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Introduction

With its dearth of large impact craters that indicates a young surface (<100 Myr),
and the abundance of various tectonic and cryovolcanic features that points to
a relatively recent endogenic activity, Europa is one of the most exciting plan-
etary bodies within our Solar System. Magnetic induction signals (Khurana et
al., 1998; Zimmer al., 2000) and detection of salts on Europa’s icy surface (Mc-
Cord et al., 1998) indicate that the moon probably possesses a salty ocean a few
tens of kilometers below its surface. Morphological studies (Schmidt et al., 2011;
Dombard et al., 2013) moreover suggest the presence of shallow water reservoirs,
perched only a few kilometers below Europa’s cold brittle surface. Recent de-
tection of water vapor over Europa’s south pole (Roth et al., 2014) suggests the
existence of an ongoing plume activity similar to that observed at Enceladus (e.g.
Hansen et al., 2006; Porco et al., 2006; Waite et al., 2006). Powered by tides, this
endogenic activity in a chemically rich environment together with an expected
ocean-mantle contact may provide the key ingredients for life (i.e. the presence
of liquid water, a suite of biologically essential elements, and a source of energy,
cf. Hand et al., 2009), which makes Europa one of the best candidates for habit-
ability and places it atop the interest of astrobiologists. The material exchange
between the surface and the ocean, critical for potential habitability, is thus of
primary interest.

In this context it is crucial to understand (i) How can meltwater be generated
at shallow depth and what is its lifetime? and (ii) What processes control the
water and chemical transport between the surface and the ocean? In order to
address these major questions, we numerically model the mechanisms of water
transport through the ice shell using two-phase flow formalism. The goal of
this thesis is to investigate whether melting can initiate at shallow depths as
a result of enhanced tidal heating in different geodynamical contexts, and to
address the gravitational stability of these potential meltwater reservoirs with
the consequences for recent morphological models.

This thesis is divided into four parts, each of which contains two chapters. In
the first part, after introducing Europa in more details (Chapter 1), we focus on
the evidences for liquid water within its icy shell in the form of lenses or sills.
We also discuss the heating sources due to tidal friction and their distribution
within the ice shell. On Europa, due to its eccentric orbit around Jupiter, the
tidal dissipation has a strong impact on the thermal structure of the ice shell.
We consider two different geodynamical contexts - convective hot plumes and
strike-slip faults - where enhanced tidal heating is expected to induce ice melt-
ing at shallow depths. In Chapter 2, we describe different meltwater transport
mechanisms known in Earth’s glaciers context, and discuss their plausibility for
the conditions within Europa’s ice shell.

The second part deals with the development of numerical tools that are used
throughout this thesis. Chapter 3 contains a detailed derivation of two-phase
flow equations - after writing down the general single-phase equations and the
corresponding jump conditions, the multi-phase equations are obtained through
the use of an averaging procedure. Restricting ourselves only to two phases, water
ice and liquid water, we formulate the governing equations for this two-phase
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mixture together with the appropriate constitutive relations. In order to neglect
terms of minor importance, a scale analysis is performed. In the following chapter
(4), we proceed with the description of the numerical methods used throughout
this thesis together with their thorough testing.

The third part contains parametric studies of water transport through the
temperate ice shells by two-phase flow - we perform a one-dimensional paramet-
ric study in Chapter 5 and a similar two-dimensional study in Chapter 6. We
investigate the role of various material parameters (such as permeability, viscosi-
ty, or surface tension) on the transport process, and we also address the question
of mechanical coupling between the two phases. In these two chapters, the ice
shell is assumed to be at the melting temperature during the whole simulation.
However, such an assumption is not valid when dealing with Europa’s ice shell.

That is why, in the last part of this thesis, we consider polythermal shells, that
comprise regions of temperate (i.e. at the melting temperature) as well as cold
(i.e. below the melting temperature) ice. A one-dimensional study of meltwater
production and transport in polythermal ice shell of Europa is performed in
Chapter 7. As already mentioned, we consider two different geophysical contexts
in which melting can occur - hot plumes and strike-slip faults. The subsequent
transport of meltwater is enabled by porous two-phase flow in those parts that are
sufficiently warm and permeable (i.e. temperate). This one-dimensional approach
however cannot account for lateral flows and possible gravitational destabilization
by the formation of Rayleigh-Taylor-like instabilities. Therefore, we proceed with
a two-dimensional study in the last chapter (8), where we assume that water can
be transported only by the formation of these gravitational instabilities, while we
neglect porous flow. The results of this thesis as well as the outline of potential
next steps are briefly summarized and discussed in Conclusions and perspectives.
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Part I

Liquid water in Europa’s ice
shell: Observations and models
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1. Europa

1.1 Discovery and further exploration

In January 1610, Galileo Galilei first observed his ‘three little stars’ near Jupiter.
Subsequent observations showed that the three stars were indeed four satellites
that orbited around Jupiter in the prograde fashion. Even though Galileo pro-
posed to call them the Medician satellites, to honor his Medici patrons, the term
‘Galilean satellites’, in honor of their discoverer, prevailed over time. The indi-
vidual satellites, Io, Europa, Ganymede, and Callisto, bear the names of mythic
Jupiter’s lovers, given to them by Simon Marius. They were the first celestial
bodies discovered by telescope and, more importantly, their discovery provided an
argument for the (then controversial) heliocentric theory of Copernic by showing
an example of celestial bodies orbiting something other than the Earth.

The basic characteristics of the Galilean satellites, such as mass, diameter,
shape, or albedo, have been mainly inferred from observations in the nineteenth
and at the beginning of the twentieth century. The first published suggestion that
they could be made of ice comes from Jeffreys (1923) and during the following
fifty years, this notion was further explored and supported by both, observations
(mainly spectroscopic, e.g. Pilcher et al., 1972; Greene et al., 1975) and modeling
(e.g. Lewis , 1971; Consolmagno & Lewis , 1976).

With the fast development of spatial exploration program and the first suc-
cessful mission to another planet (Mariner 2 to Venus in 1962), the plans for the
ambitious mission to the outer Solar System first appeared. In 1972, Pioneer
10 was launched and was followed by Pioneer 11 a year later. These spacecrafts
became the first to fly beyond Mars’ orbit and through the asteroid belt. Both
Pioneers provided the first spacecraft views of the Galilean moons, as well as
improved values of satellites’ masses. The 1979 flybys of Voyager 1 and 2 (both
launched in 1977) revealed evidence of substantial geological activity (e.g. Smith
et al., 1979a,b) and further improved the satellites’ diameter (and hence density)
values. Voyager images of volcanic flows and gas plumes also confirmed Io’s vol-
canic activity, predicted a few months earlier by Peale et al. (1979), and indicated
the key role of heating that results from tidal forces.

More than a decade after the success of both Voyagers, the Galileo spacecraft
was launched to Jupiter, which it reached in 1996 after a seven-year journey, and
provided the first high resolution-images of the Galilean moons’ surfaces as well
as crucial geophysical informations on their interior structure. In the course of its
twelve Europa-targetted flybys, it discovered several geological features unique to
Europa (for more details cf. Sections 1.4 and 1.5) that indicated some amount
of sub-ice activity at the time of their formation. Among its most important dis-
coveries is the evidence for a liquid water ocean under Europa’s surface (Khurana
et al., 1998; Kivelson et al., 2000), the extensive resurfacing of Io’s surface due to
continuing volcanic activity since the Voyagers flew by in 1979 (McEwen et al.,
1998; Lopes-Gautier et al., 1999) or the discovery of the first internal magnetic
field of a moon (Ganymede, cf. Kivelson et al., 1996).

Europa is also a primary target for future explorations. Determination of
surface composition and detection of possible near-surface liquid will be among
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the primary objectives of the recently approved ESA mission JUICE with two
dedicated flybys (Grasset et al., 2013). A Europa targetted flagship mission
(Europa Clipper mission, Pappalardo et al., 2013) is presently also under study
by NASA.

1.2 Interior structure and dynamics

Among the Galilean satellites, Europa is the smallest and second in distance from
Jupiter. The first three satellites, Io, Europa, and Ganymede, are locked togeth-
er in the Laplace resonance with a mean motion ratio of 4:2:1 - in the time it
takes Ganymede to orbit Jupiter once, Europa has gone around twice, and Io four
times (e.g. Alexander et al., 2009). This resonance prevents circularization of the
satellites’ orbits and maintains their eccentricity non-zero which leads to signifi-
cant tidal deformations within the interior of these bodies (e.g. Greenberg , 1987;
Showman & Malhotra, 1997; Peale, 1999). The associated tidal heating, mostly
located within the ice shell, may be several times larger than radiogenic heating
in the rocky core and might prevent Europa’s ocean from freezing completely
(Tobie et al., 2003; Sotin et al., 2009).

With a radius of 1562 km, Europa is slightly smaller than the Moon. Gravita-
tional data collected by the Galileo spacecraft indicate that the satellite’s interior
is fully differentiated into a metallic core, a silicate mantle and an outer water
ice/liquid shell approximately 80–170 km thick (Anderson et al., 1998; Schubert et
al., 2009, cf. Figure 1.1). However, due to small density difference between liquid
water and solid ice, these data provide no information on the thicknesses of the
ocean and the outer ice shell. The existence of a subsurface liquid water ocean
has been proposed based mainly on the results of geological studies of several
surface features - cycloidal ridges, for example, provide an indirect evidence in
favor of Europa’s ocean (Hoppa et al., 1999a). Nonetheless, the most compelling
evidence for the ocean’s existence was the detection of an induced magnetic field
by the Galileo magnetometer - the measured data are consistent with an electri-

Figure 1.1: Model of Europa’s subsurface structure. Courtesy NASA/JPL-
Caltech.
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cally conducting layer lying within 200 km from the surface with the electrical
conductivity comparable with that of seawater on the Earth (Khurana et al.,
1998; Kivelson et al., 2000).

Even though the interest in Europa (and icy satellites in general) increased
during the last few decades and the associated research efforts intensified, several
basic characteristics, such as the current thickness of the ice shell or its thermal
state, remain still unconstrained. Many circular features identified on Europa’s
surface suggest that the ice shell was convecting at the time of their formation
(Pappalardo et al., 1998), however, it is not clear whether the ice shell is still con-
vecting at present (Barr & Showman, 2009). The state of the ice shell (convective
or conductive) depends mostly on the shell thickness and viscosity (McKinnon,
1999; Barr & Pappalardo, 2005). Unfortunately, no observations that would al-
low a robust assessment of the viscosity structure are available and the thickness
estimates vary from a few kilometers to more than 40 km (e.g. Ojakangas &
Stevenson, 1989; Golombek & Banerdt , 1990; Williams & Greeley , 1998; McKin-
non, 1999; Hussmann et al., 2002; Nimmo et al., 2003; Billings & Kattenhorn,
2005). Various features observed at the surface may be compatible with a brittle-
elastic lithosphere (1–2 km thick) above a ductile and possibly convecting layer at
the time of formation (Pappalardo et al., 1999), but it is again not clear whether
the ice shell has remained in this state until now. Mitri & Showman (2005) have
shown that slight (bottom) heat flux variations in thermal convection models
with a near-critical Rayleigh number can induce a switch between a thin conduc-
tive ice shell (∼10 km) and a thick convective shell (∼30 km) at time scales of
∼107 yr. Moreover, the model of coupled thermal-orbital evolution of Europa,
tidally-locked together with its neighbor Io, predicts variations in the ice shell
thickness over several tens of kilometers during Europa’s evolution (Hussmann &
Spohn, 2004) which might be compatible with the formation of different surface
features on Europa.

1.3 Surface composition and age

While the surface of Europa appears smooth on a large scale with a relative-
ly high geometric albedo of ∼0.67 (average of leading and trailing hemisphere
values, cf. Buratti & Veverka, 1983), higher resolution images reveal extensive
surface alteration caused by cracking of the cold (brittle) ice and possibly also by
convective motions within the ductile portion of the icy shell.

The predominant material observed on Europa’s surface is water ice (Carlson
et al., 2009), with pure ice present particularly on the leading hemisphere, while
on the trailing hemisphere the distorted H2O absorption spectra suggest presence
of hydrated salts (McCord et al., 1998) or hydrated sulfuric acid (Carlson et
al., 1999). Sulfur material may come from Europa’s ocean (Kargel et al., 2000)
or be of exogenic origin and delivered from Io (and possibly other satellites),
the jovian magnetosphere, and comet and meteorite impacts (Carlson et al.,
2009). Recently, Brown & Hand (2013) found a new absorption band which they
associated with magnesium sulfate and predicted the dominance of chloride salts
among the non-ice components of the leading hemisphere. Other species that
might be present on Europa’s surface include sulfur dioxide, polymeric sulfur,
molecular oxygen, hydrogen peroxide, carbon dioxide, sodium, potassium and
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others (Carlson et al., 2009).
Chemical and physical processes that modify Europa’s surface composition in-

clude impact gardening and micrometeoric deposition predominant on the leading
hemisphere (cf. Zahnle et al., 1998) and plasma implantation and high-energy
electrons bombardment that prevails on the trailing hemisphere (Tiscareno &
Geissler , 2003). These processes can lead to the observed hemispheric albedo
differences, producing the ‘white’ and ‘red’ hemispheres (Carlson et al., 2009).

When compared to the heavilly cratered terrains of her neighbors Ganymede
and Callisto, Europa’s surface displays a notable dearth of large impact craters
(Bierhaus et al., 2009). Their size frequency distributions lead to surface age
estimates that range between 40 and 90 Myr, indicating a strikingly young surface
(w.r.t. the solar system time scales), consistent with current geological activity
and presence of an interior ocean (Bierhaus et al., 2009; Doggett et al., 2009).

1.4 Main tectonic features

While impact craters are scarce, there is an abundance of diverse tectonic and
cryovolcanic surface features unique for Europa. The prevalence of global ten-
sion, along with the ice weakness, resulted in supremacy of extensional tectonics
whereas crustal convergence features are less obvious (Kattenhorn & Hurford ,
2009). Diurnal tidal stresses due to Europa’s eccentric orbit are the most impor-
tant source of stress that could account for the observed deformation on Europa’s
surface, together with non-synchronous rotation, shell thicknening, and possibly
true polar wander (Nimmo & Manga, 2009; Kattenhorn & Hurford , 2009).

1.4.1 Extensional tectonics

The ubiquitous double ridges consist of a central crack or trough flanked by
two raised edifices (Figure 1.2, left). They are the most common lineaments on

Figure 1.2: Example of double ridges (left) and cycloids (right). Courtesy
NASA/JPL-Caltech.
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Figure 1.3: Various models for double-ridge formation on Europa. From Aydin
(2006), which was adapted from Pappalardo et al. (1999) and Nimmo & Gaidos
(2002).

Europa and may extend from a few kilometers to more than 1000 km across
the surface. Double ridges make up the primary component of the oldest ridged
plains and they comprise also some of the youngest geological features, indicating
that they are the most persistent structures on Europa’s surface (Doggett et al.,
2009; Kattenhorn & Hurford , 2009). Numerous models were proposed in order
to explain their formation, such as cryovolcanism (where a pre-existing crack
provides pathway for eruptions that build the ridge, cf. Kadel et al., 1998, and
Figure 1.3, panel a), tidal squeezing (with daily tidal forces opening and closing
the crack and thus squeezing the material onto the surface, cf. Greenberg et al.,
1998, and Figure 1.3, panel b), diapirism (where the crack leads to a formation of
a warm ice diapir that uplifts the ridge, cf. Head et al., 1999, and Figure 1.3, panel
c), compression (with the ridge representing the buckled lithosphere that borders
the crack under a compressive stress, cf. Sullivan et al., 1998, and Figure 1.3,
panel d) or shear heating (where periodic shear motions on a crack dissipate heat
that results in the warm, buoyant ice uplifting the ridge, cf. Nimmo & Gaidos ,
2002, and Figure 1.3, panel e). Recently, based on observations of fractures on
the double ridge flanks, Dombard et al. (2013) proposed a cryovolcanic sill model
(cf. Figure 1.4) in which the growing ridge is underlain by a cryomagmatic sill
that locally heats and thins the lithosphere, consistently with the observation of
flanking fractures running parallel to double ridges. However, they do not provide

Figure 1.4: Cryovolcanic sill model. From Dombard et al. (2013).
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a mechanism for the formation of such a sill.
Morphologically similar to ridges are cycloids (sometimes referred to as cy-

cloidal ridges). These are curved cracks that form chains extending from hundreds
to thousands of kilometers across Europa’s surface (Figure 1.2, right) with each
segment of typical length of tens of kilometers linked to the adjacent one at a
cusp (Kattenhorn & Hurford , 2009). Tensile cracking in response to diurnally
varying tidal stresses was proposed as a suitable mechanism for their formation
(Hoppa et al., 1999a).

Dilational bands composed of zones of new crustal material that intruded
between the dilating walls of a tension fracture (Figure 1.5, left) represent an
evidence of dilation in the icy shell and indicate a resurfacing process on the icy
satellite (Kattenhorn & Hurford , 2009).

Relatively common are also troughs which lack the raised edifices and rep-
resent probably tension fractures that never developed into a more evolved land-
form (Figure 1.5, right). Based on crosscutting relationships, they constitute the
youngest tectonic features on Europa thus providing the most promising indicator
of recent to current activity (Doggett et al., 2009; Kattenhorn & Hurford , 2009).

Figure 1.5: Example of dilational band (left) and troughs (right). Courtesy
NASA/JPL-Caltech.

1.4.2 Compressive tectonics

Despite being less prominent, some contractional features must be present on
Europa’s surface to compensate for surface extension. The first discovered can-
didate features were parallel folds present within a dilational band (Prockter &
Pappalardo, 2000), however these are scarce and insufficient to balance out the
extension (Kattenhorn & Hurford , 2009). Convergence bands, across which a
tectonic reconstruction reveals a zone of ‘missing’ crust (Figure 1.6, left), consti-
tute another evidence for contraction on Europa. They form broad zones many
kilometers wide and tens of kilometers long that appear to disrupt the surrounding
terrain (Greenberg , 2004). Mével & Mercier (2005) also identified crustal disap-
pereance in the Astypalaea Linea extensive region and proposed pressure melting
to be responsible for the mobilization of surface material and its collapse down
through the icy crust. Part of the contraction may also be accomodated by the
ubiquitous double ridges as suggested by some authors (e.g. Sullivan et al.,
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Figure 1.6: Example of convergence band (left) and band-like strike-slip fault
(right). Courtesy NASA/JPL-Caltech.

1997; Culha et al., 2014). Recently, Kattenhorn & Prockter (2014) proposed that
subduction may be recycling surface material into the interior of Europa’s ice
shell, which would make Europa the only solar system body other than the Earth
to exhibit a system of plate tectonics.

1.4.3 Lateral shearing

Lateral shearing occurs on Europa predominantly through reactivation of the ex-
isting structures (faults and fractures) in response to changes in the stress field
due to temporal variations in the tidal forcing during each orbit (Kattenhorn
& Hurford , 2009). Lateral offsets large enough to be recognized in satellite im-
ages arise along ridges and dilational bands - accordingly, ridge-like and band-like
strike-slip faults (Figure 1.6, right) are distinguished (Kattenhorn, 2004). Typ-
ical lateral offsets of the former are in the range of hundreds of meters to several
kilometers (Hoppa et al., 2000), while the latter have lateral offsets of tens of
kilometers (Kattenhorn, 2004). In the case of ridge-like strike-slip faults, friction-
al shearing may contribute to the ridge development (Nimmo & Gaidos , 2002).
Constantly changing diurnal tidal stresses were suggested to drive the strike-slip
motions along faults through a process of tidal walking (Hoppa et al., 1999b).

1.5 Chaotic terrain

Approximately one quarter of Europa’s surface is covered by chaotic terrains,
that appear to be unique to Europa (Collins & Nimmo, 2009). This widespread
type of terrain is formed by disruption of the preexisting surface into isolated
plates and formation of lumpy matrix material between these plates (e.g. Carr
et al., 1998, Figure 1.7, left). While some chaos areas consist of densely packed
fractured blocks and narrow strips of matrix between them, others are made up
of almost all matrix and no blocks (Collins et al., 2000, e.g. Murias Chaos on
Figure 1.7, right). The most intensely studied chaos area, Conamara Chaos (Fig-
ure 1.8, left), lies in the middle of this range with ∼60% of its area composed of
matrix and the remainder of blocks (Spaun et al., 1998). Chaotic terrains were
also identified in the interiors of lenticulae (Figure 1.8, right), small features
that can be further categorised into three major classes (cf. Spaun et al., 1999):
domes (upraised domical features which commonly do not affect the texture
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Figure 1.7: Example of chaos terrain (left) and Murias Chaos (right). Courtesy
NASA/JPL-Caltech.

of preexisting terrain), spots (smooth low albedo areas which subdue or con-
ceal preexisting terrain), and pits (lenticulae that have disrupted the preexisting
terrain and sometimes contain a chaos-like matrix material).

The plates of disrupted terrains within chaos regions range in size from ap-
proximately 1 km to 20 km across and are usually topographically higher than
the surrounding matrix (Collins & Nimmo, 2009). Many of them have moved
from their original positions - for Conamara Chaos, Spaun et al. (1998) reported
that at least 78% of the blocks shifted by an average of 2 km of lateral transla-
tion. In addition, some plates were found to have rotated around their vertical
axes and several plates have tilted (Spaun et al., 1998; Collins & Nimmo, 2009).
The adjacent matrix is formed from irregular material that appears to be a jum-
bled collection of ice chunks of all sizes, from a kilometer to tens of meters acros
(Collins et al., 2000) and usually lies topographically higher than the background
terrain (Collins & Nimmo, 2009).

Several models were designed to explain chaotic terrains formation. In the
melting through the icy shell model (Greenberg et al., 1999; Thomson & Delaney ,
2001, cf. Figure 1.9, panel a), the surface exposure of the underlying ocean is

Figure 1.8: Conamara Chaos (left) and example of lenticulae (right). Courtesy
NASA/JPL-Caltech.
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Figure 1.9: Various models for chaos formation on Europa: (a) melt-through,
(b) diapirism, (c) brine mobilization driven by diapirism, (d) brine mobilization
driven by partial melt-through, (e) sill formation, and (f) impact. From Collins
& Nimmo (2009).

envisioned as a result of a strong heat source at the base of the icy shell that
melted through it - the plates can then float in the ocean and the matrix is formed
as the top of this ocean freezes. Thermally or compositionally buoyant diapirs
were proposed in order to explain formation of both, small and large domical
features (Rathbun et al., 1998; Figueredo et al., 2002; Mével & Mercier , 2007, cf.
Figure 1.9, panel b). Diapir-driven brine mobilization where rising diapir of clean
ice mobilizes lower-melting-temperature brines in the upper part of the ice shell
leading to disintegration of surface and providing a detachment layer necessary
for plate motions was proposed by Head & Pappalardo (1999) and Collins et al.
(2000) (cf. Figure 1.9, panel c). A hybrid model, that would combine the melt-
through model with a brine mobilization might overcome problems of these two
individual models and thus represents a promising base for further investigation
(Collins & Nimmo, 2009, cf. Figure 1.9, panel d). Water necessary for the chaos
blocks to move and tilt might be delivered below Europa’s surface also directly
from the ocean by injection due to pressure build up in the ocean (as a result
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of the ice shell thickenning, cf. Manga & Wang , 2007; Collins & Nimmo, 2009,
and Figure 1.9, panel e). Contrary to the previous endogenic heating models, an
exogenic impact was proposed by Billings & Kattenhorn (2003) on the basis of
similar morphologies between Europa’s chaos terrains and terrestrial explosion
craters on floating ice (cf. Figure 1.9, panel f). Finally, in their recent study,
Schmidt et al. (2011) proposed a lense collapse model in which chaos terrains
originate as a result of ice blocks movement in water lenses that formed due to
eutectic melting as shallow as 3 kilometers below the surface and refreezed (cf.
Figure 1.10).

 

Figure 1.10: Lense collapse model. From Schmidt et al. (2011).

1.6 Ice shell - mechanical properties and heat
sources

1.6.1 Viscous rheology

As already mentioned above (Section 1.2), the state of Europa’s ice shell strongly
depends on its viscosity structure, which unfortunatelly is not well constrained.
At the surface and at shallow depths, where temperatures are very low, the ice
is expected to behave in a brittle manner and to undergo a brittle failure along
preexisting cracks (e.g. Nimmo & Manga, 2009). In numerical simulations, this
behavior is often parametrized by the use of plastic rheology (e.g. Showman &
Han, 2005) which is however not considered in the present work.

At greater depths, the temperatures increase thus allowing ductile deforma-
tion. Ice is known to have a highly nonlinear rheology, with at least four known
deformational mechanisms (diffusion creep, dislocation creep, grain boundary
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T Ai ni mi Ei Vi

K mm Pa−n s−1 kJ mol−1 m3 mol−1

µdiff — 3.3× 10−10 1.0 2.0 59 −13× 10−6

µdisl ≤ 258 4.0× 10−19 4.0 0.0 60 −13× 10−6

> 258 6.0× 104 4.0 0.0 180 −13× 10−6

µbs — 2.2× 10−7 2.4 0.0 60 −13× 10−6

µgbs ≤ 255 6.2× 10−14 1.8 1.4 49 −13× 10−6

> 255 4.8× 1015 1.8 1.4 192 −13× 10−6

Table 1.1: Creep parameters of ice (after Goldsby & Kohlstedt , 2001; Durham et
al., 2001). Value of prefactor Ai in the case of diffusion creep is computed by
taking into account only the volume (Nabarro-Herring) diffusion creep, neglecting
grain boundary (Coble) diffusion creep and using T=T0 (cf. Goldsby & Kohlstedt ,
2001), thus reducing the temperature dependence of diffusion creep only to the
exponential decrease.

sliding and basal slip, cf. Durham et al., 2001; Goldsby & Kohlstedt , 2001), each
characterized by a respective viscosity µdiff , µdisl, µgbs and µbs. Viscosity of each
mechanism depends in general on temperature T , pressure P , grain size d, and
the second invariant of the deviatoric stress σII as:

µi =
1

2

dmi

Aiσ
ni−1
II

exp

(

Ei + P Vi

RT

)

, (1.1)

where exponents mi and ni, prefactor Ai and activation parameters Ei and Vi are
specific to each creep mechanism and given in Table 1.1, σII = (12

∑

kl σmklσmkl)
1
2

and σmkl are the components of deviatoric stress tensor of the ice matrix1. Con-
sidering the composite creep as in Goldsby & Kohlstedt (2001), we approximate
the effective viscosity µm of the ice matrix as follows

1

µm
=

1

µdiff
+

1

µdisl
+

1

µgbs + µbs
. (1.2)

In numerical simulations, it is often convenient to simplify the complex ice rhe-
ology by assuming a certain grain-size and stress regime - ice viscosity in that
regime is then represented by a reference value modulated only by a temperature-
dependent rate factor. An example of such simplification is the Arrhenius-like
temperature dependence used e.g. by Běhounková et al. (2012):

µm = µref
m exp

(

Ea

RTref

(

Tref

T
− 1

))

, (1.3)

with µref
m the reference viscosity (typically of the order of 1015 Pa s), Tref=255 K

the reference temperature, R
.
= 8.314 J K−1 mol−1 the universal gas constant, and

Ea the activation energy that accounts for the premelting effect at temperatures

1The subscript m denotes the matrix, i.e. the dominant phase in the two-phase description,
cf. Chapter 3.
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close to the melting point (cf. Durham et al., 2001; Goldsby & Kohlstedt , 2001):

Ea =

{

50 kJ mol−1 T<Tref

190 kJ mol−1 T≥Tref
. (1.4)

Finally, the presence of meltwater significantly reduces the viscosity of the matrix
by attenuating the internal stress field in the ice crystals and thus promoting basal
slip (De La Chapelle et al., 1999). Following Tobie et al. (2003), we include this
effect by introducing into the above formulae also a porosity-dependent factor

µm = µpure
m exp(−γmφ) , (1.5)

where µpure
m is the viscosity of pure (meltwater free) ice, given by either eq. (1.2)

or eq. (1.3), and parameter γm
.
=45 roughly corresponds to one order of magnitude

reduction in viscosity as a result of 5% porosity increase found by De La Chapelle
et al. (1999).

1.6.2 Heat distribution within the ice shell

The presence of meltwater at shallow depth, a necessary ingredient of some mor-
phological models of surface features formation (e.g. Schmidt et al., 2011; Dom-
bard et al., 2013) is largely complicated by the very low surface temperature of
Europa (∼100 K, e.g. Ojakangas & Stevenson, 1989). The production of meltwa-
ter within Europa’s ice shell is considered to be the consequence of tidal heating
expected presently in two main scenarios.

First of them is melting within thermal hot plumes, first suggested by Sotin et
al. (2002) and further investigated by Tobie et al. (2003) and Mitri & Showman
(2008). In this context, melting is a result of tidal heating enhanced due to
thermally-reduced viscosity. Tobie et al. (2003) proposed this heat source could
be parametrized as

Ht =
2Hmax

t

µm/µmax
m + µmax

m /µm
, (1.6)

Figure 1.11: Heat distribution in the ice shell for the two considered contexts:
hot plume (left, from Tobie et al., 2003) and strike-slip fault (right, from Nimmo
& Gaidos, 2002). Thickness of the shell is 20 km in both cases and the brittle
layer in the case of strike-slip fault (right panel) is 2 km thick.
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where Hmax
t is the maximum heating rate of the order of 10−6 W m−3 that occurs

for viscosity µmax
m ∼1.5×1014 Pa s. For ice viscosities close to the melting point

(∼1013–1015 Pa s), the Maxwell time (i.e. τM=µm/G, with G the shear modulus)
is close to Europa’s orbital period and the tidal heating might be strong enough
to initiate melting within the warm convecting ice (cf. left panel of Figure 1.11).

Shear motions along tidally-activated strike-slip faults result in very strong,
localized heating that might also intiate melting, as first suggested by Gaidos &
Nimmo (2000) and further studied by Nimmo & Gaidos (2002). They found that
for shear velocities of the order of 10−6 m s−1, appropriate for Europa’s diurnal
tides, the heating amplitudes may be as high as 10−4 W m−3 and may promote
melting as shallow as few kilometers (cf. right panel of Figure 1.11).

While the former mechanism requires the ice shell to be in a convective regime,
the latter is rather insensitive to the thermal state since it is localized in the cold-
est (brittle) part of the layer along the faults and at the transition between the
brittle and the ductile layer (Nimmo & Gaidos , 2002). While the melting pro-
cesses responsible for water generation inside the ice shell appear to be relatively
well studied, only little attention has so far been paid to meltwater propagation,
which we discuss in the next chapter.
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2. Water transport mechanisms
in ice

In the previous chapter, we have discussed possible mechanisms of melt generation
at shallow depths within Europa’s ice shell. Regardless of the source of heating,
a major issue concerns the thermal and gravitational stability of potential water
reservoirs - due to the higher density of water relative to the surrounding ice, these
perched reservoirs should be drained rather rapidly (Nimmo & Giese, 2005).
In numerical simulations of thermal convection within icy satellites’ shells the
dynamic effect of melt generation and accumulation is often completely neglected
(e.g. Sotin et al., 2002; Han & Showman, 2005; Mitri & Showman, 2005; Han &
Showman, 2010) or highly simplified (Běhounková et al., 2012, 2013). The goal
of this chapter is to give an overview of possible mechanisms that would assure
the transport of liquid water through the ice shell.

To gain some insight, it is tempting to investigate liquid water transport
through a closer analogue, the terrestrial glaciers. The hydrological configuration
of a glacier is significantly influenced by its thermal structure (Irvine-Fynn et al.,
2011) and since the thermal conditions that can occur in glaciers vary substantial-
ly, a special terminology was proposed to better distinguish between particular
cases. Temperate ice is at the pressure melting point with some amount of
interstitial liquid water of up to few percents (Pettersson et al., 2004) coexisting
within the ice. Contrastingly, cold ice is below the pressure melting point and
exhibits negligible interstitial water (Irvine-Fynn et al., 2011). Polythermal
glaciers are then defined as ice masses where temperate and cold ice are simulta-
neously present with various configurations of these distinct thermal structures
possible (e.g. Blatter & Hutter , 1991; Irvine-Fynn et al., 2011).

Extensive reviews of glacial hydrology for temperate and polythermal glaciers
can be found e.g. in Fountain & Walder (1998) and Irvine-Fynn et al. (2011),
respectively. Here, we only summarise basic characteristics. The glacier hydro-
logical system comprises surface (supraglacial), internal (englacial), and basal
(subglacial) components, with their roles and their mutual coupling varying over
space and time (Irvine-Fynn et al., 2011, cf. also schematic Figure 2.1). After
the onset of melting season, the enhanced solar radiation provides an increasing
amount of meltwater, leading to gradual development of a supraglacial hydrologi-
cal system (Fountain & Walder , 1998). Since the ice permeability near the glacier
surface is lower than within the glacier body (Lliboutry , 1996), the intergranular
drainage (primary permeability) is probably negligible and the water flowing
to lower altitudes gets eventually captured in surface-reaching crevasses and/or
moulins. It is thus this secondary permeability that represents the most effi-
cient way of draining meltwater from the glacier surface (Irvine-Fynn et al., 2011).
The distribution of crevasses therefore controls the extent to which supraglacial
meltwater is routed across the glacier surface before entering the englacial system
(Nienow & Hubbard , 2006) and the dearth of water-filled crevasses indicates that
the supraglacial meltwater is directed into the glacier interior quite efficiently
(Fountain & Walder , 1998).

Within the glacier, there are two distinct permeable pathways. At the largest
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Figure 2.1: The main components of the glacier hydrological system. From Foun-
tain & Walder (1998).

scale, this pathway is provided by surface crevasses (Nienow & Hubbard , 2006)
which tend to propagate downwards by a combination of hydrofracturing and/or
frictional downcutting. If sufficiently supplied by meltwater, the crevasses can
penetrate all the way to the glacier base and establish an efficient hydrological
connection between the surface and the basal drainage system. This macroscop-
ic water system (MWS) can route significant volumes of water to the bed of
the glacier (Gusmeroli et al., 2010). Polycrystalline ice is permeable also at the
microscale through a network of water-filled veins that are formed at the three-
grain intersections joining together in fours at the four-grain intersections (Nye
& Frank , 1973; Nye, 1989, cf. also Figure 2.2) and creating the microscopic
water system (mWS). This system is primarily controlled by ice temperature

Figure 2.2: Left: Node of a vein system. From Nye (1989). Right: Water
inclusions in polycrystalline ice - (a) intracrystalline, (b) on two-grain intersection,
(c) air bubbles, and (d) three-grain intersection inclusions (that correspond to
these in left panel). From Lliboutry (1971).
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and is only present in temperate parts of glaciers (Gusmeroli et al., 2010). In both
cases, the water propagation through a glacier is usually described by Darcy law,
thus neglecting the interaction forces between water and ice (e.g. Greve, 1997;
Aschwanden & Blatter , 2009).

At the glacier base, the hydrological network interacts in a very complicated
manner with both the overlying glacier and the underlying till (or bedrock), and
operates basically in two regimes, the high-pressure linked cavity network or the
low-pressure channels (e.g. Paterson, 1981; Fountain & Walder , 1998).

Application of the knowledge gained at the Earth conditions to the icy satel-
lites’ shells is not straightforward. The understanding of water transport through
the ice shells is largely complicated by the fact that the precise conditions with-
in are far from certain despite the intense research efforts during the last few
decades. In the following text, we consider three main physical mechanisms to be
potentially able to destabilize the water reservoirs and be responsible for down-
ward water drainage. Where necessary, we take Europa as an example, but our
findings should be valid for shells of icy satellites in general.

2.1 Crevasse hydrofracturing

Hydrofracturing is a process of crack propagation within the brittle ice structure
promoted by meltwater supply. This mechanism is dominant on the Earth and
typically allows for very rapid water drainage (Krawczynski et al., 2009). How-
ever, reliable estimates of the efficiency of this drainage process require rather
detailed knowledge of the hydrological network within the layer.

Theoretical formulation of the problem of fracture propagation through the
ice layer can be based on the linear elastic fracture mechanics (LEFM, cf. Weert-
man, 1996). Crack propagation in a medium subjected to background tension-
al/compressional stress is in this framework controlled by the evaluation of stress
intensity factor at the tip of a crack and by its comparison with the critical
value that represents the fracture toughness. The additional pressure resulting
from partial filling of the crack by water can greatly promote its propagation
(Weertman, 1971), or even lead to fracture pinch-off followed by its gravity-
driven descent in analogy with rising magma-filled chambers (Weertman, 1973).
Weertman’s theory predicts also the crevasse equilibrium shape for given stress
conditions, elastic properties and water column height, however, it does not pro-
vide any time scale for the crevasse propagation. This complicates any attempts
to provide quantitative estimate of hydrofracture transport efficiency.

In their early study, Crawford & Stevenson (1988) applied LEFM to inves-
tigate the possibility of downward water-free crack propagation, or conversely,
upward propagation of water-filled cracks. They excluded the possibility of water-
free cracks extending across the whole ice shell, on the other hand, they argued
that water-filled cracks propagating upwards might reach Europa’s surface pro-
vided they contain enough exsolved gas. Recently, Lee et al. (2005) and Rudolph
& Manga (2009) revisited the subject of ice shell cracking under the applied
tensional stresses (e.g. due to tides, non-synchronous rotation, or ice shell thick-
ening). While the former study found that surface cracks may penetrate through
the entire outer brittle layer, the results of the latter indicate that the entire shell
would be completely cracked only when sufficiently thin (!2.5 km). Both studies
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assume only water-free cracks originating at the surface.
Irrespective of the uncertainties on the ice shell structure and tectonic con-

text, one would be tempted to use an analogy with the processes in terrestrial
glaciers when addressing the possible water transport mechanisms through icy
satellites’ shells. It is nevertheless crucial not to overlook several important dif-
ferences between the physical setting within the ice shell of Europa and that
within the Earth’s glaciers. Since the outer ice shell is underlain by a global
water ocean, the subglacial drainage system at the interface between the ice and
the underlying bedrock, so typical and perhaps the most complex part of the
hydrological network in terrestrial glaciers, is completely missing. In addition,
the very low surface temperature (∼100 K, cf. Ojakangas & Stevenson, 1989)
probably eliminates any supraglacial system of crevasses and moulins, thus mak-
ing the hydrological network effectively closed from above. With the possible
exception of surface-reaching strike-slip faults (Nimmo & Gaidos , 2002), all the
meltwater would be generated in the bulk by viscous tidal heating, often several
kilometers below the surface (Sotin et al., 2002; Tobie et al., 2003). In the interior
of the shell, hydrofracturing is less likely since the overburden pressure probably
maintains the ice in compressional regime and thus limits crack initiation (cf.
Weertman, 1996). Even if cracks developed, the estimated meltwater production
rates are smaller by few orders of magnitude compared to the terrestrial supply
during the melting season. For frictional heat generation rate at the fault of 10−4

W m−3 (Nimmo & Gaidos , 2002) and for the fault thickness of the order of 103

m, the estimated heat flux is ∼10−1 W m−2, which is significantly smaller than
typical values obtained for Alpine glaciers (∼101–102 W m−2, cf. Hock , 2005).
The resulting meltwater supply might thus be insufficient to feed the crevasses
by the appropriate amount required for hydrofracturing across the whole ice lay-
er, particularly if refreezing is efficient. Besides, the thickness of Europa’s ice
shell (at least a few tens of kilometers, e.g. Schubert et al., 2009) is one order
of magnitude larger than that of the biggest terrestrial glaciers which does not
exceed a few kilometers.

2.2 Two-phase flow

If we neglect hydrofracturing for reasons mentioned above and rule out voids (that
are unlikely due to large overburden pressure), then any meltwater flow through
the ice shell must be compensated by an accompanying flow of the viscously-
deforming ice. The mechanical coupling between the two phases is thus much
stronger than in the glaciers on the Earth and must be taken into account. The
problem of ice melting and subsequent meltwater propagation within the shells
of icy satellites is then rather similar to the problem of silicate magma generation
and transport through the Earth’s mantle and thus requires the adoption of a
two-phase formalism (developed originally for magma generation and transport,
e.g. McKenzie, 1984; Scott & Stevenson, 1984, 1986; Spiegelman, 1993a; Bercovici
et al., 2001; Šrámek et al., 2007) in order to capture the complex thermomechan-
ical coupling between the viscously deforming matrix and the melt flow. As the
problem is rather complicated per se, several approximations have been intro-
duced, such as ‘small porosity approximation’ (e.g. Connolly & Podladchikov ,
2007) or ‘zero compaction length approximation’ (e.g. Scott & Stevenson, 1989;
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Spiegelman, 1993a,b), with the latter neglecting the effect of matrix deformation
on melt flow. Typical feature of two-phase systems is the formation of nonlinear
porosity waves (cf. Scott et al., 1986; Olson & Christensen, 1986; Spiegelman,
1993a). While numerical modeling of two-phase flow is well established among
the mantle flow community, no study has yet, to our best knowledge, attempted
to apply this formalism for ice shells despite the potentially important impact on
the ice shell dynamics.

Considering the ice shell as a two-phase mixture of water ice and liquid wa-
ter, then water, as the less viscous phase (melt), would be transported through
the more viscous phase (ice matrix) by a system of interconnected channels, in
glaciological literature well known as a microscopic water system (e.g. Gusmeroli
et al., 2010, cf. above). For low dihedral angle measured for the ice-water system
(with typical values around 30◦, e.g. Mader , 1992a; Walford et al., 1987; Walford
& Nye, 1991), the melt phase is interconnected even at small porosities (vol-
ume fractions of water in the water-ice mixture, e.g. Nye & Frank , 1973; Mader ,
1992b). The meltwater transport by this mechanism is expected to be predomi-
nant in sufficiently large regions of partially molten material, such as within the
hot plumes. We provide a more detailed mathematical description of flow of
liquid water through the viscously deforming ice matrix in Chapter 3.

The key parameter in two-phase flow modeling is permeability, i.e. the
ability of a material to transmit fluids. In many applications, a simple power-law
function of porosity φ with the exponent typically between 2 and 3 is assumed
(e.g. McKenzie, 1984; Scott & Stevenson, 1984; Spiegelman, 1993b; Rabinowicz et
al., 2002; Šrámek et al., 2007). Ice permeability generally depends on numerous
state and material parameters, such as the geometric properties of the pore system
(pore diameter and tortuosity of the path), pressure in the liquid, temperature
and composition (salinity, presence of ammonia), deformation history etc. (cf.
Lliboutry , 1996; Petrich et al., 2006; Golden et al., 2006, 2007; Petrich & Eicken,
2009). Depending on the physical context and growth mechanisms of ice crystals,
ice permeability may also exhibit anisotropy (Freitag & Eicken, 2003) and it
may abruptly decrease for very small porosities (below a certain porosity, the
‘percolation threshold’ φc). This decrease corresponds to the closure of the net
of veins and microchannels in the matrix and subsequent drop in its connectivity
(Golden et al., 1998). Measurements of ice permeability reveal variations over
several orders of magnitude (e.g. Freitag , 1999; Eicken et al., 2002; Freitag &
Eicken, 2003; Kawamura et al., 2006; Golden et al., 2007). In this work, we
consider scalar (isotropic) permeability in the standard form

k(φ) = k0φ
n , (2.1)

with n=2 and 3 and we include the uncertainty in magnitude by varying k0
accordingly, in order to capture the whole range of admissible situations. To
mimic the abrupt permeability decrease below percolation threshold, we also
employ the following expression in the parametric studies in Sections 5.2.2 and
6.3.2:

k(φ) = k0







((φ−φc)2 + kc
0) φ ≥ φc

kc
0

(

φ
φc

)4

φ < φc
. (2.2)

Figure 2.3 compares the measured values of ice permeability with the theoretical
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Figure 2.3: Comparison of measured values of ice permeability (colored sym-
bols) with the theoretical curves considered in this work (black and gray lines).
Measured values have been read from figures in Freitag (1999), Kawamura et al.
(2006) and Golden et al. (2007).

curves obtained for different permeability laws considered in this work. The curve
for the smallest value of k0 (10−10 m2) and n=2 (dot-dashed in Figure 2.3) is used
in Chapter 7, where it provides the lower bound on permeability and thus the
upper bound on the extraction time scale.

2.3 Rayleigh-Taylor instabilities

In case of totally impermeable ice (with no cracks or pores), a third mechanism
involves gravitational destabilization of large liquid water reservoirs by Rayleigh-
Taylor (R-T) instabilities in the water-ice system. This instability develops at
the interface between two viscous fluids of different densities. If the interface
is slightly distorted, a small pressure gradient evolves that (in viscous fluids)
initiates a slow flow even for very small pressures (Whitehead & Luther , 1975).
Several factors influence the development of R-T instability, such as the density
ratio between the two fluids, surface tension, viscosity ratio etc. (e.g. Sharp,
1984).

Gravitational destabilization of liquid water reservoir by R-T instability would
probably require accumulation of substantial volume of meltwater underlain by
sufficiently impermeable (cold) ice - otherwise, the liquid water would rather
be drained by microscopic two-phase flow. This may be possible only in the
vicinity of localized frictional heat sources at strike-slip faults, or in the zones
with reduced melting temperature (e.g. due to presence of salts) heated from
below by ascending plumes. According to the analytical description of Whitehead
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& Luther (1975), the time required to destabilize a dense water reservoir (of a
few meters thickness) above a half-space ice layer is longer than 10 kyr only for
ice viscosities of at least 1022 Pa s - such high viscosity values are possible only
for temperatures ≤150 K, which implies that destabilization by R-T instability
would be quite efficient, except in the case of an extremely cold conductive layer
subjected very locally to intense heating.

As shown by Tobie et al. (2003), a small fraction (<2%) of interstitial melt
is sufficient to create a negative density buoyancy that overcomes the thermal
buoyancy and leads to rapid downwelling with the residence time of partially
molten ice in the head of a hot plume around few tens of thousands of years.
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Summary of Part I

Apart from the global subsurface ocean, the existence of which is now generally
accepted, liquid water might be present also within Europa’s ice shell. Recent
morphological analyses of chaos terrains (Schmidt et al., 2011) and double ridges
(Dombard et al., 2013) as well as the UV spectra observations consistent with
water vapor eruptions (Roth et al., 2014), support the hypothesis of presence
of liquid water within the ice shell in the form of lenses or sills located a few
kilometers below the surface. However, these interpretations are still subject to
debate and it is not clear whether liquid water can accumulate in the upper part
of Europa’s ice shell. The question of long-term stability of such subsurface water
reservoirs is challenging and cannot be answered without considering meltwater
generation and its subsequent propagation through the ice shell.

The production of meltwater at shallow depth is considered to be the con-
sequence of enhanced tidal heating expected presently in two main scenarios -
either in thermal hot plumes as a result of thermally-reduced viscosity (Sotin et
al., 2002; Tobie et al., 2003) or along the faults due to tidally-activated strike-
slip motions (Nimmo & Gaidos , 2002). While the melting processes within the
ice shell are relatively well studied, only little attention has so far been paid to
meltwater propagation.

Hydrofracturing, the drainage mechanism dominant on the Earth, seems un-
likely to prevail in the conditions within Europa’s ice shell (cf. Table 2.1 for a
comparison of the two hydrological systems). Even though we cannot fully rule it
out, we decided not to consider hydrofracturing in this study, mainly due to lack

Earth Europa

extensive supraglacial system network closed from above
(supraglacial lakes, surface reaching
crevasses/moulins)

(low surface temperatures)

complex englacial system limited crack initiation
(enough meltwater supply) (overburden pressure in the ice shell)

complicated subglacial system no subglacial drainage system
(channels/cavities at the ice-bedrock
interface)

(ice shell underlain by a water ocean)

large meltwater supply insufficient meltwater supply
(heatfluxes during the melting sea-
son ∼101–102 W m−2)

(heat generation rate at the fault
10−4 W m−3 × fault thickness ∼103

m → heatflux ∼10−1 W m−2)

few kilometers few tens of kilometers
(typical thickness of terrestrial
glaciers)

(estimates of Europa’s ice shell
thickness)

Table 2.1: Differences between the hydrological systems in Earth’s glaciers and
Europa’s ice shell.
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of observations that would help to constrain the drainage system within the ice
shell. Instead, we concentrate on two other mechanisms, microporous two-phase
flow and gravitational destabilization by Rayleigh-Taylor instability, and leave
the investigation of the water transport by hydrofracturing for future study.
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Part II

Theoretical model and numerical
implementation
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3. Two-phase model

The two-phase (or generally multi-phase) flow has been intensively studied in
geophysics, especially in connection with magma generation and lava flows (e.g.
McKenzie, 1984; Scott & Stevenson, 1986; Spiegelman & McKenzie, 1987; Ghods
& Arkani-Hamed , 2000; Schmeling , 2006; Katz , 2010), planetary core formation
and segregation (e.g. Ricard et al., 2009; Šrámek et al., 2010), soil mechanics
(e.g. Birchwood & Turcotte, 1994), or closer to our application, in glaciology (e.g.
Hutter , 1982; Fowler , 1984; Blatter & Hutter , 1991; Hutter , 1993; Greve, 1997).

Despite the obvious multiscale (both temporal and spatial) nature of the above
phenomena, we are often interested only in physical processes at macroscopic (or
mesoscopic) scale. A substantial theoretical simplification can then be achieved
by employing the framework of continuum mechanics and thermodynamics. Two
main branches exist within these theories concerning multi-component processes
and phenomena: (i) the mixture theory and (ii) the multi-phase theory.

In the first case, the underlying theoretical framework is the continuum the-
ory of mixtures - an approach that ignores the internal material structure and
describes all the components of the mixture as omnipresent. A typical feature
of continuum mixture theories is the use of concentration (mass fraction) as a
weighting function to express contribution of a particular component. The mix-
ture theory framework is developed by postulating mixture equivalents of the
traditional balance laws and by supplementing them with the additional thermo-
dynamic principles that constrain the constitutive theory. A number of mixture
theories exist that differ mainly in the applied thermodynamic approach, e.g.
the rational thermodynamics (Truesdell , 1984), the Liu-Müller theory (Müller ,
1968), the classical or extended irreversible thermodynamics (de Groot & Mazur ,
1984; Jou et al., 2010), etc.

A possible alternative to the mixture theory is the theory of multi-phase ma-
terials. This approach is connected with the work of Drew (1971, 1983) and Drew
& Passman (1999), and relies on a better insight into the geometrical structure of
the material. The space-temporal distribution of the phases at a sufficiently fine
mesoscale is assumed to be known and the traditional single-component contin-
uum theory is assumed to be valid in the regions occupied by each phase. After
the identification of suitable boundary conditions at the interfaces between the
phases, the multi-component description is obtained by performing an averaging
procedure (over a representative volume or statistical ensemble) which eliminates
the microscale details. Such averaging typically leads to a formally similar system
of balance equations as in the continuum mixture theory - the main difference
lies in the use of a different phase-weighting function. In contrast to the mass
fraction (concentration) in the first case, the multi-phase theory favors the vol-
ume fraction (often called porosity in two-phase systems), that is the volumetric
‘occupancy’ of the point by a particular component (phase).

In this work, we choose the second approach, i.e. the multi-phase theory.
Even though the system of governing equations have been derived several times
we go through this derivation for the sake of clarity and manuscript completeness.
We start with a derivation of the single-phase continuum balance laws and the
appropriate jump conditions at possible interfaces (Section 3.1). Then, folowing
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Drew (1983) and Drew & Passman (1999), we proceed with the averaging pro-
cedure and write the general multi-phase equations (Section 3.2). Employing the
jump conditions on the phase interface and following Drew (1983), Drew & Pass-
man (1999), Bercovici et al. (2001), Bercovici & Ricard (2003), and Šrámek et
al. (2007), we derive the full equations for a compressible mixture of two incom-
pressible components (phases), water ice and liquid water, and we write down the
relevant constitutive equations (Section 3.3). Finaly, in Section 3.4, we perform
a scale analysis using the appropriate physical parameters and present the final
reduced model.

3.1 Balance laws and jump conditions for single-
phase continuum

The balance of quantity Ψ in a material body of volume Ω that is separated by
a singular surface Γ can be in general written as (e.g. Müller , 1985):

D

Dt

(
∫

Ω

ψvdv +

∫

Γ

ψsds

)

= −
∫

∂Ω

ΦΨ
v · nds−

∫

∂Γ

ΦΨ
s · νdl

+

∫

Ω

(πΨ
v + ςΨv )dv +

∫

Γ

(πΨ
s + ςΨs )ds , (3.1)

with ψv and ψs the volume and surface densities of Ψ, respectively, ΦΨ
v and ΦΨ

s the
volume and surface flux densities of Ψ, respectively, n and ν the outer normals of
∂Ω and ∂Γ, respectively, πΨ

v and πΨ
s the volume and surface production densities

of Ψ, respectively, and ςΨv and ςΨs the volume and surface densities of supply of
Ψ, respectively (supply, in contrast to production, may be controlled from the
exterior of Ω).

The singular surface Γ divides the body Ω in two parts, let us say Ωγ+ and Ωγ− ,
each of which can be distinguished by a characteristic (phase) function χ(x, t) of
the form (e.g. Drew , 1983):

χγ±(x, t) =

{

1 if x ∈ Ωγ± at time t
0 otherwise

. (3.2)

This function ‘picks out’ domain Ωγ± (or component γ±), and ignores all other
domains (components) and interfaces - that is why it is very important in the
theoretical description of multi-component materials. The characteristic function
χγ± is treated as a generalized function, especially with respect to derivatives -
its gradient behaves as a δ-function, i.e. it is zero, except at the interface:

∇χγ± =
∂χγ±

∂n
n = |∇χγ±|n . (3.3)

Thus, for ϕs, a surface density of quantity Φ, we can rewrite the surface integral
into volume integral as1:

∫

Γ

ϕsds =

∫

Ω

|∇χγ|ϕsdv . (3.4)

1In the following text, we will omit the ± index in the interface description, since |∇χγ+ | =
|∇χγ− | = |∇χγ |.
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With the use of modified Reynolds transport theorem for a volume with dis-
continuity (e.g. Martinec, 2011), the first term on the left-hand side of eq. (3.1)
can be rewritten as:

Dv

Dt

∫

Ω

ψvdv =

∫

Ω̃

(

∂ψv

∂t
+∇ · (ψvv)

)

dv +

∫

Γ

!ψv(v−vi)"+− · nds (3.5)

=

∫

Ω̃

(

∂ψv

∂t
+∇ · (ψvv)

)

dv +

∫

Ω

|∇χγ|!ψv(v−vi)"+− · ndv ,

with v the velocity of a material within the domain Ω, vi the velocity of the
interface Γ, Ω̃=Ωγ+∪Ωγ− , and ! "+− the jump across the interface Γ from Ωγ+ to
Ωγ− . The second equality is due to eq. (3.4) and the convective time derivative
is defined as

Dv•
Dt

=
∂•
∂t

+ v ·∇ • . (3.6)

Since we consider no discontinuity of the interface, we can rewrite the second
term on the left-hand side of eq. (3.1) using eq. (3.4) and a standard Reynolds
transport theorem (e.g. Martinec, 2011):

Ds

Dt

∫

Γ

ψsds =
Ds

Dt

∫

Ω

|∇χγ|ψsdv

=

∫

Ω

|∇χγ|
(

∂ψs

∂t
+∇ · (ψsvs)

)

dv +

∫

Ω

ψs
Ds|∇χγ |

Dt
dv , (3.7)

with vs the velocity of a material at the interface Γ and the convective time
derivative defined as

Ds•
Dt

=
∂•
∂t

+ vs ·∇ • . (3.8)

Similarly, the first term on the right-hand side of eq. (3.1) can be rewritten
using the Gauss theorem for a volume with discontinuity (e.g. Martinec, 2011):

−
∫

∂Ω

ΦΨ
v · nds = −

∫

Ω̃

∇ · ΦΨ
v dv −

∫

Γ

!ΦΨ
v "+− · nds

= −
∫

Ω̃

∇ · ΦΨ
v dv −

∫

Ω

|∇χγ|!ΦΨ
v "+− · ndv , (3.9)

where again the second equality is due to eq. (3.4), while the second term on the
right-hand side of eq. (3.1) is modified in a similar way as the second term on the
left-hand side of the same equation:

−
∫

∂Γ

ΦΨ
s · νdl = −

∫

Γ

∇s · ΦΨ
s ds = −

∫

Ω

|∇χγ|∇ · ΦΨ
s dv . (3.10)

The third term on the right-hand side of eq. (3.1) remains unchanged and the
last term is again modified using eq. (3.4). Finally, the whole balance equation
reads

∫

Ω̃

(

∂ψv

∂t
+∇ · (ψvv) +∇ · ΦΨ

v − πΨ
v − ςΨv

)

dv

+

∫

Ω

|∇χγ |
(

∂ψs

∂t
+∇ · (ψsvs) +∇ · φΨ

s − πΨ
s − ςΨs

+
ψs

|∇χγ|
Ds|∇χγ|

Dt
+ !ψv(v−vi) + ΦΨ

v "+− · n
)

dv = 0 , (3.11)
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indicating the form of local balance laws:

∂ψv

∂t
+∇ · (ψvv) +∇ · ΦΨ

v − πΨ
v − ςΨv = 0 in Ω̃ , (3.12a)

∂ψs

∂t
+∇s · (ψsvs) +∇s · ΦΨ

s − πΨ
s − ςΨs

+
ψs

|∇χγ |
Ds|∇χγ|

Dt
= −!ψv(v−vi) + ΦΨ

v "+− · n atΓ , (3.12b)

where the novel term ψs

|∇χγ |
Ds|∇χγ |

Dt describes the evolution of the interface Γ and

even enables to depict the formation of the new and/or the extinction of the old
interface.2 The balance laws and interface jump conditions for single-component
continuum can now be deduced by substituting the appropriate quantities into
general balances (3.12):

Balance of mass

When investigating the balance of mass, the balanced quantity is the material
density, ψv=ρ. We consider neither any fluxes, production and sources of mass,
nor any interface quantities. The balance law for mass in volume Ω̃ and the
corressponding jump condition at the interface Γ thus read:

∂ρ

∂t
+∇ · (ρv) = 0 in Ω̃ , (3.13a)

!ρ(v−vi)"+− · n = 0 atΓ . (3.13b)

Balance of linear momentum

The balanced quantity is now the volume density of linear momentum, ψv=ρv.
We also consider the volume flux of linear momentum, i.e. the stress tensor,
ΦΨ

v =−τ , the supply of linear momentum through the outer volume forces, ζΨv =ρb,
and the surface flux of linear momentum due to surface tension, ΦΨ

s =−σIs with
Is=I−n⊗n. The linear momentum balance and the appropriate jump condition
then read:

∂(ρv)

∂t
+∇ · (ρv ⊗ v) = ∇ · τ + ρb in Ω̃ , (3.14a)

!ρv ⊗ (v−vi)− τ "+− · n = ∇s · (σIs) atΓ . (3.14b)

In the following, the stress tensor τ is considered as

τ = −PI + σ , (3.15)

with P=−1
3tr(τ ) the pressure and σ the deviatoric stress. We also assume only

non-polar materials (i.e. materials without the intrinsic angular momentum), for
which the balance of angular momentum implies

τ = τT . (3.16)

2When new interface is not created, this term takes the classical form −2ψsκvns with κ the
mean surface curvature and vns the size of the velocity normal to the interface Γ (cf. Müller ,
1985). Since we want to describe the creation of the new interface, we keep it in this more
general form.
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Balance of energy

Here, the balanced quantity is the volume density of energy, consisting of two
terms, the internal energy with density ε and the kinetic energy, ψv=ρ(ε+1

2 |v|
2).

The volume flux is also composed of two contributions, the heat flux q and the
power exerted by stresses, ΦΨ

v =q−τ · v. The volume production is represented
by a general heat source, πΨ

v =Q, while the volume supply is due to power exerted
by body forces, ςΨv =ρb·v. In contrast to the previous balances, we also consider
the surface specific energy, ψs=ξ, and the surface flux corresponding to power
exerted by surface forces, ΦΨ

s =−σvs. The volume and surface balances can then
be written as:

∂

∂t

(

ρ(ε+
1

2
|v|2)

)

+∇ ·
(

ρ(ε+
1

2
|v|2)v

)

(3.17a)

= ∇ · (τ · v−q) + ρb · v +Q in Ω̃ ,
#
ρ

(

ε+
1

2
|v|2

)

(v−vi)− τ · v + q

$+

−

· n

= −
∂ξ

∂t
−∇s · (ξvs) +∇s · (σvs)−

ξ

|∇χγ|
Ds|∇χγ|

Dt
atΓ .

(3.17b)

Balance of entropy

Finally, we balance the entropy with density s, i.e. ψv=ρs. The volume flux is
represented by the non-convective entropy flux, ΦΨ

v =J , and the volume source is
given by the internal entropy production rate, πΨ

v =S. As in the balance of energy
above, we also consider the surface specific entropy, ψs=η. The entropy balances
in the volume Ω̃ and on the interface Γ then read:

∂(ρs)

∂t
+∇ · (ρsv) = −∇ · J + S in Ω̃ , (3.18a)

!ρs(v−vi) + J"+− · n = −
∂η

∂t
−∇s · (ηvs)−

η

|∇χγ|
Ds|∇χγ|

Dt
atΓ . (3.18b)

3.2 Averaged multi-phase balance laws

In order to obtain equations that do not contain the microscopic details of the
flow, we will apply the volumetric averaging process which is appropriate for
flows that are statistically spatially uniform, or homogeneous. Let 〈 〉 denote an
averaging process so that if f(x, t) is an exact microscopic field, then 〈f〉(x, t)
is the corresponding averaged field. The volume average can be defined as (cf.
Drew , 1983):

〈f〉(x, t) =
1

V

∫

V

f(x, t)dv , (3.19)

39



where V is some sufficiently large volume. The average is assumed to satisfy the
following conditions (for field quantities f, f1, f2 and constants c1, c2):

〈c1f1 + c2f2〉 = c1〈f1〉+ c2〈f2〉 , (3.20a)

〈〈f1〉f2〉 = 〈f1〉〈f2〉 , (3.20b)
〈

∂f

∂t

〉

=
∂

∂t
〈f〉 , (3.20c)

〈

∂f

∂xi

〉

=
∂

∂xi
〈f〉 . (3.20d)

The first two conditions are called Reynolds’ rules, the third is called Leibniz’
rule, and the fourth is called Gauss’ rule (Drew , 1983).

For the purpose of averaging of balance equations for each component, the
phase function χγ(x, t) defined by eq. (3.2) is used. The average interfacial area
per unit volume can be defined as (Drew , 1983):

α =

〈

∂χγ

∂n

〉

= 〈|∇χγ|〉 , (3.21)

and the derivative of the product of a field quantity f with the phase function
χγ reads:

∂

∂ζ
(χγf) = χγ

∂

∂ζ
f + f i

γ

∂

∂ζ
χγ , (3.22)

with ζ denoting the space coordinate xj or time t and f i
γ the value of quantity f

evaluated on the component γ side of the interface. It can be further shown that
(cf. Drew , 1983)

∂χγ

∂t
+ vi ·∇χγ = 0 , (3.23)

which is the topological equation that describes the material derivative of χγ that
follows the interface. Using the above definitions, we can write:

〈

χγ

(

∂f

∂t
+∇ · (fv)

)〉

=

〈

∂

∂t
(χγf)

〉

−
〈

f i
γ

∂χγ

∂t

〉

+ 〈∇ · (χγfv)〉 −
〈

f i
γv

i
γ ·∇χγ

〉

=
∂

∂t
〈χγf〉+∇ · 〈χγfv〉 −

〈

f i
γ

(

∂χγ

∂t
+ vi ·∇χγ

)〉

−
〈

f i
γ(v

i
γ−vi) ·∇χγ

〉

=
∂

∂t
〈χγf〉+∇ · 〈χγfv〉 −

〈

f i
γ(v

i
γ−vi) ·∇χγ

〉

, (3.24)

where the last equality is due to topological equation (3.23).
Now the general averaged balance law for the γ phase in the bulk is obtained

by taking the product of eq. (3.12a) with χγ and then performing the averaging
process:

∂

∂t
〈χγψv〉+∇ · 〈χγψvv〉+∇ ·

〈

χγΦ
Ψ
v

〉

−
〈

χγπ
Ψ
v

〉

−
〈

χγς
Ψ
v

〉

=
〈

(ψi
vγ(v

i
γ−vi) + ΦΨi

vγ) ·∇χγ

〉

. (3.25)
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Similarly, the general averaged balance law at the interface between two phases,
say γ and β (with ∇χγ=−∇χβ), is obtained by taking the product of eq. (3.12b)
with |∇χγ| and then performing the averaging process3:

∂

∂t
〈|∇χγ|ψs〉+∇ · 〈|∇χγ|ψsvs〉+∇ ·

〈

|∇χγ|ΦΨ
s

〉

−
〈

|∇χγ|πΨ
s

〉

−
〈

|∇χγ|ςΨs
〉

= −
〈

!ψv(v−vi) + ΦΨ
v "+− ·∇χγ

〉

. (3.26)

Before we proceed with writing down the particular averaged balance laws,
we define the volume fraction of phase γ (Drew , 1983):

φγ = 〈χγ〉 . (3.27)

Besides, we define the volume variables in terms of weighted averages (as is com-
mon in the multi-phase mixture literature) - the phasic (component-weighted) or
the mass-weighted average. Which is appropriate is suggested by the appearance
of the quantity in the balance equation. The phasic average of a variable ϕv is
defined by

ϕ̃γ =
〈χγϕv〉
φγ

(3.28)

and the mass-weighted average of a variable ϕv is defined by

ϕ̂γ =
〈χγρϕv〉
φγ ρ̃γ

, (3.29)

where

ρ̃γ =
〈χγρ〉
φγ

(3.30)

is the average density of the phase γ. The surface variables, on the other hand,
are weighted by the interfacial surface density and so we write

ϕ̌ =
〈|∇χγ|ϕs〉

α
. (3.31)

The interface variables (defined in the following text) are weighted with the full
gradient ∇χγ. Taking into account the above definitions and considering the
same volume and surface quantities for particular balances as in Section 3.1, we
can write:

Balance of mass

The averaged balance of mass in the bulk of the phase γ reads

∂

∂t
(φγ ρ̃γ) +∇ · (φγ ρ̃γv̂γ) = r̄iγ , (3.32)

with the average velocity

v̂γ =
〈χγρv〉
φγ ρ̃γ

(3.33)

3The term −〈ΦΨ
s · ∇|∇χγ |〉 that originates from the third term on the left-hand side of

eq. (3.12b) after applying per partes derivation, is identically zero since ΦΨ
s is tangent to the

discontinuity Γ and ∇|∇χγ | is normal to the same discontinuity.
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and the interfacial mass production rate due to phase change

r̄iγ = 〈ρiγ(vi
γ−vi) ·∇χγ〉 . (3.34)

Similarly, the averaged balance of mass on the interface between the phases γ
and β reads

〈

!ρ(v−vi)"+− ·∇χγ

〉

= 0 . (3.35)

Balance of linear momentum

The averaged balance of linear momentum in the bulk of the phase γ reads

∂

∂t
(φγ ρ̃γ v̂γ) +∇ · (φγ ρ̃γ v̂γ ⊗ v̂γ)

= −∇(φγP̃γ) +∇ · (φγσ̃γ) + φγργ b̂γ + r̄iγv̄
i
γ + P̄ i

γ∇φγ + M̄
i
γ , (3.36)

with the average pressure

P̃γ =
〈χγP 〉
φγ

, (3.37)

the average deviatoric stress

σ̃γ =
〈χγσ〉
φγ

, (3.38)

the average body force

b̂γ =
〈χγρb〉
φγ ρ̃γ

, (3.39)

and the average interfacial momentum sources due to: (i) phase change

r̄iγ v̄
i
γ = 〈ρiγvi

γ ⊗ (vi
γ−vi) ·∇χγ〉 , (3.40)

with v̄i
γ the average interfacial velocity of the phase γ, (ii) interfacial pressure

(‘buoyant force’, cf. Drew , 1983)

P̄ i
γ∇φγ = 〈P i

γI ·∇χγ〉 , (3.41)

with P̄ i
γ the average interfacial pressure of the phase γ, and (iii) molecular fluxes

(‘interfacial force density’, cf. Drew , 1983)

M̄
i
γ = −〈σi

γ ·∇χγ〉 . (3.42)

Similarly, the averaged balance of linear momentum on the interface between the
phases γ and β reads

〈

!ρv ⊗ (v−vi)− τ "+− ·∇χγ

〉

= ∇(ασ̌) , (3.43)

with the average surface tension

σ̌ =
〈|∇χγ|σ〉

α
. (3.44)
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Balance of energy

The averaged balance of energy in the bulk of the phase γ reads

∂

∂t
(φγ ρ̃γ(ε̂γ+

1

2
|v̂γ|2)) +∇ · (φγ ρ̃γ(ε̂γ+

1

2
|v̂γ |2)v̂γ)

= −∇(φγP̃γv̂γ) +∇ · (φγσ̃γ · v̂γ)−∇ · (φγq̃γ) + φγ ρ̃γ b̂γ · v̂γ

+ φγQ̃γ + Ēi
γ r̄

i
γ + W̄ i

γ + Q̄i
γ , (3.45)

with the average specific internal energy

ε̂γ =
〈χγρε〉
φγ ρ̃γ

, (3.46)

the average heat flux

q̃γ =
〈χγq〉
φγ

, (3.47)

the average heat source

Q̃γ =
〈χγQ〉
φγ

, (3.48)

the average interfacial energy source

Ēi
γ r̄

i
γ = 〈ρiγ(εiγ+

1

2
|vi

γ|2)(vi
γ−vi) ·∇χγ〉 , (3.49)

with Ēi
γ the average interfacial energy per unit mass, the average interfacial power

W̄ i
γ = −〈τ i

γ · vi
γ ·∇χγ〉 , (3.50)

and the average interfacial heat source

Q̄i
γ = 〈qi

γ ·∇χγ〉 . (3.51)

Similarly, the averaged balance of energy on the interface between the phases γ
and β reads

〈

!ρ(ε+
1

2
|v|2)(v−vi)−τ · v+q"+− ·∇χγ

〉

= −
∂

∂t
(αξ̌)−∇ · (αξ̌v̌s) +∇ · (ασ̌v̌s) ,

(3.52)
with the average surface energy

ξ̌ =
〈|∇χγ|ξ〉

α
(3.53)

and the average interfacial velocity

v̌s =
〈|∇χγ|ξvs〉

αξ̌
. (3.54)
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Balance of entropy

The averaged balance of entropy in the bulk of the phase γ reads

∂

∂t
(φγ ρ̃γ ŝγ) +∇ · (φγ ρ̃γ ŝγv̂γ) = −∇ · (φγJ̃γ) + φγS̃γ + S̄ i

γ , (3.55)

with the average specific entropy

ŝγ =
〈χγρs〉
φγ ρ̃γ

, (3.56)

the average non-convective entropy flux

J̃γ =
〈χγJ〉
φγ

, (3.57)

the average internal entropy source

S̃γ =
〈χγS〉
φγ

, (3.58)

and the average interfacial entropy source (due to convective and molecular fluxes)

S̄ i
γ = 〈(ρiγsiγ(vi

γ−vi) + J i
γ) ·∇χγ〉 . (3.59)

Similarly, the averaged balance of entropy on the interface between the phases γ
and β reads

〈

!ρs(v−vi) + J"+− ·∇χγ

〉

= −
∂

∂t
(αη̌)−∇ · (αη̌v̌s) , (3.60)

with the average surface entropy

η̌ =
〈|∇χγ|η〉

α
. (3.61)

Note on fluctuation velocities

The velocities that arise due to motion of the interfaces or due to turbulence are,
in general, not equal to their average values (cf. Drew & Passman, 1999). To
account for these effects, the fluctuation velocity, i.e. the microscopic variation of
the velocity field, is usually defined as the difference between the complete field
and the appropriate averaged field:

v′
γ = v − v̂γ . (3.62)

With this definition, several new terms appear after the averaging procedure, such
as Reynolds’ stresses, fluctuation (Reynolds) energy flux or fluctuation (Reynolds)
entropy flux, which all need a real constitutive model. For example, Drew (1983)
suggests a constitutive equation for the Reynolds’ stresses (assuming bubbly air-
water flow) that is specified by three material parameters. Nevertheless, since we
expect the role of turbulent dynamical effects to be negligible and also for lack of
knowledge of the appropriate material parameters, we neglect these fluctuation
effects in the above averaged balance laws.

In the following text, we do not further use the tildes, hats, checks and overbars
to distinguish between true and averaged values, since from now on we only
consider the averaged variables.
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3.3 Two-phase equations for water-ice mixture

In the previous section, we have rederived the multi-phase flow equations. Now,
we will use this general model in our particular application, that is the mixture
of water ice and liquid water. To identify, how many and which balances will be
needed, let us define the following structure of multi-phase models (cf. Hutter ,
1993):

• Class I models can be used to describe the diffusive motion of minority
phases (contaminants or impurities) in some majority phase. The assump-
tion of equal temperatures is in this case quite reasonable. Similarly, the
linear momenta of minority phases can be joint with that of the majori-
ty phase. Therefore, the mass balances of all phases are considered, but
momentum, energy and entropy balances are only formulated for the multi-
phase material as a whole. Model example from this class is the salinity
evolution in water.

• Class II models are used to describe the dynamics of such system, where
the particular phases are present in comparable volumes and their velocities
are sufficiently distinct from each other. The interaction forces between the
phases are important and enable the phase separation. Accordingly, the
balance laws of mass and momentum are formulated for all the phases.
On the other hand, a single temperature suffices for all phases and only one
energy balance and one entropy balance is formulated for the whole system.
Model example from this class can be found in soil mechanics (interaction
of soil with water).

• Class III models are constructed to describe the system where all balance
laws (of mass, momentum, energy, and entropy) have to be used for every
phase. The creep deformation of cold firn under the influence of percolating
surface meltwater can be considered a model example for this class.

For our application - the production and transport of liquid water within the ice
shell - we consider the Class II model, since the molten water mass and velocity
cannot be neglected w.r.t. the ice flow, but the temperature of the partially
molten material (i.e. the melting temperature) can be considered the same for
the whole mixture. Thus, we need to write down the balances of mass and
linear momentum for each phase, but only one balance of energy and one entropy
balance for the whole system.

We are interested in the behavior of partially molten ice without any addition-
al impurities. Our multi-phase material is thus composed of only two phases - the
matrix (ice) and the fluid (water). All the partial quantities will be subscripted
by ‘m’ and ‘f’, denoting the matrix and fluid phase, respectively. The associated
volume fractions φm and φf are related by the condition

φm + φf = 1 , (3.63)

that expresses the non-existence of any voids in the material (well justified for
the typically high-pressure conditions within planetary interiors) and allows to
keep just one volume fraction, say φf , as independent. We thus write

φ = φf , 1−φ = φm . (3.64)
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In the following, φ is referred to as porosity. We will implicitly assume that

0 < φ < 1 , (3.65)

i.e. both phases are always present (although one of them possibly in negligible
concentration). The presented model cannot be straightforwardly applied in the
limit cases of pure substances (for φ=0,1), because several assumptions of the
model then become violated (especially the equilibrium temperature condition).
The model is thus assumed to hold only until one of the limit cases (φ=0, 1)
is reached. We will write all the mixture balances first and then list all the
appropriate constitutive equations.

Balances of mass

We consider separate balances of mass (eq. 3.32) for both components, which, un-
der the assumption of constant material densities ρm, ρf (both phases are assumed
to be incompressible) read as follows:

∂φ

∂t
+∇ · (φvf) =

rif
ρf

, (3.66a)

−
∂φ

∂t
+∇ · ((1−φ)vm) =

rim
ρm

. (3.66b)

However, the interfacial mass production rates rif and rim are not independent,
but they are related through the interface jump condition (eq. 3.35), which (con-
sidering ∇χf = −∇χm) leads to

∑

γ=f,m

riγ =
∑

γ=f,m

〈ρiγ(vi
γ−vi) ·∇χγ〉 =

〈

!ρ(v−vi)"+− ·∇χγ

〉

= 0 . (3.67)

This allows us to keep only one mass production term - we choose the melt
production rate and write

rif = −rim = rf . (3.68)

Moreover, in what follows, it will prove helpful to use the relative velocity between
the phases

vr = vf − vm (3.69)

in the first equation. Finally, the mass balances read:

∂φ

∂t
+∇ · (φ(vr+vm)) =

rf
ρf

, (3.70a)

−
∂φ

∂t
+∇ · ((1−φ)vm) = −

rf
ρm

. (3.70b)

46



Balances of linear momentum (equations of motion)

Here, again, we consider separate balance laws (eq. 3.36) for both phases:

ρf

(

∂(φvf)

∂t
+∇ · (φvf ⊗ vf)

)

= −φ∇Pf +∇ · (φσf) + rfv
i
f

+ (P i
f−Pf)∇φ+ φρfbf +Mi

f ,
(3.71a)

ρm

(

∂((1−φ)vm)

∂t
+∇ · ((1−φ)vm ⊗ vm)

)

= −(1−φ)∇Pm +∇ · ((1−φ)σm)

− rfv
i
m − (P i

m−Pm)∇φ

+ (1−φ)ρmbm +Mi
m , (3.71b)

Following Bercovici & Ricard (2003) we assume that the interfacial velocities as
well as the interfacial pressures of both phases are equal4 and write

vω = vi
f = vi

m = ωvf + (1−ω)vm , (3.72)

Pω = P i
f = P i

m = (1−ω)Pf + ωPm , (3.73)

where the partitioning parameter ω is specified later in eq. (3.116). In our appli-
cation, the only body force considered is gravity g and so

bf = bm = g . (3.74)

Finally, the interaction forces between the phases, Mi
f,m, are not independent,

but are again related through the interface jump condition (eq. 3.43). The sum
over both phases of the interfacial terms on the right-hand side of eq. (3.36) can
be written as:
∑

γ=f,m

〈(ρiγvi
γ ⊗ (vi

γ−vi)− τ i
γ) ·∇χγ〉 =

∑

γ=f,m

riγv
i
γ + P i

γ∇φγ +M i
γ = M i

f +M i
m ,

(3.75)
where the last equality is due to eqs (3.64), (3.68), (3.72), and (3.73). The same
expression can be rewritten using the jump condition (3.43) as:
∑

γ=f,m

〈(ρiγvi
γ ⊗ (vi

γ−vi)− τ i
γ) ·∇χγ〉 =

〈

!ρv ⊗ (v−vi)− τ "+− ·∇χγ

〉

= ∇(ασ) .

(3.76)
Combining eqs (3.75) and (3.76), we can finally write

M i
f +M i

m = ∇(σα) . (3.77)

To satisfy this condition, we follow the approach of Bercovici & Ricard (2003)
and write the interaction forces as

M i
f = −cvr + ω∇(σα) , (3.78a)

M i
m = cvr + (1−ω)∇(σα) , (3.78b)

4In Drew (1971), the difference between the interfacial pressures is assumed to be in principle
non-zero, and in the presence of surface tension it is assumed to be P i

f−P i
m∼σκ, with κ the mean

curvature of the interface. In the approach of Bercovici et al. (2001) and Bercovici & Ricard
(2003), which we adopt here, the surface tension does not appear in the difference between the
interfacial pressures, but it is contained in the interaction terms Mi

f , M
i
m.
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with c the drag coefficient (specified later in eq. 3.117). Note that we do not
include the terms ±Pω∇φ that are present in the expressions for the interaction
forces in Bercovici & Ricard (2003), since these are already present (in the form
perfectly consistent with these authors) in eqs (3.71), merely as a result of the
averaging procedure.

In the following, it will show useful to define the pressure difference between
the phases

∆P = Pm − Pf (3.79)

and the excess water pressure with respect to the hydrostatic equilibrium of pure
ice

Π = Pf − P ref
m , (3.80)

where the hydrostatic equilibrium condition reads

0 = −∇P ref
m + ρmg . (3.81)

With the above definitions and taking into account the balances of mass (3.70),
the equations of motion for the two phases can finally be written as

φρf
Dfvf

Dt
= −φ∇Π− φ∆ρg +∇ · (φσf)

− (1−ω)vrrf + ω (∆P∇φ+∇(σα))− cvr , (3.82a)

(1−φ)ρm
Dmvm

Dt
= −(1−φ)(∇Π+∇∆P ) +∇ · ((1−φ)σm)

− ωvrrf + (1−ω) (∆P∇φ+∇(σα)) + cvr , (3.82b)

with the two new convective time derivatives

Df•
Dt

=
∂•
∂t

+ vf ·∇• ,
Dm•
Dt

=
∂•
∂t

+ vm ·∇• , (3.83)

and the density difference
∆ρ = ρm − ρf . (3.84)

Balance of energy

Only a single energy balance for the mixture as a whole is considered, correspond-
ing to the assumption that during the investigated process both phases have the
same temperature, equal to the equilibrium phase change temperature. Using
eq. (3.45) and summing it for both phases we can write

∂

∂t

(

φρf

(

εf+
1

2
|vf |2

)

+ (1−φ)ρm

(

εm+
1

2
|vm|2

))

+ ∇ ·
(

φρf

(

εf+
1

2
|vf |2

)

vf + (1−φ)ρm

(

εm+
1

2
|vm|2

)

vm

)

= −∇ (φPfvf + (1−φ)Pmvm) +∇ · (φσf · vf + (1−φ)σm · vm)

− ∇ · (φqf + (1−φ)qm) + φρfvf · g + (1−φ)ρmvm · g + φQf + (1−φ)Qm

+ (Ei
f−Ei

m)rf +W i
f +W i

m +Qi
f +Qi

m . (3.85)
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The interfacial source terms on the last line can be rewritten using the interfacial
jump condition (eq. 3.52) as:

(Ei
f−Ei

m)rf +W i
f +W i

m +Qi
f +Qi

m

=
∑

γ=f,m

〈(ρiγ(εifγ+
1

2
|vi

γ|2)(vi
γ−vi)− τ i

γ · vi
γ + qi

γ) ·∇χγ〉

=

〈

!ρ(ε+
1

2
|v|2))(v−vi)− τ · v + q"+− ·∇χγ

〉

= −
∂

∂t
(αξ)−∇ · (αξvω) +∇ · (ασvω) , (3.86)

where we renamed the interfacial velocity vs to vω (since these are the same
quantities). Considering also that the heat fluxes and heat sources are the same
in both phases, i.e. qf=qm=q and Qf=Qm=Q, respectively, we can write the
energy balance as follows:

∂

∂t

(

φρf

(

εf+
1

2
|vf |2

)

+ (1−φ)ρm

(

εm+
1

2
|vm|2

)

+ αξ

)

+ ∇ ·
(

φρf

(

εf+
1

2
|vf |2

)

vf + (1−φ)ρm

(

εm+
1

2
|vm|2

)

vm + αξvω

)

= −∇ (φPfvf + (1−φ)Pmvm) +∇ · (φσf · vf + (1−φ)σm · vm + ασvω)

− ∇ · q + φρfvf · g + (1−φ)ρmvm · g +Q . (3.87)

This equation represents a minor generalization of the energy balance from Šrámek
et al. (2007), the generalization being in the inclusion of kinetic energies 1

2ρf |vf |2,
1
2ρm|vm|2 on the left-hand side of eq. (3.87). This is motivated by our attempt
for maximum possible generality of the initial model and our intention to per-
form all simplifications of the model on the grounds of scale analysis. Apart from
the classical internal and kinetic energy terms εf+

1
2 |vf |2, εm+1

2 |vm|2, the balance
(3.87) contains also a contribution from the surface energy density ξ, which is
assumed to be advected by an interfacial velocity vω given by eq. (3.72). A cor-
responding mechanical power exerted by the surface forces also appears in the
balance represented by the term ∇ · (σαvω).

The energy equation (3.87), when combined with the balances of mass (3.70)
and linear momentum (3.82), allows to express only the internal energy balance:

φρf
Dfεf
Dt

+ (1−φ)ρm
Dmεm
Dt

− T
Dω

Dt

(

α
dσ

dT

)

− αT
dσ

dT
∇ · vω

= Q−∇ · q+ c|vr|2 + φσf : ∇vf + (1−φ)σm : ∇vm

−
(

∆P+σ
dα

dφ

)

Dωφ

Dt
+ rf

(

∆p+∆ε+
1−2ω

2
|vr|2

)

. (3.88)

Here we introduced new convective time derivative

Dω•
Dt

=
∂•
∂t

+ vω ·∇• , (3.89)

the internal energy difference

∆ε = εm − εf , (3.90)
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the pressure over density difference

∆p =
Pm

ρm
−

Pf

ρf
, (3.91)

and we also employed a thermodynamic relation derived in Bercovici et al. (2001)

ξ = σ − T
dσ

dT
, (3.92)

with T the temperature.

Balance of entropy

Summing again the balance of entropy (eq. 3.55) for both phases, we write:

∂

∂t
(φρfsf + (1−φ)ρmsm) +∇ · (φρfsfvf + (1−φ)ρmsmvm)

= −∇ · (φJ f + (1−φ)Jm) + φSf + (1−φ)Sm + S i
f + S i

m . (3.93)

As with the other balances, the interfacial entropy sources S i
f,m are not indepen-

dent, but are related through the jump condition across the interface (eq. 3.60).
The sum of the interfacial entropy sources gives:

S i
f + S i

m =
∑

γ=f,m

〈(ρiγsiγ(vi
γ−vi) + J i

γ) ·∇χγ〉 =
〈

!ρs(v−vi) + J"+− ·∇χγ

〉

=
∂

∂t
(α

dσ

dT
) +∇ · (α

dσ

dT
vω) , (3.94)

where we used the expression for the interfacial entropy density from Bercovici
et al. (2001)

η = −
dσ

dT
. (3.95)

Assuming further that the entropy fluxes and entropy sources are the same in
both phases, i.e. J f=Jm=J and Sf=Sm=S, respectively, and using the balances
of mass (3.70), the entropy balance reads

φρf
Dfsf
Dt

+(1−φ)ρm
Dmsm
Dt

−
Dω

Dt

(

α
dσ

dT

)

−α
dσ

dT
∇·vω = −∇·J+S+rf∆s , (3.96)

with
∆s = sm − sf (3.97)

the entropy difference.

Constitutive model

Material properties in terms of closure (constitutive) equations must be supple-
mented to allow the solution of the system of balance equations. By the incom-
pressibility constraint, both material densities ρf , ρm are constants (specified in
Table 3.1). The specific internal energies εf , εm are assumed to be solely functions
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of temperature, with the corresponding specific heats5 cf , cm (in general functions
of T , e.g. Lide, 2004):

εf = εf(T ) ,
dεf
dT

= cf(T ) , (3.98a)

εm = εm(T ) ,
dεm
dT

= cm(T ) . (3.98b)

The energy balance (eq. 3.88) can now be written as

φρfcf
DfT

Dt
+ (1−φ)ρmcm

DmT

Dt
− T

Dω

Dt

(

α
dσ

dT

)

− αT
dσ

dT
∇ · vω

= Q−∇ · q+ c|vr|2 + φσf : ∇vf + (1−φ)σm : ∇vm

−
(

∆P+σ
dα

dφ

)

Dωφ

Dt
+ rf

(

∆p+∆ε+
1−2ω

2
|vr|2

)

. (3.99)

Similarly, the entropy balance (eq. 3.96) can be multiplied by T and, bearing in
mind that (for incompressible material) T Ds

Dt=cDT
Dt (Gibbs relation, cf. Martinec,

2011), rewritten as:

φρfcf
DfT

Dt
+ (1−φ)ρmcm

DmT

Dt
− T

Dω

Dt

(

α
dσ

dT

)

− αT
dσ

dT
∇ · vω

= −∇ · (TJ) + J ·∇T + TS + rfT∆s . (3.100)

Comparing these two balances, we obtain

J =
1

T
q (3.101)

and

TS = Q−
1

T
q ·∇T + c|vr|2 + φσf : ∇vf + (1−φ)σm : ∇vm

−
(

∆P+σ
dα

dφ

)

Dωφ

Dt
+ rf

(

∆p+∆ε−T∆s+
1−2ω

2
|vr|2

)

. (3.102)

The last equation shows that apart from the classical entropy sources (related
to heat production, heat diffusion and dissipation, cf. the terms on the first
line), there are two additional entropy sources related to the dynamic pressure
difference and to the melting rate. Following the approach of Šrámek et al. (2007),
we reorganize eq. (3.102) as follows

TS = Q−
1

T
q ·∇T + c|vr|2 + φσf : ∇vf + (1−φ)σm : ∇vm

−
(

∆P+σ
dα

dφ

)(

Dωφ

Dt
−

ρω
ρfρm

rf

)

+ rf

(

∆p+∆ε−T∆s+
1−2ω

2
|vr|2−

ρω
ρfρm

(

∆P+σ
dα

dφ

))

, (3.103)

5We do not need to distinguish between specific heats at constant volume and constant
pressure due to the incompressibility assumption on both phases.
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with
ρω = (1−ω)ρf + ωρm (3.104)

the effective interface density. The rate of entropy production is now written
as a (generalized) product of thermodynamic affinities and fluxes. Concerning
the two new terms, the dynamic pressure difference ∆P+σ dα

dφ and the melting
rate rf are chosen as thermodynamic fluxes and the corresponding expressions
in parenthesis as thermodynamic affinities. Following the standard procedure
of Classical (Linear) Irreversible Thermodynamics (de Groot & Mazur , 1984), a
coupled linear relationship between these two fluxes and affinities is assumed:

(

−∆P−σ dα
dφ

rf

)

=

(

L11 L12

L21 L22

)

( Dωφ
Dt −

ρω
ρfρm

rf

∆p+∆ε−T∆s+1−2ω
2 |vr|2− ρω

ρfρm

(

∆P+σ dα
dφ

)

.

)

(3.105)
Considering that the two fluxes decouple (L12=L21=0, cf. Šrámek et al., 2007, for
more discussion) and using the expression for L11 from Bercovici et al. (2001)

L11 = µ0
µf+µm

φ(1−φ)
=

µf+µm

φ(1−φ)
, (3.106)

with µ0∼O(1) a dimensionless constant (which we will omit in the following), we
write for the dynamic pressure difference

(

∆P+σ
dα

dφ

)

= −
µf+µm

φ(1−φ)

(

Dωφ

Dt
−

ρω
ρfρm

rf

)

= −
µf+µm

φ(1−φ)
((1−ω)(1−φ)∇ · vm − ωφ∇ · vf) (3.107)

and for the melting rate

rf = L22

(

∆p+∆ε−T∆s+
1−2ω

2
|vr|2−

ρω
ρfρm

(

∆P+σ
dα

dφ

))

. (3.108)

The parameter L22 may be rather difficult to evaluate (or measure), which can be
overcome by assuming near-thermodynamic-equilibrium conditions. This corre-
sponds to an assumption of very fast kinetics of the melting process with respect
to the thermodynamic forces that cause it, that is to assuming |L22|→∞. In that
case, in order to maintain a finite melt production rate, the following equilibrium
condition must hold

∆p +∆ε+ L+
1−2ω

2
|vr|2 −

ρω
ρfρm

(

∆P+σ
dα

dφ

)

= 0 , (3.109)

with L=−T∆s the latent heat of the phase change, assumed to be, in gener-
al, a function of temperature T . Equation (3.109) is nothing but a generalized
Clapeyron relation that implicitly defines the equilibrium melting temperature T .
As we will see, in that case the energy balance (3.99) ceases to be an evolution
equation for temperature T , which is no longer independent, but defines the melt
production rate rf .

The temperature dependence of surface tension σ is postulated as in Straub
(1994) in the form of the Guggenheim-Katayama relation

σ = σ0

(

1−
T

Tc

)β

, (3.110)
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with σ0, β, and Tc constants. For the heat flux, we prescribe the simple Fourier
law

q = −kT(φ)∇T , (3.111)

where kT(φ) is the porosity-dependent heat conductivity (e.g. McKenzie, 1984):

kT(φ) = kT
m

(

1− φ
kT
m−kT

f
2kTm+kT

f

3

)

, (3.112)

with kT
m and kT

f the heat conductivities of (pure) matrix and (pure) fluid, respec-
tively. Employing (3.107), (3.109) and (3.111), the energy balance (3.99) can be
rewritten as:

φρfcf
DfT

Dt
+ (1−φ)ρmcm

DmT

Dt
− T

Dω

Dt

(

α
dσ

dT

)

− αT
dσ

dT
∇ · vω + Lrf

= Q +∇ · (kT(φ)∇T ) + c|vr|2 + φσf : ∇vf + (1−φ)σm : ∇vm

+
µf+µm

φ(1−φ)
((1−ω)(1−φ)∇ · vm − ωφ∇ · vf)

2 . (3.113)

Concerning the constitutive relations for stresses, i.e. the rheology of the
material, we assume that both phases behave on the relevant time scales as viscous
fluids and that their deviatoric parts of the Cauchy stress tensors can be related
to the deviatoric parts of the strain-rate tensors via a stress–strain-rate relation
of the form

σf = µf

(

∇vf + (∇vf)
T −

2

3
(∇ · vf)I

)

, (3.114a)

σm = µm

(

∇vm + (∇vm)
T −

2

3
(∇ · vm)I

)

. (3.114b)

The viscosities µf , µm are here, in principle, functions of temperature, porosi-
ty, deformation, etc. It is, however, reasonable to assume that water viscosity
remains constant in the process - its variations are almost entirely governed by
temperature (Lide, 2004) which in our application changes only due to relative-
ly weak pressure dependence of the melting point. Ice, on the other hand, is
known to have a highly nonlinear rheology, which is discussed in more detail in
Section 1.6.

The dependence of the average surface density α on porosity φ is taken from
Bercovici et al. (2001) as

α = α0φ
a(1−φ)b , (3.115)

where α0∼ 1
d and a, b are constants (both ≤1). For the surface partitioning

parameter ω, Bercovici & Ricard (2003) provide a sophisticated guess

ω =
φµf

φµf + (1−φ)µm
, (3.116)

which we apply here as well. For the drag coefficient c, the probably most general
form, consistent also with most others, is given in Bercovici et al. (2001) in the
form

c =
µmµfφ2(1−φ)2

µfk(1−φ)φ2 + µmk(φ)(1−φ)2
, (3.117)

where k(·) is the porosity-dependent permeability, discussed in more detail in
Section 2.2.
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3.4 Scale analysis

The objective of this section is to introduce the physical scales and parameters
appropriate for the problem of water transport through the outer shells of icy
satellites, such as Europa, Enceladus, etc. Evaluation of these scales will allow
certain reduction of the model - the terms insignificant from the perspective of
scaling will be dropped and only the relevant physical processes will be kept in
the description.

3.4.1 Scales

Each field quantity ϕ is assumed to possess certain characteristic scale denoted
[ϕ] and a dimensionless counterpart ϕ̃, defined by ϕ = [ϕ]ϕ̃. We start by defining
the following ‘primitive’ scales:

φ = [φ]φ̃ r = [r]̃r µm = [µm]µ̃m = µref
m µ̃m

σ = [σ]σ̃ = σ0σ̃ L = [L]L̃ T = [T ]T̃ = T0T̃

cm = [cm]c̃m cf = [cf ]c̃f kT = [kT]k̃T = kT
mk̃

T .

(3.118)

Using these scales and representative material parameters (listed in Table 3.1),
the following secondary, or derived scales can be defined:

∇ = 1
[r]∇̃ vm = [vm]ṽm = kTm

[r]ρm[cm] ṽm

∆P = [∆P ]∆̃P = [µm][vm]
[φ][r] ∆̃P vr = [vr]ṽr =

k0|∆ρ||g|
µf

[φ]n−1ṽr

Π = [Π]Π̃ = |∆ρ||g|[r][φ]Π̃ vf = [vf ]ṽf = [vr]ṽf

t = [t]t̃ = [r]µf

k0|∆ρ||g|[φ]n−1 t̃ q = [q]q̃ = kT
m

T0

[r] q̃

rf = [rf ]r̃f =
ρmk0|∆ρ||g|

[r]µf
[φ]nr̃f Q = [Q]Q̃ = ρmk0|∆ρ||g|L

[r]µf
[φ]nQ̃

c = [c]c̃ = µf [φ]
2−n

k0
c̃ ω = [ω]ω̃ = [φ] µf

[µm] ω̃

α = [α]α̃ = α0[φ]aα̃ ξ = [ξ]ξ̃ = σ0ξ̃

∆ε = [∆ε]∆̃ε = L∆̃ε .

(3.119)

Let us comment briefly on the above choices of scales. It is difficult to justify
them a priori, without having any knowledge about the process itself (i.e. about
the solution). The choice of scales already reflects certain particular regime of
the studied physical system which, in principle, can only be justified either by
inferring the scales directly by measurement on the real system, or by investigat-
ing the solution (e.g. numerical) of the full non-approximated problem. When
neither of these is available as in our case, we may at least attempt to comment
on the implicit physical assumptions to which our choice of scales corresponds.
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• The gradient operator is scaled by 1
[r] , corresponding to an assumption of

the spatial-variation scale being of the order of the domain dimension (due
to our choice of [r] in Table 3.1). This assumption may not be satisfied
e.g. for porosity φ and the porosity-dependent quantities in the case of
formation of localized porosity waves. As no universally valid scale for the
gradient is in fact available, our choice is just the simplest one. We can
thus not rely on having dimensionless gradients of dimensionless quantities
of the order of unity and a special attention must be paid whenever gradient
terms are considered (and possibly omitted as a result of the formal scale
analysis).

• Concerning the scale [vm] for ice velocity, our choice is typical for a system
in a convective regime. We assume that the matrix velocities correspond to
a (background) thermal convection process - the scale [vm] then comes from
equilibration of the convective and diffusive term in the energy balance, i.e.
by setting ρm[cm][vm][∇T ] = [∇]kT

m[∇T ].

• Since we will be interested preferably in the situation when the effects of
surface tension are negligible, the scale for the pressure difference [∆P ] is ob-
tained by setting it equal to the scale of the right-hand side in eq. (3.107), as-
suming in addition µf.[µm] (relevant for water-ice mixture, cf. Table 3.1),
in which case ω∼0, cf. eq. (3.116).

• Scales for the ‘percolation’ velocity [vr] and the excess water pressure [Π]
can be inferred from the equations of motion (3.82) in the stationary lim-
it (neglecting the effect of inertial forces on the left-hand sides), near a
thermodynamic equilibrium (i.e. for melt production rf=0), when also the
contribution of stresses σf , σm is neglected, and again in the limit regime
µf.[µm], that is for ω∼0 and [c]=µf [φ]

2−n

k0
(cf. eq. 3.117). Equation (3.82a)

then yields cvr=−φ∇Π−φ∆ρg and by summing eqs (3.82a) and (3.82b)
under the same assumptions (and neglecting surface tension, σ∼0), one ob-
tains ∇Π=−∇((1−φ)∆P )−φ∆ρg. From here, we can see that the gradient
of the excess water pressure Π is given by the combination of a hydro-
static part due to the density contrast and a dynamic part originating in
the viscous deformation of the matrix (through the term ∆P ). These two
mechanisms also control the drag cvr. We shall assume, just for the pur-
pose of scaling, that both scales for Π and vr are determined mainly by
the density difference (hydrostatic) contribution, from where we obtain the
scales as chosen above. Nevertheless, we keep in mind, that the dynamic
contribution through ∆P may possibly dominate in some situations. Let
us note that our choice of scale for [vr] matches the scaling by Spiegelman
(1993a).

• The scale for [vf ] need not be introduced, but we define it for convenience,
assuming that the percolation velocity vr is much larger than the ice-flow
velocity vm, and the scale for vf thus coincides with the scale for vr.

• The time scale [t] is determined by the water transport process, and natu-
rally defined by [t] = [r]

[vr]
.
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• The heat flux scale follows from the Fourier law (eq. 3.111) and the scales
for both [rf ] and [Q] are obtained from the requirement to have the dimen-
sionless r̃f and Q̃ of the order of unity in the dimensionless form of the
energy balance (eq. 3.113).

• The scale for the drag coefficient [c] follows from eqs (3.117) and (2.1) under
the assumption µf.[µm] and the scale for ω follows from eq. (3.116).

• The scale for the interfacial surface density [α] follows from eq. (3.115) in
the regime [φ].1, in which we will be mostly interested (corresponding to
only partially molten matrix).

• The interfacial energy density scale [ξ] is taken equal to the surface tension
scale σ0, according to eq. (3.92).

• The scale for the internal energy difference ∆ε is inferred from eq. (3.109)
assuming that the mechanical work associated with the phase change is of
secondary importance compared to the entropy-change contribution (latent
heat).

3.4.2 Dimensionless balance laws

We have introduced in total 14 independent dimensional scales and parameters
([r], T0, |∆ρ|, ρm, kT

m, kT
f , [cm], [cf ], |g|, k0, [L], α0σ0, µf , µref

m )6 and we use
4 physical units (m, kg, s, K) - it follows from the Buckingham’s Π theorem
(e.g. Hutter & Jöhnk , 2004) that there exist 14−4=10 independent dimensionless
numbers which, accompanied by the already dimensionless [φ] and the appropriate
constitutive law parameters, fully characterize the system. These are:

C = [cm]
[cf ]

K =
kTm−kT

f

2kTm+kT
f

3

L = g[r]
[L] M = [µm]

µf
P = [cm][µm]

kTm

R = |∆ρ|
ρm

S = α0σ0

[∆P ] T = [cm]T0

[L] V = [vm]
[vr]

X = k0
[r]2

(3.120)

With our choice of scales, we can write down the corresponding dimensionless
form of the governing equations. Writing all the dimensionless field variables
without tildes for better clarity, the dimensionless form reads as follows:

Balances of mass

∂φ

∂t
+∇ · (φvr) + V∇ · (φvm) =

rf
1+R

, (3.121a)

−
∂φ

∂t
+

V
[φ]

∇ · ((1−[φ]φ)vm) = −rf . (3.121b)

6We consider α0 and σ0 as one parameter, since they only appear in all equations as a prod-
uct. Also, we do not count the material parameters that appear within exponential constitutive
laws, such as ice viscosity activation parameters, etc.
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Equations of motion

A φ
Dfvf

Dt
= −[φ]φ∇Π− φez (3.122a)

+ X [φ]n−1∇ ·
(

φ

(

∇vf+(∇vf)
T−

2

3
(∇ · vf)I

))

− B(1−[ω]ω)vrrf + C [ω]ω∆P∇φ+ D [ω]ω∇(σα)− cvr ,

E (1−[φ]φ)
Dmvm

Dt
= −

1−[φ]φ

[φ]
(C∇∆P + [φ]∇Π) (3.122b)

+ C∇ ·
(

(1−[φ]φ)µm

(

∇vm+(∇vm)
T−

2

3
(∇ · vm)I

))

− B[ω]ωvrrf + (1−[ω]ω) (C∆P∇φ+ D∇(σα)) + cvr .

The dimensionless form of the dynamic pressure difference (eq. 3.107) reads

∆P + S[φ]a−1σ
dα

dφ
= −

1

φ(1−[φ]φ)

(

1

M
+µm

)

(3.123)
(

(1−[ω]ω)(1−[φ]φ)∇ · vm −
[φ][ω]

V
φω∇ · vf

)

.

Energy balance

Fφcf

(

∂T

∂t
+ vr ·∇T + Vvm ·∇T

)

+ T
1−[φ]φ

[φ]
cm

(

∂T

∂t
+ Vvm ·∇T

)

− G T

(

∂

∂t

(

α
dσ

dT

)

+ ([ω]ωvr+Vvm) ·∇
(

α
dσ

dT

))

− GαT
dσ

dT
∇ · ([ω]ωvr+Vvm) + Lrf = Q+ H ∇ ·

(

(1−K[φ]φ)∇T

)

+ I c|vr|2 + J φ∇vf :

(

∇vf+(∇vf)
T−

2

3
(∇ · vf)I

)

+ K (1−[φ]φ)µm∇vm:

(

∇vm+(∇vm)
T−

2

3
(∇ · vm)I

)

+
K ( 1

M+µm)

φ(1−[φ]φ)

(

(1−[ω]ω)(1−[φ]φ)∇ · vm −
[ω][φ]

V
ωφ∇ · vf

)2

. (3.124)

The dimensionless form of implicit melting temperature relation (eq. 3.109) reads

∆ε+ L = −I 1
1+R

(

P ref
m +R[φ]Π + [ω]CRω∆P

)

+G
(

1−[ω]ω R
1+R

)

(

σ dα
dφ

)

− 1−2[ω]ω
2 L |vr|2 . (3.125)
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Symb. Variable Value Unit Reference

αm ice thermal expansivity 1.6×10−4 1/K Lide (2004)
α0 surface area density parameter 1/d 1/m Bercovici et al. (2001)
a surface area density parameter ∈〈0, 1〉 - Bercovici et al. (2001)
b surface area density parameter ∈〈0, 1〉 - Bercovici et al. (2001)
β ice-water surf. tension exponent 0.8 - Lide (2004)
[cf ] heat capacity of water∗ 4180 J/kg/K Lide (2004)
[cm] heat capacity of ice∗ 2100 J/kg/K Lide (2004)
d average ice grain size 10−3 m Barr & Showman (2009)
|∆ρ| density difference 80 kg/m3 Lide (2004)
[φ] porosity scale 5×10−2 - -
|g| surface gravityE 1.32 m/s2 -
k0 permeability constant 10−9 m2 Golden et al. (2007)

Petrich & Eicken (2009)
kc0 permeability decrease below φc 10−5 - -
kTf water thermal conductivity∗ 0.56 W/m/K Lide (2004)
kTm ice thermal conductivity∗ 2.3 W/m/K Lide (2004)
[L] latent heat of melting of ice∗ 333×103 J/kg Lide (2004)
µf water shear viscosity∗ 1.793×10−3 Pa s Lide (2004)
µref
m reference ice shear viscosity∗ 1014 Pa s -

n permeability exponent 2 - Golden et al. (2007)
[r] ice layer thicknessE 30 km -
ρf water density∗ 1000 kg/m3 Lide (2004)
ρm ice density∗ 920 kg/m3 Lide (2004)
σ0 surf. tension of system ice-water 3×10−2 J/m2 Van Oss et al. (1992)
T0 ice melt. temp. at pressure P0 273.15 K Lide (2004)
Tc critical temperature of water 647.14 K Lide (2004)
p constant in melt. temp. −395.2×106 Pa Chizhov (1993)
q constant in melt. temp. 9 - Chizhov (1993)
P0 reference pressure 0 Pa Chizhov (1993)
γm porosity weakening exponent 45 - Tobie et al. (2003)

Table 3.1: Model parameters. Symbol ∗ denotes the value at temperature
T=273.15 K and symbol E denotes the values corresponding to the ice shell of
Europa.

In all the above equations, we introduced several auxiliary dimensionless products
which are defined as:

A = XM(1+R)
VP [φ]n−1 B = XM

VP [φ]n−1 C = VXM[φ]n−2

D = SVXM[φ]n+a−3 E = XM
P [φ]n−2 F = T

C (1+R)

G = SLVXMR[φ]n+a−3 H = T V
[φ] I = RL

J = RLX [φ]n−1 K = RLXMV2[φ]n−2 L = LXRM[φ]n−1

VP

(3.126)

3.4.3 Reduced balance laws

We now proceed in a standard manner and attempt to assess the importance of
each term in the balance equations above by evaluating all dimensionless numbers
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and their products in the setting of our particular application. The values of all
the physical parameters and of the principal scales are listed in Table 3.1. For
such choice, the dimensionless numbers and their products are as follows

C = 5.0×10−1 K = 1.0 L = 1.2×10−1 M = 5.6×1016

P = 9.1×1016 R = 8.7×10−2 S = 1.1− 1.1×102 T = 1.7

V = 1.3×10−5 X = 1.1×10−18

(3.127)

A = 2.8×10−15 B = 2.6×10−15 C = 8.0×10−7

D = 8.8×10−7 − 1.8×10−3 E = 6.8×10−19 F = 3.7

G = 9.2×10−9 − 1.8×10−5 H = 4.4×10−4 I = 1.0×10−2

J = 5.7×10−22 K = 1.1×10−13 L = 2.7×10−17

(3.128)

Now we attempt to simplify the system of equations (3.121)–(3.125) by omitting
the terms of negligible physical importance.

Balances of mass

Despite the parameter V in eq. (3.121) is of the order O(10−5) and compared to
the remaining terms apparently of the order O(1), we decide not to omit this term.
Since the scale for gradient operator was taken as [∇] = 1

[r] , the dimensionless

spatial derivatives are of the order O(1) only provided the quantity varies on the
scale [r]. This (as we will see in numerical simulations) is not satisfied for φvm,
which varies on much finer spatial scale, and its dimensionless derivative may
thus be orders of magnitude larger. The dimensionless form of mass balances is
therefore kept unchanged:

∂φ

∂t
+∇ · (φvr)+V∇ · (φvm) =

rf
1+R

, (3.129a)

−
∂φ

∂t
+

V
[φ]

∇ · ((1−[φ]φ)vm) = −rf . (3.129b)

Equations of motion

Inspecting the values of dimensionless numbers (3.127) and their products (3.128),
we can see that in the fluid momentum balance (eq. 3.122a), we can safely neglect
the inertial term on the left-hand side (by setting A =0), the viscous stresses in
the fluid phase (by setting X=0), the momentum transfer due to melting/freezing
(by setting B=0) and the joined effect of the dynamic pressure difference and
surface tension (by setting [ω]=0), and arrive at

cvr = −[φ]φ∇Π− φez . (3.130)
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We now simplify the pressure difference relation (eq. 3.123) by setting [ω]=0,
1
M=0 and [ω]

V =0, which yields

∆P = −S[φ]a−1σ
dα

dφ
−

µm

φ
∇ · vm . (3.131)

Here, the expression µm

φ can be interpreted as a porosity-dependent bulk viscosity
ζ (cf. Ricard et al., 2001). Concerning the equation of motion for the ice phase
(eq. 3.122b), we observe that we can again safely neglect the effect of inertial forces
(by setting E=0), the effect of momentum transfer due to melting/freezing (by
setting B=0) and also set [ω]=0. Employing now relation (3.131) in eq. (3.122b)
we arrive at

(1−[φ]φ)∇Π = cvr + C∇ ·
(

(1−[φ]φ)µm

(

∇vm+(∇vm)
T−

2

3
(∇ · vm)I

))

+ C∇
(

(1−[φ]φ)

[φ]

(

S[φ]a−1σ
dα

dφ
+

µm

φ
∇ · vm

))

+ D∇(σα) .

(3.132)

Energy balance

In the energy balance (eq. 3.124), we only keep the term G T ∂
∂t

(

α dσ
dT

)

from the
contribution of surface energy to the total internal energy balance (by setting
[ω]=0 and GV=0). The deformational work of both phases can also be neglected
(by setting J=0, K =0, [ω]

V =0) and we arrive at

Fφcf

(

∂T

∂t
+vr ·∇T+Vvm ·∇T

)

+ T
1−[φ]φ

[φ]
cm

(

∂T

∂t
+ Vvm ·∇T

)

− G T
∂

∂t

(

α
dσ

dT

)

+ Lrf = Q+ H ∇ ·
(

(1−K[φ]φ)∇T

)

+ I c|vr|2 .(3.133)

We have mentioned earlier that in the partially molten region, by employing an
assumption of very fast melting kinetics, we can assume an equilibrium condition
(of the type of eq. 3.109 or its dimensionless form, eq. 3.125) to hold, which
implicitly defines the melting temperature as a function of the given conditions.
According to values of dimensionless numbers (3.127) and their products (3.128),
we can neglect all the dynamic pressure effects (∼Π,∼∆P ), surface tension effect
and ‘kinetic energy’ effect (∼|vr|2) and keep just the leading-order effect of the
background (static) pressure P ref

m on the equilibrium, i.e. we set [ω]C=0, G=0,
L=0 and also IR[φ]=0 in eq. (3.125) and arrive at

∆ε+ L = −
I

1+R
P ref
m . (3.134)

Since, due to eqs (3.98), ∆ε=∆ε(T ), L=L(T ), and the equilibrium static pres-
sure P ref

m is assumed to be a known function of position r (depth typically),
eq. (3.134) is an implicit melting-temperature–depth relation. An explicit (dimen-
sional) counterpart to this relation is considered in the form (Simon & Glatzel ,
1929):

TM(Pm) = T0

(

P ref
m − P0

p
+ 1

)
1
q

, (3.135)
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where T0 denotes the melting temperature at reference pressure P0, and p, q are
the empirical constants (with values taken from Chizhov , 1993).

Role of surface tension

So far, we have kept some of the terms involving surface tension in our reduced for-
mulation. In fact, we cannot safely neglect the remaining terms involving σ in the
matrix linear momentum balance (eq. 3.132) and the energy balance (eq. 3.133)
just based on the scale analysis. Despite the magnitude of the terms is appar-
ently at most O(10−4), whether this is true again depends on the validity of the
implicit assumptions on scaling of temporal and spatial derivatives. For process-
es with short-scale temporal or spatial variations, the magnitude of these terms
would increase and their contribution may possibly become important. A proper
treatment of surface energy contribution in the momentum and energy balances
would, however, require a more detailed information about the microstructure of
the material, such as grain size distribution, interfacial geometry, etc., in order
to reliably estimate the parameters a, b,α0 in eq. (3.115). Discussion of these
microstructural details would require a substantial further effort going beyond
the scope of this work, and such information may even not be available in our
(planetary) application. Morover, in Section 5.5 we numerically investigate the
role of surface tension for several combinations of parameters a, b, and α0, and
find that it is negligible in the context of this work. We will thus systematically
omit the surface tension effects from our considerations by setting G=0, D=0.

3.4.4 Final reduced model

Here, the governing equations (3.129)–(3.133) are slightly reformulated and given
in a compact form for better clarity. Instead of the two mass balances (3.129a),
(3.129b), we use the second one and the sum of the two. Also, we substitute for
cvr from eq. (3.130) into eq. (3.132) so we can explicitly express the gradient of
the excess water pressure ∇Π. The model now reads as follows:

∂φ

∂t
−

V
[φ]

∇ · ((1−[φ]φ)vm) = rf , (3.136a)

V
[φ]

∇ · vm +∇ · (φvr) = −
R

1+R
rf , (3.136b)

cvr = −φez − [φ]φ∇Π , (3.136c)

∇Π = −φez (3.136d)

+ C∇ ·
(

(1−[φ]φ)µm

(

1

[φ]φ
(∇ · vm)I+∇vm+(∇vm)

T−
2

3
(∇ · vm)I

))

,

Fφcf

(

∂T

∂t
+vr ·∇T+Vvm ·∇T

)

+ T
1−[φ]φ

[φ]
cm

(

∂T

∂t
+Vvm ·∇T

)

+ Lrf

= Q+ H ∇ ·
(

(1−K[φ]φ)∇T

)

+ I c|vr|2 . (3.136e)

61



Zero compaction length approximation

In certain applications, the presented physical model may be reduced even more
by imposing the so-called ‘zero compaction length approximation’, which is based
on the following observation. The formula for the gradient of the excess water
pressure Π (eq. 3.136d) reveals that the parameter C and the spatial scale at
which ∇vm (or, in fact (1−[φ]φ)∇vm) changes, determine the extent to which the
deformation of the matrix affects the excess water pressure Π and via eq. (3.136c)
also the fluid flow. The classical length scale parameter - compaction length δ,
introduced e.g. by Spiegelman (1993a), can be inferred from eq. (3.136d) provid-
ed we assume µm to be a constant, take ζ = µm

φ as a constant bulk viscosity, and
neglect the term [φ]φ compared to 1 in the parenthesis. If the true scale of spatial
variations of vm is δ (instead of unity as would correspond to the introduced scale
of ∇), we can see that the second term on the right-hand side would be of the
same order (O(1)) as the first term provided δ =

√
C , in which case the dynamic

coupling between the fluid flow and matrix deformation becomes important. De-
pending on whether the model of the particular process requires to include these
coupling effects or not, we speak about the ‘non-zero C approximation’ and ‘zero
C approximation’, respectively.7

In the zero C approximation (i.e. by setting C=0), the flow law for the fluid
is rather simple as can be seen from eqs (3.136d) and (3.136c). It reads

cvr = −(1−[φ]φ)φez , (3.137)

and indicates that the fluid flow is driven solely by the buoyancy force. Since by
setting C=0 the coupling term of the highest differential order is omitted, the
mathematical character of the problem changes and the solution can be expected
to differ even qualitatively from the non-zero C case. It is indeed the case as
we will observe in numerical simulations in Section 5.6 - while in the zero C
approximation, the problem is essentially a nonlinear hyperbolic transport law for
porosity, with a tendency to produce discontinuous (shock) solutions, in the latter
case, when the coupling phenomena are present, the solutions exhibit formation of
wave trains. We will inspect the character and differences between the (numerical)
solutions of our system in both the zero C and non-zero C approximations in
simplified 1d geometry in Section 5.6. The zero C version of the final model
(3.136) is obtained simply by setting C=0 in eq. (3.136d).

7Expressing
√

C in terms of the physical parameters according to (3.126) and (3.120), does
not produce Spiegelman’s formula for δ. The reason is a different scaling of velocities - while
we are using separate scales for [vm] and [vr], respectively, Spiegelman (1993a) uses a single
velocity scale for both. Our formula for δ thus differs from Spiegelman’s by a multiplicative
factor V = [vm]

[vr]
.
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4. Numerical methods

In this chapter, we describe the numerical methods employed throughout this
thesis. Since we have used two very different approaches, the following text
is divided accordingly - we begin with our own code based on finite volume
method and written in FORTRAN90 (Section 4.1) and then continue with codes
that use a free finite element software package FEniCS (http://fenicsproject.org/,
Sections 4.2 and 4.3).

4.1 FORTRAN90 code for temperate or poly-
thermal ice simulations (1d)

The first code that was developped during this work is written in FORTRAN90
and enables to solve two kinds of problems: (i) the gravity-driven extraction of
a prescribed partially molten reservoir in a purely temperate ice layer or (ii) the
formation and subsequent evolution of a partially molten reservoir in a polyther-
mal ice layer. Since the code enables to solve the problems only in one-dimensional
setting, we start with summarizing the one-dimensional governing equations and
the appropriate boundary conditions (Section 4.1.1), then we describe the nu-
merical method used to solve this problem (Section 4.1.2) and finally we perform
several tests in order to verify the code (Section 4.1.3).

4.1.1 Governing equations and boundary conditions (1d)

Governing equations

The system of governing equations in the one-dimensional Cartesian geometry
is obtained from eqs (3.136) by considering only vertical motion and vertical
dependence of all quantities (with z the vertical coordinate oriented upwards and
ranging from 0 to 1 in the dimensionless equations system):

∂φ

∂t
+

∂

∂z

(

φ(vr+Vvm)
)

=
rf

1+R
, (4.1a)

V
[φ]

∂vm
∂z

−
∂

∂z

{

[φ]φ2C
∂

∂z

(

(1− [φ]φ)

(

1

[φ]φ
+

4

3

)

∂vm
∂z

)}

=
∂

∂z

(

φ2(1− [φ]φ)

)

−
R

1 +R
rf , (4.1b)

vr = −(1− [φ]φ)φ− [φ]φC
∂

∂z

(

(1− [φ]φ)

(

1

[φ]φ
+

4

3

)

∂vm
∂z

)

, (4.1c)
(

Fφ+ T
1− [φ]φ

[φ]

)

∂T

∂t
+ rf = −

(

Fφ(vr + Vvm) + T V
1− [φ]φ

[φ]
vm

)

∂T

∂z

+Q+ H
∂

∂z

(

(1− K [φ]φ)
∂T

∂z

)

+ I |vr|2 . (4.1d)

Here, for numerical reasons, we took eq. (3.129a) instead of eq. (3.136a) as a
transport equation for porosity (since they are equivalent). We also substituted
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for ∂Π
∂z from eq. (3.136d) to eq. (3.136c) and then for vr from eq. (3.136c) to

eq. (3.136b), thus completely eliminating the excess water pressure Π from the
system in this one-dimensional setting and reducing the number of equations
accordingly. We considered (dimensionless) c=1 (corresponding to permeability
law given by eq. 2.1 with n=2), and µm=1, L=1, cf=1, cm=1 (corresponding to
constant material parameters). Equation (4.1c) expresses the balance of the drag
force (left-hand side), the gravitational force (first term on the right-hand side)
and the force induced by mechanical coupling between the deformation of the ice
matrix and the movement of liquid water through the ice matrix (second term
on the right-hand side). The zero C approximation is obtained by setting C=0
in eqs (4.1b) and (4.1c).

Note, that in a purely temperate setting, the temperature is not independent
but is equal to (constant-in-time) melting temperature TM (eq. 3.135) and its role
is taken over by porosity φ. Equation (4.1d) then enables to compute the melting
rate rf which is controlled by heat advection (first term on the right-hand side),
volumetric heating (second term on the right-hand side), conductive heat transfer
(third term on the right-hand side) and frictional heating due to water movement
through the ice matrix (last term on the right-hand side).

If the ice is cold, i.e. T<TM, there is no interstitial water present (φ=0) and
equations (4.1a) and (4.1c) need not be solved. Due to the numerical scheme used
(cf. below), equation (4.1b) can be solved even for φ=0 and finally, eq. (4.1d)
reduces for φ=0 to standard heat equation for unknown temperature T .

Few remarks on the character of the system

Specification of the boundary conditions for multi-phase systems is a delicate
problem per se. In the cold ice case, the boundary conditions can be chosen from
the standard ones, but for the temperate ice, the choice is less obvious. Before
specifying the particular boundary conditions, we attempt to give a very simple
characterization of the studied system, which might provide us with an useful
insight. Let us first inspect the simpler of the two cases, the zero C system -
eq. (4.1c) then gives vr as an explicit function of φ. As for vm, we can neglect
melting for the moment (by setting rf=0) and integrate (4.1b) from 0 to z:

vm(z, t)− vm(0, t) =
[φ]

V

(

φ2(z, t)(1−[φ]φ(z, t))− φ2(0, t)(1−[φ]φ(0, t))
)

. (4.2)

If we now prescribe homogeneous Dirichlet boundary condition for ice velocity at
the base of the domain, vm(0, t)=0 (which will, indeed, be the case, cf. eq. 4.5)
and take φ(0, t)=0, the porosity transport would be governed by the following
nonlinear hyperbolic equation

∂φ

∂t
− 2φ(1−[φ]φ)(1−2[φ]φ)

∂φ

∂z
= 0 . (4.3)

The solution of this equation can be easily found by advection of the initial
condition φ0(z)=φ(z, 0) along the characteristic curves. Character of the porosity
advection velocity indicates already quite a complex behavior - one can expect
shock development and propagation as a result of characteristics intersection,
which can be achieved for suitably chosen initial data. We will demonstrate this
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well known (e.g. Evans , 1998) phenomenon later in numerical simulations. Note,
that in our example, the slope of the characteristics changes sign for [φ]φ0 = 0.5, in
which case the direction of wave propagation gets reversed. Since for a hyperbolic
equation the boundary condition needs to be specified only at the boundary
from which the characteristics emanate, we observe a rather complex picture -
depending on the initial condition, the emanating boundary may be either only
one (top or bottom boundary) or both or none.

In the case of non-zero C approximation, we can no longer simply integrate vm
(and thus arrive at a single transport equation for porosity φ), and we are forced
to deal with the coupled nonlinear system (4.1). It was shown that the two-
phase gravity driven transport described by these equations exhibits formation
of nonlinear wave trains (e.g. Scott & Stevenson, 1984; Scott et al., 1986; Olson
& Christensen, 1986; Spiegelman, 1993a). However, some decoupling will be, at
least for the numerical solution, necessary and will be achieved by an appropriate
choice of the numerical scheme described in Section 4.1.2.

Boundary conditions

For a polythermal ice shell (investigated in Chapter 7), we assume the following
boundary conditions for temperature:

T |z=1,t = Ts , (4.4a)

T |z=0,t = TM|z=0 , (4.4b)

where Ts denotes the surface temperature and TM|z=0 is the melting temperature
at the base of the ice shell which is considered to be the interface with the internal
ocean. If we deal with an ice shell in a purely temperate state (Chapter 5), no
boundary condition for temperature T is needed.

Concerning the mechanical boundary conditions, situation is relatively straight-
forward for the ice phase, for which we shall assume the same conditions as if
there had been no melt - for ice velocity, we assume a homogeneous Dirichlet
boundary condition at the bottom boundary:

vm|z=0,t = 0 , (4.5)

which serves to fix the bottom boundary of the ice layer. This is a legitimate
choice if we assume that no significant surface melting occurs at this boundary.
A physically more appropriate boundary condition would be a Neumann-type
condition of equality of traction forces, which would, however, require determina-
tion of the water pressure below the ice layer. At the top boundary, we consider
free surface condition, which in the one-dimensional setting and with surface
pressure set to zero reduces to:

∂vm
∂z

|z=1,t = 0 . (4.6)

Regarding the boundary conditions for porosity φ (when considering purely
temperate ice shell in Chapter 5), for the zero C approximation we inferred (under
some simplifying assumptions) a nonlinear hyperbolic character of the transport
equation and consequent requirement to specify φ at the part of the boundary
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from which the characteristics emanate. For sufficiently small initial porosities
(such that maxz∈〈0,1〉[φ]φ0(z)≤0.5), the emanating boundary is the upper bound-
ary. Expecting the downward porosity propagation also for the general non-zero
C case and since we do not consider any source of liquid water above the ice shell,
we set

φ|z=1,t = 0 . (4.7)

In the case of polythermal ice shell (Chapter 7), the top boundary is always cold
(i.e. below melting point) due to the prescribed temperature boundary condition
(eq. 4.4a) and thus we do not consider any condition for porosity.

Two typical outflux conditions are of interest at the base of the domain. The
first one is an impermeable boundary condition, for which the outflux is zero, i.e.
−φvr · ez=0, which according to eq. (4.1c) can be achieved by setting

(1−[φ]φ) = −[φ]C
∂

∂z

(

(1−[φ]φ)

(

1

[φ]φ
+

4

3

)

∂vm
∂z

)

|z=0,t , (4.8)

and for zero C approximation coincides with the zero porosity condition

φ|z=0,t = 0 . (4.9)

Alternatively, some kind of free flux condition would be favorable in situations
when the melt outflow is not constrained (e.g. when there is a melt reservoir
below the ice shell). We formulate such condition in terms of vanishing of the
dynamic (non-hydrostatic) part of the excess water pressure Π, that is assuming

(∇Π+ φez) · ez|z=0,t = 0 , (4.10)

which in the one-dimensional setting reads more explicitly as

∂

∂z

(

(1−[φ]φ)

(

1

[φ]φ
+

4

3

)

∂vm
∂z

)

|z=0,t = 0 . (4.11)

This condition corresponds to the water outflow from the domain that is me-
chanically uncoupled from the ice matrix deformation which can be seen (using
eq. 4.1c) as a condition on the outflux φvr to be given just by the zero C ap-
proximation. We shall use this boundary condition in our numerical simulations,
owing to an expected underlying water reservoir (cf. Chapter 1).

4.1.2 Description of the FORTRAN90 code

For numerical treatment, we will assume a uniform time discretization {tk}Nk=0.
The system of governing equations (4.1) is then solved using Algorithm 1. In
a purely temperate ice shell and assuming further uniform melting temperature,
eq. (4.1d) serves only to compute the melting rate rf from heating Q and dissipa-
tion due to relative motion between the two phases I |vr|2. The subproblems (ii)
and (iii) comprise the main challenges of Algorithm 1, so we now briefly describe
their numerical implementation.
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Algorithm 1 Description of the FORTRAN90 code.

Initialize temperature T 0(z)=T (z, t0) and porosity φ0(z)=φ(z, t0).
Compute the initial velocities v0m(z) = vm(z, t0) and v0r (z) = vr(z, t0) by solving
eqs (4.1b) and (4.1c), respectively.
for k=1, . . . , N do
(i) Evaluate the right-hand side (denoted rhsk−1(z)) of eq. (4.1d) using veloc-
ities vk−1

r (z), vk−1
m (z) and temperature T k−1(z) from the previous time step.

if T k−1(z)<TM(z) (and so φk−1(z)=0) then
Compute the new temperature as T k(z)=T k−1(z)+∆t [φ]T rhsk−1(z).
if T k(z)≥TM(z) then

Compute the new melting rate as rkf (z)=
T k(z)−TM(z)

∆t
T
[φ] .

Fix the temperature at the melting point: T k(z)=TM(z).
end if

else
Compute the new melting rate as rkf (z)=rhsk−1(z).
Fix the temperature at the melting point: T k(z)=TM(z).

end if
(ii) Solve the porosity advection equation (4.1a) using velocities from the
previous time step, vk−1

r (z), vk−1
m (z) and the actual melting rate, rkf (z), to

obtain porosity at the new time level, φk(z).
(iii) Compute the ice velocity at the new time level, vkm(z) from the actual
values of porosity φk(z) and melting rate rkf (z) by solving the boundary-value
problem (4.1b).
(iv) Evaluate the new relative velocity vkr (z) using eq. (4.1c).

end for

The porosity transport equation (eq. 4.1a)

Concerning the porosity transport, we prefer a numerical approach universal
enough to treat both the zero C and non-zero C case. Our strategy is based
on the requirement to capture shocks in the first step, and then attempt to
generalize the approach accordingly in the non-zero C setting. As observed in
eq. (4.3), in the zero C approximation, the porosity solution may exhibit discon-
tinuities (shocks), which implies that a use of a more advanced numerical method
is necessary. We shall view eq. (4.1a) as a hyperbolic law of the type

∂

∂t
φ(z, t) +

∂

∂z
f̃(φ(z, t), z, t) = g(z, t) , (4.12)

where
f̃(φ(z, t), z, t) = φ(z, t)(vr(z, t)+Vvm(z, t)) (4.13)

and

g(z, t) =
rf(z, t)

1+R
. (4.14)

The explicit dependence of f̃ on (z, t), resulting from the non-local dependence of
vr and vm on φ according to eqs (4.1b) and (4.1c), is very unfortunate since most
numerical schemes and corresponding theoretical convergence results typically
concern a simpler setting with f̃ of the type f̃(φ(z, t)).
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For the reconstruction of numerical fluxes, we employ the finite-volume Essen-
tially Non-Oscillatory (ENO) schemes (Shu, 1998), designed to treat the following
(homogeneous) conservation hyperbolic law:

∂

∂t
φ(z, t) +

∂

∂z
f(φ(z, t)) = 0 . (4.15)

For a uniform spatial discretization, the integration of eq. (4.15) over the whole
computational domain 〈0, 1〉 yields the volume-averaged evolution equation

dφ̄i(t)

dt
= −

1

∆z

(

f(φ(zi+ 1
2
))− f(φ(zi− 1

2
))
)

, (4.16)

where φ̄i(t) denotes the i-th cell average, i.e.

φ̄i(t) =

∫ z
i+1

2

z
i− 1

2

φ(z′, t) dz′ . (4.17)

The volume-averaged equation (4.16) is approximated by

dφ̄i(t)

dt
= −

1

∆z

(

fi+ 1
2
− fi− 1

2

)

, (4.18)

where fi± 1
2
are the numerical fluxes, in the ENO procedure given by

fi± 1
2
= h(φ−

i± 1
2

,φ+
i± 1

2

) . (4.19)

Here φ−
i± 1

2

and φ+
i± 1

2

are the ENO reconstructions from both sides of the compu-

tational point zi± 1
2
(which are not identical in the case of a shock - discontinuity)

and h(., .) is a suitably chosen flux function - we employed the Lax-Friedrichs
flux:

h(u, v) =
1

2
(f(u) + f(v)− ψ(v − u)) , (4.20)

where ψ=maxw|f ′(w)|.
Now we require a generalization of this approach for our non-homogenous

equation (4.1a) with the additional explicit (z, t)-dependence of f̃(φ(z, t), z, t) of
the form given by eq. (4.13). We choose to discretize it as

dφ̄i(t)

dt
= −

1

∆z

(

f̃i+ 1
2
− f̃i− 1

2

)

+ ḡi(t) , (4.21)

with the volume-averaged right-hand side

ḡi(t) =

∫ z
i+1

2

z
i− 1

2

g(z′, t) dz′ , (4.22)

and the numerical fluxes defined by

f̃i± 1
2
= h̃((φi± 1

2
(vr + Vvm)i± 1

2
)−, (φi± 1

2
(vr + Vvm)i± 1

2
)+) , (4.23)

where h̃ is an analogue of h (eq. 4.20) only with f̃ given by eq. (4.13) in place of f

and with ψ replaced by ψ̃=maxw|∂f̃(w,z,t)
∂w |. Despite the fact that for this extension
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we can no longer use any theoretical convergence results valid for the original
ENO schemes and thus cannot justify its performance theoretically, the extension
is consistent in the sense that it reduces to the classical ENO Lax-Friedrichs
scheme for constant velocity (vr+Vvm) and also in the case when (vr+Vvm) is an
explicit function of φ. Nevertheless, the main argument for applicability of this
flux reconstruction will be its numerical performance and the results of numerical
tests shown in the next section. In the case of the zero C approximation, an
analogous procedure is followed, except we now explicitly express vr+Vvm.

For the time discretization, two explicit (required by the ENO procedure)
schemes are used - the first-order (forward) Euler scheme and the fourth-order
Runge-Kutta scheme (e.g. Press et al., 1992). The time stepping is thus con-
strained by the Courant-Friedrichs-Lewy (CFL) stability condition which, com-
bined with relatively high spatial resolution required by the solver for matrix
velocity (described below) in order to reach sufficient accuracy, leads to rather
short time stepping. Comparison of the results between these two schemes re-
veals negligible difference, however the use of the Runge-Kutta scheme allows for
slightly larger time steps.

Equation for ice matrix velocity (eq. 4.1b)

Assuming φk(z) at some time level tk is known, vkm(z) is obtained by solving the
boundary-value problem (eq. 4.1b), accompanied by the appropriate boundary
conditions. In the zero C case, vkm can be simply integrated as in eq. (4.2). In
the non-zero C case, we reformulate the third-order nonlinear partial differential
equation for matrix velocity vm in terms of an auxiliary variable

ξk(z) = (1−[φ]φk(z))
dvkm(z)

dz
, (4.24)

for which it reduces to a second-order equation

V
(1−[φ]φk)[φ]

ξk − C
d

dz

((

φk +
4

3
[φ](φk)2

)

dξk

dz

)

+ C
d

dz

(

dφk

dz
ξk
)

=
d

dz

(

(1−[φ]φk)(φk)2
)

− rkf
R

1+R
. (4.25)

The source term rf on the right-hand side has already been computed (in step
(i) of Algorithm 1) - eq. (4.25) thus turns into a linear elliptic equation for ξk

with non-constant coefficients. In view of the definition of ξ, assuming the free
upper surface condition (4.6) and the free outflow bottom condition (4.11), the
boundary conditions for ξk read

ξk|z=1,t = 0 , (4.26)

dξk

dz

(

φk +
4

3
[φ](φk)2

)

|z=0,t = ξk
dφk

dz
|z=0,t . (4.27)

Equation (4.25) together with boundary conditions (4.26) and (4.27) is solved in
the weak sense, i.e. assuming φk∈W 1,∞(I), I=〈0, 1〉, and bounded 0<[φ]φ<1, we
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look for ξk∈X where X={ψ∈W 1,2(I);ψ(1)=0} such that
∫ 1

0

V
(1−[φ]φk)[φ]

ξkϕ dz + C
∫ 1

0

(

(φk+
4

3
[φ](φk)2)

dξk

dz
−

dφk

dz
ξk
)

dϕ

dz
dz

=

∫ 1

0

d

dz

(

(1−[φ]φk)(φk)2
)

ϕ dz −
∫ 1

0

R
1+R

rkf ϕ dz ∀ϕ ∈ X , (4.28)

where we are using the standard notationW k,p for the Sobolev spaces (e.g. Evans ,
1998). Equation (4.28) is discretized by the classical Galerkin finite element
method using an approximation of the space X by a finite-dimensional space of
piece-wise linear functions for simplicity. Finally, vkm is obtained from eq. (4.24)
by numerical integration with the use of eq. (4.5). Note, that equation (4.28) do
not diverge even for φ=0 and can thus be solved throughout the whole ice shell
not depending on whether the ice is cold or temperate.

4.1.3 Numerical tests

We perform several tests in order to verify the performance of our implementation.
As has already been noted, the main challenge is the solution of the mechanical
part of the problem (eqs 4.1a–4.1c), and thus we neglect melting in this section
(i.e. rf=0 and equation 4.1d is not solved).

Zero C approximation - shocks

We first examine the ability of our numerical implementation to capture porosity
shocks produced by nonlinear hyperbolic equations of the type (4.3). Instead
of eq. (4.3), we look for a solution of a slightly simpler equation obtained by
neglecting one of the terms (1−[φ]φ) in order to reduce the polynomial order, i.e.
we solve the following equation:

∂φ

∂t
−

∂

∂z

(

φ2(1−[φ]φ)
)

=
∂φ

∂t
− 2φ

(

1−
3

2
[φ]φ

)

∂φ

∂z
= 0 . (4.29)

If we prescribe the initial condition φ(z, 0) such that [φ]φ(z, 0)≤ 2
3 ∀z∈〈0, 1〉, all

the characteristics, given by

z = z0 − 2φ(z0, 0)

(

1−
3

2
[φ]φ(z0, 0)

)

t , (4.30)

are oriented downwards and hence we only need to specify the boundary condition
at the upper boundary. For this problem and for suitable initial condition, we can
find the corresponding (weak, cf. Evans , 1998) solution analytically. We prescribe
the initial porosity profile as

φ(z, 0) =











a z2 ≤ z ≤ 1
1−
√

1+3[φ](αz−β)

3[φ] z1 ≤ z ≤ z2
b 0 ≤ z ≤ z1

(4.31)

(Figure 4.1, panel a, red line), with

α=ka−kb
z1−z2

β=z1ka−z2kb
z1−z2

,

ka=
dz
dt (a)=−(2a−3[φ]a2) kb=

dz
dt (b)=−(2b−3[φ]b2) .

(4.32)
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Naturally, the upper boundary condition is taken as φ|z=1,t=a. The solution can
be found by advecting the initial profile along the characteristics - it remains
classical (i.e. valid point-wise) until time

ts =
z2−z1
ka−kb

, (4.33)

when the characteristics start to intersect and a discontinuity (shock) develops
at the position

zs(ts) =
z1ka−z2kb
ka−kb

. (4.34)

The initial profile is chosen such that all the characteristics emanating from the
interval 〈z1, z2〉 intersect at the same point (zs, ts). The generalized (weak) solu-
tion for t>ts is then unique and given by a discontinuous function (shock):

φ =

{

a if z>zs(t)
b if z<zs(t) .

(4.35)

The discontinuity propagates with velocity żs(t) determined by the Rankine-
Hugoniot condition (e.g. Evans , 1998) for the flux F=−φ2(1−[φ]φ):

żs =
[F (φ)]

[φ]
=

−(a2−[φ]a3) + (b2−[φ]b3)

a−b
= [φ](a2+ab+b2)− (a+b) . (4.36)

In Figure 4.1, we plot the results (in dimensional variables) of our numerical
simulation for the parameters a=2%, b=0.5%. The spatial resolution was 103 grid
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Figure 4.1: (a) The initial porosity condition (eq. 4.31, red line) and the fully
developed shock (blue line). Thin dashed lines show the characteristics comput-
ed using eq. (4.30). The analytically computed location and time of shock full
development (zs, ts) are marked. Thick black line corresponds to the evolution
of a fully developed shock. (b) Dependence of the shock velocity żs on depth
z - by Rankine-Hugoniot condition (eq. 4.36, red line) and the numerical (cell-
averaged) velocity of the point of maximal steepness (blue line). The horizontal
line indicates the analytically computed location of the shock development zs.
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points and we used the time discretization of 5×103 time levels, corresponding
roughly to a (quite strict) constraint CFL=0.1. We used the ENO flux recon-
struction of the third order (cf. Shu, 1998). Panel a of Figure 4.1 shows the initial
porosity profile (red), the corresponding characteristics (thin dashed lines), and
the numerical solution at time ts (blue line) when, according to the analytical
solution, the shock appears at depth zs (also indicated in Figure 4.1). A satisfac-
tory match is observed between the analytical and the numerical solution. Panel
b of Figure 4.1 depicts the corresponding (depth-parametrized) evolution of the
shock velocity. In blue color we track the position and the cell-averaged numer-
ical velocity of the point of maximal steepness of φ(t, z) - such point coincides
with the shock position for z<zs (t>ts). In red we plot the analytical value of the
shock velocity according to the Rankine-Hugoniot condition (eq. 4.36). We can
see that shortly after the theoretical shock development at (ts, zs), the numerical
shock velocity matches with the theoretical value. The minor delay in the time
(depth) of matching is an artifact of the applied numerical characterization of the
shock position.

Non-zero C approximation - wave trains

Here we investigate the ability of our implementation to produce wave trains in
the non-zero C setting. At first, we performed benchmarks of the accuracy of
the finite element routine for computation of vm (eq. 4.28) against the finite el-
ement solver Comsol Multiphysics (version 4.2a, www.comsol.com). These tests
provided us with estimates of the necessary spatial resolution required to reach a
sufficient computational accuracy. Now, in order to test the performance of the
whole numerical scheme, we recompute the study by Spiegelman (1993b). Some
minor modifications has to be applied, since in the cited paper the formulation
differs by neglecting systematically the terms (1−[φ]φ), taking a different per-
meability exponent n=3 in eq. (2.1) and assuming constant bulk viscosity ζ (cf.
text below eq. 3.131). We reformulated our system to match that of Spiegelman
(1993a), altered the numerical code accordingly and computed the evolution of
the initial profile given in Spiegelman (1993b):

φ(z, 0) =

{

1 z≤z0
φ1 + (1−φ1)sech

(

z−z0
λ

)

z>z0 ,
(4.37)

with z0=300δ and λ=2.5δ where δ is the compaction length (e.g. Spiegelman,
1993a), defined as

δ =

√

k(φ)
(

ζ+4
3µm

)

µf
(4.38)

and the material parameters are taken as µf=1 Pa s, µm=ζ=1019 Pa s, k0=10−9

m2, ρf=3300 kg m−3, ρm=2800 kg m−3, and φ1 is varied. Our solution (to be
compared with Figure 3 in Spiegelman, 1993b) is depicted in Figure 4.2 - we ob-
serve a satisfactory qualitative and quantitative match in terms of the shape and
the advance speed of the produced wave trains. Our simulations result in slightly
smaller amplitudes of the waves, especially for larger initial steps (smaller φ1)
which can be seen in Figure 4.3, where the leading-wave amplitudes are depict-
ed for various values of φ1 (compare with Figure 4b in Spiegelman, 1993b). We
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Figure 4.2: Superposition of the initial profiles (t=0, red lines) and the final
profiles at time t=80 (blue lines) (as in Spiegelman, 1993b). Compaction rate
(top) and porosity (bottom) for three different values of φ1: 0.2 (left), 0.5 (middle)
and 0.8 (right). All variables are dimensionless. Figures were rotated around the
y-axis a translated by 340δ and 360δ, respectively, in order to match the original
figure of Spiegelman (1993b).

believe this difference results from a rather high sensitivity of the solutions with
respect to the chosen spatial discretization. Such sensitivity is not surprising since
the accuracy and resolution of φk at the k-th time level influences strongly the
velocity solution vkm due to the presence of φk as a coefficient in the leading term
in eq. (4.25). Simultaneously, any error in vkm affects φk+1 in the next time level,
and so on. Since we are not able to provide any theoretical error estimates for our
particular numerical scheme, we confine ourselves in all the simulations to sim-
ple numerical error estimation by refining the spatial and temporal discretization
until the results converge numerically within a prescribed tolerance.
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Figure 4.3: Amplitude of the leading wave for differenet initial conditions as a
function of time. All variables are dimensionless.
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In order to further test our numerical method, we compare the propagation
velocity of porosity waves from the numerical solution with the analytically com-
puted value in a purely mechanical setting (i.e. neglecting melting as already
noted). We follow the approach of Rabinowicz et al. (2002) to derive the an-
alytical formula for porosity waves phase velocity. We start with the balance
equations (3.136) in the one-dimensional setting:

∂φ

∂t
−

V
[φ]

∂vm
∂z

= 0 , (4.39a)

V
[φ]

∂vm
∂z

+
∂Sr

∂z
= 0 , (4.39b)

Sr = −φ2 − [φ]φ2C
∂

∂z

((

1

[φ]φ
+

4

3

)

∂vm
∂z

)

, (4.39c)

where, again, we substituted for ∂Π
∂z from eq. (3.136d) to eq. (3.136c), neglected

the factor (1−[φ]φ) in eqs (4.39a) and (4.39c), multiplied eq. (3.136c) by φ and
finally introduced the separation velocity

Sr = φvr . (4.40)

Substituting now from eq. (4.39b) into eq. (4.39a) and eq. (4.39c) we arrive at

∂φ

∂t
+

∂Sr

∂z
= 0 , (4.41a)

Sr = −φ2 + αφ2 ∂

∂z

((

1

[φ]φ
+

4

3

)

∂Sr

∂z

)

, (4.41b)

where we introduced

α =
[φ]2C

V
(4.42)

for better clarity. Since we seek for solitary waves, we write the solution as

φ = F (z−ct) , (4.43)

with F the solitary wave shape function and c its phase velocity. Integration of
eq. (4.41a) gives

Sr = c(F+K) , (4.44)

withK yet unknown integration constant. Substitution of eq. (4.44) into eq. (4.41b)
leads to

α
∂

∂z

(

F ′

(

1

[φ]F
+
4

3

))

−
F+K

F 2
=

1

c
, (4.45)

where F ′ = ∂F
∂z . Taking F (0)=φmin and F ′(0)=F ′′(0)=0 (corresponding to ‘witch

hat’ waves in Rabinowicz et al., 2002), we can write the integration constant K
as:

K = −φmin −
φ2
min

c
. (4.46)

Multiplying eq. (4.45) by F ′( 1
[φ]F+

4
3) and integrating this product, we obtain

1

2
α

(

F ′

(

1

[φ]F
+
4

3

))2

−
(

4

3
+

1

c[φ]

)

ln(F )+

(

1

[φ]
+
4

3
K

)

1

F
+

K

2[φ]

1

F 2
−

4

3c
F+A = 0 ,

(4.47)
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with A a new integration constant:

A =

(

4

3
+

1

c[φ]

)

ln(φmin)−
(

1

[φ]
+
4

3
K

)

1

φmin
−

K

2[φ]φ2
min

+
4

3c
φmin . (4.48)

Rewriting eq. (4.47) at the top of the wave, where F=φmax and F ′=F ′′=0, we
get

(

4

3
−

1

c[φ]

)

ln

(

φmax

φmin

)

+

(

1

[φ]
+

4

3
K

)(

1

φmax
−

1

φmin

)

+
K

2[φ]

(

1

φ2
max

−
1

φ2
min

)

−
4

3c
(φmax − φmin) = 0 . (4.49)

Finally, substituting for K from eq. (4.46) we arrive at

cA = φmin
−ln(r)− 4

3 [φ](φmax−φmin)(r−1) + 1
2(r

2−1)
4
3 [φ]φminln(r)− (43 [φ]φmin−1)(r−1)− 1

2(r
2−1)

, (4.50)

where we introduced

r =
φmin

φmax
. (4.51)

Figure 4.4 shows the wave trains at two different times t1, t2 for the initial
condition (4.37) with z0=950δ, λ=14δ, and φ1=0.5. The maximum and minimum
values of porosity at time t2 are φmax

.
=1.68 and φmin=0.5, respectively, which leads

to the analytically computed wave velocity cA
.
=−1.54. The wave velocity obtained

numerically from our simulation from these two time instants is cN
.
=− 1.36. The

few percents difference between these two values might be due to several reasons
(the wave train is not yet fully evolved, the analytical formula neglects the factors
(1−[φ]φ), etc.), however, such agreement is similar to that reported in Rabinowicz
et al. (2002).
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Figure 4.4: (a) Porosity at the beginning of the simulation (t0, black line) and in
two time instants (t1 and t2, red and blue lines, respectively). (b) Detail of panel
(a). All variables are dimensionless.
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4.2 FEniCS code (1d or 2d) for temperate ice
simulations

The second code developped during this thesis employs an open source finite ele-
ment software package FEniCS (http://fenicsproject.org, Logg et al., 2012) which
is a powerful library allowing the use of many up-to-date numerical approaches
and algebraic solvers together with an efficient MPI-based parallelization. Be-
sides, it allows quite convenient change of dimensionality. In this section, we
describe and test the implementation of a purely temperate ice shell problem in
FEniCS - we start with the weak formulation of the problem (Section 4.2.1) and
then continue with testing of the new numerical tool (Section 4.2.2).

4.2.1 Weak formulation of the problem

The system of governing equations (3.136) is supplemented with the following
boundary conditions. Free slip condition for the ice velocity is prescribed on
bottom and side boundaries (ΓB ∪ ΓS) in the form:

vm · n = 0
(

(1−[φ]φ)µm

(

1

[φ]φ
(∇ · vm)I +∇vm + (∇vm)

T −
2

3
(∇ · vm)I

)

· n
)

t

= 0 ,

(4.52)

while at the top boundary (ΓT), free surface is considered as:

(1−[φ]φ)µm

(

1

[φ]φ
(∇ · vm)I +∇vm + (∇vm)

T −
2

3
(∇ · vm)I

)

· n = 0 . (4.53)

These two conditions are modifications of standard free slip and free surface
conditions with a new term that can be interpreted as a volume deformation
with a porosity dependent bulk viscosity (cf. text below eq. 3.131). Condition
(4.53) represents a natural boundary condition of eq. (3.136d) in the sense that
it eliminates the boundary integrals in the weak form. The modified free slip is
then formulated as in eq. (4.52) in order to keep consistency.

Concerning the water transport, free flux condition (water outflow mechan-
ically uncoupled from the matrix deformation, cf. discussion above eq. 4.10) of
the form:

∇Π · n = φ (4.54)

is prescribed at the bottom boundary (ΓB). At the top boundary (ΓT), we assume
a zero excess water pressure

Π = 0 (4.55)

and a fixed (non-zero) porosity

φ = φoff = const . (4.56)

Finally, the side boudaries (ΓS) are considered to be impermeable for water

vr · n = 0 , (4.57)
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which can be alternatively written as

∇Π · n = 0 . (4.58)

Temperature is not an independent quantity, but is everywhere equal to the
melting temperature (here considered only as a function of the vertical coordinate
z), and thus we do not need to prescribe any temperature boundary conditions.

The system of eqs (3.136) together with the boundary conditions (4.52)–
(4.58) is solved in the weak sense, i.e. we look for ζ={φ,Π, vr, vm, rf}∈X where
X=[P,W,R,M , K] is a mixed finite element space composed of

P = {ψ ∈ W 1,2(Ω);ψ|ΓT
= 0}

W = {ψ ∈ W 1,2(Ω);ψ|ΓT
= 0}

R = {χ ∈ W 1,2(Ω);χ · n|ΓS
= 0} (4.59)

M = {χ ∈ W 1,2(Ω);χ · n|ΓB∪ΓS
= 0}

K = {ψ ∈ W 1,2(Ω)} .

We use classical Galerkin finite element method (e.g. Quarteroni & Valli , 1994)
approximating the spaces P,W,K by a finite-dimensional space of piece-wise
linear functions and the spaces R,M by a finite-dimensional space of piece-wise
quadratic functions (cf. Taylor & Hood , 1973; Rhebergen et al., 2013). For time
discretization we use the θ-scheme (e.g. Quarteroni & Valli , 1994) defined as:

∂P

∂t
= Q(t) :

P k − P k−1

∆t
= θQk + (1−θ)Qk−1 , (4.60)

which together with a value θ=0.5 results in the second order semi-implicit Crank-
Nicolson scheme. The time-stepping is adaptive with the time step controlled by
the CFL criterion:

∆tk+1 =
CCFLhmin

max(|Vvk
m|, |vk

r |)
, (4.61)

where CCFL≤1 and hmin is the size of the smallest mesh element. The weak
formulation of eqs (3.136) reads:

Porosity transport equation (mass balance of ice)

∫

Ω

φkϕ dx−
∫

Ω

φk−1ϕ dx−
∫

Ω

∆t θ
V
[φ]

(1−[φ]φk)(∇ · vk
m)ϕ dx

−
∫

Ω

∆t(1−θ)
V
[φ]

(1−[φ]φk−1)(∇ · vk−1
m )ϕ dx+

∫

Ω

∆t θ V(vk
m ·∇φk)ϕ dx

+

∫

Ω

∆t(1−θ)V(vk−1
m ·∇φk−1)ϕ dx−

∫

Ω

∆tθrkf ϕ dx

−
∫

Ω

∆t(1−θ)rk−1
f ϕ dx = 0 ∀ϕ∈P (4.62)
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Equation for the water excess pressure (sum of mass balances)

(here we substituted for vr from eq. 3.136c)

∫

Ω

V
[φ]

(∇ · vm)ω dx−
∫

ΓB

[φ]φ3ω ds +

∫

Ω

[φ]φ2∇Π ·∇ω dx

−
∫

Ω

2φ∇φ · ezω dx+

∫

Ω

R
1+R

rf ω dx = 0 ∀ω∈W (4.63)

Darcy velocity (momentum balance of water)
∫

Ω

vr · ρdx+

∫

Ω

φez · ρ dx+

∫

Ω

[φ]φ∇Π · ρ dx = 0 ∀ρ∈R (4.64)

Ice velocity (momentum balance of ice)

∫

Ω

∇Π · µ dx+

∫

Ω

φez · µ dx+

∫

Ω

Cµm
1−[φ]φ

[φ]φ
(∇ · vm)(∇ · µ) dx

+

∫

Ω

Cµm(1−[φ]φ)(∇vm + (∇vm)
T −

2

3
(∇ · vm)I) : (∇µ)T dx = 0

∀µ∈M (4.65)

Energy balance

∫

Ω

Fφ

(

vr ·∇T+Vvm ·∇T

)

ξ dx+

∫

Ω

T
1−[φ]φ

[φ]
Vvm ·∇T ξ dx

+

∫

Ω

rfξ dx−
∫

Ω

Qξ dx−
∫

∂Ω

H ξ(1−K[φ]φ)∇T · nds

+

∫

Ω

H (1−K[φ]φ)∇T ·∇ξdx−
∫

Ω

I |vr|2ξ dx = 0 ∀ξ∈K (4.66)

Regularization of the parabolic equation for the porosity advection

The classical Galerkin methods (i.e. where test functions are equal to the basis
functions) show oscillations in the solutions for advection-dominated problems
(cf. Quarteroni & Valli , 1994). A similar situation can be found in the finite
difference method context when central differences are used for the discretization
of the advective operator - the standard way to proceed is then to discretize it
using the upwinding scheme that helps to stabilize the solution and eliminate the
oscilations (e.g. Ferziger & Perić, 2002). In the context of finite element method,
the Streamline-Upwind/Petrov-Galerkin (SUPG) method introduced by Brooks
& Hughes (1982) is considered as the first successful stabilization technique to
prevent oscillations in advection-dominated problems. Its main steps can be
described as: (i) introduce the artificial diffusion in a streamline direction only,
(ii) interpret this as a modification of the test function of the advection terms,
and (iii) enforce consistency, such that this modified test function is applied to
all terms of the weak form. Then, the term artificial diffusion is no longer fully
applicable, but the exact solution of the problem still satisfies the SUPG stabilized
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weak form. The porosity advection equation (4.62) is thus reformulated using the
SUPG method, i.e. instead of test function ϕ, we use

ϕ+τAVvm ·∇ϕ , (4.67)

where

τA =
τhmin

2V|vmax
m |

, (4.68)

with τ a constant to be chosen:
∫

Ω

φkϕ dx+

∫

Ω

φkτAV(vk
m ·∇ϕ) dx−

∫

Ω

φk−1ϕ dx (4.69)

−
∫

Ω

φk−1τAV(vk−1
m ·∇ϕ) dx−

∫

Ω

∆tθ
V
[φ]

(1−[φ]φk)(∇ · vk
m)ϕ dx

−
∫

Ω

∆tθ
V
[φ]

(1−[φ]φk)(∇ · vk
m)τ

AV(vk
m ·∇ϕ) dx

−
∫

Ω

∆t(1−θ)
V
[φ]

(1−[φ]φk−1)(∇ · vk−1
m )ϕ dx

−
∫

Ω

∆t(1−θ)
V
[φ]

(1−[φ]φk−1)(∇ · vk−1
m )τAV(vk−1

m ·∇ϕ) dx

+

∫

Ω

∆tθV(vk
m ·∇φk)ϕ dx+

∫

Ω

∆tθV(vk
m ·∇φk)τAV(vk

m ·∇ϕ) dx

+

∫

Ω

∆t(1−θ)V(vk−1
m ·∇φk−1)ϕ dx+

∫

Ω

∆t(1−θ)V(vk−1
m ·∇φk−1)

τAV(vk−1
m ·∇ϕ) dx−

∫

Ω

∆tθrkf ϕ dx−
∫

Ω

∆tθrkf τ
AV(vk

m ·∇ϕ) dx

−
∫

Ω

∆t(1−θ)rk−1
f ϕ dx−

∫

Ω

∆t(1−θ)rk−1
f τAV(vk−1

m ·∇ϕ) dx = 0 ∀ϕ∈P .

As with all stabilization methods that use some kind of supplementary diffusion,
the drawback of the SUPG stabilization method lies in the risk of smoothing the
details of the solution too much (and thus for example lose the volume), therefore,
a special care must be taken when choosing the parameter τ .

The nonlinear system of eqs (4.63)–(4.66) and (4.69) is solved by the Newton
iteration method, with the linear systems within each iteration solved using the
LU decomposition (e.g. Quarteroni & Valli , 1994).

4.2.2 Comparison of 1d FORTRAN90 with 1d and 2d
FEniCS

As shown earlier, the solution of the system of governing equations (3.136) re-
sults in the propagation of a wave train (for suitably chosen initial condition, cf.
Spiegelman, 1993a). To verify the performance of the above described FEniCS
code we compare its results (in 1d and 2d geometry and considering constant
ice viscosity, i.e. setting the dimensionaless µm=1) with these obtained by the
1d FORTRAN90 code described and carefully tested in the previous Section 4.1.
Since the FEniCS code is not capable to tackle with the zero porosity, we prescribe
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the following initial condition

φ(x, z, 0) =
−10(z−1)

1 + (10(z−1))4
+ φoff , (4.70)

with φoff a slight offset from zero. Note, that this initial condition only depends
on the z coordinate and represents a subsurface partially molten reservoir - by
solving the governing equations, we investigate its gravity-driven propagation
through the temperate ice layer. We are interested in the local properties of
the solution, such as the magnitude of each wave in the wave train or an actual
propagation velocity of the waves, as well as in the global properties, such as the
overall amount of liquid water within the ice shell or the time needed to transport
water from the initial subsurface reservoir down to the bottom boundary (and
thus to the underlying ocean). For the sake of simplicity, we consider constant
melting temperature and zero volumetric heating Q, however, melting is still
possible due to heat dissipated as a result of the relative motion between the
phases (the last term in eq. 4.66). The solution computed by the FORTRAN90
code on 104 cells is taken as a reference since this solver was already tested in
Section 4.1.3. For the FEniCS simulations, several mesh resolutions are used: in
1d geometry, we compute the solution on meshes consisting of 25, 50, 75, 100, 150,
200, 300, 400, 500, and 1000 elements with a constant time step ∆t=10−2 (for the
purpose of comparison), while in 2d geometry, we use meshes with 25×25, 50×50,
75×75, 100×100, 150×150, and 200×200 elements with the same time-stepping.
For numerical reasons, in 2d geometry, we use triangular elements with both, left
and right diagonals, that ensure higher symmetry of the solution. Also, based on
several numerical tests, we choose to use τ=0 corresponding to no stabilization
for the purpose of comparison in this section, since the simulations with τ=0 give
the best solutions. This is probably due to one-dimensionl nature of the problem
(conserved also in two dimensions for the special choice of the initial condition, cf.
eq. 4.70). However, for simulations where the flow pattern is more complicated,
or the choice of material parameters less favorable (cf. Chapter 6), the SUPG
stabilization method will prove useful.

Figure 4.5 shows time evolution of the water column height, defined as the
global content of water in the domain (i.e. porosity integrated throughout the
shell) computed for φoff=0.5% by the 1d FEniCS code and compared with the
FORTRAN90 code solution. We observe that the solution computed on the coars-
est mesh (25 elements) strongly differs from the reference solution, especially if
the absolute amount of water is considered. For slightly finer meshes (50, 75,
and 100 elements), the solutions still show some differences from the reference
solution when investigating the amount of water (cf. details d1 and d3), how-
ever, the time when the first porosity wave reaches the bottom boundary and
the outflow of water from the domain begins (marked by the sharp decrease in
water content at approximately 0.65 kyr) and the shape of the outflow curve are
almost undistiguishable from that of the reference solution (cf. detail d2). When
further increasing the resolution (150–1000 elements), the FEniCS solutions seem
to converge even though they do not match the FORTRAN90 solution exactly.

Figure 4.6 shows time evolution of the water column height computed by the
2d FEniCS code (the actual water content computed by the 2d code was divided
by the domain width in order to obtain its 1d equivalent that can be compared
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Figure 4.5: Time evolution of the water column height (cf. text) computed
by the FORTRAN90 code (black line) and the 1d FEniCS code (colored lines).
Numbers in parentheses give the number of cells/elements. Three details are
shown for better clarity.
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Figure 4.6: The same as in Figure 4.5 but for the 2d FEniCS code.
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the with results of the 1d code). Again, the solution computed on the coarsest
mesh (25×25 elements) differs strongly from the reference solution, moreover, al-
so the solutions computed on slightly finer meshes (50×50, 75×75, and 100×100
elements) still differ substantially from the reference solution, especially when the
absolute amount of water is investigated (details d1 and d3). Increasing further
the resolution (150×150 and 200×200 elemets) slightly improves the solution,
even though again, we do not reach an exact match with the reference FOR-
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Figure 4.7: Porosity as a function of depth in three time instants
(t∼0.16, 0.40, 0.65 kyr) computed by the FORTRAN90 code (black line) and the
1d FEniCS code (colored lines). Two details are shown for each time for better
clarity. Colors are the same as in Figure 4.5.
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TRAN90 solution. Concerning the time of the beginning of the outflow from the
domain and the shape of the outflow curve (detail d2), the solutions computed
on the meshes 50×50 elements and finer agree well with the reference solution.
Thus, when concerned with the overall evolution, meshes with the resolution 150
and 150×150 elements, respectively, and finer, are found to be acceptable.

We investigate also the spatial agreement between the solutions. Figure 4.7
shows three snapshots from time evolution of the initial profile (eq. 4.70 and black
dashed lines in left panels) computed by the FORTRAN90 code and by the 1d
FEniCS code for the same mesh resolutions as above. The entire solutions in
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Figure 4.8: The same as in Figure 4.7 but for the 2d FEniCS code. Colors are
the same as in Figure 4.6.
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left panels show that the solution computed on the coarsest mesh (25 elements)
strongly differs from the reference solution. The details added in the middle
and right column indicate that also some of the finer meshes give solutions that
still substantially differ from the reference one. However, this difference quickly
decreases with increasing mesh resolution. Figure 4.8 shows three snapshots from
time evolution of the initial profile computed by the FORTRAN90 code and by
the 2d FEniCS code1. The results are quite similar with those shown in Figure 4.7
- we observe expected improvement of the solution with the mesh refinement.

It is clear that the coarsest meshes are not adequate for our simulations,
however, it is difficult to decide which resolution is sufficient from the above
figures. That is why we computed the relative errors of all the solutions w.r.t.
the reference solution computed by the FORTRAN90 code. The time evolution of
their maxima in each time step is plotted in Figure 4.9 (panel a for the 1d FEniCS,
panel b for the 2d FEniCS). We observe that the errors of solutions computed
on meshes composed of 150 and 150×150 elements, respectively, and finer, stay
well below 5% during the whole simulation for both 1d and 2d simulations and
therefore we consider these as sufficiently fine for our simulations.
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Figure 4.9: (a) The relative errors of the 1d FEniCS solutions w.r.t. the FOR-
TRAN90 solutions. Colors are the same as in Figure 4.5. (b) The same as in
panel a, only for the 2d FEniCS code. Colors are the same as in Figure 4.6.

4.3 FEniCS code (2d) for polythermal ice sim-
ulations

Finally, we implement the problem of water generation and transport in a poly-
thermal ice shell in the impermeable limit (cf. below) by using FEniCS. Since
the problem is rather complicated, we divide the numerical method description
as follows: (i) we start with a summary of the governing equations and bound-
ary conditions (Section 4.3.1), (ii) we continue with the weak formulation and
description of the chosen time-discretization scheme (Section 4.3.2), (iii) consid-
ering a problem without melting/freezing process, i.e. assuming that only the

1Here again, for the purpose of comparison, we represent the 1d solution by the 2d solution
while considering x∼0.5, i.e. we take the solution from the center of the domain.
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initially present melt can be advected with the (convecting) ice matrix, we per-
form tests of this convection code (Section 4.3.3), and (iv) we conclude with the
description of the melting/freezing process and its implementation (Section 4.3.4).

4.3.1 Governing equations and boundary conditions

Governing equations

First of all, we modify the linear momentum balance of the ice matrix in order
to enable convective heat transfer in a polythermal ice shell. We start with a
dimensional eq. (3.71b):

ρm

(

∂((1−φ)vm)

∂t
+∇ · ((1−φ)vm ⊗ vm)

)

= −(1−φ)∇Pm +∇ · ((1−φ)σm)

− rfv
i
m − (P i

m−Pm)∇φ (4.71)

+ (1−φ)ρm(1−αm∆T )bm +Mi
m ,

in which we have already included the ice density variations due to thermal ex-
pansion with coefficient αm (i.e. we linearized the state equation with respect
to temperature deviations ∆T=T−T0 from the reference state T0, e.g. Ricard ,
2007). Using the equations (3.72)–(3.74), (3.78b), (3.79)–(3.81), and the mass
balance for matrix (eq. 3.70b) we can write

(1−φ)ρm
Dmvm

Dt
= −(1−φ)(∇Π+∇∆P ) +∇ · ((1−φ)σm)− ωvrrf

+ (1−ω) (∆P∇φ+∇(σα)) + cvr − (1−φ)ρmαm∆Tg ,

(4.72)

which differs from eq. (3.82b) by a last (buoyancy) term on the right-hand side.
Using the primary (3.118) and secondary scales (3.119), the definitions of dimen-
sionless numbers (3.120) and their products (3.126), employing the relation for
pressure difference (eq. 3.131), neglecting the same terms as in equation (3.132)
plus the effect of surface tension, and substituting for cvr from eq. (3.130) we fi-
nally arrive at the following form of a dimensionless balance of linear momentum:

∇Π = −φez + (1−[φ]φ)
A

R[φ]
∆Tez (4.73)

+ C∇ ·
(

(1−[φ]φ)µm

(

1

[φ]φ
(∇ · vm)I+∇vm+(∇vm)

T−
2

3
(∇ · vm)I

))

,

with A=αmT0 and ∆T=T−1.
As a first step towards a more complicated model, we consider the imper-

meable limit of two-phase equations by setting the ice permeability k(φ) to zero.
This approach (corresponding to that of Tobie et al., 2003) results in zero relative
velocity between the phases (vr=0) - liquid water is locked within and advected
with the ice matrix. Also, we do not compute the melting/freezing of water using
the porosity advection equation (the right-hand side is set to zero) since we treat
this process independently together with the temperature modification (cf. Algo-
rithm 3). More details on the melting/freezing process are given in Sections 4.3.2
and 4.3.4. For temperature, only single-phase balance is considered that can be
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obtained from eq. (3.136e) by setting φ=0 and rf=0 (as mentioned above, com-
putation of the melting rate will be performed by a different approach described
later in Section 4.3.4). This is motivated by the fact that temperature can only
change within a cold ice region, while in the temperate parts of the shell, it equals
the (pressure) melting point. The governing equations can finally be written as

∂φ

∂t
−

V
[φ]

∇ · ((1−[φ]φ)vm) = 0 , (4.74a)

V
[φ]

∇ · vm = −
R

1+R
rf , (4.74b)

∇Π = −φez + (1−[φ]φ)
A

R[φ]
∆Tez (4.74c)

+ C∇ ·
(

(1−[φ]φ)µm

(

1

[φ]φ
(∇ · vm)I+∇vm+(∇vm)

T−
2

3
(∇ · vm)I

))

,

∂T

∂t
+Vvm ·∇T = V∇2T +

[φ]

T
Q , (4.74d)

where we considered constant specific heat (cm=1). We note, that even though
the two phases (ice and water) are both considered incompressible, the mixture
as a whole compacts/extends when the melting/freezing occurs, i.e. when rf 1=0
(cf. eq. 4.74b).

Boundary conditions

We prescribe (as in the one-dimensional case, cf. eq. 4.4) fixed temperatures at
the top (ΓT) and bottom (ΓB) boundaries, respectively:

T = Ts , (4.75a)

T = TM|z=0 , (4.75b)

with Ts the surface temperature and TM|z=0 the melting temperature at the base
of the ice shell (underlaid by the internal ocean), and reflecting symmetry at the
side (ΓS) boundaries, i.e.

∇T · n = 0 . (4.76)

Alternatively, when benchmarking the code (Section 4.3.3, case 3), we prescribe
zero heat flux also at the bottom boundary (ΓB).

Concerning the mechanical part of the problem, several combinations of bound-
ary conditions are used. In the benchmark Section 4.3.3, either free slip is pre-
scribed at the whole boundary (∂Ω, cases 1a–c, 2a)

vm · n = 0
(

(1−[φ]φ)µm

(

1

[φ]φ
(∇ · vm)I +∇vm + (∇vm)

T −
2

3
(∇ · vm)I

)

· n
)

t

= 0 ,

(4.77)

(cf. discussion below eq. 4.53 for the unusual form of this condition) or alterna-
tively free slip is kept at the side walls (ΓS) and no slip is prescribed at the top
(ΓT) and bottom (ΓB) boundaries (case 3):

vm = 0 . (4.78)
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In both cases, the dynamical pressure is fixed in the left bottom corner

Π|x=0,z=0,t = 0 . (4.79)

In simulations with melting/freezing (Chapter 8), free slip (eq. 4.77) is pre-
scribed at the bottom (ΓB) and side (ΓS) boundaries, while free surface of the
form

(1−[φ]φ)µm

(

1

[φ]φ
(∇ · vm)I +∇vm + (∇vm)

T −
2

3
(∇ · vm)I

)

· n = 0 . (4.80)

(cf. again discussion below eq. 4.53 for the unusual form of this condition) is
prescribed at the top boundary (ΓT) together with the fixed dynamical pressure:

Π = 0 . (4.81)

Contrary to the FORTRAN90 code described earlier in Section 4.1, we cannot
solve the system of eqs (4.74) for a zero porosity. Therefore we shall assume a
small background value is permanently present, even if the ice is below the melting
temperature. This (constant) background porosity φoff is then prescribed at the
beginning of the simulation (cf. Algorithm 2) as well as fixed at the (open) top
boundary (ΓT) during the simulation:

φ = φoff . (4.82)

Since water is locked within the ice matrix and the relative velocity vr is zero, we
do not have to prescribe any boundary conditions for water in/outflow.

4.3.2 Weak formulation of the problem

The system of governing equations (4.74) together with the appropriate boundary
conditions chosen among eqs (4.75)–(4.82 is solved in the weak sense, i.e. we look
for ζ={φ,Π, vm, T}∈X where X=[P,W,M , K] is a mixed finite element space
composed of2

P = {ψ ∈ W 1,2(Ω);ψ|ΓT
= 0}

W = {ψ ∈ W 1,2(Ω);ψ|ΓT
= 0}

M = {χ ∈ W 1,2(Ω);χ · n|ΓB∪ΓS
= 0} (4.83)

K = {ψ ∈ W 1,2(Ω);ψ|ΓT∪ΓB
= 0} .

We use classical Galerkin finite element method (Quarteroni & Valli , 1994) and
approximate the spaces P,W by a finite-dimensional space of piece-wise lin-
ear functions and the spaces M , K by a finite-dimensional space of piece-wise
quadratic functions (cf. Taylor & Hood , 1973; Rhebergen et al., 2013).

In contrast to the temperate ice setting (Section 4.2), where the equations were
solved together, we use the decoupling predictor-corrector scheme (e.g. Hansen
& Ebel , 1988; van den Berg et al., 1993) with the predictor step discretized in

2We list the elements spaces for the simulations from Chapter 8. For the benchmark cases
from Section 4.3.3, the element spaces were modified accordingly to the applied boundary
conditions.
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time using a backward (implicit) Euler method and the corrector step computed
with the semi-implicit Crank-Nicolson scheme (eq. 4.60 with θ=0.5). The time-
stepping is adaptive with the time step controlled by the CFL criterion

∆tk+1 =
CCFLhmin

V|vk
m|

. (4.84)

We use the SUPG stabilization method for porosity advection (cf. Section 4.2.1).
The weak formulation of eqs 4.74 reads:

Porosity transport equation (mass balance of ice)

∫

Ω

φkϕ dx+

∫

Ω

φkτAV(vk
m ·∇ϕ) dx−

∫

Ω

φk−1ϕ dx

−
∫

Ω

φk−1τAV(vk−1
m ·∇ϕ) dx−

∫

Ω

∆tθ
V
[φ]

(1−[φ]φk)(∇ · vk
m)ϕ dx

−
∫

Ω

∆tθ
V
[φ]

(1−[φ]φk)(∇ · vk
m)τ

AV(vk
m ·∇ϕ) dx

−
∫

Ω

∆t(1−θ)
V
[φ]

(1−[φ]φk−1)(∇ · vk−1
m )ϕ dx

−
∫

Ω

∆t(1−θ)
V
[φ]

(1−[φ]φk−1)(∇ · vk−1
m )τAV(vk−1

m ·∇ϕ) dx

+

∫

Ω

∆tθV(vk
m ·∇φk)ϕ dx+

∫

Ω

∆tθV(vk
m ·∇φk)τAV(vk

m ·∇ϕ) dx

+

∫

Ω

∆t(1−θ)V(vk−1
m ·∇φk−1)ϕ dx+

∫

Ω

∆t(1−θ)V(vk−1
m ·∇φk−1)

τAV(vk−1
m ·∇ϕ) dx = 0 ∀ϕ∈P . (4.85)

Equation for the water excess pressure (sum of mass balances)

∫

Ω

V
[φ]

(∇ · vm)ω dx+

∫

Ω

R
1+R

rf ω dx = 0 ∀ω∈W . (4.86)

Ice velocity (momentum balance of ice)

∫

Ω

∇Π · µ dx+

∫

Ω

φez · µ dx+

∫

Ω

Cµm
1−[φ]φ

[φ]φ
(∇ · vm)(∇ · µ) dx

+

∫

Ω

Cµm(1−[φ]φ)(∇vm + (∇vm)
T −

2

3
(∇ · vm)I) : (∇µ)T dx

−
∫

Ω

(1−[φ]φ)
A

R[φ]
∆Tez · µ = 0 ∀µ∈M . (4.87)

Energy balance

• Predictor step: backward Euler scheme, implicit w.r.t. temperature T ,
the ice velocity and the (temperature-dependent) volumetric heating are
taken from the previous time step, vk−1

m and Qk−1=Q(T k−1), respectively.
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∫

Ω

T kξ dx−
∫

Ω

T k−1ξ dx+

∫

Ω

∆tVvk−1
m ·∇T kξ dx

+

∫

Ω

∆tV∇T k ·∇ξ dx−
∫

Ω

∆t
[φ]

T
Qk−1ξ dx = 0 ∀ξ∈K . (4.88)

• Corrector step: semi-implicit Crank-Nicolson scheme, the ‘implicit’ ice
velocity is taken from the mechanical problem predictor, vpr

m , and the (tem-
perature-dependent) volumetric heating is computed from the predicted
temperature Qpr=Q(T pr).

∫

Ω

T kξ dx−
∫

Ω

T k−1ξ dx+

∫

Ω

∆tθVvpr
m ·∇T kξ dx

+

∫

Ω

∆t(1−θ)Vvk−1
m ·∇T k−1ξ dx+

∫

Ω

∆tθV∇T k ·∇ξ dx

+

∫

Ω

∆t(1−θ)V∇T k−1 ·∇ξ dx−
∫

Ω

∆t
[φ]

T
Qprξ dx = 0 ∀ξ∈K .

The whole system is solved using Algorithm 2.

Algorithm 2 A predictor-corrector scheme for ice convection with melt-
ing/freezing.

Initialize temperature T 0=T (t0) and porosity φ0=φ(t0)=φoff .
Set the initial ice velocity v0m=vm(t0) and melting rate r0f=rf(t0) to zero.
Choose the first time-step ∆t1.
for k = 1, . . . , N do
(i) Solve the predictor (implicit) step of thermal equation (4.88) using vk−1

m

and Q(T k−1) to obtain the predicted temperature, T pr.
(ii) For µm(T pr, vpr

m ,φk−1) and rk−1
f solve the mechanical part of the problem

(eqs 4.85–4.87) to obtain the predicted values of porosity, dynamic pressure,
and ice velocity, φpr, Πpr, and vpr

m , respectively.
(iii) Solve the corrector (semi-implicit) step of thermal equation (4.89) using
vpr
m and Q(T pr) to obtain the corrected temperature, T cor.

(iv) For µm(T cor, vcor
m ,φpr) and rk−1

f solve the mechanical part of the problem
(eqs 4.85–4.87) to obtain the corrected values of porosity, dynamic pressure,
and ice velocity, φcor, Πcor=Πk, and vcor

m =vk
m, respectively.

(v) Using φcor and T cor, evaluate the melting/freezing rate rkf and modify
the porosity and temperature fields accordingly using Algorithm 3 (cf. Sec-
tion 4.3.4) to obtain φcor∗=φk and T cor∗=T k, respectively.
(vi) Compute the value of a new time-step ∆tk+1 using eq. (4.84).

end for
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4.3.3 Thermal convection benchmark

In order to test our numerical code, we perform a comparison with the convec-
tion benchmark of Blankenbach et al. (1989). Even though the benchmark is
well documented in the original paper, we give a short overview of each of the
studied cases for better clarity. In the original benchmark, several expressions
were compared - we decided to compare the (dimensionless) Nusselt number

Nu = −h

∫

ΓT
∇T · nds
∫

ΓB
Tds

(4.89)

(i.e. the mean surface temperature gradient over the mean bottom temperature)
with h the domain height and the (dimensionless) rms velocity

vrms =
1

hl

(
∫

Ω

vm · vmdx

)1/2

, (4.90)

with l the domain width. The values of all physical parameters used in this study
are summarized in Table 4.1.

Symbol Variable Value Unit

α thermal expansion coefficient 2.5×10−5 1/K
cp heat capacity 1.25×103 J/kg/K
∆T temperature contrast (cases 1 and 2) 1000 K
g gravity acceleration 10 m/s2

h height of cell 106 m
κ thermal diffusivity 10−6 m2/s
ν kinematic viscosity 2.5×1019 (1a) m2/s

2.5×1018 (1b) m2/s
2.5×1017 (1c) m2/s
1.1574×1018 (3) m2/s

ν0 kinematic viscosity at surface 2.5×1019 (2a) m2/s
Q volumetric heating rate (case 3) 5×10−9 W/m3

ρ density 4×103 kg/m3

Table 4.1: Parameters for the benchmark based on Blankenbach et al. (1989).

Case 1

In this case, the steady convection with constant viscosity in a square box (i.e.
l/h=1) is studied. Temperature is fixed at the top and bottom boundaries, zero
heat flux (reflecting symmetry) is considered on the sidewalls and zero shear
stress (free slip condition) is prescribed at the whole boundary. Results for three
different Rayleigh numbers (Ra=104, 105, 106) are investigated where the Rayleigh
number is defined as:

Ra =
αg∆Th3

κν
, (4.91)
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with α the thermal expansion coefficient, g the gravity acceleration, ∆T the tem-
perature difference across the box, κ the thermal diffusivity, and ν the (constant)
kinematic viscosity (cf. Table 4.1). All calculations were performed on the uni-
form grid consisting of 100×100 elements. The use of grid refinement in boundary
layers would probably improve our results, however, since we can not estimate the
solution structure for the simulations where melting/freezing is enabled (Chap-
ter 8), we prefer to obtain reasonably accurate solutions on a uniform grid. For
cases 1a–c and 2a, our results (values of Nusselt number and rms velocity) are
summarized in Table 4.2 together with the values from Blankenbach et al. (1989)
and the relative errors.

case Nu reference relat. error vrms reference relat. error

1a 4.888230 4.884409 0.08% 42.864781 42.864947 0.0004%
1b 10.574566 10.534095 0.38% 193.214532 193.21454 4×10−6 %
1c 22.364936 21.972465 1.79% 833.977344 833.98977 0.001%
2a 10.0791 10.0660 0.13% 479.7522 480.4334 0.14%

Table 4.2: Steady-state thermal convection results: Nusselt number and rms
velocity for four different sets of parameter values (cases 1a–2a) obtained in this
study and compared with the reference values from Blankenbach et al. (1989) for
each case. The relative errors in percents are given in the fourth and seventh
column, respectively.

Figure 4.10 shows time evolution of the Nusselt number and the rms veloc-
ity for the lowest value of Rayleigh number, Ra=104 (case 1a). Steady-state is
reached at t∼0.34 with Nu=4.888230 and vrms=42.864781. The corresponding
temperature and velocity fields are depicted in Figure 4.11 in panels a and b,
respectively. For case 1a (Ra=104), the relative error of our value of Nusselt
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Figure 4.10: Nusselt number (red line) and rms velocity (green line) for the
steady-state case 1a (Ra=104). The dashed lines show the benchmark values. All
variables are dimensionless.
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Figure 4.11: Steady-state for case 1a (Ra=104) (a) Temperature. Dashed con-
tours are spaced by 0.1, the full contour corresponds to T=0.5. (b) Velocity. All
variables are dimensionless.

number is 0.08% and the relative error of rms velocity is 0.0004% (cf. Table 4.2).
Results for higher value of Rayleigh number, Ra=105 (case 1b) are shown

in Figures 4.12 and 4.13. We reach steady-state at t∼0.18 and obtain values
of Nu=10.574566 and vrms=193.214532 with the corresponding relative errors of
0.38% and 4×10−6%, respectively (cf. Table 4.2).

Finally, Figures 4.14 and 4.15 depict the solution for the highest Rayleigh
number, Ra=106 (case 1c). Steady-state is reached at t∼0.14 and the cor-
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Figure 4.12: The same as in Figure 4.10 but for Ra=105 (case 1b).
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Figure 4.13: The same as in Figure 4.11 but for Ra=105 (case 1b).

responding values of Nusselt number and rms velocity are Nu=22.364936 and
vrms=833.977344, respectively, leading to relative errors of 1.79% and 0.001% (cf.
Table 4.2).

As can be seen from Table 4.2, we reach at least two orders of magnitude (in
terms of relative errors) better results for the rms velocity than for the Nusselt
number. This might be due to inacurate evaluation of temperature gradient on the
top boundary. With increasing Rayleigh number the agreement of our results with
the benchmark values worsens, however, for given resolution (100×100 elements),
our errors correspond to those reported by Vynnytska et al. (2013) who also use
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Figure 4.14: The same as in Figure 4.10 but for Ra=106 (case 1c).
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Figure 4.15: The same as in Figure 4.11 but for Ra=106 (case 1c).

FEniCS.

Case 2a

Steady convection with temperature-dependent viscosity in a square box (l/h=1)
is investigated in this case. The kinematic viscosity is considered as

ν = ν0exp

(

−
bT

∆T

)

, (4.92)

with ν0 the viscosity at surface and b=ln(1000). The Rayleigh number is modified
accordingly:

Ra0 =
αg∆Th3

κν0
(4.93)

and the value Ra0=104 is assumed. All boundary conditions are the same as in
case 1.

The temperature and velocity fields for this setting are depicted in Fig-
ure 4.16. We obtain value of Nusselt number Nu=10.0791 and the rms velocity
vrms=479.7522 with the corresponding relative errors 0.13% and 0.14%, respec-
tively (cf. Table 4.2). Again, we report similar results as Vynnytska et al. (2013).

Case 3

Finally, time-dependent convection with constant viscosity and internal heating
in the rectangular box (l/h=1.5) is studied. No slip is prescribed at the top and
bottom boundaries, while free slip is kept at the side walls. Temperature is fixed
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Figure 4.16: The same as in Figure 4.11 but for temperature-dependent viscosity
and Ra0=104 (case 2a).

at the top boundary and zero heat flux is considered at the remaining boundaries.
The Rayleigh number is redefined as

RaQ =
αgQh5

κ2ρcpν
, (4.94)

with Q the volumetric heating rate, ρ the density and cp the heat capacity, and
the initial condition is taken from Lennie et al. (1988):

T 0(x, z) =
1

2
(1−z2) +

1

100
cos

(

πx

l

)

sin

(

πz

h

)

. (4.95)

Periodic behavior is studied for RaQ=216 000.
Time evolution of the Nusselt number and the rms velocity computed on

a mesh consisting of 150×100 elements in a periodic (P2, cf. Blankenbach et
al., 1989) regime is shown in Figure 4.17 (panels a and b, respectively). The
period is 0.04805 and corresponds to that reported in the benchmark. Panel
c of Figure 4.17 depicts the phase diagram with the Nusselt number over the
rms velocity, illustrating again the P2 nature of the flow after the decay of the
initial transient stage. Values of subsequent minima and maxima of the Nusselt
number and the rms velocity are summarized in Table 4.3 together with the
reference values and relative errors. We report slightly better agreement with the
benchmark values than in the previous cases. Finally, temperature and velocity
fields at four time instants within the periodic stage corresponding to vrms minima
and maxima (marked in panel c of Figure 4.17) are shown in Figure 4.18.
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Figure 4.17: Time evolution of results for case 3. (a) Nusselt number. (b) Rms
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Figure 4.18: Snapshots of field variables for time-dependent convection with in-
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stage solution period Numax Numin vrms,max vrms,min

S0 this work 0.04805 7.3791 6.4690 60.3690 31.9813
reference 0.04803 7.379 6.468 60.367 31.981

relative error 0.04% 0.001% 0.015% 0.003% 0.001%
S1 this work 7.1959 6.7964 57.4300 30.3220

reference 7.196 6.796 57.43 30.32
relative error 0.001% 0.006% 0.000% 0.007%

Table 4.3: Time-dependent thermal convection results: period, Nusselt number
and rms velocity. Following Vynnytska et al. (2013), we label the minimum-
maximum pairs within each P2 cycle by S0 and S1 (S0 corresponds to the largest
local maximum and following minimum, and S1 to the next pair). The period
was computed by comparing the time at which the S0 maxima for the Nusselt
number occurred for the last two computed complete cycles. The reference values
are taken from Blankenbach et al. (1989).

4.3.4 Description of the melting/freezing process

We conclude the chapter about numerical methods used throughout this thesis
with a description of the melting/freezing process in the (convecting) ice shell
and its numerical implementation in FEniCS.

In a (tidally) heated ice shell, the melting temperature (determined only by
pressure since we do not take into account any impurities) can be reached, lead-
ing to ice melting, liquid water production and local cooling due to latent heat
absorption. If transport of water by percolation through the microscopic chan-
nels is neglected (as in our case, cf. above), all the water is locked and advected

Algorithm 3 Computation of the amount of melting/freezing.
For given T compute the difference from the melting point: ∆T=TM−T .
For given φ compute the difference from the background value: ∆φ=φoff−φ.
if T≥TM (and thus ∆T≤0 ⇒ melting) then
δT=∆T≤0 (temperature drop due to latent heat absorption)
δφ=− T

[φ]∆T≥0 (porosity increase due to melting)
end if
if (T<TM and φ>φoff) (and thus (∆T>0 and ∆φ<0) ⇒ freezing) then
if | T[φ]∆T |≤|∆φ| then
δT=∆T>0 (temperature increase due to latent heat release)
δφ=− T

[φ]∆T<0 (porosity decrease due to freezing)
else
δT=− [φ]

T ∆φ>0 (temperature increase due to latent heat release)
δφ=∆φ<0 (porosity decrease due to freezing)

end if
end if
Compute the new temperature T ∗=T+δT .
Compute the new porosity φ∗=φ+δφ.
Compute the melting rate rf=

δφ
∆t .
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within the ice. During this process it can refreeze if advected to regions with
lower than melting temperature, leading to local warming due to released latent
heat. Whether melting/freezing occurs depends on the local values of tempera-
ture and porosity. The numerical implementation of this process is decribed in
Algorithm 3 which for known values of porosity φ and temperature T returns
the corrected values φ∗ and T ∗ and the corresponding melting rate rf (cf. also
Algorithm 2).
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Part III

Parametric studies in temperate
ice shells
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5. Water transport in temperate
planetary ice shells by two-phase
flow - a 1d parametric study

In this section we perform a series of numerical experiments in order to assess
the importance of the physical parameters in the system of governing equations
(3.136)1. We focus on the effects of ice permeability, ice rheology, heating, surface
tension and the dimensionless parameter C (related to the so-called compaction
length, cf. discussion in Section 3.4.4).

The main reason to investigate these effects is that some of the assumptions
commonly used in the majority of multi-phase models, like the assumption of
constant viscosity of the constituents, is probably invalid when dealing with com-
plex materials such as ice. Expecting that the two-phase gravity driven transport
exhibits formation of nonlinear wave trains (e.g. Scott & Stevenson, 1984; Scott
et al., 1986; Olson & Christensen, 1986; Spiegelman, 1993a), large local space-
temporal variations of porosity would occur in the ice matrix. Since ice viscosity
is highly sensitive to the amount of interstitial fluids present (Duval , 1977; De
La Chapelle et al., 1999), such porosity variations would inevitably induce signif-
icant viscosity variations, the role of which we would like to estimate. Additional
interaction mechanism, often neglected in applications, is the effect of surface
tension, which cannot be ruled out a priori in our setting (cf. discussion in Sec-
tion 3.4.3). We will study the sensitivity of the water transport to its various
parameterizations.

In all experiments, we consider the same initial condition for porosity φ as in
the numerical tests in Section 4.2.2 (eq. 4.70). This form of the initial condition
does not have any particular physical significance, the analytical profile (cf. the
black line in panel a of Figure 5.1) merely mimics a possible initial meltwater
distribution with a maximum at shallow depth (cca 2.5 km). We investigate the
gravity-driven propagation of this initial subsurface meltwater reservoir through
the temperate ice layer. In the sections below, we use the reference values of
material parameters from Tables 1.1 and 3.1 if not specified otherwise.

5.1 Reference simulation

We start with a brief description of a reference solution computed for φoff=0
on which we illustrate the basic characteristics in which we will be interested
throughout this chapter. The time evolution of porosity profiles is depicted in
Figure 5.1. Apparently, porosity is transported downwards in the form of suc-
cessive waves (wave train) formed due to the coupling between the fluid motion
and the matrix deformation. Their wavelength is governed by the values of ice
viscosity µm and permeability k(φ) - the higher the value of µm and/or k(φ), the
larger the compaction length (eq. 4.38), and thus the larger the wavelength of the
waves (Rabinowicz et al., 2002). This effect will be well illustrated in Sections 5.2

1The results summarized in this chapter were published in Souček et al. (2014).
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Figure 5.1: (a) Evolution of porosity in selected time instants (colored lines)
obtained for parameters from Table 3.1. The initial porosity profile is plotted in
black. Dashed line marks the border of the subsurface region. (b) Space-time
evolution of porosity in a partially molten ice layer for the same set of parameters.

and 5.3 that investigate the role of ice permeability and ice viscosity, respectively.

The total amount of water in the ice shell (water column height, i.e. porosity
integrated throughout the domain) drops each time a wave reaches the bottom
boundary (cf. Figure 5.2, panel a). The first porosity wave that contains about
75% of the total water volume arrives at the bottom approximately 6 kyr after
the beginning of the simulation. After only 15 kyr, less than 10% of the initial
water content remains in the ice shell. As indicated in the panel b of Figure 5.2,
the maximum porosity in the subsurface region (uppermost 8 km) rapidly decays
due to the efficient downward propagation of the porosity waves. The maximum
porosity in this region drops below 1% after only ∼250 years, indicating that
for this choice of material parameters, a large volume of water is not sustainable
inside a fully temperate region.

The time needed to extract 1/e of the initial amount of water from the layer of
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Figure 5.2: (a) Time evolution of water column height (porosity integrated
throughout the domain). (b) Time evolution of maximum porosity in the subsur-
face region (top 8 km). Computed for the same set of parameters as Figure 5.1.
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thickness D can be estimated using the compaction time scale (McKenzie, 1989)
2:

tD =
Dµfφ

k(φ)∆ρg
. (5.1)

For D=30 km and porosity of the order of few tenths of percent (the average
porosity at the beginning of the simulation is ∼0.39%) this formula yields extrac-
tion times of a few kiloyears, which is in good agreement with the time of 6 kyr
obtained from Figure 5.2.

5.1.1 The role of background porosity

The propagation of water can be sensitive to the value of background porosi-
ty, which is parameterized here by the value of porosity offset φoff (eq. 4.70).
This value affects both permeability (eq. 2.1) and effective bulk viscosity (µm

φ , cf.
text below eq. 3.131). Figure 5.3 shows the porosity as a function of depth at
four different times (with time increasing from left to right) for several values of
φoff . With decreasing value of φoff the propagation velocity and the wavelength
decrease while the wave amplitudes increase, which leads to an enhanced local-
ization of porosity. Figure 5.4, that shows time evolution of water column height
above the background value (i.e.

∫

V (φ−φoff)dV ), illustrates a dependence of the
time evolution of water column height on the background porosity. Only a slight
change of φoff from 0 to 0.005% changes the travel time of the leading wave by
more than 1 kyr (this effect is larger than that induced by a change of viscosity
from 1012 to 1014 Pa s, as will be shown in Section 5.3). However, the difference
in travel times decreases with the increasing value of φoff indicating that once
some non-zero value is considered (which is necessary for numerical reasons), its

2Let us note that this definition fits the time scale used in our scaling analysis, cf. Sec-
tion 3.4.1
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Figure 5.3: Snapshots of time evolution of porosity profiles for various values of
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initial distribution of porosity (eq. 4.70 with φoff=0%).
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Figure 5.4: Time evolution of water column height above the background value
(cf. text) for various values of φoff (for legend, see Figure 5.3).

magnitude does not have a large impact on the results (especially when compared
with the effect of permeability described in the next section). These observations
are in agreement with the notion of the compaction time scale (eq. 5.1) which
due to permeability definition (eq. 2.1) depends on the absolute value of porosity
as φ1−n with n≥2, and thus decreases for larger values of φ and vice versa.

5.2 The role of permeability

In this section, we investigate the role of permeability k(φ), i.e. the ability of
a material to transmit fluids. The formula for the drag coefficient (eq. 3.117)
reveals the crucial role of permeability on the speed of propagation of the liquid
phase through the ice matrix. As mentioned earlier in Section 3.3, ice permeability
depends on several parameters. In order to illustrate the role of permeability, we
test various combinations of the permeability constant k0 and exponent n (cf.
eq. 2.1) in the following Section 5.2.1 and the effect of percolation threshold φc

is discussed later in Section 5.2.2.

5.2.1 The role of permeability constant and exponent

We vary the permeability constant k0 over two orders of magnitude (10−10–10−8

m2) and test also both end-member values of the permeability exponent (n=2
and 3). The results are depicted (for φoff=0.25%) in Figures 5.5 and 5.6 and
indicate that the wave train propagation speed is largely controlled by the value
of permeability and, for given n, depends approximately linearly on k0 (in agree-
ment with eq. 5.1). Note, that also the wavelength of the waves increases with
increasing value of k0 in accord with eq. (4.38).

Using a larger value of the permeability exponent (n=3, green lines in Fig-
ures 5.5 and 5.6) causes reduction of the permeability. Since the porosity in our
experiment is of the order of a few percent, the wavelength of the porosity waves
decreases approximately ten times in comparison with the case where n=2 (to
be compared with the red line in Figure 5.5). The effect on the speed of prop-
agation is significant (decreasing it approximately by two orders of magnitude)
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Figure 5.6: Time evolution of water column height for various combinations of
permeability constant k0 and exponent n (for legend, see Figure 5.5). The time
scale is logarithmic.

and becomes even more pronounced for small porosities after the outflow starts
(Figure 5.6).

5.2.2 The role of percolation threshold

In Figures 5.7 and 5.8, we show the results of simulations where the values of the
percolation threshold φc (eq. 2.2) are varied. Again, the former figure displays
porosity as a function of depth at four time instants, while the latter shows the
time evolution of the water column height. Depending on the difference between
φc and offset φoff we can obtain three basic evolution scenarios.

If the percolation threshold is chosen larger than the maximum value of the ini-
tial porosity profile (φc=5%), the permeability is significantly reduced (cf. eq. 2.2)
and water propagation is effectively stopped. The porosity wave (orange lines in
Figure 5.7) still evolves but its downward propagation is by several orders of

107



0

10

20

30

de
pt

h 
[k

m
]

0 2 4 6 8

! [%]
0 2 4 6 8

! [%]
0 2 4 6 8

! [%]
0 2 4 6 8

! [%]

!c=0%
!c=0.5%
!c=1%
!c=2.5%
!c=5%

0.08 kyr 0.32 kyr 0.56 kyr 0.81 kyr

Figure 5.7: The same as in Figure 5.3 but for various values of percolation thresh-
old φc.

magnitude slower than in the simulation without percolation threshold. Conse-
quently, the overall water volume in the domain remains approximately constant
during the whole simulation (Figure 5.8).

If the percolation threshold is chosen so that its value is smaller than the
initial porosity, but only locally (φc=2.5%), the porosity waves evolve with a con-
siderably reduced velocity (green lines in Figure 5.7). The overall water volume
in the domain remains again approximately constant during the whole 30-kyr
simulation (Figure 5.8), as no water is extracted during this time.

Finally, if the percolation threshold is chosen so that a significant part of
the initial porosity profile exceeds its value (φc=0.5% and 1%), the downward
propagation of porosity waves is enhanced when compared with the above cases
(red and blue lines in Figure 5.7). However, the waves still propagate more slowly
than in the case with φc=0% (black full lines in Figure 5.7) due to the decrease
of permeability corresponding to the term (φ−φc)2 in eq. (2.2). The outflow of
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Figure 5.8: The same as in Figure 5.6 but for various values of percolation thresh-
old φc (for legend, see Figure 5.7). The time scale is logarithmic.
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water from the domain (Figure 5.8) starts already during the time period of 30
kyr considered for the simulation. Obviously, if our simulations spanned a longer
period of time, the first waves would arrive at the bottom boundary even in
the cases with larger percolation thresholds. However, their arrival times would
be much larger than 100 kyr. Further inspection of Figure 5.7 reveals again a
decrease in the wavelength with the increasing value of φc corresponding to the
decrease of permeability.

5.3 The role of ice rheology

As already discussed in Section 1.6.1, ice viscosity is a highly nonlinear func-
tion of temperature, grain size and stress, with at least four known deformation
mechanisms (Goldsby & Kohlstedt , 2001; Durham et al., 2001). Moreover, the
presence of meltwater within the ice matrix drastically reduces its viscosity (De
La Chapelle et al., 1999). The role of composite ice rheology has been widely in-
vestigated in the models of solid-state convection (e.g. Barr et al., 2004; Barr &
Pappalardo, 2005; Moore, 2006; Freeman et al., 2006; Barr & McKinnon, 2007;
Běhounková et al., 2013), however, none of these studies considered the trans-
port of liquid water through the convecting ice shell. We first address the role
of composite ice rheology involving four deformation mechanisms (Section 5.3.1).
We discuss its possible simplification for a particular grain-size and stress regime,
leading to a temperature-dependent parameterization of ice viscosity, an approx-
imation which might be convenient in the numerical simulations (Section 5.3.2).
In Section 5.3.3, we investigate the effect of porosity weakening of viscosity due
to lubrication. Finally, in Section 5.3.4, we study the complex rheology which
combines all these effects.

5.3.1 The role of composite ice rheology

We simulate water transport for ice viscosity given by eqs (1.1) and (1.2) and
compare the results with several constant-viscosity cases. We consider φoff=0.25%
and three values of the grain size d. Figure 5.9 shows porosity (top) and viscosity
(bottom) as a function of depth at four different time instants. For the smallest
value of grain size (d=0.1 mm), the viscosity (orange lines in Figure 5.9, bottom)
ranges between 2×1012 and 4×1012 Pa s. The velocity of porosity waves can in
this case be estimated from below and above by constant-viscosity cases with 1012

Pa s and 1013 Pa s, respectively (cf. orange, pink and red lines in Figure 5.9, top).
The time evolution of water column height (Figure 5.10) shows similar behavior,
with the transport velocity confined between the appropriate constant-viscosity
cases. For the middle value of grain size (d=1 mm), the viscosity ranges between
1014 and 4×1015 Pa s (Figure 5.9, bottom) and the time evolution of porosity
and water column height can be both estimated by the constant-viscosity cases
with 1014 and 1015 Pa s. For d=10 mm, the viscosity ranges between 1015 and
2×1016 Pa s, and water transport can be approximated by the constant-viscosity
cases with 1015 and 5×1015 Pa s. Note that the value of viscosity influences the
wavelength of the porosity waves in a similar manner as permeability - the smaller
the viscosity, the shorter the wavelength (cf. compaction length in Section 5.2.1).
According to equation (5.1), the time needed to extract a substantial amount of
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Figure 5.9: Top: The same as in Figure 5.3 but for different viscosity laws (con-
stant vs. composite). Bottom: Viscosity corresponding to porosity profiles in the
top line.
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Figure 5.10: The same as in Figure 5.6 but for different viscosity laws (constant
vs. composite, for legend, see Figure 5.9).
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water from the temperate ice layer does not depend on the ice viscosity which is
in agreement with these results.

Comparing the viscosities of particular deformation mechanisms, we find that
for small grain sizes (d=0.1 mm), the dominant mechanism is the stress-independ-
ent diffusion creep. For d=1 and 10 mm, the ice matrix deforms also by grain-
boundary sliding, which, due to its stress dependence, dominates in the vicinity
of the porosity peak.

5.3.2 The role of temperature

In certain applications, it might be suitable to neglect the stress and grain-size de-
pendence of composite ice viscosity and to keep only the temperature dependence.
To estimate the role of temperature dependence of viscosity on the water trans-
port, we compare the results obtained using a simplified viscosity law (eq. 1.3)
with the constant-viscosity simulations. The results obtained for two different
values of activation energy are illustrated in Figures 5.11 and 5.12. We observe
that for both variable-viscosity cases the qualitative behavior closely resembles
the constant-viscosity solutions, due to the relatively mild depth-dependence of
temperature. In the case with and without premelting, the speed of porosity
waves propagation can be estimated by the constant-viscosity solutions with vis-
cosity ranging from 1012 to 1013 Pa s and from 1014 to 1015 Pa s, respectively.
The same holds approximately for the time evolution of water column height
(Figure 5.12).
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Figure 5.11: The same as in Figure 5.3 but for different viscosity laws (constant
vs. temperature-dependent).

5.3.3 The role of porosity weakening

The presence of meltwater is expected to significantly affect the ice viscosity
even at small volumes. To assess the significance of this effect, we compare the
results obtained using eq. (1.5) with µpure

m =1014 Pa s and three different values
of the weakening parameter (γm=15, 30 and 45), with the results obtained for
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Figure 5.12: The same as in Figure 5.6 but for different viscosity laws (constant
vs. temperature-dependent, for legend, see Figure 5.11).
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Figure 5.13: Top: The same as in Figure 5.3 but for different viscosity laws
(constant vs. porosity-dependent). Bottom: Viscosity corresponding to porosity
profiles in the top line.
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different constant viscosities (Figures 5.13–5.14). We can see that the leading
wave propagates in all the three cases approximately with the same velocity as
for the constant-viscosity case with 1014 Pa s (Figure 5.13, top). The amplitude
of the leading wave increases with γm due to the localizing effect of viscosity
reduction. Even though locally the viscosity decreases by as much as two orders
of magnitude for γm = 45 (Figure 5.13, bottom), the overall water transport
appears to be determined by the average viscosity in the layer below the wave
and is thus (for all values of γm used) comparable with the constant-viscosity case
with 1014 Pa s (Figure 5.14).
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Figure 5.14: The same as in Figure 5.6 but for different viscosity laws (constant
vs. porosity-dependent, for legend, see Figure 5.13).

5.3.4 Parameterization of the complex ice rheology

The results of the previous sections indicate that parameterization of ice rheology
by a constant viscosity of some appropriate value may be sufficient, especially
when we are concerned with the global characteristics of the water transport. So
far, we have studied the influence of individual rheological parameters separately.
In this section, we compare the results for constant-viscosity simulations with
a fully general case, where the ice viscosity is described by eqs (1.1), (1.2) and
(1.5). This rheology combines the composite flow law (Section 5.3.1) with the
porosity weakening effect (Section 5.3.3) and can be considered as a realistic
approximation of the mechanical properties of ice in the studied context.

In Figures 5.15–5.16, we show the results for two grain sizes (d=1 and 10 mm)
and three values of the porosity weakening exponent (γm=15, 30 and 45). For
both grain sizes, the porosity profiles for the complex-rheology simulations are
significantly more localized compared to the constant-viscosity cases, mainly due
to porosity weakening (cf. Section 5.3.3). For d=1 mm, the corresponding vis-
cosity decreases down to ∼1012 Pa s, but only in the close vicinity of the porosity
peak. In the rest of the ice shell, viscosity is almost constant with a value of 2–
4×1014 Pa s. For grain size d=10 mm, the values of viscosity are approximately
by two orders of magnitude larger and the propagation is accordingly slower. The
results suggest that the water transport velocity and the evolution of the water
column height in our simulation with the complex ice rheology can be reasonably
well parameterized by constant viscosities from the range of 1014–5×1015 Pa s.
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Figure 5.15: Top: The same as in Figure 5.3 but for different viscosity laws
(constant vs. complex). Bottom: Viscosity corresponding to porosity profiles in
the top line.
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Figure 5.16: The same as in Figure 5.6 but for different viscosity laws (constant
vs. complex, for legend, see Figure 5.15).
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5.4 The role of heating

As mentioned earlier in Chapter 1, tidal forces due to Europa’s eccentric orbit
around Jupiter play a significant role in its thermal-orbital evolution. The as-
sociated tidal deflection results in elevated heating, mostly located in the warm
convective part of the ice shell and locally also along tectonic faults in the upper
part of the ice shell. To investigate the effect of heating on the transport pro-
cesses within a temperate ice shell, we prescribe a constant volumetric heating
Ht=2×10−6 W m−3 (cf. left panel of Figure 1.11) in the whole shell and/or a
constant shear heating Hs=10−4 W m−3 in the uppermost layer of thickness hs=3
km (cf. right panel of Figure 1.11). Figures 5.17–5.18 display the results of these
simulations (for φoff=0%). The volumetric heating of 2×10−6 W m−3 (red color)
reduces the time needed for the first wave to arrive at the bottom more than twice
(2.5 kyr instead of 6 kyr for the case with no melting, cf. black line). This is
again in agreement with the compaction time scale (eq. 5.1) as the melting in the
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Figure 5.17: The same as in Figure 5.3 but for various heating scenarios (see
text).
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Figure 5.18: The same as in Figure 5.6 but for various heating scenarios (for
legend, see Figure 5.17).
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whole volume increases porosity and thus reduces the porosity wave travel time.
Adding a localized source of heat imposed in the uppermost 3 km influences the
overall amount of molten water in the ice shell (cf. Figure 5.18) but has negligible
effect on the porosity wave travel time since it increases porosity only above the
propagating waves and thus cannot influence the underlying permeability value
that is crucial for the propagation velocity.

5.5 The role of surface tension

A possibly non-negligible role of surface tension in water transport dynamics
cannot be ruled out a priori based on the scaling analysis (cf. eq. 3.131 and
parameter S in 3.127). To assess its importance, we performed a series of sim-
ulations, where surface tension was included and parameterized by eq. (3.110).
We varied the parameters describing the interfacial area density (pore geometry),
namely the constant α0 and the exponents a, b (eq. 3.115). Since the former is
inversely proportional to the characteristic grain size (Bercovici et al., 2001), we
take α0=1/d for two values of the grain size (d=1 and 10 mm). The exponents a
and b must satisfy 0<a, b<1; moreover in a medium where the melt is intercon-
nected even at low porosities, a.b holds (Bercovici et al., 2001). We have tested
several combinations of parameters a and b and in all simulations the effect of
inclusion of the surface tension was found to be completely negligible.

5.6 The role of compaction length

Here, we discuss the role of compaction length expressed in our formulation by
a dimensionless parameter C . This parameter describes the strength of the dy-
namic coupling between the fluid flow and the matrix deformation. In particu-
lar, we investigate the case when this coupling is completely neglected (C=0 in
eq. 3.136d), leading to the so-called zero compaction length approximation (cf.
Scott & Stevenson, 1989; Spiegelman, 1993a,b).

In Figure 5.19, the evolution of porosity for a non-zero C case is compared
with the zero compaction length solution (C=0). In contrast to the non-zero C
solution, where a wave train evolves, for C=0 a single porosity shock develops.
Due to the reduction of the mechanical coupling between the phases, the propa-
gation of the shock is significantly faster than that of the wave train. The peak
porosities differ also significantly - while for C=0 the porosity never exceeds the
maximum initial value (∼3%), in the non-zero C case the amplitude of the wave
train gradually grows up to 10% before the outflow initiates. The time evolu-
tion of the water column height in the domain is shown in Figure 5.20 - the two
solutions differ mainly in the time of the onset of outflow, which is delayed (by
almost 5 kyr) in the non-zero C case due to a lower propagation speed. With
decreasing amount of water in the domain, the two solutions gradually converge.

Let us investigate the behavior of the non-zero C solution in limit C→0 in
order to establish a connection between the two regimes. We repeat the above
simulation with decreasing values of C , keeping all the other parameters fixed.
Figure 5.21 (top) shows the evolution of the initial porosity profile (eq. 4.70) for
five values of the parameter C i=10−iC , i=0, 1, 2, 3, 4, and for C=0. We observe
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Figure 5.19: The same as in Figure 5.3 but for the non-zero and zero C setting.
The dashed line corresponds to φoff=0%.

that with the gradually decreasing value of C i, the corresponding porosity pro-
files φi exhibit enhanced oscillations with shorter wavelength, while the time lag
between the front wave and the position of the shock in the zero C solution de-
creases. This allows us to speculate that the zero C solution possibly corresponds
to the weak limit (in the sense of distributions) of the non-zero C model. This
idea seems to be supported by the numerical evaluation of the running-window
averages by convolution

(φi ∗ ϕε)(z, t) =

∫ ∞

−∞

φi
e(y, t)ϕε(z − y) dy , (5.2)

where φi
e is an extension of φi by zero outside the interval 〈0, 1〉, and ϕε is the

mollifier

ϕε(x) =







K
ε exp

(

− 1

1−|xε |
2

)

|x|<ε

0 |x|≥ε
, (5.3)
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Figure 5.20: The same as in Figure 5.6 but for the non-zero and zero C setting
(for legend, see Figure 5.19).
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Figure 5.21: Top: The same as in Figure 5.3 but for the non-zero C i and zero C
setting. Only vicinity of the shock is depicted. Bottom: All quantities mollified
by convolution with the kernel given by eq. (5.3).

with ε= 1
100 and the normalization factor K=(

∫ 1

−1 exp(−
1

1−|x|2 ) dx)
−1. The weak

convergence of C i solutions to the shock solution (C=0) for i→∞ would imply
point-wise convergence of their convolutions with ϕε, which seems to be supported
by the numerical simulation (Figure 5.21, bottom). We are however unable to
present a rigorous proof of this statement and leave it as a mere hypothesis.

5.7 Summary

Our numerical experiments confirm the major impact of the ice permeability
on the time scale of water propagation and the wavelength of porosity waves.
While the propagation velocity depends on permeability approximately linearly,
the wavelength scales with its square root. The value and functional form of
permeability thus strongly influence the flow pattern on both local and global
scale.

In order to assess the role of ice rheology in water transport, we compare the
results obtained for constant viscosity with those computed for viscosity param-
eterizations based on experimental and theoretical data. We find that the ice
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rheology mainly influences the water flow on a local scale. The most important
effect is the strong viscosity reduction due to porosity weakening, which enhances
localization of waves and leads to a significant increase of peak porosity values.
The inclusion of deformation mechanisms and temperature dependence has on-
ly moderate and minor effect, respectively. Although the ice rheology affects
the flow pattern on a local scale, the global scale transport properties, such as
the characteristic time of propagation and the total meltwater volume, can be
reasonably well reproduced by a constant viscosity model.

The addition of volumetric heating as well as the increasing value of back-
ground porosity φoff decrease the wave train propagation time. Heating source
locallized above the initial porosity maximum increases the total amount of water
in the ice shell but plays negligible role in the transport process. Concerning the
effect of surface tension, we have numerically confirmed that it is negligible in the
context of our physical setting.

We have also investigated the role of the dimensionless parameter C , which
defines the strength of mechanical coupling between the phases and is related to
the so-called compaction length. In particular, we numerically explore the relation
between a zero compaction length model and the models where the coupling
coefficient approaches zero. Our simulations suggest that there is only a weak
correspondence (in the sense of distributions) between the two cases. The use of
the zero compaction length model is thus misleading as far as the local character
of the water flow is concerned while it may be appropriate for recovering the
global (integral) transport properties.
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6. Water transport in temperate
planetary ice shells by two-phase
flow - a 2d parametric study

In this section, we perform a series of numerical simulations of water transport
through a temperate ice layer in two-dimensional geometry with the aim to as-
sess the importance of some of the material parameters. At first, we test several
numerical parameters, namely the SUPG regularization (cf. Section 4.2.1) co-
efficient τ , the mesh discretization, the element spaces used and the value of
background porosity φoff (Section 6.2). Then, taking into account the results of
Chapter 5 we focus on the effects of ice permeability (Section 6.3) and ice rheology
(Section 6.4), while neglecting surface tension. We consider only the non-zero C
(non-zero compaction length) approximation since the effects of the mechanical
coupling between water motion and ice deformation were found to be significant,
especially at the local scale. Since the source of heating is inseparably connected
with the considered geodynamical context (hot plume or strike-slip fault), we
leave its investigation for Chapter 8.

6.1 Reference simulation

As in Chapter 5, we start with a brief description of the reference simulation. We
consider the following initial condition:

φ(x, z, 0) =
−10(z−1)

1+(10(z−1))4
sin(πx) + φoff (6.1)

(Figure 6.1, panel a) which mimics a lense of partially molten material at shallow
depth and represents a possible initial meltwater distribution. After investigat-
ing the results of numerical tests in Section 4.2.2 we chose the mesh resolution
of 150×150 elements with both diagonals (leading to 45 301 global vertices).
The SUPG regularization parameter for this reference simulation is prescribed
to τ=0.5 (this value will be varied later on) and the CFL criterion is set quite
strictly as CCFL=0.5. We use the values of material parameters from Table 3.1
with the exception of ice matrix viscosity - since smaller ice viscosity results in
smaller wavelength (cf. Chapter 5), the characteristics of the solution are better
visible for a constant viscosity value µm=1013 Pa s and we thus compute our
reference solution with this value. The value of background porosity is chosen as
φoff=0.5% and will be again varied later on in Section 6.2.4.

Figure 6.1 shows a few snapshots of the porosity evolution - we observe a
rather efficicent transport of meltwater by microscopic percolation through the
temperate ice layer. While some characteristics of the flow resemble those present
in the one-dimensional setting, certain new characteristics appear in two dimen-
sions. Wave trains are formed, as in the one-dimensional experiments, due to
coupling between the fluid motion and the matrix deformation with the leading
wave containing the largest amount of water (panels c–h). Their wavelength is
governed by ice permeability and viscosity, the role of which will be illustrated
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Figure 6.1: Snapshots of porosity evolution (with φoff=0.5%) with the time in-
creasing from left to right and from top to bottom. The initial condition (eq. 6.1)
is depicted in panel a. The porosity scale is logarithmic.

later in Sections 6.3 and 6.4. Contrary to one-dimensional simulations, where only
vertical motions were possible, in two dimensions water flows not only vertically
but also in the inward direction leading to very strong melt localization (panel c)
and even separation of a local porosity maximum (panels d and f). This is given
by the porosity-dependence of both the fluid phase velocity vf , and the relative
velocity between the two phases vr (cf. eq. 3.136c) - the larger the porosity, the
larger the water velocity, which eventually leads to the separation.

Snapshots of water and ice velocities, vf and vm, respectively, corresponding
to the porosity fields depicted in Figure 6.1 are shown in Figure 6.2. We ob-
serve that water is dominantly transported downwards due to its larger density
with weak lateral flows (best visible in panels b1–d1) leading to localization and
quickening of the transport process. The flow of ice matrix accompanies water
percolation - parts of matrix that contain higher amount of water (larger porosi-
ty) descend towards the bottom boundary while the surrounding matrix material
flows upwards compensating the downwelling. Let us note that even though
both phases, ice and water flow downwards seemingly together in the center of
the domain, the water velocities are about one order of magnitude larger than
the ice velocities. The ice flow accompanying water percolation might become
particularly important when deformation-dependent ice viscosity is considered
(Section 6.4.1).

Time evolution of the total water content (i.e. porosity integrated throughout
the domain) depicted in Figure 6.3 shows that the first porosity wave arrives at the
bottom boundary ∼0.3 kyr after the start of the simulation decreasing the overall
water amount by 6%. At the end of our simulation (after only 3 kyr) the total
amount of water in the domain is ∼4.5×106 m2 corresponding to the background
porosity φoff=0.5% integrated through the computational domain. For φ∼3%
(maximum amplitude at the beginning of the simulation), the compaction time
scale (eq. 5.1) is approximately 0.5 kyr which is slightly more than the travel
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Figure 6.2: Snapshots of water velocity vf (first two lines) and ice velocity vm

(third and fourth line) evolution corresponding to porosity from Figure 6.1.
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Figure 6.3: Time evolution of water content (porosity integrated throughout the
domain). Computed for the same set of parameters as Figure 6.1.
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time of the first wave in our simulation (0.3 kyr). However, the amplitude of
the leading wave increases substantially during the simulation to reach as much
as 20% just before the outflow starts (Figure 6.1, panel e). This significantly
enhances the flow velocity and causes earlier beginning of the outflow - the time
scale of such a highly nonlinear process is hard to estimate more precisely by
a simple scaling law of the type of eq. (5.1). When compared with the results
of a similar simulation (i.e. considering the same material parameters and the
same background value of porosity, φoff=0.5%) in one dimension (cf. Figure 5.10,
red line), the porosity transport in two dimensions is slightly faster due to melt
localizing effect that further enhances the melt flow velocity (cf. the discussion
above).

6.2 Numerical tests

6.2.1 The role of SUPG regularization

As mentioned in Chapter 4, the classical Galerkin methods show oscillations
in the solutions for advection-dominated problems (Quarteroni & Valli , 1994).
A widely-used stabilization technique to prevent these oscillations is the SUPG
method introduced by Brooks & Hughes (1982). Here, we test its performance.
Figure 6.4 shows porosity at two different times, t=0.15 kyr (top line) and t=0.30
kyr (bottom line), and for various values of the method parameter, τ=0, 0.1, 0.3,
and 0.5 (from left to right). The figures look quite similar for all the values of
τ apart from the top corners - these (the left ones) are shown in more detail in
Figure 6.5. Clearly, no stabilization (panels a, e) results in significant oscillations,
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Figure 6.4: Snapshots of porosity evolution for various values of the SUPG stabi-
lization parameter with τ=0 (no stabilization, panels a, e), τ=0.1 (panels b, f),
τ=0.3 (panels c, g), and τ=0.5 (panels d, h). The first line corresponds to time
t=0.15 kyr, the second to t=0.30 kyr. All other parameters are the same as in
Figure 6.1. The porosity scale is logarithmic.
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Figure 6.5: The same as in Figure 6.4 with only the top left corners of each panel
shown.

which become less important with the increasing value of τ . For the largest
value, τ=0.5, the porosity field is almost smooth, even though there are still
small oscillations traceable very close to the top boundary.

Figure 6.6 displays the time evolution of the water content for the set of sim-
ulations from Figure 6.4. As all artificial diffusion methods, the SUPG method
causes non-negligible volume loss (cf. Quarteroni & Valli , 1994). However, the
overall time evolution and, most importantly, the time of the first wave arrival
at the bottom boundary (∼0.3 kyr) in which we are mainly interrested, remains
the same for all values of τ . Moreover, the largest difference in the water content
appears when the solution with no regularization (τ=0, black line) is compared
with the regularized solutions, while the differences between the solutions with
different (but non-zero) τ are less pronounced. In order to further test our nu-
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Figure 6.6: The same as in Figure 6.3 but for various values of the SUPG stabi-
lization parameter τ .
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Figure 6.7: Comparison of the left-hand side and right-hand side of equation (6.2).

merical method, let us have a look at the porosity transport equation (3.136a).
Integrating this mass balance over the whole domain and over time from t=0 to
t=T , we get (taking into account boundary conditions 4.52):

∫

Ω

φdx(t=T ) =

∫

Ω

φdx(t=0) +

∫ T

0

∫

ΓT

V
[φ]

(1−[φ]φ)vm · ndsdt +
∫ T

0

∫

Ω

rfdxdt .

(6.2)
Figure 6.7 shows the comparison of the left-hand side of equation (6.2), i.e.

the overal water content in the domain at certain time T , and its right-hand side
(the initial water content modified by melt advection and ice melting). The bal-
ance is well satisfied for the solution with no stabilization (τ=0, black and gray
lines), while the regularized solutions show slightly smaller left-hand sides (the in-
stantaneous water content), again lost due to SUPG regularization. Overall, even
though this regularization method causes significant volume losses, we decided to
keep it in our numerical method since it efficiently reduces the oscillations and
does not modify the porosity waves travel times. In the following (if not stated
otherwise) we use the value τ=0.5.

6.2.2 The role of mesh discretization

We have already performed some discretization tests in Section 4.2.2 where we
have compared the solution obtained by the 2d FEniCS code with the solution
obtained by the 1d FORTRAN90 code (described in Section 4.1). Even though
the calculations by FEniCS were made in two dimensions, the real geometry of
the problem was only one-dimensional (dependent only on the vertical coordinate
z). Here we compare solutions of our reference problem on four different meshes
consisting of 50×50, 100×100, 150×150, and 200×200 elements, in order to in-
vestigate more closely the effect of mesh discretization in a real two-dimensional
(x, z-dependent) problem. Figure 6.8 shows time evolution of the water content
computed on these four meshes. We observe slight differences, especially for the
coarsest grid (50×50 elements), however, the overall evolution does not differ
substantially - the arrival time of the leading wave, as well as the arrival times
of the subsequent waves are the same, as is the terminal value. In the following,
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Figure 6.8: The same as in Figure 6.3 but for various mesh discretizations.

if not stated otherwise, we will use meshes consisting of 150×150 elements as a
good compromise between solution accuracy and computational time demands.

6.2.3 The role of elements spaces choice

In this section, we investigate the role of our choice of elements spaces. The refer-
ence solution is computed with linear Lagrange elements for scalar quantities (φ,
Π, rf) and quadratic Lagrange elements for vector quantities (vr, vm, Taylor-Hood
elements, cf. Section 4.2.1). This setting together with a mesh discretization of
150×150 results in 858 307 Degrees of Freedom (DoFs). For some more compli-
cated problems (e.g. with a stress-dependent rheology, cf. Section 6.4.1), it can
prove useful to reduce the number of DoFs while maintaining the same mesh
resolution. We recomputed our reference solution with two other elements spaces
choices - we used linear elements for all unknowns (resulting in 317 107 DoFs)
and the combination of linear Lagrange elements for scalar quantities together
with the so-called MINI elements (cf. Arnold et al., 1984) for vector quantities
(resulting in 677 107 DoFs). The time evolution of water content for these three
simulations is depicted in Figure 6.9 and indicates that the results do not differ
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Figure 6.9: The same as in Figure 6.3 but for various elements spaces choice.
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considerably.
If we investigated porosity as a function of spatial coordinates (as in Fig-

ure 6.1), we would not find a significant difference. However, the simulation with
linear elements only (green dashed line in Figure 6.9) diverged at approximately
1.6 kyr, while the two other simulations went on till the end of simulation (∼3
kyr). This is due to instability of the linear elements choice for given problem
(cf. Logg et al., 2012). The computational time, however, was greatly decreased
(about five times) for the linear elements choice when compared with the two
other cases (between which there was not a substantial difference). Therefore, we
keep the Taylor-Hood elements choice for most problems in the following study
and use linear elements only when we need to dramatically shorten the compu-
tational times.

6.2.4 The role of background porosity

In Section 5.1.1 we have found that the background value of porosity (φoff) affects
the porosity wave propagation through a layer of partially molten (temperate)
ice. Here, we investigate its role in two dimensions. Figure 6.10 displays few
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Figure 6.10: Snapshots of porosity evolution for various values of background
porosity: φoff=0.1% (panels a, e, i), φoff=0.25% (panels b, f, j), φoff=0.5% (panels
c, g, k), and φoff=1% (panels d, h, l). For each value of φoff , three time instants
are selected: the time just before the outflow starts (t=to, bottom line) and its
two fractions: t=1

3to (top line) and t=2
3to (middle line). These time instants differ

for different background values. The porosity scale is logarithmic.
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Figure 6.11: Time evolution of water content above the background porosity φoff

(i.e.
∫

V (φ−φoff)dV ).

snapshots of the time evolution of porosity for four different background values:
φoff=0.1, 0.25, 0.5, and 1% (the material parameters are the same as in the
reference solution, only with ice viscosity µm=1014 Pa s). We observe that with
the decreasing value of φoff the wavelength as well as the propagation speed
decrease, while the maximum wave amplitude increases, leading to enhanced
porosity localization. While a porosity maximum separates for the smaller values
of the offset (φoff=0.1% and 0.25%, the first two columns from left in Figure 6.10)
with the difference between maximum and minimum values of porosity by far
exceeding 10%, this difference is only ∼ 2.5% when φoff=1% and no separation is
detectable.

Figure 6.11 shows time evolution of water content above the background
porosity φoff (i.e.

∫

V (φ−φoff)dV ). We observe that even though the value of
φoff affects the time scale of the process, its role is not crucial and is for exam-
ple negligible when compared with the role of permeability (cf. next section).
A comparison with Figure 5.3 (that displays the time evolution of water content
for various values of the porosity background φoff in one-dimensional geometry)
further shows that for the same values of φoff and identical porosity maxima of the
initial conditions (eqs 4.70 and 6.1), the travel times are slightly shorter in two-
dimensions (cf. black line in Figure 5.3 and blue line in Figure 6.11 for φoff=0.25%,
and red line in Figure 5.3 and black line in Figure 6.11 for φoff=0.5%, respective-
ly) due to more effective localizing process that accelerates the water percolation.
Since for numerical reasons we have to consider a non-zero background value of
porosity, in the following we will use value φoff=0.5% that represents a compro-
mise between numerical requirements and the effect on the drainage time scale.

6.3 The role of permeability

In this section, we investigate the role of permeability in the transport of water
through the temperate ice layer. In Section 5.2, we have already shown that
permeability plays a crucial role in this process, so here we merely want to in-
vestigate possible effects related to the change of dimensionality. We again test
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various combinations of permeability constant k0 and permeability exponent n
in the next Section 6.3.1 and the effect of percolation threshold φc is illustrated
later in Section 6.3.2.

6.3.1 The role of permeability constant and exponent

We vary the permeability constant k0 over two orders of magnitude (10−10–10−8

m2) and test also both end-member values of the permeability exponent (n=2
and 3) - together with eq. (2.1) these values approximate well the measured per-
meability values (cf. Figure 2.3). Some snapshots of the evolution of porosity
(for φoff=0.5%) are depicted in Figure 6.12. These results confirm that the wave-
length strongly decreases with decreasing permeability constant k0 (first to third
column in Figure 6.12) and with increasing permeability exponent n (first and
fourth column in Figure 6.12) in agreement with eq. (4.38).

Figure 6.13 shows time evolution of the water content and proves that per-
meability controls the speed of wave train propagation - for given n, it depends
approximately linearly on k0 (cf. results of Section 5.2.1 and eq. 5.1). Using a
larger value of the permeability exponent (n=3, green line in Figure 6.13) causes
reduction of the wave train propagation speed from more than one order (at the
beginning of the simulation till the beginning of the outflow) to more than two
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Figure 6.12: The same as in Figure 6.10 but for various combinations of perme-
ability constant k0 and exponent n: k0=10−8 m2, n=2 (panels a, e, i), k0=10−9

m2, n=2 (panels b, f, j), k0=10−10 m2, n=2 (panels c, g, k), and k0=10−8 m2,
n=3 (panels d, h, l).
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Figure 6.13: The same as in Figure 6.3 but for various combinations of k0 and n.
The time scale is logarithmic.

orders at the end of simulation, when the porosities are smaller (cf. red and green
lines in Figure 6.13).

6.3.2 The role of percolation threshold

Here, we study the role of an abrupt decrease of permeability below the so-called
percolation threshold, φc. Permeability in these simulations is considered in the
form given by eq. (2.2) and we use several values of the threshold, φc=0.5%, 1%,
3%, and 5%. We remind, that the use of porosity threshold mimics the observed
abrupt decrease in permeability measured for the terrestrial sea ice - the measured
value was 5% (cf. Golden et al., 1998).

Results are shown in Figures 6.14 and 6.15. In the case of very small porosity
threshold (φc=0.5%, the first column in Figure 6.14 and red line in Figure 6.15),
porosity exceeds (or equals) the threshold in almost whole domain (since φc=φoff)
implying permeability large enough to enable water transport by microscopic
percolation. The leading wave has smaller wavelength when compared to the case
with φc=0% (the second column in Figure 6.12 and black line in Figure 6.15) but
arrives at the bottom boundary only slightly retarded.

For a little larger value of threshold (φc=1%>φoff , the second column in Fig-
ure 6.14 and blue line in Figure 6.15), only parts of the porosity waves exceed
the threshold (cf. the black contour in Figure 6.14) implying permeability, at
least locally, large enough to enable percolative transport of water through the
ice shell. The arrival time of the leading wave is even more delayed and the
wavelength decreases considerably leading to very strong localization and local
porosity maxima separation. However, for both as yet described cases, the lead-
ing waves still arrive at the bottom of the shell within a few kiloyears from the
beginning of the simulation.

In the case of very large threshold (φc=5%4φoff , the fourth column in Fig-
ure 6.14 and yellow line in Figure 6.15), the permeability is so small that the layer
is effectively impermeable for water transport through a system of intergranular
veins. However, as discussed in Section 2.3, a partially molten reservoir is not
gravitationally stable within an ice layer and is destabilized due to formation
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Figure 6.14: The same as in Figure 6.10 but for various values of percolation
threshold: φc=0.5% (panels a, e, i), φc=1% (panels b, f, j), φc=3% (panels c, g,
k), and φc=5% (panels d, h, l). Black contours in each panel denote the value of
corresponding threshold.

of gravitational (Rayleigh-Taylor-like) instability. Since the (constant) viscosity
of ice is here considered to be only 1014 Pa s (ice at the melting temperature),
the time necessary to destabilize a reservoir of few percents (with a maximum of
about 3%) is quite short and within 10 kyr the majority of the partially molten
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Figure 6.15: The same as in Figure 6.3 but for various values of percolation
threshold φc. The time scale is logarithmic.
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material is advected within the collapsing ice matrix to the bottom boundary,
where it stays since the bottom boundary is impermeable for matrix material (cf.
eq. 4.52).

For an intermediate value of porosity threshold (φc=3%, the third column in
Figure 6.14 and green line in Figure 6.15), the permeability is very low and the
partially molten lense starts to collapse down due to formation of gravitational
instability. However, since the permeability is not as small as for φc=5%, a wave
train starts to develop with a very small wavelength, which does not arrive at the
bottom boundary within a reasonable computational time.

Overall, the results of this section naturally depend not only on the value of
porosity threshold but rather on the relation between the threshold φc and the
chosen background value φoff . However, for reasonably small offsets (φoff!1%),
the measured value of φc=5% remains well above the chosen offset value and the
results of this section do not change substantially.

6.4 The role of ice rheology

The very complex ice viscosity (in general depending on temperature, rate of
deformation, water content, grain size, etc.) can have a major impact on the
transport of water through the temperate ice layer. In Section 5.3, we have shown
that in one-dimensional geometry, the complex ice viscosity can be approximat-
ed by a constant viscosity model with viscosities from the range of 1012–5×1015

Pa s. However, in one dimension, only the vertical matrix deformation is included
while the horizontal effects cannot be treated. Therefore, we repeat the study
from Section 5.3 in two dimensions, focusing on the role of composite ice rheolo-
gy involving four deformational mechanisms (Section 6.4.1), the role of porosity
weakening (Section 6.4.2) and finally, in Section 6.4.3, we study the complex
rheology combining both these effects.

6.4.1 The role of composite ice rheology

We consider ice viscosity given by eqs (1.1) and (1.2) and compare the results
with several constant-viscosity cases. We take φoff=0.5% and use four values
of grain size, d=0.5, 1, 5, 10 mm. Given the complexity of this problem, we use
linear elements for all variables - this decreases the stability of a problem, but
keeps the computational times reasonable, while maintaining adequate accuracy
(cf. Section 6.2.3). Figure 6.16 (top three lines) shows few snapshots of porosity
evolution - we observe that with increasing value of grain size d (from left to
right) and while maintaining all other parameters the same, the wavelength sig-
nificantly increases. For two smaller values of grain size, d=0.5 and 1 mm (first
and second column), the leading wave is well distinguishable, with the formation
of subsequent waves visible for the smallest value of grain size (d=0.5 mm, panel
i1). For the larger values of grain size (d=5 and 10 mm, third and fourth col-
umn), water is transported downwards in a one large wave rather than in a wave
train. The wavelength is so large, that it approximately equals half the size of a
computational domain.

As has been already mentioned, the wavelength is governed by the value of
viscosity - the effective viscosities corresponding to porosity fields from top three
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Figure 6.16: Top three lines: the same as in Figure 6.10 but for composite rheology
and various values of grain size: d=0.5 mm (panels a1, e1, i1), d=1 mm (panels
b1, f1, j1), d=5 mm (panels c1, g1, k1), and d=10 mm (panels d1, h1, l1). Bottom
three lines: corresponding viscosity.
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lines of Figure 6.16 are depicted in the bottom three lines of the same figure and
range approximately from 3×1013 to 1016 Pa s. While they vary substantially
with the different value of grain size (different columns in the bottom three lines
of Figure 6.16), for a fixed value of grain size (within a particular column), they
all span approximately less than order of magnitude. Comparing the viscosities
of particular deformation mechanisms, we find that for the smallest grain size
used (d=0.5 mm), the dominant mechanism is the stress-independent diffusion
creep, while for d=1 mm, grain-boundary sliding becomes important, especially
in the vicinity of porosity maximum. For even larger grain sizes (d=5 and 10
mm), grain-boundary sliding is the dominant mechanism.

Time evolution of water content depicted in Figure 6.17 shows that for the
composite ice rheology given by the combination of diffusion creep, dislocation
creep, basal slip and grain-boundary sliding and for grain sizes from the range of
0.5 to 10 mm, the transport of liquid water through a temperate ice layer can be
(especially in terms of water drainage time scales) approximated by a scenario
with constant viscosities from the range of 1013 to 5×1015 Pa s.
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Figure 6.17: The same as in Figure 6.3 but for composite rheology and various
values of grain size d.

6.4.2 The role of porosity weakening

In Section 5.3.3 we found that in one dimension, the porosity weakening of the
form given by eq. (1.5) with µpure

m =1014 Pa s leads to significant porosity local-
isation increasing its maxima three times (for γm=45). Even though the cor-
responding values of viscosity decreased as much as two orders of magnitude,
the overall water transport was comparable with the constant viscosity case (i.e.
γm=0). Here, we again concentrate on potential effects related with the change of
dimensionality. The top three lines of Figure 6.18 show few snapshots of porosity
evolution for four values of the weakening parameter: γm=0, 15, 30, 45 and the
reference value of viscosity µpure

m =1015 Pa s (larger value of water-free reference
viscosity was chosen for numerical reasons, cf. below). We observe more pro-
nounced localization with the increasing value of weakening parameter γm (from
left to right), however, for this large value of reference viscosity, µpure

m =1015 Pa s,
the effect is not very strong - viscosity (depicted in bottom three lines of Fig-
ure 6.18) decreases locally only about one order of magnitude (for γm=45, fourth
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Figure 6.18: Top three lines: the same as in Figure 6.10 but for porosity weakened
viscosity and various values of weakening parameter: γm=0 (panels a1, e1, i1),
γm=15 (panels b1, f1, j1), γm=30 (panels c1, g1, k1), and γm=45 (panels d1, h1,
l1). Bottom three lines: corresponding viscosity.
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Figure 6.19: The same as in Figure 6.3 but for porosity weakened viscosity and
various values of weakening parameter γm.

column) due to smaller porosity amplitudes. Unfortunately, for a smaller value
of reference water-free viscosity (µpure

m =1014 Pa s), we were able to obtain results
using only much smaller values of the weakening parameter γm≤10 that caused
solely slight changes from the case with no porosity weakening (γm=0). Solu-
tions with µpure

m =1014 Pa s and a larger values of γm (>10) are unfortunately not
attainable with our current numerical tool.

Time evolution of water content for simulations from Figure 6.18 is displayed
in Figure 6.19 and shows a result comparable with the results of one-dimensional
simulations - the overall water transport appears to be determined by the average
viscosity in the layer below the wave and is thus (for all values of γm used)
comparable with the constant-viscosity case of µm=1015 Pa s and γm=0.

6.4.3 Parametrization of the complex ice rheology

As in the one-dimensional study, we consider also a complex rheology combining
composite ice rheology (eqs 1.1 and 1.2, studied separately in Section 6.4.1) with
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Figure 6.20: The same as in Figure 6.3 but for complex ice rheology and various
combinations of grain size d and porosity weakening parameter γm.
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porosity weakening (eq. 1.5, studied in the previous Section 6.4.2). We use middle
value of grain size, d=5 mm, and two values of porosity weakening parameter,
γm=15 and 30. Time evolution of water content computed for these two cases
is shown in Figure 6.20 together with results computed with composite rheolo-
gy assuming d=5 mm (and no porosity weakening) and results computed with
constant viscosities. Compared with the case of composite rheology and grain
size d=5 mm (yellow line), the extra porosity weakening has only minor influence
leading to slight decrease of the overall water content (green lines). Thus, for
these particular values of d and γm, the overal evolution can be parametrized by
cases with constant viscosities from the range of 1014–5×1015 Pa s. Assuming that
the role of porosity weakening on time evolution of a problem with complex ice
rheology would be similar also for other values of grain sizes (d=0.5–10 mm) and
even for a larger value of weakening parameter γm=45, we estimate the range of
suitable viscosities that could reasonably well parametrize the complex viscosity
in our temperate ice shell setting as 1013–5×1015 Pa s.

6.5 Summary

In this chapter, we concentrated on the role of material parameters in the trans-
port of liquid water through a temperate ice shell in two dimensions. At first, we
investigated several numerical parameters in order to reach a compromise between
reasonable accuracy and computational time. We found that mesh discretization
of 150×150 and the SUPG method parameter τ=0.5 should be suitable for the
most of our calculations. While Taylor-Hood elements assure solution stability,
using the linear elements for all unknowns can be unstable, but does not decrease
the solution accuracy and can therefore be tried and used in cases where the use of
Taylor-Hood elements would lead to extremely long computational times. As for
the background value of porosity φoff , we confirm its role found in Section 5.1.1 in
that it affects the porosity wavelength as well as the water extraction time scale.
However, given the necessity of using a non-zero value and since the effect on the
time scale is not that pronounced as, for example, the effect of permeability, we
decided to keep a constant value of φoff=0.5% for all the simulations throughout
this section to eliminate its effect on the results of parametric study as much as
possible.

Our two-dimensional numerical experiments confirm our findings from Chap-
ter 5 that the ice permeability has the most important impact on the time scale of
water propagation and affects also the wavelength of porosity waves. Simulations
with percolation threshold (Section 6.3.2) further reveal that even for very low
permeability (caused by relatively large value of threshold φc=5%), water lense at
the top of temperate ice layer is not gravitationaly stable and collapses down due
to formation of gravitational (Rayleigh-Taylor-like) instability. This result differs
from the result of the same experiment in one dimension (Section 5.2.2), in which
the layer stayed almost immobile at the initial position. These findings suggest
that reservoirs stable at the top of the shell in one dimensional simulations could
be destabilized by the formation of gravitational instability in two dimensions.

We also investigated the role of ice rheology in water transport by compar-
ing the results obtained for constant viscosity with those computed for viscosity
parameterizations. The results of two-dimensional simulations do not differ sub-
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stantially from those obtained in one-dimension - the effect of ice rheology is
important on local scale by strongly affecting the wavelength, while the glob-
al scale transport properties can be reasonably well reproduced by a constant
viscosity model with values from the range of 1013–5×1015 Pa s.

In summary, we find that water transport through a temperate ice shell is
very efficient with times necessary to deliver the majority of the initial water
content to the bottom boundary ranging from less than one kiloyear to few tens
of kiloyears.

6.6 Peak collision

To terminate this chapter, we demonstrate a particular behavior of the two-
phase water transport through a temperate ice shell. Since the velocity of water
propagation strongly depends on the amount of water available (i.e. porosity φ),
a model situation can occur where initially larger amount of water travels faster
than the other, initially smaller amount of water. This is illustrated in Figure 6.21
where an initially larger Gaussian peak catches up with a smaller one.
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Figure 6.21: The same as in Figure 6.1 but for a different initial condition.
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Part IV

Liquid water in Europa’s ice
shell: Results of numerical

modeling
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7. Ice melting and downward
transport of meltwater by
two-phase flow in Europa’s ice
shell (1d)

In the previous part of this thesis (Chapters 5 and 6) we have investigated the
transport of a partially molten material through a temperate ice shell. However,
in reality, when tidally-induced melting occurs at shallow depths (cf. Chapter 1),
the underlying ice is not necessarily at the melting point. In this case, the down-
ward extraction of the melt produced in the region with enhanced heating might
be delayed and efficient extraction by two-phase flow occurs only once the melt-
ing point is reached below this domain. In this chapter, we consider two different
geophysical contexts which we implement by imposing specific initial temperature
profiles and heating scenarios in one dimension.1 The first one corresponds to
melting in the head of a hot plume (hot plume set-up, Sections 7.1.1 and 7.2.1,
after Sotin et al., 2002), while in the second one the melt is produced by shear
motions on a strike-slip fault (strike-slip fault set-up, Sections 7.1.2 and 7.2.2,
after Nimmo & Gaidos , 2002).

As already discussed in Section 1.6.1, viscosity of ice depends in general on
numerous factors such as temperature, strain rate, water content etc. (Durham
et al., 2001; Goldsby & Kohlstedt , 2001; De La Chapelle et al., 1999). Although
in the cold ice strong viscosity variations can be expected, e.g. in thermal bound-
ary layers or in the vicinity of localized thermal sources, their effect cannot be
manifested in our 1d formalism, as we do not consider any shear deformation
and viscous compaction in cold ice. In the temperate ice, the effect of tempera-
ture on viscosity is negligible (T=TM), however, the influence of porosity (water
content) can be significant. The role of ice viscosity on the transport properties
in temperate ice in one dimension was tested in Chapter 5 - we found that the
global scale transport properties, such as the characteristic time of propagation
and the total meltwater volume, can be reasonably well reproduced by a constant
viscosity model. Moreover, the effect of ice viscosity on the water-extraction time
scale (cf. compaction time scale, eq. 5.1) is almost negligible. Since our main
goal is the estimate of this time scale, for the sake of simplicity, we consider a
constant value of viscosity µm=1014 Pa s in our simulations.

Besides viscosity, the other crucial parameter is the ice permeability, which
was shown to have a major effect on the speed of the porosity waves propaga-
tion (cf. Section 5.2). Since we are interested in the upper estimate for the
water-extraction time which determines the stability of the water reservoirs, we
choose the minimum admissible value (k0=10−10 m2, cf. Section 2.2) of the ice
permeability constant.

We start this chapter with a description of the numerical implementation of
the two geophysical contexts (Section 7.1) and then, in Section 7.2, we describe
our results. The model assumptions and their consequences for the obtained

1The results summarized in this chapter were published in Kalousová et al. (2014).
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results are discussed in Section 7.3 and a short summary of this chapter is given
in Section 7.4.

7.1 Heating scenarios

7.1.1 Hot plume set-up

Since we cannot properly model thermal evolution of a hot plume in one-dimensi-
onal geometry, we must approximate it by choosing a suitable parametrization
of the heat source. In the context of subsurface water generation, it is crucial to
describe the relatively short period in the plume evolution when melting starts to
occur in the plume head (e.g. Sotin et al., 2002; Tobie et al., 2003; Běhounková
et al., 2010). The temperature evolution is governed by eq. (4.1d) in which the
source term Q includes the combined effect of tidal heating Ht and convective
cooling Hc. According to numerical simulations of Tobie et al. (2003), the total
heating rate Ht−Hc is typically equal to 10–20% of the tidal heating rate, which
allows the following parametrization in terms of a scaling parameter x:

Q = Ht −Hc = xHt . (7.1)

Following Tobie et al. (2003), the viscosity-dependent tidal heating can be ex-
pressed as (cf. also Section 1.6.2):

Ht =
2Hmax

t

µm/µmax
m + µmax

m /µm
, (7.2)

where Hmax
t is the maximum heating rate that occurs for viscosity µmax

m . We
consider Hmax

t =5×10−6 W m−3 that corresponds to the average estimate of the
heating due to tides (cf. Tobie et al., 2003).

The role of matrix viscosity on the dynamics of polythermal ice has been
discussed above - we concluded that using a constant value does not affect the
water-extraction time by two-phase flow. However, when the effect of viscosity
on tidal heating is concerned, the temperature and porosity dependence cannot
be neglected. Here we choose the following parametrization (Frank-Kamenetskii
approximation combined with the porosity softening, cf. Tobie et al., 2003):

µm = µbot
m exp

(

−
Ea(T−TM)

RT 2
M

)

exp(−γmφ) , (7.3)

where Ea is the activation energy, R is the universal gas constant, TM is the
melting temperature at the bottom of the ice shell, and µbot

m is the melting point
ice viscosity - for the sake of simplicity, we assume µmax

m =µbot
m =1014 Pa s. The

exponential terms in eq. (7.3) describe the temperature and porosity effects, re-
spectively. The value of parameter γm is chosen so that the increase of porosity by
5% induces viscosity decrease by one order of magnitude (De La Chapelle et al.,
1999; Tobie et al., 2003). The initial temperature profile, which is also estimated
from Tobie et al. (2003), and the initial heating profiles for several values of x are
shown in Figure 7.1.
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Figure 7.1: Hot plume set-up. (a) Melting temperature and initial temperature
profile. (b) Initial heating computed from eqs (7.1)–(7.3) for different values of
x and for the initial temperature profile shown in panel a. Spatial variations are
due to temperature dependence of viscosity used in evaluating the heating term
(eq. 7.2).

7.1.2 Strike-slip fault set-up

This set-up represents the process of melt production due to tidally-induced dis-
placement along a strike-slip fault. In addition to the volumetric tidal heating
Ht (eq. 7.2), we also include a localized heat source corresponding to shear heat-
ing along and just below a strike-slip fault (cf. Nimmo & Gaidos , 2002, and
Section 1.6.2). The layer is assumed to be in a conductive state (no convec-
tive cooling, x=1). The initial temperature profile corresponds to the conductive
steady-state obtained for temperature boundary conditions (eq. 4.4) and the vol-
umetric tidal heating source Ht (eq. 7.2).

At the beginning of the simulation, shear heating rate Hs (the values adapted
from Nimmo & Gaidos , 2002) is imposed throughout a shear zone of depth ds.
The initial temperature profile and the corresponding heating for various values
of shear zone depth ds and shear heating amplitude Hs are depicted in Figure 7.2.
Once melting occurs, shear heating is expected to decrease rapidly due to reduc-
tion of the friction coefficient (cf. Oksanen & Keinonen, 1982). Assuming that
this reduction is similar as in the case of ice viscosity µm, we parameterize it in
the same way as in eq. (7.3):

Qs(d) = Hs exp(−γsφ) d≤ds , (7.4)

where ds is the shear zone depth and γs is a weakening parameter. Due to the
lack of knowledge, we assume γs=γm

.
=45 in the reference solution and vary its

value later.
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Figure 7.2: Strike-slip fault set-up. (a) Melting temperature and initial temper-
ature profile. (b) Initial heating computed as Q=Ht+Hs from eqs (7.1)–(7.4) for
x=1, the initial temperature profile shown in panel a and three different values
of Hs (distinguished by different colors). Two values of ds are considered: ds=3
km (full lines) and ds=5 km (dashed lines).

7.2 Results

7.2.1 Hot plume set-up

The results for the hot plume simulation with x=15% and the model parameters
given in Table 3.1 are depicted in Figure 7.3. At the beginning of the simulation,
the melting temperature is reached only at the bottom boundary and melting just
occurs at the base of the ice shell - the water produced there is transported almost
immediately to the underlying ocean. The molten (temperate) region where water
can propagate spreads gradually from the bottom boundary to the head of the
plume. As long as the porosity profile is monotonic with maximum at the bottom
boundary, porosity waves do not form (cf. conditions for shock wave formation in
Spiegelman, 1993a). At approximately 90 kyr, melting begins also at the depth
of about 10 km and porosity waves start to develop. However, their migration
is limited within the temperate ice region where temperature is at the melting
point. Roughly 40 kyr later (130 kyr after the beginning of the simulation), both
temperate regions connect, thus permitting an efficient transport of water in the
partially molten zone all the way to the bottom boundary (Figure 7.3, panel a).
Melting temperature is reached in approximately two thirds of the ice shell but
the value of porosity never exceeds 1% (Figure 7.3, panel b). The outflow of liquid
water from the domain is associated with a small subsidence of the top boundary -
after 300 kyr of simulation, the thickness of the computational domain is reduced
by ∼250 m due to the combined effect of matrix melting and water outflow from
the domain.

The total amount of liquid water in the domain as a function of time is shown
in Figure 7.4 (panel a, red color). It gradually grows from zero up to a maximum
value of about 35 m, which is reached at the time just before the first porosity
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Figure 7.3: Hot plume set-up, x=15 %. (a) Space-time evolution of TM−T . The
shaded region (corresponding to the colored region in panel b) marks the partially
molten material at the melting temperature (temperate ice). (b) Space-time evo-
lution of porosity. In both panels, the black line represents the boundary between
the temperate ice (with non-zero porosity and temperature at the melting point,
thus enabling downward water transport) and the cold ice (with zero porosity,
temperature below the melting point and no water transport).

wave arrives at the bottom boundary (∼160 kyr). From that moment, the water
outflow is more efficient than the water production and the overall amount of
water in the ice shell gradually decreases. At the end of the simulation, a 25 m
high water column still remains in the ice shell, however, the water is distributed
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Figure 7.4: Hot plume set-up, results for different values of x. (a) Time evo-
lution of water column height. (b) Time evolution of porosity maximum in the
subsurface region (top 4 km).
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over the whole temperate domain and porosity never exceeds 1% (Figure 7.3,
panel b).

The detail of the time evolution of the maximum value of porosity φ in the
subsurface region (top 4 kilometers) is illustrated in Figure 7.4 (panel b, red
color). The maximum values of porosity remain very small, indicating that water
produced at shallow depths never accumulates there and is transported very
efficiently downwards to the internal water ocean.
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Figure 7.5: The same as in Figure 7.3 but for x=5, 10, 20, 30% (from left to right).

For higher values of x (20% and 30%), which correspond to less efficient con-
vection and thus more efficient warming of the ice shell, the two distinct melting
regions form again (Figure 7.5, panels c, g, and d, h). Since the tidal heating rate
is higher, melting starts earlier and more water is produced (Figure 7.4, panel a,
blue and cyan color). On the other hand, both regions coalesce earlier permitting
water outflow already at approximately 120 kyr and 85 kyr, respectively. When
the value of x is decreased to 10%, corresponding to enhanced convective cooling
and slower warming of the ice shell, melting occurs only in the lower half of the
ice shell (Figure 7.5, panels b and f) and less water is produced (Figure 7.4, panel
a, green color). For an even smaller value of x (5%) melting occurs only at the
base of the ice shell during the whole simulation (Figure 7.5, panels a and e),
resulting in a very small amount of water produced (Figure 7.4, panel a, violet
color). For all tested values of x, the maximum porosity at shallow depth stays
well below 1% and thus no water accumulates there (Figure 7.4, panel b). To
summarize, either no melt is produced in the subsurface region at all due to in-
sufficient heating (x=5 and 10%), or both the subsurface and bottom temperate
regions become connected within a few tens of thousands of years, allowing rapid
water transport towards the bottom boundary.

7.2.2 Strike-slip fault set-up

The results for the strike-slip fault simulation with Hs=2×10−4 W m−3, ds=3
km and γs=45 are displayed in Figure 7.6 (for the values of other parameters see
Table 3.1). As in the previous (hot plume) case, the first melt appears at the
bottom boundary and the water flows freely from the domain to the underlying
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Figure 7.6: Strike-slip fault set-up, Hs=2×10−4 W m−3, ds=3 km and γs=45. (a)
Space-time evolution of TM−T . The shaded regions (corresponding to the colored
regions in panel c) mark the partially molten material at the melting temperature
(temperate ice). (b) Space-time evolution of the heating rate in the top 5 km.
(c) Space-time evolution of porosity. As in Figure 7.3, the black lines represent
the boundary between the temperate ice and the cold ice. The reduction of the
domain thickness is apparent in the right upper corners of all panels.

ocean without creating waves. After approximately 90 kyr, melting begins also
at a depth of about 2 km where the melting temperature is reached due to the
enhanced shear heating. Since the ice below is cold (T.TM, Figure 7.6, panel
a) and assumed free of fractures, no water propagates downward. Even though
the heating in the subsurface temperate ice region decreases rapidly due to the
increasing porosity (one order of magnitude reduction per 5% of porosity increase,
Figure 7.6, panel b), the liquid water is trapped there and its amount gradually
grows (Figure 7.6, panel c). As the initial temperature in the upper half of the
ice shell is rather low and the volumetric heating (eq. 7.2) is not very efficient
there, the cold impermeable zone separating the subsurface water lens from the
bottom temperate zone is preserved throughout the simulation (300 kyr). A
closer inspection of the upper right corner of panel b of Figure 7.6 reveals that
at the end of simulation the thickness of the domain is reduced by ∼1 km, which
is mostly due to matrix melting in the shallow region.
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The time evolution of water column height is depicted in panel a of Figure 7.7
(red color, full line). With its maximum reaching almost 600 m, the amount of
water produced in the strike-slip fault model is much larger than in the previous
hot plume model. Panel b of Figure 7.7 shows the maximum value of porosi-
ty within the shear zone (d≤ds). Once melting starts, it grows rapidly - after
approximately 50 kyr it exceeds 95% and stays above this value during the rest
of the simulation. As discussed in Section 7.3, our one-dimensional calculations
cannot take into account possible initiation of gravitational (Rayleigh-Taylor-
like) instabilities due to accumulation of dense liquids above ice, or initiation and
propagation of water-filled cracks. Consequently, the amounts of water predicted
here should be considered as upper limits.
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Figure 7.7: Strike-slip fault set-up, results for various combinations of Hs (dis-
tingished by colors) and ds (full lines: ds=3 km, dashed lines: ds=5 km). (a) Time
evolution of the water column height. (b) Time evolution of porosity maximum
within the shear zone (d≤ds).

Figure 7.7 also illustrates the role of the shear heating amplitude, Hs, and the
shear zone depth, ds. For small shear-heating amplitude (Hs=5×10−5 W m−3),
no melt is produced at shallow depths (at least during 300 kyr) independently of
the shear zone depth ds. For moderate amplitude of heating (Hs=10−4 W m−3)
and deeper shear zone (ds=5 km), a liquid water lens is created and remains
stable for at least 100 kyr, but no water is produced for the same amplitude of
heating and a more shallow shear zone (ds=3 km). Increasing further the heating
amplitude (Hs=2×10−4 W m−3) enables melting also for a more realistic shear
zone depth ds=3 km (cf. Nimmo & Gaidos , 2002). The slight oscillations in panel
b of Figure 7.7 are caused by the coupling between the temperature and porosity
evolution. As the temperature just below the partially molten layer increases, the
ice becomes temperate and hence water-permeable. Therefore, the molten water
from above can flow downwards in the form of waves, since, in this case, porosity
decreases in the direction of flow. Consequently, the maximum value of porosity
is temporarily reduced due to redistribution of the liquid water over a wider layer
of temperate ice.

Our numerical simulations indicate (not shown in Figure 7.7) that the above
results are not affected by varying the value of the porosity weakening parameter
γs (eq. 7.4). This parameter can slightly change the total amount of molten water
but has a negligible effect on the maximum porosity in the shear zone and no
effect on the thermal evolution of the cold ice layer below, and thus does not
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influence the time scale of the extraction of liquid water from shallow depths.

7.3 Discussion

All our calculations assume a pure water system. The observations of colored
hydrated materials within disrupted surface areas suggest that the ice shell may
contain a significant fraction of contaminants (e.g. McCord et al., 1998; Kargel
et al., 2000; Zolotov & Kargel , 2009). Low-eutectic constituents such as chloride
salts, which are expected within the internal ocean (Zolotov & Kargel , 2009),
could lower the melting point by several tens of Kelvins (Kargel et al., 2000;
Pappalardo & Barr , 2004). If these contaminants were uniformly distributed
within the ice shell, the reduction of melting point would be uniform and the
results should not be significantly different. The presence of contaminants would
have a larger impact if they were located only in the upper part of the ice shell.
In this case, concentrated brines might form at shallow depths and accumulate
at the base of this enriched crust if the underlying ice is cold and contaminant-
free, as suggested by Schmidt et al. (2011). In this context, the volume of the
accumulated salty water above a hot plume may be larger than in the case of
a pure water system. However, for reasonable salt contents (1–2 wt %), the
volume fraction of brines should probably not exceed 5–10%. Further modeling
efforts are, however, needed to quantify more precisely the role of low-eutectic
constituents.

Our model is clearly limited by its 1d geometry. Only the vertical matrix
deformation associated with compaction is included, and no lateral variations
in water production and matrix properties can be treated. The inclusion of
lateral variations may change the results by focusing the water extraction into
the warmest part of the ice shell (in the center of a hot plume). Moreover,
in our 1d approach, we cannot take into account the ice flow associated with
buoyancy variations. In the hot plume case, for instance, we cannot consider
the effect of the upwelling ice velocity. According to the simulations of Tobie
et al. (2003), the velocities in hot plumes are of the order of 3×10−8 m s−1 for
Rayleigh numbers of about 5×106, before melting initiates. For a moderate value
of permeability constant (k0=10−9 m2), the velocity of downward percolating
water is at least 4 times larger than the upwelling velocity. Both velocities are
comparable only for the lower bound value (k0=10−10 m2, cf. Figure 2.3). In
this context, the upwelling velocity may inhibit melt extraction. However, as
shown in Tobie et al. (2003), the upwelling velocities are strongly reduced when
meltwater is not efficiently extracted, leading eventually to downwelling of the
molten plumes even when water fraction reaches values as low as 1–2%. The
extension into 2d or 3d geometry will be needed to properly describe the lateral
flows and the development of convective instabilities.

Similarly, a 2d/3d approach is necessary to describe the destabilization of large
volume of water accumulated below a shear zone or at the base of a salt-rich crust
above a hot plume. The accumulation of dense liquids above an impermeable cold
ice layer should lead to the development of gravitational (Rayleigh-Taylor-like)
instabilities, which cannot be properly described in our 1d approach. According
to the analytical description of Whitehead & Luther (1975), the time required to
destabilize a dense water reservoir above an ice layer is longer than 10 kyr only for
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ice viscosities larger than 1022 Pa s. Such high viscosity values are possible only
for temperatures lower than 160 K, which implies that large volumes of water can
be present at shallow depths only in the case of a cold conductive layer subjected
to very intense localized heating.

Furthermore, our model neglects the effect of hydrofracturing, possibly rele-
vant in the strike-slip fault set-up. On the Earth, crevasse hydrofracturing has
been shown to allow a very rapid drainage of supraglacial lakes towards the glacier
base (cf. Krawczynski et al., 2009; Irvine-Fynn et al., 2011). As discussed in Chap-
ter 2, differences in physical settings make direct comparison between Earth’s and
Europa’s hydrological system questionable. On Europa, the best candidate envi-
ronment for nucleation and propagation of water-filled cracks would be in cold ice
regions beneath a large volume of accumulated water (similar to what we obtain
in the strike-slip fault set-up). A strong effect counterbalancing this mechanism
would however be the fast freezing of water in such a cold environment (typically
several tens of Kelvins below the melting point in our results for the strike-slip
fault set-up). The corresponding closure rate depends on the crack geometry and
water supply rate and its inclusion would require additional effort (cf. Michaut &
Manga, 2014).

Both gravitational instabilities and hydrofracturing processes may become
predominant only once a sufficient volume of water is accumulated. Further
modeling is needed to evaluate the critical volume for which these processes dom-
inate in Europa’s ice shell conditions and to understand how they differ from
those on the Earth. In any case, once activated, these processes would reduce the
amount of accumulated water, and therefore the volumes reported here should
be considered as upper limits.

7.4 Summary

In this chapter, we investigated the conditions under which water can be gener-
ated and transported by downward two-phase flow within Europa’s ice shell. A
two-phase mixture model was developed in a 1d framework, distinguishing two
possible states: temperate (partially molten ice, with some amount of interstitial
water) and cold (purely solid ice below the melting point).

We considered two distinct geophysical contexts possibly leading to melting
at shallow depths within Europa’s ice shell. Our simulations show that water
produced in the head of a tidally-heated hot plume is rapidly extracted (within
less than a few hundred kiloyears) and no water accumulates at shallow depths
- the maximum porosity never exceeds 1%. In contrast, in the context of a fault
subjected to tidally-induced strike-slip motions, a large fraction of water can
accumulate just below the fault, as long as the underlying ice layer remains cold,
conductive and free of fractures. Our models indicate that complete melting is
soon achieved in a layer a few kilometers below the surface for a shear heating rate
of at least 10−4 W m−3. Our calculations further suggest that the fault must be
active during at least 100 kyr and associated with a periodic strike-slip motions
with the shear velocities of about 10−7–10−6 m s−1 (cf. Nimmo & Gaidos , 2002)
in order to initiate significant melting. The water production and accumulation
below the shear zone might explain the formation of water sills advocated by
Dombard et al. (2013) as a necessary ingredient to produce the morphology of
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Europa’s ubiquitous double ridges.
Overall, despite some simplifications in the water transport description, our

simulations showed that accumulation of a significant water volume above warm
ice plumes is very unlikely, whereas it may be temporarily possible below recent-
ly active double ridges subjected to large strike-slip motions. Transient water
accumulation (≤100 kyr) and drainage may play a key role in the dynamics of
Europa’s ice shell and may be revealed by future exploration missions (Grasset
et al., 2013; Pappalardo et al., 2013). Future modeling will help to understand
the consequences of water accumulation and transport in terms of mass and heat
transfer through the ice shell, as well as their surface expression.
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8. Meltwater production and
gravitational stability of water
lenses in the ice shell of Europa

In the previous chapter we have investigated the possibility of ice melting at shal-
low depths within Europa’s shell for two geodynamic contexts. We have studied
the stability of a potentially newly-emerged meltwater lense in one dimension,
considering constant ice viscosity. As discussed in Section 7.3, this approach is
limited by its one-dimensional character and can account neither for the later-
al ice flows nor for the destabilization of larger water lenses due to formation
of gravitational instability. Also the temperature evolution cannot be properly
described in one dimension. Finally, as already discussed, ice viscosity is highly
nonlinear and, for conditions within Europa’s ice shell, probably far from con-
stant. That is why in this chapter we perform a study similar to that in Chapter 7
- while we considered only one-dimensional geometry and constant ice viscosity
in the previous chapter, we work in two dimensions and consider temperature-,
porosity- and stress-dependent ice viscosity in this chapter. On the other hand,
a porous (two-phase) flow is neglected in this chapter, contrary to Chapter 7 -
these two chapters thus complement each other.

To investigate meltwater production in Europa’s ice shell, we solve the system
of equations (4.74) together with boundary conditions (4.75)–(4.77) and (4.80)–
(4.82). This system (obtained by setting the ice permeability to zero) represents
the impermeable limit of two-phase equations and can be considered as a first step
towards a more complex system that would fully couple the two-phase flow with
the solid-state thermal convection1. In this impermeable approximation, water
is locked within the ice matrix and cannot percolate through microporous veins,
but is rather advected with the ice. When compared with the results of a one-
dimensional study from Chapter 7, the two-dimensional approach should provide
a better assessment of the effect of gravity on the water accumulated in a partially
molten lense by enabling the transport of this material through the formation
of gravitational (Rayleigh-Taylor-like) instability which is not possible in one
dimension (cf. discussion in Section 7.3 and compare results of Sections 5.2.2 and
6.3.2). A two-dimensional model also allows to describe the temperature evolution
in the ice shell more properly. Given that water transport by porous flow is faster
than water advection by the (convecting) ice matrix (cf. water and ice velocities in
Figure 6.2), the time scales of gravitational stability of partially molten material
provided in this chapter can be considered as maximum estimates.

We use numerical method described in detail in Section 4.3 (cf. Algorithms 2
and 3). If not mentioned otherwise, we consider physical parameters from Ta-
ble 3.1. For numerical reasons, a non-zero value of background porosity φoff must
be prescribed (cf. Section 4.3.1). In Section 6.2.4, we found that in the case of
porous flow, the background porosity slightly affects the water extraction time
scales. However, in the case of the impermeable limit of governing equations,
porosity is only advected together with the ice matrix. Its effect on the trans-

1Such a model will be considered in the future study.
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port velocity is thus only due to density difference and not due to its effect on
permeability, i.e. only the difference between the actual porosity value and the
background value matters, while the absolute value of porosity does not matter
(if it is kept reasonably small, i.e. not exceeding a few percents). Based on exper-
imental measurements (cf. Golden et al., 1998), ice with porosity of 5% can still
be regarded as impermeable for water (and therefore ‘cold’ in the glaciologic ter-
minology, cf. Chapter 2) - we therefore set the background value as φoff=5% and
keep it unchanged throughout this chapter. However, to further verify its negli-
gible role, we compared the results of the reference simulation from Section 8.2
with d=0.7 mm computed for two different values of background porosity, φoff=1
and 5% (results for φoff=1% are not shown in the manuscript) and we found qual-
itatively very similar results. Likewise, the SUPG parameter is not varied in our
study. Motivation for this decision is the study performed in Section 6.2.1 which
showed small difference between results for various non-zero values of parameter
τ . We choose τ=0.5 and keep it throughout this chapter.

We start by comparing our results with these of Tobie et al. (2003) for a
case of melt production and transport within a hot plume that develops in a
tidally-heated convecting shell with temperature- and porosity-dependent viscos-
ity (Section 8.1). In the next section we perform a similar study but considering
composite ice rheology (Section 8.2). Finally, in Section 8.3 we explore the possi-
bility of melting at the base of a strike-slip fault and investigate the gravitational
stability of the newly formed molten lense. In each of these sections, we provide
a short description of the particular model set-up corresponding to considered
geophysical context and then we continue with the results. A short discussion
and summary are given in Section 8.4. All computations in Sections 8.1 and 8.2
are performed in a domain with aspect ratio (width to height) 2, on a mesh con-
sisting of 200×100 elements, and due to large viscosity contrast across the shell
(at least 106) are in the conductive lid regime. In Section 8.3, the aspect ratio is
1 and the mesh consists of 100×100 elements.

8.1 Hot plume: comparison with Tobie et al.

(2003)

As mentioned in Chapter 1, several geophysical contexts were suggested that
might initiate partial melting within Europa’s ice shell. One of them is melting
in the hot plumes triggered by the enhanced tidal heating due to thermally-
reduced viscosity suggested by Sotin et al. (2002) and further studied by Tobie et
al. (2003). Here we extend their study by considering compressible mixture of two
incompressible phases (cf. remark in Section 4.3.1). We compare our results with
those reported by Tobie et al. (2003) and investigate also the effect of mixture
compressibility.

8.1.1 Model set-up

For the purpose of comparison with Tobie et al. (2003), we take [r]=20 km and
[L]=3×105 J kg−1 instead of values from Table 3.1. Also, we consider Frank-
Kamenetskii (cf. Tobie et al., 2003) approximation of temperature-dependent
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viscosity (instead of the Arrhenius law, eq. 1.3):

µm = µbot
m exp

(

−γT
T−TM

∆T

)

, (8.1)

with µbot
m the reference (bottom) viscosity at the melting point and

γT =
Ea∆T

RT 2
M

, (8.2)

where Ea=50 kJ mol−1 is the activation energy, TM=270 K is the melting temper-
ature (taken constant troughout the domain) and ∆T=170 K is the temperature
difference across the shell. For parameters relevant for Europa, this leads to
viscosity contrast of ∼1.2×106. Porosity weakening is also included in a form
slightly modified from eq. (1.5) to cancel out the effect of background porosity:

µsoft
m =

{

exp(−γm(φ−φoff)) φ>φoff

1 φ≤φoff , (8.3)

with γm=45 corresponding to one order of magnitude viscosity decrease induced
by porosity φ=5% (cf. De La Chapelle et al., 1999; Tobie et al., 2003). The tidal
heating is taken from Tobie et al. (2003) as well:

Qt =
2Hmax

µm

µmax
m

+µmax
m

µm

, (8.4)

with Hmax the maximum volumetric dissipation rate that occurs at viscosity µmax
m ,

chosen here in accordance with Tobie et al. (2003) as µmax
m =1.5×1014 Pa s.

8.1.2 Results

For the reference simulation, we consider that µbot
m =µmax

m =1.5×1014 Pa s. The
bottom Rayleigh number, defined as

Rabot =
αρ2mcmg∆T [r]3

kT
mµ

bot
m

, (8.5)

is then equal to 1.5×106. The maximal tidal heating rate is chosen again in
accord with Tobie et al. (2003) as Hmax=2.7×10−6 W m−3.

Figure 8.1 shows time evolution of ice velocity and porosity from t∼963 kyr
(shortly after the melting starts) to t∼1219 kyr. Melting starts at the bottom
boundary and occurs also at the top of the ascending plume (cf. panels a–d).
After approximately 100 kyr, the amount of melt accumulated at the top of the
plume is large enough to inhibit the ascent of warmer material (panel e) and
to initiate its collapse. Even though the porosity difference between the molten
region and the background value is only a few percents (≤3%), the majority of
surplus water is very quickly (within !200 kyr) transported towards the bottom
boundary with the collapsing ice (panels g–j). The molten material accumulates
at the bottom boundary since water is in our impermeable limit transported only
within ice and the bottom boundary is locked for the vertical ice movement (cf.
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eq. 4.77). Figure 8.2 shows the temperature and heating rate at t∼963 kyr (cor-
responding to panels a, b in Figure 8.1) - the maximum heating is concentrated
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Figure 8.1: Snapshots of ice velocity (left column) and porosity (right column)
computed with Hmax=2.7×10−6 W m−3, µmax

m =1.5×1014 Pa s and µbot
m =1.5×1014

Pa s. Time increases from top to bottom. Black contours in porosity fields bound
porosity larger than the background value (φ>φoff).
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Figure 8.2: Temperature (left) and heating rate (right) at the same time as panels
a, b in Figure 8.1. The temperature isocontours are spaced by 50 K and the thick
black contour marks the melting temperature.

within the hot plume, in agreement with the findings of Tobie et al. (2003).
In order to verify our results, we check the conservation of mass and energy

- we integrate in time (from t=0 to t=τ) and space (over the whole domain Ω)
equations (4.74a) and (4.74d) with the terms rf and − [φ]

T rf , respectively, added
on their right-hand sides (to account for the effect of phase change). Taking into
account the appropriate boundary conditions, this leads to:
∫

Ω

φ dx (t=τ) =

∫

Ω

φ dx (t=0) +

∫ τ

0

∫

ΓT

V
[φ]

(1−[φ]φ)vm ·n ds dt+

∫ τ

0

∫

Ω

rf dx dt

(8.6)
and

∫

Ω

T dx (t=τ) =

∫

Ω

T dx (t=0)−
∫ τ

0

∫

Ω

Vvm ·∇T dx dt (8.7)

+

∫ τ

0

∫

ΓB∪ΓT

V∇T · n ds dt+

∫ τ

0

∫

Ω

[φ]

T
(QT−rf) dx dt ,

respectively. Figure 8.3 depicts the left- and right-hand sides of eqs (8.6) and
(8.7) and shows that the balances are well conserved.
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Figure 8.3: Conservation of mass and energy for the reference simulation.
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The role of delayed tidal heating introduction and of mixture com-
pressibility

While we included tidal heating from the very beginning of the simulation, Tobie
et al. (2003) computed a quasi steady-state without heating and included it only
after convection in the shell was well developed (personal communication). To
even more assimilate our results with these of Tobie et al. (2003), we proceed in
the same manner: after reaching a quasi steady-state without tidal heating, we
add the heating and consider two possibilities - an incompressible mixture (by
setting the right-hand side of eq. 4.74b zero), that should closely correspond to
the approach of Tobie et al. (2003), and a compressible mixture (our formulation).

The difference between compressible and incompressible mixture formulation
is however, for this case, negligible, as can be seen from Figure 8.4, that shows the
time evolution of the total amount of water within the domain (left-hand side of
eq. 8.6) for these two cases - the only difference is that in the case of incompressible
mixture (green line) a slightly larger amount of water is generated.
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Figure 8.4: Time evolution of water contents for simulations with heating only
added after reaching a quasi steady-state. Two different mixture formulations
are considered: compressible (red) and incompressible (green, cf. text).

Comparing the water content from these two simulations with the water con-
tent from our reference simulation (with heating considered from the beginning
of simulation), we observe that more water is produced when a quasi steady-state
is reached first - this can be seen also from Figure 8.5 that shows time evolution
of porosity (to be compared with the right column of Figure 8.1). Here, as in the
reference case, melting occurs at the bottom boundary as well as at the top of the
hot plume (panels a, b)2. After approximately 60 kyr, the amount of meltwater
is large enough to stop the upwelling of warm ice (panel c) and the majority of
generated meltwater collapses down with sinking ice after another ∼60 kyr. The
overall evolution closely resembles that of the reference simulation (Figure 8.1),
only it happens approximately two times faster (time frame of 123 kyr instead of

2Note that the plume is now a few kilometers higher since melting did not inhibit the
formation of the plume before a quasi steady-state was reached, contrary to the reference case,
where the onset of melting before reaching a fully developped plume slightly slowed down its
formation.
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Figure 8.5: Snapshots of porosity for the simulation when heating is introduced af-
ter reaching a quasi steady-state and considering compressible mixture (cf. text).
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m =1.5×1014 Pa s and µbot
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256 kyr). This is due to the fact that in the latter case (steady-state+heating),
a larger region is at (or close to) the melting point and therefore more melt is
produced (which in turn quickens the whole process). Overall, the difference be-
tween these two approaches (inclusion of heating from the very beginning or its
introduction only after a quasi steady-state is reached) is rather quantitavive than
qualitative and, since we do not see a reason to delay the introduction of heating,
in what follows, the tidal heating will be included from the very beginning of all
the simulations.

The role of bottom viscosity and of tidal heating amplitude

Until now, we have assumed that the melting point viscosity µbot
m is equal to

the viscosity that maximizes the heating (µmax
m =1.5×1014). When four times

smaller viscosity is considered, µbot
m =µmax

m /4=3.75×1013 Pa s (corresponding to
Rabot=6×106) while keeping the same heating rate Hmax=2.7×10−6 W m−3, the
melting temperature is not reached (even after 600 kyr of simulation), since the
maximum heating occurs in the cold downwellings (cf. Tobie et al., 2003). To
reach the melting temperature and start melting the ice, a larger value of the
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Figure 8.6: The same as in Figure 8.2 but for µbot
m =3.75×1013 Pa s and

Hmax=4.6×10−6 W m−3.

maximal heating rate is necessary. Following Tobie et al. (2003), we choose
Hmax=4.6×10−6 W m−3, for which temperature and heating rate are depicted
in Figure 8.6 shortly after the onset of melting. Even though the maximal tidal
heating still occurs within the cold downwellings, the heating rate within the
plume interior is large enough to reach the melting temperature. As in the pre-
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Figure 8.7: The same as in Figure 8.5 but for µbot
m =3.75×1013 Pa s and

Hmax=4.6×10−6 W m−3 introduced at the beginning of the simulation.
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vious cases, melting first occurs at the bottom boundary and at the top of the
ascending plume (cf. Figure 8.7, panels a, b) and, due to larger heating at the
top of the plume (cf. Figure 8.6), the partially molten area extends also laterally
(Figure 8.7, panel c). However, after approximately 60 kyr, the surplus water
content (with respect to the background value φoff=5%) starts to collapse down
as in the previous cases (Figure 8.7, panel d) and after another ∼20 kyr, the
majority of melt is concentrated at the bottom boundary (Figure 8.7, panel e).

Overall, our results agree qualitatively with the results of Tobie et al. (2003)
and suggest that accumulation of a partially molten material elsewhere than
on the bottom boundary is in the current setting (temperature- and porosity-
dependent viscosity and uniform melting temperature) almost impossible.

8.2 Hot plume: the effect of stress-dependent
viscosity

In this section we investigate the effect of stress-dependent rheology on the process
of melting and water transport within a convecting ice shell. The ice viscosity
now depends on temperature, stress, and porosity (cf. eqs 1.1, 1.2, and 1.5).

8.2.1 Model set-up

Due to high computational demands, we can no longer use the Taylor-Hood
element spaces. Instead, we use linear elements for all mechanical quantities
(porosity φ, dynamic pressure Π, and ice velocity vm, cf. Sections 6.2.3 and
6.4.1) and regularize the dynamic pressure Π by taking

V
[φ]

∇ · vm = −
R

1+R
rf + επ∇2Π (8.8)

with επ=10−6 instead of eq. (4.74b). Considering further (only for the purpose
of regularization)

∇Π · n = 0 (8.9)

at the bottom and side boundaries, ΓB and ΓS, respectively (in order to avoid
surface integrals arising from the regularization term), and bearing in mind that
ω=0 at the top boundary (due to eq. 4.81), the weak form of eq. (8.8) can be
written as

∫

Ω

V
[φ]

(∇ · vm)ω dx+

∫

Ω

R
1+R

rf ω dx+

∫

Ω

επ∇Π ·∇ω dx = 0 ∀ω∈W (8.10)

and will be used instead of eq. (4.86)3. Since we no longer attempt to compare
our results with these of Tobie et al. (2003), we again take values of parameters
from Table 3.1, namely [L]=3.33×105 J kg−1 (cf. Lide, 2004) and [r]=30 km,
which is necessary for the onset of convection with medium to larger grain sizes
(d"0.5 mm) while keeping reasonable values of tidal heating (cf. Han & Showman,

3In the temperate ice setting with composite rheology and linear elements (Sections 6.4.1
and 6.4.3), no regularization is necessary since the term ∼∇2Π (or ∼∇Π ·∇ω in the weak form)
is already present in the formulation (cf. eq. 4.63).
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2011). We consider grain sizes from the range of 0.1–5.0 mm, that are plausible
for Europa and allow convection to occur for Europa-like ice shell thicknesses
(∼30 km) and realistic values of tidal heating rates (cf. Tobie et al., 2003; Han
& Showman, 2011). We use parameters for the deformation mechanisms from
Table 1.1 (cf. Goldsby & Kohlstedt , 2001; Durham et al., 2001). Tidal heating is
considered in the same form as in Section 8.1 - we keep µmax

m =1.5×1014 Pa s and
vary Hmax from 3 to 8×10−6 W m−3. Heating is introduced from the very start
of all our simulations.

In the previous section, we have confirmed the important role of the ratio of
the bottom (reference) viscosity µbot

m and the viscosity that maximizes the tidal
heating, µmax

m , reported by Tobie et al. (2003). In this section, for the purpose of
comparison, we define µbot

m as a viscosity corresponding to diffusion creep at the
bottom boundary (T=TM) for a material in rest (zero dynamic pressure Π, no
deformation).

For all simulations in this section, the viscosity contrast is approximately 1010

(no viscosity cut-off is applied) as a result of combined effect of strengthening
towards the top boundary due to temperature decrease and weakening due to
presence of melt within the partially molten areas. The implementation of vis-
cosity cut-off (that would roughly approximate the brittle ice rheology, cf. Han
& Showman, 2005) could substantially modify our results and will be comprised
in the future study. The prevailing mechanisms are diffusion creep (acting with-
in approximately the bottom half of the domain), dislocation creep (towards the
cold top boundary) and grain boundary sliding (in a layer within these two mech-
anisms).

8.2.2 Results

For our reference simulation, we choose Hmax=3×10−6 W m−3 and d=0.7 mm
- the bottom viscosity is then µbot

m =1.56×1014 Pa s leading to Rabot=4.8×106

and µbot∼
m µmax

m . Based on the results of Section 8.1, this choice should lead to
maximal tidal heating within the hot plumes, which is indeed the case as can be
seen from Figure 8.8 that shows the temperature and heating shortly after the
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Figure 8.8: The same as in Figure 8.2 but for Hmax=3×10−6 W m−3 and com-
posite ice rheology with d=0.7 mm.
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Figure 8.9: The same as in Figure 8.5 but for Hmax=3×10−6 W m−3 and com-
posite ice rheology with d=0.7 mm.

onset of melting (t∼200 kyr).

Time evolution of porosity φ is depicted in Figure 8.9 - as in the previous
cases, melting starts within a central hot plume which is rather quickly (during
∼200 kyr) destabilized due to negative melt buoyancy (panels a–c). Melting
then continues within two side plumes (panels d–e) and also within two central
plumes that originated from the former central plume destabilized by melt (panel
f). After approximately 1200 kyr from the onset of melting, a partially molten
region covers the whole bottom boundary (panel g) with the surplus (w.r.t. the
background value φoff) maxima of about 6%. The maximum height occupied by
some amount of partial material (φ>φoff) is however <10 km.

Time evolution of the total meltwater content within the ice shell is shown
in Figure 8.10 (red color) and indicates that once melting starts (at t∼200 kyr),
the water content rises until the end of simulation (t=1.5 Myr). Nonetheless, as
shown in Figure 8.9, all the melt is accumulated within few kilometers from the
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bottom boundary. If permeability of ice at the bottom boundary differed from
zero, all the meltwater would flow from the ice shell into the underlying ocean
(cf. results for temperate ice in Chapter 6). This free outflow of water would
be possible once thermal convection is coupled with the two-phase flow (since
the bottom boundary, kept at the melting temperature and therefore temperate,
would be always water-permeable) and will be thus comprised in the next step
of this work.
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Figure 8.10: The same as in Figure 8.4 but for Hmax=3×10−6 W m−3 and com-
posite ice rheology with d=0.7 mm.

In the previous section we have found that the effect of compressibility is rather
negligible. Green line in Figure 8.10 corresponds to the solution computed with
the same set of parameters as above but for the incompressible limit of governing
equations. Again, the only difference between compressible and incompressible
solutions is a slight overestimation of the amount of melt in the case of the latter,
while the overall time evolution is comparable for both cases4.

The role of grain size

To investigate the effect of grain size on the process of ice melting and subsequent
water transport, we compute a couple of simulations with grain sizes ranging
between 0.1 and 5 mm. At first, we consider a grain size slightly larger than
in the above reference simulation, d=1 mm - the corresponding value of bottom
viscosity is then µbot

m =3.19×1014 Pa s leading to Rabot=2.3×106 and µbot∼
m 2µmax

m .
For this choice of grain size, heating still occurs well within the plume. Since
the bottom viscosity is rather high, the flow velocities are quite small and only
relatively small hot plume develops. However, as maximum heating occurs within
the plume interior, melting temperature is reached within ∼200 kyr from the
beginning of the simulation and melting starts at the bottom boundary. Time
evolution of porosity is depicted in Figure 8.11 and illustrates that melting occurs
only within a few kilometers from the bottom boundary (since the onset of melting

4Free surface is prescribed at the top boundary in order to enable compaction/dilation of
computational domain once melting/freezing starts. Yet, we do not consider the accompanying
changes of the domain shape in our current model. The proper evolution of free surface bound-
ary with the associated domain shape changes might be implemented in one of the next steps
towards a more realistic model.
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Figure 8.11: The same as in Figure 8.5 but for Hmax=3×10−6 W m−3 and com-
posite ice rheology with d=1 mm.

occured long before the plume was fully developed). When choosing even larger
grain size, d=5 mm, the bottom viscosity is µbot

m =8×1015 Pa s leading to Rayleigh
number Rabot=9.4×104, which is too small to allow convection.

We considered also smaller values of grain sizes. For d=0.5 mm, the bottom
viscosity is µbot

m =8×1013 Pa s leading to Rabot=9.4×106 and µbot
m ∼ 1

2µ
max
m . For this

choice of parameters, the results of previous section suggest that the maximal
heating will occur at the plume boundary, which can be seen from Figure 8.12.
However, in this case, heating is strong also within the plume and thus the overall
evolution does not differ significantly from that computed for d=0.7 mm.

For d=0.1 mm, which can be considered as a lower limit for Europan grain
size, the bottom viscosity is µbot

m =3.19×1012 Pa s leading to Rabot=2.3×108 and
µbot
m ∼ 1

47µ
max
m . This is indeed extremely small value and based on our previous

results, we can expect heating to occur outside hot plumes - this is shown in
Figure 8.13 that depicts temperature and heating at t∼500 kyr for the extremely
large value of volumetric heating, Hmax=8×10−6 W m−3 (that can be considered
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Figure 8.12: The same as in Figure 8.2 but for Hmax=3×10−6 W m−3 and com-
posite ice rheology with d=0.5 mm.

as an upper limit, cf. Tobie et al., 2003). Nevertheless, even for this large heating,
the melting temperature is not reached anywhere within the ice shell, indicating
that for the current setting (grain size as small as d=0.1 mm and the heating
maximizing viscosity of µmax

m =1.5×1014 Pa s) no melt would be produced.
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Figure 8.13: The same as in Figure 8.2 but for Hmax=8×10−6 W m−3 and com-
posite ice rheology with d=0.1 mm.

8.3 Strike-slip fault

In the previous sections, we have investigated whether melting can occur at
the top and/or within tidally heated hot plumes. Another source of heat that
could initiate partial melting within Europa’s ice shell is shear heating at tidally-
activated strike-slip faults, first suggested by Gaidos & Nimmo (2000) and further
studied by Nimmo & Gaidos (2002). Our simulations performed in one dimen-
sion indicated that large fraction of liquid water may accumulate at the base of
a tidally-heated fault (cf. Section 7.2.2). The one-dimensional description of the
problem, however, was ignoring the possible gravitational destabilization of the
accumulated water due to formation of Rayleigh-Taylor-like instability. Here, we
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neglect the porous flow (since we consider the impermeable limit of the govern-
ing equations, cf. the beginning of this chapter) and we study the gravitational
stability of a potential meltwater lense, thus complementing our resuts from the
one-dimensional study. Moreover, in two dimensions, the heat source is strongly
localized and better described than in one dimension.

8.3.1 Model set-up

The simulation domain consists of a square of 20 km×20 km. All other parameters
are taken from Table 3.1. To describe heating produced by shear motions at the
fault, we follow the approach of Han & Showman (2008) and prescribe a heat
source of the form

Qs = Hs exp

[

−
(

x−x0

σx

)2

−
(

z − z0
σz

)2]

Γs(φ) , (8.11)

where we added a reduction of shear heating due to reduction of the friction
coefficient after the onset of melting, Γs(φ) (cf. Section 7.1.2). For lack of better
knowledge, we parameterize it (as in one dimension) in the same way as the
weakening of viscosity (eq. 8.3):

Γs =

{

exp(−γs(φ−φoff)) φ>φoff

1 φ≤φoff , (8.12)

with the fixed weakening parameter, γs=γm=45 (based on the results of sec-
tion 7.2.2). Two values of shear heating amplitude will be used, Hs=10−4 and
Hs=2×10−4 W m−3 (cf. Nimmo & Gaidos , 2002; Han & Showman, 2008). The
heat source is placed near the top boundary (z0=19.8 km) in the middle (x0=10
km) and is approximately 1 km wide (with σx∼0.63 km and whole Gaussian peak
within the computational domain) and 2 km high (with σz∼2 km and only half
of the peak within the computational domain). Geometry of the heat source is
fixed in all simulations.

The volumetric tidal heating of the form given by eq. (8.4) is also considered
in some simulations with amplitudes of 2×10−6 and 5×10−6 W m−3, respectively.
The initial temperature profile is conductive (without any disturbance) and on-
ly temperature (Frank-Kamenetskii approximation) and porosity dependence of
viscosity is considered (as in Section 8.1, cf. eqs 8.1–8.3). The bottom (reference)
viscosity corresponding to melting-point temperature is set as in Section 8.1 to
µbot
m =1.5×1014 Pa s. The viscosity contrast in this setting is approximately six

orders of magnitude before melting starts (due to viscosity temperature depen-
dence) and can reach more than 108 when melting occurs (due to softening effect
of the melt, cf. Figure 8.14, panel d).

8.3.2 Results

The role of shear heating amplitude

At first, we investigate the effect of shear heating amplitude Hs. Based on results
of Nimmo & Gaidos (2002), we choose two values, Hs=10−4 and Hs=2×10−4

W m−3. Initially, we do not consider any volumetric tidal heating, i.e. Q=Qs.
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Figure 8.14: Temperature for simulations with Hs=10−4 W m−3 (panel a) and
Hs=2×10−4 W m−3 (panel b). Viscosity for simulation with Hs=2×10−4 W m−3

at the onset of melting (panel c) and approximately 600 kyr after the onset of
melting (panel d). The temperature isocontours are spaced by 50 K and the
thick black contour marks the melting temperature (panel b) or the viscosity at
the melting point (µbot

m =1.5×1014 Pa s, panels c, d), respectively. No volumetric
heating is considered in these simulations.

The first two panels of Figure 8.14 show temperature for these two cases, re-
spectively. We observe that in the case with weaker shear heating amplitude,
Hs=10−4 W m−3, the melting temperature is not reached even after ∼6700 kyr
from the start of the simulation (panel a). On the other hand, in simulation with
larger shear heating, Hs=2×10−4 W m−3, the melting temperature is reached
after ∼1800 kyr at just ∼3 km below the surface (panel b). The subsequent
evolution of porosity is depicted in Figure 8.15 and suggests that (for this model
setting) a partially molten lense with surplus porosity (w.r.t. φoff) of about 10–
15% can form approximately 3 km below the surface and stay there for at least
600 kyr. The stability of this partially molten region is due to viscosity increase
of approximately one order (from ∼1014 to ∼1015 Pa s) just below (cf. panels c,
d in Figure 8.14).
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Figure 8.15: Time evolution of porosity for simulation with Hs=2×10−4 W m−3

and no volumetric heating. Only cut-out detail (x∈〈7.5, 12.5〉 and z∈〈14, 19〉) is
shown for better clarity. Time increases from left to right. Black contours in
porosity fields bound porosity larger than the background value (φ>φoff).

170



0

10

20

z 
[k

m
]

0 10 20

x [km]

100 150 200 250

T [K]

0 10 20

x [km]

14 16 18 20

log(µm)

0 10 20

x [km]

100 150 200 250

T [K]

0

10

20

z 
[k

m
]

0 10 20

x [km]

14 16 18 20

log(µm)

(b) (d)(a) (c)

t~1440 kyr t~2002 kyrt~1440 kyr t~2002 kyr

Figure 8.16: Temperature and viscosity at the onset of melting (panels a, b) and
at the end of our simulation (panels c, d) computed forHmax=2×10−6 Wm−3 and
Hs=2×10−4 W m−3. The temperature isocontours are spaced by 50 K and the
thick black contour marks the melting temperature (panels a, c) or the viscosity
at the melting point (µbot

m =1.5×1014 Pa s, panels b, d), respectively.

The role of volumetric heating amplitude

We now study the effect of the addition of volumetric heating to shear heating,
i.e. we consider Q=Qs+Qt in the energy balance (eq. 4.74d). In the following
simulations, the shear heating amplitude is fixed to Hs=2×10−4 W m−3, while
two values of volumetric heating amplitude are considered, Hmax=2×10−6 and
Hmax=5×10−6 W m−3. Figure 8.16 shows the temperature and the corresponding
viscosity forHmax=2×10−6 Wm−3 at the onset of melting (panels a, b) and at the
end of our simulation (panels c, d). Melting temperature is reached after about
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Figure 8.17: Time evolution of porosity computed for Hmax=2×10−6 W m−3 and
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1440 kyr at depth of approximately 3 km from the surface, as in the previous
case. Contrary to the previous case, the internal temperature increases due to
the run-away effect of volumetric heating - once the temperature increases, the
corresponding viscosity decreases leading to stronger heating (since µbot

m =µmax
m , cf.

Section 8.1) and so on. Therefore, at the end of simulation (at t∼2002 kyr), the
temperature of the large part of the computational domain is well above 250 K
with corresponding viscosities of the order of 1014 Pa s (Figure 8.16, panels c and
d). The corresponding porosity evolution is shown in more detail in Figure 8.17.
We observe the creation of a partially molten lense of a few percents during
approximately 160 kyr (panels a–c) and its relatively rapid destabilization due to
its negative buoyancy within less than 200 kyr (panels d, e) with the subsequent
water transport towards the bottom boundary (panels f, g).

Results for the same simulation only with Hmax=5×10−6 W m−3 are shown
in Figures 8.18 and 8.19. For this intermediate value of volumetric heating,
the melting temperature is first reached at the bottom boundary and within
the ascending hot plume promoted by the shear-heating-weakened zone in the
top middle of the domain. When melting temperature is finally reached also
at the fault location (at t∼1252 kyr, cf. Figure 8.18, panel a), a large part of
the underlying material is already partially molten (panel a in Figure 8.19) with
the corresponding viscosity of the order of 1013 Pa s or even less (Figure 8.18,
panel b). Within approximately 100 kyr, the top partially molten lense begins
to collapse down (panel c in Figure 8.19) and only 50 kyr after it reaches the
top of the partially molten plume (panel d). The subsequent transport of water
molten at the fault towards the bottom boundary occurs on an already well
established pathway through a partially molten plume with viscosities !1013 Pa s
(Figure 8.19, panels e–g, and Figure 8.18, panel d).

8.4 Summary and discussion

In this chapter we have investigated the possibility of the onset of melting within
the ice shell of Europa in two geodynamical contexts and two-dimensional ge-
ometry. In the case of tidally-heated hot plumes, melting temperature is easily
reached for the majority of appropriate physical parameters, but melting mostly
occurs within the lower half of the ice shell. Even if some melt is produced at

0

10

20

z 
[k

m
]

0 10 20

x [km]

100 150 200 250

T [K]

0 10 20

x [km]

14 16 18 20

log(µm)

0 10 20

x [km]

100 150 200 250

T [K]

0

10

20

z 
[k

m
]

0 10 20

x [km]

14 16 18 20

log(µm)

(b) (d)(a) (c)

t~1252 kyr t~1557 kyrt~1252 kyr t~1557 kyr

Figure 8.18: The same as in Figure 8.16 but for Hmax=5×10−6 W m−3.
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Figure 8.19: The same as in Figure 8.17 but for Hmax=5×10−6 W m−3.

the top of hot plume, it is still located at least 10 km below the surface due
to the presence of a thick conductive lid at the top of computational domain.
Moreover, even small amounts of melt (∼ few percents above the background
value φoff) cause relatively quick destabilization of the ascending hot plumes and
their collapse towards the bottom boundary within approximately 100–200 kyr.
Our results thus agree with the results of Tobie et al. (2003) and indicate that
accumulation of partial melt close to the surface is not likely in this context.

This is in agreement with our results from the one-dimensional study (Sec-
tion 7.2.1). While in the previous chapter all the liquid water produced in the
hot plume was very quickly (within ! few hundreds of kiloyears) drained towards
the underlying ocean by a porous flow through the partially molten temperate
ice, in this chapter the liquid water was advected downwards with the collapsing
ice due to formation of gravitational (Rayleigh-Taylor-like) instability. These two
studies are complementary in the sense that one adresses the water transport by
porous flow and the other by the development of gravitational instability. Their
results agree in that the accumulation of partially molten material is not possi-
ble within the convecting ice shell of Europa and that all the produced water is
rather rapidly transported towards the underlying ocean. A more complex model
that would couple two-phase flow with solid-state thermal convection and would
thus address both these aspects (now investigated separately) together will be
considered in the future study. However, in the case of hot plumes, it will prob-
ably not have a big effect, since both approaches (porous flow and gravitational
instability) produce qualitatively similar results.

In the case of the strike-slip fault, melting temperature might be reached very
close to the surface (∼3 km) for large amplitudes of shear heating of at least
Hs=2×10−4 W m−3. Our results indicate that if the layer below the fault is not
internally heated, a small lense of partially molten material can be stable for
at least 600 kyr. On the other hand, if the underlying layer is tidally heated,
this lense is quickly destabilized (with the destabilization rates depending on the
heating amplitude).
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The results of our one-dimensional study performed in the previous chapter
(Section 7.2.2) indicated that a large fraction of water might accumulate a few
kilometers below the surface and remain stable as long as 200 kyr. However, by
considering only one dimension, we have naturally neglected the effect of possible
gravitational destabilization of this lense due to the development of Rayleigh-
Taylor-like instability. In two dimensions, while neglecting porous flow, we show
that this effect might destabilize the partially molten lense of only few percents
within several tens to few hundreds of kiloyears if the ice viscosity is sufficiently
decreased due to internal heating. As already mentioned, a fully coupled model of
two-phase and convective flows, adressing both transport mechanisms together,
will be the subject of further study. Nevertheless, we do not expect it will sig-
nificantly change our current results since the porous flow can only occur within
an area of partially molten (temperate) ice. The inclusion of water transport
by porous flow into the current model will thus probably speed up the process
of water extraction in the simulations with internal heating, where the melting
temperature is reached within the ice shell (cf. Figures 8.16 and 8.18) but should
not affect the stability of a partialy molten lense when the internal heating is
omitted.

All our simulations neglect the possible drainage of water through the process
of hydrofracturing. As have already been mentioned in Section 2.1, we do not
consider this transport mechanism to be responsible for water drainage within
Europa’s ice shell. If the fractures developed after all, they might drain the
accumulated water rather quickly through the formation of a macroscopic system
of crevasses - in this sense, the partially molten lense’s lifetimes provided in this
chapter might be considered as upper estimates.

As already mentioned in Chapter 1, the presence of a possibly significant
fraction of contaminants within the ice shell was suggested based on the obser-
vations (e.g. McCord et al., 1998; Kargel et al., 2000; Zolotov & Kargel , 2009).
Low-eutectic constituents such as chloride salts could lower the melting point by
several tens of Kelvins (Kargel et al., 2000; Pappalardo & Barr , 2004) and their
presence might have a large impact if they were located only in the upper part
of the ice shell underlaid by cold and contaminant-free ice. Apart from the ef-
fects on the melting temperature of ice, the presence of salts would also influence
its buoyancy, leading to a coupled thermo-compositional (two-phase) convection
problem. The importance of compositional effects on surface topography is ad-
vocated by scaling arguments in Pappalardo & Barr (2004), and an attempt to
numerically simulate the phenomenon has first been done by Han & Showman
(2005). However, in their model, the advection of salts is assumed to be solely due
to ice flow and the potentially important salt transport by two-phase drainage of
highly concentrated brines is neglected.

The future development of a current model will naturally involve the relax-
ation of the zero permeability assumption, thus permitting to arrive at the fully
coupled model of solid-state thermal convection and the porous (two-phase) flow.
The implementation of viscosity cut-off to approximate brittle ice rheology as
well as the extension of the problem to two-phase thermo-chemical convection by
computing the salinity evolution and implementing the effect of salt on the melt-
ing temperature and buoyancy, might be considered in the future study. Even
though we argued for its negligible effect, the independent study of hydrofrac-
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turing should be performed in order to verify this assumption. If it, after all,
indicates the significance of this transport process, its suitable parameterization
should be implemented into the existing model.
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Conclusions and perspectives

In this work, we have investigated the conditions under which water can be gen-
erated and transported within the ice shell of Europa. For this purpose, we have
adapted the theory of two-phase flow to the conditions of Europa’s ice shell and
we have developped numerical tools in 1d and 2d geometry to quantify the water
accumulation and transport for different melting scenarios.

Using the current knowledge about Europa and the analogy with water trans-
port in terrestrial glaciers, we identified the main geodynamical contexts under
which water may be generated on Europa and we related them with the expected
transport mechanisms. Due to its eccentric orbit around Jupiter, the tidal dissipa-
tion has a strong impact on the thermal structure of Europa’s ice shell. Assuming
that the ice shell is in the convective regime, the thermally-reduced viscosity in
the ascending hot plumes may significantly increase the heating rates and lead
to runaway melting as suggested by Sotin et al. (2002). In this case, melting
would occur within the convective portion of the ice shell. According to the find-
ings of Nimmo & Gaidos (2002), shear motions along tidally-activated strike-slip
faults result in a very localized and strong heat source located only a few kilome-
ters below Europa’s cold surface, which might eventually lead to shallow melting
within the topmost, brittle part of the shell. Given the anticipated conditions
in these two geodynamical contexts, we do not expect crevasse hydrofracturing,
a dominant mechanism within the Earth’s glaciers responsible for annual water
drainage, to be widely present within Europa’s ice shell. Instead, we argue that
microporous flow of liquid water, similar to magma percolation within the Earth’s
mantle and mathematically described by two-phase mixture equations, could be
responsible for draining the potential water reservoirs together with a possible
formation of gravitational (Rayleigh-Taylor-like) instabilities.

Following the approach of Drew (1983), Drew & Passman (1999), Bercovici
et al. (2001) and Šrámek et al. (2007), we proposed a detailed derivation of two-
phase equations for the particular case of mixture of water ice and liquid water.
First, we considered the general single-phase balance laws and the corresponding
jump conditions and we performed averaging in order to obtain the multi-phase
equations. Then, restricting ourselves to two-phase water-ice mixture, we formu-
lated the governing equations together with the appropriate constitutive relations.
Finally, we performed a scale analysis that allowed us to neglect terms of minor
importance (such as the inertial terms in the equations of motion or the deforma-
tional work of both phases in the balance of energy) and we introduced the zero
C approximation, an analogue of the zero compaction length approximation that
neglects the mechanical coupling between the viscous matrix deformation and the
flow of a less viscous fluid through the compacting matrix. The numerical tools
developed and used throughout this thesis are based on finite volume and finite
element methods. Since, in the zero C approximation (and for a suitably chosen
initial condition) the system of two-phase equations results in a discontinuous
solution containing shocks, a TVD method was chosen in order to assure solu-
tion stability. If the mechanical coupling is restored into the system of governing
equations, the solution exhibits (again, for a suitably chosen initial profile) the
formation of wave trains.
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In the third part of this thesis, we performed parametric studies of water
transport through the temperate ice shell in one and two dimensions. In this set-
ting, the temperature of the shell is constant in time and equal to the (pressure)
melting temperature, and the energy balance serves only to compute the rate of
melt production. We investigated the role of several material parameters on the
liquid water transport and found that the key role in this process is played by the
ice permeability (i.e. the ability of ice to transmit liquid water). Permeability
affects both, the local and global characteristics of water transport by control-
ling the time scale of the process as well as strongly influencing the wavelength.
A similar effect on the local scale (in terms of wavelength) was also found for the
ice viscosity - the smaller the viscosity, the smaller the wavelength. Yet, viscosity
has almost negligible effect on the time scale of the process. Moreover, we have
found that the very complex ice rheology (in general depending on temperature,
grain size, deformation, water content, etc.) can be in numerical simulations
of two-phase flow in our planetary setting approximated by a constant viscosity
from the range of 1013 to 5×1015 Pa s. We also investigated the role of surface
tension that could not have been neglected solely based on the scale analysis - its
effect however was found to be completely negligible and we thus decided to omit
surface tension in the following work. Finally, the mechanical coupling between
the two phases, represented by the parameter C , was found to be important, es-
pecially when the local character of flow is of interest. While the results of studies
in one and two dimensions do not differ substantially for the majority of investi-
gated parameters, a considerable difference was found for simulations with large
percolation threshold (φc"3%), that is used as an approximation of the observed
permeability drop for very small porosities. While in one dimension, the partial-
ly molten material remained at its initial position, since permeability of the ice
below was effectively zero, in two dimensions, the partially molten area collapsed
downwards (even though the underlying ice was effectively impermeable) due to
formation of the gravitational instability. Overall, the results of this parametric
study indicate that partially molten reservoirs are not gravitationally stable in
the temperate ice shells and that the liquid water is rather quickly (within less
than a few tens of kiloyears) delivered to the underlying water ocean.

In the last two chapters, we concentrated on the investigation of the onset
of melting and the subsequent water evolution within the ice shell of Europa
in the two melting scenarios. We performed a one-dimensional study where the
transport of meltwater was enabled in the temperate parts of the ice shell by
porous (two-phase) flow and a two-dimensional study where we only considered
the impermeable limit of two-phase equations. In the latter case, all the liquid
water is locked within the ice and advected with it (i.e. the relative velocity
between ice and water is equal to zero). These studies are complementary in
the assumed transport mechanism (porous flow vs. gravitational instability) and
can be both considered as the first steps towards a more complicated model that
would couple these two approaches.

In the case of tidally-heated hot plumes, we found that melting could initiate
within an ascending hot plume even for relatively small amplitude of tidal heating
of 3×10−6 W m−3 if the melting point viscosity is close to 1.5×1014 Pa s which
corresponds to moderate values of grain size (d=0.5–1 mm). For larger value
of grain size, d=5 mm, convection does not initiate (shell thickness of 30 km is
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considered) and for the smallest grain size used (d=0.1 mm) convection develops
but the maximum heating occurs just above the plumes and thus melting tem-
perature is not reached during the simulation. If initiated, melting occurs at the
bottom boundary as well as at the top of hot plumes several kilometers below
the surface. In the one-dimensional simulations with porous flow, the ice below
the partially molten area soon reaches the melting temperature and thus enables
very efficient microporous transport of water towards the underlying ocean. In
the two-dimensional simulations without porous flow, the partially molten mate-
rial from the plumes is not gravitationally stable and even small melt fractions of
a few percents are very quickly destabilized and within less than a few hundreds of
kiloyears collapse down towards the bottom boundary. Our two-dimensional re-
sults thus qualitatively agree with those computed in one dimension even though
different transport mechanisms (gravitational instability and porous flow, respec-
tively) were considered. These results indicate that the accumulation of partial
melt or even liquid water within few kilometers of Europa’s surface is very unlike-
ly in this context, at least if the ice shell is free of melting-temperature-lowering
contaminants. The efficient water drainage suggested by our results might play
an important role in the dynamics of Europa’s ice shell and even assure the con-
nection between Europa’s shallow subsurface and the deep ocean.

In the case of tidally-activated strike-slip fault, we found that melting could
initiate approximately 3 km below the surface for a local heat source of at least
2×10−4 W m−3, leading to accumulation of a substantial amount of water. The
newly created partially molten domain with maxima of ∼10–20% can remain sta-
ble this close to the surface for at least 600 kyr if the underlying ice shell is not
tidally heated from within. For volumetric tidal heating with amplitudes from the
range of 2–5×10−6 W m−3, the results of our studies differ. While in one dimen-
sion we found that a large amount of water might accumulate and remain stable
only a few kilometers below the surface for several hundreds of kiloyears even for
the interior heating as high as 5×10−6 W m−3, the results of two-dimensional
simulations show that the partially molten reservoir is not gravitationally stable
and collapses down within !200 kyr even for smaller amplitude of volumetric
heating (2×10−6 W m−3), contrary to our one-dimensional results. Overall, our
simulations suggest that a partially molten lense or even a liquid water reservoir
might form below recently active strike-slip faults and remain (gravitationally)
stable for at least several hundreds of kiloyears if the underlying ice is free of frac-
tures and not tidally heated from within (and thus sufficiently cold and viscous).
These lenses might coincide with the sills advocated by Dombard et al. (2013) as
a necessary ingredient to produce the morphology of Europa’s ubiquitous double
ridges.

Even though the numerical tool developed during this thesis and used in the
last chapter is unique in the sense that it, for the first time, uses the two-phase
formalism to address ice melting and subsequent meltwater evolution within the
shell of icy satellite, several improvements are already intended in order to im-
prove the description of physical processes within the icy shells. First of all,
naturally, the relaxation of the zero permeability assumption will allow to en-
able the transport of liquid water also by micropores through those parts of the
shell that will reach the melting temperature, resulting in a fully coupled model
of the two-phase flow with the classic solid-state thermal convection. In addi-
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tion, although we argued for its negligible effect, the independent study of the
water transport by hydrofracturing should be performed in order to verify this
assumption. If it, after all, indicates significance of this transport process, we will
attempt to implement its suitable parameterization into the existing model.

Europa’s scarred surface represents an evidence of the brittle behavior. More-
over, as recently proposed by Kattenhorn & Prockter (2014), subduction might
be responsible for recycling its surface material into the shell interior which would
make Europa the only solar system body other than the Earth to exhibit a system
of plate tectonics. The implementation of viscosity cut-off as a rough approxi-
mation of the brittle rheology might substantially modify our current results and
will be considered in the next step. Similarly, the presence of salty contaminants
that would lower the melting temperature might have effect on the melt gener-
ation and potential water accumulation. The extension of the current model to
two-phase thermo-chemical convection by adding the salinity evolution and im-
plementing the effect of salt on the melting temperature and buoyancy might be
considered.

In this thesis, we concentrated only on Europa. However, the developed nu-
merical tool may be, after appropriate adjustments, used to investigate melt-
water generation and its following evolution also within the ice shells of other
satellites. The observational evidence of water at the south pole of Enceladus
(e.g. Porco et al., 2006; Spencer et al., 2006) makes this tiny moon one of the
most exciting target for further exploration. Investigation of the possibility to
form its suggested regional ocean (e.g. Tobie et al., 2008) as well as study of
shallow depth melting potentially connected with the erupting jets (e.g. Porco
et al., 2006; Postberg et al., 2011) will be among the primary objectives of the
future work. The tidally-induced melting processes may have been common also
on other icy satellites in the past, when subjected to intense tidal interactions.
For instance, on Ganymede, some bright surface features indicate the existence
of past cryovolcanic activities, potentially implying meltwater (Showman et al.,
2004). Neptune’s moon Triton (Prockter et al., 2005), as well as Uranus’ moons
Ariel and Miranda (Tittemore, 1990; Tittemore & Wisdom, 1990) may have al-
so experienced analogous processes. Although initially developped for Europa,
our numerical tool may be applied to many icy moons and could potentially ad-
dress major questions regarding the past activities of these objects. Finally, the
formalism we developped may be adapted in order to investigate the melt produc-
tion and transport within the deep layers of high-pressure ices in the interiors of
large satellites such as Ganymede or Titan, thus enabling to address the chemical
transport between the rocky interior and the internal ocean.
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Résumé

Cette thèse traite de la modélisation de la dynamique interne des satellites de
glace avec une phase liquide, avec comme objet d’étude plus particulier le cas
d’Europe, satellite de Jupiter. Deux approches sont proposées successivement:
premièrement une analyse théorique (décrite dans les deux premières parties),
puis un traitement numérique du problème en une puis deux dimensions (la
deuxième partie de ce manuscrit).

Dans le premier chapitre, nous fournissons une brève description des connais-
sances actuelles sur Europe, le plus petit des satellites galiléens. Les trois premiers
satellites, Io, Europe, et Ganymède, constituent le premier exemple de résonance
de Laplace laquelle empêche la circularisation de leurs orbites et maintient des
excentricités non nulles. Ce mouvement excentrique d’Europe autour de Jupiter
produit la déformation viscoélastique de marée qui conduit à un chauffage con-
sidérable de la glace. Ce chauffage joue ainsi un rôle important dans l’évolution
d’Europe qui est composée d’un noyau de fer, d’un manteau rocheux, et d’une
couche de l’eau, laquelle correspond probablement à la superposition d’une co-
quille de glace extérieure et d’un océan interne. Contrairement à ses voisins
glacés, la surface d’Europe montre une absence des cratères d’impact indiquant
un âge jeune (environ de 40–90 millions d’années), mais elle est couverte par
un grand nombre des formation géologiques sans équivalents dans notre Système
Solaire; ces structures incluent entre autres des terrains chaotiques, des rides
cyclöıdales, des lenticulaes, des rides doubles, etc. Sur la base d’études mor-
phologiques récentes, nous avons identifié deux types de formations de surface
pendant la création desquelles l’eau liquide aurait pu être présente: les terrains
chaotiques et les rides doubles. Puisqu’une source de chaleur est nécessaire pour
la production d’eau liquide dans la coquille de glace, nous avons associé ces for-
mations de surface à des sources de chauffage suggérées dans la littérature - le
chauffage de marée dans un panache chaud attribuable à la viscosité réduite a
été associé avec la formation des terrains chaotiques et le chauffage dû aux mou-
vements de cisaillement à la base des failles décrochantes avec la formation des
rides doubles.

Dans le chapitre suivant, nous récapitulons les moyens de transport de l’eau
liquide à travers l’exemple des glaciers terrestres et nous définissons les états
différents de la glace - la glace tempérée, qui est à la température de fusion et
contient jusqu’à quelques pourcents d’eau liquide aux joints de grains, et la glace
froide, au-dessous de la température de fusion qui ne contient pas d’eau intersti-
tielle. Un glacier qui est composé en même temps de régions tempérées et froides
est appelé polythermique. Nous évoquons ensuite les mécanismes en mesure de
transporter l’eau liquide produite au sein de la coquille de glace vers l’océan in-
terne. Les conditions thermodynamiques et mécaniques caractéristiques de la
coquille d’Europe ou d’un autre satellite de glace ne semblent pas propices pour
accueillir les crevasses formées par fracturation hydraulique qui représentent le
mécanisme de drainage dominant dans les glaciers terrestres. La percolation mi-
croporeuse de l’eau liquide, similaire à la percolation du magma dans le manteau
terrestre, pourrait en revanche être prépondérante. La formation d’instabilités
gravitationnelles, de type Rayleigh-Taylor, pourrait être adjointe à ce mécanisme.
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Le troisième chapitre contient un exposé détaillé des équations pour un écoule-
ment biphasé du mélange constitué de glace et d’eau liquide. Nous commençons
par la dérivation des équations générales pour un matériau monophasé et des
conditions aux limites appropriées. Nous effectuons ensuite une moyenne pour
obtenir des équations polyphasées. Nous poursuivons avec la formulation des
équations gouvernant l’écoulement biphasé du mélange constitué de glace et d’eau
liquide complementée par les équations constitutives appropriées. Ce chapitre
se termine par une analyse d’échelle, laquelle permet de négliger les termes
d’importance mineure (tels que les termes d’inertie dans les équations du mouve-
ment ou le travail de déformation des deux phases dans le bilan de l’énergie). Nous
introduisons aussi “l’approximation de C nul” (ou approximation de longueur de
compaction nulle) qui néglige le couplage mécanique entre l’écoulement et la
déformation de la matrice visqueuse et l’écoulement de la phase moins visqueuse
à traverse de cette matrice.

Les méthodes numériques utilisées pendant cette thèse sont décrites dans le
Chapitre 4. La première partie de ce chapitre est dédiée à la description d’un
code de calcul en une dimension et avec des paramètres matériels constants, qui
a été écrit en FORTRAN90. Ce code est basé sur la méthode des volumes finis
et permet de calculer le transport d’eau à travers une couche de glace tempérée
ou polythermique. Il permet aussi de calculer l’évolution de la couche de glace
tempérée dans une approximation de C nul - en utilisant cette approximation, la
solution des équations biphasées n’est pas continue, mais produit des chocs. Pour
obtenir une solution stable, nous avons choisi la méthode de la diminution de la
variation totale (TVD). Dans un cas où le couplage mécanique est pris en compte
dans le système d’équations, la solution produit des trains d’ondes. Des tests
approfondis ont été effectués afin de vérifier l’implémentation numérique. Dans
la deuxième partie de ce chapitre, nous décrivons un code qui utilise FEniCS,
logiciel libre par éléments finis. Nous avons développé deux versions de ce code
- l’une pour calculer le transport de l’eau interstitielle à travers une couche de
glace tempérée en une ou deux dimensions et avec des paramètres matériels vari-
ables, et l’autre pour calculer la quantité de fusion de la glace et le transport
qui s’ensuit par formation d’instabilités de Rayleigh-Taylor (nous négligeons le
transport microporeux dans ce code) en deux dimensions. Un ensemble de tests
détaillés est proposé pour ces deux codes.

Dans le Chapitre 5 nous effectuons une étude paramétrique du transport d’eau
liquide à travers une couche de glace tempérée en une dimension. Dans ce cas,
la température de la couche de glace est égale à la température de fusion et reste
constante dans le temps - le bilan de l’énergie sert seulement à calculer le taux
de production d’eau liquide. Nous avons étudié le rôle des différents paramètres
matériels - nous avons trouvé qu’un rôle clé dans ce processus est joué par la
perméabilité de la glace (i.e. la capacité de la glace à transporter l’eau liquide).
La perméabilité affecte à la fois les caractéristiques locales et globales de transport
de l’eau en contrôlant l’échelle de temps du processus ainsi qu’en influençant
fortement la longueur d’onde. Un effet similaire à l’échelle locale (en termes de
longueur d’onde), a également été constaté pour la viscosité de la glace - plus la
viscosité est petite, plus petite est la longueur d’onde. En revanche, la viscosité
n’influence pas l’échelle de temps associée au processus. De plus, nous montrons
que la rhéologie composite de la glace (en général fonction de la température, de
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la taille des grains, du mécanisme de fluage, de la teneur en eau, etc.) peut être
approximée dans le cadre des simulations numériques de l’écoulement biphasé
et pour le contexte planétaire que nous considérons, par une viscosité constante
de la gamme de 1012 à 5×1015 Pa s. Nous avons également étudié le rôle de la
tension de surface qui ne peut pas être négligé sur des arguments d’échelle - son
effet a cependant été trouvé tout à fait négligeable et nous avons donc décidé de
l’omettre dans les travaux suivants. Le chauffage volumétrique ainsi que la valeur
de porosité de fond (background porosity) influence aussi les temps de transport.
Enfin, le couplage mécanique entre les deux phases, représenté par le paramètre
C a une influence importante, en particulier en ce qui concerne le caractère local
de l’écoulement.

Une étude paramétrique similaire à celle effectuée dans le Chapitre 5 mais en
considérant une géométrie à deux dimensions est décrite dans le Chapitre 6. Sur
la base des résultats de l’étude en une dimension, nous nous concentrons sur le
rôle de la perméabilité et de la viscosité en deux dimensions. Nos résultats ne
diffèrent pas trop de ceux obtenus en une dimension. À nouveau, l’échelle de
temps est principalement contrôlée par la perméabilité de la glace, tandis que la
viscosité a un effet négligeable sur la vitesse de propagation des trains d’ondes.
La viscosité et la perméeabilité affectent la longueur d’onde de la même manière,
c’est à dire qu’une plus grande viscosité et/ou perméabilité résulte en une plus
grande longueur d’onde. De plus, nous avons trouvé que la viscosité composite
de la glace, fonction de la température, du mécanisme de fluage, etc., peut être
approximée par une viscosité constante dans la gamme 1013–5×1015 Pa s. La
différence principale entre les études en une et deux dimensions a été trouvée pour
les simulations avec un seuil de percolation qui mime la fermeture des micropores
observées dans la nature et laquelle résulte en une perméabilité effective égale à
zéro. Nous avons observé la plus grande différence pour les grandes valeurs de ce
seuil de percolation (φc"3%) - alors qu’en une dimension, la matière partiellement
fondue reste à sa position initiale, car la perméabilité de la glace sous-jacente est
zéro, en deux dimensions, la zone partiellement fondue s’effondre vers le bas
(même si la glace sous-jacente est effectivement imperméable) par la formation
d’instabilités gravitationnelles de type Rayleigh-Taylor. En général, les résultats
de notre étude en deux dimensions suggèrent que les réservoirs partiellement
fondus ne sont pas gravitationnellement stables dans la couche de glace tempérée
même pour des perméabilités très petites.

Dans les deux derniers chapitres de cette thèse, nous nous sommes concentrés
sur l’investigation du début de la fusion et de l’évolution subséquente de l’eau
au sein de la couche de glace d’Europe. En prenant en compte les résultats de
l’étude paramétrique du Chapitre 5 et les scénarios de fusion décrits brièvement
dans le Chapitre 1, nous avons commencé par une étude en une dimension avec
des paramètres matériels constants (Chapitre 7). Dans ce cadre, le transport
de l’eau liquide a été facilité dans les régions tempérées de la coquille glaciale
par l’écoulement biphasé. Nous avons considéré deux contextes géodynamiques
différents. Dans le cas d’un panache chaud chauffé par les marées, l’accumulation
d’eau liquide près de la surface d’Europe est peu probable - même si la fusion
est produite dans la tête du panache chaud, plusieurs kilomètres sous la surface,
la glace sous-jacente atteint vite la température de fusion et permet le transport
de l’eau vers l’océan interne par écoulement en milieu poreux. À l’inverse, dans
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le cas d’une faille décrochante activée par les marées, nous montrons qu’une
quantité d’eau substantielle peut s’accumuler si l’amplitude du chauffage est assez
forte ("10−4 W m−3). Celle-ci peut rester stable quelques kilomètres sous la
surface pendant plusieurs centaines de milliers d’années. Cependant, ces résultats
sont fortement influencés par leur caractère unidimensionnel et pourraient être
considérablement modifiés si les flux latéraux étaient pris en compte.

C’est pourquoi, dans le dernier chapitre (8), nous avons effectué une étude
complémentaire en deux dimensions. Dans une première étape vers un modèle
plus complexe, nous avons considéré la limite imperméable d’équations biphasées
- dans ce cas, toute l’eau liquide est piégée dans la glace et advecté avec elle (c’est
à dire, la vitesse relative entre la glace et l’eau est égale à zéro). Comme dans
le Chapitre 7, nous avons étudié deux contextes géodynamiques distincts - la fu-
sion au sein d’un panache chaud et la fusion à la base d’une faille décrochante.
Dans le premier cas, nous montrons que la fusion pourrait apparâıtre dans un
panache chaud ascendant pour des valeurs modérées de la taille des grains, d=0.5–
1 mm même dans le cas d’une amplitude faible du chauffage de marée. La fusion
a lieu principalement à la limite inférieure et au sommet du panache chaud,
cependant, la matière partiellement fondue contenue dans les panaches n’est pas
gravitationnellement stable et s’effondre très rapidement (en moins de quelques
dizaines à quelques centaines de milliers d’années), vers la limite inférieure, où
elle s’accumule. Pour des tailles des grains plus grandes, d=5 mm, la convec-
tion ne démarre pas (une épaisseur de coquille de 30 km est considérée). Pour
la plus petite taille de grains considérée (d=0.1 mm), la convection apparâıt
mais la température de fusion n’est pas atteinte (au moins pendant des 500 mil-
liers d’années). Nos résultats en deux dimensions correspondent donc à celles
calculées dans une dimension même si les mécanismes de transport différents (in-
stabilités Rayleigh-Taylor ou l’écoulement biphasé) ont été pris en compte, et
indiquent que l’accumulation d’un réservoir substantiel d’eau liquide à faible pro-
fondeur n’est pas très probable. Dans le cas d’une faille décrochante, la fusion
pourrait s’initier environ 3 km sous la surface d’Europe pour un chauffage d’au
moins 2×10−4 W m−3. Le domaine partiellement fondu (avec un maximum de
∼10–20%) peut rester stable aussi près de la surface pendant au moins 600 mil-
liers d’années si la couche de glace sous-jacente n’est pas chauffée de l’intérieur.
Pour un chauffage volumétrique avec des amplitudes dans la gamme de 2–5×10−6

W m−3, le réservoir partiellement fondu n’est pas gravitationnellement stable et
s’effondre en !200 de milliers d’années, contrairement à nos résultats unidimen-
sionnels.

En général, nous avons trouvé que l’accumulation de fusion partielle au-dessus
des panaches chauds est très peu probable, au moins s’il n’y a pas de contaminants
qui abaissent la température de fusion dans la couche de glace. Même de petites
fractions d’eau de quelques pourcents sont destabilisées en moins de quelques
centaines de milliers d’années par la combinaison de l’écoulement biphasé et
l’instabilité de Rayleigh-Taylor. Ce drainage de l’eau peut jouer un rôle important
dans la dynamique de la couche de glace d’Europe, et même assurer la connex-
ion entre subsurface peu profonde d’Europe et l’océan profond. En revanche, une
lentille partiellement fondue ou même un réservoir d’eau liquide pourrait se former
au-dessous des failles décrochantes récemment actives et rester gravitationnelle-
ment stable pendant au moins plusieurs centaines de milliers d’années si la glace
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sous-jacente ne contient pas de fractures et n’est pas chauffée de l’intérieur par
des marées (et reste donc suffisamment froide et visqueuse). Ces lentilles peuvent
coincider avec les seuils préconisés par Dombard et al. (2013) comme un ingrédient
nécessaire pour produire la morphologie de ride doubles d’Europe.

Même si l’outil numérique développé au cours de cette thèse n’a été appliqué
que sur Europe, nous projetons d’élargir son domaine d’application à des études
futures des processus de transport dans les autres satellites de glace, tels que
Encelade, Ganymède, ou Titan. Plusieurs améliorations sont projetées. Pre-
mièrement, la relaxation de l’hypothèse de perméabilité zéro permettra de trans-
porter de l’eau liquide aussi par l’écoulement poreux à travers les parties de la
couche de glace qui atteignent la température de fusion, résultant donc en un
modèle entièrement couplé de l’écoulement biphasé avec la convection thermique
classique. L’implémentation d’une viscosité approximant la rhéologie cassante,
pourrait aussi modifier sensiblement nos résultats actuels et sera prise en compte
dans les travaux suivants. De la même façon, la présence de contaminants salés
qui abaissent la température de fusion, peut avoir un effet sur la production et
l’accumulation de matière fondue. L’extension du modèle existant à la convection
thermo-chimique-biphasé en ajoutant de l’évolution de la salinité et en incorpo-
rant de l’effet du sel sur la température de fusion et la flottabilité peut être
considérée. Enfin, même si nous avons argumenté pour son effet négligeable, une
étude indépendante de la fracturation hydraulique devrait être effectuée - si, après
tout, elle indique l’importance de ce moyen de transport, une paramétrisation
adéquate sera mis en œuvre dans le modèle existant.
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Dynamique des satellites de glace avec une phase liquide 
 

Europe, le plus petit satellite de Jupiter, a une surface jeune avec une pléthore de terrains uniques qui indiquent une activité 
endogène récente. Des modèles morphologiques et des observations spectrales suggèrent la présence d’un océan interne ainsi que 
de poches d’eau liquide peu profondes dans la coquille de glace extérieure. Cette présence d'eau dans un environnement 
chimiquement riche et d’une source d'énergie à long terme assurée par chauffage de marée font d’Europe l’un des meilleurs 
candidats pour l'habitabilité, pour lesquels l'échange de matière entre la surface et l'océan est critique. Dans cette thèse, nous 
étudions la fusion interne de la coquille de glace et l'évolution ultérieure de l'eau en utilisant un formalisme biphasé développé pour 
ce contexte. Les résultats d'une étude paramétrique pour une coquille de glace tempérée indiquent que l'échelle de temps de 
transport de l'eau par écoulement poreux est régie par la perméabilité de la glace, tandis que la viscosité de la glace affecte la 
longueur d'onde de la solution. Nous considérons alors une couche de glace polythermique avec deux scénarios de fusion: (i) Dans 
le cas d’un panache chaud chauffé par les marées, la fusion se produit principalement dans sa partie inférieure et toute l'eau est 
immédiatement transportée vers l'océan sous-jacent. (ii) Au contraire, des mouvements de cisaillement sur une faille décrochante 
activée par les marées peuvent induire une fusion superficielle (environ trois kilomètres sous la surface). Cette poche d'eau liquide 
peut rester gravitationnellement stable pendant au moins 600 milliers d’années si la couche de glace sous-jacente n’est pas chauffée 
par les marées solides. 

Mots clés : Europe, chauffage de marée, fusion de la glace, mélange glace/eau liquide, écoulement biphasé. 

 
 
 
 
 
 
 
 
 
 
 
 
Dynamics of icy satellites with a liquid phase 
 
Jupiter's smallest moon Europa has a very young surface with a plethora of unique terrains that indicate recent 
endogenic activity. Morphological models and spectral observations suggest that it possesses an internal ocean as 
well as shallow pockets of liquid water within its outer ice shell. Presence of water in a chemically rich environment 
and a longterm energy source ensured by tidal heating, make Europa one of the best candidates for habitability, 
for which the material exchange between the surface and the ocean is critical. In this thesis, we investigate 
internal melting and subsequent meltwater evolution within Europa's ice shell by using a two-phase formalism 
developed for this context. Results of a parametric study for a temperate ice shell indicate that the time scale 
of water transport by porous flow is governed by the ice permeability, while the ice viscosity affects the solution  
wavelength. We then consider a polythermal ice shell with two melting scenarios: (i) In a tidally-heated convecting 
ice shell, melting occurs mainly in its lower half and all the meltwater is immediately transported to the underlying 
ocean. (ii) Contrarily, shear motions on a tidally-activated fault can induce melting as shallow as three kilometers 
below the surface. This meltwater pocket can remain gravitationally stable for at least 600 kyr if the underlying ice layer is not 
volumetrically heated. 
 

Keywords : Europe, tidal heating, ice melting, ice/liquid water mixture, two-phase flow. 
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