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Abstract:  This thesis presents simplified and advanced probabilistic analyses of shallow foundations. In the 
simplified probabilistic analysis, the uncertain parameters are modelled by random variables. For an 
obliquely loaded footing, the numerical results based on the Response Surface Method (RSM) and the 
Collocation-based Stochastic Response Surface Method (CSRSM) have allowed to identify the zones of 
failure mode predominance at both the ultimate and serviceability limit states. On the other hand, an efficient 
procedure was proposed to increase the number of the probabilistic outputs of the Subset Simulation (SS) 
approach with no additional time cost. In this procedure, the SS approach was combined with the CSRSM.  
In the advanced probabilistic analysis, the uncertain parameters are modelled by random fields to take into 
account the soil spatial variability. In such cases, Monte Carlo Simulation (MCS) methodology is generally 
used in literature. Only the statistical moments were generally investigated in literature because of the great 
number of calls of the deterministic model required by this method. In this thesis, the subset simulation 
approach was first used as alternative to MCS methodology to compute the failure probability. This leads to a 
significant reduction in the number of calls of the deterministic model. Moreover, a more efficient approach 
called improved Subset Simulation (iSS) approach was developed to reduce again the number of calls of the 
deterministic model. The use of the iSS approach has reduced the number of calls of the deterministic model 
by about 50% with respect to the SS approach. 
Keywords: Reliability analysis, Probabilistic analysis, Random variables, Random fields, Spatial variability, 
Shallow foundations, Failure probability, Ultimate and serviceability limit states.      
 
 
 
 
 
 
 

 
Resumé: Cette thèse présente des approches simplifiées et avancées pour l’analyse probabiliste des 
fondations superficielles. Dans l'analyse probabiliste simplifiée, les paramètres incertains sont modélisés par 
des variables aléatoires. Pour une fondation soumise à un chargement incliné, les résultats numériques basés 
sur la méthode des surfaces de réponse (RSM) et la méthode des surfaces de réponse stochastiques (CSRSM) 
ont permis d'identifier les zones de prédominance des modes de rupture à l’état limite ultime et à l’état limite 
de service. D'autre part, une procédure efficace a été proposée pour augmenter le nombre des sorties 
probabilistes de l’approche Subset Simulation (SS) sans appels supplémentaires au modèle déterministe. Dans 
cette procédure, l'approche SS a été combinée avec la méthode CSRSM. 
Dans l'analyse probabiliste avancée, les paramètres incertains du sol sont modélisés par des champs aléatoires 
pour prendre en compte la variabilité spatiale des propriétés du sol. Dans ce cas, la méthode de simulation de 
Monte Carlo (MCS) est généralement utilisée et seuls les moments statistiques de la réponse sont étudiés en 
raison du grand nombre d'appels au modèle déterministe. Dans cette thèse, l'approche SS a d’abord été 
utilisée comme une méthode alternative à la méthode MCS pour calculer la probabilité de ruine. Ceci a 
conduit à une réduction significative du nombre d'appels au modèle déterministe. Ensuite, une approche plus 
efficace nommée improved Subset Simulation (iSS) a été développée pour réduire encore une fois le nombre 
d'appels au modèle déterministe. L'utilisation de l’ iSS a réduit le nombre d'appels au modèle déterministe 
d'environ 50% par rapport à l'approche SS. 
Mots clés : Analyse fiabiliste, Analyse probabilistes, Variables aléatoires, Champs aléatoires, variabilité 
spatiale, Fondations superficielles, Probabilité de ruine, Etat limite ultime et état limite de service.       
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GENERAL INTRODUCTION 

Most geotechnical analyses are traditionally based on deterministic approaches. These 

approaches consider representative values for the different design parameters. These values 

are usually the averages or the most conservative ones obtained from field or laboratory 

tests. In such approaches, a global safety factor is applied to take into account the soil and 

loading uncertainties. The choice of this factor is based on the judgment of the engineer 

based on his past experience. During the last years, much effort has been paid for the 

establishment of more reliable and efficient methods based on probabilistic (simplified and 

advanced) approaches. These approaches allow one to consider the propagation of the 

uncertainties from the input parameters (soil and/or loading parameters) to the system 

responses (stress, displacement, factor of safety, etc.). In the simplified probabilistic 

analysis, the different uncertain parameters are modeled by random variables defined by 

their probability density functions (PDFs). However, in the advanced probabilistic analysis, 

some uncertain parameters as the soil properties are modeled by random fields 

characterized not only by their PDFs, but also by their autocorrelation functions which 

represent the degree of dependence of two values of a given uncertain parameter at two 

different locations. These methods allow one to take into account the soil spatial variability.      

The ultimate aim of this work is to study the performance of shallow foundations 

subjected to complex loading (horizontal and vertical loads and an overturning moment) 

using probabilistic approaches. The present thesis focuses on the case of obliquely loaded 

footings. The extension to the complex loading case and/or the seismic or dynamic loading 

will be the subject of future work. Both the ultimate (ULS) and the serviceability (SLS) 

limit states were considered in the analysis. In Part I of this thesis, the simplified 
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probabilistic approach was used to perform the probabilistic analysis. However, in Part II, 

the probabilistic analysis was performed using the more advanced probabilistic approach.  

Before the presentation of the different probabilistic analyses performed in this thesis 

(Parts I and II), a literature review is presented in chapter 1. This chapter provides (i) the 

different sources of uncertainties, (ii) the different methods of modelling the soil uncertain 

parameters, (iii) the random field discretization methods and finally (iv) the principal 

probabilistic methods used in literature for the uncertainty propagation.            

PART I:   

In Part I, the uncertain parameters were considered as random variables defined by 

their probability density functions. Part I consists of three chapters (chapters 2, 3 and 4).  

The aim of chapters 2 and 3 is twofold: First, they aim at comparing the performance of the 

Response Surface Method (RSM) and the Collocation-based Stochastic Response Surface 

Method (CSRSM) in the framework of the probabilistic analysis of shallow foundations. 

Second, contrary to the existing literature which considers only the vertically loaded 

footings involving only one failure mode; in these chapters, the case of obliquely loaded 

footings that involve two failure modes was considered. In chapter 2, the RSM was used to 

perform the probabilistic analysis. Only the uncertainties of the soil parameters were taken 

into account in this chapter. However; in chapter 3, the probabilistic analysis was 

performed using the CSRSM. Due to the efficiency of this method to deal with greater 

number of random variables with respect to the RSM, the uncertainties of the soil 

parameters and those of the load components were taken into account simultaneously in 

this chapter. Chapters 2 and 3 have confirmed the superiority of the CSRSM with respect 

to the RSM regarding the number of calls of the deterministic model and the number of the 

probabilistic outputs.  
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The objective of Chapter 4 is to develop a new procedure which combines the subset 

simulation (SS) approach and the CSRSM used in chapter 3 in order to increase the 

number of outputs of the SS approach with no additional time cost. This procedure was 

illustrated through the probabilistic analysis at ULS of a strip footing subjected to a central 

vertical load.  

PART II:   

In Part II, the soil spatial variability was taken into account by modeling the soil 

uncertain parameters by random fields characterized by their PDFs and their 

autocorrelation functions. Part II consists of two chapters (chapters 5 and 6).  

Contrary to the existing geotechnical literature in which the probabilistic analysis of 

random field problems is performed using MCS methodology, chapter 5 makes use of the 

SS approach. Contrary to MCS methodology, the SS approach requires a significantly 

reduced number of calls of the deterministic model to calculate the small failure 

probabilities. The efficiency of the SS approach was illustrated through the computation of 

the probability of exceeding a tolerable vertical displacement of a strip footing resting on a 

soil with a 2D spatially varying Young’s modulus.  

The objective of chapter 6 is to increase the efficiency of the SS approach by reducing the 

number of calls of the deterministic model required by this method. For this purpose, the 

first step of the SS approach was replaced by a conditional simulation. The efficiency of 

the iSS approach was illustrated through the computation of the probability of exceeding a 

tolerable differential settlement between two neighboring strip footings resting on a soil 

with a 2D spatially varying Young’s modulus.  

The thesis ends by a general conclusion of the principal results obtained from the analyses. 
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CHAPTER 1 

LITERATURE REVIEW  

1. Introduction 

The deterministic approaches have long been used in the analysis and design of 

geotechnical structures. These approaches consider the soil parameters as constant inputs 

having conservative values. In these approaches, the uncertainties of the soil parameters 

are taken into account by an approximate manner using the concept of the global safety 

factor. This factor is based on engineering judgment. During the recent years, much effort 

has been paid for more rational analyses based on probabilistic approaches. Both 

simplified and more advanced probabilistic approaches can be found in literature. In the 

simplified probabilistic approaches, the uncertain parameters are modeled as random 

variables defined by their probability density functions (PDFs) or only by their statistical 

moments (i.e. mean value and standard deviation). In these approaches, the soil is 

considered (during each simulation) as a homogeneous material having the same value of 

the uncertain parameter in the entire soil domain. However; in nature, the soil parameters 

(shear strength parameters, elastic properties, etc.) vary spatially in both the horizontal and 

the vertical directions as a result of depositional and post-depositional processes. This 

leads to the necessity of modeling the soil parameters (during each simulation) as random 

fields characterized not only by their PDFs, but also by their autocorrelation functions. In 

this regard, more advanced probabilistic approaches were proposed in literature. In these 

approaches, one needs to discretize the random field into a finite number of random 

variables. For this purpose, several discretization methods were proposed in literature as 

will be shown later in this chapter.    

This chapter aims at presenting the different sources of uncertainties related to the 
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geotechnical parameters. It also presents both the simplified and advanced approaches for 

modelling the soil uncertainties. Then, the different methods of random field discretization 

are briefly described. Finally, the probabilistic methods used in this thesis to perform the 

probabilistic analyses are presented and discussed. The chapter ends with a conclusion.               

2. Different sources of uncertainties  

The geotechnical variability arises from several sources of uncertainties. According 

to Kulhawy (1992), the uncertainty in the design soil properties results from three main 

sources. These sources are: 

� Inherent variability of the soil parameters  

� Measurement errors 

� Transformation uncertainty  

The inherent soil variability results primarily from the natural geologic processes that 

occurred in the past and continue to modify the soil mass in-situ. The measurement error is 

caused by equipment, random testing effects and human errors. Collectively, these two 

sources (i.e. inherent variability and the measurement error) can be described as data 

scatter. In-situ measurements are also influenced by statistical uncertainty or sampling 

error that results from limited amount of information. This uncertainty can be minimized 

by considering more samples, but it is commonly included within the measurement error. 

Finally, the transformation uncertainty is introduced when the field or the laboratory 

measurements are transformed into the design soil properties using empirical or other 

correlation models. The relative contribution of these three sources to the overall 

uncertainty in the design soil property clearly depends on the site conditions. Therefore, the 

soil property statistics can only be applied to a specific set of circumstances (site 

conditions, measurement techniques, correlation models) for which the design soil 

properties were derived.  
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3. Modelling of uncertain soil parameters 

The uncertainties of the soil parameters described in the previous section have to be 

taken into account in any geotechnical probabilistic analysis. Some probabilistic analyses 

have modelled the uncertain soil parameters using a simplified approach. In this approach, 

the uncertain soil parameters are modelled as random variables characterized by their PDFs 

or their statistical moments (i.e. mean value and standard deviation). This implies that all 

the realisations of a given uncertain parameter provide a homogeneous soil with a random 

value of this parameter that varies from one realisation to another. Notice however that the 

soil properties vary from point to point as a result of complex geological processes (such as 

sedimentation, weathering and erosion, climate, etc.) which influence their formation. This 

leads to the necessity of using a more advanced approach for modelling the uncertain soil 

parameters. In this approach, the uncertain soil parameters are modelled as random fields to 

take into account their spatial variability. The simplified and the more advanced 

approaches for modelling the uncertain soil parameters are respectively presented in the 

two following subsections.  

3.1. Simplified approach for modelling of uncertain soil parameters 

In the framework of the simplified approach of modelling the uncertain soil 

parameters, the variability of a given uncertain parameter is measured by the coefficicent 

of variation COV of this parameter. The coefficient of variation of a given uncertain soil 

parameter is defined as the ratio between its standard deviation and its mean value. Several 

statistical studies based on in-situ and laboratory tests have been reported in the literature 

to define the variability of the different soil parameters. Phoon and Kulhawy (1996) 

presented a number of studies based on several in-situ tests [Standard Penetration Test 

(SPT), Cone Penetration Test (CPT), Field Vane test (FVT), Dilatometer Test (DMT), 
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Pressuremeter Test (PMT)] and other laboratory tests. It was shown that the variability 

calculated from laboratory tests is smaller than that computed from the in-situ tests. This is 

due to (i) the good control of measurements taken in the laboratory and (ii) the quality of 

the equipments in laboratory compared to that of in-situ tests.  

This section aims at presenting the values of COV of the soil shear strength 

parameters and the soil elastic properties proposed in literature. Also, it aims at presenting 

the commonly used values of the correlation coefficent between these parameters. 

Concerning the type of the PDF of the different uncertain parameters; unfortunatly, there 

is no sufficicnt data to give a comperhensive and complete description of the type of the 

PDF to be used in the numerical simulations. The existing literature [e.g. Griffiths and 

Fenton (2001), Griffiths et al. (2002), Fenton and Griffiths (2002, 2003, 2005), Fenton et 

al. (2003)] tends to recommend the use of a lognormal PDF for the Young’s modulus E, 

Poisson’s ratio ν and cohesion c. This recommendation is motivated by the fact that the 

values of these parameters are strictly positive. Concerninig the internal friction angle φ, it 

is recommended to adopt a beta distribtion for this parameter to limit its variation in the 

range of practical values. 

3.1.1. Cohesion 

For the undrained cohesion cu of a clay, Cherrubini et al. (1993) found that the 

coefficient of variation of this property decreases with the increase of its mean value. They 

recommended a range of 12% to 45% for moderate to stiff soil. 

Phoon et al. (1995), stated that the variability of the design soil properties depends on the 

quality of the measurements. Low variability of the design soil properties corresponds to 



CHAPTER 1 
----------------------------------------------------------------------------------------------------------------------------------- 

----------------------------------------------------------------------------------------------------------------------------------- 
-15- 

good quality tests and direct laboratory or field tests. In this case, the COV of cu ranges 

between 10% and 30%. Medium variability corresponds to indirect tests. In this case COV 

of cu lies in a range from 30% to 50%. However, high variability corresponds to emprical 

correlations between the measured property and the uncertain design parameter. In this 

case, the COV of cu ranges between 50% and 70%. Other values of COVcu proposed by 

other authors in literature are summerized in Table (1.1). 

Table 1.1: Coefficient of variation of the soil cohesion 
Author COVcu (%) 

Lumb (1972) 
30 - 50 (test UC) 

60 - 85 (highly variable clay) 
Morse (1972) 30 - 50 (test UC) 

Fredlund and Dahlman (1972) 30 - 50 (test UC) 

Lee et al. (1983) 
20 - 50 (clay) 
25 - 30 (sand) 

Ejezie and Harrop-Williams (1984) 28 – 96 

Cherubini et al. (1993) 
12 - 145 

12 - 45 (medium to stiff clay) 

Lacasse and Nadim (1996) 
5 - 20 (clay –  triaxial test) 

10 - 30 (clay loam) 

Zimbone et al. (1996) 
43 – 46 (sandy loam) 
58 – 77 (silty loam) 

10 – 28 (clay) 
Duncan (2000) 13 – 40 

3.1.2. Angle of internal friction φ 

For the internal friction angle φ, smaller values of the coefficint of variation as 

compared to those of the soil cohesion have been proposed in literature. Based on the 

results presented by Phoon et al. (1995), the coefficient of variation of the inetrnal friction 

angle ranges between 5% and 20% depending on the quality of the meaurements. For good 

quality tests and direct laboratory or field meaurements, the COV of  φ ranges between 5% 

and 10%. For indirect meaurements, COVφ lies in a range from 10% to 15%. Finally, by 
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using emprical correlations, the COVφ was found to vary between 15% and 20%. Table 

(1.2) presents the values of COVφ proposed by several authors.  

3.1.3. Young's modulus E and Poisson's ratio ν 

It has been shown in the literature that soils with small values of their Young’s 

modulus exhibit significant variability (Bauer and Pula 2000). Table (1.3) presents some 

values of the coefficient of variation of the Young's modulus E used in literature. 

Concerning the Poisson's ratio ν, there is no sufficient information about its coefficient of 

variation. Some authors suggest that the variability of this parameter can be neglected 

while others proposed a very limited range of variability. 

Table 1.2: Values of the coefficient of variation of the soil internal friction angle 

Author COVφ (%) Type of soil 

Lumb (1966) 9 Different soil types 

Baecher et al. (1983) 5 – 20 Tailings 

Harr (1987) 
7 
12 

Gravel 
Sand 

Wolff (1996) 16 Silt 

Lacasse and Nadim (1996) 2 – 5 Sand 

Phoon and Kulhawy (1999) 
5 – 11 
4 – 12 

Sand 
Clay, Silt 

Table 1.3: Values of the coefficient of variation of the Young’s modulus 

Author COVE (%) 

Baecher and Christian (2003) 2 – 42 

Nour et al. (2002) 40 – 50 

Bauer and Pula (2000) 15 

Phoon and Kulhawy (1999) 30 
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3.1.4. Coefficient of correlation ρ  

The coefficient of correlation between two soil parameters represents the degree of 

dependence between these parameters. For the shear strength parameters c and φ, Lumb 

(1970) noted that the correlation coefficient ρc,φ ranges from -0.7 to -0.37. Yucemen et al. 

(1973) proposed values in a range between -0.49 and -0.24, while Wolff (1985) reported 

that ρc,φ=-0.47. Finally, Cherubini (2000) proposed that ρc,φ=-0.61.  

Concerning the correlation coefficient between the soil elastic properties E and ν, this 

coefficient has received a little attention in literature. Bauer and Pula (2000) reported that 

there is a negative correlation between these parameters.  

3.2. Advanced approach for modelling of uncertain soil parameters 

In the advanced approach for modelling the uncertain soil parameters, the spatial 

variability of a given uncertain soil parameter is taken into account by modelling the 

uncertain parameter by a random field. In order to accurately quantify the soil spatial 

variability, a large number of in-situ observations is required. Generally, this is not 

available due to the high cost of in-situ tests. As shown in Figure (1.1), the spatial variation 

of a soil property can be conveniently decomposed into a smoothly varying trend function 

(simply estimated by fitting data using regression analysis) combined with a fluctuating 

component (residuals) around the trend as follows [cf. Jaksa (1995), Phoon and Kulhawy 

(1999) and Baecher and Christian (2003)]: 

)z(w)z(t)z(X +=                                (1.1) 

in which X(z) is the actual soil property at the depth z, t(z) is the value of the trend at z and 

w(z) is the residual which represents the deviation from the trend at the depth z.  
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Figure 1.1: Inherent soil variability (After Phoon and Kulhawy 1999) 

It should be mentioned here that the residuals are not independent. Positive residuals 

tend to clump together and negative residuals tend to clump together. The distance for 

which the residuals changes from positive to negative or from negative to positive is 

referred to as the scale of fluctuation (cf. the distance Sv in Figure 1.1). The dependence 

between residuals is measured by an autocorrelation or autocovariance function. The next 

subsections present a brief explanation on the autocorrelation function, autocovariance 

function, scale of fluctuation and autocorrelation length. 

3.2.1. Autocorrelation function and autocovariance function         

The correlation is the property that allows one to check if two random variables are 

linearly associated. The correlation between two different random variables x1 and x2 is 

measured by a correlation coefficient ρ defined as follows: 

)]x)(x[(E
1

)x(Var)x(Var

)x,x(Cov
21

21

x2x1
xx21

21 µµ
σσ

ρ −−==                  (1.2) 

in which x1 and x2 might be the values of two different properties or the values of the same 

property at two different locations, )x,x(Cov 21 is the covariance of the two variables x1 and 

x2, )x(Var i , )x( iσ  and )x( iµ  are respectively the variance, the standard deviation and 

the mean value of the variable xi (i=1,2). In the case where x1 and x2 are two different 
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properties, a correlation coefficient 1±=ρ  means that these two properties vary 

proportionally. The positive sign means that both variables increase or decrease together; 

however, the negative sign means that when one variable increases, the other one 

decreases. A correlation coefficient ρ=0 means that the two properties are uncorrelated.  

When the correlation in Equation (1.2) is a function of the separation distance ∆, one 

may calculate the values of the correlations of the same property (between different 

locations) using the autocorrelation function defined as follows: 

[ ] )]()([
)(

1
)( 1+=∆ iiz zwzwE

zwVar
ρ                                 (1.3) 

Another alternative to the autocorrelation function is the autocovariance function defined 

as follows: 

)]()([)( 1+=∆ iiz zwzwEC                                    (1.4) 

In both Equations 1.3 and 1.4, w(zi) and w(zi+ 1) are the residuals at two locations separated 

by a distance ∆ and Var[w(z)] is the variance of the residuals across the site. By definition, 

the autocorrelation at zero separation distance is ρz(0)=1.0; and it decreases with the 

increase in ∆.  

The autocorrelation or the autocovariance function of a given soil property can be 

estimated from a sample of data of this property measured at different locations. Consider a 

sample of n observations (x1, …, xi, …, xn) measured at equally spaced locations (z1,…, zi, 

…, zn) separated by a distance j∆ . The sample autocorrelation )(*
jz ∆ρ  and autocovariance 

)(*
jzC ∆  for a separation distance ∆j are respectively given as follows [Jaksa (1995) and 

Baecher and Christian (2003)]: 
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where σx is the sample standard deviation across the site. The sample autocorrelation 

function )(* ∆zρ and the sample autocovariance function )(* ∆zC  are respectively obtained 

by (i) calculating )(*
jz ∆ρ and )(*

jzC ∆  for different values of ∆j, (ii) plotting them against 

∆j and finally, (iii) fitting the plot to a smooth function. The most commonly used 

autocorrelation functions were reported by Baecher and Christian (2003). They are 

presented in Table (1.4). In this table, l represents the so-called autocorrelation length. It is 

explained in some details in the following section.   

Table 1.4: One-dimensional autocorrelation functions (After Baecher and Christian 2003). 
Model Equation 

White noise 

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 The accuracy of the autocovariance and autocorrelation functions depends on the 

number n of observations. Referring to Jaksa (1995), the minimum number of observations 

has received a little effort in literature. Box and Jenkins (1970), Anderson (1976), and 

Davis (1986) recommended at least 50 observations. Lumb (1975) suggested that, for a full 

three-dimensional analysis, the minimum number of observations is of order 104. On the 

other hand, this author recommended that the best that can be achieved in practice is to 

study the one-dimensional variability, either vertically or horizontally, using a number of 
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observations that ranges from 20 to 100 observations.       

3.2.2. Scale of fluctuation and autocorrelation length 

The scale of fluctuation or the autocorrelation length are key parameters to describe 

the spatial variability of a given soil property. The scale of fluctuation is defined as the 

distance within which the soil property shows relatively strong correlation from point to 

point (Jaksa 1995). Furthermore, when the soil property is plotted as a function of the 

distance, the scale of fluctuation is related to the distance between the intersections of the 

trend and the fluctuating soil property (i.e. the distance Sv in Figure 1.1). The scale of 

fluctuation is approximately equal to 0.8 times the average distance between the 

intersections of the trend and the fluctuating soil property (Vanmarcke 1977). Small values 

of the scale of fluctuation imply rapid fluctuation about the trend. However, high values 

imply a slowly varying soil property.  

It should be mentioned here that the soil properties tend to be more variable in the 

vertical direction than in the horizontal direction. This implies that the vertical scale of 

fluctuation Sv of a given soil property tends to be shorter than the horizontal scale of 

fluctuation Sh of this property. Jaksa (1995) summarized the vertical and horizontal scales 

of fluctuation of the undrained shear strength published in literature. Based on this 

summary, Sv lies in a range of 0.13m-8.6m. However, Sh lies in a range of 46m-53m. 

Phoon and Kulhawy (1999) reported that Sh is more than one order of magnitude larger 

than Sv. According to these authors, Sv of the soil undrained shear strength ranges from 1m 

to 2m; however, Sh ranges from 40m to 60m.  

Another statistical parameter which is related to the scale of fluctuation can be used 

to describe the spatial variability of the soil properties. This is the autocorrelation length l 

mentioned in the previous section. It is defined as the distance required for the 
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autocorrelation function to decay from 1 to e-1 (0.3679). According to El-Ramly (2003), the 

vertical autocorrelation length ranges from 1 to 3m while the horizontal autocorrelation 

length is larger and it lies in a range from 10 to 40m. A literature review of typical 

autocorrelation lengths of different soil types and for different soil properties was given by 

El-Ramly (2003) and is presented in Table (1.5). Finally, it should be emphasized here that 

the autocorrelation function, the autocovariance function, the scale of fluctuation and the 

autocorrelation length are generally site specific, and often challenging due to insufficient 

site data and high cost of site investigations.          

Table 1.5: values of the autocorrelation distances of some soil properties as given by 
several authors (El-Ramly 2003) 

Autocorrelation length (m) 
Test type Soil property Soil type 

vertical horizontal 
VST cu(VST) Organic soft clay 1.2 - 
VST cu(VST) Organic soft clay 3.1 - 
VST cu(VST) Sensitive clay 3.0 30.0 
VST cu(VST) Very soft clay 1.1 22.1 
VST cu(VST) Sensitive clay 2.0 - 
Qu cu(Qu) Chicago clay 0.4 - 
Qu cu(Qu) Soft clay 2.0 40.0 
UU cu(UU)N Offshore soil 3.6 - 
DSS cu(DSS)N Offshore soil 1.4 - 
CPT qc North see clay - 30.0 
CPT qc Clean sand 1.6 - 
CPT qc North see soil - 13.9 
CPT qc North see soil - 37.5 
CPT qc Silty clay 1.0 - 
CPT qc Sensitive clay 2.0 - 
CPT qc Laminated clay - 9.6 
CPT qc Dense sand - 37.5 

VST, vane shear test; Qu, unconfined compressive strength test; UU, unconfined undrained triaxial 
test; DSS, direct shear test; CPT, cone penetration test; DMT, dilatometer test;  
cu(VST), undrained shear strength from VST; cu(Qu), undrained shear strength from Qu; cu(UU)N, 
normalized undrained shear strength from UU; cu(DSS)N, normalized undrained shear strength from 
DSS; qc, CPT trip resistance;  

4. Methods of discretization of random fields 

In order to introduce the soil spatial variability in the analysis of geotechnical 

structures, the random field should be discretized into a finite number of random variables. 

In order to achieve this purpose, several methods of random field discretization were 
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proposed in literature. The most commonly used methods of random field discretization in 

geotechnical engineering can be divided into two main groups as follows:  

� Average discretization methods 

In these methods, the random variable related to a given element of the finite 

element/finite difference deterministic mesh is calculated as the average of the random 

field over that element [see for instance the Local Average Subdivision LAS method 

commonly used in geotechnical engineering as in Fenton and Griffiths (2002, 2005) 

and Fenton et al. (2003) among others].    

� Series expansion discretization methods 

In the series expansion discretization methods, the random field is approximated by an 

expansion that involves deterministic and stochastic functions. The deterministic 

functions depend on the coordinates of the point at which the value of the random field 

is to be calculated. One of the commonly used series expansion methods is the 

Karhunen-Loève (K-L) expansion method presented by Spanos and Ghanem (1989). 

This method was used in chapters 5 and 6 of the present thesis to discretize the random 

field and it is briefly described in the next subsection. 

4.1. Karhunen-Loève (K-L) expansion 

Let us consider a Guassian random field E(X, θ) where X denotes the spatial 

coordinates and θ indicates the random nature of the random field. If µE is the mean of the 

random field, then the random field can be calculated by the K-L expansion as follows 

(Spanos and Ghanem 1989): 

)()() (X, E
1

θξφλµθ ii
i

iE X∑
∞

=

+=                       (1.7) 

where λi and iφ  are the eigenvalues and eigenfunctions of the autocovariance function, and 

ξi(θ) is a vector of standard uncorrelated random variables. It should be noticed here that 
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ξi(θ) are the stochastic variables that represent the random nature of the uncertain soil 

parameter. However, the eigenvalues and eigenfunctions λi and iφ are the deterministic 

functions of the K-L expansion. They can be evaluated as the solution of the following 

integral equation:   

)x(dx)x()x,x(C 2ii11i21 φλφΩ =∫                       (1.8) 

This integral can be solved analytically only for few types of the autocorrelation functions. 

In the present thesis, an exponential autocovariance function (cf. Table 1.4) was used. For 

this autocovariance function, detailed closed form solution of the integral in Equation (1.8) 

can be found in Ghanem and Spanos (1991) and is presented in Appendix A of the present 

thesis.   

It is to be mentioned here that for practical purposes, the expansion in Equation (1.7) 

is generally truncated to a given number M of terms as follows: 

)()X() (X, E ii

M

1i
iE θξφλµθ ∑

=
+≈                   (1.9)  

The choice of the number M of terms depends on the desired accuracy of the problem 

being treated. The error estimate εrr (X) after truncating the expansion to M terms can be 

calculated as follows (Sudret and Der Kiureghian 2000): 

)X()X(rr 2
i

M

1i
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2
E ϕλσε ∑

=

−=               (1.10)  

where σE is the standard deviation of the random field. Finally, notice that in most 

geotechnical problems, the random fields are assumed to follow a log-normal PDF. This 

assumption is motivated by the fact that a soil parameter cannot be negative in reality. In 

such a case, ln(E) is a normal random field with mean value lnE
µ  and standard deviation 

lnE
σ given as follows: 
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EE lnEln 5.0)ln( σµµ −=                           (1.12) 

For a lognormal random field, Equation (1.9) becomes [Cho (2010), Cho and Park (2010)]:  








 +≈ ∑
=

)()X(exp) (X, E ii

M

1i
ilnE

θξφλµθ                 (1.13) 

5. Probabilistic methods 

The aim of the probabilistic methods is to propagate the uncertainties from the input 

parameters (e.g. c, φ, E, ν, etc.) to the system response (e.g. ultimate load, displacement, 

etc.) through a computational model. Each one of the existing probabilistic methods 

provides one or more of the following probabilistic outputs: (i) reliability index, (ii) failure 

probability, (iii) statistical moments (mean value µ and standard deviation σ) of the system 

response and (iv) the PDF of the system response with all the statistical moments (mean 

value, standard deviation, skewness and kurtosis). The principal probabilistic methods used 

in literature can be divided into three main groups according to the main probabilistic 

output obtained by each method as follows: 

� Probabilistic methods for the computation of the reliability index 

� Probabilistic methods for the computation of the failure probability 

� Probabilistic methods for the computation of the statistical moments (mean value, 

standard deviation, etc.) of the system response 

These methods are explained in the following subsections after a brief description of some 

basic reliability concepts.     

5.1. Performance function and limit state surface 

The performance function G is a function by which one can distinguish if a given set 

of values of the random variables leads to system failure or to system safety. The 
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performance function can be expressed, for a given problem, in different ways. For 

example, for vertically loaded footings, there are two different forms of the performance 

function with respect to soil punching: (i) G=(Pu/Ps)-1 or (ii) G=Pu-Ps where Pu and Ps are 

respectively the ultimate vertical load and the footing applied vertical load. In this 

example, if the random variables are the soil shear strength parameters (c and ϕ) and the 

applied load Ps is assumed to be detrministic; then, all pairs (c, ϕ) that make G<0 (i.e. 

Pu<Ps) lead to failure. However, all pairs (c, ϕ) that make G>0 (i.e. Pu>Ps) lead to system 

safety (cf. Figure 1.2).    

The limit state surface of a given mechanical system is defined as the surface that 

joins the set of values of the random valriables (c and φ in the present case) for which 

failure just occurs (i.e. for which G=0). As shown in Figure (1.2), the limit state surface 

divides the space of random variables into two zones (i) a safe zone (characterized by 

G>0) for which combination of random variables (c, φ) do not lead to failure and (ii) 

failure zone (characterized by G<0) for which combinations of random variables (c, φ) 

lead to failure. 

 
Figure 1.2: Limit state surface in the space of random variables 
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5.2. Probabilistic methods for the computation of the reliability index  

The reliability index of a geotechnical structure provides a measure of the safety that 

takes into account the inherent uncertainties of the different input parameters via their 

probability density functions (PDFs). Two reliability indices are proposed in literature. 

These are the Cornell reliability index βc (Cornell 1969) and the Hasofer-Lind reliability 

index βHL (Hasofer and Lind 1974). These indices are briefly presented below.      

5.2.1. Cornell reliability index βc   

This index is defined as the ratio between the mean value of the performance 

function G and its standard deviation (i.e. GGC / σµβ = ) where the performance function G 

is assumed to follow a Guassian distribution with mean µG and standard deviation σG. From 

this equation, it is obvious that the Cornell reliability index represents the number of 

standard deviations that separates the mean value of the performance function from the 

limit state surface G=0. The main shortcoming of the Cornell reliability index is that its 

value depends on the form of the performance function in case of non-linear limit state 

surface or in case of non-guassian random variables. Although not rigorous, βc was 

frequently adopted in the past for calculating the reliability of geotechnical structures [e.g. 

Chowdhury and Xu (1993, 1995), Christian et al. (1994), Hassan and Wolff (1999), Liang 

et al. (1999), Malkawi et al. (2000), Bhattacharya et al. (2003)].  

5.2.2. Hasofer-Lind reliability index βHL   

To overcome the inconvenience of the Cornell reliability index, another reliability 

index denoted βHL was proposed by Hasofer and Lind (1974). This index is defined as the 

minimal distance that separates the limit state surface expressed in the space of standard 

normal uncorrelated random variables and the origin of this space (Figure 1.3). In case 

where the limit state surface is known analytically, βHL can be easily calculated using one 
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of the two approaches described in the two following subsections. Otherwise, the response 

surface method (RSM) presented hereafter is used for this computation. 

 
Figure 1.3: Hasofer-Lind reliability index in the standard space of random variables 

5.2.2.1. Classical approach for the computation of βHL  

In this approach, βHL is calculated by minimization of the following problem under 

the constraint G=0:      
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where ξi (i=1, 2, …, n) are the n standard normal uncorrelated random variables 

corresponding to the n physical uncertain parameters. The computation of βHL consists of 

two steps: 

• In the first step, the physical (original) random variables should be transformed to the 

standard normal random variables. In this step, isoprobabilistic transformation is used 

to transform the physical random variables to standard normal random variables as 

follows:     

1 ( )
ii x iF xξ −  = Φ                (1.15) 
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in which, xi is a physical random variable, 
ixF  is the cumulative density function (CDF) 

of the physical random variable xi  and ( )⋅−1Φ  is the inverse of the CDF of the standard 

normal random variable. Notice that, if the original random variables are correlated, 

they should be transformed into uncorrelated random variables.  

• In the second step, it is required to search for the minimal distance between the limit 

state surface and the origin of the standard space of uncorrelated random variables. 

5.2.2.2. Ellipsoid approach for the computaion of βHL  

For normal random variables, the Hasofer-Lind reliability index βHL defined in matrix 

formulation is given by: 

)x(C)x(min 1T

0GHL µµβ −−= −

=            
(1.16) 

in which x is the vector representing the n random variables, µ is the vector of their mean 

values and C is their covariance matrix. Equation (1.16) represents the equation of an 

ellipsoid of n dimensions. Based on this equation, Low and Tang (1997) proposed an 

approach to calculate βHL in the original space (not in the transformed standard 

uncorrelated space) of random variables. In this approach, βHL is calculated as the ratio 

between the ellipse (cf. Figure 1.4 in case of two random variables x1 and x2) that is tangent 

to the limit state surface and the unit dispersion ellipse corresponding to βHL=1. To find 

this ratio, the unit dispersion ellipse with center at the mean values of the random variables 

is gradually expanded or contracted, keeping a constant aspect ratio, until touching the 

limit state surface G=0. The ratio between the ellipse that is tangent to the limit state 

surface and the unit dispersion ellipse is equal to βHL as shown in Figure (1.4). The point of 

tangency ( *
2

*
1 x,x ) represents the most probable failure point and it is called the design 

point. For the particular problem of the ultimate bearing capacity presented in section 5.1, 

the design point (c*, φ*) provides the most critical values of c and φ (from a probabilistic 
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point of view) that make the ultimate footing load Pu equal to the prescribed footing 

applied load Ps. This point corresponds to the closest point of the limit state surface to the 

origin of the standard space of random variables. Notice that c and φ are distributed 

according to a joint PDF and the design point is a particular point from this distribution 

that provides the minimal reliability of the treated problem. Notice finally that the 

knowledge of c* and φ* allows one to determine the partial safety factors corresponding to 

these parameters as follows: Fc=µc/c
* and Fφ=tan(µφ)/tan(φ*). These factors are not 

constant and vary from one case to another depending on the variability of the random 

variables and the correlation between these variables. This is one of the important 

advantages of the reliability-based approach with respect to the deterministic approach 

which is not able to consider the real safety inherent to c and φ. Notice finally that the 

ellipsoid approach can be easily implemented in the Excel worksheet (see for example 

Youssef Abdel Massih et al. 2008).  

 
Figure 1.4: Critical and unit dispersion ellipses in the original space of random variables 

5.2.2.3. Response Surface Method (RSM) 

In case of complex implicit mechanical models, the Response Surface Method 

(RSM) comes out as a good choice to calculate βHL. In this method, the response is 

substituted by approximate function in the neighborhood of the design point (Neves et al. 
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2008). Several algorithms were proposed in literature to aproximate the response surface 

using successive iterations [kim and Na (1997), Das and Zheng (2000), Tandjiria et al. 

(2000) and Duprat et al. (2004)]. In this thesis, the algorithm by Tandjiria et al. (2000) is 

used. This algorithm is presented in some details in chapter 2 of this thesis. The basic idea 

of the RSM is to approximate the system response Γ(x) [and consequently the performance 

function] by an explicit function of the random variables, and to improve the 

approximation via iterations. The RSM was used by several authors [e.g. Neves et al. 

(2006), Youssef Abdel Massih and Soubra (2008) and Mollon et al. (2009)] and was found 

an efficient tool to calculate the reliability index βHL. It is to be mentioned here that 

different types of polynomials of different orders with or without cross-terms are proposed 

in literature to approximate the system response or the performance function by an 

analytical function of the random variables.   

 Finally, it should be noticed that the algorithm by Tandjiria et al. (2000) was used in 

Youssef Abdel Massih (2007) to perform a reliability-based analysis of a strip footing 

subjected to a vertical load. In the present thesis, this algorithm was also employed in 

chapter 2 to perform an extensive reliability-based analysis of a circular footing subjected 

to an inclined load.  

5.3. Probabilistic methods for the computation of the failure probability 

The failure probability Pf of a mechanical system is the integral of the joint 

probability density function of the random variables in the failure domain. Consider a 

mechanical system having n random variables (x1, …xi, …xn). The failure probability of this 

system is calculated as follows:  

dx)x(fP
0G

f
≤
∫=                               (1.17) 

where f(x) is the joint probability density function of the random variables and G is the 
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performance function. The integral in Equation (1.17) represents the volume located in the 

failure domain (G<0) and limited by the joint probability density function and the limit 

state surface G=0 (see Figure 1.5). In all but academic cases, the integral in Equation 

(1.17) cannot be computed analytically. For this reason, several numerical methods were 

proposed in literature to calculate Pf. A brief description of the probabilistic methods used 

in this thesis to calculate Pf  is presented in the following subsections.  

 
Figure 1.5: Joint probability density function and limit state surface in case of two random 

variables R and S (After Melchers 1999) 

5.3.1. First Order Reliability Method (FORM) 

The Hasofer-Lind reliability index presented previously in this chapter can be used to 

calculate an approximate value of the failure probability using the First Order Reliability 

Method (FORM) as follows: 

( )HLfP βΦ −≈    (1.18) 

where ( )⋅Φ  is the cumulative density function (CDF) of a standard normal variable and βHL  

is the Hasofer-Lind reliability index. In this method, the limit state surface is approximated 

by a hyperplane (first order approximation) tangent to the limit state surface at the most 

probable failure point called "design point". This method was used in chapter 2 of this 

thesis to calculate the failure probability. The main shortcoming of this method is that, in 
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case of highly non-linear limit state surfaces, it provides a non-rigorous value of the failure 

probability.   

5.3.2. Monte Carlo Simulation (MCS) methodology 

Monte Carlo simulation (MCS) methodology is a universal method to evaluate 

complex integrals. Due to its high accuracy, MCS is widely used for the computation of the 

failure probability whatever is the degree of non-linearity of the limit state surface. It was 

used in this thesis as a tool to check the accuracy of less time-consuming methods that are 

developed for rigorous computation of small failure probabilities.    

Let I(x) be the indicator function of the failure domain (i.e. the function that takes the value 

of 0 in the safe domain where G>0 and 1 otherwise). Thus, Equation (1.17) can be 

rewritten as follows:  

)]x(I[Edx)x(f)x(IPf =∫=
Ω

                                  (1.19) 

in which Ω is the entire domain of random variables and E[I(x)]  is the expectation of the 

indicator I(x). This expectation can be practically evaluated by generating a large number N 

of realizations of the random vector x=(x1, …, xi, …, xn). For each realization j, the 

performance function Gj is evaluated. Then, an unbiased estimation of the failure 

probability is calculated as follows: 
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The accuracy of the estimated failure probability can be measured by calculating its 

coefficient of variation as follows: 
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The smaller values of the coefficient of variation indicate more accurate values of the 

estimated failure probability.  

In spite of being applicable whatever the complexity of the system is, MCS 

methodology is not practically applicable when small values of Pf  are sought. This is due 

to the large number of realisations required to obtain an accurate value of Pf  in such a case. 

Referring to Equation (1.22), if Pf=10-4 and a coefficient of variation of 10% is desired, the 

number of realisations required to calculate Pf  is about 106. For this reason, a more 

efficient method called “subset simulation” was proposed in literature to calculate the small 

failure probability using a reduced number of realisations compared to MCS methodology. 

This method is presented in the following subsection.   

5.3.3. Subset simulation (SS) approach 

The subset simulation (SS) approach was proposed by Au and Beck (2001) as an 

alternative to MCS methodology to compute the small failure probabilities. Its aim is to 

reduce the number of calls of the deterministic model as compared to MCS methodology. 

The basic idea of the SS approach is that the small failure probability in the original 

probability space can be expressed as a product of larger conditional failure probabilities in 

the conditional probability space. This method was used by several authors [Au and Beck 

(2003), Schuëller et al. (2004), Au et al. (2007) and Au et al. (2010) among others] and 

was found to be an efficient tool for the computation of the small failure probability. The 

SS approach was mainly used in literature in the cases where the uncertain parameters are 

modeled by random variables.   
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5.4. Probabilistic methods for the computation of the statistical moments of the 

system response 

Firstly, one presents a simple approximate method that uses Taylor series expansion 

to provide a rough estimate of the first two statistical moments (mean value and variance) 

of the system response. This is followed by a more advanced and rigorous method that 

provides the PDF of the system response and the corresponding statistical moments. 

5.4.1. First Order Second Moment (FOSM) method   

This method uses Taylor series expansion to provide an approximation of the first 

two statistical moments, i.e. mean and variance (Haldar and Mahadevan 2000). Consider a 

system response Γ related to the random variables )x,...x,...x( ni1  by a general function f 

where )x,...x,...x(f ni1=Γ . If the mean and standard deviation of the random variables 

are known but the distributions of these variables are unknown, an approximate mean 

value of the system response and an approximate variance of this system response can be 

obtained. By expanding the function )x,...x,...x(f ni1  in a Taylor series about the mean 

values of random variables ),...,...(
ni1 xxx µµµ , one obtains:  
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where the derivatives are evaluated at the mean values of the random variables. Truncating 

the series at the linear terms, the first order approximate mean value of Γ can be obtained 

as follows:  

),...,...(f
ni1 xxx µµµµΓ =                           (1.24) 

The variance of the system response is given by the following formula: 

∑ ∑∑
= ≠ ∂

∂
∂
∂+











∂
∂=

n

1i

n

i

n

ij
ji

ji
i

i

)x,x(Cov
x

f

x

f
)x(Var

x

f
VarΓ                                           (1.25) 



CHAPTER 1 
----------------------------------------------------------------------------------------------------------------------------------- 

----------------------------------------------------------------------------------------------------------------------------------- 
-36- 

This approximation of the mean and variance of the system response can be improved by 

including higher order terms in the Taylor series expansion.  

5.4.2. Collocation-based Stochastic Response Surface Method (CSRSM) 

The Collocation-based Stochastic Response Surface Method (CSRSM) called also 

Polynomial Chaos Expansion Method was proposed in literature and was employed by 

several authors [Isukapalli et al. (1998), Phoon and Huang (2007), Huang et al. (2009), 

Riahi et al. (2011), Li et al. (2011), Mollon et al. (2011), Houmadi et al. (2012), Mao et al. 

(2012), Soubra and Mao (2012) and Ahmed and Soubra (2012a)]. The aim of this method 

is to obtain the probability density function of the system response. In this method, the 

complex numerical model is replaced by an analytical model (meta-model). This makes it 

easy to compute the PDF of the system response by applying MCS methodology on the 

meta-model.  

6. Conclusion 

In this chapter, a literature review on the soil uncertainties was presented. First, the 

different sources of uncertainties were presented. Second, the different approaches of 

modeling the soil uncertain parameters were described. In this regard two approaches were 

presented: (i) the simplified approach in which the uncertain parameters are represented by 

random variables characterized by their PDFs and (ii) the advanced approach in which the 

uncertain parameters are represented by random fields characterized not only by their 

PDFs but also by their autocorrelation functions. In the framework of the simplified 

approach, the ranges of the coefficients of variation of the soil parameters proposed in 

literature were summarized. Also, the types of the PDFs of the different soil uncertain 

parameters were presented. Finally, the values of the coefficients of correlation ρ between 

soil properties proposed in literature were reported. In the framework of the advanced 
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approach, the most commonly used autocorrelation functions proposed in literature were 

presented. Also, the ranges of the vertical and horizontal autocorrelation lengths were 

summarized. It was found that the horizontal autocorrelation length tends to be one order 

of magnitude higher than the vertical one.  

This chapter has also presented a brief description of the commonly used methods of 

random field discretization in geotechnical engineering. Finally, the different probabilistic 

methods used in this thesis to perform the probabilistic analyses were presented and 

discussed. These methods were divided into three main groups according to the main 

obtained probabilistic output as follows:  

1 – Methods for the computation of the reliability index 

This group of probabilistic methods provides the reliability index by which the safety of 

the system is measured. This group contains three methods: (i) the classical method, (ii) the 

ellipsoid approach and (iii) the Response Surface Method (RSM). The first two methods 

are used when the limit state surface is known analytically. However, in case where the 

limit state surface is analytically unknown, the RSM is used to calculate the reliability 

index by iteratively approximating the limit state surface.  

2 – Methods for the computation of the failure probability 

This group of probabilistic methods provides the failure probability of a given mechanical 

system. This group contains three methods: (i) the First Order Reliability Method (FORM), 

(ii) Monte Carlo Simulation (MCS) methodology and (iii) Subset Simulation (SS) 

approach. The first method (i.e. FORM) provides an approximation of the failure 

probability based on the reliability index. This method is not rigorous in case of non-linear 

limit state surfaces. The second method (i.e. MCS) can be used even if the limit state 

surface is highly non-linear. It provides a rigorous value of the failure probability. 

However, it is very time-consuming especially in case of small value of the failure 
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probability. To overcome this shortcoming, the third method (i.e. subset simulation) may 

be used. This method allows calculating the failure probability using a reduced number of 

realizations compared to MCS methodology.  

3 – Methods for the computation of the statistical moments of the system response 

This group includes two probabilistic methods: (i) the First Order Second Moment (FOSM) 

method and (ii) the Collocation-based Stochastic Response Surface Method (CSRSM). The 

First Order Second Moment (FOSM) is used in case where the PDFs of the random 

variables are unknown. This method provides only an approximate estimate of the mean 

value and the variance of the system response. The CSRSM provides the PDF of the 

system response and the corresponding statistical moments (mean value, variance, 

skewness and kurtosis). 
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CHAPTER 2 

RELIABILITY-BASED ANALYSIS OF OBLIQUELY LOADED 

FOOTINGS USING THE RESPONSE SURFACE METHOD (RSM) 

1. Introduction 

Previous reliability analyses on shallow foundations have focused on the case of a 

vertically loaded strip footing which involves a single failure mode [Bauer and Pula (2000), 

Cherubini (2000), Griffiths and Fenton (2001), Griffiths et al. (2002), Low and Phoon 

(2002), Fenton and Griffiths (2002, 2003), Popescu et al. (2005), Przewlocki (2005), 

Sivakumar and Srivastava (2007), Youssef Abdel Massih et al. (2008), Youssef Abdel 

Massih and Soubra (2008), Srivastava and Sivakumar (2009), Soubra and Youssef Abdel 

Massih (2010)]. The reliability analysis of a footing subjected to an inclined and/or an 

eccentric loading has received a little attention in literature. In this case, different failure 

modes may be involved at the ultimate limit state (ULS) such as the footing sliding, the 

soil punching and the footing overturning. Similar to the ULS, the serviceability limit state 

(SLS) may involve different unsatisfactory performance modes such as the exceeding of 

tolerable footing horizontal and vertical displacements and the exceeding of a tolerable 

footing rotation. This chapter attempts to fill this gap. It deals with the reliability analysis 

of a circular footing subjected to an inclined load. The motivation for this work comes 

principally from the offshore industry. The footings of the offshore structures should resist 

(in addition to the vertical weight of the structure) the horizontal loads and overturning 

moments arising from the environmental actions on these structures. The reliability 

analysis of footings under these conditions is a challenging three-dimensional (3D) 

problem. In this thesis, the focus was made on the case of an inclined load. The extension 

to the general case of complex and/or seismic or dynamic load will be the subject of a 

future work.  
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This chapter aims at providing: (i) a rigorous and unique deterministic safety measure 

that takes into account the two failure modes (i.e. soil punching and footing sliding)  at 

ULS based on a deterministic approach, (ii) a rigorous and unique reliability index βHL that 

also takes into account the two failure modes (i.e. soil punching and footing sliding) at 

ULS in the framework of the reliability-based analysis, (iii) the most predominant failure 

mode at ULS and also the most predominant unsatisfactory performance mode at SLS for 

the different loading configurations, and finally (iv) a parametric study showing the effect 

of the different governing parameters on the failure probability.  

It should be mentioned that only the uncertainties of the soil parameters were 

considered in the reliability-based analysis. The soil shear strength parameters (c and φ) 

were considered as random variables at ULS and the soil elastic parameters (E and ν) were 

considered as random variables at SLS. Notice that the system response used at ULS was 

the factor of safety F determined using the strength reduction method. Concerning the SLS, 

two system responses were used. These are the vertical and horizontal displacements of the 

footing center. The deterministic models used to calculate the different system responses 

are based on 3D numerical simulations using the Lagrangian explicit finite difference code 

FLAC3D. Thus, the Response Surface Methodology (RSM) was used to find an 

approximation of the unknown limit state surfaces. The Hasofer-Lind reliability index βHL 

was used to compute the soil-footing reliability. The First Order Reliability Method 

(FORM) was used to calculate the failure probability.  

This chapter is organized as follows: The Response Surface Method (RSM) is first 

presented. This is followed by the computation of the system responses at ULS and SLS of 

a circular footing subjected to an inclined load. Then, a ULS deterministic analysis and 

both ULS and SLS reliability-based analyses of this footing are presented and discussed. 
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Finally, a parametric study showing the effect of the different governing parameters on the 

failure probability is presented and discussed. The chapter ends by a conclusion of the 

main findings.  

2. Response Surface Method (RSM) 

For the problem studied in this chapter, the response surface is not known 

analytically. Thus, the Response Surface Method (RSM) is used to calculate the Hasofer-

Lind reliability index βHL. The basic idea of the RSM is to approximate the system 

response Γ(x) [and consequently the performance function G] by an explicit function of the 

random variables, and to improve the approximation via iterations [kim and Na (1997), 

Das and Zheng (2000), Tandjiria et al. (2000) and Duprat et al. (2004)]. The algorithm by 

Tandjiria et al. (2000) was used in this chapter. The expression of the system response 

used herein is a second order polynomial with squared terms but without cross-terms. It is 

given by:  

( ) ∑∑
==

++=
n

1i

2

ii

n

1i
ii0 x.bx.aaxΓ              (2.1) 

where xi are the random variables, n is the number of random variables and ( )ii b,a  are 

unknown coefficients to be determined. Notice that the random variables xi are 

characterized by their mean and standard deviation values ( iµ  and iσ ). A brief 

explanation of the algorithm by Tandjiria et al. (2000) used in this chapter is given as 

follows: 

1. Using the deterministic model, evaluate the value of the system response Γ(x) at the 

point that represents the mean values iµ  of the random variables and at the n2  points 

(each at ii kσµ ±  where k is arbitrarily chosen equal to 1 in this chapter). 
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2. The above 2 1n+  values of Γ(x) are used to solve the linear system of equations 

(Equation 2.1) and find the coefficients ( )ii b,a . Then, the performance function G can 

be constructed to give a tentative response surface function.  

3. Calculate the tentative reliability index HLβ  and the corresponding tentative design 

point *
ix using for instance the ellipsoid approach presented in chapter 1. 

4. Repeat steps 1 to 3 using each time the tentative design point *
ix  and the 2n points 

(each at ii kx σ±* ) until the convergence of HLβ . The convergence is considered to be 

achieved when the absolute difference ε between two successive values of HLβ  is less 

than a prescribed small value (e.g. ε<10-1 in the present chapter).  

Finally, the obtained HLβ can be used to provide an approximate value of the failure 

probability using the First Order Reliability Method (FORM) as follows: ( )HLfP β−Φ≈
 

where ( )⋅Φ  is the CDF of a standard normal variable.   

It should be emphasized here that in case of a large number of random variables n, the 

computation of βHL becomes very time consuming. For each iteration of the RSΜ, the 

number of calls of the deterministic model required to evaluate the coefficients ( )ii b,a  is 

equal to 2n+1. The number of iterations required to achieve the convergence of βHL 

depends on the problem being treated. It ranges between 2 and 5 iterations in most 

geotechnical problems. Thus, the total number of calls of the deterministic model 

significantly increases with the increase in the number of random variables. The 

computation time becomes non-realistic when dealing with 3D numerical models (as is the 

case in the present chapter) where each call of the deterministic model is very time-

expensive. Finally, it should be emphasized that the obtained limit state surface is well 

approximated only around the design point.  
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3. Computation of the system responses for the ULS and SLS analyses 

The aim of this section is to present the method of computation of the system 

responses at ULS and SLS of a circular footing subjected to an inclined load. FLAC3D 

software was used to calculate the different system responses. A brief overview on this 

software is provided in Appendix B.    

For the ULS analysis, two system responses are traditionally used in the literature to 

check the stability of shallow footings subjected to inclined loads. These are the two 

individual safety factors Fp=Vu/V and Fs=Hu/H against soil punching and footing sliding 

respectively, where Vu and Hu are respectively the vertical and the horizontal ultimate loads 

and V and H are respectively the applied vertical and horizontal load components. These 

safety factors are not very rigorous because they consider only a single mode of failure 

(punching or sliding). They neglect the interference between the two failure modes which 

simultaneously exists whatever the values of the footing load components (H, V) are. A 

more rigorous and unique safety factor F that simultaneously takes into account the two 

modes of failure is proposed herein for the computation of a unique rigorous safety level of 

the soil-footing system. This factor is defined using the strength reduction method. In this 

method, the soil shear strength parameters (c, φ) are replaced by cd and φd where cd and φd 

are given by:  

F

c
cd =                  (2.2) 








= −

F

tan
tan 1

d

ϕϕ                 (2.3) 

The critical safety factor F is calculated by successively reducing c and tanφ by an 

increasing tentative value of the factor F until failure occurs. The tentative value of the 

factor F corresponding to failure is the safety factor of the soil-footing system subjected to 

the loads (H, V). As may be seen later, the present definition of the safety factor allows one 
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to simultaneously consider the two failure modes (footing sliding and soil punching) using 

a single simulation.  

In order to calculate the safety factor F using FLAC3D, a circular footing of radius R=1m 

that rests on a (c, φ) soil domain of radius equal to 5R and depth equal to 5R was 

considered in the analysis. Because of symmetry, only one half of the entire soil domain 

was considered (Figure 2.1). A non-uniform mesh composed of 6040 zones was used to 

compute the safety factor. This mesh was refined near the footing edges where high 

stresses and strains are developed. For the displacement boundary conditions, the bottom 

boundary was assumed to be fixed and the vertical cylindrical boundary was constrained in 

motion in the horizontal X and Y directions. Concerning the (Z, X) vertical plane of 

symmetry, it was constrained in motion in the perpendicular direction.  

 
Figure 2.1: Soil domain and mesh used to simulate the soil-footing system 

A conventional elastic perfectly plastic model obeying Mohr-Coulomb failure criterion 

was used to represent the soil behavior. Concerning the circular footing, it was modeled by 

an elastic perfectly plastic model obeying Mohr-Coulomb failure criterion although a 

linear elastic model should be used. This is because the computation of the safety factor in 

FLAC3D (through the ‘Solve FOS’ command) cannot be achieved unless all zones of the 

domain (i.e. soil and foundation) are modeled by an elastic perfectly plastic model based 

on Mohr-Coulomb failure criterion. To overcome this inconvenience, a very large value 
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was affected to the cohesion parameter of the foundation (see Table 2.1). Concerning the 

soil-footing interface, it was assumed to follow the same model as the soil with the same 

values of the shear strength parameters and the dilation angle. This assumption was 

adopted in order to simulate a perfectly rough interface between the soil and the footing. 

The illustrative values of the shear strength parameters (c and φ), the elastic properties (E 

and ν) and the dilation angle ψ of the soil, footing and interface are given in Table (2.1). 

The normal and the shear stiffness (Kn and Ks) of the interface are also presented in this 

table. Notice that Kn and Ks have no significant effect on the value of the safety factor. 

Notice also that at ULS, the soil Young’s modulus was affected an arbitrary value of 

390MPa. This value is much larger than the real value of 60MPa. This large value of the 

Young’s modulus results in a considerable reduction in the computation time of the safety 

factor F and does not deteriorate the accuracy of the solution. 

Table 2.1: Shear strength and elastic properties of soil, footing, and interface for the ULS 
analysis 

Variable Soil Footing Interface 
c 20kPa 200GPa 20kPa 
φ 30o 30o 30o 

ψ = 2/3 φ  20o 20o 20o 
E 390MPa 25GPa N/A 
ν 0.3 0.4 N/A 

Kn N/A N/A 1GPa 
Ks N/A N/A 1GPa 

To check the validity of the assumption of modeling the footing by an elastic perfectly 

plastic model with a great cohesion value, the following test was performed: First, the 

footing was modeled by a linear elastic model and the ultimate vertical load Vu was 

computed. Second, the footing was modeled by an elastic perfectly plastic model obeying 

Mohr-Coulomb failure criterion and the safety factor F was calculated using the computed 

Vu value. It was found that F is equal to one. This means that an elastic perfectly plastic 

behavior can be adopted for the footing to calculate the safety factor F of the soil-footing 

system.  
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Concerning the SLS analysis, two system responses were considered. These are the 

vertical and the horizontal footing displacements. The same mesh used for the ULS 

analysis is employed here to calculate the footing vertical and horizontal displacements. 

Similar to the ULS analysis, a conventional elastic perfectly plastic model obeying Mohr-

Coulomb failure criterion was used to represent the soil behavior in the SLS analysis. This 

assumption was adopted here in order to take into account the possible plastification that 

may take place near the footing edges even under the service loads. Concerning the footing, 

it was assumed to follow a linear elastic model. Similar to the ULS analysis, the soil-

footing interface was affected the same properties (c, φ, ψ) as the soil in order to simulate a 

perfectly rough interface. The illustrative values of the soil, footing, and interface 

properties used for the SLS analysis are given in Table (2.2).   

Table 2.2: Shear strength and elastic properties of soil, footing, and interface for the SLS 
analysis 

Variable Soil Footing Interface 

c 20kPa N/A 20kPa 
φ 30o N/A 30o 

ψ = 2/3 φ  20o N/A 20o 
E 60MPa 25GPa N/A 
ν 0.3 0.4 N/A 

Kn N/A N/A 1GPa 
Ks N/A N/A 1GPa 

In order to calculate the vertical and horizontal displacements of the footing center, 

geostatic stresses are first applied to the soil. Then, several cycles are run in order to 

achieve a steady state of static equilibrium. The obtained displacements are set to zero in 

order to obtain the footing displacements due to only the footing applied load. The vertical 

and horizontal load components are then applied to the footing center. Finally, damping of 

the soil-footing system was performed until reaching a steady state of static equilibrium. 

The obtained vertical and horizontal displacements of the footing centre are the footing 

displacements.  
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4. ULS deterministic analysis of a circular footing  

The aim of this section is to use the deterministic approach for the determination of 

the most predominant failure mode at ULS (i.e. soil punching or footing sliding) for the 

different (H, V) loading configurations. As will be shown in the following subsection, the 

determination of the most predominant failure mode for the different loading 

configurations allows one to distinguish two zones in the (H, V) interaction diagram where 

either soil punching or footing sliding is predominant. 

4.1 Failure mode predominance at ULS based on a deterministic approach 

Figure (2.2) shows the (H, V) interaction diagram. This diagram was computed using 

the values of the soil parameters given in Table (2.1). Each point of the interaction diagram 

(except point E) is obtained by first searching a steady state of static equilibrium under the 

vertical load component V. Then, the corresponding horizontal component H is computed 

by searching a steady state of plastic flow using a prescribed horizontal velocity of 10-6 

m/timestep. Notice that for the point corresponding to the vertical load case (Point E where 

V=5386.61kN and H=0kN), only a displacement control method with a vertical velocity of 

10-6 m/timestep was used to compute the ultimate vertical load. The maximal point of the 

interaction diagram O’ corresponds to (V=2660kN, H=744.24kN), i.e. to a load inclination 

α=15.6° with respect to the vertical direction.  
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Figure 2.2: Interaction diagram (H, V) 
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The distribution of the maximum shear strain in the soil mass corresponding to different 

points on the interaction diagram (i.e. points A, B, O’, C, D and E) are shown in Figure 

(2.3). This figure shows that for point A where V is small, the footing sliding is the most 

predominant while the punching mode is negligible. When increasing V, the punching 

mode increases and the sliding mode gradually decreases. For point D where V is very 

large, the soil punching is the most predominant while the footing sliding is negligible. 

This means that both failure modes co-exist for all loading configurations.  

 
Point A (H=281kN and V=400kN) 

 
Point B (H=566.70kN and V=1200kN) 

 
Point O’ (H=744.24kN and V=2660kN) 

 
Point C (H=618.44kN and V=4000kN) 

 
Point D (H=254.38kN and V=5100kN) 

 
Point E (H=0kN and V=5386.6kN) 

Figure 2.3: Distribution of the maximum shear strain in the soil mass for different load 
configurations on the interaction diagram. 

The values of the safety factor corresponding to all those points (i.e. points A, B, O’, C and 

D) were calculated. Although some points correspond to soil punching predomination and 

others correspond to footing sliding predomination, a unique value of the safety factor 

(F=1) was found for all these points. Also, the distribution of the maximum shear strain 
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obtained after the computation of F was found the same as that obtained in Figure (2.3) 

when computing the failure loads. This means that the safety factor F can consider the 

simultaneous effect of the two failure modes and it provides a unique safety level whatever 

the predominant failure mode is.  

In order to distinguish the two zones in the interaction diagram where either soil punching 

or footing sliding is predominant, three constant values of H shown in Figure (2.2) were 

considered to plot the safety factor F versus the vertical load component V in Figure (2.4). 

For the three curves shown in this figure, F presents a maximum value at points A1, A2 and 

A3. These points correspond to the same ratio of H/V (H/V=0.28). This ratio is the same as 

that corresponding to the load configuration of the maximum point of the interaction 

diagram (i.e. point O’) shown in Figure (2.2). Thus, points A1, A2, A3 and O’ belong to a 

straight line OO’ joining the origin and the maximal point of the interaction diagram as 

may be seen from Figure (2.5). Each point on the line OO’ provides a maximum safety 

factor in comparison with the other loading configurations having the same H value.   
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Figure 2.4: Safety factor F against vertical load component V for three values of the 

horizontal load component H 

Some contour lines of the safety factor F are plotted in Figure (2.5) using the soil shear 

strength parameters cd=c/F and φd=tan-1(tan(φ)/F) for some prescribed values of F. It was 



CHAPTER 2 
----------------------------------------------------------------------------------------------------------------------------------- 

----------------------------------------------------------------------------------------------------------------------------------- 
-51- 

observed that the maximum points of all these contour lines are located on the line OO’ for 

which, all loading configurations have a ratio of H/V=0.28 [i.e. α=tan-1(H/V) =15.6o].  
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Figure 2.5: Interaction diagram (where F=1) and other contour lines of F 

Line OO’ can be described as the line that gives the optimal load inclination (i.e. that for 

which F is maximal for any prescribed value of the horizontal load component). This line 

may also be seen as the line that divides the (H, V) space into two zones; a zone in the left 

hand side of this line for which footing sliding is predominant, and another zone in the 

right hand side of this line for which the soil punching is predominant. This is due to the 

fact that at high load inclinations (i.e. for small values of V) in Figure (2.4), footing sliding 

is predominant and the safety factor increases with the vertical load increase. However, at 

small values of load inclination (i.e. for high values of V), soil punching is predominant 

and in this zone the safety factor decreases with the vertical load increase. To confirm 

these observations, the distribution of the maximum shear strain corresponding to three 

different values of V is plotted in Figure (2.6) for a prescribed value of H (H=447.66kN). 

As can be easily seen, footing sliding is predominant for small values of V while soil 

punching is predominant for large values of V. The case of no predominance of neither 

failure mode corresponds to V=1600kN where α=15.6o. Finally, it should be emphasized 

that although the deterministic approach can determine the zones of predominance of the 

two failure modes at ULS, it is not able to determine the zones of predominance of 
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unsatisfactory performance modes at SLS. Reliability-based approach is necessary in such 

a case. 

 
V=400kN 

 
V=1600kN 

 
V=5800kN 

 Figure 2.6: Distribution of the maximum shear strain in the soil mass for three values of 
the vertical load component when H=447.66kN    

5. ULS and SLS reliability-based analyses of a circular footing 

The determination of the zones of predominance of punching or sliding based on a 

deterministic analysis does not take into account the uncertainties related to the soil 

parameters. In this section, these uncertainties were taken into account by using a 

reliability-based approach. Furthermore, contrary to the deterministic approach which can 

handle only the ULS analysis, both the ULS and the SLS analyses are considered in the 

framework of the reliability-based approach. The soil shear strength parameters (c and φ) 

were considered as random variables at ULS; however, the soil elastic properties (E and ν) 

were considered as random variables at SLS. This is because the soil shear strength 

parameters c and φ have no significant effect on the system responses at SLS (i.e. the 

footing displacements) and the soil elastic parameters E and ν have no significant effect on 

the system response at ULS (i.e. the safety factor F). The Hasofer-Lind reliability index 

was adopted for the assessment of the reliability of the soil-footing system. The response 
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surface methodology (RSM) based on the algorithm by Tandjiria et al. (2000) was used to 

compute the reliability index and the corresponding design point. The deterministic models 

used to calculate the system responses for both ULS and SLS analyses are those described 

in section 3. 

The illustrative values used for the statistical moments of the different random variables are 

given in Table (2.3). These values correspond to those commonly encountered in practice 

[Cherrubini et al. (1993), Phoon et al. (1995) and Phoon and Kulhawy (1999) among 

others].  

Table 2.3: Statistical characteristics of the different random variables 
Type of the probability density 

function (PDF) 
Variable Mean value 

Coefficient of 
variation (%) Case of normal 

PDF 
Case of non-normal 

PDF 

c 20kPa 20 Normal Log-normal 
φ 30o 10 Normal Beta 
E 60MPa 15 Normal Log-normal 
ν 0.3 5 Normal Log-normal 

This table also presents the types of the probability density function (PDF) of the random 

variables. For each random variable, two PDF types were studied. In the first type referred 

to as normal PDF; c, φ, E and ν were considered as normal variables. In the second type 

referred to as non-normal PDF; c, E and ν were assumed to be log-normally distributed 

while φ was assumed to be bounded and a beta distribution with lower and upper bounds of 

0 and 45o respectively was adopted for this random variable. Also, both cases of correlated 

and uncorrelated random variables were examined. In the case of correlated random 

variables, a negative correlation of ρ=-0.5 was assumed between c and φ at ULS or 

between E and ν at SLS.  

After the presentation of some reliability-based results, the determination of the 

failure mode predominance based on a reliability-based approach will be presented.  
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5.1. Performance functions, reliability index and failure probability  

Footings subjected to an inclined loading may be analysed at ULS as a system 

consisting of two different failure modes. Typically, these modes are the footing sliding 

and the soil punching. To calculate the failure probability of such type of footings, two 

performance functions with two different system responses would be required. This 

chapter makes use of a unique system response. This is the safety factor F defined with 

respect to the shear strength parameters c and tanφ. This factor was previously presented in 

section 3. Remember that the safety factor F is able to take into account the two failure 

modes simultaneously and it provides a unique safety level of the soil-footing system. 

Thus, it avoids the use of two reliability analyses which lead to an approximate value of 

the system reliability index or the system failure probability. This factor is commonly used 

in the slope stability analysis. It is the factor by which the available soil shear strength 

parameters c and tanφ have to be reduced to bring the soil to failure. Based on this safety 

factor, the performance function is given as follows: 

11 −= FG                                   (2.4) 

For the SLS analysis, two performance functions were used. These performance 

functions are defined with respect to prescribed tolerable vertical and horizontal 

displacements of the footing centre. They are given by: 

G2 = δvmax - δv                                    (2.5) 

G3 = δumax - δu                          (2.6)          

where δvmax and δumax are respectively the tolerable vertical and horizontal displacements 

of the footing center and δv and δu are respectively the footing vertical and horizontal 

displacements due to the applied load components (V and H).  
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Remember here that the iterative process of the RSM ends when the absolute 

difference ε between two successive values of βHL at two successive iterations is less than a 

prescribed small value (e.g. ε<10-1 in the present chapter). Another criterion can be used to 

confirm the end of the iterative process of the RSM. This criterion is based on the 

abovementioned performance functions. Since the design point should be located on the 

limit state surface G=0, the value of the performance function at this point should be very 

close to zero. Tables (2.4a, 2.4b and 2.4c) present the successive tentative values of the 

reliability index and the corresponding design point as obtained at the different iterations 

of the RSM for the different system responses (i.e. safety factor, vertical displacement and 

horizontal displacement). These tables also provide the absolute value of the difference 

between two successive values of the reliability index and the absolute value of the 

performance function obtained at the different iterations. 

For the safety factor F, the criterion (i.e. ε<10-1) was reached after two iterations and the 

absolute value of G is equal to zero at the second iteration. Thus, only 10 deterministic 

numerical simulations using FLAC3D were necessary for the computation of the reliability 

index. However, for the vertical and the horizontal displacements, the convergence 

criterion of βHL was reached after 4 iterations and the absolute values of the performance 

functions were very close to zero at the fourth iteration. Thus, 20 calls of the deterministic 

model were necessary to calculate the reliability index in these cases.  

Table 2.4a: Design point (c*, φ*), reliability index βHL, convergence criterion ε and 
absolute values of the  performance function at the design point as obtained at 

the different iterations of a RSM calculation in the case of non-normal 
correlated variables at ULS (V=1600kN and H=447.66kN) 

Iteration c* φ
* βHL 

Convergence 
criterion ε 

F 
Absolute value of the 
performance function 

G=F-1 
1 19.7820 25.7716 1.5946 - 0.99 0.01 
2 19.3563 25.9493 1.5907 0.0039 1.00 0.00 
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Table 2.4b: Design point (E*, ν*), reliability index βHL, convergence criterion ε and 
absolute values of the  performance function at the design point as obtained at 

the different iterations of a RSM calculation in the case of non-normal 
correlated variables at SLS (V=1600kN, H=447.66kN and δvmax=3cm) 

Iteration E*x106 ν
* βHL 

Convergence 
criterion ε  

δv 
(cm) 

Absolute value of the 
performance function 

G = δvmax-δv 
1 47.7605 0.3215 1.6560 - 2.1500 0.8500 
2 32.7716 0.3179 4.0866 - 2.4306 3.1734 0.1734 
3 34.8298 0.3156 3.6737 0.4129 3.0021 0.0021 
4 34.8204 0.3162 3.6640 0.0097 3.0004 0.0004 

Table 2.4c: Design point (E*, ν*), reliability index βHL, convergence criterion ε and 
absolute values of the  performance function at the design point as obtained at 

the different iterations of a RSM calculation in the case of non-normal 
correlated variables at SLS (V=1600kN, H=447.66kN and δumax=1.5cm) 

Iteratio
n 

E* x 106 ν
* βHL 

Convergence 
criterion ε 

δu 
(cm) 

Absolute value of the 
performance function 

G = δumax-δu 
1 39.3299 0.3164 2.7767 - 1.5097 0.0097 
2 39.4355 0.3190 2.7423 0.0344 1.4987 0.0013 
3 39.5438 0.3184 2.7254 0.0169 1.5033 0.0033 
4 39.5428 0.3184 2.7243 0.0011 1.5009 0.0009 

5.2. Failure modes predominance at ULS and SLS based on a reliability-based 

approach  

For the ULS analysis, the effect of V on the failure probability Pf was shown in 

Figure (2.7) for three prescribed values of H. The random variables (c and φ) were 

considered as non-normal and correlated. In contrast to F which provides a maximum 

(points A1, A2 and A3 in Figure 2.4), Pf presents a minimum (point B1, B2 and B3 in Figure 

2.7). The fact that Pf exhibits a minimum may be explained as follows: For small values of 

V, the footing sliding is predominant and the failure probability due to this mode is very 

high. As V increases, the effect of sliding decreases and that of soil punching gradually 

increases until both modes of failure become non-predominant and induce a minimal 

simultaneous effect on the failure probability. In this case, the probability of failure 

presents a minimum value. More increase in V leads to an increasingly failure probability. 

This is due to a more and more predomination of the punching failure mode; the sliding 
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failure mode becomes negligible in this case. From Figures (2.4) and (2.7), it can be 

observed that for a given H value, the point of maximum safety factor and that of 

minimum failure probability correspond exactly to the same load inclination (α=15.6o). 

This load inclination corresponds to the line OO’ in Figure (2.5) obtained using the 

deterministic approach. This implies that the optimal load inclination leading to a maximal 

safety factor or a minimal failure probability does not depend on the soil uncertainties. 
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Figure 2.7: Effect of V on the failure probability Pf at ULS  

In order to confirm this statement, Pf was plotted versus V for two different configurations 

of COVc and COVφ in Figure (2.8). It can be observed that for both configurations of COVc 

and COVφ, the minimum value of Pf is obtained at the same value of V. This means that the 

soil uncertainty has no effect on the optimal load configuration for which neither mode of 

failure is predominant.  
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Figure 2.8: Effect of V on the Pf  value at ULS for different values of COVc and COVφ. 
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As a conclusion, it can be deduced that at ULS, the optimal load inclination obtained by 

the deterministic approach is the same as the one obtained using the reliability-based 

approach which means that the optimal load inclination is independent of the soil 

variability. The optimal load inclination is the one for which the safety factor is maximum 

and the failure probability is minimum. It is also the one that separates the two zones of 

predominance of sliding or punching in the interaction diagram.   

Concerning the SLS analysis, Figures (2.9a, 2.9b and 2.9c) present the probability Pe 

of exceeding a tolerable footing displacement versus the vertical applied load component V 

for three different values of H. In each figure, three cases are presented: (i) the probability 

of exceeding a tolerable vertical displacement δvmax=3cm, (ii) the probability of exceeding 

a tolerable horizontal displacement δumax=1.5cm and (iii) the probability of exceeding both 

tolerable displacements of δvmax=3cm and δumax=1.5cm using the equations of the system 

failure probability presented in Ang and Tang (1975). These equations are given in 

Appendix C. The random variables (E and ν) were considered non-normal and 

uncorrelated. Figure (2.9) and Table (2.5) indicate that, for the results corresponding to the 

tolerable horizontal displacement, Pe presents a minimum value. This is because, at small 

V values, the horizontal movement of the footing is predominant. This leads to a high Pe 

value. As V increases, the horizontal movement decreases because of the increase in the 

shearing resistance at the soil-footing interface. This leads to a gradual decrease in Pe. 

When punching begins to predominate, one obtains an increase in Pe due to an increase in 

the horizontal footing displacement. For the curves of Figure (2.9) corresponding to the 

vertical footing displacement, Pe continuously increases with the increase of V. This is due 

to the increase in the vertical displacement. 



CHAPTER 2 
----------------------------------------------------------------------------------------------------------------------------------- 

----------------------------------------------------------------------------------------------------------------------------------- 
-59- 

The Pe values for the three cases mentioned above (i.e. probability of exceeding δvmax, 

probability of exceeding δumax and the probability of exceeding both δvmax and δvmax) when 

H=447.66kN are provided in Table (2.5). From this table, it can be noticed that the system 

probability is equal to the largest probability component when the mode of exceeding δumax 

is predominant (i.e. when V≤1600kN). It becomes larger than both components when both 

unsatisfactory performance modes contribute to Pe (i.e. when V >1600kN).  
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Figure 2.9: Effect of V on the probability Pe of exceeding tolerable vertical and 
horizontal displacements at SLS  

It should be emphasized here that the minimum value of the system probability at SLS 

corresponds exactly to the same load inclination (α=15.6o) for which the safety factor 

presents a maximum and the failure probability presents a minimum at ULS. This means 

that the load inclination which provides the minimum failure probability at ULS leads to 

the smallest possible movement of the foundation at SLS. It can be concluded that line 
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OO’ (Figure 2.5) which separates the zones of predominance at ULS can also be used at 

SLS to distinguish the load configurations that lead to a predomination of the horizontal or 

the vertical footing movement. Finally, it should be emphasized that the zone of 

predominance of a given failure mode does not mean that the failure probability in this 

zone is only due to this mode. It simply means that the failure probability in this zone is 

mostly due to this mode and the contribution of the other mode is less significant. 

Table 2.5: Effect of V on (i) probability of exceeding δvmax, (ii) probability of exceeding 
δumax and (iii) system probability at SLS (H=447.66kN) 

    V (kN) 
Probability of 

exceeding δvmax 

(%) 

Probability of 
exceeding δumax 

(%) 

System 
probability 

(%) 
900 1.71x10-20 23.38 23.38 
1000 3.29x10-15 3.96 3.96 
1200 6.10x10-09 0.79 0.79 
1400 3.09x10-05 0.32 0.32 
1600 0.12 0.22 0.22 
1800 0.53 0.53 1.47 
2000 6.29 1.01 7.28 
2200 27.28 2.04 28.96 
2400 63.57 4.00 64.90 
2600 87.12 8.32 88.19 
2800 97.12 14.57 98.13 

6. Reliability-based parametric study 

This section aims at investigating the effect of the load inclination α and the 

statistical characteristics of the soil shear strength parameters (distribution type, coefficient 

of variation and correlation between random variables) on the variability of the ultimate 

bearing capacity.  

6.1. Effect of the load inclination α on the variability of the ultimate bearing capacity 

Figure (2.10) shows the CDF of the ultimate bearing capacity of both vertically (α=0) 

and obliquely (α>0) loaded footings. The random variables (c and φ) were assumed non-

normal and correlated. Figure (2.10) indicates that the variability of the ultimate bearing 

capacity is significant in the vertical load case (i.e. when α=0o) where the CDF is more 
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spread out with respect to the inclined load cases. To explain this observation, one should 

refer to the failure mechanisms shown in Figure (2.3). It can be observed that the size of 

the failure mechanism is small in the case of small values of V (i.e. for high load 

inclinations) where the footing sliding is predominant. However, its size increases with the 

increase of V (i.e. for small load inclinations) where the soil punching is predominant. The 

size of the failure mechanism is maximal in the vertical load case (i.e. point E of Figure 2.2 

where H=0). As expected, the ultimate bearing capacity increases with the size of the 

failure mechanism. Therefore, when the failure mechanism is small (i.e. for an inclined 

load case), the variation of c and φ does not have a significant effect on the ultimate 

bearing capacity. However, when this mechanism is large (i.e. for a vertical load case), a 

small variation in c and φ results in a significant effect on the ultimate bearing capacity. 

Another alternative explanation may also be provided as follows: since the system 

response considered in this section is the ultimate bearing capacity which is intimately 

related to the punching failure mode, it would be expected to obtain the maximal 

variability when the soil punching is the most predominant (i.e. when the footing load is 

vertical).   
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Figure 2.10: CDF of the ultimate bearing capacity qu for different values of the load 

inclination α  
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6.2. Effect of the distribution type and the correlation between random variables on 

the variability of the ultimate bearing capacity 

The aim of this section is to investigate the effect of the type of the PDF and the 

correlation between the shear strength parameters on the variability of the ultimate bearing 

capacity. This study was carried out when α=0 (i.e. for a vertically loaded circular footing). 

Both assumptions of normal and non-normal random variables were studied. Also, both 

correlated and uncorrelated random variables were considered in the analysis. Figure (2.11) 

shows that the negative correlation between the soil shear strength parameters decreases 

the variability of the ultimate bearing capacity (since one obtains a less spread out CDF) 

while the assumption of non-normal random variables very slightly decreases the 

variability of the ultimate bearing capacity. As a conclusion, these results indicate that the 

case of normal uncorrelated random variables is conservative since it provides the largest 

variability of the ultimate bearing capacity.  
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Figure 2.11: CDF of the ultimate bearing capacity qu for different assumptions on the PDF 

type and the correlation when α=0o 

6.3. Effect of the coefficient of variation of the shear strength parameters on the 

variability of the ultimate bearing capacity 

The effect of the coefficients of variation of c and φ on the ultimate bearing capacity was 

investigated in Figure (2.12). The random variables were considered non-normal and 

correlated. This study indicates that the variability of the ultimate bearing capacity is more 
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sensitive to the variation in the internal friction angle than to the variation in the soil 

cohesion. This can be easily observed from Figure (2.12) where the increase in the 

dispersion of the CDF of the ultimate bearing capacity due to an increase in COVφ by 50% 

is larger than that due to an increase in COVc by 100%. This reflects the important role of 

the angle of internal friction in the determination of the ultimate bearing capacity and 

consequently in footing design. Therefore, care should be taken on the rigorous 

determination of COVφ in practice.    
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Figure 2.12: CDF of the ultimate bearing capacity qu for different values of the 

coefficients of variation of the random variables when α=0o 

7. Conclusion 

This chapter presents a deterministic analysis at ULS and a reliability-based analysis 

at both ULS and SLS of a circular footing resting on a (c, φ) soil and subjected to an 

inclined load. Two modes of failure (soil punching and footing sliding) were considered at 

ULS. Also, two modes of unsatisfactory performance (exceeding of prescribed tolerable 

vertical and horizontal displacements of the foundation) were considered at SLS. The 

safety factor F defined with respect to the soil shear strength parameters c and tanφ was 

used to represent the system response at ULS. On the other hand, two system responses 

were used at SLS. These are the footing horizontal and vertical displacements. The 

deterministic models used to calculate the system responses are based on 3D numerical 

simulations using the Lagrangian explicit finite difference code FLAC3D. The soil shear 
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strength parameters c and φ were modeled by random variables at ULS while the soil 

elastic properties E and ν were modeled by random variables at SLS. Hasofer-Lind 

reliability index was used for the computation of the reliability of the soil-footing system. 

The response surface methodology was used to find an approximation of the system 

response and the reliability index. FORM approximation was used for the computation of 

the failure probability. 

In this chapter, the zones of predominance of the different modes at both ULS and SLS 

were determined. Notice that the zone of predominance of a given failure mode means that 

the failure probability in this zone is mostly due to this mode; however, the contribution of 

the other mode is less significant. The main findings of this chapter can be summarized as 

follows: 

1- For the ULS analysis 

1. The safety factor F defined with respect to the soil shear strength parameters c and 

tanφ considers the combined effect of both failure modes (soil punching and 

footing sliding). Notice that both failure modes co-exist whatever the loading 

configuration is. The safety factor F provides a unique and rigorous safety level of 

the soil-footing system. The use of this factor has the advantage of seeking the most 

predominant mode of failure using a deterministic approach.            

2. There are several optimal loading configurations in the interaction diagram. These 

configurations correspond to a unique optimal load inclination and they subdivide 

the interaction diagram into two zones of predominance where either soil punching 

or footing sliding is predominant. The optimal load inclination is that for which (i) 

the load configurations do not exhibit predominance of neither soil punching nor 

footing sliding and (iii) the safety factor is maximum and the failure probability is 
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minimum with respect to all other load configurations having the same value of the 

horizontal load component.  

3. The optimal loading configurations obtained by using the deterministic approach 

were found similar to those obtained by using the reliability-based approach. This 

means that the optimal load inclination does not depend on the uncertainties of the 

soil parameters. The optimal loading configurations are situated on the line joining 

the origin and the extremum of the interaction diagram.  

2- For the SLS analysis 

a) Contrary to the ULS analysis, the deterministic approach was not able to determine 

the optimal load inclination for which neither vertical nor horizontal movement is 

predominant at SLS. The reliability-based approach was necessary in this case. The 

reliability-based analysis has shown that the optimal load inclination at SLS 

corresponds exactly to the one obtained at ULS. This corresponds to the minimum 

movement of the footing center.  

3- The parametric study has shown that: 

 a) The variability of the ultimate bearing capacity is significant for the vertical load 

case where only the punching failure mode is present. It becomes smaller in the 

inclined load case where the sliding mode is predominant. 

 b) The negative correlation between the shear strength parameters decreases the 

variability of the ultimate bearing capacity; however, the non-normality of these 

variables does not significantly affect this variability. 

c) The variability of the ultimate bearing capacity is more sensitive to the variation of ϕ 

than that of c. 
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CHAPTER 3 

PROBABILISTIC ANALYSIS OF  OBLIQUELY LOADED FOOTINGS 

USING THE COLLOCATION-BASED STOCHASTIC RESPONSE 

SURFACE METHOD (CSRSM) 

1. Introduction 

In the previous chapter, the reliability-based analysis was performed using the 

Response Surface Method (RSM). This method is based on the approximation of the 

system response by a polynomial of a prescribed order. It should be emphasized here that 

the RSM does not provide a precise approximation of the system response except in the 

proximity of the design point. Thus, the RSM can be used to calculate only the reliability 

index and the corresponding design point for a given threshold of the system response. In 

the present chapter, a more efficient method called Collocation-based Stochastic Response 

Surface Method (CSRSM) is used. The CSRSM is based on the approximation of the 

system response by a polynomial chaos expansion (PCE) over a more extended zone with 

respect to the RSM. This method replaces the complex finite element or finite difference 

model by a meta-model (i.e. an analytical equation) which can be easily handled in the 

probabilistic analysis. It should be noticed here that the CSRSM provides a rigorous 

approximation of the system response in the central zone (i.e. around the mean value) if a 

low order PCE is used. For the remaining zones of the response surface, the approximation 

can be improved by increasing the PCE order. Contrary to the RSM which provides only 

the reliability index and the corresponding design point for a given threshold of the system 

response, the CSRSM allows the computation of additional probabilistic outputs. Indeed, 

the CSRSM permits the computation of (i) the PDF of the system response and (ii) the 

failure probability (for different thresholds of the system response) by applying Monte 

Carlo Simulation (MCS) methodology on the meta-model. Moreover, the CSRSM provides 
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other important probabilistic outputs. These are the PCE-based Sobol indices. The PCE-

based Sobol indices quantify the contribution of each random variable in the variability of 

the system response.  

The present chapter makes use of the CSRSM to present a probabilistic analysis at both 

ULS and SLS of the same circular footing and the same soil characteristics studied in 

chapter 2. Similar to chapter 2, the system response considered at ULS is the safety factor 

F defined with respect to the soil shear strength parameters c and tanφ. At SLS, two system 

responses are used. These are the footing vertical and horizontal displacements (δv and δu). 

The performance functions used to calculate the failure probability are those presented in 

chapter 2. Also, the deterministic models used to calculate the system responses are the 

same models presented in chapter 2. It should be mentioned that contrary to chapter 2 in 

which only the uncertainties of the soil parameters were considered in the analysis; in the 

present chapter, the uncertainties of both the soil parameters and the load components (H 

and V) are taken into account at both ULS and SLS. The random variables considered at 

ULS are c, φ, H and V. However, the random variables considered at SLS are E, ν, H and V.  

This chapter aims at presenting a global sensitivity analysis to determine the 

contribution of the different random variables in the variability of the system responses 

using the PCE-based Sobol indices. It also aims at determining the zones of predominance 

in the interaction diagram at both ULS and SLS taking into account the simultaneous effect 

of the soil and loading uncertainties. The importance of the determination of these zones 

arises from the fact that the variability of a given system response depends on the position 

of the corresponding load configuration in the interaction diagram. Finally, this chapter 

aims at presenting a parametric study to investigate the sensitivity of the PDFs of the 

different system responses to the different statistical parameters of the random variables.  
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This chapter is organized as follows: The Collocation-based Stochastic Response 

Surface Method (CSRSM) is first presented. Then, the probabilistic results are presented 

and discussed. The chapter ends with a conclusion of the main findings.  

2. Collocation-based Stochastic Response Surface Method (CSRSM) 

The basic idea of the CSRSM is to approximate a given system response by a 

polynomial chaos expansion (PCE) of a suitable order. In other words, the CSRSM 

replaces the complex numerical model by a meta-model. In order to achieve this purpose, 

all the uncertain parameters (which may have different PDFs) should be represented by a 

unique chosen PDF. Table (3.1) presents the usual PDFs and their corresponding families 

of orthogonal polynomials (Xiu and Karniadakis 2002).  

Table 3.1: Usual probability density functions and their corresponding families of 
orthogonal polynomials 

probability density functions Polynomials 
Gaussian Hermite 
Gamma Laguerre 

Beta Jacobi 
Uniform Legendre 

Within the framework of the CSRSM, the response of a system that involves n random 

variables can be expressed by a PCE as follows: 
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where ( )ξψ i  are multi-dimensional polynomials defined as the product of one-

dimensional polynomials, ( ),...,,
321 iii ξξξ  are independent random variables,  

( ),...,,,
3212110 iiiiii aaaa  are unknown coefficients to be evaluated and P is the size of the PCE.   

The size P of the PCE (which is equal to the number of the unknown PCE coefficients) 

depends on the number n of random variables and the order p of the PCE. It is given as 

follows: 
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It should be mentioned here that in this chapter, the random variables are represented in the 

independent standard normal space. Thus, the suitable corresponding bases are the 

multidimensional Hermite polynomials as may be seen from Table (3.1). The expressions 

of the multi-dimensional Hermite polynomials are given as follows: 

∏
=

=
n

1i
i )(

i
ξφψ αα ,                                 αi ≥ 0                                                                     (3.3) 

where α=[ α1, ….., αn]  is a sequence of n non-negative integers and )( ii
ξφα  are one-

dimensional Hermite polynomials. More details on the one-dimensional and 

multidimensional Hermite polynomials are given in Appendix D.  

For the determination of the PCE unknown coefficients, a non-intrusive technique (in 

which the deterministic model is treated as a black-box) is used. Two non-intrusive 

approaches have been proposed in literature: these are the projection and the regression 

approaches. In this thesis, the regression approach is used. In this approach, it is required to 

compute the system response at a set of collocation points in order to perform a fit of the 

PCE using the obtained system response values.  

As suggested by several authors [Isukapalli et al. (1998), Phoon and Huang (2007) and 

Huang et al. (2009)], the collocation points can be chosen as the result of all possible 

combinations of the roots of the one-dimensional Hermite polynomial of order (p+1) for 

each random variable. For example, if a PCE of order p=2 is used to approximate the 

response surface of a system with n=2 random variables, the roots of the one-dimensional 

Hermite Polynomial of order 3 are chosen for each random variable. These roots are (-√3, 

0, √3) for the first random variable and (-√3, 0, √3) for the second random variable. In this 

case, 9 collocation points are available. These collocation points are (-√3, -√3), (-√3, 0), (-
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√3, √3), (0, -√3), (0, 0), (0, √3), (√3, -√3), (√3, 0), (√3, √3). In the general case, for a PCE 

of order p and for n random variables, the number N of the available collocation points can 

be obtained using the following formula: 

N=(p+1)n                            (3.4) 

Referring to Equations (3.2 and 3.4), one can observe that the number of the available 

collocation points is higher than the number of the unknown coefficients. This leads to a 

linear system of equations whose number N of equations is greater than the number P of 

the unknown coefficients. The regression approach is used to solve this system. This 

approach is based on a least square minimization between the exact solution Γ and the 

approximate solution ΓPCE which is based on the PCE. Accordingly, the unknown 

coefficients of the PCE can be computed using the following equation: 

a = (ΨΨΨΨTΨΨΨΨ)-1. ΨΨΨΨT. Γ                           (3.5) 

in which a is a vector containing the PCE coefficients, Γ is a vector containing the system 

response values as calculated by the deterministic model at the different collocation points 

and ΨΨΨΨ is a matrix of size NxP whose elements are the multivariate Hermite polynomials. It 

is given as follows:  

ΨΨΨΨ = 

























−

−

−

)(.................)()()(

)(.................)()()(

)(.................)()()(

N
1P

N
2

N
1

N
0

2
1P

2
2

2
1

2
0

1
1P

1
2

1
1

1
0

ξψξψξψξψ

ξψξψξψξψ

ξψξψξψξψ

MMMM

MMMM
            

(3.6) 

Notice that in order to calculate the system response corresponding to a given collocation 

point, the standard normal random variables ξi should be expressed in the original physical 

space of random variables as follows: 

1 ( )
ii x ix F ξ−= Φ                               (3.7) 
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in which, xi is a physical random variable, Fxi is the CDF of the physical random variable 

and Ф is the CDF of the standard normal random variable. Notice also that if the original 

physical random variables are correlated, the standard normal random variables should first 

be correlated using the following equation: 
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in which { }nccc ξξξ ...,,, 21  is the vector of correlated standard normal random variables,  

{ }nξξξ ...,,, 21  is the vector of uncorrelated standard normal random variables and H is the 

Choloesky transformation of the correlation matrix of the physical random variables. 

Once the PCE coefficients are determined, MCS can be applied on the obtained PCE 

(called meta-model) to compute both the PDF of the system response and the failure 

probability for different thresholds of this response. This is achieved by (i) generating a 

large number of realizations of the vector (ξ1, ξ2, … ξn) of standard normal random 

variables and (ii) calculating the system response corresponding to each realization by 

substituting the vector (ξ1, ξ2, … ξn) in the meta-model. It should be mentioned here that 

the failure probability is calculated as the ratio between the number of realizations (ξ1, 

ξ2, … ξn) for which G≤0 and the total number of realizations.  

2.1. Optimal number of collocation points  

As mentioned before, the number of the available collocation points significantly 

increases with the increase in the number of random variables and becomes very large with 

respect to the number of the unknown PCE coefficients. This makes it necessary to 
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determine the optimal number of collocation points which is needed by the regression 

approach to solve the linear system of equations (Equation 3.5). In this regard, several 

empirical formulas were proposed in literature. Webster et al. (1996) selected a number 

J=P+1 (that are the most close to the origin of the standard space of random variables) 

among the N available collocation points. Isukapalli et al. (1998) proposed to select J=2P. 

Berveiller et al. (2006) suggested the use of a number J given by J=(n-1)P. Recently, Li et 

al. (2011) have proposed to consider different numbers of collocation points (2P, 3P, 4P, 

etc.). For each number of collocation points, they calculated the rank of the information 

matrix A where A=(ΨΨΨΨTΨΨΨΨ). It was found that when the rank of the information matrix is 

larger than the number of the unknown coefficients (i.e. the matrix A is invertible), there is 

a good agreement with the results obtained when applying MCS methodology on the 

original deterministic model. The procedure by Li et al. (2011) is somewhat similar to that 

proposed by Sudret (2008) because both procedures are based on the concept of matrix 

invertibility. Notice however that the approach by Sudret (2008) leads to a smaller number 

of collocation points. This is because this author proposed to successively increase the 

information matrix A until it becomes invertible as follows: (a) the N available collocation 

points are ordered in a list according to increasing norm, (b) the information matrix A is 

constructed using the first P collocation points of the ordered list, i.e. the P collocation 

points that are the closest ones to the origin of the standard space of random variables and 

finally (c) this matrix is successively increased (by adding each time the next collocation 

point from the ordered list) until it becomes invertible. The different available approaches 

to select the necessary number of collocation points among the available ones were tested 

in this chapter. The approach by Sudret (2008) was found the most efficient to determine 

the optimal number of collocation points as will be seen later in this chapter.   
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2.2. Error estimates of the PCE  

For a given PCE order, the accuracy of the approximation of the system response by 

a PCE can be measured by the error estimate. Two types of error estimates exist in 

literature. These are the coefficient of determination R2 and the leave-one-out error Q2 

(Blatman and Sudret 2010).  

Let us consider J realizations ( ) ( )( ){ ( )( ( ) ) }J
n

J
1

)J(1
n

1
1

)1( ...,,...,,...,, ξξξξξξ ==  of the 

standard normal random vector ξ, and let ( )( ) ( )( ){ }J1 ...,, ξΓξΓΓ =  be the corresponding 

values of the system response determined by deterministic calculations.  The coefficient of 

determination R2 is calculated as follows: 

PCER ∆−=12                   (3.9) 

where PCE∆  is given by: 
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Remember here that J is the number of collocation points used to evaluate the unknown 

coefficients of the PCE. The value 1R2 =  indicates a perfect approximation of the true 

system response Γ, whereas 0R2 =  indicates a nonlinear relationship between the true 

model Γ and the PCE model ΓPCE.  

 
The coefficient of determination R2 may be a biased estimate since it does not take into 

account the robustness of the meta-model (i.e. its capability of correctly predicting the 
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model response at any point which does not belong to the collocation points. As a 

consequence, a more reliable and rigorous error estimate, called the leave-one-out error 

estimate, was proposed by Blatman and Sudret (2010). This error estimate consists in 

sequentially removing a point from the J collocation points. Let Γξ/i be the meta-model that 

has been built from (J-1) collocation points after removing the i th observation from these 

collocation points and let )()( )i(
/i

)i(i ξΓξΓ∆ ξ−=  be the predicted residual between the 

model evaluation at point ξ(i) and its prediction at the same point based on Γξ/i. The 

empirical error is thus given as follows: 
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PCE
iJ =

∆ = ∆∑                (3.13) 

The corresponding error estimate is often denoted by Q2 and is called leave-one-out error 

estimate. It is given as follows: 

*
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= −
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               (3.14) 

2.3. PCE-based Sobol indices 

A Sobol index of a given input random variable is a measure by which the 

contribution of this input random variable to the variability of the system response can be 

determined. Sobol indices are generally calculated by MCS methodology (Sobol 2001). 

This method is very time-expensive especially when dealing with a large number of 

random variables. Sudret (2008) proposed an efficient approach to calculate the Sobol 

indices based on the coefficients of the PCE. This method is based on ranking the different 

terms of the PCE and gathering them into groups where each group contains only one 

random variable or a combination of random variables. The Sobol indices can then be 

calculated using the following equation: 
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in which, α indicates that the summation is carried out for the PCE terms that contain a 

single random variable or a combination of random variables and σ2 is the total variance of 

the system response. It is given as follows: 
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Some derivations related to the expressions of Sobol indices are presented in Appendix E. 

For more details, one can refer to Sudret (2008) and Mollon et al. (2011). 

3. Probabilistic numerical results 

This section presents the probabilistic results for the ULS and SLS analyses. It 

provides (i) a global sensitivity analysis using the PCE-based Sobol indices, (ii) the zones 

of predominance of the different failure modes in the interaction diagram and (iii) a 

parametric study showing the effect of the statistical characteristics of the random variables 

on the PDFs of the different system responses. Remember that the random variables 

considered at ULS are c, φ, H and V. However, the random variables considered at SLS are 

E, ν, H and V. The illustrative values used for the statistical characteristics of the different 

random variables are presented in Table (3.2). These values will be referred to hereafter as 

the reference values.  

Table 3.2: Statistical characteristics of the different random variables 
Type of the probability density 

function (PDF) 
Variable Mean value 

Coefficient of 
variation (%) Case of normal 

PDF 
Case of non-normal 

PDF 

c 20kPa 20 Normal Log-normal 
φ 30o 10 Normal Beta 
E 60MPa 15 Normal Log-normal 
ν 0.3 5 Normal Log-normal 
H 200 40 Normal Log-normal 
V 714 10 Normal Log-normal 
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Notice that a high value of the coefficient of variation of 40% was proposed for the 

horizontal load component H to represent the large uncertainties due to the wind and/or the 

wave loading. This value is to be compared to the value of 10% affected to the coefficient 

of variation of the footing vertical load component V. This is because V represents the 

structure weight for which the variability is small.  

In this chapter, three load configurations represented by points M (V=500kN and 

H=200kN), N (V=714kN and H=200kN) and L (V=3500kN and H=200kN) in the 

interaction diagram (Figure 3.1) were considered in the following probabilistic analyses.  
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Figure 3.1: Interaction diagram 

Before performing the probabilistic analysis using the CSRSM, the optimal order p of the 

PCE should be determined.  

� If only the statistical moments of a given system response are sought, the PCE order is 

successively increased until (i) the coefficient of determination Q2 becomes greater 

than a prescribed value (say 0.999) and (ii) the statistical moments converge to constant 

values.  

� If the failure probability (by applying MCS on the meta-model) is sought, the PCE 

order is successively increased until (i) the coefficient of determination Q2 becomes 

greater than a prescribed value (say 0.999) and (ii) the failure probability Pf converges 

to a constant value.  
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For all the subsequent ULS and SLS probabilistic analyses performed in this chapter, a 

third order PCE was found necessary to provide a good approximation of the system 

response.  

It should be mentioned here that due to the large variability of the horizontal load 

component H, certain collocation points (among the available ones) involve a horizontal 

load component H>Hu. As a result, the system responses at SLS (i.e. footing horizontal 

and vertical displacements) cannot be calculated for these points. To overcome this issue, 

these points were removed from the list of the available collocation points. Then, the 

concept of matrix invertibility proposed by Sudret (2008) was applied on the remaining 

collocation points.  

To check the efficiency of the concept of matrix invertibility proposed by Sudret 

(2008), a comparison between the statistical moments of the safety factor F obtained using 

this concept (where N=66 points) and those obtained using all the available collocation 

points (where N=257 points) was performed and presented in Table (3.3).  

Table 3.3: Effect of the number of collocation points as suggested by different authors on 
the statistical moments of the safety factor 

Number of collocation points 
Mean 
value 

Standard 
deviation 

Coefficient of 
variation (%) 

Skewness Kurtosis 

N=257 points 
(All available points including 

the origin) 
1.492 0.255 17.090 0.287 0.062 

N=36 points 
(Webster et al. 1996) 

1.559 80.758 51.801 0.922 32.075 

N=70 points  
(Isukapalli et al. 1998) 

1.496 0.255 17.045 0.283 0.085 

N=70 points  
(Li et al. 2011) 

1.496 0.255 17.045 0.283 0.085 

N=105 points 
(Berveiller et al. 2006) 

1.487 0.253 17.014 0.277 0.073 

N=66 points (Sudret 2008) 1.496 0.255 17.045 0.298 0.108 

From this table, one can see that there is a good agreement with a significant reduction in 

the number of calls of the deterministic model (by 74.3%). The statistical moments 
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corresponding to the different numbers of collocation points proposed empirically by the 

different authors are also given in this table. While some authors [Isukapalli et al. (1998) 

and Li et al. (2011)] provide good results, others (Webster et al. 1996) are unable to 

predict the system response. On the other hand, Berveiller et al. (2006) overestimate the 

number of collocation points by about 60%. As a conclusion, the rational approach 

proposed by Sudret (2008) will be employed for all subsequent probabilistic calculations. 

3.1. Global sensitivity analysis via the PCE-based Sobol indices  

As mentioned previously, the Sobol indices quantify the contribution of each random 

variable in the variability of the system response. This is of great importance because these 

indices help the engineer to identify the input uncertain parameters that have the greatest 

contribution in the variability of the system response. Moreover, they allow one to consider 

as deterministic the random variables that have a small contribution in the variability of the 

system response. This leads to a reduced computation time of the probabilistic analysis. 

Table (3.4) presents the Sobol indices of the different input random variables at ULS 

for points M, N and L shown in Figure (3.1). For point M, one can see that the Sobol index 

of the horizontal load component H is significant (it involves more than 3/4 of the 

variability of the safety factor). On the contrary, the Sobol index of the vertical load 

component V is negligible. Thus, H has the greatest contribution in the variability of the 

safety factor while V has a negligible contribution in this variability. This may be 

explained by (i) the high variability of H and (ii) the predominance of the sliding failure 

mode with respect to the punching mode due to the high load inclination. Concerning c and 

φ, they have a small contribution in the variability of the safety factor as compared to the 

horizontal load component.   
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Table 3.4: Sobol indices for different load configurations at ULS 
Sobol indices Random 

variable  Point M Point N Point L 
c 0.0771 0.1397 0.1605 
φ 0.1214 0.2498 0.7765 
V 0.0041 0.0004 0.0529 
H 0.7974 0.6101 0.0101 

Summation 1.00 1.00 1.00 

Similarly; for point N, the Sobol index of H is significant and that of V is negligible. 

However, the Sobol indices of c and φ have moderate values which means that they 

moderately contribute to the variability of the safety factor F. Concerning point L, the 

friction angle φ has the greatest Sobol index. The Sobol index of the cohesion c is smaller 

but not negligible (about 16%) while the Sobol indices of V and H are very small. This 

result may be explained by the fact that for point L, the soil punching is likely most 

predominant. In this case, the parameters that mostly contribute to the variance of the 

response are the soil friction angle and in a lower degree the soil cohesion.  

From Table (3.4), one can conclude that the variability of V can be neglected (i.e. V can be 

considered as a deterministic parameter) for all the load configurations. Thus, for all the 

subsequent ULS probabilistic calculations performed in this chapter, only c, φ and H will 

be considered as random variables. However, V will be considered as a deterministic 

parameter. This again reduces the necessary number of calls of the deterministic model 

from 66 to only 26. Consequently, the reduction in the number of calls of the deterministic 

model is equal to 90% with respect to the total initial number of 257. This strategy of 

reducing the number of calls of the deterministic model is recommended when dealing 

with a complex numerical model (as the one considered herein in the ULS analysis where 

the computational time for a single deterministic simulation is about 180 minutes). 

For the SLS analysis, Table (3.5) presents the Sobol indices of the different random 

variables for both responses (δv and δu) for the load configurations corresponding to points 
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M, N and L. This table indicates that the horizontal load component H has a negligible 

contribution in the variability of the vertical displacement for the three points M, N and L. 

However, its contribution in the variability of the horizontal displacement is very large for 

the three points. In contrast, the vertical load component V has a negligible contribution in 

the variability of the horizontal displacement for points M, N and L. However, it has a 

considerable contribution in the variability of the vertical displacement for the three points. 

Table (3.5) also shows that the Young’s modulus E has a significant contribution in the 

variability of the vertical displacement for the three points; however, its contribution in the 

variability of the horizontal displacement is much smaller. Finally, Poisson ratio ν has a 

very small contribution in the variability of both the vertical and the horizontal 

displacements for all the loading configurations. 

Since both responses (δu and δv) are outcomes of a single simulation, the four input 

variables (i.e., E, ν, V and H) will be considered as random variables in all the subsequent 

SLS analyses although ν could be considered as deterministic if the deterministic model 

was timely-expensive. Notice that the computational time required for a single 

deterministic simulation (which provides both the footing vertical and horizontal 

displacements) was only equal to 10 minutes. 

Table 3.5: Sobol indices for the different random variables at SLS 
Sobol indices 

Point M Point N Point L 
Random 
variable 

δv δu δv δu δv δu 
E 0.6297 0.0642 0.6438 0.0559 0.4609 0.0860 
ν 0.0199 0.0009 0.0191 0.0007    0.0155 0.0004 
V 0.3263 0.0145 0.3290   0.0072 0.5232 0.0347 
H 0.0241 0.9675   0.0081 0.9362 0.0004 0.8788 

Summation 1.00 1.00 1.00 1.00 1.00 1.00 

Finally, it should be noticed that the number of collocation points used in the SLS 

analysis was equal to 66 according to the concept of matrix invertibility by Sudret (2008). 

This number is to be compared to 257 points which is the total number of the available 
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collocation points. This corresponds to a reduction in the number of calls of the 

deterministic model by 74.3%.  

3.2. Failure mode predominance 

This section aims at determining the most predominant failure mode at both ULS and 

SLS using the CSRSM probabilistic approach.  

3.2.1. Failure mode predominance at ULS  

In chapter 2 where only the uncertainties of soil parameters were considered, it has 

been shown (by using the RSM) that there is an optimal load inclination (α=15.6o) for 

which the safety factor is maximum and the failure probability is minimum. This 

inclination is represented by the line OO’ (denoted “case 1” in Figure 3.2). In this chapter, 

the simultaneous effect of the uncertainties of both the soil parameters and the horizontal 

load component on the optimal load inclination was investigated using the CSRSM. For 

the three values of µH equal to the three values of H shown in Figure 3.1, the failure 

probability Pf was plotted versus the vertical load component V in Figure 3.3. Remember 

that the failure probability is calculated by applying MCS on the meta-model. From Figure 

(3.3), one can observe that Pf presents a minimum value at points K1, K2 and K3. These 

points are plotted in Figure (3.2). They are joined together by the line denoted “case 2” in 

this figure. This line is the one that separates the zones of predominance of the two failure 

modes in the case where the uncertainties of both the soil parameters and the horizontal 

load component are considered in the analysis.  

From Figure 3.2, one can conclude that in the presence of the uncertainties of the 

horizontal load component, the zone of predominance of sliding slightly extends with 

respect to the one obtained in the case where only the soil uncertainty is considered. This 

means that some loading configurations which have been located in the zone of punching 
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mode predominance (when the loading uncertainties were not taken into account) are now 

located in the zone of sliding mode predominance. This fact is due to the greater risk of 

sliding because of the great variability of the horizontal load component H in this case. 
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Figure 3.2: Optimal loading configurations for two cases of (i) uncertainties of soil 
parameters and (ii) uncertainties of soil parameters and horizontal load component 
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Figure 3.3: Effect of V on the failure probability Pf   for three values of µH 

Notice that the variability of the soil parameters has been shown to have no effect on 

the optimal load configurations (see chapter 2 of this thesis). In order to confirm this 

statement using CSRSM, Figure (3.4) shows the failure probability Pf  against the vertical 

load component V when H=µH=200kN in the three following cases: (i) the uncertainties of 

only the soil parameters are considered, (ii) the uncertainty of only the horizontal load 

component H is considered and (iii) the uncertainties of both the soil parameters and the 

horizontal load component are considered. This figure also shows the safety factor F 

(calculated by the deterministic approach) against the vertical load component V for the 
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same value of H. From this figure, one can observe that when considering only the 

uncertainties of the soil parameters, the value of V for which F presents a maximum is the 

same value for which Pf presents a minimum (as obtained in chapter 2 when using the 

RSM). However, when considering the uncertainties of both the soil parameters and the 

horizontal load component, the value of V for which Pf presents a minimum is different 

from that for which F presents a maximum. This figure also shows that when considering 

both the soil and the loading uncertainties, Pf presents a minimum at the same V value 

obtained when considering only the load uncertainty. This confirms that the soil 

uncertainties have no effect on the optimal load configurations and the increase in the 

sliding zone is due to the variability of H.  
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Figure 3.4: Effect of V on the safety factor F and the failure probability Pf  when 

µH=200kN 

From Figure (3.4), one can conclude that the deterministic analysis is not able to take into 

account the effect of the loading uncertainties on the optimal load inclination. This 

conclusion reflects the importance of the probabilistic approach with respect to the 

deterministic one in the analysis of the obliquely loaded footings. 

3.2.2. Failure mode predominance at SLS  

Figures (3.5a and 3.5b) present the probability Pe of exceeding a tolerable footing 

displacement versus the mean value of the vertical load component µV for two values of µH 
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(i.e. µH=200kN and µH=400kN). Notice that these two µH  values were previously used in 

Figure (3.3) to determine the zones of predominance at ULS. Each one of Figures (3.5a 

and 3.5b) presents three cases: (i) the probability of exceeding a tolerable vertical 

displacement δvmax=3cm, (ii) the probability of exceeding a tolerable horizontal 

displacement δumax=1.5cm and (iii) the system probability of exceeding both tolerable 

displacements of δvmax=3cm and δumax=1.5cm. Figure (3.5) shows that the system 

probability (for the load configurations corresponding to µH values equal to 200kN and 

400kN) presents a minimum at points K4 and K5.  
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Figure 3.5: Effect of µV on the probability Pe of exceeding tolerable vertical and horizontal 
footing displacements for two values of µH 

From Figures (3.3 and 3.5), it can be observed that the µV values for which Pe is minimum 

at SLS are equal to the V values for which Pf is minimum at ULS. This means that the line 

denoted “case 2” in Figure (3.2) which separates the zones of predominance at ULS can 

also be used at SLS to distinguish the load configurations that lead to a predominance of 

the footing horizontal or vertical movement. This line corresponds to the configuration that 

lead to the minimum movement of the footing with respect to the other loading 

configurations having the same value of µH. 
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3.3. Effect of the most predominant failure mode on the variability of the different 

system responses at both ULS and SLS 

As mentioned previously, the determination of the zones of predominance of the 

different failure modes is important. This is due to the fact that the variability of the system 

response corresponding to a given load configuration depends on the zone of 

predominance to which the load configuration belongs. In this section, the sensitivity of the 

PDFs of the different system responses to the most predominant failure mode was 

investigated and discussed.    

3.3.1. Variability of the system response at ULS  

Figure (3.6) shows three PDFs of the safety factor F for three different values of V 

when µH=200kN. The three values of V correspond respectively to points D1, D2 and D3 

shown in Figure (3.4). Notice that point D1 corresponds to a load configuration where the 

footing sliding is predominant and point D3 corresponds to a load configuration where the 

soil punching is predominant. However, point D2 corresponds to a load configuration 

where neither footing sliding nor soil punching is predominant. From Figure (3.6), it can 

be observed that the PDF corresponding to point D1 (which is located in the zone of sliding 

predominance) is more spread out than the PDF corresponding to point D3 (which is 

located in the zone of punching predominance). For points D1, D2 and D3, the values of the 

standard deviation of the safety factor are respectively equal to 0.42, 0.19 and 0.12. Notice 

that for point D1 where V is small (zone of sliding predominance), the large variability of 

the safety factor is due to the large variability of H which has the largest weight in the 

variability of the safety factor in this zone (see Table 3.4). In contrast, for point D3 where V 

is large (zone of punching predominance), the large variability of H has a negligible effect 

on the variability of the safety factor in this zone.  
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Figure 3.6: PDFs of the safety factor F for three values of V when µH=200kN 

3.3.2. Variability of the system responses at SLS  

Concerning the SLS, Figures (3.7a and 3.7b) present the PDFs of the footing 

horizontal and vertical displacements for three different values of µV when µH=200kN. The 

three µV values correspond respectively to points D4, D5 and D6 shown in Figure (3.5a). 

Remember that point D4 corresponds to a load configuration where the horizontal 

movement is predominant and point D6 corresponds to a load configuration where the 

vertical movement is predominant. However, point D5 corresponds to a load configuration 

where neither horizontal nor vertical movement is predominant.  

For the footing horizontal displacement, Figure (3.7a) indicates that the PDF 

corresponding to point D4 (where the horizontal movement is predominant) exhibits 

slightly larger variability than that corresponding to point D6 (where the vertical movement 

is predominant). For points D4, D5 and D6, the values of the standard deviation of the 

footing horizontal displacement are respectively equal to 0.0021m, 0.0019m and 0.0018m. 

For point D4, the PDF is more spread out due to the large variability of H which has the 

greatest contribution in the variability of the footing horizontal displacement in this zone 

(see Table 3.5). In contrast, for point D6, the PDF is slightly less spread out because the 

contribution of H decreases in this zone (see Table 3.5, point L).  
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For the footing vertical displacement, Figure (3.7b) shows that the PDF corresponding to 

point D6 is more spread out than the PDF corresponding to point D4. For points D4, D5 and 

D6, the values of the standard deviation of the footing vertical displacement are 

respectively equal to 0.0015m, 0.002m and 0.0039m. Notice that the large variability of H 

has no effect here because H has a negligible contribution in the variability of the vertical 

footing displacement for all loading configurations (see Table 3.5). This is to be expected 

since the vertical footing displacement is mainly caused by V. Thus, the increase in the 

variability of this displacement from the zone of horizontal movement predominance to the 

zone of vertical movement predominance is due to the increase of the contribution of V in 

this variability as can be seen from Table (3.5).  
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Figure 3.7: PDFs of the footing horizontal and vertical displacements for three values of 
µV when µH=200kN 

3.4. Parametric study 

The aim of this section is to study the effect of the statistical characteristics of the random 

variables (coefficients of variation of the random variables, the types of the PDFs, and the 

correlation coefficients between random variables) on the PDFs of the system responses at 

ULS and SLS. This study was carried out using the load configuration corresponding to 

point N shown in Figure 3.1. 
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3.4.1. Effect of the coefficients of variation (COVs) of the random variables 

The effect of COVs of the random variables on the PDFs of the three responses (i.e. 

the safety factor F, the footing horizontal displacement δu and the footing vertical 

displacement δv) is presented in Figures (3.7, 3.8 and 3.9) respectively. The numerical 

results of these figures have shown that the mean value of the different responses is not 

affected by the COVs of the random variables. Also, it was found that these mean values 

are those obtained deterministically using the mean values of the random variables. Thus, 

the variability of the system responses is better expressed herein by the coefficient of 

variation (not the standard deviation) since the mean values are constant.  
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Figure 3.7: Impact of COVs of the random variables on the PDF of the safety 
factor F 

Figure (3.7) shows that the COVs of c, φ and H have a non-negligible effect on the 

variability of the safety factor. For instance, an increase in COVc and COVφ by 50% with 

respect to their reference values (cf. Table 3.2) induces an increase in COV of the safety 
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factor by 9.1% and 14.8% respectively; on the other hand, an increase in COVH by 25% 

with respect to its reference value (cf. Table 3.2) increases the COV of the safety factor by 

10.6%. 

The variability of the footing horizontal displacement (Figure 3.8) was found to be very 

sensitive to the COV of the horizontal load component H (an increase in COVH by 25% 

with respect to its reference value increases the COV of the footing horizontal 

displacement by 61%), the COV of the remaining random variables being of negligible 

effect. This is because H has a significant contribution in the variability of the footing 

horizontal displacement while the other random variables (E, ν and V) have a very small 

contribution in the variability of this system response (see Table 3.5).  

It should be noticed here that the PDFs in Figure (3.8) present negative values of δu. This 

is due to the large variability of H (COVH=40%) which may lead to either positive or 

negative values of H. A negative value of H leads to a negative horizontal displacement of 

the footing (i.e. in the opposite direction to that corresponding to the mean value of H).  

In contrast to the variability of the footing horizontal displacement, the variability of the 

footing vertical displacement is affected by the COV of the Young’s modulus E and that of 

the vertical load component V (Figure 3.9). The COV of the Young’s modulus has the 

greatest effect on the variability of the vertical displacement since an increase in COVE by 

33.3% with respect to its reference value increases the COV of the vertical displacement by 

27.4%; however, an increase in COVV by 50% with respect to its reference value increases 

the COV of this displacement by 22.1%. From these results, one can observe that the input 

parameters for which the COVs are of most significance on the variability of a system 

response are the same as those which have the largest contribution in the variability of this 

system response (as obtained using Sobol indices).  
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Figure 3.8: Impact of COVs of the random variables on the PDF of the footing horizontal 
displacement δu  
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Figure 3.9: Impact of COVs of the random variables on the PDF of the footing vertical 
displacement δv 
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The effect of COVs of the random variables on Sobol indices was shown in Table 

(3.6) in the case of ULS. This table shows that the increase in the COV of a certain random 

variable increases its Sobol index and decreases the Sobol indices of the other variables. 

This means that the increase in the coefficient of variation of a certain random variable 

increases its weight in the variability of the system response and decreases the weights of 

the other random variables. The same trend was observed in the SLS analyses (Tables 3.7 

and 3.8).  

Table 3.6: Effect of the coefficients of variation of the random variables (c, ϕ, H) on Sobol 
indices at ULS where the system response is F 

COVc COVφ COVH 
Sobol index 

Reference case 
(COVc=20%, 

COVφ=10% and 
COVH=40%) 10% 30% 5% 15% 30% 50% 

S(c) 0.1434 0.0389 0.2775 0.1765 0.1072 0.1860 0.1156 
S(φ) 0.2531 0.2817 0.2132 0.0776 0.4355 0.3313 0.2026 
S(H) 0.6035 0.6794 0.5093 0.7459 0.4573 0.4827 0.6818 

Summation 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Table 3.7: Effect of the coefficients of variation of the random variables (E, ν, V, H) on 
Sobol indices at SLS where the system response is δv 

COVE COVν COVV COVH 

Sobol 
indices 

Reference 
case 

(COVE=15%, 
COVυ=5%, 
COVV=10% 

and 
COVH=40%) 

10% 20% 2.5% 7.5% 5% 15% 30% 50% 

S(E) 0.6438 0.4221 0.7872 0.6550 0.6266 0.8559 0.4497 0.6591 0.6405 
S(ν) 0.0191 0.0275 0.0101 0.0046 0.0412 0.0263 0.0129 0.0194 0.0072 
S(V) 0.3290   0.5379 0.1983 0.3320 0.3250 0.1092 0.5349 0.3195 0.2910 
S(H)   0.0081 0.0125 0.0044 0.0084 0.0072 0.0086 0.0025 0.0020 0.0613 

Summation 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
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Table 3.8: Effect of the coefficients of variation of the random variables (E, ν, V, H) on 
Sobol indices at SLS where the system response is δu 

COVE COVν COVV COVH 

Sobol 
indices 

Reference 
case 

(COVE=15%, 
COVυ=5%, 
COVV=10% 

and 
COVH=40%) 

10% 20% 2.5% 7.5% 5% 15% 30% 50% 

S(E) 0.0559 0.0238 0.1084 0.0561 0.0555 0.0626 0.0375 0.1265 0.0532 
S(ν) 0.0007     0.0008    0.0006 0.0001 0.0029 0.0008 0.0004 0.0017 0.0004 
S(V) 0.0072 0.0074 0.0067 0.0073 0.0069 0.0013 0.0261 0.0089 0.0068 
S(H) 0.9362 0.9680 0.8843 0.9365 0.9347 0.9353 0.9360 0.8629 0.9396 

Summation 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

3.4.2. Effect of the correlation and the distribution type of the random variables 

This section aims at investigating the effect of the distribution type of the input random 

variables and the correlation between random variables on the statistical moments of the 

system responses at both ULS and SLS. Two cases of normal and non-normal random 

variables were considered at ULS and SLS. Also, two cases of uncorrelated 

( )0,0 ,E,c == νϕ ρρ  or correlated ( )5.0,5.0 ,E,c −=−= νϕ ρρ  random variables were also 

considered at ULS and SLS. Tables (3.9, 3.10 and 3.11) show the effect of the correlation 

and the distribution type of the random variables on the statistical moments of the safety 

factor, the footing vertical displacement and the footing horizontal displacement. These 

tables indicate that the mean values of the three system responses are very slightly affected 

by both the correlation and the distribution type of the random variables. These tables also 

show that the coefficients of variation of these responses decrease when the random 

variables are negatively correlated.  

The non-normality of the random variables seems to have a significant effect on the 

coefficient of variation of a system response only for the footing horizontal displacement. 

This may be explained by the large variability of H and the significant weight of H in the 

variability of the footing horizontal displacement (see the difference between the normal 
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and log-normal distributions of H for COV=40% on Figure 3.10). Similarly to the 

coefficients of variation of the system responses, the skweness and kurtosis are slightly 

affected by the negative correlation and they are sensitive to the distribution type of the 

random variables especially for the footing horizontal displacement. The same explanation 

given above remains valid in this case. 

Table 3.9: Effect of the PDF type of the random variables (c, ϕ, H)  and the correlation 
coefficient ϕρ ,c  on the statistical moments of the safety factor 

Distribution type and correlation Mean 
Standard 
deviation 

Coefficient of 
variation (%) 

Skewness Kurtosis 

Normal uncorrelated variables 1.495 0.251 16.789 0.245 -0.095 
Normal correlated variables 1.493 0.226 15.126 0.152 -0.279 
Non-normal uncorrelated 

variables 
1.500 0.247 16.466 -0.131 0.131 

Non-normal correlated variables 1.501 0.221 14.747 -0.402 0.373 

Table 3.10: Effect of the probability distribution type of the random variables (E, ν, H, V) 
and the correlation coefficient νρ ,E  on the statistical moments of the footing vertical 

displacement 

Distribution type and correlation 
Mean 
(m) 

Standard 
deviation 

(m) 

Coefficient 
of variation 

(%) 
Skewness Kurtosis 

Normal uncorrelated variables 7x10-3 1.38x10-3 19.691 0.880 1.573 
Normal correlated variables 7x10-3 1.30x10-3 18.571 0.773 1.414 
Non-normal uncorrelated 

variables 
7x10-3 1.39x10-3 19.898 0.621 0.669 

Non-normal correlated variables 7x10-3 1.29x10-3 18.516 0.565 0.543 

Table 3.11: Effect of the probability distribution type of the random variables (E, ν, H, V) 
and the correlation coefficient νρ ,E  on the statistical moments of the footing horizontal 

displacement 

Distribution type and correlation 
Mean 
(m) 

Standard 
deviation 

(m) 

Coefficient 
of variation 

(%) 
Skewness Kurtosis 

Normal uncorrelated variables 3x10-3 1.85x10-3 57.40 1.030 1.957 
Normal correlated variables 3x10-3 1.84x10-3 57.20 1.020 1.870 
Non-normal uncorrelated 

variables 
3x10-3 2.17x10-3 67.10 2.598 11.707 

Non-normal correlated variables 3x10-3 2.16x10-3 66.50 2.543 11.048 
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Figure 3.10: Comparison between normal and log-normal distribution of H. 

Finally, it should be noticed that the coefficient of variation of the footing horizontal 

displacement is considerably larger than that of the footing vertical displacement for the 

same uncertainties of the input parameters (see Tables 3.10 and 3.11). This means that the 

footing horizontal displacement is a key parameter that should be carefully considered in 

design since it is very sensitive to the input uncertain parameters. 

4. Conclusion 

This chapter presents a probabilistic analysis at both ULS and SLS of the same 

circular footing considered in chapter 2. In this chapter, a more efficient method called the 

Collocation-based Stochastic Response Surface Method (CSRSM) was used. The use of 

this method allowed the evaluation of the contribution of each random variable in the 

variability of the different system responses using the PCE-based Sobol indices. Contrary 

to chapter 2 in which only the soil uncertainty was considered, in the present chapter both 

the soil and loading uncertainties were taken into account in the analysis. The simultaneous 

effect of these uncertainties on the optimal loading configurations at both ULS and SLS 

was investigated. In addition, the effect of the type of the most predominant failure mode 

on the variability of the different system responses was presented. Finally, a parametric 

study showing the effect of the statistical parameters of the random variables on the PDFs 

of the different system responses was presented and discussed.  
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The general conclusions of this chapter can be summarized as follows: 

1 - For the ULS analysis 

a) A global sensitivity analysis using the PCE-based Sobol indices has shown that the 

vertical load component V has a negligible weight in the variability of the safety 

factor and it can be considered as deterministic.  

b) The optimal loading configurations obtained by using the deterministic analysis 

were found similar to those obtained by using the probabilistic approach when 

considering only the soil uncertainties. This means that the optimal load inclination 

does not depend on the uncertainties of the soil parameters. In this case, the optimal 

loading configurations are situated on the line joining the origin and the extremum 

of the interaction diagram.  

c) Although the deterministic approach was able to determine the zones of 

predominance of sliding and punching when considering only the soil uncertainties, 

it was not able to determine these zones when considering the uncertainty of the 

horizontal load component. The probabilistic approach was necessary in this case. 

d) The uncertainty of the horizontal load component H was found to slightly extend 

the zone of sliding predominance in the interaction diagram with respect to that 

obtained by the deterministic approach. This means that contrary to the variability 

of the soil properties, the variability of the load components affects the optimal load 

configurations. 

e) The safety factor F was found to exhibit more variability for the load 

configurations corresponding to the zone of sliding predominance.  

2 - For the SLS analysis 

a) A global sensitivity analysis using the PCE-based Sobol indices has shown that the 

variability of the footing horizontal displacement is mainly due to the horizontal 
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load component. On the other hand, the variability of the footing vertical 

displacement was mainly due to the Young’s modulus and the vertical load 

component; the Young’s modulus being of larger weight. 

b)  The zones of predominance of horizontal or vertical soil movement at SLS were 

found the same as the zones of predominance of footing sliding or soil punching at 

ULS. 

c) The footing vertical displacement was found to exhibit larger variability for the 

load configurations corresponding to the zone of predominance of the vertical soil 

movement. However, the footing horizontal displacement was found to exhibit 

larger variability for loading configurations corresponding to the zone of 

predominance of the horizontal soil movement.   

3 - Parametric study 

a) The increase of the coefficient of variation COV of a given random variable 

increases the variability of the system response. The random variables for which 

the COV has a significant effect on the variability of a given system response are 

those (obtained using Sobol indices) which have the largest contribution in the 

variability of this system response. 

b) The increase in COV of a given variable increases its Sobol index and decreases the 

Sobol indices of the other random variables. This means that the increase in COV 

of a certain random variable increases its weight in the variability of the system 

response and decreases the weights of the other random variables. 

c) The negative correlation between the random variables has a slight effect on the 

coefficient of variation, skewness and kurtosis of the different system responses. 
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d) The non-normality of the random variables has a negligible effect on the variability 

of the safety factor and the vertical footing displacement. However, it has a 

significant effect on the variability of the footing horizontal displacement.  

e) For the same uncertainties of the input parameters, the coefficient of variation of 

the footing horizontal displacement is considerably larger than that of the footing 

vertical displacement. This means that the footing horizontal displacement is a key 

parameter that should be carefully considered in design since it is very sensitive to 

the input uncertain parameters. 
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CHAPTER 4 

COMBINED USE OF THE  COLLOCATION-BASED STOCHASTIC 

RESPONSE SURFACE METHOD AND THE SUBSET SIMULATION 

APPROACH FOR THE PROBABILISTIC ANALYSIS OF FOOTINGS   

1. Introduction 

The probabilistic approaches used in the previous chapters (i.e. RSM and CSRSM) 

are based on the approximation of the system response by an analytical equation. It should 

be emphasized here that when dealing with highly nonlinear response surfaces, these 

methods lead to inaccurate solutions if one uses low order polynomials and they become 

very time-expensive when using a polynomial of higher order. The time cost becomes of 

great concern in case of a large number of random variables because of the proliferation of 

the number of unknown coefficients of the response surface and consequently of the 

number of calls of the deterministic model. On the other hand, Monte Carlo Simulation 

(MCS) methodology is well-known to be a rigorous and robust tool to calculate the failure 

probability Pf even when dealing with highly nonlinear response surfaces. The accuracy of 

MCS methodology does not depend on the shape of the response surface but it depends on 

the number of simulations. It should be noticed that MCS becomes very time-consuming 

when computing a small failure probability. This is due to the large number of calls of the 

deterministic model required in such a case. As alternative to MCS methodology, the 

Subset Simulation (SS) approach was proposed by Au and Beck (2001) to calculate the 

small failure probability using a much smaller number of calls of the deterministic model. 

In this approach, the failure probability is expressed as a product of conditional 

probabilities of some chosen intermediate failure events. Thus, the problem of evaluating a 

small failure probability in the original probability space is replaced by a sequence of more 

frequent events in the conditional probability space.  
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Notice that the SS approach is efficient in computing the failure probability, but it 

does not provide any information about the probability density function (PDF) of the 

system response (i.e. it does not allow one to perform an uncertainty propagation from the 

input variables to the system output). Also, it does not provide any information about the 

contribution of each input uncertain parameter in the variability of the system response (i.e., 

it does not allow one to perform a global sensitivity analysis). In addition, the SS approach 

does not allow one to calculate the design point (the most probable failure point) which has 

an important practical implication since it can be used to calculate the partial safety factor 

corresponding to each input random variable. To overcome the above mentioned 

shortcomings, the SS approach is combined herein with the CSRSM. First, a classical 

subset simulation computation is performed to calculate the failure probability. Then, the 

values of the system response obtained during this computation are used in a CSRSM 

analysis with no additional cost to obtain the other outputs cited above (i.e. uncertainty 

propagation, global sensitivity analysis and reliability-based analysis and design).  

Since the aim here is to show the efficiency of the proposed procedure of combining 

the SS approach with the CSRSM, a simple problem was chosen to illustrate this procedure. 

In this problem a probabilistic analysis at the ultimate limit state (ULS) of a strip footing 

resting on a (c, φ) soil and subjected to an axial vertical load Pa was performed. A 

deterministic model (with small computation time) based on the upper-bound theorem of 

the limit analysis theory was used to calculate the system response. The small computation 

time of this model allows the validation of the proposed procedure by comparison of its 

results with those given by MCS methodology applied on the original deterministic model. 

In this chapter, the soil shear strength parameters c and φ are considered as random 

variables. The system response considered in the analysis is the ultimate bearing capacity 

qu.  
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The present chapter is organized as follows: The subset simulation approach is first 

presented. Then, the extension of the SS approach to perform uncertainty propagation and 

a global sensitivity analysis is described. This is followed by the probabilistic analysis of a 

strip footing at ULS to illustrate the efficiency of the proposed procedure. The chapter ends 

with a conclusion of the main results. 

2. Subset Simulation (SS) approach 

The basic idea of the subset simulation approach is that the small failure probability 

can be expressed as a product of larger conditional failure probabilities. Consider a failure 

region F defined by the condition G<0 where G is the performance function and let (s1, …, 

sk, ..., sNt) be a sample of Nt realisations of a vector ‘s’  composed of M random variables. It 

is possible to define a sequence of nested failure regions F1, …, Fj, ..., Fm of decreasing 

size where FF...F...F mj1 =⊃⊃⊃⊃
 
(Figure 4.1). An intermediate failure region Fj can be 

defined by G<Cj where Cj is an intermediate failure threshold whose value is larger than 

zero. Thus, there is a decreasing sequence of positive failure thresholds C1, …, Cj, ..., Cm 

corresponding respectively to F1, …, Fj,…, Fm where C1>…>Cj>...> Cm=0. In the SS 

approach, the space of uncertain parameters is divided into a number m of levels with equal 

number Ns of realizations (s1, …, sk, ..., sNs). An intermediate level j contains a safe region 

and a failure region defined with respect to a given failure threshold Cj. The conditional 

failure probability corresponding to this intermediate level j is calculated as follows: 

∑
=

− =
Ns

1k
kF

s
1jj )s(I

N

1
)FF(P

j
                 (4.1) 

where ( ) 1
jF kI s =  if jk Fs ∈  and ( ) 0

jF kI s =  otherwise. Notice that in the SS approach, the first 

Ns realizations are generated using MCS methodology according a target PDF Pt. The next 

Ns realizations of each subsequent level are obtained using Markov chain method based on 
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Metropolis-Hastings (M-H) algorithm (explained in Appendix F) according to a proposal 

PDF Pp.  

 
Figure 4.1: Nested Failure domain 

The failure probability P(F)=P(Fm) of the failure region F can be calculated from the 

sequence of conditional failure probabilities as follows: 

P(F)=P(Fm)=P(Fm׀Fm-1)xP(Fm-1׀Fm-2)xP(Fm-2׀Fm-3)x ... xP(F2׀F1)xP(F1)           (4.2) 

This equation can be regarded as a system consisting of m components (related to the m 

failure regions F1, …, Fj,…, Fm) connected in parallel. Consequently, the failure 

probability of the failure region F is the intersection of all conditional failure probabilities 

of the failure regions F1, …, Fj,…, Fm. Thus, the failure probability P(F) is: 

1( ) ( )m

j jP F P F== ∩                          (4.3) 

where 

1 1 1
1 1 1 1 1 1 1

2
( ) ( ) ( ) ( ) ( ) ... ( ) ( )

m
m m m m

j j m j j j j m m j j j j
j

P F P F F xP F P F F xP F P F P F F− − −
= = = − = −=

∩ = ∩ ∩ = ∩ = = ∏                       (4.4) 

 
It should be noticed here that the computation of the failure probability P(F) is 

determined using alternatively one of the following two procedures. The first procedure 

consists in prescribing a sequence of C1, …, Cj,…, Cm so that C1>…>Cj>...> Cm=0 and 

then, calculating the different values of P(Fj׀Fj-1) at the different levels using Equation 
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(4.1). The second procedure consists in first prescribing a constant conditional failure 

probability P(Fj׀Fj-1) for the different levels and then, in calculating the different Cj values 

corresponding to these levels. The value of Cj of level j is the one for which the ratio 

between the number of realizations for which G<Cj and the number of realizations Ns of 

this level (which is identical for the different levels), is equal to the prescribed value 

P(Fj׀Fj-1). In this thesis and in Ahmed and Soubra (2012a), the second procedure is used. 

Notice that, for simplicity in notations, the constant conditional failure probability P(Fj׀Fj-1) 

will be referred to as p0 lateron. The algorithm of the SS approach can be described by the 

following steps: 

1- Generate a realization of the vector ‘s’  of M random variables by MCS according to the 

target PDF Pt.  

2- Using the deterministic model, calculate the system response corresponding to this 

realization. 

3- Repeat steps 1 and 2 until obtaining a prescribed number Ns of realizations of the 

vector ‘s’ and the corresponding system response values. Then, evaluate the 

corresponding values of the performance function to obtain the vector 

}G,...,G,...,G{G Ns
0

k
0

1
00 = . Notice that the values of the performance function of the 

different realizations are arranged in an increasing order in the vector G0. Notice also 

that the subscripts ‘0’ refer to the first level (level 0) of the subset simulation.   

4- Prescribe a constant conditional failure probability p0 for all the failure regions Fj 

(j=1,…, m) and evaluate the first failure threshold C1 which corresponds to the failure 

region F1 where C1 is equal to the [(Nsxp0)+1] th value in the increasing list of elements 

of the vector G0. This ensures that the value of P(F1) will be equal to the prescribed p0 

value.  
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5- Among the Ns realizations, there are [Nsxp0]  ones whose values of the performance 

function are less than C1 (i.e. they are located in the failure region F1). These 

realizations are used as ‘mother realizations’ to generate additional [(1-p0)Ns]  

realizations of the vector ‘s’  using Markov chain method based on Metropolis-Hastings 

algorithm (see Appendix F). These new realizations are located in the second level 

(level 1 in Figure 4.1).  

6- The values of the performance function corresponding to the realizations obtained from 

the preceding step are listed in an increasing order and are gathered in the vector of 

performance function values }G,...,G,...,G{G Ns
1

k
1

1
11 =  . 

7- Evaluate the second failure threshold C2 as the [(Nsxp0)+1] th value in the increasing list 

of the vector G1.    

8- Repeat steps 5-7 to evaluate the failure thresholds C3, C4, …, Cm corresponding to the 

failure regions F3, F4, …, Fm. Notice that contrary to all other thresholds, the last failure 

threshold Cm is negative. Thus, Cm is set to zero and the conditional failure probability 

of the last level [P(Fm׀Fm-1)] is calculated as follows: 

∑
=

− = 
Ns

1k
kF

s
1mm )s(I

N

1
)F(FP

m
                         (4.5) 

where 1)s(I kFm
=  if the performance function G(sk) is negative and 0)s(I kFm

=  otherwise.  

9- The failure probability P(F) is evaluated according to Equation (4.2).  

3. Extension of the SS approach for uncertainty propagation and global sensitivity 

analysis  

This chapter is devoted to employ the SS approach to compute not only the failure 

probability but also the PDF of the system response and the corresponding statistical 

moments without an additional cost. This aim can be achieved by combining the SS 

approach with CSRSM.  
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It should be remembered here that in CSRSM, the unknown PCE coefficients are 

determined by using the values of the system response calculated at several collocation 

points. Although the roots of the one-dimensional Hermite polynomials are generally used 

for the determination of the collocation points [Isukapalli et al. (1998), Isukapalli (1999), 

Phoon and Huang (2007), Huang et al. (2009), Li et al. (2011), Mollon et al. (2011)], this 

technique is not mandatory. In this study, the combination between the SS approach and 

the CSRSM is carried out by using the values of the system response obtained by the SS 

approach for the determination of the PCE coefficients in the CSRSM. Thus, the 

computation of the PCE coefficients requires no additional calls of the deterministic model.  

Once the PCE coefficients are determined, the MCS methodology is applied on the 

obtained PCE. This allows one to obtain the PDF of the system response. It should be 

emphasized here that in addition to computing the PDF of the system response, the 

proposed procedure has four other advantages: 

1. The computed PCE coefficients can be used to perform a global sensitivity analysis 

based on the PCE-based Sobol indices described in the preceding chapter.  

2. Contrary to the SS approach, the procedure proposed in this study allows the 

computation of the failure probability for all the values of the applied footing pressure 

that are greater than the one considered in the SS analysis without the need to repeat 

the deterministic calculations (i.e. without an additional cost). This is because the limit 

state surfaces corresponding to larger values of the applied footing pressure are closer 

to the origin of the standard space of random variables and thus, they are included in 

the sampling zone of the SS methodology as will be seen later.  

3. The obtained PCE allows one to perform a reliability-based analysis or a reliability-

based design (RBD). For the reliability-based analysis, the Hasofer-Lind reliability 

index and the corresponding design point can be easily determined since the PCE is 
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obtained in the standard uncorrelated space of the random variables. This is done by 

searching the point which is located on the limit state surface and has the minimum 

norm in the standard space of random variables. The design point is of great 

importance since it provides information about the partial safety factors of the different 

random variables. Concerning the RBD, the obtained PCE makes it easy to compute 

the dimension of the structure corresponding to a target reliability index. 

4. The obtained PCE allows one to undertake a probabilistic parametric study to show the 

effect of the different characteristics of the random variables (e.g. coefficient of 

variation COV, coefficient of correlation ρc,φ and the non-normality) on the PDF of the 

system response.  

4. Probabilistic analysis of strip footings
 

In this section, the efficiency of the proposed procedure to compute the outputs cited 

above is illustrated through an example problem. In this example, a probabilistic analysis 

of a shallow strip footing of breadth b=2m resting on a (c, φ) soil and subjected to an axial 

vertical load Pa=650kN/m (i.e. an applied uniform vertical pressure qa=325kN/m2) is 

performed. The analysis is carried out at the ultimate limit state. The system response is the 

ultimate bearing capacity qu. The uncertain parameters considered in the analysis are the 

soil shear strength parameters c and φ. Two types of the probability density functions are 

considered for these random variables (normal and non-normal as shown in Table 4.1). In 

the case of non-normal random variables, the soil cohesion was assumed to follow a log-

normal probability density function. However, the soil friction angle was assumed to be 

bounded and to follow a beta probability density function with lower and upper bounds of 

0 and 45o respectively. Also, two cases of uncorrelated (i.e. ρc,ϕ=0) or correlated (i.e. ρc,ϕ=-

0.5) random variables were also considered in the analysis. The illustrative values used for 

the statistical parameters of these random variables are those commonly encountered in 
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practice [Phoon and Kulhawy (1999) and Wolff (1985) among others] and they are 

presented in Table (4.1). These values will be referred to hereafter as the reference values.  

Table 4.1: Statistical characteristics of the random variables 
Type of the probability 
density function (PDF) Random 

variable 
Mean  

Coefficient of 
variation (%) Case of 

normal PDFs 
Case of non-
normal PDFs 

c 20kPa 20 Normal Log-normal 
φ 30o 10 Normal Beta 

The performance function used to calculate the failure probability is defined as follows:  

G = (qu/qa) – 1                                                            (4.6) 

The ultimate bearing capacity qu is calculated using the deterministic model presented by 

Soubra (1999). This model is based on the upper-bound approach of limit analysis. It will 

be briefly presented in the following subsection.  

4.1. Deterministic model 

The deterministic model is based on the upper-bound theorem of the limit analysis 

theory using a kinematically admissible failure mechanism. The approach is simple and 

self-consistent and it obtains rigorous upper-bound solutions in the framework of the limit 

analysis theory. The failure mechanism used for the computation is a translational 

symmetrical multiblock mechanism (Figure 4.2).  

 
Figure 4.2:  Failure mechanism for the ultimate bearing capacity analysis 

The bearing capacity is obtained by equating the total rate of work of the external forces to 

the total rate of energy dissipation along the lines of velocity discontinuities. The ultimate 

bearing capacity (in the absence of a surcharge loading on the ground surface) is given as 

follows:  
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u c

1
q bN cN

2 γ= γ +                                                            (4.7) 

in which b is the footing breadth, γ and c are the soil unit weight and cohesion and Nγ and 

Nc are the bearing capacity factors due to the soil weight and cohesion, respectively. The 

coefficients Nγ and Nc are functions of the soil friction angle φ and the geometrical 

parameters of the failure mechanism shown in Figure (4.2). The ultimate bearing capacity 

of the foundation is obtained by minimization of Equation (4.7) with respect to the 

mechanism’s geometrical parameters. For further details on the failure mechanism, the 

reader can refer to Soubra (1999). It should be mentioned here that although the results 

given by this approach are upper-bound solutions, they are the smallest ones against the 

available results given by rigid block mechanisms. Notice also that the computation time of 

the ultimate bearing capacity is equal to about 0.2 minutes. The small computation time of 

this model allows the validation of the proposed procedure by comparison of its results 

with the results given by MCS methodology applied on the original deterministic model as 

will be shown in the next section. Finally, notice that the deterministic ultimate bearing 

capacity (i.e. the ultimate bearing capacity obtained using the mean values of c and φ given 

in Table 4.1) is equal to 1071.72kN/m2. Thus, for the adopted qa value (qa=325kN/m2), the 

punching safety factor Fp=qu/qa is equal to 3.3. 

4.2. Validation of the proposed procedure by comparison with MCS methodology 

This section is devoted to the validation of the proposed procedure by comparison of 

its results with those given by MCS methodology applied on the original deterministic 

model. The comparison involves the values of the failure probability together with the 

probability density function (PDF) and the statistical moments (mean, coefficient of 

variation, skewness and kurtosis) of the system response. 
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It should be mentioned here that, in order to calculate the failure probability by the 

SS approach, a Gaussian PDF was used as a target probability density function Pt (i.e. it 

was used to generate the Ns realizations for the first level of the SS approach). Concerning 

the proposal probability density function Pp (which is used to generate the realizations of 

levels 1, …, j, …, m), any PDF which can be operated easily can be used as a proposal 

PDF since its type does not affect the efficiency of the SS approach (Au and Beck 2001). 

In this study, a uniform PDF was used. The conditional failure probability p0 was chosen to 

be equal to 0.1. Notice that the value of p0 affects the number m of levels required to reach 

the limit state surface G=0. However, it has a very small effect on the total number of 

realizations Nt (which is a multiple of the number of levels i.e. Nt=mxNs) required to reach 

this limit state surface. If p0 is large, the sequence of failure thresholds C1, …, Cj, …, Cm 

will decrease slowly and a large number of levels will be required to reach the limit state 

surface. In this case, a small number Ns of realizations per level will give a prescribed high 

accuracy of the P(F) computation. On the contrary, if p0 is small, the sequence of failure 

thresholds will reach the limit state surface quickly and a small number of levels will be 

required. In this case, a large number Ns of realizations per level will be required to attain 

the same prescribed high accuracy of the P(F) computation. As a conclusion, an arbitrary 

value of p0 can be considered for the probabilistic analysis with a small effect on the 

computational time. Notice finally that the modified Metropolis-Hastings algorithm 

proposed by Santoso et al. (2011) was used in this study to generate next realizations from 

existing ones for the levels (1,2, 3, …, m) of subset simulation (see Appendix F).  

Remember that the PCE order plays a key role in the accuracy of the approximation 

by a PCE. The optimal PCE order was defined in this chapter as the minimal order that 

leads to (i) a coefficient of determination Q2 greater than a prescribed value (say 0.9999) 
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and (ii) the convergence of the failure probability and the statistical moments of the system 

response. The numerical results have shown that a third order PCE is necessary to satisfy 

the abovementioned conditions. Thus, this PCE order will be used in all subsequent 

probabilistic calculations performed in this chapter.    

4.2.1. Validation in terms of failure probability Pf 

To ensure a rigorous computation of the failure probability by the SS approach, the 

number of realizations Ns to be used per level of SS approach must be sufficient to provide 

a small value of the coefficient of variation COVPf of this failure probability. Figure (4.3) 

shows the variation of COVPf computed by SS approach with the number of realizations
 
Ns 

to be used per level. For more details on the computation of COVPf by SS approach, one 

can refer to Au and Beck (2003). Figure (4.3) shows that COVPf decreases (i.e. the 

accuracy of the calculation increases) with the increase of Ns. It attains a small value (about 

10%) when Ns=10,000 realizations per level. Consequently, 10,000 realizations were 

considered at each level to calculate Pf by the SS approach. The corresponding Pf value 

was found equal to 3.15x10-4. Notice that 4 levels of SS approach were necessary to 

calculate this failure probability and thus, the total number of realizations required by the 

SS approach is Nt=10,000+(3x9,000)=37,000 realizations. It should be emphasized here 

that the high number of realizations (i.e. 37,000 realizations) is due to the small value of 

COVPf adopted in the computation. For practical purposes, a higher value of COVPf would 

be acceptable and thus, a smaller number of realizations would be required. For instance, if 

Ns=1,000 realizations, COVPf  would be equal to 31.5% and Pf would be equal to 2.56x10-4. 

This means that for COVPf=31.5%, the number of realizations is reduced by 90% with 

respect to the one corresponding to COVPf≈10%; however, the difference in the Pf value is 

only 18.7%.  
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Figure 4.3:  Coefficient of variation of Pf (calculated by SS approach) versus the number 

of realizations Ns used per level 

The Pf value computed above (i.e. Pf=3.15x10-4) is to be compared with the value of 

Pf=3.22x10-4 computed by applying MCS methodology on the original deterministic 

model. One can observe that the two values are very close. Notice that 360,000 realizations 

were used to calculate the failure probability by applying MCS on the original 

deterministic model to attain the same COVPf  as that of SS (i.e. about 10% as may be seen 

from Figure 4.4). This means that for the same accuracy, the number of calls of the 

deterministic model required by MCS to calculate Pf is reduced by 89.7% by using the SS 

approach. 
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Figure 4.4:  Coefficient of variation of Pf (calculated by applying MCS on the original 

deterministic model) versus the number of realizations 

It should be noticed here that contrary to MCS methodology which can be used to 

compute the failure probabilities corresponding to different values of qa without repeating 
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the deterministic calculations, the SS approach allows one to calculate the failure 

probability corresponding to only one qa value. If the failure probability corresponding to 

another qa value is required, one needs to repeat all the deterministic calculations. The 

combination of SS approach and the CSRSM overcomes this shortcoming. This means that 

once a single SS computation (corresponding to a given qa value) is performed, it can be 

used to accurately calculate the failure probability corresponding to any qa value larger 

than the original one. The accuracy of this computation is ensured by the fact that all the 

limit state surfaces corresponding to larger qa values are included in the sampling zone of 

the SS approach (see Figure 4.5).  

 
Figure 4.5:  Limit state surfaces corresponding to different values of qa plotted in the 

standard space of random variables 

Table (4.2) presents a comparison between the failure probabilities computed by the 

proposed procedure (using a single SS computation) and those calculated by MCS 

methodology applied on the original deterministic model for different qa values. This table 

shows a good agreement between the two methods with a maximal difference of 11.53%. 

This indicates that contrary to the SS approach, the procedure proposed in this study allows 

the computation of the failure probability for the values of the footing pressure that are 

greater than the one considered in the SS analysis. 

qa=700kN/m2 qa=500kN/m2 
 

qa=325kN/m2 
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Table 4.2: Comparison between the failure probability computed by applying MCS on the 
original deterministic model and that calculated by applying MCS on the meta-model for 

different values of the footing applied pressure qa 
Failure probability 

qa (kN/m2) MCS applied on the original 
deterministic model 

MCS applied on the 
meta-model 

325 3.22x10-4 3.15x10-4 
350 6.42x10-4 5.68x10-4 
375 1.22x10-3 1.10x10-3 
400 2.34x10-3 2.10x10-3 
425 3.90x10-3 3.70x10-3 
450 6.41x10-3 6.16x10-3 
475 9.81x10-3 9.70x10-3 
500 1.46x10-2 1.44x10-2 
525 2.07x10-2 2.07x10-2 
550 2.83x10-2 2.88x10-2 
575 3.77x10-2 3.86x10-2 
600 4.88x10-2 4.93x10-2 
625 6.17x10-2 6.28x10-2 
650 7.66x10-2 7.73x10-2 
675 9.36x10-2 9.42x10-2 
700 1.11x10-1 1.12x10-1 

4.2.2. Validation in terms of probability density function (PDF) 

Once the PCE coefficients are determined, the uncertainty propagation can be 

performed. The PDF, CDF and the statistical moments of the system response can be easily 

determined by applying MCS methodology on the obtained PCE (meta-model). In order to 

validate these results, they were compared in Figures (4.6a, 4.6b) and Table (4.3) with 

those obtained by applying MCS on the original deterministic model using (as before) 

360,000 realizations. These results show that there is a good agreement between the 

proposed procedure and the classical MCS methodology applied on the original 

deterministic model for both the central part and the tail of the distribution of the PDF of 

the system response. As a conclusion, the proposed procedure allows one to rigorously 

determine not only the failure probability but also the statistical moments of the system 

response with no additional calls of the deterministic model.  
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Figure 4.6:  Comparison between the PDF and CDF of the ultimate bearing capacity 
computed by applying MCS on the original deterministic model and those computed by 

applying MCS on the meta-model 

Table 4.3: Comparison between the statistical moments of the ultimate bearing capacity 
computed by applying MCS on the original deterministic model and those computed by 

applying MCS on the meta-model 

 
Mean 

(kN/m2) 

Standard 
deviation 
(kN/m2) 

Coefficient of 
variation (%) 

Skewness Kurtosis 

MCS applied on the original 
deterministic model 

1150.50 419.50 36.46 1.06 1.82 

MCS applied on the meta-
model 

1150.60 418.30 36.35 1.05 1.78 

4.3. Global sensitivity analysis via PCE-based Sobol indices 

As mentioned previously, Sobol indices provide a measure of the contribution of 

each random variable to the variability of the system response. The Sobol indices of the 

soil cohesion SUc and the soil friction angle SUφ were calculated and were found equal to 

0.1025 and 0.8975 respectively. This means that, for the statistical moments of the input 

uncertain parameters considered in this paper, the soil friction angle has a significant 

weight in the variability of the ultimate bearing capacity. However, the soil cohesion has a 

relatively small weight in the variability of this response. This conclusion is in conformity 

with that found in chapter 3 using the CSRSM.    
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4.4. Reliability index, design point and partial safety factors 

As mentioned in chapter 1, the Hasofer-Lind reliability index βHL is a mean by which 

the safety of a given geotechnical system is measured. It represents the minimum distance 

between the origin and the limit state surface G=0 in the standard space of uncorrelated 

random variables. In this chapter, the computation of βHL is performed by using the PCE. 

The point (c*, φ*) resulting from the minimization is called the design point. It is the most 

probable failure point corresponding to a given qa value.  

Table (4.4) presents the reliability index, the design point and the corresponding 

partial safety factors ( *
c cF c ,= µ ( ) *F tan tanϕ ϕ= µ ϕ ) for different qa values. This table 

also presents the punching safety factor Fp=qu/qa where qu is the deterministic ultimate 

bearing capacity (qu=1071.72kN/m2). Notice that all the results presented in Table (4.4) 

are obtained using only one SS computation (when qa=325kN/m2). These results are 

accurate since they correspond to qa values larger than 325kN/m2 which means that the 

corresponding limit state surfaces are included in the sampling zone. This is ensured by the 

fact that the distance between the origin and the farthest collocation point in the standard 

space of random variables is dmax=5.04. This distance is larger than all values of βHL 

presented in this table. From Table (4.4), one can observe that the increase in qa increases 

the values of c* and φ*  at the design point. However, the reliability index and the partial 

safety factors Fc and Fφ decrease with the increase in qa. This is to be expected since the 

increase in the footing pressure decreases the footing safety and thus provides smaller 

resistance factors. Notice that for the punching safety factor Fp=3 which is generally used 

in practice, the corresponding partial safety factors Fc and Fφ are respectively 1.34 and 

1.44. These values are somewhat close to those provided by Eurocode 7 where Fc and Fφ 

are respectively equal to 1.4 and 1.25. Finally, it should be emphasized that these results 

could not be obtained using the SS approach since this method does not provide an 
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analytical expression of the system response (or the limit state surface). They are obtained 

with the use of the SS approach combined with the polynomial chaos expansion 

methodology. 

Table 4.4: Punching safety factor, reliability index, design point and partial safety factors 
for different values of the footing applied pressure qa 

qa(kN/m2) Fp=qu/qa βHL c*(kN/m2) φ* (o) Fc Fφ 

325 3.30 3.48 14.51 20.04 1.38 1.58 
350 3.06 3.25 14.88 20.67 1.35 1.53 

357.24 3.00 3.19 14.98 20.84 1.34 1.51 
375 2.86 3.04 15.23 21.26 1.31 1.48 
400 2.68 2.84 15.56 21.81 1.29 1.44 
425 2.52 2.65 15.86 22.35 1.26 1.40 
450 2.38 2.48 16.14 22.84 1.24 1.37 
475 2.26 2.31 16.39 23.31 1.22 1.34 
500 2.14 2.16 16.63 23.76 1.20 1.31 
525 2.04 2.01 16.85 24.18 1.19 1.29 
550 1.95 1.88 17.06 24.58 1.17 1.26 
575 1.86 1.75 17.25 24.96 1.16 1.24 
600 1.79 1.62 17.43 25.33 1.15 1.22 
625 1.71 1.51 17.59 25.67 1.14 1.20 
650 1.65 1.39 17.75 26.00 1.13 1.18 
675 1.59 1.29 17.90 26.32 1.12 1.17 
700 1.53 1.19 18.05 26.63 1.12 1.15 

4.5. Reliability-based analysis and design 

Figure (4.7) presents two fragility curves in the normal and semi-log scales. These 

curves provide the variation of the failure probability with the allowable footing pressure 

qa where qa=Pu/(bxFp) when the random variables are non-normal and uncorrelated (the 

punching safety factor Fp was taken equal to 3 in this study). These curves can be used to 

perform either a reliability-based design or a reliability-based analysis. Concerning the 

RBD, if for example a strip footing is required to support a service load of 500kN with a 

prescribed failure probability of 10-3, from Figure (4.7b), the allowable footing pressure is 

equal to qa=125kN/m2. Consequently, the required footing breadth for a service load of 

500kN/m is b=Pa/qa=500/125=4m. For the reliability-based analysis, Figure (4.7b) 

provides the failure probability of a strip footing subjected to a given service load. For 
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instance, if a footing of breadth b=2m is subjected to a service load of Pa=250kN/m (i.e. 

subjected to an allowable pressure of qa=250/2=125kN/m2), the corresponding failure 

probability is equal to 10-3. 
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Figure 4.7:  Fragility curve in the case of uncorrelated non-normal random variables 
using a) normal scale and b) semi-log scale    

Finally notice that only one SS calculation was performed to compute the fragility curves 

in Figure (4.7). This calculation corresponds to the smallest value of qa. However; for 

larger qa values, MCS methodology was applied on the obtained PCE to calculate the 

failure probability with no additional deterministic calculations. This demonstrates once 

again the interest of the extension of the SS approach.                 

4.6. Parametric study 

The aim of this section is to investigate the effect of the statistical characteristics 

(coefficient of variation COV, coefficient of correlation ρ and the type of the probability 

density function) of the random variables on the system response (ultimate bearing 

capacity).  

4.6.1. Effect of the coefficients of variation (COVs) of the random variables 

This section presents the effect of COVc and COVφ on (i) the PDF of the system 

response and the corresponding statistical moments and (ii) the Sobol indices SUc and SUφ. 
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Notice that, in order to investigate the effect of COV of a certain random variable, its COV 

is increased or decreased by 50% with respect to its reference value; however, the COV of 

the other random variable remains constant.  

Figures (4.8a and 4.8b) present respectively the effect of COVc and COVφ on the PDF 

of the system response. The corresponding values of the statistical moments are given in 

Table 4.5. This table also provides the effect of COVc and COVφ on the Sobol indices.  
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Figure 4.8:  Effect of the coefficient of variation of random variables on the PDF of the 
ultimate bearing capacity 

From these results, one can observe that COVc has a negligible effect on the mean value, 

skewness and kurtosis of the system response; however, it has a small effect on the 

variability of this response. For instance, an increase in COVc by 50% with respect to its 

reference value increases the COV of the system response by only 6.9%. Concerning COVφ, 

it was found to have a significant effect on the mean value, skewness and kurtosis of the 

system response. Also, similar to the results obtained in chapter 2, the variability of the 

system response was found to be very sensitive to the variability of the soil friction angle 

(an increase in COVφ by 50% with respect to its reference value increases the COV of the 

system response by 48.9%). One may observe that the random variable for which the COV 



CHAPTER 4 
----------------------------------------------------------------------------------------------------------------------------------- 

----------------------------------------------------------------------------------------------------------------------------------- 
-118- 

is of a significant influence on the variability of the system response (i.e. ϕ) is the one that 

has the greater value of Sobol index. Remember here that ϕ has a Sobol index of 0.8975 

while c has a Sobol index of 0.1025 for the reference case studied before. Finally, Table 

(4.5) shows that the increase in COV of a given random variable increases its Sobol index 

(i.e. its weight in the variability of the system response) and decreases the Sobol index of 

the other random variable. This means that the increase in the COV of a certain parameter 

increases its weight in the variability of the system response and decreases the weight of 

the other parameter in the variability of this response. These observations agree well with 

the results obtained in chapter 3 of this thesis. 

Table 4.5: Effect of the coefficients of variation of the soil cohesion (COVc) and the soil 
friction angle (COVφ) on the statistical moments of the ultimate bearing capacity and on 

Sobol indices 

Sobol indices 

COV(%) 

Mean 
Value of 

qu 
(kN/m2) 

Standard 
deviation 

of qu 
(kN/m2) 

Coefficient 
of variation 

of qu 
(%) 

Skewness 
of qu 

Kurtosis 
of qu SUc SUφ 

10 1151.05 402.21 34.94 1.04 1.75 0.0278 0.9722 
20 1150.60 418.30 36.35 1.05 1.78 0.1025 0.8975 

C
O

V c
(%

) 

30 1149.08 446.52 38.86 1.10 1.98 0.2030 0.7970 
5 1091.51 225.00 20.61 0.56 0.56 0.3320 0.6680 
10 1150.60 418.30 36.35 1.05 1.78 0.1025 0.8975 

C
O

V φ
(%

) 

15 1256.11 680.05 54.14 1.51 3.66 0.0431 0.9569 

4.6.2. Effect of the correlation and the distribution type of the random variables 

Figure (4.9) shows the effect of the correlation and the non-normality of the random 

variables on the PDF of the ultimate bearing capacity and Table (4.6) shows the 

corresponding statistical moments. These results indicate that the mean value is very 

slightly affected by both the correlation and the non-normality of the random variables. 

The results also indicate that both assumptions of non-normal variables and negative 

correlation between these variables slightly decrease the variability of the system response. 

For instance, the assumption of non-normal random variables decreases the COV of the 
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system response by 1.9% and 4.7% respectively for correlated and uncorrelated random 

variables. On the other hand, the negative correlation decreases the COV of the system 

response by 4.5% and 1.8% respectively for the cases of normal and non-normal random 

variables. Concerning the skewness and kurtosis, , they were found to decrease with both 

the negative correlation and the assumption of non-normal random variables. As a 

conclusion, these results indicate that the case of normal uncorrelated random variables is 

conservative since it provides the largest variability of the ultimate bearing capacity. This 

conclusion is in conformity with that obtained in chapter 2 of this thesis.  
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Figure 4.9:  Effect of the correlation between random variables and the type of the 

probability density function of these variables on the PDF of the ultimate bearing capacity 

Table 4.6: Effect of the correlation between the random variables and the type of the 
probability density function of these variables on the statistical moments of the ultimate 

bearing capacity 

Type of the probability density 
function and correlation 

Mean 
valueof qu 
(kN/m2) 

Standard 
deviation 

of qu 
(kN/m2) 

Coefficient 
of variation 

of qu 
(%) 

Skewness Kurtosis 

Normal uncorrelated variables 1150.51 438.75 38.14 1.28 2.69 
Normal correlated variables 1151.09 419.11 36.41 0.96 1.58 

Non-normal uncorrelated variables 1150.60 418.30 36.35 1.07 1.78 
Non-normal correlated variables 1150.53 410.85 35.71 0.96 1.43 

5. Conclusion 

This chapter presents an efficient procedure that allows one to increase the number of 

the probabilistic outputs of the SS approach with no additional time cost. In this procedure, 

the SS approach was combined with the Collocation-based stochastic response surface 
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method (CSRSM). The combination was carried out by using the different realisations of 

random variables generated by the SS approach (for which the system response values are 

already computed by the SS approach) as collocation points in the CSRSM. This procedure 

was illustrated through the probabilistic analysis at ULS of a strip footing resting on a (c, ϕ) 

soil and subjected to a vertical load Pa. The shear strength parameters c and φ were 

modeled by random variables. The ultimate bearing capacity qu was used to represent the 

system response. In addition to the failure probability computed by the SS approach, the 

proposed procedure provided the PDF of the ultimate bearing capacity with no additional 

calls of the deterministic model. Moreover, it provided the Sobol indices to evaluate the 

contribution of each random variable to the variability of the ultimate bearing capacity. 

Finally, the failure probabilities corresponding to Pa values greater than the original one 

used in the SS computation were easily calculated. The main results obtained from the 

numerical example can be summarized as follows: 

1- The PDF of the ultimate bearing capacity and its corresponding statistical moments, as 

determined by the proposed procedure, have shown a good agreement with those 

obtained by applying MCS methodology on the original deterministic model. 

2- The failure probabilities computed by the proposed procedure and corresponding to qa 

values larger than the original one used to perform a SS computation agree well with 

those computed by applying MCS methodology on the original deterministic model. 

3- The global sensitivity analysis based on the PCE-based Sobol indices has shown that the 

soil friction angle has a significant weight in the variability of the ultimate bearing 

capacity (Sφ=0.8975); however, the soil cohesion has a relatively small weight in the 

variability of this response (Sc=0.1025). This conclusion is valid for the values of the 

soil uncertainties considered in this thesis which are the ones frequently encountered in 

practice for a (c, φ) soil. 
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4- The increase in the footing pressure qa increases the values of c and φ at the design point. 

However, the reliability index βHL and the partial safety factors Fc and Fφ decrease with 

the increase in the footing pressure. This is to be expected since the increase in the 

footing pressure decreases the safety of the soil-footing system.  

5- A fragility curve which can be used to perform either a reliability analysis or a reliability 

based design of the strip footings was presented. Concerning the reliability analysis, 

this curve provides the failure probability of a strip footing subjected to a given service 

load. For the reliability-based design, it allows one to calculate the footing breadth 

required to support a given service load for a target failure probability.  

6- A parametric study has shown that: 

a) The increase in COVφ considerably increases the variability of the system response; 

however, the increase of COVc has a small effect on this variability.  

b) The random variable for which the COV is of a significant influence on the 

variability of the system response (i.e. φ) is the one that has the greater value of 

Sobol index.  

c) The increase in COV of a given random variable increases its Sobol index and 

decreases the Sobol index of the other random variable. This means that the 

increase in the COV of a certain parameter increases its weight in the variability of 

the system response and decreases the weight of the other parameter.  

d) The variability of the system response was found to decrease with the assumption 

of non-normal variables with respect to the case of normal variables. This 

variability also decreases when considering negative correlation between random 

variables as compared to the case of uncorrelated variables. 
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CHAPTER 5 

PROBABILISTIC ANALYSIS OF FOOTINGS RESTING ON A 

SPATIALLY VARYING SOIL USING SUBSET SIMULATION (SS)  

APPROACH  

1. Introduction  

The probabilistic analysis of geotechnical structures presenting spatial variability in 

the soil properties is generally performed using Monte Carlo simulation (MCS) 

methodology. This methodology is not suitable for the computation of a small failure 

probability because it becomes very time-expensive in such a case due to the large number 

of simulations required to calculate the failure probability. For this reason, only the mean 

value and the standard deviation of the system response were extensively investigated in 

literature. Au and Beck (2001) proposed the subset simulation (SS) approach as an 

alternative to MCS methodology to calculate the small failure probabilities. Except Au et 

al. (2010) and Santoso et al. (2011) who applied the SS approach to one-dimensional (1D) 

random field problems, the SS method was mainly applied in literature to problems where 

the uncertain parameters are modeled by random variables.  

In the present chapter, the subset simulation method is employed to perform a 

probabilistic analysis at the serviceability limit state (SLS) of a rigid strip footing resting 

on a soil with a two-dimensional (2D) spatially varying Young’s modulus and subjected to 

an axial vertical load (Ps). Notice that most previous studies that considered the soil spatial 

variability have modeled the uncertain parameters by isotropic random fields [e.g. Fenton 

and Griffiths (2003), Popescu et al. (2005), Griffiths et al. (2006), Sivakumar et al. (2006) 

and Soubra et al. (2008) at ULS and Fenton and Griffiths (2002, 2005) and Fenton et al. 

(2003) at SLS]. However, due to the layered nature of soils, their parameters generally 

exhibit a larger autocorrelation length in the horizontal direction compared to that in the 
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vertical direction. Thus, the Young’s modulus is considered herein as an anisotropic 

random field. The Karhunen-Loeve (K-L) expansion is used to discretize the random field. 

The deterministic model employed for the computation of the system response is based on 

numerical simulations using the commercial software FLAC3D. It should be emphasized 

here that the soil spatial variability causes uneven footing displacement. Due to its high 

rigidity, the footing undergoes a linear vertical displacement. Thus, the average value of 

the footing vertical displacement is considered herein to represent the system response. 

This average is equal to the vertical displacement at the footing center.  

After the presentation of the method of computation of the failure probability by the 

SS approach in the case of a random field problem, the probabilistic analysis of a strip 

footing resting on a spatially varying soil and the corresponding results are presented and 

discussed. The chapter ends with a conclusion. 

2. Method of computation of the failure probability by the SS approach in case of a 

spatially varying soil property  

As mentioned previously, this chapter aims at employing the SS methodology for the 

computation of the failure probability in the case of a spatially varying soil property 

modeled by a random field. The random field was discretized in this chapter using the K-L 

expansion. In order to calculate the failure probability, a link between the SS approach and 

the K-L expansion was performed. It should be emphasized here that the K-L expansion 

includes two types of parameters (deterministic and stochastic) as follows: 

)()X() (X, E ii

M

1i
iE θξφλµθ ∑

=

+≈                               (5.1)  

The deterministic parameters are the eigenvalues and eigenfunctions λi and iφ  of the 

covariance function. The role of these parameters is to ensure the correlation between the 
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values of the random field at the different points in the space. On the other hand, the 

stochastic parameters are represented by the vector of the standard normal random 

variables Mii ...,,1}{ =ξ . The role of these parameters is to ensure the random nature of the 

uncertain parameter. The link between the SS approach and the K-L expansion was 

performed through the vector Mii ...,,1}{ =ξ . This ensures that the subset simulation technique 

does not affect the correlation structure of the random field.  

The basic idea of the link is that for a given random field realisation obtained by K-L 

expansion, the vector Mii ...,,1}{ =ξ  represents a sample ‘s’ of the subset simulation method 

for which the system response is calculated in two steps. The first step is to substitute the 

vector Mii ...,,1}{ =ξ  in the K-L expansion to calculate the values of the random field at the 

centers of the different elements of the deterministic mesh according to their coordinates. 

The second step is to use the deterministic model to calculate the corresponding system 

response. The algorithm of the subset simulation approach in case of a spatially varying 

soil property is an extension of the algorithm presented in the previous chapter. It can be 

described as follows: 

1. Choose the number M of terms of K-L expansion. This number must be sufficient to 

accurately represent the target random field.   

2. Generate a vector of (M) standard normal random variables {ξ1, …, ξi, ..., ξM} by direct 

Monte Carlo simulation.    

3. Substitute the vector {ξ1, …, ξi, ..., ξM} in the K-L expansion to obtain the first 

realisation of the random field. Then, use the deterministic model to calculate the 

corresponding system response.  

4. Repeat steps 2 and 3 until obtaining a prescribed number Ns of realisations of the 

random field and their corresponding values of the system response. Then, evaluate the 
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corresponding values of the performance function to obtain the vector G0 where 

}G,...,G,...,G{G Ns

0

k

0

1

00 = . Notice that the values of the performance function of the 

different realizations are arranged in an increasing order in the vector G0. Notice also 

that the subscripts ‘0’ refer to the first level (level 0) of the subset simulation approach.   

5. Prescribe a constant intermediate conditional failure probability p0 for all the failure 

regions Fj (j= 1, 2, …, m) and evaluate the first failure threshold C1 which corresponds 

to the failure region F1 where C1 is equal to the [(Nsxp0)+1] th value in the increasing 

list of elements of the vector G0. This ensures that the value of P(F1) will be equal to 

the prescribed p0 value. 

6. Among the Ns realisations, there are [Nsxp0]  ones whose values of the performance 

function are less than C1 (i.e. they are located in the failure region F1). The 

corresponding vectors of standard normal random variables {ξ1, …, ξi, ..., ξM} of these 

realisations are used as ‘mother vectors’ to generate additional [(1-p0)Ns]  vectors of  

standard normal random variables {ξ1, …, ξi, ..., ξM} using Markov chain method based 

on Metropolis-Hastings algorithm. These new vectors are substituted in the K-L 

expansion to obtain the random field realisations of level 1.  

7. The values of the performance function corresponding to the realisations of level 1 are 

listed in an increasing order and are gathered in the vector of performance function 

values },...,,...,{ 11
1
11

Nsk GGGG =  .  

8. Evaluate the second failure threshold C2 as the [(Nsxp0)+1] th value in the increasing list 

of the vector G1.    

9. Repeat steps 6-8 to evaluate the failure thresholds C3, C4, …, Cm corresponding to the 

failure regions F3, F4, …, Fm. Notice that contrary to all other thresholds, the last failure 

threshold Cm is negative. Thus, Cm is set to zero and the conditional failure probability 

of the last level P(Fm׀Fm-1) is calculated as: 
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m
                            (5.2) 

where 
mF

I 1=  if the performance function G(sk) is negative and 
mF

I 0=  otherwise. 

10. Finally, the failure probability P(F) is evaluated as follows:  
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It should be mentioned that, a normal PDF was used herein as a target probability 

density function Pt. However, a uniform PDF was used as a proposal probability density 

function Pp. The intermediate failure probability p0 of a given level j (j= 1, 2, …,m) was 

chosen equal to 0.1. It should also be mentioned that the modified Metropolis-Hastings 

algorithm proposed by Santoso et al. (2011) was used in this chapter. Remember that this 

algorithm is presented in Appendix F. The next section is devoted to the presentation of the 

probabilistic analysis of strip footings resting on a spatially varying soil using the subset 

simulation approach.     

3. Probabilistic analysis of strip footings 

The probabilistic analysis of shallow foundations resting on a spatially varying soil 

has been extensively considered in literature [e.g. Fenton and Griffiths (2003), Pula and 

Shahrour (2003), Popescu et al. (2005), Griffiths et al. (2006), Sivakumar et al. (2006) and 

Soubra et al. (2008) at ULS and Fenton and Griffiths (2002, 2005) and Fenton et al. (2003) 

at SLS]. These authors have used MCS methodology to perform the probabilistic analysis. 

In these studies, the mean value and the standard deviation of the system response were 

extensively investigated. This was not the case for the failure probability because MCS 

methodology requires a large number of calls of the deterministic model to accurately 

calculate a small failure probability. 
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This chapter presents a probabilistic analysis at SLS of a strip footing resting on a 

spatially varying soil using the SS approach. The objective is the computation of the 

probability Pe of exceeding a tolerable vertical displacement under a prescribed footing 

load. A footing of breadth b=2m that is subjected to a central vertical load Pa=1000kN/m 

(i.e. an applied uniform vertical pressure qa=500kN/m2) was considered in the analysis. 

The Young’s modulus was modeled by a random field and it was assumed to follow a log-

normal probability density function. The mean value and the coefficient of variation of the 

Young’s modulus were respectively µE=60MPa and COVE=15%. An exponential 

covariance function was used in this study to represent the correlation structure of the 

random field. The random field was discretized using K-L expansion. Although an 

isotropic random field is often assumed in literature [e.g. Fenton and Griffiths (2002, 2005), 

Fenton et al. (2003)], the vertical autocorrelation length tends to be shorter than the 

horizontal one due to the geological soil formation process for most natural soil deposits 

(Cho and Park 2010). A common ratio of about 1 to 10 for these autocorrelation lengths 

can be used (Baecher and Christian 2003). Notice however that in this chapter, other values 

of this ratio were studied and analyzed in order to explore some interesting features related 

to the autocorrelation lengths. 

The performance function used to calculate the probability Pe of exceeding a 

tolerable vertical displacement was defined as follows:  

G=δvmax-δv                    (5.4) 

where δvmax is a prescribed tolerable vertical displacement of the footing center and δv is 

the vertical displacement of the footing center due to the applied pressure qa.  

3.1. Deterministic model 

The deterministic model used to calculate the footing vertical displacement δv was 

based on the commercial numerical code FLAC3D. For this calculation, a footing of width 
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b that rests on a soil domain of width B and depth H was considered in the analysis (Figure 

5.1). In contrast to the case of random variables where only one-half of the soil domain 

(and consequently one-half of the footing) shown in Figure (5.1) may be considered in the 

analysis, the entire soil domain shown in Figure (5.1) was considered herein. This is 

because the random field creates non-symmetrical soil movement. An optimal non-uniform 

but symmetrical mesh composed of 750 zones was employed. The mesh was refined near 

the footing edges where high stress gradient may occur. For the displacement boundary 

conditions, the bottom boundary was assumed to be fixed and the vertical boundaries were 

constrained in motion in the horizontal directions. Although an SLS analysis is considered 

herein, the soil behavior was modeled by a conventional elastic-perfectly plastic model 

based on Mohr-Coulomb failure criterion in order to take into account the possible 

plastification that may occur near the edges of the foundation even under the service loads. 

On the other hand, the strip footing was modeled by a linear elastic model. It is connected 

to the soil via interface elements. The values of the different parameters of the soil, footing 

and interface are given in Table (5.1).   

 
Figure 5.1: Soil domain and mesh used in the numerical simulations 

In order to calculate the footing vertical displacement for a given random field realisation, 

(i) the vertical and horizontal coordinates of the center of each element of the mesh were 

calculated; then, the K-L expansion was used to calculate the value of the Young’s 

b 

H
=

3b
 

B=7.5b 
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modulus at the center of each element, (ii) geostatic stresses were applied to the soil, (iii) 

the obtained displacements were set to zero in order to obtain the footing displacement due 

to only the footing applied pressure and finally, (iv) the uniform vertical pressure was 

applied to the footing and the vertical displacement at the footing centre due to this 

pressure was calculated.  

Table 5.1: Shear Strength and Elastic Properties of Soil, Footing, and Interface 

Variable Soil Footing Interface 

C 20kPa N/A 20kPa 
ϕ 30o N/A 30o 

ψ=2/3 φ 20o N/A 20o 
E 60MPa 25GPa N/A 
ν 0.3 0.4 N/A 
Kn N/A N/A 1GPa 
Ks N/A N/A 1GPa 

3.2. Probabilistic numerical results 

This section aims at presenting the probabilistic numerical results. It is organized as 

follows: (i) the minimal number M of terms of K-L expansion corresponding to a 

prescribed accuracy was determined, (ii) the optimal number of realisations Ns per level of 

the SS approach was selected, (iii) a parametric study to investigate the effect of the 

horizontal and vertical autocorrelation lengths of the random field and its coefficient of 

variation on Pe was presented and discussed and finally, (iv) reliability-based design and 

analysis of strip footings based on some fragility curves were presented and discussed.  

It should be mentioned that all subsequent probabilistic results are presented based on 

non-dimensional horizontal and vertical autocorrelation lengths Lln x, Lln y where Lln x=l ln x/b 

and Lln y=l ln y/b. In these expressions, l ln x and l ln y are respectively the horizontal and 

vertical lengths over which the values of the log-elastic modulus are highly correlated. The 

non-dimensionality of Lln x and Lln y was found to be valid only when the ratio between the 

depth H of the soil domain and the footing width b (i.e. H/b) is constant (H/b=3 in the 
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present case). Concerning the breadth B of the soil domain, it was found to have no effect 

on the Pe value.  

3.2.1. Optimal size of K-L expansion  

As is well-known, the accuracy of the approximated random field depends on the size 

of the K-L expansion (i.e. the number of terms M). Figure (5.2) presents the error estimate 

of the approximated random field for the most critical configurations of Lln x and Lln y used 

in this chapter, i.e. for those requiring greater number of terms in the K-L expansion. These 

configurations correspond to [(Lln x=5 and Lln y=0.25) and (Lln x=2.5 and Lln y=0.5)] in case 

of anisotropic random field and [(Lln x=L ln y=0.5) and (Lln x=L ln y=1.5)] in case of isotropic 

random field.  
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Figure 5.2: Error estimate versus the number of eigenmodes for different values of Lln x and 

Lln y when H/b=3  

Figure (5.2) indicates that the error estimate decreases with the increase in the number of 

terms of the K-L expansion. From this figure, for M=100 terms, the error estimate is less 

than 13% for the previously mentioned cases except for the case of Lln x=L ln y=0.5 where 

500M ≈  terms are required to obtain such a small error. Notice that the configurations 

used herein correspond to Lln x and Lln y values equal to or greater than the aforementioned 

configurations. As a conclusion, the number of terms of the K-L expansion will be set to 

M=100 terms for all the probabilistic calculations presented in this chapter except for the 
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case of the isotropic random field when Lln x and Lln y are less than 1.5 where M will be set 

equal to 500 terms. This ensures that for all the configurations considered in this chapter, 

the error will be less than 13%.   

3.2.2. Selection of the optimal number of realisations Ns per level of SS approach     

The number of realisations Ns to be used per level of the SS approach should be sufficient 

to accurately calculate the Pe value. This number should be greater than 100 to provide a 

small bias in the calculated Pe value (Honjo 2008). In order to determine the optimal 

number of realisations Ns to be used per level, different values of Ns (50, 100, 150, 200 and 

250 realisations) were considered to calculate Pe. A random field with Lln x=5 and Lln y=0.5 

(called hereafter the reference case) was considered herein. Notice that the failure 

thresholds Cj of the different levels of the subset simulation were calculated and presented 

in Table (5.2) for the abovementioned values of Ns. This table indicates that the failure 

threshold decreases with the successive levels until reaching a negative value at the last 

level which means that the realisations generated by the subset simulation successfully 

progress towards the limit state surface G=0. Table (5.3) presents the Pe values and the 

corresponding values of the coefficient of variation for the different number of realizations 

Ns. As expected, the coefficient of variation of Pe decreases with the increase in the 

number of realizations Ns. 

Table 5.2: Evolution of the failure threshold Cj with the different levels j of the SS 
approach and with the number of realisations Ns per level 

Number of realisations Ns per level  Failure threshold Cj  
for each level j 50 100 150 200 250 

C1 0.0086 0.0077 0.0080 0.0076 0.0076 
C2 0.0058 0.0048 0.0050 0.0041 0.0040 
C3 0.0044 0.0015 0.0019 0.0011 0.0011 
C4 0.0017 -0.0019 -0.0007 -0.0020 -0.0018 
C5 -0.0015 - - - - 
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Table 5.3: Values of Pe and COVPe versus the number Ns of realizations per level 
 Number of realisations Ns per level 
 50 100 150 200 250 
Pex(10-4) 0.34 4.60 2.07 3.78 3.77 

COVPe  0.92 0.71 0.60 0.51 0.38 

For each Ns value, Pe computed by SS approach was compared to that obtained by MCS 

methodology using N=20,000 realisations. The comparison was carried out in Figure (5.3) 

at the different levels, i.e. at the different failure threshold Cj of the SS approach. Notice 

that for a given Ns value, the computation of Pe at a given level j of the SS approach is 

performed by using Equation (5.3) with the appropriate number of levels. On the other 

hand, in order to calculate Pe at this level by MCS methodology, the performance function 

is set equal to the corresponding failure threshold Cj. In this case, the failure region is 

defined by G≤Cj and the safety region is defined by G>Cj. Thus, the value of Pe at a given 

level j can be calculated as follows:    

∑
=

=
N

1k
kFj )G(I

N

1
)F(P

j
                      (5.5) 

where Gk is the value of the performance function corresponding to the kth realisation of 

MCS with 1IF =  if Gk< Cj and 0IF =  otherwise.  

Figure (5.3a) shows that for the case where Ns=50 realisations, Pe calculated by the SS 

approach is different from that computed by MCS methodology for the different levels of 

the SS approach. This observation is in conformity with the recommendation by Honjo 

(2008) who suggested that the Ns value should be at least equal to 100. The difference 

between the Pe values calculated by the SS approach and those computed by MCS 

becomes smaller for larger Ns values (Figures 5.3b, 5.3c, 5.3d and 5.3e). For the cases 

where Ns≥200 realisations (Figures 5.3d and 5.3e), the failure probabilities calculated by 

subset simulation were found to be very close to those computed by MCS methodology for 

the different levels of the SS approach. Consequently, Ns=200 realisations will be 
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considered in the subsequent probabilistic calculations. In this case, the final Pe value (i.e. 

P(Fm)) which corresponds to C=0 was equal to 3.78x10-4. This value is to be compared to 

the value of 3.8x10-4 given by MCS. It should be mentioned here that, since p0 was chosen 

to be equal to 0.1, 4 levels of subset simulation were found necessary to reach the limit 

state surface G=0 as may be seen from Table (5.2). Therefore, when Ns=200 realisations, a 

total number of realisations Nt=200+180x3=740 realisations were required to calculate the 

final Pe value. In this case, the COV of Pe computed by SS is equal to 0.51. Notice that if 

the same value of COV (i.e. 0.51) is desired by MCS to calculate Pe, the number of 

realisations would be equal to 12,000. This means that, for the same accuracy, the SS 

approach reduces the number of realisations by 93.8%. On the other hand, if one uses MCS 

with the same number of realisations (i.e. 740 realisations), the value of COV of Pe would 

be equal to 1.89. This means that for the same computational effort, the SS approach 

provides a smaller value of COVPe than MCS. 

Although the computation time of the 20,000 realisations by MCS is significant 

(about 70 days), this number of realisations remains insufficient to assure an accurate Pe 

value with a small value of COVPe. The COVPe for 20,000 realisations by MCS was found 

about 0.4. As an alternative approach, one may determine the optimal Ns value by 

comparing the Pe values given by subset simulation for increasing Ns values. The Ns value 

beyond which Pe converges (i.e. slightly varies with the increase of Ns) is the optimal Ns 

value. In the present analysis, it was found that Pe converges when Ns=200 realisations. 

This is because the final Pe values (corresponding to C=0) are respectively equal to 

3.78x10-4 and 3.81x10-4 for Ns=200 and 250 realisations. The corresponding values of 

COVPe are equal to 0.51 and 0.43 which indicates (as expected) that the COVPe decreases 

with the increase in the number of realisations. As a conclusion, this alternative procedure 
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is recommended to determine the optimal Ns value for the probabilistic analysis based on 

the SS approach.    
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a. Ns=50 realisations per level 

1

10

100

1000

10000

100000

0 0.002 0.004 0.006 0.008 0.01

C

P
e 

(x
10

-5
)

Subset simulation (Nt=370 realisations)
Monte Carlo (20,000 realisations) 

 
b. Ns=100 realisations per level 
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c. Ns=150 realisations per level 
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d. Ns=200 realisations per level 
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Figure 5.3: Comparison between the Pe values obtained by subset simulation and those 
obtained by MCS for five values of Ns (δvmax/b=2x10-2 and qa=500kN/m2) 
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3.2.3. Parametric study  

In this section, a parametric study is performed to investigate the effect of the soil 

variability (coefficient of variation and autocorrelation lengths of the Young’s modulus) on 

the Pe value.  

Figure (5.4) shows the effect of the autocorrelation length on Pe in the case of an isotropic 

random field. This figure also shows (for the same value of the coefficient of variation) the 

value of Pe corresponding to the case of a homogeneous soil. In this case, Pe was 

calculated based on the assumption that, for a given realisation, each element of the 

deterministic grid was affected the same random value of the Young’s modulus (i.e. the 

Young’s modulus was modeled as a random variable and not as a random field). Figure 

(5.4) indicates that the increase in the autocorrelation length (Lln x= L ln y) increases the Pe 

value. However, the rate of increase gets smaller for the large values of the autocorrelation 

lengths (when Lln x=L ln y>50) to attain an asymptote corresponding to the case of a 

homogeneous soil (see Figure 5.5a). Remember that in the case of a homogeneous soil, the 

Young’s modulus is randomly chosen (for each realisation) from a PDF and thus, it may 

vary in a wide range which results in some realisations with small value of the Young’s 

modulus. These realisations lead to high values of the footing vertical displacement and 

thus, they lead to a high probability to exceed the tolerable footing vertical displacement. 

On the other hand, for small values of the autocorrelation length, one obtains a soil 

heterogeneity which results in a variety of values of the Young’s modulus in the entire soil 

domain (Figure 5.5b). In this case, the soil under the footing contains some zones with high 

values of the Young’s modulus and other zones with small values of the Young’s modulus 

(i.e. a mixture of stiff zones and soft zones). Due to the high footing rigidity, the footing 
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displacement is resisted by the stiff soil zones under it; the soft soil zones under the footing 

being of little effect in this case. This leads to a small value of the footing vertical 

displacement and consequently to a small probability of exceeding the prescribed tolerable 

footing vertical displacement. This phenomenon is most significant for the very small 

values of the autocorrelation length.  
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Figure 5.4: Effect of the autocorrelation length on Pe in case of an isotropic random field 

(δvmax/b=2x10-2 and qa=500kN/m2) 

As a conclusion, for a given value of the coefficient of variation, modeling the Young’s 

modulus as a random variable rather than a random field is conservative (Fenton and 

Griffiths 2002, 2005). This is because the settlement predicted when assuming a 

homogeneous soil may be much larger than that of a real soil for which the parameters 

vary spatially.   

 
a. Lln x=L ln y=100 

 
b. Lln x=L ln y=0.1 

Figure 5.5: Grey-scale representation of the random field for two values of the 
autocorrelation length in case of an isotropic random field 

In order to investigate the effect of the anisotropy of the random field, Pe was 

computed and plotted versus the non-dimensional horizontal and vertical autocorrelation 
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lengths (Lln x and Lln y) in Figures (5.6 and 5.7) respectively. Both figures show that Pe 

presents a maximum value at a certain ratio of Lln x to Lln y. This observation can be 

explained as follows:  
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Figure 5.6: Effect of the horizontal 
autocorrelation length on Pe for different 

values of Lln y (δvmax/b=2x10-2 and 
qa=500kN/m2) 
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Figure 5.7: Effect of the vertical 
autocorrelation length on Pe for different 

values of Lln x (δvmax/b=2x10-2 and 
qa=500kN/m2) 

Referring to Figure (5.6), the very small value of Lln x creates a vertical multilayer 

composed of thin sub-layers each of which may have either a high or a small value of the 

Young’s modulus (Figure 5.8a). This variety of sub-layers leads to a small footing 

displacement and consequently to a small probability to exceed the tolerable displacement. 

The small footing displacement occurs because the rigid footing is resisted by the sub-

layers having high values of Young’s modulus beneath it; the sub-layers having small 

values of Young’s modulus being of little effect in this case. On the other hand, when Lln x 

is very large, one obtains a horizontal multilayer for which each sub-layer may have either 

a high or a small value of the Young’s modulus (Figure 5.8b). Notice that the Pe value 

seems to tend to the value corresponding to a one-dimensional random filed as Lln x gets 

larger and approaches infinity. To check this statement, the Pe value corresponding to the 

one-dimensional vertical random field and that corresponding to a very large value of Lln x 
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(i.e. Lln x=5000) were calculated for the three cases considered in Figure (5.6) (i.e. for      

Lln y=0.5, 1 and 1.5) and were presented in Table (5.4) together with the other cases 

corresponding to the 2D random field. These results confirm that Pe tends to the value 

corresponding to the one-dimensional case as Lln x gets larger and approaches infinity and 

this value is smaller than the other values corresponding to the 2D random field.  

a. Lln x=0.1 and Lln y=1.5 b. Lln x=5000 and Lln y=0.1 

 
c. Lln x=1.5 and Lln y=0.1 d. Lln x=0.1 and Lln y=5000 

 
e. Lln x=5 and Lln y=0.5 

 
Figure 5.8: Grey-scale representation of the random field for different values of the 

autocorrelation lengths in case of an anisotropic random field 

The reason why the case of 1D random field presents a smaller Pe value with respect to the 

case of the 2D random field is that the uniform strong horizontal layers along the entire soil 

domain (because of the perfect correlation between the values of the Young’s modulus in 

the horizontal direction) lead to smaller footing displacement and thus provide smaller 

values of Pe.  Finally, for medium values of Lln x, the soil contains a number of stiff zones 

adjacent to a number of soft zones whose areas are less extended in both the horizontal and 
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the vertical directions compared to those corresponding to the case of small and high 

values of Lln x (Figure 5.8e). This leads to a larger footing displacement. As a result, Pe 

reaches its maximum value for these intermediate values of Lln x. 

Table 5.4: Effect of Lln x on Pe for different values of Lln y 
Pe Lln x Lln y=0.5 Lln y=1.0 Lln y=1.5 

2.50 1.80x10-6 - - 
4.00 1.79x10-4 - - 
5.00 3.41x10-4 1.65x10-4 1.35x10-4 
10.00 2.15x10-4 24.0x10-4 1.60x10-3 
15.00 1.55x10-4 7.95x10-4 5.40x10-3 
20.00 1.15x10-4 4.23x10-4 3.80x10-3 
25.00 8.55x10-5 2.75x10-4 2.10x10-3 
30.00 6.65x10-5 1.85x10-4 1.20x10-3 
40.00 5.15x10-5 1.19x10-4 8.20x10-4 
50.00 4.90x10-5 9.88x10-5 7.40x10-4 

5000.00 3.20x10-5 5.85x10-5 3.65x10-4 
One-dimensional 2.45x10-5 4.75x10-5 2.45x10-4 

Referring to Figure (5.7), when Lln y is very small, one obtains a horizontal multilayer 

composed of thin sub-layers (Figure 5.8c). On the other hand, the large value of Lln y 

creates a vertical multilayer and makes the random field tend to the case of one-

dimensional horizontal random field (Figure 5.8d). For medium values of Lln y, the soil is 

composed of some zones with high values of Young’s modulus and other zones with small 

values of Young’s modulus (Figure 5.8e). For the three cases of small, intermediate or high 

values of Lln y, the same explanation given before for Figure (5.6) remains valid herein.  

As a conclusion, the soil configuration gradually changes from a vertical to a 

horizontal multilayer as Lln x increases. Similarly, the soil configuration gradually changes 

from a horizontal to a vertical multilayer as Lln y increases. The footing vertical 

displacement is the largest for medium values of Lln x or Lln y where the soil movement may 

occur more easily. Consequently, Pe presents a maximum value in this case.                 
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Notice that the ratio of Lln x/Lln y for which Pe is maximum depends on the values of 

the soil and footing parameters (i.e. µE, ν, b). For the case studied herein, this ratio is equal 

to 10. Notice finally that for the same ratio of Lln x/Lln y but greater values of Lln x and Lln y, 

the maximum value of Pe was found to be higher (Figures 5.6 and 5.7). This is due to the 

simultaneous increase of the autocorrelation lengths in both the vertical and the horizontal 

directions which makes the Pe tend to the value corresponding to the case of the random 

homogeneous soil that does not exhibit spatial variability. In this case, the Pe value is equal 

to 2.41x10-2 (Figure 5.4). This value is greater by more than one order of magnitude with 

respect to the maximum value of Pe given in Figures (5.6 and 5.7) which is equal to 

5.4x10-3. This clearly illustrates, once again, the benefit of considering the soil spatial 

variability in the analysis.  

The numerical results of Figures (5.6 and 5.7) also indicate that Pe is more sensitive 

to the vertical autocorrelation length. This is because the rate of change in Pe (i.e. rate of 

increase or decrease) when increasing the vertical autocorrelation length by a certain 

percentage is larger than that when increasing the horizontal autocorrelation length by the 

same percentage. For example, the increase in the vertical autocorrelation length by 100% 

with respect to the reference case (i.e. Lln x=5 and Lln y=0.5) decreases the value of Pe by 

51.6%. However, the increase in the horizontal autocorrelation length by 100% with 

respect to the reference case decreases the value of Pe by only 36.9%.   

The effect of the coefficient of variation of the Young’s modulus on Pe was presented 

in Figure (5.9). This figure indicates that, for both cases of isotropic and anisotropic 

random fields, the increase in the coefficient of variation of the Young’s modulus from 
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10% to 15% significantly increases the value of Pe. The increase is greater than one order 

of magnitude for both cases of isotropic and anisotropic autocorrelation lengths. This 

means that careful experimental investigations concerning the variability of this parameter 

are necessary to lead to reliable results. 
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Figure 5.9: Effect of COVE on the Pe value in case of (i) anisotropic random field with     

Lln x=5 and Lln y=0.5 and (ii) isotropic random field with Lln x=L ln y=5  

3.2.4. Reliability-based design and analysis of strip footings      

The probability that a certain level of damage (tolerable vertical displacement) will 

be exceeded under a given applied footing pressure can be expressed in the form of 

fragility curves (e.g. Popescu et al. 2005). Figure (5.10a) presents several fragility curves 

corresponding to three values of Poisson’s ratio (0.25; 0.3 and 0.35) and to three levels of 

damage [(i) minor damage for which δvmax/b=1.5x10-2, (ii) medium damage for which 

δvmax/b=2.0x10-2 and (iii) major damage for which δvmax/b=2.5x10-2] for the reference case 

(i.e. Lln x=5 and Lln y=0.5). In this figure, the footing pressure was normalized with respect 

to the mean value of the Young’s modulus and the three damage levels were normalized 

with respect to the footing breadth. The curves of Figure (5.10a) can be employed to 

perform either an SLS probabilistic analysis or an SLS probabilistic design of strip 

footings. For the probabilistic analysis, this figure allows one to determine the probability 

of exceeding a tolerable vertical displacement corresponding to a given value of the 
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applied footing pressure, to a given value of µE, to a given value of Poisson’s ratio and to a 

given value of the prescribed damage level. Concerning the footing design, Figure (5.10a) 

can be employed to determine the footing pressure (and consequently the footing breadth b) 

for a given load, for a given µE value, for a given value of Poisson’s ratio, for a prescribed 

damage level and for a target probability of exceeding this damage level. Figure (5.10a) 

was plotted in a semi-log scale in Figure (5.10b) to clearly identify the small Pe values at 

the distribution tail. As an application example of these curves, if µE=60MPa, ν=0.3 and a 

medium damage with a target Pe value of 10-3 is allowed, qa/µE=0.00833. Consequently, 

the footing pressure is qa=0.00833x60x103=500kN/m2. Hence the probabilistic footing 

breadth required to support a given footing applied load Pa can be calculated as b=Pa/qa. 

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

0 0,005 0,01 0,015 0,02 0,025

qa/µE

P e

Minor damage       ν=0.25

Medium damage   ν=0.25

Major damage       ν=0.25

Minor damage      ν=0.30

Medium damage   ν=0.30

Major damage       ν=0.30

Minor damage       ν=0,35

Medium damage    ν=0.35

Major damage       ν=0.35

 

 
a. Normal scale 

1

10

100

1000

10000

100000

0 0.005 0.01 0.015 0.02 0.025

qa/µE 

P
e

 (
x1

0
 -5
) Minor damage       ν=0.25

Medium damage   ν=0.25

Major damage       ν=0.25

Minor damage       ν=0.30

Medium damage   ν=0.30

Major damage       ν=0.30

Minor damage       ν=0.35

Medium damage   ν=0.35

Major damage       ν=0.35

0.00833  
b. Semi-log scale   

Figure 5.10: Fragility curves for different values of ν and different damage levels 

4. Conclusion 

The probabilistic analysis of shallow foundations resting on a spatially varying soil 

was generally performed in literature using MCS methodology. The mean value and the 

standard deviation of the system response were extensively investigated. This was not the 

case for the failure probability because MCS methodology requires a large number of calls 

of the deterministic model to accurately calculate a small failure probability. This chapter 

fills this gap. It presents a probabilistic analysis at SLS of a strip footing resting on a soil 

with spatially varying Young’s modulus using the subset simulation approach. The footing 

is subjected to a central vertical load. The vertical displacement of the footing center was 
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used to represent the system response. The main findings of this chapter can be 

summarized as follows: 

1- Validation of the results obtained by the SS approach  

The probability Pe (probability of exceeding a tolerable vertical displacement) 

computed by the subset simulation approach was found very close to that computed by 

Monte Carlo Simulation methodology with a significant reduction in the number of 

calls of the deterministic model. 

2 - Parametric study 

a) In case of an isotropic random field, the probability Pe of exceeding a tolerable 

vertical displacement significantly increases with the increase in the autocorrelation 

length in the range of small to moderate values of the autocorrelation length. For 

large values of the autocorrelation length, Pe attains an asymptote. This asymptote 

was found too close to that of a homogeneous random soil (i.e. that corresponding 

to the case of a random variable). This clearly illustrates the benefit of considering 

the soil spatial variability in the analysis. 

b) In case of an anisotropic random field, Pe presents a maximum value for a given 

ratio of the horizontal to the vertical autocorrelation length. For greater values of 

the horizontal and vertical autocorrelation lengths, the maximum value of Pe was 

found to be higher. When both the horizontal and the vertical autocorrelation 

lengths tend to infinity, one obtains the Pe value corresponding to the case of a 

random homogeneous soil. On the other hand, the numerical results have shown 

that Pe is more sensitive to the vertical autocorrelation length than the horizontal 

one.  

d) The increase in the coefficient of variation of the Young’s modulus was found to 

significantly increase the Pe value in both cases of isotropic and anisotropic random 
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fields. The increase is greater than one order of magnitude for both cases of 

isotropic and anisotropic random fields when COVE increases from 10% to 15%. 

This means that careful experimental investigations concerning the variability of 

this parameter are necessary to lead to reliable results. 
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CHAPTER 6 

PROBABILISTIC ANALYSIS OF TWO NEIGHBOURING 

FOOTINGS RESTING ON A SPATIALLY VARYING SOIL USING 

AN IMPROVED SUBSET SIMULATION APPROACH 

1. Introduction 

In the previous chapter, the probabilistic analysis was performed using the subset 

simulation (SS) approach. Remember that in the first step of this approach, one should 

generate a given number of realisations of the uncertain parameters using the classical 

MCS technique. In the second step, one uses the Markov chain method based on 

Metropolis-Hastings (M-H) algorithm to generate realisations in the direction of the limit 

state surface (i.e. G=0). This step is repeated until reaching the limit state surface. It should 

be emphasized here that in case of a small failure probability, the limit state surface is 

located at a large distance from the mean value (i.e. the origin of the standard space of the 

uncertain parameters). Thus, the SS approach requires the repetition of the second step 

many times to reach the limit state surface. This increases the computation time and 

decreases the efficiency of the SS approach. To overcome this inconvenience, Defaux et al. 

(2010) proposed a more efficient method called “improved subset simulation (iSS)” 

approach. In this approach, the efficiency of the SS methodology is increased by replacing 

the first step of this method by a conditional simulation. In other words, instead of 

generating realisations directly around the origin by the classical MCS, the realisations are 

generated outside a hypersphere of a given radius. Consequently, the number of 

realisations required to reach the limit state surface is significantly reduced. Notice that 

Defaux et al. (2010) have employed the iSS to calculate the failure probability in the case 

where the uncertain parameters are modeled by random variables. In the present study, the 

iSS is employed in the case where the uncertain parameters are modeled by random fields. 
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This method is illustrated through the computation of the probability Pe of exceeding a 

tolerable differential settlement between two neighboring strip footings resting on a soil 

with a spatially varying Young’s modulus. The footings are subjected to axial vertical 

loads with equal magnitude. The random field is discretized using the Karhunen-Loeve (K-

L) expansion. The differential settlement between the two footings was used to represent 

the system response. The deterministic model used to compute the system response is 

based on numerical simulations using the commercial software FLAC3D. 

This chapter is organized as follows: the improved subset simulation (iSS) approach 

and its implementation in the case of random fields are first presented. This is followed by 

the probabilistic analysis of two neighboring strip footings resting on a soil with spatially 

varying Young’s modulus. Then, a comparison between the results of the iSS approach and 

those of the classical SS approach is presented to illustrate the efficiency of the iSS 

approach with respect to the classical SS approach. Finally, a parametric study was 

performed to investigate the effect of the autocorrelation lengths on the Pe value in both 

cases of isotropic and anisotropic random fields. The chapter ends with a conclusion of the 

main findings.      

2. Improved subset simulation (iSS) approach and its implementation in the case of 

random fields 

Before the explanation of the iSS approach, it should be remembered that the failure 

probability by the classical SS approach is calculated as follows: 

∏
=

−=
m

2j
1jj1 )FF(P)F(P)F(P                               (6.1)  

where P(F1) is the failure probability corresponding to the first level of the SS approach, m 

is the number of levels required to reach the limit state surface and )FF(P 1jj −  is an 

intermediate prescribed conditional failure probability.  
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The basic idea of the iSS approach is to replace the first step of the SS methodology (i.e. 

generating realisations directly around the origin by the classical MCS as shown in Figure 

6.1) by a conditional simulation [Harbitz (1986) and Yonezawa et al. (1999)] in which the 

realisations are generated outside a hypersphere of a given radius Rh as shown in Figure 

(6.2). Based on this conditional simulation, the failure probability P(F1) corresponding to 

the first level is calculated as follows [Harbitz (1986) and Yonezawa et al. (1999)]: 

∑
=

−=
Ns

1k
kF

s

2

hM1 )s(I
N

1
))R(1()F(P

1
χ               (6.2) 

where nχ  is the chi-square distribution with M degrees of freedom (M being the number of 

random variables) and 1)s(I kF1
=  if 1k Fs ∈  and 0)s(I kF1

=  otherwise.   

 
Figure 6.1: Nested failure domain 

 
Figure 6.2: Samples generation outside a 

hypersphere of radius Rh 

The advantage of using the conditional simulation is to generate realisations in the 

proximity of the limit state surface leading to a reduction in the number of realisations 

required to reach this surface. Notice finally that similar to the classical SS approach, the 

realisations of the remaining levels of the iSS approach are generated using the Markov 

chain method based on Metropolis-Hastings algorithm.  

As mentioned before, this chapter aims at employing the iSS approach for the 

computation of the failure probability in the case of a spatially varying soil property. To 
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achieve this purpose, a link between the iSS approach and the K-L expansion through the 

standard normal random variables is performed. This link is similar to the one described 

previously in chapter 5. The algorithm of the iSS approach proposed in this chapter for the 

case of a spatially varying soil property can be described as follows: 

1. Generate a vector of M standard normal random variables {ξ1, …, ξi, ..., ξM} by MCS 

methodology. This vector must satisfy the condition that its norm is larger than a 

prescribed radius Rh of a hypersphere centered at the origin of the standard space.   

2. Substitute the vector {ξ1, …, ξi, ..., ξM} in the K-L expansion to obtain the first 

realisation of the random field. Then, use the deterministic model to calculate the 

corresponding system response.  

3. Repeat steps 1 and 2 until obtaining a prescribed number Ns of realisations and their 

corresponding system response values. Then, evaluate the corresponding values of the 

performance function to obtain the vector }G,...,G,...,G{G Ns
0

k
0

1
00 = . Notice that the 

values of the performance function of the different realisations are arranged in an 

increasing order in the vector G0. Notice also that the subscript ‘0’ refers to the first 

level (level 0).   

4. Evaluate the first failure threshold C1 of the failure region F1 as the th
s pN ]1)[( 0 +×  

value in the increasing list of elements of the vector G0 where 0p  is a prescribed value 

that represents the ratio between the number of realizations for which G<C1 and the 

number of realizations Ns (i.e. the term ∑
=

Ns

1k
kF

s

)s(I
N

1
1

 in Equation 6.2). Thus, among 

the Ns realisations, there are ][ 0pNs ×  ones whose values of the performance function 

are less than C1 (i.e. they are located in the failure region F1). 

5. Evaluate the conditional failure probability of the first level P(F1) using Equation (6.2). 
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6. Prescribe an intermediate constant conditional failure probability )FF(P 1jj −  for all the 

remaining failure regions Fj where (j=2, 3, …, m). Although the )FF(P 1jj −  value can 

be arbitrary chosen, it is recommended to be chosen equal to the value of 0p  used in 

step 4 to facilitate the implementation of the iSS approach. Notice that, for simplicity in 

notation, )FF(P 1jj −  for j=2, 3, …, m will be referred to as 0p  in the remaining 

sections of this chapter.  

7. The different vectors of random variables {ξ1, …, ξi, ..., ξM} corresponding to the 

realisations that are located in the failure region F1 (from step 4) are used as ‘mother 

vectors’ to generate additional [(1-p0)xNs]  vectors of random variables {ξ1, …, ξi, ..., ξM} 

using the Markov chain method based on Metropolis-Hastings algorithm. These new 

vectors are substituted in the K-L expansion to obtain the corresponding random field 

realisations. Thus, one obtains the Ns realizations of level 1.  

8. The values of the performance function corresponding to the realisations of level 1 are 

listed in an increasing order and are gathered in the vector of performance function 

values }G,...,G,...,G{G Ns
1

k
1

1
11 =  . 

9. Evaluate the second failure threshold C2 as the [(Nsxp0)+1] th value in the increasing list 

of the vector G1.    

10. Repeat steps 7 and 8 to evaluate the failure thresholds C3, C4, …, Cm corresponding to 

the failure regions F3, F4, …, Fm by using each time the vectors of random variables 

{ ξ1, …, ξi, ..., ξM} corresponding to the realizations that are located in the failure region 

Fj as mother vectors to generate the additional vectors in this region. Notice that 

contrary to all other thresholds, the last threshold Cm is negative. Thus, Cm is set to zero 

and the conditional failure probability of the last level [P(Fm׀Fm-1)]  is calculated as: 
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∑
=

− = 
Ns

1k
kF

s
1mm )s(I

N

1
)F(FP

m
                           (6.3) 

where 1I
mF =  if the performance function G(sk) is negative and 0I

mF =  otherwise. 

11. Finally, the failure probability P(F) is evaluated according to Equation (6.1) in which 

P(F1) is calculated using Equation (6.2) and the failure probability of the last level is 

calculated using Equation (6.3).  

Notice that similar to chapter 5, a normal PDF was used as a target probability 

density function Pt. However, a uniform PDF was chosen as a proposal probability density 

function Pp. The intermediate failure probability p0 was chosen equal to 0.1. Also the 

modified Metropolis-Hastings algorithm proposed by Santoso et al. (2011) was used herein. 

3. Probabilistic analysis of two neighboring strip footings   

In the previous chapter, a probabilistic analysis at SLS of a single strip footing resting 

on a spatially varying soil was performed. In practice, footings are rarly isolated and 

interfere with each others depending on the spacing between them (Mabrouki et al. 2010). 

Thus, the case of two neighboring footings is considered in this chapter to illustrate the 

efficiency of the iSS approach. Two neighboring strip footings resting on a soil with a 

spatially varying Young’s modulus and subjected to equal vertical loads were considered 

in the analysis. Indeed, due to the soil spatial variability, the two footings exhibit a 

differential settlement δ. The differential settlement δ was used to represent the system 

response. It is calculated as follows: 21 δδδ −=  where δ1 and δ2 are the settlements 

(computed at the footing centers) of the two footings. The Young’s modulus was modeled 

by a random field and it was assumed to follow a log-normal probability density function. 

Its mean value and coefficient of variation are respectively µE=60MPa and COVE=15%. It 

was discretized using K-L expansion. The random field was assumed to follow an 
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exponential covariance function. It was considered as a two-dimensional (2D) anisotropic 

random field with horizontal and vertical autocorrelation lengths denoted by l ln x and l ln y 

respectively. As mentioned in the preceding chapter, a ratio of l ln x to l ln y of 1 to 10 for 

these autocorrelation lengths is usually found in practice (Baecher and Christian 2003). 

Notice however that a wide range of values of the autocorrelation lengths was considered 

herein in order to explore some interesting features related to the autocorrelation lengths. 

The performance function used to calculate the probability Pe of exceeding a tolerable 

differential settlement is defined as follows: 

δδ −= maxG                                                    (6.4) 

where δmax is a prescribed tolerable differential settlement and δ is the computed 

differential settlement due to the soil spatial variability. 

In the following subsections, the deterministic model used to calculate the differential 

settlement will be presented. Then, the validation of the iSS approach in the case of 

random fields will be performed by comparison of its results with those obtained by MCS 

methodology. Finally, the effect of the autocorrelation length on the Pe value in both cases 

of isotropic and anisotropic random fields will be presented and discussed.      

3.1. Deterministic model  

The deterministic model used to calculate the differential settlement δ is based on 

numerical simulations using FLAC3D. For this computation, two footings (each of width 

b=2m) were considered in the analysis (Figure 6.3). Each footing is subjected to a central 

vertical load Pa=1000kN/m (i.e. a uniform vertical applied pressure qa=500kN/m2). The 

two footing centers are separated by a distance D=4m. This small distance was chosen in 

order to obtain a small soil domain that requires relatively small computation time. The 

small computation time helps to validate the results obtained by the iSS approach by 
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comparison with those obtained by MCS methodology using a large number of calls of the 

deterministic model. An optimal non-uniform but symmetrical mesh composed of 1290 

zones was employed. In order to accurately calculate the footings displacements, the mesh 

was refined near the edges of the footings where high stress gradient may occur. For the 

displacement boundary conditions, the bottom boundary was assumed to be fixed and the 

vertical boundaries were constrained in motion in the horizontal direction.   

 
Figure 6.3. Soil domain and mesh used in the numerical simulations 

Similar to the analysis performed in the preceding chapter, the soil behavior was modeled 

by a conventional elastic-perfectly plastic model based on Mohr-Coulomb failure criterion 

in order to take into account the possible plastification that may take place near the footing 

edges even under the service loads. The strip footings were modeled by a linear elastic 

model. They are connected to the soil via interface elements. The values of the different 

parameters of the soil, footings and interfaces are given in Table (6.1). 

Table 6.1: Shear strength and elastic properties of soil, footing, and interface 

Variable Soil Footing Interface 
c 20kPa N/A 20kPa 
φ 30o N/A 30o 

ψ=2/3 φ 20o N/A 20o 
E 60MPa 25GPa N/A 
ν 0.3 0.4 N/A 

Kn N/A N/A 1GPa 
Ks N/A N/A 1GPa 

In order to calculate the differential settlement for a given random field realisation, (i) the 

coordinates of the center of each element of the mesh were calculated; then, the K-L was 

used to calculate the value of the Young’s modulus at each element center, (ii) geostatic 
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stresses were applied to the soil, (iii) the obtained displacements were set to zero in order 

to obtain the footing displacement due to only the footings applied loads and finally, (iv) 

the service loads were applied to the footings and the vertical displacements at the footings 

centers (δ1 and δ2) due to these loads are calculated. The differential settlement is 

calculated as the absolute difference between δ1 and δ2.  

3.2. Validation of the iSS approach  

This section presents a validation of the proposed iSS approach. Notice that for all 

the probabilistic analyses performed in this chapter, the tolerable differential settlement 

δmax was assumed equal to 3.5x10-3m. Notice also that the horizontal and vertical 

autocorrelation lengths l ln x and l ln y were normalized with respect to the distance D between 

the centers of the two footings (i.e. Lln x=l ln x/D and Lln y=l ln y/D). The numerical results 

have shown that this assumption is valid when the ratio D/b is constant. Notice that 

contrary to the case of a single footing (chapter 5), the height of the soil domain was found 

to have no effect on the Pe value in this chapter. Notice finally that, the number of terms of 

K-L expansion used in this chapter is similar to that employed in chapter 5. 

3.2.1. Selection of the optimal number Ns of realisations per level of iSS approach  

In order to determine the optimal number of realisations Ns to be used per level, 

different values of Ns were considered. For each Ns value, the failure thresholds C1, C2, etc. 

were calculated and presented in Table (6.2) when the radius Rh of the hypersphere is equal 

to zero (i.e. for the classical SS approach). This table shows that the failure threshold value 

decreases with the successive levels until reaching a negative value at the last level. Table 

(6.3) presents the Pe values and the corresponding values of the coefficient of variation for 

the different number of realizations Ns. As expected, the coefficient of variation of Pe 

decreases with the increase in the number of realizations Ns. 
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Table 6.2: Evolution of the failure threshold with the different levels of the iSS approach 
and with the number of realisations Ns (Rh=0, Lln x=2.5 and Lln y=0.25) 

Number of realisations Ns per level  Failure 
threshold 

Cj for each 
level j 

200 400 600 800 1000 1200 

C1 0.00191 0.00199 0.00189 0.00204 0.00191 0.00195 
C2 0.00103 0.00099 0.00096 0.00110 0.00102 0.00103 
C3 0.00041 0.00032 0.00021 0.00037 0.00036 0.00034 
C4 - 0.00009 - 0.00051 -0.00036 - 0.00037 - 0.00039 - 0.00038 

Table 6.3: Values of Pe and COVPe versus the number Ns of realizations per level 
 Number of realisations Ns per level 
 200 400 600 800 1000 1200 

Pe x(10-4) 1.85 3.48 4.63 2.36 3.65 3.67 
COVPe 0.669 0.505 0.385 0.348 0.315 0.285 

For each Ns value presented in Table (6.2), Pe corresponding to each level j was calculated 

by the iSS approach as follows: 

)(...)()()( 1121 −×××= jjj FFPFFPFPFP                        (6.5) 

These Pe values were compared to those computed by the crude MCS methodology using a 

number N=30,000 realisations (Figure 6.4). Notice that at a given level j, the Pe value is 

calculated by MCS methodology as follows: 

∑
=

=
N

k
kFj GI

N
FP

1

)(
1

)(                            (6.6) 

in which, Gk is the value of the performance function at the kth realization and IF=1 if 

Gk<Cj and IF=0 otherwise. The comparison has shown that for Ns≥1,000 realisations, the 

Pe value computed by the iSS approach at the different levels is very close to that 

computed by the crude MCS methodology (Figures 6.4e and 6.4f). Thus, Ns=1,000 

realisations will be used in all the probabilistic analyses performed in this chapter. Notice 

that when Ns=1,000 realisations, the coefficient of variation of Pe by the iSS approach is 

COVPe=31.5%. A quasi similar value of COV (COV=31.3%) was obtained by MCS 

methodology but when using 30,000 realisations.  
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c. Ns=600 realisations per level 
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d. Ns=800 realisations per level 

0.0001

0.001

0.01

0.1

1

0 0.0005 0.001 0.0015 0.002

C

P
e

SS (Nt=3,700 realizations)
MCS (Nt=30,000 realizations)
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f. Ns=1200 realisations per level 

Figure 6.4: Comparison between Pe computed by iSS and that computed by MCS 
methodology at each level of iSS (Rh=0, Lln x=2.5 and Lln y=0.25). 

It should be mentioned here that although the computation time of the 30,000 realizations 

by MCS is significant (about 145 days), this number of realisations remains insufficient to 

assure an accurate Pe value with a small value of COVPe. As an alternative approach, one 

may determine the optimal Ns value (as explained in chapter 5) by successively increasing 

Ns and comparing the Pe values given by the iSS approach for each Ns value. The Ns value 

beyond which Pe converges (i.e. slightly varies with the increase of Ns) is the optimal one. 
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In the present analysis, it was found that Pe converges when Ns=1000 realizations. This is 

because the final Pe values (corresponding to C=0) are respectively equal to 3.65x10-4 and 

3.61x10-4 for Ns=1000 and 1200 realizations. As a conclusion, this alternative procedure 

(which was proposed in chapter 5) seems to work well for the determination of the optimal 

Ns value. 

3.2.2. Selection of the optimal radius Rh of the hypersphere 

When Rh=0, four levels were required to reach the limit state surface G=0. This means that 

a total number of realisation Nt=1,000+(900x3)=3,700 realisations were required to 

calculate Pe with the iSS approach. Thus, for the same accuracy, the number of realisations 

(and consequently, the computation time) is reduced by 87.7% with respect to MCS when 

Rh=0 (i.e. when the classical SS is used). This number can again be reduced by increasing 

Rh (i.e. by using iSS). Table (6.4) shows that, when Rh increases, the total number of 

realisations decreases. When Rh=11.5, only two levels are required. Thus, the total number 

of realisations is Nt=1000+900=1,900 realisations. As a conclusion, the number of 

realisations (and consequently, the computation time) required by the SS approach could 

be reduced by 48.6% by employing the iSS approach. 

Table 6.4: Effect of the radius of the hypersphere on the number of realizations required to 
calculate Pe (Lln x=2.5 and Lln y=0.25)     

iSS 
 MCS 

Rh=0 
(Classical 

SS) Rh=10 Rh=11 Rh=11.5 

Pe (x10-4) 3.40 3.65 3.58 3.36 3.45 
Number of levels - 4 3 3 2 

number of realizations 30,000 3,700 2,800 2,800 1,900 
computation time (minutes) 210,000 25,900 19,600 19,600 13,300 

It is to be mentioned here that the radius Rh should be carefully chosen.  If Rh is very 

small, the number of levels of the iSS approach will be equal to the number of levels of the 

classical SS approach and consequently the time cost will remain constant. On the other 

hand, if Rh is very large, the hypershpere might overlap with the failure region F leading to 
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unsampled area in the failure region which leads to inaccurate value of the failure 

probability. This issue can be overcome (i) by calculating an approximate value of the 

failure probability using a simple and fast approach and then (ii) by computing the 

corresponding approximate value of the radius Rh to be used in the iSS approach. In this 

chapter, an approximate value 
appeP of the probability of exceeding a tolerable differential 

settlement was calculated by the CSRSM using a small number of random variables and 

small PCE order [Huang et al. (2007) and Huang and Kou (2007)]: 

It should be mentioned here that a high accuracy of the PCE is not necessary herein since 

an approximate 
appeP  value is sought. Thus, a small PCE order can be used. In this chapter, 

a second order PCE was used to approximate the system response. Concerning the number 

of standard normal random variables (number of terms in the K-L expansion), a small 

number was selected and the corresponding 
appeP  value was calculated. Then, this number 

was successively increased until 
appeP  converges to a constant value as shown in Table (6.5). 

This table indicates that 
appeP  converges to a value of 6.86x10-4 when the number of 

standard normal random variable is equal to 6. In this case, the number of collocation 

points is equal to 28 according to the concept of matrix invertibility by Sudret (2008).         

Table 6.5: Effect of the number of standard normal random variables on 
appeP value for the 

case where Lln x=2.5 and Lln y=0.25    
Number of standard normal 

random variables M appeP  Number of collocation points 
according to Sudret (2008) 

3 0.00 10 
4 8.63x10-5 15 
5 8.73x10-9 21 
6 6.46x10-4 28 
7 5.98x10-4 36 

After the determination of 
appeP , the corresponding approximate radius 

apphR  of the 

hypershere can be determined. Notice that
apphR  represents the distance between the origin 



CHAPTER 6 
----------------------------------------------------------------------------------------------------------------------------------- 

----------------------------------------------------------------------------------------------------------------------------------- 
-159- 

and the last failure threshold Cm. This means that only the first level of the iSS approach 

will likely be required to reach the last failure threshold. Thus, 
appeP  can be supposed equal 

to P(F1) and C1=Cm=0. Consequently, one obtains: 
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Equation (6.7) is equal to 0p  as mentioned before in section 2 (see step 4), Equation (6.7) 

can be rewritten as follows: 
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in which (.)1
M
−χ  is the inverse of the chi-square CDF. By using Equation (6.9), for the case 

studied herein where 1.00 =p and M=100, the approximate radius 
apphR  corresponding to 

the approximate value of 4

e 10x46.6P
app

−=  is equal to 11.77. After the determination of 

apphR , the iSS approach can be used with Rh slightly smaller than 
apphR  and M=100 terms 

to rigorously discretize the random field.  

It should be emphasized here that in case where the uncertain parameters are modeled by 

random variables, 
apphR is equal to the reliability index βHL since the standard normal 

random variables represent the uncertain physical parameters in the standard space of 

random variables. In such a case, both 
apphR  and βHL represent the minimal distance 
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between the origin and the limit state surface. However, in the present case where the 

uncertain parameter (i.e. Young’s modulus) is modeled by a random field, the standard 

normal random variables do not correspond to physical uncertain parameters. They are 

used in the K-L expansion to calculate the values of the uncertain parameters at each 

element of the soil domain. This means that the surface constructed using the standard 

normal random variables does not represent the limit state surface. In other words, there is 

no relation between 
apphR  and  βHL.      

3.3. Parametric study  

This section aims at presenting a parametric study showing the effect of the 

autocorrelation lengths on the Pe value in both cases of isotropic and anisotropic random 

fields.   

3.3.1. Effect of the autocorrelation length on Pe in the case of isotropic random field  

Figure (6.5) shows the effect of the autocorrelation length on the Pe value in the case 

of an isotropic random field. This figure indicates that Pe presents a maximum value when       

Lln x=L ln y=1 (i.e. when the autocorrelation length is equal to the distance between the 

centers of the two footings).  
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Figure 6.5: Effect of the autocorrelation length on Pe (isotropic random field) 
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This can be explained by the fact that when the autocorrelation length is very small, one 

obtains a highly heterogeneous soil in both the vertical and the horizontal directions with a 

great variety of high and small values of the Young’s modulus beneath the footings (Figure 

6.6a). In this case, the soil under the footings contains a mixture of stiff and soft soil zones. 

Due to the high rigidity of the footings, their movements are resisted by the numerous stiff 

soil zones in the soil mass; the numerous soft soil zones being of negligible effect on the 

footings displacements. This leads to small values of the footings displacements (i.e. to a 

small differential settlement) and thus, to a small value of Pe. On the other hand, when the 

autocorrelation length is large, the soil tends to be homogenous (Figure 6.6b). This means 

that the differential settlement tends to be very small (close to zero) which leads to a very 

small value of Pe. For the intermediate values of the autocorrelation length, there is a high 

probability that one footing rests on a stiff soil zone and the other on a relatively soft soil 

zone (Figure 6.6c). This leads to a high differential settlement and thus to a high Pe value. 

In this case, Pe presents a maximum. 

 
a. Lln x=L ln y=0.025 

 
b. Lln x=L ln y=25 

 
c. Lln x=L ln y=1 

Figure 6.6: Grey-scale representation of the random field to show the effect of Lln x=L ln y in 
case of isotropic random field 
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3.3.2. Effect of the autocorrelation lengths on Pe in the case of anisotropic random 

field 

Figures (6.7) shows the effect of Lln x on Pe when Lln y=0.25. This figure shows that 

Pe presents a maximum value when the autocorrelation length is equal to the distance 

between the two footings centers (i.e. when Lln x=1). This observation can be explained as 

follows:  
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Figure 6.7: Effect of Lln x on Pe when Lln y=0.25  

For the very small values of Lln x compared to Lln y, one obtains a vertical multilayer 

composed of thin sub-layers where each sub-layer may have a high or a small value of the 

Young’s modulus (Figure 6.8a). The sub-layers with high values of the Young’s modulus 

prevent the movements of both footings and thus lead to a small value of Pe. 

a. Lln x=0.025 and Lln y=0.25 b. Lln x=25 and Lln y=0.25 

 
c. Lln x=1 and Lln y=0.25 

Figure 6.8: Grey-scale representation of the random field to show the effect of Lln x in case 
of anisotropic random field 
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On the other hand, when Lln x is very large compared to Lln y, one obtains a horizontal 

multilayer (i.e. the soil tends to the case of a one-dimensional vertical random field) for 

which each sub-layer may have a high or a small value of the Young’s modulus (Figure 

6.8b). This leads to the same displacement for both footings and thus to a very small value 

of Pe. Finally, for intermediate values of Lln x, the horizontally extended stiff layers of 

Figure (6.8c) become less extended leading to a high probability that the footings rest on 

soil zones with different values of the Young’s modulus. This leads to a greater differential 

settlement and consequently a greater value of Pe (Figure 6.8c).  

The effect of Lln y is presented in Figure (6.9) when Lln x=2.5. This figure also presents the 

Pe value corresponding to case of a one-dimensional horizontal random field with Lln x=2.5. 

In this case, the soil was considered to be spatially varying only in the horizontal direction 

while it was considered to be homogeneous in the vertical direction. Figure (6.9) shows 

that the Pe value increases with the increase in Lln y. This can be explained as follows: when    

Lln y is very small, the two footings rest on a horizontal multilayer composed of thin sub-

layers where each sub-layer may have a high or a small value of the Young’s modulus 

(Figure 6.10a). This means that δ1 and δ2 are almost equal. Thus, the differential settlement 

δ is very small which results in a small value of Pe.  
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Figure 6.9: Effect of Lln y on Pe when Lln x=2.5 
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On the other hand, when Lln y is very large, the soil tends to the case of a one-dimensional 

horizontal random field as shown in Figure (6.9). In this case, one obtains vertically 

extended stiff sub-layers adjacent to vertically extended soft sub-layers (Figure 6.10b). For 

the chosen value of Lln x, there is a high probability that one footing rests on a vertical stiff 

layer and the other one rests on a vertical soft layer which leads to a high differential 

settlement and thus to a great value of Pe. 

a. Lln x=2.5 and Lln y=0.025 
 

b. Lln x=2.5 and Lln y=25 

Figure 6.10: Grey-scale representation of the random field to show the effect of Lln y in 
case of anisotropic random field 

4. Conclusion  

This chapter presents an efficient method, called improved subset simulation (iSS), to 

perform a probabilistic analysis of geotechnical structures that involve spatial variability of 

the soil properties. This method is an improvement of the subset simulation approach 

presented in the previous chapter. It allows one to calculate the small failure probabilities 

using a reduced number of calls of the deterministic model. The iSS approach was 

illustrated through the probabilistic analysis at SLS of two neighboring strip footings 

resting on a soil with spatially varying Young’s modulus. The differential settlement 

between the two footings was used to represent the system response. The probability Pe (i.e. 

the probability of exceeding a tolerable differential settlement) calculated by the improved 

subset simulation approach was found very close to that computed by Monte Carlo 

Simulation methodology or the classical subset simulation approach with a significant 

reduction in the number of calls of the deterministic model. The use of the iSS approach 
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has reduced the number of calls of the deterministic model by about 50% with respect to 

the SS approach.  

A parametric study to investigate the effect of the autocorrelation lengths on Pe in both 

cases of isotropic and anisotropic random fields has shown that:  

1- In case of an isotropic random field, the probability Pe of exceeding a tolerable 

differential settlement presents a maximum value when the autocorrelation length is 

equal to the distance D that separates the two footings centers.  

2- In case of an anisotropic random field, Pe significantly increases with the increase of 

the vertical autocorrelation length (for a given value of the horizontal autocorrelation 

length) and then, it attains an asymptote which corresponds to the case of a horizontal 

one-dimensional random field. On the other hand, for a given value of the vertical 

autocorrelation length, Pe presents a maximum when the horizontal autocorrelation 

length is equal to the distance D that separates the two footings centers. 
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GENERAL  CONCLUSIONS 

This thesis focuses on the probabilistic analysis of shallow foundations. Two types of 

probabilistic analyses were performed. Part I of this thesis presents a simplified 

probabilistic analysis in which the uncertain parameters were modeled by random variables 

characterized by their probability density functions (PDFs). However, Part II of this thesis 

presents an advanced probabilistic analysis in which the soil uncertain parameters were 

modeled by random fields characterized not only by their PDFs but also by their 

autocorrelation functions.  

1 – Part (I): Simplified probabilistic analysis 

Part I consists of three chapters (chapters 2, 3 and 4). In chapters 2 and 3, a circular 

footing resting on a (c, φ) soil and subjected to an inclined load was considered in the 

analysis. Both ULS and SLS were studied. In chapter 2, the response surface method 

(RSM) was used and only the soil uncertainties were considered in the analysis. However, 

in chapter 3, the collocation-based stochastic response surface method (CSRSM) was 

employed and both the soil and loading uncertainties were considered in the analysis. The 

system response used at ULS was the safety factor F defined with respect to the soil shear 

strength parameters (c and tanφ). For the SLS, two system responses were used. These are 

the footing vertical and horizontal displacements. Two failure modes (soil punching and 

footing sliding) were considered in the ULS analysis. Also, two modes of unsatisfactory 

performance (exceeding a vertical and horizontal footing displacement) were considered in 

the SLS analysis. The numerical results of chapters 2 and 3 have shown that: 

a. The safety factor F defined with respect to the soil shear strength parameters c and 

tanφ considers the combined effect of both failure modes (soil punching and footing 

sliding) at ULS. This safety factor provides a unique and rigorous safety level of the 
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soil-footing system. The use of this factor has the advantage of seeking the most 

predominant mode of failure using a deterministic approach.  

b. A global sensitivity analysis using the PCE-based Sobol indices has shown that the 

vertical load component V has a negligible weight in the variability of the safety factor 

and it can be considered as deterministic in the ULS analysis. On the other hand, the 

global sensitivity analysis in the SLS has shown that (i) the variability of the footing 

horizontal displacement is mainly due to the horizontal load component H and (ii) the 

variability of the footing vertical displacement is mainly due to the Young’s modulus 

and the vertical load component; the Young’s modulus being of larger weight. 

c. When considering only the uncertainties of the soil parameters, both the deterministic 

and the probabilistic analyses at ULS have shown that there are several optimal loading 

configurations in the interaction diagram. These configurations correspond to a unique 

optimal load inclination and they subdivide the interaction diagram into two zones of 

predominance where either soil punching or footing sliding is predominant. The 

optimal loading configurations are situated on the line joining the origin and the 

extremum of the interaction diagram. Finally, the optimal load inclination was found to 

be independent of the uncertainties of the soil parameters.  

d. Although the deterministic approach was able to determine the zones of predominance 

of sliding and punching when considering only the soil uncertainties, it was not able to 

determine these zones when considering the uncertainties of the load components. The 

probabilistic approach was necessary in this case. 

e. The uncertainty of the horizontal load component H was found to slightly extend the 

zone of sliding predominance in the interaction diagram with respect to that obtained 

by the deterministic approach. This means that contrary to the variability of the soil 
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properties, the variability of the load components affects the optimal load 

configurations. 

f. The safety factor F was found to exhibit more variability for the load configurations 

corresponding to the zone of sliding predominance.  

g. The optimal loading configurations obtained at SLS are similar to those obtained at 

ULS. These configurations are those for which neither vertical nor horizontal 

movement is predominant. 

h. The footing vertical displacement was found to exhibit larger variability for the load 

configurations corresponding to the zone of predominance of the vertical soil 

movement. However, the footing horizontal displacement was found to exhibit larger 

variability for the loading configurations corresponding to the zone of predominance of 

the horizontal soil movement.  

In chapter 4, the subset simulation approach was combined with the CSRSM to obtain 

additional probabilistic outputs of the SS calculation without additional calls of the 

deterministic model. A strip footing resting on a (c, φ) soil and subjected to a vertical load 

was considered in the analysis. Only a ULS analysis was performed in this chapter. The 

system response was the ultimate bearing capacity. The numerical results of this chapter 

have shown that the combination between the subset simulation approach and the CSRSM 

provides several advantages. In addition to the failure probability, it provides the PDF of 

the system response and the corresponding statistical moments with no additional time 

cost. Also, it allows one to perform a global sensitivity analysis using the PCE-based Sobol 

indices. Moreover, it allows the computation of the failure probability for different 

thresholds of the system response using a single subset simulation computation. 
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As it may be seen for Part I, the new contributions of chapters 2 and 3 do not involve the 

development of new probabilistic methods. Instead, an extensive probabilistic analysis of 

circular foundations subjected to inclined loads was undertaken in these chapters. This type 

of loading which induces both soil punching and footing sliding was not considered before 

in the framework of the probabilistic analysis. Furthermore, the present probabilistic 

analysis has confirmed the superiority of the CSRSM with respect to the RSM regarding 

the number of calls of the deterministic model and the number of the probabilistic outputs. 

On the other hand, chapter 4 has provided an extension of the SS approach. This extension 

allows one to obtain additional probabilistic outputs with respect to the classical SS 

approach with no additional time cost.          

2 – Part (II): Advanced probabilistic analysis 

Part II consists of two chapters (chapters 5 and 6). In chapter 5, the subset simulation 

approach was used to perform a probabilistic analysis at SLS of a single strip footing 

resting on a soil with a spatially varying Young’s modulus and subjected to a vertical load. 

The system response was the vertical displacement at the footing center. However, in 

chapter 6, a more efficient approach called “improved subset simulation (iSS)” approach 

was employed. The efficiency of the iSS approach was illustrated through the probabilistic 

analysis at SLS of two neighboring strip footings resting on a soil with a spatially varying 

Young’s modulus and subjected to equal vertical loads. In this case, the system response 

was the differential settlement between the two footings. The aim of both chapters (5 and 

6) is to develop computationally-efficient probabilistic methods that can consider the soil 

spatial variability. Indeed, the existing probabilistic methods are very time-consuming 

since they are based on MCS methodology. Furthermore, they do not provide the failure 

probability; only the statistical moments of the system response are provided because of 

the great number of calls of the deterministic model required in that case.  
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The probabilistic numerical results of chapter 5 have shown that:  

� Compared to the MCS methodology, the use of the subset simulation approach has 

significantly reduced the number of realisations required to calculate the probability 

Pe of exceeding a tolerable vertical displacement.  

� A parametric study has shown that, in case of isotropic random fields, Pe increases 

with the increase of the autocorrelation length. For large values of the autocorrelation 

length, Pe attains an asymptote. This asymptote was found to be too close to the Pe 

value of a homogeneous soil (i.e. that corresponding to the case of a random variable). 

This illustrates the benefit of considering the soil spatial variability in the design of 

geotechnical structures.  

� In case of anisotropic random fields, the parametric study has shown that Pe presents 

a maximum value for a given ratio of the horizontal to vertical autocorrelation 

lengths. 

� The increase in the coefficient of variation of the Young’s modulus significantly 

increases the Pe value. 

The probabilistic numerical results of chapter 6 have shown that:  

� The number of realisations required by the subset simulation approach to calculate 

the probability Pe of exceeding a tolerable differential settlement was reduced by half 

when employing the improved subset simulation approach.  

� A parametric study has shown that, in case of isotropic random fields, Pe presents a 

maximum value when the autocorrelation length is equal to the distance between the 

centers of the two footings. 

� In case of anisotropic random fields, for a given value of the vertical autocorrelation 

length, Pe presents a maximum when the horizontal autocorrelation length is equal to 

the distance between the centers of the two footings. However, for a given value of 
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the horizontal autocorrelation length, Pe increases with the increase in the vertical 

autocorrelation length and then it attains an asymptote corresponding to the case of a 

one-dimensional horizontal random field. 

Ongoing research topics may involve the following items: 

1- Applying the subset simulation or the improved subset simulation approach in the 

case of a multilayer soil medium (e.g. soft over stiff soil or stiff over soft soil) that 

exhibit spatial variability. 

2- Extending the present subset simulation approach (involving soil spatial variability) 

to the geotechnical problems that include more than one failure mode (multiple 

performance functions). This approach is called “parallel subset simulation” and it 

was developed in literature in the case where the uncertain parameters are modelled 

by random variables. 

3- Combining the subset simulation approach with the Polynomial Chaos Expansion 

(PCE) in case of random fields to obtain the PDF of the system response with no 

additional time cost. Notice however that contrary to chapter 4, this combination is 

not straightforward herein because of the proliferation of the number of PCE 

coefficients as a result of the great number of random variables in this case. The 

Sparse Polynomial Chaos Expansion may be used to solve this issue. 
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APPENDIX A 

EIGENVALUES AND EIGENFUNCTIONS FOR THE EXPONENTIAL 

COVARIANCE FUNCTION  

Let E(X, θ) be a Guassian random field where X denotes the spatial coordinates and θ 

indicates the nature of the random field. If µ is the mean value of this random field, it can 

be approximated by the K-L expansion as follows (Spanos and Ghanem 1989 and Ghanem 

and Spanos 1991): 

)()X() (X, E ii
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+≈                      (A.1) 

where M is the size of the series expansion, λi and iφ  are the eigenvalues and 

eigenfunctions of the covariance function C(X1, X2), and ξi(θ) is a vector of standard 

uncorrelated random variables. In the present thesis, an exponential covariance function 

was used. For a 2D Guassian random field, this function is given as follows: 
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in which, σ is the standard deviation of the random field, lx and ly are respectively the 

horizontal and the vertical autocorrelation lengths and (x1, y1) and (x2, y2) are the 

coordinates of two points in the space. For the exponential covariance function, Ghanem 

and Spanos (1991) provided an analytical solution for the eigenvalues and eigenfunctions.  

For a one-dimensional horizontal random field generated in the interval[ ]xx a,a− , the 

eigenvalues can be calculated as follows:  

22
i

)x(
i c

c2

+
= 

ω
λ                 (A.3) 

where 
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The eigenfunctions are calculated as follows: 
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For a one-dimensional vertical random field generated in the interval[ ]yy aa ,− , the 

eigenvalues and eigenfunctions are calculated using the same equations after replacing the 

horizontal coordinate (x), the horizontal half width (ax) of the domain and the horizontal 

autocorrelation length (lx) respectively by the vertical coordinate (y), the vertical half depth 

(ay) of the domain and the vertical autocorrelation length (ly):  

In case of a two-dimensional random field, the eigenvalues and eigenfunctions are 

calculated as the product of the eigenvalues and eigenfunctions of the one-dimensional 

random field as follows: 
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APPENDIX  B 

DESCRIPTION OF THE SOFTWARE FLAC 3D 

1. Introduction 

FLAC3D (Fast Lagrangian Analysis of Continua) is a computer code which allows 

one to perform three dimensional (3D) numerical simulations. It should be mentioned that 

FLAC3D allows the application of stresses (stress control method) or velocities 

(displacement control method) on the geotechnical system. The application of stresses or 

velocities creates unbalanced forces in this system. The solution of a given problem in 

FLAC3D is obtained by damping these forces to reduce them to very small values 

compared to the initail ones. The stresses and strains are calculated at several time intervals 

(called cycles) until a steady state of static equilibrium or a steady state of plastic flow is 

achieved in the soil mass.  

It should be mentioned here that the programming language FISH in FLAC3D allows 

one to create functions that claculates the stresses, displacements, rotations, etc. at any 

point in the soil mass.  

The following sections present the methods of computaion of some system responses 

using FLAC3D.  

2. Computaion of the ultimate load of a vertically loaded footing  

For the computation of the ultimate footing load using FLAC3D, the displacement 

control method was used. In this method, a small vertical velocity (10-6/timestep in this 

thesis) is applied to the lower nodes of the footing and then, several cycles are run until 

reaching a steady state of plastic flow. The steady state of plastic flow is assumed to be 

reached when the two following conditions are satisfied: 
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- The load becomes constant with the increase in the number of cycles. In other words, 

increasing the number of cycles no longer changes the footing load (see Figure B.1). 

- The unbalanced forces tend to a very small value (10-5 in this thesis) as shown in Figure 

(B.2). 

 
Figure B.1: Load versus the number of cycles 

 
Figure B.2: Unbalanced forces versus the number of cycles 

At each cycle, the footing load is obtained by using a FISH function that computes the 
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summation of stresses of all elements of the soil-footing interface. The value of the footing 

load when reaching the steady state of plastic flow is the ultimate failure load of the 

footing.  

3. Computation of the vertical and horizontal displacements of an obliquely loaded 

footing 

In order to calculate the vertical and horizontal displacements of an obliquely loaded 

footing, the load components V and H are applied at the footing base. Then, cycles are run 

until reaching a steady state of static equilibrium in the soil mass. The steady state of static 

equilibrium is assumed to be reached when the two following conditions are achieved: 

- The displacement tends to a constant value with the increase in the number of cycles. In 

other words, the increase in the number of cycles no longer changes the displacement 

(see Figure B.3). 

- The unbalanced forces tend to a very small value (10-6 in this thesis).  

 
Figure B.3: displacement versus the number of cycles 
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APPENDIX C 

SYSTEM FAILURE PROBABILITY EQUATIONS 

For a geotechnical problem involving two failure modes (soil punching and footing sliding 

as an example), the system failure probability 
sysfP  of the two failure modes is calculated as 

follows:  

)SP(P)S(P)P(P)SP(PP fffffsys
∩−+=∪=                        (C.1)         

where )SP(Pf ∩  is the failure probability of the intersection of the two failure modes, 

)P(Pf  et  )S(Pf are respectively the failure probability due to soil punching and footing 

sliding. The failure probability of the intersection of the two failure modes is calculated as 

follows: 
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in which (.)Φ  is CDF of the standard normal variables, β is the reliability index andPSρ  is 

the coefficient of correlation between the two failure modes. It is calculated using the 

following equation:  

{ }SPPS ααρ =                                                                        (C.5)   

where Pα  and Sα  are the respectively the vectors of sensitivity indices of the soil 

punching and the footing sliding. These vectors are calculated as follows:  
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where *
Pu  and *

Su   are respectively the vectors of the standard normal random variables at 

the design point. Notice here that Equation (C.2) is used when 0PS >ρ  . In cases where 

0PS <ρ , )SP(Pf ∩ is given by:    

[ ])B(P),A(Pmin)SP(P0 f ≤∩≤               (C.8)  

Notice that the lower bounds in Equations (C.2 and C.8) should be considered to obtain the 

most critical value of the system failure probability.  
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APPENDIX D  

HERMITE POLYNOMIALS 

1. One-dimensional Hermite polynomials 

The one-dimensional Hermite polynomials of orders 0, 1, 2, 3, …, p+1 are given by: 

)(p)()(

3)(

1)(

)(

1)(

1pp1p

3
3

2
2

1

0

ξφξφξξφ
ξξξφ

ξξφ

ξξφ
ξφ

−+ −=
−=

−=

=
=

              (D.1) 

where ξ is a standard normal random variable. 

2. Multidimensional Hermite polynomials 

The multidimensional Hermite polynomial iΨ  of order p is given by: 

( ) ( ) ( ) ζζζζ

ξξ
ξξψ

TTp 5,0

n1

p
5,0p

n1 e
...

e1...,,
∂∂

∂−=             (D.2) 

in which ζ  is a vector of n standard normal random variables { } nii ,...,2,1=ξ . The 

multidimensional Hermite polynomials are the product of one-dimensional Hermite 

polynomials of order less than or equal to p. As an example, for a problem with n=3 

random variables and a PCE of order p=4, there are
( )

35
43

43 =+=
!!

!
P terms in the PCE as 

shown in Table (C.1). This table shows the different iΨ  terms and their corresponding 

orders. It also provides the values of ( )2
iE Ψ  for the different terms of the PCE.   
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Table C.1: Hermite polynomials iΨ  for 3 random variables and their variance )( 2
iE Ψ   

i Coefficient 
ia  

order 
p iΨ  ( )2

iE Ψ  

0 a0 0 1 1 

1 a1 1 1ξ  1 

2 a2 1 2ξ  1 

3 a3 1 3ξ  1 

4 a11 2 12
1 −ξ  2 

5 a12 2 21ξξ  1 

6 a13 2 31ξξ  1 

7 a22 2 12
2 −ξ  2 

8 a23 2 32ξξ  1 

9 a33 2 12
3 −ξ  2 

10 a111 3 1
3
1 3ξξ −  6 

11 a112 3 22
2
1 ξξξ −  2 

12 a113 3 33
2
1 ξξξ −  2 

13 a122 3 1
2
21 ξξξ −  2 

14 a123 3 321 ξξξ  1 

15 a133 3 1
2
31 ξξξ −  2 

16 a222 3 2
3
2 3ξξ −  6 

17 a223 3 33
2
2 ξξξ −  2 

18 a233 3 2
2
32 ξξξ −  2 

19 a333 3 3
3
3 3ξξ −  6 

20 a1111 4 36 2
1

4
1 +− ξξ  24 

21 a1112 4 212
3
1 3 ξξξξ −  6 

22 a1113 4 313
3
1 3 ξξξξ −  6 

23 a1122 4 12
1

2
2

2
2

2
1 +−− ξξξξ  4 

24 a1123 4 3232
2
1 ξξξξξ −  2 

25 a1133 4 12
1

2
3

2
3

2
1 +−− ξξξξ  4 

26 a1222 4 21
3
21 3 ξξξξ −  6 

27 a1223 4 313
2
21 ξξξξξ −  2 

28 a1233 4 21
2
321 ξξξξξ −  2 

29 a1333 4 31
3
31 3 ξξξξ −  6 

30 a2222 4 36 2
2

4
2 +− ξξ  24 

31 a2223 4 323
3
2 3 ξξξξ −  6 

32 a2233 4 12
2

2
3

2
3

2
2 +−− ξξξξ  4 

33 a2333 4 32
3
32 3 ξξξξ −  6 

34 a3333 4 36 2
3

4
3 +− ξξ  24 
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APPENDIX E 

PCE-BASED SOBOL INDICES 

Sobol indices of each input random variable or a combination of random variables are 

calculated using the PCE coefficients. The basic idea is to re-arrange the terms of the PCE 

so that each term contains only one random variable or combination of random variables. 

For example, for a PCE of order 4 with three random variables, the system response Γ can 

be written as follows: 

( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
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3a36a3aa...
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1aa1aaa1aaaaa

2
3

4
3333332

3
322333

2
2

2
3

2
3

2
22233

323

3

22223

2

2

4

2222231

3

31133321

2

3211233

313

2

21122321

3

211222

2

1

2

3

2

3

2

111333232
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11113212
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−++−+−+−+
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+−−+−+−++−+
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−++−+−+−+−+
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ξξξξξξξξξξξξξξξ
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ξξξξξξξξξξξξΓ

 (E.1) 

The PCE terms in Equation (E.1) can ber e-arranged in groups where each group contains 

one random variable or a combination of random variables as follows:    

 

 

 

 

 

    (E.2) 

 

 

The PCE in Equation (E.2) consists of 8 groups corresponding respectively to: 
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( )
( ) ( ) ( )
( ) ( ) ( )
( ) termsorderThird,,

termsorderSecond,,,,,

termsorderFirst,,

1

321

323121

321

ξξξ
ξξξξξξ

ξξξ
 

The first order terms provide the contribution of each random variable individually in the 

variability of the system response. However, the second order terms provide the 

contribution of the combinations of two random variables and the third order terms provide 

the contribution of the combinations of three random variables. The Sobol index 

corresponding to each one of these terms is calculated as follows: 

2

2

. ( )a E
SU α α

α

ψ
σ

= ∑                            (E.3) 

where σ2 is the variance of the system response calculated using the PCE coefficients. It is 

given by: 

1 1
2 2 2

1 1

var . . ( )
P P

i i i i
i i

a a Eσ ψ ψ
− −

= =

 = = 
 
∑ ∑               (E.4) 

in which ( )2

iEψ  is the variance of the multidimensional Hermite plynomial iψ . It is given 

by Sudret et al. (2006) as follows:  

( ) !!...!. 21
2

ni iiiE =ψ                  (E.5) 

The values of ( )2

iEψ  corresponding to the different iψ  terms are given in Table (C.1). 
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APPENDIX F 

METROPOLIS-HASTINGS ALGORITHM 

The Metropolis–Hastings algorithm is a Markov chain Monte Carlo (MCMC) method. It is 

used to generate a sequence of new realizations from existing realizations (that follow a 

target PDF called ‘Pt’). Refer to Figure (F.1) and let jk Fs ∈
 
be a current realization which 

follows a target PDF ‘Pt’. Using a proposal PDF ‘Pp’, a next realization j1k Fs ∈+
 
that 

follows the target PDF ‘Pt’ can be simulated from the current realization sk as follows: 

a. A candidate realization ŝ is generated using the proposal PDF (Pp). The candidate 

realization ŝ is centered at the current realization sk. 

b. Using the deterministic model, evaluate the value of the performance function G(ŝ) 

corresponding to the candidate realization ŝ. If G(ŝ)<Cj (i.e. ŝ is located in the 

failure region Fj), set sk+1= ŝ; otherwise, reject ŝ and set sk+1=sk (i.e. the current 

realization sk is repeated).       

c. If G(ŝ)<Cj in the preceding step, calculate the ratio r1=Pt(ŝ)/Pt(sk) and the ratio 

r2=Pp(sk׀ŝ)/Pp(ŝ׀sk), then compute the value r=r1r2. 

d. If r≥1 (i.e. ŝ is distributed according to the Pt), one continues to retain the 

realization sk+1 obtained in step b; otherwise, reject ŝ and set sk+1=sk (i.e. the current 

realization sk is repeated). 

Notice that in step b, if the candidate realization ŝ does not satisfy the condition G(ŝ)<Cj, it 

is rejected and the current realization sk is repeated. Also in step d, if the candidate 

realization ŝ does not satisfy the condition r≥1 (i.e. ŝ is not distributed according to the Pt), 

it is rejected and the current realization sk is repeated. The presence of several repeated 

realizations is not desired as it leads to high probability that the chain of realizations 

remains in the current state. This means that there is high probability that the next failure 

threshold Cj+1 is equal to the current failure threshold Cj. This decreases the efficiency of 
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the subset simulation approach. To overcome this inconvenience, Santoso et al. (2011) 

proposed to modify the classical M-H algorithm as follows:  

a. A candidate realization ŝ is generated using the proposal PDF (Pp). The candidate 

realization ŝ is centered at the current realization sk. 

b. Calculate the ratio r1=Pt(ŝ)/Pt(sk) and the ratio r2=Pp(sk׀ŝ)/Pp(ŝ׀sk), then compute the 

value r=r1r2. 

c. If r≥1, set sk+1=ŝ; otherwise, another candidate realization is generated. Candidate 

realizations are generated randomly until the condition r≥1 is satisfied. 

d. Using the deterministic model, evaluate the value of the performance function 

G(sk+1) of the candidate realization that satisfies the condition r≥1. If G(sk+1)<Cj 

(i.e. sk+1 is located in the failure region Fj), one continues to retain the realization 

sk+1 obtained in step c; otherwise, reject ŝ and set sk+1=sk (i.e. the current realization 

sk is repeated).       

These modifications reduce the repeated realizations and allow one to avoid the 

computation of the system response of the rejected realizations. This becomes of great 

importance when the time cost for the computation of the system response is expensive (i.e. 

for the finite element or finite difference models).  

 
Figure F.1: Nested Failure domain 

 


