
UNIVERSITÉ DE NANTES
FACULTÉ DES SCIENCES ET DES TECHNIQUES

ÉCOLE DOCTORALE SCIENCES ET TECHNOLOGIES
DE L’INFORMATION ET DES MATHÉMATIQUES

Année 2011 N◦ attribué par la bibliothèque

— — — — — — — — — —

A VPA-based aspect language - an approach to
software composition using non-regular behavioral

protocols

THÈSE DE DOCTORAT
Discipline : Informatique
Spécialité: Génie logiciel

Présentée
et soutenue publiquement par

Dong-Ha NGUYEN

Le 21 Octobre 2011, devant le jury ci-dessous

Rapporteurs: Benôıt Baudry, CR INRIA INRIA Rennes - Bretagne Atlantique
Antoine Beugnard, Pr Telecom Bretagne

Examinateurs: Christian Attiogbé, Pr Université de Nantes
Isabelle Borne, Pr Université de Bretagne-Sud
Pierre Cointe, Pr Ecole des Mines de Nantes
Mario Südholt, Pr Ecole des Mines de Nantes

Directeur de thèse: Pierre Cointe
Co-encadrant: Mario Südholt

ED :

Abstract

Currently, there are only few AOP systems that exploit protocol-based pointcut languages in
order to enable declarative aspect definitions and provide support for reasoning over prop-
erties of AO programs. Furthermore, most approaches to protocol-based software evolution
only support regular protocols which are limited in expressiveness. The goal of this thesis is
to develop an aspect language that is not only more expressive but also amenable to property
analysis and verification. Our aspect language addresses these limitations by extending the
original framework with more specific language support for non-regular protocols as well as
providing techniques for the analysis of properties of components. Concretely, this thesis
provides four contributions. First, we have defined the VPA-based aspect language, which
provides an aspect model on top of protocols defined using the class of visibly pushdown
automata (VPAs). Second, we have used aspects over interaction protocols of software com-
ponents in order to define and analyze fundamental correctness properties of components.
Third, we have considered how to harness existing model checkers to verify systems that
are modified by VPA-based aspects. Fourth, we have shown how VPA-based aspects can
be useful for the definition of different functionalities in two different application domains:
the management of nested login sessions, and the management of queries in P2P-based grid
systems.

Key words: aspect-oriented programming, visibly pushdown automata, interaction pro-
tocols, software evolution, component-based systems, model checking, peer-to-peer systems,
correctness by construction

Résumé

Actuellement, il n’existe que peu de systèmes qui exploitent des langages de coupes basés sur
des protocoles afin d’offrir des définitions d’aspects déclaratifs et de permettre de raisonner
sur des propriétés de programmes orientés aspect. Par ailleurs, la plupart des approches à
l’évolution des logiciels basés sur des protocoles ne soutiennent que des protocoles réguliers
dont l’expressivité est limitée. L’objectif de cette thèse est de développer un langage d’aspects
qui est non seulement plus expressif, mais aussi favorable à l’analyse et la vérification des
propriétés compositionnelles. Notre langage d’aspect adresse de ces limitations par un lan-
gage basé sur des protocoles non réguliers ; nous fournissons, en outre, des techniques pour
l’analyse des propriétés des composants qui sont modifiés à l’aide du langage. Concrètement,
cette thèse a donné lieu à quatre contributions principales. Nous avons d’abord défini un
langage d’aspects manipulant des protocoles définis à l’aide d’automates à pile visible (APV).
Ensuite, nous avons appliqués ces aspects à l’analyse de propriétés compositionnelles fonda-
mentales d’interactions entre composants. Troisièmement, nous avons examiné la technique
de la vérification des modèles afin de vérifier les systèmes modifiés par des aspects fondés
sur des APV. Quatrièmement, nous avons utilisé les aspects APV pour la définition des
différentes fonctionnalités dans deux domaines d’application différents : la gestion de sessions
de connexion imbriquées, et la gestion de requtes dans les systèmes pair-à-pair.

Mots-clés : programmation orientée aspect, automates à pile visible, protocoles d’interaction,
évolution du logiciel, systèmes à base de composants, model checking, systèmes pair-à-pair,
correction par construction

Acknowledgements

The research presented in this thesis has been supported by AOSD-Europe, the European
Network of Excellence in AOSD (http://www.aosd-europe.net)

First and foremost, I would like to deeply thank my supervisor Mario Südholt for his great
patience, his guidance and support throughout the production of this research and thesis. I
appreciate all his contributions of time and ideas to this research, to our co-written papers
and to my thesis. Without his continous support and pushing, I could not have finished my
thesis successfully.

I would also like to thank my thesis director, Pierre Cointe, for helping me with several
administrative procedures and for serving on my thesis committee. I also thank my thesis
reviewers: Benôıt Baudry and Antoine Beugnard for their time, interest, and helpful remarks.
I would also like to thank Christian Attiogbé and Isabelle Borne for serving on my thesis
committee.

I owe my sincere gratitude to Thao Dang for giving me encouragement and advice during
the final stage of this PhD. My discussions with her gave me an insight into the evaluation
process and helped me greatly to gain confidence and determination to press forward.

I would like to thank my grandma, dad, mom, and sister for all their love, unwavering
support and encouragement throughout the years. If it wasn’t for them, I wouldn’t be able
to finish this thesis. I also thank my extended family members who always care about me
and take good care of my mom when I am so far away.

Last, but not least, I would like to express my heart-felt gratitude to my loving husband,
Hoang, for supporting me and enduring all the stress I put on him through all the years I
worked on my thesis. Hoang had spent a lot of his time and energy to take care of our baby
daughter Misha so that I could find some time to finish my thesis. I am so blessed to have
him by my side in this long dissertation journey. And thanks to Misha for bringing me lots
of joys and never failing to lift my spirits. I love you so much.

Contents

1 Introduction 1

1.1 Context . 2

1.2 Contributions . 3

1.3 Outline of the Dissertation . 4

I State of the Art 7

2 Component-Based Software Engineering 9

2.1 Introduction . 9

2.2 Software component . 10

2.2.1 Definition . 10

2.2.2 Component interface . 11

2.3 Component Models . 12

2.3.1 Academic models . 13

2.3.2 Industrial models . 17

2.3.3 Summary . 19

2.4 Interaction Protocols . 19

2.4.1 Process Algebras . 19

2.4.2 Interaction protocols in object models 21

2.4.3 Interaction protocols in component models 25

2.5 Architecture description languages . 26

2.6 Analysis of component-based systems . 27

2.6.1 Compositional properties . 27

2.6.2 Analysis of component composition . 28

2.6.3 Summary . 30

2.7 Component evolution . 30

2.7.1 Problems arising from evolution . 31

2.7.2 Approaches to deal with evolution problems 31

2.8 Conclusions . 32

3 Aspect-Oriented Programming 35

3.1 Introduction . 35

3.2 AO approaches . 36

3.2.1 AspectJ . 36

3.2.2 History-based aspect languages . 39

i

ii CONTENTS

3.2.3 Adaptive programming . 42

3.2.4 Composition filters . 44

3.2.5 Summary . 46

3.3 Verification and Analysis . 46

3.3.1 Aspect verification using Model checking 46

3.3.2 Static analysis techniques for aspects 51

3.3.3 Summary . 54

3.4 Aspects and Components . 55

3.4.1 JBoss/AOP . 55

3.4.2 Spring AOP . 56

3.4.3 JAsCo . 56

3.4.4 CaesarJ . 59

3.4.5 Summary . 60

3.5 Conclusions . 61

II Contributions 63

4 VPA-based Aspect Language 65

4.1 Motivation . 65

4.2 Visibly Pushdown Automata . 68

4.2.1 Definitions . 68

4.2.2 Closure properties of Visibly Pushdown Languages 70

4.3 VPA-based Aspect Language . 72

4.3.1 Overview . 72

4.3.2 Syntax . 73

4.3.3 Semantics . 78

4.4 Visibly Pushdown Automata Library (VPAlib) 90

4.4.1 Overview . 90

4.4.2 Implementation . 92

4.5 Interaction analysis for VPA-based aspects 102

4.6 Conclusions . 106

5 Applications 107

5.1 Remote access systems . 108

5.2 Computational grids on peer-to-peer overlay network 110

5.2.1 Peer-to-peer grid computing system 111

5.2.2 Abstract peer-to-peer grid computing system 112

5.2.3 Applications of VPA-based aspects. 114

5.3 Conclusions . 116

6 Component Evolution and VPA-based aspects 119

6.1 Example: evolving P2P systems by VPA-based aspects 119

6.2 Component-based systems: correctness and evolution 122

6.2.1 Composition properties: compatibility and substitutability 123

6.2.2 Evolution model . 125

6.2.3 VPA-based aspects for evolution . 125

CONTENTS iii

6.3 Proving property preservation . 126
6.3.1 Aspects with closeOpenCalls advice 127
6.3.2 Depth-dependent aspects . 131
6.3.3 Aspects inserting pairs of events . 133

6.4 Conclusions . 135

7 Model checking VPA-based AO programs 137
7.1 Introduction . 137
7.2 Motivation and approach . 138
7.3 A framework for model checking VPA-based AO programs 138

7.3.1 Model checking framework . 138
7.3.2 Abstracting VPAs into finite-state machines 140

7.4 Comparison of existing model checkers . 144
7.4.1 UPPAAL for model checking of VPAs 145

7.5 Model-checking VPA-based P2P systems . 145
7.5.1 Validation scenario 1: collaboration between two parties 146
7.5.2 Validation scenario 2: collaboration among three parties 149

7.6 Conclusions . 151

8 Conclusion 153
8.1 Contributions . 153
8.2 Perspectives . 154

iv CONTENTS

List of Figures

2.1 Interface of component Bidder . 11

2.2 A composite Fractal component . 16

3.1 State machines representing base program requirements and aspect advice . . 49

3.2 State machine T̃ψ composed by weaving A into Tψ according to ρ = a ∧ b . . 50

4.1 Monitoring aspect implemented using regular language 66

4.2 Modeling query protocol using PDA . 67

4.3 Grammar for a VPA-based aspect . 74

4.4 Aspect handling abortRequest in peer-to-peer query protocol 76

4.5 VPA constructed from depth constructor . 81

4.6 VPA constructed from a depth constructor 82

4.7 Weaving aspects on VPA-based protocols . 90

4.8 VPAlib class diagram . 91

4.9 Excerpt of implementation of the intersection operation on VPAs 95

4.10 Two input VPAs M1, M2 for the intersection method 96

4.11 The VPA constructed as the intersection of M1 and M2 96

4.12 Excerpt of implementation of the concatenation operation on VPAs 97

4.13 Excerpt of implementation of Kleene-star on VPA 98

4.14 Excerpt of implementation of determinization on VPA 100

4.15 Three-state nondeterministic VPA . 101

4.16 Deterministic VPA constructed from the three-state VPA 101

4.17 Excerpt of implementation of inclusion check on VPA 102

4.18 Query aspects applying over peer-to-peer search algorithm 104

4.19 Product automaton of Trust and File query aspects 104

4.20 Aspects implementing operations on an abstract syntax tree 105

4.21 Product automaton of Replacing type and Removing declaration aspects . . 105

5.1 Protocol of a worker peer . 113

5.2 Protocol of a submitter peer . 114

5.3 Protocol of a manager versus worker peers . 114

5.4 Protocol of a manager versus a submitter peer 115

6.1 Checking for preservation of compatibility/substitutability 125

6.2 Syntax of VPA-based protocol language . 126

6.3 Abstract VPAs representing p2 and p3 . 128

6.4 Abstract VPAs representing p1, p2, and p3 . 130

v

vi LIST OF FIGURES

6.5 Abstract VPAs representing p1, p2, and p3 . 130
6.6 Abstract VPAs representing p1, p2, and p3 . 134
6.7 Abstract VPAs representing p1, p2, and p3 . 135

7.1 Model checking procedure on VPA-based AO programs 139
7.2 VPAs of a base program, an aspect and the composed system 140
7.3 Approximating the depth of the stack of a VPA 141
7.4 Stack simulation with counters and conditions 143
7.5 Protocols of the submitter and the manager 146
7.6 Models of submitter and manager after modified by aspect A 147
7.7 Protocol the submitter modeled in tool UPPAAL 148
7.8 Protocol of the manager modeled in tool UPPAAL 148
7.9 Protocols of the task submitter, the worker, and the manager 149
7.10 Protocol of the worker after the application of aspect A 150
7.11 Protocol of the manager modeled in tool UPPAAL 150
7.12 Protocol of the worker modeled in tool UPPAAL 151

List of Tables

6.1 Definitions of certain protocol and aspect classes 129
6.2 Definitions of certain protocol and aspect classes 131
6.3 Definitions of certain protocol and aspect classes 133

7.1 Some model checkers and corresponding properties 144

vii

Chapter 1

Introduction

Aspect-Oriented Software Development (AOSD) aims at the systematic treatment of func-
tionalities, so-called crosscutting concerns, that cannot reasonably be modularized using tra-
ditional program and application structuring means, such as object-oriented programming
and component-based software development. As crosscutting concerns — such as execution
of queries in P2P systems, security and transactional concurrency control in business infor-
mation systems — abound in large-scale software systems, a large number of AO mechanisms
have been proposed by now for the modularization of crosscutting concerns, especially for
component-based systems. However, almost all of these approaches provide programmatic
means without any enforceable guarantees on the correctness of aspect application. These
aspect languages and systems are frequently used for the design and implementation of evo-
lution scenarios for legacy software systems: the lack of correctness guarantees for aspects is
frequently seen as a major impediment to their generalized use.

One popular means to introduce means for the formal analysis and verification of cor-
rectness properties of software systems, is the use of behavioral protocols that make explicit
parts of the semantics of software systems and can be used for property analysis and enforce-
ment. In contrast to the large majority of language-based approaches to software evolution
that are based on Turing-complete mechanism, protocol-based approaches typically rely on
more restricted formalisms that support the more declarative definition of constraints on the
execution of software systems and enable semi-automatic or automatic analysis, validation
and verification mechanisms to be used.

While protocols have already been widely used to support declarative programmatic access
to components as well as automatic reasoning about component properties, there are only few
AOP systems that exploit protocol-based pointcut languages in order to enable declarative
aspect definitions and provide support for reasoning over properties of AO programs. Further-
more, most approaches to protocol-based software evolution, independent from whether they
use aspects or not, only support regular, that is, finite-state based protocols. These protocols
have the advantage that many of their properties can be efficiently and automatically analyzed
and verified, especially using model checking techniques. Harnessing the same advantages,
a fair number of aspect systems with regular pointcut languages have been proposed, most
notably regular aspects by Douence et al. [47, 48] and tracematches by Allan et al. [17].

Regular protocols are, however, limited in expressiveness: they cannot express, in par-
ticular, computations that require unbounded counting of events. Furthermore, they do not
support arbitrary deep well-balanced nested expressions that occur frequently in many ap-

1

2 CHAPTER 1. INTRODUCTION

plication domains, for example, in form of matching calls and returns or query and replies.
Such execution structures are supported by more expressive types of protocols, in particular
context-free protocols, but very few component-based and aspect-oriented systems have been
proposed that feature non-regular protocols, the main reason being that the analysis and
verification techniques for non-regular protocols are few and much less efficient than those for
regular protocols.

In this thesis we have explored the definition of aspect-oriented programming techniques
on top of non-regular behavioral protocols, more concretely a recent variant of non-regular
protocols, defined using the so-called visibly pushdown automata (introduced in 2004 by Alur
and Madhusudan [21]). We have shown how to integrate them on the language-level, provided
new means for the analysis and verification of aspect properties, as well as how to develop
approximations in order to harness them with existing model checking tools.

1.1 Context

Existing AOP approaches that feature pointcuts that are capable of matching protocols in-
clude regular aspects by Douence et al. [47, 48], tracematches by Allan et al. [17], stateful
aspects in JAsCo by Vanderperren et al. [125], and tracecuts by Walker and Viggers [128].
The first three approaches only support regular protocols. The fourth approach supports
protocols described by context-free grammar, especially those that involve properly nested
structures. However, this feature impedes analysis support because basic decision problems
such as inclusion, emptiness or universality are undecidable for context-free languages [67].

The aspect language introduced in this thesis have been developed based on the generic
framework for AOP [47]. This framework provides a foundation for the development of AO
languages that support history-based pointcuts and the analysis for interaction between as-
pects. The syntax and semantics defined by this framework have been reused in the definition
of our aspect language. However, this framework only supports regular aspects and does not
consider analysis techniques for compositional properties in component-based systems. Our
aspect language addresses these limitations by extending the original framework with more
specific language supports for non-regular protocols as well as providing techniques for the
analysis of properties of components.

There have been quite a number of AO approaches, e.g., JBoss/AOP [69], SpringAOP [12],
JAsCo [120], CaesarJ [91, 23], that aim at component-based applications. However, among
these approaches, only JAsCo provides explicit support for defining aspects over protocols
(which are finite-state based protocols). We aim for an aspect language that provides support
for aspects over non-regular protocols of components. Note that, we consider components with
explicit protocols, i.e., components of which protocols are exposed through the interface, to be
applications of our aspect language. This restriction permits non-invasive aspect modifications
to components. Furthermore, this allows us to attempt to analyze at the protocol level the
properties of the component-based system subject to aspect-based evolution.

An aspect language that supports non-regular pointcuts is very useful for applications
that require more expressive than regular protocols. Peer-to-peer (P2P) systems are one
particular application domain that involves non-regular protocols defined on nested well-
balanced contexts such as the recursive query protocol. We have explored further P2P-based
applications and frameworks including JXTA[8], a Java technology that supports the creation
of P2P applications, and three P2P-based grid systems, Jalapeno[122], Juxta-CAT[108], and

1.2. CONTRIBUTIONS 3

OurGrid[28], as they also use a number of protocols that are potential targets of aspects
defined by our language.

1.2 Contributions

The goal of this thesis is to develop an aspect language that is not only more expressive
(than regular ones) but also amenable to property analysis and verification, especially for
component-based applications that are subject to evolution by aspects. For this purpose,
we have developed an advanced history-based aspect language that features a protocol-based
pointcut language and thus enables declarative aspect definitions. Furthermore, we have
developed tool support for the execution and analysis of the corresponding aspect systems.
Finally, we have harnessed our aspect language in different application domains. Concretely,
this thesis has resulted in the following four contributions.

First, based on an extensive survey of related work in AOSD and CBSE, we have defined a
new aspect language, called the VPA-based aspect language, that provides an aspect model on
top of protocols defined using the class of visibly pushdown automata (VPAs). This language
enables the declarative definition of evolution scenarios that require the manipulation of
nested well-balanced execution structures. The language features VPA-based pointcuts and
provides, in particular, constructors for the declarative definition of pointcuts based on regular
and non-regular structures. Furthermore, our language enables aspect properties, notably
interaction properties to be analyzed formally. We present a semantics of our language by
extending an existing framework of regular aspect languages [47]. We have also extended
and developed the technique for detecting automatically potential interactions among VPA-
based aspects. Finally, we have realized a library called VPAlib that provides an, as to our
knowledge first, implementation of essential data structures and operations for the VPA. This
library is essential to enable the construction and analysis of VPA-based aspects. We have
applied the library to some analysis problems involving VPA-based aspects.

Second, we have used aspects over interaction protocols of software components in order to
define and analyze fundamental correctness properties of components, including compatibility
and substitutability relations that are subject to evolution using VPA-based aspects. Instead
of analyzing the software system after aspect weaving, our approach defines classes of aspects
that satisfy certain properties by construction.

Third, we have considered how to harness existing model checkers to verify systems that
are modified by VPA-based aspects. Concretely, we have developed a model checking frame-
work tailored for VPA-based systems. In this framework, we create an abstract model of a
system using VPA-based aspects and run the model checker on this abstract model.

Fourth, we have considered the application of VPA-based aspects to several problems from
two different application domains: (i) the management of nested login sessions in order to
improve the security of distributed systems, and (ii) the management of queries in P2P-based
grid systems. We have shown how VPA-based aspects can be useful for the definition of
different functionalities in such applications.

Finally, as part of these contributions, we have also investigated the limitations of VPAs
in the context of AOP and component-based programming.

A part of the contributions presented in this thesis have been published in three following
peer-reviewed articles:� D. H. Nguyen, M. Südholt, “VPA-based aspects: better support for AOP over proto-

4 CHAPTER 1. INTRODUCTION

cols”, 4th IEEE International Conference on Software Engineering and Formal Methods
(SEFM’06), Sep. 2006.� D. H. Nguyen, M. Südholt, “Towards correct evolution of components using VPA-based
aspects”, Proc. of the 4th International Workshop on Reflection, AOP and Meta-Data
for Software Evolution (RAM-SE’07) at ECOOP, July 2007.� D. H. Nguyen, M. Südholt, “Property-preserving evolution of components using VPA-
based aspects”, 9th International Conference on Distributed Objects, Middleware, and
Applications (DOA’07), Nov. 2007.

The SEFM’06 paper presents the major features of our VPA-based aspect language, the
VPAlib library, and the method for detecting automatically potential interactions among
VPA-based aspects. The content of this paper is presented in Chapter 4 of this thesis. The
RAMSE’07 paper and DOA’07 paper introduce several extensions to the VPA-based language
that facilitate the definition of aspects over components and discuss different proof techniques
for the preservation of compositional properties of component-based systems that are subject
to protocol-modifying aspects. The contributions in these two papers are mainly presented
in Chapter 6 of this thesis. The applications of VPA-based aspects and the verification of
systems modified by VPA-based aspects using a model checker that are presented in the
remaining two contribution chapters directly follow from the results presented in the above
articles.

The analysis technique for the detection of interference among aspects presented in Chap-
ter 4 has also been published in the following technical report of the AOSD-Europe network
of excellence:� Emilia Katz, Shmuel Katz, Wilke Havinga, Tom Staijen, Nathan Weston, Francois

Taiani, Awais Rashid, Dong Ha Nguyen, Mario Südholt,“Detecting interference among
aspects”, Technical report AOSD-Europe Deliverable D116, AOSD-Europe Network of
Excellence, Feb. 2007.

The VPAlib library has been integrated into CAPE(the Common Aspect Proof Environ-
ment) [3], which is an extensible environment for different aspect verification and analysis
tools and over various aspect languages. CAPE has been designed and implemented by the
group at Technion, with tools (e.g., VPAlib) contributed from several AOSD-Europe sites.

I have also contributed to two technical reports which are results from various adminis-
trative activities within the AOSD-Europe network of excellence:� Mario Südholt, Dong Ha Nguyen, Awais Rashid, “Six-monthly evaluation report of

mobility activities and replanning”, Technical report AOSD-Europe Milestone D79,
AOSD-Europe Network of Excellence, Feb. 2007.� Dong Ha Nguyen, Mario Südholt, “Improvement plan for mobility infrastructure”, Tech-
nical report AOSD-Europe Milestone M16, AOSD-Europe Network of Excellence, July.
2007.

1.3 Outline of the Dissertation

This dissertation is divided into two parts, the first presenting related work and the second
the contributions of the thesis.

1.3. OUTLINE OF THE DISSERTATION 5

Chapter 2 presents an overview of important concepts and approaches in CBSE that are
strongly related to our work. We are especially interested in the use of interaction protocols as
specifications that express correct communications between components. Such specifications
are useful in order to reason about the properties of components and their composition.
This chapter also presents approaches for the analysis and verification of component-based
applications and studies on component evolution.

Chapter 3 presents three fundamental issues to AOSD that are underlying the motivation
and contribution of this thesis: language support for AOP, formal methods for the analysis
and verification of AO programs, and AO approaches for component-based software. We
conclude the chapter with lessons that we have learned from previous work and a list of
features that our aspect language should offer.

The second part presents our contributions in five chapters.
Chapter 4 presents the VPA-based Aspect Language. Here we motivates the use of visibly

pushdown automata to define history-based aspect languages. We present the formal syntax
and a suitable semantic framework. This chapter also introduces the library that we have
implemented in order to provide analysis support for VPA-based aspects. Finally, we show
how interactions among VPA-based aspects can be tackled with the support of our VPA
library.

Chapter 5 presents applications of VPA-based aspects in two contexts. First, VPA-based
aspects are employed to supervise access in nested login sessions in distributed systems.
Second, VPA-based aspects are applied to an abstract grid system deployed on peer-to-peer
network.

Chapter 6 presents our approach to prove the preservation of properties of component-
based systems that are modified by VPA-based aspect. We introduce the basic model of our
approach and a set of theorems that allows us to prove the preservation of properties for
certain classes of aspects and component-based systems.

Chapter 7 presents our work on the application of model checking in VPA-based aspect
programs. We discuss different potential model checking approaches and present a framework
for model checking VPA-based aspect programs. Finally, we show some experiments we have
performed with a sample VPA-based system with a model checker.

The conclusion chapter recapitulates the contributions of the dissertation and proposes
directions for future work.

6 CHAPTER 1. INTRODUCTION

Part I

State of the Art

7

Chapter 2

Component-Based Software
Engineering

2.1 Introduction

Component-based software engineering (CBSE) focuses on building large software systems
from reusable components [61] to make software easier to develop and maintain. In recent
years, this development paradigm has emerged as a key technology that promises to ultimately
enhance software quality through improving software reusability, maintainability, extensibil-
ity, and adaptibility while reducing development cost.

Nowadays, the component-based approach has become the de-facto standard for the de-
velopment of large-scale software systems. The rise of innovative Internet technologies leads
to the use of a multitude of distributed component-based software and services. Those ap-
plications are often built from a variety of independent units developed by different parties.
Besides, expectations on the quality of computer software become higher and thus make soft-
ware even more complex than before. Many organisations adopt software outsourcing into
their strategic development policies to meet the high demands of the industry at inexpensive
cost. Software projects can be divided into smaller portions to be sent over to other com-
panies to have them done and later collected to build the final products. Such development
strategy is only feasible with today’s component-based technologies.

Along with the emergence of CBSE in the software industry, a large number of research
activities on numerous aspects of the CBSE paradigm have been conducted. This thesis espe-
cially relates to studies on three major subjects on component-based software engineering: (i)
specification of components and their composition, (ii) verification and analysis of behavioral
properties, and (iii) evolution of component composition.

Component specification is a subject that has got a lot of attention over the years. Several
component models have been developed. Most of them propose their own standards for the
specification of components, especially component interfaces. Understanding components
correctly is very important when building a component-based application. Knowing what
they can offer and how they should be used help developers to choose the right components
and use them properly. Since components are supposed to be used by third parties, their
specifications should provide sufficient details so that they can be used correctly either alone
or in composition with other components. Additionally, the specification of the composition
of components also provides valuable information for learning the behavior of components

9

10 CHAPTER 2. COMPONENT-BASED SOFTWARE ENGINEERING

through behavioral protocols. An important part of our work has been based on components
featuring explicit protocols in their interfaces.

Verification and analysis techniques would help to ensure correctness and reliability of
component-based software. Although the component technologies have emerged significantly
over recent years, verification and analysis techniques for component-based software are still
scarce. Verifying component-based applications is much more difficult than verifying tradi-
tional applications because of the large size of component-based applications and the lack of
information on components. Normally, the verification has to rely on the information provided
by the component specification. Since our approach targets on components as its application,
we have devoted a significant amount of work to developing supports for property analysis of
components.

The third area of CBSE touched by our work is component evolution, especially the anal-
ysis of properties after component evolution. As aspects allow the modification of program
execution, component evolution can be realised by aspects naturally. However, any mod-
ifications to components may affect the stability of component composition and even the
functionalities of other components. Studies on component evolution often aim at solving
conflicts between components arising from modifications to components. In this thesis, we
have studied the effects of evolution on components by aspects written in our designed aspect
language.

In this chapter, we review the most important concepts and approaches in CBSE that are
strongly related to the our work. The remainder of this chapter is organized as follows. Section
2.2 introduces the definition and properties of a software component. Section 2.3 presents an
overview of a few representative component models that have been introduced by academics
as well as industry. Interaction protocols, a special type of specification often used to express
communications between components, play an important role to ensure the correctness of
the composition of components. Section 2.4 will focus on interaction protocols, how they
are specified in general and in components, and how they can be used to reason about the
properties of components and their composition. Section 2.5 presents a brief introduction
to architecture description languages. Section 2.6 presents issues and major approaches for
the verification of component-based applications. Section 2.7 reviews studies on component
evolution and section 2.8 concludes the chapter.

2.2 Software component

This section describes software components, the core elements of component-based software.
In section 2.2.1, we present one commonly accepted definition of a software component. Then
we explain the critical role of the interface of software components in section 2.2.2.

2.2.1 Definition

There have been various proposals, e.g. [100, 30, 111, 61, 121] for the definition of the concept
software component since the idea of CBSE was first floated. Among different proposals, the
definition of a software component formulated by Clement Szyperski [121], which is as follows:

A software component is a unit of composition with contractually specified in-
terfaces and explicit context dependencies only. A software component can be
deployed independently and is subject to composition by third parties.

2.2. SOFTWARE COMPONENT 11

is most popular and commonly accepted. This definition captures two important character-
istics of a software component: self-containment with well-defined interface and subject to
composition.

As a software component is a unit of composition and supposed to be deployed inde-
pendently, its features should be well-encapsulated. All information on how it can be used
is exposed through its interface only. These characteristics enable reusabibility of software
components and thus help to achieve the goals to improve reusability, maintainability, and
adaptability of component-based applications.

2.2.2 Component interface

Normally, a component-based system is built by the composition of several components which
could be developed independently by different parties that ignore one another’s requirements
and implementation. Such composition is only possible thanks to the availability of well-
defined component interfaces which should serve as contracts between the provider and the
clients of a software component. On the one hand, the provider must declare the services
that the component offers and the set of requirements on how those services should be used
as parts of the component interface. On the other hand, clients of a component must consult
the component interface to learn what services they can use and what requirements they
must fulfill before using those services. Furthermore, since the interface of a component must
reflect its content, it may be the only source of information about the component that can
be used, e.g, to test or analyze its effects by other parties.

Let us consider a simple example of one component representing a bidder in an auction
system. Figure 2.1 shows the interface of the component. According to the interface, the
component provides one service called bid and requires two services register, unregister

to implement the services it provides.

Figure 2.1: Interface of component Bidder

Services are typically further specified in an interface by their signatures as follows:

component Bidder{

requires:

void register(int id, int item);

void unregister(int id, int item);

provides:

void bid(int item, double price};

}

12 CHAPTER 2. COMPONENT-BASED SOFTWARE ENGINEERING

Note that this example just shows the simplest type of a component interface which
contains only signatures of services offered and required by a component. This type of interface
mainly exposes the syntactical information of the component.

In principle, the interface for components should define services on the right abstraction
level for the component. If an interface reveals much more details than needed, the component
would be more difficult to understand for their clients and hinder future enhancements, for
instance, when the component needs to be replaced but there are other components that rely
on its internal implementation (which should never be exposed). On the other hand, if an
interface does not carry sufficient details about a component, component use or composition
may be difficult or even impossible due to mis-assumptions about the operation and require-
ments of that component. For instance, the above component might require that the bid

service can only execute after the execution the register service and before the execution of
the unregister service. Such a requirement cannot be explicitly specified in the component
interface should the interface is designed to carry only service signatures.

Many studies on the subject about component interface suggest that signature-based
interfaces are not sufficient for components since they do not provide much detail about the
behavior of a component. In order to overcome that problem, interaction protocols, which
allow components to specify sequences of events or method invocations, have been proposed
to be included into component interface first by Daniel M. Yellin and Robert E. Strom [129]
and then others, e.g, [104, 102, 106]). We believe that integrating interaction protocols into
the component interface is essential for the success of component composition. Therefore, our
work in this thesis relies on components that feature explicit protocols in their interfaces.

In summary, software components can be developed independently by different parties
to be assembled to build larger applications. They expose their details in an abstraction
manner through interfaces which describe the contracts between providers and clients of the
components.

2.3 Component Models

A component model describes a set of standards for the realisation of components and
component-based applications. Concretely, it defines what components are, how they can
be constructed, how they can be deployed and how they can be executed.

Along with the emerging of the CBSE discipline, a large number of component models
have been introduced over recent years both by the industry and the academia. Current
component models can be classified into two categories: academic component models and
industrial component models. Academic component models have been proposed with focus
on the examination of new concepts, the formulation of properties of components, and the
implementation of analysis and verification techniques for component-based applications. In-
dustrial component models have been developed to bring new technologies to the software
industry for the production of components and large-scale component-based systems.

In the following we will discuss a few representative component models developed by the
academia and the industry. For each component model, we will focus on the structure of a
component and how they are specified in those models. We are particularly interested in what
kinds of information are exposed by a component through its interface and how far analysis
of the component interface could go.

We will demonstrate the features of those component models using the example of an auc-

2.3. COMPONENT MODELS 13

tion system adapted from [71]. Basically, this system involves four parties: the auctioneer,
the bidder, the seller, and the item. The auctioneer plays the role of a mediator who com-
municates with both the bidder and the seller. The bidder has to register to the auctioneer
when he wishes to participate in an auction session. He will send his bids for an item to the
auctioneer and will also receive the answer from the auctioneer. The seller advertises his item
through the auctioneer and also notifies the auctioneer when he decides to accept a bid and
sell his item.

2.3.1 Academic models

Currently, there have been numerous component models proposed by research groups around
the world, e.g., SOFA [103], Fractal [31], CGEN [112], ComponentJ [16], Java Layers [33],
Koala [124], etc. In this section we will discuss three models in details: SOFA, Fractal,
and CGEN. The SOFA component model is among the few existing component models that
support the specification and analysis of behavioral protocols in components. The Fractal
component model is distinguished from other component models in its openess which provides
the designers with capabilities to extend and adapt the component structure to fit their needs.
The CGEN component model provides a general purpose component framework in Java with
support for first-class generic types.

2.3.1.1 SOFA

SOFA (SOFtware Appliances) was introduced by Plásil et al in [103] to provide a platform
for the specification and implementation of software components. An application is viewed
as a hierarchy of nested components in SOFA. In the following we give a brief presentation
on how components are defined and how they evolve during their life cycle according to the
SOFA model.

A SOFA component is either primitive, i.e., it does not contain any subcomponents, or
composed, i.e., it is composed from other components. It is described by its frame and
architecture. The frame defines provides-interfaces and requires-interfaces of the component
and optional properties for parametrizing the component. The architecture describes the
structure of the component including its direct subcomponents and interconnections between
those subcomponents. Interconnections between subcomponents are specified via four kinds
of interface ties: binding, delegating, subsuming, and exempting. Connecting via binding
would link a requires-interface to a provides-interface. Connecting via delegating would link
a provides-interface of the component to a provides-interface of a subcomponent. Connecting
via subsuming would link a requires-interface of a subcomponent to a requires-interface of its
parent component. Finally, an exempting tie would release an interface of a subcomponent
from any ties.

SOFA components are defined using the SOFA Component Description Language (CDL).
The following code give examples of the CDL definitions of the Auctioneer, Bidder and
AuctioneerBidder components. Two interfaces IBidding and IRegistration are defined to
represent the set of services that provided or required by components. Three frames describe
the provides-interfaces and requires-interfaces of the three components. For instance, the
Auctioneer component implements the IRegistration interface so it will provide at least two
method calls register and unregister. The BidderAuctioneer component is compposed of the
Auctioneer component and the Bidder component. Its frame indicates that it provides all

14 CHAPTER 2. COMPONENT-BASED SOFTWARE ENGINEERING

the methods presented in two interfaces IBidding and IRegistration. Its internal structure
is specified via the CDL architecture construct. Line 36-37 show how two subcomponents are
instantiated. Line 38-39 show how the interfaces of its subcomponents are tied. Line 40-41
show how to link its provides-interface to the subcomponents provides-interfaces.

1 interface IBidding{

void youGotIt(string item);

3 void youLostIt(string item);

}

5

interface IRegistration{

7 void register(string name,

string item);

9 void unregister(string name,

string item);

11 }

13 frame Auctioneer{

provides:

15 IRegistration reg;

requires:

17 IBidding bid;

}

19

21

frame Bidder{

23 provides:

IBidding bidding;

25 requires:

IRegistration registering;

27 }

29 frame BidderAuctioneer{

provides:

31 IBidding BidderRegister;

IRegistration BiddingNotification;

33 }

35 architecture BidderAuctioneer{

inst Bidder B;

37 inst Auctioneer A;

bind B:registering to A:reg;

39 bind A:bid to B:bidding;

delegate BidderRegister to A:reg;

41 delegate BiddingNotification to B:bidding;

}

The SOFA component model offers supports for the specification of behavior protocols to
formalise the communication between two components [104]. A behavior protocol describes
a trace (or sequence) of event tokens. Each event token represents one of the four commu-
nication methods: emitting a method call, accepting a method call, emitting a return from
a method call, and accepting a return from a method call. Such behavior protocols can be
described as a part of the component interface, either in the interface definition or in the
frame definition. The following code gives an example of how behavior protocols can be
described in the frame of a component. The protocol (defined with keyword protocol) ex-
presses sequencing constraint on four methods register, youGotIt, youLostIt, unregister. That
is, register should be called first, then youGotIt or youLostIt can be called. These calls can
occur repeatedly (denoted by the repetition operator *). Finally a call to unregister ends
the bidding process.

frame BidderAuctioneer{

2 provides:

IBidding BidderRegister;

4 IRegistration BiddingNotification;

protocol:

6 ?BidderRegister.register; (?BiddingNotification.youGotIt +

?BiddingNotification.youLostIt)*; ? BidderRegister.unregister;

8 }

In SOFA, behavior protocols are described as regular expressions. It is possible to perform
analysis on compatibility and susbtitutability of SOFA components thanks to the information

2.3. COMPONENT MODELS 15

provided by their behavior protocols.

2.3.1.2 Fractal

Fractal [31] was devised initially by France Telecom and INRIA and later distributed by the
ObjectWeb consortium since 2002. It provides a framework for the implementation, deploy-
ment, and management of complex component-based systems. Important characteristics of
Fractal include reflexive, open, and extensible. Julia [42] is the reference implementation of
the Fractal component model.

The Fractal component model is distinguished from other component models in that it
offers several levels of control capabilities that a Fractal component can elect to offer to other
components. For instance, at the lowest level of control capability, a Fractal component
is a runtime entity, called a base component. The only way it can be used is by invoking
operations on its component interface. In Fractal, a component interface is an access point to
a component, which is similar to the so-called port in other component models. There are two
kinds of component interfaces: server interfaces representing incoming operation invocations
and client interfaces representing outgoing operation invocations. At the next level of control
capability, a component can provide a standard interface that exposes all its external (client
and server) interfaces. At the next level of control capability, a component can expose (part
of) its internal structure.

Internally, a Fractal component comprises of two parts: a controller (also called mem-
brane) and a content. The content of a component consists of a finite set of subcomponents
that are under the control of the controller of the enclosing component. The controller of a
component provides control interfaces to introspect and reconfigure the component’s internal
features. More precisely, it can intercept incoming and outgoing invocations to and from the
component’s subcomponents or even add behavior to the handling of those invocations. It can
also suspend, do checkpointing, and resume activities of the subcomponents. It can provide
an explicit and causally connected representation of the subcomponents. Note that Fractal
model allows arbitrary classes of controllers to be defined so that programmers may provide
their own controller classes which suit their objectives.

Figure 2.2 illustrates the Fractal composite component namely Bidder-Auctioneer. This
component is composed of two primitive components: Bidder and Auctioneer. All three com-
ponents expose their external interfaces so that they can interact with each other. Bindings
between Bidder and Auctioneer, denoted by lines connecting two interfaces, represent the fact
that Bidder uses some services provided by Auctioneer and vice versa. Interfaces are marked
with their types: C represents all external interfaces, BC represents binding controllers, CC
represents content controllers, LC represent life cycle controllers. Binding controllers allow
for binding and unbinding client interfaces of components to other components. Content con-
trollers expose internal structures of composite components and allow for adding or removing
their subcomponents. For instance, Bidder and Auctioneer components do not implement
content controllers so they do not expose their contents. The Bidder-Auctioneer composite
component implements a content controller so we can see its internal structure which consists
of two primitive components. Life cycle controllers allow for starting, stopping (and more) a
component properly.

Communication between Fractal components is established via binding between compo-
nent interfaces. Two binding types are supported: primitive binding which is binding between
one client interface and one server interface, and composite binding which is a communica-

16 CHAPTER 2. COMPONENT-BASED SOFTWARE ENGINEERING

AuctioneerBidder

C CC BC

BC

CC

CC BC

LC

LC LC

Bidder−Auctioneer

Figure 2.2: A composite Fractal component

tion path between several component interfaces. Binding can also be reconfigured at runtime
through binding controller interfaces.

Fractal does not provide explicit support for the specification of interaction protocols.
However, there have been on-going studies that aim at supporting the specification of behavior
protocols in Fractal, e.g., [75]. Furthermore, a checker called Fractal Behavior Protocol
Checker (Fractal BPC) [41] is currently developed to provide a behavior protocols platform
for Fractal components.

2.3.1.3 CGEN

CGEN (Component NEXTGEN)[112] offers supports for the implementation of component-
based systems using Java language. As an extension of NEXTGEN [34], CGEN has an
important characteristic: it supports first-class generic types, i.e., generic types can be used
wherever conventional types can appear, not only in class definitions but also in component
definitions. The CGEN framework is built on Sun Java 5.0. A CGEN component is backwards
compatible with existing libraries and can be executed on Java Virtual Machines.

CGEN components are called modules. A module is a generalised Java package, i.e., it also
contains a set of classes and has a name qualifier. However, unlike a traditional Java package,
a CGEN module can specify the functionality that it imports and the functionality that it
exports through its signatures. In other words, signatures serve as component interfaces in
CGEN. CGEN language supports binding an identifier to a module instantiation.

A signature specifies the classes and their members in prototype form as in the following
syntax:

signature S<V implements E,..., V implements E> [extends E,...,E];

sigMember*

where S is the name of the signature; each V is a module parameter; each E is a signature
instantiation; and each sigMember is either a prototype of a class, a binding statement, or an
import statement. The following code shows the signature of the two modules representing
an item and an auctioneer:

1 signature SItem;

class Item{

3 Item();

double getMinPrice();

2.3. COMPONENT MODELS 17

5 }

7 signature SAuctioneer<A implements SItem>;

class Acutioneer{

9 Auctioneer();

void sell (A.Item item);

11 }

The signature SAuctioneer shows that an auctioneer module imports a module A implement-
ing the signature SItem. Any module implementing the SAuctioneer signature must at least
provide the implementation of the constructor Auctioneer and method sell with parameter
of type Item in module A.

A module contains a set of classes (and interfaces), especially those that are specified in
its signatures. A module is defined using the following syntax:

module M<V implements E,..., V implements E> implements S,...,S

moduleMember*

where M is the name of the module; each V is a module parameter; each E, S is a signature
instantiation; and each moduleMember is either a class definition, an import statement, or a
binding statement. The following code shows the definition of module called MAuctioneer:

1 module MAuctioneer<A implements SItem> implements SAuctioneer<A>;

3 public class Auctioneer{

Auctioneer(){...};

5 void sell(A.Item item){...};

}

As described above, a CGEN component can specify in its interface its provided services
and its required services through its signatures. However, there is no support that enables
a CGEN component to explicitly declare interaction protocols between the component and
other components. Therefore compatibility relation in CGEN is established based on module
signatures only.

2.3.2 Industrial models

There have been many successful component models coming from the industry, e.g.,. Jav-
aBeans [92], Enterprise JavaBeans [96], COM [84], .NET [84], CCM [61], Web services [19].
Those component models have realised and validated CBSE principles. Furthermore, thanks
to lessons learned from those models, more and more efficient component models can be de-
veloped. In the following we will discuss two major industrial component models: Enterprise
JavaBeans (EJB) [89] and Microsoft.NET [84].

2.3.2.1 Enterprise JavaBeans (EJB)

Enterprise JavaBeans (EJB) [96] has been developed to be a server-side component archi-
tecture that supports the construction of enterprise applications. In EJB, a component is
an enterprise bean hosted in an EJB container. This container is responsible for the man-
agement and execution of the bean. There are three types of enterprise beans: entity bean,
session bean, and message-driven bean. Entity beans typically represent business objects and

18 CHAPTER 2. COMPONENT-BASED SOFTWARE ENGINEERING

are stored in a relational database. Session beans are mainly used to represent business pro-
cesses. Message-driven beans listen asynchronously for messages from clients or other beans
and perform tasks when receiving such those messages.

In EJB 3.0, EJB components (beans) may expose their functionalities through their in-
terfaces. An interface consists of methods in prototype form and fields. The following code
shows an excerpt of the interface of the Item component:

// interface of Item component

2 public interface Item{

public double getMinPrice();

4 public string getDescription();

// other methods

6 ...

}

The interface of the Item component shows that the component offers two services getMinPrice

and getDescription. Actually, the interface of an EJB component looks very much like stan-
dard Java interface. Composition in EJB is simply made by having one bean to invoke the
method exposed in the interface of another bean. For example, the Bidder component may
have a method call to getDescription provided by the Item component.

As described above, the interface of an EJB component only specifies the services it pro-
vides. Programmers as well as the compilers/intepreters rely mainly on this type of interface
for deciding whether two EJB components can be composed. No sequencing constraints on
using the services of an EJB component are explicitly declared in any kind of interfaces. As a
consequence, such details have to be stored in the documentation and no automatic checking
can be done for those constraints.

2.3.2.2 Microsoft .NET

Microsoft .NET component model [84] has been supported by the .NET framework which
allows the implementation of .NET components in any .NET languages, including C#, VB,
C++. Basically, source code written in .NET languages are compiled in to a form of bytecode
called Common Intermediate Language (CIL). The .NET framework contains the Common
Language Runtime (CLR) that gives an execution environment for the CIL code. This mech-
anism supports cross-language interoperability.

In Microsoft.NET, a component comprises two parts: the metadata and the implemen-
tation in CIL. The metadata, a binary piece of information automatically generated by the
compiler, has been intended to provide declarative information of .NET components. Hence,
metadata can be considered the interface of a .NET component. The metadata of a .NET
component describes three kinds of information: (i) description of assembly (e.g., identity,
files, permissions to run), (ii) description of types (e.g., name, visibility, base class, interfaces
implemented, and members), and (iii) attributes (e.g., additional descriptive elements that
modify types and members).

The interface of a .NET component does not specify any interaction protocols. How-
ever, programmers may declare additional information about their components by writing
customised attributes which will be added to the metadata. Interaction protocols could be
informally presented in the interface that way. Anyhow, no support for compatibility checking
which takes into account interaction protocols can be done.

2.4. INTERACTION PROTOCOLS 19

2.3.3 Summary

We have presented a set of academic and industrial component models. We have shown how
components are presented through their interfaces. As we have noted, in most of the exist-
ing component models, component interfaces mainly consist of services (and modules) that
provided or required by the components. Among the component models we have described
in this section, only SOFA explicitly supports the specification of interaction protocols de-
scribed as regular expressions. We believe that formally specifying interaction protocols in
the interface of a component would make it better understood by other components. As a
result, component composition would be easier.

2.4 Interaction Protocols

An interaction protocol, in general, describes constraint on the order of actions that should
occur among two or more participants in a communication. Interaction protocols make ex-
plicit important relation constraints in communications which could otherwise be hidden in
informal documentation. Furthermore, they provide additional information that can be used
in the verification process to ensure an implementation conforms to its protocols. Interaction
protocols have been used as a means of specification in a variety of domains such as ob-
jects models ([123, 98, 114]), architecture description languages ([58, 85]), component-based
applications ([104, 102, 129, 106]), agent-based applications [4], etc.

In the following we discuss different aspects related to interaction protocols. First, we
present in section 2.4.1 an overview on process algebras, a family of formalisms that have
been frequently used as a basis for the description of interaction protocols. Next, in section
2.4.2, we go through a few important approaches that consider using protocols to specify
objects. Finally we present studies on the use of interaction protocols in the specification of
component interface in section 2.4.3.

2.4.1 Process Algebras

In computer science, the process algebra (or process calculi) represent a family of algebraic
approaches to the study of concurrent systems. More concretely, process algebra provide tools
for the specification of processes, especially the interactions, communications, and synchroni-
sations between those processes. Besides, they provide supports for formal reasoning about
processes and systems through algebraic laws.

Numerous approaches of this type have been developed since the early eighties, for exam-
ple, the Calculus of Communicating System (CCS) introduced by Robin Milner [94], Com-
municating Sequential Processes (CSP) [32] by Tony Hoare, Pi-calculus[95] by Robin Milner,
Joachim Parrow and David Walker as successor of the process calculus CCS, Language Of
Temporal Ordering Specification (LOTOS)[29] by E. Brinksma, G. Scollo and C. Steenber-
gen, Calculus of Broadcasting Systems (CBS)[105] by K.V.S. Prasad, etc. In the following,
we give a more detailed presentation CCS and π-calculus, two of the most popular process
algebras for modelling concurrent and distributed systems.

2.4.1.1 Calculus of Communicating Systems (CCS)

The Calculus of Communicating Systems (CCS)[94] was introduced by Robin Milner to model
processes and communications between thems in concurrent systems. It has been also the

20 CHAPTER 2. COMPONENT-BASED SOFTWARE ENGINEERING

basis for the development of a few later process algebras such as Pi-calculus[95], LOTOS[29],
and CBS[105].

Processes are central elements in the CCS model. They can be constructed using three
main operators: the prefix operator (.), the parallel composition operator (|), and the choice
operator (+). A process roughly corresponds to a transition system that evolves based on
a set of actions fired during the execution of the process. Furthermore, two processes can
communicate through synchronised actions. Lets consider the following processes defined in
the CCS:

Server = login.logout.Server

Client = login.(logout.Client+ update.logout.Client)

Assume that Client and Server are two parallel processes in the system where they can
synchronise on two actions login, logout (login synchronises with login and logout synchro-
nises with logout. We can write Client | Server where | is the parallel composition operator
to model the composition of the two processes. Each process can evolve regardless of the other
as long as they are not involved in the two common actions login and logout. The defini-
tion of the Server process indicates that the process starts with the login action followed by
the logout action and then loops back to the beginning. The reference to the Server process
itself represents recursion. The Client is a little more complex. It starts with the login action
which synchronises with the login action of the Server process. Then it can evolve either by
the logout action (then back to the beginning) or by a local action called update (then logout
and back to the beginning). The choice operator (+) represents the ability of a process to
choose one in two or more actions to process.

2.4.1.2 Pi-calculus

The pi-calculus (or π-calculus) [95] was invented by Robin Milner, Joachim Parrow and David
Walker based on the CCS to describe concurrent and distributed systems in which processes
may change their structures thanks to the ability to pass channels as data along other channels.
A system specified in pi-calculus may consist of a set of parallel processes like in the CCS.
These processes can be constructed using CCS-like operators such as the prefix operator (.) to
describe sequences, the parallel composition operator (|) to describe concurrency, the choice
operator (+) or by recursion definition to describe repetitions. The pi-calculus extends the
CCS with more constructs to describe dynamic communication, encapsulation, and repetition.
Lets consider an example to demonstrate these new features. Suppose we need to model a
procedure call between a client and a server. The server runs a function that simply takes an
identifier from a client and then returns the data item corresponding to that identifier to the
client. Hence, the server can be modeled as a process as follows:

Server =! get(c, id) . c(d)

That is, the Server process waits for a message that was sent on channel get accepting two
inputs: c (the name of the channel the server will return the data item) and id (the identifier
of the data). After receiving a message on get channel, the process proceeds to send back the
data item d on channel c which it has received from the client. The replication operator (!) is
used to indicate that the server process can always create new copies of itself to serve several
clients.

2.4. INTERACTION PROTOCOLS 21

The client process, which obviously consists of a request to the server’s provided service,
can be modeled as follows:

Client = (νc)(get〈c, 5〉|c(t))

That is, the Client process consists of two parallel sub-processes: (i) the get〈c, 5〉 process that
sends on channel get the channel c to get back the reply and the identifier ‘5’, (ii) the c(t)
process that waits on channel c for a result that will be bound to t. The ν operator is used
to allocate a new channel within each client that sends request to the server.

Both the CCS and the pi-calculus are Turing-complete. As a consequence, they are
powerful as modeling languages. However, since they are very general, many fundamental
analysis problems are undecidable for these languages.

2.4.2 Interaction protocols in object models

In the following we discuss two representative approaches for the specification of interaction
protocols in object models. The first approach is based on Nierstrasz’s landmark work on
“regular types for active objects” [98]. The second approach is based on the notion of “session
types” introduced by Kohei Honda [66]

2.4.2.1 Regular types for active objects

One of the first approaches to equipping objects with protocols was introduced by Oscar
Nierstrasz through his work on “Regular types for active objects”[98]. In that work, an
object is viewed as a process defined in the process algebras such as the CCS and pi-calculus
introduced above. Concretely, every object provides its services by accepting certain types of
requests along its named channels (one per request name) and in turn, emitting a certain type
of reply in response to a request. Moreover, the object does not have to accept a particular
request all the time, it may enable the request (and thus make the corresponding service
available) depending on the current state it is at. Hence, in addition to types of provided
services, the specification of an object also includes a protocol that formulates the sequences
of requests that the object can serve. In Nierstrasz’s object model, object protocols are backed
by finite state machines and thus the types of such objects are called regular types.

Two important notions have been studied for regular types: substitutability and sasti-
fiability (or compatibility). Since an object is viewed as a process, it can be modeled as a
transition system where a transition represents a request being received.

Let traces(x) be the set of sequences of requests that an object in state x can accept:

traces(x) = {s | ∃x′, x
s
⇒ x′}

In the above definition, s is a sequence of requests and x′ is the state into which the object
leads after accepting sequence s from state x.

Let init(x) be the set of requests which are initially enabled from state x, i.e.,,

init(x) = {r | ∃x′, x
r
→ x′}

where r is a request.
Let failures(x), the set of failures of an object in state x, be defined as follows:

failures(x) = {(s,R) | ∃x′, x
s
⇒ x′, R is finite , R ∩ init(x′) = ∅}

22 CHAPTER 2. COMPONENT-BASED SOFTWARE ENGINEERING

where s is a sequence of request that makes the object evolve from state x to state x′ and R
is the set of requests that are not accepted in state x′.

In principle, if an object a conforms to the protocol of another object b then a can safely
substitute b since the clients of object b can make the same sequences of requests that they
expect to be served by b to object a. Hence, the substitutability relation on object protocols
is formulated as follows:

“An object in state x is request substitutable for an object in state y, written
x :< y iff

(i)traces(y) ⊆ traces(x)

(ii)failuresy(x) ⊆ failures(y)”

where failuresy(x) = {(s,R) ∈ failures(x) | s ∈ traces(y)}.
The first condition requires that the object in state x must accept at least the same set of

sequences of requests that are accepted by another object in state y so that x can satisfy the
same clients. The second condition establishes that if the object in state x, after accepting
those same sequence of requests, refuses a request r then that same request r must also be
refused by the original object in state y. This requirement ensures that x cannot refuse more
request than y after accepting the same sequences of requests. Since object protocols are
of regular types and represented by finite state machines, there exists a simple algorithm
based on checking equivalence of finite state machines to check the two above conditions and
thus checking for substitutability relation object protocols are decidable. This is the main
advantage of this object models comparing with process algebras such as CCS, pi-calculus
which are much more general.

The notion of compatibility on object protocols in Nierstrasz’s object model is established
for an object which provides services by accepting requests (a server) and an object which
requests for those services (a client). Informally, two object protocols are compatible if the
client object can always make progress when two object interacts. In other words, the server
object can terminate only if the client will not send any further request. This compatibility
relation is formalized as follows.

Let offers(c) = {(s,R) | ∃c′, c
s
⇒ c′, R = init(c′)} be the set of offers of a client c. That

is, (s,R) is an offer of c if c may issue the sequence of request s and then the set of requests
R. The protocols of object x and c are compatible iff

(s,R) ∈ failures(x) ∩ offers(c)⇒ R = ∅

That is, x can always satisfy at least a request from c after accepting any sequence of requests
s from c. Since object protocols are of regular types, their compatibility relation can be
determined by a simple algorithm based on the calculation of the product of two finite state
machines. Furthermore, it has been proved that if an object x is request substitutable for an
object y and y and c are compatible then x and c are also compatible if we only consider the
behaviors of x that can be justified as acceptable by y.

2.4.2.2 Session types

There have been a number of studies, e.g., [46, 43, 68], on the definition of object protocols
developed based on the work on session types first introduced by Kohei Honda [66]. These

2.4. INTERACTION PROTOCOLS 23

studies aim at the formulation of a type theory for communications between processes. Such
type theory would provide a high-level abstraction for conversations in communication-based
applications. Informally, session types describe protocols of conversations conducted over
private channels. A session type definition exposes the structure of a conversation and types of
messages exchanged during the conversation. For example, the session type ‘! int . ? bool . end’
indicates a conversation in which an integer value will be send then a boolean value is received
and finally the session terminates. Hence, a conversation involved multiple interactions now
can be logically represented by a session type. As a result, communication safety could be
guaranteed through type checking techniques developed for session types.

Hu et al. [68] have put forward the first full implementation of session types in SessionJ
(or SJ), an extension of Java to support session types. Lets consider an example for a
demonstration of how session types are defined in SJ. In this example, two session types
representing two sides of a simple conversation between a buyer and a seller are presented.
The following code shows the definitions of these types in SJ.

1 protocol buyItem{

begin.

3 ![

!<String>.

5 ?<String>.

?<Double>

7]*

!{

9 BUY: !<CreditCard>.

?<Receipt>,

11 QUIT:

}

13 }

1 protocol sellItem{

begin.

3 ?[

?<String>.

5 !<String>.

!<Double>

7]*

?{

9 BUY: ?<CreditCard>.

!<Receipt>,

11 QUIT:

}

13 }

As shown by the code above, the session type representing the buyer side of the conversa-
tion is defined by protocol buyItem and that of the seller side is defined by protocol sellItem.
Note that the ‘!’ symbol indicates the side that initiates a communication and the ‘?’ indi-
cates the side that follows the corresponding communication. According these two protocols,
the buyer initiates the conversation by sending the description of type String (line 4) of an
item she is looking for. The seller replies with the item’s description of type String and its
price of type Double (line 5-6). The buyer may ask again and again (marked by repetition
symbol ‘*’ on line 7) for another one until she comes to a decision. Then she has two options:
she may buy the item by sending her credit card details and receive a receipt (line 9-10) or
she may decide not to buy any item (line 11). Such options are expressed by the selection
construct ‘{BUY,QUIT}’. The seller will act accordingly. The session (conversation) then
terminates.

Building a communication-based application in SJ consists of two steps. The first step is
the specification of the protocols of the conversations that may occur. The second step is the
implementation of these protocols using session operations supported by SJ. The following
code shows an excerpt of the implementation of protocol buyItem.

1 // s_buyer is the session socket at the buyer side for the conversation

s_buyer.request(); // the buyer requests a session with the seller

3

24 CHAPTER 2. COMPONENT-BASED SOFTWARE ENGINEERING

boolean decided = false;

5

s_buyer.outwhile(!decided){

7 s_buyer.send(item_description); // !<String>

String item_to_buy = s_buyer.receive(); // ?<String>

9 Double price = s_buy.receive(); // ?<Double>

if(... // want to make decision)

11 decided = true;

else

13 ... // modify item description

}

15

if(... // want to buy the item){

17 s_buyer.outbranch(BUY){

s_buyer.send(credit_card);

19 s_buy.receive(receipt);

}

21 }

else{ // want to quit

23 s_buyer.outbranch(QUIT){...}

}

The implementation of the buyer (and the seller) should conform to its declared proto-
col. In the above implementation, the buy initiates the conversation by requesting a session
with the seller (line 2). The code from line 6 to line 14 of the implementation reflects the
definition from line 3 to line 7 in protocol buyItem. Construct outwhile (and its counterpart
inwhile) is used to implement the repetition construct ‘![...]*’ (and ‘?[...]*’ respectively) in
the protocol definition. Communications involved exchanges of item descriptions and prices
are implemented using send and receive methods (line 7-9). The selection construct ‘{...}’
in the protocol definition is implemented using outbranch (for ‘!{...}) and inbranch (for
‘{...}’) methods. For instance, the code from line 16 to line 23 shows the implementation of
the part of the buyItem protocol in which the buyer makes decision on whether to buy the
item or just quit the session. There would also be a similar implementation that conforms to
the sellItem provided for the seller.

Communication safety is guaranteed through SJ supports for type checking for session
types. At the local level, static type checking is performed to ensure that the implementation
conforms to its declared protocol. For example, the above implementation of the buyer will
be checked against the buyItem protocol. Then at runtime, when two sides of a conversation
are about to start a session, they exchange their session types and independently validate
the compatibility of their protocols. If their protocols are compatible, a session will be
established for further communications. In other words, both sides will know the structure of
their conversation through the declared protocol of each other and these protocols must be
compatible before any actual communications can be made.

Session subtyping is realised in SJ in two forms. The first form of session subtyping permits
message type variance following the subype principle of object-oriented programming for send
and receive operations. That is, a subtype can be sent wherever a supertype is expected.
The second form of session subtyping permits structural subtyping [54] for branching and
selection. An outbranch implementation could select a subset of options (not all) declared in
the protocol. Besides, at runtime, two protocols are compatible if the server side (inbranch)
supports a superset of cases that the client side (outbranch) may require.

2.4. INTERACTION PROTOCOLS 25

2.4.3 Interaction protocols in component models

In this section we present studies on the integration and application of interaction protocols
in component models. We will start with Yellin and Strom’s work [129] on the augmentation
of component interfaces with interaction protocols. This work has been the basis for several
later studies on the application of protocols in components. Next, we discuss a few other
approaches on this subject covering both regular and non-regular protocols.

In [129], Yellin and Strom argue that sequencing constraints on the order in which messages
are sent should be documented in the formal interface specification of a component in addition
to method signatures. Sequencing constraints are defined by finite state automata whose
transitions represent messages being sent or received from a particular state. A protocol
describes the interaction between exact two components. For example, the following protocol
describes the protocol of a server component that interacts with its clients by geting requests
for data and sending back data in response to clients’requests:

Protocol{

2 States { Init, Response};

Transition {

4 Init: +get --> Response;

Response: -send --> Init;

6 };

};

The above protocol is modeled by a finite state machine consisting of two states and two
transitions. The server begins in state Init and waits for an incoming message represented
by transition +get. Then it enters state Response and sends back the data in request. This
event is modeled by the transition −send representing an outgoing message.

A notion of protocol compatibility was established so that composability between inter-
acting components is statically checkable. Informally, two protocols P1, P2 are compatible
iff two following conditions hold: (i) they can always collaborate, for example, if P1 is in a
state where it can send m then P2 will be in a state where it can receive that message m, (ii)
communication between P1, P2 are deadlock free. Since protocols are modeled by finite state
machines, protocol compatibility problem is decidable. An algorithm for checking protocol
compatibility was presented in [129]. The above approach is more general than earlier ap-
proaches on object protocols in that component protocols describe both provided and required
services, and either components in a communication can initiate messages rather than just
the clients. However, multi-party communications are not supported and regular protocols
could be insufficient for many concurrent and distributed systems.

Alfaro and Henzinger introduced Interface Automata[44], another automata-based lan-
guage to specify protocols for component interfaces. The notion of compatibility established
in this work is distinguished from other studies in that it is based on a so-called opstimistic
view: two components are compatible if “there is some environments that can make them
work together”. This approach supports an efficient algorithm to automatically check for
compatibility based on the calculation of the product automaton of two interface models.

While there have been numerous studies on regular protocols for components, there exists
very few approaches that consider non-regular protocols mainly because non-regular proto-
cols normally cannot provide much support for analysis. Anyhow, there have been still a

26 CHAPTER 2. COMPONENT-BASED SOFTWARE ENGINEERING

few studies that introduce different kinds of non-regular protocols to components in some
particular application domains.

Ralf Reussner proposed to use counter-constrained finite state machines [107] to describe
component protocols. Basically, a counter-constrained finite state machine is composed of
a traditional finite state machine and a finite set of counter-constraints which can be used
to impose restrictions on the occurences of services that involve with shared resources. This
approach allows static checking of protocol compatibility and substitutability thanks to the
fact that inclusion and equivalence problems are decidable for counter-constrained finite state
machines.

Another approach in which non-regular protocols are integrated to component interfaces
has been proposed by Mario Südholt [118]. In this work, a protocol language is defined
as an extension of the aforementioned non-regular process types introduced by Puntigam.
Therefore, the protocol language can benefit from the analysis supports of non-regular process
types for protocol compatibility and substitutability.

2.5 Architecture description languages

An architecture description language (ADL) is used to describe software architectures. It
permits an abstract view on an application system in terms of components, connectors, and
configurations [90]. A large number of ADLs have been developed over the years, e.g., ACME
[58], Rapide [85], Darwin [88], Wright [18], ArchJava [16]. In the following we present a brief
overview of two ADLs: Wright and ArchJava.

The Wright language [18] is an ADL that supports the description of software systems
based on component and connector types. A component is described by a set of ports and
an abstract description of its behavior. Ports are interaction points between a component
and the environment. A connector type is defined by a set of roles specifying the behaviors
of entities in an communication, and a glue specifying how these behaviors are synchronised.
In Wright, behaviors are interaction protocols defined using a variant of CSP [63] notation.
The configuration of a system is described by linking component ports to connector roles. It
is possible to automatically check for architectural properties such as deadlock freedom or
compatibility between ports and roles using model checking technique.

There have been quite a few ADLs that support the specification of interaction protocols
but they normally lack facilities to check whether an implementation conforms to such inter-
action protocols. Now we continue with the ArchJava [16] language, an ADL that supports
checking whether an implementation respects the architecture. ArchJava is an extension of
Java that unifies software architecture with implementation. New language constructs are
added to Java to support the definition of architectural elements such as components, con-
nectors, and ports. A port is used to declare a provided method, a required method, or a
broadcast method. A component is a special kind of object that can ony communicate with
other components through explicit declared ports. For example, if a component A wishes to
call a method provided by component B, component A has to connect to the port of compo-
nent B that represents its provided method. Communication integrity, which requires that
components in an architecture must not directly invoke the methods of other components
(except its own subcomponents) but only invoke those methods by connecting to declared
ports, can be enforced by the language semantics. In other words, the ArchJava’s type syste,
ensures that the implementation will conform to its corresponding architecture. However,

2.6. ANALYSIS OF COMPONENT-BASED SYSTEMS 27

ArchJava has not yet provided supports for the specification of interaction protocols.

2.6 Analysis of component-based systems

In this section, we consider the analysis of component-based systems. As emphasized in
previous sections, component composition plays a vital role in building large systems from
components. If we want to assemble two or more independent components, we have to make
sure that they are smoothly composable in order to achieve a well-defined anticipated result
from the composition. Therefore, compositional properties, i.e., properties concerning about
correct composition of components, are among the most desirable properties for component-
based applications. In the following, we will cover work on the analysis of such compositional
properties.

This section is organised as follows. First, we present different definitions for two of the
most important compositional properties: compatibility and substitutability. We then present
a few approaches that deal with the verification of compositional properties for component-
based systems. Finally, we conclude by summarizing the key issues that need to considered
when developing analysis techniques for component-based systems.

2.6.1 Compositional properties

Ensuring the satisfaction of compositional properties helps to avoid problems arising from
mismatches of the composed components. A large number of studies,e.g., [98, 54, 55, 126],
have been presented on techniques to verify those compositional properties. Note that analysis
tasks are conducted based on the information available about the components included in
a composition. Hence, the explicit knowledge of the semantics (which is mostly exposed
through a component’s interface) may affect if and how properties of the system can be
determined. In the following we describe the principles on which component compatibility
and substitutability, two essential compositional properties that are usually of concern for
component composition, can be evaluated.

2.6.1.1 Compatibility

Informally, component compatibility or interoperability is the ability of two or more com-
ponents to cooperate correctly. This is the most basic but also important requirement for
component composition. Compatibility properties can be roughly categorized into signature,
protocol, and semantic compatibility.

Compatibility at the signature level deals with elements such as names, operations, pa-
rameter types, return values, etc. This level of compatibility is currently well-defined and
supported by all of the existing component models, mostly as type compatibility on signature
elements.

Compatibility at the protocol level concerns the order of message exchanges between
components. Compatibility at this level is more powerful than signature compatibility because
it can tell more about the behavior of the composed component.

Compatibility at the semantic level is the most powerful since it concerns the actual and
complete behavior of components. However, ensuring semantic compatibility, especially for
components developed by third parties, is much more difficult or even infeasible in theory or
practice.

28 CHAPTER 2. COMPONENT-BASED SOFTWARE ENGINEERING

Hence, protocol compatibility is a compromise between signature compatibility and se-
mantic compatibility. Since it does not deal with all the semantic aspects of components
like at the semantic level, it is easier to realize. As previously mentioned, we have opted to
base our work on components with explicit protocols. Therefore, we will treat component
compatibility both at the signature level and the protocol level.

2.6.1.2 Substitutability

Like most other software systems, component-based systems need to evolve from time to time
due to, for instance, functionalities to be added, new requirements, implementations that
have to be corrected. In many cases, modifications to an existing system are done simply by
replacing one or more original components by other ones. Although such modifications are
meant to enhance the original system, they may also introduce errors or break the consistency
of the original system.

Component substitutability expresses the ability of one component to be substituted by
another component without causing any unexpected effects to the whole system. In addition
to its importance to component evolution, the notion of component substitutability also
establishes the basis for component retrieval, a process to locate and identify appropriate
components. Component application assemblers may wish to look for components that can
substitute a specification to use for their composed systems.

Component substitutability can also be categorized three-fold just as component compat-
ibility. At the signature level, checking for substitutability roughly means checking whether
the new component offers at least all the services offered by the original ones and requires at
most all the services required by the original ones. This is similar to the notion of subtyping in
object models. At the protocol level, substitutability of one protocol by another one requires
the new protocol to be able to accept at least the same sequences of messages and not to reject
more sequences of messages as the original ones [98]. At the semantic level, a substitutability
check is even more complex and hardly practical than checking for compatibility.

2.6.2 Analysis of component composition

The issues of component compatibility and substitutability have been addressed by many
researchers. In this section we discuss the following approaches: (i) checking compatibility
using automata-based computation [24], (ii) checking substitutability using automata-based
computation [126] and (iii) proving substitutability by construction [55]. Automata are widely
used to specify component protocols so checking protocol compatibility and substitutability of
two or more components often boils down to the computation on the corresponding automata.
Since our work is based on visibly pushdown automata, a specific type of automata, we are
interested in studies where automata are used for protocol specification and analysis. The first
two approaches are among those studies. The first approach focuses on techniques to deal with
state space explosion, which is a very common problem of state space exploration techniques.
The second approach establishes a formal foundation for reasoning substitutability properties
on different levels of component abstraction. The third approach is rather unconventional
for establishing substitutability property based on specific operators that have been used to
construct protocols.

2.6. ANALYSIS OF COMPONENT-BASED SYSTEMS 29

Checking compatibility using automata-based computation. Attie et. al [24] have
proposed a verification methodology in order to prove behavioral compatibility and temporal
properties of component-based systems while trying to avoid the state space explosion prob-
lem. Usually, in order to check the compatibility of two components, we can construct the
product of two automata representing the behaviors of those two components and explore
the resulting automaton to reason about the composition. If there is another component
involved in the composition then another product automaton is calculated for the previous
product automaton and the automaton of the new component. Such product construction
makes the size of the model to be checked exponential when the system consists of a large
number of components. Consequently, verifying such systems by exploring the calculated
product becomes infeasible due to the limitation of resources.

In their work, behaviors of components are modeled as I/O automata [86]. This approach
relies on pair-wise composition of automata to avoid the state space explosion problem. It does
not require the computation of the product of all behavioral automata. Only the products
of pairs of automata of two directly interacting components are calculated. Properties are
verified for those pair-products using a model checker and then combined to deduce global
properties of the system by a suitable temporal logic deductive system. This verification
method has shown to basically achieve polynomial complexity in the size of components and
thus could support practical behavioral compatibility checks for large scale systems.

Checking substitutability using automata-based computation. Let us now move on
to a study on component substitutability. Cerna et. al [126] provides a formal foundation
for establishing component substitutability with an underlying formalism called component-
interaction automata. The component interaction automata language expresses a component
by labeled transition system with structured labels to capture components involved in actions
and a hierarchy of component names to reflect the architecture of the component. The authors
have formalised three different notions of substitutability of components: (i) equivalence (one
component can be replaced by another one and vice versa), (ii) specification-implementation
(one specification can be substituted by an implementation of a component, in other words,
the component implementation is compliant to the specification), and (iii) substitutability of
non-equivalent components (one component can be replaced by another but the other way
around is not possible).

The equivalence of component-interaction automata can be defined at different levels of
accuracy since an observable set X of structured labels are taken into account to determine
the equivalence relation (which is essentially the bisimulation relation defined for automata).
The composition of components is represented by the composition of component-interaction
automata which involves the calculation of the product automaton like in other approaches.
However, the composition of component-interaction automata can be refined with an addi-
tional parameter specifying the set of labels indicating actual communications between two
components. This helps to ignore unnecessary synchronisations that are syntactically possible
but never occur in the system. The authors have shown that if two components are equivalent
with respect to the set X of all input and output communications then one component can
be replaced by another one and the new composed system is still equivalent to the original
one with respect to the same set X of input and output communications.

According to that work, in order for a component to be able to substitute a specification, at
the interface level, it has to provide and require all the services that are provided and required

30 CHAPTER 2. COMPONENT-BASED SOFTWARE ENGINEERING

by the specification (but it can provide and require more services than the specification does).
At the behavior level, the automaton of the component has to behave observably the same as
the automaton of the specification on every service provided and required by the specification.
On the other hand, substitutability of non-equivalent components where a new component
substitutes an older component can be achieved with the specification-implementation relation
but the new component does not have to behave the same as the old one if such behaviors
are not used by the environment.

Proving substitutability by construction. Faŕıas and Mario Südholt [55] have intro-
duced an approach to ensure component substitutability by construction. The approach is
designed to apply over component with explicit protocols so the substitutability of compo-
nents requires protocol substitutability. A set of protocol construction operators have been
investigated to see if they preserve substitutability properties. It turned out that most of the
operators did not preserve substitutability in general. However, there are some possibilities
that substitutability can hold if we restrict the applications of the operators to some specific
cases.

2.6.3 Summary

Correct composition of components is crucial to the correctness of a component-based system.
As a consequence, verification and analysis of compositional properties, including two major
ones: compatibility and substitutability, play important roles in the development process.
Since components are often developed by third parties, verification can be even more compli-
cated than if it is done by the authors of components. Most of the verification work rely on
the details exposed by the component interface. Beside checking for the compositional prop-
erties at the syntax level, many approaches go further to take into account the behaviors of
the components which are often represented by some kind of automata and perform suitable
verification on those automata. We should keep in mind that any analysis techniques should
not be too complicated or too expensive in order for the reasoning to be practical.

2.7 Component evolution

Just like any other system, component-based systems must be continuously adapted to fix
existing bugs and problems, to add new features, to address changing requirements, to enhance
system performance, etc. Evolution on component-based systems often leads to the need for
new components to be added to existing systems. Then the two main questions of interest in
our context are:

1. Does the evolution introduce any problems to the system due to incompatibility between
the old components and the new ones ?

2. What can we do to maintain compatibility after evolution ?

One important part of our study focuses on dealing with problems arising after evolution
to components introduced by aspects. In contrast to the few studies on the effects of aspect-
based evolution on components, there are many studies on dealing with component evolution
in a more general context, i.e., non aspect-based evolution. In this section, we will give an

2.7. COMPONENT EVOLUTION 31

overview on studies that aim at addressing the above two questions. The section is organised
as follows. We will first summarise in section 2.7.1 common incompatibility problems that
arise from evolution on component-based systems. Then we present in section 2.7.2 several
studies that aim at ensuring compatibility between components after evolution.

2.7.1 Problems arising from evolution

When new components are introduced to an existing system, problems may arise due to in-
compatibilities (or mismatches) between the old components and the new one. There are
many reasons that can lead to such problems. In Becker et. al [25], the authors have enumer-
ated and classified different kinds of component mismatches to help identify incompatibility
problems and provide a basis for the development of automatic adaptation techniques. In
that study, incompatibilities problems are classified into three categories including signature
mismatches, protocol mismatches, and quality attribute mismatches.

Signature mismatches occur at the syntax level when connecting a provided service of
a component to a required service of another component. For example, the same method,
or parameters, or types are named differently, the orderings of parameters are different, the
numbers of parameters are different for two connecting services. Protocol mismatches occur
when the two protocols of two components involved in a communication are incompatible.
For instance, consider that a new component A is substituted for component B. Another
component C that previously communicated with B now needs to have the same communi-
cation with the new component A. However, the new component A sends more messages to
component C than B does and C does not expect to receive those extra messages. Qual-
ity mismatches involve problems with non-functional properties such as security, persistency,
performance, etc.

2.7.2 Approaches to deal with evolution problems

Depending on the nature of the incompatibility, different adaptation techniques are devel-
oped to “turn” incompatible components into compatible ones. Using adaptors to mediate
the interaction between incompatible components is the most common method to deal with
incompatibility problems. A number of studies on this subject have been proposed over the
years. However, most of them, e.g., [36, 110, 27], only deal with incompatibility caused by
signature mismatches. Although protocols are now widely present in specifications of compo-
nents, there are still only few studies that focus on the adaptation techniques which can deal
with protocol incompatibility. In the following we give brief presentations on two approaches
that focus on how to automatically or semi-automatically generate adaptors to solve a lim-
ited set of protocol mismatch problems. The first one is a well-known approach which has
been a reference for many further developed solutions to the evolution problem. The second
approach is interesting in our context because of its (partial) similarity to our approach in
solving the problem.

Yellin and Strom [129], along with their proposal to augment component interfaces with
interaction protocols, introduced a technique in which adaptors are used to solve protocol in-
compatibility. In this approach, an adaptor is modeled as a finite state automaton interfacing
two interacting components. Messages exchanged between two components are intercepted by
the adaptor so that necessary “arrangements” can be made to ensure that both components
can evolve smoothly. The authors have developed an algorithm to automatically generate

32 CHAPTER 2. COMPONENT-BASED SOFTWARE ENGINEERING

these adaptors based on an interface mapping. An interface mapping consists of a set of
mapping rules indicating how to relate messages and parameters in the two interfaces of two
components.

Schmidt and Reussner [113] shown how to semi-automatically generate adaptors to resolve
synchronisation problems of concurrent components at the architectural level. In this study,
the authors adopt a component model which supports the description of finite state protocols
in the component interface. Three common cases where an adaptor is needed have been
identified and an algorithm for generating adaptors has been developed for each case. In the
first case, an adaptor is generated for three components A,B,C where A uses the services
of B and C. This adaptor “combines” the interfaces of B,C into a single interface that can
be consulted during a compatibility check. In the second case, an adaptor is generated to
synchronise the services provided by two concurrent components. For example, an adaptor
between a Consumer component and a Producer component that respectively gets and puts
data from/to a buffer is defined in order to ensure that the producer always puts the data
into a buffer before the consumer makes a request to get the data. The last case concerns
protocol incompatibilities between two components that occur when a component A requests
a method m provided by component B but component B has not yet been in a state where
method m can be called. The authors propose prefixing the call to method m with a sequence
of calls in order to bring component B into the appropriate state where m is enabled. An
algorithm has been developed to solve the problem of finding such sequences.

Recently, there have been a body of works that aim at using aspect-oriented techniques to
implement adaptors for component-based systems. We will cover those types of approaches
in the next chapter.

2.8 Conclusions

In this chapter, we have discussed three important subjects on component-based software
engineering, including component specification, verification, and evolution. For component
specification subject, we have focused on the concepts of component interfaces, interaction
protocols, and the importance of integrating interaction protocols into component interfaces.
We have also presented a few typical component models and architecture description lan-
guages. On the analysis and verification subject, we have discussed two of the most impor-
tant compositional properties of component-based systems, compatibility and substitutability.
These properties often need to be verified in order to establish the confidence about the co-
herence of a component-based system. On the subject about component evolution, we have
considered problems arising from evolution on components and a few approaches to deal with
those problems.

These subjects are closely related to our work which is about the development of an aspect
language to define aspects over components. We choose to work on the application of aspect-
oriented programming (AOP) to components because crosscutting concerns abound in large
scale component systems and the AOP paradigm (this subject will be presented more com-
pletely in the next chapter) is particularly suitable for handling crosscutting concerns. Based
on what we have learned from previous studies on component-based software engineering, we
consider a set of requirements for an aspect language dedicated towards components. First, as
component models with interaction protocols become more popular, the aspect language for
components should provide facilities to describe component protocols. Second, this language

2.8. CONCLUSIONS 33

should also support the analysis or verification of compositional properties such as compati-
bility and substitutability which are important for component-based systems. Furthermore,
an analysis technique should be simple enough for it to be practical and to be done in an
automatic manner. Finally, since we aim at using aspects to modify components, appropriate
support is needed in order to reason about the effects of aspect-based evolution on the original
component-based system.

34 CHAPTER 2. COMPONENT-BASED SOFTWARE ENGINEERING

Chapter 3

Aspect-Oriented Programming

3.1 Introduction

Nowadays, software applications are not only more powerful but also more complex due to
both the advent of innovative technologies and the increasing needs and expectations for
software applications. A complex application usually has to be able to handle a variety of
concerns such as security, performance, distribution, and failure recovery. Although innova-
tive technologies make it technically possible to incorporate solutions for different concerns
into one software application, different concerns are often so scattered and tangled that the
resulting software system becomes very complex. Such complexity makes it difficult for the
understanding, maintenance, and evolution of software. Solving the problem of scattering
and tangling concerns in order to reduce software complexity is the subject of the Separation
of Concerns paradigm in software engineering.

Separation of Concerns (SoC) is a key software engineering principle which requires that
different concerns composing in a software system must be separated into well-separated
program modules. Such separation helps to reduce the complexity of software applications
and thus makes software easier to write and understand. Moreover, it is much easier to
provide support for software evolution if concerns that require different types of modification
are well-separated. Besides, as separation of concerns typically results in loose coupling of
elements of a software, it helps to increase flexibility and reusability of individual software
components.

Since SoC advocates breaking software into loosely-coupled concerns, support is needed
to “glue” those concerns together so that they integrate smoothly. Although the traditional
object-oriented (OO) programming paradigm supports building of software from smaller en-
tities such as classes and modules, it does not provide sufficient support for implementing
the SoC principle because there are scatting and tangling concerns that cannot be modular-
ized as class objects or modules. Aspect-oriented programming (AOP) has been introduced
as a complement to OO programming paradigm for the systematic treatment of SoC. More
concretely, AOP aims at the separation of crosscutting concerns, which are concerns that
cannot be modularized using traditional OO techniques. The term aspect is used to refer to
a modularization mechanism (such as a language or design level abstraction) for crosscutting
concerns.

In recent years, there have been an increasingly large number of approaches to aspect-
oriented (AO) technologies and aspect-oriented software development (AOSD) methods. Most

35

36 CHAPTER 3. ASPECT-ORIENTED PROGRAMMING

of these approaches focus on the development of semantics, language support and implemen-
tation which are essential to the feasibility and applicability of the AO technique in reality.
A number of AOP languages and development tools have been introduced. There are also
approaches to exploit AOP in specific application domains or industrial application systems.
However, many limitations still exist which leave much room for further research.

This chapter presents a thorough review of three critical subjects on AOP that are strongly
relevant to this thesis: language support for AOP, verification for AO programs, and AOP
for component-based software. The chapter is organized as follows. Section 3.2 covers four
major AOP approaches. Section 3.3 focuses on studies on verification and analysis techniques
for AO programs. Section 3.4 describes AOP studies in one specific application domain:
component-based software. Finally, section 3.5 concludes the chapter with lessons that we
have learned and what features a good AO language should offer in order to be powerful for
general purposes and especially for component-based systems.

3.2 AO approaches

In this section, we review four major approaches on the development of AOP technologies.
We first start with AspectJ, the most popular and successful aspect-oriented language until
present. Then we continue with an important group of AO languages: history-based aspect
languages. These aspect languages are more advanced than earlier developed ones in that
they can take into account the order of events in the declaration of aspects. The approaches
introduced in this subsection are most clearly related to the work presented in this thesis.
Finally, we briefly present adaptive programming and composition filters, two of the earliest
AO approaches that share same principles of SoC with the current work.

3.2.1 AspectJ

AspectJ [74] is an aspect-oriented extension created at Xerox PARC for the Java language.
AspectJ provides support for programmers to write aspects to modularize crosscutting con-
cerns and a mechanism to incorporate those aspects into the main program to produce the
final systems. AspectJ has become the most mature AO language that is usually refered to
as the de facto standard for an AO language in the AOP research community and started
getting attention from the industry. The AspectJ model has been transposed in multiple
other languages including C++, Smalltalk...

In the following we first give an informal and example-based presentation of critical ele-
ments defined by AspectJ, including join point, pointcut, advice, and aspect. We then discuss
some advanced issues and the limitations of this language with respect to those issues.

Let us consider a simple example of a data system where users can perform a set of
operations on data: query, add, remove, commit, modify. Each operation is implemented
as a method in the application’s source code. The following piece of code presents an excerpt
of the data module:

1 public class Data{

3 public void add(Item itm);

public void remove(Item itm);

5 public void modify(Item itm);

public Item query(String str);

3.2. AO APPROACHES 37

7 public void commit(Item itm);

}

Assume that we would like to execute a method called writeLog right after executions
of five above methods. Normally, a method call to writeLog will be simply placed after ev-
ery call to methods query, add, remove, commit, modify using traditional object-oriented
languages. This implementation makes the code invoking writeLog to scatter over the sys-
tem. Imagine that writeLog needs to be replaced by another method or to be removed, we
would have to revisite all places where it is called and modify the code. AspectJ provides lan-
guage facilities to better modularize crosscutting concerns such as writeLog by introducing
a modular unit called aspect. In AspectJ, an aspect declaration has a similar form to a Java
class declaration. It encapsulates a crosscutting concern and describes where and when some
code will be executed. In principle, AspectJ features a dynamic join point model in which
join points are well-defined points in the execution trace of the main program. A join point
can be a method call, field assignment, handler execution,... When the main program runs,
its join points are observed so that crosscutting concerns declared by aspects can be injected
to the main program’s execution. The following code presents the aspect implementing the
logging concern:

public aspect Logger {

2

public void writeLog(){

4 System.out.println("Write to log file.");

}

6

pointcut dataop(): execution(* Data.add(..)) || execution(* Data.remove(..))

8 || execution(* Data.modify(..)) || execution(* Data.commit(..))

|| execution(* Data.query(..));

10

after(): dataop(){

12 writeLog();

}

14 }

Line 3-5 describe the implementation of the writeLog method that handles the logging
task. Line 7-9 describe a pointcut declaration. A pointcut is a collection of join points
and serves as a pattern to match against the program’s join points at runtime in order to
identify certain execution contexts. In the above example, the dataop pointcut captures all
the join points where five methods query, add, remove, commit, modify are called. Line
11-13 describe the advice in the aspect. In AspectJ, advice is a method-like mechanism to
declare certain code to be executed when its pointcut successfully matches some join points at
runtime. In other words, advice defines the crosscutting behaviors. The advice in the above
example specifies that writeLog will be executed after any join point that matches one of
the join points declared by the dataop pointcut. The wild cards in the pointcut declaration
indicate that the pointcut can match methods of all return types. Hence, AspectJ allows us
to modularize a crosscutting concern into a unit in which pointcuts define conditions for the
advice which defines crosscutting behaviors to be executed. Consequently, if we would like to
replace the writeLog method or remove it, we just need to modify the logging aspect.

The implementation of any AOP language concentrates on coordinating aspect and non-
aspect code so that they run correctly. This integration process is often refered to as aspect

38 CHAPTER 3. ASPECT-ORIENTED PROGRAMMING

weaving. Aspect weaving integrates the aspect code with the base program code in a way
that aspect advice is able to run at applicable join points that are successfully matched
by pointcuts. Basically, aspect weaving performed by AspectJ compiler of Eclipse (an IDE
supporting AspectJ) consists of two phases. First, AspectJ code is compiled into pure Java
bytecode annotated with additional attributes to indicate advice and pointcut declarations.
Then the byte code of the base program is instrumented with calls to the pre-compiled advice
method. The details of AspectJ’s weaving process can be found in [62].

On the one hand, AspectJ has its strengths as the most mature AO technology available
today. AspectJ is designed to be a seamless extension to Java so it is simple and easy to learn.
Furthermore, tool supports for AspectJ are widely available, for example, plug-in for Eclipse
integration. On the other hand, as one of the first-generation aspect languages, AspectJ has
its limitations and potentials for further research.

One of the potential improvements for AspectJ is at the pointcut language, i.e., the
language used to define patterns of events to be matched against a main program’s execution.
In AspectJ, most pointcut definitions only consist of individual join points but not sequences
of events. For instance, using AspectJ, it is impossible to define a pointcut matching three
events e1, e2, e3 precisely in that order. Although one can use aspect internal variables to
capture the execution points where the sequence of events e1, e2, e3 has occurred, being able
to explicitly specify relationships between join points in pointcut declarations would be more
convenient and more importantly, provide more information about the aspect for analysis
purpose. Note that, AspectJ does support two control-flow-based pointcut designators: cflow
and cflowbelow that are used to match join points in a specific control-flow. However, they
are sufficient in general because many sequences to be matched do not necessarily include
join points in the control-flow of another join point.

The second potential improvement for AspectJ is to provide support for property analysis.
Since aspects are supposed to modify the execution of a main program, it is very important
to be able to analyze the effects of aspects on a base program and verify the property of
the integrated program to ensure correctness. The AspectJ’s pointcut language is Turing-
complete, i.e., it allows pointcut definitions from arbitrary combination of join points. As
a consequence, reasoning about pointcuts and aspects is very difficult or impractical. If
the pointcut language is based on a less expressive language, for instance, regular language,
analysis on pointcuts and aspects would be more feasible because analysis techniques for
regular languages have already been well-developed. We believe that there is a compromise
between the expressivity and the ability to support property analysis of a pointcut language.
We aim at defining the pointcut language as expressive as possible but still keep it simple
enough for the analysis to be feasible.

The third improvement we have considered is the support of the aspect language for
component-based systems which are a promising application domain for AOP. AspectJ lacks
dedicated support for component-based systems because it has been designed for general
purpose only. AspectJ allows invasive modifications to base programs and thus might be
inappropriate when applied over components in many cases. While protocols are widely used
in component-based software to define constraints or contracts between components, AspectJ
does not provide any specific designators for expressing component protocols. We believe
that an aspect language that supports the definition of aspects over components should meet
at least two requirements. First, pointcuts should be able to capture information available at
the interface of a component, including method signatures and interaction protocols. Second,
the effects of an aspect over a component should be transparent so that reasoning about the

3.2. AO APPROACHES 39

integrated system can be done.

3.2.2 History-based aspect languages

This section covers one specific group of AO languages: history-based aspect languages. In
general, all the languages among this group support pointcuts that can qualify join points
based on what has happened before them. Aspects defined by history-based aspect languages
can evolve through more than one state so they have been introduced as stateful aspects.
In this thesis we will only use the term ‘history-based’. These languages provide more so-
phisticate support to explicitly specify the temporal relationship between join points in a
pointcut. The main difference between approaches in this group lies in the expressivity of
their pointcut languages. They feature expressive but not necessarily Turing-complete point-
cut languages so that property analysis over aspects can be supported. Pointcut languages
of these approaches are usually backed by some kinds of state machines. For example, there
have been some regular-based aspect languages [17, 48, 56], and very few non-regular (but
not Turing-complete) ones [128].

In the following we discuss several important approaches in the group of history-based
aspect languages. The section is divided into two main parts. Section 3.2.2.1 focuses on
the generic framework for history-based aspects introduced by Douence et. al in 2002 [47]
and further studies developed from this framework. Section 3.2.2.2 covers other independent
approaches.

3.2.2.1 A generic framework for history-based aspects

Douence et al. [47] have introduced a generic framework for AOP which gives a foundation for
the development of AO languages that support history-based pointcuts and the analysis for
interaction between aspects. This framework is also the foundation for the aspect language
we have developed.

An aspect language supported by this framework provides three basic constructs to define
crosscutting concerns (i.e., aspects): crosscut, insert, and aspect. A crosscut defines the
collection of join points to be matched against a program’s execution. An insert defines the
code to be executed when the crosscut successfully matches the program’s execution. Finally,
an aspect is defined by the combination of basic rules of the form C� I where C is a crosscut
and I is an insert. The most important characteristic of the aspect language defined by this
framework is that it allows us to define crosscuts not only as sets of individual join points
but also as sequences of join points. In other words, we can take into account previous join
points that have occurred when qualifying a join point at runtime.

Let us return to the context of the data system example in the previous section. Assume
that we would like to run an aspect that will run a virus check on all commit executions that
follow an execution of the add method. This aspect is defined by the basic framework as
follows:

µa1.add � skip ; commit � check ; a1 � terminate � clearCache ; a1

According to the above definition, the aspect starts by trying to match a join point of an
add execution. When it matches an add join point, nothing is done (indicated by the skip

instruction. The aspect then evolves to the next state where it tries to match a commit or a

40 CHAPTER 3. ASPECT-ORIENTED PROGRAMMING

terminate join point. If it matches a commit join point, it runs the check insert then evolves
to the next state where it waits to match an add join point again (indicated by the end of
sequence a1). Otherwise, if it matches a terminate join point, it runs the clearCache insert
and then evolves to the next state where it waits for another add join point.

Note that the µa.A construct is the recursive definition of an aspect that is equivalent to
A where all occurrences of a are replaced by µa.A. This definition is a form of tail recursion
and thus the crosscut language can always be regular. The � symbol represents a choice
between two aspects where the left operand is given preference in case both aspects match
the same join point. Obviously, the ‘;’ symbol indicates the temporal relation of join points.

Formally, the expressivity of the crosscut language defined by this framework is that of
regular languages in the Chomsky hierarchy. Hence, it is expressive yet not Turing-complete.
Since analysis techniques for regular languages are well-founded, the aspect language defined
by this framework is more amenable to property analysis than aspect languages featuring
Turing-complete pointcuts. A method for analyzing aspect interaction has been proposed
and later elaborated for the generic framework [48]. This work will be discussed later in
section 3.3.2.

In summary, the generic framework offers an interesting foundation for the development
of stateful aspect languages, the detection and resolution for aspect interactions. There are,
however, a number of potential advancements for the framework. First, the crosscut language
in this framework only limits to regular languages. The most advantage of a regular-based
crosscut language is that property analysis for aspects is practical. On the other hand, the
drawback of a regular-based crosscut language lies in its limited expressivity. There are many
complex control-flows, for instance, properly nested structures, that cannot be expressed using
regular languages. Second, although the framework supports the declaration of protocols,
which is useful for defining aspects over components, it lacks a collection of useful constructors
for component protocols. Furthermore, an analysis technique for important compositional
properties of components modified by aspects is not yet considered.

3.2.2.2 Other approaches

In this section, we present another two approaches for history-based aspect languages. Both
introduce new constructs, tracematches in the first approach, and tracecuts in the second
approach, as extensions to AspectJ to enable the declaration of history-based pointcuts.

Tracematches. Allan et. al [17] have introduced tracematches, a history-based language
feature, as an extension to AspectJ to allow programmers to write code that can be executed
based on a regular pattern of events in an execution of a program.

A tracematch is defined in a format very similar to an aspect in AspectJ. It includes
a pattern and a code block to be executed when the current trace matches that pattern.
Patterns declared in tracematches are described as regular expressions. Here is a tracematch
that executes method check if it matches a trace that ends with a call to add or remove and
a call to commit:

tracematch(){

2 sym a after: call(* add(..)) || call(* remove(..));

sym b after: call(* commit(..));

4

a b {

3.2. AO APPROACHES 41

6 check();

}

8 }

We declare symbol a to match any add or remove events and symbol b to match any
commit events (line 2-3). Line 5 shows the regular expression that specifies the pattern to
match against the program trace. Line 6-7 shows the code black that will be executed if a
match occurs. Note that only events that are declared as symbols can trigger the match. In
other words, events that are of interest must be explicitly declared as symbols. For example,
the pattern on line 5 matches the ‘add commit’ sequence as well as the ‘add update commit’
sequence since the update event is simply ignored from the matching process. Besides, it is
possible to declare free variable in a tracematch and to have it bound to values captured by
pointcuts.

Since matching patterns are described as regular expressions, the matching process for
a tracematch is basically done by running a finite state automaton whose transitions are
labelled by declared symbols in the tracematch. When a final state is reached, the advice
code is executed. The implementation for the tracematches feature has been realized as an
extension of the abc [1], the AspectBench compiler for AspectJ. Further details on the formal
semantics of tracematches and the implementation can be found in the paper [17].

An advantage of this approach is that tracematches are amenable to static analysis as
their declared patterns are regular expressions and the language inclusion problem for regular
languages is decidable. However, there have been no work on this subject has been put
forward. Similar to the previous generic framework for stateful aspects, the downside of
tracematches is that regular expressions are not sufficient to capture many complex sequences,
notably sequences with properly nested structures.

Tracecuts. The term tracecut has been introduced by Walker and Viggers in [128]. Their
work aims at the definition and implementation of protocols via declarative event patterns
(DEPs) which are specified as tracecuts in their language. Their language allows programmers
to explicitly specify a protocol at a high-level and actions to be taken whenever the program
trace matches that protocol.

The work on tracecuts was builded upon AspectJ. Two new constructs have been added
to define protocol-based pointcuts: tracecuts and a history primitive pointcut. Tracecuts are
specifications of declarative event patterns. Concretely, they are composed from entry and exit
points of events captured by an AspectJ pointcut. Tracecuts are defined using context-free
grammar and thus can express regular protocols as well as context-free protocols, especially
protocols involved nested structures. The history primitive pointcut receives a tracecut as an
argument. When it is used in a pointcut of an advice, the action defined in the advice body
is executed if the actual execution matches the pattern described in the tracecut argument of
the history pointcut.

Let us consider a small example (which is a slightly modified version of the example in
[128]) of a protocol that involves three methods namely safe, unsafe, and commit. The safe
and unsafe methods can be called in a mutually recursive structure, i.e., safe can make
a call to unsafe and vice versa. Both safe and unsafe methods can invoke commit to do
something which then would be advised differently by an aspect depending on whether it is
called in a safe or unsafe context. The following code represents the above setting:

pointcut safePC(): execution(* safe(..));

42 CHAPTER 3. ASPECT-ORIENTED PROGRAMMING

2 pointcut unsafePC(): execution(* unsafe());

pointcut commitPC(): execution(* commit());

4

tracecut completed() ::= (entry(safePC()) [completed()] exit(safePC())) |

6 (entry(unsafePC()) [completed()] exit(unsafePC()));

8 tracecut isSafe() ::= entry(safePC()) complete()* $;
10 void around(): commitPC() && history(isSafe()){

System.out.println("Commit in safe context");

12 }

In the above code, line 1-3 define three primitive pointcuts capturing excutions of three
method safe, unsafe, and commit. The completed tracecut (line 5) captures all completed
and properly nested pairs of safe and unsafe. Since we need to recognize commit events
triggered by safe, we define the isSafe tracecut to capture the context that is more tightly
enclosed in an execution of safe than unsafe. The ‘* $’ part matches the end of the execution
trace up to the current join point. Hence, the isSafe tracecut matches the execution trace
only if there is un unmatched entry to safe and no unmatched entries to unsafe occurs before
the current join point. Line 10-13 indicate that if the commit method is executed when it is
in a safe context captured by isSafe, the (dummy) advice code can be run.

A proof-of-concept tool has been realized to translate aspects with new constructs for
DEPs into standard AspectJ pointcuts and advice. Basically, since a tracecut is described by
a context-free grammar, matching a history primitive pointcut relies on running a pushdown
automaton representing its tracecut argument along with the execution to recognize events.
Those interest in the details of the implementation can refer to [127].

This approach provides a means to directly express protocols in an aspect pointcut. Most
importantly, it allows for the specification of protocols involved properly nested structures
that no previous history-based aspect languages have offered. However, from a point of view
of program analysis, this feature has a disadvantage that it impedes analysis support since
the inclusion problem is undecidable for context-free languages.

3.2.3 Adaptive programming

The Adaptive Programming approach [83] has been built upon the key principle defined by
the Law of Demeter [80]. That law states in its general form as “Each unit should have only
limited knowledge about other units. Only units closely related to the current unit should be
talked to” [5]. In short, this Demeter rule makes explicit one special case of the loose coupling
principle for the object-oriented programming paradigm: objects should not depend on the
internal structure of other objects. For example, an object A can request a service offered by
another object B but A should not make a request for services provided by another object C
which can only be reached through B as that would mean A has to depend on the internal
structure of B.

Adaptive Programming provides mechanisms to control the coupling between structural
and behavior concerns of a program. Basically, an adaptive program is written in terms of
loosely coupled contexts where data structures and computations (or behaviors) are two con-
texts which are bound by a third definition. Adaptive methods are introduced to encapsulate
the behaviors of operations in one place and also abstract over the class structures on which

3.2. AO APPROACHES 43

they apply. Therefore, adaptive methods not only help avoiding the scattering problem but
also the tangling problem [83].

An adaptive method essentially consists of two parts: a traversal strategy and an adaptive
visitor. A traversal strategy defines paths on the program data structure to which visitors
can be attached. An adaptive visitor implements the computations that are executed at
visited classes. The following sample code, taken from [83], illustrates the structure of a
simple adaptive method implemented using the DJ library [101], a Java library that supports
writing adaptive methods.

import edu.neu.ccs.demeter.dj.ClassGraph;

2 import edu.neu.ccs.demeter.dj.Visitor;

4 class Company{

6 // class structure

static ClassGraph cg = new ClassGraph();

8

Double sumSalaries(){

10

// traversal strategy

12 String s = "from Company to Salary";

14 // adaptive visitor

Visitor v = new Visitor() {

16 private double sum;

public void start() {sum = 0.0};

18 public void before(Salary host) {sum += host.getValue();}

public Object getReturnValue() { return new Double(sum);}

20 };

22 return (Double) cg.traverse(this,s,v);

}

24

// rest of Company definition

26 }

The above code shows the adaptive method namely sumSalaries (line 9-23) in class Com-
pany. This method counts the total salary of all employees in a company. The string s (line
12) represents the traversal strategy applying over the class graph cg which represents the
class structure of the company. That is, the adaptive visitor will visit numerous locations in
the class structure using that traversal strategy. The adaptive visitor (line 15-20) defines one
before advice (line 18) that updates the total salary of all employees by adding the salary at
every visited location in the class structure. Since the traversal strategy allows for the ab-
straction of how the visitor traverses the class graph starting from the Company object to the
Salary object, the adaptive method can be reused over many different company structures,
no matter how many departments or affiliates or employees a company has.

A few implementations have been created for the Adaptive Programming approach. Deme-
terJ [82] adds special language constructs to Java to support adaptive programming. DJ [101]
is a Java library that allows programmers to write adaptive methods. DAJ [119, 81] is the
most recent tool to offer special constructs to support adaptive programming to AspectJ.
Traversal strategies in DAJ are regular expressions.

44 CHAPTER 3. ASPECT-ORIENTED PROGRAMMING

Modifications to program data structure may or may not alter the overall behavior of the
problem. In order to cope with the problem in which modifications affects the meaning of
the program, Demeter Interfaces [117] are introduced to adaptive programming. Demeter
Interfaces make explicit the required structural properties of the data structure in order for
adaptive methods to function properly.

3.2.4 Composition filters

Composition Filters model [13, 14], originating from the Sina language [15], is one of the
earliest AOP approaches. This approach relies on the use of filters to improve the current
existing object-oriented programming languages in two aspects: composability, i.e., the ability
to compose existing modules into new modules, and evolvability i.e., the ability to modularly
extend existing program modules. In the following we present the principle concepts and
ideas of the Composition Filters model, and give an example to illustrate how filters can be
defined and used in this model.

In this approach, a set of filters are introduced to apply over the primary behaviors of
a system in order to adapt or extend the original behaviors. More precisely, conventional
objects (implemented using traditional object-oriented languages) are enhanced by filters
manipulating sent and received messages to and from these objects. Each filter specifies the
condition to match the messages that are of concern and the manipulation that will be applied
to the matched messages.

Let us consider an e-commerce application. In this application, a customer can place orders
and have his orders delivered to his address after payment. At the implementation level for this
application, all the operations related to orders are implemented in class Order. For simplicity,
lets assume that class Order consists of four methods: placeOrder (to put place a new order),
cancel (to cancel an existing order), deliver (to deliver items to customers), and setPaidStatus
(to update the paid status indicating whether an order has already been paid or not). Then
these four methods are invoked by instances of class Customer (representing customers),
class Accounting (representing the Accounting department that verifies payment details and
updates paid status for orders), and class Delivery (representing the Delivery department
that is responsible for shipping items to customers). Obviously, a Customer object should be
able to invoke placeOrder and cancel methods only, and similarly for Accounting object with
setPaidStatus method, and Delivery object with deliver method. The Composition Filters
approach realises these restrictions by extending class Order with a layer that contains a set
of filters for manipulating invocations to its methods. The following code gives an example
of the filter module for handling the concern of restricting access to class Order.

concern ProtectedOrder begin

2 filtermodule OrderWithViews begin

internals

4 order: Order;

conditions

6 Customer; Accounting; Delivery;

methods

8 order.*;

inputfilters

10 protection: Error = { Customer => {placeOrder, cancel},

Accounting => {setPaidStatus},

12 Delivery => {deliver}};

3.2. AO APPROACHES 45

ihn: Dispatch = (inner.*, order.*);

14 end filtermodule OrderWithViews;

16 implementation in Java

class ProtectedOrderImpl{

18 boolean Customer() {...//true if the invoking object is of Customer class};

boolean Accounting() {... };

20 boolean Delivery() {...};

}

22 end implementation

end concern ProtectedOrder;

The filter module OrderWithViews declares an instance of class Order as its internal
object (line 3-4) since it is used to encapsulate objects of class Order. In other words, the filter
module can manipulate incoming and outgoing messages made to and from an Order object.
Three conditions namely Customer, Accounting, Delivery are declared (line 5-6) to abstract
the state of the implementation object. That is, they indicate whether a method invocation
(a received message) is made by an object of the Customer or Accounting, or Delivery class.
These conditions are realised as boolean methods defined in the implementation part of the
extended class (line 18-20). The third part of the filter module (line 7-8) specifies methods
that are present in the filter expressions later on. Then two (input) filters namely protection
and ihn are specified to handle the task of restricting access to an Order object (line 9-13).

A filter typically consists of a filter type and a filter pattern. The filter type expresses how
the messages are handled if they successfully match the filter pattern. A number of different
filter types can be defined to suit specific needs for message filtering. The filter pattern is a
simple expression to match incoming and outgoing messages to and from objects. In the above
code, two input filters (filters that manipulate incoming messages) are declared: protection
filter and ihn filter. The protection filter is of type Error. That means, if the message
is rejected, an exception is thrown; otherwise, the message is passed to the next filter. For
example, filter protection specified that if the incoming message is sent by a Customer object,
the message should match either placeOrder or cancel, which are the only two methods that
a Customer object is allowed to use. Conversely, if the message is sent by a Customer object
but it does not match any of these two methods, the filter will raise an exception. Hence, if
a message is either accepted by the protection filter or not sent by one of the three object
types, Customer, Accounting, and Delivery, it travels to the ihn filter. The ihn filter (line 13)
is a Dispatch filter i.e., if a message is accepted, it is dispatched to the target of the message,
i.e., the Order object; otherwise, it travels to the next filter. For instance, if a message is a
method of class Order (specified as order.*), the filter accepts the message and dispatches
the message to the corresponding Order object, i.e., the method then can be excuted.

The above example shows how filters can be applied to the Order class. Besides, filter
modules can be composed to address crosscuting concerns involving several classes through
superimposition (see [14] for an example).

In comparison to AspectJ aspects, composition filters are more independent of the imple-
mentation of the classes on which they are applied. Their specifications are restricted to the
interface level. Therefore they are easier to be reused than AspectJ aspects. Furthermore,
they do not introduce invasive modifications to the internal behaviors of the target classes but
only extensions to those classes through manipulations of incoming and outgoing messages.
Composition filters also do not refer to each other. However, composition filters are less ex-

46 CHAPTER 3. ASPECT-ORIENTED PROGRAMMING

pressive than AspectJ aspects. Besides, languages and tools for composition filters approach
are not as well developed and mature as AspectJ.

Since the Composition Filters model uses a restricted pattern matching language rather
than a general-purpose programming language, it provides opportunities for reasoning about
the properties of concerns specified as filters. For instance, a study on techniques to detect
and correct interactions among aspects at the same join point has been reported in [50].

3.2.5 Summary

We have described the major AO approaches that have been developed since the SoC principle
has become an accepted idea. Among all AO approaches, AspectJ remains the most mature
and user-friendly language which is practical for building real-world applications. Approaches
on history-based AO languages offer the ability to capture sequences in the declaration of
patterns of crosscutting concerns. This characteristic helps the AO languages to have the
potential for property analysis which AspectJ does not have. Interaction analysis for aspects
has been one of such analysis that has been studied so far for the generic framework on stateful
aspects. Finally, approaches on adaptive programming and composition filters contribute
valuable ideas on establishing the interface between aspects and the main program to achieve
loose-coupling principle and aspect reuse.

3.3 Verification and Analysis

One of the critical advantages of AOP is the ability to perform invasive modifications to a
program’s execution. However, this also makes it more difficult to predict the behavior of
the composed program. Furthermore, aspects may even cause insidious errors by violating
properties of the base program. As a consequence, a number of approaches on verification
and analysis for aspect-oriented programs have been proposed to help reasoning about the
properties of aspects and programs modified by aspects. These approaches usually focus on,
but not limited to, the following issues: whether an aspect produces a desired property for the
integrated program, whether a property of a base program is preserved after the application
of an aspect, whether aspects interfere each other when both are applied to the same base
program.

This section discusses two major groups of verification and analysis support for AOP.
The first group consists of approaches where model checking techniques are employed to
provide computer aided verification for aspect-oriented programs. The second group consists
of approaches where static analysis techniques are developed on aspect language models in
order to statically analyzed properties of aspect systems.

3.3.1 Aspect verification using Model checking

Model checking is a popular technique that enables automatic verification of finite-state sys-
tems. Generally, a model checker consumes a description of a system and a specification of
a property that must be satisfied by the system and then performs the verification process
in order to conclude whether or not the system satisfies the property. If the system does
not satisfy the property, counter examples can be generated to indicate where the property
is violated. An input system is usually described as a finite state machine and a property

3.3. VERIFICATION AND ANALYSIS 47

is typically specified in a temporal logic such as LTL, CTL. At the moment, SPIN [65] and
NuSMV [38] are among the most popular model checkers that are freely available.

The application of model checking has been very successful for hardware verification. It
is, however, much more difficult to use model checking technique in software verification due
to the complexity of a software. Note that model checking is based on state space exploration
technique. If a software system is too complicated, the size of the state space to be explored
may be enormous and thus exploration may be infeasible (this problem is called state space
explosion in model checking). Therefore, it is very important to optimize the size of the
system to be verified.

In recent years, there have been quite a number of research conducted in AOP commu-
nity that consider using model checking for the verification of aspect-oriented programs, for
examples [77, 73, 76, 45, 116, 59]. When model checking is applied to the verification of
aspect-oriented programs, the most naive approach is to compose the base program and as-
pects to produce the complete input system for a model checker then model check that system.
However, such an approach is not efficient for aspect programs since every time a new aspect
is introduced to the system, the whole program has to be composed and the verification has
to be done again from the beginning. Note that the verification of the whole system may
take a lot of time if the system is complex. Furthermore, programmers who write and verify
aspects have to be aware of the internals of the base program which could be a hard-to-fulfill
requirement in many cases. As a consequence, studies on verification approaches for aspect-
oriented programs usually aim at modular ways where aspects can be verified separately from
the base program in order to improve such complicated situations.

In the following, we review two model checking approaches for aspect-oriented programs.
The first one provides a modular LTL model checking method for aspect-oriented programs
published by Goldman and Katz [59]. The second one is the work based on CTL model
checking presented by Krishnamurthi and Fisler [76].

3.3.1.1 Modular LTL model checking

Goldman and Katz [59] present a framework for the generic formal verification of aspects
relative to their specification. The authors have proposed to integrate the specification of an
aspect with the assumptions about the types of base programs to which the aspect can be
woven. The underlying purpose of such a specification is to be able to use those assumptions
as a representation for a base program and to build the augmented system as a composition
of such assumptions and the actual aspect in order to verify whether a desired property is
satisfied by that augmented system. In other words, aspects can be verified separately from
the actual base program and thus verification does not have to be done again in the case of
changes to the base program as long as that program still satisfies the assumptions made by
the aspect.

This verification approach is strongly based on LTL model checking technique. In princi-
ple, given a state machine that represents the input system, LTL model checking is done by
creating another state machine that accepts exactly computations that satisfy the LTL prop-
erty then calculating the cross-product of the negation of that state machine (which represents
all the paths that violate the property) and the model of the input system to be checked. If
the resulting state machine from the cross-product calculation is not empty, conclusion can
be made that the property is violated by the system.

Concretely, the verification model of this framework involves the following three basic

48 CHAPTER 3. ASPECT-ORIENTED PROGRAMMING

components:� Base program: This verification approach uses the idea of LTL model checking in a
unique way: to build the state machine representing the class of base programs from
assumptions specified as LTL formulas. Hence, the base program in the verification
model is represented by the state machine constructed from the LTL formula which
specifies assumptions of aspects over the base program.� Aspect: Pointcuts of an aspect can be defined using regular expressions or LTL for-
mulas over atomic propositions about the states of the program state machine. Advice
of an aspect is also represented by a state machine. Note that, this approach only han-
dles weakly invasive [72] aspects, i.e., aspects that return to a state that was already
reachable in the original base program.� Property: Properties in this verification model are desired properties of the augmented
system composed from the base program and the aspect and they are specified as LTL
formulas over atomic propositions about the states in the program state machine.

The goal of the verification is to check whether the augmented system satisfies a spe-
cific LTL property. Before the actual verification may start, necessary state machines are
constructed to provide inputs for the verification algorithm. First, from the formula ψ that
expresses the assumptions about the base program, a state machine Tψ that includes all paths
that satisfy ψ is created. Next, aspect A is woven into the just created state machine Tψ ac-
cording to pointcut descriptor ρ. This weaving process basically requires a transformation of
the state machine Tψ to a pointcut-ready state machine so that it is possible to separate paths
which match ρ and those that do not. Then the advice state machine is integrated to that
pointcut-ready state machine to create the augmented model T̃ψ. Finally model checking is

performed on model T̃ψ and property φ to determine whether the model satisfies the property,

i.e., T̃ψ |= φ.
Let us consider the following example (extracted from [59]) for a demonstration of the

above verification process. The values for assumption formula ψ and property φ over the set
of atomic propositions AP = {a, b} are as follows:

ψ = AG((¬a ∧ b) −→ F a)

ϕ = AG((a ∧ b) −→ X F b)

Basically, the assumption ψ can be interpreted as that for all possible paths in the base
program any state satisfying ¬a ∧ b will be eventually followed by a state satisfying a. The
state machine Tψ constructed from ψ is presented in figure 3.1(a).

The property φ to be verified is that for all possible paths in the augmented system,
any state satisfying a ∧ b will immediately followed by a state satisfying a. Assume that
the pointcut descriptor ρ for our aspect is a ∧ b and the aspect advice is represented by the
state machine A in figure 3.1(b). Weaving is done by integrating the advice state machine
into program state machine Tψ at the states that satisfy pointcut descriptor ρ to create the

augmented state machine T̃ψ shown in figure 3.3.1.1. Apply model checking to the resulting

state machine T̃ψ with property φ would prove that T̃ψ |= φ.
This verification approach has been implemented in a prototype tool namely MAVEN. This

tool takes a specification of the assumption, the property and the aspect as textual inputs and

3.3. VERIFICATION AND ANALYSIS 49

aXFa

XFa bXFa

a

abXFa

ab

(a) State machine Tψ constructed from ψ =
AG((¬a ∧ b) −→ F a)

a b b

(b) State machine representing aspect
advice A

Figure 3.1: State machines representing base program requirements and aspect advice

then uses an LTL model checker to generate the state machine from the assumption. Next,
the tool weaves aspect advice into the program state machine and feeds the augmented state
machine and the LTL property into existing model checker NuSMV [38] for the verification.

The strength of this approach lies in its ability to verify an aspect for a class of base
programs rather than one specific base program. This means that the approach achieves
modular verification at a certain level: verification on aspect can be done independently as
long as the assumptions about the base program is written in the specification of the aspect.
However, at the moment, the process to weave the aspect to the base state machine is very
complicated and time consuming when the base program and the pointcut are not trivial.
Moreover, the prototype implementation shows that this process can just be done for very
simple pointcuts.

3.3.1.2 Incremental CTL model checking

Krishnamurthi and Fisler [76] have presented an interesting theoretical framework for applying
model checking to aspect-oriented programs. Their approach aims at identifying cases where
aspects may violate the desirable properties of the base program. Their analysis technique is
modular in the sense that verification has to be done again only when certain critical parts
of the program change and unnecessary repeated analysis is avoided in other cases.

The approach heavily depends on CTL model checking technique [39]. CTL (Computation
Tree Logic) is a branching time logic which allows for the expression of possible futures
in a tree-like structure. CTL formulas can be defined using standard atomic propositional
operators, plus temporal connectives which are used to describe possible future paths from
the current state. CTL model checking relies on the labeling algorithm which, given a model
and a CTL formula, calculates the set of states that satisfy the formula. During the run of
the labeling algorithm, the CTL formula is traversed bottom-up while each state of the model
is labeled with all sub-formulas that are true at that state. By doing that, when the labeling
algorithm terminates, all states are labeled with all sub-formulas of the CTL formula and
thus we can obtain the set of states that satisfy the property.

50 CHAPTER 3. ASPECT-ORIENTED PROGRAMMING

XFa bXFa

a

abXFaaXFa

ab

ab

b

Figure 3.2: State machine T̃ψ composed by weaving A into Tψ according to ρ = a ∧ b

Similar to most other approaches on aspect verification, the verification model for this
approach contains three basic components:� Base program: Informally, a base program is represented by a state machine of which

states associate to program statements or expressions while transitions associate to the
control flow between statements or expressions in the base program. Besides, there are
extra states to reflect the entry and exit points of program fragments respectively.� Aspect: Current work only consider join points which correspond to function calls. In
such context, pointcuts are defined by a subset of regular expressions over function calls.
Pointcuts in this framework describe the shape of the stack at program states rather
than sequences of calls leading to states. Hence, states where the current stack could
match a pointcut are locations to which advice may apply. Advice is represented by a
state machine with additional states to represent proceed and resume points (similar to
entry and exit points in program fragments).� Property: Properties in this framework are invariants of the base program and we
would like to verify whether or not those properties are preserved after the application
of aspects. Properties are specified as CTL formulas.

To have a more intuitive presentation of the above verification model, consider a simple
base program implementing a slideshow presentation [76]. This program consists in a sequence
of three function calls to bkgd(background), algo(algorithm), and impl(implementation) in
this order. Normally, contents on algorithm and implementation are common for all of the
talks so they can be implemented statically in the base program. On the contrary, the
background content may vary greatly depending on the target audiences. Therefore, it could
be implemented in a more cleanly way by using aspects to insert appropriate contents when
needed, i.e., different aspects are provided to present different background contents and they
are triggered after there is a call to bkgd function in the base program. Figure 3.3(a) illustrates
the state machine of the slideshow program as described above.

3.3. VERIFICATION AND ANALYSIS 51

Aspectscall(bkgd)

ret(bkgd)

call(algo)

ret(algo)

call(impl)

ret(impl)

(a) State machine of the
slideshow program

Aspectscall(bkgd)

ret(bkgd)

call(algo)

ret(algo)

call(impl)

ret(impl)

A[!call(impl) U call(algo)]
!call(impl)
A[!call(impl) U call(algo)]

!call(impl)

call(impl)

!call(impl)

call(algo)
!call(impl)

A[!call(impl) U call(algo)]

A[!call(impl) U call(algo)]
!call(impl)

!call(impl)

(b) Program annotated with CTL labels

Assume that the property of the program we would like to preserve in all cases is that the
section on implementation should always come after the algorithm description. This property
is defined by the following CTL formula:

A[!call(impl) U call(algo)]

The whole verification process starts by checking the desired property on the base program
(since the ultimate goal of the verification is to verify whether aspects preserve this same
property of the base program). After this phase, each state of the base program state machine
is labeled with subformulas of the property that are true at that state. Figure 3.3(b) shows
the slideshow program state machine annotated with labels which are subformulas of the
property on each state. The labels on the states where advice may apply are then reused to
provide information about the state of the base program for later verification on the aspects.
In our example, labels on states related to call and return to bkgd are reused since they are
states that lead to and return from the advice.

The verification algorithm then checks whether the labels on the state before advice ap-
plication hold on the in state of the advice while assuming that the labels on the state after
advice application hold on the out state. In principle, this verification algorithm verifies the
advice state machine without traversing the augmented state machine since it only considers
certain parts of the base program’s state machine where advice may apply. However, handling
cases of around advice or advice triggered by other advice is more complicated.

The major limitation of both model checking approaches, especially the second one, is that
they are mainly theoretical results and only applicable for very simple applications. Although
there is a tool that has been implemented for the first model checking approach, that tool is
still just a proof-of-concept prototype that only realizes the simple part while skipping the
complicated one of the checking algorithm.

3.3.2 Static analysis techniques for aspects

In this section, we discuss a variety of static analysis approaches that have been proposed
for aspect-oriented programs. In these approaches, properties of aspects and integrated pro-

52 CHAPTER 3. ASPECT-ORIENTED PROGRAMMING

gram are established using dataflow analysis techniques and identifying aspects to determine
whether they belong to classes for which some properties can be automatically guaranteed.

3.3.2.1 Classification of aspects

Properties of the augmented program from the base program and aspects may change differ-
ently depending on the types of interactions between aspects and base programs. There have
been proposals for classifying the relation between an aspect and a base program and proving
properties for certain classes of relations. Such classification systems enable reasoning about
aspects and understanding the behaviors of the integrated program. If we can classify an
aspect into a certain class for which some properties have been proved then we may conclude
a property for the augmented program. The advantage of this approach is that it may reduce
the cost of reasoning about certain classified aspects. However, it may not possible to apply
this approach for all kinds of aspects. Therefore, the goal is to define restricted by still general
classes of aspects in order to include as many as possible aspects that can fit into the classes
for which some properties can be established.

The first classification of aspects proposed by Sihman and Katz [115, 72] divides aspects
into three types based on how they affect the base program: spectative, regulative, and invasive
aspects. Spectative aspects only gather information about the base program and do not
change the fields or the control-flow of a base program. Regulative aspects can change the
control-flow but not the existing fields of the base program. Finally, invasive aspects can
change both the control as well as the existing fields of the base program. Certain properties
have been proved for three above classes [72].

Rinard et al. [109] have proposed a similar but more refined categorization that classi-
fies the interactions between an aspect and a method of the base program into five classes:
orthogonal (both may access disjoint fields), independent (neither may write to a field that
the other writes), observation (the advice may read fields written by the method), actuation
(the method may read fields written by advice), and interference (both write to the same
fields). The authors have also put forward an analysis tool to automatically recognize these
interaction classes.

3.3.2.2 Analysis for aspect interaction

Beside approaches concentrating on the relation between an aspect and a base program, there
have been a body of works, e.g., [47, 48, 60], on detecting interactions among aspects that
are applied to a same base program. In the following we present the method that has been
proposed for the generic framework described in section 3.2.2.1. Since we have developed
our aspect language based on that generic framework, we could also apply and extend the
analysis technique for detecting aspect interactions proposed for it.

The goal of interaction analysis for aspects is to detect when the parallel composition of
aspects does not guarantee a deterministic weaving. This happens when two aspects match
the same join point. If two aspects are independent they do not interact and can be woven
in any order. Otherwise, if two aspects do interact and the order of weaving may lead to
different results then a resolution is needed to settle the conflict. For instance, assume that
we define two aspects that implement two separate concerns as follows:

3.3. VERIFICATION AND ANALYSIS 53

A1 = µa.commit() � acquireConnection() ; a

A2 = µa.add() � skip ; commit() � checkV irus() ; a

These above aspects will match the same commit join point at runtime so we say that
they interact by definition. Whether a conflict resolution is needed depends on whether the
order of weaving, i.e., execution of inserts, produces different results or not. For example, if
the acquireConnection is a resource-consuming service we might wish to weave A2 before
A1 so that if the virus check does not pass, we do not need to continue with the other insert.

Two notions of independence have been introduced [47]: strong independence and weak
independence. Strong independence does not depend on the program to be woven. Therefore,
analysis for strong independence among aspects can be done without any information on the
actual base program and thus the result is not affected by program modifications. In contrast,
weak independence depends on the program to be woven. This property is obviously a less
strict condition to enforce but analysis for weak independence is more costly since the actual
base program that the aspects will be woven into has to be considered in the analysis.

The analysis for strong independence between two aspects is performed based on a set of
composition laws [48]. Basically, two aspects will be unfolded so that we may obtain a picture
of how two aspects work in parallel. This unfolding technique is similar to a calculation of the
product of two finite state automata. Next, traces that end in similar join points triggering
simultaneous application of inserts are marked as potential interactions (or conflicts) between
two aspects. Note that such check for strong independence can be done thanks to the key
characteristic of the crosscut language: regular-based, as it has been known that we cannot
do the similar product calculation for more expressive languages which are non-regular.

Two types of conflict resolutions have been put forward: sequential composition operator
and composition adapter for aspects. The sequential composition operator is defined as
A1−C → A2 which indicates that aspect A1 is applied until an event is matched by crosscut
C then A1 is stopped and A2 is started. Consider the following two aspects A1, A2 which
would interact at all commit join points if composed in parallel:

A1 = µa.commit() � checkAll() ; a

A2 = µa.commit() � checkV irus() ; a

where A1 will run a complete check for correct authorization and virus risks while A2

will only run a check for virus risks. We can refine the composed aspect using the sequence
operator A1−secureConnect()→ A2 so that a complete check is performed for every commit

execution until the user acquires a secured connection then only a virus check is needed for a
commit execution.

The composition adaptor is defined to guide the composition to yield deterministic aspect
weaving. Consider the following aspects A1, A2 which would also interact at all commit join
points:

A1 = µa.commit() � checkAll() ; a

A2 = µa.login() � secureConnect() ; µb.commit() � checkV irus ; b

�logout() � closeConnection() ; a

54 CHAPTER 3. ASPECT-ORIENTED PROGRAMMING

where A1 runs complete checks for all commit executions and A2 creates a secured connec-
tion after a user logs in and only runs virus checks for all commit executions commanded by
this user. The parallel composition yields conflicts at commit join points whenever a commit

execution occurs in a secured connection. The following composition adaptor O is defined to
resolve this conflict:

O = µa.login() � (id, skip) ; µb.commit() � (id, snd) ; b

�logout() � (id, skip) ; a

The above definition indicates that if only one aspect matches a commit join point the
insert defined for that aspect is executed (indicated by term id). If two aspects match the
same commit join point the insert of the second aspect is chosen (indicated by term snd).
The composition which O is used as an adapter yields the following aspect:

A12 = µa.commit() � checkAll() ; a

�login() � secureConnect() ; µb.commit() � checkV irus() ; b

�logout() � closeConnection() ; a

which would run checkAll at all commit states until after a login join point is matched.

In addition to interaction analysis among aspects, the regular-based crosscut language also
enables the analysis between an aspect and a base program. For instance, given an abstract
regular control-flow of a base program, one can verify where an aspect would be applicable
to that base program by simulating the composition of the base program’s abstract control
flow and the aspect’s crosscut. Consequently, we can specify the applicability condition of an
aspect for a base program as a sequence of join points. As long as a concrete base program
satisfies the applicability condition then we can conclude that the aspect is applicable for the
base program. This enables aspect reuse. Furthermore, taking into account the information
about the control-flow, either abstract or concrete, may help to prove independence for two
aspects that only interact on execution traces which never occur when they are applied to a
concrete base program.

3.3.3 Summary

We have presented a number of verification and analysis approaches that have been developed
for aspect-oriented programs. These approaches have established a foundation for the devel-
opment of methods for analyzing aspects and augmented programs. However, since most of
them were developed for simple and generic aspect languages, they need to be adapted and
extended in order to be applicable to more advanced or specific aspect languages and applica-
tion domains. Note that verification on the augmented program is usually expensive or even
impractical because of the complexity of the augmented system. Therefore, approaches on
verification and analysis should enable modular reasoning in which aspects and base programs
can be verified separately. Most of the above approaches aim at achieving this requirement.
However, their results are still basically theoretical results and just applicable on trivial ex-
amples.

3.4. ASPECTS AND COMPONENTS 55

3.4 Aspects and Components

In this section we present a few major AO approaches for the implementation of aspects over
components, including JBoss/AOP [69], SpringAOP [12], JAsCo [120], and CaesarJ [91, 23].
We will briefly describe key constructs and features for each approaches along with some
examples to demonstrate those features.

3.4.1 JBoss/AOP

JBoss/AOP [69] is an extension of JBoss [7], an open-source J2EE application server, to
support AOP paradigm. Although JBoss/AOP has been created to be used in the JBoss
application server, it is an independent framework and thus can also be used in any Java
program. In the following we briefly present how aspects are written in the JBoss/AOP
framework.

In JBoss/AOP, aspects are implemented as interceptors that are capable of intercept-
ing invocations to component services. An interceptor is simply a Java class implement-
ing the org.jboss.aop.Interceptor interface. Hence, an interceptor has to define two meth-
ods as required by the Interceptor interface: getName(), which is used for display and in-
voke(Invocation), which is where the advice code is put. The argument of method invoke
carries the actual invocation that would have occured during the execution of the base pro-
gram. The following code fragment illustrates the definition of an JBoss/AOP aspect namely
LoggingInterceptor that simply prints the name of a method invocation for logging purpose.

1 public class LoggingInterceptor implements Interceptor{

public String getName() {

3 return getClass().getName();

}

5

public Object invoke(Invocation invocation) throws Throwable {

7 if(invocation.getType() == InvocationType.METHOD){

MethodInvocation mi = (MethodInvocation)invocation;

9 System.out.println(mi.method.getName());

}

11

return invocation.invokeNext();

13 }

}

JBoss/AOP interceptors can be bound to pointcuts through XML configuration files.
The following code shows a configuration file where the LoggingInterceptor is attached to all
methods in all classes in the acc package.

<aop>

2 <bind pointcut="* acc.*->*(..)">

<interceptor class="LoggingInterceptor"/>

4 </bind>

</aop>

JBoss/AOP provides a rich set of pointcut expressions that can be used to define many
complex pointcuts. Like many other AOP frameworks, JBoss/AOP aspects can introduce
invasive modifications to components. This may cause incompatibility between components if

56 CHAPTER 3. ASPECT-ORIENTED PROGRAMMING

such modifications are not well documented and properly checked. Besides, it does not support
the explicit declaration of history-based pointcuts or pointcuts over component protocols.

3.4.2 Spring AOP

Spring AOP is one of the key components of the Spring Framework [12], a platform for the
development and execution of enterprise Java applications. AOP can be used in the Spring
framework to implement aspects that are responsible for enterprise services, in particular,
transaction management services as well as custom aspects written by users [53].

Spring AOP only supports method interceptions. In other words, join points in Spring
AOP always represent method executions on Spring beans (Spring components). In Spring
AOP, aspects can be written using one of the two approaches: (1) the schema-based approach,
or (2) the @AspectJ style. In the schema-based approach, aspects are declared using the
Spring XML configuration style. The AspectJ style refers to the declaration of aspects as
regular Java classes with Java 5 annotations. In the following we present an example of
aspect implemented in Spring AOP using AspectJ annotation style.

1 package org.xyz;

import org.aspectj.lang.annotation.Aspect;

3 import org.aspectj.lang.annotation.After;

5 @Aspect

public class Logging{

7

@Pointcut("execution(* acc.*.*(..))")

9 public void anyAccServices() {}

11 @AfterReturning("anyAccServices()")

public void writeLog(){

13 // write to log file

}

15 }

The above aspect namely Logging simply writes logging data to files after every execution
of any method of any class in the acc package. The pointcut namely anyAccServices is
declared by a pointcut expression (line 8) which matches the aforementioned condition and
a pointcut signature (line 9). Since the pointcut is declared as public, it can also be refered
(and reused) outside of the aspect Logging. The advice namely writeLog (line 11-14) is an
after-returning advice. It associates with pointcut anyAccServices() (line 11) and executes
its body after the execution of any method matched by its pointcut completes normally.

Similar to the Jboss/AOP framework, Spring AOP does not provide any mechanisms to
implement protocol-based aspects. The pointcut language is that of AspectJ so it is more
expressive while support for property analysis on aspects and components is more limited in
comparison to history-based aspect languages discussed in section 3.2.2.

3.4.3 JAsCo

JAsCo [120] is an aspect-oriented language designed especially for component-based software
development. The JAsCo language, while introduces a few new keywords and constructs for
the implementation of aspects, is kept as close to the regular Java language syntax as possible.

3.4. ASPECTS AND COMPONENTS 57

JAsCo has been developed based on the features of two existing AO technologies: AspectJ [74]
(which has been previously presented in section 3.2.1) and Aspectual Components [79].

The JAsCo language introduces two concepts: aspect beans and connectors. Aspect beans
implement concerns that normally crosscut several components in the system. The following
code [120] shows an JAsCo aspect bean that performs access-control tasks.

1 class AccessManager{

PermissionDb pdb = new PermissionDb();

3 User currentuser = null;

5 hook AccessControl{

String exceptionmessage = "General Access Exception";

7

AccessControl(method(..args)){

9 execution(method);

}

11

around(){

13 if(pdb.check(currentuser,thisJoinPointObject))

return proceed();

15 else

throw new AccessException(exceptionmessage);

17 }

19 void setExceptionMessage(String aMessage){

exceptionmessage = aMessage;

21 }

}

23 }

The above aspect bean is declared as a regular Java bean that declares one hook namely
AccessControl (line 5-26) as a kind of inner class. The hook consists of two parts: (at least) one
constructor (line 8-10) specifying the condition when the normal execution of a method should
be advised and one behavior method namely around (line 16-21) implementing the behavior
to be executed (advice). The hook constructor is described by its abstract method parameters
as input arguments (line 8) and its body (line 9). In this case, the hook constructor specifies
that the behavior method(s) of the AccessControl hook will be performed whenever a method
taken as an input of the hook is executed. Here, the behavior of the hook is implemented
by the around method (line 16-21) which checks whether the current user is permitted to
perform the method being executed. The around method would raise an AccessException if
the check fails. Otherwise, the advised method can proceed.

The above JAsCo model with aspect beans and connectors allows for aspect reusability
since aspect beans describe crosscutting concerns independently with the concrete component
context while connectors deploy aspect beans into concrete components. Hence, the combi-
nation of AOSD and CBSD in JAsCo does not only brings AOP support to component-based
applications but also adopt component-based ideas to the AOSD approach.

In JAsCo, aspects are deployed within an application using connectors. Assume that
the application consists of a Printer component which needs the access-control functionality
implemented by the above aspect. What we can do is to bind all executions of method
printFile from the Printer package to the AccessControl hook of the AccessManager class
using a connector as follows:

58 CHAPTER 3. ASPECT-ORIENTED PROGRAMMING

1 connector printAccessControl{

AccessManager.AccessControl control =

3 new AccessManager.AccessControl(void Printer.printFile(file));

5 control.setExceptionMessage("Printer Access Exception");

control.around();

7 }

The above connector namely printAccessControl consists of a hook initialisation (line
2-3) that deploys the AccessControl hook represented by control to the printFile method.
This hook initialisation is similar to a Java class initiation where control is initialised with
method signatures just as previously specified in the hook constructor. Next, the connector
indicates that the setExceptionMessage method and the around method of the control will be
executed(line 5-6) whenever method printFile of the Printer component is called. Note that
JAsCo provides some supports for the declaration of precedence and combinations strategies
in connectors in order to make explicit how aspects are applied in case there are conflicts
among aspects.

JAsCo supports the specification of the applicability of aspects in terms of a sequence or
a protocol [125]. This feature is implemented based on the generic framework proposed by
Dounce et al. previously described in section 3.2.2.1. Let us consider an example of stateful
aspects in JAsCo taken from [125]. The previous AccessControl aspect is now extended to a
new aspect called StatefulAccessControl. The following code shows the specification of that
new aspect.

1 class StatefulAccessManager extends AccessManager{

hook StatefulAccessControl{

3 StatefulAccessControl(starttrigger(..a1), method(..a2), stoptrigger(..a3))){

start > p1;

5 p1: execution(starttrigger) > p3||p2;

p2: execution(method) > p3||p2;

7 p3: execution(stoptrigger) > p1;

}

9

around p2(){

11 if(pdb.check(currentuser,thisJoinPointObject))

return proceed();

13 else

throw new AccessException(exceptionmessage);

15 }

}

17 }

The constructor of the aspect has three abstract method parameters as input: starttrigger,
method and stop (line 3). The constructor body specifies the stateful pointcut that can be
interpreted as a transition system (line 4-7). Each transition is described by a name (e.g.,
p1), a pointcut (e.g., execution(starttrigger)), and one or more destination transitions (e.g.,
p3 or p2) to be matched after the current transition is fired. In the above example, there is an
advice applicable to transition p2 (line 14-18). This advice will be triggered when transition
p2 defined in the hook constructor is fired.

In JAsCo, aspects can be added and removed at run-time. The implementation of JAsCo
language features, especially JAsCo dynamic features is based on the Jutta aspectual just-in-

3.4. ASPECTS AND COMPONENTS 59

time compiler and the HotSwap run-time byte-code instrumentation framework [120].

3.4.4 CaesarJ

CaesarJ [91, 23] is an aspect-oriented programming language that is based on object-oriented
concepts and particularly integrates with the Java language. CaesarJ aims at better modular-
ity for aspects and components. In short, CaesarJ supports reusable aspects and non-invasive
integration mechanisms for components. In the following, we present a few major features of
the CaesarJ language.

The CaesarJ model supports the notion of a class family [51], a large-scale unit of mod-
ularity which involves a group of related classes. Abstraction, late binding, and subtype
polymorphism are also supported at the level of class families. Furthermore, CaesarJ sup-
ports the concept of virtual classes. A virtual class is an abstraction of an inner class of an
enclosing class family. Just like a virtual method, a virtual class may have different meanings
depending on the dynamic context when it is used. The following code [23] represents the
base class family HierarchyDisplay as well as two extensions AdjustedHierarchyDisplay and
AngularHierarchyDisplay.

1 cclass HierarchyDisplay{

3 cclass Node {...}

5 cclass CompositeNode extends Node {

...

7 calculateLayout() {

...

9 Connection c = new Connection();

...

11 }

}

13

cclass Connection {...

15 void initShape(Point pt) {...}

}

17

Node root;...

19 }

21 cclass AdjustedHierarchyDisplay extends HierarchyDisplay{

cclass Node {...

23 int maxwidth;

}

25

void foo(Node n) {... n.maxwidth...}

27 }

29 cclass AngularHierarchyDisplay extends HierarchyDisplay {

cclass Connection {...

31 void initShape(Point pt) { ...}

}

33 }

60 CHAPTER 3. ASPECT-ORIENTED PROGRAMMING

The HierarchyDisplay class family involves three inner classes Node, CompositeNode, and
Connection. All these classes are described as CaesarJ virtual classes using keyword cclass in
order to differentiate them from pure Java classes. The AdjustedHierarchyDisplay class (line
21-24) is defined as an extension (subclass) of the HierarchyDisplay class. Its definition shows
that the Node inner class is refined from that of the superclass and a new method called foo
is added. Note that all references to type Node in the other classes of the class family are au-
tomatically rebound to type Node of the AdjustedHierarchyDisplay class during an execution
of an object of type AdjustedHierarchyDisplay. This is the fundamental difference between
binding in CaesarJ virtual classes and pure Java classes. Furthermore, CaesarJ supports a
composition operator in order to compose two classes. For instance, we can define a new class
called AdjustedAngularHierarchyDisplay by composing two classes AdjustedHierarchyDisplay
and AngularHierarchyDisplay as follows:

1 cclass AdjustedAngularHierarchyDisplay extends

AdjustedHierarchyDisplay & AngularHierarchyDisplay{}

CaesarJ adopts the join point interception model from AspectJ in order to modularise
crosscutting concerns. One important feature of CaesarJ in comparison with AspectJ is that
aspects in CaesarJ are designed as components and thus they are more independent and easier
to be reused. The following code [23] illustrates a class namely CompanyLogger that contains
a pointcut and an advice in order to perform tracing tasks:

deployed public cclass CompanyLogger{

2 pointcut logMethods(): execution(* company.*.*(..)) || execution(company.*.new(..));

before(): traceMethods() {

4 System.out.println(thisJoinPointStaticPart.toString());

}

6 }

CaesarJ supports compile-time as well as runtime activation of an aspect. It enables flexi-
ble control over activation and scope of aspects by providing different control mechanisms over
aspects from outside. CaesarJ supports the definition of wrapper classes and automated wrap-
per recycling. A wrapper can introduce new fields and methods to other classes (wrappees).
Wrappers are used as adapters of existing classes in order to map between types from two
domains.

3.4.5 Summary

In this section, we have discussed a few major approaches on aspects and components. All
of those approaches basically support necessary language constructs for the definition of
aspects in component-based applications. However, while interaction protocols shown to be
useful for component-based applications, most existing approaches on AO over components
do not consider specific language supports for describing aspects over component protocols.
Furthermore, most existing AO approaches for components do not consider the problem of
evolution on components resulting from applying advice changes the desirable properties of
the original system.

3.5. CONCLUSIONS 61

3.5 Conclusions

As we have learned from the number of work on AOP, in general, an aspect-oriented language
for component-based applications should satisfy the following requirements:� Language expressiveness: The language used to define the patterns of crosscutting

concerns should be expressive enough to capture as much patterns as possible, especially,
sequences of events (which are very common in applications). However, note that, there
is always a trade-off between expressiveness and analysis support. Therefore, language
expressiveness should be only pushed to a certain limit where a balance between the
ability to define patterns and the requirement for doing some kinds of analysis to ensure
correctness can be reached.� Analysis support: The ability of language to support analysis is important to ensure
correctness for software. As we have just mentioned above, there is a trade-off between
language expressiveness and analysis support. A survey on history-based aspect lan-
guages show that some analysis can be done for the regular-based ones. The advances in
language theory research may help to attain analysis support for more expressive aspect-
oriented languages. In addition to the own ability of language on analysis support, we
also need more verification methods dedicated for aspect-oriented programs.� Mechanisms for interaction detection and resolution: The parallel composition
of aspects may lead to conflicts since they are supposed to be developed independently
of each other. With the help of the ability to support analysis of the aspect-oriented
language, we could develop algorithms to detect potential interactions between aspects
and should provide mechanisms for conflict resolution in situations where an interaction
may cause undesirable effects.� Mechanisms for the specification and verification of interface between as-
pects and base programs: It would be useful to have a way for aspects to declare
the set of requirements they need as pre-conditions for the base programs to satisfy in
order to ensure they can produce expected effects. Moreover, this ability also helps to
improve aspect reuse. On the contrary, the availability of an abstraction about the base
program may help to reduce the cost of analysis on aspects and the base program.� Specific support for component-based applications: Since protocols are widely
used in component software, support for the declaration and composition of protocols
is indispensable for an aspect-oriented language that gears towards component-based
systems. Furthermore, analysis methods for critical properties of component-based
systems such as compatibility and substitutability should be available.

We have concluded the part which focuses on State of the Art in this thesis. We will next
move to the part on Contributions in which we present our proposal for an aspect-oriented
language for component-based systems and our approaches on analysis and verification for
the language we have developed.

62 CHAPTER 3. ASPECT-ORIENTED PROGRAMMING

Part II

Contributions

63

Chapter 4

VPA-based Aspect Language

This chapter presents the main contribution of the thesis: a new history-based aspect lan-
guage defined using visibly pushdown automata (VPAs), the VPA-based Aspect Language
(VPAL). We will use the abbreviated name VPAL to refer to our aspect language from now
on. This chapter is organized as follows. Section 4.1 motivates the use of visibly pushdown
automata to define history-based aspect languages. Section 4.2 presents the formal definition
and important properties of the VPA and the class of visibly pushdown languages described
by these VPAs. Section 4.3 presents the formal syntax and semantics of VPAL. Section 4.4
introduces the library that we have implemented in order to provide supports for property
analysis on VPA-based aspects. Section 4.5 shows how interactions among VPA-based aspects
can be detected. Finally, Section 4.6 concludes the chapter.

4.1 Motivation

In Section 2.4, we have discussed the important role of interaction protocols in component-
based software. Integrating interaction protocols into component interfaces provides more in-
formation on the component behavior and thus enables more precise property analysis. There
have already been a number of aspect-oriented languages that specially aim at component-
based software as discussed in Section 3.4. However, most of them do not support protocol-
based pointcut languages.

In Section 3.2.2, we have reviewed a few history-based aspect languages that exploit
protocol-based pointcut languages in order to enable declarative aspect definitions and, for
some of them, support reasoning over properties of aspect-oriented programs. The pointcut
languages supported by those approaches can be divided into two categories: regular and
non-regular ones. In general, more approaches feature regular pointcut languages than non-
regular ones. Approaches featuring regular pointcuts have shown that they have an important
characteristic that existing non-regular ones typically do not have: they support automatic
property analysis as analysis problems for regular languages have been well understood the-
oretically and practical solutions exist. However, the limitation of AO languages that feature
regular pointcuts lies in the restricted expressivity of regular languages. For example, they
can not describe protocols that require a memory such as recursive protocols or nested se-
quences. Unfortunately, there are quite a large number of applications that involve such types
of protocols.

Although aspect languages with non-regular pointcuts can express more types of proto-

65

66 CHAPTER 4. VPA-BASED ASPECT LANGUAGE

cols in a pointcut declaration than those featuring regular pointcuts, they have two major
limitations. First, no support for property analysis is available because of the lack of effec-
tive analysis techniques for non-regular languages. Second, due to high expressivity of such
languages, it is difficult to obtain efficient implementations for those languages.

Let us take a basic peer-to-peer query protocol as an example to demonstrate the limita-
tions of existing regular and non-regular aspect languages.

Example: a peer-to-peer query protocol. A peer-to-peer network denotes a distributed
architecture in which equally privileged peers with equal resources cooperate to solve tasks.
The protocol over peers that we are interested in describes the abstract control flow of a
query algorithm over peer nodes. Assume that every peer in the network connects to at least
one other peer (neighbor). A peer initiates a query by sending query messages to all of its
neighbors. If a receiving peer does not have the answer for the query, it forwards the query
to its neighbors. For simplicity, let us just assume that cycles (in which a query comes back
to a peer node it has already passed by) will be detected and handled. If a receiving peer has
the answer it sends a reply message to the peer from which it received the query message.
Eventually, the answer can be propagated back to the original peer that initiates the query.

Now we wish to apply an aspect that monitors the query process and notifies the server
when all the replies to the initiating queries have been received. Using the aspect language
that supports regular pointcuts proposed by Douence et al. [48], we could implement (or
better approximate) the above monitoring aspect as follows:

Amonitoring = µa.(query | reply � notify) ∗ ; a

0

query

reply notify

Figure 4.1: Monitoring aspect implemented using regular language

Figure 4.1 illustrates the above aspect which admits, among others, sequences of alterna-
tive calls to query and reply and triggers notify events. However, it does not capture only the
final replies (i.e., replies to the queries directly sent by the first node). Instead, it notifies the
server whenever a reply event occurs. Furthermore, the aspect does not detect situations in
which the number of replies exceeds the number of queries, because the regular query language
is not capable of capturing properly nested structures. Replacing the or-expression in the re-
cursion by the sequence query;reply does not work either: the expression just match flat and
not nested sequences. While we can obviously use aspect variables to capture the matching
replies, the resulting system is not amenable to property analysis performed at the protocol
level. For instance, analyzing whether the base program satisfies the aspect requirements or
whether two aspects interact based on their pointcuts cannot be done by just checking the
automata representing the aspects and/or the base programs because there of the variables
involved and the code manipulating them.

4.1. MOTIVATION 67

The monitoring aspect could be implemented more properly using an aspect language
that supports non-regular, Turing-complete or not, pointcuts. Although Turing-complete
languages are the most expressive languages they are not widely used for modeling protocols
in software applications because of their very limited support for any kind of property analysis.
On the other hand, non-regular but not Turing-complete protocols that can express recursion
or properly nested structures are commonly used in many applications especially the peer-
to-peer application domain. One particular type of non-regular protocols that has been used
are those defined by pushdown automata, e.g., [127].

A pushdown automaton (PDA) is essentially an extension of a finite state automaton
(FSA) with the addition of a stack data structure [67]. During an operation of a pushdown
automaton, transitions are chosen based on the input symbol, the current state, and the sym-
bol at the top of the stack. Furthermore, the stack of a PDA may be optionally manipulated,
i.e., symbols can be pushed to the stack or popped from the stack, when transitions are
taken. Hence, in comparison to a FSA, a PDA is equipped with an extra memory that can
be used to store some information along its operation that enables context-free languages to
be recognized.

0 1

reply/−a

query/+aquery/+a

reply/−a

Figure 4.2: Modeling query protocol using PDA

Using a PDA, we can properly model the query protocol as shown in Figure 4.2. The
PDA in figure 4.2 consists of two states and four possible transitions representing query and
reply events. When a query transition is taken, an a symbol is pushed to the stack. When
a reply transition is taken, an a symbol is popped from the stack. If there is no a symbol
on the top of the stack then a reply transition cannot be taken. Consequently, modeling the
query protocol using a PDA ensures that the number of replies does not exceed the number
of queries. Furthermore, the last reply, which is the reply transition from state 1 to state
0, can be detected. Hence, modeling the query protocol using a PDA describes the protocol
much more precisely than using a FSA, i.e., a regular language.

The class of context-free languages, which is characterized by PDAs, is employed as a
basis for the definition of compiler frontends for most programming languages nowadays be-
cause they support the definitions of nested program modules and recursive function calls.
An aspect language featuring context-free-based (or PDA-based) pointcuts could capture the
above query protocol properly and corresponding approaches have been proposed, see Sec-
tion 3.2.2.2. However, many interesting properties of context-free languages and programs
cannot be analyzed statically. For example, checking whether a context-free language is in-
cluded in another one is undecidable. To the best of our knowledge, no aspect language
has been proposed that can both express such protocols and support property analysis. For
instance, the example aspect above can be expressed using the context-free aspect language
introduced by Walker and Viggers [128]. However analyzing whether the base program satis-
fying the aspect requirements or whether two aspects interact is not supported. Furthermore,
there has been no efficient implementation proposed for this aspect language.

We aim at developing a language that can define aspects over these protocols properly

68 CHAPTER 4. VPA-BASED ASPECT LANGUAGE

while still be amenable to some meaningful property analysis. We are furthermore inter-
ested in corresponding implementation techniques and efficient analysis techniques, e.g.,, by
the reuse of existing model checkers through approximation of the non-regular protocols by
(typically complex) regular expressions.

Visibly pushdown languages (VPLs), introduced by Alur and Madhusudan in 2004 [21]
and defined using visibly pushdown automata (VPAs), are a good candidate to meet the
aforementioned requirements. Two important reasons for this choice are that VPAs can
express many protocols which can only be expressed by context-free languages (and not regular
languages) and that VPLs, in contrast to context-free languages, satisfy most properties of
regular languages.

4.2 Visibly Pushdown Automata

As discussed in the previous section, the main limitation of context-free languages for our
purposes consists in their lack of support for property analysis. There are, however, algorith-
mic solutions for certain classes of non-regular languages have been put forward, e.g., [35],
[52], [70]. The common characteristic of these approaches is that the stack is explicit. Alur
and Madhusudan [21] have developed this observation into a new kind of automaton, called
visibly pushdown automaton (VPA). The class of visibly pushdown languages (VPLs) defined
by VPAs is of similar expressivity as context-free languages but still tractable as regular lan-
guages. We have chosen this language class as a foundation for the development of our aspect
language due to its promising capabilities in expressivity and support for property analysis.

Since we later present arguments and proofs of correctness involving our aspect language
in terms of the definitions underlying VPAs, we present in this section the definition and
key characteristics of this language and automata class. We summarize definitions, closure
properties and decision properties of VPAs from their original presentation by Alur and Mad-
husudan [21] (see this paper also for the proofs of the properties mentioned in this section.).

4.2.1 Definitions

VPAs are basically a restricted form of PDAs. Technically, the input alphabet Σ̃ of a visibly
pushdown automaton is partitioned into three disjoint sets: 〈Σc,Σr,Σl〉 where Σc is a finite
set of calls, Σr a finite set of returns, and Σl a finite set of local actions. Intuitively, a visibly
pushdown automaton pushes onto the stack only when it reads a call, pops the stack only
when it reads a return, and does not change the stack when it reads a local action. The
notion of visibility of stack-related actions thus consists in restricting each of them to one of
the three partitions.

A visibly pushdown automaton can be formally defined as follows:

Definition 1 (Visibly pushdown automaton). A (non-deterministic) visibly pushdown au-
tomaton M on finite words over 〈Σc,Σr,Σl〉 is a tuple

M = (Q,Qin,Γ, δ,QF)

where

0The reader can skip this section if she/he is already familiar with the class of Visibly Pushdown Automata
or she/he prefers to learn about this class from the original paper [21].

4.2. VISIBLY PUSHDOWN AUTOMATA 69� Q is a finite set of states� Qin ⊆ Q is a set of initial states� Γ is a finite stack alphabet that contains a special bottom-of-stack symbol ⊥� δ ⊆ (Q×Σc×Q×(Γ\{⊥}))∪(Q×Σr×Γ×Q)∪(Q×Σl×Q) is a finite set of transitions� QF ⊆ Q is a set of final states

According to the above definition, given two states q, q′ ∈ Q, a transition t ∈ δ, where the
control changes from q to q′, can be expressed in one of the three formats:� t = (q, a, q′, γ): t is a push (or call) transition where a ∈ Σc and γ ∈ Γ\{⊥}, i.e., on

reading a, γ is pushed to the stack.� t = (q, a, γ, q′): t is a pop (or return) transition where a ∈ Σr and γ ∈ Γ\{⊥}, i.e., on
reading a, γ is popped from the stack if it is the symbol on the top of the stack.� t = (q, a, q′): t is a local transition and the stack is not manipulated.

Note that ǫ-transitions are not allowed in a VPA.

Run. For a word w = a0a1...ak, a run of M on w (where a0, a1, .., ak are inputs to M in
that order) is a sequence ρ = (q0, σ0), (q1, σ1), ..., (qk , σk) where qi ∈ Q, σi is the stack content
at state qi, σ0 = ⊥ and there is a transition from qi to qi+1. Note that, a run ρ is an accepting
run of M on w if the last state is a final state i.e., qk ∈ QF . Hence, acceptance of VPAs is
defined by reaching final states, not by stack emptiness.

Language. The language of M , denoted as L(M), is the set of all words w ∈ Σ∗ accepted
by M . We can define L(M) as follows:

L(M) = {w|(q0, w,⊥) ⊢
∗
M (q, ǫ, σk)}

where q ∈ QF and σk is the stack content at state q. That is, starting in q0, M consumes
w from the input and eventually enters an accepting state. The ⊢∗M operator indicates a
sequence of several transitions on M .

Definition 2 (Visibly Pushdown Languages). A language L is a visibly pushdown language
with respect to a partition Σ̃ if there is a VPA M over Σ̃ such that L(M) = L.

Note that, on the one hand, every regular language is also a VPL but not vice versa. On
the other hand, every VPL is a context-free language obtained simply by merging the input
symbol partitions. For instance, if Σc = {a} and Σr = {b} then the language anbn(n ≥ 0) is a
VPL but the language bnan is not a VPL w.r.t this partitioning. Hence, protocols that involve
properly nested structures can be expressed using VPLs with appropriate partitioning. For
instance, the query protocol from the beginning of this section can be defined by a VPA M

similar to the PDA on figure 4.2 with a partitioned input alphabet Σ̃ = 〈Σc,Σr,Σl〉 where
Σc = {query},Σr = {reply},Σl = ∅.

70 CHAPTER 4. VPA-BASED ASPECT LANGUAGE

4.2.2 Closure properties of Visibly Pushdown Languages

In this section we present the major closure properties of VPLs and discuss how they can be
proved. These properties are very important, especially intersection and complementation,
because they underlie property analysis of VPA-based protocols.

Theorem 1 (Closure). Let L1 and L2 be visibly pushdown languages with respect to Σ̃. Then,
L1 ∪ L2, L1 ∩ L2, L1.L2, and L

∗
1 are visibly pushdown languages with respect to Σ̃.

Like regular languages, VPLs are closed under union, intersection, complement, concate-
nation and the Kleene-star operation. Note that, context-free languages are not closed under
intersection and complementation. In the following we discuss these closure operations and
properties in more details.

Closure Under Union. Considering L1 and L2 are two VPLs accepted by two VPAs
M1 = (Q1, Qin1

,Γ1, δ1, QF1
) and M2 = (Q2, Qin2

,Γ2, δ2, QF2
) respectively, the language L =

L1 ∪ L2 is accepted by a VPA M =M1 ∪M2 defined as follows:

M = (Q1 ∪Q2, Qin1
∪Qin2

,Γ1 ∪ Γ2, δ1 ∪ δ2, QF1
∪QF2

)

i.e.,, the set of states, of transitions, initial states, and final states of M are the pointwise
unions of the corresponding argument sets.

Closure Under Concatenation. Given an input word w that can be split into w1, w2

where w1 ∈ L1, w2 ∈ L2, a VPA M that accepts L1.L2 simulates w1 on M1 and w2 on M2

using different stack alphabet, and when simulating M2 the stack alphabet of M1 is treated
as bottom of stack.

Closure Under Intersection. The intersection of two VPAs M1,M2 w.r.t the same
partition Σ̃ is defined by a VPA M as follows:

M = (Q1 ×Q2, Qin1
×Qin2

,Γ1 × Γ2, δ1 × δ2, QF1
×QF2

)

Closure Under Kleene star. A VPA M∗ that accepts L∗ simulates M step-by-step
but it can non-deterministically restart M when M is in a final state. When this happens,
the actual stack content is treated as empty.

Theorem 2 (Determinization). For any VPA M over Σ̃, there is a deterministic VPA M ′

over Σ̃ such that L(M) = L(M ′). Moreover, if M has n states, we can construct M ′ with

O2n
2

states with stack alphabet of size O(2n
2

.|Σc|).

Given the same input partition 〈Σc,Σr,Σl〉 we can construct a deterministic VPA M ′ =
(Q′, Q′

in,Γ
′, δ′, Q′

F) from a nondeterministic VPA M = (Q,Qin ,Γ, δ,QF) where

Q′ = 2Q×Q × 2Q

Q′
in = {(IdQ, Qin) | IdQ = {(q, q)|q ∈ Q}}

Γ′ = {(S,R, a) | (S,R) ∈ Q′, a ∈ Σc}

Q′
F = {(S,R) | R ∩QF 6= ∅}

4.2. VISIBLY PUSHDOWN AUTOMATA 71

and the transition relation δ′ is defined as follows:
(Local) For every a ∈ Σl, ((S,R), a, (S′, R′)) ∈ δ′ where S′ = {(q, q′) | ∃q′′ : (q, q′′) ∈
S, (q′′, a, q′) ∈ δ}, R′ = {q′ | ∃q ∈ R : (q, a, q′) ∈ δ}.
(Call) For every a ∈ Σc, ((S,R), a, (IdQ, R

′), (S,R, a)) ∈ δ′ where R′ = {q′ | ∃q ∈ R, γ ∈ Γ :
(q, a, q′, γ) ∈ δ}.
(Return)� For every a ∈ Σr, ((S,R), a, (S

′, R′, a), (S′′, R′′)) ∈ δ′ if (S′′, R′′) satisfies the following:
Let Update = {(q, q′) | ∃q1, q2 ∈ Q, γ ∈ Γ : (q, a′, q1, γ) ∈ δ, (q1, q2) ∈ S, (q2, a, γ, q

′) ∈ δ}.
Then, S′′ = {(q, q′) | ∃q3 : (q, q3) ∈ S

′, (q3, q
′) ∈ Update} and R′′ = {q′ | q ∈ R′, (q, q′) ∈

Update}.� For every a ∈ Σr, ((S,R), a,⊥, (S
′, R′)) ∈ δ′ if S′ = {(q, q′) | ∃q′′ : (q, q′′) ∈ S, (q′′, a,⊥, q′) ∈

δ}, R′ = {q′ | ∃q ∈ R : (q, a,⊥, q′) ∈ δ}.

In the following we briefly explain the above definition of determinization1. Basically,
the construction of an equivalent deterministic VPA from a non-deterministic one is similar
to a subset construction [67] on a non-deterministic FSA. However, since there is a stack
associated with the VPA, handling push transitions that manipulate the stack is postponed
until the handling of their corresponding pop-transitions. A set S in the above definition
represents the set of “summary” edges, which includes all transitions that occur from a push
transition to its corresponding pop-transition. A set R represents the set of reachable states.
Hence, instead of performing a subset construction on the set of states, we perform a subset
construction on the set of summary-edges.

Closure Under Complementation. The class of visibly pushdown languages is closed
under complementation. That is, if L is a visibly pushdown language over partitioned alphabet
Σ̃ then L is also a visibly pushdown language over Σ̃.

We can define a VPA M which is the complementation of a VPA M = (Q,Qin ,Γ, δ,QF)
as follows:

M = (Q,Qin,Γ, σ,Q−QF)

That is, M is exactly like M but the accepting states of M have become non-accepting states
of M and vice versa. M must be a deterministic VPA since otherwise a given input word
might end in both a final and a nonfinal state. In this case the word should be rejected by
M , but inverting the final and nonfinal states would result in it being accepted (because it
will also end in both a final and a nonfinal state of M).

Unlike for PDAs, it is possible to construct a deterministic VPA from a non-deterministic
using the determinization operation introduced above.

4.2.2.1 Decision properties of Visibly Pushdown Languages

In the following, we discuss three decision properties of VPLs: emptiness, universality, and
inclusion. These properties also play an important role for solving analysis problems.

1The ideas were initially presented in the original paper [21]. However, there is no significant text that is
copied from there.

72 CHAPTER 4. VPA-BASED ASPECT LANGUAGE

Emptiness. The emptiness problem is to check whether the language defined by a VPA is
empty. Emptiness of a VPA is decidable in time O(n3) where n is the number of states in
the VPA.

Inclusion. The inclusion problem is to check whether given two VPAsM1 andM2, L(M1) ⊆
L(M2). This problem is decidable for VPLs in EXPTIME-complete. Given VPAs M1,M2,
we can take the complement of M2, take its intersection with M1 and check for emptiness.
Note that the inclusion problem is undecidable for context-free languages.

Universality. The universality problem is to check whether a given VPA M accepts all
strings in Σ∗. This problem is decidable in EXPTIME-complete. This problem can be
reduced to checking the inclusion of the language of the fixed 1-state VPA M1 accepting Σ∗

with the given VPA M . Note that the universality problem is undecidable for context-free
languages.

Although the complexity of these above computations is still high, closure and decision
properties of VPLs theoretically enable many types of property analysis that are used to be
impossible with context-free languages. We will discuss how we apply them to our analysis
problems with the aspect language later on. We furthermore show that an optimized imple-
mentation of the operations yields reasonable runtime and space requirements for practically
relevant VPA-based protocols.

4.3 VPA-based Aspect Language

In this section, we present the VPA-based aspect language we have developed. This aspect
language essentially extends the framework of regular aspect languages proposed by Douence
et. al [47] by means for the formulation of VPA-based pointcuts and advice. It features,
in particular, constructors for the declarative definition of pointcuts based on regular and
non-regular structures and advice mechanisms for the manipulation of behaviors that require
balanced matching

In the following, we will first give an overview of the language then we introduce the syntax
of the language and use a set of small examples in the context of a peer-to-peer application
to demonstrate its features. Next, we present its formal semantics in terms of a small-step
semantics that can serve as a foundation for a (future) implementation of the language.

4.3.1 Overview

As in most other aspect languages, three basic mechanisms form VPA-based aspects: aspects,
pointcuts, and advice.� Aspects are defined either as atomic aspects (which cannot be split further into simpler

aspects) or composite aspects (which are the composition, such as a sequence, of several
aspects).� Pointcuts permit the matching of event sequences that can be described by VPAs. Point-
cuts can be defined as single terms which represent individual events. The terms are
categorized into three types corresponding to three transition types of a visibly push-
down automaton: calls, returns, and locals. Furthermore, pointcuts can be defined by

4.3. VPA-BASED ASPECT LANGUAGE 73

two specific constructors: depth constructors that define nested sequences whose depths
satisfy certain conditions, and the permutation constructors that define sequences of
permutations of pairs of events. Pointcuts also include forms for regular expressions
for convenience (although regular expressions are a subset of those expressible using
VPAs).� The advice class permits the definition of advice as sequences of events, or the specific
advice operator closeOpenCalls. The latter permits the introduction of missing return
statements.

Not all aspects defined according to the provided language syntax are valid: some return
events in a pointcut, for instance, may not correspond to appropriate call events. We believe
that a restricting the language by, for instance, closely coupling calls and returns is not
desirable for an aspect programming language. However, later we investigate subsets of the
permissable sentences of the language that ensure their validity, for instance, syntactically.

4.3.2 Syntax

Figure 4.3 presents the grammar defining the syntax of VPA-based aspects. In this figure,
non-terminals are set in italic type. Terminals are informally introduced using the comment
symbol ‘//’. Keywords are set in bold face type. Repetitions are marked using parentheses
(e.g.,.Term{, T erm} expresses that the expression may be defined by a sequence of several
terms separated by the ‘,’ symbol). Lexical categories are marked using all uppercase letters.

In the following we give a detailed explanation on three major language constructs that
are used to define a VPA-based aspect: aspect, pointcut and advice.

4.3.2.1 Aspects

Aspects are defined using the first six rules of the grammar. The first and second rule define
an atomic aspect that comprises a pointcut and an advice, just like aspects defined in many
other traditional aspect languages. The left part of the ‘ � ’ operator always represents the
pointcut and the right part of the ‘ � ’ operator represents the advice of an aspect. For
instance, the following aspect:

login � CreateLog

describes that CreateLog (the advice) would be executed if there is an invocation to login
(the pointcut). Note that it is possible for an aspect to be defined only with a pointcut. In
this case the � operator and the (empty) advice are omitted from the pointcut expression.
This form is useful in compositions, such as sequence aspects.

The third rule defines a composite aspect that can be formed as a sequence of atomic
aspects. For instance, according to the following composite aspect:

login � CreateLog ; query � WriteLog

CreateLog will be executed when a call to login occurs then WriteLog on occurrence of a
call to query.

Sequences ‘a1 ;Tag a2’ may be restricted by specifying (call, return or local) events, see
non-terminals Tag and Term, that must not occur between the occurrences of a1 and a2.
For example, assume that the base program in the above example may invoke event logout

74 CHAPTER 4. VPA-BASED ASPECT LANGUAGE

Aspect ::= Pointcut

| Pointcut � Advice

| Pointcut � Advice ;Tag Aspect

| µ ID . Aspect

| Pointcut � Advice ;Tag ID
| Aspect2Aspect

Tag ::= Term{, T erm} | ¬ (Term{, T erm}) | ǫ | ∅

Pointcut ::= Term | DepthOp | PermutationOp | RegEx

RegEx ::= Term

| RegEx ;Tag RegEx | RegEx[] RegEx |
RegEx [CONSTANT] | RegEx +

Term ::= Term(ARGS) | Local | Call | Return

Local ::= ID
Call ::= IDStackSymbol

Return ::= IDStackSymbol

StackSymbol ::= ID

DepthOp ::= depthCONSTANT
Call,Return | depth≤CONSTANT

Call,Return | depth≥CONSTANT

Call,Return

PermutationOp ::= fp([Call,Return]{, [Call,Return]})
| np([Call,Return]{, [Call,Return]})

Advice ::= Term {; Term}
| closeOpenCallsReturn
| Term [CONSTANT]

ID // identifiers
CONSTANT // constant numbers
ARGS // variable names

Figure 4.3: Grammar for a VPA-based aspect

4.3. VPA-BASED ASPECT LANGUAGE 75

and then invoke query. In this case, since the aspect is not prepared to handle the logout
event, it just ignores this event and proceeds to match the query event and executeWriteLog

when the query event occurs. To avoid this potentially problematic situation, we can exclude
logout events from matching as follows:

login � CreateLog ;logout query � WriteLog

Note that the sequence operator ‘;’ without a Tag value behaves as the sequencing operator
that is commonly used also in other history-based aspect languages, that is, no events are
excluded from matching.

The fourth and fifth rules enable the expression of repetition in an aspect via tail recursion.
An aspect defined as ‘µa.A’ where a is a variable and A is an aspect is equivalent to the aspect
A where all the occurrences of a are replaced by µa.A. The last rule defines an aspect as a
choice of two aspects using the ‘�’ operator. Let us consider an example of an aspect defined
using these three rules:

µa1. login � CreateLog;
µa2. logout � CloseLog; a1

� query � WriteLog; a2

According to the above definition, when a call to login is detected from the base execution,
the aspect triggers advice CreateLog then it waits for two alternative incoming events: logout
or query. If the aspect encounters logout first, it triggers the advice CloseLog and comes
back to the point where it looks for the login event as specified by the repetition variable a1.
Otherwise, if the aspect encounters query, it triggers the advice WriteLog and comes back
to the point where it waits for logout or another query event as specified by the variable a2.

4.3.2.2 Pointcuts

There are four different forms of pointcuts for VPA-based aspect: a single term, a depth-
testing VPA-specific pointcut constructor, a constructor allowing to match for permuted
events and a regular expression pointcut.

Terms. A term is a method call with arguments that is explicitly categorized according to
the partitioning of input symbols in VPAs: local transitions that may not influence the stack,
call transitions that push on the stack and return transitions that pop the top of the stack. A
term representing a call transition is tagged with the stack symbol that will be pushed on the
stack. A term representing a return transition, which we underline in order to differentiate
it from call transitions, is also tagged with the stack symbol that should be available on top
of the stack when the transition is taken. This explicit transition classification enables the
definition of VPA-based non-regular pointcuts that can capture well-balanced contexts.

Let us consider an aspect that triggers a call to an abort function when there is an
abortRequest sent from a peer in a peer-to-peer query protocol. Figure 4.4 illustrates the
query protocol.

The aspect that implements the abort function is defined using our VPALas follows:

76 CHAPTER 4. VPA-BASED ASPECT LANGUAGE

30 1 2

queryq

replyq

abortRequest ⊲abort

aborted

join

quit

query f st

reply f st

Figure 4.4: Aspect handling abortRequest in peer-to-peer query protocol

join ; µb. queryfst ; µc.(replyfst ; b)

� (queryq�replyq ; c)

� (abortRequest� abort ; c)

Note that there is one requirement for this aspect. That is, an abortRequest message
should only be treated by the aspect if there is at least one on-going query. This is a reasonable
constraint if the abort function is an operation which might consume much time or other
resources. Since it is possible to tag the call and return transitions with stack symbols, we
can easily differentiate the first query from the other ones and thus can express the condition
where abortRequest should be treated by the aspect. Furthermore, tagging stack symbols to
the transition also ensures the number of replies does not exceed the number of query during
matching process.

Depth constructors. Three depth constructors enable aspect to be defined in terms of
the number of (typically matching) calls and returns that have occurred. The constructor
depthnm,o defines a pointcut that matches exactly n nested call transitions to m and o. The

constructor depth≤n
m,o defines a pointcut that matches at most n nested call transitions, and,

similarly, depth≥n
m,o at least n nested call transitions to m.

These depth constructors are useful for the definition of aspects over VPA-based protocols
such as recursive protocols where advice may apply to calls at only certain (but not all) nesting
levels of a protocol. For instance, in the recursive query protocol of the P2P application, let
us assume that we want to optimize the underlying traversal strategy through a heuristic
to perform a more superficial but faster search on nodes whose distance from the root node
exceeds a certain threshold. We can easily specify such condition in the pointcut using the
depth constructor depth≥n

m,o as follows:

µa. depth≥5

query,reply � getCacheV alue ; a

where the threshold is set to 5.

Permutation operators. Permutations are frequently used for the construction of proto-
cols that allow the arbitrary interleaving of sets of events. In the presence of well-balanced
contexts, interleavings of calls as well as calls and corresponding returns are subject to restric-
tions that cannot be modeled simply using the standard permutation function that generates

4.3. VPA-BASED ASPECT LANGUAGE 77

all permutations. In P2P networks, for instance, a query on one node that triggers a query
on a neighbor, e.g., q1 followed by q2 , must be followed by replies in the reverse order r2 , r1 .
The permutation q1 , q2 , r1 , r2 is not valid. Two permutation constructors for VPA terms are
provided: the fp([m,m], [n, n]) constructor that defines a pointcut matching permutations
of flat sequences of those pairs, i.e., mmnn and nnmm, the np([m,m], [n, n]) that defines a
pointcut matching permutations of nested sequences of those pairs, i.e., mnnm and nmmn.

Regular expressions. Regular expressions are introduced using five syntactic forms. Reg-
ular expressions can be defined as single terms (Term) or constructed using operators for se-
quencing operator (;Tag), union (RegEx[]RegEx), constant times repetition (RegEx[CONSTANT]),
and non-empty repetition (RegEx+).

For instance, according to the following aspect:

µa.query[5] � UpdateCache ; a

caches are updated after every five queries.

4.3.2.3 Advice

An advice can be a term or a sequence of terms representing method invocations that are
triggered when the corresponding pointcut successfully matches the execution trace. Note that
we have deliberately restricted advice bodies to sequences of terms because we are mainly
interested in aspects that are amenable to property analysis.

For instance, the advice of the following aspect consists of one instruction createLog that
will be triggered when the login event is observed.

µa.login � createLog ; a

Besides, we provide the special advice operator closeOpenCallsmc that inserts a num-
ber of return transitions (m) to close an open calling context. To give one example of its
use, a major characteristics of a P2P network is the dynamism of peers. They can come
and go unpredictably and thus it is common to have queries without corresponding replies.
Subnetworks may be disconnected or messages lost. Error handling for those situations may
involve the introduction of events that close a number of open recursive calls in order to skip
the traversal of part of the underlying distributed network in which an error occurred. We
could use VPA-based aspects to implement error handling strategies using the closeOpen-
Calls advice operator: pointcuts matching on nested contexts can then be used to restrict
the application of such advice to appropriate parts of the network. The following example
illustrates the use of a closing operator to add a number of “fake” replies to queries when the
query exceeds a given connection timeout:

µa. queryf ; (replyf � (connectionT imeOut � closeOpenCallsreplyf)) ; a

Lastly, the advice can be defined as repetitions of a term where the number of repetitions
is a constant. For instance, the following aspect will try to reconnect three times when a
connectionT imeOut event occurs:

µa. connectionT imeOut � reconnect[3] ; a

78 CHAPTER 4. VPA-BASED ASPECT LANGUAGE

4.3.3 Semantics

In this section we present a formal operational semantics of the VPA-based aspect language.
The key idea underlying the semantics is running a visibly pushdown automaton that repre-
sents the aspect alongside the base program and try matching the execution traces of the base
program with the running VPA in order to weave in the appropriate advice when a pointcut
is matched. Our formalization of this idea essentially consists of the following two parts:� The construction of a VPA for the pointcut language of VPA-based aspects, cf. Fig-

ure 4.3. This construction is formalized by a transformation from the pointcut language
into definitions of VPA defined as introduced in Section 4.2.� Define the application of VPA-based aspects, i.e., how pointcuts are matched against
the execution of the base program and how advice is woven into the base program
execution at the corresponding join points. We have defined the weaving of VPA-based
aspects by an extension of the semantics framework for regular aspects by Douence et
al. [47, 48].

In the following we present the formalization of these two parts.

4.3.3.1 Overview of the VPA construction from VPA-based aspects

Let us first introduce a set of major types, variables and basic functions that we will refer to
later on in the presentation of the construction of VPAs from VPA-based aspects.� A denotes the type of aspects defined by non-terminal Aspect in Figure 4.3.� P denotes the type of pointcuts defined by non-terminal Pointcut in Figure 4.3.� M denotes the type of VPAs defined as introduced in Section 4.2.� Φ denotes the table that contains environment values that are added and used through

out the whole construction process. Note that transitions that handle the tag component
associated to a sequence operator as well as tail recursion are only created in the last
phase when the final VPA is constructed. As a consequence, it is neccessary to have
a place to store the states and corresponding events that occur at these states so that
these information are available later when those transitions are created for the final
VPA.� T : A × Φ −→ M × Φ denotes the transformation function that receives an aspect
A and table Φ as inputs and returns the VPA M that defines the pointcut of aspect A
while updating Φ.� R : A −→ P denotes the function that removes the advice part of an aspect and
returns the pointcut expression of that aspect.� V : P −→M denotes the function that constructs a VPA from a pointcut expression.� C : M ×M × tag × Φ −→ M × Φ denotes the function that concatenates two VPAs
while taking into account the set tag and table Φ and returns a VPA that is the result
of the concatenation while updating table Φ.� U : M ×M −→ M is the function that unifies two VPAs and returns a VPA that is
the result of the union.

4.3. VPA-BASED ASPECT LANGUAGE 79

4.3.3.2 Auxiliary functions: concatenation and union of VPAs

In the following, we first give the definition of C and U since they are basic functions that are
used by the other functions.

Informally, we define the concatenation operation that connects two VPAs as follows. We
add new transitions that go from states in the first VPA to initial states of the second VPA
so that it is possible for the system to move from one VPA to the other one. It is possible
that some events are forbidden to occur between the sequences described by these two VPAs.
In such a case, we store the state and the event that is forbidden to occur from that state in
a table φ. We then use the table φ and create transitions that handle forbidden events when
it is the time for the construction of the final VPA. Forbidden events cause the current match
to be aborted (without raising an error, which could also be raised through a simple change
to our definition). Details on creating transitions handling forbidden events are presented in
the end of Section 4.3.3.3.

Definition 3 (Concatenation function C). Let:� M1 = (Q1, Qin1
,Γ1, δ1, QF1

) and M2 = (Q2, Qin2
,Γ2, δ2, QF2

) be two input VPAs for
the concatenation function.� M = (Q,Qin,Γ, δ,QF) be the VPA which is the result of concatenation of the two input
automata with forbidden events tag, i.e., M = M1;tagM2� Φ, Φ′ respectively be the input and result tables that contains environment values of the
concatenation function.

The result VPA (Q,Qin,Γ, δ,QF) is defined as follows:

Q = Q1 ∪Q2

Qin = Qin1

Γ = Γ1 ∪ Γ2

δ = δ1 ∪ δ2 ∪ δ
′

QF = QF2

where δ′ denotes the transition set containing transitions that are newly created. This new
transition set is created as follows. Let tsl, tsc, tsr respectively be the set of local, call, return
transitions that are newly created by deviating transitions of M1 which end in one of the final
states of M1 to all initial states of M2:

tsl = {(q0, u, q1) | ∃q0 ∈ Q1, q1 ∈ Qin2
, q2 ∈ QF1

: (q0, u, q2) ∈ δ1}

tsc = {(q0, u, q1, γ) | ∃q0 ∈ Q1, q1 ∈ Qin2
, q2 ∈ QF1

: (q0, u, q2, γ) ∈ δ1}

tsr = {(q0, u, γ, q1) | ∃q0 ∈ Q1, q1 ∈ Qin2
, q2 ∈ QF1

: (q0, u, γ, q2) ∈ δ1}

then
δ′ = tsl ∪ tsc ∪ tsr

Let tv = {(q, e) | q ∈ QF1
, e ∈ tag} then

Φ′ = Φ ∪ tv

80 CHAPTER 4. VPA-BASED ASPECT LANGUAGE

That is, we add new pairs of states and events to the table Φ so that we can mark the states
and events that are disallowed to occur from those states.

The union function is simply defined as the union of the components of the input VPAs.
Our definition of this union function is exactly the same as the union operation introduced
in the fundamental article on VPAs [21].

Definition 4 (Union function U). LetM1 = (Q1, Qin1
,Γ1, δ1, QF1

) andM2 = (Q2, Qin2
,Γ2, δ2, QF2

)
be two input VPAs for the union function. The union function receives two VPAs M1,M2 as
inputs then returns VPA M defined as follows:

Q = Q1 ∪Q2

Qin = Qin1
∪Qin2

Γ = Γ1 ∪ Γ2

δ = δ1 ∪ δ2

QF = QF1
∪QF2

4.3.3.3 Mapping VPA-based aspect language constructs to VPAs

Let us recall the definition of a VPA-based aspect by non-terminal A in Figure 4.3 (for
brevity, the non-terminals Aspect, Pointcut, Advice, Tag, ID terms in the rule definitions are
abbreviated as A,P,Ad, t, a respectively):

A := P | P ⊲ Ad | P ⊲ Ad ;t A | µa.A | P ⊲ Ad ; a | A � A

At the beginning, the VPA construction algorithm will start with the given aspect A and
an empty table Φ. The construction process is basically done by executing the transformation
function T recursively starting with aspect A and table Φ as its input. At each execution of
T , the input aspect (which can be A or a part of aspect A) is checked to determine whether
it can be further split into two parts or it is an atomic aspect (which cannot be decomposed).
According to the definition of a VPA-based aspect that are quoted above, if the structure of
the input aspect is recognized as P or P �Ad (the first two rules) then we consider this aspect
atomic aspect. Otherwise, if the structure of the input aspect is recognized as P ⊲Ad ;t A or
µa.A or P ⊲ Ad ; a or A � A (the last four rules) we consider this aspect composite aspect
which can be further split into two parts. In the following we explain how we handle the
aspect depending on its structure. We will start with atomic aspects first and continue with
composite aspects later on.

Transformation function applied to atomic aspects. We apply the transformation
function T to every atomic aspects to create sub-VPAs that describe the pointcut parts of
these atomic aspects. As atomic aspects can be defined in only one of two formats, P or
P � Ad, the transformation T is then defined as follows:

T (A,Φ) = (V ◦ R(A),Φ)

where the advice removing function R is defined as follows:

R(P) = P

R(P ⊲ Ad) = P

4.3. VPA-BASED ASPECT LANGUAGE 81

That is, we first apply the removing function R to an aspect to obtain the pointcut. Next,
we apply function V to the pointcut to obtain the VPA.

The pointcut transformation V is defined in terms of four different kinds of pointcut
expressions:

P ::= Term | DepthOp | PermutationOp | RegEx

i.e., simple terms, depth-defining operators, permutation operators, and regular expression
pointcuts.

The construction of one-transition VPAs for simple terms, i.e., call, return, local transi-
tions, is straightforward. Sequences of terms can also be constructed straightforwardly using
the sequence transformation C (see definition 3).

We now consider the three remaining cases of pointcuts.

Depth-defining constructors. Depth-defining constructors basically capture events
occurred at certain depths in a recursion. For a pair of call-return events, a call event
increases the depth while the return one decreases it. We construct VPAs for these depth-
defining constructors simply by simulating call and return events given the known depth
parameter n.

Let M = (Q,Qin ,Γ, δ,QF) be the VPA constructed from depth constructor depthnm,m
where n represents the depth value and m, m respectively are the call and return events that
we want to follow2, then

Q = {i : 0 ≤ i ≤ n}

Qin = {0}

Γ = {α}

δ = {(i, i + 1,m, α), (i + 1, i, α,m) : 0 ≤ i ≤ n− 1}

QF = {n}

where α is the stack symbol that is pushed or popped from the stack when a call m or a
return m occurs.

0 1 2

Figure 4.5: VPA constructed from depth constructor

Figure 4.5 illustrates the above VPA for depthnm,m when n = 3. The definition of this
VPA basically expresses that for every call to m there is a transition from a current state to
the next one and inversely for return events. As a consequence, the accepting state (where
an advice can be inserted) is the state n where the difference between the number of calls
and corresponding returns equals to n. Note that by the definition of depthnm,m, advice is

2Without loss of generality, we state definitions here for call and return events of the same symbol m. The
generalization to different symbols, e.g., query and reply symbols, is straightforward.

82 CHAPTER 4. VPA-BASED ASPECT LANGUAGE

only triggered by the call event but not its corresponding return. For instance, at depth level
4, a return event causes execution return to depth level 3, not triggering the advice a second
time.

The VPA constructed for depth constructor depth≤n
m,m is just similar to the above VPA,

with one exception: the set of accepting states is defined as

QF = {i : 1 ≤ i ≤ n}

The VPA constructed from depth constructor depth≥n
m,m is different from the two VPAs

constructed for the depth constructors depthnm,m and depth≤n
m,m in that we are now interested

in calls to m occurring at depth greater than n. Modeling calls and returns at depth greater
than n is more tricky because we do not know in advance the maximum depth of the recursion.
In order to capture these events, we construct a VPA that can differentiate the calls to m
into two groups: calls at depth smaller or equal to n and calls at depth greater than n using
two different stack symbols α, β. Such VPA is defined as follows:

Q = {i} ∀0 ≤ i ≤ n

Qin = {0}

Γ = {α, β}

δ = {(i, i + 1,m, α), (i + 1, i, α,m), (n, n,m, β), (n, n, β,m) : 0 ≤ i ≤ n− 1}

QF = {n}

The set of accepting states contains only n, i.e., a number of open calls that is at least
that large. Additional call and return transitions in this state are represented by a single call
and return transitions that are identified using the stack symbol β.

Figure 4.6 illustrates a VPA constructed for depth constructor depth≥3
m,m.

VPA constructed from depth constructor depth≥3
m,m

0 1 2 3

Figure 4.6: VPA constructed from a depth constructor

Permutation constructors. Basically, permutation constructors fp, np are unfolded
into sets of sequences of individual events (terms). For example, the (nested) permutation
constructor np([e1, e1], [e2, e2]) will be unfolded into {(e1, e2, e2, e1), (e2, e1, e1, e2)}. A VPA
will then be constructed for the corresponding sequences of events. In the following, we
present how permutation constructors are unfolded.

The unfolding task includes a series of steps to turn a permutation constructor into a
list/set of valid permutations of pairs (i.e., call, return) of events. We define a list of per-
mutations of the call events in list LC using function Perms. Given a list l of events, this
function is defined using (functional) list comprehensions as follows:

Perms([∅]) = [[]]

Perms(l) = [e : l′ | e← l, l′ ← Perms(l - [e])]

4.3. VPA-BASED ASPECT LANGUAGE 83

The first line of the definition states that the permutation of an empty list returns a list
that includes only an empty list. The second line of the definition indicates how permutations
(which are also lists of events) are generated. First, an event e of list l is chosen (expressed by
the generator e ← l) and removed from the list l (expr. l - e). Next, we apply the function
Perms over the new (sub-)list Perms(l - e)). For each list l′ in the list of permutations of
l - e, the event e is appended to the head of the list l′ (denoted by e : l′). The above procedure
is repeated using the other events in list l. Since the number of events is finite, the number
of permutations generated is also finite. We apply Perms to the list of calls to obtain the set
PLC that contains permutations of LC . For instance, applying Perms to LC = (e1, e2, e3)
returns {(e1, e2, e3), (e1, e3, e2), (e2, e1, e3), (e2, e3, e1), (e3, e1, e2), (e3, e2, e1)}.

We then add the corresponding return events to the permutations to obtain valid permu-
tations of calls and returns. These functions are defined analogous to the call permutations
and can be integrated with them.

Regular expressions. Regular expressions are defined in the syntax presented in Fig-
ure 4.3 as follows:

RegEx ::= Term

| RegEx;Tag RegEx
| RegEx[] RegEx
| RegEx [CONSTANT]
| RegEx +

We construct a VPA for a regular expression as follows. We first construct VPAs for the
terms it contains and then compose the resulting VPAs to obtain the VPA for the complete
regular expression.

We define the VPA representing a regular expression as follows (note that terms have
already been handled above):� In case of a sequence RegEx ::= RegEx;Tag RegEx the VPA is constructed by the

concatenation (see definition 3) of two sub-VPAs representing R1, R2.

(V(R1;Tag R2),Φ
′) = C(V(R1),V(R2), Tag,Φ)� In case of an or-expression RegEx ::= RegEx[] RegEx the VPA is constructed by the

union (see definition 4) of two sub-VPAs representing R1, R2.

V(R1[]R2) = U(V(R1),V(R2))� In case of a multiple transitions of the same kind RegEx ::= RegEx [CONSTANT] a
suitable number of VPAs is concatenated:

(V(R[n]),Φ′) =

{
(V(R),Φ) if n = 1

C(V(R[n − 1]),V(R), ∅,Φ) if n > 1� In case of a repetition RegEx ::= RegEx +, we construct the VPA for R then we apply
the standard Kleene plus operation on the resulting VPA as defined in Section 4.2.

V(R+) = V(R)+

84 CHAPTER 4. VPA-BASED ASPECT LANGUAGE

Transformation function applied to composite aspects. How the transformation
function would work on the composite aspect depends on its recognized structure.

Aspects ended by repetition variables P ⊲ Ad ; a If the structure of the input
aspect is P ⊲ Ad ; a, we split the aspect into two parts, P ⊲ Ad and a. We then create the
VPA M for atomic aspect P � Ad and update table Φ. Formally, M = (Q,Qin ,Γ, δ,QF)
and Φ′ are defined as follows:

M = V(R(P � Ad))

Φ′ = Φ ∪ {(q, a) | q ∈ QF}

That is, we add pairs of final states of M and the repetition variable a to table Φ so that
when we encounter µa later on we can create transitions from these final states of M to the
state succeeding µa.

Sequence aspects P � Ad ;t A If the structure of the aspect is P ⊲Ad ;t A, we split the
aspect into two parts, P ⊲ Ad and A.

After construction of the two VPAs for P � Ad and the aspect A, we construct the VPA
describing the sequence P � Ad ;t A expression by concatenating (see definition 3) the VPA
representing P to the VPA representing A while taking into account t. Hence, let M1 be the
VPA constructed from the P � Ad expression, M2 be the VPA constructed from A, M be
the VPA constructed from the P � Ad ;t A expression, and Φ′ be the updated table from
Φ. Then,

(M,Φ′) = C(M1,M2, t,Φ)

Choice A � A. If the structure of the aspect is A � A, we split the aspect into two parts,
A1 and A2, create VPAs for these two aspects then unify them (see definition 4). Let M1 be
the VPA constructed from aspect A1 and M2 the VPA constructed from aspect A2. Then
the VPA M for the choice aspect A1 � A2 is defined as follows:

M = U(M1,M2)

Tail-recursive aspects µa.A. If the structure of the aspect is µa.A, we split the aspect
into two parts, µa and A. We will first create the VPA N = (QN , QinN ,ΓN , δN , QFN) that
represents the pointcut expression of aspect A (by applying transformation function T to A).
Then we create the VPA M = (QM , QinM ,ΓM , δM , QFM) that describes µa.A expression as
follows:

1. Define M initially as a copy of N .

2. For every transition that goes to the state that is marked with a (this information is
stored in table Φ), create a new transition that starts from the same state, takes the
same input, manipulates the stack in the same way but goes back to the new initial
state instead.

3. Remove all transitions that end in the states that are marked with a.

4. Remove all states that are marked with a in table Φ.

4.3. VPA-BASED ASPECT LANGUAGE 85

In the following, we formally describe how M can be constructed from N . Let us first
define several sets of state sets and transition sets involved in the construction process. Let:� ss1 be the state set containing all the states that are marked with a in table Φ:

ss1 = {q | ∃q ∈ QN : (q, a) ∈ Φ}� ts1 be the transition set containing all the transitions that end in ss1:

ts = {(q, u, q′) ∪ (q, u, q′, γ) ∪ (q, u, γ, q′) ∈ δN | ∃q, q
′ ∈ QN , γ ∈ ΓN : q′ ∈ ss1}� ss2 be the state set containing the starting states of all transitions in ts1:

ss2 ={q ∈ QN |

(∃q2 ∈ QN , γ ∈ ΓN : (q, u, q2, γ) ∈ ts1 ∨ (q, u, γ, q2) ∈ ts1) ∨ ((q, u, q2) ∈ ts1)}� ts2 be the transition set containing local transitions that are newly created by deviating
all local transitions in ts1 back to the initial state:

ts2 = {(q0, u, q1) | ∃q0 ∈ ss2, q1 ∈ QinN , q2 ∈ ss1 : (q0, u, q2) ∈ δN}� ts3 be the transition set containing call transitions that are newly created by deviating
all call transitions in ts0 back to the initial state:

ts3 = {(q0, u, q1, γ) | ∃q0 ∈ ss2, q1 ∈ QinN , q2 ∈ ss1, γ ∈ ΓN : (q0, u, q2, γ) ∈ δN}� ts4 be the transition set containing return transitions that are newly created by deviating
all return transitions in ts0 back to the initial state:

ts4 = {(q0, u, γ, q1) | ∃q0 ∈ ss2, q1 ∈ QinN , q2 ∈ ss1, γ ∈ ΓN : (q0, u, γ, q2) ∈ δN}� ts5 be the transition set containing the union of ts2, ts2, and ts3:

ts5 = ts2 ∪ ts3 ∪ ts4

Then M is defined as follows:

QM = QN - ss1

QinM = QinN

ΓM = ΓN

δM = δN - ts1 ∪ ts5

QFM = QinN

We handle the Tag components of all sequence operators only after all sub-VPAs at lower
levels are constructed recursively and composed to build the top-level VPA. We would consult
the table Φ and create new transitions that go from the states marked with events in Tag

components back to the initial states of the top-level VPA to obtain the final VPA that
represents the pointcut of the whole aspect.

Let:

86 CHAPTER 4. VPA-BASED ASPECT LANGUAGE� N = (QN , QinN ,ΓN , δN , QFN) be the top-level VPA that has been constructed recur-
sively.� sse be the state set containing all the states that are marked with event e in table Φ:

sse = {q | ∃q ∈ QN : (q, e) ∈ Φ}� te be the event set containing all events that are declared in Tag components:

te = {e | ∃q ∈ QN : (q, e) ∈ Φ}� ts be the transition set containing all the newly created transitions that go from a
state in sse to one of the initial state of N on all events that are declared in the Tag
components:

ts = {(q0, e, q1)}∀e ∈ te, q0 ∈ sse, q1 ∈ QinN

Then the final VPA M = (Q,Qin ,Γ, δ,QF) is defined as follows:

Q = QN

Qin = QinN

Γ = ΓN

δ = δN ∪ ts

QF = QFN

4.3.3.4 Weaving VPA-based aspects

To define the application of VPA-based aspects to a base program, we rely on a model where
aspect weaving consists of matching the pointcut of an aspect against the execution of a base
program and executing the corresponding advice if the pointcut successfully matched. As
defined above, a VPA is constructed for each VPA-based aspect to represent its pointcut
(henceforth, we refer to this VPA as the pointcut VPA).

Overall, we define the matching process for a VPA-based aspect in terms of a run of
its pointcut VPA in parallel with the base program. When a transition of the VPA can
take place, i.e., the pointcut element represented by that transition successfully matches the
current join point, the corresponding aspect advice is executed. Note that, in contrast to a
normal simulation of a state machine, events (i.e., join points) that do not match any available
transition at the current state can be simply ignored rather than causing the execution trace
to be rejected by the VPA.

In the following, we formalize the weaving procedure using a small-step semantics based
on the semantic framework developed by Douence et al. [47, 48], a framework originally
developed for finite-state aspects that has been applied to several other aspect languages.
We first present the three major components of the original framework on which the weaving
semantics is based: the base program, the pointcut, and the advice. We then show how the
weaving semantics of the original framework is extended to VPA-based aspects in terms of a
transition relation of configurations of the base program, the pointcut VPA and VPA-based
advice.

4.3. VPA-BASED ASPECT LANGUAGE 87

Base programs. The base program is modeled by its observable execution trace. It can
be defined using a small-step transition relation → between observable states. An observable
state of the base program is a configuration that includes two pieces of information: the join
point and the (dynamically evolving) program state. Let (j, σ) (where j is the current join
point and σ is the current program state) be the configuration of the current state and (j′, σ′)
(where j′ is the next join point and σ′ is the next program state) be the configuration of the
next state. The transition relation → describes how one observable state transitions to a new
state:

(j, σ)→ (j′, σ′)

The transition relation of the base program defined in this framework is the same as the
one defined in the original framework for regular aspects.

Pointcuts. As previously mentioned, a VPA that describes the pointcut is constructed for
each VPA-based aspect. This VPA may evolve through its states during the execution of
the base program to reflect the current state of the corresponding aspect. At each execution
step of the base program, we check if the pointcut matches the current join point by checking
whether its VPA can take the transition that represents the pointcut. How a VPA evolves
from one state to another state is defined by another transition relation δ of a VPA.

Advice. Our advice language consists in calls to services of remote components or a closeOpen-
Calls operator. We define its semantics by adding the corresponding service calls or return
actions to the trace before a join point, thus effectively defining an advice semantics corre-
sponding to “before advice” in AspectJ-like semantics. Advice execution is modeled using an
advice transition relation ։ that describes how the program state changes after the execution
of one advice instruction. The advice transition relation is denoted as ‘։’ and defines that
advice is invisible to weaving.3 Since an advice body may include several instructions, we use
∗
։ to denote the reflexive transitive closure of the ։ relation:

(start, φas, σ)
∗
։ (end, φas, σ

′)

where start, end represent the entry and exit of the advice body respectively, σ, σ′ represent
the current and the next program state respectively, and φas refers to the advice body to be
executed. where φ is a substitution mapping the variables in the matching pointcut to its
solutions.

The closeOpenCalls(mc) advice operator inserts a sufficient number of returns m to close
top open calls represented by a number of stack symbols c that are left on the top of the stack.
If there are no c symbols on the top of the stack, nothing is done. Note that the information
about the content of the stack of the VPA representing an aspect is available during aspect
weaving. Hence, by inspecting the current stack content, we can determine the exact number
of returns needed to be inserted by the closeOpenCalls(mc) advice operator.

Aspect weaving. Aspect weaving of our aspect language requires the following issues to
be defined:

3The original semantic framework for regular aspects includes an alternative transition relation for “visible
advice” that is itself subject to aspect weaving. VPA-based aspects do not contribute new issues to this
discussion. We have thus restricted the presentation to invisible advice.

88 CHAPTER 4. VPA-BASED ASPECT LANGUAGE

1. Matching of elementary terms T including the handling of matching calls and returns.

2. Which aspects are applicable at a join point, taking into account depth/permuta-
tion/regular pointcuts and several aspects that may apply at once. A second prob-
lem is how to compute the follow state an applicable aspect, i.e., advancing state of a
VPA-based aspect.

3. How applicable aspects are woven and the program state is modified by the aspect
application.

Matching of terms. At each step of the base program, matching is performed in order to
check whether the current join point matches the pointcut(s) of one or more aspects.

As previously mentioned, the set of VPA-based aspects whose pointcuts participate in
matching are represented by a set of corresponding VPAs. During the weaving process, these
VPAs evolve to reflect the current state of their aspects. We need to know the current state
and the current stack contents of a VPA in order to perform matching. Thus, at every step
of the weaving process, we maintain a set V of configurations for the set of VPAs as follows:

V = {(ss, ψ)}

where ss is the current state set and ψ is the current stack of a VPA. There is one
configuration for each VPA in the set of VPAs at any point during the weaving process.

Given the current join point j of the base execution and the set V of the current config-
urations of the pointcut VPAs, matching will be done for all pointcut VPAs of all aspects.
The following steps are performed for matching (we henceforth use the predicate match j v

to represent a state of a VPA matching):

1. The transitions of the pointcut VPAs which match against the current join point are
determined.

2. For each local or call transition, we check wether the join point j and the input label
of the VPA transition from the corresponding state of the VPA s ∈ ss of the current
configuration matches.

3. For each return transition, we have to test whether the corresponding call, that is,
labeled with the right stack symbol is on top the current stack of the pointcut VPA. The
information about the top of the current stack is available thanks to the ψ component
of the current configuration.

4. If the current pointcut transition involves a variable, a variable assignment is returned
which binds the variables used to pass information from pointcuts to advice. This
assignment is empty if the match has not been successful. From a current configuration
v, if there is an outgoing transition that matches the current join point j, we write
match j v = φ where φ is a variable assignment.

Selection of applicable aspects and follow states. Selection is defined by the function sel
which, given a join point j and a set of current configurations V of all pointcut VPAs, yields
all applicable pointcuts (which must be single terms) and associated advice (which may be
empty):

sel j V = {(pv , av) | v ∈ V, match j v}

4.3. VPA-BASED ASPECT LANGUAGE 89

where pv and av respectively denote the pointcut and advice corresponding to pointcut pv.
As to the follow states of an aspect after weaving at a join point, note that the aspect may

remain in the same configuration as before (in case none of the pointcuts associated to the
current states matched the join point) or evolve to a new configuration. We define this using
the function next which takes the current join point and the set of current configurations for
all VPAs and yields the new set of configurations to be considered at the next join point:

next j V = V1 ∪ V2

where

V1 = {v = (ss, ψ) ∈ V } if not match j v

V2 = {v
′ = (ss′, ψ′)} if match j v

where

ss′ = {s′ | ∃s ∈ ss : (s, , , s′) ∈ δ} where (s, , , s′) matches any transition in

δ irrespective of its type (call, return, local)

ψ′ =

ψ if (s, a, s′) is a local transition, a matches j

ψ + γ if (s, a, s′, γ) is a call transition, a matches j

ψ − γ if (s, a, γ, s′) is a return transition, a matches j

According to the above definitions, the new set of configurations considered for the next
join point is calculated by unifying two sets V1, V2. The set V1 includes all the current
configurations of aspects that do not evolve because their pointcuts do not match the current
join point. The set V2 includes the new configurations of aspects that have their pointcuts
match the current join point. The state set ss′ of a new configuration contains the states to
which the matching transition moves. The content of the new stack ψ′ of a new configuration
is decided depending on the type of the matching transition. If the matching transition is
a local one, the stack does not change. If the matching transition is a call one, we push
(denoted by operator ’+’) γ (the stack symbol indexed by the matching transition) on the
stack. Lastly, if the matching transition is a return one, we pop (denoted by operator ’−’)
γ from the top of the stack (we do not model errors, such as non-matching calls and returns
here).

Aspect weaving. We then define aspect weaving based on the base and advice transition rela-
tions (→,։), a set of current configurations V and the advice mapping advice. In Figure 4.7,
weaving is decomposed in two steps. First, in the weaving step proper (the topmost rule),
one step of the base program applies a set of aspects and to a join point: this step selects
all applicable pointcuts from the aspects, applies the corresponding advice (if possible) to
the current join point, thus producing a new component state σ′. Then, the next join point
that will be considered in the next round of weaving is produced. This amounts to before
advice (we will discuss how after advice is handled together with an extension of advice by
skipping of joinpoints in the next chapter in section 6.3.2. Finally, the aspects evolve using
the function next and the set of new configurations, join point and base program state are
returned. Second, the two bottommost aspect application rules define how the current set of
applicable aspect are woven: the middle rule terminates aspect application when all aspect
configurations have been woven; the bottom rule weaves one applicable aspect configuration v
by determining possible variable assignments when the pointcut pv is matched on the current

90 CHAPTER 4. VPA-BASED ASPECT LANGUAGE

Weaving rule

[j, σ]sel j V
∗

|=⇒ σ′ (j, σ′)→ (j′, σ′′)

(V, j, σ) =⇒ (next j V , j′, σ′′)

Aspect application rules

[j, σ]∅ |=⇒ σ

Z ′ = Z\{(ps, as)} match j v = φ (start, φav, σ)
∗
։ (end, φav, σ

′)

[j, σ]Z |=⇒ [j, σ′]Z′

Figure 4.7: Weaving aspects on VPA-based protocols

join point. Finally, the rule states that the corresponding advice av is executed using the
advice transition relation from start to end at join point j, thus producing a new protocol
state σ′.

Note that, since there can be several aspects applying over the same base program, it is
possible that several advice can be triggered to execute at the same time. This may cause the
issue about aspect interaction where the order of advice execution may affect the results of
advice application to the base program differently. Such interaction problems and how static
analysis of VPA-based aspects can be used to handle it will be discussed in Section 4.5.

4.4 Visibly Pushdown Automata Library (VPAlib)

Despite the advantages of the class of visibly pushdown automata, to our knowledge, there has
been no practical support available for them yet. In order to benefit from the advantages of
the VPA, we have realized a library, called the VPAlib[97], that provides the implementation
of essential data structures and operations for VPAs. This library is essential to enable the
construction and verification of VPA-based aspects. The library’s implementation consists
of approximately 2500 lines of code, has been developed in Java SE 6, and released under
LGPL license. In the following, we give an overview of the architecture of the library and
then discuss the actual implementation in more detail.

4.4.1 Overview

We have striven for the development of a VPA library that could provide practical support for
the implementation of the VPA-based aspect language as well as the analysis of VPA-based
aspects. In principal, the library should support at least a data structure for the construction
of VPAs and a set of critical methods for analysis such as intersection (e.g., to check whether
two VPA-based aspects might share similar pointcuts and thus apply advice at the same
time) and inclusion check (e.g., to check whether one VPA protocol covers and thus might
substitute another VPA protocol).

Figure 4.8 shows the basic class hierarchy and some important methods and attributes
of the library. The VPAlib library provides a set of classes to support the definition of three

4.4. VISIBLY PUSHDOWN AUTOMATA LIBRARY (VPALIB) 91

Figure 4.8: VPAlib class diagram

types of automata: Finite State Automata (FSA), Pushdown Automata (PDA), and most
importantly, Visibly Pushdown Automata(VPA). Class Automata is the topmost one in the
class hierarchy. This class features the basic components including states, transitions, and
input alphabet of the simplest type of automata. Class FSA extends Automata to provide
methods on finite state automata. Similarly, class PDA extends Automata to support the
definition of pushdown automata. This class features the stack (and stack symbols) as an
additional field.

Class VPA is the main class in the library since it supports the definition of visibly pushdown
automata as well as the operations specific to VPAs. As previously presented in Section 4.2,
a visibly pushdown automaton is different from a pushdown automaton in that its input
alphabet is explicitly partitioned into three disjoint sets to represent three types of transitions:
call, return, and local transitions. Therefore, class VPA features additional fields including
calls, returns, locals to present such partitions of the input alphabet. In summary, every
instance of class VPA is characterized by the set of its states, the set of initial states, the set
of final states, the set of transitions, the input alphabet, three exclusive sets of three input
partitions, and the set of all stack symbols.

In addition to data structures for the definition of VPAs, we aim at providing the imple-
mentation of several essential operations on VPA, including:� Closure operations: union, concatenation, intersection for two VPAs, the complemen-

tation of a deterministic VPA, and the Kleene-* of a VPA. Note that VPA are closed
under all these operations, notably intersection (an operation under which PDAs are
not closed).� Determinization: calculates the deterministic VPA from a non-deterministic VPA. Again,
this operation is defined for VPAs but not for PDAs.� Inclusion check: determines whether, given two VPAs M1 and M2, the language of M1

92 CHAPTER 4. VPA-BASED ASPECT LANGUAGE

is included in the language of M2. This operation can be implemented thanks to the
availability of the determinization operation.� Universality check: decides whether a given VPA M accepts all strings in Σ∗ where
Σ represents the input alphabet of M . Similarly to the inclusion check operation,
this operation can be implemented thanks to the availability of the determinization
operation.

Closure operations are useful for the construction of VPAs from other primitive VPAs; the
latter three operations are required for the verification of VPA protocols as well as VPA-based
aspects.

4.4.2 Implementation

This section provides a brief presentation of the actual implementation of the VPA library
and discusses certain issues concerning the implementation. We will first present the list of
packages that have been actually implemented together with their constituents and roles in
the library. We will then discuss the key ideas of the implementation of a few major VPA
operations including union, intersection, concatenation, determinization, and inclusion check.

4.4.2.1 Library packages

The library contains six packages, including:� automata: contains three classes Automata, State, and Transition. Class Automata
is an abstract class to be extended by all the classes defining specific types of automata.
Class State and Transition define respectively the basic state component and transi-
tion component of an automaton.� fsa: contains class FSA, an inheritance of class Automata, that defines a finite state
automaton.� pda: contains three classes PDA, PDATransition, and StackSymbol. Class PDA is a
subtype of Automata that defines a pushdown automaton. Class PDA features one addi-
tional important field, the set of stack symbols, implemented using class StackSymbol.
Furthermore, class PDATransition is defined as an extension of class Transition to
support PDA transitions that are capable of modifying a stack by pushing symbols onto
a stack or popping symbols from a stack.� vpa: this package contains the following set of eight classes for the construction of VPAs
as well as the execution of VPA operations:

– Class VPA, a subtype of PDA, defines visibly pushdown automata. It implements
these automata by closely following their formal definition. That is, a VPA object
has the following fields: a set of states, a set of initial states, a set of final states,
a set of stack symbols, a set of transitions, and a partition of three disjoint sets of
input symbols.

– Class VPATransition that inherits from PDATransition represents VPA transi-
tions, i.e., call, return, and local transitions.

4.4. VISIBLY PUSHDOWN AUTOMATA LIBRARY (VPALIB) 93

– Class VPAState, an extension of class State, adds additional information to a state
in order to support the implementation of the determinization operation for VPA
and will be discussed in more details later on.

– Class ClosureOperation defines several closure operations for VPAs including
union, intersection, Kleene-*, complementation, and concatenation.

– Class Misc defines some auxiliary methods for the implementation of closure op-
erations.

– Class Determinization defines the operation to construct a deterministic VPA
from a non-deterministic one by different strategies.

– Class Inclusion defines the operation to verify whether one VP language is in-
cluded in another one.� examples: contains a set of examples for the experimentation of different operations in

the library.� utils: contains a set of utility classes serving the implementation of VPA operations.

In the following subsections, we discuss the implementation of some of the principal VPA
operations in more detail.

4.4.2.2 Intersection operation

The VPA intersection operation is among the set of operations implemented in the class
ClosureOperation. Recall the fact that visibly pushdown languages are closed under in-
tersection, which is not the case for context-free languages. Given two visibly pushdown
languages L1, L2 that are accepted by two VPAs M1, M2 respectively, the intersection op-
eration calculates the VPA that would accept the intersection of those two languages, i.e.,
L1 ∩ L2. The intersection operation can be used as a utility function in the realization of
other VPA operations. For example, to decide whether one VPA includes another VPA, we
have to calculate the intersection of the complement of the former one and the later then
prove emptiness of that intersection. Furthermore, the intersection operation can have its
own application in interaction analysis for two VPA-based protocols. This subject will be
addressed later on in Section 4.5.

As previously presented in Section 4.2, given two VPAs M1 = (Q1, Qin1
,Γ1, δ1, QF1

),
M2 = (Q2, Qin2

,Γ2, δ2, QF2
) with the same input partition 〈Σc,Σr,Σl〉 we can construct a

VPA M ′ = (Q1 ×Q2, Qin1
×Qin2

,Γ1 × Γ2, δ
′, QF1

×QF2
) that represents the intersection of

M1 and M2 where the transition relation δ′ is defined as follows:

(Local) For every a ∈ Σl, if (q1, a, q
′′
1) ∈ δ1, (q2, a, q

′′
2) ∈ δ2 then ((q1, q2), a, (q

′′
1 , q

′′
2)) ∈ δ

′.

(Call) For every a ∈ Σc, if (q1, a, q
′′
1 , γ1) ∈ δ1, (q2, a, q

′′
2 , γ2) ∈ δ2 then

((q1, q2), a, (γ1, γ2), (q
′′
1 , q

′′
2)) ∈ δ

′.

(Return) For every a ∈ Σr, if (q1, a, γ1, q
′′
1) ∈ δ1, (q2, a, γ2, q

′′
2) ∈ δ2 then

((q1, q2), a, (γ1, γ2), (q
′′
1 , q

′′
2)) ∈ δ

′.

The implementation of this intersection operation is pretty straightforward. Figure 4.9
shows part of our implementation of the intersection operation. In the beginning, we start

94 CHAPTER 4. VPA-BASED ASPECT LANGUAGE

by calculating the product of the two initial state sets of two VPAs m1,m2(lines 5-7). We
then explore the two VPAs m1,m2 in parallel from their initial states by invoking method
expand(lines 10-12). Method expand (defined on lines 18-45) implements how each composite
state of the resulting VPA of the intersection is further explored and how a new transition
(if possible) from that state is added. From the current state, we iterate (using the for-loop
in line 21) through the input alphabets to find inputs which enable transitions starting from
this state on both VPAs m1,m2 (lines 23-24). If there is an input satisfying this condition,
we add a new state which is composed by two destination states of two transitions of m1,m2

on that input to the resulting VPA (lines 27-32). If the two destination states are among the
final states of both m1,m2 then the new state is a final state (lines 33-36). A new transition,
created according to the above definitions, from the current state to the new state is added
(lines 38-40). If the new state is not already visited, a recursive call to expand is made to
further explore this new state (lines 42-43). The exploration terminates when there are no
new states to visit.

Figure 4.10 shows an example of two VPAs M1, M2. Running the intersection method
on M1, M2 results to the VPA illustrated by Figure 4.11. At the beginning, M1 starts in
state 0 of M1 and M2 starts in state 0 of M2. The initial state of the intersection VPA
is the combined state (0, 0). Both VPAs can evolve on input query. M1 takes the query
transition and goes to state 1 while M2 takes the query transition but stays in state 0. As a
consequence, in the intersection VPA, there is a query transition that goes from state (0, 0)
to state (1, 0). VPA M1 can evolve on input calculate but M2 does not accept this input so
there is no corresponding transition in the intersection VPA. Finally, since both VPAs can
evolve on input reply, the intersection VPA contains a reply transition from state (1, 0) to
state (0, 0).

4.4.2.3 Concatenation operation

The concatenation operation is useful for the construction of VPAs from smaller VPAs. For
instance, in the process of constructing a VPA from the pointcut of a VPA-based aspect, we
usually need to construct the VPAs in the bottom-up manner where sub-VPAs are constructed
first and then composed by operations such as concatenation and union to build the final VPA
that describes the complete pointcut.

Figure 4.12 shows an excerpt of the implementation of the concatenation operation. The
concatenation method calculates the VPA m as the concatenation of two VPAs m1,m2.
The state set of m is the union of the state sets of m1,m2 (lines 7-8). The final state set
of m is that of m2. The initial state of m is that of m1. The transition set of m includes
two components: the union of the transition sets of m1,m2 (lines 16-18) and the additional
transitions created to simulate the non-deterministic transition from m1 to m2 (lines 20-40).
These additional transitions are created as follows. We iterate the transition set of m1 (using
the for-loop on line 21) and select transitions that go to the final states of m1. For each
selected transition, we create a new transition that originates from the same source state but
goes to one of the initial state of m2 instead. We add this new transition to the transition set
of m.

4.4. VISIBLY PUSHDOWN AUTOMATA LIBRARY (VPALIB) 95

public VPA intersection(VPA m1, VPA m2) {

2 ...

VPA m = new VPA();

4 ...

// Initial state

6 HashSet<Pair<State, State>> pinitialstates = so.product(m1.getInitialStates(),

m2.getInitialStates());

8 if(pinitialstates!=null){

m.addAllInitialStates(pinitialstates);

10 for (Pair<State, State> pair : pinitialstates) {

...

12 this.expand(pair, m, m1, m2);

}

14 }

return m;

16 }

18 private void expand(Pair<State, State> fromState,

VPA newAutomaton, VPA m1, VPA m2) {

20 ...

for (String input : newAutomaton.getAlphabets()) {

22 ...

toState1 = m1.getStatesFromStateNInput(fromState.getFirst(), input);

24 toState2 = m2.getStatesFromStateNInput(fromState.getSecond(), input);

if (toState1.size() != 0 && toState2.size() != 0) {

26 HashSet<Pair<State, State>> toStates = so.product(toState1,toState2);

for (Pair<State, State> to : toStates) {

28 ...

if (!newAutomaton.getStates().contains(to)) {

30 existing = false;

newAutomaton.addState(to);

32 }

// Add to final state set

34 if (m1.getFinalStates().contains(to.getFirst())

&& m2.getFinalStates().contains(to.getSecond()))

36 newAutomaton.addFinalState(to);

...

38 // Add new transition

VPATransition newTransition = new VPATransition(fromState, input, to);

40 newAutomaton.addTransition(newTransition);

42 if (!existing)

expand(to, newAutomaton, m1, m2);

44 ...

}

Figure 4.9: Excerpt of implementation of the intersection operation on VPAs

96 CHAPTER 4. VPA-BASED ASPECT LANGUAGE

0 1

0

Figure 4.10: Two input VPAs M1, M2 for the intersection method

 Figure 4.11: The VPA constructed as the intersection of M1 and M2

4.4.2.4 Kleene-star operation

The Kleene-star operation has been implemented as part of the class ClosureOperation.
According to the formal definition of the Kleene-star operation, the VPA M* is constructed
from the VPA M by a simulating M step by step and, as soon as M changes its state to a
final state, M* non-deterministically updates its state to an initial state. From that point on,
the stack is treated as if it were empty and states of M are tagged to distinguish old and new
states.

Our implementation of the star operation is very close to its formal definition. Figure 4.13
shows part of our implementation of the Kleene star operation for VPA. First the argument
VPA (line 3) is deeply copied to include the original VPA v in the result automaton. Then, the
tagged elements are added to the original components as shown for the state set Q in lines 5–9.
Finally, the new transition function is calculated (lines 17–55), basically by iterating over all
transitions of the original transition function (for-loop in line 21) and adding corresponding
new transitions as shown in the excerpt for the case of transitions of type “local” (lines 29–47).

4.4.2.5 Determinization

Unlike pushdown automata, VPAs can be determinized and thus certain problems that are
undecidable for PDAs become decidable for VPAs. We have implemented the determinization
operation in its own class Determinization in the vpa package to construct a deterministic
VPA from a non-deterministic one. A correct implementation of this operation is a requisite
for the solution of decision problems on VPAs, which are valuable for analyzing VPA protocols,
such as universality and inclusion problems.

We have closely followed the definition of the determinization operation presented in
Section 4.2 in our implementation. There are, however, different choices can be made about
how states and transitions of the deterministic VPA are handled, notably how they are created.
The “naive” approach for the implementation consists in creating the complete state set and

4.4. VISIBLY PUSHDOWN AUTOMATA LIBRARY (VPALIB) 97

public VPA concatenation(VPA m1, VPA m2){

2 ...

VPA m = new VPA();

4 // Calculating input partitions, stack alphabets

...

6 // Union of argument state sets

m.addAllStates(m1.getStates());

8 m.addAllStates(m2.getStates());

10 // Final state set

m.addAllFinalStates(m2.getFinalStates());

12

// Initial states

14 m.addAllInitialStates(m1.getInitialStates());

16 // Union of two transition sets

m.addAllTransitions(m1.getTransitions());

18 m.addAllTransitions(m2.getTransitions());

20 // Additional transitions to non-deterministically move from M1 to M2

for(Transition at: m1.getTransitions()){

22 VPATransition t = (VPATransition)at;

24 State to = t.getTo();

State from = t.getFrom();

26

if(m1.getFinalStates().contains(to)){

28 VPATransition nt;

for(State s: m2.getInitialStates()){

30 if(t.getAction()==VPATransition.Action.LOCAL)

nt = new VPATransition(from, t.getInput(), s);

32 else if (t.getAction() == VPATransition.Action.PUSH)

nt = new VPATransition(from, t.getInput(), s, t.getStackSymbol());

34 else

nt = new VPATransition(from, t.getInput(), t.getStackSymbol(), s);

36

m.addTransition(nt);

38 }

}

40 }

42 return m;

}

Figure 4.12: Excerpt of implementation of the concatenation operation on VPAs

98 CHAPTER 4. VPA-BASED ASPECT LANGUAGE

public VPA star(VPA v) {

2 // Deep copy argument to result (Q_in_res = Q_in)

VPA res = new VPA(v);

4

// Q_res = Q \cup Q^tag

6 HashSet<State> taggedStates = new HashSet<State>();

for (State s: v.getStates())

8 taggedStates.add(Misc.tagState(s));

res.addAllStates(taggedStates);

10

... // Q_F_res = Q_F \cup Q_F^tag

12

... // Gamma_res = Gamma \cup Gamma^tag

14

// delta_res

16 HashSet<Transition>

delta = new HashSet<Transition>(v.getTransitions());

18 VPATransition taux;

for (Transition at: v.getTransitions()) {

20 VPATransition t = (VPATransition) at;

22 State q = t.getFrom();

String a = t.getInput();

24 State p = t.getTo();

26 switch (t.trSort) {

case local: {

28 taux = new VPATransition(Misc.tagState(q),

a, Misc.tagState(p));

30 res.addTransition(taux);

32 if (v.getFinalStates().contains(p)) {

for (State r: v.getInitialStates()) {

34 taux = new VPATransition(q, a,

Misc.tagState(r));

36 res.addTransition(taux);

taux = new VPATransition(Misc.tagState(q),

38 a, Misc.tagState(r));

res.addTransition(taux); } }

40 break;

}

42 case push: { ... }

case pop: { ... }

44 } // switch

}

46

return res; }

Figure 4.13: Excerpt of implementation of Kleene-star on VPA

4.4. VISIBLY PUSHDOWN AUTOMATA LIBRARY (VPALIB) 99

then the complete transition set according to the defining rules. The problem of such an
approach is the large size in terms of the number of states and transitions of the resulting
VPA. This problem comes directly from the definition of the determinization operation: if
the original VPA has n states, the resulting VPA will have O(2n

2

) states and O(2n
2

.|Σc|)
stack symbols, two parameters that also incur a high number of transitions. Note that a VPA
resulting from the determinization operation is typically used as an input for an analysis
operation, for example, inclusion check. Therefore, the size of the determinized VPA would
greatly affect the feasibility of conducting analysis like that. As a consequence, it is critical
to reduce the size of the resulting VPA as much as possible.

We have observed that even though the size of the state set and transition set of a deter-
minized VPA may be formally large, many states generated according to the formal definition
are not reachable from the initial state and thus can be safely excluded from the resulting
VPA. As a consequence, the total number of transitions and stack symbols may be reduced
significantly. Hence, our goal has been to construct a deterministic VPA while avoiding cre-
ating irrelevant states and transitions that add up to the size of the VPA but would not
participate in any run of the VPA. To achieve that goal, we build the deterministic VPA
“on-the-fly” while exploring the original non-deterministic VPA from its initial states instead
of creating the (theoretically) complete deterministic VPA.

Figure 4.14 shows the principle part of our implementation of the determinization oper-
ation. The determinize method is responsible for the whole construction process to build
a deterministic VPA from a non-deterministic VPA. First, the ret object representing the
resulting VPA is created (line 2) and the initial state and input partitions are added to
it. Using method expand we then add more states and transitions to ret starting from
its newly created initial state q0 (line 8). At every single state of ret, new states, transi-
tions, and stack symbols are created as we explore the transitions of the original VPA. This
task is performed by three methods expandLocalTransitions, expandCallTransitions and
expandReturnTransitions (line 14-16). These three methods are also implemented using the
transition relations for the deterministic VPA presented in Section 4.2.

Let us consider the body of the expandLocalTransitions (line 24-44) as a representative
of these methods. The information we have already known is the start state from which
represents the start state (S,R) in the definition of the local transition relation. We have
to generate the new end state (S′, R′) where S′ and R′ are defined exactly as stated in the
definition (line 27-35) and then create the new corresponding transition from the start state
to the end state (line 40-41). This process of generating new states and new transitions are
done for all local input symbols using the for loop on line 26. After this process finishes, we
obtain the set of the new states (represented by variable newStates) as a return value. Note
that this set includes only new states that have not been added to the resulting VPA and
thus have not been explored yet. This requirement ensures termination of the determinization
algorithm since the algorithm relies on recursive calls to the expand method. Call transitions
and return transitions are handled similarly.

After all the possible new transitions have been added to the VPA, we continue to perform
the above expansion process for all the new states that have not been explored (line 18-21).
This determinization algorithm terminates when all the states of the resulting VPA have been
explored and there are no new state to be added.

The above implementation approach helps reducing the size of the deterministic VPA
greatly comparing with the one constructed using the “naive” approach. Figure 4.15 shows a
sample three-state non-deterministic VPA. This VPA has two call transitions from state 0 to

100 CHAPTER 4. VPA-BASED ASPECT LANGUAGE

public static VPA determinize(VPA vpa){

2 VPA ret = new VPA();

VPAState q0 = new VPAState("q0");

4 q0.addAllReachables(vpa.getInitialStates());

q0.addAllEdges(vpa.computeIdQ());

6 ret.addInitialState(q0);

...

8 expand(q0,vpa,ret);

return ret;

10 }

12 private static void expand(VPAState from, VPA vpa, VPA ret){

HashSet<VPAState> newStates = new HashSet<VPAState>();

14 newStates.addAll(expandLocalTransitions(from, vpa, ret));

newStates.addAll(expandCallTransitions(from, vpa, ret));

16 newStates.addAll(expandReturnTransitions(from, vpa, ret));

18 for(VPAState state: newStates){

...

20 expand(state, vpa, ret);

}

22 }

24 private static HashSet<VPAState> expandLocalTransitions(VPAState from, VPA vpa, VPA ret){

HashSet<VPAState> newStates = new HashSet<VPAState>();

26 for(String a: vpa.getLocals()){

for(Pair<State,State> pair: from.getEdges()){

28 HashSet<State> q_primes = vpa.getStatesFromStateNInput(pair.getSecond(),a);

for(State q_prime: q_primes){

30 S_prime.add(new Pair<State,State>(pair.getFirst(),q_prime));

}

32 }

for(State q: from.getReachables()){

34 R_prime.addAll(vpa.getStatesFromStateNInput(q, a));

}

36 VPAState to = new VPAState("vpat");

to.addAllEdges(S_prime);

38 to.addAllReachables(R_prime);

if(!ret.getStates().contains(to)) { newStates.add(to); }

40 VPATransition transition = new VPATransition(from, a, to);

ret.addTransition(transition);

42 }

return newStates;

44 }

Figure 4.14: Excerpt of implementation of determinization on VPA

4.4. VISIBLY PUSHDOWN AUTOMATA LIBRARY (VPALIB) 101

state 1 and state 2 that push α to the stack, one return transition from state 1 to state 2 that
pops α out of the stack, and one local transition from state 0 to state 2. State 2 is the final
state and marked with a shaded circle. Figure 4.16 shows the deterministic VPA constructed
from the above VPA. Theoretically, the deterministic VPA could consist of 512 (23

2

) states
but our implementation can produce the final VPA with only three states.

0 1 2

Figure 4.15: Three-state nondeterministic VPA

 Figure 4.16: Deterministic VPA constructed from the three-state VPA

However, the current implementation of the determinization operation still suffers from
the high complexity of the operation. Hence, although determinization is theoretically pos-
sible for VPAs, its complexity is still too high for the implementation to be of practical
use in general. We have only verified that this operation is reasonably applicable in several
practically-relevant application domains, as shown in later chapters. Defining a more efficient
determinization operation for the class of visibly pushdown automata is, however, beyond the
context of this thesis.

4.4.2.6 Inclusion check

Given two VPAs M1 and M2, the inclusion check operation confirms whether the language
represented byM1 is included by the language represented byM2, i.e., L(M1) ⊆ L(M2). Note
that this inclusion problem is undecidable for PDAs while it is decidable for VPAs. Inclusion
check is especially useful for proving substitutability of VPA-based protocols as one of the
pre-condition for a protocol p1 to be substitutable by another protocol p2 is that p2 has to
match at least the same set of traces that can be matched by p1.

To check whether L(M1) ⊆ L(M2), we first calculate the complement of M2. This can be
done because a VPA can be determinized and easily complemented by complementing the set
of final states. Next, we take the intersection ofM1 and the complement ofM2, i.e.,M1∩M2,
then check for emptiness of that intersection. Hence, if the intersection is empty then we can
conclude that L(M1) ⊆ L(M2) and vice versa.

The inclusion check operation is implemented as a separate class in package vpa. Figure
4.17 shows the source code of the main method that implements the inclusion check. The
checkmethod checks for inclusion of two argument VPAsM1,M2. IfM2 is nondeterministic,
method determinize, which has already been presented above, is invoked to return the

102 CHAPTER 4. VPA-BASED ASPECT LANGUAGE

equivalent deterministic VPA of M2. After that the complementation method returns a
new VPA which is the complement of the deterministic VPA of M2 (lines 6-10). Next, we
calculate the intersection of M1 and the complement of M2 using the intersection method
(line 11) which has also been presented above. Finally, we check for language emptiness of
the resulted VPA from the intersection calculation. The isEmpty method verifies whether
there is any path from the initial state to a final state of a VPA. If there is no such path then
this method returns true and vice versa.

public static boolean check(VPA m1, VPA m2){

2 ...

ClosureOperation co = new ClosureOperation();

4 VPA cm2 = new VPA();

6 if(!m2.isDeterministic()){

cm2 = co.complementation(Determinization.determinize(m2));

8 }

else

10 cm2 = co.complementation(m2);

12 VPA im = co.intersection(m1, cm2);

14 if(im.isEmpty())

return true;

16

return false;

18 }

}

Figure 4.17: Excerpt of implementation of inclusion check on VPA

4.5 Interaction analysis for VPA-based aspects

In this section we introduce an analysis technique that enables supports for the detection of
potential interactions among VPA-based aspects. Generally, it is possible that more than one
aspect is applied to a base program in parallel. In this thesis we consider the following interac-
tion model: when pointcuts of the aspects match the same joinpoint, advice triggered by those
aspects may execute at the same time and produce different results due to nondeterministic
weaving.

Let us consider a simple example of interaction among the two following aspects:

A1 = startDownload ; closeConnection� reconnect ; resumeDownload

A2 = inactive ; closeConnection� removeConnection

where aspect A1 will try to resume a download after the connection to the host is down
while aspect A2 will observe outgoing activities from a local node and simply remove a local
connection after the connection has been remotely closed, e.g., due to long period of inaction.
The two aspects above may match the same joinpoint closeConnection, advice can thus be

4.5. INTERACTION ANALYSIS FOR VPA-BASED ASPECTS 103

triggered at the same time. Imagine that the advice of aspect A2 is executed before A1: an
on-going download process may be lost.

The interaction analysis for VPA-based aspects we propose is based on an adaptation of
the analysis of regular aspects introduced by Douence et al. [47, 49]. In principle, simulta-
neous matches of the same joinpoint or sequences of joinpoint can be statically analyzed by
calculating the product automaton of two VPAs representing the pointcuts of two aspects.
If the resulting automaton contains simultaneous occurrences of the same transitions in both
VPAs, we conclude that there are potential interactions among two corresponding VPA-based
aspects.

Note that such analysis is possible for regular and VPA-based pointcuts because the
product calculation of corresponding automata decidable for both language classes. This
kind of analysis is, however, infeasible for pointcuts defined using more expressive languages,
such as context-free or Turing-complete ones.

The VPA library [97] described in the previous section provides a Java implementation
of the product operation for two VPAs and thus can be employed for interaction analysis
purpose.

In the remainder of this section we discuss Two examples of interaction analysis using the
VPA library that we have performed. These examples respectively are taken from the appli-
cation domains of P2P search algorithms and parallel compilation tasks. For each example,
we present the corresponding pointcut VPAs and the product VPA calculated from the two
aspects are shown.

Example: P2P search algorithm. The first example uses two VPA-based aspects in the
context of peer-to-peer search algorithm:� Trust (see Figure 4.18(a)): This aspect is employed to query the trust information of

peer nodes in the network. Starting at one node, it recursively visits all neighbors
(query,reply) and updates the data structure (updateData) at the originating node.� File (Figure 4.18(b)): This aspect works on file queries to update the preferred paths for
future queries based on previous ones (a frequent optimization in P2P networks). This
aspect first initializes some data structure (init) then attempts to look up the file locally
(lookup) and if the file is not present locally, initiates remote queries (fixOrder,query,reply).
Furthermore, remote queries may be ordered depending on the shared data about pre-
vious queries (updateData,fixOrder).

Since VPAs support the definition of recursive protocol, the recursive query in a peer-
to-peer system can be specified naturally as call (query) and return (reply) transitions of a
VPA. Furthermore, these transitions are indexed with stack symbol q so that the number of
replies may not exceed the number of queries.

Note that both aspects may update the shared data structure using updateData and thus
may interact if both are applied at the same time (which is the case in P2P networks where
both types of queries are typically executed in parallel as part of maintenance operations that
run in the background). Now imagine that both aspects trigger an update at the same time
and that the trust query returns a result that the searched subgraph should be marked as a
“cheater”: in this case the update to be initiated by the file query should probably be ignored
and all queries that are still on-going and that are performed within the realm of the cheater
should probably be canceled.

104 CHAPTER 4. VPA-BASED ASPECT LANGUAGE

0 1
updateData ⊲ markCheater

queryq replyq

(a) Trust query aspect

2
3

0 1 lookup

found

init

queryEnded fixOrder

updateData ⊲ fixOrder

queryq replyq

(b) File query aspect

Figure 4.18: Query aspects applying over peer-to-peer search algorithm

The interaction analysis presented above is done by a calculation of the product automaton
of two query aspects. Fig. 4.19 illustrates the resulting automaton. This automaton explicitly
represents the interaction between both aspects on the updateData event. Formally, the
product also indicates potential interactions on query and reply: these are, however, not
interesting in the context of the example we considered, because no actions are triggered
on these events. Note that events of the file query aspect which are unknown to the trust
query aspect, such as init and lookup, are allowed to be interleaved in the resulting product
automaton and do not affect the analysis result.

lookup

found

init

queryEnded

fixOrderqueryq

replyq

updateData

0,0 0,1 0,2
0,3 1,3

Figure 4.19: Product automaton of Trust and File query aspects

Example 2: compilation. This example concerns the implementation of tools for a com-
piler that represents programs as abstract syntax trees. Two following aspects are employed
to implement two operations on the source code:� Replace type (Figure 4.20(a)): This aspect recursively traverses the abstract syntax tree

(using method visitn) to find places where an old type is used (checkType). When a
declaration using that specific type is found (detectOldType) and the source code is
marked to be refactored (refactor), the aspect will trigger its advice to replace the old
type by a new type and invoke necessary operations to ensure this modification will not
cause any type mismatch error.

4.5. INTERACTION ANALYSIS FOR VPA-BASED ASPECTS 105� Remove declaration (Figure 4.20(b)): Similarly, this aspect recursively (visitn) looks
for unused variables (checkDeclaration, lookupV ar). Furthermore, another recursive
traversal (visitv) on the tree is needed for each variable declaration in order to conclude
whether the declared variable is actually used or not. If a variable is found to be unused
(detectUnusedV ar) and the source code is marked to be refactored (refactor) then the
aspect will trigger its advice to remove the corresponding variable declaration.

20 1

visitn

re f actor ⊲ replaceType

detectOldTypecheckType

(a) Aspect replacing old types with new types

1

3

0

visitn

2

visitv

detectUnusedVar

checkDeclaration lookupVar

re f actor ⊲ removeDeclaration

(b) Aspect removing declarations of unused variables

Figure 4.20: Aspects implementing operations on an abstract syntax tree

We wish to know whether there exists any case in which the source code is marked to
be refactored and the advice of two aspects both try to work on the same declaration at
the same time, i.e., one aspect replaces an old type with a new one while the other aspect
removes the variable declaration from the source code. In the case of interaction, it is possible
that an old type declaration is first replaced and the resulting declaration is then removed
altogether. However, the initial modification of the type declaration is complemented by a
check of consistency of type declarations at usage sites. Removal of the declaration by the
second aspect will almost certainly cause errors in the compilation process.

We detect potential interactions among the two aspects above by using the intersection
operation in the VPA library. Since we are only interested in simultaneous matches of join-
points by two aspects, sequences of transitions of one aspect which are irrelevant to another
aspect can be abstracted as one transition. The resulting product automaton illustrated in
figure 4.21 shows that there are potential interactions among two aspects since both VPAs
may evolve from one state to another state simultaneously on the refactor event.

0,0

visitn

2,3

2,2

visitv

detectUnusedVarre f actor

checkType;detectOldType/
checkDeclaration; lookupVar

Figure 4.21: Product automaton of Replacing type and Removing declaration aspects

Interactions such as those in the two above examples may cause undesirable consequences
to aspect-oriented systems. The detection of potential interactions by our interaction analysis

106 CHAPTER 4. VPA-BASED ASPECT LANGUAGE

technique allows developers to reconsider the implementation of the aspects involved in order
to avoid such interactions.

4.6 Conclusions

In this chapter we have introduced the VPA-based aspect language, a new AOP approach
for the definition of aspects that support the class of non-regular protocols defined by visibly
pushdown automata. We have shown that our VPA-based aspect language permits the declar-
ative definition of non-regular pointcuts that involve well-balanced and/or recursive structures
which cannot be described by usual regular aspects. We have introduced the syntax of the
core aspect language for VPA-based pointcuts and advice. Furthermore, we have shown how
this aspect language can be formally defined by describing an extension to a framework for
small-step operational semantics of regular aspects. This semantics can serve as a guide for
future implementation of the aspect language.

Beside the VPA-based aspect language, we have developed the VPAlib, a Java library
released under LGPL license that provides an implementation of basic operations and decision
procedures VPAs.

As the class of visibly pushdown languages preserves most closure and decision properties
of regular languages, our VPA-based aspect language can support certain types of property
analysis. Concretely, we have shown that our language supports the analysis of aspect interac-
tion properties that rely on a notion of interaction as the simultaneous application of aspects.
We have demonstrated our approach to detect interaction among VPA-based aspects through
two examples. We have also used the VPAlib library to perform experiments of interaction
analysis.

Chapter 5

Applications

In this chapter we present two applications of VPA-based aspects: first, apply VPA-based
aspects in order to supervise access in nested login sessions in distributed systems. We study
a typical setup of some remote access systems that are characteristic to, as well as (manual or
automatic) nested logins using SSH [130] and Remote Desktop [11], as well as rights delegation
in Enterprise JavaBeans. Often actions have to be performed that depend on the completion
of potentially nested sessions that can be described concisely using VPA-based aspects.

As a second, more substantial, application in the context of grid computing system we
consider an an extension of the application of VPA-based aspects to peer-to-peer protocols of
the preceding chapter. In this chapter we explore further to grid systems that are deployed
on peer-to-peer network. Examples of this type of system include the Jalapeno [122], Juxta-
CAT [108], and OurGrid [28] systems.

In the remainder of this chapter, we describe these two types of applications in more details
and motivate a set of specific cases where VPA-based aspects are useful for their definition. We
do not define the corresponding base programs and protocols in terms of the existing systems,
such as Jalapeno for grid computations, but abstract their functionalities and properties and
define aspects over these abstract systems. There are two main reasons for the use of abstract
systems instead of real ones. First, the concrete systems, such as SSH/Remote Desktop and
Jalapeno/Juxta-CAT/OurGrid employ, for the problems we are considered by syntactically
rather different but semantically quite similar mechanism; by using abstract systems as base
programs, we can focus on more important and relevant features for the application of VPA-
based aspects while skipping technical details of the implementation. As a consequence, the
definitions of aspects for these systems are more clear and straightforward. Second, we can
collect interesting features and properties from various similar applications and study them
as part of a single abstract system.

This chapter is structured as follows. In Section 5.1 we present two examples in order
to motivate the application of VPA-based aspects to the realization of typical remote access
systems. In Section 5.2 we motivate the application of VPA-based aspects to peer-to-peer
grid systems. We show examples of VPA-based aspects that are used to implement some
functionalities of an abstraction of this kind of system. Finally, we conclude the chapter in
Section 5.3.

107

108 CHAPTER 5. APPLICATIONS

5.1 Remote access systems

We denote as a remote access system a program and corresponding infrastructure that enable
users or computational entities to log into another computer over a network, to access data
and to execute commands or programs on that remote machine. Examples of this type of
application include infrastructures and applications, such as SSH [130] and Remote Desk-
top [11]. Note that a real-world application of this kind often involves security protocols to
ensure strong authentication and secure connections. Part of the secure handling of remote
accesses is login session management. In the following, we show how VPA-based aspects can
can be used to improve session management by making explicit certain of the corresponding
protocols.

Let us assume that there is a network of N machines, each machine being identified by an
address (i in the following). In order to access machine mi, a user executes a login command
and sends her username and password to mi’s address for verification. If the access privilege
of that user to mi is confirmed, she now can open a session and execute commands on mi

according to her privileges. After using the machine, the user is expected to close her session
on that machine by executing a logout command. However, an inactive session after a specific
period of time may be automatically closed by the administrator of the used machine for
reasons of security and resource protection. Note that sessions may be nested, e.g., a user
can connect to a machine m2 starting from m1 that has been reached in turn by a preceding
login from another machine m0. In the following we discuss two advanced features for such
systems, automatic session closing and that can be defined using VPA-based aspects.

Automatic session closing on behalf of users. As previously presented, a user is sup-
posed to use the logout command to close a session after finishing her work on the remote
machine. It is, however, quite frequent that users forget to close a remote session and just log
out from the principle (local) machine. As inactive sessions may be automatically closed by
the administrator, unsaved on-going work could be lost (depending on the policy regarding
this matter on the remote machine). In order to avoid this potential problem, we need a
functionality that automatically executes the logout command and extra instructions on how
unsaved work should be treated on the remote machine on the user’s behalf.

A simple way to realize such functionality is to add a function that will execute the logout
command on the remote machine. This function should only be triggered if the user logs out
from her local machine while the remote session is still open. If the remote session is only
“one-level” from the local machine, a simple regular aspect that observes the logout events
on the local machine then executes a logout command on the remote one is sufficient for the
implementation of this functionality:

reg logout = µa.loginlocal ; µb.(loginremote ; logoutremote ; b

� logoutlocal ⊲ logoutremote ; a

� logoutlocal ; a)

The above definition basically expresses that the aspect observes login and logout events
on the local machine and the remote machine. If the aspect detects a logout event on the
local machine without a logout event on the remote machine, it enforces the logout command

5.1. REMOTE ACCESS SYSTEMS 109

on the remote machine first before proceeding to the execution of the logout command on the
local machine.

The above aspect, however, does not work with multiple-level remote sessions. For in-
stance, in the case of two nested remote sessions, a typical sequence of login, logout events
is:

login0 ; login1 ; login2 ; logout2 ; logout1 ; logout0

where 0, 1, 2 indicate the login-level of the machine with respect to the local machine.
When the user just execute logout0 without logout2 and logout1 first, the logout clean-up
function should be able to run these missing commands on behalf of the user. The above
regular aspect cannot do this because it is only designed to work with regular sequences of
events. We cannot just add more explicit session events to the pointcut definition because
the depth of the remote sessions can be (theoretically) infinite.

VPA-based aspects can solve the above problem thanks to their ability to keep track of
well-balanced events and the closeOpenCall operator. Here is the definition of the VPA-based
aspect that implements the required functionality:

µa.loginlocal ; µb.(loginremote ; b

� logoutremote ; b

� logoutlocal ⊲ closeOpenCallloginremote ; a)

According to the above definition, the aspect observes the login and logout events on
the local and remote machines. Login events on remote machines of different levels are
tracked precisely thanks to the nature of VPA-based aspects. Therefore, when the aspect
detects a logout command on the local machine, it can generate the exact number of logouts
corresponding to the open sessions on the remote machines in order to close those sessions on
the user’s behalf.

Controlling remote access privileges. A common problem of remote access is that
certain machines on a network require higher level of securities than the other ones. For
instance, machine m1 can be remotely accessed from anywhere while machine m2 only allows
remote access from within two machines m3, m4 but not the others. In other words, if a user
wants to access m2 remotely, she has to go through m3 or m4. In the real world, this kind of
requirement is very common, e.g.,, if m2 is behind a firewall which only allows access from
m3 or m4.

Let us consider a more specific example relating to this problem. Assume that the user
is working on local machine m0. There is a machine m2 that she can only access if she has
successfully passed through machine m1. That means, whenever she connects to m2 from
within an open session on m1 she should be granted access and vice versa. Some check is
needed to ensure this requirement. Practical solutions for this kind of functionality exist. One
possibility is to check on m2 the address of the machine from which the connection to m2 has
been made and verify whether the address is on the allowed list. However, implementing this
functionality using VPA-based aspects enables certain extra advantages.

110 CHAPTER 5. APPLICATIONS

A VPA-based aspect ensuring the above requirement, i.e., access to m2 is only granted if
the connection is made from within m1, can be defined as follows:

µa.login0 ; µb.(login1 ; µc.(login2 ⊲ proceed ; logout2 ; c

� login3 ; µd.login2 ⊲ proceed ; logout2 ; d

� logout3 ; c

� logout1 ; b)

� login2 ⊲ skip

� logout0 ; a)

According to the above definition, the aspect observes login, logout events on machines m0

to m3. A user starts by connecting to the local machine m0. She then might want to connect
to machine m1, m2, or log off machine m0. However, since connection to m2 must be made
from within m1, any attempt to connect to m2 from m0 is rejected by the skip instruction1.
On the other hand, connections tom2 made from withinm1 or from any remote open sessions,
e.g., session on m3, created from within m1 are permitted by the proceed instruction (which
formally is equivalent to an empty operation since our semantics uses before advice.). The
proceed instruction acknowledges that the access is granted and thus further actions onm2 can
be taken. Note that this is not possible if we just simply check the address of the connecting
machine and m3’s address is not on m2’s accepted list. It is, on the other hand, possible with
VPA-based aspects. Furthermore, the implementation using VPA-based aspects is provided
at protocol level and thus brings possibility for analysis on protocol compatibility.

We have motivated the application of VPA-based aspects to the realization of two func-
tionalities of a remote access system. As we have shown in the above examples, the notion
of well-balanced execution events is critical in this application context, and the pointcuts
of VPA-based aspects bring concrete benefits for the functionalities that deal with nested
sessions of those events.

5.2 Computational grids on peer-to-peer overlay network

Peer-to-peer networking has been proposed as an improvement over the traditional client-
server Internet model for the distribution of information. Peer machines in the network can
share the burden of providing resources for peers that need them without having to rely on a
central server or certain specific connections. Popular file sharing systems such as Napster[10],
Kazaa[9], and Gnutella[6] are examples of the peer-to-peer networking model. However, note
that peer-to-peer systems and applications are not necessarily limited to file sharing systems.

Grid Computing, on the other hand, allows the combination of resources from many
computers in order to perform a common task that requires large computing power. The main
goal of this paradigm from a resource-usage point of view is to harness under-utilized machines
and create a virtual supercomputer at a fraction of the cost of traditional supercomputers.
This paradigm is nowadays used in a large number of scientific and commercial projects, e.g.,
SETI@home[22], BEinGRID[2], European Datagrid[57].

As computational grids become more popular and attract more participants, they need
flexible mechanisms in order to perform efficiently. Peer-to-peer networks with their ability

1The skip is discussed in detail in Sec. 6.3.2 on page 131, where its integration in our formal framework for
VPA-based aspects is given.

5.2. COMPUTATIONAL GRIDS ON PEER-TO-PEER OVERLAY NETWORK 111

to handle a large number of decentralized resources and related communications can provide
a good infrastructure for computational grids. Moreover, peer-to-peer networking and grid
computing share the common characteristics as distributed computing paradigms and thus
are likely to be able to apply together in a system. There have been a body of works that
build computational grids over peer machines in a network.

In this section, we motivate the application of VPA-based aspects to a combination of
these two kinds of system. The following section is organized as follows. First, we present
three existing systems of this kind of application. The architecture and basic functionalities
of these systems serve as the foundation for the abstract system on which we later define
aspects. We then present an abstraction of P2P-based grid computing systems that makes
explicit features of the peer management functionality of the existing systems. Then we show
how VPA-based aspects can be harnessed for the implementation of such features.

5.2.1 Peer-to-peer grid computing system

Generally, approaches for the combination of computational grids and peer-to-peer networking
aim at creating shared grids over a peer-to-peer platform where peer nodes can submit tasks
that are to be solved collectively thanks to resources contributed by many peers. The archi-
tecture of the peer-to-peer platform and the policies of task distribution and result collection
vary much between such existing hybrid systems.

In the previous chapter, we have shown the ability of our VPA-based aspect language to
define aspects over regular and non-regular protocols. Since P2P-based grid systems typi-
cally involve a number of communications between machines/nodes in the systems and these
communications often have to comply with a set of protocols to ensure interoperability, P2P-
based grid systems can be potential application targets of VPA-based aspects. Hence, we
are interested in finding specific features of P2P-based grid systems that can benefit from
VPA-based aspects.

In the following, we review three existing peer-to-peer grid computing systems: Jalapeno [122],
Juxta-CAT [108], and OurGrid [28]. These three systems have been selected because they
are sufficiently mature to identify some generally interesting features that can be represented
by an easier-to-tackle abstract system. In principle, we are looking for functionalities that
involve sequences of communications between different nodes in a system, e.g., a function
that implements the procedure in which a node submits a task to the control node to have
the task processed using the grid resources.

Jalapeno is the result of a research project that aimed at developing a grid computing
system based on peer-to-peer technology. The peer-to-peer platform has been realized based
on JXTA technology [8]. This technology defines a set of open protocols that allows different
types of devices to communicate with each other in a peer-to-peer manner. Peers in the
Jalapeno network can take one or more of three roles: manager, worker, and task submitter.
Each worker peer has to join a peer group which is then managed by a manager peer. Worker
peers can communicate with other worker peers in the same group directly or to peers in other
groups indirectly through their manager peers. To use a Jalapeno grid to solve a problem, a
task submitter submits a collection of tasks to a randomly chosen manager peer. This manager
peer then distributes a certain number of tasks to its worker peers and forwards the rest to
other manager peers. This process can continue until all the tasks are assigned to worker
peers. When a worker peer finishes a task, the result is returned through the manager peer to

112 CHAPTER 5. APPLICATIONS

the task submitter. Hence, in this system, tasks are supposed to be performed independently
and results can be returned directly to the task submitter without having information to be
propagated back on the same path through which tasks are distributed.

Juxta-CAT is another JXTA-based research platform that provides a distributed environ-
ment for job execution sharing. There are two types of peers in the Juxta-CAT platform:
brokers and clients. Client peers can submit tasks to be performed by the grid. Broker peers
play the administration role, i.e., assigning tasks to the Grid nodes and returning results
to the client peers. Hence, the broker peers play the similar role of manager peers in the
Jalapeno system while client peers play the role of both task submitters and worker peers in
Jalapeno. However, the Juxta-CAT system implements a more sophisticate strategy for task
distribution than the Jalapeno system. For example, broker peers may consult historical and
statistical data to select the best candidate peer for processing an incoming task.

OurGrid is a free-to-join peer-to-peer grid that was released in 2004. In its beginning
OurGrid was also implemented upon the JXTA protocol library but now uses a selfmade
peer library. The OurGrid platform is not completely decentralized because it still uses a
centralized rendezvous service for peers to find each other. In contrast to Jalapeno and
Juxta-CAT OurGrid is still under active development as of March 2011. Furthermore, it has
a large developer as well as user community.

5.2.2 Abstract peer-to-peer grid computing system

We sketch the model of a peer-to-peer grid computing system with some functionalities and
properties that have been realized by the existing systems like the above ones. Our goal is
not to build another peer-to-peer grid system but to make explicit protocols that govern peer
management in such systems that can benefit from VPA-based aspects. We have developed
this abstraction mainly based on the Jalapeno system, a popular system whose source code
could be freely accessed. However, the peers are managed similarly by the other systems.

Architecture. The computing system is constructed to work over a decentralized P2P over-
lay network. Peer nodes participate in the network and act both as providers and customers
of the system: they can submit tasks and request for computing resources, but are also sup-
posed to contribute a portion of their resources in order to provide computing services for
other peers.

Although there will be no central infrastructure, peers are virtually organized into groups.
Each group is managed by a manager peer who manages a small set of worker peers. Every
individual peer has to join a group. Peers only communicate with its group members and
manager.

Basically, a peer can take on one or more of three roles: worker, manager, and task
submitter. A peer always starts as a worker peer when it first connects to the network. It
then searches for a manager to join a group. If it cannot find a group after some time, it
becomes a manager peer and creates a group and starts accepting worker peers. A peer can
also submit a task to its manager and request computing service. A manager peer then splits
the task into several parts and distributes them to its worker peers and other manager peers.
The results will be returned to the manager peer and eventually to the task submitter.

5.2. COMPUTATIONAL GRIDS ON PEER-TO-PEER OVERLAY NETWORK 113

Figure 5.1 presents the protocol of a worker peer. This protocol partially describes a
session of a worker. From the initial state (state 0), the worker joins the network and the
group by the join event. Next, the worker waits for task assignment by the manager. When
the worker receives a task assignment (getTask event), it evolves to state 2. From this state,
the worker can execute the task (state 3), finishes the task (state 4), and then returns the
result to the manager (state 5). From state 2, the worker can also check whether an assigned
task is removed, if so, the worker goes to state 6. The worker can also decide to quit the
network and goes to state 7 without finishing the assigned task. From state 5 and state
6, the worker can quit the network or return to state 1 where it waits for another task
assignment. Note that the number of returnTask(representing the event when the worker
returns the result to its manager) and removeTask(representing the event when an assigned
task is signaled to be removed from execution) events must match the number of getTask
events. This matching requirement is described by the specification that defines getTask as
call transitions and returnTask and removeTask as return transitions and the index c that is
tagged to these events.

idle

0 1 2 3 4 5

6 7

join getTaskc? execute finish

quit

quitidle

returnTaskc!

re
m
o
v
e
T
a
s
k
c ? re

m
o
ve
T
a
sk
c
?

quit

quit

quit

q
u
it

Figure 5.1: Protocol of a worker peer

Figure 5.2 presents the protocol of a task submitter. The protocol describes the transition
of a task submitter in a session as follows. From the initial state (state 0), the task submitter
joins the network (state 1) and prepares the task bundle (state 2). Then the task submitter
looks for a manager by taking the askManager transition and gets back the response by
taking the replyManager transition. These two types of transition have to match each other
so we model them as call and return transitions indexed with stack symbol d. After getting
information about available managers, the task submitter then selects a manager (state 3).
It then sends tasks to the selected manager via sendTask event. It can also receive results
via getResult or removes a task via removeTask event. Since the number of result messages
the task submitter receives plus the number of task removing messages the task submitter
sends has to match the number of tasks sent out, we specify sendTask as call transition and
getResult and removeTask as return transitions. These transitions are indexed with symbol
c. From state 3, the submitter can also quit the network (state 4) or go back for another
request via idle event. Note that, many events in this protocol are synchronized (represented
by the ‘?’ and ‘!’ symbols) with events in the protocol of a manager presented below.

114 CHAPTER 5. APPLICATIONS

idle

0 1 2 3 4
join quit

removeTaskc!

!sendTaskc

prepare selectManager

askManagerd!

replyManager ? d

getResultc?/

quit

quit

Figure 5.2: Protocol of a submitter peer

Since a manager interacts with both task submitters and workers, two protocols are de-
fined for a manager peer. The first one (presented by Figure 5.3) describes how the manager
interacts with a worker. The second one (presented by Figure 5.4) describes how the man-
ager interacts with a task submitter. In the protocol of the manager versus a worker shown
in Figure 5.3, the manager can basically send tasks to the worker (by activating sendTask
event), get back results from the worker (returnTask event), or tell the worker about a re-
moved task (removeTask event). Note that these three events are synchronized with events
in the worker protocol. The protocol of the manager versus a task submitter shown in Fig-
ure 5.4 is similar to that of the task submitter, i.e., the manager communicates with the task
submitter via synchronized events including askManager, replyManager, sendTask, getResult,
and removeTask.

0 1 2

getTaskc! returnTaskc?

removeTaskc!

join quit

/

Figure 5.3: Protocol of a manager versus worker peers

5.2.3 Applications of VPA-based aspects.

In the following we demonstrate how VPA-based aspects can be used to improve three different
functionalities of P2P-based grid infrastructures.

5.2.3.1 Monitoring task processing.

Assume that we need a functionality to display the status of tasks executed by workers to an
interface. To implement this functionality, we basically have to observe the following events

5.2. COMPUTATIONAL GRIDS ON PEER-TO-PEER OVERLAY NETWORK 115

idle

0 1 2 3 4
join quit

removeTaskc

sendTaskc

askManagerd? replyManager ! d

getResultc!/

quit

quit

Figure 5.4: Protocol of a manager versus a submitter peer

related to a task a:� a is sent by a task submitter (via sendTask event in the protocol shown in Figure 5.2).� a is canceled by a task submitter (via removeTask event in the protocol shown in
Figure 5.2).� a is assigned to a worker (via getTask event in the protocol shown in Figure 5.1).� a is executed by a worker (via execute event in the protocol shown in Figure 5.1).� a is done and returned to a manager (via returnTask event in the protocol shown in
Figure 5.1).

Note that these events are triggered by two different roles/components in the system.
Therefore, we implement the above functionality by two aspects that match these events and
updates the status of a task accordingly. VPA-based aspects that have the ability to capture
pairs of matching events can be used to implement this functionality as follows (for simplicity
we assume that update implicitly passes the matched event to the underlying task):

A1 = µa.getTaskc ⊲ update ; execute ⊲ update ; finish ; returnTaskc ⊲ update ; a

A2 = µa.sendTaskc ⊲ update ; a

� getResultc ⊲ update ; a

� removeTaskc ⊲ update ; a

In the above definitions, A1 is an aspect that follows the worker protocol while A2 is an
aspect that follows the submitter protocol. Note that the update function is defined under
the assumption that a returnTask event that is matched by the aspect must correspond to a
getTask event. Therefore, in the pointcut definition of the aspect, it is necessary to specify
getTask and returnTask as corresponding events. Similarly, in aspect A2, sendTask, getResult
and removeTask are specified as corresponding events.

116 CHAPTER 5. APPLICATIONS

Example 2: Handling task canceling. When a worker peer unexpectedly quits the
network, it does not notify its manager about its status and will not return any result for
tasks it has been assigned. If there is an aspect or another function that is not designed
to handle the lack of results, such deviation from the basic protocol may create a problem
for that aspect. For example, the above aspect that tracks processing tasks always waits for
results to be returned in order to record the status of the process and update the interface.
In this case, a VPA-based aspect can be used to generate messages for the system to be
compatible with the aspect that needs the return message.

µa.getTaskc ; execute ; returnTaskc ; idle ; a

� removeTaskc ; idle ; a

� quit ⊲ closeOpenCall(returnTaskc) ; a

The above aspect observes events that show the status of tasks being assigned, executed,
or removed so that it knows the number of on-going tasks. When an assigned task is executed
and returned or has been removed, it is considered “finished”. However, when a worker peer
quits the network with one or more assigned tasks not yet returned or removed, the aspect
generates missing returnTask events for those on-going tasks.

Example 3: Handling task re-distributing. Assume that we would like to apply a new
rule that restricts to 20 the number of open tasks that each manager can handle. Tasks
that exceed this limit are forwarded to another manager. These re-distributed tasks will be
sent back to the original manager after they are finished. This new restriction rule can be
implemented using the following VPA-based aspect.

µa.depth
≤20

getTaskc,returnTaskc
; a

� depth≥20

getTaskc,returnTaskc
⊲ skip ; forwardTaskc ; a

� sendbackTask ⊲ returnTaskc ; a

� returnTaskc ; a

The above aspect observes getTask events that occur when a manager assigns a task to
a worker peer. When the manager tries to assign more than 20 tasks, the aspect stops the
execution of the getTask event and forwards the task to another manager instead. Note that
this intervention by the aspect is transparent to the manager. As a consequence, the manager
is not aware of the forwarding and may not be able to handle the returned tasks. Therefore,
the aspect also observes the sendbackTask event that occurs when a forwarded task is sent
back to the original manager. It then generates a returnTask event for the task so that the
original manager can receive the results just as a result from a task executed by its own group.

5.3 Conclusions

In this chapter we have demonstrated in the context of two application domains — remote
access systems and P2P-based grids — how VPA-based aspects can be employed to improve
existing or introduce new functionalities. The use of VPA-based aspects in these applications

5.3. CONCLUSIONS 117

is appropriate for a few reasons. First, thanks to its expressive pointcut language, VPA-
based aspects can capture both regular and non-regular sequences of events especially well-
balanced nested events. This ability is particularly useful for application domains such as
P2P applications that often involve such kinds of sequences or protocols. Second, since the
pointcut of a VPA-based aspect is defined by a VPA, different types of property analysis can
be attempted. This possibility comes from the fact that VPAs are described by the class of
visibly pushdown languages which share many features with regular languages in terms of
analysis support. For instance, in Section 4.5 of the previous chapter, we have shown how
analysis can be done for the detection of interaction among VPA-based aspects.

118 CHAPTER 5. APPLICATIONS

Chapter 6

Component evolution using
VPA-based aspects

Component-based systems, that is, systems that are built from composition of basic building
blocks, so-called software components1, are frequently subject to continuous evolution in order
to provide new or better functionality. Component-based systems often require functionalities
that crosscut components, that may be defined and implemented using aspects. However,
there are usually two typical limitations that hinder the application of AO languages to
component-based systems. First, many aspect-oriented languages feature pointcut languages
that quantify pointcuts over sets of individual join points rather than sequences of execution
events. However, the latter are often very useful for crosscutting functionalities of component-
based systems in order to define and manipulate interaction protocols. The ability to define
evolution operations over interaction protocols should also permit that aspects can be applied
in a black-box manner to components and enable the effects of aspects on component-based
systems easier to control. Second, most of the current aspect-oriented languages do not
support the analysis of properties of component-based systems that are subject to aspect-
based evolution.

In order to address these limitations, an aspect language should provide an expressive-
enough pointcut language that can capture protocols and an advice language that allow
their modification. In addition to expressiveness, that aspect language should also permit
the analysis of the component-based system after the application of aspects. The aspect
language that we have presented in Chapter 4 is useful in this context. The VPA-based
pointcut language allows us to define pointcuts that capture sequences of execution events
that are governed by interaction protocols. Support for the definition of pointcuts and over
protocols include all the basic regular-like operators as well as VPA-specific constructors, such
as the set of depth constructors.

6.1 Example: evolving P2P systems by VPA-based aspects

In the following we exemplify the modifications of component-based systems we have in mind
and the type of properties we want to be preserve in the context of the P2P-based grid

1In this chapter we use the notion of software components that interact via well-defined interfaces and are
subject to (black-box) composition [121]

119

120 CHAPTER 6. COMPONENT EVOLUTION AND VPA-BASED ASPECTS

system introduced in the previous chapter. Three different types of modifications to protocols
established for this system will be introduced by means of VPA-based aspects.

Extending worker protocols by acknowledgements. In the P2P-based grid system,
a manager may send updates to workers in its group. Workers then get updates and run
these updates locally. They communicate about these updates according to their protocols
regarding this matter. More concretely, a manager uses the following protocol for sending
updates:

pManager = start ; maintenance ; !sendUpdatec ∗ ; finish ; ?getAckc∗

That is, a manager will start the session, do some maintenance jobs, and begins sending
out updates to workers. After finishing sending all new updates to all workers, it optionally
expects acknowledgement messages from its workers about the updates. Note that the number
of acknowledgement messages the manager receives should not exceed the number of update
messages it has sent out. Hence, the sendUpdate and getAck events are modeled as a pair of
VPA call and return in VPA-based protocol language. These pairs of events are indexed by
stack symbol c.

A worker peer handles updates according to the following protocol:

pWorker = join ; ?sendUpdatec ∗ ; applyUpdate

That is, the worker peer joins the group, accepts update messages, then applies the updates.
Note that this version of the worker implementation does not impose the worker send back
acknowledgement messages as expected by its manager. However, two protocols are still
compatible because the manager is not blocked in order to wait for acknowledgement messages
and no participant in the communication sends unknown messages to the other.

Assume that we would like to upgrade the version of the worker implementation so that a
worker will sends an acknowledgement message to its manager when it gets an update. As a
consequence, we need to modify the protocol followed by a worker. Such a modification can
be done using a VPA-based aspect defined as follows:

A = pWorker ; eoe ⊲ closeOpenCalls(!getAckc)

In the above aspect, the advice operator closeOpenCalls inserts a sequences of getAck events
right after the end of the pWorker protocol. The eoe event is a dummy event that marks the
end of the event preceding it (in this case, eoe indicates the end of the pWorker protocol). The
above aspect will make a worker to send a number of acknowledgement messages equal to the
number of updates the worker has received.

It turns out that the modified protocol of pWorker is also compatible with the protocol
pManager. This is because the protocol pManager has been designed to accept the acknowl-
edgements introduced by the modified protocol of pWorker. We can say that compatibility is
preserved for this type of aspect-based modification.

Restricting outgoing messages of managers. The second extension to the P2P-based
grid system focuses on the protocols that govern the communication between a manager and
a worker about task assignment. A manager sends a set of tasks to a worker according to the
following protocol:

pManager = start ; prepare ; !getTaskd ∗ ; ?returnTaskd ∗ ; end

6.1. EXAMPLE: EVOLVING P2P SYSTEMS BY VPA-BASED ASPECTS 121

That is, a manager will start the assignment session, prepare the tasks then send them to
a worker. The manager may send (getTask) several tasks to one worker. After that, the
manager waits (returnTask) for results from the worker and finally ends the session. Here,
stack symbol d is used to specify the relation between sendTask and getResult events.

On the other hand, a worker waits and handles tasks according to the following protocol:

pWorker = join ; ?getTaskd ∗ ; !returnTaskd ∗ ; quit

That is, a worker will join the group, accept tasks then execute, return task results to its
manager, and finally quit the group.

The above two protocols are compatible. Assume that we would like to restrict the number
of tasks a manager can send to each worker to a constant k so that a worker does not have
to handle too many tasks at the same time. This modification can be implemented using the
following depth-cutting aspect to apply to pManager:

A = µa.start ; prepare ; depth≥kgetTaskd,returnTaskd � (skip ; saveTask) ; a

The above aspect is called depth-cutting aspect since it restricts the number of getTask events
(which are actually task sending events performed by a manager) to k. After skipping a task
sending event, the advice runs the saveTask command to save tasks that are not sent to the
worker so that these tasks can be reassigned later. Hence, after the original protocol pManager

is modified, a manager now only sends at most k tasks to a worker. The new protocol resulted
from this modification is still compatible with the original protocol pWorker because pWorker

implies that a worker can accept any number of tasks from a manager while it will only receive
at most k tasks from a manager. Hence, compatibility is preserved after the modification of
the depth-cutting aspect to the system.

Extending managers by support for task bundles. Assume that managers in the P2P-
based grid system are designed to satisfy the following protocol when forwarding task bundles
and collecting results to and from their neighbors:

P = start ; selectNeighbors ; (!sendBundlee | !collectResultse) ∗ ; end

Let us refer to the above protocol as the forwarding protocol. That is, a manager first
starts the session, then selects a list of neighbors that it wants to forward task bundles
to and gets back results from its neighbors. In this original protocol, the sendBundle and
collectResults events can occur alternatively. However, collectResults are considered return
events of sendBundle and thus modeled as pairs of events indexed by symbol e. Finally a
manager can end the session with the end event.

Assume that it is possible to have different implementations of the manager peer as long as
task forwarding and collecting events generated by a manager are accepted by the originally
defined forwarding protocol P . In other words, it is required that P should be able to
substitute a forwarding protocol p1 implemented for a manager peer in the system. This
requirement is needed to ensure compatibility between manager peers and other roles in the
system. In the first implementation of the system, the actual forwarding protocol is defined
as follows:

p1 = start ; selectNeighbors ; !sendBundlee ∗ ; !collectResultse ∗ ; end

122 CHAPTER 6. COMPONENT EVOLUTION AND VPA-BASED ASPECTS

The above protocol p1 is different from protocol P in that a manager will forward all task
bundles first and then collect results later. This implementation of the manager satisfies the
requirement regarding the forwarding protocol as sequences of events generated by p1 are
accepted by P .

Assume that we now modify the forwarding strategy of the first implementation of the
system by introducing the following aspect to apply to protocol p1:

A =start ; selectNeighbors ; (!sendBundlee ; bundleSent � (!sendBundlee ; collectResultse)∗) ∗ ;

!collectResultse ∗ ; end

When aspect A observes that a manager sends a task bundle to one of its neighbors, A
inserts a sequence of pair of sendBundle and collectResults events in order to forward tasks
(and collect results) to (sub-)neighbors of the original targeting neighbor. However, we still
have to make sure that the modified version of p1 by aspect A can also be substituted by the
original protocol P . A closer investigation on the set of possible sequences of events generated
by the modified version of p1 confirms that this requirement is met.

In the three above cases of using aspects to introduce modifications to protocols of the
P2P-based grid system, we have shown that for certain specific cases, compatibility or sub-
stitutability that is established for the original implementation can be preserved after the
application of aspects. Note that we have basically relied on the structure of the protocols
and aspects in order to reason about the properties for the systems in the above cases. We
aim at generalizing these specific cases and defining classes of protocols and aspects where
preservation of properties can be formally proved.

In the remainder of this chapter, we investigate how certain types of component evolution
can be expressed using VPA-based aspects, such that fundamental correctness properties of
software compositions can be guaranteed. We provide an approach that ensures the preser-
vation of properties by construction. Instead of proving the preservation of properties for
specific systems and aspects, we aim at achieving more general results by proving the preser-
vation of properties for certain classes of aspects and systems. The property then holds for
all aspects and component-based systems in the corresponding classes.

The remainder of this chapter is organized as follows. We revisit basic correctness prop-
erties for component-based systems and present our model of evolution using VPA-based
aspects in Section 6.2. We then present our approach in Section 6.3. We introduce a set of
theorems that allow us to establish the preservation of properties for certain classes of aspects
and systems. Finally, we conclude the chapter in Section 6.4.

6.2 Component-based systems: correctness and evolution

One of the main advantages of the black-box composition of software components consists
in the possibility to define the correctness of software components in terms of interactions
among black-box components. The most fundamental of these correctness properties are the
compatibility and substitutability properties of components. These properties ensure that
components can be used to reasonably compose complex applications: compatible compo-
nents can be assembled such that they correctly interact, in particular not causing deadlocks;
components that are substitutable for another one may be used instead of that component
without causing errors.

6.2. COMPONENT-BASED SYSTEMS: CORRECTNESS AND EVOLUTION 123

If component-based systems are subject to evolution, the question arises how the preserva-
tion of compatibility and substitutability can be formally guaranteed. While such guarantees
are very difficult to ensure in general, components whose interactions are governed using
protocols are much better tractable by analyzing the effects of evolution on the interaction
protocols. In the remainder of this section we present the notions underlying our approach
to the evolution of component-based systems whose evolution is defined by modifications of
protocols using VPA-based aspects

In the following we introduce the compatibility and substitutability properties of software
components, our model of evolution and the notion of VPA-based aspects we employ to define
evolution.

6.2.1 Composition properties: compatibility and substitutability

We rely on notions of compatibility and substitutability proposed respectively by Yellin and
Strom [129], and Nierstrasz [99].

6.2.1.1 Compatibility

A compatibility property of components states whether two components are compatible with
each other. We have discussed in section 2.6.1 different levels of component compatibility,
including compatibility at the signature level, the protocol level, and the semantics level.
In our case components are equipped with explicit interaction protocols and the aspects
that define the evolution of components are defined over these component protocols. These
two factors make the information about protocols and modifications to protocols explicit so
analysis can be performed at the protocol level.

We use the notion of protocol compatibility introduced by Yellin and Strom [129] that we
present briefly in the following. Let P1, P2 be two collaborating protocols. A collaboration
state for P1, P2 is a pair 〈s, t〉 where s is a state of P1, t is a state of P2. The set Collabs(P1, P2)
is defined to be the set of all traces that can possibly occur when P1, P2 collaborate. Each
trace (also called collaboration history) in this trace set is a possibly infinite sequence of
collaboration states starting from the initial collaboration state that comprises the initial
state of P1 and the initial state of P2. A transition can be made from one collaboration state
to another one if there is a matching event between two protocols and the direction of that
event in P1 is opposite to the direction of that event in P2. In other words, one protocol
sends the message while the other one receives it. That also means that P1, P2 advance
synchronously on the matching message.

Two protocols have no unspecified receptions if and only if during their collaboration,
when one protocol is in the state where it can send a message m, the other protocol will be
in the state where it can receive that message. Two protocols are deadlock free if and only if
both protocols end in their respective final states after collaborating or the collaboration can
continue (in case of infinite collaboration). ‘Protocols P1 and P2 are compatible iff they have
no unspecified receptions and are deadlock free’ [129]. Hence, if P1 and P2 are compatible,
they can evolve from their initial states to their final states without any conflict. Note that
this notion of compatibility allows cases where one party can receive a message yet the other
party cannot send that message.

Note that in our definition of VPA-based protocol (given later in Section 6.2.3), we allow
the inclusion of internal events i.e., events that are not part of the collaboration between two

124 CHAPTER 6. COMPONENT EVOLUTION AND VPA-BASED ASPECTS

protocols, in a protocol declaration. Therefore, we would remove these internal events from
the protocols so that we only consider events that represent a collaboration when we check
for compatibility between two protocols.

Let’s come back to the example system presented in the introduction of this chapter.
The version of the protocol regarding task assignment in the perspective of the Manager
component is as follows (where the ‘!′ sign marks sent messages and ‘?′ marks expected
messages):

pManager = start ; maintenance ; !sendUpdatec ∗ ; finish ; ?getAckc∗

On the other hand, a version of the corresponding protocol in the perspective of the
Worker component is as follows:

pWorker = join ; ?sendUpdatec ∗ ; applyUpdate ; !getAckc∗

These two protocols are expected to collaborate on sendUpdate and getAck events. The
manager can send the sendUpdate message to the worker then waits to receive the getAck
message later on. On the other hand, the worker first receives the sendUpdate message from
the manager and then sends the getAck message to the manager. According to the above
definition of protocol compatibility, these two protocols are compatible.

6.2.1.2 Substitutability

A substitutability property of components states whether one component can be substituted
by another one and preserving, at the same time, all correct interactions among the original
components and other components. Similarly to the compatibility property, we base the
notion of component substitutability on protocol substitutability. Note that aspects defined
in the VPA-based aspect language do not change the signature of any methods implemented
in a component (therefore, we do not have to worry about whether the replacing component
provides at least the same services as the original component).

Substitutability of component protocol is defined using trace set inclusion: protocol p1
is substitutable for p2 if its trace set is a superset of the trace set generated by protocol p2.
This notion of protocol substitutability is based on the one proposed by Nierstrasz [99]. Note
that in his article [99], protocol substitutability is a conjunction of two conditions: the new
protocol p1 has to generate at least the same set of sequences as p2 and must not reject more
sequences than p2. In the context of our study, since a component only exposes the set of
interaction protocols it accepts but not the ones it rejects, we have not considered the second
requirement.

Let us consider two different versions of the Worker protocol:

p1 = start ; selectNeighbors ; (!sendBundlee | !collectResultse) ∗ ; end

p2 = start ; selectNeighbors ; !sendBundlee ∗ ; !collectResultse ∗ ; end

The above definitions show that the set of sequences of events generated by protocol p1
include the set of sequences of events generated by p2. For instance, both protocols accept
sequence start, selectNeighbors, sendBundle, collectResults, end while only protocol p2 accepts
sequence start, selectNeighbors, sendBundle, collectResults, sendBundle, collectResults, end.
Protocol p1 is said to be substitutable for p2.

6.2. COMPONENT-BASED SYSTEMS: CORRECTNESS AND EVOLUTION 125

6.2.2 Evolution model

Let us consider the basic problem defined in Section 6.2.3 in a more specific context where
property Φ is a compatibility or substitutability property. Figure 6.1 illustrates our evolution
model for components with interaction protocols.

C1
p1

C2
p2

C3

p3
Is compatibility or substitutability

preserved ?

apply aspect A

compatibility or substitutability
holds

p3 = A(p2)

Figure 6.1: Checking for preservation of compatibility/substitutability

Starting from two protocols p1, p2 that govern the interactions of two collaborating com-
ponents C1, C2 a VPA-based aspect A is applied to p2 yielding the protocol p3 that defines
the interactions of the component C3, that is C2 after evolution. We are interested in the
preservation of compatibility and substitutability properties under evolution. Given two com-
patible protocols p1, p2 we will try to prove that p1 and p3 are compatible. Similarly, given
the fact that p2 is substitutable for p1 (or vice versa), we will try to prove that p3 is also
substitutable for p1 (or p2 in the inverse case).

6.2.3 VPA-based aspects for evolution

The evolution problem we are interested in tackling can therefore be defined as follows:

1. Given a component with a protocol p in a component-based system that satisfies prop-
erty Φ.

2. Apply VPA-based aspect A whose pointcut is defined over protocol p to modify the
protocol and thus the component.

3. Prove that the new system with the modified component also satisfies Φ.

In the above definition, a component is represented by its interfaces which generally expose
its services and a part of its behaviors through one or more interaction protocols. A protocol
p of interest is one of the interaction protocol followed by the component. The protocol is
specified in our VPA-based protocol specification language given by Figure 6.2.

This protocol specification language is derived from the pointcut language of the VPA-
based aspect language presented in Chapter 4, and admits not only regular sequences of
events but also VPA-like sequences of events. This language essentially includes a subset of
language constructs of the pointcut language that defines VPA-based aspects. Furthermore,
we add extensions for component interactions, notably terms for the explicit expression of
outgoing and incoming events, using the symbols ‘!’,‘?’

The ‘!’ symbol preceding a term in a protocol of a component indicates that the term
represents an action invoked by this component. Conversely, the ‘?’ symbol preceding a term
in a protocol of a component indicates that the term represents an action that this component
expects to happen or an incoming event that this component accepts.

126 CHAPTER 6. COMPONENT EVOLUTION AND VPA-BASED ASPECTS

P ::= P ; P
| Term | DepthOp

Term ::= ?Term | !Term | ID | IDID | IDID

DepthOp ::= depthCONSTANT
IDID,IDID

| depth≤CONSTANT

IDID,IDID
| depth≥CONSTANT

IDID,IDID

Figure 6.2: Syntax of VPA-based protocol language

6.3 Proving property preservation by exploiting characteris-

tics of classes of protocols and aspects

The proof or test of properties of systems that are subject to modifications by aspects are
typically performed by analyzing the woven program resulting from the integration of the
aspect into the original system. However, this approach has a few important limitations.� The woven system frequently is large, often too large to be tractable for (semi-)automatic

proof-support systems.� Proofs based on the woven system are specific to aspects and original base system. Any
change to the aspects or the base system require to prove the property anew.� This approach often requires complete information, in particular information of the
implementation of software components, not an option in our case since we follow a
black-box approach to composition.

In general, the preservation of a property Φ after an aspect-based evolution of a component-
based system S essentially depends on two factors: the evolution aspect and the interface of
the components which are modified by the aspects. In our case, VPA-based aspects are used
to modify components whose interface is defined through VPA-based component protocols.
Because of their limited expressiveness, VPA-based aspects and protocols allow some impor-
tant properties to be proven simply by considering properties of the aspect language only.
We therefore propose to exploit the characteristics of visibly pushdown languages in order to
reason about the aspects and the protocols. Instead of analyzing the woven system, we aim
at establishing the property for the system just based on the knowledge of the aspect and the
protocols that define an evolution operation.

In order to overcome the three limitations discussed above, we have developed an approach
that supports correct evolution by construction. Concretely, we provide pattern-based aspect
definitions that can be proven correct for certain sets of VPA-based (base) protocols.We thus
prove properties for classes of aspects that are applied to classes of protocols depending on
the constructs of the VPA-based aspect language .

This approach is not subject to the three limitations discussed above: The correctness
proofs do not involve or only involve abstract properties of the woven program; the proofs
support properties over classes of aspects and base programs; and the properties we consider

6.3. PROVING PROPERTY PRESERVATION 127

only involve aspects and protocols, no information on the implementation of protocols is
involved.

Although this approach will not be able to achieve completeness in the sense that all
possible properties can be proved for all classes of protocols and aspects, it is valuable in that
it provides a non-trivial set of classes of protocols and aspects that are useful in P2P-based
or even more general application systems.

We have realized our approach by first classifying aspects and protocols into specific classes
based on their definitions. Basically, aspects are classified by the structure of their pointcuts
and advice. Protocols are classified based on how specific kinds of events such as pairs of
opening and closing actions are used. For instance, protocols that involve nested pairs of
actions m − m can be classified into one class. Aspect advice can modify the protocol by
inserting actions and/or removing (skipping) actions. Therefore, they are classified based on
the specific type of modifications that they implement. For example, aspects that employ the
specific operator closeOpenCalls to generate closing actions are grouped into one class. Our
goal then is to seek for each combination of a class of aspect and a class of protocol a set of
properties that are preserved by aspect-based evolution.

We have proved the preservation of compatibility and substitutability for a number of
classes of aspects and protocols using our approach that are presented in the following. In the
following subsections we respectively present three classes of aspects and their properties that
we have chosen since they cover many important applications of nested structures expressible
using VPA-based aspects:� Correction of unbalanced nested call structures.� Manipulation of the depth of nesting structures.� Insertion of matching nested call and return events.

6.3.1 Aspects with closeOpenCalls advice

In this section we study the class of aspects that use closeOpenCalls advice and their effects
on the preservation of two kinds of properties mentioned above. The closeOpenCalls(mc)
advice featured by the VPA-based aspect language inserts a number of VPA return transitions
mc that are neccesary to close all open calls indexed by stack symbol c that are left on the
top of the stack.

This advice can be used to implement error handling strategies by generating missing
returns. It can also be used to introduce extensions to a protocol by adding sequences of
return events if they do not exist in the original protocol.

In the following we present a set of properties that are preserved by aspect-based evolution
using closeOpenCalls advice. For each type of properties, we first define a set of protocol and
aspect classes that are involved. We then formally define and prove substitutability and
compatibility properties of these classes.

Let PmOpening be the following class of protocols:

p = p′ ; mc ∗ ; p′′

where both sub-protocols p′, p′′ must not include any call or return event related to m.
The above definition expresses that p is a composition of three parts: sub-protocol p′,

sequences of calls to m tagged by symbol c, and sub-protocol p′′. p represents a (typical)

128 CHAPTER 6. COMPONENT EVOLUTION AND VPA-BASED ASPECTS

class of protocols, we consider other protocol classes below, that contain open calls and may
be subject to evolution.

Let AmClosing be the class of aspects that employ the closeOpenCalls advice to close open
calls in a protocol p defined as follows:

A = p ; eoe ⊲ closeOpenCalls(mc);

that is, the aspect A adds a sequence of returns mc to the end of p. We remind the reader
once again that eoe event is a dummy event that marks the end of the event preceding it. The
presence of eoe event in the aspect is necessary so that events executed by aspect advice will
be inserted after the end of p (but before eoe because our aspect language features before-
advice). The number of mc in the sequence equals to the number of c symbols (which have
been pushed into the stack by corresponding calls of m) that are on the top of the stack.
We now investigate the composition properties of protocols that are defined by applying this
aspect class to classes of protocols.

Substitutability. Substitutability is preserved after the application of aspect of classAmClosing
if certain conditions on the target protocol and its counterpart are satisfied.

Theorem 3 (Substitutability). Let:� p1, p2 be protocols of class PmOpening and p1 can be substituted by p2.� A be an aspect of class AmClosing.� p3 = A(p2), i.e., p3 is the protocol resulting from the application of A to p2.

Then, p1 can also be substituted by p3

Proof. Let

p2 = p′2 ; mc ∗ ; p′′2

0 1

m

2

c

n

p2 p3

0 1

m

2

c

n

mc

Figure 6.3: Abstract VPAs representing p2 and p3

We first construct the abstract VPA shown in Figure 6.3 that can represent p2 which is a
protocol of class PmOpening. This VPA abstracts from the events not involving call and return
events involving m. (We do not have to consider the protocols parts not involving mc because
p2 is substitutable for p1.) This VPA has three basic states 0, 1, and 2. State 0 is the initial
state of the protocol. This is the starting state of sub-protocol p′2. The whole sub-protocol
p′2 is abstracted by event n and represented by a transition from state 0 to state 1. State
1 is the state where calls mc take place. In the definition of the protocol, mc∗ represents a
sequence of calls mc so mc events are modeled by transitions looping at state 1. Next, the

6.3. PROVING PROPERTY PRESERVATION 129

transition from state 1 to state 2 represents the sub-protocol p′′2. The whole sub-protocol p′′2
is abstracted by event l and represented by a transition from state 1 to state 2.

As we assume that p1 can be substituted by p2, the set L(p1) of possible events generated
by p1 must be included by the set generated by p2, i.e., L(p1) ⊆ L(p2).

When aspect A applies to p2, it adds a sequence of returns mc to p2 at then end of
p2, i.e., state 2, and results in the new protocol p3 (as shown in Figure 6.3). Hence, the set
L(p2) ⊆ L(p3) as L(p3) includes all the sequences of events generated by p2 plus the additional
sequence of returns mc.

Since L(p1) ⊆ L(p2) and L(p2) ⊆ L(p3), L(p1) ⊆ L(p3), i.e., the set of possible sequences
of events generated by p3 also includes the set generated by p1. Therefore, we conclude that
p1 is also substituted by p3. Hence, substitutability is preserved.

Compatibility. Compatibility is also preserved for certain protocol and aspect classes in-
volving closeOpenCalls advice. Table 6.1 presents several definitions of classes of protocols
and aspects that we consider. We define six protocol classes (whose names start with P)
and two aspect classes (names starting with A). Since the direction of message exchanges
is essential to compatibility between components we distinguish in the following sending and
receiving actions by prefix symbols ’ !’ and ’?’ respectively. (We haven’t done so for sub-
stitutability because substitutable protocols should be executed by the same partner, thus
preserving sends or receives.)

Table 6.1: Definitions of certain protocol and aspect classes
Class Name Definition

Pmio p = p′ ; ?mc ∗ ; p′′

Pmoo p = p′ ; !mc ∗ ; p′′

Pmoo−ic p = p′ ; !mc ∗ ; p′′ ; ?mc∗
Pmio−ic p = p′ ; ?mc ∗ ; p′′ ; ?mc∗

Amic A(p) = p ; eoe ⊲ ?closeOpenCalls(mc) = p ; eoe ⊲ ?mc∗
Amoc A(p) = p ; eoe ⊲ !closeOpenCalls(mc) = p ; eoe ⊲ !mc∗

Protocol class Pmio includes protocols that contain a sequence of repeated incoming call
events m. The other protocol classes similarly contain sequences (possibly alternating ones)
of repeated incoming and outgoing events. Aspect class Amic inserts a sequence of repeated
incoming return events m to the end of a protocol p. Finally, aspect class Amoc inserts a
sequence of repeated outgoing return events m to the end of a protocol p.

Note that we use the compatibility condition as defined by Yellin and Strom [129]. This
notion of compatibility allows cases where one party can receive a message yet the other party
cannot send that message.

Theorem 4 (Compatibility-1). Let:� p1 be a protocol of class Pmoo, p2 be a protocol of class Pmio� p1, p2 are compatible� A be an aspect of class Amic .� p3 = A(p2), i.e., p3 be the modified version of p2 resulting from applying A to p2.

130 CHAPTER 6. COMPONENT EVOLUTION AND VPA-BASED ASPECTS

Then, p1 and p3 are also compatible.

0 1 2

p2 p3

0 1

m

2

c mc

0 1

m

2

c

p1

! mc? ??

Figure 6.4: Abstract VPAs representing p1, p2, and p3

Proof. Figure 6.4 shows the abstract VPAs representing p1, p2 and p3. As we assume that p1,
p2 are compatible, they both can evolve from their initial states (state 0) to their final states
(state 2) without any conflict. Note that in state 1, protocol p1 may send mc while p2 can
always receive mc. (If p2 cannot accept mc when p1 send such event, two protocols would not
be compatible.)

When aspect A is applied to p2, a sequence of incoming returns mc is added to the end
of p2 (state 2) to result to p3. Hence,

p3 = p2 ; eoe ⊲ ?mc∗ = p′2 ; ?mc ∗ ; p′′2 ; ?mc∗

Two protocols p1, p3 should be already compatible from state 0 to state 2 because p1, p2
are compatible and p3 differs from p2 only from state 2. In state 2, p3 can always receive
outgoing returns mc. However, since p1 never sends such events, the additional part of the
protocol does not change compatibility that has been established for p1, p2. Therefore p3 and
p1 are also compatible.

In the following we consider protocols that can be suitably extended by closing calls.

Theorem 5 (Compatibility-2). Let:� p1 be a protocol of class Pmoo−ic, p2 be a protocol of class Pmio� p1, p2 are compatible� A be an aspect of class Amoc.� p3 = A(p2), i.e., p3 be the modified version of p2 resulting from applying A to p2

Then, p1 and p3 are also compatible.

0 1 2

p2 p3

0 1

m

2

c

0 1

m

2

c

p1

! mc?mc? ? mc!

Figure 6.5: Abstract VPAs representing p1, p2, and p3

Proof. Figure 6.5 shows the abstract VPAs representing p1, p2 and p3. As we assume that
p1, p2 are compatible, they both can evolve from their initial states (state 0) to their final

6.3. PROVING PROPERTY PRESERVATION 131

states (state 2) without any conflict. When aspect A is applied to p2, a sequence of outgoing
returns mc is added to the end of p2 to result to p3. Hence,

p3 = p2 ; eoe ⊲ !mc∗ = p2 ; ?mc ∗ ; p2 ; !mc∗

The protocols p1, p3 are compatible from state 0 to state 2 because p1, p2 are compatible
and p3 differs from p2 only by its behavior in state 2. In state 2, p3 may send returns mc.
Since p1 accepts a sequence of incoming returns mc in state 2, it can accept the additional
sequences added by the aspect. Therefore p3 and p1 are also compatible.

Theorem 6 (Compatibility-3). Let:� p1 be a protocol of class Pmoo, p2 be a protocol of class Pmio−ic� p1, p2 are compatible� A be an aspect of class Amoc.� p3 = A(p1), i.e., p3 be the modified version of p1 resulting from applying A to p1

Then, p2 and p3 are also compatible.

Proof. The proof is the dual proof (that changes sending actions into receiving ones and vice
versa) of the preceding one.

6.3.2 Depth-dependent aspects

Recursive distributed algorithms frequently depend on actions in specific contexts, notably
at specific depths of nested calls. A common example are heuristics that are formulated in
terms of the traversal depth from the node where the search has been initiated, e.g., in order
to determine notions of locality of computation. Since VPA-based aspect allow the explicit
definition of aspects in terms of the nesting depth using the pointcut operator depth≥kmc,mc ,
corresponding compositional properties can be proven in terms of properties of this operator
and classes of protocols to which it is applied.

Table 6.2 presents the definitions of four protocol classes and the aspect class relating to
depth-dependent functionality.

Table 6.2: Definitions of certain protocol and aspect classes
Class Name Definition

Pmio p = p′ ; ?mc ∗ ; p′′

Pmoo p = p′ ; !mc ∗ ; p′′

Pmiok p = p′ ; ?mc[k] ; p
′′

Pmook p = p′ ; !mc[k] ; p
′′

AmDepthcutk A = depthkmc,mc ⊲ skip

Protocol class Pmio includes protocols that contain a sequence of repeated incoming call
events m. Protocol class Pmoo includes protocols that contain a sequence of repeated outgoing
call events m. Protocol class Pmiok includes protocols that contain a sequence of k repeated

132 CHAPTER 6. COMPONENT EVOLUTION AND VPA-BASED ASPECTS

incoming call events m. Protocol class Pmook includes protocols that contain a sequence of k
repeated outgoing call events m. Aspect class AmDepthcutk includes aspects that skip all the
call events m that are occur at depth k or greater.

Note that we introduce here the skip command to be used in the advice of an aspect.
Unlike other commands used in the advice, this skip command will not insert anything but
rather prevent the matching event to occur. The weaving process presented in Chapter 4
describes the behaviors of “before advice”, because the weaving rules first weave advice and
then execute the matched joinpoint. Hence, that weaving process is not suitable for advice
with a skip command since no execution of the matching join point should take place. There-
fore, the original weaving process described in Figure 4.7 must be extended to handle skip
advice.

The skip command could be implemented using a preprocessing step as follows. We have
to annotate the base program in order to insert specific events that mark the point after
the matched join point (we call these events after-events in the following). In the pointcut
definition of the aspect, we replace the joinpoint that should be skipped by the after-event).
Hence, only aspects that include skip advice will match an after-event join point. After this
preprocessing step, weaving is performed as usual. In particular, the only straightforward
change in the weaving definition (Fig. 4.7 on page 90) is that the new joinpoint j′ is the
after-event of the current joinpoint in the case of skip-advice.

Theorem 7 (Substitutability-1). Let:� p1 be a protocol of class Pmiok , p2 be a protocol of class Pmio ; or alternatively be p1 a
protocol of class Pmook and p2 a protocol of class Pmoo� A be an aspect of class AmDepthcutk� p3 be the result of applying A to p2, i.e., A skips call events m from depth k

If p1 can be substituted by p2 then p1 can also be substituted by p3.

Proof. Both p1, p2 send a sequence of calls mc but p1 only sends a maximum number of k
mc. Therefore, the set of possible sequences of events sent by p1 is included by the set of
possible sequences of events sent by p2, i.e., L(p1) ⊆ L(p2). Hence, p1 can be substituted by
p2. When aspect A is applied to p2, it restricts the maximum number of calls mc that p2 can
send to k. After application of the aspect p2 belongs to the protocol class Pmiok which is the
same as that of p1. Therefore p3 can be substituted by p1.

Theorem 8 (Compatibility-1). Let:� p1 be a protocol of class Pmio , p2 be a protocol of class Pmoo� p1, p2 are compatible� A be an aspect of class AmDepthcutk� p3 be the result of the following application of A to p2, i.e., A skips outgoing call events
m from depth k

Then, p1 and p3 are compatible.

6.3. PROVING PROPERTY PRESERVATION 133

Proof. When aspect A is applied to p2, aspect A restricts the maximum number of calls mc

that p2 can send. Hence, the order of events specified by the new protocol p3 is the same
as the order of events specified by the original protocol p2. Only the number of possible mc

events is restricted. Since p1 does not impose any constraint on the number of calls mc it can
receive, it can collaborate with the new protocol. Therefore p3 and p1 are also compatible.

Theorem 9 (Compatibility-2). Let:� p1 be a protocol of class Pmook , p2 be a protocol of class Pmio� p1, p2 are compatible� A be an aspect of class AmDepthcutk� p3 denote the application of A to p2, i.e., A skips incoming call events m from depth k

Then, p1 and p3 are also compatible.

Proof. p1 and p2 are compatible, in particular, because p1 can send a sequence of maximum k

calls mc while p2 can receive a sequence of calls mc of any length. When aspect A is applied
to p2, aspect A restricts the maximum number of calls mc that p2 can receive to k. Since
p1 only sends at maximum k calls mc, the new protocol p3 can accept the calls mc of p1.
Therefore p3 and p1 are also compatible.

6.3.3 Aspects inserting pairs of events

The aspect classes in this group represent aspects that add pairs of call and corresponding
return events to a protocol. In table 6.3 we define these aspect classes and the protocol classes
which are their targets of modification.

Table 6.3: Definitions of certain protocol and aspect classes
Class Name Definition

Pmoa p = p′ ; (!mc ; !mc) ∗ ; p′′

Pmoc p = p′ ; (!mc | !mc) ∗ ; p′′

Pmos p = p′ ; !mc ∗ ; !mc ∗ ; p′′

Pmcc p = p′ ; (?mc | ?mc) ∗ ; p′′

Amoc A = p′ ; !mc ; eoe ⊲ (!mc | !mc)∗
Amos A = p′ ; !mc ; eoe ⊲ !mc ∗ ; !mc∗
Amoa A = p′ ; !mc ; eoe ⊲ (!mc ; !mc)∗

In the following we present some fundamental properties of these aspect classes and sketch
proofs for those properties.

Theorem 10 (Substitutability-1). Let:� p1 be a protocol of class Pmoc� p2 be a protocol of one of three classes: Pmoa, P
m
oc , P

m
os� A be an aspect of one of three classes: Amoa, A

m
oc, A

m
os

134 CHAPTER 6. COMPONENT EVOLUTION AND VPA-BASED ASPECTS� p3 be the result of the application of A to p2

If p2 can be substituted by p1 then p3 can also be substituted by p1.

In the following we present proofs for one case of the theorem where p2 is a protocol of
class Pmos and A is an aspect of class Amoa. Other cases of the theorem can be proved using
similar reasoning.

p
1 p2 p3

4

0 1 2

mc!

mc!

0 1 2

mc!mc!

3 0 1 2

mc!mc!

3
mc! mc!

Figure 6.6: Abstract VPAs representing p1, p2, and p3

Proof. Figure 6.6 illustrates the abstract VPAs representing three protocols p1, p2, p3. Pro-
tocol p1 sends three different kinds of sequences: a sequence that consists of only calls m,
a sequence that consist of only returns m, and a sequence of both calls m and returns m.
Protocol p2 sends a sequence of m events followed by m events. Hence, since p1 can cover all
the execution of p2, i.e., the set L(p2) ⊆ L(p1), p2 can be substituted by p1.

When aspect A of class Amoa applies to p2, it adds a sequence of repeated sequences of
!mc ; !mc to every occurence of !mc at state 1 (which is the only state where mc occurs) (see
Figure 6.6).

The new protocol p3 is defined as follows:

p3 = p′ ; [!mc | (!mc ; !mc)] ∗ ; !mc ∗ ; p′′

Note that, p1 is defined as follows:

p1 = p′ ; (!mc | !mc) ∗ ; p′′

That is, p1 can generate all the sequences generated by p3. Therefore, p3 can also be
substituted by p1. In other words, substitutability is preserved.

Theorem 11 (Compatibility-1). Let:� p1 be a protocol of class Pmcc� p2 be a protocol of class Pmoa or Pmos� p1, p2 are compatible� A be an aspect of class Amoc� p3 be the result of the application of A to p2

Then, p1 and p3 are also compatible.

6.4. CONCLUSIONS 135

0 1 2

p
1

mc?

mc?

p2

0 1 2

mc!
mc!

p3

3

0 1 2

mc!
mc!

3

mc! mc!

Figure 6.7: Abstract VPAs representing p1, p2, and p3

In the following we present proofs for one case of the theorem where p2 is a protocol of
class Pmoa. The other case of the theorem where p2 is a protocol of class Pmos can be proved
using similar reasoning.

Proof. Figure 6.7 illustrates the abstract VPAs representing three protocols p1, p2, p3. Proto-
col p1 basically receives a sequence of calls m and/or returns m while p2 receives a sequence
of pairs m,m. Two protocols p1, p2 are compatible because p1 can always accept sequences
of m,m sent by p1. Note that, while p2 only sends sequences of flat pairs of m,m, p1 can
accept three different kinds of sequences: a sequence that consists of only calls m, a sequence
that consist of only returns m, and a sequence of both calls m and returns m (where the
number of calls and returns do not have to be equal). When aspect A of class Amoc applies
to p2 to produce new protocol p3, it allows p3 to send sequences that consist of any number
of m and/or m (but the number of m events cannot exceed the number of m events). Since
these kinds of sequences are always accepted by p1, p1 and p3 are also compatible. Hence,
compatibility is preserved for these particular protocol and aspect classes.

6.4 Conclusions

In this chapter we have considered problems of aspect-based evolution on components based on
VPA-based interaction protocols. Concretely, we have discussed the following issues. First, in
order to be applicable in a component-based system, an aspect language should be expressive
enough to be able to capture interaction protocols of components and to define modifications
to those component protocols. Furthermore, the ability for aspects to manipulate interaction
protocols keeps the application of aspects to be less invasive to components. Second, there is
a need for a method to analyze the properties of component-based systems that are subject to
aspect-based evolution. This kind of analysis helps ensuring that the modifications introduced
by an aspect do not introduce problems to a component system.

We have presented a concrete approach to address these two problems. Our approach
harnesses the VPA-based pointcut language that permits the specification of interaction pro-
tocols in terms of sequences of events, and provides a set of advice operators that allow us
to define modifications to component protocols. We have shown how our aspect language
enables the analysis of properties of compositions that are subject to evolution. To this end
we have proposed several syntax-defined classes of protocols and evolutions that cover three
fundamental means of evolution that are specific to VPA-based protocols. Concretely, we
have studied the evolution properties of three specific VPA-based advice operations: (i) clos-
ing of open call events, (ii) constraining the depth of nested interacting structures, and (iii)

136 CHAPTER 6. COMPONENT EVOLUTION AND VPA-BASED ASPECTS

the insertion of nested pairs of interactions.
After a motivation of the corresponding evolution scenarios in the context of the evolution

of P2P systems, we have shown how to prove the preservation of three types of (classes
of) composition properties in the presence of evolution: compatibility and substitutability
properties among interacting components, as well as more specific VPA-based composition
properties.

Our approach is attractive notably for two reasons. First, the reasoning procedure for
the preservation of property of a system is rather simple once the effects of the aspect on the
system has been formally proved. Second, since property preservation is proved for protocol
classes instead of individual protocols, the proven properties are applicable to a large number
of concrete evolution scenarios.

However, our approach has its own limitations. First, our approach is incomplete: we
have chosen classes of protocols and aspects for evolution that cover the most fundamental
evolution scenarios that are specific to VPA-based protocols. Other scenarios exist that are
not covered by the classes discussed here. Furthermore, there are obviously other composition
properties that are of interest in evolution scenarios. Once again, we have only covered the
most fundamental ones, notably compatibility and substitution that form the cornerstone
of any theory of component composition. Second, not all property preservation can be es-
tablished just by exploiting the characteristics of the aspect language. There are evolution
scenarios where we need to know every detail of the actual system in order to reason about the
effects of aspect-based evolution, that is, the scenarios cannot be abstracted into those covered
by general classes of protocols and aspects. Finally, the method to establish “ready-to-use”
properties of aspect operators for protocol classes requires significant expertise.

Chapter 7

Model checking VPA-based
aspect-oriented programs

7.1 Introduction

The ability of aspects to modify a program’s execution makes it more difficult to predict
the behavior of the woven system. The constructive approach to the definition of correctly
evolving component based systems that has been presented in the previous chapter, proposes
a partial answer to this challenge. In this chapter we investigate verification techniques
based on model checking [20, 40] as a complementary means to ensure the correctness of the
composition of aspects and the base program.

In recent years, there have been a number of studies, e.g., [77, 73, 76, 45, 116, 59], on the
use of model checking technique to verify aspect-oriented systems. Generally, this technique
relies on using a model checker to perform verification systematically on the model of a system
against a property in order to conclude whether the property is satisfied by the system. In
Section 3.3.1, we have reviewed two important model checking approaches for aspect-oriented
programs. The first approach [59] proposes to build the input model from the aspect and
the assumptions of the aspect about the base program and then to use the model checker
NuSMV [38] for the verification. This approach allows modular verification in the sense that
the checking process is performed on the aspect and the assumptions of the aspect about
the base program but not the actual base program itself. The second approach [76] is based
on model checking technique using CTL [39]. According to this approach, the states of the
system model are first labeled with (sub-formulas of) the property. The labels on the states
around the application of the aspect advice are then consulted in order to reason about the
property. Both approaches employ fairly complicated algorithms that are only applicable to
aspects that have regular-like pointcuts to construct verification models. Hence, it is difficult
to use these approaches on VPA-based aspects. As a consequence, we have considered these
approaches references and developed our own approach for model checking VPA-based aspect
programs.

The remainder of this chapter is organized as follows. In section 7.2 we propose our
approach to apply model checking on VPA-based models. We then present the framework we
have developed for our approach in Section 7.3. In section 7.4, we compare several existing
model checkers with respect to different characteristics that have determined our choice of a
concrete model checker to be used for the experiments we have conducted. In Section 7.5, we

137

138 CHAPTER 7. MODEL CHECKING VPA-BASED AO PROGRAMS

perform experimental verifications on some examples with a model checker and then evaluate
the results. Section 7.6 concludes the chapter.

7.2 Motivation and approach

In order to verify a system using model checking, one needs to provide two essential inputs:
a system model, which is typically defined as a transition system, and a property to be
verified, which is often expressed as a temporal logic formula. A model checker then performs
verification of the property on the system. When a VPA-based aspect is woven into a base
program, we expect to obtain a VPA-based system. As we wish to use model checking
on VPA-based systems, we would need a model checker that is capable of verifying visibly
pushdown models.

However, currently there is no model checker for VPA-based systems. Existing model
checkers are only applicable to systems that can be described by (some variants of) finite
state automata (which are less expressive than VPAs). All model checking approaches that
have been proposed for aspect-oriented programs also only deal with finite state system model.
Furthermore, the inclusion check operation (which is essential for building a model checker)
on VPAs is still too expensive for an implementation of a model checker to be practical.
As a consequence, we cannot use existing model checkers, notably solutions such as those
introduced in Section 3.3.1, directly to VPA-based systems.

Hence, instead of model checking a VPA-based system model, we propose to use a more
abstract model, a finite-state based system, that is derived from the VPA-based model and
then run an existing model checker on this abstract model. There is a trade-off with this
approach in that we have to sacrifice some accuracy of checking the exact system model. Our
goal is to obtain an abstract model which approximate closely VPA-based properties so that
verification results on the abstract model provides us with sufficiently precise results about
the VPA-based system model.

7.3 A framework for model checking VPA-based AO programs

In this section, we present the framework that we have developed for verifying VPA-based
aspect-oriented programs by using model checking. We first formally define the framework in
section 7.3.1. We then present our method for constructing an abstract system model from a
VPA-based model in Section 7.3.2.

7.3.1 Model checking framework

A model checking process for an AO system needs three different inputs: a base program S, an
aspect A and a property P . The goal is to check whether the augmented program built from
a base program S and an aspect A satisfies a property P . The base program is supposed to
be described by a VPA. The aspect is (an abstraction of) a VPA-based aspect. The property
can be a LTL or a CTL formula. The form of the property definition is decided later based
on which specific model checkers are used to check the abstract model.

Our model checking procedure is illustrated in figure 7.1. In the figure, rectangle boxes
represent input or output data, and the diamond-shaped ones represent processing steps. The
procedure starts by producing an abstract transition model from the VPA-based augmented

7.3. A FRAMEWORK FOR MODEL CHECKING VPA-BASED AO PROGRAMS 139

system model and then uses a specific model checker to verify this abstract transition model
against the given property.

Base Program

S

VPA-based Aspect

A

Step 1
Weave aspect to base program

VPA System Model

MV

Step 2
Transform VPA to FSA-based model

FSA System Model

MF

Step 3
Produce input model for

model checker

Input Model

MI

Property

P

Step 4
Model check using existing

model checker

Verification result

Yes/No

Figure 7.1: Model checking procedure on VPA-based AO programs

The procedure consists of four major steps:

1. Weaving: Weave aspect A into base program S to obtain VPA MV . This weaving
process is very similar to the one defined in Section 4.3.3 of Chapter 4. Basically, in this
process, we construct the VPA MS that represents the base program S and the VPA
MA that represents the pointcut of aspect A. MatchingMA against the execution ofMS

allows us to determine applicable join points where aspect advice should be executed.
We then add states and transitions representing the aspect advice to the VPA MS at
applicable join points to obtain the composed VPA model MV . Figure 7.2 shows an
example of VPAs representing a base program, an aspect and the composed system. In
this example, aspect advice ad is supposed to be executed at the join point represented
by the VPA return transitionm. Therefore, the composed modelMV includes additional
state and transition representing this advice.

140 CHAPTER 7. MODEL CHECKING VPA-BASED AO PROGRAMS

0 1

m/+�

m/-�

l

MS (base program)

1

m/+�

m/-� ▷ ad

MA (aspect)

0 1

m/+�

m/-�l

MV (composed system)

2ad

Figure 7.2: VPAs of a base program, an aspect and the composed system

This weaving works as we can statically build the woven program from the base program
and a VPA-based aspect. The VPA-based aspect language currently does not allow
dynamic conditions in pointcuts so we always know in advanced where the aspect will
be applied.

2. Abstraction: Transform VPA MV into an abstract model, denoted as MF , that can
serve as an input model for a typical model checker. This step is indeed an abstraction
process because we have to approximate some features that supported by a VPA but
not by a FSA, most importantly, the stack.

3. Input model generation: Produce an input model MI for a specific model checker.
Since we aim at a framework that is as independent from a real model checker as
possible, the specification of the abstract model MF is quite general, i.e., not defined
in the language of any specific model checker. Hence, after obtaining MF we have to
produce a description of the model in the language accepted by the model checker that
we actually use. This step can be automatically performed by a converter.

4. Check: Verify whether the model MI satisfies property P using the model checker.
This step is automatically performed by the chosen model checker.

7.3.2 Abstracting VPAs into finite-state machines

We now present the details of the second step where we construct an abstract model from
the original VPA-based system model in the following.

Every VPA features a stack whose content can be updated by transitions. Transitions
of a VPA are classified into three different groups: local transitions that do not affect the
stack, call transitions that push symbols onto the stack, and return transitions that pop
symbols from the stack. An input model for a typical model checker, however, does not
feature a stack. Therefore, we have to eliminate the stack of a VPA system model in order
to transform it into a model that can be accepted by a model checker. The resulting model
should approximate sufficiently precisely the relevant behaviors of the original model so that
interesting verification results for the original VPA model can be obtained from the resulting
model.

We basically have two options for handling the stack of a VPA. The first option is to
approximate the depth of the stack to a given value so that we can use a limited number
of finite-state transitions to model nested structures. The second option is to simulate the
stack and associated constraints using other means such as variables and conditions defined
for transitions. The goal of both options is to retain the semantics of the stack as much as
possible. In the following we discuss the two approaches in more details.

7.3. A FRAMEWORK FOR MODEL CHECKING VPA-BASED AO PROGRAMS 141

7.3.2.1 Approximating the depth of the stack component of a VPA

The stack component of a VPA permits the modeling of nested structures of opening and
closing events. Normally, there is no restriction on the depth of the stack component of a
VPA and thus nested structures described by a VPA can include arbitrary number of sub-
levels. Without a stack, a typical FSA cannot describe such kinds of nested structures.
However, if we know in advance the maximum depth of a nested structure, it is possible to
model the structure by a FSA. In principle, this FSA is constructed by composing a number of
“sub-FSAs” that match the nested structure until the given maximum depth. In the following
we introduce the general ideas of such abstraction approach where we approximate the depth
of the stack component of a VPA to a given number so that we can use a FSA to model the
system originally defined by that VPA.

Let us consider an example in order to demonstrate the above abstraction method. In
this example, we wish to transform the VPA modeling the nested structure of the opening
event m and the corresponding closing event m. Figure 7.3 illustrates the original VPA MV

and three different FSAs obtained by approximating the maximum depth of MV ’stack. The
stack symbol α is pushed into the stack when m is taken and popped off the stack when m
is taken. State 0 of MV is the final state (i.e., accepting state). We then abstract the VPA
MV by approximating the depth of the stack of MV to three values 1, 2, 3 and obtain three
FSAs M1

F , M
2
F , M

3
F respectively. In other words, M1

F defines all the nested structures that
can be defined by MV when the maximum depth of the stack is 1 and states {0, 1} are the
accepting states. Similarly, we obtain M2

F , M
3
F (and others) when we increase the number to

which we approximate the depth of stack of MV .

MV

0m/+� m/-�

0 1

m

m

MF
1

2

m

m

0 1

m

m

MF
2

2

m

m

0 1

m

m

3

m

m

MF
3

max depth = 1

m
ax

 d
ep

th
 =

 2 max depth = 3

Figure 7.3: Approximating the depth of the stack of a VPA

This abstraction method is an under-approximation method. That means, the structures
(or sequences of events) described by the obtained FSA are the subset of those described by
the original VPA. Hence, if a model checker proves that the system described by the obtained
FSA violates a property φ then we can conclude that the original VPA also violates φ. The
precision of this abstraction method depends on the value of the depth of stack that we choose
to serve as the maximum value. The higher the depth the more precise the abstraction.

7.3.2.2 Simulating the stack component of a VPA

In this approach, we perform a finer abstraction on a VPA model that yields a variant of a
finite state automaton that carries additional information from the stack of the original VPA

142 CHAPTER 7. MODEL CHECKING VPA-BASED AO PROGRAMS

model in addition to the standard state and transition sets. The resulting model is more
expressive than a finite state automaton: we refer to this model as a counter-based transition
system. Note that although counter-based transition systems are more expressive than FSA,
they still allows model checking performed by model checkers that support them.

Definition 5 (Counter-based transition system). An intermediate counter-based transition
system, which is a variant of the labeled transition system introduced by Milner [93], is a
5-tuple M = (Q,Qin, δ, χ,QF), where� Q is a set of states� Qin is a set of initial states� QF is a set of final states� χ is a set of counters that are initiated by constant expressions� δ ⊆ (Q×Q× L×A× C) is a transition relation where

– L is a set of labels

– A is a set of actions associated to a transition. Actions are defined by assignments
that increase or decrease counters.

– C is the set of conditions (or guards) associated to a transition. Conditions are
defined by inequalities that express whether counters are greater or smaller than
other counters or constant expressions.

The principle behind the transformation of VPAs into these counter-based transition sys-
tems is to simulate the stack component and transitions of a VPA model by adding a set
of counters, actions, and conditions associated to transitions of a finite state automaton. In
the resulting counter-based transition model, counters are used to keep track of the number
of call and corresponding return transitions. A transition can only occur if its condition (or
guard) is satisfied at the current state. When a transition occurs, the action associated to
that transition is also taken which will then modify its counter. Hence, this transformation
actually produces a variant of FSA which is more expressive than a “pure” FSA. However,
most of the currently available model checkers accept a similar model which is more expres-
sive than a FSA (but not as expressive as a VPA since such model normally does not have a
stack).

Definition 6 (Construction of counter-based transition system from a VPA). From a VPA
V = (QV , QinV ,ΓV , δV , QFV), we construct a counter-based transition system F = (QF , QinF , δF , χF , QFF)
whose state and counter sets defined as follows:

QF = QV

QinF = QinV

QFF = QFV

χF = ΓV

7.3. A FRAMEWORK FOR MODEL CHECKING VPA-BASED AO PROGRAMS 143

The transition set δV is a one-to-one mapping on the transition set δF while the stack
of the VPA is simulated by the use of counters and conditions in F . These counters and
transition conditions ensure that the number of return transitions never exceeds the number
of corresponding call transitions. The transition set δF is created from the transition set δV
as follows:� For each push transition ct = (q, a, q′, γ) of VPA model V , we create a transition

at = (q, q′, a, γ′ = γ + 1).� For each pop transition rt = (q, a, γ, q′) of VPA model V , we create a transition at =
(q, q′, a, γ′ = γ − 1, γ > 0).� For each local transition lt = (q, a, q′) of VPA model V , we create a transition at =
(q, q′, a).

The above approach for stack simulation is, however, only applicable to a limited class of
VPA models. When there is one pair of call/return (or open/close) events in the VPA model,
the simulation reflects the stack and constraints precisely, i.e., no information is lost through
abstraction. When there are more than one pair of call/return events, the above simulation
does not always reflect the stack and constraints correctly because the use of counters for
different pairs of events does not record explicitly the stack content.

Let us consider a small example that illustrates the limitation of stack simulation. Fig-
ure 7.4 demonstrates an example where the resulting counter-based transition model contains
scenarios which do not exist in the original VPA model. The original VPA model describes
a system consisting of nested calls and returns of m and n. The pair of events m,m push
and pop α while n, n push and pop β in and out of the stack. At state 2, we expect that a
sequence of returns n will occur before a sequence of m since β symbol(s) would be on the top
of the stack when the system first evolves to this state. However, the resulting counter-based
transition model does not reflect this property. It implies that both m and n can occur at
state 2 without any constraint on the order of occurrence.

0 1

2

m/+� n/+�

m/-� n/-�

l

l

0 1

2

m/�=�+1 n/�=�+1

m/�=�-1 n/�=�-1

l

l

�>0�>0

VPA model (source)
Counter-based model

 (target)

Figure 7.4: Stack simulation with counters and conditions

Hence, the use of variables to simulate the stack content is only correct when the transi-
tions in the model push or pop using the same stack symbol. Although solutions to remedy
the above problem exist for some situations (for instance, we can add condition β == 0 to

144 CHAPTER 7. MODEL CHECKING VPA-BASED AO PROGRAMS

the m transition at state 2), we try to avoid creating such models (if possible) by doing stack
simulation on counterpart models where only one stack symbol is used.

Similarly to the first abstraction approach, creating an abstract model by stack simula-
tion is also an under-approximation of the original model because the value of the variable
representing a stack always has an upper bound (which may, however, be quite large).

As we have just shown above, both approaches to transform a VPA model to a counter-
based transition model involve some approximation of the original model. As a consequence,
verification results achieved using model checking techniques over the FSA model may not
always hold for all original VPA models. If the model checker proves that the abstract model
satisfies the property, we can only conclude that the original model satisfies the property
on the condition that the depth of the stack is within a given range. In many cases, this
conclusions is sufficient. On the other hand, if the model checker proves that the abstract
model violates the property, we can use the counter-examples provided by the model checker
as a clue to investigate the violation and improve the original model.

7.4 Comparison of existing model checkers

In order to realize the framework above we have investigated several model checkers. Ta-
ble 7.1 presents a list of a few well-known model checkers, their features that are particularly
important to our study, and references to articles about them.

Table 7.1: Some model checkers and corresponding properties
Model checker System model Support Property References

for counters

SPIN Promela (SPIN’s language) Yes LTL [65, 64]

NuSMV Finite state machine Yes CTL,LTL [38, 37]

UPPAAL Real-time automata Yes CTL [78, 26]

LTSA Finite state machine No CTL [87]

Three properties of model checkers we are particularly interested in are the following:� The model of the input system� What types of properties are supported� Efficiency and usability of the model checkers

Input system model. From our point of view, the type of input model that is supported by
a model checker is the most important criterion that determines our choice of model checker.
We are especially interested in model checkers that support the use of counters, guards and
assignments associated to transitions as these characteristics facilitate the transformation
from the abstract counter-based transition model to the input model for the model checker.
All model checkers in Table 7.1 use input models that are given as textual descriptions of state
machines in their tool-specific formats. SPIN, NuSMV and UPPAAL permit the declaration
of variables, guards and assignments. The state machines used by these model checkers are
relatively close to the abstract counter-based system model that is generated as part of our
approximation process.

7.5. MODEL-CHECKING VPA-BASED P2P SYSTEMS 145

Property specification. Generally, most of the model checkers support properties speci-
fied in some variants of LTL or CTL logics. SPIN and LTSA accepts LTL properties. NuSMV
provides the most flexibility by accepting both LTL and CTL properties. UPPAAL accepts
only CTL properties. Although the type of logic in which the property is specified is not
the most important criterion in our context, we prefer model checkers that support CTL
properties as we might want to verify properties that involve different execution paths.

Efficiency and usability. Since the abstraction from VPA-based properties to regular
systems generates large finite-state machines (that are of a very specific form), the efficiency
of model checkers is an important criterion for the feasibility of our approach. However, while
the first two features, system and property specification of model checkers, can be evaluated
simply, it is more difficult to have a comparative view on the scalability properties of model
checkers since verification tools are typically designed and optimized for different specific
domains. Usability is another less important criterion that we have taken into account.
We are basically interested in how easy it is to create system models and whether a model
checker provides simulation tools. We have found that there are sufficient means to guide
the modeling with SPIN, NuSMV and UPPAAL while there is almost no documentation for
LTSA available. Both SPIN and UPPAAL provide GUI-based editors that provide intuitive
support for the creation of system models. These two model checkers also provide simulation
tools that facilitate modeling and testing processes.

7.4.1 UPPAAL for model checking of VPAs

We have selected the model checker provided by the UPPAAL tool [78] as the model checker
to conduct the experiments. The UPPAAL model checker basically supports the verification
of finite state automata (more precisely, a kind of timed finite state automata).

In principle, all the aforementioned model checkers are capable of verifying some variants
of finite state automata. Our choice of UPPAAL to conduct our validation is justified by
two main reasons. First, UPPAAL allows the definition of variables and constraints, both of
which can be associated to transitions in a system model. This ability allows us to build the
model using variables and constraints to simulate the stack component of an original VPA
model. Second, UPPAAL provides the convenience of an integrated tool environment where
we can construct the model and run simulations interactively. This feature is important in
practice because it enables an iterative development process for the definition of models that
are correct and amenable to verification, a process that can be highly time and resource
consuming depending how the model is constructed. There have been times when we had to
change the way we model the system in order to avoid deadlock situations due to incorrect
modeling or to put a lower upperbound (to the default upperbound) to a variable in order
for the verification process to terminate.

7.5 Model-checking VPA-based P2P systems

In this section, we present two validation scenarios to demonstrate how model checking is
performed using the VPA approximation method presented in the previous section. We use
the P2P-based grid system introduced in Chapter 5 as the base application for our validation
scenarios.

146 CHAPTER 7. MODEL CHECKING VPA-BASED AO PROGRAMS

We have developped two validation scenarios to which we have applied UPPAAL in order
to verify the collaboration regarding task submission and distribution among different parties
in the P2P-based grid system, i.e., task submitters, managers and workers. When the proto-
cols that govern the communication among parties contain sequences of several synchronized
events, it can be difficult to manually evaluate the correctness of the collaboration especially
when there are more than two parties involved. Therefore, the model checker can assure us of
the smooth cooperation or detect possible conflicts among parties in the system. In the first
scenario, we evaluate the collaboration between a task submitter and a manager in which the
task submitter sends tasks to the manager and then gets back results from the manager. In
the second scenario, we extend the first evaluation by considering the third party, the worker,
in the collaboration. In this case, the manager communicates with the worker regarding task
distribution and result collection.

7.5.1 Validation scenario 1: collaboration between two parties

In this example, we consider the cooperation between a task submitter and a manager ac-
cording to the communication protocols illustrated in Figure 7.5. The protocols we consider
here are slightly different from the ones presented in Chapter 5. We have removed internal
events that do not participate directly in the communication as they do not have any effect
in the correctness of the collaboration.

The protocols describe the transitions in a communication session as follows. From the
initial states, both parties enter the communication by the start events. Next, the submitter
can send tasks (described by the sendTask event) to the manager while the manager is in the
position to accept the tasks from the submitter. After receiving all the tasks and having the
tasks getting done, the manager sends back a message that contains the results of the tasks
(described by the sendResult event). There is a constraint imposed on the sendTask and
sendResult events: the number of sendResult events cannot exceed the number of sendTask
events. Therefore, we model sendTask events as call transitions and sendResult events as
corresponding return transitions. After the submitter receives the results, the submitter
and the manager can return to their initial states which are also their final states. The
composition of models of the submitter and the manager is considered the base program S,
cf. the framework definition illustrated in Figure 7.1.

0 1

Submitter Manager

10

2

Figure 7.5: Protocols of the submitter and the manager

Now let us assume that the submitter expects to receive a separate result message for each
of the task it has sent to the manager. In the original protocol of the manager, the manager
only sends results back to the submitter through only one sendResult message event. Hence,
we have to modify the protocol of the manager so that it can send several messages to return

7.5. MODEL-CHECKING VPA-BASED P2P SYSTEMS 147

results to the submitter. Note that any modifications to the protocol of the manager has
to meet the constraint which requires the number of sendResult events not to exceed the
number of sendTask events. This modification can be done using a VPA-based aspect with a
closeOpenCalls advice defined as follows:

A =µa.start ; µb.sendTaskc ; b

� sendResultc ⊲ closeOpenCallsendResultc ; quit ; a

The above aspect A will add a number of sendResult events to the original protocol of
the manager so that the manager sends an equal number of sendResult message back to the
submitter and thus satisfies the expectation of the submitter on the protocol level. Given the
base program S presented above and the above aspect A, we perform Step 1 of the model
checking procedure shown in Figure 7.1 and weave the aspect A with the base program S and
obtain the VPA-based system model MV illustrated in Figure 7.6.

10

2

0 1

Submitter Manager

Figure 7.6: Models of submitter and manager after modified by aspect A

In Figure 7.6, the protocol of the submitter does not change while the protocol of the
manager is modified so that there is an extra transition at state 2. This additional transition
represents sendResult events generated by aspect A. After obtaining the VPA-based system
modelMV , we proceed to take Step 2 and Step 3 of the chart shown in Figure 7.1 to transform
this model into an input model for model checker UPPAAL. Since we only plan to use the
model checker UPPAAL to do the verification, we skip Step 2 (transforming the VPA-based
model to a generic FSA model) and build the input model for UPPAAL directly from the
VPA-based system model (Step 3).

As discussed in the previous section, we can use one of the two abstraction methods to
construct the input model for the model checker. We choose to apply the second abstrac-
tion method (i.e., simulating the stack component) to the VPA-based system model because
UPPAAL supports the use of variables and constraints for (fixed-numbered repetitions of)
transitions.

Figure 7.7 and Figure 7.8 show the protocols the submitter and the manager that have
been adapted to be input models for model checker UPPAAL respectively.

In the model of the submitter shown in Figure 7.7, we use the variable tc to simulate
the stack manipulated by the sendTask and sendResult transitions. When the transition
representing the sendTask event takes place, we increase the tc variable by one. When the

148 CHAPTER 7. MODEL CHECKING VPA-BASED AO PROGRAMS

quit ?

start?
tc:=0

tc > 0

sendResult?
tc:=tc-1

tc < task

sendTask!
tc := tc+1

Figure 7.7: Protocol the submitter modeled in tool UPPAAL

transition representing the sendResult event takes place, we decrease the tc variable by one.
We use the constant task (which can be set as a parameter for an instance of the submitter)
to mark the upper bound value of the tc variable. In fact, this constant defines the maximum
depth of the stack. We define the constraint tc < task for the transition representing sendTask
so that no transition can be taken if the number of sendTask events reach the maximum
allowed. Similarly, we use constraint tc > 0 on the transition representing sendResult so
that the number of sendResult never exceeds the number of sendTask which is the constraint
implied by the stack in the original VPA-based model.

2

0 1

sendResult!

quit ! sendResult!

start!

sendTask?

Figure 7.8: Protocol of the manager modeled in tool UPPAAL

In the model of the manager shown in Figure 7.8, we do not have to use other variables
and constraints to simulate the stack because we already do that for the submitter model
and that communications between processes in UPPAAL are synchronized. If the submitter
is not in the state where it can receive sendResult messages, then the transitions representing
sendResult events in the manager model cannot take place.

We then apply step 4 in the model checking procedure and use UPPAAL to verify the
input model. We would like to know whether the new system after using aspect A to modify
the manager protocol can run smoothly without any possible deadlock. This property is
encoded in the UPPAAL property specification language as A[] not deadlock, i.e., there
is no path in the system where deadlock can occur. We have successfully used UPPAAL
to verify the above model against this property. The model checker could confirm that the
property was satisfied by the input model in just a few seconds.

7.5. MODEL-CHECKING VPA-BASED P2P SYSTEMS 149

7.5.2 Validation scenario 2: collaboration among three parties

In this example, we consider a more complex setup of the communication in the peer-to-peer
grid computing system. Figure 7.9 shows the protocols of three parties in the system: the
submitter, the worker, and the manager. While the protocol of the task submitter does not
change in comparison with the protocol shown in example 1, the protocol of the manager has
changed and there is an additional protocol that represents the participation of the worker in
the communication.

0 1

Submitter

Manager

10

2

3

4

Worker

10

2

Figure 7.9: Protocols of the task submitter, the worker, and the manager

The protocol of the worker shown in Figure 7.9 expresses the transition between the states
of the worker as follows. From the initial state, the worker waits for task distribution (rep-
resented by distributeTask events) from the manager. The worker can receive several tasks.
The worker then starts to process the task, i.e., performing the utility computation. Task
processing is considered as being a local event of the worker, so we omit it from the proto-
col for simplicity. The worker then returns the results of the tasks to the manager through
collectResult events. The number of the collectResult events should not exceed the number
of distributeTask events so we model distributeTask as call transitions and collectResult as
return transitions. After returning all the results to the manager, the worker finishes its
session by turning back to its initial state.

The protocol of the manager shown in Figure 7.9 expresses the transition between the
states of the manager as follows. From the initial state (state 0), the manager starts its
session and enters state 1. At this state, the manager can start accepting requests to process
tasks from the task submitter (represented by sendTask events). After receiving a request,
the manager distributes the task to its workers (represented by distributeTask events). It
can continue to wait for other requests and to distribute them. The manager then begins to
collect results from the worker (by entering state 4). After collecting all the results, it sends

150 CHAPTER 7. MODEL CHECKING VPA-BASED AO PROGRAMS

the results to the task submitter and finally quits the session.
Hence, in this example, the base program S is the combination of the three transition

systems shown in Figure 7.9. Now let us assume that we would like to add the possibility for
the worker to quit the computing session in the middle of the session, i.e., before some of the
results have been collected. We would implement this modification by an aspect defined as
follows:

A =µa.distributeTask ; a

� quit ⊲ finish ; a

The application of the above aspect A to the protocol of the worker changes the original
protocol to the one illustrated in Figure 7.10. The new transition from state 1 to state 0
represents the application of the aspect.

10

2

Figure 7.10: Protocol of the worker after the application of aspect A

Hence, the system model MV obtained by aspect weaving according to the chart in Fig-
ure 7.1 is the combination of three protocols: the protocols of the task submitter and the
manager in Figure 7.9, and the new protocol of the worker in Figure 7.10. Similar to example
1, here we skip step 2 of the model checking procedure and build the input model for UPPAAL
directly from MV .

Figure 7.11 and 7.12 show the UPPAAL model of the manager and the model of the
worker respectively (the UPPAAL model of the submitter is the same as the one shown in
Figure 7.7). The input model MI is the combination of these three models.

s4

s3

s2

s0 s1

sendResult!

sendResult!

collectResult?

collectResult?

distributeTask!

quit !

start!

sendTask?

Figure 7.11: Protocol of the manager modeled in tool UPPAAL

In the model of the worker presented in Figure 7.12, we use variable at to simulate the stack
that is manipulated by distributeTask and collectResult transitions. We put constraint at > 0
on the collectResult transitions to ensure that the number of results returned does not exceed

7.6. CONCLUSIONS 151

s2

s1s0

at > 0

collectResult!
at := at - 1

at < task
distributeTask?
at:=at+1

at > 0

collectResult!

at := at - 1

distributeTask?
at := 1

Figure 7.12: Protocol of the worker modeled in tool UPPAAL

the number of tasks distributed. The transitions representing finish events are modeled as
ǫ-transitions in UPPAAL since it is not possible to have not synchronized transitions in the
UPPAAL models.

Now we again verify the deadlock property on the input model MI . The UPPAAL model
checker proves that the deadlock property is not satisfied by the input model MI that com-
prises three protocols of the submitter, manager, and worker. Hence, the modification of
the system by the aspect breaks the deadlock property of the system. Note that UPPAAL
enables the deadlock satisfaction proof on the original base program, i.e., without the aspect
modification satisfies the deadlock property.

The problem introduced by the aspect happens when the following conditions are met:� The submitter is in state s1 where it cannot send more tasks to the manager because it
reaches the maximum number of tasks it can send.� The manager is in state s1 where it waits to collect results from the worker.� The worker is in state s0 where it waits to get tasks distributed by the manager.

When the submitter is in state s1 and it cannot send more tasks, it can only take the
sendResult transition to proceed. However, it has to wait for the manager to take the corre-
sponding transition. When the manager is in state s1, it can take the sendTask transition or
the collectResult transition to proceed. Since, the submitter cannot send more tasks, the only
way to the manager to get out of state s1 is to collect result from the worker. However, at the
moment, the worker has already quit the previous session, currently is in its initial state s0
and waits for new tasks which cannot be provided by the manager. The whole system blocks
at this point.

7.6 Conclusions

In this chapter, we have discussed potential model checking approaches for verifying VPA-
based models. Since there exists no model checker that explicitly supports VPA input models,
we have chosen to use existing model checkers to verify finite-state based abstractions of
VPA-based models. We have introduced a model checking procedure for the verification
of VPA-based aspect systems. This procedure includes a weaving step where aspects are
weaved into the base program, the abstraction steps where VPA models are transformed

152 CHAPTER 7. MODEL CHECKING VPA-BASED AO PROGRAMS

into more abstract models (basically variants of FSAs) that are supported by existing model
checkers, and the verification step where the interested property is verified by the chosen
model checker. However, this model checking procedure has two limitations. First, we still
have to run verifications on the woven system, which means state space explosion is possible
if the system model is large. Second, we verify the abstract system rather than the actual
system so the verification result is only reliable provided that certain conditions (depending
on the abstraction method employed) are met.

We have introduced two abstraction methods that can be employed to create a finite-state
based input model from a VPA-based one. In the first method, we basically fix the depth
of the nested structure then unfold the repetitions into sequences of events. In the second
method, we introduce the concept of counter-based transition system where we use variables
and constraints (or also called guards) that are supported by the model checker to simulate
the stack of the VPA. These two abstraction methods are subject to the same limitations.
First, they require the restriction of the depth of stack-based operations. Second, they do
not apply well for protocols that involve two or more pairs of corresponding events nesting
within the others.

Finally, we have showed how model checking is done using our approach through the
verification of two validation scenarios with model checker UPPAAL.

The limitations of our current model checking approach suggest a few directions for future
work. First, the modular model checking technique [59] could be attempted for VPA-based
aspects. Second, a tool that systematically transforms a VPA model to a counter-based
transition model can be useful as the transformation process is very tedious and error-prone
if the original system is not trivial. Such a tool may enable a semi-automatic abstraction
process and improvement steps suppressing obvious non-existing paths in the original model
are performed manually.

Chapter 8

Conclusion

The main goal of this thesis consists in the study and development of an expressive aspect-
oriented language that is amenable to property analysis and verification. We have proposed
using VPAs as a foundation for the definition of the VPA-based aspect language that supports
expressiveness and property verification. In addition, we have studied its application and
analysis support in the context of component composition. Finally, we have considered the
use of model checking technique for the verification of VPA-based aspect systems.

The remainder of this chapter is organized as follows. Section 8.1 recapitulates the major
contributions of this thesis. Section 8.2 presents directions for future work.

8.1 Contributions

We have presented the following contributions in this thesis:

VPA-based aspect language and VPAlib. We have defined the VPA-based Aspect
Language, a new history-based aspect language defined upon the class of visibly pushdown
automata. Our aspect language features a VPA-based pointcut language that is capable of
properly expressing non-regular protocols, including well-balanced nested pairs of events or
recursive function calls. In contrast to aspect languages that feature context-free or Turing-
complete pointcuts, our VPA-based aspect language allows more possibilities for analyzing
the properties of the aspects and/or the program modified by the aspects.

We have provided, in particular, support for for non-regular nesting structures, depth
constructors, permutation operators, and regular expressions. These special constructors
help facilitate the declarative definition of VPA-based pointcuts. We have also introduced
the closeOpenCall operator as a special advice operator that can be used to close an open
calling context. We have defined a formal framework that allows to describe the semantics of
our aspect language precisely, e.g., in order to provide a guidance on the implementation of
VPA-based aspects. More concretely, this semantic framework defines how we can construct
a VPA from a VPA-based aspect , match the VPA against a base program execution, and
weave the corresponding advice into the base program.

We have implemented VPAlib, a library that provides the implementation of essential data
structures and operations for the VPA. The VPAlib library has been implemented in Java
SE 6 and released under LGPL license. We have provided a set of closure operations, the

153

154 CHAPTER 8. CONCLUSION

determinization operation and inclusion check for VPAs. These operations are critical for the
construction of VPAs as well as the verification of VPA-based protocols and aspects.

Analysis of VPA-based aspects and application to the evolution of component-
based systems. We have introduced an analysis technique for the detection of potential
interactions among VPA-based aspects that could may occur due to nondeterministic weaving.
We calculate the product automaton of two VPAs and pickup simultaneous occurences of the
same transitions in both VPAs as potential interactions. Our analysis technique is practically
supported by the interaction operation implemented in our VPAlib library.

Furthermore, based on the formal properties of VPA, we have developed constructive
means for the construction and evolution of correct component-based systems. We have
introduced an approach to prove the preservation of properties of systems modified by VPA-
based aspects. Our approach exploits the characteristics of our aspect language in order
to analyze the properties of a system. Concretely, we have studied the characteristics of
three aspect advice operators: (i) operators to close open call events, (ii) operator to cut the
depth of sequences of events, and (iii) operator to insert pairs of events. We have formally
proved that substitutability and compatibility properties are preserved for certain classes of
component interaction protocols and aspects that employ one of these three advice operators.
Our approach enables the preservation of correctness properties to be proved for classes of
aspects and protocols rather than individual ones

Harnessing model checking tools for VPA-based aspects. In order to harness the
efficiency of modern model checking tools, we have designed a framework for the use of model
checking techniques for the verification of VPA-based systems. VPA-based system models are
first abstracted into simpler input models that are practically supported by an existing model
checker. We then run the model checker tool to simulate and verify the property represented
by the input model. We have demonstrated our model checking framework through two
examples in the context of the peer-to-peer grid computing system. Model checking and
simulating using the checker tool has allowed us to discover errors in the system models that
can lead the systems into deadlock situations.

Applications. We have also shown how VPA-based aspects can be applied in two appli-
cation systems: (i) a typical setup of some remote access systems, and (ii) a grid computing
system over peer-to-peer network. In the first system, we use VPA-based aspects to super-
vise access in nested login sessions. In the second system, we use VPA-based aspects to
implement modules handling task monitoring, canceling and distributing in a typical grid
computing system.

8.2 Perspectives

This thesis work paves the way for a number of directions for future work:

VPAL. The aspect language should be made more expressive. This includes a larger set
of pointcut constructors, VPA-based mechanisms as well as other mechanisms proposed for
regular and non-regular protocols. Similarly, it is useful to have a more powerful advice
language with more specific operators. Second, the VPA-based aspect language should be

8.2. PERSPECTIVES 155

implemented for usage as an full-fledged development means. A long-term goal of future
work consists in the integration of VPA-based aspects with other types of protocols.

As to the analysis and verification of VPA-based aspects, operations such as the deter-
minization and inclusion check are critical. However, our current implementation provides
only limited optimizations and is subject to some severe limitations regarding the size of
models that can be reasonably handled. Hence, better optimization of implementations for
non-regular protocols should be investigated.

VPA-based aspects for components. Apart from compatibility and substitutability
properties, we could aim at proving the preservation of other properties using the approach
proposed in chapter 6. Besides, more classes of aspects and protocols should be studied so
that more classes that help establish a larger set of preservation properties can be defined.

Model checking. The performance and efficiency of model checking using different model
checkers might be quite different. Hence, one should evaluate usage of other model checkers
than UPPAAL, such as NuSMV or Spin, with the model checking framework that we have
introduced in chapter 7. Other approaches to use model checking techniques for VPA-based
systems could also be considered. For instance, we can use the operations provided by the
VPAlib library to perform analyses directly on VPA models without having to compromise
the precision of the verification results.

Applications. There is a large wealth of application domains that may benefit from more
expressive interaction protocols and provably correct evaluation methods based on protocols.
Service choreographies constitute but one important example. The development of aspect
languages that allow to express and manipulate software systems in terms of their interaction
protocols are of major futur interest and importance.

156 CHAPTER 8. CONCLUSION

Bibliography

[1] abc. The AspectBench Compiler. http://aspectbench.org.

[2] Beingrid Project Home Page. http://www.beingrid.eu/.

[3] CAPE Home Page. http://www.cs.technion.ac.il/ ssdl/research/cape/.

[4] FIPA interaction protocol specifications.

[5] General formulation of the Law of Demeter. http://www.ccs.neu.edu/research/demeter/
demeter-method/LawOfDemeter/general-formulation.html.

[6] Gnutella Message Board. http://www.gnutellaforums.com/.

[7] JBoss.org. http://www.jboss.org/.

[8] JXTA technology. https://jxta.dev.java.net/.

[9] Kazaa Home Page. http://www.kazaa.com/.

[10] Napster Home Page. http://www.napster.com.

[11] Remote Desktop Protocol. http://www.rdesktop.org/.

[12] Spring Framework. http://www.springframework.org/.

[13] Mehmet Aksit, Lodewijk Bergmans, and Sinan Vural. An object-oriented language-
database integration model: The composition-filters approach. In ECOOP, pages 372–
395, 1992.

[14] Mehmet Akşit, Siobhán Clarke, Tzilla Elrad, and Robert E. Filman, editors. Aspect-
Oriented Software Development. Addison-Wesley Professional, September 2004.

[15] Mehmet Aksit and Anand Tripathi. Data abstraction mechanisms in sina/st. In OOP-
SLA ’88: Conference proceedings on Object-oriented programming systems, languages
and applications, pages 267–275, New York, NY, USA, 1988. ACM.

[16] Jonathan Aldrich, Craig Chambers, and David Notkin. Archjava: connecting software
architecture to implementation. In ICSE, pages 187–197. ACM, 2002.

[17] Chris Allan, Pavel Avgustinov, Aske Simon Christensen, et al. Adding trace matching
with free variables to AspectJ. In Richard P. Gabriel, editor, ACM Conference on
Object-Oriented Programming, Systems and Languages (OOPSLA). ACM Press, 2005.

157

158 BIBLIOGRAPHY

[18] Robert Allen and David Garlan. A formal basis for architectural connection. ACM
Transactions on Software Engineering and Methodology, 6(3):213–49, July 1997.

[19] G. Alonso, F. Casati, H. Kuno, and V. Machiraju. Web Services Concepts, Architectures
and Applications. Springer-Verlag, Berlin, 2004.

[20] Rajeev Alur. Model checking: From tools to theory. In Orna Grumberg and Hel-
mut Veith, editors, 25 Years of Model Checking - History, Achievements, Perspectives,
volume 5000 of Lecture Notes in Computer Science, pages 89–106. Springer, 2008.

[21] Rajeev Alur and Parthasarathy Madhusudan. Visibly pushdown languages. In Proceed-
ings of the thirty-sixth annual ACM Symposium on Theory of Computing (STOC-04),
pages 202–211, New York, June 13–15 2004. ACM Press.

[22] David P. Anderson, Jeff Cobb, Eric Korpela, Matt Lebofsky, and Dan Werthimer.
SETIhome: An experiment in public-resource computing. Comm. ACM, 45(11):56–61,
November 2002.

[23] Ivica Aracic, Vaidas Gasiunas, Mira Mezini, and Klaus Ostermann. An overview of
CaesarJ. Transactions on Aspect-Oriented Software Development, 3880:135–173, 2006.

[24] Paul Attie, David H. Lorenz, Aleksandra Portnova, and Hana Chockler. Behavioral
compatibility without state explosion: Design and verification of a component-based
elevator control system. In I. Gorton et al., editor, Proceedings of the 9th International
Symposium on Component-Based Software Engineering, number 4063, pages 33–46,
2006.

[25] Steffen Becker, Sven Overhage, and Ralf Reussner. Classifying software component
interoperability errors to support component adaption. In Ivica Crnkovic, Judith A.
Stafford, Heinz W. Schmidt, and Kurt C. Wallnau, editors, Component-Based Software
Engineering, 7th International Symposium, CBSE 2004, Edinburgh, UK, May 24-25,
2004, Proceedings, pages 68–83. Springer, 2004.

[26] Gerd Behrmann, Alexandre David, and Kim G. Larsen. A tutorial on uppaal. In Marco
Bernardo and Flavio Corradini, editors, Formal Methods for the Design of Real-Time
Systems: 4th International School on Formal Methods for the Design of Computer,
Communication, and Software Systems, SFM-RT 2004, number 3185 in LNCS, pages
200–236. Springer–Verlag, September 2004.

[27] Robert Pawel Bialek. The architecture of a dynamically updatable, component-based
system. In COMPSAC, pages 1012–1016. IEEE Computer Society, 2002.

[28] Francisco Vilar Brasileiro, Eliane Araújo, William Voorsluys, Milena Oliveira, and
Flavio de Figueiredo. Bridging the high performance computing gap: the ourgrid ex-
perience. In CCGRID, pages 817–822. IEEE Computer Society, 2007.

[29] E. Brinksma, G. Scollo, and C. Steenbergen. LOTOS specifications, their implementa-
tions and their tests. pages 349–360, 1987.

[30] Alan W. Brown and Kurt C. Wallnau. Enginnering of component-based systems. In
Alan W. Brown, editor, Component-Based Software Engineering, pages 7–15. IEEE
Press, 1997.

BIBLIOGRAPHY 159

[31] Eric Bruneton, Thierry Coupaye, Matthieu Leclercq, Vivien Quéma, and Jean-Bernard
Stefani. The FRACTAL component model and its support in java. Software, Practice
Experience, 36(11-12):1257–1284, 2006.

[32] C. A. R. Hoar. Communicating Sequential Processes. Prentice Hall, 1985.

[33] Richard Cardone and Calvin Lin. Comparing frameworks and layered refinement. In
ICSE, pages 285–294. IEEE Computer Society, 2001.

[34] Robert Cartwright and Jr. Guy L. Steele. Compatible genericity with run-time types
for the java programming language. SIGPLAN Not., 33(10):201–215, 1998.

[35] Krishnendu Chatterjee, Di Ma, Rupak Majumdar, Tian Zhao, Thomas A. Henzinger,
and Jens Palsberg. Stack size analysis for interrupt-driven programs. Inf. Comput.,
194(2):144–174, 2004.

[36] C. C. Chiang. The use of adapters to support interoperability of components for reusabil-
ity. Information & Software Technology, 45(3):149–156, 2003.

[37] A. Cimatti, E.M. Clarke, F. Giunchiglia, and M. Roveri. NuSMV: a new Symbolic
Model Verifier. In N. Halbwachs and D. Peled, editors, Proceedings Eleventh Conference
on Computer-Aided Verification (CAV’99), number 1633 in Lecture Notes in Computer
Science, pages 495–499, Trento, Italy, July 1999. Springer.

[38] Alessandro Cimatti et al. NuSMV2: an opensource tool for symbolic model checking.
In Ed Brinksma and Kim Guldstrand Larsen, editors, Computer Aided Verification,
volume 2404 of Lecture Notes in Computer Science, pages 359–364. Springer-Verlag,
July 27–31 2002.

[39] E. M. Clarke, E. Allen Emerson, and A. P. Sistla. Automatic verification of finite state
concurrent systems using temporal logic specifications: A practical approach. ACM
Transactions on Programming Languages and Systems, 8(2):244–263, 1986.

[40] Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model Checking. The MIT
Press, Cambridge, Massachusetts, 1999.

[41] ObjectWeb Consortium. Fractal BPC. http://fractal.objectweb.org/fractalbpc/.

[42] ObjectWeb Consortium. Julia - the reference implementation platform of Fractal com-
ponent model. http://fractal.objectweb.org/julia/.

[43] Mario Coppo, Mariangiola Dezani-Ciancaglini, and Nobuko Yoshida. Asynchronous
Session Types and Progress for Object-Oriented Languages. In Marcello Bonsangue
and Einar Broch Johnsen, editors, FMOODS’07, volume 4468 of LNCS, pages 1–31.
Springer, 2007.

[44] Luca de Alfaro and Thomas A. Henzinger. Interface automata. In ESEC / SIGSOFT
FSE, pages 109–120, 2001.

[45] Giovanni Denaro and Mattia Monga. An experience on verification of aspect properties.
In IWPSE ’01: Proceedings of the 4th International Workshop on Principles of Software
Evolution, pages 186–189, New York, NY, USA, 2001. ACM.

160 BIBLIOGRAPHY

[46] Mariangiola Dezani-Ciancaglini, Dimitris Mostrous, Nobuko Yoshida, and Sophia
Drossopoulou. Session Types for Object-Oriented Languages. In Dave Thomas, ed-
itor, ECOOP’06, volume 4067 of LNCS, pages 328–352. Springer-Verlag, 2006.

[47] R. Douence, P. Fradet, and M. Südholt. A framework for the detection and resolution of
aspect interactions. In Proc. of GPCE’02, LNCS 2487, pages 173–188. Springer Verlag,
October 2002.

[48] Rémi Douence, Pascal Fradet, and Mario Südholt. Composition, reuse and interaction
analysis of stateful aspects. In Proc. of 3rd International Conference on Aspect-Oriented
Software Development (AOSD’04), pages 141–150. ACM Press, March 2004.

[49] Rémi Douence, Pascal Fradet, and Mario Südholt. Trace-based aspects. In Mehmet
Akşit, Siobhán Clarke, Tzilla Elrad, and Robert E. Filman, editors, Aspect-Oriented
Software Development. Addison-Wesley Professional, September 2004.

[50] Pascal Durr, Tom Staijen, Lodewijk Bergmans, and Mehmet Aksit. Reasoning about
semantic conflicts between aspects. In Kris Gybels, Maja D’Hondt, Istvan Nagy, and
Remi Douence, editors, 2nd European Interactive Workshop on Aspects in Software
(EIWAS’05), September 2005.

[51] Erik Ernst. Family polymorphism. In J. L. Knudsen, editor, ECOOP 2001, number
2072 in LNCS, pages 303–326. Springer Verlag, 2001.

[52] Javier Esparza, Antońın Kucera, and Stefan Schwoon. Model-checking ltl with regular
valuations for pushdown systems. In TACS ’01: Proceedings of the 4th International
Symposium on Theoretical Aspects of Computer Software, pages 316–339, London, UK,
2001. Springer-Verlag.

[53] Rod Johnson et al. The Spring Framework - Reference Documentation.

[54] Manuel Fahndrich and Robert DeLine. Adoption and focus: practical linear types for
imperative programming. SIGPLAN Not., 37(5):13–24, 2002.

[55] Andrés Faŕıas and Mario Südholt. On components with explicit protocols satisfying
a notion of correctness by construction. In International Symposium on Distributed
Objects and Applications (DOA), volume 2519 of LNCS, pages 995–1006, 2002.

[56] Andrés Faŕıas and Mario Südholt. Integrating protocol aspects with software compo-
nents to address dependability concerns. Technical Report 04/6/INFO, École des Mines
de Nantes, November 2004.

[57] Fabrizio Gagliardi, Bob Jones, Mario Reale, and Stephen Burke. European DataGrid
project: Experiences of deploying a large scale testbed for E-science applications. Lec-
ture Notes in Computer Science, 2459:480–??, 2002.

[58] David Garlan, Robert T. Monroe, and David Wile. Acme: An architecture description
interchange language. In Proceedings of CASCON’97, pages 169–183, Toronto, Ontario,
November 1997.

[59] Max Goldman and Shmuel Katz. Maven: Modular aspect verification. In TACAS,
pages 308–322, 2007.

BIBLIOGRAPHY 161

[60] Wilke Havinga, Istvan Nagy, Lodewijk Bergmans, and Mehmet Aksit. A graph-based
approach to modeling and detecting composition conflicts related to introductions. In
AOSD ’07: Proceedings of the 6th international conference on Aspect-oriented software
development, pages 85–95, New York, NY, USA, 2007. ACM.

[61] George T. Heineman and William T. Councill. Component-Based Software Engineering:
Putting the Pieces Together. Addison Wesley, 2001.

[62] Erik Hilsdale and Jim Hugunin. Advice weaving in AspectJ. In AOSD 04, pages 26–35,
2004.

[63] C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, Englewood Cliffs,
NJ, 1985.

[64] Gerard J. Holzmann. The model checker SPIN. IEEE Transactions on Software Engi-
neering, 23(5):279–295, May 1997.

[65] G.J. Holzmann. The SPIN Model Checker: Primer and Reference Manual. Addison-
Wesley, Boston, Massachusetts, USA, 2003.

[66] Kohei Honda. Types for dyadic interaction. In Proc. CONCUR ’93, number 715 in
LNCS, pages 509–523. Springer, 1993.

[67] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduction to Automata
Theory, Languages, and Computation. Addison Wesley, 2nd edition, November 2000.

[68] Raymond Hu, Nobuko Yoshida, and Kohei Honda. Session-based distributed program-
ming in java. In Jan Vitek, editor, ECOOP, volume 5142 of Lecture Notes in Computer
Science, pages 516–541. Springer, 2008.

[69] JBoss AOP. http://labs.jboss.com/jbossaop/.

[70] T. Jensen, D. Le Mtayer, and T. Thorn. Verification of control flow based security
properties. Security and Privacy, IEEE Symposium on, 0:0089, 1999.

[71] Yan Jin and Jun Han. Specifying interaction constraints of software components for
better understandability and interoperability. In Proceedings of ICCBSS 2005, volume
3412 of Lecture Notes in Computer Science, pages 54–64. Springer, 2005.

[72] Shmuel Katz. Aspect categories and classes of temporal properties. T. Aspect-Oriented
Software Development I, pages 106–134, 2006.

[73] Shmuel Katz and Marcelo Sihman. Aspect validation using model checking. In Verifi-
cation: Theory and Practice, pages 373–394, 2003.

[74] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm, and
William G. Griswold. An overview of aspectj. In ECOOP, pages 327–353, 2001.

[75] J. Kofron, J. Adamek, T. Bures, P. Jezek, V. Mencl, P. Parizek, and F. Plasil. Check-
ing fractal component behavior using behavior protocols. presented at the 5th fractal
workshop (part of ecoop06, 2006.

162 BIBLIOGRAPHY

[76] Shriram Krishnamurthi and Kathi Fisler. Foundations of incremental aspect model-
checking. ACM Trans. Softw. Eng. Methodol., 16(2):7, 2007.

[77] Shriram Krishnamurthi, Kathi Fisler, and Michael Greenberg. Verifying aspect advice
modularly. In SIGSOFT ’04/FSE-12: Proceedings of the 12th ACM SIGSOFT twelfth
international symposium on Foundations of software engineering, pages 137–146, New
York, NY, USA, 2004. ACM.

[78] Kim G. Larsen, Paul Pettersson, and Wang Yi. Uppaal in a Nutshell. Int. Journal on
Software Tools for Technology Transfer, 1(1–2):134–152, October 1997.

[79] Karl Lieberherr, David Lorenz, and Mira Mezini. Programming with aspectual com-
ponents. Technical Report NU-CCS-99-01, College of Computer Science, Northeastern
University, Boston, MA, March 1999.

[80] Karl J. Lieberherr and Ian M. Holland. Assuring good style for object-oriented pro-
grams. IEEE Softw., 6(5):38–48, 1989.

[81] Karl J. Lieberherr and David Lorenz. Coupling aspect-oriented and adaptive program-
ming. In Robert Filman, Tzilla Elrad, Siobhán Clarke, and Mehmet Aksit, editors,
Aspect-Oriented SoftwareLlm99 Development. Addison-Wesley, 2004.

[82] Karl J. Lieberherr and Doug Orleans. Preventive program maintenance in demeter/java.
In ICSE, pages 604–605, 1997.

[83] Karl J. Lieberherr, Doug Orleans, and Johan Ovlinger. Aspect-oriented programming
with adaptive methods. Commun. ACM, 44(10):39–41, 2001.

[84] Juval Löwy. COM and .NET component services. Oreilly, sep 2001.

[85] David C. Luckham and James Vera. An event-based architecture definition language.
IEEE Transactions on Software Engineering, 21(9):717–734, September 1995.

[86] N.A Lynch. Distributed Algorithms. 2006.

[87] Jeff Magee. Behavioral analysis of software architectures using LTSA. In International
Conference on Software Engineering, pages 634–637. ACM, 1999.

[88] Jeff Magee, Naranker Dulay, Susan Eisenbach, and Jeff Kramer. Specifying distributed
software architectures. In Proceedings of ESEC ‘95 - 5th European Software Engineering
Conference, volume 989, pages 137–53, Sitges, Spain, 25–28 September 1995.

[89] Vlada Matena, Sanjeev Krishnan, Linda DeMichiel, and Beth Stearns. Applying Enter-
prise JavaBeans 2.1: Component-Based Development for the J2EE Platform. Addison-
Wesley Professional, may 2003.

[90] Nenad Medvidovic and Richard N. Taylor. A classification and comparison frame-
work for software architecture description languages. Software Engineering, 26(1):70–93,
2000.

[91] Mira Mezini and Klaus Ostermann. Conquering aspects with Caesar. In AOSD 03,
pages 90–99.

BIBLIOGRAPHY 163

[92] Sun Microsystems. JavaBeans Specification, 1997.
http://java.sun.com/products/javabeans/docs/spec.html.

[93] R. Milner. Communication and Concurrency. Prentice-Hall, 1989.

[94] Robin Milner. A calculus on communicating systems. 92, 1980.

[95] Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile processes, I.
100(1):1–40, September 1992.

[96] Richard Monson-Haefel and Bill Burke. Enterprise JavaBeans. O’Reilly & Associates,
Inc., pub-ORA:adr, fifth edition, 2006.

[97] Ha Nguyen. VPA library. http://www.emn.fr/x-info/hnguyen/vpa.

[98] Oscar Nierstrasz. Regular types for active objects. In OOPSLA, pages 1–15, 1993.

[99] Oscar Nierstrasz. Regular types for active objects. In O. Nierstrasz and D. Tsichritzis,
editors, Object-Oriented Software Composition, chapter 4, pages 99–121. Prentice Hall,
1995.

[100] Oscar Nierstrasz and Dennis Tsichritzis, editors. Object-Oriented Software Composition.
Object-Oriented Series. Prentice-Hall, dec 1995.

[101] Doug Orleans and Karl Lieberherr. DJ: Dynamic adaptive programming in Java. In
A. Yonezawa and S. Matsuoka, editors, Metalevel Architectures and Separation of Cross-
cutting Concerns 3rd Int’l Conf. (Reflection 2001), LNCS 2192, pages 73–80. Springer-
Verlag, September 2001.

[102] Sebastian Pavel, Jacques Noyé, Pascal Poizat, and Jean-Claude Royer. Java implemen-
tation of a component model with explicit symbolic protocols. In Proceedings of the
4th International Workshop on Software Composition (SC’05), volume 3628 of LNCS.
Springer Verlag, April 2005.

[103] Frantisek Plasil, Dusan Balek, and Radovan Janecek. Sofa/dcup: Architecture for com-
ponent trading and dynamic updating. In Proceedings of the International Conference
on Configurable Distributed Systems (ICCDS’98), 1998.

[104] Frantisek Plasil and Stanislav Visnovsky. Behavior protocols for software components.
Transactions on Software Engineering, 28(9), January 2002.

[105] K. V. S. Prasad. A calculus of broadcasting systems. In Science of Computer Program-
ming, pages 338–358. Springer Verlag LNCS, 1991.

[106] Ralf Reussner. Enhanced component interfaces to support dynamic adaption and ex-
tension. In Proceedings of HICSS-34. IEEE, 2001.

[107] Ralf H. Reussner. Counter-constraint finite state machines: Modelling component pro-
tocols with resource-dependencies. Technical report, School for Computer Science and
Software Engineering, Monash University, VIC 3145 Australia, 2002.

164 BIBLIOGRAPHY

[108] Joan Esteve Riasol and Fatos Xhafa. Juxta-cat: a JXTA-based platform for distributed
computing. In Ralf Gitzel, Markus Aleksy, and Martin Schader, editors, PPPJ, volume
178 of ACM International Conference Proceeding Series, pages 72–81. ACM, 2006.

[109] Martin Rinard, Alexandru Salcianu, and Suhabe Bugrara. A classification system and
analysis for aspect-oriented programs. SIGSOFT Softw. Eng. Notes, 29(6):147–158,
2004.

[110] David Rine, Nader Nada, and Khaled Jaber. Using adapters to reduce interaction
complexity in reusable component-based software development. In SSR ’99: Proceedings
of the 1999 symposium on Software reusability, pages 37–43, New York, NY, USA, 1999.
ACM.

[111] Johannes Sametinger. Software Engineering with Reusable Components. Springer-
Verlag, New York, NY, 1997.

[112] James Sasitorn and Robert Cartwright. Component nextgen: a sound and expressive
component framework for java. SIGPLAN Not., 42(10):153–170, 2007.

[113] Heinz W. Schmidt and Ralf H. Reussner. Generating adapters for concurrent component
protocol synchronisation. In Proceedings of the Fifth IFIP International conference on
Formal Methods for Open Object-based Distributed Systems, 3 2002.

[114] Bran Selic. Protocols and ports: Reusable inter-object behavior patterns. In ISORC,
pages 332–339. IEEE Computer Society, 1999.

[115] M. Sihman and S. Katz. Superimpositions and aspect-oriented programming. 2003.

[116] Marcelo Sihman and Shmuel Katz. Model checking applications of aspects and super-
impositions. In Gary T. Leavens and Curtis Clifton, editors, FOAL: Foundations of
Aspect-Oriented Languages, mar 2003.

[117] Therapon Skotiniotis, Jeffrey Palm, and Karl J. Lieberherr. Demeter interfaces: Adap-
tive programming without surprises. In ECOOP, pages 477–500, 2006.

[118] Mario Südholt. A model of components with non-regular protocols. In Proceedings
of the 4th International Workshop on Software Composition (SC’05), volume 3628 of
LNCS. Springer Verlag, April 2005.

[119] John Sung and Karl Lieberherr. Daj: A case study of extending aspectj. Technical
Report NU-CCS-02-16, Northeastern University, November 2002.

[120] Davy Suvée, Wim Vanderperren, and Viviane Jonckers. JasCo; an aspect-oriented ap-
proach tailored for component-based software development. In ACM Press, editor, Proc.
of 2nd International Conference on Aspect-Oriented Software Development (AOSD’03),
pages 21–29, March 2003.

[121] Clemens Szyperski, Domiinik Gruntz, and Murer Murer. Component Software - Beyond
Object-Oriented Programming. ACM Press and Addison-Wesley, 2nd edition, 2002.

[122] Niklas Therning and Lars Bengtsson. Jalapeno: decentralized grid computing using
peer-to-peer technology. In Nader Bagherzadeh, Mateo Valero, and Alex Ramı́rez,
editors, Conf. Computing Frontiers, pages 59–65. ACM, 2005.

BIBLIOGRAPHY 165

[123] Jan van den Bos and Chris Laffra. PROCOL — A parallel object language with proto-
cols. In ACM SIGPLAN Notices, Proceedings OOPSLA ’89, volume 24, pages 95–102,
October 1989.

[124] Rob van Ommering, Frank van der Linden, Jeff Kramer, and Jeff Magee. The Koala
component model for consumer electronics software. 33(3):78–85, March 2000.

[125] W. Vanderperren, D. Suvee, M. A. Cibran, and B. De Fraine. Stateful aspects in JAsCo.
In Proc. of SC’05, LNCS 3628. Springer Verlag, April 2005.

[126] Ivana Černá, Pavĺına Vařeková, and Barbora Zimmerova. Component substitutability
via equivalencies of component-interaction automata. Electron. Notes Theor. Comput.
Sci., 182:39–55, 2007.

[127] Kevin Viggers and Rob Walker. An implementation of declarative event patterns.
Technical report, University of Calgary; Computer Science; Science, December 20 2004.

[128] Robert J. Walker and Kevin Viggers. Implementing protocols via declarative event pat-
terns. In Proceedings of the ACM SIGSOFT International Symposium on Foundations
of Software Engineering (FSE-12), pages 159 – 169. ACM Press, 2004.

[129] Daniel M. Yellin and Robert E. Strom. Protocol specifications and component adap-
tors. ACM Transactions of Programming Languages and Systems, 19(2):292–333, March
1997.

[130] T. Ylonen. SSH - secure login connections over the internet. Proceedings of the 6th
Security Symposium) (USENIX Association: Berkeley, CA):37, 1996.

