1+5}{\/2x+te ( )}
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and, continuing equality,
902T(B +1) [ 1 __s?
e = =5 Jmsree J oyt e
3P (B+1) = 1 *Zid
47 /t w2zt
{?WWWB-W +1/2,52/4t), s #0,

AR
31Po20(B+1) ;—B—1/2 _

v U s=0.
The legitimacy of the passage to the limit A — oo under the sign of the integral
follows from Lemma 6.4.2. Indeed, the bound (6.49) implies

Ka(z,y,2)| < C(K (2,9, 2) + KX(2, 9, 2)),
where B B
0< ]C,(I, Y, Z) = hg(l’, Y, Z)hg(l‘ +t, Y+, Z)

does not depend on A and satisfies [z, gyr, K'(7,y,2) du < oo, see above, while

0 < K!(x,y, 2) i= A e —e(VA)2 gmalatt)—eMa+0) eV Nl )12

satisfies limy o0 fp, wpur, KA(2, 9, 2) du = 0 for any (t,5) € R fixed. The last fact
can be easily verified by separately considering the two cases t > 0 and t = 0, s # 0.
E.g., in the first case, we have

Kl (2,y, 2) < Ae cO0'/* gmzr—c(a)!/2—e(VAly)!/2

and

/ 1/3
/ Kz, y,z)du < Ce <O 0<d<ec
R+XRXR+

easily follows. The convergence in (6.67) can be proved in a similar way. Proposi-
tion 6.4.7 is proved.

Remark 6.4.8. Suppose, the individual behavior is described by two-neighbor (2N)
random field:

X(t,s) = ?(X(t— L,s)+ X(t,s — 1)) +e(t,s), (t,s)€Z?

where € € D(a), 1 < a <2, and A is random coefficient with the mixing density ¢
satisfying (6.13), where 0 < 8 < o — 1. The stationary solution of this equation is
given by (6.8), with the Green function:

gZ(ta S, Cl) = Z Akpk(ta 8) =

{af+8b(t,t+s,;), t+s5>0, [t—s| <t+s,
k=0

, otherwise,
where pg(t,s) = P(Wy, = (¢, 5)|Wo = (0,0)) is the k—step probability of the nearest-

144



AGGREGATION OF RANDOM FIELDS

neighbor random walk {Wy, k= 0,1,...} on the lattice Z* with one-step transition
probabilities shown in Figure 6.1 (a), and

k! _
b(t,k,p)zmpt(l—p)k t, k:0,17..., t:0,17...,k.

is the binomial probability.

Using the Moivre-Laplace theorem (see [37], vol.I, ch.7, §2, Thm.1), similarly as
in the proof of Lemma 6.4.2 we can show, that for ¢ > 0, s € R, z > 0,

Vg [A] +2[\/XS] | [At] —2[\58]

2 52
ho(t, s, z) = \/Ee_“_ﬂ. (6.69)

The obvious similarity between kernels hy in (6.69) and hg in (6.19) suggest that
large-scale properties of the 2N and 3N models should be similar, modulus a rotation
of the plane by angle w/4. We can show, that in 2N case the partial sums of the
limit aggregated process

1 %)1([»5] md2 (V/Xs]) = halt, s, 2),

as A — 0o, where

%) = Y /Ong(t—u,s—v,a)Mu,u(da), (ts) € 72, (6.70)

(u,v)eZ?

(the general form of the limit aggregated field is given in (6.10)) have the following
limits:

[}
1
7+ _
n~" Z X5(t,s) —faqa Lo(z,y), x,y>0, H:= u,
1<t+s<[nxl], o
L<t—s<[Vny
where
1 T [y
Lofw,y) =5 | {/ / hg(t—u,s—v,z)dtds}M(du, dv, d2):
2 RZxR4 o Jo
[}
1 _
= Z Xo(t,s) —aqa Lox(z,y), z,y>0, H,:= M,
1 <t+s < [nal, o
1<t —s<[ny
where

1 T
Lo (z,y) := —/ M(du, dv, d2)1(0 < v < y)/ 2e” W1 (t —u > 0) dt,
2 JR2xR, 0

here M is an a—stable random measure on R? x R,.
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The random field Ly (z,y) has dependent increments in arbitrary direction, while
the random field Lo, (x,y) has independent increments in vertical direction. There-
fore, we can conclude that the limit aggregated field {X»(¢, s), (t,s) € Z*} in (6.70)
has anisotropic distributional long memory with parameters H; = (1/24+ o — )/«
Hy =2H,.

We do not give proofs of these results here, because after the change of coordi-
nates

u=1t+s, v=1-—s,

the proof of these results is quite similar to the proofs of Theorem 6.4.3 and Theo-
rem 6.4.4.

6.5 Aggregation of the 4N model

The stationary solution of (6.15) is given by

Xy(t,s) = D galt —u,s — v, A)e(u,v), (t,s) € 7, (6.71)
(u,v)€Z2
where
g t 5, Cl ZCL pk t 8 pk(ta S) = P(Wk - (t75>|W0 = (070)) (672>

and {W,} is a random walk on Z? with one-step transition probabilities in
Fig. 6.1 (c¢). Under the assumptions of Proposition 6.3.3, page 130, the aggregated
random field of (6.71) exists and is written as

Xits) = Y /g4t—u5 JQ)Myo(da),  (t,s) €72  (6.73)

(u,v)€Z?

where {M,,(da), (u,v) € Z?} is the same a—stable random measure as in Sec-
tion 6.4. For 1 < o < 2 and a regularly varying mixing density as in (6.13), the
random field in (6.73) is well-defined under the same condition 0 < f < a — 1 as in
Theorem 6.4.3, page 133. Recall RZ = R? \ {(0,0)}.

Lemma 6.5.1. For any (,s,z) € RZ x (0, 00),

T g (I, ], 1= o) = halts,2) = 72TK0<2\/z(t2 ). (6.74)

The convergence in (6.74) is uniform on any relatively compact set {e < |t| + |s| <
e} x{e<z<1l/e} CREXR,, €>0.
Moreover, there exists constants C, ¢ > 0 such that for all sufficiently large A and
any (t,s,z) € RZ x (0,\?) the following inequality holds:

\2

g4([At],[As],1—i) < C{h4(t,s,z)+eCW'“”“”Q)}. (6.75)
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The proof of this lemma is given in Section 6.6, page 157. The main result of
this Section is Theorem 6.5.2 below.

Theorem 6.5.2. Let {(t,s), (t,s) € Z*} and ® satisfy the same conditions as in
Theorem 6.4.3 (page 133), and {X4(t,s), (t,s) € Z*} be the aggregated 4N random
field in (6.73). Then

[nz] [ny]

nIN S Xt s) —aa Valz,y), z,y >0, (6.76)

t=1 s=1

where H = @ and

Vi(z,y) = M(du, dv, dz) /Ox /Oy hy(t —u,s —v,z)dtds (6.77)

R2 XR+

and where M is the same a—stable random measure on R? xR, as in Theorem 6.4.3
and ha(t, s, z) is given in (6.74).

Proof. As in all previous theorems, we prove the convergence of one-dimensional
distributions in (6.76) at * = y = 1. Accordingly, it suffices to show the limit
lim J, = J, where

1

Jn:—nHa > E(Zg4(t—u,s—v,A)),

(u,v)€Z? t,s=1

J = / (/ h4(t—u,s—v,z)dtds> du.
R2xR; \ J(0,1)2

Let us first check that

J=C (/( } Ko(2y/z||v — w||)dv> 2P dwdz < oo,
0,1]2

R2 XR+

here, ||z||? := 22 + 23, for x = (21, 25) € R% To this end, split J = J; + Jo, where
1+ T3

e / (/ Ko(2v2|lv —w dU>azﬁdde,
1 {llwl|<v2} xRy (0,1)2 0( \/_H ||)
= Ko(2v/z||[v —w dv) 27 dw dz.
/{|w>\/§}><R+ (/(0,1]2 o(2vzo —wl)
By Minkowski inequality,
\/— B 1/a o
J gc{/ dv[/ Ke(2vz|lv —w zdzdw} }
: {lloll<v2) (][>} <Ry o (2vz] )

1/ay
C’{/ dv[/ ||U—w||_2_25dw} }
{llvlI<v2} {llwl>v2}

C’{ V2 — v _wmdv}a < 00,
/{||v||<\/§}( vl
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where we used the facts that

/OOKS‘(Q\/Z)zﬁdz<oo and 0<f<a-1<2.
0

Next,
J1 < C dw Oozﬁdz( Ko(2+/z]|v du>a
1 /{|w||<f} / /{” <y oVl
< C/ ﬁdz(/o Ko(2v/zr)r dr)
< C’/ a/210<z<1)+ 1(221))dz<oo,

where we used 0 < f < a — 1 and the inequality

272 0<z<1,

/0\/5 Ko(2y/zr)rdr < C’{ .

zZ7, z>1,
which is a consequence of the fact that the function r — rKy(r) is bounded and
integrable on (0, 00). This proves J < oc.
Next, we prove the convergence .J,, — J. The proof uses Lemma 6.5.1. Assume

for simplicity ¢(a) = (1 —a)?. Then

J” - /szR+(Gn(UaU,«Z))adﬂ(UaU,Z), J = /R2XR+(G(U7U’Z))adu@t’v’z)’

G(u,v,z) := / hy(t — u, s — v, z) dt ds,
(0,12

Gn(u,v,z) = /(0’1]2 g4<[nt] — [nu], [ns] — [nv], 1 ) dtds.

Let Gy, (u,v,2) = 1(0 < z < n?) fio e~clvnlt—ulv/nls=vl) 4t ds, where ¢ > 0 is the
same as in (6.75). Then

J = /R s (Gl 2) " A0, 2) = O(n2F=a+D) = o(1). (6.78)

Indeed, J;, < Cn?**2{ fi ([t e V"= 4r)" du}’, where

1 « 1 o
/(/ e—cvnlt—ul dt) du < / /e’c\/”‘t’“| dt) du
R \Jo {lul<2}
/ —C\/”‘t—“dt) du=:4, +1i.

{lul>2}

Here, i), < C(ﬁ? emeVmy dv) < C/n® and i" < C [°e V= dy = O(e=¢V7),
¢ > 0. This proves (6.78). The rest of the proof is similar as in the case of
Theorem 6.4.3. Theorem 6.5.2 is proved. O
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Proposition 6.5.3. Let the conditions of Theorem 6.5.2 be satisfied. Then the
random field {X4(t,s)} in (6.73) has isotropic distributional long memory.

Proof. Similar to the proof of Proposition 6.4.6 (page 141) we need to show that the
random field {V4(z,y)} in (6.77) has dependent increments in arbitrary direction.
Consider arbitrary rectangles K; = K¢, n): (2 C R3,7 = 1,2, Then Viy(K;) =
Jrexr, Gri(u,v,2)dM, i = 1,2, where

Gk, (u,v,2) ::/ hy(t — u,s — v, z)dtds

K;
f

:/K <71T/0m;exp{—zx— (t_u)21(8_0)2}dx>dtds>0.

Therefore supp(Gg,) N supp(Gg,) # 0. Hence it follows that the increments
Vi(K;),i = 1,2, on arbitrary nonempty rectangles K, Ky are dependent and random
field in (6.77) has isotropic long memory. O

The following proposition obtains an asymptotic behavior of the covariance func-

tion of the Gaussian aggregated random field in (6.77) (o = 2). The proof of Propo-
sition 6.5.4 uses Lemma 6.5.1 and is omitted.

Proposition 6.5.4. Assume o = 2 and the conditions of Theorem 6.5.2. Then for
any (t,s) € R3,

o?$: (6 + DI'(B)

™

(t* + s%)7F. (6.79)

lim Xy, rs) =

6.6 Appendix. Proofs of Lemmas.

Let us note that the asymptotics of some lattice Green functions as |t|+ |s| — oo
and a T 1 simultaneously was derived in Montroll and Weiss [78] using Laplace’s
method, see, e.g., ([78], (II.16)), ([48], (3.185)), however in the literature we did
not find dominating bounds needed for our purposes. As noted in Section 6.1, our
proofs use probabilistic tools and are completely independent.

Proof of Lemma 6.4.2. Let us first explain the idea behind the derivation of (6.17).
Write Wy, = (Wi, Wor) € Z2. Note Wi, has the binomial distribution with success
probability 1/3 and, conditioned on Wi = t, Wy is a sum of k — ¢ Bernoulli r.v.’s
taking values +1 with probability 1/2. Hence for k > ¢,k — ¢ > |s| and k —t + s
even,

pe(t,s) = PWi=t,Wo =5) = P(Wit = t)P(Wio = s|Wiy = 1)
1
= dmhgﬁ%—tﬁ- (6.80)

Here and below, b(t; k, p) denote the binomial distribution with success probability
p € (0,1):

k!
b(t; k,p) := p'(1 —p)F, k=0,1,..., t=0,1,...,k, (6.81)

t(k —t)!
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and

p(u,v) = b(

u+v.1){$@mﬁ@v)vﬁ 420 bl Sw utvis

0, otherwise.

We shall need the following version of the de Moivre-Laplace theorem (see [37], vol.I,
ch.7, §2, Thm.1): There exists a constant C' such that when k — oo and t — oo
vary in such a way that

t —pk)3
(kf) -0, (6.83)
then
b(t; k C Ot —pkl?
‘ GLY) o —1‘ < k+|k2p|. (6.84)
\/27rkp(1 D) p{_Qkp(l p}

For p(u,v) in (6.82), (6.83)-(6.84) imply that there exist Ky > 0 and C' > 0 such
that

mo C
wppww_44ﬁ>mww>Kw:y@<:, VK > K.
u>0,vEZ | 4 /W—Que_“Q/Q“ K
(6.85)

Using (6.80) and the de Moivre-Laplace approximation in (6.84), we can write

\/ng([)\t], [\/Xs], 1—2"12)

VA Y (1-5) p VA
k=[]
00 _ (3at—k)? Cs

~ 3 Z e—z(k/)\) 7)\k’ e 12“3% 1 e WA

2N S5y 4r(3) V(T /2)(5 1)

3 [ A A@Bt—a)? (£)?
~ f/ R P e P e (1/2)(1 0 dx

2/t Amx /( 7r/2 r—t)

: /OO ey [ A e (1/<2§<>2
~ = e —e ¢ e ==t)

2 Jt 127t /( 7r/2 x —t)

3 52
—32t—47 — hg(t7 S, Z) (686)

Here, factor % in front of the second sum comes from the fact that pi(¢,s) = 0 for

mod 2
k—t # s, while factor

A (3At — k)2 A A3t — z)?
ar (%) P o)) Y 2w P 1

behaves as a delta-function in a neighborhood of k& = 3\t or x = 3t, resulting in the

}

i)
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asymptotic formula (6.86).
Let us turn to the rigorous proof of (6.86) and Lemma 6.4.2. Split

ha(t, s, z) == VAgs([M], [VAs], 1 — A71z) = 25: hyi(t, s, z), (6.87)
where

ho(t.s,2) = VA S (1= ) pe(M], VAL < K,

k= [/\t} A
ha(t,s,2) == VA Z (1_X) pe((M, [VAS)L(K|3M — kP > k%, At > K),

k= [/\t

hao(t,s,2) == VA Z (1—f) b([\]: &, 1){p(k—W],[\/Xs])—p([mt],[ﬁs])}

k=[] A
x L(K|3M — k|* < k*, M > K),

has(t, 5, 2) = VA (M, [VAs]) _i[oj] {0-2)" = (1= 2™ i ;)

x L(K|3Mt — k|* < k*, M > K),
haa(t, s, 2) = VAB(2M], [VA s]>(1—7)3”(vk(t>—3),

oot s, 2) = 3VAB(2M, [VAs) (1= 5)7

and where p(t,s) := (p(t,s) + p(t,s+1))/2,t € N, s € Z and

Zb)\t 3 JL(K|3M — kP < k2, M > K).

=]

Here, hy5 is the main term and hy;,2 = 0,1,...,4 are remainder terms. In
particular, we shall prove that

lim limsup sup |hy(t,s,2)] =0, Vi=0,1,2,3,4, Ve > 0. (6.88)

K—=00 Moo e<t)|s|,z<1/e

Relations (6.88) are used to prove (6.17). The proof of (6.49) also uses the decom-
position (6.87), with K > 0 a fixed large number.

Step 1 (estimation of hys). For any € > 0,

lim  sup |has(t,s,2) — hs(t, s, 2)| = 0. (6.89)

A00 et |s|,2<1 /e

Moreover, there exist constants C,c > 0 such that for all sufficiently large A\ and
any (t,s,2) €R3, t >0, s €R, 0 <z < A the following inequality holds

[has(t, s, 2)] < C(hs(t, s,2) + Ve OO meVALDYE) (6.90)
Relations (6.85) and lim o0 SUP <1 /e [(1—

§)3/\t_e*32t| = 0 easily imply (6.89).
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Consider (6.90). Split hys(t, s,2) < 2, his(t, s, 2), where

a(t:s,2) = hs(t,s, 2)1(VAE? > K|s’, At > K),
Wa(t;s,2) = hs(t,s, 2)1(VAE2 < K|s*, M > K),
R3s(t, s, 2) = h,\5(t,s,z)1(>\t§K).

Then, (6.85) together with 0 <1 — % < e */* 0 < z < X imply that

C Vas)? 1
Palt,s,2) < —-e 5 (14 ), VK >Ky, ¥i>0,s€R 0<z<A\

NG K
(6.91)

Note that v/A|s| > 2 implies [v/As]> > (1/4)\s?, while V/A|s| < 2 and X\t > K > 1
imply e*°/16! > ¢~1/4 Hence and from (6.91) we obtain

his(t,s,2) < Chsl(t, s, 2), Vi>0,seR, 0<z<A\ (6.92)

To estimate h35, we use the well-known Hoeffding’s inequality [47]. Let b(¢; k,p) be
the binomial distribution in (6.81). Then for any 7 > 0

> bltk,p) < 227" (6.93)
[t—kp|>7vVk

In terms of p(u,v) of (6.82), inequality (6.93) writes as
> pu,v) < 2e’272, V7 >0. (6.94)
[v|>27v/u
We shall also use the following bound
plu,v) < 27V Vu,v€Z,u>0, |v] <u, (6.95)
which easily follows from (6.94). Using (6.95), for any ¢ > 0, s € R, 0 < 2z < A,
A >0, K > 0 we obtain

[VA]s])?
Rt s.2) < 2V T (VM < KsP, M > K)

1/3 s[)1/2
< C(K)\/Xexp{ — 32t — (1/16) max (%2/3 ) (@1/@ )}

1/3 §[)1/2
< O(KVAexp{ 82— D00 “{@(BQ 1 (6.96)

Indeed, [VA|s|] > vA|s| — 1 > Y2l for |s| > 2/+/X and hence

2 2
WVAsI? _ s® 1
22M] T 16t ~ 16

(A)Y/2 <ﬁ|s1>1/2)2§m>1/3 (VAISDY2 o)

max( K23 K12 2K2/3 T 32K1/2
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holds for v/ Xt? < K|s|?, |s| > 2/v/A. On the other hand,
At2\1/3
(\/[_() o |s| < 2/VA

implies A\t < 23/2K'/2 in which case the r.h.s. of (6.97) does not exceed

32
and (6.96) holds with C(K) = 2e“%). A similar bound as in (6.96) follows for

hiS(tv S, Z)7 USiIlg

OV (p([M], [VAs]) + p([M], [VAs] + 1) 1(M < K)
CVae 1\ < K, |[VAs]| < K).

The desired inequality in (6.90) now follows by combining (6.92) and (6.96) and
taking K > K a fixed and sufficiently large number.

Step 2 (estimation of hy4). Let us show (6.88) for i = 4 and that there exist con-
stants C, ¢ > 0 such that for all sufficiently large A and any (¢,s,2) € R3 ¢t > 0,
s € R, 0 < z < A the following inequality holds:

[haa(t,s,2)] < C(hslt,s,2) + Ve #7eOn P melVARDYE) (6.98)

Indeed, |haa(t, s, 2)| < Chys(t, s, 2)|Va(t) — 3|. Therefore the above facts ((6.88) for
i =4 and (6.98)) follow from Step 1 and the following bound: There exist C,c > 0
and Ky > 0 such that

VA(t) =8 < C(K34e WO Y x> 0,t>0,M> K, K > K.
(6.99)

To show (6.99) we use the de Moivre-Laplace approximation in (6.84). Accordingly,
Vi(t) = Vaa(t) + Vie(t), where

3 & 1
V)\l(t)'

_ L —(3[M]—k)?/4k 3 2
= e 1(K|3Mt — k|° < k%, Mt > K)
2\/7?k:z[;t] Vk

and where V)o(t) satisfies
C
Vi)l < Vi)

forall A >0,t >0, \t > K, K > Ky and some C' > 0 and Ky > 0 independent of
A t, and K. Hence, it suffices to prove (6.99) for V);(¢) instead of V,\(t).

Let Dg(7) :={k € N: K|37 — k| < k*}, 7 > 0. There exist C > 0 and 75 > 0
such that k € Dg(7) implies

k— 37| < Cr*3/K'Y3 and 27 <k <47, V71 > 1. (6.100)

Indeed, let k& < 37. Then |k — 37| < k¥3/K'Y3 < 32/372/3/K'/3 and the first
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inequality in (6.100) holds with C' = 3%3. Next, let k > 37. Then k*/3/K'/® < k/4
for 7 > 75 and some 75 > 0 and hence k — 37 < k/4 implying k < 47. In turn this
implies |k — 37| < (47)%3/K'/? and (6.100) holds with C' = 42/3,

Considerﬁ—\/ﬁ:\/ﬁ(\/lﬁkﬁtm—1).Using|1—ﬁ|§|x| and [1— | <
2|z| for |z| < 1/2 we obtain

. N [ —

VE VBT VU KBS k28T Tk 3 (A)A/BE1/3

(6.101)
for some constant C' < oo and all |k — 3\t| < C(A)?3/K'3 M > K > K, and
Ky > 0 large enough. From (6.101) and (6.100), for the above values of k, A, ¢, K we
obtain

o (3[M]— k)2/4k 1 67(3[)\t}7k)2/12)\t‘ < C 1e7(3[)\t}fk)2/12)\t‘

‘\/_ V3t K13 /Xt

Hence, [Vai(t) = 3] < [Uni(t) — 3] + Una(t) + (53 ) Uns(t), where

U t 7(3[)\15 /12)\t1 )\t > K
Uxa(t) \/ﬁ Z e GII=RP/122y (R8N — kP > k2, M > K),
k=
Uss(t) \/_t 3 *’fQ/mﬁ(At > K).
keZ

It is easy to show that Uys(t) < C' and

Uni(t) =3 = |Un(t) - / e 2 dz| < C/VM < C/KM?

3
2/ 31 JR

uniformly in A > O,t > 0, K > Ky. Next, with j = k — 3[At] and using the fact that
k2= (j+3[M])* = [M]? = (Mt)?/2

(A)?
\/_ J>Z2:[At] \/_‘ 2(M) 3/2)

< C / L(K|e > VA/2)e ™ de < CecVN/KY®

Un(t)] < Sty

This proves (6.99) and hence (6.98), too.

Step 3 (estimation of hy3). First we estimate the difference inside the curly brackets.
There exist C, Ky, 79 > 0 such that k € Dk (1), K > Ky, T > 79 imply

72/3

K1/3

ldb — a®| < Ca® |1 —a|, Vael0,1]. (6.102)
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Indeed, let k£ < 37. Using (6.100) and
l—a" <(1+7)(1—-a), V>0, Vael0,1],

for sufficiently large 7 > K we obtain

la* —a®| < aF|la® " — 1] < a®|37 — k 4+ 1|1 — qf
2/3
20T /0 41 27 _2/3
S Ca W\l—a\<[(1/3a T ‘1-@’

The case k > 37 in (6.102) follows analogously. Using (6.102) and (6.99), together
with the inequality ze™* < Ce™?, z > 0, we obtain

2X¢ 2/3( 5
sl < VARG VA (1 - 5)™ O v
< OVAR(2M), [\/Xs])e—%tw

<

()\t)l/3\/_ p(2A), [VAs])e ™.

Therefore as in Step 2 we obtain the convergence in (6.88) for i = 3 together with
the bound

has(t,s,2)] < C(hs(t, s, 2) + Ve e eV (6.103)

Step 4 (estimation of h,y). First we estimate the difference inside the curly brackets.
There exist C' > 0 and Ky > 0 such that for any A, ¢, s, k, K satisfying

A>0,t>0, seR, keN, K> Ky, M>K, Klk—3X]><k? X2 > K|s|?,
(6.104)

the following inequality holds

5k — [X], [VAs]) — B2, [VAs])| < Me_sz/m, (6.105)

In the proof of (6.105), below, assume that k — [At] "2 % [V/As], [2At] "2 ? [V/As]; the
remaining cases can be discussed analogously. Using the de Moivre-Laplace formula
(6.85) we have that

plt = D (VR — 2L VR = e T (140( )

2 _ s
N 27r[2)\t]e . <1+O(K>)
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As in (6.101),

1 N C

_ <
(\t)2K2/3 ‘k;—[)\t] [2)\t]‘ = (\)BK3

‘ 1 _ 1 ‘ C
VE—M/12M

Hence it easily follows
__VAs? 52
e 2D < (e 10,

where the arguments satisfy (6.104). The above facts imply (6.105). Using (6.105)
for s satisfying (6.104) we can write

C 2 > Z\k 1
—s2/10t _~ . -
|h)\2(t5372)’ < +1/2 F{Q/ge kzz[/\:t] (1 )\) b([)\th? 3)

x L(K|3M — k]* < k*, M > K)

< C s () < - ha(t s, ), (6.106)

K2/3 K2/3

see (6.99).

Next we will evaluate hyy(t,s,2) for A\V/2t2 < K|s|® (and At k, K satisfying
(6.104)). Using the inequality in (6.95), the bound k < 4\t, see (6.100), and arguing
as in (6.97) we have that

VL & (2 (0

—— > —— >
2k — [M]) 6t~ TNVUT6KI2 6K/

and hence
p(IM], [VAs]) < CeeFIONM 2 —e(K)(VAIs)/2

where ¢(K) > 0 depends only on K. Therefore,

hpa(t,s,2)| < CVAe 2O PNy, ()
< O/ e 2et—elB) () /B—c(K)(VAs])!/2 (6.107)

The resulting bound
[haalt, s,2)] < C(hs(t, s,2) + vV he e EmelARDTE) (6.108)

follows from (6.106) and (6.107) by taking K > K sufficiently large but fixed.

Step 5 (estimation of hyp). From (6.93), we have

b([M]; k, 1/3) < 26~ H/OBNI=KE/E,
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Using this and a similar inequality (6.95) for p(k — [M], [V/As]) we see that

o 2 [\/XS]Q
‘h)\l (t, s, Z), < C\/Xeizt Z 67(2/9)|3[>\t;€ k| 87(1/2) E—[X] 1(K’3>\t _ k’?’ 2 kZ’ )\t > K)
k=[]

< OV e > ook

k> At

(VXs)2
Tt

for some positive constant ¢ > 0 depending on K. Split the sum

(Vxs)? (V3s)? (V)2
3 R = el 3 Py = vl 3 e T
k2>At At<k<At+(VX|s])3/2 E>At+-(VA]s])3/2
Bl Zl + ZQ.
Then

By < Ce AN §™ o=kt g=e0 P —e(VXIs) 2
E> M

and
<O ) 0K o= c (VISP o= B —e(VAIs) /2
E>Xt+(V/X|s])3/2

By taking K > K, sufficiently large but fixed the above calculations lead to the
bound

Ihaa(t, s,2)] < CVAe =00 i=e(WAsh2 (6.109)
Step 6 (estimation of hyg). Similarly as in Step 5 we obtain

lhaolt, s,2)| < CVAe e P=elVAls)2 (6.110)
The proof of Lemma 6.4.2 follows from Steps 1 — 6. O
Proof of Lemma 6.5.1. Let W, = (Wi, Way,) € Z* and

Wiy, i= Wik + Wy, Wi, i= Wig — Wy
Then W, = (Wlk, ng), k=0,1,...,is a random walk on the even lattice

7% = {(u,v) €Z* u+vis even} = {(u,v) € Z?:u "L v} (6.111)

with one-step transition probabilities
P(Wy = (i, )W = (0,0) = 1/4,  ij=+1

Note that {Wy} and {Wy} are independent symmetric random walks on Z and
therefore

Pr(u,v) == P(W,, = (u,v)|Wy = (0,0)) = p(k,uw)p(k,v), (u,v)€Z? k=0,1,...
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where p(u,v) is the u—th step transition probability for the symmetric random walk
on Z as given in (6.82). The above facts imply the following factorization property:

pr(t,s) = pr(t+s,t—s) = plk,t+s)plk,t—s), t,s€Z, k=0,1,.... (6.112)

mod 2
In particular, pi(t,s) = 0if & # ¢+ s. Split

91N As) 1= 55) = 3l 5,2),

where

z

00 (A\2x] .
ilty 8, 2) == >\2/0 (1= 5)" "ppen (ML DL € Dult, ) da, i =1,2,3,

and where
In(t,s) = {x >0: A > K(tP + |sP), X2z > K, [A2] ™27 [n] + [As]},
Io(t,s) = {a: >0 A < K([tP + [s]?), N2z > K, [Na2] "2 [M] + [/\s]},
Ls(t,s) = {x >0: Nz < K, [Na2] "2 M)+ [/\3]}

satisfy Us_; Dni(t, s) = Ly(t, s) := {x >0 [A22] " ] + [/\s]}. Also split

hy(t,s, z) =m* /OOO x_le_m_tzzs2 dr = i hyi(t, s, 2),
i=0
where
hyolt,s,2) = w ! /Ooo ples S (1 =21(z € I)(t,s)))da,
hyi(t, s, z) = 27! /OOO ple s 1(x € 1)(t,s)) dx, i=1,2,3.
We shall prove below
lim sup (Iaa(t, s, 2) — haa(t, s, 2)| + |hao(t, s, 2)]) = 0, Ve >0,

MK =00 c|t|+]s|<1/e, e<z<1/e
(6.113)
and that for any sufficiently large K > K| there exist ¢(K), C'(K) < oo independent
of t, 5,2, A and such that for any (¢,s) € R2, 0 < z < \? the following inequalities
hold:

ity s, 2) + |hro(t, s, 2)|
ilt, s, 2) + hai(t, s, 2)

C(K)ha(t, s, 2), (6.114)

<
< C(K)e BOWNIPHA) 93 (6.115)

Relations (6.114)-(6.115) imply statement (6.75) of the lemma. Statement (6.74)
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follows from

V4
‘g4<[)\t]7 [)\5]7 1- ﬁ) - h4<t757 Z)‘ < |h/\0<t737 Z)| + |fy)\1(t7 872) - h)\l(t7 S,Z)|
3
+ Z ilt, s, 2) + hai(t, s, 2))
=2

and using (6.113) and the bounds in (6.114)-(6.115).

Let us prove (6.114). Clearly, |hxo(t, s, 2)| < 2hy(t, s, z) by the definition of hyg
so that we need to estimate ~,; only. Note (6.85) and (6.112) imply

sup | 2221l M]ﬂ [HM]B - 1‘1(:5 € lu(ts) <z VK> K (6.116)
z,t,s 71_[)\22 ]e [>\2 ]
We also need the bound
_ 2+rs]?
ﬂ[/\zzx}e %] C
211[; s g — 1|1(x € I(t,s)) < L VK > K. (6.117)

which follows from

‘ P B
[A\27]

45 NP s
x [A2z]

1' < C1/K, < Cy/K*3,

for © € I,1(t,s), with C;, Cy independent of z,¢,s,\, K. From (6.116) and (6.117)
we obtain

A, A
YOLK) = sup PR D)l ey <-C vE s K,
x,t,s 2 e—% K2/3
T 2
(6.118)

A2z
Using (6.118) and (1 - %)[ ! < /NN < O ) < 2 < A? we obtain

0o 2 2462
Mmilts2) € ON [Te e 5 (14 X)) 1x € Lu(t ) de

< Chy(t,s,z) < Chyl(t,s, z), K > K,

proving (6.114), with C(K) independent of K > K,. Similarly using (6.118) we
obtain

|ty s, 2) — ha(t, s, 2)| <

o0 2\ [M\22] 2 2442
< /0 (1= =) Mo D)) = = 1w € Luts) da
[)\2 } —2x _ _ _t2 52
Kl_ﬁ) —e }7r Ly le s 1(z € I(t,s))dx

f2+52

< Ox(\, K)ha(t, s, 2) + C/OO Or (2, 2) e d
0
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where

O\(z,2) := ’(1 - i>[/\2m] —e 7 =50, as\— oo,

22
for any z > 0,2 > 0 fixed, and |0)(z,x)| < Ce™®* for any x,z, A > 0; see above.
Therefore by the dominated convergence theorem,

o0 1 t2+52
/ Or(z,x)x" e = doz—0, as\— oo,
0

and the last convergence is uniform in € < [t| + |s| < 1/e, € < z < 1/e for any
given € > 0. Together with (6.118) this proves (6.113) for the difference |yx; — ha1l-
Relation (6.113) for |hyo| follows by the mean value theorem, implying

2,2 2152 2,2
‘x’le’m’t S oyle T < Cle)|z —ylzte ™ 5 (1+272)
for 0 <z <y, 0<z<1/e |t| +|s| < 1/e. Therefore,
sp Jhaolts, ) < C/N = o)
e<[t|+]|s|<1/e, e<z<1/e
where
% 2452 )
C = sup / xe T (14277 de < oo.
0

e<|t|+|s|<1/e, z>€

It remains to prove (6.115). Note vaa(t, s, 2) < Jo([At], [As]), 0 < 2z < A%, where

Yolt,s) =3 pi(t,s) LK < k < JK([t|3+s]3), t,s€Z
Note K < k < \/K(|t|> + |s|?) implies

(t+s|+[t—s)* _ (t+s)'+(t—s) 2t +sY) 1

m: 1/2y2.
= S R (T I S

Hence and using (6.95) we obtain

Fo(t,s) < > plk,t+ s)p(k,t — s)
K<k<y/K(|t|3+]s]?)
+1/2 1/2
<1 eI
K<k<y/K(|t|3+]s]?)
< C(K)e*C(K)(“P/QHS‘lp), (6.119)

where constants C'(K) > 0, ¢(K) > 0 depend only on K < co. This proves (6.115)
for x2. The last bound in (6.119) holds for
K
sty s) =Dkt + s)p(k,t —s) < (K + D1(|t +s| < K, |t — 5| < K),
k=0
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too, dominating yx3(t, s, 2) < Y3([At], [As]), 0 < z < A% The remaining bounds in
(6.115) follow easily. Lemma 6.5.1 is proved.
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Ruin probability with claims
modeled by a—stable aggregated
AR(1) process

Abstract. We study the asymptotics of the ruin probability in a discrete time risk
insurance model with stationary claims following the aggregated heavy-tailed AR(1)
process discussed in Chapter 4. The present work is based on the general charac-
terization of the ruin probability with claims modeled by stationary a—stable pro-
cess in Mikosch and Samorodnitsky (2000, [76]). We prove that for the aggregated
AR(1) claims’ process, the ruin probability decays with exponent a(1 — H), where
H € [1/a,1) is the asymptotic self-similarity index of the claim process, 1 < o < 2.
This result agrees with the decay rate of the ruin probability with claims modeled by
increments of linear fractional motion in [76] and also with other characterizations
of long memory of the aggregated AR(1) process with infinite variance in Chapter 4.

7.1 Introduction and the main result

In this Chapter we study the asymptotics of the ruin probability

v(u) = P(sup(zn: Y(t) —cn) > u), as u — 00, (7.1)

nzl 41

where ‘claims’ {Y (), t € Z} form a stationary, a—stable process of a certain type,
1 < a < 2, obtained by aggregating independent copies of random-coefficient AR(1)
heavy-tailed processes. In (7.1), ¢ > 0 is interpreted as a constant deterministic
premium rate and u is the initial capital. The above problem was investigated in [76]
for stable processes {Y'(¢), t € Z}. Applying large deviations methods for Poisson
point processes, authors proved the asymptotics ¥(u) ~ 1o(u), where f(u) ~ g(u)
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means that f(u)/g(u) — 1 as u — oo, and the function )y is written in terms of the
kernel and the control measure of stochastic integral representation of {Y(¢), t € Z}
(see (7.15), page 167), below, in the special case when {Y(¢), ¢ € Z} is a mixed
stable moving average). Using the above result, Mikosch and Samorodnitsky [76]
obtained the ‘classical’ decay rate 1 (u) ~ Cu~(@"Y see e.g. [35], for a wide class
of weakly dependent symmetric a—stable (SaS) stationary claims, and a markedly
different decay rate ¥(u) ~ Cu~*U=H) for increments of fractional SaS motion
with self-similarity index H € (1/a,1). In view of these findings, Mikosch and
Samorodnitsky ([76], p.1817) propose the decay rate of the ruin probability as an
alternative characteristic of long-range dependence of a SaS process. See also [5],
[6].

The present Chapter complements the results in [76], by obtaining the charac-
teristic decay of the ruin probability when claims are modeled by the mixed SaS
process studied in Chapter 4. The latter process arises in the result of aggregation
of independent copies of random-coefficient AR(1) processes with heavy-tailed in-
novations, following the classical scheme of contemporaneous aggregation (see [42]).
Aggregation is a common procedure in statistical and econometric modeling and
can explain certain empirical ‘stylized facts’ of financial time series (such as long

memory) from simple heterogeneous dynamic models describing the evolution of
individual ‘agents’ See [30], [40], [103], [104], [105], among others.

In Chapters 3 and 4, we discussed aggregation of infinite variance random-
coefficient AR(1) processes and long-memory properties of the limit aggregated
process. Let us recall the main results from the Chapter 4. Let {X(t),t € Z}
be a stationary solution of the AR(1) equation

X(t) = aX(t—1) +e(t), (7.2)

where {e(t),t € Z} are i.i.d. r.v/s in the domain of the (normal) attraction of
an a—stable law, 0 < a < 2, and where a € (—1,1) is a r.v., independent of
{e(t),t € Z} and satisfying some mild additional condition. Let the X;(t) = a; X;(t—
1) +ei(t),i=1,2,..., be independent copies of (7.2). Then the aggregated process
{Nﬁl/a NoXi(t), t € Z} tends, as N — oo, in the sense of weak convergence
of finite-dimensional distributions, to a limit process {X(t),t € Z} written as a
stochastic integral

x(t) =3 / at=*M,(da), (7.3)

R CARY

where {M;, s € Z} are i.i.d. copies of an a—stable random measure M on (—1,1)
with control measure proportional to the distribution ®(dz) = P(a € dz) of r.v. a
(see (4.4), page 74). In the case when 1 < a < 2 and the mixing distribution & is
concentrated in the interval (0, 1) having a density ¢ such that

d(a) ~ ¢ (1 —a)’ asa 11, forsome¢; >0, 0<f<a-—1, (7.4)

we proved that the aggregated process in (7.3) has long memory. In particular,
it was shown that normalized partial sums of {X(¢),t € Z} in (7.3) tend to an
a—stable stationary increment process {A,3(7)}, which is self-similar with index
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H=1-(f/a) € (1/a,1) and is written as a stochastic integral

A, ;:/ 7 —8) — f(z,—s))N(dz, ds), 7.5
@ = [ (fer—9) - Jle )N ds), (@9
1—e@ ifr>0andt >0,
f(x,t) = .
0, otherwise,

with respect to an a—stable random measure N(dz, ds) on (0, 00) x R with control
measure ¢;2°~%dx ds. Let us note that (7.5) is different from the a—stable fractional
motion discussed in [76], which arises in a similar context by aggregating AR(1)
processes with common infinite-variance innovations; see Chapter 3. Under the same
assumptions (7.4), in Chapter 4 we established further long memory properties of
{X(t), t € Z} in (7.3), namely, a (hyperbolic) decay rate of codifference and the long-
range dependence (sample Allen variance) property of Heyde and Yang (see [46]).
We also showed that the value § = o — 1 separates long memory and short memory
in the above aggregation scheme; indeed, in the case § > « — 1 the aggregated
process has the short-range dependence (sample Allen variance) property and its
partial sums tend to an a—stable Lévy process with independent increments (see
Chapter 4).

In the rest of this Chapter, we assume that {X(¢),t € Z} is the mixed moving
average in (7.3), where M,( da) is a SaS random measure with characteristic function
Eel?Ms(4) = e=wal0l®®(4) g ¢ R, where 1 < a < 2, w, > 0 and A C (0,1) is any
Borel set. This means that all finite-dimensional distributions of {X(¢),t € Z} are
SaS. In particular,

| - 00 1
EeifX0) — =06 , B €R, where 0%:=w, Z E|a|ak - waE[l ’ ‘ ]
— |la|®
k=0

Let C,, > 0 be the constant determined from the relation

U— 00

1
lim u*P(X(0) > u) = §C’aaa. (7.6)

The constant C,, depends only on « and is explicitly written in [95]

o _ 11—«
“ 7 I'(2—a)cos(ma/2)
Also define
(2) = su Loe? z2>0 (7.7)
o0 = T £>0 |

The function g is continuous in the interval (0, c0) and satisfies the following condi-
tions
limg(z) =1, lim zg(z) = 1. (7.8)

z—0 2Z—00

The main result of this chapter is the following theorem.
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Theorem 7.1.1. Assume that the mizing distribution ®(A) = P(a € A) is absolutely
continuous having a density

¢(a) - 90(@)(1 - (I)B, ac (0’ 1)7 (79)

where > 0 and @ is integrable on (0,1) and has a limit lim,_,; p(a) =: ¢1 > 0. Let
Y(u) be the ruin probability in (7.1) corresponding to {Y; = X(t)}.
(1) Let 0 < f < a— 1. Then

Cak(a, B) (=)

Y(u) 5ot , U — 00, (7.10)
where H =1— (f/a) € (1/a,1) and
K(a,p) = (il/ooo P70 (2) dz+¢ﬁl/ooo 2Pg°(2) dz. (7.11)
(it) Let 5 > a — 1. Then
P(u) ~ CQKQ(S’ q)>u_(a_1), U — 00, (7.12)
where 1 1
K(a,®) := a—lE[(l—a)a]' (7.13)

In what follows, C' stands for a constant whose precise value is unimportant and
which may change from line to line.

7.2 Proof of Theorem 7.1.1.

The proof of Theorem 7.1.1 is based on Theorem 7.2.1, below, due to [76], Theo-
rem 2.5. For our purpose, we formulate the above mentioned result in a special case
of mixed SaS moving average in (7.14). For terminology and properties of stochastic
integrals with respect to stable random measures, we refer to [95].

Let {Y(t)} = {Y(¢),t = 1,2,...} be a stationary SaS process, 1 < a < 2, having
the form

Y(t) = /WXRf(v,x—t)M(dv, dz), t=1,2,..., (7.14)

where M is a SaS random measure on a measurable product space W x R with
control measure v X Leb, v is a o —finite measure on W, Leb is the Lebesgue measure,
and f € L%(W x R) is a measurable function with

/WXR |f(v,2)|*v(dv) dz < oc.

Introduce

my, = C’;/a(/WXR ’ if(v,a: - t)’ay( dv) dx) o

t=1
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and a function g : (0,00) — (0, 00) by

. (S fwa 1),
= — dv)d 1
¢0(U) 2 Jwxr ?zgrl) (U—|—TLC)a V( U) Z (7 5)
C, (S fo, 2 —1)"
it —_ d d .
T2 s ig) (u+ nc)® v(dv)dz;
where z, := max(z,0), z_ := max(—x,0) and where the constant C,, is the same as

in (7.6).

Theorem 7.2.1. (see [76]). Let {Y:} be given as in (7.14). Assume that m,, =
O(n?) for some v € (0,1). Then

P(u) ~ o(u), as u — oo.

Proof of Theorem 7.1.1. In order to use Theorem 7.2.1, we first rewrite the process
in (7.3) in the form of (7.14):

x(t) = /(O,M fla,t —2)M(da, dz), (7.16)

where
al, x>0,

a,x) €(0,1) x R,
0. z<o, (a,z) € (0,1)

fmwwzwumzm:{

and M (da, dz) is a SaS random measure on (0, 1) x R with control measure ® x Leb.

Condition m,, = O(n”) of Theorem 7.2.1 for the process in (7.3) is verified in
(4.34), with v = H =1— (f/a) € (1/a, 1). Therefore it suffices to show (7.10) with
Y (u) replaced by 1y(u) as defined in (7.15). We have

C., (anl alt==l1(t > a:))a
tolw) = 2 /(0,1)><R ilg : (u 4 ne)® (da)dz
Ca 0 (Z?:l at—x)a ) ( Z?:x at—x)a
- 2<ELZ_OO ig) (u+ nc)> ] * EL; ig (u+ nc)® D
= (14 1), (7.17)

Consider first the expectation

b= [ g e (i) |

=1
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which can be rewritten as

L = * /o1 y ol —y) dyi e ((U/lc)_Jr(lk_—yl)i $>a
e —y)" *
— C—O‘{/ y “o( dyzzligll)( (u/c) +(1]< —yl)—l—x)
v [ rren - dygﬁi&‘f( u/o) +(1k_—y1)+f>a}
= {121 + 122} (7.18)

Clearly, in view of (7.9), we can replace ¢(1 — y) by ¢1y° in the integral I5,. For
notational simplicity, assume that ¢(1 —y) = ¢19°, 0 < y < e. Then u’I5; can be
rewritten as

€ © 1—(1—=y)* o
uﬁle = qﬁluﬂ/ yﬁ’a dstup<( ( v) )
0

ikl \(u/o)+k -1+
o [ S 1-(1-y)" *
= o [ e (S )
B 8 e((u/c)+x—1) ZB 2
= /0 (wfe) + 7 —1)P d<(u/c)—|—x—1>

X isup (1 _ (1 B (u/C)irwl)k)o‘

Z+ (u/c)+x—1
uB

o0 ((u/c)+a—1)
=SS h P el dz, - (719)

where

k
- (1— =
Guz(z) = sup ( (u/c)ﬂfl) 100 <z <e((u/c) +x—1)). (7.20)
k>1 z+ (u/c)+a: 1

According to Lemma 7.2.2, below, the function g¢,,(z) tends to g(z) in (7.7), as
u — 00, and satisfies condition (7.25), therefore, by dominated convergence theorem,
the integral in (7.19) tends to [3° 27¢g%(2) dz < oo uniformly in z > 1. We also have
that

00 uP 1 00 dx c?
g ((u/c) +x — 1)+ Z((1/6) (:z:/u))ﬂ+1 - /0 ((1/e) 4+ z)p+t E

Whence and from (7.19) we obtain that

B oo
. C (64
’ull)I{.lou’B]21 = ¢1ﬂ ; 2Pg%(2) dz. (7.21)
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On the other hand,

)]

.

0 1—adF
1. < CE{(l1—-a)*1(0<a<1-— (
< cefuorio<esi-o S (it
< O “ - 0 —(a—1)
- Z ( (u/c) + :c) (u )
implying lim,_, u’® I, = 0 thanks to condition 8 < a — 1.
Consider the term [; in (7.17):
0 ( ? 1 at_$>a a(lfx)a(l o an)a
I, = E -~ =F
' I:z_:oo fgf (u + ne)e w,z_:oo iglf (1—a)*(u+ nc)®
! : 1-(1—-y)"
= [ dyyo(l— 1 — y)1-2)e (
¢ yy “o(l —y) w_Zoo( y) S\ 7 T n
‘ : 1—(1—y)™\°
= c“ dyy 2ol — 1 — y)t—e ()
c { | dyyo(l—y) ZZZ_OO( v) S\l T n

0
[ dyyee—y) S (1= sup (

n>1

1-(1—y)"

(u/c)+n

)

For notational simplicity, assume that ¢(1 —y) = ¢1y°, 0 < y < e. Then v’I;; can

be rewritten as

0
€ ]_ —
Uﬁ[n = U'B¢1/ dyyﬁfa Z (1 _y)(lix)a SUP(

r=—00 n>1

(1 —y)”>“

(u/c) +n

= [y A0 (1m0

(1 =)™ n>1

(yu/c) +yn )

_ C%I/OE“/C az (£) (1~ cz/u)® Zﬂsup<1—(1—cz/u)n)a

u/1—(1—cz/u)* n>1

z 4+ czn/u

= o [ () S e

1—(1—cz/u)
Using Lemma 7.2.2, below, and the facts that

limz(l—2)*/(1-(1—-2)%) =1/«

z—0

and
0<z(l-2)/1-(1—-2)) <1/«

for all z € (0, 1], we have that
¢’

i WP — > B-1,0
dim w”ly = o /o 2P g%(2) dz.
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Next,

Iy — E[(1 S 10<a<i-g Y at D sup ((““nﬂ

2 n>1 \(u/c) +n

< CQE{(l—a)_al(O<a<1—e) ¢ ]u_o‘

1 —a~
= Cu “.

Since 3 < a — 1, we have lim,_.o, u’ ;5 = 0. This proves part (i).

(ii) We use Theorem 7.2.1 as in part (i). Condition m,, = O(n?) is proved in (4.35),
with v = 1/a € (0,1). Therefore it suffices to show (7.10) for ¢y(u). Consider the
expectation I in (7.17). Then

o 1
a—1 a—1_—«
I, = E
" (1—a°‘gcz::1 (u/c) +x—1) aula)).
where
1— ak
qu(a,x) = sup

k=1 L+ (u/c)—i—z 1

Note 0 < gu(a,z) < 1 and g,(a,z) = 1, u — oo, for any 0 < a < 1, x > 1 fixed.
Indeed,

k k
qu(a,z) —1 = sup (w/ote—1 _ _igf% 0
k>1 1+W k>1 1+W

follows by taking e.g. k = [logu| in the last infinimum. Therefore by the dominated
convergence theorem

: a—1 — ¢ lim 1 S uafl
1}1_>1£10u I, = ul—mOE[(l—a)a ;((U/C)+x_1)a
1 1 .
- C(a — 1)E{(1 _ a)a} =cC K(Oé, (I))a (723)

where we used the fact that the last expectation is finite.

Next, consider

a® 1 —a™"\*
I = E .
! l(l —a®)(1—a)~ (i?f u—i—nc) 1

We claim that I; = o(u=®"Y) and therefore part (ii) follows from the limit in
(7.23). To prove the last claim, split the expectation Iy = I;; + I13 according to
whether 0 <a < 1—e€eor1—e < a <1 holds, similarly to (7.18). It is clear that
Ii1 = O(u™®) = o(u=@"Y). Therefore it suffices to estimate I;, only. Then using
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(7.26), below, and the inequality |1 — (1 —y)¥| > Cy, 0 < y < €, we obtain

c yiad 1—(1—y)"\®
Y Y Y
e < (sup =0 )
2 0o 1—(1—-y)> ngﬁ) u+ nc

€ 4 1—(1—y)™\©
c v (i)
o U YO yw/o) + ny

C’/6 f=1q (su o™ >a
o U Y vty

C/O Y’ g% (yu/e) dy

IN

IN

IN

IN

€ yﬂ_l
0/4————d
o (14 yu)® 4

—ﬁ Eu Zﬁ_l
= Cu / dz,
0o (14 2)

IN

where the last inequality follows from (7.8). If @ > (3, the last integral is bounded
and hence I15 = O(u™?) = o(u=@"Y). On the other hand, if 3 > «, we easily obtain
Iy = O(u=*log(u)) = o(u=(®=Y). This concludes the proof of Theorem 7.1.1.

Lemma 7.2.2. Let g(z), gu.(2) be defined at (7.7), (7.20), respectively. Then

Jl}r&gux(z) = g(z), Vz>0, Vo >1, (7.24)
Guz(2) < Cg(2), Vz>0 Vu>1 Vo >1, (7.25)

where the constant C' is independent of u,x,z. The function g(z) satisfies (7.8).

Proof. Let mi(y) = (1 — (1 —9y)*)/(1 —e™™), 0<y<1,k=1,2,.... Let us first
prove the elementary inequality: for any 0 < € < 1 there exists a constant C' > 0,
independent of 0 < ¢ < 1, k > 1 and such that

I(y) —1] <Cle+k™"), VO<y<e VE=1,2,.... (7.26)

Indeed, let 0 <y < 1/(2k). Since 1 —e ™ > /2,0 <2z < 1/2 so

7i(y) — 1] < 2 < Cy < C/k.

—hy (1 —q)k -y _
le A=y _ ke —1+yl
o k
Next, let 1/(2k) <y < e < 1. Then 1 —e ™™ > 1 —e 2 > 0 and log(l — y) <
—y(1 — ¢€). Therefore
) —1] < Cle™—(1—yf<C  sup  [HR0-D) e

k>1,1/2<x<ck

< O [T me) <0

since sup,>q /o re~*(179 < oo, This proves (7.26).
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Using (7.26) we can write

(2 (o7 )1_e<u/ﬁ“1<0 (u/e) +— 1)
we(Z) = supT <z<e((lule)+x—
Gu, ;@Il)k (u/c)+z—1 z—l—(u/c)zﬁ
1 —e_m/cfﬁ
< csop =TT < cgn) (7.27

k>1 2+ W
thus proving the bound in (7.25). The convergence (7.24) follows similarly from
(7.27) and (7.26).

To show (7.8), note that w — 1=2—= increases on the interval (0,w.) and decreases
on (wx, 00), where w, = w,(z) > 0 is the unique solution of w + z + 1 = ¢*. Thus,
g(z) = ﬁ It is clear that w, — 0, as z — 0, and therefore lim, ,og(z) = 1.
Moreover, w, — oo, as z — 00, and w, < log(l + 2), implying lim, ,, zg(z) =
lim, o = 1. Lemma 7.2.2 is proved.

__z
z+1+ws
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Conclusions

The main conclusions of the thesis research:

e We have extended the aggregation scheme of random-coefficient AR(1) pro-
cesses from finite variance to infinite variance case. Under assumptions, that inno-
vations belong to the domain of normal attraction of an a—stable law and that the
density function of a random coefficient is regularly varying at the "unit root" a =1
with exponent 3 > —1,1

¢(a) ~C(1—a)’, asatl, (8.1)

we found conditions under which the limit aggregated process exists and can be
represented as a moving-average (3.22) in common innovations case and a mixed
a—stable moving-average (4.4) in idiosyncratic innovations case (see Table 8.1.,
page 176). The long memory properties of the limit aggregated processes depend
on parameters § and «, 0 < o < 2. The  is smaller, the dependence in the limit
aggregated process is stronger. Smaller 3 means the mixing distribution ? is putting
more weight near the unit root a = 1. Note, that in the case of common innovations,
the limit aggregated process is moving average, which is well defined for 1/a—1 < (.
If 3 > 0, coeflicients of this moving-average are absolutely summable. Therefore,
it’s partial sums will converge to the process with independent increments and the
moving average will admit distributional short memory. In the case of idiosyncratic
innovations, the limit aggregated process is the mixed a—stable moving average,
which is well defined for 5 > 0. We proved, that for 0 < a < 1, partial sums of the
mixed a—stable moving average will also converge to the process with independent
increments. It follows, that the case 0 < a < 1 can not lead to the long memory.
Only for 1 < o < 2 we can (expect to) get long memory. These facts are illustrated
in the Figure 8.1 and in the Table 8.1 (page 176) too.

1. Note, that in the Chapter 3, the mixing density (3.3) depends on parameters d;, ds. Here
we give results for dy := 3, assuming, that a € [0,1) a.s.
2. The distribution of the random coefficient a is called the mixing distribution.
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e The second aim was to describe the aggregation scheme of independent AR(1)
processes, which leads to the case of finite variance but not necessary Gaussian?
or infinite variance but not necessary stable limit aggregated process. For this
reason, we discussed the contemporaneous aggregation of independent copies of a
triangular array of random-coefficient AR(1) processes with independent innovations
belonging to the domain of attraction of an infinitely divisible law W. Under general
assumptions on W and the mixing distribution, we showed that the limit aggregated
process exists and is represented as a mixed infinitely divisible moving-average (5.4),
page 94.

The long memory properties of the limit aggregated process were studied under
assumption, that the mixing density is regularly varying at the “unit root” a = 1
with exponent 8 > 0 (see (8.1)), and that EW? < co. We showed that the partial
sums of the mixed infinitely divisible moving-average (5.4) may exhibit four different
limit behaviors depending on /5 and the Lévy triplet (i, o, 7) of W (see (5.6)). Note,
that the behavior of Lévy measure at the origin

. @0 o+ . ao . -
}clg(l)x 7({u>a}) =c", glclgrtl)x T{u < —z})=c".

is very important for the limits of partial sums. The four limit behaviors of S, (1) :=
sl X(t) are:

3. In the scientific literature is described the aggregation scheme of independent AR(1) pro-
cesses, which leads to the Gaussian case.
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(i) if 0 < B <1, o >0, the limit is fractional Brownian motion with self-similarity
parameter H =1 — [3/2,

(ii) f0<f <1, 0=0, 14+ < ag < 2, the limit is oy—stable self-similar process
with dependent increments and self-similarity parameter H = 1 — /3/ay,

(iii) if0<p <1, 0=0, 0<ay<1+p, thelimit is (1 + )—stable Lévy process
with independent increments,

(iv) if B > 1, the limit is Brownian motion.

Accordingly, the process {X(t),t € Z} in (5.4) has distributional long memory in
cases (i) and (ii) and distributional short memory in case (iii). At the same time,
{X(t), t € Z} has covariance long memory in all three cases (i)-(iii). Case (iv) cor-
responds to distributional and covariance short memory. See generalizing Table 8.2,
page 177.

e And finally, we extended the aggregation scheme from one-dimensional pro-
cesses to two-dimensional random fields. We described the aggregation scheme of
independent nearest-neighbor random fields with innovations belonging to the do-
main of attraction of an a—stable law and showed that the limit aggregated random
field is mixed stable moving average in (6.10). Since the properties of the limit ag-
gregated random field are highly dependent on individual models, we studied partial
sums of the limit aggregated field in two special cases. Assuming that individuals
are described by 3N and 4N models (see (6.14) and (6.15)), we showed that the par-
tial sums of the limit aggregated random field converge to operator scaling random
fields. In order to explain these results and the dependence structure of random
fields, we introduced the notion of anisotropic/isotropic long memory for random
fields on Z2, whose partial sums on incommensurate rectangles with sides grow-
ing at different rates O(n) and O(n1/#2) H, # H,, tend to an operator scaling
random field on R? with two scaling indices H;, H,. We proved, that the limit ag-
gregated random field has anisotropic distributional long memory with parameters
Hy = (1/2+«a—f)/a, Hy = 2H;, if micro behavior is described by 3N model. And
the limit aggregated random field will admit isotropic distributional long memory
with parameter H = 2(a — [3)/«, if individuals are described by 4N model. See the
Table 8.3, page 178.

Note, that the definition of anisotropic/isotropic distributional long memory is
new. Using this definition we described the depencence structure of the limit aggre-
gated random field in two special cases. In the future, we expect to prove, that the
random field {Y(¢,s), (¢,s) € Z?} can have anisotropic distributional long memory
with only one combination of parameters Hy, Hy, i.e. if {Y(t,s), (t,s) € Z*} has
anisotropic distributional long memory with parameters H;, H,, then, for parame-
ters ﬁ[l = H; and flg # H,, the limit of partial sums

[na] [nf1/ "2y

n_HIZ > Y(t,s) —wa Viz,y), (z,y) € RZ,
t=1 =1

will have independent increments in some direction and random field will not admit
anisotropic distributional long memory with parameters H, := H; and Hy # H,.
But this is an open question today.
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Aggregation of AR(1) processes, £(t) € D(a), 0 < a <2

Common innovations

Idiosyncratic innovations

if -1 < g < 1/a — 1, the moving av-
erage is not defined.

Individuals:
Aggregated process:
1 — 1 ¥
The limit aggregated process: The limit aggregated process:
if 1/a—1< B, if 0 < 3,
}: e(t—j), tez, }:/‘tsﬂfda tez,

where M(+), s € Z, are i.i.d. copies of
an a—stable random measure.

INf 1< B < 0, XN(t) —fdd Z, where
Z is a(1 + p)—stable r.v., which does
not depend on t.

Long memory properties: :

if >0,
X(t) has distributional short memory,

if l/a—1<p<0,
X (t) has distributional long memory.

Long memory properties:

if 5 > max(a —1,0),
X(t) has distributional short memory,

if 0 < f < max(a —1,0),
X (t) has distributional long memory.

Finite variance case:

a=28>-1/2
r(h) ~ Ch™%7' ash — oo.

Covariance long memory:
if —1/2 < g <0.

a=2 >0
r(h) ~ Ch™", ash — oo.

Covariance long memory:
if0<pg<1.

Table 8.1: Aggregation of AR(1) processes, €(t) € D(«), 0 < a < 2
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Aggregation of AR(1) processes, {c™) N € N*} € D(W)

Common
innovations

Idiosyncratic innovations

OPEN
QUESTION

Individuals:

XV =axMt-1)+eNw),  tez, i=12,....N

2

Aggregated process:

Xn(t) =S xMw), tez

=1

The limit aggregated process:
for g > 0,

X =Y [ ot M(da), tez,

s<t

where M;(-), s € Z, are i.i.d. copies of an infinitely divisible
random measure.

Long memory properties (finite variance case, EW? < oo ):

if0<pf<1l,o0=0,0<ay<1+p,or
if 6>1,
X(t) has distributional short memory,

if0<pf <1, 0>0,o0r
ifo<pf<l,o=014+8<ay<2,
X(t) has distributional long memory,
Covariance function:

r(h) ~Ch™? as h — oo.

Covariance long memory: if 0 < g < 1.

Long memory properties (infinite variance case):

OPEN QUESTION

Table 8.2:

Aggregation of AR(1) processes, {¢™), N € N*} ¢ D(W)
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Aggregation of nearest-neighbor random fields, (¢, s) € D(«)

Common Idiosyncratic innovations
innovations
Individuals: (t,s) € Z?,
Xi(t,s)= Y ai(u,v)Xi(t+u, s+v)+e(t,s), i=1,...,N,
|ul+[v]=1
Aggregated field:
- N
Xn(t,s) = N3N Xi(t,s), (t,s)€Z
i=1
The limit aggregated field:
OPEN
QUESTION

Z /Ag(t—u,s—v,a)Mu’v(da), (t,s) € Z?,

u,v)EZ2

X(t,s) =
(

where M, ,(:), (u,v) € Z, are ii.d. copies of an a—stable
random measure. ¢(t,s,a) is a lattice Green function, and
A = {a(t,s) €[0,1), X521 alt,s) < 1} C RY

Long memory properties:

New notion of long memory for random fields on Z? -
Anisotropic/isotropic distributional long memory.

3N case:

forl<a<20<f<a-—1,

X(t, s) has anisotropic distributional long memory with param-
eters Hy = (1/2+ a — p)/a, Hy = 2Hy,

AN case:

forl<a<2,0<f<a-—1,

X(t, s) has isotropic distributional long memory with parame-
ter H =2(a—f3)/a.

Table 8.3: Aggregation of nearest-neighbor random fields, e(t, s) € D(«)
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Agrégation de processus autorégressifs et de champs aléatoires de variance

finie ou infinie

Aggregation of autoregressive processes and random fields with finite or

infinite variance

Résumé

Les données agrégées apparaissent dans de
nombreux domaines comme 1I’économie, la
statistique appliquée, la sociologie, la géographie,
I’énergie,.. D’ou 'intérét porté a ’étude théorique
des processus agrégés et aux questions de
désagrégation.

Nous étudions 'agrégation de processus avec une
variance infinie. Les modeles individuels considérés
sont les processus AR(1) et des champs aléatoires
autorégressifs par rapport aux plus proches voisins.
Nous démontrons ’existence des processus agrégés
limites et nous donnons les conditions sous
lesquelles ces processus sont a longue mémoire.
Pour les champs aléatoires définis sur , Z? nous
introduisons une notion de mémoire isotrope et
anisotrope basée sur le comportement des sommes
partielles.

Dans le cas Lo, le schéma classique d’agrégation de
processus AR(1) indépendants conduit a des
limites gaussiennes. Nous proposons un nouveau
schéma d’agrégation construit a partir de tableaux
triangulaires. Ce modele permet en particulier
d’obtenir des processus agrégés de variance finie
non gaussien.

Nous étudions un modele de risque a temps discret
ol les montants de sinistre sont modélisés comme
des processus agrégés avec une variance infinie.
Nous donnons les propriétés asymptotiques des
probabilités de ruine et la structure de dépendance
de ce modele.

Mots clés
Agrégation, longue mémoire, processus des
sommes partielles, loi infiniment divisible

Abstract

Aggregated data appears in many areas such as
economics, applied statistics, sociology, geography,
energy, etc. This motivates an importance of
studying the aggregation and disaggregation
problem.

We explore the aggregation scheme of AR(1)
processes and nearest-neighbour random fields
with infinite variance. We provide results on the
existence of limit aggregated processes, and find
conditions under which it has long memory
properties in certain sense. For the random fields
on Z?, we introduce the notion of
anisotropic/isotropic long memory based on the
behaviour of partial sums.

In Ly case, the known aggregation of independent
AR(1) processes leads to Gaussian limit. While we
describe a new model of aggregation based on
independent triangular arrays. This scheme gives
limit aggregated processes with finite variance
which is not necessary Gaussian.

We study a discrete time risk insurance model
with stationary claims modeled by the aggregated
heavy-tailed process. We establish the asymptotic
properties of the ruin probability and dependence
structure of claims.

Key Words
Aggregation, long memory, partial sums, infinitely
divisible law
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