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Abstract: This thesis presents simplified and advanced piitisibanalyses of shallow foundations. In the
simplified probabilistic analysis, the uncertainrgraeters are modelled by random variables. For an
obliquely loaded footing, the numerical results dth®n the Response Surface Meth&SENK) and the
Collocation-based Stochastic Response Surface Met@ERSNI have allowed to identify the zones of
failure mode predominance at both the ultimate sergticeability limit states. On the other hand gffitient
procedure was proposed to increase the numbereopribbabilistic outputs of the Subset Simulati®& (
approach with no additional time cost. In this mare, the SS approach was combined wittCBBRSM

In the advanced probabilistic analysis, the unaegarameters are modelled by random fields to tate
account the soil spatial variability. In such caddsnte Carlo SimulationMCS methodology is generally
used in literature. Only the statistical momentsengenerally investigated in literature becausthefgreat
number of calls of the deterministic model requitgdthis method. In this thesis, the subset simrdat
approach was first used as alternative to MCS naetlogy to compute the failure probability. Thisdeao a
significant reduction in the number of calls of theterministic model. Moreover, a more efficienpagach
called improved Subset Simulatioi$§ approach was developed to reduce again the nuaitzalls of the
deterministic model. The use of the iISS approashréduced the number of calls of the determinisiiciel
by about 50% with respect to the SS approach.

Keywords: Reliability analysis, Probabilistic analysis, Rantdvariables, Random fields, Spatial variability,
Shallow foundations, Failure probability, Ultimated serviceability limit states.

Resumé: Cette thése présente des approches simplifiéeavaaicées pour I'analyse probabiliste des
fondations superficielles. Dans I'analyse probstgilsimplifiée, les paramétres incertains sont e par
des variables aléatoires. Pour une fondation saugnisn chargement incliné, les résultats numérihasés

sur la méthode des surfaces de répoR&M et la méthode des surfaces de réponse stochest{GERSN!

ont permis d'identifier les zones de prédominaresrdodes de rupture a I'état limite ultime et &at'dimite

de service. D'autre part, une procédure efficao&téaproposée pour augmenter le nombre des sorties
probabilistes de I'approchauBset SimulatiolfSS sans appels supplémentaires au modéle déteramibiahs
cette procédure, I'approcB&a été combinée avec la méth@zieRSM.

Dans l'analyse probabiliste avancée, les paramiéizegains du sol sont modélisés par des changasgaales
pour prendre en compte la variabilité spatialeptepriétés du sol. Dans ce cas, la méthode de siimnlde
Monte Carlo MCS est généralement utilisée et seuls les momeatistgjues de la réponse sont étudiés en
raison du grand nombre d'appels au modéle détetminDans cette thése, I'approc®®a d'abord été
utiisée comme une méthode alternative a la méthd@S pour calculer la probabilité de ruine. Ceci a
conduit a une réduction significative du nombrepé&ls au modéle déterministe. Ensuite, une apprpicise
efficace nomméamproved Subset Simulati¢isy a été développée pour réduire encore une faishebre
d'appels au modéle déterministe. L'utilisation '‘d®@9a réduit le nombre d'appels au modéle déterministe
d'environ 50% par rapport a I'appro®e

Mots clés : Analyse fiabiliste, Analyse probabilistes, Variablaléatoires, Champs aléatoires, variabilité
spatiale, Fondations superficielles, Probabilitéudee, Etat limite ultime et état limite de seeic
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GENERAL INTRODUCTION

GENERAL INTRODUCTION

Most geotechnical analyses are traditionally baseddeterministic approaches. These
approaches consider representative values foritlegeht design parameters. These values
are usually the averages or the most conservaties obtained from field or laboratory
tests. In such approaches, a global safety fastapplied to take into account the soil and
loading uncertainties. The choice of this factob&sed on the judgment of the engineer
based on his past experience. During the last yeawsh effort has been paid for the
establishment of more reliable and efficient methbdsed on probabilistic (simplified and
advanced) approaches. These approaches allow ooentider the propagation of the
uncertainties from the input parameters (soil anddading parameters) to the system
responses (stress, displacement, factor of sa#dty). In the simplified probabilistic
analysis, the different uncertain parameters ardebed by random variables defined by
their probability density functions (PDFs). Howewvierthe advanced probabilistic analysis,
some uncertain parameters as the soil properties naodeled by random fields
characterized not only by their PDFs, but also lirt autocorrelation functions which
represent the degree of dependence of two valuasgofen uncertain parameter at two

different locations. These methods allow one te tako account the soil spatial variability.

The ultimate aim of this work is to study the pemi@ance of shallow foundations
subjected to complex loading (horizontal and vattioads and an overturning moment)
using probabilistic approaches. The present tHesisses on the case of obliquely loaded
footings. The extension to the complex loading @s®or the seismic or dynamic loading
will be the subject of future work. Both the ultitea ULS) and the serviceability (SLS)

limit states were considered in the analysis. Imt Paof this thesis, the simplified
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probabilistic approach was used to perform the glodistic analysis. However, in Part I,

the probabilistic analysis was performed usingnioege advanced probabilistic approach.

Before the presentation of the different probatidianalyses performed in this thesis
(Parts | and Il), a literature review is presentedhapter 1. This chapter provides (i) the
different sources of uncertainties, (ii) the diffiet methods of modelling the soil uncertain
parameters, (iii) the random field discretizatiorthods and finally (iv) the principal

probabilistic methods used in literature for theentainty propagation.

PART I[:
In Part I, the uncertain parameters were considasechndom variables defined by

their probability density functions. Part | consisf three chapters (chapters 2, 3 and 4).

The aim of chapters 2 and 3 is twofold: First, they at comparing the performance of the
Response Surface Method (RSM) and the Collocatamed Stochastic Response Surface
Method (CSRSM) in the framework of the probabitistinalysis of shallow foundations.
Second, contrary to the existing literature whidnsiders only the vertically loaded
footings involving only one failure mode; in theslgapters, the case of obliquely loaded
footings that involve two failure modes was conggde In chapter 2, the RSM was used to
perform the probabilistic analysis. Only the unagties of the soil parameters were taken
into account in this chapter. However; in chaptertt® probabilistic analysis was
performed using the CSRSM. Due to the efficiencytho$ method to deal with greater
number of random variables with respect to the R3$IW uncertainties of the soil
parameters and those of the load components wkea iato account simultaneously in
this chapter. Chapters 2 and 3 have confirmed upergority of the CSRSM with respect
to the RSM regarding the number of calls of theedwrinistic model and the number of the

probabilistic outputs.
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The objective of Chapter 4 is to develop a new @doace which combines the subset
simulation (SS) approach and the CSRSM used intehd in order to increase the
number of outputs of the SS approach with no amtuhdi time cost. This procedure was
illustrated through the probabilistic analysis &tSJof a strip footing subjected to a central

vertical load.

PART II:
In Part Il, the soil spatial variability was takémo account by modeling the soil
uncertain parameters by random fields characteribgd their PDFs and their

autocorrelation functions. Part 1l consists of wapters (chapters 5 and 6).

Contrary to the existing geotechnical literature which the probabilistic analysis of
random field problems is performed using MCS methaogly, chapter 5 makes use of the
SS approach. Contrary to MCS methodology, the S8oaph requires a significantly
reduced number of calls of the deterministic mottel calculate the small failure
probabilities. The efficiency of the SS approacls Wastrated through the computation of
the probability of exceeding a tolerable verticapthcement of a strip footing resting on a

soil with a 2D spatially varying Young’'s modulus.

The objective of chapter 6 is to increase the ieificy of the SS approach by reducing the
number of calls of the deterministic model requibsdthis method. For this purpose, the
first step of the SS approach was replaced by dittonal simulation. The efficiency of
the ISS approach was illustrated through the coatjaut of the probability of exceeding a
tolerable differential settlement between two nbiimg strip footings resting on a soll

with a 2D spatially varying Young’s modulus.

The thesis ends by a general conclusion of thejpahresults obtained from the analyses.

-10-



CHAPTER 1

CHAPTER 1
LITERATURE REVIEW

1. Introduction

The deterministic approaches have long been usedtieinanalysis and design of
geotechnical structures. These approaches coritidesoil parameters as constant inputs
having conservative values. In these approachesuticertainties of the soil parameters
are taken into account by an approximate mannegusie concept of the global safety
factor. This factor is based on engineering judgmiaring the recent years, much effort
has been paid for more rational analyses based robalpilistic approaches. Both
simplified and more advanced probabilistic appreacban be found in literature. In the
simplified probabilistic approaches, the uncertperameters are modeled as random
variables defined by their probability density ftions (PDFs) or only by their statistical
moments (i.e. mean value and standard deviation)thése approaches, the solil is
considered (during each simulation) as a homogenewierial having the same value of
the uncertain parameter in the entire soil domidimwever; in nature, the soil parameters
(shear strength parameters, elastic propertieg, &ty spatially in both the horizontal and
the vertical directions as a result of depositioaatl post-depositional processes. This
leads to the necessity of modeling the soil paramsgduring each simulation) as random
fields characterized not only by their PDFs, bsbdby their autocorrelation functions. In
this regard, more advanced probabilistic approaghee proposed in literature. In these
approaches, one needs to discretize the randomwh ifd a finite number of random
variables. For this purpose, several discretizati@thods were proposed in literature as

will be shown later in this chapter.

This chapter aims at presenting the different sssi@f uncertainties related to the

-11-
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geotechnical parameters. It also presents botlsithplified and advanced approaches for
modelling the soil uncertainties. Then, the différmethods of random field discretization
are briefly described. Finally, the probabilistietimods used in this thesis to perform the

probabilistic analyses are presented and discu$sedchapter ends with a conclusion.

2. Different sources of uncertainties

The geotechnical variability arises from severairees of uncertainties. According
to Kulhawy (1992), the uncertainty in the desigil pooperties results from three main
sources. These sources are:
» Inherent variability of the soil parameters
= Measurement errors
» Transformation uncertainty
The inherent soil variability results primarily frothe natural geologic processes that
occurred in the past and continue to modify thémaiss in-situ. The measurement error is
caused by equipment, random testing effects andahuenrors. Collectively, these two
sources (i.e. inherent variability and the measergnerror) can be described as data
scatter. In-situ measurements are also influengedtdtistical uncertainty or sampling
error that results from limited amount of infornmatti This uncertainty can be minimized
by considering more samples, but it is commonlyuded within the measurement error.
Finally, the transformation uncertainty is introddcwhen the field or the laboratory
measurements are transformed into the design sogepties using empirical or other
correlation models. The relative contribution ofesk three sources to the overall
uncertainty in the design soil property clearly eleghs on the site conditions. Therefore, the
soil property statistics can only be applied to pecHfic set of circumstances (site
conditions, measurement techniques, correlation etspdfor which the design soil

properties were derived.

-12-
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3. Modelling of uncertain soil parameters

The uncertainties of the soil parameters descnbedbte previous section have to be
taken into account in any geotechnical probabdlistialysis. Some probabilistic analyses
have modelled the uncertain soil parameters ussighplified approach. In this approach,
the uncertain soil parameters are modelled as mandwiables characterized by their PDFs
or their statistical moments (i.e. mean value aaddard deviation). This implies that all
the realisations of a given uncertain parametevigeoa homogeneous soil with a random
value of this parameter that varies from one ratiba to another. Notice however that the
soil properties vary from point to point as a résfilcomplex geological processes (such as
sedimentation, weathering and erosion, climate) ®itcich influence their formation. This
leads to the necessity of using a more advanceagp for modelling the uncertain soil
parameters. In this approach, the uncertain sodlmaters are modelled as random fields to
take into account their spatial variability. Themplified and the more advanced
approaches for modelling the uncertain soil pararseare respectively presented in the

two following subsections.

3.1. Simplified approach for modelling of uncertainsoil parameters

In the framework of the simplified approach of mitidg the uncertain soil
parameters, the variability of a given uncertairapgeter is measured by the coefficicent
of variationCOV of this parameter. The coefficient of variationaofjiven uncertain soil
parameter is defined as the ratio between its atdndeviation and its mean value. Several
statistical studies based on in-situ and laboratesys have been reported in the literature
to define the variability of the different soil paneters. Phoon and Kulhawy (1996)
presented a number of studies based on severdlitests [Standard Penetration Test

(SPT), Cone Penetration Test (CPT), Field Vane ({i€¥fl), Dilatometer Test (DMT),

-13-
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Pressuremeter Test (PMT)] and other laboratorystdstwas shown that the variability
calculated from laboratory tests is smaller that tomputed from the in-situ tests. This is
due to (i) the good control of measurements takethe laboratory and (ii) the quality of

the equipments in laboratory compared to that it tests.

This section aims at presenting the valuesGCaV of the soil shear strength
parameters and the soil elastic properties propwskitrature. Also, it aims at presenting
the commonly used values of the correlation coefficbetween these parameters.
Concerning the type of the PDF of the differentartein parameters; unfortunatly, there
is no sufficicnt data to give a comperhensive anmchete description of the type of the
PDF to be used in the numerical simulations. Thistieg literature [e.g. Griffiths and
Fenton (2001), Griffithet al. (2002), Fenton and Griffiths (2002, 2003, 200®ntenet
al. (2003)] tends to recommend the use of a lognofPdF for the Young’'s modulus,
Poisson’s ratioo and cohesior. This recommendation is motivated by the fact that
values of these parameters are strictly positiac@rninig the internal friction angie it
is recommended to adopt a beta distribtion for gasameter to limit its variation in the

range of practical values.

3.1.1. Cohesion
For the undrained cohesian of a clay, Cherrubinet al (1993) found that the
coefficient of variation of this property decreaseth the increase of its mean value. They

recommended a range of 12% to 45% for moderattfteail.

Phoonet al. (1995), stated that the variability of the dessgi properties depends on the

quality of the measurements. Low variability of thesign soil properties corresponds to

-14-
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good quality tests and direct laboratory or fieddts. In this case, teéOV of ¢, ranges
between 10% and 30%. Medium variability correspadsdirect tests. In this casgV

of ¢, lies in a range from 30% to 50%. However, highatality corresponds to emprical
correlations between the measured property anditicertain design parameter. In this
case, theCOV of ¢, ranges between 50% and 70%. Other valueS@Y¢, proposed by
other authors in literature are summerized in Téble).

Table 1.1: Coefficient of variation of the soil cohesion
Author COVg (%)

30 - 50 (test UC)
Lumb (1972) 60 - 85 (highly variable clay)

Morse (1972) 30 - 50 (test UC)
Fredlund and Dahlman (1972) 30 - 50 (test UC)

20 - 50 (cla
Leeet al (1983) o5 . 30 ((sanycz)

Ejezie and Harrop-Williams (1984) 28 — 96

- 12 - 145
Cherubiniet al (1993) 12 - 45 (medium to stiff clay)

5-20 (clay — triaxial test)
10 - 30 (clay loam)

43 — 46 (sandy loam)

Lacasse and Nadim (1996)

Zimboneet al (1996) 58 — 77 (silty loam)
10 — 28 (clay)
Duncan (2000) 13 -40

3.1.2. Angle of internal friction ¢

For the internal friction angle, smaller values of the coefficint of variation as
compared to those of the soil cohesion have beepoped in literature. Based on the
results presented by Phoenal. (1995), the coefficient of variation of the inedtrriction
angle ranges between 5% and 20% depending on #iieycpf the meaurements. For good
quality tests and direct laboratory or field meaoeats, theCOV of ¢ ranges between 5%

and 10%. For indirect meauremer®)V, lies in a range from 10% to 15%. Finally, by
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using emprical correlations, th@OV, was found to vary between 15% and 20%. Table

(1.2) presents the values©@0OV, proposed by several authors.

3.1.3. Young's modulu€ and Poisson's ratiov

It has been shown in the literature that soils vathall values of their Young’s
modulus exhibit significant variability (Bauer afaila 2000). Table (1.3) presents some
values of the coefficient of variation of the YotsignodulusE used in literature.
Concerning the Poisson's ratipthere is no sufficient information about its dezént of
variation. Some authors suggest that the varighbdft this parameter can be neglected
while others proposed a very limited range of \aliy.

Table 1.2:Values of the coefficient of variation of the sioilernal friction angle

Author CQOV, (%) Type of sall
Lumb (1966) 9 Different soll types
Baecheet al (1983) 5-20 Tailings
7 Gravel
Harr (1987) 12 Sand
Wolff (1996) 16 Silt
Lacasse and Nadim (1996) 2-5 Sand
5-11 Sand
Phoon and Kulhawy (1999) 4_12 Clay, Silt

Table 1.3:Values of the coefficient of variation of the Y@is modulus

Author COM: (%)
Baecher and Christian (2003) 2-42
Nouret al (2002) 40 - 50
Bauer and Pula (2000) 15
Phoon and Kulhawy (1999) 30

-16-
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3.1.4. Coefficient of correlationp

The coefficient of correlation between two soil graeters represents the degree of
dependence between these parameters. For the Sheagth parameters and ¢, Lumb
(1970) noted that the correlation coefficiggf ranges from -0.7 to -0.37. Yucemenal
(1973) proposed values in a range between -0.49-@@d, while Wolff (1985) reported

thatp,=-0.47. Finally, Cherubini (2000) proposed thaj=-0.61.

Concerning the correlation coefficient betweendbi elastic propertieE andv, this
coefficient has received a little attention indgire. Bauer and Pula (2000) reported that

there is a negative correlation between these peem

3.2. Advanced approach for modelling of uncertainal parameters

In the advanced approach for modelling the unaersail parameters, the spatial
variability of a given uncertain soil parametertaéken into account by modelling the
uncertain parameter by a random field. In ordemadgurately quantify the soil spatial
variability, a large number of in-situ observatioiss required. Generally, this is not
available due to the high cost of in-situ testssAswn in Figure (1.1), the spatial variation
of a soil property can be conveniently decomposéal & smoothly varying trend function
(simply estimated by fitting data using regressasralysis) combined with a fluctuating
component (residuals) around the trend as follasfisJaksa (1995), Phoon and Kulhawy
(1999) and Baecher and Christian (2003)]:
X(z) = ((z) + WM(2) (1.1)
in which X(z)is the actual soil property at the deptty(z) is the value of the trend atand

w(z)is the residual which represents the deviatiomftbe trend at the depth
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. Ground surface
l Layer |
z

——

Figure 1.1:Inherent soil variability (After Phoon and Kulhaw999)

It should be mentioned here that the residualsxarendependent. Positive residuals
tend to clump together and negative residuals tendlump together. The distance for
which the residuals changes from positive to nggatr from negative to positive is
referred to as the scale of fluctuation (cf. thstahceS, in Figure 1.1). The dependence
between residuals is measured by an autocorrelati@utocovariance function. The next
subsections present a brief explanation on thecatreation function, autocovariance

function, scale of fluctuation and autocorrelatiength.

3.2.1. Autocorrelation function and autocovariancéunction
The correlation is the property that allows oneheck if two random variables are
linearly associated. The correlation between twiertint random variableg, andx; is

measured by a correlation coefficiendefined as follows:

o= Com(x, %)  _
JVar(x, Vvar(x,) 0,0,

E[(x, = 4, )% = 4, )] (1.2)

in which x; andx, might be the values of two different propertiesha values of the same

property at two different locationSp\ x, ,X, ) is the covariance of the two variablgsand
X2, Var(x ), o(x ) and u(x ) are respectively the variance, the standard dewaind

the mean value of the variabke (i=1,2). In the case wherg, andx, are two different
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properties, a correlation coefficienp=+1 means that these two properties vary
proportionally. The positive sign means that bo#hiables increase or decrease together;
however, the negative sign means that when oneablariincreases, the other one

decreases. A correlation coefficigit0 means that the two properties are uncorrelated.

When the correlation in Equation (1.2) is a functad the separation distande one
may calculate the values of the correlations of slaene property (between different

locations) using the autocorrelation function defiras follows:

p,(8) :@[iv(—z)] E[W(Z,)W(Z,.,)] (13)
Another alternative to the autocorrelation functisrthe autocovariance function defined
as follows:

C.(8) = Ew(z)W(z,,)] (1.4)

In both Equations 1.3 and 1v4(z) andw(z.1) are the residuals at two locations separated
by a distance! andVar[w(z)] is the variance of the residuals across the Bitelefinition,
the autocorrelation at zero separation distancg(i$=1.0; and it decreases with the

increase im.

The autocorrelation or the autocovariance functbra given soil property can be
estimated from a sample of data of this propertgsneed at different locations. Consider a

sample ofn observationsx, ..., X, ..., %) measured at equally spaced locatiais.(, z,

..., &) separated by a distanég . The sample autocorrelatiqa;(Aj) and autocovariance

C. (A ;) for a separation distancg are respectively given as follows [Jaksa (199%) an

Baecher and Christian (2003)]:

. _ 1 n-1 _ _
P8 = (o7 2HM2) ~t@HXE.) ~t(E.)] (1.5)
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C(0)) =13 [(2) -t Hx(z) -tz (16)

where oy is the sample standard deviation across the $he. sample autocorrelation

function p,(A)and the sample autocovariance functi@n(A) are respectively obtained
by (i) calculatingp;(Aj)and C, (A;) for different values off, (ii) plotting them against

4; and finally, (iii) fitting the plot to a smooth fation. The most commonly used
autocorrelation functions were reported by Baeched Christian (2003). They are
presented in Table (1.4). In this talleepresents the so-called autocorrelation lengtls. |
explained in some details in the following section.

Table 1.4:One-dimensional autocorrelation functions (AfteeBlaer and Christian 2003).

Model Equation
Whit , () = lif A=0
e NoIse PO = Ootherwis
A
. 1- U if A<
Linear p(D) = I
Ootherwise
Exponential p(D) = exr{_l—Aj
. -A
Squared exponential p(4Q) = expz(l—j
-B
A"
Power p(A) =1+ 3

The accuracy of the autocovariance and autoctioeldunctions depends on the
numbern of observations. Referring to Jaksa (1995), themmim number of observations
has received a little effort in literature. Box adenkins (1970), Anderson (1976), and
Davis (1986) recommended at least 50 observatlamab (1975) suggested that, for a full
three-dimensional analysis, the minimum number lifenvations is of order £00n the
other hand, this author recommended that the bastcan be achieved in practice is to

study the one-dimensional variability, either veatly or horizontally, using a number of
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observations that ranges from 20 to 100 observation

3.2.2. Scale of fluctuation and autocorrelation legth

The scale of fluctuation or the autocorrelationglbnare key parameters to describe
the spatial variability of a given soil propertyhd scale of fluctuation is defined as the
distance within which the soil property shows righlly strong correlation from point to
point (Jaksa 1995). Furthermore, when the soil @rypis plotted as a function of the
distance, the scale of fluctuation is related ® distance between the intersections of the
trend and the fluctuating soil property (i.e. thstahceS, in Figure 1.1). The scale of
fluctuation is approximately equal to 0.8 times theerage distance between the
intersections of the trend and the fluctuating podperty (Vanmarcke 1977). Small values
of the scale of fluctuation imply rapid fluctuati@bout the trend. However, high values

imply a slowly varying soil property.

It should be mentioned here that the soil properténd to be more variable in the
vertical direction than in the horizontal directionhis implies that the vertical scale of
fluctuation S, of a given soil property tends to be shorter thia@ horizontal scale of
fluctuation §, of this property. Jaksa (1995) summarized theicsrand horizontal scales
of fluctuation of the undrained shear strength hield in literature. Based on this
summary,S, lies in a range of 0.13m-8.6m. Howevé&; lies in a range of 46m-53m.
Phoon and Kulhawy (1999) reported ti&tis more than one order of magnitude larger
thanS,. According to these authorS, of the soil undrained shear strength ranges from 1m

to 2m; howeverg, ranges from 40m to 60m.

Another statistical parameter which is relatedh® $cale of fluctuation can be used
to describe the spatial variability of the soil pedties. This is the autocorrelation length

mentioned in the previous section. It is defined the distance required for the
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autocorrelation function to decay from 1 t© ©.3679). According to El-Ramly (2003), the
vertical autocorrelation length ranges from 1 to @tmle the horizontal autocorrelation
length is larger and it lies in a range from 104@m. A literature review of typical
autocorrelation lengths of different soil types doddifferent soil properties was given by
El-Ramly (2003) and is presented in Table (1.5)aHy, it should be emphasized here that
the autocorrelation function, the autocovarianaecfion, the scale of fluctuation and the
autocorrelation length are generally site specdit] often challenging due to insufficient
site data and high cost of site investigations.

Table 1.5:values of the autocorrelation distances of somlepsoperties as given by
several authors (EI-Ramly 2003)

. , Autocorrelation length (m)
Test type Solil property Solil type vertical horizontal
VST cu(VST) Organic soft clay 1.2 -
VST cu(VST) Organic soft clay 3.1 -
VST cu(VST) Sensitive clay 3.0 30.0
VST cu(VST) Very soft clay 1.1 22.1
VST cu(VST) Sensitive clay 2.0 -
Qu cu(Qu) Chicago clay 0.4 -
Qu cu(Qu) Soft clay 2.0 40.0
uu cu(UU)N Offshore soill 3.6 -
DSS cu(DSS) Offshore soil 1.4 -
CPT Oc North see clay - 30.0
CPT Oc Clean sand 1.6 -
CPT Oc North see soll - 13.9
CPT Oc North see soll - 37.5
CPT Oc Silty clay 1.0 -
CPT Oc Sensitive clay 2.0 -
CPT Je Laminated clay - 9.6
CPT Oc Dense sand - 37.5

VST, vane shear test;,Qunconfined compressive strength test; UU, unoeafiundrained triaxial
test; DSS, direct shear test; CPT, cone penetrtaginDMT, dilatometer test;

c(VST), undrained shear strength from VSJ(Q@), undrained shear strength fromy; @,(UU)y,
normalized undrained shear strength from UJD&S),, normalized undrained shear strength from
DSS;q., CPT trip resistance;

4. Methods of discretization of random fields
In order to introduce the soil spatial variabilily the analysis of geotechnical
structures, the random field should be discretingal a finite number of random variables.

In order to achieve this purpose, several methddsalwdom field discretization were
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proposed in literature. The most commonly used odstof random field discretization in

geotechnical engineering can be divided into twinngeoups as follows:

» Average discretization methods
In these methods, the random variable related tgivan element of the finite
element/finite difference deterministic mesh iscaddted as the average of the random
field over that element [see for instance the Lo®datrage Subdivision LAS method
commonly used in geotechnical engineering as indfeand Griffiths (2002, 2005)
and Fentoret al. (2003) among others].

= Series expansion discretization methods
In the series expansion discretization methodsrahdom field is approximated by an
expansion that involves deterministic and stocha#tinctions. The deterministic
functions depend on the coordinates of the poimthath the value of the random field
is to be calculated. One of the commonly used seeigpansion methods is the
Karhunen-Loeve (K-L) expansion method presentedSpgnos and Ghanem (1989).
This method was used in chapters 5 and 6 of theeptehesis to discretize the random

field and it is briefly described in the next sudtsan.

4.1. Karhunen-Loéve (K-L) expansion

Let us consider a Guassian random fi&@@X, §) where X denotes the spatial
coordinates and indicates the random nature of the random fielgg lis the mean of the
random field, then the random field can be caledaby the K-L expansion as follows

(Spanos and Ghanem 1989):
E(X, 6)= fe + YA Q)& (©) 1.7)

where/; and ¢ are the eigenvalues and eigenfunctions of the auésance function, and

&(0) is a vector of standard uncorrelated random vkesalit should be noticed here that
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&(09) are the stochastic variables that represent thdora nature of the uncertain soll
parameter. However, the eigenvalues and eigentmti and g are the deterministic

functions of the K-L expansion. They can be evadats the solution of the following

integral equation:

Jo CO4 %)@ (% X = Ag(x,) (1.8)

This integral can be solved analytically only femftypes of the autocorrelation functions.
In the present thesis, an exponential autocovagifumction (cf. Table 1.4) was used. For
this autocovariance function, detailed closed feotution of the integral in Equation (1.8)
can be found in Ghanem and Spanos (1991) andssqed in Appendix A of the present

thesis.

It is to be mentioned here that for practical psgx) the expansion in Equation (1.7)

is generally truncated to a given numbeof terms as follows:
M

E(X.8) = e + DA @(X)6(8) (L.9)
i=1

The choice of the numbevl of termsdepends on the desired accuracy of the problem
being treated. The error estimate(X) after truncating the expansion kb terms can be

calculated as follows (Sudret and Der KiuregHt800):
M

ar(X)=oz =Y A$3(X) (1.10)
i=1

where o is the standard deviation of the random field.alin notice that in most
geotechnical problems, the random fields are asdumdollow a log-normal PDF. This
assumption is motivated by the fact that a soibpeater cannot be negative in reality. In

such a casdn(E) is a normal random field with mean val;uﬁE and standard deviation

o, given as follows:
E
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g, =4In(1+COV) (1.11)
M, = In(4e) — 050, (1.12)

For a lognormal random field, Equation (1.9) becsijtho (2010), Cho and Park (2010)]:

E(X,0)= exy{umE + i\/ﬁig( X )5(9)} (1.13)

5. Probabilistic methods
The aim of the probabilistic methods is to propaghe uncertainties from the input

parameters (e.@, ¢, E, v, etc.) to the system response (e.g. ultimate Idehlacement,
etc.) through a computational model. Each one ef e¢itisting probabilistic methods
provides one or more of the following probabilistigtputs: (i) reliability index, (ii) failure
probability, (iii) statistical moments (mean valu@nd standard deviatiar) of the system
response and (iv) the PDF of the system respongeaNlithe statistical moments (mean
value, standard deviation, skewness and kurtoBg.principal probabilistic methods used
in literature can be divided into three main gro@gsording to the main probabilistic
output obtained by each method as follows:

» Probabilistic methods for the computation of thielelity index

* Probabilistic methods for the computation of th&ufa probability

* Probabilistic methods for the computation of thatistical moments (mean value,

standard deviation, etc.) of the system response

These methods are explained in the following suimsex after a brief description of some

basic reliability concepts.

5.1. Performance function and limit state surface
The performance functio® is a function by which one can distinguish if aeg set

of values of the random variables leads to systaituré or to system safety. The
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performance function can be expressed, for a gpmblem, in different ways. For
example, for vertically loaded footings, there aw@ different forms of the performance
function with respect to soil punching: G=(P./Ps)-1 or (ii) G=P,-Ps whereP, andPs are
respectively the ultimate vertical load and thetifugp applied vertical load. In this
example, if the random variables are the soil segangth parameters &nd ¢) and the
applied loadPs is assumed to be detrministic; then, all pagsd) that makeG<O0 (i.e.
P.<Ps) lead to failure. However, all pairs, (¢) that makeG>0 (i.e. P,>Ps) lead to system

safety (cf. Figure 1.2).

The limit state surface of a given mechanical sysie defined as the surface that
joins the set of values of the random valriablesrfd ¢ in the present case) for which
failure just occurs (i.e. for whic®=0). As shown in Figure (1.2), the limit state sugac
divides the space of random variables into two gofifea safe zone (characterized by
G>0) for which combination of random variables, ) do not lead to failure and (ii)
failure zone (characterized l§y<0) for which combinations of random variables ¢)

lead to failure.

Limit state surface
G=0

Safe zone
G>0

Failure zone
G<0

¢
Figure 1.2: Limit state surface in the space of random varmble
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5.2. Probabilistic methods for the computation ofhe reliability index

The reliability index of a geotechnical structureypdes a measure of the safety that
takes into account the inherent uncertainties ef different input parameterga their
probability density functions (PDFs). Two reliabjliindices are proposed in literature.
These are the Cornell reliability indg (Cornell 1969) and the Hasofer-Lind reliability

indexfy. (Hasofer and Lind 1974). These indices are brigfgsented below.

5.2.1. Cornell reliability index g

This index is defined as the ratio between the meane of the performance

function G and its standard deviation (i.8. = 4, / g;) where the performance function G

Is assumed to follow a Guassian distribution witamu and standard deviatier. From
this equation, it is obvious that the Cornell relidy index represents the number of
standard deviations that separates the mean valtlee erformance function from the
limit state surfaces=0. The main shortcoming of the Cornell reliabilibdex is that its
value depends on the form of the performance fancin case of non-linear limit state
surface or in case of non-guassian random varialddeough not rigorousf. was
frequently adopted in the past for calculating riéléability of geotechnical structures [e.g.
Chowdhury and Xu (1993, 1995), Christienal (1994), Hassan and Wolff (1999), Liang

et al. (1999), Malkawiet al. (2000), Bhattacharyat al. (2003)].

5.2.2. Hasofer-Lind reliability index fiy.

To overcome the inconvenience of the Cornell rdligbindex, another reliability
index denotegby. was proposed by Hasofer and Lind (1974). This)ndedefined as the
minimal distance that separates the limit statéasarexpressed in the space of standard
normal uncorrelated random variables and the orithis space (Figure 1.3). In case

where the limit state surface is known analyticafly can be easily calculated using one
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of the two approaches described in the two follgnsabsections. Otherwise, the response

surface method (RSM) presented hereafter is ugetiisocomputation.

&
Limit state surface
G=0

Failure zone
G<0

BHL

Safe zone
G>0

&n
Figure 1.3: Hasofer-Lind reliability index in the standard spax random variables

5.2.2.1. Classical approach for the computation g,

In this approachfy. is calculated by minimization of the following ptetm under

the constrainG=0:

B = r(?:lg{ Zn:ézj (1.14)

where & (i=1, 2, ..., n) are then standard normal uncorrelated random variables

corresponding to tha physical uncertain parameters. The computatiofiyotonsists of

two steps:

* In the first step, the physical (original) randomrigbles should be transformed to the
standard normal random variables. In this stemrmabilistic transformation is used
to transform the physical random variables to stashchormal random variables as

follows:

&=07F (x)] (1.15)
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in which, x; is a physical random variabl F& is the cumulative density function (CDF)

of the physical random variabie and @ *(JJ is the inverse of the CDF of the standard
normal random variable. Notice that, if the oridginandom variables are correlated,
they should be transformed into uncorrelated randanables.

* In the second step, it is required to search ferrthinimal distance between the limit

state surface and the origin of the standard spkgecorrelated random variables.

5.2.2.2. Ellipsoid approach for the computaion oy
For normal random variables, the Hasofer-Lind lely index gy defined in matrix

formulation is given by:

B = miny(x= 1) C*(x - p) (1.16)

G-
in which x is the vector representing theandom variableg; is the vector of their mean
values andC is their covariance matrix. Equation (1.16) reprgs the equation of an
ellipsoid of n dimensions. Based on this equation, Low and Td®®4) proposed an
approach to calculatgy. in the original space (not in the transformed dsad
uncorrelated space) of random variables. In thigr@geh,py. is calculated as the ratio
between the ellipse (cf. Figure 1.4 in case of tarmdom variableg; andx,) that is tangent

to the limit state surface and the unit disperstiipse corresponding t6,.=1. To find
this ratio, the unit dispersion ellipse with cerdéthe mean values of the random variables
is gradually expanded or contracted, keeping ataahsspect ratio, until touching the
limit state surface5=0. The ratio between the ellipse that is tangenth® limit state

surface and the unit dispersion ellipse is equght@s shown in Figure (1.4). The point of
tangency 6(1 ,x;) represents the most probable failure point anid italled the design

point. For the particular problem of the ultimataling capacity presented in section 5.1,

the design pointd, ¢') provides the most critical values ©fndg (from a probabilistic
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point of view) that make the ultimate footing lo&J equal to the prescribed footing
applied loadP.. This point corresponds to the closest point ofliimé state surface to the
origin of the standard space of random variablestidd thatc and ¢ are distributed
according to a joint PDF and the design point adicular point from this distribution
that provides the minimal reliability of the tredtgroblem. Notice finally that the
knowledge ofc” andy” allows one to determine the partial safety facamsesponding to
these parameters as followB;=ux/c and F(p:tan(,u(p)/tan(go*). These factors are not
constant and vary from one case to another depgrahinthe variability of the random
variables and the correlation between these vasabrhis is one of the important
advantages of the reliability-based approach wéspect to the deterministic approach
which is not able to consider the real safety iehetoc and ¢. Notice finally that the
ellipsoid approach can be easily implemented inEeel worksheet (see for example

Youssef Abdel Massibkt al. 2008).

X2 A

. . 1
Lirmit state surface ' Py,

G=0 / D
Doy !
\ —

________________

Safe zone
G=0

Failure zone
G=<0

.
L

X; M, X1

Figure 1.4: Critical and unit dispersion ellipses in the orglispace of random variables
5.2.2.3. Response Surface Method (RSM)
In case of complex implicit mechanical models, tResponse Surface Method
(RSM) comes out as a good choice to calcufafe In this method, the response is

substituted by approximate function in the neighlood of the design point (Neves al.
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2008). Several algorithms were proposed in liteeato aproximate the response surface
using successive iterations [kKim and Na (1997), Bad Zheng (2000), Tandjiriet al.
(2000) and Dupratt al. (2004)]. In this thesis, the algorithm by Tandjiet al. (2000) is
used. This algorithm is presented in some detaithapter 2 of this thesis. The basic idea
of the RSM is to approximate the system respdig[and consequently the performance
function] by an explicit function of the random iables, and to improve the
approximationvia iterations. The RSM was used by several authars ]deveset al.
(2006), Youssef Abdel Massih and Soubra (2008)Mallion et al (2009)] and was found
an efficient tool to calculate the reliability indegsy . It is to be mentioned here that
different types of polynomials of different ordevgh or without cross-terms are proposed
in literature to approximate the system responseher performance function by an

analytical function of the random variables.

Finally, it should be noticed that the algorithgnTandjiriaet al. (2000) was used in
Youssef Abdel Massih (2007) to perform a reliapiibsed analysis of a strip footing
subjected to a vertical load. In the present thdkis algorithm was also employed in
chapter 2 to perform an extensive reliability-baaedlysis of a circular footing subjected

to an inclined load.

5.3. Probabilistic methods for the computation oflte failure probability

The failure probabilityP; of a mechanical system is the integral of the tjoin
probability density function of the random variable the failure domain. Consider a
mechanical system havimyandom variableg«, ...%, ...%). The failure probability of this

system is calculated as follows:

P = | f(x)x (1.17)

G=<0

wheref(x) is the joint probability density function of thandom variables an@ is the
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performance function. The integral in Equation {).Gepresents the volume located in the
failure domain G<0) and limited by the joint probability density fuman and the limit
state surfac&5=0 (see Figure 1.5). In all but academic cases, nkegial in Equation
(1.17) cannot be computed analytically. For thigzsom, several numerical methods were
proposed in literature to calculd®e A brief description of the probabilistic methoaksed

in this thesis to calculat® is presented in the following subsections.

Ssrlsr)

= G > 0 : Safe
domain

G < 0 : Failure

S domain D

Figure 1.5: Joint probability density function and limit staerface in case of two random
variables R and S (After Melchers 1999)

5.3.1. First Order Reliability Method (FORM)
The Hasofer-Lind reliability index presented preasty in this chapter can be used to
calculate an approximate value of the failure pbaiig using the First Order Reliability

Method (FORM) as follows:

P = @(-Bu) (1.18)
where <Z>([)] is the cumulative density function (CDF) of a startinormal variable ang..

is the Hasofer-Lind reliability index. In this meith, the limit state surface is approximated
by a hyperplane (first order approximation) tangenthe limit state surface at the most

probable failure point called "design point". Thieethod was used in chapter 2 of this

thesis to calculate the failure probability. Theimshortcoming of this method is that, in
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case of highly non-linear limit state surfacegritvides a non-rigorous value of the failure

probability.

5.3.2. Monte Carlo Simulation (MCS) methodology

Monte Carlo simulation (MCS) methodology is a umez method to evaluate
complex integrals. Due to its high accuracy, MC®idely used for the computation of the
failure probability whatever is the degree of noredrity of the limit state surface. It was
used in this thesis as a tool to check the accuwaigss time-consuming methods that are

developed for rigorous computation of small failprebabilities.

Let I(x) be the indicator function of the failure domair(ithe function that takes the value
of 0 in the safe domain where G>0 and 1 otherwiséus, Equation (1.17) can be

rewritten as follows:
Po= T 1O f(x)dx = B[ 1(x)] (1.19)

in which Q is the entire domain of random variables &ifi{x)] is the expectation of the
indicatorl(x). This expectation can be practically evaluateddayegating a large numbisr
of realizations of the random vecta=(Xi, ..., % ..., %). For each realization, the
performance functionG; is evaluated. Then, an unbiased estimation of fHikire

probability is calculated as follows:

~ 1N
R:NZHW) (1.20)
i=1
where
I 1 if Gj <0
(A X) = .
J( ) 0 if GJ.>O 1e1)

The accuracy of the estimated failure probabilign doe measured by calculating its

coefficient of variation as follows:
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COV(P,) = = (1.22)

The smaller values of the coefficient of variatiomlicate more accurate values of the

estimated failure probability.

In spite of being applicable whatever the compiexaf the system is, MCS
methodology is not practically applicable when draalues ofP; are sought. This is due
to the large number of realisations required t@mban accurate value Bf in such a case.
Referring to Equation (1.22), =10 and a coefficient of variation of 10% is desirts
number of realisations required to calcul&e is about 18, For this reason, a more
efficient method called “subset simulation” wasgweed in literature to calculate the small
failure probability using a reduced number of reatiions compared to MCS methodology.

This method is presented in the following subsectio

5.3.3. Subset simulation (SS) approach

The subset simulation (SS) approach was proposeflubgnd Beck (2001) as an
alternative to MCS methodology to compute the srfaallure probabilities. Its aim is to
reduce the number of calls of the deterministic ei@$ compared to MCS methodology.
The basic idea of the SS approach is that the sfadlire probability in the original
probability space can be expressed as a prodlatgdr conditional failure probabilities in
the conditional probability space. This method wasd by several authors [Au and Beck
(2003), Schuélleet al (2004), Auet al. (2007) and Awet al (2010) among others] and
was found to be an efficient tool for the computatof the small failure probability. The
SS approach was mainly used in literature in trsesavhere the uncertain parameters are

modeled by random variables.
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5.4. Probabilistic methods for the computation of he statistical moments of the
system response
Firstly, one presents a simple approximate methatl uses Taylor series expansion
to provide a rough estimate of the first two statéd moments (mean value and variance)
of the system response. This is followed by a nameanced and rigorous method that

provides the PDF of the system response and tmespmnding statistical moments.

5.4.1. First Order Second Moment (FOSM) method
This method uses Taylor series expansion to proamdepproximation of the first

two statistical moments, i.e. mean and variancdd@taand Mahadevan 2000). Consider a
system responsE related to the random variabl( X, ,..X ,..X ) by a general functiof
where/” = f(X,..X,..X ). If the mean and standard deviation of the ransarables

are known but the distributions of these varialdes unknown, an approximate mean

value of the system response and an approximaignear of this system response can be

obtained. By expanding the functi f(X;,..X ,..X ) in a Taylor series about the mean

values of random variabl«( 4, ,.. 4, ey ), one obtains:

N

3 R S L

of
—f(ﬂ,,u,,U)Z(Xi /'1)_+
a)ﬂ i=1j
where the derivatives are evaluated at the mearesaif the random variables. Truncating
the series at the linear terms, the first order@amate mean value df can be obtained

as follows:
U = f(yxl,..y)g,..y)%) (1.24)
The variance of the system response is given bfotlwaving formula:

of of

Var. = i()ﬂ}/ar(x) ZZ——CO\/()g,xj) (1.25)

i=1 i J¢|
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This approximation of the mean and variance ofsystem response can be improved by

including higher order terms in the Taylor serigpansion.

5.4.2. Collocation-based Stochastic Response Suiadethod (CSRSM)

The Collocation-based Stochastic Response Surfaethdd (CSRSM) called also
Polynomial Chaos Expansion Method was proposedtenature and was employed by
several authors [Isukapakit al. (1998), Phoon and Huang (2007), Huaigal. (2009),
Riahiet al. (2011), Liet al.(2011), Mollonet al. (2011), Houmadet al. (2012), Macet al.
(2012), Soubra and Mao (2012) and Ahmed and So@k2a)]. The aim of this method
is to obtain the probability density function ofetlsystem response. In this method, the
complex numerical model is replaced by an anallytitadel (meta-model). This makes it
easy to compute the PDF of the system responsefyiag MCS methodology on the

meta-model.

6. Conclusion

In this chapter, a literature review on the soitemainties was presented. First, the
different sources of uncertainties were presengztond, the different approaches of
modeling the soil uncertain parameters were desdrim this regard two approaches were
presented: (i) the simplified approach in which timeertain parameters are represented by
random variables characterized by their PDFs ahth@ advanced approach in which the
uncertain parameters are represented by randous figharacterized not only by their
PDFs but also by their autocorrelation functions.the framework of the simplified
approach, the ranges of the coefficients of vamabf the soil parameters proposed in
literature were summarized. Also, the types of Bi&Fs of the different soil uncertain
parameters were presented. Finally, the valueBeotoefficients of correlatiom between

soil properties proposed in literature were repbrti@ the framework of the advanced
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approach, the most commonly used autocorrelatiostions proposed in literature were
presented. Also, the ranges of the vertical andzbotal autocorrelation lengths were
summarized. It was found that the horizontal autetation length tends to be one order

of magnitude higher than the vertical one.

This chapter has also presented a brief descriptidhe commonly used methods of
random field discretization in geotechnical engrirege Finally, the different probabilistic
methods used in this thesis to perform the prolstioilanalyses were presented and
discussed. These methods were divided into thre@ gr@ups according to the main
obtained probabilistic output as follows:

1 — Methods for the computation of the reliabilityindex

This group of probabilistic methods provides thialslity index by which the safety of
the system is measured. This group contains thegkads: (i) the classical method, (ii) the
ellipsoid approach and (iii) the Response Surfasthield (RSM). The first two methods
are used when the limit state surface is knownyaically. However, in case where the
limit state surface is analytically unknown, the NR$ used to calculate the reliability
index by iteratively approximating the limit staterface.

2 — Methods for the computation of the failure prolability

This group of probabilistic methods provides thiéufa probability of a given mechanical
system. This group contains three methods: (iFirs Order Reliability Method (FORM),
(i) Monte Carlo Simulation (MCS) methodology andi)(Subset Simulation (SS)
approach. The first method (i.e. FORM) provides auproximation of the failure
probability based on the reliability index. Thistmad is not rigorous in case of non-linear
limit state surfaces. The second method (i.e. ME&S) be used even if the limit state
surface is highly non-linear. It provides a rigassoualue of the failure probability.

However, it is very time-consuming especially inseaof small value of the failure
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probability. To overcome this shortcoming, the dhinethod (i.e. subset simulation) may
be used. This method allows calculating the faijpn@bability using a reduced number of
realizations compared to MCS methodology.

3 — Methods for the computation of the statisticainoments of the system response

This group includes two probabilistic methods:tii¢ First Order Second Moment (FOSM)
method and (ii) the Collocation-based Stochastisp@ase Surface Method (CSRSM). The
First Order Second Moment (FOSM) is used in caseratihe PDFs of the random

variables are unknown. This method provides onlyapproximate estimate of the mean
value and the variance of the system response.C3iRSM provides the PDF of the

system response and the corresponding statisticahents (mean value, variance,

skewness and kurtosis).
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CHAPTER 2

RELIABILITY-BASED ANALYSIS OF OBLIQUELY LOADED
FOOTINGS USING THE RESPONSE SURFACE METHOD (RSM)

1. Introduction

Previous reliability analyses on shallow foundasidrave focused on the case of a
vertically loaded strip footing which involves agle failure mode [Bauer and Pula (2000),
Cherubini (2000), Griffiths and Fenton (2001), @ttifs et al. (2002), Low and Phoon
(2002), Fenton and Griffiths (2002, 2003), Popestuwal. (2005), Przewlocki (2005),
Sivakumar and Srivastava (2007), Youssef Abdel Mass al. (2008), Youssef Abdel
Massih and Soubra (2008), Srivastava and Sivak2@9), Soubra and Youssef Abdel
Massih (2010)]. The reliability analysis of a fowi subjected to an inclined and/or an
eccentric loading has received a little attentioditerature. In this case, different failure
modes may be involved at the ultimate limit std#®.§) such as the footing sliding, the
soil punching and the footing overturning. Simiiarthe ULS, the serviceability limit state
(SLS) may involve different unsatisfactory perfomoa modes such as the exceeding of
tolerable footing horizontal and vertical displaasts and the exceeding of a tolerable
footing rotation. This chapter attempts to fillglgap. It deals with the reliability analysis
of a circular footing subjected to an inclined loddhe motivation for this work comes
principally from the offshore industry. The footsgf the offshore structures should resist
(in addition to the vertical weight of the struayithe horizontal loads and overturning
moments arising from the environmental actions basé¢ structures. The reliability
analysis of footings under these conditions is allehging three-dimensional (3D)
problem. In this thesis, the focus was made orc#ise of an inclined load. The extension
to the general case of complex and/or seismic oanyc load will be the subject of a

future work.
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This chapter aims at providing: (i) a rigorous amijue deterministic safety measure
that takes into account the two failure modes €al punching and footing sliding) at
ULS based on a deterministic approach, (ii) a mgsrand unique reliability indesg,_ that
also takes into account the two failure modes €al punching and footing sliding) at
ULS in the framework of the reliability-based argdy (iii) the most predominant failure
mode at ULS and also the most predominant unsetiisfaperformance mode at SLS for
the different loading configurations, and finally)(a parametric study showing the effect

of the different governing parameters on the failprobability.

It should be mentioned that only the uncertainiésthe soil parameters were
considered in the reliability-based analysis. Thié shear strength parametersand ¢)
were considered as random variables at ULS anddihelastic parameter& @ndv) were
considered as random variables at SLS. Noticethimasystem response used at ULS was
the factor of safety determined using the strength reduction methoaic€ming the SLS,
two system responses were used. These are theavamid horizontal displacements of the
footing center. The deterministic models used toutate the different system responses
are based on 3D numerical simulations using thedragian explicit finite difference code
FLAC®. Thus, the Response Surface Methodology (RSM) wsed to find an
approximation of the unknown limit state surfacBlse Hasofer-Lind reliability indegy.
was used to compute the soil-footing reliabilityhel First Order Reliability Method

(FORM) was used to calculate the failure probapilit

This chapter is organized as follows: The Resp@sadace Method (RSM) is first
presented. This is followed by the computationhef $ystem responses at ULS and SLS of
a circular footing subjected to an inclined loathef, a ULS deterministic analysis and

both ULS and SLS reliability-based analyses of thsting are presented and discussed.

41-



CHAPTER 2

Finally, a parametric study showing the effecthad tlifferent governing parameters on the
failure probability is presented and discussed. Ghapter ends by a conclusion of the

main findings.

2. Response Surface Method (RSM)

For the problem studied in this chapter, the resposurface is not known
analytically. Thus, the Response Surface MethodRiS used to calculate the Hasofer-
Lind reliability index .. The basic idea of the RSM is to approximate thstesn
responsd(x) [and consequently the performance funct@&jrby an explicit function of the
random variables, and to improve the approximati@niterations [kim and Na (1997),
Das and Zheng (2000), Tandjied al. (2000) and Dupragt al. (2004)]. The algorithm by
Tandjiria et al. (2000) was used in this chapter. The expressioth@fsystem response
used herein is a second order polynomial with sggigéerms but without cross-terms. It is

given by:
r(x)=a+2ax+3hx’ (2.1)

wherex; are the random variables,is the number of random variables a(a;i,bl) are
unknown coefficients to be determined. Notice tliaeé random variables are
characterized by their mean and standard deviatialues (@ and o). A brief
explanation of the algorithm by Tandjiret al. (2000) used in this chapter is given as
follows:

1. Using the deterministic model, evaluate the valti¢ghe system respongdgXx) at the

point that represents the mean valuesof the random variables and at the points

(each aty + ko wherek is arbitrarily chosen equal to 1 in this chapter).
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2. The above2n+1 values of/(x) are used to solve the linear system of equations

(Equation 2.1) and find the coeﬁicien&q ,q). Then, the performance functi@ can

be constructed to give a tentative response suffauion.

3. Calculate the tentative reliability inde®g, and the corresponding tentative design
point >{ using for instance the ellipsoid approach presemetiapter 1.

4. Repeat steps 1 to 3 using each time the tentateegu pointx: and the2n points
(each atx =kg) until the convergence oB, . The convergence is considered to be

achieved when the absolute differemdeetween two successive values@f is less

than a prescribed small value (eeg10" in the present chapter).

Finally, the obtainedf, can be used to provide an approximate value offafiare
probability using the First Order Reliability MetthdFORM) as follows:P; = CD(— ,BHL)

where ®([) is the CDF of a standard normal variable.

It should be emphasized here that in case of @& latgnber of random variables the
computation offy. becomes very time consuming. For each iterationhef RM, the

number of calls of the deterministic model requitecevaluate the coefficien(a ,b|) is

equal to2n+1. The number of iterations required to achieve tonvergence ofiy.

depends on the problem being treated. It rangeweleet 2 and 5 iterations in most
geotechnical problems. Thus, the total number dfscaf the deterministic model
significantly increases with the increase in thembar of random variables. The
computation time becomes non-realistic when dealiitly 3D numerical models (as is the
case in the present chapter) where each call ofddterministic model is very time-
expensive. Finally, it should be emphasized that dbtained limit state surface is well

approximated only around the design point.
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3. Computation of the system responses for the UL&hd SLS analyses

The aim of this section is to present the methodcahputation of the system
responses at ULS and SLS of a circular footing extbfl to an inclined load. FLAE
software was used to calculate the different systesponses. A brief overview on this

software is provided in Appendix B.

For the ULS analysis, two system responses arditmaally used in the literature to
check the stability of shallow footings subjectedinclined loads. These are the two
individual safety factor$,=V./V and Fs=H,/H against soil punching and footing sliding
respectively, wher¥, andH, are respectively the vertical and the horizonlinate loads
andV andH are respectively the applied vertical and horiabtdad components. These
safety factors are not very rigorous because tloegider only a single mode of failure
(punching or sliding). They neglect the interferemetween the two failure modes which
simultaneously exists whatever the values of thairig load componentdH( V) are. A
more rigorous and unique safety fackothat simultaneously takes into account the two
modes of failure is proposed herein for the comrteof a unique rigorous safety level of
the soil-footing system. This factor is definedngsthe strength reduction method. In this

method, the soil shear strength parametgrg)(are replaced bgy andgy wherecy andgyg

are given by:
c
C, = — 2.2
47 (2.2)
P, = tan'l[@j (2.3)

The critical safety factoF is calculated by successively reduciogand tanp by an
increasing tentative value of the factéruntil failure occurs. The tentative value of the
factor F corresponding to failure is the safety factorh# soil-footing system subjected to

the loads i, V). As may be seen later, the present definitiothefsafety factor allows one
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to simultaneously consider the two failure modestihg sliding and soil punching) using

a single simulation.

In order to calculate the safety factusing FLACP, a circular footing of radiuR=1m
that rests on ac( ¢) soil domain of radius equal toR5and depth equal toRSwas
considered in the analysis. Because of symmetry, @ame half of the entire soil domain
was considered (Figure 2.1). A non-uniform mesh posed of 6040 zones was used to
compute the safety factor. This mesh was refinear nlee footing edges where high
stresses and strains are developed. For the déspéat boundary conditions, the bottom
boundary was assumed to be fixed and the vertidmdrical boundary was constrained in
motion in the horizontaX and Y directions. Concerning theZ,( X) vertical plane of

symmetry, it was constrained in motion in the padpeular direction.

Figure 2.1: Soil domain and mesh used to simulate the sotitigsystem
A conventional elastic perfectly plastic model oibbgyMohr-Coulomb failure criterion
was used to represent the soil behavior. Concethimgircular footing, it was modeled by
an elastic perfectly plastic model obeying Mohr-@oub failure criterion although a
linear elastic model should be used. This is bex#us computation of the safety factor in
FLAC®P (through the ‘Solve FOS’ command) cannot be aadewnless all zones of the
domain (i.e. soil and foundation) are modeled byekastic perfectly plastic model based

on Mohr-Coulomb failure criterion. To overcome tlmeonvenience, a very large value
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was affected to the cohesion parameter of the fatiom (see Table 2.1). Concerning the
soil-footing interface, it was assumed to follove t,tame model as the soil with the same
values of the shear strength parameters and tlaiodil angle. This assumption was
adopted in order to simulate a perfectly roughrfatee between the soil and the footing.
The illustrative values of the shear strength patans ¢ and¢), the elastic propertieg(
andv) and the dilation angle of the soil, footing and interface are given irblea(2.1).
The normal and the shear stiffnegs, @ndKs) of the interface are also presented in this
table. Notice thakK, andKs have no significant effect on the value of theesafactor.
Notice also that at ULS, the soil Young's moduluaswaffected an arbitrary value of
390MPa. This value is much larger than the realevalf 60MPa. This large value of the
Young’'s modulus results in a considerable redudiiotihe computation time of the safety
factorF and does not deteriorate the accuracy of theisalut

Table 2.1:Shear strength and elastic properties of soilifigoand interface for the ULS

analysis

Variable Soll Footing Interface

C 20kPa 200GPa 20kPa

) 3¢ 3¢ 3¢
w=23¢ 20° 20 20

E 390MPa 25GPa N/A

v 0.3 0.4 N/A

Kn N/A N/A 1GPa

Ks N/A N/A 1GPa

To check the validity of the assumption of modelthg footing by an elastic perfectly
plastic model with a great cohesion value, theofeihg test was performed: First, the
footing was modeled by a linear elastic model ane @ltimate vertical load/, was
computed. Second, the footing was modeled by astielperfectly plastic model obeying
Mohr-Coulomb failure criterion and the safety fadtowas calculated using the computed
V, value. It was found thdt is equal to one. This means that an elastic pdyfptastic
behavior can be adopted for the footing to caleuthe safety factof of the soil-footing

system.
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Concerning the SLS analysis, two system responges wonsidered. These are the
vertical and the horizontal footing displacemerithe same mesh used for the ULS
analysis is employed here to calculate the footiagical and horizontal displacements.
Similar to the ULS analysis, a conventional elapgcfectly plastic model obeying Mohr-
Coulomb failure criterion was used to representsthiebehavior in the SLS analysis. This
assumption was adopted here in order to take io¢coumt the possible plastification that
may take place near the footing edges even undesdtvice loads. Concerning the footing,
it was assumed to follow a linear elastic modemiir to the ULS analysis, the soil-
footing interface was affected the same prope(ties, v) as the soil in order to simulate a
perfectly rough interface. The illustrative value$ the soil, footing, and interface
properties used for the SLS analysis are giverainld (2.2).

Table 2.2:Shear strength and elastic properties of soilifigoand interface for the SLS

analysis

Variable Soil Footing Interface

C 20kPa N/A 20kPa

o 3¢ N/A 3¢
w=23¢ 20° N/A 20°

E 60MPa 25GPa N/A

\ 0.3 0.4 N/A

Kn N/A N/A 1GPa

Ks N/A N/A 1GPa

In order to calculate the vertical and horizont@pthcements of the footing center,
geostatic stresses are first applied to the sdien] several cycles are run in order to
achieve a steady state of static equilibrium. Th&ioed displacements are set to zero in
order to obtain the footing displacements due g tre footing applied load. The vertical
and horizontal load components are then appligtiédooting center. Finally, damping of
the soil-footing system was performed until reaghinsteady state of static equilibrium.
The obtained vertical and horizontal displacemaritthe footing centre are the footing

displacements.
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4. ULS deterministic analysis of a circular footing

The aim of this section is to use the determinigpproach for the determination of
the most predominant failure mode at ULS (i.e. poihching or footing sliding) for the
different H, V) loading configurations. As will be shown in thaléwing subsection, the
determination of the most predominant failure motte the different loading
configurations allows one to distinguish two zomethe H, V) interaction diagram where

either soil punching or footing sliding is predomuim.

4.1 Failure mode predominance at ULS based on a a@gministic approach

Figure (2.2) shows theH( V) interaction diagram. This diagram was computaedgus
the values of the soil parameters given in Tablg)(Zach point of the interaction diagram
(except point E) is obtained by first searchindemady state of static equilibrium under the
vertical load component. Then, the corresponding horizontal comporténs computed
by searching a steady state of plastic flow usingescribed horizontal velocity of £0
m/timestep. Notice that for the point correspondmghe vertical load case (Point E where
V=5386.61kN andH=0kN), only a displacement control method with atieal velocity of
10°® m/timestep was used to compute the ultimate \&rtaad. The maximal point of the
interaction diagram O’ corresponds ¥=660kN,H=744.24kN), i.e. to a load inclination

a=15.6° with respect to the vertical direction.

900
800 (2660, 744.24)
700 |
600 |
;z‘ 500 - H = 447.66 kN
I 400- ///
3001 A H = 281.00 kN
/ H = 200.00 kN P
200
100 -
E
O T T T T T
0 1000 2000 3000 4000 5000 6000
V (kN)

Figure 2.2: Interaction diagramH, V)
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The distribution of the maximum shear strain in §o& mass corresponding to different
points on the interaction diagram (i.e. points A,@, C, D and E) are shown in Figure
(2.3). This figure shows that for point A wheveis small, the footing sliding is the most
predominant while the punching mode is negligibi¢hen increasingv, the punching
mode increases and the sliding mode gradually dees For point D wheré is very
large, the soil punching is the most predominanilevtihe footing sliding is negligible.

This means that both failure modes co-exist foloatiing configurations.

Point A H=281kN andv=400kN) Point B H=566.70kN and/=1200kN)

l

Point O’ H=744.24kN and/=2660kN) Point C H=618.44kN and/=4000kN)

Point D H=254.38kN and/=5100kN)  Point E H=0kN andV=5386.6kN)

Figure 2.3: Distribution of the maximum shear strain in thd swass for different load
configurations on the interaction diagram.

The values of the safety factor corresponding ltthake points (i.e. points A, B, O’, C and
D) were calculated. Although some points corresptonsbil punching predomination and
others correspond to footing sliding predominatianynique value of the safety factor

(F=1) was found for all these points. Also, the dmttion of the maximum shear strain
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obtained after the computation Bfwas found the same as that obtained in Figure (2.3
when computing the failure loads. This means that dafety factoF can consider the
simultaneous effect of the two failure modes amatalvides a unique safety level whatever

the predominant failure mode is.

In order to distinguish the two zones in the intéicm diagram where either soil punching
or footing sliding is predominant, three constaalues ofH shown in Figure (2.2) were
considered to plot the safety factowversus the vertical load compon&hin Figure (2.4).
For the three curves shown in this figufgpresents a maximum value at points A, and
As. These points correspond to the same ratid/wf(H/\VV=0.28). This ratio is the same as
that corresponding to the load configuration of theaximum point of the interaction
diagram (i.e. point O’) shown in Figure (2.2). Thpsints A, A, Az and O’ belong to a
straight line OO’ joining the origin and the maxinpint of the interaction diagram as
may be seen from Figure (2.5). Each point on the DO’ provides a maximum safety

factor in comparison with the other loading confafions having the santé¢value.

1.80 ‘ ‘ |
| A, (V=714.44KN) ‘
! I
150 +---4 w1 A,(V=1003.80kN) . _ - __
// ,.,“%‘ti/j; . Aq(V=1600kN)
1.20+ ==
|
L 0.90 |
|
h |
0.60 /s !
4 | -+~ H = 200.00 kN
0.30 4 -~ - -+ H=281.00 kN
| ——H =447.66 kN
0.00 ‘ | ‘ | ‘

0 600 1200 1800 2400 3000 3600
V (kN)
Figure 2.4: Safety factoF against vertical load componénfor three values of the
horizontal load componeit

Some contour lines of the safety factoare plotted in Figure (2.5) using the soil shear

strength parameterg=c/F andgs=tan™(tan(p)/F) for some prescribed values f It was
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observed that the maximum points of all these aarlioes are located on the line OO’ for

which, all loading configurations have a ratioHtf/=0.28 [i.e.o=tan™*(H/V) =15.6).

800

o

—=—F=1.0Q
700 -+-F=1.16
600 Sliding Punching ~x-F=134
zone zone -+-F=1.52
- 500 - A
Z Sa
< 400 A A7 N Interaction
T P A, N diagram
300 L i (F=1)
') Rox N
5. 1 a
200+ /,*’) o \
AN . \
100/ >0 \
: ' \
O T T \‘ T T
0 1000 2000 3000 4000 5000 6000
V (kN)

Figure 2.5: Interaction diagram (whefe=1) and other contour lines Bf
Line OO’ can be described as the line that givesaptimal load inclination (i.e. that for
which F is maximal for any prescribed value of the horiabtoad component). This line
may also be seen as the line that divides khe/f space into two zones; a zone in the left
hand side of this line for which footing sliding pgedominant, and another zone in the
right hand side of this line for which the soil ghing is predominant. This is due to the
fact that at high load inclinations (i.e. for smadllues ofV) in Figure (2.4), footing sliding
is predominant and the safety factor increases thighvertical load increase. However, at
small values of load inclination (i.e. for high uak ofV), soil punching is predominant
and in this zone the safety factor decreases wghvertical load increase. To confirm
these observations, the distribution of the maximshmar strain corresponding to three
different values oW is plotted in Figure (2.6) for a prescribed vabieH (H=447.66kN).
As can be easily seen, footing sliding is predomirfar small values oWV while soil
punching is predominant for large values\ofThe case of no predominance of neither
failure mode corresponds ¥=1600kN wherex=15.6". Finally, it should be emphasized
that although the deterministic approach can detexrthe zones of predominance of the

two failure modes at ULS, it is not able to deterenithe zones of predominance of
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unsatisfactory performance modes at SLS. Religkilitsed approach is necessary in such

a case.

V=400kN V=1600kN

V=5800kN

Figure 2.6: Distribution of the maximum shear strain in thd swass for three values of
the vertical load component whelx447.66kN

5. ULS and SLS reliability-based analyses of a ciutar footing

The determination of the zones of predominanceuniching or sliding based on a
deterministic analysis does not take into accoilnet aincertainties related to the soil
parameters. In this section, these uncertaintiese viaken into account by using a
reliability-based approach. Furthermore, contraryhe deterministic approach which can
handle only the ULS analysis, both the ULS and $h& analyses are considered in the
framework of the reliability-based approach. Thé sbear strength parametersand )
were considered as random variables at ULS; howéwversoil elastic propertie& @ndv)
were considered as random variables at SLS. Thiseuse the soil shear strength
parameterss and ¢ have no significant effect on the system resporeSLS (i.e. the
footing displacements) and the soil elastic params& andv have no significant effect on
the system response at ULS (i.e. the safety fd€foiThe Hasofer-Lind reliability index

was adopted for the assessment of the reliabifith® soil-footing system. The response
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surface methodology (RSM) based on the algorithnidaydjiriaet al. (2000) was used to
compute the reliability index and the correspondiegign point. The deterministic models
used to calculate the system responses for bothdhdSSLS analyses are those described

in section 3.

The illustrative values used for the statisticaihnents of the different random variables are
given in Table (2.3). These values correspond egeghcommonly encountered in practice

[Cherrubini et al. (1993), Phooret al. (1995) and Phoon and Kulhawy (1999) among

others].

Table 2.3: Statistical characteristics of the different ramdeariables

Type of the probability density
vari Coefficient of function (PDF)
ariable Mean valug variation (%) | Case of normalCase of non-normal

PDF PDF

C 20kPa 20 Normal Log-normal
) 30° 10 Normal Beta

E 60MPa 15 Normal Log-normal
v 0.3 5 Normal Log-normal

This table also presents the types of the proltglaknsity function (PDF) of the random
variables. For each random variable, two PDF typexe studied. In the first type referred
to as normaPDF; ¢, ¢, E andv were considered as normal variables. In the setypel
referred to as non-norm&DF; ¢, E andv were assumed to be log-normally distributed
while ¢ was assumed to be bounded and a beta distribwitbrilower and upper bounds of
0 and 48 respectively was adopted for this random variahlso, both cases of correlated
and uncorrelated random variables were examinedthdéncase of correlated random
variables, a negative correlation p£-0.5 was assumed betweenand ¢ at ULS or

betweerkE andv at SLS.

After the presentation of some reliability-baseduits, the determination of the

failure mode predominance based on a reliabilityeldaapproach will be presented.
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5.1. Performance functions, reliability index and &ilure probability

Footings subjected to an inclined loading may bealywed at ULS as a system
consisting of two different failure modes. Typigalthese modes are the footing sliding
and the soil punching. To calculate the failurebadality of such type of footings, two
performance functions with two different system passes would be required. This
chapter makes use of a unique system response.sTtiie safety factoF defined with
respect to the shear strength parametersdtany. This factor was previously presented in
section 3. Remember that the safety fa¢tds able to take into account the two failure
modes simultaneously and it provides a unique wdéatel of the soil-footing system.
Thus, it avoids the use of two reliability analysesich lead to an approximate value of
the system reliability index or the system failprebability. This factor is commonly used
in the slope stability analysis. It is the factor which the available soil shear strength
parameterg andtany have to be reduced to bring the soil to failuras&l on this safety
factor, the performance function is given as fokow

G =F-1 (2.4)

For the SLS analysis, two performance functionsewaesed. These performance
functions are defined with respect to prescribeterable vertical and horizontal
displacements of the footing centre. They are glwen
G2 = OVmax- OV (2.5)
G3 = dUmax - oU (2.6)
wheredvmax anddumax are respectively the tolerable vertical and hariabdisplacements
of the footing center andv and du are respectively the footing vertical and horizabnt

displacements due to the applied load compon&andH).
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Remember here that the iterative process of the R8s when the absolute
differences between two successive valuegaf at two successive iterations is less than a
prescribed small value (e 10" in the present chapter). Another criterion caubed to
confirm the end of the iterative process of the RSMis criterion is based on the
abovementioned performance functions. Since thegagmint should be located on the
limit state surfac&=0, the value of the performance function at thisypshould be very
close to zero. Tables (2.4a, 2.4b and 2.4c) prethensuccessive tentative values of the
reliability index and the corresponding design pa@s obtained at the different iterations
of the RSM for the different system responses giadety factor, vertical displacement and
horizontal displacement). These tables also protid@eabsolute value of the difference
between two successive values of the reliabilitge and the absolute value of the

performance function obtained at the differentatiems.

For the safety factoF, the criterion (i.ee<10™) was reached after two iterations and the
absolute value o6 is equal to zero at the second iteration. Thugy @@ deterministic
numerical simulations using FLAE were necessary for the computation of the relgbil
index. However, for the vertical and the horizonthsplacements, the convergence
criterion of Sy was reached after 4 iterations and the absoluteesaf the performance
functions were very close to zero at the fourthatien. Thus, 20 calls of the deterministic
model were necessary to calculate the reliabitideik in these cases.
Table 2.4a:Design point€, ¢ ), reliability indexsn., convergence criterionand
absolute values of the performance function atigsgn point as obtained at

the different iterations of a RSM calculation i ttase of non-normal
correlated variables at ULY$£1600kN andH=447.66kN)

. . Converaence Absolute value of the|
Iteration c ® ;i werg F performance function
criterione G=F.1
1 19.7820| 25.771¢4 1.5946 - 0.99 0.01
2 19.3563| 25.9493 1.5907 0.0039 1.00 0.00
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Table 2.4b: Design pointE , v), reliability indexsy., convergence criterionand
absolute values of the performance function atigsgn point as obtained at
the different iterations of a RSM calculation ir tbtase of non-normal

correlated variables at SLS£1600kN,H=447.66kN an@Vva=3cm)

. . Converaence|  sv Absolute value of the
lteration | E x10° v Pl erg performance function
criterione (cm) _
G - 5Vma){'5v
1 47.7605| 0.3215] 1.656( - 2.1500 0.8500
2 32.7716| 0.3179] 4.0866 - 2.4306 3.1734 0.1734
3 34.8298| 0.3156| 3.6737 0.4129 3.0021 0.0021
4 34.8204| 0.3162| 3.664( 0.0097 3.0004 0.0004

Table 2.4c:Design pointE , v), reliability indexsy., convergence criterianand
absolute values of the performance function atigsgn point as obtained at
the different iterations of a RSM calculation ir ttase of non-normal

correlated variables at SLS£1600kN,H=447.66kN an@®Umna=1.5cm)

Iteratio x * Convergence| du Absolute value of the
E x 10° v ' werg performance function
n criterione (cm) _
G - 5Umax'5u
1 39.3299| 0.3164 2.7767 - 1.5097 0.0097
2 39.4355| 0.3190 2.7423 0.0344 1.4987 0.0013
3 39.5438| 0.3184 2.7254 0.0169 1.5033 0.0033
4 39.5428| 0.3184 2.7243 0.0011 1.5009 0.0009

5.2. Failure modes predominance at ULS and SLS bateon a reliability-based

approach

For the ULS analysis, the effect & on the failure probability’s was shown in

Figure (2.7) for three prescribed values Hf The random variablesc (and ¢) were

considered as non-normal and correlated. In cantea& which provides a maximum

(points A, Az and A in Figure 2.4)P; presents a minimum (poing BB, and B in Figure

2.7). The fact thal®; exhibits a minimum may be explained as follows: small values of

V, the footing sliding is predominant and the falyrobability due to this mode is very

high. AsV increases, the effect of sliding decreases andahaoil punching gradually

increases until both modes of failure become na@u@minant and induce a minimal

simultaneous effect on the failure probability. tims case, the probability of failure

presents a minimum value. More increas¥ ileads to an increasingly failure probability.

This is due to a more and more predomination ofptineching failure mode; the sliding
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failure mode becomes negligible in this case. Fieigures (2.4) and (2.7), it can be
observed that for a givell value, the point of maximum safety factor and tbét
minimum failure probability correspond exactly feetsame load inclinatioru$ 15.6).
This load inclination corresponds to the line O@’ Figure (2.5) obtained using the
deterministic approach. This implies that the optitoad inclination leading to a maximal

safety factor or a minimal failure probability dasst depend on the soil uncertainties.
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Figure 2.7: Effect ofV on the failure probability?; at ULS

In order to confirm this statemem; was plotted versu¥ for two different configurations
of COV; andCOQV, in Figure (2.8). It can be observed that for bathfigurations ofCO\,

andCOV,, the minimum value oPsis obtained at the same value\ofThis means that the
soil uncertainty has no effect on the optimal leadfiguration for which neither mode of

failure is predominant.
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Figure 2.8: Effect of V on theP; value at ULS for different values GOV, andCQOV,,.
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As a conclusion, it can be deduced that at ULS ofptémal load inclination obtained by
the deterministic approach is the same as the dt&ned using the reliability-based
approach which means that the optimal load indbmatis independent of the soil
variability. The optimal load inclination is the @for which the safety factor is maximum
and the failure probability is minimum. It is alfte one that separates the two zones of

predominance of sliding or punching in the intei@ctiagram.

Concerning the SLS analysis, Figures (2.9a, 2.9bZa®c) present the probabiliBg
of exceeding a tolerable footing displacement vetbe vertical applied load compon&ht
for three different values dfl. In each figure, three cases are presented:giptabability
of exceeding a tolerable vertical displacem®nt,,=3cm, (ii) the probability of exceeding
a tolerable horizontal displacemeitk,,,=1.5cm and (iii) the probability of exceeding both
tolerable displacements 6¥mq.=3cm andouma=1.5cm using the equations of the system
failure probability presented in Ang and Tang (1P7bhese equations are given in
Appendix C. The random variable€ (and v) were considered non-normal and
uncorrelated. Figure (2.9) and Table (2.5) indi¢htd, for the results corresponding to the
tolerable horizontal displacemef, presents a minimum value. This is because, atlsmal
V values, the horizontal movement of the footingpiedominant. This leads to a higa
value. AsV increases, the horizontal movement decreases $eaiuhe increase in the
shearing resistance at the soil-footing interfalieis leads to a gradual decreasePin
When punching begins to predominate, one obtains@ease irP. due to an increase in
the horizontal footing displacement. For the cureéd-igure (2.9) corresponding to the
vertical footing displacemen® continuously increases with the increas& ot his is due

to the increase in the vertical displacement.
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The P values for the three cases mentioned above (iahapility of exceedin@Vmax
probability of exceedingumax and the probability of exceeding baiWax andovmay When
H=447.66kN are provided in Table (2.5). From thisl¢ait can be noticed that the system
probability is equal to the largest probability quonent when the mode of exceediiugax
is predominant (i.e. whewi<1600kN). It becomes larger than both componentsnwvidoth

unsatisfactory performance modes contributBgt@.e. whenV >1600kN).
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Figure 2.9: Effect ofV on the probabilityP. of exceeding tolerable vertical and
horizontal displacements at SLS

It should be emphasized here that the minimum valuthe system probability at SLS
corresponds exactly to the same load inclinatien16.6") for which the safety factor
presents a maximum and the failure probability @més a minimum at ULS. This means
that the load inclination which provides the minmmdiailure probability at ULS leads to

the smallest possible movement of the foundatio®le®. It can be concluded that line
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OO’ (Figure 2.5) which separates the zones of predance at ULS can also be used at
SLS to distinguish the load configurations thatlléaa predomination of the horizontal or
the vertical footing movement. Finally, it shoulce kemphasized that the zone of
predominance of a given failure mode does not nikanhthe failure probability in this
zone is only due to this mode. It simply means thatfailure probability in this zone is
mostly due to this mode and the contribution ofdtieer mode is less significant.

Table 2.5:Effect of V on (i) probability of exceedingvimax (ii) probability of exceeding

OUmax and (iii) system probability at SLEHE447.66kN)

Probability of Probability of System

V (kN) exceedingVmax exceedin@®Umax probability
(%) (%) (%)

900 1.71x108° 23.38 23.38
1000 3.29x10° 3.96 3.96
1200 6.10x10° 0.79 0.79
1400 3.09x10° 0.32 0.32
1600 0.12 0.22 0.22
1800 0.53 0.53 1.47
2000 6.29 1.01 7.28
2200 27.28 2.04 28.96
2400 63.57 4.00 64.90
2600 87.12 8.32 88.19
2800 97.12 14.57 98.13

6. Reliability-based parametric study

This section aims at investigating the effect oé tload inclinationa and the
statistical characteristics of the soil shear gitleqparameters (distribution type, coefficient
of variation and correlation between random vagaplon the variability of the ultimate

bearing capacity.

6.1. Effect of the load inclinationa on the variability of the ultimate bearing capaciy
Figure (2.10) shows the CDF of the ultimate beadagacity of both verticallyxE0)

and obliquely ¢>0) loaded footings. The random variablesa(id¢) were assumed non-

normal and correlated. Figure (2.10) indicates thatvariability of the ultimate bearing

capacity is significant in the vertical load case.(whena=0°) where the CDF is more
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spread out with respect to the inclined load cafesxplain this observation, one should
refer to the failure mechanisms shown in Figur&)(At can be observed that the size of
the failure mechanism is small in the case of smalles ofV (i.e. for high load
inclinations) where the footing sliding is predoswaim. However, its size increases with the
increase ol (i.e. for small load inclinations) where the smilnching is predominant. The
size of the failure mechanism is maximal in thetical load case (i.e. poitit of Figure 2.2
where H=0). As expected, the ultimate bearing capacitydases with the size of the
failure mechanism. Therefore, when the failure na@tdm is small (i.e. for an inclined
load case), the variation @f and ¢ does not have a significant effect on the ultimate
bearing capacity. However, when this mechanisnarge (i.e. for a vertical load case), a
small variation inc and¢ results in a significant effect on the ultimateabieg capacity.
Another alternative explanation may also be provides follows: since the system
response considered in this section is the ultinh@&@ring capacity which is intimately
related to the punching failure mode, it would beexted to obtain the maximal

variability when the soil punching is the most prednant (i.e. when the footing load is

vertical).
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Figure 2.10: CDF of the ultimate bearing capacdgyfor different values of the load
inclinationa
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6.2. Effect of the distribution type and the correation between random variables on

the variability of the ultimate bearing capacity

The aim of this section is to investigate the dffecthe type of the PDF and the
correlation between the shear strength parameteteovariability of the ultimate bearing
capacity. This study was carried out whetd (i.e. for a vertically loaded circular footing).
Both assumptions of normal and non-normal randonmabkes were studied. Also, both
correlated and uncorrelated random variables wamsidered in the analysis. Figure (2.11)
shows that the negative correlation between thesb@iar strength parameters decreases
the variability of the ultimate bearing capacityint® one obtains a less spread out CDF)
while the assumption of non-normal random variablesy slightly decreases the
variability of the ultimate bearing capacity. Axanclusion, these results indicate that the
case of normal uncorrelated random variables is@wative since it provides the largest

variability of the ultimate bearing capacity.
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Figure 2.11:CDF of the ultimate bearing capacdgyfor different assumptions on the PDF
type and the correlation whesQ°

6.3. Effect of the coefficient of variation of theshear strength parameters on the
variability of the ultimate bearing capacity

The effect of the coefficients of variation ofande on the ultimate bearing capacity was

investigated in Figure (2.12). The random variablesre considered non-normal and

correlated. This study indicates that the varigbif the ultimate bearing capacity is more
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sensitive to the variation in the internal frictiamgle than to the variation in the soil
cohesion. This can be easily observed from Fig@é&2) where the increase in the
dispersion of the CDF of the ultimate bearing cépatue to an increase @OV, by 50%

is larger than that due to an increas€@\; by 100%. This reflects the important role of
the angle of internal friction in the determinatioh the ultimate bearing capacity and
consequently in footing design. Therefore, careukhobe taken on the rigorous

determination oCQOV, in practice.
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Figure 2.12:CDF of the ultimate bearing capacdgyfor different values of the
coefficients of variation of the random variablesena=0°

7. Conclusion

This chapter presents a deterministic analysisL& &nd a reliability-based analysis
at both ULS and SLS of a circular footing resting & €, ¢) soil and subjected to an
inclined load. Two modes of failure (soil punchiagd footing sliding) were considered at
ULS. Also, two modes of unsatisfactory performaiferceeding of prescribed tolerable
vertical and horizontal displacements of the fodimt were considered at SLS. The
safety factor- defined with respect to the soil shear strengttampatersc andtany was
used to represent the system response at ULS. ©notller hand, two system responses
were used at SLS. These are the footing horizoatal vertical displacements. The
deterministic models used to calculate the systespanses are based on 3D numerical

simulations using the Lagrangian explicit finitefelience code FLA&. The soil shear
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strength parameters and ¢ were modeled by random variables at ULS while sb#é

elastic propertiesE and v were modeled by random variables at SLS. Hasafed-L
reliability index was used for the computation lo¢ treliability of the soil-footing system.
The response surface methodology was used to findpgproximation of the system
response and the reliability index. FORM approxioratvas used for the computation of

the failure probability.

In this chapter, the zones of predominance of ifferdnt modes at both ULS and SLS
were determined. Notice that the zone of predonueani a given failure mode means that
the failure probability in this zone is mostly digethis mode; however, the contribution of
the other mode is less significant. The main figdinf this chapter can be summarized as
follows:

1- For the ULS analysis

1. The safety factoF defined with respect to the soil shear strengtlarpatersc and
tanp considers the combined effect of both failure modesil punching and
footing sliding). Notice that both failure modes-exist whatever the loading
configuration is. The safety factérprovides a unique and rigorous safety level of
the soil-footing system. The use of this factor thesadvantage of seeking the most
predominant mode of failure using a determinisgipraach.

2. There are several optimal loading configurationshim interaction diagram. These
configurations correspond to a unique optimal loadination and they subdivide
the interaction diagram into two zones of predomagawhere either soil punching
or footing sliding is predominant. The optimal loadlination is that for which (i)
the load configurations do not exhibit predominan€eeither soil punching nor

footing sliding and (iii) the safety factor is maxim and the failure probability is
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minimum with respect to all other load configurasdhaving the same value of the
horizontal load component.

3. The optimal loading configurations obtained by gsthe deterministic approach
were found similar to those obtained by using #l&bility-based approach. This
means that the optimal load inclination does ngiede on the uncertainties of the
soil parameters. The optimal loading configuratians situated on the line joining
the origin and the extremum of the interaction chagy

2- For the SLS analysis

a) Contrary to the ULS analysis, the deterministicrapph was not able to determine
the optimal load inclination for which neither vieal nor horizontal movement is
predominant at SLS. The reliability-based approaek necessary in this case. The
reliability-based analysis has shown that the oagtinoad inclination at SLS
corresponds exactly to the one obtained at ULSs Thiresponds to the minimum
movement of the footing center.

3- The parametric study has shown that:

a) The variability of the ultimate bearing capwdg significant for the vertical load
case where only the punching failure mode is pitedemecomes smaller in the
inclined load case where the sliding mode is pradant.

b) The negative correlation between the sheamgtie parameters decreases the
variability of the ultimate bearing capacity; howeeythe non-normality of these
variables does not significantly affect this vatiiiyn

c) The variability of the ultimate bearing capadgynore sensitive to the variation gf

than that ot.
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CHAPTER 3

PROBABILISTIC ANALYSIS OF OBLIQUELY LOADED FOOTINGS
USING THE COLLOCATION-BASED STOCHASTIC RESPONSE
SURFACE METHOD (CSRSM)

1. Introduction

In the previous chapter, the reliability-based wgsial was performed using the
Response Surface Method (RSM). This method is basetdhe approximation of the
system response by a polynomial of a prescribedroftishould be emphasized here that
the RSM does not provide a precise approximatiothefsystem response except in the
proximity of the design point. Thus, the RSM canused to calculate only the reliability
index and the corresponding design point for amgitheeshold of the system response. In
the present chapter, a more efficient method callelibcation-based Stochastic Response
Surface Method (CSRSM) is used. The CSRSM is basethe approximation of the
system response by a polynomial chaos expansiok)(BZr a more extended zone with
respect to the RSM. This method replaces the confpide element or finite difference
model by a meta-model (i.e. an analytical equatiwhjch can be easily handled in the
probabilistic analysis. It should be noticed henattthe CSRSM provides a rigorous
approximation of the system response in the cemtmaé (i.e. around the mean value) if a
low order PCE is used. For the remaining zones®f¢sponse surface, the approximation
can be improved by increasing the PCE order. Conttathe RSM which provides only
the reliability index and the corresponding degigmt for a given threshold of the system
response, the CSRSM allows the computation of mahdit probabilistic outputs. Indeed,
the CSRSM permits the computation of (i) the PDRh& system response and (ii) the
failure probability (for different thresholds ofeéhsystem response) by applying Monte

Carlo Simulation (MCS) methodology on the meta-ntobl®reover, the CSRSM provides
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other important probabilistic outputs. These am BCE-based Sobol indices. The PCE-
based Sobol indices quantify the contribution afreeandom variable in the variability of

the system response.

The present chapter makes use of the CSRSM tomrasprobabilistic analysis at both
ULS and SLS of the same circular footing and theesaoil characteristics studied in
chapter 2. Similar to chapter 2, the system respopssidered at ULS is the safety factor
F defined with respect to the soil shear strengtiapatersc andtang. At SLS, two system
responses are used. These are the footing veattichhorizontal displacement®/@nddu).
The performance functions used to calculate theartaiprobability are those presented in
chapter 2. Also, the deterministic models useddicutate the system responses are the
same models presented in chapter 2. It should b#ioned that contrary to chapter 2 in
which only the uncertainties of the soil parametgese considered in the analysis; in the
present chapter, the uncertainties of both themoimeters and the load componehts (
andV) are taken into account at both ULS and SLS. Hmelom variables considered at

ULS arec, ¢, H andV. However, the random variables considered at Se& a, H andV.

This chapter aims at presenting a global sengjtiahalysis to determine the
contribution of the different random variables iretvariability of the system responses
using the PCE-based Sobol indices. It also aintgtrmining the zones of predominance
in the interaction diagram at both ULS and SLSrngknto account the simultaneous effect
of the soil and loading uncertainties. The importanf the determination of these zones
arises from the fact that the variability of a giveystem response depends on the position
of the corresponding load configuration in the ratéion diagram. Finally, this chapter
aims at presenting a parametric study to invedighé sensitivity of the PDFs of the

different system responses to the different steisparameters of the random variables.
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This chapter is organized as follows: The Collanatbased Stochastic Response
Surface Method (CSRSM) is first presented. Thea,giobabilistic results are presented

and discussed. The chapter ends with a conclugitreanain findings.

2. Collocation-based Stochastic Response Surface thied (CSRSM)

The basic idea of the CSRSM is to approximate a&rgigystem response by a
polynomial chaos expansion (PCE) of a suitable rortle other words, the CSRSM
replaces the complex numerical model by a meta-imdderder to achieve this purpose,
all the uncertain parameters (which may have difieiPDFs) should be represented by a
unique chosen PDF. Table (3.1) presents the udbdi Rnd their corresponding families
of orthogonal polynomials (Xiu and Karniadakis 202

Table 3.1:Usual probability density functions and their cgpending families of
orthogonal polynomials

probability density functions Polynomials
Gaussian Hermite
Gamma Laguerre
Beta Jacobi
Uniform Legendre

Within the framework of the CSRSM, the response afystem that involves random

variables can be expressed by a PCE as follows:

nh b

oce= 26}!/1.(5) =§aw.(<‘) =34 éaf/fl(si) S5l £) 355, ule 2 6). @D

i;=Li,=1 iy=Li,=Li, 1
where ¢, (£) are multi-dimensional polynomials defined as thedpct of one-

dimensional  polynomials, (Eil,fiz,fi3,...) are independent random variables,

(ao, a,.l,ailiz,ailizis,...) are unknown coefficients to be evaluated Bnsl the size of the PCE.

The sizeP of the PCE (which is equal to the number of th&namwn PCE coefficients)
depends on the numbarof random variables and the orgeof the PCE. It is given as

follows:

-68-



CHAPTER 3

b= (nn’!r pF:)! (3.2)

It should be mentioned here that in this chapter random variables are represented in the
independent standard normal space. Thus, the miitadrresponding bases are the
multidimensional Hermite polynomials as may be siem Table (3.1). The expressions

of the multi-dimensional Hermite polynomials argag as follows:
‘/Ia = ngi(gi)' a|20 (3'3)
1=1

where a=[ a1, ..... ,an] is @ sequence afi non-negative integers arg, (¢,) are one-

dimensional Hermite polynomials. More details one thone-dimensional and

multidimensional Hermite polynomials are given ippendix D.

For the determination of the PCE unknown coeffitden non-intrusive technique (in
which the deterministic model is treated as a blaak) is used. Two non-intrusive
approaches have been proposed in literature: twes¢he projection and the regression
approaches. In this thesis, the regression applisagded. In this approach, it is required to
compute the system response at a set of collocpborts in order to perform a fit of the

PCE using the obtained system response values.

As suggested by several authors [Isukapetllal. (1998), Phoon and Huang (2007) and
Huanget al. (2009)], the collocation points can be chosenhasresult of all possible
combinations of the roots of the one-dimensionalniite polynomial of ordefp+1) for
each random variable. For example, if a PCE of o is used to approximate the
response surface of a system witt? random variables, the roots of the one-dimeradion
Hermite Polynomial of order 3 are chosen for eastdom variable. These roots are3(-

0, V3) for the first random variable and/8, 0,3) for the second random variable. In this

case, 9 collocation points are available. Theskecation points are {3, V3), (V3, 0), (-
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\V3,43), (0, 4/3), (0, 0), (0¥3), (V3, AV3), (V3, 0), (3, V3). In the general case, for a PCE
of orderp and forn random variables, the numbkérof the available collocation points can
be obtained using the following formula:

N=(p+1)" (3.4)
Referring to Equations (3.2 and 3.4), one can ofesdnat the number of the available
collocation points is higher than the number of timknown coefficients. This leads to a
linear system of equations whose numNeof equations is greater than the numBeuf
the unknown coefficients. The regression approaclised to solve this system. This
approach is based on a least square minimizatibmele@ the exact solution and the
approximate solution/pceg Which is based on the PCE. Accordingly, the unkmow
coefficients of the PCE can be computed using@leviing equation:

a= (Y w¥.r (3.5)
in which a is avector containing the PCE coefficienI3js a vector containing the system
response values as calculated by the determimsiabel at the different collocation points
and Yis amatrix of sizeNxP whose elements are the multivariate Hermite patyiats. It

is given as follows:

Wo(E)  WE) Wi (E) Yo i(8)]
Wo(&)  WE) W) Yei(€)

w=| : : : : (3.6)
W (€)  W(E) (&) P&

Notice that in order to calculate the system respatorresponding to a given collocation
point, the standard normal random varialileshould be expressed in the original physical

space of random variables as follows:

x =F [ o(&)] (3.7)
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in which, x; is a physical random variablEy; is the CDF of the physical random variable
and @ is the CDF of the standard normal random varialigice also that if the original
physical random variables are correlated, the stahdormal random variables should first

be correlated using the following equation:

&1 4
o ¢

=H/| (3.8)
_fnc_ _En_

in which {&,,&,.,....&,} is the vector of correlated standard normal rand@mables,
{El & ,...,En} is the vector of uncorrelated standard normal candariables andi is the

Choloesky transformation of the correlation matfthe physical random variables.

Once the PCE coefficients are determined, MCS eaapplied on the obtained PCE
(called meta-model) to compute both the PDF of dhstem response and the failure
probability for different thresholds of this resgen This is achieved by (i) generating a
large number of realizations of the vecid@i, &, ... &) of standard normal random
variables and (ii) calculating the system respoos@esponding to each realization by
substituting the vectoft,, &, ... &) in the meta-model. It should be mentioned heré tha
the failure probability is calculated as the rdbietween the number of realizatio(d,

&, ... &) for whichG<0 and the total number of realizations.

2.1. Optimal number of collocation points
As mentioned before, the number of the availabléocation points significantly
increases with the increase in the number of randamables and becomes very large with

respect to the number of the unknown PCE coeffisieithis makes it necessary to
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determine the optimal number of collocation pointisich is needed by the regression
approach to solve the linear system of equatiormgigion 3.5). In this regard, several
empirical formulas were proposed in literature. \8tebet al. (1996) selected a number
J=P+1 (that are the most close to the origin of thexdaad space of random variables)
among theN available collocation points. Isukapadli al. (1998) proposed to selett2P.
Berveilleret al. (2006) suggested the use of a numbeiven byJ=(n-1)P. Recently, Liet

al. (2011) have proposed to consider different numbéllocation pointsZP, 3P, 4R
etc.). For each number of collocation points, teajculated the rank of the information
matrix A where A=(# ). It was found that when the rank of the informatoatrix is
larger than the number of the unknown coefficiénés the matrixA is invertible), there is

a good agreement with the results obtained wheryiagpMCS methodology on the
original deterministic model. The procedure byetial. (2011) is somewhat similar to that
proposed by Sudret (2008) because both procedueebasged on the concept of matrix
invertibility. Notice however that the approach $ydret (2008) leads to a smaller number
of collocation points. This is because this authmposed to successively increase the
information matrixA until it becomes invertible as follows: (éje N available collocation
points are ordered in a list according to increggiorm, (b) the information matri& is
constructed using the firg® collocation points of the ordered list, i.e. tRecollocation
points that are the closest ones to the origirhefstandard space of random variables and
finally (c) this matrix is successively increaséy @dding each time the next collocation
point from the ordered list) until it becomes in@e. The different available approaches
to select the necessary number of collocation pamong the available ones were tested
in this chapter. The approach by Sudret (2008) faasd the most efficient to determine

the optimal number of collocation points as willdsen later in this chapter.
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2.2. Error estimates of the PCE

For a given PCE order, the accuracy of the appration of the system response by
a PCE can be measured by the error estimate. Tpestpf error estimates exist in
literature. These are the coefficient of determaraf® and theleave-one-outerror Q?

(Blatman and Sudret 2010).

Let us considerd realizations{ &% = (£¥, ..., &W), &) =& D))} of the

standard normal random vectgrand let/” = { /‘(E(l)), /‘(E(J))} be the corresponding

values of the system response determined by detistinicalculations. The coefficient of

determinatiorR is calculated as follows:
R? =1-4oc (3.9)

where A, is given by:

W)X (6)-ree(e) ]

Boce = Var(r) (3.10)
and

Var(r) :J—l_lzle[r(f(‘))—FT (3.12)
r =%Zf:1r(£“)) (3.12)

Remember here thdtis the number of collocation points used to euv&uhe unknown
coefficients of the PCE. The vall®’ =1 indicates a perfect approximation of the true

system responsé&, whereasR’ =0 indicates a nonlinear relationship between the tru

model/” and the PCE modébcE.

The coefficient of determinatioR* may be a biased estimate since it does not take in

account the robustness of the meta-model (i.ecapability of correctly predicting the
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model response at any point which does not belanghé collocation points. As a
consequence, a more reliable and rigorous erromais, called théeave-one-ouerror

estimate, was proposed by Blatman and Sudret (2000% error estimate consists in
sequentially removing a point from tlecollocation points. Lef; be the meta-model that

has been built fronfJ-1) collocation points after removing th® observation from these

collocation points and lef'= 7 (&) = 7, (") be the predicted residual between the
model evaluation at poinf’ and its prediction at the same point based/gn The

empirical error is thus given as follows:
* 1G hive
N oee =32(A ) (3.13)
—

The corresponding error estimate is often denote@%band is calledeave-one-ouerror

estimate. It is given as follows:

Bece_ (3.14)

Q= 1_Var(r)

2.3. PCE-based Sobol indices

A Sobol index of a given input random variable ismeasure by which the
contribution of this input random variable to thariability of the system response can be
determined. Sobol indices are generally calculéedMCS methodology (Sobol 2001).
This method is very time-expensive especially whikealing with a large number of
random variables. Sudret (2008) proposed an efficégproach to calculate the Sobol
indices based on the coefficients of the PCE. ethod is based on ranking the different
terms of the PCE and gathering them into groupsrevieach group contains only one
random variable or a combination of random varigblEne Sobol indices can then be

calculated using the following equation:
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SUa :Za"'—f(l//”) (315)
g

in which, a indicates that the summation is carried out for B@&E terms that contain a
single random variable or a combination of randamables and? is the total variance of

the system response. It is given as follows:

o7 = ZqZ.E(z//f) (3.16)

Some derivations related to the expressions of ISodies are presented in Appendix E.

For more details, one can refer to Sudret (2008)Mallon et al. (2011).

3. Probabilistic numerical results

This section presents the probabilistic results thee ULS and SLS analyses. It
provides (i) a global sensitivity analysis using fACE-based Sobol indices, (ii) the zones
of predominance of the different failure modes e tinteraction diagram and (iii)) a
parametric study showing the effect of the staiddtcharacteristics of the random variables
on the PDFs of the different system responses. Réree that the random variables
considered at ULS a® ¢, H andV. However, the random variables considered at &S a
E, v, HandV. The illustrative values used for the statistidad@racteristics of the different
random variables are presented in Table (3.2). dkakies will be referred to hereafter as
the reference values.

Table 3.2: Statistical characteristics of the different ramdeariables

Type of the probability density
Variabl ua Coefficient of function (PDF)
arlable Mean value variation (%) | Case of normalCase of non-normal
PDF PDF
C 20kPa 20 Normal Log-normal
) 30° 10 Normal Beta
E 60MPa 15 Normal Log-normal
v 0.3 5 Normal Log-normal
H 200 40 Normal Log-normal
\% 714 10 Normal Log-normal
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Notice that a high value of the coefficient of aion of 40% was proposed for the
horizontal load componeht to represent the large uncertainties due to timel\and/or the
wave loading. This value is to be compared to thieesof 10% affected to the coefficient
of variation of the footing vertical load componant This is becaus® represents the

structure weight for which the variability is small

In this chapter, three load configurations represerby points M Y=500kN and
H=200kN), N (V=714kN and H=200kN) and L §=3500kN and H=200kN) in the

interaction diagram (Figure 3.1) were considerethéfollowing probabilistic analyses.

800

700 | //\
600 H=600kN
500 / \
400 H=400kN
300 \\
_ L
2004 g H=200kN__ °
100 \
0 T T T T T

0 1000 2000 3000 4000 5000 6000
V (kN)
Figure 3.1: Interaction diagram

H (kN)

X=
Xz

Before performing the probabilistic analysis usthg CSRSM, the optimal orderof the

PCE should be determined.

= |f only the statistical moments of a given systasponse are sought, the PCE order is
successively increased until (i) the coefficientdsfterminationQ® becomes greater
than a prescribed value (say 0.999) and (ii) thstical moments converge to constant
values.

= |f the failure probability (by applying MCS on thmeta-model) is sought, the PCE
order is successively increased until (i) the doifiit of determinatiorQ? becomes
greater than a prescribed value (say 0.999) apth@ifailure probability?s converges

to a constant value.
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For all the subsequent ULS and SLS probabilistialyses performed in this chapter, a
third order PCE was found necessary to provide @dgapproximation of the system

response.

It should be mentioned here that due to the lay@bility of the horizontal load
componentH, certain collocation points (among the availabhes) involve a horizontal
load componenH>H,. As a result, the system responses at SLS (iatinfp horizontal
and vertical displacements) cannot be calculatedhtese points. To overcome this issue,
these points were removed from the list of the labé collocation points. Then, the
concept of matrix invertibility proposed by Sud(@D08) was applied on the remaining

collocation points.

To check the efficiency of the concept of matrixartibility proposed by Sudret
(2008), a comparison between the statistical mosnehthe safety factdf obtained using
this concept (wheré&l=66 points) and those obtained using all the aviglabllocation
points (wherédN=257 points) was performed and presented in Tab8).(3

Table 3.3:Effect of the number of collocation points as sigjge by different authors on
the statistical moments of the safety factor

Number of collocation points Mean Stapdgrd Cogfflplent of Skewness | Kurtosis
value | deviation | variation (%)

N=257 points

(All available points including 1.492 0.255 17.090 0.287 0.062
the origin)

N=36 points
(Webster et al. 1996) 1.559 80.758 51.801 0.922 32.07
N=70 points it
(Isukapalli et al. 1998) 1.496 0.255 17.045 0.283 0.085%
N=70 points it
(Li et al. 2011) 1.496 0.255 17.045 0.283 0.085%
N=105 points )
(Berveilleret al. 2006) 1.487 0.253 17.014 0.277 0.073

N=66 points (Sudret 2008) 1.496 0.255 17.045 0.298 108.

From this table, one can see that there is a ggoeement with a significant reduction in

the number of calls of the deterministic model (b4.3%). The statistical moments

-77-



CHAPTER 3

corresponding to the different numbers of collamatpoints proposed empirically by the
different authors are also given in this table. Misome authors [Isukapa#t al. (1998)

and Li et al. (2011)] provide good results, others (Websteral. 1996) are unable to
predict the system response. On the other handieBer et al. (2006) overestimate the
number of collocation points by about 60%. As a abasion, the rational approach

proposed by Sudret (2008) will be employed foisalbsequent probabilistic calculations.

3.1. Global sensitivity analysis/ia the PCE-based Sobol indices

As mentioned previously, the Sobol indices quarttiy contribution of each random
variable in the variability of the system responBeis is of great importance because these
indices help the engineer to identify the inputentain parameters that have the greatest
contribution in the variability of the system regge. Moreover, they allow one to consider
as deterministic the random variables that haveallontribution in the variability of the

system response. This leads to a reduced computatie of the probabilistic analysis.

Table (3.4) presents the Sobol indices of the diffeinput random variables at ULS
for points M, N and L shown in Figure (3.1). ForimgdV, one can see that the Sobol index
of the horizontal load componemt is significant (it involves more than 3/4 of the
variability of the safety factor). On the contratie Sobol index of the vertical load
componentV is negligible. ThusH has the greatest contribution in the variabilifytloe
safety factor whileV has a negligible contribution in this variabilityf'his may be
explained by (i) the high variability dfi and (ii) the predominance of the sliding failure
mode with respect to the punching mode due toigjie lbad inclination. Concerningand
@, they have a small contribution in the variabilitiythe safety factor as compared to the

horizontal load component.
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Table 3.4:Sobol indices for different load configurationd AtS

Random Sobol indices
variable Point M Point N Point L
C 0.0771 0.1397 0.1605
0 0.1214 0.2498 0.7765
\Y 0.0041 0.0004 0.0529
H 0.7974 0.6101 0.0101
Summation 1.00 1.00 1.00

Similarly; for point N, the Sobol index dfi is significant and that oY is negligible.
However, the Sobol indices af and ¢ have moderate values which means that they
moderately contribute to the variability of the etgf factorF. Concerning point L, the
friction anglep has the greatest Sobol index. The Sobol indeketbhesior is smaller

but not negligible (about 16%) while the Sobol ceti ofV andH are very small. This
result may be explained by the fact that for pdintthe soil punching is likely most
predominant. In this case, the parameters thatlynosntribute to the variance of the

response are the soil friction angle and in a lodegree the soil cohesion.

From Table (3.4), one can conclude that the vdiiglof VV can be neglected (i.¥.can be
considered as a deterministic parameter) for @&llttad configurations. Thus, for all the
subsequent ULS probabilistic calculations perforrmethis chapter, onlg, ¢ andH will

be considered as random variables. HoweVewill be considered as a deterministic
parameter. This again reduces the necessary nuoflills of the deterministic model
from 66 to only 26. Consequently, the reductiothie number of calls of the deterministic
model is equal to 90% with respect to the totaliahinumber of 257. This strategy of
reducing the number of calls of the deterministiodel is recommended when dealing
with a complex numerical model (as the one consiliéxerein in the ULS analysis where

the computational time for a single deterministmawdation is about 180 minutes).

For the SLS analysis, Table (3.5) presents the ISobces of the different random

variables for both response¥ @nddu) for the load configurations corresponding to p®in
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M, N and L. This table indicates that the horizémt&d component has a negligible
contribution in the variability of the vertical giscement for the three points M, N and L.
However, its contribution in the variability of therizontal displacement is very large for
the three points. In contrast, the vertical loacthponentV has a negligible contribution in
the variability of the horizontal displacement fooints M, N and L. However, it has a
considerable contribution in the variability of thertical displacement for the three points.
Table (3.5) also shows that the Young's modltukas a significant contribution in the
variability of the vertical displacement for thedhl points; however, its contribution in the
variability of the horizontal displacement is musimaller. Finally, Poisson ratio has a
very small contribution in the variability of botkhe vertical and the horizontal

displacements for all the loading configurations.

Since both responsegu( and év) are outcomes of a single simulation, the foysuin
variables (i.e.E, v, V andH) will be considered as random variables in allghbsequent
SLS analyses althoughcould be considered as deterministic if the deteistic model

was timely-expensive. Notice that the computatiotiahe required for a single
deterministic simulation (which provides both theoting vertical and horizontal
displacements) was only equal to 10 minutes.

Table 3.5: Sobol indices for the different random variableSkS

Random Sobol indices
variable Point M Point N Point L
ov ou ov ou ov ou
E 0.6297 0.0642 0.6438§ 0.0559 0.4609 0.086
v 0.0199 0.0009 0.0191 0.0007 0.0155 0.0004
\Y 0.3263 0.0145 0.3290 0.0072 0.5232 0.0347
H 0.0241 0.9675 0.008L 0.936p 0.0004 0.878
Summation 1.00 1.00 1.00 1.00 1.00 1.00

Finally, it should be noticed that the number oflaxation points used in the SLS
analysis was equal to 66 according to the conceptatrix invertibility by Sudret (2008).

This number is to be compared to 257 points wheckhe total number of the available
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collocation points. This corresponds to a reductionthe number of calls of the

deterministic model by 74.3%.

3.2. Failure mode predominance
This section aims at determining the most predomntifalure mode at both ULS and

SLS using the CSRSM probabilistic approach.

3.2.1. Failure mode predominance at ULS

In chapter 2 where only the uncertainties of sallameters were considered, it has
been shown (by using the RSM) that there is ann@dtioad inclination ¢=15.6") for
which the safety factor is maximum and the failymbability is minimum. This
inclination is represented by the line OO’ (dendteske 1” in Figure 3.2). In this chapter,
the simultaneous effect of the uncertainties ohldtbe soil parameters and the horizontal
load component on the optimal load inclination wasestigated using the CSRSM. For
the three values qfy equal to the three values bf shown in Figure 3.1, the failure
probability P; was plotted versus the vertical load componém Figure 3.3. Remember
that the failure probability is calculated by apptyMCS on the meta-model. From Figure
(3.3), one can observe that presents a minimum value at pointg, K, and K. These
points are plotted in Figure (3.2). They are joitegether by the line denoted “case 2” in
this figure. This line is the one that separateszthnes of predominance of the two failure
modes in the case where the uncertainties of bathsoil parameters and the horizontal

load component are considered in the analysis.

From Figure 3.2, one can conclude that in the meseof the uncertainties of the
horizontal load component, the zone of predominaoicsliding slightly extends with
respect to the one obtained in the case wheretbalgoil uncertainty is considered. This

means that some loading configurations which haenbocated in the zone of punching
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mode predominance (when the loading uncertainte® wot taken into account) are now

located in the zone of sliding mode predominandes Tact is due to the greater risk of

sliding because of the great variability of theibontal load componem in this case.
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Figure 3.2: Optimal loading configurations for two cases ofufiicertainties of soil
parameters and (ii) uncertainties of soil paransea@d horizontal load component

1 rl T T T T
AN N I Kg(V=2300kN) | _...-r*
: N : | | “Ia
| N T |
| ' |
0l+--—~\-----= ===
; l
- I I
o- | I
I . . I
I I I I
001+-----\"/-—FA*“-—-1-—-F-—-—-F--- -
C T [ e u(H)=600kN
I I I I
I I | | -4- p(H)=400kN
11 [ —=u(H)=200kN
0.001 T T T T T T T

0 500 1000 1500 2000 2500 3000 350800(
V (kN)
Figure 3.3: Effect ofV on the failure probability?; for three values qiy

Notice that the variability of the soil parametbes been shown to have no effect on

the optimal load configurations (see chapter 2hi$ thesis). In order to confirm this

statement using CSRSM, Figure (3.4) shows theraitwobabilityP; against the vertical

load componen¥ whenH=x,=200KkN in the three following cases: (i) the uncetias of

only the soil parameters are considered, (ii) theeuainty of only the horizontal load

componentH is considered and (iii) the uncertainties of btitd soil parameters and the

horizontal load component are considered. Thisrégalso shows the safety factbr

(calculated by the deterministic approach) agaiinstvertical load componeM for the
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same value oH. From this figure, one can observe that when camgig only the
uncertainties of the soil parameters, the valu¥ fidr whichF presents a maximum is the
same value for whicl’s presents a minimum (as obtained in chapter 2 wisémg the
RSM). However, when considering the uncertaintie®aih the soil parameters and the
horizontal load component, the value\o6ffor which P; presents a minimum is different
from that for whichF presents a maximum. This figure also shows tharwtonsidering
both the soil and the loading uncertaintiPs presents a minimum at the savevalue
obtained when considering only the load uncertainfhis confirms that the soll
uncertainties have no effect on the optimal loadfigarations and the increase in the

sliding zone is due to the variability bif
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Figure 3.4: Effect ofV on the safety factdf and the failure probabilitl; when
,UHZZOOKN

From Figure (3.4), one can conclude that the detestic analysis is not able to take into
account the effect of the loading uncertainties tbe optimal load inclination. This
conclusion reflects the importance of the probatidi approach with respect to the

deterministic one in the analysis of the obliquelded footings.

3.2.2. Failure mode predominance at SLS
Figures (3.5a and 3.5b) present the probabHityof exceeding a tolerable footing

displacement versus the mean value of the veitbeal componenty for two values ofiy
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(i.e. un=200kN anduy=400KkN). Notice that these twg, values were previously used in
Figure (3.3) to determine the zones of predominaicdLS. Each one of Figures (3.5a
and 3.5b) presents three cases: (i) the probahidityexceeding a tolerable vertical
displacementdvma,=3cm, (ii) the probability of exceeding a tolerablerizontal
displacementuma=1.5cm and (iii) the system probability of exceedingth tolerable
displacements obvma=3cm and duma=1.5cm. Figure (3.5) shows that the system
probability (for the load configurations correspomgdto uy values equal to 200kN and

400kN) presents a minimum at points &d Ks.
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Figure 3.5: Effect of uy on the probabilityP. of exceeding tolerable vertical and horizontal
footing displacements for two valuesof

From Figures (3.3 and 3.5), it can be observedttieat, values for whicHPe is minimum

at SLS are equal to thévalues for whicH; is minimum at ULS. This means that the line
denoted “case 2” in Figure (3.2) which separateszibnes of predominance at ULS can
also be used at SLS to distinguish the load cordigons that lead to a predominance of
the footing horizontal or vertical movement. Thigel corresponds to the configuration that
lead to the minimum movement of the footing withspect to the other loading

configurations having the same value.gf
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3.3. Effect of the most predominant failure mode orthe variability of the different
system responses at both ULS and SLS
As mentioned previously, the determination of tlmmes of predominance of the
different failure modes is important. This is dodhe fact that the variability of the system
response corresponding to a given load configuratdepends on the zone of
predominance to which the load configuration betong this section, the sensitivity of the
PDFs of the different system responses to the mostliominant failure mode was

investigated and discussed.

3.3.1. Variability of the system response at ULS

Figure (3.6) shows three PDFs of the safety faEtéor three different values of
when uy=200kN. The three values & correspond respectively to pointg, D, and
shown in Figure (3.4). Notice that point Dorresponds to a load configuration where the
footing sliding is predominant and poing Ebrresponds to a load configuration where the
soil punching is predominant. However, poing Borresponds to a load configuration
where neither footing sliding nor soil punchingpidominant. From Figure (3.6), it can
be observed that the PDF corresponding to poir(inDich is located in the zone of sliding
predominance) is more spread out than the PDF smoreling to point B(which is
located in the zone of punching predominance).geimts D, D, and I3, the values of the
standard deviation of the safety factor are respalgtequal to 0.42, 0.19 and 0.12. Notice
that for point Q whereV is small (zone of sliding predominance), the lavgeability of
the safety factor is due to the large variabilifytb which has the largest weight in the
variability of the safety factor in this zone (Sksble 3.4). In contrast, for pointsWhereV
is large (zone of punching predominance), the lagebility of H has a negligible effect

on the variability of the safety factor in this zon
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Figure 3.6: PDFsof the safety factoF for three values o whenuy=200kN
3.3.2. Variability of the system responses at SLS

Concerning the SLS, Figures (3.7a and 3.7b) pretemtPDFs of the footing
horizontal and vertical displacements for threéed#ént values ofiy whenuy=200kN. The
threeuy values correspond respectively to points Ds and 3 shown in Figure (3.5a).
Remember that point Dcorresponds to a load configuration where the Zootal
movement is predominant and poing &rresponds to a load configuration where the
vertical movement is predominant. However, poigtcDrresponds to a load configuration

where neither horizontal nor vertical movementredeminant.

For the footing horizontal displacement, Figure 7&3. indicates that the PDF
corresponding to point D(where the horizontal movement is predominant)ikash
slightly larger variability than that corresponditegpoint Iy (where the vertical movement

is predominant). For points;PDs and I3, the values of the standard deviation of the
footing horizontal displacement are respectivelyado 0.0021m, 0.0019m and 0.0018m.
For point D, the PDF is more spread out due to the large bititiaof H which has the
greatest contribution in the variability of the fog horizontal displacement in this zone
(see Table 3.5). In contrast, for poing, Bhe PDF is slightly less spread out because the

contribution ofH decreases in this zone (see Table 3.5, point L).
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For the footing vertical displacement, Figure (3.8bows that the PDF corresponding to
point Ds is more spread out than the PDF correspondingittt p,. For points R, Ds and

Ds, the values of the standard deviation of the faptivertical displacement are
respectively equal to 0.0015m, 0.002m and 0.003%ntice that the large variability ¢f
has no effect here becaudenas a negligible contribution in the variabiliti/tbe vertical
footing displacement for all loading configuratiofsee Table 3.5). This is to be expected
since the vertical footing displacement is maindused by. Thus, the increase in the
variability of this displacement from the zone afizontal movement predominance to the
zone of vertical movement predominance is due ¢oirtbrease of the contribution ¥fin
this variability as can be seen from Table (3.5).
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Figure 3.7: PDFsof the footing horizontal and vertical displacenseiatr three values of
My WhenﬂHZZOOkN

3.4. Parametric study

The aim of this section is to study the effecthod statistical characteristics of the random
variables (coefficients of variation of the randeariables, the types of the PDFs, and the
correlation coefficients between random variabtesthe PDFs of the system responses at
ULS and SLS. This study was carried out using teal Iconfiguration corresponding to

point N shown in Figure 3.1.
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3.4.1. Effect of the coefficients of variation@QOV9 of the random variables

The effect ofCOVsof the random variables on the PDFs of the thespanses (i.e.
the safety factorF, the footing horizontal displacemeati and the footing vertical
displacementv) is presented in Figures (3.7, 3.8 and 3.9) retspdy. The numerical
results of these figures have shown that the medurewof the different responses is not
affected by theCOVsof the random variables. Also, it was found thastih mean values
are those obtained deterministically using the mednes of the random variables. Thus,
the variability of the system responses is bettigressed herein by the coefficient of

variation (not the standard deviation) since thamealues are constant.
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Figure 3.7: Impact ofCOVsof the random variables on the PDF of the safety
factorF

Figure (3.7) shows that theOVsof ¢, ¢ and H have a non-negligible effect on the
variability of the safety factor. For instance, iaorease irCOV; andCOV, by 50% with

respect to their reference values (cf. Table ::1@uces an increase @OV of the safety
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factor by 9.1% and 14.8% respectively; on the otreerd, an increase @OV by 25%
with respect to its reference value (cf. Table :12jeases th€OV of the safety factor by

10.6%.

The variability of the footing horizontal displacent (Figure 3.8) was found to be very
sensitive to the€COV of the horizontal load componeht (an increase ICOVy by 25%
with respect to its reference value increases @@V of the footing horizontal
displacement by 61%), theOV of the remaining random variables being of nepl&i
effect. This is becausd has a significant contribution in the variabiliey the footing
horizontal displacement while the other randomalaes E, v andV) have a very small

contribution in the variability of this system resyse (see Table 3.5).

It should be noticed here that the PDFs in FigGt8)(present negative valuesdif This
is due to the large variability dfi (COW=40%) which may lead to either positive or
negative values dfl. A negative value ofl leads to a negative horizontal displacement of

the footing (i.e. in the opposite direction to thatresponding to the mean valua)f

In contrast to the variability of the footing havrztal displacement, the variability of the
footing vertical displacement is affected by @@V of the Young’'s moduluk and that of
the vertical load component (Figure 3.9). TheCOV of the Young’s modulus has the
greatest effect on the variability of the vertid@placement since an increaseCi®Ve by
33.3% with respect to its reference value increttse€0OV of the vertical displacement by
27.4%; however, an increase@®\, by 50% with respect to its reference value inaeas
the COV of this displacement by 22.1%. From these resatts,can observe that the input
parameters for which th€EOVsare of most significance on the variability of ystem
response are the same as those which have thetlaggeribution in the variability of this

system response (as obtained using Sobol indices).
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The effect of COVsof the random variables on Sobol indices was shimwhable

(3.6) in the case of ULS. This table shows thatiticecase in th€OV of a certain random

variable increases its Sobol index and decreaseSdol indices of the other variables.

This means that the increase in the coefficienvasfation of a certain random variable

increases its weight in the variability of the gystresponse and decreases the weights of

the other random variables. The same trend was\@isén the SLS analyses (Tables 3.7

and 3.8).

Table 3.6:Effect of the coefficients of variation of the ramd variablesq, ¢, H) on Sobol
indices at ULS where the system response is

Reference case
Sobol index (COV:=20%, cox cov COM
COV,=10% and
COVL=40%) 10% 30% 5% 15% 30% 50%
S(c) 0.1434 0.0389 0.27750.1765| 0.1072| 0.1860| 0.1156
Sp) 0.2531 0.2817 0.21320.0776| 0.4355| 0.3313| 0.2026
S(H) 0.6035 0.6794 0.50930.7459| 0.4573| 0.4827| 0.6818
Summation 1.00 1.00 1.0d 1.00 1.00 1.00 1.00

Table 3.7:Effect of the coefficients of variation of the ramd variablesk, v, V, H) on
Sobol indices at SLS where the system response is

Reference
case COW: Coyv, COW COV
(COVE=15%,
.S(?.bo' COV,=5%,
Inaices COV,=10%
and 10% 20% 2.5% 7.5% 5% 15% 300 500
COVy=40%)
S(E) 0.6438 0.4221| 0.7872 0.655(Q 0.6266 0.85h9 0.4497 0.65916406.
SW) 0.0191 0.0275| 0.0101 0.0046 0.0412 0.0263 0.0129 0.0[1940070@.
S(V) 0.3290 0.5379| 0.1983 0.3320 0.3250 0.1092 0.5349 0.3[1952910.
S(H) 0.0081 0.0125| 0.0044; 0.0084 0.0072 0.0086 0.0025 0.002006186.
Summation 1.00 1.00{ 1.00 1.00 1.00 1.00 1.00 1.00 1.00

-91-




CHAPTER 3

Table 3.8:Effect of the coefficients of variation of the ramd variablesk, v, V, H) on
Sobol indices at SLS where the system responiie is

Reference
case COW: Coyv, COW COV
(COVE=15%,
.S(?.bo' COV,=5%,
and 10% 20% 2.5% 7.5% 5% 15% 300 50%
COVy=40%)
S(E) 0.0559 0.0238| 0.1084 0.0561] 0.0555 0.0626 0.03Y75 0.1265053Q.
S(v) 0.0007 0.0008 | 0.0006 0.0001 0.0029 0.0008 0.0004 0.0017 0.0p04
S(V) 0.0072 0.0074| 0.0067 0.0073 0.0069 0.0013 0.0261 0.00890068.
S(H) 0.9362 0.9680| 0.8843  0.9365 0.9347 0.93b3 0.9360 0.86299396.
Summation 1.00 1.00{ 1.00 1.00 1.00 1.00 1.00 1.00 1.00

3.4.2. Effect of the correlation and the distributon type of the random variables

This section aims at investigating the effect o thstribution type of the input random

variables and the correlation between random vimsabn the statistical moments of the

system responses at both ULS and SLS. Two casesrafal and non-normal random

variables were considered at ULS and SLS. Also,

6oy = 0. pe, =0} or corelatedp,, = -05

temses of uncorrelated

= —0.5) random variables were also

considered at ULS and SLS. Tables (3.9, 3.10 aht)) 3how the effect of the correlation

and the distribution type of the random variablastlte statistical moments of the safety

factor, the footing vertical displacement and tbetihg horizontal displacement. These

tables indicate that the mean values of the thystem responses are very slightly affected

by both the correlation and the distribution typeh@ random variables. These tables also

show that the coefficients of variation of thesspenses decrease when the random

variables are negatively correlated.

The non-normality of the random variables seem$idoe a significant effect on the

coefficient of variation of a system response dolythe footing horizontal displacement.

This may be explained by the large variabilityrbfind the significant weight ¢ in the

variability of the footing horizontal displacemeisee the difference between the normal
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and log-normal distributions oH for COV=40% on Figure 3.10). Similarly to the

coefficients of variation of the system respondks, skweness and kurtosis are slightly

affected by the negative correlation and they aresisive to the distribution type of the

random variables especially for the footing hortabulisplacement. The same explanation

given above remains valid in this case.

Table 3.9:Effect of the PDF type of the random variablesg H) and the correlation
coefficient p_, on the statistical moments of the safety factor

Distribution type and correlation Mean Standgrd Cogfflplent of Skewnessg Kurtosis
deviation| variation (%)
Normal uncorrelated variables  1.495  0.251 16.789  24%. | -0.095
Normal correlated variables 1.493 0.226 15.126 D.1% -0.279
Non-normal uncorrelated | 4 545 | g 547 16.466 -0.131] 0.131
variables
Non-normal correlated variables1.501 0.221 14.747 -0.402 0.373
Table 3.10:Effect of the probability distribution type of thendom variablesq, v, H, V)
and the correlation coefficient. , on the statistical moments of the footing vertical
displacement
Mean Standard Coefficient
Distribution type and correlation deviation| of variation| Skewness| Kurtosjs
(m) 0
(m) (%)
Normal uncorrelated variables ~ 7x101.38x10°| 19.691 0.880 1.573
Normal correlated variables |  7x30 1.30x10°| 18.571 0.773 1.414
Non-normal uncorrelated | 7,153 | 1 39,1%| 10.898 | 0621 | 0.669
variables
Non-normal correlated variables  7x101.29x10°| 18.516 0.565 0.543
Table 3.11:Effect of the probability distribution type of thendom variables, v, H, V)
and the correlation coefficient. , on the statistical moments of the footing horizbnt
displacement
Mean Standard Coefficient
Distribution type and correlation deviation| of variation| Skewness| Kurtosjs
(m) 0
(m) (%)
Normal uncorrelated variables  3x101.85x10°| 57.40 1.030 1.957
Normal correlated variables 3x10 1.84x10°| 57.20 1.020 1.870
Non-normal uncorrelated | 5,153 | 5 1741¢3|  67.10 2598 | 11.707
variables
Non-normal correlated variables 3x102.16x10°| 66.50 2.543 | 11.048
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Figure 3.10: Comparison between :(()krNr)naI and log-normal distidioudf H.
Finally, it should be noticed that the coefficienft variation of the footing horizontal
displacement is considerably larger than that efftoting vertical displacement for the
same uncertainties of the input parameters (seke380b10 and 3.11). This means that the

footing horizontal displacement is a key paramétat should be carefully considered in

design since it is very sensitive to the input utase parameters.

4. Conclusion

This chapter presents a probabilistic analysis ah BJLS and SLS of the same
circular footing considered in chapter 2. In thigpter, a more efficient method called the
Collocation-based Stochastic Response Surface Mai8RSM) was used. The use of
this method allowed the evaluation of the contilutof each random variable in the
variability of the different system responses udimg PCE-based Sobol indices. Contrary
to chapter 2 in which only the soil uncertainty veasisidered, in the present chapter both
the soil and loading uncertainties were taken attoount in the analysis. The simultaneous
effect of these uncertainties on the optimal logdionfigurations at both ULS and SLS
was investigated. In addition, the effect of thpetyf the most predominant failure mode
on the variability of the different system respanses presented. Finally, a parametric

study showing the effect of the statistical pararsetf the random variables on the PDFs

of the different system responses was presentediaodssed.
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The general conclusions of this chapter can be sanmed as follows:

1 - For the ULS analysis

a)

b)

d)

A global sensitivity analysis using the PCE-basetidbindices has shown that the
vertical load componeri¥ has a negligible weight in the variability of teafety
factor and it can be considered as deterministic.

The optimal loading configurations obtained by gsthe deterministic analysis
were found similar to those obtained by using thebgbilistic approach when
considering only the soil uncertainties. This meiduas the optimal load inclination
does not depend on the uncertainties of the sainpaters. In this case, the optimal
loading configurations are situated on the lin@ijg the origin and the extremum
of the interaction diagram.

Although the deterministic approach was able toemieine the zones of
predominance of sliding and punching when consigeoinly the soil uncertainties,
it was not able to determine these zones when @ernisg the uncertainty of the
horizontal load component. The probabilistic apphoaas necessary in this case.
The uncertainty of the horizontal load compondmnivas found to slightly extend
the zone of sliding predominance in the interactiltegram with respect to that
obtained by the deterministic approach. This mehatcontrary to the variability
of the soil properties, the variability of the loa@imponents affects the optimal load
configurations.

The safety factorF was found to exhibit more variability for the load

configurations corresponding to the zone of sligingdominance.

2 - For the SLS analysis

a)

A global sensitivity analysis using the PCE-basetddbindices has shown that the

variability of the footing horizontal displacemeist mainly due to the horizontal
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b)

load component. On the other hand, the variabibfy the footing vertical

displacement was mainly due to the Young's modudusl the vertical load
component; the Young’s modulus being of larger Wweig

The zones of predominance of horizontal or vertscal movement at SLS were
found the same as the zones of predominance ahépsliding or soil punching at
ULS.

The footing vertical displacement was found to bkhiarger variability for the

load configurations corresponding to the zone efipminance of the vertical soil
movement. However, the footing horizontal displaeatmwas found to exhibit
larger variability for loading configurations cosponding to the zone of

predominance of the horizontal soil movement.

3 - Parametric study

a)

b)

The increase of the coefficient of variati@OV of a given random variable
increases the variability of the system respons$e rBndom variables for which
the COV has a significant effect on the variability of emn system response are
those (obtained using Sobol indices) which have ltéingest contribution in the
variability of this system response.

The increase IOV of a given variable increases its Sobol index @exteases the
Sobol indices of the other random variables. Theans that the increase GOV
of a certain random variable increases its weighthe variability of the system
response and decreases the weights of the othdomawariables.

The negative correlation between the random vasabhs a slight effect on the

coefficient of variation, skewness and kurtosishef different system responses.
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d) The non-normality of the random variables has digibte effect on the variability

of the safety factor and the vertical footing deés@ment. However, it has a
significant effect on the variability of the foogrhorizontal displacement.

For the same uncertainties of the input parametkescoefficient of variation of

the footing horizontal displacement is considerdbhger than that of the footing
vertical displacement. This means that the fookingzontal displacement is a key
parameter that should be carefully considered sigesince it is very sensitive to

the input uncertain parameters.
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CHAPTER 4

COMBINED USE OF THE COLLOCATION-BASED STOCHASTIC
RESPONSE SURFACE METHOD AND THE SUBSET SIMULATION
APPROACH FOR THE PROBABILISTIC ANALYSIS OF FOOTINGS

1. Introduction

The probabilistic approaches used in the previdwapiers (i.e. RSM and CSRSM)
are based on the approximation of the system regploy an analytical equation. It should
be emphasized here that when dealing with highlglinear response surfaces, these
methods lead to inaccurate solutions if one usesdaler polynomials and they become
very time-expensive when using a polynomial of kigbrder. The time cost becomes of
great concern in case of a large number of randamales because of the proliferation of
the number of unknown coefficients of the resposagace and consequently of the
number of calls of the deterministic model. On dtker hand, Monte Carlo Simulation
(MCS) methodology is well-known to be a rigorousl aobust tool to calculate the failure
probability P; even when dealing with highly nonlinear responséases. The accuracy of
MCS methodology does not depend on the shape gepmnse surface but it depends on
the number of simulations. It should be noticed MM&€S becomes very time-consuming
when computing a small failure probability. Thisdige to the large number of calls of the
deterministic model required in such a case. Asr@idttive to MCS methodology, the
Subset Simulation (SS) approach was proposed bwarAlBeck (2001) to calculate the
small failure probability using a much smaller nienbf calls of the deterministic model.
In this approach, the failure probability is exme$ as a product of conditional
probabilities of some chosen intermediate failwengs. Thus, the problem of evaluating a
small failure probability in the original probalbylispace is replaced by a sequence of more

frequent events in the conditional probability spac
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Notice that the SS approach is efficient in compytihe failure probability, but it
does not provide any information about the proligbdensity function (PDF) of the
system response (i.e. it does not allow one toop@rfan uncertainty propagation from the
input variables to the system output). Also, it sloet provide any information about the
contribution of each input uncertain parametehimmtariability of the system response (i.e.,
it does not allow one to perform a global sengifi@nalysis). In addition, the SS approach
does not allow one to calculate the design polrg (host probable failure point) which has
an important practical implication since it canus®ed to calculate the partial safety factor
corresponding to each input random variable. Torawee the above mentioned
shortcomings, the SS approach is combined herein the CSRSM. First, a classical
subset simulation computation is performed to dateuthe failure probability. Then, the
values of the system response obtained duringdbmsputation are used in a CSRSM
analysis with no additional cost to obtain the otbetputs cited above (i.e. uncertainty

propagation, global sensitivity analysis and religbbased analysis and design).

Since the aim here is to show the efficiency ofgh&posed procedure of combining
the SS approach with the CSRSM, a simple problemackiasen to illustrate this procedure.
In this problem a probabilistic analysis at thenoidtte limit state (ULS) of a strip footing
resting on ad, ¢) soil and subjected to an axial vertical loBgwas performed. A
deterministic model (with small computation timeyskd on the upper-bound theorem of
the limit analysis theory was used to calculatestygem response. The small computation
time of this model allows the validation of the posed procedure by comparison of its
results with those given by MCS methodology appbadhe original deterministic model.
In this chapter, the soil shear strength parameteasid ¢ are considered as random

variables. The system response considered in thiysas is the ultimate bearing capacity

Qu-
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The present chapter is organized as follows: Thsetusimulation approach is first
presented. Then, the extension of the SS appraapbkrform uncertainty propagation and
a global sensitivity analysis is described. Thilpwed by the probabilistic analysis of a
strip footing at ULS to illustrate the efficiencythie proposed procedure. The chapter ends

with a conclusion of the main results.

2. Subset Simulation (SS) approach

The basic idea of the subset simulation approathaisthe small failure probability
can be expressed as a product of larger conditfariate probabilities. Consider a failure
regionF defined by the conditio®<0 whereG is the performance function and (sf, ...,
S« ..., Sut) be a sample df; realisations of a vectés’ composed oM random variables. It

is possible to define a sequence of nested faieg®nsF, ..., Fj, ..., R, of decreasing

size whereF, U...00F 0..0F =F (Figure 4.1). An intermediate failure regiéi can be

defined byG<C; whereC; is an intermediate failure threshold whose vatuiarger than
zero. Thus, there is a decreasing sequence ofiyeositlure threshold€, ..., G, ..., Gy
corresponding respectively 1, ..., Fj,..., Fn whereC;>...>Cj>...> C=0. In the SS
approach, the space of uncertain parameters idativinto a numben of levels with equal
numberNsof realizationys,, ..., & ..., &9- An intermediate level contains a safe region
and a failure region defined with respect to a gif@lure thresholdC;. The conditional

failure probability corresponding to this intermatgi leve] is calculated as follows:

PF[FL) = 72 1 () @4.1)

s k=1
wherel_(§)=1if s U F, andl_(5)=0 otherwise. Notice that in the SS approach, tst fir

N realizations are generated using MCS methodologgrding a target PDP;. The next

Ns realizations of each subsequent level are obtaisedy Markov chain method based on
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Metropolis-Hastings (M-H) algorithm (explained imppendix F) according to a proposal

PDFP,.

Fu=F
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Figure 4.1: Nested Failure domain
The failure probabilityP(F)=P(Fy) of the failure regionF can be calculated from the
sequence of conditional failure probabilities dtofes:
P(F)=P (Fm)=P(Fm/Fm-)XP(Fm-1/Fm-2)XP(Fm-2/Fm-3X ... XP(F2/F1)XP(F1) (4.2)
This equation can be regarded as a system comgistim components (related to time
failure regionsFi, ..., Fj,..., Ry connected in parallel. Consequently, the failure

probability of the failure regiok is the intersection of all conditional failure pabilities

of the failure region§y, ..., Fj,..., Fn. Thus, the failure probability (F) is:

AR =R} F) (*3)
where
P, F) =R L X0 )= R ) @ B=..= RB[] Rff ) (4.4)

It should be noticed here that the computationhaf failure probabilityP(F) is
determined using alternatively one of the followitwgp procedures. The first procedure
consists in prescribing a sequenceCef ..., G,..., Gy so thatC>...>C;>...> C=0 and

then, calculating the different values B{F/F;.1) at the different levels using Equation

-101-



CHAPTER 4

(4.1). The second procedure consists in first pif@isg a constant conditional failure

probability P(Fj/F.1) for the different levels and then, in calculatthg differentC; values

corresponding to these levels. The valueCpbf level j is the one for which the ratio

between the number of realizations for wh8kC; and the number of realizatiohg of

this level (which is identical for the differentvigs), is equal to the prescribed value

P(Fj/Fj1). In this thesis and in Ahmed and Soubra (2012&)s#tond procedure is used.

Notice that, for simplicity in notations, the coast conditional failure probabilit (F/F;.1)

will be referred to app lateron. The algorithm of the SS approach can serdeed by the

following steps:

1-

Generate a realization of the vect®rof M random variables by MCS according to the
target PDHP;.

Using the deterministic model, calculate the systesponse corresponding to this
realization.

Repeat steps 1 and 2 until obtaining a prescringdber Ns of realizations of the
vector ‘s’ and the corresponding system response values. Téemuyate the

corresponding values of the performance function obtain the vector
G, ={G;,...Gy .G, }. Notice that the values of the performance fumcid the

different realizations are arranged in an increasirder in the vectoG,. Notice also
that the subscripts ‘0’ refer to the first leved\el 0) of the subset simulation.
Prescribe a constant conditional failure probabipg for all the failure regionds
(=1,..., m)and evaluate the first failure thresh&@gdwhich corresponds to the failure
regionF; whereC; is equal to th(Nxpg)+1] ™ value in the increasing list of elements
of the vectorGy. This ensures that the valueR(fF;) will be equal to the prescribey

value.
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5- Among theN;s realizations, there af®xpo] ones whose values of the performance
function are less tharC; (i.e. they are located in the failure regién). These
realizations are used as ‘mother realizations’ &negate additional[(1-po)Ng
realizations of the vectds’ using Markov chain method based on Metropolis-idgst
algorithm (see Appendix F). These new realizatiares located in the second level
(level 1 in Figure 4.1).

6- The values of the performance function correspantirthe realizations obtained from

the preceding step are listed in an increasingroadd are gathered in the vector of
performance function valuG, ={G;,...G;,....G,"} .

7- Evaluate the second failure thresh@igas the(Nexpo)+1] ™ value in the increasing list
of the vectoG;.

8- Repeat steps 5-7 to evaluate the failure thresH@id€,, ..., G, corresponding to the
failure regiond=3, F4, ..., Fn. Notice that contrary to all other thresholds, leet failure
thresholdC,, is negative. ThusC, is set to zero and the conditional failure probigbi

of the last leve]P(Fn/Fn-1)] is calculated as follows:

PEFrs)= o 21, (50) (4.5)

wherel_ (s )=1if the performance functioG(s) is negative ani| F (S.) =0 otherwise.

9- The failure probability?(F) is evaluated according to Equation (4.2).

3. Extension of the SS approach for uncertainty pneagation and global sensitivity
analysis
This chapter is devoted to employ the SS approaatompute not only the failure
probability but also the PDF of the system respoase the corresponding statistical
moments without an additional cost. This aim canabhieved by combining the SS

approach with CSRSM.
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It should be remembered here that in CSRSM, thenawk PCE coefficients are
determined by using the values of the system respaalculated at several collocation
points. Although the roots of the one-dimensionalrhite polynomials are generally used
for the determination of the collocation pointsukapalliet al. (1998), Isukapalli (1999),
Phoon and Huang (2007), Huaegal. (2009), Liet al. (2011), Mollonet al (2011)], this
technique is not mandatory. In this study, the coaipn between the SS approach and
the CSRSM is carried out by using the values ofsysem response obtained by the SS
approach for the determination of the PCE coeffisein the CSRSM. Thus, the

computation of the PCE coefficients requires noiteatthl calls of the deterministic model.

Once the PCE coefficients are determined, the M@Haodology is applied on the
obtained PCE. This allows one to obtain the PDRhef system response. It should be
emphasized here that in addition to computing tld- Bf the system response, the
proposed procedure has four other advantages:

1. The computed PCE coefficients can be used to periorglobal sensitivity analysis
based on the PCE-based Sobol indices describée ijpréeceding chapter.

2. Contrary to the SS approach, the procedure propasethis study allows the
computation of the failure probability for all thalues of the applied footing pressure
that are greater than the one considered in thara§sis without the need to repeat
the deterministic calculations (i.e. without an iiddal cost). This is because the limit
state surfaces corresponding to larger valueseofifiplied footing pressure are closer
to the origin of the standard space of random bégand thus, they are included in
the sampling zone of the SS methodology as widen later.

3. The obtained PCE allows one to perform a relighbsed analysis or a reliability-
based design (RBD). For the reliability-based asialythe Hasofer-Lind reliability

index and the corresponding design point can biyedstermined since the PCE is
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obtained in the standard uncorrelated space ofahdom variables. This is done by
searching the point which is located on the lintdttes surface and has the minimum
norm in the standard space of random variables. désign point is of great
importance since it provides information about pletial safety factors of the different
random variables. Concerning the RBD, the obtalR€&E makes it easy to compute
the dimension of the structure corresponding t@rget reliability index.

4. The obtained PCE allows one to undertake a prabaibiparametric study to show the
effect of the different characteristics of the ramd variables (e.g. coefficient of
variationCQOV, coefficient of correlatiop¢, and the non-normality) on the PDF of the

system response.

4. Probabilistic analysis of strip footings

In this section, the efficiency of the proposedgadure to compute the outputs cited
above is illustrated through an example problenthla example, a probabilistic analysis
of a shallow strip footing of breadb=2m resting on ac{ ¢) soil and subjected to an axial
vertical load P.=650kN/m (i.e. an applied uniform vertical pressuge 325kN/nf) is
performed. The analysis is carried out at the @tenimit state. The system response is the
ultimate bearing capacity,. The uncertain parameters considered in the aradys the
soil shear strength parameterandg. Two types of the probability density functiong ar
considered for these random variables (normal amdnormal as shown in Table 4.1). In
the case of non-normal random variables, the siesion was assumed to follow a log-
normal probability density function. However, thaildriction angle was assumed to be
bounded and to follow a beta probability densitydtion with lower and upper bounds of
0 and 48respectively. Also, two cases of uncorrelated gi,g=0) or correlated (i.eac 4~=-
0.5) random variables were also considered in tiadyais. The illustrative values used for

the statistical parameters of these random vasahie those commonly encountered in
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practice [Phoon and Kulhawy (1999) and Wolff (19&&pong others] and they are
presented in Table (4.1). These values will berreteto hereafter as the reference values.

Table 4.1: Statistical characteristics of the random variable

Type of the probability
Random Mean Coefficient of density function (PDF)
variable variation (%) Case of Case of non-
normal PDFS normal PDFs
C 20kPa 20 Normal Log-normal
) 30° 10 Normal Beta

The performance function used to calculate therfaiprobability is defined as follows:

G = (a/0a) -1 (4.6)
The ultimate bearing capacity is calculated using the deterministic model pressbivy
Soubra (1999). This model is based on the uppendapproach of limit analysis. It will

be briefly presented in the following subsection.

4.1. Deterministic model

The deterministic model is based on the upper-bdbhedrem of the limit analysis
theory using a kinematically admissible failure fmemsm. The approach is simple and
self-consistent and it obtains rigorous upper-bosmidtions in the framework of the limit
analysis theory. The failure mechanism used for t¢benputation is a translational

symmetrical multiblock mechanism (Figure 4.2).

d

Figure 4.2: Failure mechanism for ihe uliimate bearing capaaiiglysis
The bearing capacity is obtained by equating thed tate of work of the external forces to
the total rate of energy dissipation along thediné velocity discontinuities. The ultimate
bearing capacity (in the absence of a surcharg#ingaon the ground surface) is given as

follows:
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1
a, =EbeV +CN, 4.7)

in which b is the footing breadthyandc are the soil unit weight and cohesion afcand

N. are the bearing capacity factors due to the soijlnteand cohesion, respectively. The
coefficientsN, and N; are functions of the soil friction angle and the geometrical
parameters of the failure mechanism shown in Figdr2). The ultimate bearing capacity
of the foundation is obtained by minimization of uatjon (4.7) with respect to the
mechanism’s geometrical parameters. For furtheaildebn the failure mechanism, the
reader can refer to Soubra (1999). It should betioeed here that although the results
given by this approach are upper-bound solutidmsy fare the smallest ones against the
available results given by rigid block mechanisiatice also that the computation time of
the ultimate bearing capacity is equal to aboutndir2utes. The small computation time of
this model allows the validation of the proposedcedure by comparison of its results
with the results given by MCS methodology appliedtioe original deterministic model as
will be shown in the next section. Finally, notit®t the deterministic ultimate bearing
capacity (i.e. the ultimate bearing capacity olgdinsing the mean values@méndy given

in Table 4.1) is equal to 1071.72kNiriThus, for the adopteg}, value ¢.=325kN/nf), the

punching safety factdf,=q./da is equal to 3.3.

4.2. Validation of the proposed procedure by compason with MCS methodology

This section is devoted to the validation of thepgmsed procedure by comparison of
its results with those given by MCS methodology leggbon the original deterministic
model. The comparison involves the values of thiiria probability together with the
probability density function (PDF) and the statiati moments (mean, coefficient of

variation, skewness and kurtosis) of the systepomese.
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It should be mentioned here that, in order to dateuthe failure probability by the
SS approach, a Gaussian PDF was used as a taopabpity density functiorP; (i.e. it
was used to generate tNerealizations for the first level of the SS appigac€oncerning
the proposal probability density functiéty (which is used to generate the realizations of
levels 1, ...,j, ..., m), any PDF which can be operated easily can be aseal proposal
PDF since its type does not affect the efficientyhe SS approach (Au and Beck 2001).
In this study, a uniform PDF was used. The condéidailure probability pwas chosen to
be equal to 0.1. Notice that the valugoghffects the numbean of levels required to reach
the limit state surfac&=0. However, it has a very small effect on the totainber of
realizationsN; (which is a multiple of the number of levels iNg=mXxNg) required to reach
this limit state surface. I, is large, the sequence of failure threshdlds..., G, ..., G,
will decrease slowly and a large number of leveils e required to reach the limit state
surface. In this case, a small numbeof realizations per level will give a prescribadh
accuracy of thd®(F) computation. On the contrary, pf is small, the sequence of failure
thresholds will reach the limit state surface qlyicknd a small number of levels will be
required. In this case, a large numbkiof realizations per level will be required to atta
the same prescribed high accuracy of BifE) computation. As a conclusion, an arbitrary
value of po can be considered for the probabilistic analysithva small effect on the
computational time. Notice finally that the moddieMetropolis-Hastings algorithm
proposed by Santos al (2011) was used in this study to generate netizagions from

existing ones for the levels (1,2, 3, m), of subset simulation (see Appendix F).

Remember that the PCE order plays a key role iratlveracy of the approximation
by a PCE. The optimal PCE order was defined in ¢thipter as the minimal order that

leads to (i) a coefficient of determinati@f greater than a prescribed value (say 0.9999)
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and (ii) the convergence of the failure probabisityd the statistical moments of the system
response. The numerical results have shown thaitcadrder PCE is necessary to satisfy
the abovementioned conditions. Thus, this PCE owmdér be used in all subsequent

probabilistic calculations performed in this chapte

4.2.1. Validation in terms of failure probability Ps
To ensure a rigorous computation of the failurebptmlity by the SS approach, the
number of realizationBls to be used per level of SS approach must be grifitco provide

a small value of the coefficient of variati@OVp: of this failure probability. Figure (4.3)
shows the variation d@OVp; computed by SS approach with the number of readizeNs

to be used per level. For more details on the caatipm of COVp; by SS approach, one
can refer to Au and Beck (2003). Figure (4.3) shdthet COVp; decreases (i.e. the
accuracy of the calculation increases) with theaase ofNs. It attains a small value (about
10%) whenNs=10,000 realizations per level. Consequently, 10,0€4lizations were
considered at each level to calcul&eby the SS approach. The correspondtgalue
was found equal to 3.15xT0 Notice that 4 levels of SS approach were necessar
calculate this failure probability and thus, théat;mmumber of realizations required by the
SS approach i8=10,000+(3x9,000)=37,000 realizations. It shouldelbephasized here
that the high number of realizations (i.e. 37,088lizations) is due to the small value of
COVxs adopted in the computation. For practical purpoadsgher value o€OVs: would
be acceptable and thus, a smaller number of réialisawould be required. For instance, if
Ns=1,000 realizationsgCOVk; would be equal to 31.5% afgwould be equal to 2.56xT0
This means that fo€COVW=31.5%, the number of realizations is reduced by %ta
respect to the one correspondingCtOVe=10%; however, the difference in tRgvalue is

only 18.7%.
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Figure 4.3: Coefficient of variation oP; (calculated by SS approach) versus the number
of realizationd\s used per level

The P; value computed above (i.8=3.15x10% is to be compared with the value of
P=3.22x10" computed by applying MCS methodology on the orgideterministic
model. One can observe that the two values areclesg. Notice that 360,000 realizations
were used to calculate the failure probability bgplging MCS on the original
deterministic model to attain the sa@@®Vp; as that of SS (i.e. about 10% as may be seen
from Figure 4.4). This means that for the same @y the number of calls of the
deterministic model required by MCS to calculBfes reduced by 89.7% by using the SS

approach.
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Figure 4.4: Coefficient of variation oPs (calculated by applying MCS on the original
deterministic model) versus the number of realei

It should be noticed here that contrary to MCS métthogy which can be used to

compute the failure probabilities correspondingliféerent values of}, without repeating

-110-



CHAPTER 4

the deterministic calculations, the SS approaclowall one to calculate the failure
probability corresponding to only org value. If the failure probability corresponding to
anotherg, value is required, one needs to repeat all therahistic calculations. The
combination of SS approach and the CSRSM overconnieshortcoming. This means that
once a single SS computation (corresponding tov@ngj, value) is performed, it can be
used to accurately calculate the failure probabtibrresponding to ang, value larger
than the original one. The accuracy of this comjpartais ensured by the fact that all the
limit state surfaces corresponding to larggwvalues are included in the sampling zone of

the SS approach (see Figure 4.5).

4t /]\ | X
0,=325kN/nt

g Ji 2‘ I 2‘ tli &
Figure 4.5: Limit state surfaces cofresponding to differenuesl ofg, plotted in the
standard space of random variables

Table (4.2) presents a comparison between therdaguobabilities computed by the
proposed procedure (using a single SS computat@o) those calculated by MCS
methodology applied on the original deterministiodal for differentg, values. This table
shows a good agreement between the two methodsawitbximal difference of 11.53%.
This indicates that contrary to the SS approadahptiocedure proposed in this study allows
the computation of the failure probability for thalues of the footing pressure that are

greater than the one considered in the SS analysis.

-111-



CHAPTER 4

Table 4.2: Comparison between ttiailure probability computed by applying MCS on the
original deterministic model and that calculatedapplying MCS on the meta-model for
different values of the footing applied pressgye

Failure probability
0a (KN/m?) | MCS applied on the original MCS applied on the
deterministic model meta-model
325 3.22x10 3.15x10"
350 6.42x1d 5.68x10"
375 1.22x10 1.10x10°
400 2.34x10 2.10x10°
425 3.90x10 3.70x10°
450 6.41x10 6.16x10°
475 9.81x10 9.70x10°
500 1.46x10 1.44x10°
525 2.07x10 2.07x10°
550 2.83x10 2.88x10°
575 3.77x10 3.86x10°
600 4.88x10 4.93x10°
625 6.17x10 6.28x10°
650 7.66x10 7.73x10°
675 9.36x10 9.42x10°
700 1.11x1G 1.12x10"

4.2.2. Validation in terms of probability density unction (PDF)

Once the PCE coefficients are determined, the teiogy propagation can be
performed. The PDF, CDF and the statistical momehtise system response can be easily
determined by applying MCS methodology on the oletdiPCE (meta-model). In order to
validate these results, they were compared in Eg4.6a, 4.6b) and Table (4.3) with
those obtained by applying MCS on the original deieistic model using (as before)
360,000 realizations. These results show that tiera good agreement between the
proposed procedure and the classical MCS methodolmgplied on the original
deterministic model for both the central part ahe tail of the distribution of the PDF of
the system response. As a conclusion, the proppsszedure allows one to rigorously
determine not only the failure probability but alde statistical moments of the system

response with no additional calls of the deterntimisodel.
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Figure 4.6: Comparison between the PDF and CDF of the ultirbasging capacity
computed by applying MCS on the original deterntiaimmodel and those computed by
applying MCS on the meta-model

Table 4.3: Comparison between the statistical moments ofilfir@ate bearing capacity
computed by applying MCS on the original deterntiaimmodel and those computed by
applying MCS on the meta-model

Standard -
Mean L Coefficient of | .
2, | deviation o | Skewness Kurtosis
(KN/m°) (kN/m?) variation (%)
MCS applied on the original ; 5 55 419 50 36.46 1.06 | 1.82
deterministic model ' ' ' ' '
MCS appr']'neoddgln the metar; 150 60 418.30 36.35 105 | 1.78

4.3. Global sensitivity analysissia PCE-based Sobol indices

As mentioned previously, Sobol indices provide aasuee of the contribution of
each random variable to the variability of the sgstresponse. The Sobol indices of the
soil cohesiorSU; and the soil friction angl&U, were calculated and were found equal to
0.1025 and 0.8975 respectively. This means thatthie statistical moments of the input
uncertain parameters considered in this paper,stilefriction angle has a significant
weight in the variability of the ultimate bearingpacity. However, the soil cohesion has a
relatively small weight in the variability of thresponse. This conclusion is in conformity

with that found in chapter 3 using the CSRSM.
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4.4. Reliability index, design point and partial séety factors

As mentioned in chapter 1, the Hasofer-Lind religbindex Sy is a mean by which
the safety of a given geotechnical system is medsut represents the minimum distance
between the origin and the limit state surf&e0 in the standard space of uncorrelated
random variables. In this chapter, the computabibfly_ is performed by using the PCE.
Thepoint (¢, ¢') resulting from the minimization is called the iggspoint. It is the most

probable failure point corresponding to a giegivalue.

Table (4.4) presents the reliability index, theigespoint and the corresponding

partial safety factorsg =p_ / c F, = tan(u¢) / tarp” ) for differentas values. This table

also presents the punching safety fadtgrq./g. whereq, is the deterministic ultimate
bearing capacityg;=1071.72kN/m). Notice that all the results presented in Tadlg)
are obtained using only one SS computation (wherB25kN/nf). These results are
accurate since they correspondgtovalues larger than 325kNfnwhich means that the
corresponding limit state surfaces are includethénsampling zone. This is ensured by the
fact that the distance between the origin and @nthést collocation point in the standard
space of random variables @,=5.04. This distance is larger than all valuespaf
presented in this table. From Table (4.4), oneataserve that the increasedgnincreases
the values ot* andg* at the design point. However, the reliability imdend the partial
safety factord. andF, decrease with the increasegn This is to be expected since the
increase in the footing pressure decreases thénfpsafety and thus provides smaller
resistance factors. Notice that for the punchirfgtgdactorF,=3 which is generally used
in practice, the corresponding partial safety fexte and F, are respectively 1.34 and
1.44. These values are somewhat close to thosédpbby Eurocode 7 whef& andF,

are respectively equal to 1.4 and 1.25. Finallghibuld be emphasized that these results

could not be obtained using the SS approach sinise method does not provide an
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analytical expression of the system response @fithit state surface). They are obtained
with the use of the SS approach combined with tlénomial chaos expansion
methodology.

Table 4.4:Punching safety factoreliability index, design point and partial safégtors
for different values of the footing applied pressgy

Ga(KN/M?) | Fo=qulGa | L c*(kN/m?) 0*(°) == F,
325 3.30 3.48 14.51 20.04 1.38 1.58
350 3.06 3.25 14.88 20.67 1.35 1.53
357.24 3.00 3.19 14.98 20.84 1.34 1.51
375 2.86 3.04 15.23 21.26 1.31 1.48
400 2.68 2.84 15.56 21.81 1.29 1.44
425 2.52 2.65 15.86 22.35 1.26 1.40
450 2.38 2.48 16.14 22.84 1.24 1.37
475 2.26 2.31 16.39 23.31 1.22 1.34
500 2.14 2.16 16.63 23.76 1.20 1.31
525 2.04 2.01 16.85 24.18 1.19 1.29
550 1.95 1.88 17.06 24.58 1.17 1.26
575 1.86 1.75 17.25 24.96 1.16 1.24
600 1.79 1.62 17.43 25.33 1.15 1.22
625 1.71 151 17.59 25.67 1.14 1.20
650 1.65 1.39 17.75 26.00 1.13 1.18
675 1.59 1.29 17.90 26.32 1.12 1.17
700 1.53 1.19 18.05 26.63 1.12 1.15

4.5. Reliability-based analysis and design

Figure (4.7) presents two fragility curves in themal and semi-log scales. These
curves provide the variation of the failure proti&pwith the allowable footing pressure
Ja Where =P //(bxF,) when the random variables are non-normal and velebed (the
punching safety factdf, was taken equal to 3 in this study). These curaesbe used to
perform either a reliability-based design or aaaility-based analysis. Concerning the
RBD, if for example a strip footing is required gapport a service load of 500kN with a
prescribed failure probability of 0 from Figure (4.7b), the allowable footing pressis
equal tog.=125kN/nf. Consequently, the required footing breadth fareavice load of
500kN/m is b=P,/g,=500/125=4m. For the reliability-based analysis, uFég (4.7b)

provides the failure probability of a strip footirsgibjected to a given service load. For
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instance, if a footing of breadti=2m is subjected to a service loadRyE250kN/m (i.e.
subjected to an allowable pressure ggf250/2=125kN/rfy), the corresponding failure

probability is equal to 18
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Figure 4.7: Fragility curve in the case of uncorrelated nonamalrrandom variables
using a) normal scale and b) semi-log scale

Finally notice that only one SS calculation wasf@rened to compute the fragility curves
in Figure (4.7). This calculation corresponds te 8mallest value off,, However; for
larger g, values, MCS methodology was applied on the obthiR€E to calculate the
failure probability with no additional deterministcalculations. This demonstrates once

again the interest of the extension of the SS aupbr.o

4.6. Parametric study

The aim of this section is to investigate the dffecthe statistical characteristics
(coefficient of variationCOV, coefficient of correlatiop and the type of the probability
density function) of the random variables on theteay response (ultimate bearing

capacity).

4.6.1. Effect of the coefficients of variation@QOV9 of the random variables
This section presents the effect @OV, and COV, on (i) the PDF of the system

response and the corresponding statistical monagwtgii) the Sobol indiceSU; andSU,.
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Notice that, in order to investigate the effecC@V of a certain random variable, OV
is increased or decreased by 50% with respecs tieference value; however, GOV of

the other random variable remains constant.

Figures (4.8a and 4.8b) present respectively tleetedf COV, andCOV, on the PDF
of the system response. The corresponding valudiseo$tatistical moments are given in

Table 4.5. This table also provides the effed€6f\; andCOV, on the Sobol indices.

0.0006 T T a———— 0.001 T T T I T T
: N : : ---COV(c) =10 % b I ---COV(p)=5%
0.0005 1} — - -\ - -1 | T COV(e) =20 %] LW | —COVip)=10%
N : ------ COV(c) =30 % 0.0008”**7*7*\?***\” -~ COV(p) = 15 %
‘y—yi—Lyi [ |
0.0004+4 - - —4 - - W-——F-—q-——p-—- === A | 1 1
j ) I I 0.0006 B } 1
N | I w | |
% 0.0003] | | D | !
e | | a | |
] : : 0.0004 I I
0.00024 ~— 4~ -~ -\ F-—q---r--- -1 q 1
F | | :
I | 0.0002+ :
0.0001+4 AN : \¢-
) | | 0

0 600 1200 1800 2400 3000 3600 4200 0 600 1200 1800 2400 3000 3600 4200

au (KN/m?) au (kN/)

a. effect of CO\; b. effect of COV,,

Figure 4.8: Effect of the coefficient of variation of randomriables on the PDF of the
ultimate bearing capacity

From these results, one can observe @@V, has a negligible effect on the mean value,
skewness and kurtosis of the system response; lowavhas a small effect on the
variability of this response. For instance, an éase inCOV; by 50% with respect to its
reference value increases D@V of the system response by only 6.9%. Concer@ioy,,

it was found to have a significant effect on theamealue, skewness and kurtosis of the
system response. Also, similar to the results abthiin chapter 2, the variability of the
system response was found to be very sensitiveetovariability of the soil friction angle
(an increase €OV, by 50% with respect to its reference value inaedbeCOV of the

system response by 48.9%). One may observe thaaidem variable for which theOVv
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is of a significant influence on the variability thfe system response (i@.is the one that

has the greater value of Sobol index. Remember thetep has a Sobol index of 0.8975

while ¢ has a Sobol index of 0.1025 for the reference sts#ied before. Finally, Table

(4.5) shows that the increase@@©V of a given random variable increases its Sobatxnd

(i.e. its weight in the variability of the systemsponse) and decreases the Sobol index of

the other random variable. This means that theeas® in th&€€OV of a certain parameter

increases its weight in the variability of the gystresponse and decreases the weight of

the other parameter in the variability of this @sge. These observations agree well with

the results obtained in chapter 3 of this thesis.

Table 4.5: Effect of the coefficients of variation of the sodhesion COV;) and the soil
friction angle COV,) on the statistical moments of the ultimate bepgapacity and on
Sobol indices

Mean | Standard| Coefficient Sobol indices
COV% Value of | deviation | of variation | Skewness| Kurtosis
0)
O of qu of qu of qu of qu SU. su,
(KN/m?) | (kN/m?) (%)

~ 10 | 1151.05 402.21 34.94 1.04 1.75 0.0278 0.9]722
O S| 20 | 1150.60, 418.30 36.35 1.05 1.78 0.1025 0.8975
© 30 | 1149.08 446.52 38.86 1.10 1.98 0.2030 0.7970
= 5 1091.51 225.00 20.61 0.56 0.56 0.330 0.6680
O S| 10 | 1150.60, 418.30 36.35 1.05 1.78 0.1025 0.8975
O 15 | 1256.11 680.05 54.14 1.51 3.66 0.0431 0.9569

4.6.2. Effect of the correlation and the distributon type of the random variables

Figure (4.9) shows the effect of the correlatiod #me non-normality of the random

variables on the PDF of the ultimate bearing cdpaand Table (4.6) shows the

corresponding statistical moments. These resuligcate that the mean value is very

slightly affected by both the correlation and trenimormality of the random variables.

The results also indicate that both assumption:af-normal variables and negative

correlation between these variables slightly dessrdhe variability of the system response.

For instance, the assumption of non-normal randanebles decreases tiBOV of the
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system response by 1.9% and 4.7% respectivelydoelated and uncorrelated random
variables. On the other hand, the negative coroelalecreases th€OV of the system

response by 4.5% and 1.8% respectively for thescas@ormal and non-normal random
variables. Concerning the skewness and kurtosi®y, were found to decrease with both
the negative correlation and the assumption of mmmal random variables. As a
conclusion, these results indicate that the casewohal uncorrelated random variables is
conservative since it provides the largest varighdf the ultimate bearing capacity. This

conclusion is in conformity with that obtained imapter 2 of this thesis.

0.0006 -
--- Normal uncorrelated random variables

A | Normal correlated random variables
/ .
0.0005+ - - - = #= \ —— Non-normal uncorrelated random varialjles
W —-—- Non-normal correlated random variable
A\l

0.00044

0.0003+

PDF

0.0002+

0.00014

0 T T 1 : T T
0 600 1200 1800 2400 3000 3600 4200
au (KN/m?)
Figure 4.9: Effect of the correlation between random varialled the type of the
probability density function of these variablestba PDF of the ultimate bearing capacity

Table 4.6:Effect of the correlation between the random vaesland the type of the
probability density function of these variablestba statistical moments of the ultimate
bearing capacity

N ' Mean Sta_ndgrd Coeff!cignt
Tyae of _the probability d_ensny valueofq, deviation |of variation Skewnesd Kurtosis
unction and correlation (kN /mz) of qu of qu
(kN/m?) (%)

Normal uncorrelated variables| 1150.51 438.75 38.14 1.28 2.69
Normal correlated variables 1151.09 419.11 36.41 960. 1.58
Non-normal uncorrelated variables1150.60 418.30 36.35 1.07 1.78
Non-normal correlated variables 1150.53 410.85 B5.Y 0.96 1.43

5. Conclusion
This chapter presents an efficient procedure thawa one to increase the number of
the probabilistic outputs of the SS approach wadtadditional time cost. In this procedure,

the SS approach was combined with the Collocatesedl stochastic response surface
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method (CSRSM). The combination was carried outising the different realisations of

random variables generated by the SS approachv(fmh the system response values are

already computed by the SS approach) as collocpborts in the CSRSM. This procedure
was illustrated through the probabilistic analyi®JLS of a strip footing resting on e, )
soil and subjected to a vertical lo&d. The shear strength parameterand ¢ were
modeled by random variables. The ultimate bearagacityq, was used to represent the
system response. In addition to the failure prdiigliomputed by the SS approach, the
proposed procedure provided the PDF of the ultirba&ring capacity with no additional
calls of the deterministic model. Moreover, it pided the Sobol indices to evaluate the
contribution of each random variable to the valigbpf the ultimate bearing capacity.

Finally, the failure probabilities corresponding Rgvalues greater than the original one

used in the SS computation were easily calculaié@. main results obtained from the

numerical example can be summarized as follows:

1- The PDF of the ultimate bearing capacity andcasesponding statistical moments, as
determined by the proposed procedure, have shownod agreement with those
obtained by applying MCS methodology on the origdeterministic model.

2- The failure probabilities computed by the praabgrocedure and correspondinggto
values larger than the original one used to perfar8S computation agree well with
those computed by applying MCS methodology on tigaral deterministic model.

3- The global sensitivity analysis based on the @ged Sobol indices has shown that the
soil friction angle has a significant weight in thkariability of the ultimate bearing
capacity §,=0.8975); however, the soil cohesion has a relatigetall weight in the
variability of this response(=0.1025). This conclusion is valid for the valuesttod
soil uncertainties considered in this thesis wiaththe ones frequently encountered in

practice for ag, ¢) soil.
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4- The increase in the footing pressggéncreases the values ofindg at the design point.
However, the reliability indeg.. and the partial safety factdfg andF, decrease with
the increase in the footing pressure. This is teekgected since the increase in the
footing pressure decreases the safety of the goilrfg system.

5- A fragility curve which can be used to perforither a reliability analysis or a reliability
based design of the strip footings was presentedc€ning the reliability analysis,
this curve provides the failure probability of afstfooting subjected to a given service
load. For the reliability-based design, it allowmseoto calculate the footing breadth
required to support a given service load for adafgilure probability.

6- A parametric study has shown that:

a) The increase IOV, considerably increases the variability of the eystesponse;
however, the increase GOV, has a small effect on this variability.

b) The random variable for which theOV is of a significant influence on the
variability of the system response (i®. is the one that has the greater value of
Sobol index.

c) The increase IrCOV of a given random variable increases its Soboéxndnd
decreases the Sobol index of the other random hlaridhis means that the
increase in the COV of a certain parameter inciedsaveight in the variability of
the system response and decreases the weight offttileparameter.

d) The variability of the system response was founddorease with the assumption
of non-normal variables with respect to the casenofmal variables. This
variability also decreases when considering negatmrelation between random

variables as compared to the case of uncorrelatedbles.
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CHAPTER 5

PROBABILISTIC ANALYSIS OF FOOTINGS RESTING ON A
SPATIALLY VARYING SOIL USING SUBSET SIMULATION (SS)
APPROACH

1. Introduction

The probabilistic analysis of geotechnical struesupresenting spatial variability in
the soil properties is generally performed using nkdo Carlo simulation (MCS)
methodology. This methodology is not suitable foe tcomputation of a small failure
probability because it becomes very time-expensigich a case due to the large number
of simulations required to calculate the failurelgability. For this reason, only the mean
value and the standard deviation of the systemorespwere extensively investigated in
literature. Au and Beck (2001) proposed the sulssetulation (SS) approach as an
alternative to MCS methodology to calculate the Isfadlure probabilities. Except Aet
al. (2010) and Santost al (2011) who applied the SS approach to one-dimeasi(1D)
random field problems, the SS method was mainljiegpn literature to problems where

the uncertain parameters are modeled by randorables.

In the present chapter, the subset simulation ndeisoemployed to perform a
probabilistic analysis at the serviceability linstate (SLS) of a rigid strip footing resting
on a soil with a two-dimensional (2D) spatially yiag Young’'s modulus and subjected to
an axial vertical load @ Notice that most previous studies that considi¢ne soil spatial
variability have modeled the uncertain parametgrssbtropic random fields [e.g. Fenton
and Griffiths (2003), Popesat al. (2005), Griffithset al (2006), Sivakumaet al. (2006)
and Soubrat al (2008) at ULS and Fenton and Griffiths (2002, 208nd Fentoret al
(2003) at SLS]. However, due to the layered natfrsoils, their parameters generally

exhibit a larger autocorrelation length in the hontal direction compared to that in the
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vertical direction. Thus, the Young’'s modulus isnslered herein as an anisotropic
random field. The Karhunen-Loeve (K-L) expansiomsed to discretize the random field.
The deterministic model employed for the computatb the system response is based on
numerical simulations using the commercial softwatAC*’. It should be emphasized
here that the soil spatial variability causes unefgoting displacement. Due to its high
rigidity, the footing undergoes a linear verticaplacement. Thus, the average value of
the footing vertical displacement is consideredelmeto represent the system response.

This average is equal to the vertical displaceméttie footing center.

After the presentation of the method of computatbthe failure probability by the
SS approach in the case of a random field probtam probabilistic analysis of a strip
footing resting on a spatially varying soil and tt@responding results are presented and

discussed. The chapter ends with a conclusion.

2. Method of computation of the failure probability by the SS approach in case of a
spatially varying soil property
As mentioned previously, this chapter aims at eyiptpthe SS methodology for the
computation of the failure probability in the cagka spatially varying soil property
modeled by a random field. The random field wasréigzed in this chapter using the K-L
expansion. In order to calculate the failure pralitstba link between the SS approach and
the K-L expansion was performed. It should be emjzea here that the K-L expansion

includes two types of parameters (deterministic stodhastic) as follows:
M

E(X.8) = te + 2 JAG(X)E(D) (5.1)
i=1

The deterministic parameters are the eigenvalues eagenfunctionsi; and ¢ of the

covariance function. The role of these parametets iensure the correlation between the
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values of the random field at the different poiitsthe space. On the other hand, the
stochastic parameters are represented by the veftdhe standard normal random

variable:{&}.., ,, . The role of these parameters is to ensure the random nature of the

does not affect the correlation structure of the random field.

The basic idea of the link is that for a given random field reaisatbtained by K-L

centers of the different elements of the deterministic mesh accordihgitaoordinates.

The second step is to use the deterministic model to calculate rilespmnding system

response. The algorithm of the subset simulation approach in casspatially varying

soil property is an extension of the algorithm presented ipté&@ous chapter. It can be
described as follows:

1. Choose the numbev of terms of K-L expansion. This humber must be sufficient to
accurately represent the target random field.

2. Generate a vector o) standard normal random variables{...,&, ...,&u} by direct
Monte Carlo simulation.

3. Substitute the vector&, ..., &, ..., &} in the K-L expansion to obtain the first
realisation of the random field. Then, use the deterministic modehltulate the
corresponding system response.

4. Repeat steps 2 and 3 until obtaining a prescribed nuiber realisations of the

random field and their corresponding values of the system respdresg. 8valuate the
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corresponding values of the performance function to obtain the vE&gtawhere
G, ={G,...G;,...G°}. Notice that the values of the performance function of the

different realizations are arranged in an increasing order in the v@gtdiotice also
that the subscripts ‘0’ refer to the first level (level 0) of the sufisatlation approach.

5. Prescribe a constant intermediate conditional failure probalpdityor all the failure
regionsF; (j=1, 2, ...,m) and evaluate the first failure thresh@dwhich corresponds
to the failure regiorF; whereC; is equal to thé(Nsxpo)+1]™ value in the increasing
list of elements of the vect@,. This ensures that the value BffF;) will be equal to
the prescribeg value

6. Among theNs realisations, there af®xpy] ones whose values of the performance
function are less tharC; (i.e. they are located in the failure regiéin). The
corresponding vectors of standard normal random variables.{, &, ..., &u} of these
realisations are used as ‘mother vectors’ to generate addif{drpd)Ng vectors of
standard normal random variables{...,&, ...,&u} using Markov chain method based
on Metropolis-Hastings algorithm. These new vectors are substitut the K-L
expansion to obtain the random field realisations of level 1.

7. The values of the performance function corresponding to the realisafitexel 1 are
listed in an increasing order and are gathered in the vector of performaterfun
valuesG, ={G},...,G/,....G*} .

8. Evaluate the second failure thresh@igas the(Nsxpo)+1]" value in the increasing list
of the vectoiG;.

9. Repeat steps 6-8 to evaluate the failure thresHoid€,, ..., G, corresponding to the
failure regiond=3, F4, ..., R Notice that contrary to all other thresholds, the last failure
thresholdC,, is negative. ThusC, is set to zero and the conditional failure probability

of the last leveP(Fy/Fn.1) is calculated as:
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P(F,|F.1)= Niz e (8) (5-2)

wherel_ =1 if the performance functioB(s) is negative anl_ =0 otherwise.

10.Finally, the failure probability?(F) is evaluated as follows:
P(F) = PR R FIF.) (5.3)
=

It should be mentioned that, a normal PDF was used hereinaaged probability
density functionP,. However, a uniform PDF was used as a proposal probability gensit
function P,. The intermediate failure probabilify, of a given level (=1, 2, ...m) was
chosen equal to 0.1. It should also be mentioned that th&iedoMetropolis-Hastings
algorithm proposed by Santosbal (2011) was used in this chapter. Remember that this
algorithm is presented in Appendix F. The next section istéeMto the presentation of the
probabilistic analysis of strip footings resting on a spatadlgying soil using the subset

simulation approach.

3. Probabilistic analysis of strip footings

The probabilistic analysis of shallow foundations resting opadialy varying soil
has been extensively considered in literature [e.g. Fenton and Grif2@®3), Pula and
Shahrour (2003), Popesetial (2005), Griffithset al (2006), Sivakumaet al. (2006) and
Soubraet al. (2008) at ULS and Fenton and Griffiths (2002, 2005) and Feattah (2003)
at SLS]. These authors have used MCS methodology to performaibabgistic analysis.
In these studies, the mean value and the standard deviattbe ef/stem response were
extensively investigated. This was not the case for the failure phijpdiecause MCS
methodology requires a large number of calls of the deterncimstidel to accurately

calculate a small failure probability.
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This chapter presents a probabilistic analysis at SLS of a strimdo@sting on a
spatially varying soil using the SS approach. The objeasvéhe computation of the
probability P of exceeding a tolerable vertical displacement under a prescribed footing
load. A footing of breadth=2m that is subjected to a central vertical |&ad1000kN/m
(i.e. an applied uniform vertical pressugg=500kN/nf) was considered in the analysis.
The Young's modulus was modeled by a random field and it veasresd to follow a log-
normal probability density function. The mean value and the cosfti of variation of the
Young’'s modulus were respectivelye=60MPa and COV=15%. An exponential
covariance function was used in this study to represent the correttiorture of the
random field. The random field was discretized using K-L expansidthough an
isotropic random field is often assumed in literature [e.g. FentdrGaiffiths (2002, 2005),
Fentonet al (2003)], the vertical autocorrelation length tends to be shdnter the
horizontal one due to the geological soil formation process fat matural soil deposits
(Cho and Park 2010). A common ratio of about 1 to 10 for these@utlation lengths
can be used (Baecher and Christian 2003). Notice however that chpter, other values
of this ratio were studied and analyzed in order to explore soeresting features related
to the autocorrelation lengths.

The performance function used to calculate the probabiityof exceeding a
tolerable vertical displacement was defined as follows:

G=0VmaxoV (5.4)
wheredvmax IS a prescribed tolerable vertical displacement of the footing centefvaisd

the vertical displacement of the footing center due to the applesdyra..

3.1. Deterministic model
The deterministic model used to calculate the footing vertical alisplientyv was

based on the commercial numerical code FEAGor this calculation, a footing of width
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b that rests on a soil domain of widBhand deptiH was considered in the analysis (Figure
5.1). In contrast to the case of random variables where only onefhak soil domain
(and consequently one-half of the footing) shown in Figure (5d}) Ime considered in the
analysis, the entire soil domain shown in Figure (5.1) was derel herein. This is
because the random field creates non-symmetrical soil movement. ikrabpon-uniform
but symmetrical mesh composed of 750 zones was employed. 83tewas refined near
the footing edges where high stress gradient may occur. Fordpkaatiment boundary
conditions, the bottom boundary was assumed to be fixechangettical boundaries were
constrained in motion in the horizontal directions. AlthoaghSLS analysis is considered
herein, the soil behavior was modeled by a conventional elasfiegtly plastic model
based on Mohr-Coulomb failure criterion in order to take into acctomtpossible
plastification that may occur near the edges of the foundation exkar the service loads.
On the other hand, the strip footing was modeled by a linaati@model. It is connected
to the soilvia interface elements. The values of the different parameters of the sorgfooti

and interface are given in Table (5.1).

b
—

3b

B=7.%

Figure 5.1: Soil domain and mesh used in the numerical simulations
In order to calculate the footing vertical displacement for a giverorarfeld realisation,
(i) the vertical and horizontal coordinates of the center of each elemdrg ofdsh were

calculated; then, the K-L expansion was used to calculate the valtiee ofoung’'s

-129-



CHAPTER 5

modulus at the center of each element, (ii) geostatic stresses werel apphe soil, (iii)
the obtained displacements were set to zero in order to obtain theyfdisplacement due
to only the footing applied pressure and finally, (iv) the unifa@ntical pressure was
applied to the footing and the vertical displacement at thenfpatentre due to this
pressure was calculated.

Table 5.1: Shear Strength and Elastic Properties of Soil, Footing, anddogerf

Variable Soil Footing | Interface
C 20kPa N/A 20kPa
@ 30° N/A 30
w=2[3¢p 20° N/A 20°
E 60MPa 25GPa N/A
vV 0.3 0.4 N/A
Kn N/A N/A 1GPa
Ks N/A N/A 1GPa

3.2. Probabilistic numerical results

This section aims at presenting the probabilistic numerical re$uissorganized as
follows: (i) the minimal numbemM of terms of K-L expansion corresponding to a
prescribed accuracy was determined, (ii) the optimal number of reatishlti per level of
the SS approach was selected, (ii) a parametric study to investigateffect of the
horizontal and vertical autocorrelation lengths of the random &aldl its coefficient of
variation onP, was presented and discussed and finally, (iv) reliability-basedndesid)

analysis of strip footings based on some fragility curves wasepted and discussed.

It should be mentioned that all subsequent probabilistic seatdtpresented based on
non-dimensional horizontal and vertical autocorrelation lenigthsLiny whereL, =l in /b
and Lin y=lin y/b. In these expression, x and |, y are respectively the horizontal and
vertical lengths over which the values of the log-elastic modulusiginéy correlated. The
non-dimensionality ot, vandL,ywas found to be valid only when the ratio between the

depthH of the soil domain and the footing width(i.e. H/b) is constant/b=3 in the
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present case). Concerning the bredlthf the soil domain, it was found to have no effect

on thePe value.

3.2.1. Optimal size of K-L expansion

As is well-known, the accuracy of the approximated random fieldriipon the size
of the K-L expansion (i.e. the number of termM} Figure (5.2) presents the error estimate
of the approximated random field for the most critical configuratadris, x andL, y used
in this chapter, i.e. for those requiring greater number of ternhe i1 expansion. These
configurations correspond toL|{,=5 andL,,=0.25) and I(i» ,=2.5 andL,,=0.5)] in case

of anisotropic random field andLi,=Lny=0.5) and (inx=Lny=1.5)] in case of isotropic

random field.
80 T T i i ; ; !
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70 W‘P\.i:iiii: 777777777777 Lin,x=2.5 and by y=0.5
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Figure 5.2: Error estimate versus the number of eigenmodes for different valugsand
LinywhenH/b=3

Figure (5.2) indicates that the error estimate decreases with tleasecin the number of
terms of the K-L expansion. From this figure, #=100 terms, the error estimate is less
than 13% for the previously mentioned cases except for the caself, ,=0.5 where

M = 500 terms are required to obtain such a small error. Notice that the coribgsrat
used herein correspond it « andLny values equal to or greater than the aforementioned
configurations. As a conclusion, the number of terms of the K-lamsipn will be set to

M=100 terms for all the probabilistic calculations presented in ttapteh except for the
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case of the isotropic random field whiep, andL,y are less than 1.5 wheké will be set
equal to 500 terms. This ensures that for all the configuratiomsd=yed in this chapter,

the error will be less than 13%.

3.2.2. Selection of the optimal number of realisatins Ns per level of SS approach

The number of realisationds to be used per level of the SS approach should be sufficient
to accurately calculate tHe, value. This number should be greater than 100 to provide a
small bias in the calculateB. value (Honjo 2008). In order to determine the optimal
number of realisations to be used per level, different valued\af(50, 100, 150, 200 and
250 realisations) were considered to calcufateA random field withL, ,=5 andL;,,=0.5
(called hereafter the reference case) was considered herein. Notice that the failure
threshold<C; of the different levels of the subset simulation were calculated asemted

in Table (5.2) for the abovementioned valuesdNgf This table indicates that the failure
threshold decreases with the successive levels until reaching aveegaltie at the last
level which means that the realisations generated by the subsdatsm successfully
progress towards the limit state surfage0. Table (5.3) presents th& values and the
corresponding values of the coefficient of variation for the differentb®r of realizations

Ns. As expected, the coefficient of variation Bf decreases with the increase in the
number of realizationhl.

Table 5.2:Evolution of the failure thresholg; with the different levelg of the SS
approach and with the number of realisatibigper level

Failure threshold; Number of realisationils per level
for each levej 50 100 150 200 250
C 0.0086 0.0077 0.0080 0.0076 0.0076
C 0.0058 0.0048 0.0050 0.0041 0.0040
Cs 0.0044 0.0015 0.0019 0.0011 0.0011
Cy 0.0017 -0.0019 -0.0007 -0.0020  -0.0018
Cs -0.0015 - - - -
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Table 5.3:Values ofP.andCOVe, versus the numbés of realizations per level

Number of realisationN; per level
50 100 150 200 250
Pex(107) 0.34 4.60 2.07 3.78 3.77
COVee 0.92 0.71 0.60 0.51 0.38

For eachNs value,P. computed by SS approach was compared to that obtained by MCS
methodology usindN=20,000 realisations. The comparison was carried out in Figure (5.3)
at the different levels, i.e. at the different failure thresi@ldf the SS approach. Notice
that for a giverNsvalue, the computation d¥. at a given leve] of the SS approach is
performed by using Equation (5.3) with the appropriate numbéevels. On the other
hand, in order to calculat at this level by MCS methodology, the performance function
is set equal to the corresponding failure threst@ldin this case, the failure region is
defined byG<C; and the safety region is defined GyC;. Thus, the value d?. at a given

levelj can be calculated as follows:
1 N
P(F,) Nz (G) (5.5)

where Gy is the value of the performance function corresponding to fhedisation of

MCS with I =1if G< Cj and|_=C otherwise.

Figure (5.3a) shows that for the case whdge50 realisationsPe calculated by the SS
approach is different from that computed by MCS methodology foditfexent levels of

the SS approach. This observation is in conformity with themmesendation by Honjo
(2008) who suggested that thNg value should be at least equal to 100. The difference
between theP. values calculated by the SS approach and those computed by MCS
becomes smaller for largés values (Figures 5.3b, 5.3c, 5.3d and 5.3e). For the cases
whereNs>200 realisations (Figures 5.3d and 5.3e), the failure probabititiesilated by
subset simulation were found to be very close to those dechipzy MCS methodology for

the different levels of the SS approach. Consequemly,200 realisations will be
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considered in the subsequent probabilistic calculations. Irc#isis, the finaP. value (i.e.
P(Fm)) which corresponds t6=0 was equal to 3.78x10 This value is to be compared to
the value of 3.8x10 given by MCS. It should be mentioned here that, spgagas chosen
to be equal to 0.1, 4 levels of subset simulation were founessary to reach the limit
state surfac&=0 as may be seen from Table (5.2). Therefore, vilheR200 realisations, a
total number of realisatior’$;=200+180x3=740 realisations were required to calculate the
final Pe value. In this case, theéOV of P, computed by SS is equal to 0.51. Notice that if
the same value o€OV (i.e. 0.51) is desired by MCS to calculd®g the number of
realisations would be equal to 12,000. This means that, fosaime accuracy, the SS
approach reduces the number of realisations by 93.8%. On théhatitt if one uses MCS
with the same number of realisations (i.e. 740 realisations), the @&4COV of P, would

be equal to 1.89. This means that for the same computational #ff@r6S approach

provides a smaller value &OVp. than MCS.

Although the computation time of the 20,000 realisations WySMs significant
(about 70 days), this number of realisations remains insufficeeassure an accuraig
value with a small value &0OVp.. The COVpe for 20,000 realisations by MCS was found
about 0.4. As an alternative approach, one may determine theabptynvalue by
comparing thd>. values given by subset simulation for increas\agalues. The\s value
beyond whichP, converges (i.e. slightly varies with the increasdNgfis the optimalNs
value. In the present analysis, it was found fatonverges wheiNs=200 realisations.
This is because the fin&. values (corresponding t€=0) are respectively equal to
3.78x10" and 3.81x10 for Ns=200 and 250 realisations. The corresponding values of
COWeeare equal to 0.51 and 0.43 which indicates (as expected) th@O¥a decreases

with the increase in the number of realisations. As a conclusisnalternative procedure
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is recommended to determine the optilNalalue for the probabilistic analysis based on

the SS approach.
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Figure 5.3: Comparison between tli values obtained by subset simulation and those
obtained by MCS for five values df (0Vma/b=2x10% andg,=500kN/nf)
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3.2.3. Parametric study
In this section, a parametric study is performed to investifp@esffect of the soil
variability (coefficient of variation and autocorrelation lengthshef Young’s modulus) on

thePe value.

Figure (5.4) shows the effect of the autocorrelation lengtRean the case of an isotropic
random field. This figure also shows (for the same value of the coeffaieariation) the
value of Pe corresponding to the case of a homogeneous soil. In this Paseas
calculated based on the assumption that, for a given realisation,etanknt of the
deterministic grid was affected the same random value of the Young'slusog.e. the
Young's modulus was modeled as a random variable and not as anréiett). Figure
(5.4) indicates that the increase in the autocorrelation lehgtl= (L y) increases thee
value. However, the rate of increase gets smaller for the large valuesanitdicerrelation
lengths (whenLi, x=Lin y>50) to attain an asymptote corresponding to the case of a
homogeneous soil (see Figure 5.5a). Remember that in the casenobgeine@ous soil, the
Young’s modulus is randomly chosen (for each realisation) from a PBRhas, it may
vary in a wide range which results in some realisations with smahle of the Young’s
modulus. These realisations lead to high values of the fooengal displacement and
thus, they lead to a high probability to exceed the tolerabknfpeertical displacement.
On the other hand, for small values of the autocorrelation lemgth, obtains a soll
heterogeneity which results in a variety of values of the Youngtuias in the entire soll
domain (Figure 5.5b). In this case, the soil under the footintasts some zones with high
values of the Young’s modulus and other zones with small valiug® Young’s modulus

(i.e. a mixture of stiff zones and soft zones). Due to the fugting rigidity, the footing
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displacement is resisted by the stiff soil zones under it; theaibzones under the footing
being of little effect in this case. This leads to a small valueheffboting vertical
displacement and consequently to a small probability of exceedingéiscribed tolerable
footing vertical displacement. This phenomenon is most fgggni for the very small

values of the autocorrelation length.

1000000

100000+

10000+

1000

P (x107)

100 -

10 4

1

0 ;0 éO 50 ;O EO ‘60 ‘70 ‘80 ‘90 100
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Figure 5.4: Effect of the autocorrelation length opiR case of an isotropic random field
(Vma/b=2x107 andg.=500kN/nf)

As a conclusion, for a given value of the coefficient of variationgetiog the Young’s
modulus as a random variable rather than a random field is conserygéwton and
Griffiths 2002, 2005). This is because the settlement predicted valssoming a
homogeneous soil may be much larger than that of a real soNHich the parameters

vary spatially.

a.Lin x=Liny=100 b.Linx=Liny=0.1
Figure 5.5: Grey-scale representation of the random field for two values of the
autocorrelation length in case of an isotropic random field

In order to investigate the effect of the anisotropy of the randefd, fP. was

computed and plotted versus the non-dimensional horizontal emiday autocorrelation
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lengths Lin x and Lin y) in Figures (5.6 and 5.7) respectively. Both figures show Fhat
presents a maximum value at a certain ratidef to Li, y. This observation can be

explained as follows:
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Figure 5.6: Effect of the horizontal
autocorrelation length oA, for different
values ofLy, y (0Vma/b=2x10° and

Figure 5.7: Effect of the vertical
autocorrelation length on.Ror different

values ofLy, x (0Vma/b=2x10? and
Ga=500kN/nf) q::XSOOrIQ?\I/n?)

Referring to Figure (5.6), the very small value lgf x creates a vertical multilayer
composed of thin sub-layers each of which may have eitheghadnia small value of the
Young’'s modulus (Figure 5.8a). This variety of sub-layers leads tsmall footing
displacement and consequently to a small probability to exceedléheltie displacement
The small footing displacement occurs because the rigid footing igecdy the sub-
layers having high values of Young's modulus beneath it;stiielayers having small
values of Young’s modulus being of little effect in this casetl@nother hand, wheln, x

is very large, one obtains a horizontal multilayer for which eathlayer may have either
a high or a small value of the Young’s modulus (Figure 5.8b}icH that theP. value
seems to tend to the value corresponding to a one-dimensionahrdied asLi, x gets
larger and approaches infinity. To check this statementPdhvalue corresponding to the

one-dimensional vertical random field and that corresponding to darge value ot «
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(i.e. Lin x=5000) were calculated for the three cases considered in Figure (5.6dr(i.e.
Lny=0.5, 1 and 1.5) and were presented in Table (5.4) together witbtliee cases
corresponding to the 2D random field. These results confirmBh&nds to the value
corresponding to the one-dimensional caskjasgets larger and approaches infinity and

this value is smaller than the other values corresponding tdtariziom field.

M 5
e by
L 50
“ .
« 1‘: 2
a. L|n X=0-1 an(l|ny=1.5 b L|n X:5000 and_|n y:01
5 5
ifs 45
b ',,
] 0
65 65
70 0
» 735
0 80
C. L|n X:1'5 and_m y:0.1 d L|n X:O]. and_m y:5000

MFa
35
40
45
‘ .
55
a0
Al 85
7o
75
y - - A

e.Lin =5 andL;ny=0.5

Figure 5.8: Grey-scale representation of the random field for different values of the
autocorrelation lengths in case of an anisotropic random field

The reason why the case of 1D random field presents a sifallalue with respect to the
case of the 2D random field is that the uniform strong horédayers along the entire soil
domain (because of the perfect correlation between the values of the’ mwdulus in
the horizontal direction) lead to smaller footing displacement hod provide smaller
values ofPe. Finally, for medium values dfj, 4, the soil contains a number of stiff zones

adjacent to a number of soft zones whose areas are less extenddutie batrizontal and
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the vertical directions compared to those corresponding to the €amwaatl and high
values ofL, x (Figure 5.8e). This leads to a larger footing displacement. Asu#t,rEs

reaches its maximum value for these intermediate valueg,of

Table 5.4: Effect ofLy, x on P for different values ok, y

I—In X Pe

Liny=0.5 Liny=1.0 Liny=1.5

2.50 1.80x16 - -

4.00 1.79x10 - -
5.00 3.41x1d 1.65x10" 1.35x10"
10.00 2.15x10 24.0x10" 1.60x10°
15.00 1.55x10 7.95x10" 5.40x10°
20.00 1.15x19 4.23x10° 3.80x10°
25.00 8.55x10 2.75x10" 2.10x10°
30.00 6.65x10 1.85x10° 1.20x10°
40.00 5.15x10 1.19x10" 8.20x10"
50.00 4.90x10 9.88x10° 7.40x10"
5000.00 3.20x19 5.85x10° 3.65x10"
One-dimensional 2.45x10 4.75x10° 2.45x10"

Referring to Figure (5.7), wheh, y is very small, one obtains a horizontal multilayer
composed of thin sub-layers (Figure 5.8c). On the other hamdlatbe value oLy, y
creates a vertical multilayer and makes the random field tend to tlee afasne-
dimensional horizontal random field (Figure 5.8d). For mediurnesbfL, y, the soil is
composed of some zones with high values of Young's modullieter zones with small
values of Young’s modulus (Figure 5.8e). For the three cases df srt@mediate or high

values ofL, y, the same explanation given before for Figure (5.6) remains \atédnh

As a conclusion, the soil configuration gradually changes from acakrtd a
horizontal multilayer a&n x increases. Similarly, the soil configuration gradually changes
from a horizontal to a vertical multilayer ds, y increases. The footing vertical
displacement is the largest for medium valuekof or Lin y Where the soil movement may

occur more easily. ConsequentBg, presents a maximum value in this case.
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Notice that the ratio of, «/Linyfor which Pe is maximum depends on the values of
the soil and footing parameters (ig, v, b). For the case studied herein, this ratio is equal
to 10. Notice finally that for the same ratiolof,/Liny but greater values afi,x andLiny,
the maximum value dPe was found to be higher (Figures 5.6 and 5.7). This is dueeto t
simultaneous increase of the autocorrelation lengths in both theavarnd the horizontal
directions which makes the, tend to the value corresponding to the case of the random
homogeneous soil that does not exhibit spatial variabihtyhis case, thBe value is equal
to 2.41x1C (Figure 5.4). This value is greater by more than one orderghitude with
respect to the maximum value Bf given in Figures (5.6 and 5.7) which is equal to
5.4x10° This clearly illustrates, once again, the benefit of considetiegsbil spatial

variability in the analysis.

The numerical results of Figures (5.6 and 5.7) also indicatdthatmore sensitive
to the vertical autocorrelation length. This is because the rate ofeclvaRg (i.e. rate of
increase or decrease) when increasing the vertical autocorrelation lengthcdayain
percentage is larger than that when increasing the horizontal aetatorr length by the
same percentage. For example, the increase in the vertical autocorrelatibroled§0%
with respect to the reference case (Lgx=5 andLi, y=0.5) decreases the value Rf by
51.6%. However, the increase in the horizontal autocorrelationhlemgt100% with

respect to the reference case decreases the vaigdpbnly 36.9%.

The effect of the coefficient of variation of the Young’s modulu$¢was presented
in Figure (5.9). This figure indicates that, for both cases ofapmt and anisotropic

random fields, the increase in the coefficient of variation of the Ysumgdulus from
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10% to 15% significantly increases the valuéP@fThe increase is greater than one order
of magnitude for both cases of isotropic and anisotropic autocoorel&ngths. This
means that careful experimental investigations concerning the varialbititys parameter

are necessary to lead to reliable results.
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Figure 5.9: Effect of COVE on thePevalue in case of (i) anisotropic random field with
Linx=5 andL;,y=0.5 and (ii) isotropic random field with, x=Lny=5
3.2.4. Reliability-based design and analysis of girfootings
The probability that a certain level of damage (tolerable verticalagisment) will

be exceeded under a given applied footing pressure can be expressedfonnthof
fragility curves (e.g. Popesat al. 2005). Figure (5.10a) presents several fragility curves
corresponding to three values of Poisson’s ratio (0.25; @3&b) and to three levels of
damage [(i) minor damage for whiaivma/b=1.5x10% (ii) medium damage for which
NVma/b=2.0x10% and (iii) major damage for whicfvma/b=2.5x10 for the reference case
(i.e. Lin,=5 andLiy=0.5). In this figure, the footing pressure was normalized wesipect
to the mean value of the Young’s modulus and the three dareegjs Wwere normalized
with respect to the footing breadth. The curves of Figure (5.18a)be employed to
perform either an SLS probabilistic analysis or an SLS probabildggign of strip

footings. For the probabilistic analysis, this figure allowmg ¢o determine the probability

of exceeding a tolerable vertical displacement corresponding to a galaa of the
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applied footing pressure, to a given valug:gfto a given value of Poisson’s ratio and to a
given value of the prescribed damage level. Concerning the fadsign, Figure (5.10a)
can be employed to determine the footing pressure (and consedgherfthpting breadth b)
for a given load, for a giveme value, for a given value of Poisson’s ratio, for a prescribed
damage level and for a target probability of exceeding this dameagk Figure (5.10a)
was plotted in a semi-log scale in Figure (5.10b) to clearly igetite smallP. values at
the distribution tail. As an application example of these curfes=60MPa,v=0.3 and a
medium damage with a target value of 10° is allowed,q./ue=0.00833. Consequently,
the footing pressure ig.=0.00833x60x18-500kN/nf. Hence the probabilistic footing

breadth required to support a given footing applied Rachn be calculated &sP,/q..
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Figure 5.10: Fragility curves for different values ofand different damage levels
4. Conclusion

The probabilistic analysis of shallow foundations resting opadialy varying soil
was generally performed in literature using MCS methodology. Trenmalue and the
standard deviation of the system response were extensivelyigatedt This was not the
case for the failure probability because MCS methodology reqail@sie number of calls
of the deterministic model to accurately calculate a small failure prdaiyalihis chapter
fills this gap. It presents a probabilistic analysis at St.8 strip footing resting on a soil
with spatially varying Young’'s modulus using the sulssetulation approach. The footing

is subjected to a central vertical load. The vertical displacemehedbobting center was
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used to represent the system response. The main findings sofchiapter can be

summarized as follows:

1- Validation of the results obtained by the SS appach

The probability P (probability of exceeding a tolerable vertical displacement)

computed by the subset simulation approach was found verytoltisat computed by

Monte Carlo Simulation methodology with a significant reductio the number of

calls of the deterministic model.

2 - Parametric study

a) In case of an isotropic random field, the probabityof exceeding a tolerable

vertical displacement significantly increases with the increaseesiautocorrelation
length in the range of small to moderate values of the autocasrelatngth. For
large values of the autocorrelation lend® attains an asymptote. This asymptote
was found too close to that of a homogeneous random soith@tecorresponding
to the case of a random variable). This clearly illustrates the benebinsfdering

the soil spatial variability in the analysis.

b) In case of an anisotropic random fieR, presents a maximum value for a given

d)

ratio of the horizontal to the vertical autocorrelation length. Featgr value®f
the horizontal and vertical autocorrelation lengths, the maximaioevofP. was
found to be higher. When both the horizontal and the verticalcautlation
lengths tend to infinity, one obtains tiRe value corresponding to the case of a
random homogeneous soil. On the other hand, the numerical reautsshown
that P is more sensitive to the vertical autocorrelation length than dhiedmtal
one.

The increase in the coefficient of variation of the Young’s modulusfaasd to

significantly increase thBevalue in both cases of isotropic and anisotropic random
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fields. The increase is greater than one order of magnitude for dases of
isotropic and anisotropic random fields wh€®\Wt increases from 10% to 15%.
This means that careful experimental investigations concerningatigbiity of

this parameter are necessary to lead to reliable results.
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CHAPTER 6

PROBABILISTIC ANALYSIS OF TWO NEIGHBOURING
FOOTINGS RESTING ON A SPATIALLY VARYING SOIL USING
AN IMPROVED SUBSET SIMULATION APPROACH

1. Introduction

In the previous chapter, the probabilistic analysis was performad tse subset
simulation (SS) approach. Remember that in the first step of tpi®agh, one should
generate a given number of realisations of the uncertain parameters hesiolgdsical
MCS technique. In the second step, one uses the Markov chahlmbdnéised on
Metropolis-Hastings (M-H) algorithm to generate realisationhédirection of the limit
state surface (i.€5=0). This step is repeated until reaching the limit state surfaskoltld
be emphasized here that in case of a small failure probabilityintiiestate surface is
located at a large distance from the mean value (i.e. the origin sfatheéard space of the
uncertain parameters). Thus, the SS approach requires the repetitlon sgcond step
many times to reach the limit state surface. This increases the compuiate and
decreases the efficiency of the SS approach. To overcome this incaoroesidefawet al
(2010) proposed a more efficient method called “improved subset siomul@gS)”
approach. In this approach, the efficiency of the SS method®agygreased by replacing
the first step of this method by a conditional simulation.other words, instead of
generating realisations directly around the origin by the classic8, M@ realisations are
generated outside a hypersphere of a given radius. Consequenthyurtiiger of
realisations required to reach the limit state surface is signifjcaadluced. Notice that
Defauxet al (2010) have employed the iSS to calculate the failure probaibilthe case
where the uncertain parameters are modeled by random variables. tagéet study, the

iISS is employed in the case where the uncertain parameters are mgdeladdm fields.
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This method is illustrated through the computation of thdadvdity P. of exceeding a
tolerable differential settlement between two neighboring strigrfgsetresting on a soil
with a spatially varying Young’s modulus. The footings atbjected to axial vertical
loads with equal magnitude. The random field is discretized wksengarhunen-Loeve (K-
L) expansion. The differential settlement between the two fgetimas used to represent
the system response. The deterministic model used to computgsteen sesponse is

based on numerical simulations using the commercial software #LAC

This chapter is organized as follows: the improved subsetatiom (iSS) approach
and its implementation in the case of random fields are first presdittisds followed by
the probabilistic analysis of two neighboring strip footingsting on a soil with spatially
varying Young’'s modulus. Then, a comparison between thésedihe iSS approach and
those of the classical SS approach is presented to illustrate the effi@érthe iSS
approach with respect to the classical SS approach. Finally, a giacarstudy was
performed to investigate the effect of the autocorrelation lengths oR, thalue in both
cases of isotropic and anisotropic random fields. The chapter enda woticlusion of the

main findings.

2. Improved subset simulation (iISS) approach and stimplementation in the case of
random fields
Before the explanation of the iISS approach, it should be rememberedetailure

probability by the classical SS approach is calculated as follows:

P(F ) = P(F) [ P(FF, ) 6.1

whereP(F,) is the failure probability corresponding to the first level of$i&eapproachm

is the number of levels required to reach the limit state surfac¢P( Fj|Fj_1) is an

intermediate prescribed conditional failure probability.
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The basic idea of the iSS approach is to replace the first step &Xhmethodology (i.e.
generating realisations directly around the origin by the classic& B&Cshown in Figure
6.1) by a conditional simulation [Harbitz (1986) and Yonezawal. (1999)] in which the
realisations are generated outside a hypersphere of a given Radigsshown in Figure
(6.2). Based on this conditional simulation, the failure prokgt#(F;,) corresponding to

the first level is calculated as follows [Harbitz (1986) and Yonezved (1999)]:

P(F) = (1= Xy (R 311, (5) 62)

S

where y,, is the chi-square distribution witl degrees of freedonM(being the number of

random variables) arIFl(q():l if s OF andlﬁ(g):o otherwise.

Figure 6.1: Nested failure domain  Figure 6.2: Samples generation outside a
hypersphere of radiug,

The advantage of using the conditional simulation is to gemeaedlisations in the
proximity of the limit state surface leading to a reductionhi@ humber of realisations
required to reach this surface. Notice finally that similar to theiciEsSS approach, the
realisations of the remaining levels of the iISS approach are generatgdhes Markov

chain method based on Metropolis-Hastings algorithm.

As mentioned before, this chapter aims at employing the iS&agp for the

computation of the failure probability in the case of a spatiadlying soil property. To
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achieve this purpose, a link between the iSS approach and thexansion through the

standard normal random variables is performed. This link is sitaildie one described

previously in chapter 5. The algorithm of the iISS approach propodéd chapter for the

case of a spatially varying soil property can be described as follows

1.

Generate a vector &fl standard normal random variables,{...,&, ...,éu} by MCS
methodology. This vector must satisfy the condition thatniorm is larger than a
prescribed radiuR, of a hypersphere centered at the origin of the standard space.
Substitute the vectord, ..., &, ..., &} in the K-L expansion to obtain the first
realisation of the random field. Then, use the deterministic modehltulate the
corresponding system response.

Repeat steps 1 and 2 until obtaining a prescribed nubtbef realisations and their

corresponding system response values. Then, evaluate the corregpaides of the
performance function to obtain the vecG, ={G,,....G;,...G,"}. Notice that the
values of the performance function of the different realisations are arramgeal

increasing order in the vect@,. Notice also that the subscript ‘O’ refers to the first

level (level 0).

Evaluate the first failure threshold; of the failure regiorF; asthe[(N_xp,) +1]"
value in the increasing list of elements of the veGgwhere p, is a prescribed value

that represents the ratio between the number of realizations for ®kiCh and the

Ns

number of realizationsls (i.e. the terrrNiz IF1(51<) in Equation 6.2)Thus, among
s k=1

the N; realisations, there a[N,xp,] ones whose values of the performance function

are less thaf®; (i.e. they are located in the failure regiey).

Evaluate the conditional failure probability of the first leRéF;) using Equation (6.2).
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6. Prescribe an intermediate constant conditional failure prob:P( Fj|Fj_l) for all the
remaining failure regiong; where (=2, 3, ..., m). Although the P( Fj|Fj_l) value can

be arbitrary chosen, it is recommended to be chosen equal to tieeof p, used in
step 4 to facilitate the implementation of the ISS approach. Niigtefor simplicity in

notation, P( Fj|Fj_l) for j=2, 3, ..., m will be referred to a p, in the remaining

sections of this chapter.

7. The different vectors of random variable§,{..., &, ..., &} corresponding to the
realisations that are located in the failure redt@r(from step 4) are used as ‘mother
vectors’ to generate addition@l-po)xNg vectors of random variableg{ ...,&, ...,éu}
using the Markov chain method based on Metropolis-Hastingsithligo These new
vectors are substituted in the K-L expansion to obtain the pamedsg random field
realisations. Thus, one obtains therealizations of level 1.

8. The values of the performance function corresponding to the realisafitexel 1 are
listed in an increasing order and are gathered in the vector of performaterfun
valuesG, ={G;,,....G/,...G,"} .

9. Evaluate the second failure thresh@igdas the[(Nsxpo)+1] ™ value in the increasing list
of the vectoiG;.

10.Repeat steps 7 and 8 to evaluate the failure thresfiglds,, ..., G, corresponding to
the failure regiond=3, F4, ..., R, by using each time the vectors of random variables
{&, ....&, ...,&u} corresponding to the realizations that are located in the fabgiem
F; as mother vectors to generate the additional vectors in thisnreljiatice that
contrary to all other thresholds, the last thresl@ids negative. ThusC, is set to zero

and the conditional failure probability of the last le\@(F/F-1)] is calculated as:
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P(F,[Fy) = NiZ e (80 6-3)

wherel_ =1if the performance functioG(s) is negative anl_ =0 otherwise.

11.Finally, the failure probability?(F) is evaluated according to Equation (6.1) in which
P(F,) is calculated using Equation (6.2) and the failure probabifithe last level is

calculated using Equation (6.3).

Notice that similar to chapter 5, a normal PDF was used as et gargbability
density functiorP;. However, a uniform PDF was chosen as a proposal probabilitytylensi
function P,. The intermediate failure probabilifyp was chosen equal to 0.1. Also the

modified Metropolis-Hastings algorithm proposed by San&isa (2011) was used herein.

3. Probabilistic analysis of two neighboring stripfootings

In the previous chapter, a probabilistic analysis at SLS of ¢esstrgp footing resting
on a spatially varying soil was performed. In practice, footingsrarg isolated and
interfere with each others depending on the spacing between thermo(Miadt al. 2010).
Thus, the case of two neighboring footings is consideredisnctimpter to illustrate the
efficiency of the iISS approach. Two neighboring strip footingdngstn a soil with a
spatially varying Young’'s modulus and subjected to equalcartbads were considered
in the analysis. Indeed, due to the soil spatial variabillg, tiwo footings exhibit a

differential settlemen®. The differential settlement was used to represent the system

response. It is calculated as follovo = ‘51 - 52| whered; and 6, are the settlements

(computed at the footing centers) of the two footings. The Ysungdulus was modeled
by a random field and it was assumed to follow a log-normal piltlpatensity function.
Its mean value and coefficient of variation are respectivehOMPa andCOVe=15%. It

was discretized using K-L expansion. The random field was assumddllow an
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exponential covariance function. It was considered as a two-diomathg2D) anisotropic
random field with horizontal and vertical autocorrelation lengths @enbyl, x andl, y
respectively. As mentioned in the preceding chapter, a ratiq ofo I;,, of 1 to 10 for
these autocorrelation lengths is usually found in practice (BaecheClamstian 2003).
Notice however that a wide range of values of the autocorrelation tengih considered
herein in order to explore some interesting features related to the raelaton lengths.
The performance function used to calculate the probalilitpf exceeding a tolerable
differential settlement is defined as follows:

G=g,,-0 (6.4)

where Jdmax IS a prescribed tolerable differential settlement ands the computed

differential settlement due to the soil spatial variability.

In the following subsections, the deterministic model usexhloulate the differential
settlement will be presented. Then, the validation of the iS$oapp in the case of
random fields will be performed by comparison of its results thitise obtained by MCS
methodology. Finally, the effect of the autocorrelation lengttherP. value in both cases

of isotropic and anisotropic random fields will be presented aswlisgsed.

3.1. Deterministic model

The deterministic model used to calculate the differential settlethentbased on
numerical simulations using FLAE. For this computation, two footings (each of width
b=2m) were considered in the analysis (Figure 6.3). Each footing jecseth to a central
vertical loadP,=1000kN/m (i.e. a uniform vertical applied pressgge500kN/nf). The
two footing centers are separated by a distédedm. This small distance was chosen in
order to obtain a small soil domain that requires relatively smatipotation time. The

small computation time helps to validate the results obtaiyethd iSS approach by
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comparison with those obtained by MCS methodology usiagge number of calls of the
deterministic model. An optimal non-uniform but symmetrical mesimposed of 1290
zones was employed. In order to accurately calculate the footingaaiments, the mesh
was refined near the edges of the footings where high stresgrgratay occur. For the
displacement boundary conditions, the bottom boundaryassismed to be fixed and the

vertical boundaries were constrained in motion in the horizoimsdtabn.

Similar to the analysis performed in the preceding chapter, theedwvlor was modeled
by a conventional elastic-perfectly plastic model based on Mohre@dwifailure criterion

in order to take into account the possible plastification thgttale place near the footing
edges even under the service loads. The strip footings were mdxjekedinear elastic
model. They are connected to the sad interface elements. The values of the different
parameters of the soil, footings and interfaces are given in Tak)e (6.

Table 6.1:Shear strength and elastic properties of soil, footing, and interface

Variable Soil Footing Interface
C 20kPa N/A 20kPa
® 30° N/A 30°

w=213¢ 20° N/A 20°
E 60MPa| 25GPa N/A
v 0.3 0.4 N/A
Kn N/A N/A 1GPa
Ks N/A N/A 1GPa

In order to calculate the differential settlement for a given randonh fegllisation, (i) the
coordinates of the center of each element of the mesh were calculatedthhn K-L was

used to calculate the value of the Young’'s modulus at each elemeait, ¢@h geostatic
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stresses were applied to the soil, (iii) the obtained displacemenésset to zero in order

to obtain the footing displacement due to only the footingdieg loads and finally, (iv)

the service loads were applied to the footings and the verticahdespents at the footings
centers 4 and d;) due to these loads are calculated. The differential settlement is

calculated as the absolute difference betwgemdd,.

3.2. Validation of the iSS approach

This section presents a validation of the proposed iSS approatbe Nuwat for all
the probabilistic analyses performed in this chapter, the tolerableedififgr settlement
dmax Was assumed equal to 3.5Xh0. Notice also that the horizontal and vertical
autocorrelation lengthls, x andli, y were normalized with respect to the distabceetween
the centers of the two footings (i.len »x=lmn D andLn =l /D). The numerical results
have shown that this assumption is valid when the i is constant. Notice that
contrary to the case of a single footing (chapter 5), the heigheafoil domain was found
to have no effect on the, value in this chapter. Notice finally that, the number of terms of

K-L expansion used in this chapter is similar to that emplayethapter 5.

3.2.1. Selection of the optimal numbelN; of realisations per level of iSS approach

In order to determine the optimal number of realisatilggo be used per level,
different values oNswere considered. For eablgvalue, the failure threshold3;, C,, etc.
were calculated and presented in Table (6.2) when the fiagafghe hypersphere is equal
to zero (i.e. for the classical SS approach). This table shows ¢htiltire threshold value
decreases with the successive levels until reaching a negative viledast level. Table
(6.3) presents the, values and the corresponding values of the coefficient of variation for
the different number of realizatiord;. As expected, the coefficient of variation Bf

decreases with the increase in the number of realizdtigns
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Table 6.2: Evolution of the failure threshold with the different levelshaf tSS approach
and with the number of realisatioNs (R\=0, L, x=2.5 andL, ,=0.25)

Failure e
threshold Number of realisationBls per level
G Ige?]?“h 200 400 600 800 1000 1200
C 0.00191 0.00199 0.00189 0.00204 0.00191 0.00L95
G, 0.00103 0.00099 0.00096 0.00110 0.001p2 0.00103
Cs 0.00041 0.00032 0.00021L 0.0003)7 0.00036 0.00p34
C4 -0.00009| -0.00051 -0.00036-0.00037| -0.00039 -0.00038

Table 6.3:Values ofP.andCOVk versus the numbéNs of realizations per level

Number of realisationNs per level
200 400 600 800 1000 1200
Pe X(107) 1.85 3.48 4.63 2.36 3.65 3.67
COVee 0.669 0.505 0.385 0.348 0.315 0.285

For each\;s value presented in Table (6.Py corresponding to each leielvas calculated
by the iSS approach as follows:

P(F;) = P(F,)xP(F,|F,)x..xP(F||F_,) (6.5)
TheseP, values were compared to those computed by the crude MCS methodsiongya

numberN=30,000 realisations (Figure 6.4). Notice that at a given lgwbk P value is

calculated by MCS methodology as follows:
1 N

P(Fj):_ZIF(Gk) (6.6)
N

in which, G is the value of the performance function at tHer&alization andg=1 if
Gi<Cj andl=0 otherwise.The comparison has shown that f&>1,000 realisations, the
Pe value computed by the iSS approach at the different levels is vesg ¢b that
computed by the crude MCS methodology (Figures 6.4e afif). G hus, Ns=1,000
realisations will be used in all the probabilistic analyses peddrm this chapter. Notice
that whenNs=1,000 realisations, the coefficient of variationRafby the iSS approach is
COWe=31.5%. A quasi similar value oEOV (COV=31.3%) was obtained by MCS

methodology but when using 30,000 realisations.
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Figure 6.4: Comparison betweelR, computed by iSS and that computed by MCS
methodology at each level of iISB€0, Linx=2.5 andLj, ,=0.25).

It should be mentioned here that although the computationairttee 30,000 realizations

by MCS is significant (about 145 days), this number of ra@dias remains insufficient to

assure an accurakg value with a small value OV As an alternative approach, one

may determine the optimals value (as explained in chapter 5) by successively increasing

Ns and comparing thBe values given by the iSS approach for ebghlvalue. ThelNs value

beyond whichP. converges (i.e. slightly varies with the increas@&lgfis the optimal one.
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In the present analysis, it was found tRaconverges whehs=1000 realizations. This is
because the find® values (corresponding ©=0) are respectively equal to 3.65X18nd
3.61x10" for Ns=1000 and 1200 realizations. As a conclusion, this alternativeeguoe
(which was proposed in chapter 5) seems to work well for the deteiomiditthe optimal

Ns value.

3.2.2. Selection of the optimal radiu&;, of the hypersphere

WhenR,=0, four levels were required to reach the limit state sui@&o@ This means that

a total number of realisatiofN;=1,000+(900x3)=3,700 realisations were required to
calculateP. with the iSS approach. Thus, for the same accuracy, the nuintealisations
(and consequently, the computation time) is reduced by 87.78uaedpect to MCS when
Ry=0 (i.e. when the classical SS is used). This number can againuoeddaly increasing

R, (i.e. by using iSS). Table (6.4) shows that, wiignincreases, the total number of
realisations decreases. WhHgm11.5, only two levels are required. Thus, the total number
of realisations isN=1000+900=1,900 realisations. As a conclusion, the number of
realisations (and consequently, the computation time) requiredeb$3happroach could
be reduced by 48.6% by employing the iSS approach.

Table 6.4:Effect of the radius of the hypersphere on the number of realizatiorisettu
calculatePe (Lin x=2.5 andL;, ,=0.25)

R.==0 iSS
MES (C'ZSSS)'C‘S" R=10| R=11 | ReE1L5
Pe (x107%) 3.40 3.65 3.58 3.36 3.45
Number of levels - 4 3 3 2
number of realizations 30,000 3,700 2,8P0 2,800 1,900
computation time (minuteg) 210,000 25,900 19,600 19,600 | 13,300

It is to be mentioned here that the rad®yshould be carefully chosen. R is very
small, the number of levels of the iSS approach will be equlktoumber of levels of the
classical SS approach and consequently the time cost will remaitamor@n the other

hand, ifR, is very large, the hypershpere might overlap with the failur@ndgieading to
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unsampled area in the failure region which leads to inaccurate valulee ofaiture
probability. This issue can be overcome (i) by calculating an appab&ivalue of the
failure probability using a simple and fast approach and then (iixdmgputing the
corresponding approximate value of the radidgo be used in the iSS approach. In this

chapter, an approximate val P, of the probability of exceeding a tolerable differential

settlement was calculated by the CSRSM using a small numlvanddm variables and

small PCE order [Huanet al. (2007) and Huang and Kou (2007)]:

It should be mentioned here that a high accuracy of the PGl isenessary herein since

an approximat P, value is sought. Thus, a small PCE order can be used. lohtiger,

a second order PCE was used to approximate the system responsnidgrtbe number
of standard normal random variables (number of terms in the K-L expjnsicsmall

number was selected and the corresponP, jvalue was calculated. Then, this number
was successively increased u P, converges to a constant value as shown in Table (6.5).
This table indicates thiP, converges to a value of 6.86x1Qvhen the number of

standard normal random variable is equal to 6. In this case, thbenuwh collocation
points is equal to 28 according to the concept of matrix invityibly Sudret (2008).

Table 6.5: Effect of the number of standard normal random variable P, malue for the

app

case wheré,,=2.5 and.,,=0.25

Number of standard normal = Number of collocation points
random variablei Capp according to Sudret (2008)

3 0.00 10

4 8.63x10° 15

5 8.73x10° 21

6 6.46x10" 28

7 5.98x10° 36

After the determination oP, , the corresponding approximate rad Rhapp of the

hypershere can be determined. Notice Rhapp represents the distance between the origin
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and the last failure threshol@,. This means that only the first level of the iSS approach

will likely be required to reach the last failure threshold. T P, can be supposed equal

to P(F;) andC,=C,=0. Consequently, one obtains:

) 1 Ns
Peapp:P(Fl):(l—)(M(Rh))WSKZ:;IFI(sk) 6.7)

WhereIFl(q():l if G(s,)<0 andIFl(sK)=O otherwise. Since the ter[Nif IFl(q( )] in

s k=1
Equation (6.7) is equal 1p, as mentioned before in section 2 (see step 4), Equation (6.7)

can be rewritten as follows:

2 P%pp
/YM (Rhapp) :1_ r) (68)
0
from which:
-1 Peapp
Rhapp = /YM 1_ r) (69)
0

in which )(h’,ll(.) is the inverse of the chi-square CDF. By usingdiqu (6.9), for the case
studied herein wher p, = 0.1and M=100, the approximate radi Riaop corresponding to

the approximate value (P, = 646x10™ is equal to 11.77. After the determination of

app

Riap’ the iSS approach can be used VRtslightly smaller thaIRhapp andM=100 terms

to rigorously discretize the random field.

It should be emphasized here that in case whereartbertain parameters are modeled by

random variablesR __is equal to the reliability indey.. since the standard normal

random variables represent the uncertain physiaghmeters in the standard space of

random variables. In such a case, kR __ and Sy represent the minimal distance

app
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between the origin and the limit state surface. E\mv, in the present case where the
uncertain parameter (i.e. Young’s modulus) is meddly a random field, the standard
normal random variables do not correspond to phAysiocertain parameters. They are
used in the K-L expansion to calculate the valukshe uncertain parameters at each
element of the soil domain. This means that théasarconstructed using the standard

normal random variables does not represent the $itate surface. In other words, there is

no relation betwee R, and Sy

3.3. Parametric study
This section aims at presenting a parametric stsllgwing the effect of the
autocorrelation lengths on the ¥alue in both cases of isotropic and anisotropitcdom

fields.

3.3.1. Effect of the autocorrelation length orPe in the case of isotropic random field
Figure (6.5) shows the effect of the autocorrefatength on thé>.value in the case

of an isotropic random field. This figure indicatbatP, presents a maximum value when

Lin x=Lin y=1 (i.e. when the autocorrelation length is equathe distance between the

centers of the two footings).

0.1

0.01+

0® 0.001

0.0001+

0.00001

0 2 4 6 8 10 12 14
I-In x:LIn y

Figure 6.5: Effect of the autocorrelation length &g (isotropic random field)
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This can be explained by the fact that when theautelation length is very small, one
obtains a highly heterogeneous soil in both théicadrand the horizontal directions with a
great variety of high and small values of the Ydamgodulus beneath the footings (Figure
6.6a). In this case, the soil under the footinggtaios a mixture of stiff and soft soil zones.
Due to the high rigidity of the footings, their n@wents are resisted by the numerous stiff
soil zones in the soil mass; the numerous softzmikes being of negligible effect on the
footings displacements. This leads to small vahfethe footings displacements (i.e. to a
small differential settlement) and thus, to a snaalle ofP.. On the other hand, when the
autocorrelation length is large, the soil tendbéchomogenous (Figure 6.6b). This means
that the differential settlement tends to be vanak (close to zero) which leads to a very
small value ofP.. For the intermediate values of the autocorretaliemgth, there is a high
probability that one footing rests on a stiff soilne and the other on a relatively soft soll

zone (Figure 6.6c). This leads to a high differ@rgiettlement and thus to a hiBhvalue.
In this caseP, presents a maximum.

i N, I,

a. L|n X:L|n y20025 b. L|n X=L|n y=25

R,

C.LnxLiny=1

BRracouvesy §
auaaaaaae&§

BRrynsoduvady

Figure 6.6: Grey-scale representation of the random fielchtmnsthe effect of.j, x=Liny in
case of isotropic random field
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3.3.2. Effect of the autocorrelation lengths orPe in the case of anisotropic random
field
Figures (6.7) shows the effect Iof, x on P whenL, =0.25. This figure shows that
P. presents a maximum value when the autocorreldgagth is equal to the distance
between the two footings centers (i.e. wign=1). This observation can be explained as

follows:

0.1
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|
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|
|
|
|
|
|
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Figure 6.7: Effect ofL, x onPe whenL;,=0.25

For the very small values dfi, x compared toL, y, one obtains a vertical multilayer
composed of thin sub-layers where each sub-laygrirage a high or a small value of the
Young’s modulus (Figure 6.8a). The sub-layers witlh values of the Young’s modulus

prevent the movements of both footings and thud tea small value d®e.

a. Lin,=0.025 and_j,,=0.25 b. Linx=25 andLin,=0.25

C.Linx=1andL5y=0.25

Figure 6.8: Grey-scale representation of the random fielchtmasthe effect ot x in case
of anisotropic random field

Budaeasaevzg
Buaaaasaea§

szua&aasaea:;

-162-



CHAPTER 6

On the other hand, wheln, x is very large compared to, y, one obtains a horizontal
multilayer (i.e. the soil tends to the case of &-dimensional vertical random field) for
which each sub-layer may have a high or a smallevalf the Young’s modulus (Figure
6.8b). This leads to the same displacement for fumitings and thus to a very small value
of Pe. Finally, for intermediate values afi, x, the horizontally extended stiff layers of
Figure (6.8c) become less extended leading to la jgbability that the footings rest on
soil zones with different values of the Young’s mhg. This leads to a greater differential

settlement and consequently a greater vall® ¢fFigure 6.8c).

The effect ofLny is presented in Figure (6.9) whep=2.5. This figure also presents the
Pe value corresponding to case of a one-dimensiom@dntal random field with, ,=2.5.

In this case, the soil was considered to be spatialying only in the horizontal direction
while it was considered to be homogeneous in thiéce direction. Figure (6.9) shows
that thePe value increases with the increasd.iy. This can be explained as follows: when
Liny is very small, the two footings rest on a horizomtaltilayer composed of thin sub-
layers where each sub-layer may have a high oral smlue of the Young’s modulus
(Figure 6.10a). This means thatandd, are almost equal. Thus, the differential settlement

o is very small which results in a small valueRgf
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0.01- . N\

One-dimensional \\ |

random field Two-dimensional

P.=4.1x10° random field
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Figure 6.9: Effect ofLi,y onPe WhenLnx=2.5
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On the other hand, whdn, y is very large, the soil tends to the case of adimensional
horizontal random field as shown in Figure (6.9).this case, one obtains vertically
extended stiff sub-layers adjacent to verticalljeexled soft sub-layers (Figure 6.10b). For
the chosen value dfi, , there is a high probability that one footing sesh a vertical stiff
layer and the other one rests on a vertical sg#rlavhich leads to a high differential

settlement and thus to a great valu®of

|

a.Ln,=2.5 and.,,=0.025 b. Lin,x=2.5 andLi, =25

Figure 6.10:Grey-scale representation of the random field tmsthe effect otny in
case of anisotropic random field

8&3&8&3&&&%
de&aaaae&§

4. Conclusion

This chapter presents an efficient method, caliggroved subset simulation (iSS), to
perform a probabilistic analysis of geotechnicalures that involve spatial variability of
the soil properties. This method is an improvemeinthe subset simulation approach
presented in the previous chapter. It allows oneatoulate the small failure probabilities
using a reduced number of calls of the determmistiodel. The iSS approach was
illustrated through the probabilistic analysis dtSSof two neighboring strip footings
resting on a soil with spatially varying Young’s dwus. The differential settlement
between the two footings was used to represergytbtem response. The probabikty(i.e.
the probability of exceeding a tolerable differah8ettlement) calculated by the improved
subset simulation approach was found very closeht&d computed by Monte Carlo
Simulation methodology or the classical subset ktman approach with a significant

reduction in the number of calls of the deterministodel. The use of the iISS approach
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has reduced the number of calls of the deterministbdel by about 50% with respect to

the SS approach.

A parametric study to investigate the effect of th#ocorrelation lengths dR. in both

cases of isotropic and anisotropic random fieldsgteown that:

1- In case of an isotropic random field, the probapilP. of exceeding a tolerable
differential settlement presents a maximum valuemwthe autocorrelation length is
equal to the distande that separates the two footings centers.

2- In case of an anisotropic random fieR}, significantly increases with the increase of
the vertical autocorrelation length (for a givedueaof the horizontal autocorrelation
length) and then, it attains an asymptote whichiesmonds to the case of a horizontal
one-dimensional random field. On the other hand,afayiven value of the vertical
autocorrelation lengthP. presents a maximum when the horizontal autocdioela

length is equal to the distanDethat separates the two footings centers.
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GENERAL CONCLUSIONS

This thesis focuses on the probabilistic analysishallow foundations. Two types of
probabilistic analyses were performed. Part | ofs tthesis presents a simplified
probabilistic analysis in which the uncertain paetens were modeled by random variables
characterized by their probability density funcsg®DFs). However, Part Il of this thesis
presents an advanced probabilistic analysis in lwithe soil uncertain parameters were
modeled by random fields characterized not only tbgir PDFs but also by their
autocorrelation functions.
1 — Part (I): Simplified probabilistic analysis
Part | consists of three chapters (chapters 2,d34anin chapters 2 and 3, a circular

footing resting on ac({ ¢) soil and subjected to an inclined load was careid in the
analysis. Both ULS and SLS were studied. In chagtethe response surface method
(RSM) was used and only the soil uncertainties wergsidered in the analysis. However,
in chapter 3, the collocation-based stochastic aesp surface method (CSRSM) was
employed and both the soil and loading uncertantiere considered in the analysis. The
system response used at ULS was the safety feati@fined with respect to the soil shear
strength parameters @ndtang). For the SLS, two system responses were useceTdre
the footing vertical and horizontal displacemeniao failure modes (soil punching and
footing sliding) were considered in the ULS anayd\lso, two modes of unsatisfactory
performance (exceeding a vertical and horizontalifg displacement) were considered in
the SLS analysis. The numerical results of chagensd 3 have shown that:
a. The safety factoF defined with respect to the soil shear strengttampatersc and

tanp considers the combined effect of both failure mogssl punching and footing

sliding) at ULS. This safety factor provides a wegand rigorous safety level of the
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d.

soil-footing system. The use of this factor has #uvantage of seeking the most
predominant mode of failure using a determinisgipraach.

A global sensitivity analysis using the PCE-basethdb indices has shown that the
vertical load component has a negligible weight in the variability of thafety factor
and it can be considered as deterministic in th& @halysis. On the other hand, the
global sensitivity analysis in the SLS has showet i) the variability of the footing
horizontal displacement is mainly due to the hartabload componerit and (ii) the
variability of the footing vertical displacementngainly due to the Young's modulus
and the vertical load component; the Young’s moslibleing of larger weight.

When considering only the uncertainties of the pailameters, both the deterministic
and the probabilistic analyses at ULS have showhttiere are several optimal loading
configurations in the interaction diagram. Thesefigurations correspond to a unique
optimal load inclination and they subdivide theenatction diagram into two zones of
predominance where either soil punching or footsiligling is predominant. The
optimal loading configurations are situated on time joining the origin and the
extremum of the interaction diagram. Finally, thetiimal load inclination was found to
be independent of the uncertainties of the sohpaters.

Although the deterministic approach was able t@meine the zones of predominance
of sliding and punching when considering only tbé& sncertainties, it was not able to
determine these zones when considering the unceesiof the load components. The
probabilistic approach was necessary in this case.

The uncertainty of the horizontal load compondnivas found to slightly extend the
zone of sliding predominance in the interactiongdsan with respect to that obtained

by the deterministic approach. This means thatraontto the variability of the soil
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properties, the variability of the load componeraffects the optimal load
configurations.

f. The safety factoF was found to exhibit more variability for the loadnfigurations
corresponding to the zone of sliding predominance.

g. The optimal loading configurations obtained at SAr® similar to those obtained at
ULS. These configurations are those for which mgitlvertical nor horizontal
movement is predominant.

h. The footing vertical displacement was found to eihiarger variability for the load
configurations corresponding to the zone of predamce of the vertical soil
movement. However, the footing horizontal displaeatmwas found to exhibit larger
variability for the loading configurations corresuling to the zone of predominance of

the horizontal soil movement.

In chapter 4, the subset simulation approach wasbowed with the CSRSM to obtain
additional probabilistic outputs of the SS caldolat without additional calls of the
deterministic model. A strip footing resting onc«) soil and subjected to a vertical load
was considered in the analysis. Only a ULS analygis performed in this chapter. The
system response was the ultimate bearing capddiy.numerical results of this chapter
have shown that the combination between the sdisetiation approach and the CSRSM
provides several advantages. In addition to thieriiprobability, it provides the PDF of
the system response and the corresponding statistioments with no additional time
cost. Also, it allows one to perform a global séngy analysis using the PCE-based Sobol
indices. Moreover, it allows the computation of tfelure probability for different

thresholds of the system response using a singkessimulation computation.
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As it may be seen for Part I, the new contributiohshapters 2 and 3 do not involve the
development of new probabilistic methods. Insteadgextensive probabilistic analysis of
circular foundations subjected to inclined loads wadertaken in these chapters. This type
of loading which induces both soil punching andtifog sliding was not considered before
in the framework of the probabilistic analysis. thermore, the present probabilistic
analysis has confirmed the superiority of the CSRB8ith respect to the RSM regarding
the number of calls of the deterministic model #melnumber of the probabilistic outputs.
On the other hand, chapter 4 has provided an drten$ the SS approach. This extension
allows one to obtain additional probabilistic outgpwvith respect to the classical SS
approach with no additional time cost.
2 — Part (II): Advanced probabilistic analysis

Part Il consists of two chapters (chapters 5 andh6yhapter 5, the subset simulation
approach was used to perform a probabilistic arslgts SLS of a single strip footing
resting on a soil with a spatially varying Young®dulus and subjected to a vertical load.
The system response was the vertical displacemntetiteafooting center. However, in
chapter 6, a more efficient approach called “impsubset simulation (iSS)” approach
was employed. The efficiency of the iISS approach iastrated through the probabilistic
analysis at SLS of two neighboring strip footingstmg on a soil with a spatially varying
Young’'s modulus and subjected to equal verticatl$odn this case, the system response
was the differential settlement between the twdif@s. The aim of both chapters (5 and
6) is to develop computationally-efficient probattic methods that can consider the soill
spatial variability. Indeed, the existing probadiit methods are very time-consuming
since they are based on MCS methodology. Furtheryribey do not provide the failure
probability; only the statistical moments of thestgyn response are provided because of

the great number of calls of the deterministic modeuired in that case.
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The probabilistic numerical results of chapter Behahown that:

= Compared to the MCS methodology, the use of theetusimulation approach has
significantly reduced the number of realisationguieed to calculate the probability
Pe of exceeding a tolerable vertical displacement.

= A parametric study has shown that, in case of agpatrrandom fieldsPeincreases
with the increase of the autocorrelation lengthr. [eoye values of the autocorrelation
length, P attains an asymptote. This asymptote was fourtekttoo close to the,
value of a homogeneous soil (i.e. that correspantiirthe case of a random variable).
This illustrates the benefit of considering thel spiatial variability in the design of
geotechnical structures.

= In case of anisotropic random fields, the parameiiidy has shown th& presents
a maximum value for a given ratio of the horizontal vertical autocorrelation
lengths.

= The increase in the coefficient of variation of tileung’s modulus significantly
increases thB. value.

The probabilistic numerical results of chapter @ehsahown that:

= The number of realisations required by the subisetilation approach to calculate
the probabilityPe of exceeding a tolerable differential settlemeasweduced by half
when employing the improved subset simulation aggmo

= A parametric study has shown that, in case of agitrrandom fieldsP, presents a
maximum value when the autocorrelation length isabdo the distance between the
centers of the two footings.

= In case of anisotropic random fields, for a givetue of the vertical autocorrelation
length,Pe presents a maximum when the horizontal autocdroeldength is equal to

the distance between the centers of the two fostikipwever, for a given value of
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the horizontal autocorrelation length, increases with the increase in the vertical

autocorrelation length and then it attains an aggtepcorresponding to the case of a

one-dimensional horizontal random field.

Ongoing research topics may involve the followitegis:

1-

Applying the subset simulation or the improved stlsmmulation approach in the
case of a multilayer soil medium (e.g. soft ovdif sbil or stiff over soft soil) that
exhibit spatial variability.

Extending the present subset simulation approawtolifing soil spatial variability)
to the geotechnical problems that include more tbae failure mode (multiple
performance functions). This approach is calleddfal subset simulation” and it
was developed in literature in the case where tioetain parameters are modelled
by random variables.

Combining the subset simulation approach with tbe/fdmial Chaos Expansion
(PCE) in case of random fields to obtain the PDRhef system response with no
additional time cost. Notice however that contrarghapter 4, this combination is
not straightforward herein because of the proltfera of the number of PCE
coefficients as a result of the great number ofloam variables in this case. The

Sparse Polynomial Chaos Expansion may be usedve #us issue.
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APPENDIX A

EIGENVALUES AND EIGENFUNCTIONS FOR THE EXPONENTIAL
COVARIANCE FUNCTION

Let E(X, 8) be a Guassian random field whetedenotes the spatial coordinates &hd
indicates the nature of the random fieldu lis the mean value of this random field, it can
be approximated by the K-L expansion as followsaf®&s and Ghanem 1989 and Ghanem

and Spanos 1991):
E(X.0) = 1+ JAQ(X)E(8) (A1)

where M is the size of the series expansign,and ¢ are the eigenvalues and

eigenfunctions of the covariance function ¢(X3), and &(0) is a vector of standard
uncorrelated random variables. In the present shesi exponential covariance function

was used. For a 2D Guassian random field, thistiomés given as follows:

Cl(%, Y1), (%, ¥,)] = 07 ex‘{‘|X1|_X2| - |yf yzq (A.2)

X y

in which, ¢ is the standard deviation of the random fieldamd | are respectively the
horizontal and the vertical autocorrelation lengtrsd (X3, y1) and (X;, y») are the
coordinates of two points in the space. For theoagptial covariance function, Ghanem

and Spanos (1991) provided an analytical solutiorife eigenvalues and eigenfunctions.

For a one-dimensional horizontal random field gatest in the interv:[— a, ax], the

eigenvalues can be calculated as follows:

2c

o +c?

A = (A.3)

where
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c = Ii (A.4)

and
c —wtana,)=0 foriodd
and (A.5)
w +ctan@a,)=0 forieven

The eigenfunctions are calculated as follows:
@ (X)=

cos(a, X)

sin(2w a, )
-

foriodd (A.6)

sin(e«, X)

sin(2w a, )
o

g (x)=

forieven (A.7)

For a one-dimensional vertical random field gerestain the interve[—ay, ayJ, the

eigenvalues and eigenfunctions are calculated ubimgame equations after replacing the
horizontal coordinatex], the horizontal half widtha) of the domain and the horizontal
autocorrelation lengtH,j respectively by the vertical coordindtg, the vertical half depth

(ay) of the domain and the vertical autocorrelatiamgté (y):

In case of a two-dimensional random field, the eigdues and eigenfunctions are
calculated as the product of the eigenvalues agednéinctions of the one-dimensional

random field as follows:
A = A0 (A.8)

@ (xy)= ¢ (g, (y) (A.9)
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APPENDIX B
DESCRIPTION OF THE SOFTWARE FLAC P

1. Introduction

FLAC® (Fast Lagrangian Analysis of Continua) is a corapupde which allows
one to perform three dimensional (3D) numericalutations. It should be mentioned that
FLAC® allows the application of stresses (stress contr@thod) or velocities
(displacement control method) on the geotechnigsiesn. The application of stresses or
velocities creates unbalanced forces in this sysieme solution of a given problem in
FLAC® is obtained by damping these forces to reduce thenvery small values
compared to the initail ones. The stresses anohstaae calculated at several time intervals
(called cycles) until a steady state of static Bguiim or a steady state of plastic flow is

achieved in the soil mass.

It should be mentioned here that the programminguage FISH in FLAE allows
one to create functions that claculates the stsesfisplacements, rotations, etc. at any

point in the soil mass.

The following sections present the methods of camipn of some system responses

using FLACP.

2. Computaion of the ultimate load of a verticalljjoaded footing

For the computation of the ultimate footing loadngsFLAC®®, the displacement
control method was used. In this method, a smatioa velocity (10%timestep in this
thesis) is applied to the lower nodes of the faptmd then, several cycles are run until
reaching a steady state of plastic flow. The stestdie of plastic flow is assumed to be

reached when the two following conditions are $atis
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- The load becomes constant with the increase imtimeber of cycles. In other words,
increasing the number of cycles no longer changes$aoting load (see Figure B.1).
- The unbalanced forces tend to a very small valQg i1 this thesis) as shown in Figure

(B.2).

Loadx10%

=.0 -

o.z (=1 o.s o.=

5
Number of cycles x 10

Figure B.1: Load versus the number of cycles

Unhalanced force x 10 g

=.0

Number of cycles x 10 &

Figure B.2: Unbalanced forces versus the number of cycles

At each cycle, the footing load is obtained by gsanFISH function that computes the
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summation of stresses of all elements of the saitiig interface. The value of the footing
load when reaching the steady state of plastic fiswhe ultimate failure load of the

footing.

3. Computation of the vertical and horizontal disphcements of an obliquely loaded
footing
In order to calculate the vertical and horizontapthcements of an obliquely loaded
footing, the load componentsandH are applied at the footing base. Then, cyclesiare
until reaching a steady state of static equilibrimnthe soil mass. The steady state of static
equilibrium is assumed to be reached when the dloviing conditions are achieved:
- The displacement tends to a constant value witlinitrease in the number of cycles. In
other words, the increase in the number of cyctetonger changes the displacement
(see Figure B.3).

- The unbalanced forces tend to a very small val0&ifLthis thesis).

displacement x 10 =

=.0 -

Number of cycles x 1|]4

Figure B.3: displacement versus the number of cycles
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APPENDIX C
SYSTEM FAILURE PROBABILITY EQUATIONS

For a geotechnical problem involving two failure aes (soil punching and footing sliding
as an example), the system failure probab P, of the two failure modes is calculated as
follows:

P

fsys:Pf(PDS):Pf(P)+ P.(S)-P,(PnS) (C.1)
where P, (P n S) is the failure probability of the intersection thie two failure modes,

P.(P) et P,(S) are respectively the failure probability due tal gminching and footing

sliding. The failure probability of the intersectiof the two failure modes is calculated as

follows:

ma{P(A),P(B)| < P,(P n S) < P(A) + P(B) (C.2)

where:

P(A) = @(-5, )w[—ﬁf—"iﬂp 3
1= pps

IBP B pPs:Bs

P(B) = &(-55)® - —F—— (T.4
Vl_ Pps

in which @(.) is CDF of the standard normal variablgss the reliability index ar p, is

the coefficient of correlation between the two dedl modes. It is calculated using the

following equation:
Pps = <aP >{as} (C.5)
where a, and a, are the respectively the vectors of sensitivitgiges of the soil

punching and the footing sliding. These vectorscateulated as follows:
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u*
=r C6
%= (C.6)

u*
=S C.7
as 5 (C.7)

whereu, andug are respectively the vectors of the standard abrandom variables at
the design point. Notice here that Equation (Cs2)ised whe p,. > 0 . In cases where
Pes <0, P (P n S) is given by:

0< P.(Pn S)< minP(A),P(B)] (C.8)

Notice that the lower bounds in Equations (C.2 @rft) should be considered to obtain the

most critical value of the system failure probadili
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APPENDIX D
HERMITE POLYNOMIALS

1. One-dimensional Hermite polynomials

The one-dimensional Hermite polynomials of order$,@, 3, ... p+1 are given by:

(&) =1

p(&)=¢

@(&)=¢"-1 (D.1)
@(&)=¢& -3¢

Ga($) =< 9,($)— py,_,($)
wheref is a standard normal random variable.
2. Multidimensional Hermite polynomials

The multidimensional Hermite polynomiét of orderp is given by:

(») — (= 1\PR05¢¢ 0° 05¢"¢
W (&, &)= (-1)Pe FTAN T (D.2)

in which { is a vector ofn standard normal random variablé& } The

i=12,..h °
multidimensional Hermite polynomials are the pradwé one-dimensional Hermite
polynomials of order less than or equalpoAs an example, for a problem with=3

|
random variables and a PCE of orge#, there ar® :% = 35terms in the PCE as

shown in Table (C.1). This table shows the differéhterms and their corresponding

orders. It also provides the valuesdwiz) for the different terms of the PCE.
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Table C.1: Hermite polynomialg¥, for 3 random variables and their variaige’?)

: Coefficient | order 2
I q p l’ul E(Lpi )
0 ag 0 1 1
1 a1 1 grl 1
2 ap 1 gzz 1
3 az 1 ¢, 1
4 a 2 -1 2
5 a2 2 ¢4, 1
6 a3 2 éé, 1
7 ap? 2 ff'-l 2
8 a3 2 ¢,¢, 1
9 as3 2 & -1 2
10 a1 3 & -3¢, 6
11 a1 3 &é, -4 2
12 13 3 5?5}"5} 2
13 a2z 3 &&2 - ¢ 2
14 23 3 é.é,¢, 1
15 33 3 EEF - ¢ 2
16 Apoo 3 523 - 352 6
17 23 3 E2&, - &, 2
18 33 3 &L - ¢, 2
19 az33 3 55 -3¢, 6
20 aiiil 4 514 - 6512 + 3 24
21 1112 4 EE, - 38, 6
22 1113 4 ElE, —3E¢, 6
23 ar122 4 ElEI -6 -&+1 4
24 ay123 4 EXE,E, — &4, 2
25 a1133 4 El&Z -6 - +1 4
26 1222 4 éé. 23 - 364, 6
27 a1223 4 EENE, — &4, 2
28 1233 4 E &6 - &8, 2
29 1333 4 EE) - 364, 6
30 ax222 4 qt; - 6522 +3 24
31 2223 4 €(23€(3 - 35253 6
32 2233 4 EXEl -2 -6 +1 4
33 333 4 &,E —3E,6, 6
34 a3333 4 534 - 6532 +3 24
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APPENDIX E
PCE-BASED SOBOL INDICES

Sobol indices of each input random variable or mMwoation of random variables are
calculated using the PCE coefficients. The basa id to re-arrange the terms of the PCE
so that each term contains only one random variabmbination of random variables.
For example, for a PCE of order 4 with three rand@mables, the system resporisean

be written as follows:

F=a,+ad +as +as +a e —1)+a,68 v a8 +a,ld -1+ a5s valg - 1)
ot a111(‘513 - 3{1)"' a112(512‘52 _52)"' a113(£l ‘53 ‘53) 3122({152 ‘51) a12§r1{2{3 a133(£l£3 ‘51)
Ll -3 )raleE - &) va e - &) v ale -3

.t a1111(‘t - 65 + 3) + a1112(£ ‘t 365 ) a1113(£13£3 - 3<t1<t3) + a1122(£12£22 - 522 - 512 + 1)
e (EEE —EE )+ a8 -8 -8 v 1) a,, (68 - 368+ ay, |68, - 68

A, 858 -8+ a (68 -368,) + a,, |8 68 +3)+a,, (68, - 35,8,

e, (S8 - - 1) va, (58 ~36,8)Fa e 682 +3)

(E.1)

The PCE terms in Equation (E.1) can ber e-arramgggoups where each group contains

one random variable or a combination of randomaideis as follows:

= [a)] + [, + a,(&7 - 1)+ (& -3 )+ & - 667 + 3]
o+ ad, +a22( )+ am( 3£)+a2222( —65 +3)]
ol - 1)+ aE - 36)+ apfet -687 +3)

[a,68, +a (628, - &)+ a6 - &)+ a8, - 368,)
o e -8 - g 1) v a,lag - 36¢) ]
8,6, + 2,68, - &)+ a (68 - &) v alete, - 364
|+ 6‘1133(512532 - 532 - 512 + 1) + 6‘1333(51533 - 35153) ]
.68+ 2,68 - &) alee - &) va, (8 -3
a8 - & -8 v 1)+ a,, (68 - 34) ]
a, 668, + alEP68, - &)+ a8, - &8, )]
+a,, 68,8 - £8)

(E.2)

The PCE in Equation (E.2) consists of 8 groupsesponding respectively to:
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=

(
(¢

l), ({2), ({3) First orderterms
(€.¢,), (&.¢,). (&,.&) Secondrderterms
(€,.¢,.8,) Third orderterms

The first order terms provide the contribution atlke random variable individually in the
variability of the system response. However, theosd order terms provide the
contribution of the combinations of two random wahies and the third order terms provide
the contribution of the combinations of three ramdwariables. The Sobol index
corresponding to each one of these terms is caézlibes follows:
SU, =Za‘;—§(¢/§) (E.3)
wherecd? is the variance of the system response calculatied) the PCE coefficients. It is
given by:

P-1 P-1
o’ :var(;q 7/ j:;af.E@/iz) (E.4)
in which E(z//iz) is the variance of the multidimensional Hermitgngimial ¢, . It is given
by Sudretet al. (2006) as follows:
Elp?)=ii,0..i) (E.5)

The values ofE(l//iZ) corresponding to the differegt terms are given in Table (C.1).
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APPENDIX F
METROPOLIS-HASTINGS ALGORITHM

The Metropolis—Hastings algorithm is a Markov chisiante Carlo (MCMC) method. It is
used to generate a sequence of new realizations ésasting realizations (that follow a

target PDF called ‘f. Refer to Figure (F.1) and |'s, OF be a current realization which

follows a target PDF ‘R Using a proposal PDF 2 a next realizatiors, ,, [J F that

k+1
follows the target PDF {Pcan be simulated from the current realizatipassfollows:

a. A candidate realizatiof is generated using the proposal PDF).(Phe candidate
realizations is centered at the current realizatign s

b. Using the deterministic model, evaluate the valute performance function §(
corresponding to the candidate realizationf G(5)<C; (i.e. § is located in the
failure region B, set g.1= §; otherwise, reject and set g1=5¢ (i.e. the current
realization gis repeated).

c. If G()<C;in the preceding step, calculate the ratoPy(8)/P(s:) and the ratio
r2=Pp(scI8)/Py(81s), then compute the value f#r.

d. If r>1 (i.e. § is distributed according to the))Pone continues to retain the
realization g.; obtained in step b; otherwise, rejé@nd set,s,=5 (i.e. the current
realization gis repeated).

Notice that in step b, if the candidate realizai@oes not satisfy the condition <C;, it

is rejected and the current realizationis repeated. Also in step d, if the candidate
realizations does not satisfy the conditionlr (i.e.$ is not distributed according to thg,P

it is rejected and the current realizatignis repeated. The presence of several repeated
realizations is not desired as it leads to highbahility that the chain of realizations

remains in the current state. This means that tiselhégh probability that the next failure

threshold G, is equal to the current failure threshold This decreases the efficiency of
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the subset simulation approach. To overcome thisnwvenience, Santoset al (2011)
proposed to modify the classical M-H algorithm al$ofwvs:
a. A candidate realizatioh is generated using the proposal PDF).(Fhe candidate
realizations is centered at the current realizatign s
b. Calculate the ratio*P:(8)/Pi(sc) and the ratioFPy(scI8)/Py(51s), then compute the
value r=gr,.
c. If =1, set g.1=8; otherwise, another candidate realization is gerer Candidate
realizations are generated randomly until the doomdir>1 is satisfied.
d. Using the deterministic model, evaluate the @atd the performance function
G(s+1) of the candidate realization that satisfies tbadition £1. If G(S+1)<C
(i.e. s+1 is located in the failure region)Fone continues to retain the realization
S«+1 Obtained in step c; otherwise, rejé@nd set ;=5 (i.e. the current realization
s Is repeated).
These modifications reduce the repeated realizatiand allow one to avoid the
computation of the system response of the rejematizations. This becomes of great
importance when the time cost for the computatibtihe system response is expensive (i.e.

for the finite element or finite difference models)

Fu=F
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Figure F.1: Nested Failure domain
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