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1 Introduction

Le présent manuscrit s’intéresse à la prévision de la consommation d’électricité par des méthodes de
statistiques bayésiennes. Trois thèmes y sont développés, dans trois chapitres successifs, concernant
le comportement asymptotique des estimateurs de Bayes (afin de valider l’inférence liée au modèle
de part chauffage), la construction d’une loi a priori hiérarchique (pour améliorer les prévisions en
situation d’historique court) et l’exploitation d’un modèle dynamique (dans le but de disposer de
prévisions court terme en ligne). Ce premier chapitre propose donc une vue d’ensemble des différents
concepts et objets autour de ces thèmes. Nous présentons en section 1.1 l’activité de prévision de
consommation d’électricité, puis introduisons en section 1.2 les concepts clefs situés au coeur des
méthodes bayésiennes dans un cadre plus général. Nous terminons ce chapitre en proposant un
aperçu général des problématiques abordées et des résultats obtenus en section 1.3.

1.1 LA PRÉVISION DE CONSOMMATION D’ÉLECTRICITÉ

Dans cette section nous présentons rapidement les enjeux liés à la prévision de consommation. Nous
décrivons également les caractéristiques majeures du signal de consommation d’électricité en France
ainsi que le modèle principalement utilisé en opérationnel.

1.1.1 Les enjeux

La modélisation et la prévision de la consommation d’électricité à différents horizons (court terme
moyen terme, ou long terme) représentent une activité clef pour le groupe EDF : en effet, afin d’éviter
les risques physiques (black-out partiel ou total), ou financiers (pénalités financières) l’équilibre doit
être maintenu constamment entre la demande et l’offre d’énergie sur le réseau électrique. L’optimisation
des coûts de production étant un enjeu essentiel pour le groupe EDF, l’activité de prévision court
terme est donc directement liée à la gestion des moyens de production qui sont aussi nombreux que
variés et regroupent notamment des centrales nucléaires, des centrales thermiques, des parcs éoliens,
etc. Les prévisions moyen terme et long terme permettent, entre autres choses, d’établir les plannings
de maintenance des différents moyens de production, et sont également utilisées pour décider des
investissements futurs (par exemple en vue d’augmenter la capacité de production).

L’ouverture du marché de l’électricité à la concurrence en France, pour les entreprises comme pour
les particuliers, a récemment conduit à des évolutions dans le domaine de la prévision d’électricité.
Ainsi le périmètre des clients EDF, jusqu’alors fixe et égal au périmètre France, est désormais soumis à
des variations dues aux arrivées et départs de clients, ce qui rend la prévision de la demande EDF plus

1



1. INTRODUCTION

difficile et explique l’intérêt renouvelé du groupe envers le développement de méthodes innovantes
pour prévoir un signal dont la stationnarité se trouve remise en question (voir par exemple les thèses
de Cugliari, 2011; Dordonnat, 2009; Goude, 2008).

1.1.2 La consommation d’électricité en France

Nous illustrons les principales caractéristiques de la consommation nationale d’électricité en France
à travers les figures 1.1 et 1.2. Le signal de consommation présente de manière générale trois cycles : un
cycle annuel, un cycle hebdomadaire et un cycle journalier. La figure 1.1 représente le comportement
moyen typique de la consommation d’électricité sur une année : la demande est globalement plus élevée
durant l’hiver que durant l’été (à cause du développement important du chauffage électrique en France).
L’impact de l’activité économique du pays est aisément repérable sur le graphique avec la présence
de ruptures visibles, aux périodes de congés en Août ou durant la période de Noël. Nous distinguons
également la présence d’un cycle hebdomadaire, reflet d’une demande d’électricité moindre les jours
de weekends comparativement aux jours de semaine ouvrés.

La figure 1.2 (gauche) représente la consommation délectricité au cours de deux semaines de l’année
2005. La variation en niveau moyen entre les deux semaines est le simple reflet de la position de
ces semaines dans l’année, l’une appartenant à l’été l’autre à l’hiver. Nous distinguons néanmoins la
présence d’un cycle journalier, au sein du cycle hebdomadaire, dans les deux cas : de manière générale,
la demande d’électricité est plus forte pendant la journée que pendant la nuit. Le cycle journalier
semble toutefois différent entre l’hiver et l’été, avec la présence, en hiver, d’un pic de consommation
plus marqué en soirée aux alentours de 19h00. L’effet de l’instant de la journée visible sur cette figure,
conduit de manière générale à modéliser les 48 instants de façon indépendante.

Enfin, la figure 1.2 (droite) illustre le lien non linéaire qui existe entre la consommation d’électricité et
la température extérieure. En deça d’une certaine température (appelée température seuil de chauffage,
ou plus simplement seuil de chauffage) la consommation semble d’autant plus importante que la
température est froide. Notons qu’un phénomène similaire se produit pour les températures chaudes,
et correspond à un effet climatisation (par opposition à l’effet chauffage que nous venons de décrire).
Nous constatons toutefois que l’effet climatisation est beaucoup moins marqué que l’effet chauffage à
l’échelle nationale, car l’utilisation de climatiseurs est globalement moins répandue en France que celle
du chauffage électrique.

1.1.3 Les modèles de prévision

Les approches utilisées dans la littérature pour modéliser et prévoir la consommation d’électricité
sont très variées. Nous en mentionnons quelques-unes dans les lignes ci-dessous, avant de nous
intéresser plus particulièrement au modèle principalement utilisé par le groupe EDF.

Etat de l’art

De nombreux travaux considèrent des séries temporelles univariées : Taylor (2003) construit un
modèle basé sur un lissage double exponentiel pour la consommation d’électricité au Royaume-Uni
et Taylor et al. (2006); Taylor and McSharry (2007) présentent une étude comparative des méthodes
univariées pour différents jeux de données. D’autres travaux prennent en compte des variables exogènes
Harvey and Koopman (1993) incluent la température extérieure dans leur modèle, à l’origine du modèle
bayésien semi-paramétrique développé dans Smith (2000).

2
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Figure 1.1: Consommation d’électricité moyenne journalière pour l’année 2005. Les lignes verticales en
tirets marquent la séparation entre les différents mois.

30
00

0
40

00
0

50
00

0
60

00
0

70
00

0

Time

Lo
ad

2005−06−13 2005−06−15 2005−06−17 2005−06−19

2005−12−05 2005−12−07 2005−12−09 2005−12−11

●

●

●
●●●

●

●

●●●●
●

●

●

●
●

●●●

●

●

●

●

● ●
●

●

●

●

● ● ●●

●

●

●

●
● ●
●

●

●

●
● ●●

●

●

●

●●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●●
●

●

●
●

● ●●
●

●

●

●

● ●
●●

●

●

●

●
●

●
●

●

●

●

●
●
●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●
●●

●

●

●

●●

●
●

●

●

● ●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
● ●

●

●

●

●

● ●
●

●
●

●

●

● ●

●
●

●

●

●

●
●●

●
●

●

●

●● ●
●

●

●

●

●●●●●

●

●

●
●

●

●
●

●

●

●

● ●

●

●

●

●

●●

●
●
●

●

●
●

● ●
● ●

●

●

●
●

●

●

●

●

●

●
● ●

●

●

●

●

●
●

●● ●

●

●

●
●
● ●

●

●

●

● ● ●

●

●

●

●

●●
●● ●

●

●●

●
●

●●

●

●

●
●● ●

●

●

●

●
●●●

●

●

●

●●●●●

●

●

●

● ●
●●

●

●
●

●●
● ●

●

●

●
●●●

●

●

●

●
●●

●
●

●

●

●
●●●●

●

●

●
●●●

●
●

●

●
●●●

●

●

●

●

●●●●

●

●

●
●● ●

●

●

●

●
●●●●

●

●

●
● ●●●

●

●

●
●●● ●

●

●

●

●

●

●●

●

●

●

●●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

● ●
●●

●

●

●

●

●

●

●
●

●

●

●

●
●●●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●
●

●

● ●● ●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●●●
●

●

●

●

●

● ●

●
●

●

●

●

● ●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●●
●

●

●

●

●

●●●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●
●

●●

●
●

●

●

● ●

●

●●

●

●

●
●

●
●●

●
●

●

●

●●●

●

●

●

●
●●
●

●

●

● ●●

●

●

●

●

●
●●

●●

●

●●

● ●● ●

●

●

●

●
●
●

●

●

●

●
●
●●●

●

●

●

● ●
●●

●

●

●
●

●
●●

●

●

●
●●●●

●

●

●
●

●

●
●

●

●

●
●● ●●

●

●

●
● ● ●

●

●

●

●
●

●
●

●

●

●

●
●

●●
●

●

●

●

● ●
●

●

●

●

●

●●●●

●

●

●
●●

● ●

●

●

●
●●● ●

●

●

●

●●
●●

●

●

●
●●

●
●

●

●

●
●●● ●

●

●

●
●

●● ●

●

●

●
●●

●
●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●

● ●●
●

●

●

●

●

●

●

●

●

●

● ●

●
●●

●

●

● ●
●

●
●

●

●

●

●
●

●●

●

●

●

●
●

●●

●

●

●● ●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●
●

●

●

●

●●
●

●

●

●

● ●●

●

●

●

●

●

●

●●

●

●

●

●

●●
●●

●

●

●
●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●●

●

●

●
●

●

●●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●
●●

●

●

●

●

● ●
●

●

●

●

●
● ●●

●

●

●

●●
●

●

●

●

●

● ●

●
●

●

●

●

●
●

●

●

●

●

●

●
●
● ●

●

●

●

●

●●
●

●

●

●

●
●

● ● ●

●

●

●● ● ● ●

●

●

●
●●

● ●

●

●

●

● ● ●
●

●

●

●
● ●

●●

●

●

●

●

●
●

●

●

●

●●●●●

●

●

●

●●

●

●

●

●

●● ●●●

●

●

●
●

● ●

●

●

●

●
● ●● ●

●

●

●
● ●●●

●

●
●

●
●

●
●

●

●

●

●●
●

●

●

●

●

●
●●●

●

●

●
●

● ●●

●

●

●
●●●●

●

●

●
●● ●

●

●

●

●

●●●●

●

●

●●

● ●
●

●

●

●
●

●●●

●

●

●

●
●
●

●

●

●

● ●
●

● ●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●● ●

●

●

●●

●
●

●

●

●

●

●
● ●●

●
●

●
●●

●

●

●●

●
●

●
●

●

●

●

●

●

●
●
●

●

●

●

●

●

●
●

●

●

●

● ●

●●

●

●

● ●

●

●●

●

●

●

●
●

●

●

●

●

●●

● ●
●

●

●

● ●
●

●
●

●

●

●
●

●

●●

●

●

●

●●
●●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●
●

●

●

●

●

●

●
●

●

●

●
●

● ●
●

●

●

●

●●●●●

●

●

●

●
●

●●

●

●

●

●
●

●
●

●

●

●
●●●

●

●

●

●
● ●

●

●

●

●

●
●

●
●●

●

●

●

● ● ● ●

●

●

●

●●●
●

●

●

●
●●

● ●

●

●

●
● ● ● ●

●

●

●

●
●

●
●

●

●

●

●●●

●
●

●

●

●●●
●

●

●

●

●●
●

●

●

●

●●
●

●●

●

●

●
●●●●

●

●

●

●

●
●●

●

●

●

● ●●●

●

●

●

●● ● ●

●

●

●
●●

●

●

●

●

●
●●●●

●

●

●
●● ●

●

●

●

●
●● ● ●

●

●

●

●●● ●

●

●

● ● ●●●

●

●

●
● ● ●●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●
●

●

●

● ●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●
●●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●●

●

●
●

●

●

●

●
●

●
●

●

●

●
●

●●

●

●

●

●
●

●
●

●

●

●

●

●●●●

●

●

●●●●●

●

●

●

● ●●
●

●

●

●

●
●●

●

●

●

●●

●●

●

●

●
●

●
● ● ●

●

●

●
●●● ●

●

●

●
●●●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

● ●● ● ●

●

●

●

● ●
●●

●

●

● ●
●● ●

●

●

●
● ● ●●

●

●

●

●●●
●

●

●

●
●● ● ●

●

●

●

●●● ●

●

●

●

● ● ● ●

●

●

●

●●●●

●

●

●●
●

●●

●

●

●● ●●
●

●

●

●●●●●

●

●

●
●

●

●●

●

●

●

●
● ● ●

●

●

●
●

●● ●

−5 0 5 10 15 20 25 30

40
00

0
50

00
0

60
00

0
70

00
0

80
00

0

Temperature

Lo
ad

Figure 1.2: Consommation d’électricité instantanée sur deux semaines en 2005 (à gauche) et à 10h00 du
matin en fonction de la température relevée sur la période 2002–2007 (à droite).
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1. INTRODUCTION

Des solutions alternatives à la modélisation univariées sont également proposées, telles que des
modèles multi-équations : les différents instants de la journée partagent la même équation de modélisa-
tion mais les paramètres du modèles sont différents d’un instant à l’autre. Soares and Medeiros (2008)
construisent ainsi un modèle horaire saisonnier auto-régressif pour leurs données et Ramanathan et al.
(1997) construisent également un modèle indépendant pour chaque heure de la journée mais prenant
en compte un effet de la température extérieure.

Les variables exogènes les plus fréquemment utilisées pour prévoir la consommation d’électricité
sont des variables météorologiques : l’inclusion de variables météorologiques dans un modèle conduit
à de nouvelles difficultés puisqu’il devient nécessaire de disposer de prévisions météorologiques fiables
pour obtenir des prévisions de consommation d’électricité de bonne qualité. Pour les climats tempérés,
le facteur météorologique le plus important est la température extérieure (voir par exemple Taylor and
Buizza, 2003). Plus spécifiquement, pour la consommation d’électricité en France, l’importance de la
température et de la nébulosité (couverture nuageuse) est soulignée dans Bruhns et al. (2005); Menage
et al. (1988). Des modèles exploitant d’autres variables météorologiques sont également présentés dans
Engle et al. (1986).

Cottet and Smith (2003); Smith and Kohn (2002) proposent d’utiliser une approche bayésienne pour
l’estimation et la prévision de modèles de consommation d’électricité. Ainsi Smith and Kohn (2002)
s’intéressent à l’estimation de matrices de covariances lacunaires à partir d’une loi a priori hiérarchique
et utilisent sur une période de quinze jours ouvrés une modélisation indépendante des différents
instants de la journée à laquelle ils rajoutent une structure d’auto-corrélation sur les erreurs (entre deux
instants de la journée). Cottet and Smith (2003) développent pour leur part un modèle similaire en
incluant des termes d’auto-régression sur les erreurs, dont ils restreignent les coefficients au domaine
de stationnarité grâce au choix de la loi a priori et appliquent leur méthode sur un historique de trois
ans de données.

Signalons enfin quelques travaux innovants récents au sein du groupe EDF en lien avec la thématique
de prévision de consommation d’électricité. Goude (2008) présente une étude détaillée des techniques de
mélange de prédicteurs, utilisées pour agrégér différentes prévisions en fonction de leurs performances
les plus récentes. Dordonnat (2009) propose trois formes de modèles à espace d’états pour lesquels les
paramètres du modèle sont autorisés à varier dans le temps, et Pierrot and Goude (2011) considèrent
des modèles additifs généralisés. Cugliari (2011) opte quant à lui pour une approche non paramétrique
reposant sur la transformation en ondelettes pour la prévision de la courbe de consommation journalière
qui est considérée comme un processus hilbertien auto-régréssif à valeurs fonctionnelles.

Modélisation Eventail

Le modèle utilisé pour les prévisions court terme en opérationnel par le groupe EDF est basé
sur le modèle présenté originellement dans Bruhns et al. (2005). Ce modèle (appelé Eventail) étant à
l’origine des modèles considérés dans les différents chapitres de ce manuscrit, nous en décrivons les
caractéristiques principales ci-dessous.

Le modèle Eventail est un modèle de régression non linéaire qui décrit au pas demi-horaire la
consommation d’électricité yt,i du jour t à l’instant i. Les demi-heures (ou instants) sont supposées
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1.1. LA PRÉVISION DE CONSOMMATION D’ÉLECTRICITÉ

indépendantes et chacune est modélisée pour t = 1, . . . , N et i = 0, . . . , 47, par

yt,i = xseason
t,i + xheat

t,i + xcool
t,i + εt,i (1.1)

xseason
t,i = xFourier

t,i xshape
t,i

xFourier
t,i =

d11,i

∑
j=1

[
zcos

j,i cos
(

2jπ
365.25

t
)
+ zsin

j,i sin
(

2jπ
365.25

t
)]

+
d12,i

∑
j=1

ωj,i1Ωj,i (t),

xshape
t,i =

d2 ,i

∑
j=1

ψj,i1Ψj,i (t),

xheat
t,i = gheat

i (Theat
t,i − uheat

i )1[Theat
t,i ,+∞[(u

heat
i ),

xcool
t,i = gcool

i (Tcool
t,i − ucool

i )1]−∞, Tcool
t,i ](u

cool
i ),

où les variables aléatoires ε1,i , . . . , εN,i sont supposées indépendantes et identiquement distribuées
selon la loi normaleN (0, σ2

i ) et où les températures Theat
t,i et Tcool

t,i sont définies à partir de la température
extérieure brute Traw

t,i et de lissages exponentiels comme

Theat
n,i = αheat

i · T
ϑheat

1,i
n,i + βheat

i · T
ϑheat

2,i
n,i + (1− αheat

i − βheat
i ) · Traw

n,i ,

Tcool
n,i = αcool

i · Tϑcool
i

n,i + (1− αcool
i ) · Traw

n,i .

où les lissages exponentiels de la température brute sont définis, pour un paramètre ϑ donné, par

Tϑ
0,0 = Traw

0,0

Tϑ
n,i = ϑ · Tϑ

n,i−1 + (1− ϑ) · Traw
n,i

en utilisant la notation Tϑ
n,−1 = Tϑ

n−1,47.
Les paramètres du modèle à estimer sont de manière générale (il arrive parfois que certains de ces

paramètres soient fixés à des valeurs prédéfinies) pour i = 0, . . . , 47

σi , zcos
j,i , zsin

j,i , ωj,i , ψj,i︸ ︷︷ ︸
xseason

, gheat
i , uheat

i , αheat
i , βheat

i , ϑheat
1,i , ϑheat

2,i︸ ︷︷ ︸
xheat

, gcool
i , ucool

i , αcool
i , ϑcool

i︸ ︷︷ ︸
xcool

.

La composante xFourier vise à capturer le comportement saisonnier moyen de la consommation
d’électricité (i.e. le motif annuel) à partir d’une série de Fourier tronquée (entre 4 et 6 fréquences sont en
général retenues) et d’une somme de fonctions indicatrices destinés à représenter les ruptures dans le
signal à partir de partitions (Ωj,i)j∈{1,...,d12,i} du calendrier. Ces partitions servent à spécifier les périodes
de congés ou les changements d’heure légale.

Le rôle de la composante xshape est de capturer les cycles hebdomadaire et journalier en permettant
l’ajustement journalier du comportement moyen (modélisé par xFourier). Cette composante repose sur
l’utilisation de formes de jours ψj,i à estimer, qui dépendent de types de jours spécifiés par d’autres
partitions (Ψj,i)j∈{1,...,d2,i} du calendrier. Ces partitions servent à distinguer les jours ouvrés, des jours
de fin de semaine ou encore des jours fériés. Pour des raisons d’identifiabilité, les formes de jours
respectent pour tout i = 0, . . . , 47 la contrainte ∑

d2,i
j=1 ψj,i = 1.

Enfin, les composantes xheat et xcool ont pour but de modéliser la relation non linéaire existant entre
la consommation d’électricité et la température, principalement à partir de seuils uheat

i et ucool
i et de

gradients gheat
i et gcool

i qui correspondent aux intensités respectives des effets chauffage et climatisation.
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1. INTRODUCTION

1.2 LES MÉTHODES BAYÉSIENNES

Cette section présente un résumé des idées et outils élémentaires nécessaires au développement et à
la mise en oeuvre de l’inférence bayésienne.

1.2.1 Le paradigme bayésien

Nous présentons dans cette section, une introduction succincte à l’inférence bayésienne. Nous
restreignons cette présentation au cas des modèles paramétriques (voir Robert, 2007, par exemple) qui
représentent le cadre de travail de ce manuscrit et laissons de côté les modèles non paramétriques
(voir Ghosh and Ramamoorthi, 2003). Nous cherchons donc à mener l’inférence sur un paramètre
θ ∈ Θ inconnu, avec Θ ⊂ Rd à partir de n observations x1, . . . , xn provenant d’un modèle statistique i.e.
générées à partir d’une densité de probabilité f (x|θ) supposée connue. Par la suite, nous ferons souvent
référence à f (x|θ) en tant que fonction de θ sous le nom de vraisemblance.

Approche fréquentiste vs. approche bayésienne

Une approche répandue en statistique dite fréquentiste (par opposition à la statistique bayésienne)
repose sur l’utilisation de la méthode du maximum de vraisemblance. La méthode du maximum de
vraisemblance consiste à estimer le paramètre θ inconnu par la valeur de θ (si elle existe) qui maximise
la vraisemblance des observations, i.e. étant donné x = (x1, . . . , xn) le vecteur des observations,
l’estimateur du maximum de vraisemblance θ̂MV est donné par

θ̂MV = arg max
θ∈Θ

f (x|θ). (1.2)

La maximisation de la fonction de vraisemblance peut toutefois poser problème en pratique, parti-
culièrement dans le cas d’un espace Θ de grande dimension ou fortement contraint. L’approche du
maximum de vraisemblance reste néanmoins séduisante dans la mesure où l’estimateur (1.2) considéré
bénéficie de propriétés asymptotiques recherchées (comme la consistance et l’efficacité, la normalité
asymptotique, etc.) dans de nombreux cas (voir DasGupta, 2008).

En statistique bayésienne, l’incertitude sur le paramètre θ d’un modèle statistique est modélisée
par une loi de probabilité π appelée loi a priori et la vraisemblance f (x|θ) est interprétée comme la
loi des observations conditionnellement au paramètre. Le paramètre θ en statistique bayésienne n’est
donc plus considéré inconnu, comme en statistique fréquentiste, mais incertain puisqu’il est assimilé à
une variable aléatoire. Rappelons la règle de Bayes (1763), dans sa version variables aléatoires : soient
X et Y deux variables aléatoires (telles que la loi du couple (X, Y) possède une densité) de densité
conditionnelle f (x|y) et marginale g(y) alors la densité conditionnelle de Y sachant X est donnée par

g(y|x) = f (x|y)g(y)∫
f (x|y)g(y)dy

. (1.3)

Le résultat d’inversion (1.3) permet de mener l’inférence à partir de la loi du paramètre θ conditionnel-
lement aux observations x, appelée loi a posteriori et définie par

π(θ|x) = f (x|θ)π(θ)∫
f (x|θ)π(θ)dθ

. (1.4)
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1.2. LES MÉTHODES BAYÉSIENNES

Estimateur bayésien

Un estimateur δ∗(x) est un estimateur de Bayes sous le coût L(θ, δ) s’il minimise le risque bayésien
c’est-à-dire :

δ∗ = arg min
δ

∫∫
L
(
θ, δ(x)

)
f (x|θ)π(θ)dx dθ.

Pour le coût L2 défini par L(θ, δ) = (θ − δ)2 (utilisé dans la suite de ce manuscrit), l’espérance de la loi
posteriori définie en (1.4) est un estimateur de Bayes :

θ̂ =
∫

θπ(θ|x)dθ, (1.5)

et il s’avère qu’il n’en existe pas d’autre (c.f. Robert, 2007, pour la démonstration). D’autres estimateurs
sont envisageables selon les problèmes et la fonction de coût considérés : la médiane a posteriori est par
exemple un estimateur de Bayes pour le coût L1 défini par L(θ, δ) = |θ − δ|.

Régions de crédibilité

Intervalles de crédibilité. Pour un paramètre θ unidimensionnel, la définition d’un intervalle de crédibilté
(terme utilisé pour marquer la distinction avec les intervalles de confiance obtenus en statistique
fréquentiste), est défini à partir des quantiles de la loi a posteriori (1.4), le quantile qπ

α (x) d’ordre
α ∈]0, 1[ vérifiant bien entendu la relation∫ qπ

α (x)

−∞
π(θ|x)dθ = α. (1.6)

Les intervalles de crédibilité les plus souvent considérés sont les intervalles bilatéraux symétriques de
niveau 1− α qui sont de la forme ]

qπ
α
2
(x), qπ

1− α
2
(x)
[

.

Régions HPD. Il est également possible de déterminer d’autres régions de crédibilité, appelées régions
HPD (highest posterior density) de plus haute densité a posteriori. Ces régions Qπ

1−α(x) de niveau 1− α

sont de la forme

Qπ
1−α(x) =

{
θ; π(θ|x) > kπ

1−α(x)
}

,

où kπ
1−α(x) vérifie la relation ∫

1{θ; π(θ|x)>kπ
1−α(x)}(θ)π(θ|x)dθ = 1− α.

À l’inverse des intervalles de crédibilité, ces régions ne sont pas nécessairement connexes, comme le
montre l’illustration fournie en Figure 1.3. Il est important de noter que la notion de région HPD s’étend
naturellement au cas où le paramètre θ est multidimensionnel.

Probabilité de couverture fréquentiste d’une région de crédibilité. Une région de crédibilité a posteriori
Rπ

1−α(x) de niveau 1− α sur θ, i.e. telle que∫
1Rπ

1−α(x)(θ)π(θ|x)dθ = 1− α, (1.7)
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qπ
α
2
(x) qπ

1− α
2
(x)

θ

π
(θ
|x
)

Intervalle de crédibilité de niveau 1− α sur θ

α
1− α

kπ
1−α(x)

θ

π
(θ
|x
)

Région HPD de niveau 1− α sur θ

α
1− α

Figure 1.3: Exemples (en rouge) d’un intervalle de crédibilité bilatéral de niveau 1− α sur θ (gauche) et
d’une région HPD de niveau 1− α sur θ (droite) construits à partir d’une même loi a posteriori π(θ|x).

définit également une région de confiance au sens fréquentiste, dont la probabilité de couverture
fréquentiste (ou niveau fréquentiste) est donnée par

Pθ

(
Rπ

1−α(x) 3 θ
)
=
∫
1Rπ

1−α(x)(θ) f (x|θ)dx. (1.8)

La probabilité de couverture fréquentiste diffère en général de 1− α mais Datta and Mukerjee (2004)
démontrent pour les intervalles de crédibilité unilatéraux et les régions HPD sous des hypothèses
générales de régularité que

Pθ

(
Rπ

1−α(x) 3 θ
)
= 1− α + o(1),

quand le nombre n d’observations tend vers +∞.

1.2.2 La loi a priori

Le choix de la loi a priori représente une étape cruciale dans l’analyse statistique bayésienne,
puisqu’elle influence directement le reste de l’inférence. L’information a priori, quand elle est disponible,
n’est en général pas formulée en termes précis ou même statistiques : par exemple l’information a priori
“θ appartient à l’intervalle [−1, 1] avec 95% de chance” ne détermine en rien la forme de la loi a priori π

qui peut être choisie indifféramment gaussienne, de Cauchy, uniforme, etc.

Lois conjuguées

Une famille F de lois de probabilité sur Θ est dite conjuguée pour la vraisemblance f (x|θ) si pour
toute loi a priori π ∈ F , la loi a posteriori π(·|x) appartient également à F . Des exemples pour des
modèles usuels sont présentés dans Robert (2007).

Les familles de lois conjuguées sont souvent considérées en premier lieu pour choisir la loi a
priori car elles permettent d’effectuer les estimations sans avoir recours à des techniques complexes
d’approximation numérique : si la famille conjuguée est une famille paramétrée F = Fα∈A, la loi a
posteriori appartenant àFα∈A, son calcul se résume à une mise à jour du paramètre α ∈ A. En particulier,
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l’accès aux quantités telles que l’espérance, la variance ou les intervalles de crédibilité a posteriori
devient presque immédiat. Lorsqu’une information a priori est disponible, elle sert généralement à
choisir le paramètre α ∈ A pour fixer le choix de la loi a priori au sein de la famille conjuguée. Cette
facilité à mener l’estimation a toutefois un prix, puisque le choix de la loi a priori demeure restreint à la
famille Fα∈A considérée.

Lois hiérarchiques

D’une manière très générale, dès que le choix de la loi a priori est restreint à une famille paramétrée
Fα∈A, que cette famille soit ou non conjuguée pour le modèle, il est nécessaire de choisir le paramètre
α ∈ A. Dans le cas où l’information a priori ne permet pas de fixer α, l’approche hiérarchique modélise
le manque d’information sur α à l’aide d’une distribution a priori sur ce nouveau paramètre du modèle
(alors appelé hyperparamètre). La loi a priori hiérarchique ainsi construit s’exprime alors souvent sous
la forme :

π(θ, α) = π(θ|α)π(α).

Le principe de l’approche hiérarchique peut aussi s’étendre à α lui-même dont la loi a priori peut
dépendre d’un nouvel hyperparamètre, etc. L’utilisation de lois a priori hiérarchiques conduit à des
estimateurs plus robustes, comme illustré dans Congdon (2003, 2010), au sens où l’inférence menée est
moins sensible au choix des paramètres fixés par l’utilisateur.

Lois non informatives

En l’absence d’information a priori, le choix de la loi a priori s’effectue parmi les lois a priori dites
non informatives puisqu’elles minimisent, en un certain sens, l’influence de la loi a priori sur la loi a
posteriori. Nous ne présentons ici que quelques-unes des possibilités listées dans Kass and Wasserman
(1996). Notons qu’il peut arriver que le choix de π considéré comme loi a priori ne définisse qu’une
mesure positive et non une loi de probabilité sur Θ, i.e. π(θ) > 0 pour tout θ ∈ Θ et∫

π(θ)dθ = +∞.

Le cadre bayésien s’étend toutefois à de tels choix de lois a priori, dites impropres, dès lors que la loi
(1.4) est bien définie, c’est-à-dire dès que∫

f (x|θ)π(θ)dθ < +∞.

Loi de Laplace. La loi a priori de Laplace (1774) correspond au choix

π(θ) ∝ 1Θ(θ).

En fonction de l’ensemble Θ des paramètres, nous retrouvons alternativement une loi uniforme Θ ou
une loi impropre. Le choix de la loi de Laplace peut sembler naturel car aucune valeur de paramètre
n’est a priori favorisée par rapport à une autre mais cette loi n’est pas invariante par reparamétrisation.
En effet, si la reparamétrisation η = g(θ) est considérée (g étant une bijection) et si la loi de Laplace est
choisie comme loi a priori sur θ, alors par changement de variable

π(θ) ∝ 1 =⇒ π̃(η) ∝
∣∣∣∣ d
dη

g−1(η)

∣∣∣∣ ,
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où π̃ désigne la loi a priori sur η = g(θ) correspondante. Bien qu’aucune information a priori ne soit
disponible sur η, puisqu’aucune information a priori n’est disponible sur θ, le choix de loi a priori sur η

n’est donc plus (en général) la loi de Laplace, et le choix de la loi a priori semble donc dépendre de la
formulation même du problème.

Loi de Jeffreys. Jeffreys (1946) propose une loi a priori qui répond à la demande d’invariance par
reparamétrisation. L’approche repose sur l’information de Fisher du modèle supposé régulier (voir
Lehmann and Casella, 1998) définie pour θ ∈ Θ ∈ Rd comme la matrice I(θ) dont les coefficients sont
donnés pour 1 6 i, j 6 d par

Iij(θ) = Eθ

[(
∂ log f (X|θ)

∂θi

)(
∂ log f (X|θ)

∂θj

)]
(1.9)

La loi non informative de Jeffreys est définie par

π∗(θ) ∝ det
1
2 I(θ).

Clarke and Barron (1990) démontrent, dans le cas d’observations indépendantes et identiquement
distribuées (i.i.d.), que ce choix minimise l’influence de la loi a priori sur la loi a posteriori au sens
où elle maximise la divergence de Kullback-Leibler entre ces deux lois (voir également Philippe and
Rousseau, 2002, pour une extension de ce résultat au cadre de la longue mémoire).

Lois de référence. Bernardo (1979) propose de construire des lois dite de référence : dans cette approche,
les coordonnées sont regroupées par blocs sur lesquels un ordre est fixé et la loi a priori de référence
est construite de manière conditionnelle. Le choix du nombre de blocs de coordonnées ainsi que leurs
compositions et l’ordre qui leur est associé influencent donc la construction de la loi a priori de référence.
Par exemple, pour θ = (θ1, θ2), où θ1 désigne le paramètre d’intérêt et θ2 le paramètre de nuisance,
alors la loi a priori de référence est calculée en définissant d’abord π(θ2|θ1) comme la loi de Jeffreys
associée à f (x|θ) conditionnellement à θ1, puis π(θ1) comme la loi Jeffreys associée à

f̃ (x|θ1) =
∫

f (x|θ1, θ2)π(θ2|θ1)dθ2.

Les lois de référence constituent une généralisation de la loi de Jeffreys au sens où elles demeurent
invariantes par reparamétrisation au sein de chaque bloc de coordonnées.

Lois “matching”. La dernière approche que nous mentionnons ici consiste à choisir une loi a priori
de manière à ce que la couverture bayésienne de certaines régions de crédibilité (1.7) (intervalles de
crédibilité, ou bien régions HPD) coïncide (d’où le nom “matching“) avec la couverture fréquentiste
associée (1.8) jusqu’à un certain degré d’approximation (voir Datta and Mukerjee, 2004, pour un
rassemblement des principaux résultats). Notant θ1 la première coordonnée du vecteur θ ∈ Θ avec
Θ ⊂ Rd, et qπ

α (x) le quantile d’ordre α de la loi a posteriori marginale π(θ1|x), Datta and Mukerjee
(2004) démontrent par exemple sous des hypothèses générales de régularité l’approximation

Pθ

(
θ1 6 qπ

α (x)
)
= α + O

(
n−

1
2

)
,
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pour tout α ∈]0, 1[. Une condition nécessaire et suffisante pour caractériser les lois a priori “matching“
pour les quantiles a posteriori de θ1 est également établie sous la forme de l’équation aux dérivées
partielles

d

∑
j=1

∂

∂θj

{
π(θ)I j1(θ)

(
I11(θ)

)− 1
2

}
= 0, (1.10)

où Ikl(θ) désigne le coefficient de la ligne k et de la colonne l de l’inverse de la matrice d’information de
Fisher I(θ). Dans le cas d’un paramètre θ unidimensionnel (1.10) se réduit à l’équation différentielle

d
dθ

{
π(θ)I(θ)−

1
2

}
= 0. (1.11)

dont l’unique solution est la loi a priori de Jeffreys π∗(θ). Cette dernière vérifie l’approximation

Pθ

(
θ 6 qπ∗

α (x)
)
= α + O

(
n−1

)
,

pour tout α ∈]0, 1[, améliorant ainsi (pour les intervalles de confiance unilatéraux) la vitesse de
convergence de la couverture fréquentiste vers la couverture bayésienne d’un facteur n−

1
2 .

1.2.3 Approximation numérique

Comme nous l’avons vu précémment, l’utilisation des lois a priori conjuguées permet le calcul
explicite des quantités d’intérêt telles que l’espérance a posteriori. Ce calcul n’est en règle générale
pas possible pour un autre choix de loi a priori, même pour des modèles simples. Nous présentons
ci-dessous les différents problèmes d’approximation qui se posent dans le cas général ainsi que diverses
solutions mises en oeuvre en pratique.

Les objets à estimer

Notons ϕ la loi d’intérêt. Dans le cadre bayésien, ϕ représente le plus souvent la loi a posteriori
ϕ(θ) = π(θ|x) définie en (1.4) mais peut également représenter la loi prédictive, définie par

p(x′|x) =
∫

f (x′|θ)π(θ|x)dθ. (1.12)

Trois problèmes se présentent de manière générale : l’estimation de loi ϕ, l’estimation des quantiles
de ϕ et le calcul d’intégrales de la forme

I = Eϕ[h(θ)] =
∫

h(θ)ϕ(θ)dθ, (1.13)

avec h ∈ L1(ϕ).
L’approximation numérique de ces trois quantités par méthodes de Monte Carlo repose sur la

simulation de variables aléatoires distribuée suivant la loi d’intérêt ϕ ou une loi approchée. Nous
détaillons ci-après quelques-unes des méthodes stochastiques, largement utilisées dans la littérature,
qui traitent de ce problème.

Simulation exacte

Lorsque la simulation exacte de variables aléatoires distribuées suivant la loi ϕ est disponible, la
fonction de répartition empirique et les quantiles empiriques associés convergent vers la fonction de
répartition et les quantiles associés à la loi ϕ (voir van der Vaart, 2000, par exemple).

Pour le calcul d’intégrales du type (1.13), il est possible d’utiliser la méthode de Monte Carlo que
nous présentons ci-dessous avant d’aborder les techniques usuelles de simulation exacte.
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Intégration de Monte Carlo. La Loi Forte des Grands Nombres (LFGN) assure que si θ1, . . . , θM sont des
variables i.i.d. distribuées suivant la loi de densité ϕ(θ) alors

1
M

M

∑
j=1

h(θ j)
p.s.−→ Eϕ[h(θ)]. (1.14)

Pour h ∈ L1(ϕ),

ÎMC
M =

1
M

M

∑
j=1

h(θ j) (1.15)

définit donc un estimateur de (1.13), appelé estimateur de Monte Carlo, presque sûrement consistant,
trivialement sans biais. Pour h ∈ L2(ϕ), cet estimateur vérifie un théorème centrale limite (TCL)

√
M ·

ÎMC
M − I

σ̂M

d−→ N(0, 1), (1.16)

où σ̂2
M est l’estimateur de Monte Carlo de la variance asymptotique i.e.

σ̂2
M =

1
M

M

∑
j=1

h2(θ j)−
{

1
M

M

∑
j=1

h(θ j)

}2

. (1.17)

Techniques de simulation. Bien que le problème de la simulation d’une variable aléatoire suivant une
loi d’intérêt ϕ fixée soit un problème très général (voir Devroye, 1986, par exemple), nous choisissons
de ne présenter que la simulation directe et la simulation par acceptation-rejet (même si les solutions
envisageables ne se limitent pas à ces seuls choix) : en effet, à l’exception de quelques cas très particuliers
(par exemple en situation de conjugaison), la simulation exacte ne représente pas une solution viable
pour simuler des variables aléatoires suivant la densité a posteriori ϕ(θ) = π(θ|x).

Algorithme 1.1 (Méthode d’inversion). Pour simuler θ de fonction de répartition F

1. Simuler υ ∼ U [0, 1].

2. Poser θ ← F−(υ), où F− est le pseudo-inverse de F défini par F−(υ) = inf{θ; F(θ) > υ}.

La simulation par méthode d’inversion repose sur un changement de variable qui permet de simuler
des variables aléatoires à partir de la loi uniforme. Dans la majorité des cas pratiques l’expression du
pseudo-inverse F− de la fonction de répartition n’est toutefois pas explicite et la méthode n’est pas
utilisable directement. D’autres méthodes de simulation basées sur des changements de variables sont
présentés par Devroye (1986).

La méthode d’acceptation-rejet (voir Marin and Robert, 2007, par exemple) que nous décrivons en
algorithme 1.2 est une méthode générale qui permet de simuler des variables aléatoires distribuées
suivant une loi de densité ϕ, à partir de variables aléatoires distribuées suivant une loi instrumentale q,
à la condition que le support de ϕ soit contenu dans le support de q et que le rapport ϕ/q soit majoré
par M > 1.
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Algorithme 1.2 (Méthode d’acceptation-rejet). Pour simuler θ ∼ ϕ(θ)

1. Simuler deux variables indépendantes ξ ∼ q(ξ) et υ ∼ U [0, 1].

2. Calculer

ρ(ξ) =
ϕ(ξ)

Mq(ξ)
.

3. Si υ 6 ρ(ξ) alors poser θ ← ξ, sinon retourner à la première étape.

La mise en oeuvre de cet algorithme ne requiert pas le calcul explicite de la borne M, puisqu’il est
suffisant de connaître les densités ϕ et q à une constante multiplicative près. Puisque M représente
le nombre moyen de simulations à effectuer suivant q pour obtenir une simulation suivant ϕ, il est
important de choisir q avec soin de manière à obtenir un générateur aléatoire le plus efficace possible.
Ceci suppose en particulier une connaissance préalable plutôt fine de la loi ϕ.

Simulation approchée

La simulation directe par des méthodes classiques ne fournissant pas une réponse aux problèmes
pratiques rencontrés pour l’inférence, nous présentons ci-dessous l’approche alternative la plus comm-
nue (voir par exemple Robert and Casella, 2009, pour des exemples d’utilisations). Cette approche
repose sur la simulation de chaînes de Markov (θt)t∈N de loi stationnaire ϕ vérifiant un théorème
ergodique (voir Robert and Casella, 2004, pour les détails théoriques) i.e. telles que pour tout h ∈ L1(ϕ)

1
M

M

∑
j=1

h(θ j)
p.s.−→ Eϕ[h(θ)]. (1.18)

La définition de l’estimateur (1.15), construit originellement dans le cadre de simulations i.i.d., peut
alors s’étendre au cadre de telles chaînes de Markov et vérifie, sous des hypothèses supplémentaires,
un TCL semblable à (1.16). Relâcher l’hypothèse d’indépendance sur les variables aléatoires simulées
possède toutefois un coût puisqu’il devient alors délicat de construire un estimateur σ̂2

n de la variance
asymptotique similaire à (1.17).

Notons au passage que la fonction de répartition empirique de θ1, . . . , θM converge vers la fonction
de répartition associée à ϕ, et que les quantiles empiriques convergent alors également vers les quantiles
de la loi ϕ (voir van der Vaart, 2000, à nouveau).

Nous présentons brièvement ci-dessous les deux algorithmes les plus populaires qui produisent des
chaînes de Markov de loi stationnaire ϕ(θ), et dont nous faisons notamment usage dans le chapitre 3.

Algorithme de Metropolis-Hastings. Décrit originellement par Metropolis et al. (1953) puis généralisé par
Hastings (1970), l’algorithme 1.3 est très général et permet de générer une chaîne de Markov à partir
d’une densité instrumentale q(ξ|θ). La loi ϕ(θ) est la loi stationnaire de la chaîne de Markov dès que
celle-ci est irréductible (voir Robert and Casella, 2004), ce qui est notamment le cas quand le support de
q(ξ|θ) contient le support de ϕ(θ) pour tout θ (voir par exemple Robert and Casella, 2004, pour cette
condition suffisante).
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Algorithme 1.3 (Algorithme de Metropolis-Hastings).

Pour t = 0

Choisir arbitrairement θ0.

Pour t > 1

1. Simuler ξ ∼ q(ξ|θt−1).

2. Calculer

ρ(θt−1, ξ) = min
(

ϕ(ξ)q(θt−1|ξ)
ϕ(θt−1)q(ξ|θt−1)

, 1
)

.

3. Simuler υ ∼ U [0, 1]. Poser θt ← ξ si υ 6 ρ, et poser θt ← θt−1 sinon.

Il est important de souligner que l’exploitation de cet algorithme ne requiert la connaissance de ϕ

qu’à une constante multiplicative près : en particulier, pour ϕ(θ) = π(θ|x), le calcul de la constante de
normalisation n’est pas nécessaire en pratique.

Le choix le plus commun pour la densité instrumentale q consiste à considérer une densité q de la
forme q(ξ|θ) = ψ(‖θ − ξ‖). Ce choix permet de réécrire la valeur ξ proposée comme une perturbation
de l’état précédent de la châine de Markov, et présente également l’avantage de simplifier le calcul de la
probabilité d’acceptation ρ comme indiqué dans l’algorithme 1.4.

Algorithme 1.4 (Algorithme de Metropolis-Hastings, random-walk proposal).

Pour t = 0

Choisir arbitrairement θ0.

Pour t > 1

1. Simuler ε ∼ ψ(ε) et poser ξ ← θt−1 + ε.

2. Calculer

ρ(θt−1, ξ) = min
(

ϕ(ξ)

ϕ(θt−1)
, 1
)

.

3. Simuler υ ∼ U [0, 1]. Poser θt ← ξ si υ 6 ρ, et poser θt ← θt−1 sinon.

Echantillonnage de Gibbs. Lorsque les lois conditionnelles ϕ1(θ1|θ2, . . . , θd), . . . , ϕ1(θd|θ1, . . . , θd−1) sont
toutes accessibles par simulation, l’échantillonnage de Gibbs (voir Geman and Geman, 1984, pour
l’application originale aux champs de Gibbs) représente une solution alternative à l’algorithme de
Metropolis-Hastings. Cette méthode, décrite en algorithme 1.5, est basée sur une mise à jour incré-
mentale des coordonnées de θ grâce aux lois conditionnelles. La chaîne de Markov produite par
échantillonnage de Gibbs est ergodique de loi stationnaire ϕ, sous contrainte de positivité, i.e. dès que
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le support de ϕ est le produit cartésien des supports des lois conditionnelles ϕj, pour j = 1, . . . , d (voir
la preuve donnée par Robert and Casella, 2004, par exemple).

Algorithme 1.5 (Echantillonnage de Gibbs).

Pour t = 0

Choisir arbitrairement θ0 = (θ0
1 , . . . , θ0

d).

Pour t > 1

1. Simuler θt
1 ∼ ϕ1(θ1|θt−1

2 , θt−1
3 , . . . , θt−1

d ).

2. Simuler θt
2 ∼ ϕ2(θ2|θt

1, θt−1
3 , . . . , θt−1

d ).

...

d. Simuler θt
d ∼ ϕd(θd|θt

1, θt
2, . . . , θt

d−1).

Signalons que même si l’algorithme 1.5 parait moins générique que l’algorithme 1.3, au sens où
il est nécessaire d’identifier les lois ϕj et de pouvoir y accéder par la simulation, il n’en demeure pas
moins un choix populaire car il est particulièrement adapté aux modèles hiérarchiques pour lequel les
distributions conditionnelles s’avèrent faciles à exprimer.

Echantillonnage d’importance

Nous refermons cet aperçu des méthodes stochastiques pour le calcul des quantités d’intérêt
en décrivant rapidement les techniques d’échantillonnage d’importance (importance sampling) sur
lesquelles reposent notamment les techniques d’estimations séquentielles présentées en détails dans
le Chapitre 4. L’estimateur d’échantillonnage d’importance, semblable à l’estimateur de Monte Carlo
(1.15), étend les résultats obtenus pour celui-ci à un cadre plus large dans lequel nous ne simulons plus
directement des variables aléatoires suivant la loi d’intérêt mais des variables aléatoires suivant une loi
instrumentale.

Notant à nouveau q la loi instrumentale, choisie telle que le support de φ soit inclus dans celui de q,
nous réécrivons (1.13) sous la forme

I =
∫

h(x)ϕ(x)dx =
∫ h(x)ϕ(x)

q(x)
q(x)dx.

Puisque h ∈ L1(ϕ), alors hϕ/q ∈ L1(q) et il est donc possible d’utiliser l’estimateur de Monte Carlo en
fixant q et non plus ϕ comme loi (fictive) d’intérêt. Rappelons alors que pour θ1, . . . , θM des variables
i.i.d. distribuées suivant la loi de densité q(θ), l’estimateur d’échantillonnage d’importance de I est
défini par

ÎIS
M(q) =

1
M

M

∑
j=1

π(θ j)h(θ j)

q(θ j)
=

1
M

M

∑
j=1

w̃jh(θ j) (1.19)

où

w̃j =
ϕ(θ j)

q(θ j)
. (1.20)

15



1. INTRODUCTION

Comme pour l’estimateur (1.15) de Monte Carlo classique, il est facile de constater que pour h ∈ L1(ϕ)

Eq[ ÎIS
M(q)] = I, ÎIS

M(q)
p.s.−→ I.

La liberté du choix de la loi d’importance confère à la technique d’échantillonnage d’importance une
grande versatilité. Ce choix revêt une importance cruciale (voir Robert and Casella, 2009, par exemple)
car la variance de l’estimateur (1.19) n’est finie que lorsque

∫ h2(θ)ϕ2(θ)

q(θ)
dθ < +∞,

et vaut alors ∫ h2(θ)ϕ2(θ)

q(θ)
dθ −

{∫
h(θ)ϕ(θ)dθ

}2
.

L’intérêt de l’échantillonnage d’importance est alors clair car il peut fournir, pour un choix judicieux de
ϕ, un estimateur dont la variance est finie et inférieure à celle de l’estimateur (1.15) de Monte Carlo.
Il est cependant aisé de voir qu’un mauvais choix de q peut conduire à un estimateur de très grande
variance.

Si la technique d’échantillonnage d’importance permet d’approcher le calcul d’intégrales de la forme
(1.13), elle ne permet toutefois pas d’approcher directement la loi ϕ et ses quantiles. Pour cela, il est
nécessaire de renormaliser les poids et de considérer un échantillonnage d’importance renormalisé, en
construistant l’estimateur

ÎISr
M (q) =

M

∑
j=1

π(θ j)h(θ j)

q(θ j)

M

∑
j=1

π(θ j)

q(θ j)

=
M

∑
j=1

wjh(θ j) (1.21)

où les poids normalisés wj sont définis par

wj =
w̃j

∑M
k=1 w̃k

, (1.22)

et où w̃j désignent les poids non normalisés décrits en (1.20). L’estimateur (1.21) est presque sûrement
consistant, asympotiquement sans biais (voir Geweke, 1989, par exemple). Puisque la somme des poids
wj vaut 1, la mesure empirique pondérée

µISr
M (·) =

M

∑
j=1

wjδ(θ j, ·) (1.23)

où δ(θ, ·) désigne la masse de Dirac au point θ, définit une mesure de probabilité et elle converge vers
la loi d’intérêt ϕ. Les quantiles empiriques associés à cette mesure µISr

M convergent donc à nouveau vers
les quantiles de la loi ϕ (voir van der Vaart, 2000).

Il est également possible d’approcher la loi ϕ en simulant des variables i.i.d. suivant la densité µISr
M ,

ce qui conduit à la méthode SIR (Sampling Importance Resampling) décrite par Rubin (1988) et dont les
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estimateurs sont définis de la manière suivante :

µSIR
M̃

(·) = 1
M̃

M̃

∑
j=1

δ(θ̃ j, ·), (1.24)

ÎSIR
M̃

(q) =
1
M̃

M̃

∑
j=1

h(θ̃ j), (1.25)

où les variables aléatoires θ̃ j, j = 1, . . . , M̃, sont (conditionnellement à θ1, . . . , θM) i.i.d. et distribuées
suivant la loi µISr

M définie en (1.23). Il est toujours préférable de choisir l’estimateur (1.21) plutôt que
(1.25) puisque le premier possède une variance toujours inférieure à la variance du second (les deux
estimateurs possédant le même biais).

1.3 LES PROBLÉMATIQUES ABORDÉES

Le présent manuscript rassemble, dans trois chapitres distincts, nos contributions aux probléma-
tiques abordées au cours de la thèse. Les chapitres 2, 3 et 4 qui suivent sont rédigés en anglais sous la
forme d’articles. Nous présentons brièvement ci-dessous l’objet de chacun de ces chapitres. La section
1.3.1 présente le contenu du chapitre 2 qui s’intéresse au comportement asymptotique des estimateurs
de Bayes pour le modèle de part chauffage. La section 1.3.2 décrit la démarche du chapitre 3 dont l’ob-
jectif est la construction d’une loi a priori hiérarchique destinée à améliorer les prévisions en situation
d’historique court. Enfin la section 1.3.3 résume le chapitre 4 qui traite de l’estimation bayésienne d’un
modèle dynamique dans le but de disposer de prévisions en ligne.

1.3.1 Consistance de la loi a posteriori et de l’estimateur du maximum de
vraisemblance pour la régression linéaire par morceaux

Le chapitre 2 est publié dans la revue Electronic Journal of Statistics (voir Launay et al., 2012a).
Nous nous intéressons au comportement asymptotique des estimateurs du maximum de vrai-

semblance et bayésien dans le cadre de la régression linéaire par morceaux, servant par exemple
à représenter la part chauffage décrite dans le modèle (1.1). Les observations X1:n = (X1, . . . , Xn)

dépendent d’une variable exogène t1:n = (t1, . . . , tn) via le modèle défini par

Xi = γ · (ti − u)1[ti ,+∞[(u) + ξi , (1.26)

pour tout i = 1, . . . , n, et où (ξi)i∈N est une suite de variables aléatoires indépendantes et identiquement
distribuées (i.i.d.) suivant la loi N (0, σ2), de variance σ2 inconnue. Dans cette situation, le paramètre
inconnu que nous cherchons à estimer est θ = (γ, u, σ2).

Les propriétés asymptotiques sont prouvées sous l’hypothèse que la fonction de répartition empi-
rique du régresseur t1:n converge vers une fonction de répartition continuement différentiable quand
le nombre d’observations croît. Sous cette même hypothèse, Feder (1975) prouve que la consistance
de l’estimateur du maximum de vraisemblance et sa normalité asymptotique uniquement pour les
paramètres γ et u.

Dans le cadre de modèles réguliers avec observations i.i.d., Ghosh et al. (2006) s’intéressent aux
estimateurs bayésiens, et montrent la normalité asymptotique de la distribution a posteriori (théorème
de Bernstein-von Mises). Leurs hypothèses de régularité imposent notamment la différentiabilité de la
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vraisemblance au troisième ordre. Nous rappelons ci-dessous l’énoncé de ce théorème obtenu pour un
modèle univarié.

Théorème 1.1 (Ghosh et al. (2006), Théorème 4.2). Soit π(·) la densité de la loi a priori sur θ ∈ Θ ⊂ R,
continue et positive en θ0, k0 ∈N tel que ∫

Θ
‖θ‖k0 π(θ)dθ < +∞,

et notons

t = n
1
2 (θ − θ̂n)

et π̃n(·|X1:n) la densité de la loi de t conditionnellement aux observations X1:n, alors sous des hypothèses de
régularité du modèle, pour tout 0 6 k 6 k0, quand n −→ +∞, nous avons∫

R
‖t‖k

∣∣∣π̃n(t|X1:n)− (2π)−
1
2 |I(θ0)|

1
2 e−

1
2 t′ I(θ0)t

∣∣∣ dt P−→ 0, (1.27)

où I(·) désigne l’information de Fisher du modèle et θ0 la vraie valeur du paramètre.

L’étude asymptotique du modèle de régression linéaire par morceaux (1.26) est rendue difficile par
l’impossibilité de différentier la vraisemblance dans un voisinage de l’estimateur du maximum de
vraisemblance.

Pour étendre les résultats de Ghosh et al. (2006), nous complétons tout d’abord les résultats de Feder
(1975) : nous nous assurons dans un premier temps de la consistance de l’estimateur du maximum
de vraisemblance θ̂n vers la vraie valeur θ0 et contrôlons la vitesse de convergence associée. Nous
rappelons ci-dessous le résultat prouvé.

Théorème 1.2 (Chapitre 2, Théorème 2.9). Sous les hypothèses A1–A4 présentées dans le chapitre 2, quand
n −→ +∞, nous avons

n
1
2

(
θ̂n − θ0

)
d−→ N

(
0, I(θ0)

−1
)

,

où I(·) désigne la matrice définie en (2.7) et θ0 la vraie valeur du paramètre.

Nous définissons ensuite un pseudo-problème, outil théorique original introduit par Sylwester
(1965), en retirant formellement les observations situées dans un voisinage de θ0, de façon à ignorer
une fraction asymptotiquement négligeable des observations. Choisir de manière adéquate la vitesse
de réduction de ce voisinage permet de garantir la dérivabilité de la vraisemblance dans un voisinage
de l’estimateur du maximum de vraisemblance pour le pseudo-problème. Nous utilisons alors les
techniques de Ghosh et al. (2006), pour recouvrir, sous des hypothèses similaires, le théorème de
Bernstein-von Mises relatif à la distribution a posteriori, puis montrons que le pseudo-problème et
le problème original sont asymptotiquement équivalents, étendant ainsi naturellement les résultats
obtenus pour le premier au second. Nous rappelons ci-dessous le résultat principal prouvé et son
corollaire immédiat.

Théorème 1.3 (Chapitre 2, Théorème 2.2). Soit π(·) la densité de la loi a priori sur θ ∈ Θ ∈ Rd, continue et
positive en θ0, k0 ∈N tel que ∫

Θ
‖θ‖k0 π(θ)dθ < +∞,
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et notons

t = n
1
2 (θ − θ̂n)

et π̃n(·|X1:n) la densité de la loi a posteriori de t conditionnellement aux observations X1:n, alors sous les
hypothèses A1–A4 présentées en page 28, pour tout 0 6 k 6 k0, quand n −→ +∞, nous avons∫

R3
‖t‖k

∣∣∣π̃n(t|X1:n)− (2π)−
3
2 |I(θ0)|

1
2 e−

1
2 t′ I(θ0)t

∣∣∣ dt P−→ 0, (1.28)

où I(·) désigne la matrice définie en (2.7) et θ0 la vraie valeur du paramètre.

Corollaire 1.4 (Chapitre 2, Corollaire 2.4). Soit π(·) la densité de la loi a priori sur θ ∈ Θ ∈ Rd, continue et
positive en θ0, telle que ∫

Θ
‖θ‖π(θ)dθ < +∞,

et notons

θ̃n =
∫

Θ
θπn(θ|X1:n)dθ,

l’estimateur de Bayes de θ. Alors sous les hypothèses A1–A4 présentées en page 28, quand n −→ +∞, nous avons

n
1
2 (θ̃n − θ̂n)

P−→ 0.

Les vitesses de convergence obtenues pour ce modèle non i.d.d. sont cohérentes au sens où elles sont
identiques aux vitesses obtenues pour l’estimateur du maximum de vraisemblance pour un modèle i.i.d.
dont la vraisemblance continue possède un unique point singulier (voir par exemple Dacunha-Castelle,
1978) ou également pour un modèle de régression dont le régresseur vérifie l’hypothèse A1.

1.3.2 Prévision en situation d’historique court

Le chapitre 3 fait actuellement l’objet d’une soumission.

Dans ce chapitre nous développons la méthodologie bayésienne permettant de prévoir la consomma-
tion d’électricité, à partir d’un modèle dérivé du modèle (1.1), pour un jeu de données dont l’historique
est court. En situation d’historique court, l’estimation des paramètres du modèle (1.1) par la méthode
du maximum de vraisemblance est rendue très délicate à cause du nombre important de paramètres
en jeu. Le modèle est généralement surajusté aux données disponibles et fournit par conséquent des
prévisions de mauvaise qualité.

Pour améliorer la qualité des prévisions, nous supposons qu’il existe un autre jeu de données pour
lequel un historique plus long est disponible (permettant une estimation correcte des paramètres du
modèle) et supposons que les deux jeux de données se ressemblent. Plus formellement, notons A le
jeu de données dont l’historique est long, B le jeu de données dont l’historique est court, θA, θB les
paramètres d’intérêt respectifs et XA, XB les observations respectives. Nous supposons que les données
XA et XB sont issues d’un même modèle f (x|θ) pour des valeurs de paramètres θA et θB assez proches.

Afin d’estimer le paramètre θB nous proposons la construction d’une loi a priori hiérarchique basée
sur la loi a posteriori π(θ|XA). L’estimation de θB s’effectue en deux temps :
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1. à partir d’une loi a priori non-informative, nous estimons la loi a posteriori correspondant au
modèle sur le jeu de donnéesA. Les données XA étant nombreuses, le choix de la loi a priori (pour
peu qu’elle possède une grande variance) n’a qu’une influence mineure sur la loi a posteriori.

2. à partir d’une loi a priori hiérarchique normale prenant en compte µA, ΣA (moyenne et variance
de la loi a posteriori π(θ|XA) sur le jeu de données A) et la ressemblance entre les jeux de
données, nous estimons la loi a posteriori correspondant au modèle sur le jeu de données B.
La ressemblance entre les deux jeux de données est modélisée à l’aide d’un opérateur linéaire
diagonal K dont les coefficients sont inconnus, mais a priori centrés autour de la valeur 1. La loi a
priori que nous utilisons pour estimer le modèle sur le jeu de données B est de la forme

θ|K ∼ N (K1µA, K2ΣA).

Nous donnons une représentons schématique de la méthode d’estimation du modèle sur le jeu de
données B en figure 1.4.

A loi a priori non-info. πA loi a posteriori πA(·|XA)

K µA, ΣA

B loi a priori normale πB loi a posteriori πB(·|XB)

+

+

Figure 1.4: Représentation schématique de la méthode proposée pour estimer les paramètres du modèle
en situation d’historique court.

La méthode que nous proposons est tout d’abord validée sur des données que nous simulons :
les jeux de données simulées A et B sont de longueurs respectives 4 ans et 1 ans, θA est choisi de
manière à représenter un comportement de consommation typique au périmètre national, et θB est
choisi de la forme θB = ΛθA avec Λ opérateur linéaire diagonal connu, pour différents choix de Λ.
Par exemple, lorsque seul le seuil de chauffage diffère entre A et B, i.e. uB = λuA, nous obtenons les
résultats présentés en figures 1.5, 1.6 et 1.7

Les figures 1.5 et 1.6 représentent les erreurs d’estimations sur les paramètres pour λ = 1 et λ = 0.5.
Dans la situation idéale de ressemblance parfaite (λ = 1) entre les deux jeux de données A et B la
méthode informative développée fournit des estimations plus précises qu’une méthode non informative.
Quand la ressemblance entre les jeux de données n’est plus exacte (λ = 0.5) l’estimation des paramètres
reste néanmoins correcte : la loi a priori ne déteriore pas la qualité des estimations, par rapport à une
méthode non informative.

La figure 1.7 représente le rapport entre le RMSE en prévision obtenu par la méthode informative
d’estimation que nous proposons et une méthode non informative (assimilable à une estimation par
maximisation de la vraisemblance) en fonction du coefficient λ de ressemblance entre les seuils de
chauffage des deux jeux de données A et B simulés. Il est clair que la méthode développée améliore

20



1.3. LES PROBLÉMATIQUES ABORDÉES
−

15
−

5
0

5
10

15

Seasonal

po
st

er
io

r 
m

ea
n 

−
 tr

ue

●

●

●

●●
●
●●●

●●●● ●●

● ●● ●
●

●
●●●●

●

●●●●● ●●●

●

●●●● ●●●●●●●●●●
●

● ●●● ●
●

●●●● ●●●
●

●
●

●
●● ●●
●

●
●●●

●
●
●● ●

●●●●
●

●●●● ●●●
●

● ●
●

●●
●●

●● ●●
●

●● ●●●●●●
●●●●●●● ●●●●●●●●●●●●●●●●● ●●● ●● ●● ●● ●●●●●●●●●● ●●● ●●● ●●●●● ●●●●●●●● ●●● ●●●● ●●●●● ●●●●●●● ●●● ●●● ●●● ●●●●●●●● ●●●● ●●●●●●●● ●●●●●●●●● ●●●●● ●●●●●●● ●●●●●●●●●●●● ●●●●●●●● ●●●● ●●●●●●● ●●●●●●●● ●●●●● ●●●●● ●●● ●●● ●

●●●●
●

●●

●
●●
●
●
●

●●●●●●
●●●●●

●
●●●● ●
●●●

●
●●●●●●●● ●●●●● ●●●●●●●● ●●●●●● ●● ●●●●●● ●● ●●●● ●●●● ●●●● ●●●●●●●●● ●●●●●●● ●● ●● ●●● ●●●●● ●●●●●●●● ●● ●●●●●●●●●●●● ●●●●●●●● ●● ●●●● ●●●●●●●● ●●●●●● ●● ●●●● ●●●●● ●●● ●●● ●●●●●●● ●●●●●●●●●●●●●●●●● ●●●●●●●● ●●●● ●● ●●● ●●●●● ●●● ●●●●●●●●●● ●●●● ●●●● ●● ●●● ●●● ●●● ●●●● ●● ●●● ●● ●● ●●●● ●●●●●●●●●●● ●●●● ●●●● ●●● ●●●●

●●
●●●●●●

●
●●●● ●●●●

●● ●
●

●
●●●● ●●● ●●●

●
●●●●●

● ●
●

●●●●●●●● ●● ●● ●●●●●●●●●●● ●●● ●●●●●●●●●●●●● ●●● ●●●●●●●●●●●●●●●●●●● ●● ●●●●●●● ●●●● ●●●●● ●●●●●●●●●●●●● ●●●●●● ●●●●●● ●●●●● ●●● ●●●●●●●●●●●●●● ●● ●● ●●●●●●●●●● ●●●● ●●●●●●●●●●●●●● ●●●●● ●●●●● ●●●●●●●●●●●●● ●●●●●● ●●●●● ●●● ●●●●● ●●● ●●●●●●●● ●●●●●●●●●● ●●● ●●● ●●●● ●● ●● ●● ●●●●●●●●●●● ●● ●●●● ●● ●●●

●●●
●●

●
●●●

●
●●

●
●●●●● ●●●●●● ●●● ●●●●●●●●● ●●● ●●●●●●●●●●●●●●●●●●●●● ●●●●●●● ●●●●●●●●● ●● ●●●●● ●●●● ●●● ●●●●●●●●●●●●●● ●●● ●● ●● ●●● ●●●● ●●●● ●●●● ●●●●● ●●●●●●●●●●●● ●● ●●●●●●●● ●●● ●●● ●●●●● ●●●●●● ●●●● ●●●●●●●● ●●●●●●●●●●●● ●●●●●●● ●●● ●●● ●● ●● ●●● ●●●●●● ●●●●●●●●●●●●●●●●● ●●●●●●● ●● ●●●●●●●●● ●●●●● ●●●●●●●● ●●●●●●● ●●● ●●●●● ●●●●●●● ●●●●● ●●●●●

●●●●●
●● ●●●●●
●
●● ● ●● ●●●●

●
● ●

●
●●

●●●
●●

● ●●●●●●● ●●● ●●●●●●●●●●●● ●●●●●● ●●●●●●●●●●●●●● ●●●●● ●●●●●●● ●●●●● ●●●●●●●●●●●●●● ●●●● ●● ●● ●● ●●●●●●●●●●●●● ●●●●●●● ●●●●●●●●●● ●● ●●● ●●●● ●●●●●●●●●●●●●●● ●●● ●●● ●●● ●●●●●●● ●●●●● ●●● ●●●● ●●● ●●●●● ●● ●●●● ●● ●●●●●●●●●●● ●●●● ●●●● ●●●●●●●● ●●●●●●●● ●●●● ●●●●● ●● ●●●●●●●●● ●●● ●● ●●●●●●●●●●●●●●●●● ●● ●●●●●●
●

● ●

●
●● ●●
●

●●●●●●● ●●●●
●
● ●●●●●● ●●●● ●●●● ●● ●●● ●●●●●●●●●●●●● ●●●● ●●●●●●●●●● ●● ●●●● ●● ●●●● ●●●● ●●●●●●● ●●●●●● ●● ●●●●● ●●●●●●● ●● ●● ●●●● ●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●● ●● ●●●●●● ●●●●●● ●●●●● ●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●●●●●●●● ●●● ●●●●●●● ●●●●●●●●● ●●●●● ●● ●●●● ●●●● ●●●●●● ●●●●●● ●●●● ●●●● ●●● ●●● ●●● ●●●●●● ●●●●●●●●●●●● ●●● ●●● ●

●
●●● ●●●

●
●● ●● ●●●●● ●●●● ●●●●●●●●● ●
●
●●●● ●●● ●●●●●● ●●●● ●●● ●● ●●● ●●●●●●● ●● ●●●●●●●●●●●●●● ●●●● ●●●●●●●●●● ●●● ●●●●●●●●●●●●●●●●●●●●●●● ●● ●●●● ●● ●●●●●● ●●●●●●●● ●●●● ●●●●●●●●●●●●●●● ●●●● ●● ●●●● ●●●● ●●● ●●●●●●●●●●●●●●●●●●●●● ●● ●●●●●●●●● ●●●● ●●● ●●●●●● ●● ●●● ●● ●● ●●●● ●● ●● ●● ●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●● ●● ●●●●●● ●●●●●●●●●●●●●● ●●●●●●

●●● ●
●●●

●
●

●
●

● ●●●
●
●
●

●● ●●
●●

●●●
●

●●
●● ●● ●●●● ●●●●● ●●●●●●● ●●●● ●●● ●●●●● ●● ●●●●●●● ●●●● ●●●●●●●●●●● ●●●● ●●●● ●●●● ●●●●●●●●●● ●●● ●●●●●● ●● ●●●●●●●●●●● ●● ●● ●●● ●● ●● ●●●●●●●●● ●● ●●●●●● ●●●●●●●●● ●● ●●●●●●●●● ●●●●● ●● ●●●● ●● ●●●● ●●●● ●●●● ●●●● ●●●●●●●●●●● ●● ●● ●●●●●●● ●●●●●●●●●●● ●● ●●●●●● ●●●● ●●●●●●●●●●● ●●●● ●●●●●● ●●●●●●●●● ●●●●●●●●●●● ●●●●● ●●

●

●

●

●●
●

●●

● ●●●●

●

●

●●

●● ●●●

●●

● ●●●●● ●●●●

●● ●

●

●

●

●● ●●●

●

●

●●

●

●

●

●

●●●

●

● ●●●

●

●●●

●

●●

●

●●

●

●

●

●

●●

●

●●●●●●

●

●

●

●

●

●

●●●

● ●
●

●●
●

●
●●

●●
●●
●
●●●●

●●
●●

●
●● ●

●●
●●● ●
●

●
●

●●●
●

●
●

● ●●●
●

●
●

●●● ●● ●●
●

●●●●● ●●● ●
●

●●●
●

●●●
●

●●●●●●●● ●●●● ●●●●●
●
●●●
●●

●
●●●● ●● ●●●●●● ●● ●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●● ●●●● ●●●● ●●●●●●● ●●● ●●●●● ●●●● ●● ●●●●● ●●●●● ●●●●●●● ●●●●

●

●

●

●

●

●

●

● ●● ●●●●

●

● ●●●●●

●●

● ●●●●

●

● ●

●●●

●

●●●●●

●

●

●

●●● ●● ●●

●

●●●●●

●●

●●●●

●● ●●

●● ●● ●

●

●

●●

●●
●●●

●
● ●

●
●

●● ●●
●●● ●● ●●

●
●●●

●●
●

●●
●

●●
●●
●

●
●

●
● ●

●
●
●

●
●●●●
●●●

●●●●
●●

●●●
●●
●●● ●

●
●●
●

●●
●

●
●●
● ●●

●
●●
●
●

●●
●
●●

●●●
●●

●●●
●

●
●●●
●●

●
●

●
●
●●
●

●
●●
●

●●●●●● ●●●●●●●●●●● ●●●●● ●● ●●●● ●●●● ●● ●● ●●● ●●●●●●●● ●●●●●● ●●●● ●●●●●●● ●● ●●● ●●● ●●●● ●●●●● ●●●●●●●●●● ●● ●●●●● ●●●●●●●●●●●

●

●

●

●

●

●●

●●

●

●●●●

●

●●

●●● ●

●●

●

● ●●

●

●● ●●

●●●

●

●●

●

●

●●●●●● ●●

●●

●●●●●● ●●●●●

●

●●●

●

●●●

●

●●●

●

●

●

●

● ●●

●●

●

●

●

● ●●●

●

●

●

●●

●

●●

●

●

●

●●●●

●●

●●

●●●● ●

●●

●

●

●

●

●●●●

●

● ●●●

●●

● ●

● ●

●

● ●●●

●

●●

● ●●

●

●

●

● ●●

●

● ●

●

●

● ●

● ●●●

●

●●

●

●●

●●

●●

●●

●●

●

●

●●

●●●● ●●●●●

●

●

●

●●●

●

●

●

●

●●● ●

●●●

●

●●●●● ●●

●●

●

●● ●

●●

●

●

●

●

●●

● ●●

●●●● ●●

●●

●●

●●●● ●

●●
●

●●●
●

●
●●●

● ●
●● ●
●●

●● ●
●
●
●

●●
●

● ●
● ●●●

●
●●●●●●●● ●●● ●●●●●● ●●●

●
● ●●

●●●

●

●●●

●

●● ●●● ●

●

●

●

●

●

●●●●

● ●● ●●●

●

●

●

●

●

●●

●●

●

●

●

●

● ●●●

●

●

●● ●●

●

●

●●●● ●●●

●

●

●

●●

●● ●

●●

●●

●

●

●

●●

●●●

●

●

● ●●● ●●

●

●

●

●●●●●●

●●

● ●●●

● ●

● ●●

●

●●

●

●

●

● ●●●

●●

●●

●

●

●

●●

●●

●●●●● ●●●

●

●●●●●●●●●●●●

●

●●●●●

●

●●

●

●

●

●● ●●●●

●●

● ●
●●

● ●●
●

●●
●

●
●●
●

●
●●●●●●●

●
●
●●
●

●●
●
●
●●
●●
●●

●
●

●
● ●
●

●● ●●
●
●
●●

● ●
●
●

●
●

● ●●●●● ●●●●● ●●● ●●●●●●●●● ●●●●●● ●●●● ●●● ●●● ●●● ●●●●● ●●● ●●●● ●●●●●●●●●●●●●

●

●

●

●

●

●

●●

●

●

●

●●● ●●

●

●●●

●

● ●

●● ●●

●●●●

●

●●

●

●

●● ●

●●●●●

●●

●●●●●

●● ●

●●●●

●

●

●●●●●

●●●

●● ●● ●●●●

●

●

●

●

●

●

●●●●

●●

●

●●●

●●●

●

●

●●

●

●●●

●

●

●

●

●●

●●●

●

●

●●●●●

●

●●

●

●●●●

●●

●

●●

●●●

●

●●

●●

●●●● ●●

●

●●●● ●
●

●● ●●● ●●●●●●●● ●● ●●
●
● ●●●●●●
●

●●
●
●●●● ●●●●●

●
●● ●

●
●●● ●●

●● ●●●●●●●● ●●● ●●●● ●●●●
●
●●

●●●
●

●●●●●●● ●●●● ●●● ●●● ●●●●●●●●●●●●●●● ●●● ●●● ●●●● ●●●●● ●●●●●● ●●●●●● ●●● ●●●●● ●●●●

●

●

●

●●●●● ●

●

●●●●

●

●

●

●●

●●●

●

●●●●

●●

●

●●

●

● ●

●

●

●

●

●●

●●

●

●

●

●

●●●

●

●

●

●

●

●

●●●●●●

●● ●●

● ●●●

●

●● ●●●●●

●

●●●

●●●

●●

●

●

●●

●

●

●

● ●

●

●●

●

●●

●

●

●

●

●

● ●

●

●

●●●● ●

● ●

●●●●●● ●●

●

● ●

●

●●

● ●●

●

●●

●● ●

●●●

●●

●

●●

●

●

●

●
●

●
●

●
●●
●

●
●●
●

●●
●●
●

●● ●
●

●
●

●
●●●●
●

●●●
●●●●
●

●
●●

●
●

●●
●
● ●●●●●●●●●●●●●●●●

●
●● ●●●● ●● ●●●●●●●● ●●● ●●
●●● ●●

● ●
●●● ●●● ●●●●●●●●● ●● ●● ●●●● ●●●●●●●● ●●● ●●● ●●●● ●● ●●●●● ●● ●●●●●●●

●

●

●

●●

●

● ●●●

●●

●

● ●●●

●

●

●

● ●●●

●●

●

●●●●

● ●

●

●

●● ●

● ●●

●●

●

●●

●●

●●

●●●●

●

● ●

●●

●●

●●● ●

●● ●

●●

●●●

●●

●●●

●

●●

● ●

●●

●●

●●

●

●

●●●

●●

●

●

●●

●

●●●

●●

●●●●

●●

●● ●

●

●●●

●

●

●

●●

●

●

●

●●

●

●●● ●●

●

●

●● ●

● ●●●●

●●

●●●

●●●

●●

●

●

●●●●
●
●●

●●
●

●
●●

●●●
● ●
●

●●● ●●● ●
●

●●
●●●●●

●
● ●

●
●

●
●
●

●●
●●●
●

●
●
●●
●●
●●●

●●●
●

●●
●●

●●
●

●
● ●●

● ● ●
●●
●●

●●●●● ●●●●●●●● ●●●●●●●●●● ● ●●● ●●●●●● ●●●●● ●●●● ●● ●●●●●●●● ●●●●●●●●●●●●

●

● ●
●●

●

●

●

●

●●

●

●

●

●

●●●●

●

●

●

● ●●●

●

●

●●

●●

● ●●●●

●

●● ●●●

● ●

●●● ●

●●

●

●

●● ●●●

●

●● ●●●●●●● ●●● ●●● ●●●●●●●

●

●●● ●●●

●

●● ●●●●●●●

●

●

●●●

●●

●●●●●

●

●●●●●

●

●●

●

● ●

●

●●

●● ●

●

●

●●
● ●
●
●

●
●

● ●●● ●
●●

● ●
●

● ●●
●●
●

●● ●
●●

●● ●
●

●●
●●●● ●

●● ●●
●

●●
●●

●●● ●●●●
●

●●●●●●●
●

●●●
●●●
●● ●

●
●

●
●
●

●●●
●

●●●●● ●●●●●● ●●● ●●●●● ●
●
●●● ●● ●●●●●

● ●●● ● ●●●●●● ●●● ●●●● ●●●● ●● ●● ●● ●● ●●● ●● ●●● ●● ●●●● ●●● ●●●● ●●● ●●

●●

●●

●●●

●

●

●●●

●

●●

●●● ●

●

●

●●

●●

●

●

●

●

●●

●●●●

● ●●

●

● ●●●●

●

●●

●

●●

●●●●

●●●

●

●●●●●● ●●●●

●●

●●● ●

●● ●

●●●●●●●●

●

● ●●●●●

●

●

●●

● ●●●●● ●

●●

●

●

● ●

●●

●●● ●●

●

●●●

●

●

●

●

● ●
●●●

●●●
● ●● ●●

●
●●

●
●

●
●

●
●●● ●

●●
●
●
●

●
●

●
●●

●
●●●●

●●
●●
●●

●
● ●

●●●●● ●
●
●

●●
●
●●

●●
●

● ●●●
●

●●●●●● ●● ●
●
● ●●●
●
●●●●
●
●
●

● ●● ●
●

●● ●● ●●●● ●● ●● ●●●●●● ●●●●●● ●●●● ●● ●● ●● ●●●● ●● ●●●● ●●●●●●●●●● ●● ●●●●● ●●●● ●●● ●●●●●● ●●●●●

●
● ●

●

● ●

●

● ●●

●● ●●● ●●

●

●

●

●

●

●

●●●●

●

●

●

●●

●

●● ●●

●

●●

●●●

●

●●

●

● ●

● ●●

●

●

●● ●

●

● ●

●

●●

●●●● ●

●

●● ●●

●

●

●

●● ●●●

●●●●

●

●

●●

●●

●●●● ●

●

●

●

● ●●

●

● ●●● ●●●

●●●●

●

●●●● ●●●

●●●

●

●

●

●●

●

●

●

●

●

●

● ●●●● ●
●●●●
●●●●●●●● ●●

● ●
●

●
●

●●
●

●●●●●●●
●●

●
●

●●
●●
●

●
●●●

●
●
●●●
●

●
●

●
●

●●● ●
●

●●
●●

● ●●●
●
● ●
●

●
●

●
●
●●

● ●
●● ●● ●●●●●●● ●● ●●●●●●●●●●●●●●● ●●●●● ●●●●●●●● ●●● ●●●●● ●●●●●● ●●●●●●●●● ●●● ●●●● ●●●● ●●● ●●●

●

●

●

●

● ●●

●

●

●●●

●

●● ●● ●● ●●●●●

●● ●

●

●●

●

●●

●

● ●●●

●●●

●

●●

●

●●

●

●●●

●●

●●

●● ●●

●

●●●●●

●●

●

●●

●

●● ●●●● ●

●

●●

●

●

●

●●

●

●

●

●

●● ●● ●●

●

●●● ●

●

●●●●●

●

●

●

●

●●●●

●● ●

●

●●

●

●●

●

●● ●

●●

●

●

●

●

●

●

●●

●●

●●●●

●●●

●

● ●

●●●●

●

● ●●● ●●

●

●

●●

●●

●● ●

●

●

●

●●●●●●

●

●● ●

●

●●

●

●● ●● ●●●●●

●

●

●

●

●

● ●●●●●●

●

●

●

●

●

●

●

●●●●

●●●

●●

●

●●●

●●

●●●●

●

●

●

●

●

●●●●

● ●●

●● ●

●

●●
●●●●●●●●

●●●●
●

●●
●
● ●●

●
●

●
●
●
●●●●●●●●●●●● ●●●●●● ●●●●● ●

●

●
● ●

●
●●

●●

●●●

●

●

●

●

●●

●

● ●● ●●●●●● ●●● ●●

●

●

●

●

● ●

●●●

●

●

●

●●●

●

●

●

●●

●

●● ●●

●● ●

●

●●

●●

●

●

● ●●

●●

●

●

●●●●

●

●●●●●

●

●●● ●●●●●●

●

●●●●●●●

●

● ●●

●●

●

●

●

●

●

●●

●

●

●●

●●

●●● ●●● ●●●●● ●●●●

●

●● ●

● ●

●●

●●

●

●●

●●●

●

●●

●

●

●

●

●

● ●●

●

●●● ●●

●●

●●

●

● ●

● ●

●

●●

●●

●●

●

●

●

●

●

●

●●●

●

●● ●

●

●

●●

●

●

● ●

●

●

●●●

●

●

●

●

●●

●

●●

●●

●

●●●

●●●●● ●●

●

●

●●

●●
● ●● ●

● ●
●●

● ●
●●

●
●●●
●● ●●●●
●

●●●
●
●●●

● ●
●●

●
● ●●●●●●●● ●●●●●●●● ●●●●●●●●

α1 α2 α3 α4 α5 α6 α7 α8 α9 α10

−
0.

00
15

0.
00

00
0.

00
10

Shape

po
st

er
io

r 
m

ea
n 

−
 tr

ue

●

●

●
●

●

●

●●●

●●

●●

●

●●

●

●

●

●

●

●

●

●

●

●● ●● ●

● ●

●

●

●

●

●●

● ●●●

● ●●●●●●●

● ●

●

●

●

●● ●

●●

●●●●

●

●

●

●●

● ●

● ●

●●

●●●

●●

●●●

●

●●

●

●●

●

●●

●

●

●

●

●

●●

●

●

●

●

●●

●●

●

●

●●●

●

●

●

●

●●

●

●●

●

●

●

●

●

●●

●●

●

●

●●

●● ●

●●●

●

●

●

●

●

●●●

●●

●●

●

●●● ●

●●●●● ●●●●●●●●●●

●●
●●● ●

●●
●●● ●●●●

●●
●

●
●●●

● ●●●●● ●
●
●

●●●●
●

●●
●●

●●●●
●

●●
●

●
●●

●
●● ●●●

●
●

●
●

●●●
● ●

●●● ●● ●● ●●●●●●●●●●●●● ●● ●● ●●●●●●● ●●●●●●● ●●●●● ●● ●●●●●●● ●●● ●●●●●●●

●

●
●

●
●●

●

● ●●

●

●

● ●●●●● ●●●

●

●●●

●

●●

●

●

●

●●●

●

●●

●

●●●●

●●

●●●

●●●

●●

● ●

●

●

●●

●●●●

●

●

●●

●

●

●●

●●●

●●

●●●

●●●● ●● ●●●●●● ●●

●

●●

●● ●

●●

●●● ●

●●●● ●

●● ●●

●

●●●●

●

●●

●

●●●

●

●

●●●

●●

●

●

●

●● ●

●

●●●

●●

●●●●●

●

●

●

●

●●

●●● ●●●

●

● ●●●●●●●

●

●●●

●

●●●●●●

● ●
●●
●
●

●
●●●● ●●●

● ●
● ●●●●● ●●●●●
●

●
●

●●●
●●●

●●●●●●
● ●●

●●
●●●
●●●

●
● ●
●

●●●●● ●●● ●●●●●● ●●●●● ●●●● ●●● ●●●●● ●●●●●●●● ●●●● ●● ●●●●●●●●●● ● ●●●●●●

●●
●●

●●

● ●

●●●● ●●●

●

●

●

● ●●

●●●●●

● ●

●● ●●●● ●●●●●●●●●●● ●●●●●●

●

●

●

●●● ●

●●●

●

●

●●●●●● ●

●●

●●●

●●

●●●●●●●●●●●

●

●●

●

●● ●●●●●

●

●●

●●

●●

●

●●●

●

●

●

●

●● ●●●●

●

●

●●

●● ●

● ●

●

●

●●

●●

●●●●●●

● ●●

●●

●

●●

●

●●●

●

●

●●

●

●

●●●

●

●●●

●

●●●●●● ●●●●

●●●

● ●

●

●●

●
● ●●●●

●●
●●●●●
●
●

●
●●●
●●●●
●

●●●●●
● ●● ●●

●
●
●
●●●

●
●
●

●● ●
●●

● ●●
●
●

●●
●
●

●●●●●●●●●●●● ●●●●●●●●●●●●●●●● ●●●● ●●●●●●●●●●● ●●●●●●●●● ●●●●● ●

●
●

●● ●

●

●

● ●●●●●

●

●

●●

●

●●●●
●●●

●

●●●●●
●
●●

●

●

●●

● ●

●●●●

●●●

●●

●

●●●

●●

●● ●●

●

● ●●

●●

●●●● ●

●

● ●

●

●

●

●

●

●

●

●

● ●●

●

●●

● ●●●●

● ●●

●●●●

●

●●●●●

● ●

●

●

●●●

●

●●●●

●

●

●

●

●●

●●

● ●

●●●●

●●●

●●

●

●●

●

●●●

●●

●

●● ●●● ●●

●●

●

● ●

●

●

●●

●● ●

●●●

●

●●

●●●●

●

●●

●●●●●●●●●
●

●
●● ●●

●
●●

●●
●●●

●
●●

●
● ●● ●●
● ●

●
●●

●
●

●
●●●

●
●●●●●●●●●●

● ●●
●

●●
●●●
●●

●
●

●●
●

●●●●●● ●●●●●●●●● ●●●●●●●● ●●● ●●●● ●●●●●●●● ●●●● ●●●●● ●● ●● ●

●

●

●●

●

●

●●●●●
● ●

●

● ●●

●

●

●

●

●

●

●

●●●

●●●●

●

●●●

●●

●

●

●

●●●●

●

●●

●●

●●●

●

●

●

●●●

●

●●

●

● ●●●●●●●●

●●

●●●●●

● ●●

●●●

●●

●●●●●

● ●

●●

●●

●

●

●●● ●●●●

●

●●●

●

●●●

●

●●●●

●

● ●●

●●●

●●

●

●●

●

●

●

●

●

●

●●

●

● ●

●● ●

● ●

●

●

●

●

●●

●●

●

●

●●●

●

●

●

●●●●

●●●

●

●

● ●●●

●

●

●●● ●

●●

●●●

●●●●

●

●

●

●●

●

●●●●●
●

●●●
●

●
● ●●●●

●●
●

●
●

● ●●
●●

●
●●
●
●

●●
●● ●

●● ●
●

●
●●●●

●
●

●
●

●
● ●●●●●●●●●●● ●●● ●●●● ●●● ●●●● ●●● ●●●●●●●●●● ●●●●● ●●● ●● ●●●●

●

●●

● ●

● ●●

●

●

●

● ●

●

●

●

●●

●

●●●●

●

●●●●●●●●

●

●●● ●●

● ●● ●●●

●

●

●

●●

●

●

●

●

●●●

●

●

●● ●●

●● ●●●

●

●●

●●●

●● ●

●

●●

●

●

●

● ●

●

●

●

●●

●

●

●

● ●

●

●●

●●

●●

●

●●●

●●

●●● ●● ●

●●● ●●

●●●●●●●●●●●●

●

●

●

●

●

●●

●

●

●●

●● ●

●

●

●

●●●●

●

●

●●●

● ●

● ●●

●● ●●●●●●●

● ●

●●

●

●●

●

● ●●

●

●●●●● ●●●
●

●
●●

●
●
● ●●

●●
●●●
●●

●●●
●
●●

●
●

●
●●

●
●

●
●●●●●
●

●
●

●
● ●
●

●
●●●●

●
●
●

●●●
●
●

●
●
●●

●●
●

●
●
●●
●●●● ●● ●●●● ●●● ●●●● ●●●●●●●●●●● ●● ●● ●●●●●● ●●●●●●

●

●

●

●

●

● ●

● ●

●

●●●

●

●●

●

●

●●●

●

●●

●

●●

●

●

●

● ●●●

●

●● ●●●● ●●●

●

●●●

●

●

●

●●

●

●●

●

●

●

●●●

●●

●

●●

●●●●●●●

●

●

●●●

●●

●

●●●●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●●

●●●●

●●

● ●

● ●●

●●

●

●●

●

● ●

●●●●●

●●

●●

●

●

●●

●

●

●

●

●

●

●●

●●

●●●

● ●●

● ●●

●●

●●●

●●●●●

●●●●●●

●

●●●●

● ●●

●● ●●

●●

●●

●

●

●

●●

●● ●

●●●

● ●●

●

●●●

●●

●●

●

●

●●

●●

● ●●

●

●

●

●●

●

●●●●●

●●●

●

●

●●● ●

●

●

●●

●●●●

●●● ●
●

●●●
●

●
●

●
●●●

●●
●●●●
● ●

●
●

●●
●
●

●
●●

●●
●●●●●●●●●● ●●●●●●●●●

●
●

●

●●
●●

●●●

● ●●● ●

●●●

●●●●

●●●

●

● ●●

●●●●●

●●●●●●●●

●

●●●●●●●

●●

● ●●

●

●●● ●● ●●●●●●●●●

●●●

●

●●

●

●●●●

●

●

●

●●

●

●●●

●

●●●●

●

●

●

●

●

●●●● ●

●

●●

● ●

●

●●

●

●

●●

●

● ●

●

●●

●

●●

●

●●

●

●

● ●●

●

●●● ●

● ●

●

●●●●●

●

●

●

●● ●●●●● ●●●

●●

●● ●

●●●

●●●

●●

●● ●

●

●● ●●

●●

● ●●●●●●●

●

●● ●●●● ●

●

●●

●

●● ●

●

●●●●●●●●●

●

●●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●●

● ●● ●

● ●●

●

●

●●

●

●●

●

●●●
●●

●●
●

●
●●

●
●

●●●●
●
●●

● ●
●●

●
●●●

●●
●● ●●●●● ●●●● ●●● ●●●

●
● ●●

● ●

●●●●

●

●●

●●●

●●●

●●

●

●●

●

●

● ●●●

●

●●●

●●●

●

●

●

●●●●● ●

●

● ●●

●

●● ●●●●● ●●●● ●●

●

●●●●●●●

●

●●

●

●● ●●● ●● ●●●

● ●●

● ●●●● ●●●●

●●

●

●

●●

●●

●

●

●●●

●

●● ●

●

●

●●

●

●

●●

●

●●

●

●

●●●●● ●●●●

●●●

●●

●

●

●

● ●●●●

●●

●●●●

●

● ●●●

●

●

●●

●

●

●●

●

● ●●

●

●

●

●

●

●●●

●

●●●●●

●●●

●

●●●

●

●

●●

●

●●●●●

●

● ●●

●

●●●●

●

●●

●

●● ●

●

●●

●●●●

●●●●

●

●

●●●●

●

●● ●●●

●●

●●

●●

●

●

●

●

●

●

●●
●●
●●

●
●

●
●
●●
●
●

●
●●●

●
●● ●●●

●
●●●●
●●● ●●●●●●●●●●●●●

●

●

●

●

●

●

●●●

● ●

●

●●● ●●

●●

●

●●

● ●

●●

●

●

●●

●

●

●

●

●●●

●●

●●● ●

●

●

●

● ●●●●

●

●

●

●

●

●

●

●

●●●

●●

●

●●● ●

●

●

●

●

●

●●

●●

●●

●

●

● ●●

●

●●

●●●●●

●●●

●● ●

●●

●

●

●●●

●

●

●

●

●●

●

●

●

● ●●

●●

●

●

●

●●

● ●●●●●

●●

●

●

●

●

●●

●

●

●●

●●● ●● ●●

●●●●

●

●

●

●

●●●

●

●●●●

●

●

●●

●

●

●●●

●

●

●●●

●●

●●●

● ●●●●

●

● ●●

●●● ●●●

●

●● ●●

●

●●●●

●●

●

●

●

●●

●● ●●●●

● ●

● ●●

●●●

●●

●

●

●

●

●

●

●●●

●

●

● ●

●● ●●●●●●● ●●●●
●
●

●●●
● ●

●●● ●●●
●● ●●●●●●● ●● ●●●●●●●●●●●●●● ●●●

●

●

●

●

●

●

●●

●●

●

●●

●●

●

●●

●

●●●●● ●●

●●● ●●

●

●

●●

●●

●●●

●

●●

●

●

●

● ●

●

●

●●

●●

●

●●

●●

●●

●●

● ●●●

●

● ●

● ●●

●

●

●● ●

●

●

●

●●●

●

●

●● ●

●●●

●

●●●●● ●●

●

● ●

●●● ●

●

●● ●●

●●●

●

●●●

●

●●

●

●

●●

● ●●●

●

●

●●

●

●●●

●

●

●●

●●●

●

●●● ●

●

●

●

● ●●

●

● ●●●●●●●●

●●

●

●

● ●

●

●●●● ●●●●●●

●● ●

●●

●●

●

● ●

●●

●

●●

●●●

●

●

●●●

●

●

●●

●●●

●

●●

●

●●●

●

●

●

●●

●

● ●

● ●● ●

●

●

●●

●●●

●

●

●●●

●●

●●
●

●●
●●●
●●●● ●●●

●●●
●
●●●
●●

●●
●

●
●

●
●
●●●●●●●● ●●●●●●●●● ●●●●●●

●

●●

●●

●
●

●●

●●●●

●

●●

●

●

●

●

●●●

●

●● ●●

●

●

●

●

●

●●

●●

●

●

●

●●●●●

●

●●●

●

●

●● ●● ●●● ●

●

●

●● ●

●●

●●

●●●●

●●

●

●●●

●

●

●●

●●

●●●

●

●

● ●

●

●

●●●

●●

●●● ●

●

●

●

● ●●●●

●

●

●

●

●

●●●●

●●

● ●●●

●

●●

●●●

●

●

●

●

●

●

●●●●● ●●●●●

●

●●

●

●●●●●●

●

●

●●

●● ●●●● ●●●●●●●●

●

●

●●

●

●

●●●

●

●

●

● ●●●

●

●

●

●●●●●

●●

●

●

●●●●

●

●●●

●●

●●●

●

●

●●

●●●

●

●●●

● ●

●

●● ●● ●●

●

●

●

●●●●

●

● ●● ●

●●●

●

●●

●●

● ●

●

●●●● ●
●

●●●
●
●
●●

● ●
●

●● ●●
●● ●●● ●●●●●● ●●●●●● ●●●●

β1 β2 β3 β4 β5 β6

−
0.

6
−

0.
2

0.
2

0.
4

Heating

po
st

er
io

r 
m

ea
n 

−
 tr

ue

●
●

●
●● ●●
●
●

●● ●●●●● ●●
●
●

● ●●●
●
●●● ●●●●●●

●●● ●● ●● ●●● ●● ●● ●●● ●●●●●●● ● ●● ●●● ●●● ●●● ●●●●● ●● ●●●● ●● ●●●● ●●●●● ●●●●●●● ●●● ●●●● ●●●●●●● ●●●●● ●●●●● ●●● ●●●● ●●● ●●● ●●● ●●●● ●●●● ●●●●●● ●●●●●●● ●●●●●●● ●●●● ●●●●● ●●● ●●●● ●●●●●●● ●●●●●●●● ● ●●●● ●● ●● ●●●●● ●●● ●● ●● ●●●●●●●●● ●●●● ●●●●● ●●● ●● ●●●●●●●●●●●●●●● ●●●● ●●●●●● ●●●●●●●●● ● ●●●●●●● ●●●●●●● ●●● ●●●● ●●

●

●
●●●

●

●

●

●

●
●

●

●●

●

●

●●●● ●●

●● ●●●●●● ●● ●●

●●● ●● ●

●

●● ●

●

●

●● ●

●

●● ●●● ●●

●

●

●

●●

●● ●●●

●

●

●●

● ●

● ●

● ●●●
●

●
●

●
●
●●

● ●●
● ●
●● ●●● ●●

● ●
●●
●●
●●

● ●
●● ●
●

●
●●● ●

●● ●●●
●
●●
●● ●
●●● ●● ●● ●●●●
●

●●
●●

●●●● ●
●

●
●●
●●●● ●●●●
●●
●

●
● ●●●● ● ●

●● ●
●

●
●

●●
●●

●
●●●●●● ●● ●●●● ●● ●●●●● ●●● ●●●● ●●●● ●●●● ●● ●●●●●●●● ●●● ●●● ●● ●●●●● ●● ●●●●●● ●●●● ●●● ●●●●● ●● ●●●●●● ●●●●●●●●● ●●●●●●●●●● ●● ●● ●●●●● ●●●●

●
●●

●

●●●

●

●

●●

●●●●●

●

●

●

●

●

● ●

● ●

●

●

●●

●● ●●●

●

●

●●●

●● ●●● ●●●●● ●● ●●●●●● ●●● ●●●●●●● ●●●●

●

●

●●

●●●

●●●

●

●●

●

●

●●

●

●

●● ●

●

●● ●●●●● ●● ●●

●

●

●

●● ●● ●

●

●

● ●

●

●

●●

●

●● ●●●●●●●● ●●●● ●●

●● ●

●● ●●

●●

● ●●●

●●●

●●

●
● ●●
●

● ●●●●●● ●● ●
● ●

●
●

●
●●

●
●●
●

●
●

●
●

● ●
●●●

●
● ●●

●●
●

●
●● ●● ●●

●
●

●
●

● ●●
●

●
●●

●●
● ●

●●
●●

●
● ●●

●
●
●●

● ● ●●●●●●●●●●● ●● ●●● ●●● ●● ●●●●● ●●●●●● ●●●●●● ●● ●●●●●●●●●●●●●●●●●●●● ●●●● ●●

●

●●

●●

●

●●

●

●●

● ●

●● ●

●●● ●

●

●● ●●●

●

●

●

●

●

●●

●

●●●

●● ●

●

● ●●● ●

●●

●●

●●●

● ●

●

●

●●

● ●●●●●

●

● ●

●

●

●

● ●

●●

●

●

●●

●●

●●

●

●

●● ●

● ●

●

●

●

●

●

●●

●

●●

●

●●●

●●

●

●

●●●●●

●

●

●

●

●●

●● ●

●● ●

●

●

●

● ●●

● ●

●

●

●●●

●

●●● ●

●

●

●●

●

●●

●

●

●

●

●●●●●

●

● ●●● ●●

●●●

● ●● ●

●

● ●●● ●● ●● ●

●

●●
● ●●●●●●●●● ●

●
●

●
●

●
●●

● ●
●● ●

●
●

●
●● ●

●●●● ●●● ●● ●●●● ●●●●

●●

● ●● ●

●

●

● ●●●

●● ●●●●

●

●●●
●

●●●
● ●●
●
●

●● ●
● ●●●●
●
●●●● ●

●
●●●

●● ● ●●●● ● ●●● ●● ●●●●● ●

γ u

Figure 1.5: Erreur d’estimation a posteriori (différence entre la moyenne a posteriori et la vraie valeur)
sur les paramètres de saisonnalité, de formes de jours et de chauffage (gradient et seuil) de B, pour 300
réplications. Les réplications les plus à gauche correspondent à l’utilisation de la loi a priori hiérarchique
développée, tandis que les réplications les plus à droite correspondent à l’utilisation d’une loi a priori
non informative. Ici uB = λuA, avec λ = 1.
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Figure 1.6: Même légende qu’en figure 1.5 pour uB = λuA, avec λ = 0.5.
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Figure 1.7: Rapports entre le RMSE en prévision sur 365 jours de la méthode informative proposée et
celui d’une méthode non informative, en fonction du coefficient λ de ressemblance entre les seuils de
chauffage des jeux de données simulés. Les points en nuances de gris correspondent à 300 réplications
pour chaque valeur de λ testée. Les points en noir indiquent les moyennes obtenues et les carrés et
losanges représentent les quantiles empiriques à 80% and 90% de ces rapports.

substantiellement la qualité des prévisions quand la ressemblance entre les jeux de données est parfaite
(λ = 1, avec un gain approchant 40% en moyenne), mais également quand ce n’est plus le cas (avec un
gain approchant 10% en moyenne).

Nous appliquons enfin notre méthode sur des jeux de données réels et comparons les performances
obtenues en prévision avec d’autres modèles. Nous montrons notamment, en réduisant progressivement
la longueur de l’historique de données considéré, que la loi a priori informative que nous proposons
permet de rendre l’estimation du modèle plus robuste vis-à-vis du manque de données. La table 1.1
présente les erreurs d’estimation et de prévision obtenues en fonction de la longueur de l’historique.
Des résultats similaires, pour d’autres situations de ressemblance sont présentés dans le chapitre 3.

Estimation Prévision
RMSE MAPE RMSE MAPE

non info. info. non info. info. non info. info. non info. info.
12 mois 663.02 671.95 1.86 1.87 763.23 737.83 2.01 1.94
10 mois 606.04 623.23 1.78 1.82 1509.09 883.07 3.18 2.21

8 mois 473.29 493.68 1.49 1.52 8891.81 1318.28 16.72 3.26
6 mois 460.60 499.13 1.34 1.44 90356.82 1305.27 224.40 3.62

Table 1.1: Qualité globale (RMSE en MW, et MAPE en %) pour l’estimation (gauche) et la prévison
(droite) à partir des lois a priori non informative (non info.) et informative (info.), en fonction du nombre
de mois utilisés pour la période d’estimation (de 12 mois à 6 mois). La population A utilisée correspond
aux profilés EDF (clients non télérelevés), la population B utilisée correspond aux profilés ERDF.
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1.3. LES PROBLÉMATIQUES ABORDÉES

1.3.3 Application du filtrage particulaire à la prévision de consommation
d’électricité

Dans le chapitre 4 nous nous intéressons à la prévision en ligne de la consommation d’électricité à
partir d’un modèle à espace d’états, i.e. dont les paramètres varient au cours du temps.

Soit {Xn}n>0 et {Yn}n>0 des processus aléatoires à valeurs dans X ⊂ Rnx et Y ⊂ Rny et définis sur
un espace mesurable. Nous supposons les observations {Yn}n>0 indépendantes conditionellement au
processus de Markov caché {Xn}n>0, appelé état du modèle, et caractérisées par la loi conditionnelle
gθ

n(yn|xn). Nous notons µθ(x0) la densité initiale de l’état et f θ
n(xn|xn−1) la densité de la transition de

Markov du temps n− 1 au temps n. L’indice θ de ses densités correspond au paramètre du modèle, et
appartient à un ensemble ouvert Θ ⊂ Rnθ . Nous pouvons résumer le modèle sous l’écriture synthétique

X0 ∼ µθ(·), Xn|(Xn−1 = xn−1) ∼ f θ
n(·|xn−1) (1.29)

Yn|(Xn = xn) ∼ gθ
n(·|xn). (1.30)

Dans le contexte bayésien décrit en section 1.2, l’équation (1.29) spécifie la loi a priori sur l’état du
modèle dont la vraisemblance est définie via (1.30).

Xn−2 Xn−1 Xn Xn+1 Xn+2

Yn−2 Yn−1 Yn Yn+1 Yn+2

f θ
n−1 f θ

n f θ
n+1 f θ

n+2

gθ
n−2 gθ

n−1 gθ
n gθ

n+1 gθ
n+2

Figure 1.8: Représentation schématique d’un modèle de Markov caché.

Nous nous intéressons ici uniquement à des modèles dont les observations sont indépendantes, mais
il est aisé d’étendre le cadre de travail à des obsevations dépendantes. Les modèles dynamiques que
nous considérons sont appelés modèles à espace d’états ou modèle de Markov caché dans la littérature
et leur représentation générique est fournie en figure 1.8. Cette classe de modèles inclut en particulier
de nombreux modèles non linéaires et non gaussiens de séries temporelles.

Notre principal objectif étant d’estimer successivement les lois a posteriori

πθ(x0:n|y0:n) ∝
n

∏
k=1

gθ
k(yk|xk)︸ ︷︷ ︸

n vraisemblances

·
n

∏
k=1

f θ
k (xk|xk−1)︸ ︷︷ ︸

n densités de transition

· µθ(x0)︸ ︷︷ ︸
densité initiale

, (1.31)

nous présentons les techniques séquentielles de Monte Carlo, définies à partir des outils décrits en
section 1.2.3 et aussi connues sous le nom de filtres particulaires. Ces techniques permettent d’estimer
les lois marginales πθ(xn|y0:n) par la mesure empirique pondérée de M variables aléatoires (particules)
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1. INTRODUCTION

Xi pondérées par des poids wi, i = 1, . . . , M i.e.

M

∑
j=1

wjδ(X j, ·)

Les deux étapes essentielles au filtrage particulaire, dérivées de la méthode SIR introduite en section
1.2.3, sont schématisées en figure 1.9 et reposent respectivement sur les équations (1.29) et (1.30) qui
définissent le modèle dynamique :

1. à partir de M variables aléatoires (particules) Xi
n−1 pondérées par des poids wi

n−1 représentant
la loi filtrée πθ(xn−1|y0:n−1) au temps n− 1, la première étape consiste à simuler, à l’aide de la
densité de transition f θ

n(xn|xn−1) (voir équation (1.29)), de nouvelles particules Xi
n|n−1 pondérées

par des poids wi
n|n−1 pour approcher la loi prédictive du prochain état πθ(xn|y0:n−1) ;

2. le rôle de la seconde étape est de corriger l’échantillon de particules pondérées ainsi simulées,
grâce à la vraisemblance gθ

n(yn|xn) de la donnée yn observée (voir équation (1.30)), pour obtenir
des particules Xi

n pondérées par des poids wi
n pour représenter la loi filtrée πθ(xn|y0:n) au temps

n.

Nous discutons les deux principaux problèmes qui surviennent lors de l’utilisation de filtres par-
ticulaires à savoir : la dégénérescence asymptotique de la distribution des particules et l’estimation
conjointe du paramètre θ (lorsque celui-ci n’est pas connu).

Nous décrivons les algorithmes détaillés associés à des solutions parmi les moins coûteuses (en
terme de calculs) pour une implémentation pratique la plus directe possible. Enfin, nous présentons
l’algorithme que nous retenons et utilisons pour l’estimation de modèles dynamiques de consommation
d’électricité. L’originalité de cet algorithme repose sur la détection et la suppression automatique des
données aberrantes qui conduise en temps normal à la dégénerescence de la distribution des particules.

Le modèle dynamique que nous proposons est basé sur le modèle (1.1) au sens où il repose sur
la définition de trois parts : saisonnalité, chauffage et climatisation, les deux premières étant choisies
dynamiques (avec par exemple un coefficient de saisonnalité et un gradient de chauffage variant au
cours du temps), et la dernière fixe. La composante chauffage est modélisée par

xheat
n = gheat

n (Theat
n − uheat)1]Theat

n ,+∞[(u
heat)

où u est un paramètre inconnu constant à estimer et où gn évolue au cours du temps suivant une
dynamique de marche aléatoire

gheat
n = gheat

n−1 + ε
g
n.

La composante saisonnalité est quant à elle modélisée simplement par

xseason
n = sn · κdaytypen

où les coefficients κk sont des paramètres constants à estimer (permettant de modéliser l’effet type de
jour), et où sn évolue au cours du temps suivant une dynamique de marche aléatoire

sn = sn−1 + εs
n.

Le modèle étudié (voir la définition complète donnée au chapitre 4) est différent du modèle proposé
par Dordonnat et al. (2008) car
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Xi
n−1

wi
n−1

πθ(xn−1|y1:n−1)

Xi
n|n−1 ∼ f θ

n(·|Xi
n−1)

wi
n|n−1 ← wi

n−1

πθ(xn|y1:n−1)

Yn

Xi
n ← Xi

n|n−1

wi
n ←

wi
n|n−1gθ

n(Yn|Xi
n)

∑M
j=1 wj

n|n−1gθ
n(Yn|X j

n)

πθ(xn|y1:n)

simuler l’état futur

corriger les poids

observation

estimation

estimation

estimation

Figure 1.9: Représentation schématique de l’évolution des particules Xi pondérées par des poids wi,
pour i = 1, . . . , M, pour la mise à jour du temps n − 1 au temps n. A chaque étape, les particules
(à gauche) sont utilisées pour approcher différentes lois d’intérêt (à droite) par la mesure empirique
pondérée ∑M

j=1 wjδ(X j, ·).
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1. il n’est pas linéaire ;

2. il modélise la saisonnalité de façon plus parcimonieuse ;

3. il autorise la dynamique des coefficients à évoluer elle-même au cours du temps.

Nous montrons à travers différents résultats que le filtre particulaire que nous élaborons permet
d’estimer le modèle de manière satisfaisante, et répond à nos exigences de robustesse vis-à-vis de
données aberrantes. Nous examinons également la qualité des prévisions obtenues par le modèle
dynamique à partir de différents critères. Par exemple, la figure 1.10 représente les erreurs relatives de
prévision du modèle dynamique au cours de la journée et montre que le modèle dynamique fournit des
prévisions compétitives avec les prévisions opérationnelles. Enfin, nous comparons notre approche au
modèle développé par Dordonnat et al. (2008) et estimé par filtrage de Kalman, en soulignant que les
qualités de prévisions obtenues sont similaires malgré le fait que le modèle soit de moindre dimension.
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Figure 1.10: MAPE (en %) prédictif, hors jours spéciaux (jours fériés, etc.), pour le modèle dynamique
(4.23) défini au chapitre 4 et le modèle opérationnel pour chacun des 48 instants de la journée. La
différence entre les deux modèles est colorée en fonction de son signe : en vert quand le modèle
dynamique est meilleur que le modèle opérationnel, en rouge sinon.
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2 Consistency of the posterior distribution and MLE

for piecewise linear regression

We prove the weak consistency of the posterior distribution and that of the Bayes estimator for a
two-phase piecewise linear regression model where the break-point is unknown. We also establish a
Bernstein-von Mises theorem for this non regular model. The non differentiability of the likelihood of
the model with regard to the break-point parameter induces technical difficulties that we overcome by
creating a regularised version of the problem at hand. We first recover the strong consistency of the
quantities of interest for the regularised version, using results about the MLE, and we then prove that
the regularised version and the original version of the problem share the same asymptotic properties.

2.1 INTRODUCTION

We consider a continuous segmented regression model with 2 phases, one of them (the rightmost) being
zero. Let u be the unknown breakpoint and γ ∈ R be the unknown regression coefficient of the non
zero phase. The observations X1:n = (X1, . . . , Xn) depend on an exogenous variable that we denote
t1:n = (t1, . . . , tn) via the model given for i = 1, . . . , n by

Xi = µ(η, ti) + ξi := γ · (ti − u)1[ti ,+∞[(u) + ξi , (2.1)

where (ξi)i∈N is a sequence of independent and identically distributed (i.i.d.) random variables with a
common centred Gaussian distribution of unknown variance σ2, N (0, σ2), and where 1A denotes the
indicator function of a set A.

Such a model is for instance used in practise to estimate and predict the heating part of the electricity
demand in France. See Bruhns et al. (2005) for the definition of the complete model and Launay et al.
(2012b) for a Bayesian approach. In this particular case, u corresponds to the heating threshold above
which the temperatures t1:n do not have any effect over the electricity load, and γ corresponds to the
heating gradient i.e. the strength of the described heating effect.

The work presented in this paper is most notably inspired by the results developed in Ghosh et al.
(2006) and Feder (1975).

Feder proved the weak consistency of the least squares estimator in segmented regression problems
with a known finite number of phases under the hypotheses of his Theorem 3.10 and some additional
assumptions disseminated throughout his paper, amongst which we find that the empirical cumulative
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2. ASYMPTOTIC RESULTS FOR PIECEWISE LINEAR REGRESSION

distribution functions of the temperatures at the n-th step tn1, . . . , tnn are required to converge to a
cumulative distribution function, say Fn converges to F, which is of course to be compared to our own
Assumption A1. Feder also derived the asymptotic distribution of the least squares estimator under the
same set of assumptions. Unfortunately there are a few typographical errors in his paper (most notably
resulting in the disappearance of σ2

0 from the asymptotic variance matrix in his main theorems), and he
also did not include σ̂2

n in his study of the asymptotic distribution.

The asymptotic behaviour of the posterior distribution is a central question that has already been
raised in the past. For example, Ghosh et al. worked out the limit of the posterior distribution in a
general and regular enough i.i.d. setup. In particular they manage to derive the asymptotic normality
of the posterior distribution under third-order differentiability conditions. There are also a number of
works dealing with some kind of non regularity, like these of Sareen (2003) which consider data the
support of which depends on the parameters to be estimated, or those of Ibragimov and Khasminskii
(1981) which offer the limiting behaviour of the likelihood ratio for a wide range of i.i.d. models whose
likelihood may present different types of singularity. Unfortunately, the heating part model presented
here does not fall into any of these already studied categories.

In this paper, we show that the results of Ghosh et al. can be extended to a non i.i.d. two-phase
regression model. We do so by using the original idea found in Sylwester (1965) 1: we introduce a new,
regularised version of the problem called pseudo-problem, later reprised by Feder. The pseudo-problem
consists in removing a fraction of the observations in the neighbourhood of the true parameter to obtain
a differentiable likelihood function. We first recover the results of Ghosh et al. for this pseudo-problem
and then extend these results to the (full) problem by showing that the estimates for the problem and
the pseudo-problem have the same asymptotic behaviour.

From this point on, we shall denote the parameters θ = (γ, u, σ2) = (η, σ2) and θ0 will denote
the true value of θ. We may also occasionally refer to the intercept of the model as β = −γu. The
log-likelihood of the n first observations X1:n of the model will be denoted

l1:n(X1:n|θ) =
n

∑
i=1

li(Xi|θ) (2.2)

= −n
2

log
(

2πσ2
)
−

n

∑
i=1

1
2σ2

(
Xi − γ · (ti − u)1[ti ,+∞[(u)

)2
, (2.3)

where li(Xi|θ) designates the log-likelihood of the i-th observation Xi, i.e.

li(X1:n|θ) = −
1
2

log
(

2πσ2
)
− 1

2σ2

(
Xi − γ · (ti − u)1[ti ,+∞[(u)

)2
. (2.4)

Notice that we do not mention explicitly the link between the likelihood l and the sequence of tempera-
tures (tn)n∈N in these notations, so as to keep them as minimal as possible. The least square estimator
θ̂n of θ being also the maximum likelihood estimator of the model, we refer to it as the MLE.

Throughout the rest of this paper we work under the following assumptions

Assumption A1. The sequence of temperatures (exogenous variable) (tn)n∈N belongs to a compact
set [u, u] and the sequence of the empirical cumulative distribution functions (Fn)n∈N of (t1, . . . , tn),

1Sylwester indeed considers the same model as we do here, however his asymptotic results are false due to an incorrect
reparametrisation of the problem and an error in the proof of his Theorem 3.5.
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2.1. INTRODUCTION

defined by

Fn(u) =
1
n

n

∑
i=1

1[ti ,+∞[(u),

converges pointwise to a function F where F is a cumulative distribution function itself, which is
continuously differentiable over [u, u].

Remark 1. Due to a counterpart to Dini’s Theorem (see Theorem 2.11 taken from Polya and Szegö,
2004, p81), Fn converges to F uniformly over [u, u].

Remark 2. Let h be a continuous, bounded function on [u, u]. As an immediate consequence of this
assumption, for any interval I ⊂ [u, u], we have, as n −→ +∞

1
n

n

∑
i=1

h(ti)1I(ti) =
∫

I
h(t)dFn(t) −→

∫
I

h(t)dF(t) =
∫

I
h(t) f (t)dt,

the convergence holding true by definition of the convergence of probability measures (see Billingsley,
1999, pages 14–16). In particular, for I = [u, u] and I =]−∞, u] we get, as n −→ +∞

1
n

n

∑
i=1

h(ti) −→
∫ u

u
h(t) f (t)dt,

1
n

n

∑
i=1

h(ti)1[ti ,+∞[(u) −→
∫ u

u
h(t) f (t)dt.

Remark 3. It is a general enough assumption which encompasses both the common cases of i.i.d.
continuous random variables and periodic (non random) variables under a continous (e.g. Gaussian)
noise.

Assumption A2. θ0 ∈ Θ, where the parameter space Θ is defined (for identifiability) as

Θ = R∗×]u, u[×R∗+,

where R∗ = {x ∈ R , x 6= 0} and R∗+ = {x ∈ R , x > 0}.

Assumption A3. f = F′ does not vanish (i.e. is positive) on ]u, u[.

Assumption A4. There exists K ⊂ Θ a compact subset of the parameter space Θ such that θ̂n ∈ K for
any n large enough.

The paper is organised as follows. In Section 2.2, we present the Bayesian consistency (the proofs
involved there rely on the asymptotic distribution of the MLE) and introduce the concept of pseudo-
problem. In Section 2.3, we prove that the MLE for the full problem is strongly consistent. In Section
2.4 we derive the asymptotic distribution of the MLE using the results of Section 2.3: to do so, we first
derive the asymptotic distribution of the MLE for the pseudo-problem and then show that the MLEs for
the pseudo-problem and the problem share the same asymptotic distribution. We discuss these results
in Section 2.5. The extensive proofs of the main results are found in Section 2.6 while the most technical
results are pushed back into Section 2.7 at the end of this paper.

Notations. Whenever mentioned, the O and o notations will be used to designate a.s. O and a.s. o
respectively, unless there are indexed with P as in OP and oP, in which case they will designate O and
o in probability respectively.

Hereafter we will use the notation Ac for the complement of the set A and B(x, r) for the open ball
of radius r centred at x i.e. B(x, r) = {x′, ‖x′ − x‖ < r}.
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2. ASYMPTOTIC RESULTS FOR PIECEWISE LINEAR REGRESSION

2.2 BAYESIAN CONSISTENCY

In this Section, we show that the posterior distribution of θ given (X1, . . . , Xn) asymptotically favours
any neighbourhood of θ0 as long as the prior distribution itself charges a (possibly different) neigh-
bourhood of θ0 (see Theorem 2.1). We then present in Theorem 2.2 the main result of this paper i.e. the
convergence of posterior distribution with suitable normalisation to a Gaussian distribution.

2.2.1 Consistency and asymptotic normality of the posterior distribution

Theorem 2.1. Let π(·) be a prior distribution on θ, continuous and positive on a neighbourhood of θ0 and let U
be a neighbourhood of θ0, then under Assumptions A1–A4, as n −→ +∞,∫

U
π(θ|X1:n)dθ

a.s−→ 1. (2.5)

Proof for Theorem 2.1. The proof is very similar to the one given in Ghosh and Ramamoorthi (2003) for a
model with i.i.d. observations. Let δ > 0 small enough so that B(θ0, δ) ⊂ U. Since∫

U
π(θ|X1:n)dθ =

1

1 +

∫
Uc π(θ) exp[l1:n(X1:n|θ)− l1:n(X1:n|θ0)]dθ∫
U π(θ) exp[l1:n(X1:n|θ)− l1:n(X1:n|θ0)]dθ

>
1

1 +

∫
Bc(θ0 ,δ) π(θ) exp[l1:n(X1:n|θ)− l1:n(X1:n|θ0)]dθ∫
B(θ0 ,δ) π(θ) exp[l1:n(X1:n|θ)− l1:n(X1:n|θ0)]dθ

it will suffice to show that∫
Bc(θ0 ,δ) π(θ) exp[l1:n(X1:n|θ)− l1:n(X1:n|θ0)]dθ∫
B(θ0 ,δ) π(θ) exp[l1:n(X1:n|θ)− l1:n(X1:n|θ0)]dθ

a.s−→ 0. (2.6)

To prove (2.6) we adequately majorate its numerator and minorate its denominator. The majoration
mainly relies on Proposition 2.21 while the minoration is derived without any major difficulties. The
comprehensive proof of (2.6) can be found in Section 2.6.1 on page 38.

Let θ ∈ Θ, we now define I(θ), the asymptotic Fisher Information matrix I(θ) of the model, as the
symmetric matrix given by

I(θ) =


σ−2

∫ u

u
(t− u)2 dF(t) −σ−2γ

∫ u

u
(t− u)dF(t) 0

σ−2γ2
∫ u

u
1 dF(t) 0

1
2

σ−4

 . (2.7)

It is obviously positive and definite since all its principal minor determinants are positive. The proof of
the fact that it is indeed the limiting matrix of the Fisher Information matrix of the model is deferred to
Lemma 2.20.

Theorem 2.2. Let π(·) be a prior distribution on θ, continuous and positive at θ0, and let k0 ∈N such that∫
Θ
‖θ‖k0 π(θ)dθ < +∞,
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2.2. BAYESIAN CONSISTENCY

and denote

t = n
1
2 (θ − θ̂n), (2.8)

and π̃n(·|X1:n) the posterior density of t given X1:n, then under Assumptions A1–A4, for any 0 6 k 6 k0, as
n −→ +∞, ∫

R3
‖t‖k

∣∣∣π̃n(t|X1:n)− (2π)−
3
2 |I(θ0)|

1
2 e−

1
2 t′ I(θ0)t

∣∣∣ dt P−→ 0, (2.9)

where I(θ) is defined in (2.7) and θ0 the true value of the parameter.

The proof Theorem 2.2 relies on the consistency of the pseudo-problem, first introduced in Sylwester
(1965), that we define in the next few paragraphs.

2.2.2 Pseudo-problem

The major challenge in proving Theorem 2.2 is that the typical arguments usually used to derive the
asymptotic behaviour of the posterior distribution (see Ghosh et al., 2006, for example) do not directly
apply here. The proof provided by Ghosh et al. requires a Taylor expansion of the likelihood of the
model up to the third order at the MLE, and the likelihood of the model we consider here at the n-th step
is very obviously not continuously differentiable w.r.t. u in each observed temperature ti, i = 1, . . . , n.
Note that the problem only grows worse as the number of observations increases.

To overcome this difficulty we follow the original idea first introduced in Sylwester (1965), and later
used again in Feder (1975): we introduce a pseudo-problem for which we are able to recover the classical
results and show that the differences between the estimates for the problem and the pseudo-problem
are, in a sense, negligible. The pseudo-problem is obtained by deleting all the observations within
intervals Dn of respective sizes dn centred around u0. The intervals Dn are defined as

Dn =

]
u0 −

dn

2
, u0 +

dn

2

[
,

and their sizes dn are chosen such that as n −→ +∞

dn −→ 0, n−
1
2 (log n) · d−1

n −→ 0. (2.10)

This new problem is called pseudo-problem because the value of u0 is unknown and we therefore
cannot in practise delete these observations. Note that the actual choice of the sequence (dn)n∈N does
not influence the rest of the results in any way, as long as it satisfies to conditions (2.10). It thus does not
matter at all whether one chooses (for instance) dn = n−

1
4 or dn = log−1 n.

Let us denote n∗∗ the number of observations deleted from the original problem, and n∗ = n− n∗∗

the sample size of the pseudo-problem. Generally speaking, quantities annotated with a single asterisk
∗ will refer to the pseudo-problem. l∗1:n(X1:n|θ) will thus designate the likelihood of the pseudo-problem
i.e. (reindexing observations whenever necessary)

l∗1:n(X1:n|θ) = −
n∗

2
log
(

2πσ2
)
−

n∗

∑
i=1

1
2σ2

(
Xi − γ · (ti − u)1[ti ,+∞[(u)

)2
. (2.11)

On one hand, from an asymptotic point of view, the removal of those n∗∗ observations should not
have any kind of impact on the distribution theory. The intuitive idea is that deleting n∗∗ observations
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2. ASYMPTOTIC RESULTS FOR PIECEWISE LINEAR REGRESSION

takes away only a fraction n∗∗/n of the information which asymptotically approaches zero as will be
shown below. The first condition (2.10) seems only a natural requirement if we ever hope to prove that
the MLE for the problem and the pseudo-problem behave asymptotically in a similar manner (we will
show they do in Theorem 2.9, see equation (2.20)).

On the other hand, assuming the MLE is consistent (we will show it is, in Theorem 2.7) and assuming
that the sizes dn are carefully chosen so that the sequence (ûn)n∈N falls into the designed sequence of
intervals (Dn)n∈N (see Proposition 2.8, whose proof the second condition (2.10) is tailored for), these
regions will provide open neighbourhoods of the MLE over which the likelihood of the pseudo-problem
will be differentiable. The pseudo-problem can therefore be thought of as a locally regularised version
of the problem (locally because we are only interested in the differentiability of the likelihood over a
neighbourhood of the MLE). We should thus be able to retrieve the usual results for the pseudo-problem
with a bit of work. It will be shown that this is indeed the case (see Theorem 2.3).

If the sequence (dn)n∈N satisfies to conditions (2.10), then as n −→ +∞,

n∗∗

n
−→ 0,

n∗

n
−→ 1.

Using the uniform convergence of Fn to F over any compact subset (see Assumption A1, and its
Remark 1), we indeed find via a Taylor-Lagrange approximation

n∗∗

n
= Fn

(
u0 +

dn

2

)
− Fn

(
u0 −

dn

2

)
= F

(
u0 +

dn

2

)
− F

(
u0 −

dn

2

)
+ o(1)

= dn · f (un) + o(1),

where un ∈ Dn, so that in the end, since un −→ u0 and f is continuous and positive at u0, we have a.s.

n∗∗

n
= dn · ( f (u0) + o(1)) + o(1) −→ 0.

We now recover the asymptotic normality of the posterior distribution for the pseudo problem.

Theorem 2.3. Let π(·) be a prior distribution on θ, continuous and positive at θ0, and let k0 ∈N such that∫
Θ
‖θ‖k0 π(θ)dθ < +∞.

and denote

t∗ = n
1
2 (θ − θ̂∗n), (2.12)

and π̃∗n(·|X1:n) the posterior density of t∗ given X1:n, then under Assumptions A1–A4 and conditions (2.10), for
any 0 6 k 6 k0, as n −→ +∞,∫

R3
‖t‖k

∣∣∣π̃∗n(t|X1:n)− (2π)−
3
2 |I(θ0)|

1
2 e−

1
2 t′ I(θ0)t

∣∣∣ dt a.s−→ 0, (2.13)

where I(θ) is defined in (2.7).

32



2.2. BAYESIAN CONSISTENCY

Proof of Theorem 2.3. The extensive proof, to be found in Section 2.6.1, was inspired by that of Theorem
4.2 in Ghosh et al. (2006) which deals with the case where the observations X1, . . . , Xn are independent
and identically distributed and where the (univariate) log-likelihood is differentiable in a fixed small
neighbourhood of θ0. We tweaked the original proof of Ghosh et al. so that we could deal with
independent but not identically distributed observations and a (multivariate) log-likelihood that is
guaranteed differentiable only on a decreasing small neighbourhood of θ0.

2.2.3 From the pseudo-problem to the original problem

We now give a short proof of Theorem 2.2. As we previously announced, it relies upon its counterpart
for the pseudo-problem, i.e. Theorem 2.3.

Proof of Theorem 2.2. Recalling the definition of t and t∗ given in (2.8) and (2.12) we observe that

t = t∗ + n
1
2 (θ̂∗n − θ̂n).

Thus the posterior distribution of t∗ and that of t, given X1:n are linked together via

π̃n(t|X1:n) = π̃∗n(t− αn|X1:n) (2.14)

where

αn = n
1
2 (θ̂∗n − θ̂n).

Relationship (2.14) allows us to write∫
R3
‖t‖k

∣∣∣π̃n(t|X1:n)− (2π)−
3
2 |I(θ0)|

1
2 e−

1
2 t′ I(θ0)t

∣∣∣ dt

=
∫

R3
‖t‖k

∣∣∣π̃∗n(t− αn|X1:n)− (2π)−
3
2 |I(θ0)|

1
2 e−

1
2 t′ I(θ0)t

∣∣∣ dt

=
∫

R3
‖t + αn‖k

∣∣∣π̃∗n(t|X1:n)− (2π)−
3
2 |I(θ0)|

1
2 e−

1
2 (t+αn)′ I(θ0)(t+αn)

∣∣∣ dt

6
∫

R3
‖t + αn‖k

∣∣∣π̃∗n(t|X1:n)− (2π)−
3
2 |I(θ0)|

1
2 e−

1
2 t′ I(θ0)t

∣∣∣ dt

+ (2π)−
3
2 |I(θ0)|

1
2

∫
R3
‖t + αn‖k

∣∣∣e− 1
2 (t+αn)′ I(θ0)(t+αn) − e−

1
2 t′ I(θ0)t

∣∣∣ dt

Theorem 2.3 ensures that the first integral on the right hand side of this last inequality goes to zero in
probability. It therefore suffices to show that the second integral goes to zero in probability to end the
proof, i.e. that as n −→ +∞∫

R3
‖t + αn‖k

∣∣∣e− 1
2 (t+αn)′ I(θ0)(t+αn) − e−

1
2 t′ I(θ0)t

∣∣∣ dt P−→ 0. (2.15)

But the proof of (2.15) is straightforward knowing that αn
P−→ 0 (see (2.20)) and using dominated

convergence.

As an immediate consequence of Theorem 2.2 we want to mention the weak consistency of the
Bayes estimator.
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Corollary 2.4. Let π(·) a prior distribution on θ, continuous and positive at θ0, such that∫
Θ
‖θ‖π(θ)dθ < +∞,

and denote

θ̃n =
∫

Θ
θπn(θ|X1:n)dθ,

the Bayes estimator of θ in the problem. Then under Assumptions A1–A4, as n −→ +∞,

n
1
2 (θ̃n − θ̂n)

P−→ 0.

Proof of Corollary 2.4. By definition,

θ̃n =
∫

Θ
θπn(θ|X1:n)dθ

and this allows us to write

n
1
2 (θ̃n − θ̂n) =

∫
Θ

n
1
2 (θ − θ̂n)πn(θ|X1:n)dθ

=
∫

R3
tπ̃n(t|X1:n)dt P−→ 0,

the last convergence being a direct consequence of Theorem 2.2 with k0 = 1.

Observe that, under conditions (2.10), the same arguments naturally apply to the pseudo-problem
and lead to a strong consistency (a.s. convergence) of its associated Bayes estimator due to Theorem 2.3,
thus recovering the results of Ghosh et al. (2006) for the regularised version of the problem.

2.3 STRONG CONSISTENCY OF THE MLE

In this Section we prove the strong consistency of the MLE over any compact set including the true
parameter (see Theorem 2.5). It is a prerequisite for a more accurate version of the strong consistency
(see Theorem 2.7) which lies at the heart of the proof of Theorem 2.3.

Theorem 2.5. Under Assumptions A1–A4, we have a.s., as n −→ +∞,

‖θ̂n − θ0‖ = o(1).

Proof of Theorem 2.5. Recall that K is a compact subset of Θ, such that θ̂n ∈ K for any n large enough.
We denote

l1:n(X1:n|S) = sup
θ∈S

l1:n(X1:n|θ), for any S ⊂ K,

Kn(a) = {θ ∈ Θ, l1:n(X1:n|θ) > log a + l1:n(X1:n|K)} , for any a ∈]0, 1[.

All we need to prove is that

∃a ∈]0, 1[, P

(
lim

n−→+∞
sup

θ∈Kn(a)
‖θ − θ0‖ = 0

)
= 1. (2.16)

since for any n large enough we have θ̂n ∈ Kn(a) for any a ∈]0, 1[. We control the likelihood upon the
complement of a small ball in K and prove the contrapositive of (2.16) using compacity arguments. The
extensive proof of (2.16) is to be found in Section 2.6.2 .
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We strengthen the result of Theorem 2.5 by giving a rate of convergence for the MLE (see Theorem
2.7). This requires a rate of convergence for the image of the MLE through the regression function of the
model, that we give in the Proposition 2.6 below.

Proposition 2.6. Under Assumptions A1–A4, as n −→ +∞, a.s., for any open interval I ⊂ [u, u],

min
ti∈I, i6n

|µ(η̂n, ti)− µ(η0, ti)| = O
(

n−
1
2 log n

)
.

Proof of Proposition 2.6. The proof is given in Section 2.6.2.

Theorem 2.7. Under Assumptions A1–A4, we have a.s., as n −→ +∞,

‖θ̂n − θ0‖ = O
(

n−
1
2 log n

)
. (2.17)

Proof of Theorem 2.7. We show that a.s. (2.17) holds for each coordinate of θ̂n − θ0. The calculations for
the variance σ2 are pushed back into Section 2.6.2. We now prove the result for the parameters γ and u.
It is more convenient to use a reparametrisation of the model in terms of slope γ and intercept β where
β = −γu.

Slope γ and intercept β. Let V1 and V2 be two non empty open intervals of ]u, u0[ such that their
closures V1 and V2 do not overlap. For any (t1, t2) ∈ V1 ×V2, define M(t1, t2) the obviously invertible
matrix

M(t1, t2) =

[
1 t1

1 t2

]
,

and observe that for any τ = (β, γ),

M(t1, t2)τ =

[
µ(η, t1)

µ(η, t2)

]
.

Observe that by some basic linear algebra tricks we are able to write for any (t1, t2) ∈ V1 ×V2

‖τ̂n − τ0‖∞ = ‖M(t1, t2)
−1M(t1, t2)(τ̂n − τ0)‖∞

6 ‖|M(t1, t2)
−1‖|∞ · ‖M(t1, t2)τ̂n −M(t1, t2)τ0‖∞

6
|t2|+ |t1|+ 2
|t2 − t1|

· ‖M(t1, t2)τ̂n −M(t1, t2)τ0‖∞.

Thus, using the equivalence of norms and a simple domination of the first term of the product in the
inequality above, we find that there exists a constant C ∈ R∗+, such that for any (t1, t2) ∈ V1 ×V2

‖τ̂n − τ0‖ 6 C · ‖M(t1, t2)τ̂n −M(t1, t2)τ0‖,

i.e.

‖τ̂n − τ0‖ 6 C ·
[

2

∑
i=1

(µ(η̂n, ti)− µ(η0, ti))
2

] 1
2

. (2.18)
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Taking advantage of Proposition 2.6, we are able to exhibit two sequences of points (t1,n)n∈N in V1 and
(t2,n)n∈N in V2 such that a.s., for i = 1, 2

|µ(η̂n, ti,n)− µ(η0, ti,n)| = O
(

n−
1
2 log n

)
. (2.19)

Combining (2.18) and (2.19) together (using ti = ti,n for every n), it is now trivial to see that a.s.

‖τ̂n − τ0‖ = O
(

n−
1
2 log n

)
,

which immediately implies the result for the γ and β components of θ.

Break-point u. Recalling that u = −βγ−1 and thanks to the result we just proved, we find that a.s.

ûn = −β̂nγ̂−1
n = −

[
β0 + O

(
n−

1
2 log n

)] [
γ0 + O

(
n−

1
2 log n

)]−1

= −β0γ−1
0 + O

(
n−

1
2 log n

)
= u0 + O

(
n−

1
2 log n

)
.

2.4 ASYMPTOTIC DISTRIBUTION OF THE MLE

In this Section we derive the asymptotic distribution of the MLE for the pseudo-problem (see Proposition
2.8) and then show that the MLE of pseudo-problem and that of the problem share the same asymptotic
distribution (see Theorem 2.9).

Proposition 2.8. Under Assumptions A1–A4 and conditions (2.10), as n −→ +∞

n
1
2

(
θ̂∗n − θ0

)
d−→ N

(
0, I(θ0)

−1
)

,

where the asymptotic Fisher Information Matrix I(·) is defined in (2.7).

Proof of Theorem 2.8. The proof is divided in two steps. We first show that the likelihood of the pseudo-
problem is a.s. differentiable in a neighbourhood of the MLE θ̂∗n for N large enough. We then recover
the asymptotic distribution of the MLE following the usual scheme of proof, with a Taylor expansion
of the likelihood of the pseudo-problem around the true parameter. The details of these two steps are
given in Section 2.6.3.

Theorem 2.9. Under Assumptions A1–A4 and conditions (2.10), as n −→ +∞,

n
1
2

(
θ̂n − θ0

)
d−→ N

(
0, I(θ0)

−1
)

,

where the asymptotic Fisher Information Matrix I(·) is defined in (2.7).

Proof of Theorem 2.9. It is a direct consequence of Proposition 2.8 as soon as we show that as n −→ +∞

θ̂n − θ̂∗n = oP

(
n−

1
2

)
. (2.20)

To prove (2.20), we study each coordinate separately. For γ and u, we apply Lemmas 4.12 and 4.16
found in Feder (1975) with a slight modification: the rate of convergence dn he uses may differ from
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ours but it suffices to formally replace (log log n)
1
2 by (log n) all throughout his paper and the proofs

he provides go through without any other change. We thus get

γ̂n − γ̂∗n = oP

(
n−

1
2

)
, ûn − û∗n = oP

(
n−

1
2

)
. (2.21)

It now remains to show that

σ̂2
n − σ̂2∗

n = oP

(
n−

1
2

)
. (2.22)

To do so, we use (2.21) and the decomposition (2.61)

σ̂2
n =

1
n

n

∑
i=1

ν2
i (η̂n) +

2
n

n

∑
i=1

νi(η̂n)ξi +
1
n

n

∑
i=1

ξ2
i ,

where νi(η̂n) = γ0 · (ti − u0)1[ti ,+∞[(u0)− γ̂n · (ti − ûn)1[ti ,+∞[(ûn). The details of this are available in
Section 2.6.3.

2.5 DISCUSSION

In this Section, we summarise the results presented in this paper. The consistency of the posterior
distribution for a piecewise linear regression model is derived as well as its asymptotic normality
with suitable normalisation. The proofs of these convergence results rely on the convergence of the
MLE which is also proved here. In order to obtain all the asymptotic results, a regularised version of
the problem at hand, called pseudo-problem, is first studied and the difference between this pseudo-
problem and the (full) problem is then shown to be asymptotically negligible.

The trick of deleting observations in a diminishing neighbourhood of the true parameter, originally
found in Sylwester (1965) allows the likelihood of the pseudo-problem to be differentiated at the MLE,
once the MLE is shown to asymptotically belong to that neighbourhood (this requires at least a small
control of the rate of convergence of the MLE). This is the key argument needed to derive the asymptotic
distribution of the MLE through the usual Taylor expansion of the likelihood at the MLE. Extending the
results of Ghosh et al. (2006) to a non i.i.d. setup, the asymptotic normality of the posterior distribution
for the pseudo-problem is then recovered from that of the MLE, and passes on almost naturally to the
(full) problem.

The asymptotic normality of the MLE and the posterior distribution are proved in this paper in
a non i.i.d. setup with a non continuously differentiable likelihood. In both cases we obtain the
same asymptotic results as for an i.i.d. regular model: the rate of convergence is

√
n and the limiting

distribution is Gaussian (see Ghosh et al., 2006; Lehmann, 2004). For the piecewise linear regression
model, the exogenous variable t1:n does not appear in the expression of the rate of convergence as
opposed to what is known for the usual linear regression model (see Lehmann, 2004): this is due to
our own Assumption A1 which implies that t′1:nt1:n is equivalent to n. Note that for a simple linear
regression model, we also obtain the rate

√
n under Assumption A1. In the literature, several papers

already highlighted the fact that the rate of convergence and the limiting distribution (when it exists)
may be different for non regular models in the sense that the likelihood is either non continuous, or non
continuously differentiable, or admits singularities (see Dacunha-Castelle, 1978; Ghosal and Samanta,
1995; Ghosh et al., 1994; Ibragimov and Khasminskii, 1981). For the piecewise regression model, the
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likelihood is continuous but non continuously differentiable on a countable set (but the left and right
derivatives exist and are finite): the rate of convergence

√
n is not so surprising in our case, because this

rate was already obtained for a univariate i.i.d. model the likelihood of which has the same kind of
non regularity at a single point. In that case, the rate of convergence of the MLE is shown to be

√
n (see

Dacunha-Castelle, 1978, for instance).

2.6 EXTENSIVE PROOFS

2.6.1 Proofs of Section 2.2

Proof of Theorem 2.1. To prove (2.6), we proceed as announced and deal with numerator and denomina-
tor in turn.

Majoration. From Proposition 2.21 with ρn = 1, for any given ε > 0, we can choose δ > 0 small
enough so that a.s. for any n large enough

sup
θ∈Bc(θ0 ,δ)

1
n
[l1:n(X1:n|θ)− l1:n(X1:n|θ0)] 6 −ε.

We thus obtain a.s. for any n large enough

0 6
∫

Bc(θ0 ,δ)
π(θ) exp[l1:n(X1:n|θ)− l1:n(X1:n|θ0)]dθ

6 e−nε
∫

Bc(θ0 ,δ)
π(θ)dθ. (2.23)

Minoration. Define θn ∈ B(θ0, δ) such that

inf
θ∈B(θ0 ,δ)

1
n
[l1:n(X1:n|θ)− l1:n(X1:n|θ0)] =

1
n
[l1:n(X1:n|θn)− l1:n(X1:n|θ0)]

It is possible to define such a θn because B(θ0, δ) is a compact subset of Θ for δ > 0 small enough and
l1:n(X1:n|·) is continuous as a function of θ. Let now

bn(θ) =

(
σ2

0
σ2 − 1− log

σ2
0

σ2

)
+

1
σ2 ·

1
n

n

∑
i=1

[µ(η0, ti)− µ(η, ti)]
2 . (2.24)
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Recalling the definition of the log-likelihood given in (2.2) and replacing Xi by its expression given in
(2.1) we find via straightforward algebra

2
n
[l1:n(X1:n|θ)− l1:n(X1:n|θ0)] = log

σ2
0

σ2 +

(
1
σ2

0
− 1

σ2

)(
1
n

n

∑
i=1

ξ2
i

)

− 1
nσ2

n

∑
i=1

[µ(η0, ti)− µ(η, ti)]
2 − 2

σ2
1
n

n

∑
i=1

[µ(η0, ti)− µ(η, ti)]ξi

= log
σ2

0
σ2 +

(
1
σ2

0
− 1

σ2

)(
1
n

n

∑
i=1

ξ2
i − σ2

0 + σ2
0

)

− 1
nσ2

n

∑
i=1

[µ(η0, ti)− µ(η, ti)]
2 − 2

σ2
1
n

n

∑
i=1

[µ(η0, ti)− µ(η, ti)]ξi

=

(
log

σ2
0

σ2 + 1−
σ2

0
σ2

)
+

σ2 − σ2
0

σ2σ2
0

(
1
n

n

∑
i=1

ξ2
i − σ2

0

)

− 1
nσ2

n

∑
i=1

[µ(η0, ti)− µ(η, ti)]
2 − 2

σ2
1
n

n

∑
i=1

[µ(η0, ti)− µ(η, ti)]ξi (2.25)

= −bn(θ) +
σ2 − σ2

0
σ2σ2

0

(
1
n

n

∑
i=1

ξ2
i − σ2

0

)
− 2

σ2
1
n

n

∑
i=1

[µ(η0, ti)− µ(η, ti)]ξi. (2.26)

It is now easy to see that

inf
θ∈B(θ0 ,δ)

2
n
[l1:n(X1:n|θ)− l1:n(X1:n|θ0)] =

2
n
[l1:n(X1:n|θn)− l1:n(X1:n|θ0)]

= −bn(θn) +
σ2

n − σ2
0

σ2
nσ2

0

(
1
n

n

∑
i=1

ξ2
i − σ2

0

)
− 2

σ2
n

1
n

n

∑
i=1

[µ(η0, ti)− µ(ηn, ti)]ξi

= −bn(θn) +
1
σ2

n

[
σ2

n − σ2
0

σ2
0

(
1
n

n

∑
i=1

ξ2
i − σ2

0

)
− 2

n

n

∑
i=1

[µ(η0, ti)− µ(ηn, ti)]ξi

]

= −bn(θn) +
1
σ2

n
Rn

=

(
log

σ2
0

σ2
n
+ 1−

σ2
0

σ2
n

)
− 1

σ2
n
· 1

n

n

∑
i=1

[µ(η0, ti)− µ(ηn, ti)]
2 +

1
σ2

n
Rn

where Rn
a.s−→ 0 because of the Law of Large Numbers and Lemma 2.16. Thanks to Lemma 2.13 we thus

find that there exists C ∈ R∗+ such that

inf
θ∈B(θ0 ,δ)

2
n
[l1:n(X1:n|θ)− l1:n(X1:n|θ0)] >

(
log

σ2
0

σ2
n
+ 1−

σ2
0

σ2
n

)

− 1
σ2

n

(
C‖θn − θ0‖2 − Rn

)
We now choose κ > 0 and δ > 0 small enough so that

σ2
n

(
log

σ2
0

σ2
n
+ 1−

σ2
0

σ2
n

)
> −κ, (2.27)

−3(κ + Cδ2)

2(σ2
0 − δ)

> −1
2

ε. (2.28)
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Thanks to (2.27) and the definition of θn, we can now write that

inf
θ∈B(θ0 ,δ)

2
n
[l1:n(X1:n|θ)− l1:n(X1:n|θ0)] > −

1
σ2

n

(
κ + C‖θn − θ0‖2 − Rn

)
> − 1

σ2
n

(
κ + Cδ2 − Rn

)
.

Since for any n large enough

|Rn| 6
1
2

(
κ + Cδ2

)
,

we find via (2.28) that for any n large enough

inf
θ∈B(θ0 ,δ)

2
n
[l1:n(X1:n|θ)− l1:n(X1:n|θ0)] > −

3
2σ2

n

(
κ + Cδ2

)
> −3(κ + Cδ2)

2(σ2
0 − δ)

> −1
2

ε.

We just proved that for any ε > 0, we have a.s. for any n large enough

0 > inf
θ∈B(θ0 ,δ)

2
n
[l1:n(X1:n|θ)− l1:n(X1:n|θ0)] > −

1
2

ε,

which immediately implies∫
B(θ0 ,δ)

π(θ) exp[l1:n(X1:n|θ)− l1:n(X1:n|θ0)]dθ > e−
1
2 nε

∫
B(θ0 ,δ)

π(θ)dθ. (2.29)

Conclusion. Let now ε > 0 and δ > 0 small enough so that a.s. for any n large enough (2.23) and
(2.29) both hold. We have a.s. for any n large enough∫

Bc(θ0 ,δ) π(θ) exp[l1:n(X1:n|θ)− l1:n(X1:n|θ0)]dθ∫
B(θ0 ,δ) π(θ) exp[l1:n(X1:n|θ)− l1:n(X1:n|θ0)]dθ

6

∫
Bc(θ0 ,δ) π(θ)dθ∫
B(θ0 ,δ) π(θ)dθ

e−
1
2 nε −→ 0,

which ends the proof.

Proof of Theorem 2.3. Because the posterior distribution of θ in the pseudo-problem, π∗n(·|X1:n), can be
written as

π∗n(θ|X1:n) ∝ π(θ) exp[l∗1:n(X1:n|θ)],

the posterior density of t∗ = n
1
2 (θ − θ̂∗n) ∈ R3 can be written as

π̃∗n(t|X1:n) = C−1
n π(θ̂∗n + n−

1
2 t) exp[l∗1:n(X1:n|θ̂∗n + n−

1
2 t)− l∗1:n(X1:n|θ̂∗n)]

where

Cn =
∫

R3
π(θ̂∗n + n−

1
2 t) exp[l∗1:n(X1:n|θ̂∗n + n−

1
2 t)− l∗1:n(X1:n|θ̂∗n)]dt. (2.30)

Denoting

gn(t) = π(θ̂∗n + n−
1
2 t) exp[l∗1:n(X1:n|θ̂∗n + n∗−

1
2 t)− l∗1:n(X1:n|θ̂∗n)]

− π(θ0)e−
1
2 t′ I(θ0)t, (2.31)

40



2.6. EXTENSIVE PROOFS

to prove (2.13) it suffices to show that for any 0 6 k 6 k0,∫
R3
‖t‖k|gn(t)|dt a.s−→ 0. (2.32)

Indeed, if (2.32) holds, Cn
a.s−→ π(θ0)(2π)

3
2 |I(θ0)|−

1
2 (k = 0) and therefore, the integral in (2.13) which is

dominated by

C−1
n

∫
R3
‖t‖k|gn(t)|dt

+
∫

R3
‖t‖k

∣∣∣C−1
n π(θ0)e−

1
2 t′ I(θ0)t − (2π)−

1
2 |I(θ0)|

1
2 e−

1
2 t′ I(θ0)t

∣∣∣ dt

also goes to zero a.s.
Let 0 < δ to be chosen later, and let 0 6 k 6 k0. To show (2.32), we break R3 into two regions

T1(δ) = Bc(0, δn
1
2 dn) = {t : ‖t‖ > δn

1
2 dn}

T2(δ) = B(0, δn
1
2 dn) = {t : ‖t‖ < δn

1
2 dn}

and show that for i = 1, 2 ∫
Ti(δ)
‖t‖k|gn(t)|dt a.s−→ 0. (2.33)

Proof for i = 1. Note that
∫

T1(δ)
‖t‖k|gn(t)| is dominated by∫

T1(δ)
‖t‖kπ(θ̂∗n + n

1
2 t) exp[l∗1:n(X1:n|θ̂∗n + n−

1
2 t)− l∗1:n(X1:n|θ̂∗n)]dt

+
∫

T1(δ)
‖t‖kπ(θ0)e−

1
2 t′ I(θ0)t dt.

The second integral trivially goes to zero. For the first integral, we observe that it can be rewritten as

n
1
2

∫
Bc(θ̂∗n ,δdn)

n
k
2 ‖θ − θ̂∗n‖kπ(θ) exp[l∗1:n(X1:n|θ)− l∗1:n(X1:n|θ̂∗n)]dθ.

The strong consistency of θ̂∗n (see Theorem 2.7) implies that a.s., for any n large enough

‖θ̂∗n − θ0‖ <
1
2

δdn.

From this, we deduce that a.s., for any n large enough, Bc(θ̂∗n , δdn) ⊂ Bc(θ0, 1
2 δdn) and thus that the first

integral is dominated by

n
k+1

2

∫
Bc(θ0 , 1

2 δdn)
‖θ − θ̂∗n‖kπ(θ) exp[l∗1:n(X1:n|θ)− l∗1:n(X1:n|θ̂∗n)]dθ.

Recalling that n∗ ∼ n, Proposition 2.21 with ρn = dn implies that there a.s. exists ε > 0 such that for
any n large enough and any θ ∈ Bc(θ0, 1

2 δdn) we have

l∗1:n(X1:n|θ)− l∗1:n(X1:n|θ̂∗n) 6 −εnd2
n.

It follows, using (2.10) that, a.s. for any n large enough the first integral is dominated by

n
k+1

2 exp(−εnd2
n)
∫

Θ
‖θ − θ̂∗n‖kπ(θ)dt = n

k+1
2 exp(−εnd2

n) ·O(1)

6 n
k+1

2 n−ε log n ·O(1) −→ 0,

since by (2.10) we find that nd2
n > (log n)2 for any n large enough. Hence (2.33) holds for i = 1.
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Proof for i = 2. We first recall the multivariate Taylor expansion for a function g (k+1)-times
continuously differentiable within a neighbourhood of y ∈ Rn. With the usual differential calculus
notations

Dαg(y) · h(α) = ∑
16i1 ,...,iα6n

∂αg
∂i1 · · · ∂iα

(y) · hi1 · · · hiα

we have

g(x) =
k

∑
α=0

1
α!

Dαg(y) · (x− y)(α) + Rk+1(x) (2.34)

where

Rk+1(x) =
1

(k + 1)!

∫ 1

0
(1− s)kDk+1g(y + s(x− y)) · (x− y)(k+1) ds. (2.35)

Before expanding the log-likelihood over T2(δ) in a such a way, we first have to make sure it is
differentiable over the correct domain. Indeed, the strong consistency of θ̂∗n (see Theorem 2.7) implies
that a.s., whatever δ0 > 0, for n large enough,

‖θ̂∗n − θ0‖ < δ0dn.

For δ chosen small enough, since t ∈ T2(δ) implies

‖θ − θ̂∗n‖ < δdn

it follows from the triangle inequality that a.s. for n large enough,

‖θ − θ0‖ < (δ0 + δ)dn < dn.

A.s. for any n large enough, t ∈ T2(δ) hence implies θ ∈ B(θ0, (δ + δ0)dn). We choose δ0 and δ small
enough so that δ + δ0 < 1. This way, θ 7→ l∗1:n(X1:n|θ) is guaranteed to be infinitely continuously
differentiable over B(θ0, (δ + δ0)dn) ⊂ B(θ0, dn).

Now expanding the log-likelihood in a Taylor series for any n large enough, and taking advantage
of the fact that l∗1:n(X1:n|θ̂∗n) = 0, we define B∗1:n(·) the symmetric matrix defined for u ∈ Dn by

B∗1:n(θ) = −


∂2l∗1:n(X1:n|θ)

∂γ∂γ

∂2l∗1:n(X1:n|θ)
∂γ∂u

∂2l∗1:n(X1:n|θ)
∂γ∂σ2

∂2l∗1:n(X1:n|θ)
∂u∂u

∂2l∗1:n(X1:n|θ)
∂u∂σ2

∂2l∗1:n(X1:n|θ)
∂σ2∂σ2

 . (2.36)

and write that

l∗1:n(X1:n|θ)− l∗1:n(X1:n|θ̂∗n) = −
1
2
(θ − θ̂∗n)

′
(

B∗1:n(θ̂
∗
n)
)
(θ − θ̂∗n)

+ R3,n(θ) (2.37)

where

R3,n(θ) =
1
3!

∫ 1

0
(1− s)2D3l∗1:n(X1:n|θ̂∗n + s(θ − θ̂∗n)) · (θ − θ̂∗n)

(3) ds. (2.38)
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Lemma 2.22 allows us to write that a.s. there exists a constant C ∈ R∗+ such that for any n large enough,
for any t ∈ T2(δ)

l∗1:n(X1:n|θ̂∗n + n−
1
2 t)− l∗1:n(X1:n|θ̂∗n) = −

1
2

t′
(

n−1B∗1:n(θ̂
∗
n)
)

t + Sn(t) (2.39)

where

|Sn(t)| 6 Cn−
1
2 · ‖t‖3. (2.40)

From (2.40), we obtain that for any t ∈ T2(δ), Sn(t)
a.s−→ 0. Because of Lemma 2.20, we have

n−1B∗1:n(θ̂
∗
n)

a.s−→ I(θ0), and it follows immediately that for any t ∈ T2(δ),

gn(t)
a.s−→ 0,

and thus that

‖t‖kgn(t)
a.s−→ 0.

From (2.40) we also obtain

|Sn(t)| 6 Cδdn‖t‖2.

Lemma 2.20, combined with (2.10), (2.39) and the positivity of I(θ0), ensures that a.s. for any n large
enough

|Sn(t)| 6
1
4

t′
(

n−1B∗1:n(θ̂
∗
n)
)

t,

so that from (2.39), a.s. for any n large enough

exp[l∗1:n(X1:n|θ̂∗n + n−
1
2 t)− l∗1:n(X1:n|θ̂∗n)] 6 e−

1
4 t′(n−1B∗1:n(θ̂

∗
n))t 6 e−

1
8 t′ I(θ0)t. (2.41)

Therefore, for n large enough, ‖t‖k|gn(t)| is dominated by an integrable function on the set T2(δ) and
(2.33) holds for i = 2 which completes the proof.

2.6.2 Proofs of Section 2.3

Proof of Theorem 2.5. From (2.26), it is easy to see that

2
n
[l1:n(X1:n|θ)− l1:n(X1:n|K)] 6

2
n
[l1:n(X1:n|θ)− l1:n(X1:n|θ0)]

6 −bn(θ) +
σ2 − σ2

0
σ2σ2

0

(
1
n

n

∑
i=1

ξ2
i − σ2

0

)

− 2
σ2

1
n

n

∑
i=1

[µ(η0, ti)− µ(η, ti)]ξi.

For any θ′ ∈ Θ and r > 0, let B(θ′, r) = {θ, ; ‖θ′ − θ‖1 < r}. It is now obvious that

2
n
[l1:n(X1:n|B(θ′, r))− l1:n(X1:n|K)]

6 sup
θ∈B(θ′ ,r)

{−bn(θ)}+ sup
θ∈B(θ′ ,r)

∣∣∣∣∣σ2 − σ2
0

σ2σ2
0

∣∣∣∣∣ ·
∣∣∣∣∣ 1n n

∑
i=1

ξ2
i − σ2

0

∣∣∣∣∣
+ sup

θ∈B(θ′ ,r)

{
2
σ2

}
· sup

θ∈B(θ′ ,r)

{∣∣∣∣∣ 1n n

∑
i=1

[µ(η0, ti)− µ(η, ti)]ξi

∣∣∣∣∣
}

. (2.42)
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Lemma 2.16 now ensures that

sup
θ∈B(θ′ ,r)

∣∣∣∣∣ 1n n

∑
i=1

[µ(η0, ti)− µ(η, ti)]ξi

∣∣∣∣∣ a.s−→ 0,

and σ2 being bounded away from 0 ensures the boundedness of sup
θ∈B(θ′ ,r)

{
2
σ2

}
which implies

sup
θ∈B(θ′ ,r)

{
2
σ2

}
· sup

θ∈B(θ′ ,r)

{∣∣∣∣∣ 1n n

∑
i=1

[µ(η0, ti)− µ(η, ti)]ξi

∣∣∣∣∣
}

a.s−→ 0.

Since σ2 is bounded away from 0, taking advantage of the Strong Law of Large Numbers, we also obtain

sup
θ∈B(θ′ ,r)

∣∣∣∣∣σ2 − σ2
0

σ2σ2
0

∣∣∣∣∣ ·
∣∣∣∣∣ 1n n

∑
i=1

ξ2
i − σ2

0

∣∣∣∣∣ a.s−→ 0.

We may thus rewrite (2.42) as

2
n
[l1:n(X1:n|B(θ′, r))− l1:n(X1:n|K)] 6 sup

θ∈B(θ′ ,r)
{−bn(θ)}+ Rn, (2.43)

where Rn
a.s−→ 0.

Assume now that θ′ 6= θ0, then we have

sup
θ∈B(θ′ ,r)

|bn(θ)− b(θ′)| 6 sup
θ∈B(θ′ ,r)

|bn(θ)− bn(θ
′)|+ |bn(θ

′)− b(θ′)|. (2.44)

Lemma 2.15 (see (2.79)) ensures the existence of a r small enough, say r = r(θ′), such that

sup
θ∈B(θ′ ,r(θ′))

|bn(θ)− bn(θ
′)| 6 1

4
b(θ′), (2.45)

uniformly in n. For n large enough, that same Lemma 2.15 (see (2.80)) also guarantees that

|bn(θ
′)− b(θ′)| 6 1

4
b(θ′). (2.46)

Adding inequalities (2.45) and (2.46) together and combining the result with (2.44), we deduce that for
any n large enough

sup
θ∈B(θ′ ,r(θ′))

|bn(θ)− b(θ′)| 6 1
2

b(θ′),

i.e.

sup
θ∈B(θ′ ,r(θ′))

{−bn(θ)} 6 −
1
2

b(θ′),

which finally gives together with (2.43)

∀θ′ 6= θ0, P

(
lim sup
n−→+∞

1
n
[l1:n(X1:n|B(θ′, r(θ′)))− l1:n(X1:n|K)] 6 −

1
4

b(θ′)
)
= 1. (2.47)
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Since Lemma 2.15 ensures that b(θ′) > 0 for any θ′ 6= θ0, the previous statement implies

∀θ′ 6= θ0, P
(
∃n(θ′) ∈N, ∀n > n(θ′), l1:n(X1:n|B(θ′, r(θ′)))− l1:n(X1:n|K) < −1

)
= 1. (2.48)

For a given δ > 0, let us now define K(δ) = K \ B(θ0, δ). K(δ) is obviously a compact set since K itself
is a compact set. By compacity, from the covering⋃

θ′∈K(δ)

B(θ′, r(θ′)) ⊃ K(δ),

there exists a finite subcovering, i.e.

∃m(δ) ∈N,
m(δ)⋃
j=1

B(θ′j , r(θ′j)) ⊃ K(δ).

In particular, (2.48) holds for θ′ = θ′j , j = 1, . . . , m(δ). Let us define

n0(δ) = max
j=1,...,m(δ)

n(θ′j).

We may now write

∀δ > 0, ∃n0(δ) ∈N, ∃m(δ) ∈N, ∀j = 1, . . . , m(δ),

P
(
∀n > n0(δ), l1:n(X1:n|B(θ′j , r(θ′j)))− l1:n(X1:n|K) < −1

)
= 1,

which we turn into

∀δ > 0, ∃n0(δ) ∈N, ∃m(δ) ∈N,

P
(
∀n > n0(δ), ∀j = 1, . . . , m(δ), l1:n(X1:n|B(θ′j , r(θ′j)))− l1:n(X1:n|K) < −1

)
= 1,

thanks to the finiteness of m(δ), and finally into

∀δ > 0, ∃n0(δ) ∈N, P (∀n > n0(δ), l1:n(X1:n|K(δ))− l1:n(X1:n|K) < −1) = 1,

because of the covering

m(δ)⋃
j=1

B(θ′j , r(θ′j)) ⊃ K(δ).

Let us now sum up what we have obtained so far. We proved that

∀δ > 0, ∃n0(δ) ∈N, P
(

if ∀n > n0(δ), l1:n(X1:n|θ)− l1:n(X1:n|K) > log e−1, then θ 6∈ K(δ)
)
= 1,

i.e.

∃a = e−1 ∈]0, 1[, ∀δ > 0, ∃n0(δ) ∈N, P (if ∀n > n0(δ), θ ∈ Kn(a), then ‖θ − θ0‖1 < δ) = 1,

that is to say

∃a ∈]0, 1[, P

(
lim

n−→+∞
sup

θ∈Kn(a)
‖θ − θ0‖1 = 0

)
= 1.
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Proof of Proposition 2.6. In this proof ‖ · ‖ will refer to the usual Euclidean norm. Reindexing whenever
necessary, we also assume that the observations ti are ordered, and we denote

t = (t1, . . . , tn), X = (X1, . . . , Xn), µ0 = (µ(η0, t1), . . . , µ(η0, tn)),

N0,n = sup
i6n
{i, ti < u0} =

1
n

n

∑
i=1

1[ti ,+∞[(u0), Nn = sup
i6n
{i, ti < ûn} =

1
n

n

∑
i=1

1[ti ,+∞[(ûn),

ζ =


(0, . . . , 0, β0 + γ0tNn+1, . . . , β0 + γ0tN0,n , 0, . . . , 0), if Nn < N0,n

(0, . . . , 0), if Nn = N0,n

(0, . . . , 0, β0 + γ0tN0,n+1, . . . , β0 + γ0tNn , 0, . . . , 0), if Nn > N0,n

,

Let G be the linear space spanned by the 2 linearly independent n-vectors

v1 = (1, . . . , 1, 0, . . . , 0) v2 = (t1, . . . , tNn , 0, . . . , 0)

(both of which have their last n−Nn coordinates valued to zero), and denote Q the orthogonal projection
onto G.

Let G+ denote the linear space spanned by v1, v2 and µ0 and denote Q+ the orthogonal projection
onto G+. Observe that G+ is also spanned by v1, v2 and ζ.

Finally, denote µ∗ the orthogonal projection of X onto G+ and µ̂ the closest point to X in G+ satisfying
the continuity assumption of the model, i.e.

µ∗ = Q+X, µ̂ = (µ(η̂n, t1), . . . , µ(η̂n, tn)).

We have

‖X− µ∗‖2 + ‖µ∗ − µ̂||2 = ‖X− µ̂‖2 6 ‖X− µ0‖2,

‖X− µ0‖2 − ‖µ∗ − µ0‖2 + ‖µ∗ − µ̂||2 6 ‖X− µ0‖2,

‖µ∗ − µ0‖2 − 2 〈µ∗ − µ0, µ̂− µ0〉+ ‖µ̂− µ0‖2 6 ‖µ∗ − µ0‖2.

Thus

‖µ̂− µ0‖2 6 2 〈µ∗ − µ0, µ̂− µ0〉 6 2‖µ∗ − µ0‖ · ‖µ̂− µ0‖,

which leads to

‖µ̂− µ0‖ 6 2‖µ∗ − µ0‖ 6 2‖Q+ξ‖.

Our aim is to show that a.s.

‖Q+ξ‖ = O (log n) . (2.49)

If (2.49) held, then we would have a.s. ‖µ̂− µ0‖ = O (log n) i.e. a.s.

n

∑
i=1

(µ(η̂n, ti − µ(η0, ti))
2 = O

(
log2 n

)
.
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Hence, a.s. for any open interval I ⊂ [u, u] we would have

n

∑
i=1

(µ(η̂n, ti − µ(η0, ti))
2
1I(ti) = O

(
log2 n

)
.

This would immediately imply the desired result, i.e. that a.s.

min
ti∈I, i6n

|µ(η̂n, ti)− µ(η0, ti)| = O
(

n−
1
2 log n

)
,

since a.s.

O
(

log2 n
)
=

n

∑
i=1

(µ(η̂n, ti − µ(η0, ti))
2
1I(ti) > n · min

ti∈I, i6n
|µ(η̂n, ti)− µ(η0, ti)|2 ·

1
n

n

∑
i=1

1I(ti),

where (see Assumption A1)

1
n

n

∑
i=1

1I(ti) =
∫

I
dFn(t) −→

∫
I

dF(t) =
∫

I
f (t)dt > 0.

Let us now prove that (2.49) indeed holds. We consider the two following mutually exclusive
situations.

Situation A: ζ = (0, . . . , 0). In this situation

‖Q+ξ‖ = ‖Qξ‖, (2.50)

and Cochran’s theorem guarantees that ‖Qξ‖2 ∼ χ2(2) for n > 2. Hence, via Corollary 2.17, a.s.

‖Qξ‖ = O (log n) , (2.51)

and (2.49) follows from (2.50) and (2.51).

Situation B: ζ 6= (0, . . . , 0). Since

|〈ζ, ξ〉|
‖ζ‖ ∼ N (0, σ2

0 ),

we also have, via Lemma 2.17, a.s.

|〈ζ, ξ〉|
‖ζ‖ = O (log n) . (2.52)

Notice that (2.49) follows from (2.51) and (2.52) if we manage to show that a.s.

‖Q+ξ‖ 6 O(1) ·
(
‖Qξ‖+ |〈ζ , ξ〉|

‖ζ‖

)
. (2.53)

It thus now suffices to prove that a.s., for any g ∈ G

|〈ζ , g〉| = ‖ζ‖ ‖g‖ · o(1), (2.54)

where the o(1) mentioned in (2.54) is uniform in g over G (i.e. a.s. ζ is asymptotically uniformly
orthogonal to G), for (2.53) is a direct consequence of (2.54) and Lemma 2.10 whose proof is found in
Feder (1975).
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Lemma 2.10. Let X and Y be two linear subspaces of an inner product space E . If there exists α < 1 such that

∀(x, y) ∈ X ×Y , |〈x, y〉| 6 α‖x‖ ‖y‖,

then

‖x + y‖ 6 (1− α)−1(‖x∗‖+ ‖y∗‖),

where x∗ (resp. y∗) is the orthogonal projection of x + y onto X (resp. Y).

Observe that, as a consequence of Assumption A1 and Theorem 2.11, the three following conver-
gences are uniform in u over [u, u] for k = 0, 1, 2,

1
n

n

∑
i=1

tk
i 1[ti ,+∞[(u) =

∫ u

u
tk dFn(t) −→

∫ u

u
tk dF(t) =

∫ u

u
tk f (t)dt. (2.55)

We have a.s., for any g(φ) = (cos φ)v1 + (sin φ)v2 ∈ G, with φ ∈ [0, 2π]

|〈ζ, g(φ)〉| =
∣∣∣∣∣Nn

∑
i=1

(β0 + γ0ti)(cos φ + ti sin φ)−
N0,n

∑
i=1

(β0 + γ0ti)(cos φ + ti sin φ)

∣∣∣∣∣
6 (max(|u|, |u|) + 1) ·

∣∣∣∣∣Nn

∑
i=1
|β0 + γ0ti| −

N0,n

∑
i=1
|β0 + γ0ti|

∣∣∣∣∣
6 (max(|u|, |u|) + 1) · ‖ζ‖1

6 (max(|u|, |u|) + 1) · ‖ζ‖ · n
1
2 |Nn − N0,n|

1
2

6 (max(|u|, |u|) + 1) · ‖ζ‖ · n
1
2

∣∣∣∣∣ 1n n

∑
i=1

1[ti ,+∞[(ûn)−
1
n

n

∑
i=1

1[ti ,+∞[(u0)

∣∣∣∣∣
1
2

,

i.e. we have a.s. for any φ ∈ [0, 2π]

|〈ζ, g(φ)〉| = n
1
2 ‖ζ‖ · o(1), (2.56)

thanks to the strong consistency ûn
a.s−→ u0 (see Theorem 2.5) and the uniform convergence mentioned

in (2.55) with (k = 0). Observe that the o(1) mentioned in (2.56) is uniform in φ over [0, 2π]. We also
have a.s. for any φ ∈ [0, 2π]

1
n
‖g(φ)‖2 =

1
n

n

∑
i=1

(cos φ + ti sin φ)21[ti ,+∞[(ûn)

=
1
n

n

∑
i=1

1[ti ,+∞[(ûn) cos2 φ + 2
1
n

n

∑
i=1

ti1[ti ,+∞[(ûn) cos φ sin φ

+
1
n

n

∑
i=1

t2
i 1[ti ,+∞[(ûn) sin2 φ

a.s−→ cos2 φ
∫ u0

u
f (t)dt + cos φ sin φ

∫ u0

u
2t f (t)dt + sin2 φ

∫ u0

u
t2 f (t)dt,

once again making use of the strong consistency ûn
a.s−→ u0 (see Theorem 2.5) and taking advantage of

all three uniform convergences mentioned in (2.55). We thus obviously have a.s., uniformly in φ over
[0, 2π]

1
n
‖g(φ)‖2 −→

∫ u0

u
(cos φ + t sin φ)2 f (t)dt. (2.57)
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The limit in (2.57) is a positive and continuous function of φ, and is hence bounded, i.e. there exists
m > 0 such that we have a.s.

1
n
‖g(φ)‖2 > m + o(1), (2.58)

i.e.

1
‖g(φ)‖ = O(n−

1
2 ), (2.59)

where the o(1) mentioned in (2.58) and the O(n−
1
2 ) mentioned in (2.59) are uniform in φ over [0, 2π].

Combining (2.56) and (2.59) together, we have a.s. for any φ ∈ [0, 2π]

|〈ζ , g(φ)〉| = ‖ζ‖ ‖g(φ)‖ · o(1), (2.60)

where the o(1) mentioned in (2.60) is uniform in φ over [0, 2π].
Hence, we have a.s, for any r ∈ R∗+, and any φ ∈ [0, 2π], now denoting g(φ) = (r cos φ)v1 +

(r sin φ)v2 and applying (2.60) to r−1g(φ)

|〈ζ, g(φ)〉| = r
∣∣∣〈ζ, r−1g(φ)

〉∣∣∣ = r · ‖ζ‖ ‖r−1g(φ)‖ · o(1) = ‖ζ‖ ‖g(φ)‖ · o(1),

where the o(1) mentioned is uniform in φ over [0, 2π] and does not depend on r.
We immediately deduce that a.s. (2.54) holds i.e. a.s. ζ is asymptotically uniformly orthogonal to G,

which completes the proof.

Proof of Theorem 2.7. We now prove that

‖σ̂2
n − σ2

0‖ = O
(

n−
1
2 log n

)
.

Variance of noise σ2. Observe that

σ̂2
n =

1
n

n

∑
i=1

[
Xi − γ̂n

(
ti − ûn)1[ti ,+∞[(ûn

)]2

=
1
n

n

∑
i=1

[
γ0 · (ti − u0)1[ti ,+∞[(u0)− γ̂n · (ti − ûn)1[ti ,+∞[(ûn) + ξi

]2

=
1
n

n

∑
i=1

ν2
i (η̂n) +

2
n

n

∑
i=1

νi(η̂n)ξi +
1
n

n

∑
i=1

ξ2
i , (2.61)

where we denote for i = 1, . . . , n,

νi(η) = γ0 · (ti − u0)1[ti ,+∞[(u0)− γ · (ti − u)1[ti ,+∞[(u). (2.62)

We have

sup
i∈N

|νi(η̂n)| = sup
i∈N

∣∣∣γ0 · (ti − u0)1[ti ,+∞[(u0)− γ̂n · (ti − ûn)1[ti ,+∞[(ûn)
∣∣∣

6 |γ0 − γ̂n| · sup
i∈N

∣∣∣(ti − u0)1[ti ,+∞[(u0)
∣∣∣

+ |γ̂n| · sup
i∈N

∣∣∣(ti − u0)1[ti ,+∞[(u0)− (ti − ûn)1[ti ,+∞[(ûn)
∣∣∣

= O (γ0 − γ̂n) + |γ̂n|O (u0 − ûn) , (2.63)
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using straightforward dominations and Lemma 2.12, so that in the end, thanks to the previous results
we have a.s.

sup
i∈N

|νi(η̂n)| = O
(

n−
1
2 log n

)
. (2.64)

It is thus easy to see that a.s.

1
n

n

∑
i=1

ν2
i (η̂n) = O

(
n−1 log2 n

)
= O

(
n−

1
2 log n

)
, (2.65)

and also that, via Corollary 2.17, a.s.

2
n

n

∑
i=1

νi(η̂n)ξi =
2
n

(
n

∑
i=1

ν2
i (η̂n)

) 1
2

·O(log n) = O
(

n−
1
2 log n

)
. (2.66)

From the Law of the Iterated Logarithm (see Breiman, 1992, Chapter 13, page 291) we have a.s.

1
n

n

∑
i=1

(
ξ2

i − σ2
0

)
= O

(
n−

1
2 (log log n)

1
2

)
= O

(
n−

1
2 log n

)
(2.67)

and the desired result follows from (2.65), (2.66) and (2.67) put together into (2.61).

2.6.3 Proofs of Section 2.4

Proof of Proposition 2.8. We proceed as announced.

Step 1. We first prove that a.s.

∃N ∈N, ∀n > N, û∗n ∈ Dn.

Let us notice that anything proven for the problem remains valid for the pseudo-problem. Because
n∗ ∼ n, we have a.s., thanks to Theorem 2.7 and conditions (2.10), as n −→ +∞

n
1
2 (log−1 n) · (û∗n − u0) = O(1),

n
1
2 (log−1 n) · dn −→ +∞,

and thus deduce from the ratio of these two quantities that

û∗n − u0

dn

a.s−→ 0,

and this directly implies the desired result.

Step 2. Let A∗1:n(·) be the column vector defined for u ∈ Dn by

A∗1:n(θ) =

(
∂l∗1:n(X1:n|θ)

∂γ

∣∣∣∣
θ

,
∂l∗1:n(X1:n|θ)

∂u

∣∣∣∣
θ

,
∂l∗1:n(X1:n|θ)

∂σ2

∣∣∣∣
θ

)
. (2.68)

Step 1 allows us to expand a.s. A∗1:n(θ̂
∗
n) around θ0 using a Taylor-Lagrange approximation

0 = A∗1:n(θ̂
∗
n) = A∗1:n(θ0)− B∗1:n(θ̃n)

(
θ̂∗n − θ0

)
,
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where θ̃n is a point between θ̂∗n and θ0 (see (2.36) for the definitions of B∗1:n), and rewrite it as a.s.

1
n∗

B∗1:n(θ̃n) · n∗
1
2

(
θ̂∗n − θ0

)
= n∗−

1
2 A∗1:n(θ0).

Since θ̂∗n −→ θ0, we also have θ̃n −→ θ0 and using both Lemmas 2.19 and 2.20 we immediately find that as
n −→ +∞

I(θ0) · n∗
1
2

(
θ̂∗n − θ0

)
d−→ N (0, I(θ0)) ,

which means, remembering both that n∗ ∼ n and that I(θ0) is positive definite and thus invertible that
as n −→ +∞

n
1
2

(
θ̂∗n − θ0

)
d−→ N

(
0, I(θ0)

−1
)

.

Proof of Theorem 2.9. To finish the proof, we need to show (2.22) i.e. that

σ̂2
n − σ̂2∗

n = oP

(
n−

1
2

)
.

We use the decomposition (2.61)

σ̂2
n =

1
n

n

∑
i=1

ν2
i (η̂n) +

2
n

n

∑
i=1

νi(η̂n)ξi +
1
n

n

∑
i=1

ξ2
i ,

where νi(η̂n) = γ0 · (ti − u0)1[ti ,+∞[(u0)− γ̂n · (ti − ûn)1[ti ,+∞[(ûn).
Having proved in Proposition 2.8 that

γ̂∗n − γ0 = OP

(
n−

1
2

)
, û∗n − u0 = OP

(
n−

1
2

)
we add these relationships to those from (2.21) and find that

γ̂n − γ0 = OP

(
n−

1
2

)
, ûn − u0 = OP

(
n−

1
2

)
. (2.69)

We now use (2.69) together with (2.63), we are able to write

sup
i∈N

|νi(η̂n)| = OP

(
n−

1
2

)
. (2.70)

It is hence easy to see that

1
n

n

∑
i=1

ν2
i (η̂n) = OP

(
n−1

)
= oP

(
n−

1
2

)
,

and also that

2
n

n

∑
i=1

νi(η̂n)ξi =
2
n

(
n

∑
i=1

ν2
i (η̂n)

) 1
2

·OP(1) = oP

(
n−

1
2

)
,

which once both substituted into (2.61) yield

σ̂2
n =

1
n

n

∑
i=1

ξ2
i + oP

(
n−

1
2

)
.
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What was done above with the problem and σ̂2
n can be done with the pseudo-problem and σ̂2∗

n without
any kind of modification so that

σ̂2∗
n =

1
n∗

n∗

∑
i=1

ξ2
i + oP

(
n−

1
2

)
.

We observe that

σ̂2
n − σ̂2∗

n =
1
n

n

∑
i=1

ξ2
i −

1
n∗

n∗

∑
i=1

ξ2
i + oP

(
n−

1
2

)
=

[
1
n
− 1

n∗

]
·

n∗

∑
i=1

ξ2
i +

1
n
·

n

∑
i=n∗+1

ξ2
i + oP

(
n−

1
2

)
=

n∗ − n
n
·
(

1
n∗

n∗

∑
i=1

ξ2
i

)
+

n− n∗

n
·
(

1
n− n∗

n

∑
i=n∗+1

ξ2
i

)
+ oP

(
n−

1
2

)
=

n∗ − n
n
·
(

σ2
0 + OP

(
n∗−

1
2

))
+

n− n∗

n
·
(

σ2
0 + OP

(
(n− n∗)−

1
2
))

+ oP

(
n−

1
2

)
,

using the Central Limit Theorem, and in the end we get

σ̂2
n − σ̂2∗

n =
n∗ − n

n
·OP

(
n∗−

1
2

)
+

n− n∗

n
·OP

(
(n− n∗)−

1
2
)
+ oP

(
n−

1
2

)
= o(1) ·OP

(
n−

1
2

)
+ n−

1
2 ·OP

((
n− n∗

n

) 1
2
)
+ oP

(
n−

1
2

)
= oP

(
n−

1
2

)
+ n−

1
2 ·OP (o(1)) + oP

(
n−

1
2

)
= oP

(
n−

1
2

)
.

2.7 TECHNICAL RESULTS

Theorem 2.11 (Polya’s Theorem). Let (gn)n∈N be a sequence of non decreasing (or non increasing) functions
defined over I = [a, b] ⊂ R. If gn converges pointwise to g (i.e. gn(x) −→ g(x) as n −→ +∞, for any x ∈ I) and
g is continuous then

sup
x∈I
|gn(x)− g(x)| −−−−→

n−→+∞
0.

Proof of Lemma 2.11. Assume the functions gn are non decreasing over I (if not, consider their opposites
−gn). g is continuous over I and thus bounded since I is compact. g is also non decreasing over I as the
limit of a sequence of non decreasing functions. Let ε > 0 and k > g(b)−g(a)

ε such that

∃a = a0 < . . . < ak = b ∈ Ik+1, ∀i = 0, . . . , k− 1, g(ai+1)− g(ai) < ε.

Now let x ∈ I and let i ∈N such that ai 6 x 6 ai+1. Since gn and g are non decreasing, we find that

gn(x)− g(x) 6 gn(ai+1)− g(ai) 6 gn(ai+1)− g(ai+1) + ε,

gn(x)− g(x) > gn(ai)− g(ai+1) > gn(ai)− g(ai)− ε.

The pointwise convergence of gn to g and the finiteness of k together ensure that

∃N0 ∈N, ∀n > N0, ∀i = 0, . . . , k, |gn(ai)− g(ai)| < ε,
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which implies with both of the inequations mentioned above that

∃N0 ∈N, ∀n > N0, ∀x ∈ I, |gn(x)− g(x)| < ε.

Lemma 2.12. Let k ∈N∗, there exists a constant C ∈ R∗+ such that for any (u, u′) ∈ [u, u]2

sup
t∈[u, u]

|(t− u′)k1[t,+∞[(u
′)− (t− u)k1[t,+∞[(u)| = C|u− u′|. (2.71)

Proof of Lemma 2.12. For any (u, u′) ∈ [u, u]2 we have

sup
t∈[u, u]

|(t− u′)k1[t,+∞[(u
′)− (t− u)k1[t,+∞[(u)| 6 sup

t∈[u, u]
{|(t− u′)k − (t− u)k|1[t,+∞[(u

′)}

+ sup
t∈[u, u]

{|t− u|k|1[t,+∞[(u
′)− 1[t,+∞[(u)|}. (2.72)

The mean value theorem guarantees that there exists v between u and u′ such that

(t− u′)k − (t− u)k = −k(t− v)k−1(u′ − u).

We thus have

sup
t∈[u, u]

{|(t− u′)k − (t− u)k|1[t,+∞[(u
′)} 6 sup

t∈[u, u]
|(t− u′)k − (t− u)k|

6 k|u− u|k−1|u− u′|. (2.73)

Because |t− u| 6 |u′ − u| whenever |1[t,+∞[(u′)− 1[t,+∞[(u)| 6= 0, we also find that

sup
t∈[u, u]

{|t− u|k|1[t,+∞[(u
′)− 1[t,+∞[(u)|} 6 |u− u′|k 6 |u− u′||u− u|k−1. (2.74)

And now (2.71) is a simple consequence of (2.72), (2.73) and (2.74).

Lemma 2.13. For any η′ ∈ R× [u, u], there exists C ∈ R∗+ such that for any η ∈ R× [u, u]

sup
t∈[u, u]

|µ(η, t)− µ(η′, t)| 6 C‖η − η′‖. (2.75)

Proof of Lemma 2.13. We have indeed

sup
t∈[u, u]

|µ(η, t)− µ(η′, t)| = sup
t∈[u, u]

|γ · (t− u)1[t,+∞[(u)− γ′(t− u′)1[t,+∞[(u
′)|

6 sup
t∈[u, u]

|[γ− γ′](t− u)1[t,+∞[(u)|

+ sup
t∈[u, u]

|γ′[(t− u)1[t,+∞[(u)− (t− u′)1[t,+∞[(u
′)]|

6 |γ− γ′| · sup
t∈[u, u]

|t− u|

+ |γ′| · sup
t∈[u, u]

|(t− u)1[t,+∞[(u)− (t− u′)1[t,+∞[(u
′)|

6 |γ− γ′| · |u− u|+ |γ′| · sup
t∈[u, u]

|(t− u)1[t,+∞[(u)− (t− u′)1[t,+∞[(u
′)|.

And now (2.75) is a simple consequence of Lemma 2.12.
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Lemma 2.14. Let A ⊂ R× [u, u] be a bounded set. Then,

∀ε > 0, ∃m(ε) ∈N, ∃η1, . . . , ηm(ε) ∈ A,

∀η, η′ ∈ A, ∃j, j′ ∈ {1, . . . , m(ε)}, sup
t∈[u, u]

∣∣∣[µ(η, t)− µ(η′, t)
]
−
[
µ(ηj, t)− µ(ηj′ , t)

]∣∣∣ < ε,

Proof of Lemma 2.14. It suffices to prove the following claim

∀ε > 0, ∃m(ε) ∈N, ∃η1, . . . , ηm(ε) ∈ A,

∀η ∈ A, ∃j ∈ {1, . . . , m(ε)}, sup
t∈[u, u]

|µ(η, t)− µ(ηj, t)| < ε.

and then use the triangle inequality. To see that the claim holds, it suffices, thanks to Lemma 2.13, to
exhibit a finite and tight enough grid of A such that any point in A lies close enough to a point of the
grid. The existence of such a grid is obviously guaranteed since A ⊂ R2 is bounded.

Lemma 2.15. Recall the definition of bn given in (2.24). Let

b(θ) =

(
σ2

0
σ2 − 1− log

σ2
0

σ2

)
+

1
σ2

∫ u

u
[µ(η0, t)− µ(η, t)]2 f (t)dt. (2.76)

Then, under Assumptions A1–A4,

bn(θ) > 0. (2.77)

b(θ) > 0, with equality if and only if θ = θ0. (2.78)

bn(θ
′) −→ bn(θ), uniformly in n, as θ′ −→ θ. (2.79)

bn(θ) −→ b(θ), as n −→ +∞. (2.80)

Proof of Lemma 2.15. We will prove each claim separately.

Proof of (2.77). That bn(θ) > 0 is trivial since the first term in (2.24) is non negative (having
x− 1− log x > 0 with equality only if x = 1), and the second term in (2.24) is obviously non negative
too.

Proof of (2.78). That b(θ) > 0 is again easy enough to prove, both terms in (2.76) being trivially
non negative. If θ 6= θ0 then either σ2 6= σ2

0 which implies the first term is positive, or µ(η0, ·) 6= µ(η, ·)
which implies the second term is positive (since f is assumed positive on [u, u]). Hence if θ 6= θ0 then
b(θ) > 0. That θ = θ0 implies b(θ) = 0 is of course straightforward.

Proof of (2.79). We first observe that∣∣∣∣∣ 1n n

∑
i=1

(µ(η0, ti)− µ(η′, ti))
2 − 1

n

n

∑
i=1

(µ(η0, ti)− µ(η, ti))
2

∣∣∣∣∣
=

∣∣∣∣∣ 1n n

∑
i=1

[
2µ(η0, ti)− µ(η′, ti)− µ(η, ti)

]
·
[
µ(η, ti)− µ(η′, ti)

]∣∣∣∣∣
6

1
n

n

∑
i=1

∣∣2µ(η0, ti)− µ(η′, ti)− µ(η, ti)
∣∣ · ∣∣µ(η, ti)− µ(η′, ti)

∣∣
6

(
sup

t∈[u, u]
|µ(η0, t)− µ(η, t)|+ sup

t∈[u, u]

∣∣µ(η′, t)− µ(η, t)
∣∣) · sup

t∈[u, u]

∣∣µ(η′, t)− µ(η, t)
∣∣ . (2.81)
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As θ′ −→ θ, the convergence of the first term of bn to the first term of b is obviously uniform in n since
this part of bn does not involve n at all. As θ′ −→ θ, via Lemma 2.13, we also obtain

sup
t∈[u, u]

∣∣µ(η′, t)− µ(η, t)
∣∣ −→ 0,

which ensures that the second part of (2.24) converges uniformly in n thanks to (2.81).

Proof of (2.80). Thanks to Assumption A1, it is easy to see that

1
n

n

∑
i=1

[µ(η0, ti)− µ(η, ti)]
2 =

∫ u

u
[µ(η0, t)− µ(η, t)]2 dFn(t)

−→
∫ u

u
[µ(η0, t)− µ(η, t)]2 dF(t) =

∫ u

u
[µ(η0, t)− µ(η, t)]2 f (t)dt.

Lemma 2.16. Let A ⊂ R× [u, u] be a bounded set, and let η0 ∈ A, then under Assumptions A1–A4,

sup
η∈A

∣∣∣∣∣ 1n n

∑
i=1

[µ(η0, ti)− µ(η, ti)]ξi

∣∣∣∣∣ a.s−→ 0.

Proof of Lemma 2.16. Let ε > 0, η ∈ A, and apply Lemma 2.14 to get the corresponding m(ε) ∈ N,
{η1, . . . , ηm(ε)} ⊂ A, j, j′ ∈ {1, . . . , m(ε)}. We can write with the triangle inequality

1
n

n

∑
i=1

[µ(η0, ti)− µ(η, ti)]ξi =
1
n

n

∑
i=1

[µ(ηj, ti)− µ(ηj′ , ti)]ξi

+
1
n

n

∑
i=1

{
[µ(η0, ti)− µ(η, ti)]− [µ(ηj, ti)− µ(ηj′ , ti)]

}
ξi

6 sup
(j,j′)∈{1,...,m(ε)}

{
1
n

n

∑
i=1

[µ(ηj, ti)− µ(ηj′ , ti)]ξi

}
+ ε · 1

n

n

∑
i=1
|ξi| .

Hence

sup
η∈A

{
1
n

n

∑
i=1

[µ(η0, ti)− µ(η, ti)]ξi

}
6 sup

(j,j′)∈{1,...,m(ε)}

{
1
n

n

∑
i=1

[µ(ηj, ti)− µ(ηj′ , ti)]ξi

}

+ ε · 1
n

n

∑
i=1
|ξi| . (2.82)

Let us now recall Kolmogorov’s criterion, a proof of which is available in Section 17 of Loève (1991)
on pages 250–251. This criterion guarantees that for any sequence (Yi)i∈N of independent random
variables and any numerical sequence (bi)i∈N such that

+∞

∑
i=1

Var Yi

b2
i

< +∞, bn −→ +∞,

we have

∑n
i=1(Yi −EYi)

bn

a.s−→ 0.
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For each couple (j, j′) ∈ {1, . . . , m(ε)}, Kolmogorov’s criterion ensures that

1
n

n

∑
i=1

[µ(ηj, ti)− µ(ηj′ , ti)]ξi
a.s−→ 0,

for the coefficients [µ(ηj, ti)− µ(ηj′ , ti)] are obviously bounded, and it suffices to pick Yi = [µ(ηj, ti)−
µ(ηj′ , ti)]ξi and bi = i. Having only a finite number of couples (j, j′) ∈ {1, . . . , m(ε)}2 to consider allows
us to write

sup
(j,j′)∈{1,...,m(ε)}

1
n

n

∑
i=1

[µ(ηj, ti)− µ(ηj′ , ti)]ξi
a.s−→ 0. (2.83)

By (2.83), the first term on the right hand side of (2.82) converges almost surely to zero. The Strong Law
of Large Numbers ensures that the second term on the right hand side of (2.82) converges almost surely
to ε · (2π−1σ2)

1
2 , and the result follows, since all the work done above for (ξn)n∈N can be done again

for (−ξn)n∈N.

Lemma 2.17. Let (Zi)i∈N be a sequence of independent identically distributed random variables such that for
all i ∈N, either Zi ∼ N (0, σ2) with σ2 > 0, or Zi ∼ χ2(k) with k > 0. Then a.s., as n −→ +∞

Zn = O(log n).

Proof of Lemma 2.17. Denote Yn = Zn when the random variables are Gaussian, and Yn = Zn/5 when
the random variables considered are chi-squared (so that Ee2Y1 and Ee−2Y1 are both finite). We will
show that a.s. Yn = O(log n).

For any ε > 0, from Markov’s inequality we get:

P
(

n−1|eYn | > ε
)
= P

(
n−2e2Yn > ε2

)
6 ε−2n−2Ee2Y1 .

From there it is easy to see that for any ε > 0 we have

+∞

∑
n=1

P
(

n−1|eYn | > ε
)
= ε−2 π2

6
Ee2Y1 < ∞,

which directly implies via Borel-Cantelli’s Lemma (see for example Billingsley, 1995, Section 4, page 59)
that a.s.

eYn = o(n).

In particular, a.s. for any n large enough,

Yn 6 log n.

What was done with (Yn)n∈N can be done again with (−Yn)n∈N so that in the end we have a.s for any
n large enough,

− log n 6 Yn 6 log n.
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Lemma 2.18. Under Assumptions A1–A4, for any η0 ∈ R× [u, u], there exists C ∈ R∗+ such that for any n
large enough, and for any η

n−1
n

∑
i=1

[µ(η0, ti)− µ(η, ti)]
2 > C‖η − η0‖2.

Proof of Lemma 2.18. We have already almost proved this result in (2.18) (see Theorem 2.7). There is
however a small difficulty since the majoration was obtained for τ = (β, γ) and not η = (γ, u).

Let V1 and V2 two non empty open intervals of ]u, u0[ such that their closures V1 and V2 are do not
overlap. We have

n−1
n

∑
i=1

[µ(η0, ti)− µ(η, ti)]
2 > n−1

(
n

∑
i=1

[µ(η0, ti)− µ(η, ti)]
2
1V1(ti)+

n

∑
i=1

[µ(η0, ti)− µ(η, ti)]
2
1V2(ti)

)
.

Using the same arguments we used to prove (2.18), we find that there exists C ∈ R∗+ such that
(remembering the definition of the intercept β of the model)

n−1
n

∑
i=1

[µ(η0, ti)− µ(η, ti)]
2 > min

(
n−1

n

∑
i=1

1V1(ti), n−1
n

∑
i=1

1V2(ti)

)
· C|γ− γ0|2,

n−1
n

∑
i=1

[µ(η0, ti)− µ(η, ti)]
2 > min

(
n−1

n

∑
i=1

1V1(ti), n−1
n

∑
i=1

1V2(ti)

)
· C|β− β0|2,

and since for j = 1, 2 we have

n−1
n

∑
i=1

1Vj(ti) −→
∫

Vj

f (t)dt > 0,

there exists C ∈ R∗+ such that for any n large enough

n−1
n

∑
i=1

[µ(η0, ti)− µ(η, ti)]
2 > C|γ− γ0|2,

n−1
n

∑
i=1

[µ(η0, ti)− µ(η, ti)]
2 > C|β− β0|2.

Notice now that

|u− u0| = |γ−1
0 β0 − γ−1β|

= |γ−1
0 ||β0 − γ0γ−1β|

6 |γ−1
0 |
{
|β0 − β|+ |β− γ0γ−1β|

}
6 |γ−1

0 |
{
|β0 − β|+ |γ−1β| |γ− γ0|

}
6 |γ−1

0 |(|β0 − β|+ |u| |γ− γ0|)

6 |γ−1
0 |(1 + max(|u|, |u|)) ·max(|β0 − β|, |γ− γ0|).
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From here, since u ∈ [u, u] is bounded, it is straightforward that there exists C ∈ R∗+ such that for any
n large enough

n−1
n

∑
i=1

[µ(η0, ti)− µ(η, ti)]
2 > C|γ− γ0|2,

n−1
n

∑
i=1

[µ(η0, ti)− µ(η, ti)]
2 > C|u− u0|2,

which ends the proof.

Lemma 2.19. Recall the definition of A∗1:n given in (2.68). Under Assumptions A1–A4 and conditions (2.10),
as n −→ +∞

n−
1
2 A∗1:n(θ0)

d−→ N (0, I(θ0)) . (2.84)

Proof of Lemma 2.19. We will show that any linear combination of the coordinates of A1:n(θ0) is asymp-
totically normal using Lyapounov’s Theorem. Let α ∈ R3, ‖α‖ 6= 0, so that differential calculus allows
us to write

〈α, A∗1:n(θ0)〉 = α1 ·
∂l∗1:n(X1:n|θ)

∂γ

∣∣∣∣
θ0

+ α2 ·
∂l∗1:n(X1:n|θ)

∂u

∣∣∣∣
θ0

+ α3 ·
∂l∗1:n(X1:n|θ)

∂σ2

∣∣∣∣
θ0

= α1 ·
1
σ2

0

n∗

∑
i=1

[
(ti − u0)1[ti ,+∞[(u0) · ξi

]
− α2 ·

γ0

σ2
0

n∗

∑
i=1

[
1[ti ,+∞[(u0) · ξi

]
+ α3 ·

1
2σ2

0

n∗

∑
i=1

[
1
σ2

0
· ξ2

i − 1

]

= σ−2
0

n∗

∑
i=1

Zi ,

where we denote, for i = 1, . . . , n∗

Zi =

[{
(ti − u0)1[ti ,+∞[(u0) · α1 − γ01[ti ,+∞[(u0) · α2

}
· ξi +

1
2

α3 ·
{

σ−2
0 · ξ2

i − 1
}]

. (2.85)

Since for i = 1, . . . , n∗ E[ξi] = 0 and E[ξ2
i ] = σ2, we deduce that E [Zi] = 0, and hence that

E
[〈

α, A∗1:n(θ0)
〉]

= 0.

Let us now find the expression of Var
〈
α, A∗1:n(θ0)

〉
. Because ξi and ξ j are independent when i 6= j,

so are Zi and Zj and we hence write

Var 〈α, A∗1:n(θ0)〉 = σ−4
0

n∗

∑
i=1

Var Zi

= σ−4
0

n∗

∑
i=1

{[
(ti − u0)1[ti ,+∞[(u0) · α1 − γ01[ti ,+∞[(u0) · α2

]2
·Var ξi

+
1
4

α2
3 ·Var

[
σ−2

0 ξ2
i − 1

]}
,
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because Cov
[
ξi ,
{

σ−2
0 ξ2

i − 1
}]

= 0, and we finally get

Var 〈α, A∗1:n(θ0)〉 = σ−4
0

n∗

∑
i=1

{[
(ti − u0)1[ti ,+∞[(u0) · α1 − γ01[ti ,+∞[(u0) · α2

]2
· σ2

0 +
1
4

α2
3 · 2

}
.

We can hence write

n∗−1 Var 〈α, A∗1:n(θ0)〉 = σ−2
0

1
n∗

n∗

∑
i=1

[
(ti − u0)1[ti ,+∞[(u0) · α1 − γ01[ti ,+∞[(u0) · α2

]2
+

1
2

σ−4
0 α2

3

= α2
1 · σ−2

0

{
1

n∗
n∗

∑
i=1

(ti − u0)
21[ti ,+∞[(u0)

}

− 2α1α2 · σ−2
0 γ0

{
1

n∗
n∗

∑
i=1

(ti − u0)1[ti ,+∞[(u0)

}

+ α2
2 · σ−2

0 γ2
0

{
1

n∗
n∗

∑
i=1

1[ti ,+∞[(u0)

}
+ α2

3 ·
1
2

σ−4
0

= 〈α, I1:n(θ0)α〉 ,

where we denote

I∗1:n(θ) =


σ−2 1

n∗
n∗

∑
i=1

(ti − u)21[ti ,+∞[(u) −σ−2γ
1

n∗
n∗

∑
i=1

(ti − u)1[ti ,+∞[(u) 0

σ−2γ2 1
n∗

n∗

∑
i=1

1[ti ,+∞[(u) 0

1
2

σ−4


. (2.86)

Remark that, by virtue of Assumption A1, it is easy to check that for any θ ∈ Θ

I∗1:n(θ) −→ I(θ), (2.87)

and observe that just like I(θ), I∗1:n(θ) is positive definite, since all its principal minor determinants are
positive.

Let us now check that the random variables Zi meet Lyapounov’s Theorem (see Billingsley, 1995,
page 362) requirements before wrapping up this proof. The random variables Zi are independent and
trivially L2. We denote V∗2n = ∑n∗

i=1 Var Zi and claim that Lyapounov’s condition holds, that is

∃δ > 0,
n∗

∑
i=1

E

∣∣∣∣Zi −EZi
V∗n

∣∣∣∣2+δ

= o(1).

Indeed we have (δ = 1)

n∗

∑
i=1

E

∣∣∣∣Zi −EZi
V∗n

∣∣∣∣3 =
n∗

∑
i=1

E

∣∣∣∣ Zi
V∗n

∣∣∣∣3
=

n∗

Var
3
2
〈
α, A∗1:n(θ0)

〉 · 1
n∗

n∗

∑
i=1

E |Zi|3

=
1

n∗
1
2
〈
α, I∗1:n(θ0)α

〉 3
2
· 1

n∗
n∗

∑
i=1

E |Zi|3 .
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The first term of this last product is O
(

n∗−
1
2

)
thanks to (2.87), and recalling the definition of Zi

from (2.85), there is no difficulty in showing that the last term of the product, namely 1
n∗ ∑n∗

i=1 E |Zi|3

converges to a finite limit. Indeed we find, using trivial dominations and Assumption A1 once again,

|Zi|3 =

∣∣∣∣{(ti − u0)1[ti ,+∞[(u0) · α1 − γ01[ti ,+∞[(u0) · α2

}
· ξi +

1
2

α3 ·
{

σ−2
0 · ξ2

i − 1
}∣∣∣∣3

E|Zi|3 6
(∣∣∣(ti − u0)1[ti ,+∞[(u0) · α1 − γ01[ti ,+∞[(u0) · α2

∣∣∣+ ∣∣∣∣12 α3

∣∣∣∣)3

×E
(
|ξi|+

∣∣∣σ−2
0 · ξ2

i − 1
∣∣∣)3

1
n

n

∑
i=1

E|Zi|3 6
1
n

n

∑
i=1

(∣∣∣(ti − u0)1[ti ,+∞[(u0) · α1 − γ01[ti ,+∞[(u0) · α2

∣∣∣+ ∣∣∣∣12 α3

∣∣∣∣)3

×E
(
|ξi|+

∣∣∣σ−2
0 · ξ2

i − 1
∣∣∣)3

6 O(1) · 1
n

n

∑
i=1

(∣∣∣(ti − u0)1[ti ,+∞[(u0) · α1 − γ01[ti ,+∞[(u0) · α2

∣∣∣+ ∣∣∣∣12 α3

∣∣∣∣)3

6 O(1).

Lyapounov’s Theorem thus applies here and leads to

n∗

∑
i=1

Zi −EZi
V∗n

d−→ N (0, 1),

i.e. multiplying numerator and denominator by σ−2
0 we get〈

α, A∗1:n(θ0)
〉

Var
1
2
〈
α, A∗1:n(θ0)

〉 d−→ N (0, 1),

that is 〈
α, A∗1:n(θ0)

〉
n∗

1
2
〈
α, I∗1:n(θ0)α

〉 1
2

d−→ N (0, 1),

and because of (2.87) we can also write,〈
α, A∗1:n(θ0)

〉
n∗

1
2 〈α, I(θ0)α〉

1
2

d−→ N (0, 1),

which, remembering that a.s. n∗ ∼ n, is equivalent to (2.84).

Lemma 2.20. Recall the definition of B∗1:n given in (2.36). Under Assumptions A1–A4 and conditions (2.10), as
n −→ +∞,

1
n

B∗1:n(θ0)
a.s−→ I(θ0), as n −→ +∞. (2.88)

1
n

B∗1:n(θ)
a.s−→ I(θ0), as θ −→ θ0 and n −→ +∞. (2.89)

where the asymptotic Fisher Information Matrix I(·) is defined in (2.7).

Proof of Lemma 2.20. We will prove each claim separately.
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Proof of (2.88). Differential calculus provides the following expressions for the coefficients of
1

n∗
B∗1:n(θ).

(
1

n∗
B∗1:n(θ)

)
11

= σ−2 1
n∗

n∗

∑
i=1

(ti − u)21[ti ,+∞[(u),(
1

n∗
B∗1:n(θ)

)
12

= σ−2 1
n∗

n∗

∑
i=1

[
ξi + γ0 · (ti − u0)1[ti ,+∞[(u0)− 2γ · (ti − u)

]
1[ti ,+∞[(u),(

1
n∗

B∗1:n(θ)

)
13

= σ−4 1
n∗

n∗

∑
i=1

[
ξi + γ0 · (ti − u0)1[ti ,+∞[(u0)− γ · (ti − u)

]
(ti − u)1[ti ,+∞[(u),(

1
n∗

B∗1:n(θ)

)
22

= σ−2γ2 1
n∗

n∗

∑
i=1

1[ti ,+∞[(u),(
1

n∗
B∗1:n(θ)

)
23

= −σ−4γ
1

n∗
n∗

∑
i=1

[
ξi + γ0 · (ti − u0)1[ti ,+∞[(u0)− γ · (ti − u)

]
1[ti ,+∞[(u),(

1
n∗

B∗1:n(θ)

)
33

= −1
2

σ−4 + σ−6 1
n∗

n∗

∑
i=1

[
ξi + γ0 · (ti − u0)1[ti ,+∞[(u0)− γ · (ti − u)1[ti ,+∞[(u)

]2
.

The convergence we claim is then a direct consequence of Assumption A1 and the fact that n∗ ∼ n
and, depending on the coefficients, either the Strong Law of Large Numbers or Kolmogorov’s criterion.
Notice that

1
n∗

B∗1:n(θ0)− I∗1:n(θ0)
a.s−→ 0,

where I∗1:n is defined in (2.86).

Proof of (2.89). We will show that in fact, as n −→ +∞ and θ −→ θ0,

C∗1:n(θ) =
1

n∗
B∗1:n(θ0)−

1
n∗

B∗1:n(θ)
a.s−→ 0,

which will end the proof since n∗ ∼ n. We will consider each coefficient of C∗1:n(θ) in turn, making use of
Assumption A1 once again and apply repeatedly the Strong Law of Large Numbers and Kolmogorov’s
criterion as well as Lemma 2.12, whenever needed.

C∗1:n(θ)11 = σ−2
0

1
n∗

n∗

∑
i=1

(ti − u0)
21[ti ,+∞[(u0)− σ−2 1

n∗
n∗

∑
i=1

(ti − u)21[ti ,+∞[(u)

=
(

σ−2
0 − σ−2

)
· 1

n∗
n∗

∑
i=1

(ti − u0)
21[ti ,+∞[(u0)

+ σ−2 ·
(

1
n∗

n∗

∑
i=1

(ti − u0)
21[ti ,+∞[(u0)−

1
n∗

n∗

∑
i=1

(ti − u)21[ti ,+∞[(u)

)
= o(1) ·O(1) + O(1) ·O (u− u0) −→ 0.
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then last equality holding true because of Lemma 2.12.

C∗1:n(θ)22 = σ−2
0 γ2

0
1

n∗
n∗

∑
i=1

1[ti ,+∞[(u0)− σ−2γ2 1
n∗

n∗

∑
i=1

1[ti ,+∞[(u)

=
(

σ−2
0 γ2

0 − σ−2γ2
)
· 1

n∗
n∗

∑
i=1

1[ti ,+∞[(u0)

+ σ−2γ2 ·
[

1
n∗

n∗

∑
i=1

1[ti ,+∞[(u0)−
1

n∗
n∗

∑
i=1

1[ti ,+∞[(u)

]
= o(1) ·O(1) + O(1) · [{Fn∗(u0)− F(u0)}+ {F(u0)− F(u)}+ {F(u)− Fn∗(u)}]

= o(1) + O(1) · [o(1) + o(1) + o(1)] −→ 0,

the last equality holding true because of the uniform convergence of Fn∗ to F over any compact subset
such as [u, u] (see Assumption A1, and its Remark 1).

C∗1:n(θ)33 =
1
2

σ−4 − σ−6 1
n∗

n∗

∑
i=1

[ξi + γ0 · (ti − u0)1[ti ,+∞[(u0)− γ · (ti − u)1[ti ,+∞[(u)]
2

−
(

1
2

σ−4
0 − σ−6

0
1

n∗
n∗

∑
i=1

ξ2
i

)

=
1
2
(σ−4 − σ−4

0 )− (σ−6 − σ−6
0 ) · 1

n∗
n∗

∑
i=1

ξ2
i

− σ−6 1
n∗

n∗

∑
i=1

[
γ0 · (ti − u0)1[ti ,+∞[(u0)− γ · (ti − u)1[ti ,+∞[(u)

]
ξi

− σ−6 1
n∗

n∗

∑
i=1

[
γ0 · (ti − u0)1[ti ,+∞[(u0)− γ · (ti − u)1[ti ,+∞[(u)

]2

= o(1) + o(1) · 1
n∗

n∗

∑
i=1

ξ2
i + o(1) + o(1) a.s−→ 0,

where the two last o(1) are direct consequences of Lemmas 2.13 and 2.16. Those same Lemmas used
together with Lemma 2.12, the Strong Law of Large Numbers as well as the well-known Cauchy-
Schwarz inequality imply that a.s.

C∗1:n(θ)23 = σ−4γ
1

n∗
n∗

∑
i=1

[
ξi + γ0 · (ti − u0)1[ti ,+∞[(u0)− γ · (ti − u)

]
1[ti ,+∞[(u)

− σ−4
0 γ0

1
n∗

n∗

∑
i=1

ξi1[ti ,+∞[(u0)

=
1

n∗
n∗

∑
i=1

[
σ−4γ1[ti ,+∞[(u)− σ−4

0 γ01[ti ,+∞[(u0)
]

ξi

+
1

n∗
n∗

∑
i=1

[
γ0 · (ti − u0)1[ti ,+∞[(u0)− γ · (ti − u)

]
σ−4γ1[ti ,+∞[(u)

= o(1) + o(1) a.s−→ 0,
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and also that a.s.

C∗1:n(θ)13 = σ−4
0

1
n∗

n∗

∑
i=1

[
(ti − u0)1[ti ,+∞[(u0)

]
ξi

− σ−4 1
n∗

n∗

∑
i=1

[
ξi + γ0 · (ti − u0)1[ti ,+∞[(u0)− γ · (ti − u)

]
(ti − u)1[ti ,+∞[(u)

=
1

n∗
n∗

∑
i=1

[
σ−4

0 (ti − u0)1[ti ,+∞[(u0)− σ−4(ti − u)1[ti ,+∞[(u)
]

ξi

− σ−4 1
n∗

n∗

∑
i=1

[
γ0 · (ti − u0)1[ti ,+∞[(u0)− γ · (ti − u)

]
(ti − u)1[ti ,+∞[(u)

= o(1) + o(1) a.s−→ 0.

and finally that a.s.

C∗1:n(θ)12 = σ−2
0

1
n∗

n∗

∑
i=1

[ξi − γ0 · (ti − u0)]1[ti ,+∞[(u0)

− σ−2 1
n∗

n∗

∑
i=1

[
ξi + γ0 · (ti − u0)1[ti ,+∞[(u0)− 2γ · (ti − u)

]
1[ti ,+∞[(u)

=
1

n∗
n∗

∑
i=1

ξi ·
[
σ−2

0 1[ti ,+∞[(u0)− σ−21[ti ,+∞[(u)
]

+
1

n∗
n∗

∑
i=1

[
−σ−2

0 γ0 · (ti − u0)1[ti ,+∞[(u0)− σ−2(γ0 · (ti − u0)1[ti ,+∞[(u0)

−2γ · (ti − u)1[ti ,+∞[(u))
]

= o(1) + o(1) a.s−→ 0.

Proposition 2.21. Let 0 < δ, and let (ρn)n∈N be a positive sequence such that, as n −→ +∞

ρn = O(1) (2.90)

n−
1
2 (log n) · ρ−1

n −→ 0 (2.91)

and denote

Bc(θ0, δρn) = {θ ∈ Θ, ‖θ − θ0‖ > δρn} ,

Then, under Assumptions A1–A4, a.s., there exists ε > 0 such that, for any n large enough

sup
θ∈Bc(θ0 ,δρn)

1
nρ2

n
[l1:n(X1:n|θ)− l1:n(X1:n|θ̂n)] 6 −ε. (2.92)

sup
θ∈Bc(θ0 ,δρn)

1
nρ2

n
[l1:n(X1:n|θ)− l1:n(X1:n|θ0)] 6 −ε. (2.93)

Proof of Proposition 2.21. This proposition is to be compared to the regularity condition imposed in
Ghosh et al. (2006) (see their condition (A4) in Chapter 4). The aim of this proposition is to show that
our model satisfies to a somewhat stronger version of that condition.
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Let 0 < δ. Notice first that, similarly to what was done in (2.42), we are able to deduce that a.s.

2
n
[l1:n(X1:n|θ)− l1:n(X1:n|θ̂n)] 6

2
n
[l1:n(X1:n|θ)− l1:n(X1:n|θ0)] =: in(θ). (2.94)

where in is defined over R× [u, u]×R∗+ ⊃ Θ ⊃ Bc(θ0, δρn) by

in(θ) = log
σ2

0
σ2 + 1 +

1
nσ2

0

n

∑
i=1

(ξ2
i − σ2

0 )−
1

nσ2

n

∑
i=1

[ξi + µ(η0, ti)− µ(η, ti)]
2. (2.95)

= log
σ2

0
σ2 + 1−

σ2
0

σ2 +
1

nσ2
0

n

∑
i=1

(ξ2
i − σ2

0 )−
1

nσ2

n

∑
i=1

{
[ξi + µ(η0, ti)− µ(η, ti)]

2 − σ2
0

}
. (2.96)

From (2.94) it is clear that we need only prove (2.93) to end the proof.

The rest of this proof is divided into 6 major steps. Step 1 shows that for a given n the supremum
considered is reached on a point θn. Step 2 and 3 focus on obtaining useful majorations of the supremum.
Step 4 is dedicated to proving that the sequence θn admits an accumulation point (the coordinates of
which satisfy to some conditions), while step 5 makes use of this last fact to effectively dominate the
supremum. Step 6 wraps up the proof.

Step 1. We first show that a.s. for any n there exists θn ∈ R× [u, u]×R∗+ such that ‖θn − θ0‖ > δρn

and

in(θn) = sup
Θ∈Bc(θ0 ,δρn)

in(θ). (2.97)

Let n ∈N and let (θn,k)k∈N be a sequence of points in Bc(θ0, δρn) such that

lim
k−→+∞

in(θn,k) = sup
Θ∈Bc(θ0 ,δρn)

in(θ).

From (2.95) it is obvious that σ2
n,k is bounded: if it was not, we would be able to extract a subsequence

such that σ2
n,kj

would go to +∞ and thus in(θn,kj
) would go to −∞. For the very same reason, γn,k

too is bounded. Recalling that un,k is bounded too by definition, we now see that there exists a
subsequence (θn,kj

)j∈N in Bc(θ0, δρn) and a point θn in Bc(θ0, δρn) (i.e. in R× [u, u]×R+, and such
that ‖θn − θ0‖ > δρn) such that (θn,kj

)j∈N −−−−→
j−→+∞

θn.

Finally from (2.95) again it is easy to see that σ2
n > 0 for if it was not in(θn,kj

) would go to −∞ once
again, unless (by continuity of µ with regard to η) ξi + µ(η0, ti)− µ(ηn, ti) = 0 for all i 6 n which a.s.
does not happen.

Step 2. From the previous step and the continuity of in with regard to θ we are able to write

sup
Θ∈Bc(θ0 ,δρn)

2
n
[l1:n(X1:n|θ)− l1:n(X1:n|θ0)] = in(θn). (2.98)
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where (θn)n∈N is the sequence defined in Step 1. We now derive a convenient majoration of in(θn).
Expanding from (2.96) we get

in(θn) =

(
log

σ2
0

σ2
n
+ 1−

σ2
0

σ2
n

)
+

1
nσ2

0

n

∑
i=1

(ξ2
i − σ2

0 )−
1

nσ2

n

∑
i=1

{
[ξi + µ(η0, ti)− µ(η, ti)]

2 − σ2
0

}
=

(
log

σ2
0

σ2
n
+ 1−

σ2
0

σ2
n

)
+

σ2
n − σ2

0
nσ2

0 σ2
n

n

∑
i=1

(ξ2
i − σ2

0 )−
1

nσ2
n

n

∑
i=1

[µ(η0, ti)− µ(ηn, ti)]
2

− 2
nσ2

n

n

∑
i=1

[µ(η0, ti)− µ(ηn, ti)]ξi

Thanks to Lemma 2.18, we know that there exists C1 ∈ R∗+ such that

in(θn) 6

(
log

σ2
0

σ2
n
+ 1−

σ2
0

σ2
n

)
+

σ2
n − σ2

0
nσ2

0 σ2
n

n

∑
i=1

(ξ2
i − σ2

0 )

− 1
σ2

n
C1‖ηn − η0‖2 − 2

nσ2
n

n

∑
i=1

[µ(η0, ti)− µ(ηn, ti)]ξi

From there, the Law of the Iterated Logarithm and a factorisation of the last term together with Corollary
2.17 lead to:

in(θn) 6

(
log

σ2
0

σ2
n
+ 1−

σ2
0

σ2
n

)
+

1
σ2

n
|σ2

n − σ2
0 |R1,n −

1
σ2

n
C1‖ηn − η0‖2

+
1

nσ2
n

(
n

∑
i=1

[µ(η0, ti)− µ(ηn, ti)]
2

) 1
2

R2,n

where a.s. R1,n = O
(

n−
1
2 (log log n)

1
2

)
and R2,n = O (log n). Lemma 2.13 ensures there exists C2 ∈ R∗+

such that

in(θn) 6

(
log

σ2
0

σ2
n
+ 1−

σ2
0

σ2
n

)
+

1
σ2

n
|σ2

n − σ2
0 |R1,n −

1
σ2

n
C1‖ηn − η0‖2 +

1
nσ2

n
C2n

1
2 ‖ηn − η0‖R2,n

We thus deduce that there exists C ∈ R∗+ such that:

in(θn) 6

(
log

σ2
0

σ2
n
+ 1−

σ2
0

σ2
n

)
− 1

σ2
n

C‖ηn − η0‖2 +
1
σ2

n
‖θn − θ0‖Rn (2.99)

where a.s. Rn = O
(

n−
1
2 log n

)
. Notice in particular that, due to (2.91), Rn = o(ρn).

Step 3. We obtain two majorations, (2.101) and (2.102), that we will make use of in the coming
steps. Using a conversion of θ = (γ, u, σ2) into the spherical coordinate system we write θn as

θn = (rn cos ψn cos φn, rn sin ψn cos φn, rn sin φn),

where

(rn, ψn, φn) ∈ R∗+ × [0, 2π]×]0, π[,
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and deduce from (2.99) that

in(θn) 6

(
log

σ2
0

rn sin φn
+ 1−

σ2
0

rn sin φn

)
− Crn

cos2 φn

sin φn
+

1
sin φn

Rn (2.100)

6

(
log

σ2
0

rn sin φn
+ 1−

σ2
0

rn sin φn

)
+

1
sin φn

[
Rn − Crn cos2 φn

]
. (2.101)

From (2.100) we also get the following majoration

in(θn) 6

(
log

σ2
0

rn sin φn
+ 1−

σ2
0

rn sin φn

)
+

1
sin φn

Rn. (2.102)

Step 4. We show that the sequence (θn)n∈N we built, converges to a finite limit θ∞ (extracting
a subsequence if necessary). Extracting a subsequence if necessary, we can assume that (ψn, φn) −→
(ψ∞, φ∞) ∈ [0, 2π]× [0, π]. We consider the two following mutually exclusive situations.

Situation A: φ∞ = 0 mod π. In this situation, there exists ε > 0 such that for any n large enough,

[
Rn − Crn cos2 φn

]
=

(
Rn

rn
− C cos2 φn

)
rn

6 −εrn,

because a.s. Rn = o(rn) (since Rn = o(ρn) and rn 6 ρn). Used together with (2.101), this leads to

in(θn) 6

(
σ2

0
rn sin φn

− 1− log
σ2

0
rn sin φn

)
− ε

rn

sin φn
,

for any n large enough and hence in(θn) −→ −∞ whether rn goes to zero or not.

Situation B: φ∞ 6= 0 mod π. In this situation, from (2.102), we see that rn −→ 0 and rn −→ +∞ both
lead to in(θn) −→ −∞.

Observing that in(θ) converges a.s. to a finite value for any θ ∈ Θ as n −→ +∞, we see that
limn−→∞ in(θn) = −∞ is not possible by construction of the sequence θn, and deduce that, extracting a
subsequence if necessary, there exists

(r∞, ψ∞, φ∞) ∈ R∗+ × [0, 2π]×]0, π[,

such that limn−→+∞ θn = θ∞. Notice that in particular, σ2
∞ > 0.

Step 5. We will now end the proof by showing that there exists ε > 0 such that for any n large
enough

in(θn) 6 −ερ2
n. (2.103)

We consider the two following mutually exclusive situations.
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Situation A: σ2
∞ 6= σ2

0 . In this situation, from (2.99) we get

in(θn) 6

(
log

σ2
0

σ2
n
+ 1−

σ2
0

σ2
n

)
+

1
σ2

n
‖θn − θ0‖ Rn

and the right-hand side converges to (
log

σ2
0

σ2
∞
+ 1−

σ2
0

σ2
∞

)
< 0.

There hence exists ε > 0 such that for any n large enough

in(θn) 6 −ε.

Since ρn = O(1) by (2.90), (2.103) is a direct consequence of this.

Situation B: σ2
∞ = σ2

0 . In this situation, recalling that for any x > 0

log x + 1− x 6 − (x− 1)2

2
+

(x− 1)3

3
,

we deduce from (2.99) that for any n large enough

in(θn) 6 −
1
2

(
σ2

0
σ2

n
− 1

)2

+
1
3

(
σ2

0
σ2

n
− 1

)3

− 1
σ2

n
C‖ηn − η0‖2 +

1
σ2

n
‖θn − θ0‖ Rn

6

(
σ2

0
σ2

n
− 1

)2 [
1
3

(
σ2

0
σ2

n
− 1

)
− 1

2

]
− 1

σ2
n

C‖ηn − η0‖2 +
1
σ2

n
‖θn − θ0‖ Rn

6 −1
4

(
σ2

0
σ2

n
− 1

)2

− 1
σ2

n
C‖ηn − η0‖2 +

1
σ2

n
‖θn − θ0‖ Rn

6
1
σ2

n

{
−c
[
(σ2

0 − σ2
n)

2 − ‖ηn − η0‖2
]
+ ‖θn − θ0‖Rn

}
where c = min(1/4, C) > 0. It follows that for any n large enough

in(θn) 6
1
σ2

n

(
−c‖θn − θ0‖2 + ‖θn − θ0‖Rn

)
6

1
σ2

n
‖θn − θ0‖ (Rn − c‖θn − θ0‖) .

Thus, for any n large enough

in(θn) 6
1
σ2

n

‖θn − θ0‖
ρn

(
Rn

ρn
− c
‖θn − θ0‖

ρn

)
ρ2

n.

Recalling that

‖θn − θ0‖ > δρn,

Rn = o(ρn),

σ2
n −→ σ2

∞ > 0
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we obtain for any n large enough,

in(θn) 6
1
σ2

n

‖θn − θ0‖
ρn

(
−c

δ

2

)
ρ2

n 6 − cδ2

2σ2
n

ρ2
n 6 − cδ2

3σ2
∞

ρ2
n.

Hence (2.103) holds in this situation too: it suffices to take ε =
cδ2

3σ2
∞

.

We just proved that (2.103) holds in both cases considered.

Step 6. (2.93) is a consequence of (2.98) and (2.103).

Lemma 2.22. Let 0 < δ < 1 then under Assumptions A1–A4 and conditions (2.10), a.s. there exists a constant
C ∈ R∗+ such that for any n large enough and for any 1 6 i1, i2, i3 6 3∣∣∣∣∣ 1n ∂3l∗1:n(X1:n|θ)

∂i1 ∂i2 ∂i3

∣∣∣∣∣ 6 C (2.104)

for any θ ∈ B(θ0, δdn).

Proof of Lemma 2.22. Let 0 < δ < 1. We will prove (2.104) stands true for any 1 6 i1, i2, i3 6 3. First
notice that for n large enough, θ 7→ l∗1:n(X1:n|θ) is indeed infinitely continuously differentiable over
B(θ0, δdn) by definition of the pseudo-problem. Any θ subsequently considered within this proof is
assumed to belong to B(θ0, δdn). Any convergence subsequently mentioned within this proof is uniform
in θ for θ ∈ B(θ0, δdn) for any n large enough thanks to Theorem 2.11 and Lemma 2.16.

Proof of (2.104) for β = (3, 0, 0).

1
n

∂3l∗1:n(X1:n|θ)
(∂γ)3 = 0.

Proof of (2.104) for β = (2, 1, 0).∣∣∣∣∣ 1n ∂3l∗1:n(X1:n|θ)
(∂γ)2∂u

∣∣∣∣∣ = 2
σ2

∣∣∣∣∣ 1n n∗

∑
i=1

(ti − u)1]ti ,+∞[(u)

∣∣∣∣∣ −−−−→n−→+∞

2
σ4

∣∣∣∣∫ u

u
(t− u) f (t)dt

∣∣∣∣ 6 2
σ2 |u− u|.

Proof of (2.104) for β = (2, 0, 1).∣∣∣∣∣ 1n ∂3l∗1:n(X1:n|θ)
(∂γ)2∂σ2

∣∣∣∣∣ = 1
σ4

∣∣∣∣∣ 1n n∗

∑
i=1

(ti − u)21]ti ,+∞[(u)

∣∣∣∣∣ −−−−→n−→+∞

1
σ4

∣∣∣∣∫ u

u
(t− u)2 f (t)dt

∣∣∣∣ 6 1
σ4 |u− u|2.

Proof of (2.104) for β = (1, 2, 0).∣∣∣∣∣ 1n ∂3l∗1:n(X1:n|θ)
∂γ · (∂u)2

∣∣∣∣∣ = 2
σ2

∣∣∣∣∣γ 1
n

n∗

∑
i=1

1]ti ,+∞[(u)

∣∣∣∣∣ −−−−→n−→+∞

2
σ2

∣∣∣∣γ ∫ u

u
f (t)dt

∣∣∣∣ 6 2
σ2 |γ|.
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Proof of (2.104) for β = (1, 1, 1).∣∣∣∣∣ 1n ∂3l∗1:n(X1:n|θ)
∂γ∂u∂σ2

∣∣∣∣∣ = 1
σ4

∣∣∣∣∣ 1n n∗

∑
i=1

(Xi − 2γ · (ti − u))1]ti ,+∞[(u)

∣∣∣∣∣
=

1
σ4

∣∣∣∣∣ 1n n∗

∑
i=1

[
ξi + γ0 · (ti − u0)1]ti ,+∞[(u0)− 2γ · (ti − u)

]
1]ti ,+∞[(u)

∣∣∣∣∣
a.s−−−−→

n−→+∞

1
σ4

∣∣∣∣∫ min(u,u0)

u
γ0 · (t− u0) f (t)dt− 2

∫ u

u
γ · (t− u) f (t)dt

∣∣∣∣
And this limit is bounded by 3

σ4 |u− u|(|γ|+ |γ0|).

Proof of (2.104) for β = (1, 0, 2).∣∣∣∣∣ 1n ∂3l∗1:n(X1:n|θ)
∂γ · (∂σ2)2

∣∣∣∣∣ = 2
σ6

∣∣∣∣∣ 1n n∗

∑
i=1

[
xi − γ · (ti − u)1]ti ,+∞[(u)

]
(ti − u)1]ti ,+∞[(u)

∣∣∣∣∣
=

2
σ6

∣∣∣∣∣ 1n n∗

∑
i=1

[
ξi + γ0 · (ti − u0)1]ti ,+∞[(u0)− γ · (ti − u)

]
(ti − u)1]ti ,+∞[(u)

∣∣∣∣∣
a.s−−−−→

n−→+∞

2
σ6

∣∣∣∣∫ min(u,u0)

u
γ0 · (t− u0)(t− u) f (t)dt−

∫ u

u
γ · (t− u)2 f (t)dt

∣∣∣∣
And this limit is bounded by 4

σ6 |u− u|2(|γ|+ |γ0|).

Proof of (2.104) for β = (0, 3, 0). ∣∣∣∣∣ 1n ∂3l∗1:n(X1:n|θ)
(∂u)3

∣∣∣∣∣ = 0.

Proof of (2.104) for β = (0, 2, 1).∣∣∣∣∣ 1n ∂3l∗1:n(X1:n|θ)
(∂u)2∂σ2

∣∣∣∣∣ = 1
σ4 γ2

∣∣∣∣∣ 1n n∗

∑
i=1

1]ti ,+∞[(u)

∣∣∣∣∣ −−−−→n−→+∞

1
σ4 γ2

∣∣∣∣∫ u

u
f (t)dt

∣∣∣∣ 6 1
σ4 γ2.

Proof of (2.104) for β = (0, 1, 2).∣∣∣∣∣ 1n ∂3l∗1:n(X1:n|θ)
∂u(∂σ2)2

∣∣∣∣∣ = 2
σ6

∣∣∣∣∣ 1n n∗

∑
i=1

[
xi − γ · (ti − u)1]ti ,+∞[(u)

]
γ1]ti ,+∞[(u)

∣∣∣∣∣
=

2
σ6

∣∣∣∣∣ 1n n∗

∑
i=1

[
ξi + γ0 · (ti − u0)1]ti ,+∞[(u0)− γ · (ti − u)

]
γ1]ti ,+∞[(u)

∣∣∣∣∣
a.s−−−−→

n−→+∞

2
σ6

∣∣∣∣∫ u0

u
γγ0 · (t− u0) f (t)dt−

∫ u

u
γ2(t− u) f (t)dt

∣∣∣∣
And this limit is bounded by 2

σ6 |u− u|(|γ2|+ |γ0γ|).
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Proof of (2.104) for β = (0, 0, 3).∣∣∣∣∣ 1n ∂3l∗1:n(X1:n|θ)
(∂σ2)3

∣∣∣∣∣ = 1
σ6

∣∣∣∣∣−1 +
3
σ2

1
n

n∗

∑
i=1

[
xi − γ · (ti − u)1]ti ,+∞[(u)

]2
∣∣∣∣∣

=
1
σ6

∣∣∣∣∣−1 +
3
σ2

1
n

n∗

∑
i=1

[
ξi + γ · (ti − u0)1]ti ,+∞[(u0)− γ · (ti − u)1]ti ,+∞[(u)

]2
∣∣∣∣∣

a.s−−−−→
n−→+∞

1
σ8

∣∣∣∣−σ2 + 3
(

σ2
0 +

∫ u0

u
γ2

0(t− u0)
2 f (t)dt

−2
∫ min(u,u0)

u
γγ0 · (t− u0)(t− u) f (t)dt +

∫ u

u
γ2(t− u)2 f (t)dt

)∣∣∣∣
And this limit is bounded by 1

σ8

[
3σ2

0 + σ2 + (|γ|+ |γ0|)2(u− u)2].
(2.104) is thus a direct consequence of both the uniform convergences mentioned above and the

trivial majoration of all the limits involved by a fixed constant C for any n large enough.
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3 Construction of an informative hierarchical prior

distribution: Application to electricity load

forecasting

In this paper, we are interested in the estimation and prediction of a parametric model on a short
dataset upon which it is expected to overfit and perform badly. To overcome the lack of data (relatively
to the dimension of the model) we propose the construction of an informative hierarchical Bayesian
prior based upon another longer dataset which is assumed to share some similarities with the original,
short dataset. We apply the methodology to a working model for the electricity load forecasting on
both simulated and real datasets, where it leads to a substantial improvement of the quality of the
predictions.

3.1 INTRODUCTION

Modelling and forecasting electricity loads is a problem well-known within both the academic and
the applied statistics community (see e.g. Bunn and Farmer, 1985). The signals studied usually exhibit
strong properties such as seasonalities or weekly and daily profiles, leading to some very accurate
models that tend to perform rather well under normal forecasting conditions. The approaches used to
model and forecast them vary a lot: we mention a couple of them in the lines below.

Some authors worked with univariate time series models: Taylor (2003) built a double seasonal
exponential smoothing for the British electricity load, while Taylor et al. (2006); Taylor and McSharry
(2007) presented some comparative studies between univariate methods for different sets of data.
Cugliari (2011) opted for a non parametric approach relying on the wavelet transform to forecast the
load curve seen as a functional-valued autoregressive Hilbertian process. Others tried and modelled
the load together with the use of exogenous variables: Harvey and Koopman (1993) included the
temperature in their model, which inspired the Bayesian semi-parametric regression model found in
Smith (2000).

Alternatives to univariate modelling were often considered too, such as building multiple-equation
models: while the various hours of the day share the same equation, the associated parameters differ
from one another. Soares and Medeiros (2008) built an hourly independent seasonal auto-regressive
model for their data, and Ramanathan et al. (1997) also built an independent model for each hour of
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the day but took temperature effects into account. A state-space model is proposed in Dordonnat et al.
(2008) and Dordonnat (2009) where the parameters of the model are also allowed to vary along the time.

The exogenous variables most commonly used to forecast the electricity load are weather-based,
even though the decision to include one or more meteorological variables into a model may be open
to discussion. The period of forecasting has to be taken into account, as well as the accuracy of the
predictions for such variables. For temperate climates, the most important meteorological factor is
the temperature (see e.g. Taylor and Buizza, 2003). For the French electricity load specifically, the
importance of the temperature and cloud-cover was underlined in Bruhns et al. (2005); Menage et al.
(1988). Other weather-related models include the works of Engle et al. (1986) and Cottet and Smith
(2003); Smith and Kohn (2002) within the Bayesian framework. Let us also mention machine learning
work: Hippert et al. (2005) for a neural networks implementation and Goude (2008) for a detailed study
of online mixing algorithms used on a set of various predictors.

We are interested in the development of a methodology to improve the estimation and the predictions
of a parametric multi-equation model (similar to the one presented in Bruhns et al. (2005)) over a short
dataset. The limited size of the dataset coupled with the high dimensionality of the model leads to
a typical overfitting situation when using the maximum likelihood approach: the fitted values are
relatively close to the observations while the errors in prediction are an order of magnitude larger or
more (note that due to the very periodic nature of its regressors, the model typically requires 4 or 5 years
of data to provide satisfactory predictions). This overfitting behaviour can be somewhat alleviated by
the use of a Bayesian estimation relying on an informative prior distribution, but the very fact that the
data available is limited makes the posterior distribution all the more sensitive to the choice of that
prior. Although electricity load curves may largely differ from one population to another, they may also
share some common features. The latter case is expected to happen when the global population studied
is an aggregation of non homogeneous subpopulations for which the estimations are made harder due
to the relative lack of data.

To design a sensible prior in such a situation, we consider the case where another long dataset is
available, upon which the model performs equally well in both estimation and prediction. We assume
the long and the short datasets are somehow similar in a non obvious way. That the similarity between
the parameters underlying the two datasets (we will assume they are indeed coming from the model
considered) cannot be easily guessed prevents us from trying to model the datasets simultaneously
because it would require a rather precise knowledge of the link between the two. We propose a general
way of building an informative hierarchical (see Gelman and Hill, 2007, for a general review on the
subject of hierarchical models) prior for the short dataset from the long one that goes as follows:

1. we first estimate the posterior distribution on the long dataset using a non informative prior,
arguing that the design of an informative prior for this dataset is not necessary, since the data
available is enough to estimate and predict the model in this case ;

2. we extract key pieces of information from this estimation (e.g. moments) to design an informative
prior for the short dataset which takes into account the prior information that the datasets are
somehow similar, via the introduction of hyperparameters designed to model and estimate this
similarity.
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3.2. METHODOLOGY

The paper is organised as follows. In Section 3.2 we focus on the general methodology and describe
the way we carried our experimentation, we also present the general regression model used for our
tests and applications. In Section 3.3, we present the semi-conjugated priors (informative and non
informative) used on each of the datasets. The ad hoc MCMC algorithms we developed to estimate
the mean and variance of the posterior distributions are push backed into the appendix so as not to
obfuscate the main point of the paper by technical details. In Section 3.4, we use these algorithms to
illustrate and validate our approach in simulated situations: we show the contribution of the informative
prior over the precision of both the estimated parameters and the forecasts in the case of a working
electricity load forecasting model. In Section 3.5, we apply our method to French electricity datasets
and compare the results with the outputs of 3 alternative standard methods to assess its competitivity.
We also study the effect of the small dataset’s sample size upon the predictive quality of the model and
show that the informative prior provides reasonable forecasts even when the lack of data is severe.

3.2 METHODOLOGY

3.2.1 General principle

Let us define here some notations that we shall keep throughout this paper. Hereafter, we denote B a
short dataset over which we would like to estimate the model and we denote A a long dataset known
or thought to share some common features with B. We will denote θ the parameters of the model and
yA the observations from A.

We propose a method designed to help improve parameter estimations and model predictions
over B with the help of A. Let πA be the prior distribution used on A and πA(·|yA) the associated
posterior distribution. Observe that the choice of πA is not crucial as long as it remains non informative
enough because the model can be correctly estimated from the data alone on A. Let πB denote the
prior distribution to be used on B. Notice that the naive pick πB = πA(·|yA) is not a viable solution as
soon as the parameters of A and B differ since the variance of the posterior distribution πA(·|yA) is too
small: in that case the data of B will not be able to make up for the difference between the posterior
mean on A and the true value of the parameters of B. Assuming that the parameters corresponding to
A and B are identical is too restrictive in practise. To allow for more flexibility we add hyperparameters
accounting for the similarity between the datasets. We now described the informative hierarchical prior
we designed.

Assume that the prior distribution πB is to be chosen within the parametric family

F = {πλ; λ ∈ Λ}.

Since selecting πB ∈ F is equivalent to picking λB ∈ Λ, and since we want πB to retain some key-
features of πA(·|yA), we want to pick λB using some of the information contained inside the posterior
distribution obtained on A. We assume that there exists an operator T : F → Λ, such that

T[πλ] = λ,

and choose λB proportional to T[πA(·|yA)], in the sense that

λB = KT[πA(·|yA)],
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where K : Λ→ Λ itself is an unknown linear operator that we assume diagonal for ease of use.

The operator K can be interpreted as a similarity operator between A and B, and its diagonal
components as similarity coefficients measuring how close the two datasets really are when looked at
through T. The diagonal components of K are hyperparameters of the prior we designed, and we give
them a vague hierarchical prior distribution centred around q, the prior on q being vague and centred
around 1.

The hyperparameter q may also be regarded as a more global similarity coefficient, since it represents
the mean of all the similarity coefficients. The prior mean of q is forced to 1 to reflect the prior knowledge
that the datasets are somehow similar. The variance of the prior distribution of q could in theory be
reduced, going from a vague prior to a more informative structure, depending on the confidence we
have over the similarity between the datasets. We chose not to however, so as to keep the procedure we
describe from requiring any delicate subjective adjustments.

We present now two frequent situations where the above procedure can be written in a simpler way.

Example 3.1 (Method of Moments). We assume that the elements of F can be identified via their m first
moments: the operator T can then be reduced to a function F of the m first moments operators, i.e. λ = T[πλ] =

F(E(θ), . . . , E(θm)). The expression of λB then becomes

λB = KF(E(θ|yA), . . . , E(θm|yA)).

Note that, if the prior requires the specification of at least the two first moments, even though the priors from the
upper layers of the model are vague, the correlation matrix estimated on the dataset A remains untouched and is
directly plugged into in the informative prior if we consider centred moments for orders greater than 1.

Example 3.2 (Conjugacy). We consider the case where F is the family of priors conjugated for the model. If the
prior πA belongs to F then the associated distribution πA(·|yA) does too and there corresponds a parameter
λA(yA) to it. The expression of λB thus reduces to

λB = KλA(yA).

3.2.2 Description of the model for the electricity load

Modelling and forecasting the electricity load (or demand) on a day-to-day basis has long been a key
activity for any company involved in the electricity industry. It is first and foremost needed to supply a
fixed voltage at all ends of an electricity grid: to be able to do so, the amount of electricity produced
has to match the demand very closely at any given time and experts usually make use of short-term
forecasts with this aim in view as mentioned in Cottet and Smith (2003).

Electricity load usually has a large predictable component due to its very strong daily, weekly and
yearly periodic behaviour. It has also been noted in many regions that the weather usually affects the
load too, the most important meteorological factor typically being the temperature (see Al-Zayer and
Al-Ibrahim, 1996, for an example).

For each of the 48 instants of the day (each instant lasts 30 minutes, starting from 00:00AM), the non
linear regression model that we consider in this paper, first described in Bruhns et al. (2005), is made
of three components, which we explain briefly in the next paragraphs, and is usually formulated as
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Figure 3.1: Left : French Electricity load from 13/06/2005 to 29/06/2005 (in grey) and from 05/12/2005
to 11/12/2005 (in black). The load is expressed in MW. Notice the daily patterns of the electricity load
are not the same during summer and winter. Right : French Electricity load at 10:00 over 5 years against
temperatures. The load seems to increase linearly with the temperature below a certain threshold.

follows: for t = 1, . . . , N,

yt = x(1)t x(2)t + x(3)t + εt (3.1)

x(1)t =
d11

∑
j=1

[
zcos

j cos
(

2jπ
365.25

t
)
+ zsin

j sin
(

2jπ
365.25

t
)]

+
d12

∑
j=1

ωj1Ωj(t),

x(2)t =
d2

∑
j=1

ψj1Ψj(t),

x(3)t = g(Tt − u)1[Tt ,+∞[(u),

where yt is the load of day t and where ε1, . . . , εN are assumed independent and identically distributed
with common distribution N (0, σ2).

The x(1) component is meant to account for the average seasonal behaviour of the electricity load,
with a truncated Fourier series (whose coefficients are zcos

j ∈ R and zsin
j ∈ R) and gaps (parameters

ωj ∈ R) which represent the average levels of electricity load over predetermined periods given by a
partition (Ωj)j∈{1,...,d12} of the calendar. This partition usually specifies holidays, or the period of time
when daylight saving time is in effect i.e. major breaks in the electricity consumption behaviour. The
left part of Figure 3.1 shows a typical behaviour over two different periods of time (summer vs. winter).

The x(2) component allows for day-to-day adjustments of the seasonal behaviour x(1) through
shapes (parameters ψj) that depends on the so-called days’ types which are given by a second partition
(Ψj)j∈{1,...,d2} of the calendar. This partition usually separates weekdays from weekends, and bank
holidays. The differences between two different daytypes are visible on the left part of Figure 3.1 too.
For obvious identifiability reasons, the vector ψ is restricted to the positive quadrant of the ‖ · ‖1-unit
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3. CONSTRUCTION OF AN INFORMATIVE HIERARCHICAL PRIOR DISTRIBUTION

sphere in Rd2 , that we denote

Sd2
+ (0, 1) =

{
ψ ∈ (R+)

d2 ; ‖ψ‖1 = 1
}

.

The x(3) component represents the non linear heating effect that links the electricity load to the
temperature (see Seber and Wild, 2003, for a general presentation of non linear models), with the help
of 2 parameters. The heating threshold u ∈ [u, u] corresponds to the temperature above which the
heating effect is considered null and is usually estimated to be roughly around 15°C. The heating effect
is supposed to be linear for temperatures below the threshold and null for temperatures above. The
restriction on the support of the threshold u simply expresses the fact that the threshold is sought within
the range of the observed temperatures, i.e. u ∈ [u, u] with

min
t=1,...,N

Tt < u < u < max
t=1,...,N

Tt.

The heating gradient γ ∈ R∗ where R∗ = R\{0} represents the intensity of the heating effect, i.e. the
slope (assumed to be non zero) of the linear part that can be observed on the right part of Figure 3.1.

Using the notation Mi• for the i-th row of a matrix M, the previous model can be re-written in the
following condensed and more generic way: for t = 1, . . . , N,

yt = (At•α)(Bt•β + Ct) + γ(Tt − u)1[Tt ,+∞[(u) + εt. (3.2)

The matrices A of size N × dA, B of size N × dβ, C of size N × 1, and T of size N × 1 are known
exogenous variables while the parameters of the model to be estimated are

θ = (α, β, γ, u, σ2) ∈ Rdα × B
dβ

+ (0, 1)×R∗ × [u, u]×R∗+,

where B
dβ

+ (0, 1) = {β ∈ (R+)
dβ ; ‖β‖1 6 1} is the positive quadrant of the ‖ · ‖1-unit ball of dimension

dβ.
One could, without too much difficulty, add a cooling effect to the model, whose definition would

be similar to that of the heating effect. Since the cooling effect remains far less important than the
heating effect in France at the present time (see the right part of Figure 3.1), and since the estimation
of the associated cooling threshold is often unstable at best, we felt that adding such a part to the
model was not as crucial as it would be in other countries where the cooling effect plays a much more
important role. For the applications presented in Section 3.5 of this paper, we thus went for a simpler
implementation: given a cooling threshold uc, a regressor whose coordinates are (Tt − uc)1]−∞, Tt ](u

c),
for t = 1, . . . , n is added to the matrix A. It models, in practise, a cooling effect with a fixed cooling
threshold and an estimated cooling gradient that is multiplied by the daytype effect.

Considering the expression in (3.2), the model is quite general since the bulk of it could be thought
of as the product of two linear regressions, with the added twist of a non linearity introduced via the
threshold parameter u (change-point of the model). Even though the priors and algorithms constructed
in the coming Sections do depend on the model introduced here, they can be modify in a rather
straightforward manner, should the reader want to tweak the model a bit (for example to add another
exogenous variable such as the wind or the cloud-cover).

Hereafter L(y|θ) will denote the likelihood of the observations y = (y1, . . . , yN). We will often write
the model for t = 1, . . . , N as

yt = ft(η) + εt (3.3)
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3.3. SPECIFICATIONS OF THE PRIORS

and use the notation f (η) = ( f1(η), . . . , fN(η)) for short, where η = (α, β, γ, u) designate the parame-
ters of interest. With these notations, since θ = (η, σ2), the likelihood of the model described in (3.2)
reads:

L(y|θ) =
(√

2πσ
)−N

exp
(
−1

2
‖y− f (η)‖2

)
.

3.3 SPECIFICATIONS OF THE PRIORS

3.3.1 Informative prior

Let us denote µA and ΣA the posterior mean and posterior variance of η from a non informative
approach applied to the long dataset A, that we assume have already been collected. For the sake of
clarity, we drop the B notation: when not explicitly specified, the dataset and observations as well as
the prior and posterior distributions we refer to in this Section will be those corresponding to B.

We now present the informative hierarchical prior for the model (3.2), and then prove that it leads
to a proper posterior distribution (see Proposition 3.3). Following the methodology exposed in Section
3.2.1, the informative prior that we propose introduces new parameters to model the similarity between
the two datasets, (k, l) ∈ Rd ×R and (q, r) ∈ R×R∗+ such that

η|k, l ∼ N (KµA, l−1ΣA)

k|q, r ∼ N (q(1, . . . , 1)′, r−1 Id)

where K = diag(k). The coordinates of the vector k can be interpreted as similarity coefficients
between parameters of A and B and the strictly positive scalar l can be seen as a way to alternatively
weaken or strengthen the covariance matrix as needed. Hyperparameters q and r are more general
indicators of how close A and B are, q corresponding to the mean of the coordinates of k and r being
their inverse-variance. l, q, r and σ2 of course require a prior distribution too. For σ2 we use a non
informative prior (we chose π(σ2) = σ−2) because we do not want to make any kind of assumptions
about the noise around both datasets. This prior is non informative in the sense that it matches Jeffreys’
prior distribution on σ2 for a Gaussian linear regression. For the three other parameters, based on
semi-conjugacy considerations, we use:

l ∼ G(al , bl), q ∼ N (1, σ2
q ), r ∼ G(ar , br), (3.4)

where al , bl , ar , br and σ2
q are fixed positive real numbers such that the prior distribution on l, q and r

are vague. These prior distributions are chosen because of their conjugacy properties (as will be seen in
the MCMC algorithm). The vagueness requirement that we impose on these priors is motivated by the
fact that we want to keep as general a framework as possible without having to tweak each and every
prior coefficient for different applications.

In the end, the informative prior is built as follows:

π(θ, k, l, q, r) ∝ π(η|k, l)π(k|q, r)π(l)π(q)π(r)π(σ2) (3.5)
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3. CONSTRUCTION OF AN INFORMATIVE HIERARCHICAL PRIOR DISTRIBUTION

with

π(σ2) ∝ σ−2

π(η|k, l) ∝ l
d
2 exp

(
−1

2
(η − KµA)′l(ΣA)−1(η − KµA)

)
π(k|q, r) ∝ |r|

d
2 exp

(
−1

2
r

d

∑
i=1

(ki − q)2

)
π(l) ∝ lal−1 exp (−bl l)1R∗+

(l)

π(q) ∝ |σ−2
q |

1
2 exp

(
−1

2
σ−2

q (q− 1)2
)

π(r) ∝ rar−1 exp (−brr)1R∗+
(r).

Recalling the notations introduced at the end of Section 3.2, the posterior measure is given by

π(θ, k, l, q, r|y) ∝ L(y|θ)π(θ, k, l, q, r) (3.6)

∝ σ−N−2 exp
(
−1

2
σ−2‖y− f (η)‖2

2

)
1[0, 1]×[u, u]×R∗+

(‖β‖1, u, σ2)

× l
d
2 exp

(
−1

2
(η − KµA)′l(ΣA)−1(η − KµA)

)
× |r|

d
2 exp

(
−1

2
r

d

∑
i=1

(ki − q)2

)
lal−1 exp (−bl l)1R∗+

(l)

× |σ−2
q |

1
2 exp

(
−1

2
σ−2

q (q− 1)2
)

rar−1 exp (−brr)1R∗+
(r).

Proposition 3.3. For (β, u) ∈ B
dβ

+ (0, 1)× [u, u] denote A∗(β, u) the matrix whose rows are

(A∗)t•(β, u) =
[
(Bt•β + Ct)At•, (Tt − u)1[Tt ,+∞[(u)

]
, t = 1, . . . , N,

and suppose A′∗(b, u)A∗(b, u) has full rank for every (β, u) ∈ B
dβ

+ (0, 1)× [u, u]. Assume furthermore that
N > dα + 1 and that (y1, . . . , yN) are observations coming from the model (3.2) and the posterior measure (3.6)
is then a well-defined (proper) probability distribution.

Proof. First notice that
∫

π(θ, k, l, q, r|y)dσ2 is proportional to

‖y− f (η)‖−N
2 1[0, 1](‖β‖1)1[u, u](u)π(η|k, l)π(k|q, r)π(l)π(q)π(r),

for almost every y and that the function θ 7→ ‖y− f (η)‖−N
2 is bounded, for almost every y. The posterior

integrability is hence trivial as long as π(η|k, l)π(k|q, r)π(l)π(q)π(r) itself is a proper distribution
which is the case here.

3.3.2 Non-informative prior

We now propose a non informative prior to use with the long dataset A. Note that since the dataset A
is long enough, the choice of the prior distribution used in this situation does not matter much as long
as it remains vague enough: the Bayes estimator is expected to converge, as the number of observations
grows, to the maximum likelihood estimator of the model we use. The main issue when studying the
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asymptotic behaviour of the posterior distribution or the maximum likelihood estimator is that the
likelihood of the model is not continuously differentiable with regard to the heating threshold. Isolating
the heating part from the rest of the model, Launay et al. (2012a) show that this issue can be dealt with
and prove among other results that both the Bayes estimator and the maximum likelihood estimator
are consistent. The non informative prior is thus to be considered hereafter as an equivalent to the
maximum likelihood approach for all intents and purposes.

For the sake of clarity again, we drop the A notation: when not explicitly specified, the dataset
and observations as well as the prior and posterior distributions we refer to in Section will be those
corresponding to A. We show that the use of a non informative prior distribution leads to a proper
posterior distribution (see Proposition 3.4).

We use the following non informative prior

π(θ) ∝ σ−2.

This prior is non informative in the sense that it matches Jeffreys’ prior distribution on σ2 for a Gaussian
linear regression and matches Laplace’s flat prior on the other parameters. It leads to the following
posterior distribution

π(θ|y) ∝ L(y|θ)π(θ) (3.7)

∝ σ−N−2 exp
(
−1

2
σ−2‖y− f (η)‖2

2

)
1[0, 1]×[u, u]×R∗+

(‖β‖1, u, σ2).

Proposition 3.4. For (β, u) ∈ B
dβ

+ (0, 1)× [u, u] denote A∗(β, u) the matrix whose rows are

(A∗)t•(β, u) =
[
(Bt•β + Ct)At•, (Tt − u)1[Tt ,+∞[(u)

]
, t = 1, . . . , N,

and suppose A′∗(b, u)A∗(b, u) has full rank for every (β, u) ∈ B
dβ

+ (0, 1)× [u, u]. Assume furthermore that
N > dα + 1 and that (y1, . . . , yN) are observations coming from the model (3.2), the posterior measure (3.7) is
then a well-defined (proper) probability distribution.

Proof. Notice first that∫
π(η, σ2|y)dσ2 ∝ ‖y− f (η)‖−N

2 1[0, 1](‖b‖1)1[u, u](u) for almost every y,

and observe then that

‖y− f (η)‖2
2 =

N

∑
t=1

[
yt − (Bt•β + Ct)At•α− (Tt − u)1[Tt ,+∞[(u)γ

]2
.

Let (β0, u0) ∈ B
dβ

+ (0, 1)× [u, u] and denote α∗ = (α, γ). We write

‖y− f ((α, β0, γ, u0))‖2
2 =

N

∑
t=1

[
yt − (Bt•β0 + Ct)At•α− (Tt − u0)1[Tt ,+∞[(u0)γ

]2

= ‖y− A∗(β0, u0)α∗‖2
2,

and thus obtain the following equivalence, as (β, u)→ (β0, u0) and ‖α∗‖2 → +∞

‖y− f (η)‖−N
2 ∼ ‖y− A∗(β0, u0)α∗‖−N

2 . (3.8)
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The triangular inequality applied to the right hand side of (3.8) gives

‖y− A∗(β0, u0)α∗‖−N
2 6

∣∣‖y‖2 − ‖A∗(β0, u0)α∗‖2
∣∣−N . (3.9)

Since A′∗(β0, u0)A∗(β0, u0) has full rank, by straightforward algebra we get

λ‖α∗‖2
2 6 ‖A∗(β0, u0)α∗‖2

2,

where λ is the smallest eigenvalue (A∗(β0, u0))
′A∗(β0, u0) and is strictly positive. We can hence find

an equivalent of the right hand side of (3.9) as ‖α∗‖2 → +∞, which is

∣∣‖y‖2 − ‖A∗(β0, u0)α∗‖2
∣∣−N ∼ λ−N/2‖α∗‖−N

2 . (3.10)

Combining (3.8), (3.9) and (3.10) together, we see that the integrability of the left hand side of (3.8)
as (β, u) → (β0, u0) and ‖α∗‖2 → +∞ is directly implied by that of ‖α∗‖−N

2 . The latter is of course
immediate for N > dα + 1 as can be seen via a quick Cartesian to hyperspherical re-parametrisation.

The previous paragraph thus ensures the integrability of ‖y− f (η)‖−N
2 over sets of the form

{(β, u) ∈ V((β0, u0)), ‖α∗‖2 ∈]M(β0, u0), +∞[}, ∀(β0, u0) ∈ B
dβ

+ (0, 1)× [u, u]

where the subset V((b0, u0)) is an open neighbourhood of (β0, u0) and M(β0, u0) is a real number

depending on (β0, u0). By compacity of B
dβ

+ (0, 1)× [u, u] there exists a finite union of such V((βi , ui))

that covers B
dβ

+ (0, 1)× [u, u]. Denoting M the maximum of M(βi , ui) over the corresponding finite

subset of (βi , ui), we finally obtain the integrability of ‖y− f (η)‖−N
2 over {(β, u) ∈ B

dβ

+ (0, 1), ‖α∗‖ ∈
]M, +∞[}.

The integrability of ‖y− f (η)‖−N
2 over {(β, u) ∈ B

dβ

+ (0, 1), ‖α∗‖ ∈ [0, M]} is trivial, recalling that
η 7→ ‖y− f (η)‖2 is continuous and does not vanish over this compact for almost every y, meaning its
inverse shares these same properties.

Remark. The condition “A′∗A∗ has full rank” mentioned above is typically verified in our applications
for the regressors used in our model. To see this, call “vector of heating degrees” the vector whose
coordinates are (Tt − u)1[Tt ,+∞[(u), then not verifying the aforementioned condition is equivalent to
saying that there exists an index i and a threshold u such that the family of vectors formed by the
regressors A and the vector of heating degrees is linearly dependent over the subset Ψi of the calendar.

3.4 NUMERICAL EVALUATIONS OF THE PERFORMANCE ON SIMULATED DATA

In this Section we simulate a long dataset A and a short dataset B from the model (3.2) to assess the
performance of the informative prior as the similarity between the datasets varies. To measure the
improvement brought by the informative prior we compare the estimation and prediction on dataset B
with a non informative prior. For any estimation (posterior mean and variance) on a dataset (be it A or
B), the MCMC algorithms would typically run for 500,000 iterations after a small burn-in period.
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3.4.1 Comparing the informative and the non informative approaches

Predictive distribution. The Bayesian framework allows us to compute so-called predictive dis-
tributions, i.e. the distributions of future observations given past observations. Given a prior dis-
tribution π(θ) and the corresponding posterior distribution π(θ|y) related to the past observations
y = (y1, . . . , yN), the predictive distribution for the future observation yN+k is defined as

g(yN+k|y) :=
∫

L(yN+k|θ)π(θ|y)dθ

and the optimal prediction for the L2 risk is then:

ŷN+k := Eπ [yN+k|y] (3.11)

=
∫

yN+kg(yN+k|y)dyN+k. (3.12)

The comparison criterion. To assess the quality of the estimation of the model with our informative
prior with regard to the estimation of the model with the non informative prior, we compare both
results based on the quality of the predictions. Let yN+1 be the upcoming observation, the prediction
error can be written as

yN+1 − ŷN+1 = [yN+1 − fN+1(η0)] + [ fN+1(η0)− ŷN+1],

which expresses the prediction error as a sum of a noise yN+1− fN+1(η0) (whose theoretical distribution
is N (0, σ2)) and a bias which can be seen as an estimation error over the prediction fN+1(η0)− ŷN+1.
We focus solely on the second part, since the first part (the noise) is unavoidable in real situation.
Given that we want to validate our model on simulated data, the quantity fN+1(η0)− ŷN+1 is indeed
accessible here whereas it would not be in real situation.

We thus choose to consider the quadratic distance between the real and the predicted model over a
year as our quality criterion for a model, i.e.:√√√√ 1

365

365

∑
i=1

[ fN+i(η0)− ŷN+i]2. (3.13)

3.4.2 Construction of simulated datasets

Both datasets A and B were simulated according to the model (3.2) with d11 = 4 (4 frequencies used
for the truncated Fourier series). The calendars and the partitions used for A and B were designed to
include 7 daytypes (d2 = 7, one daytype for each day of the week), but did not include any special days
such as bank holidays. They also included 2 offsets (d12 = 2) to simulate the daylight saving time effect.
In the end we thus had dα = 4× 2 + 2 = 10 and dβ = 6 i.e. d = 19 using the expression of the model
given in (3.2).

Dataset A. We simulated 4 years of daily data for A with parameters:

σA = 2,

seasonal: αA = (27, 7,−3, 1, 5,−1, 4, 0.5, 490, 495),

shape: βA = (0.13, 0.15, 0.16, 0.16, 0.16, 0.13),

heating: γA = −3,

uA = 14.
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3. CONSTRUCTION OF AN INFORMATIVE HIERARCHICAL PRIOR DISTRIBUTION

These values were chosen to approximately mimic the typical electricity load of France up to a scaling
factor. The temperatures we used for the estimation over A are those measured from September 1996 to
August 2000 at 10:00AM.

Dataset B. We simulated 1 year of daily data for B with parameters:

σB = 2,

seasonal: αBi = λααAi , ∀i = 1, . . . , dα

shape: βB1 = λββA1 , βBj = βAj , ∀j = 2, . . . , dβ

heating: γB = λγγA,

uB = λuuA.

where the coordinates λ were allowed to vary around 1. The temperatures we used for the estimation
over B are those measured from September 2000 to August 2001 at 10:00AM.

We also simulated an extra year of daily data B for prediction, with the same parameters but using
the so-called normal temperatures, meaning that for each day of this extra year the temperature is
the mean of all the past temperatures at the same time of the year. We made such a choice to try
and suppress any dependency between our simulated results and the chosen temperature for this
fictive year of prediction, since we did not want to bias our results because of a rigorous winter or an
excessively hot summer.

3.4.3 Results

We chose to use vague priors (i.e. proper distributions with large variances) for the uppermost layers of
our informative hierarchical prior, and thus decided to use the values:

σq = 102, ar = br = 10−6, al = bl = 10−3.

A study of the Bayesian hierarchical model’s sensitivity to these values showed that changing these
hyperparameters to achieve prior variances of greater magnitudes hardly influenced the posterior
results (means and variances) at all. This is why we decided to stick to these values for the remainder of
our experimentations.

Estimation. We benchmarked the Bayesian model with its informative prior against its non infor-
mative prior counterpart for different choices of true hyperparameters k over 300 replications (data
being simulated anew for each replication), i.e. we simulated many different datasets B looking
more or less similar to A and applied our method on them. Figure 3.2 shows the posterior error of
η (posterior mean minus the true value) of η, based on 300 replications that correspond to the case
where λα = λβ = λγ = λu = 1 i.e ηA = ηB for both the informative (leftmost) and non informative
(rightmost) method. Marginal confidence interval for the posterior means are much smaller when using
the informative prior (most of them hitting the true value). The marginal posterior standard deviations
(not shown here) are also reduced when the informative prior is used instead of the non informative
prior.

When the situation is far from being as ideal as the one mentioned above, the informative approach
still shows improvement over the non informative approach but to a lesser extent. Figure 3.3 shows
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Figure 3.2: The posterior error (posterior mean minus true value) of α (seasonal parameters), β (shape
parameters), and γ and u (heating parameters), based on 300 replications. Leftmost replications corre-
spond to the informative method while the rightmost replications correspond to the non informative
method. Here λα = λβ = λγ = λu = 1.

−
15

−
5

0
5

10
15

Seasonal

po
st

er
io

r 
m

ea
n 

−
 tr

ue

●

●
●

●

●

● ●●

● ●●●●●● ●

●

● ●

●●●

●

●

●

●

●

●● ●

●

●●●

●●●●●●● ●●●●● ●● ●● ●●●●●● ●

●

●●

●●

●

●

●●

●●●●

●

●●●● ●

●

● ●●●

●●●●

●

●

●

●●●●●

●

●

●

●●● ●● ●●●●

●●

●

●

●● ●●●

●

● ●

●

●

●

● ●●

● ●●

● ●● ●●●●●●●●●●

●●

●● ●

●●

●

●●

● ●

●●

●●●● ●

●

● ●●

●

●

●

●● ●

●

● ●●●●

●

●●●●

●

●

●●●

●●●

●

●●●●

●

● ●

● ●

●●●● ●●●●●

●●

●●● ●●●●

●

●●●

●

● ●

●●●
●

●
●● ●
●●●
●

● ●
●●●●
●

●● ●
●●

●●
● ●●

●●●●
●
●● ●●●●

●●●
●●

● ●●●●●●●●●●●● ●●●●●● ●●● ●●●●●● ●● ●●●

●

●

●●● ●● ●

●

●

●●●●

●●●

●

●

●● ●●●

●

●●●●

●

●

●

●●●

●

●●●

●● ●

●

●● ●●

●●

● ●

●●

●

● ●●●●

●

●●●●

●

●● ●

●●

●●

●

● ●●

●●●

●●● ●●●●

●

●

● ●●

●●

●

●

●●●●

●●●

● ●

●

●●●

●●● ●●●

●●

●●●● ●●● ●

●●●
●

●●
● ●
●

●●●●
●

●
●●

●
●

●●
●●
● ●

●
●

●●●
●
●

●
●

●
●

●●
●●●●● ●● ●●
●●
●

●
●●●●
●
●● ●●

●
●●●● ●●● ●●●●●●●●● ●●●●●

●
●●

●
●
●

●● ●●
●●
● ●●●●
● ●●●●● ●●●●●●● ●●●●●●●●● ●●● ●●● ●●●●●● ●●● ●● ●●● ●●● ●●●● ●●●●●●● ●●●●●●●●●●●● ●●●●●● ●●●

●

●

●

●

●● ●●

● ●●

● ●

●

●

●●

●

●

●

●

● ●●●

●●●●

●

●

●●● ●● ●●● ●

●

●●

●●

●●

●

●●●●

●

●●

●

● ●

●

●

●●

●●
●

●
●

●
●
● ●●

●
●

●●
●
● ●●●●
●●●

●
●
●●●

●
●

●
●
● ●●●

●
●

●
●

●
●●
●
●●

●
●●
●

●● ●●
●
●
●

●●
●
●

●
●● ●● ●
●●

●●
●

●
●

●●
●●●
●●●

●
●
●

●●
●

●●●
●

●
●

●●●
●

●●●
●

●
●●

●● ●●●●●
●●

●●●● ●
●● ●● ●●●●●●●●●●●●●●●●●●● ●●●●●● ●●●●●●● ●●●● ●●●●●●●●●●●● ●●●● ●●● ●● ●●●●●● ●●●●●● ●●●●●● ●● ●●● ●●● ●●● ●●● ●●● ●●●● ●●● ●●● ●● ●●●●●●●●●●●

●

●

●●● ●●●● ●●●●●● ●●●●●● ●●●
●●●

●
●
●

● ●●
●

●●
●●

●●
●●

●
●●●●●

●
● ●●

●
●●

●
●●● ●●

● ●
●●●

●
●●●●●

●
●●●●

●●
●

●
●●●●● ●●● ●●●●●●●● ●●●●●●●●●●●●● ●●● ●●●●●●●●● ●●●● ●● ●● ●●●●●●●●●● ●●●●●● ●●●●● ●●● ●●●●●● ●●●● ●●●●●●●●● ●●●●●●●●●●● ●●●●●●●●● ●●●●● ●●●●●●●●●●●●● ●●● ●●●●●●●●●● ●●●● ●●●●● ●●●●●●● ●● ●●●● ●●●●●● ●●●●●●●●●●●● ●●● ●●● ●●● ●●●●●●●●● ●● ●●●● ●●●●●● ●● ●●● ●

●

●● ●●
●

●

●

●●

●

●●

●

●

●●

●

●● ●●

●●● ●

●

●

●●●

●●

● ●●●●●

●

●

●

●

●●

●●

●

●●●

●

● ●●

● ●●●●

●

●

●

●●● ●

●

● ●

●● ●●●●

●

●●

●

●●●●

●

●

●● ●

●●●●●●●

●●
●●●

●
●●●●●●
●
●●●

●
●●● ●
●●

●
●●●
●

● ●
●●● ●
●
●

●
●●

●●
●●

●
●●

●
●●
●
●
●

●●
●

●●
●

●
●●
●

● ●●
●●

●●
●●●

●
●

●
●

●
●
● ●●●

●●●● ●●●
●

●●●●
●

●
● ●●●●●●●●●●● ●●●●●● ●●●●●●● ●●●●●●●●● ●● ●●● ●●● ●● ●●●●●● ●●●● ●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●● ●●●●●● ●●●●●●●● ●●●●●●●● ●

●

●

●

●
●

●

●●
●● ●
●●

●● ●
●●
●●●

●
●●● ●● ●●●●●●●

●●●
●●●●●●● ●●●●●●●● ●●● ●●●● ●●●●●●●●●●●● ●●●●●●● ●●●●●● ●●● ●● ●● ●●●● ●●●●●●●●●●● ●●●● ●●● ●●●● ●●●●●●●● ●●●●●●● ●●●●●● ●● ●●●●●● ●●●●●●●●●●● ●●● ●●●●●●●●●● ●●● ●●● ●●●●●● ●●●●● ●●●●●●● ●●●●●●●●●●● ●●●●● ●● ●●●●●● ●●●● ●●●●●●● ●●●●●● ●●● ●●●●●●● ●●●●●● ●●●●●●●● ●●●●●●●●● ●● ●●●●●●●●●● ●●●●● ●●●●●●●●●●●●●●●

●●●

●●

●●●

●●

●

●

● ●●●

●● ●
●

● ●
●

●
●●●

●●● ●●
● ●

●●● ●●
●

●●●
●●

●
●

●●●
●●
●●

●
● ●● ●●

●
●

●
●

●●
●

●●
●
●
●
●

●●●●
●●

●●●
●●●
●●

●
●●●●●
●● ●

●
●●

●
●

● ●●
●●

●
●

●
●
● ●● ●

●
●

●
●

●
●

●●
●●
●
●●

●
●

●●
●

●●● ●●●●●● ●●● ●●● ●●●●●● ●●●●●●● ●●●●● ●● ●●● ●● ●● ●●● ●●●●●●●●●●●●●●●● ●●● ●● ●●● ●●●●● ●●● ●●●●●●●●●● ●●●●● ●● ●●●●●●● ●●●●●●● ●●● ●●●●● ●●●● ●●● ●●●●●●● ●●●●●●●●● ●●●●● ●●●●● ●●● ●●●●●● ●● ●● ●●● ●● ●

●

●●

●● ●

●

●
●●● ●●●●●●●
●●

●
●

●●
●
●●● ●●●●

●●●●
●●
●●●●

●●●●●●● ●● ●● ●●● ●●● ●●●●●●● ●●●●●●●● ●●● ●●●● ●● ●●●●● ●●●●●● ●● ●●●●●●● ●●●● ●● ●● ●● ●●● ●● ●●●●●●●●● ●●●●●●●●● ●●● ●● ●● ●●● ●●●● ●●● ●● ●● ●● ●●●●●● ●●●● ●●●●●● ●● ●●●●●●●●● ●●●●●● ●●● ●●●●●●● ●●●●●● ●●●●● ●●●●●●●● ●●●●● ●●● ●●●●●●●●●●●●●●● ●● ●●●●●●●●●●●●●●●●●●●● ●●●● ●●●●●●●● ●●●●●●●●●●●● ●●● ●●●●●●●

●

●

●●

●

●

●

●●●

●

●

●

●●

●

●●

●

●●●●

●

●

●

●●

●

●

●●●●

●

●●

●

●●

●●

●● ●●

●

●

●●

● ●●●

●

●

●

●●

●

●●

●●●●

●●

●●

●

●●●●

●

●●

●●

●

●

●

●

●

●●

●●●● ●●

●

●●●

● ●●

●●●●●

●

●

●

●●●●● ●●●● ●●●●●

●

●●●●●

●

●

●

●●●

●

●● ●

●

●

●

●●●

●●

● ●

●●

●●●●

●●

●●

● ●

●●●●

●

●

●

● ●● ●●●

●●

●

●●

●

●

●●

●

●

●

●

●●

●

●●

●●

●

●

● ●

●

●●

●

●

●

●●●● ●

●●● ●

●●●

●●●●

●

●●●●

●●●

●

●

●

●●●
●● ●● ●●

●●
●

●
●
●
●
●

●
●

●
●●●●● ●

●●
●●
●

●
●

●
●

●
● ●●
●

●
●

●
●●●●●● ●●●●●●● ●●●●●● ●●● ●● ●●●

●

●

●

●

●

●● ●

●●●●

●

●

●●●

● ●

●

●●●●●●

●

●●●●●

●

●●●

●●

●●

●

●●●

●●

●●●

●

●

●●●●

●

●

●●●●

● ●●●

●●

●●

●● ●

●

●●

●

●●●

●

●●●●●

●●●

●●

●

●●

● ●

●

● ●●

●

●●●●●●●●● ●●

●

●● ●●

●

●

●●

●

●●

●● ●●● ●● ●●●●

●●

●

●

●●●●●

● ●

●

●

●

●

● ●●

●●

●●

●

●●

●

●

●

●

●

●●

●

● ●●

●●

●●●●

● ●

●●●●● ●●● ●● ●●●

●●

●●

●

●● ●●●

●●

●●●

●●

●●● ●●●
●●

●●●
●

●
●

●●
●
● ●

●●
●●

●
●

●
● ●●●●●●

●
●●
●

● ●●
●●●
●●
●●●

●
●
●●●

●●●● ●● ●●●●● ●●●● ●●● ●●● ●●●●●●●●●●●●● ●●●●●

●

●

●
●

●

●

●
●●

●

●

●● ●●

●

●

●

●

●

●

●

● ●●

●●

●●●

●

●●●●●●

●●●

●

●

●●

●

●●

●●

●●

●

●●●

●

●

●

●

●

●

●

●●●●●●●●

●●

●●

●

●● ●

●

●

●

●

●●

●

●

●●● ●●●●

●●

●● ●●

●

●●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●●●● ●●

● ●●

●

●

●

●

●

●●

●

●●●

●

● ●

●●●●●●●

● ●●●

●●

●

●

●

●

●●

●●

●

●● ●●●●●● ●

●

●●

●

●

● ●

●● ●

●

●●●

●●

●●

●

●

●●●

●

●

●

●●●

●●●

●●

●●

●●●

●

●

●●●

●

●

●● ●

●

●

●●●

●

●●

●

●

●

●●●

●

● ●● ●

●
●

●
●●●

●
●

●
● ●●

●
●

●
● ●

●
●

●
●
●
●

●●
●

●
●

● ●● ●●● ●●●●●●● ●●●●● ●●●●●●

●
●●

●

●●

●●●● ●

●

●● ●●●●●●

●

●●

●

●●

●● ●●

●

● ●●

●●

●

●●●

●●

●

●●

●

●●

●

●

●

●

●

●

●

●●

●

● ●

●●

●●●●●

●

●● ●●●●●

●●●●

●

●

●

●●● ●●

●

●●●

●

●

●

● ●● ●●

●

●

●

●● ●●●

●

● ●●

●●●

●●●

●

●

●

●●

●

●●●

●

●● ●

●

●

●

●●●●●●

●●

●● ●●●

●●●

●

●●●

● ●●●

● ●

●●●● ●●

● ●

●

●

●●●●●

●●

●●

●
● ●

● ●
●

●
●
●
●●●●
●
●● ●●●● ●

●
●●
●

●
●

●
●
●●●●

●
●●●●
●

●●
●

● ●
●●

●
●●

●
●●●

●
●
●●

●
●
●●

●
●

●
● ●●● ●●● ●● ●● ●●●●● ●●●●● ●●● ●●●●●●●●●●●●● ●●●●●●● ●●●● ●●●●● ●●● ●●

●

●

●

●

●●●

●●●

●●●● ●

●

●●●●●

●

●

● ●●●

●● ●

●

●●●● ●

●

●

● ●

●

●●

●● ●

●

●●

●

●

●

●

●●

●●●

●●●

●●

●

●

●

● ●

●

●

● ●●● ●●● ●●

●●

●

●

●

●

●

●●●

● ●

●●●

●● ●●

●●

●●● ●●●

●●●

● ●

●

●

●

●

●●●

●

●

●

●●●●

●

●

●●

●

●

●●●●● ●

●

●

●

●●●

●

●●●

●● ●
●● ●●●●●●●● ●●●●●●
●●●●●●

●●
●

●
●

●● ●
●●●● ●●●●●●●

●
●●●●●●●● ●

●●●
● ●

●
●●●●● ●

●
●●● ●●●●●●

●
●●
● ●
●●

●
●●●●●● ●●●●● ●● ●●● ●● ●●● ●●●●●●● ●●●● ●●●●● ●●●● ●● ●●●●●●● ●● ●●●● ●●●● ●● ●● ●●●●●

●

●

●

●●● ●

●

●●●●●●

●

●

●

●

● ●

●●

●●●●

●

●

●●

●● ●

●

●

●

●

●●●

●

● ●

●

●

●

●

●●

●

●

●

● ●●

●●●

●

●●

●●●

● ●

●

●●●●●● ●●●●●

●

●

●

●

●●●

●● ●

●

●●

●●

●

●●

●●

●

●

●●●

●

●●●

●● ●●

● ●

●●●

●●

● ●●●●●●●

●

●

●

●

● ●

●●

●

●

●

●●

●●

●

●

●

●●

●●

●

●

● ●

●●●
●

●
●●●●
●●●●●

●●
●●●
●●

●
●

●●
●

●
●●

● ●
●

●
●

●
●●

●●
●

●
●●

●
●●●●●●●●●●●●
●

●●
●

●●
●

●●
●

●
●●

● ●●●● ●●● ●●●● ●●●●●●●●●● ●● ●●●● ●●●●●●●●●●● ●●●● ●● ●● ●● ●●●●●●●●● ●●●●●●●● ●● ●●●● ●●● ●●●●

●

●●●

●●●●

●

●

● ●●

●●●●

●● ●●

●

●

● ●

●

● ●

●

●

●●

●

●

●●

● ●

●

●●

●●

●●

●●●●●●●

●

●●●

●

●

●●●

●

●

●●

●

●●●

●

●●●

●

●●

●

●●

●

●●

●●

●

●●

●●●

●●●●●●

●

●

●

●

●

●●●●●

●

●

●

●●

●

● ●●●●●●● ●●●●●●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

● ●

●●

●●●

●●●● ●●
●

●
●

●
●●●

●●●
●

●
●●

●●●
●●

●●●
●●●

●●● ●
●●

●
●

●
●●●●

●
●

●●
●

●
●

●● ●●
●

●
●●

● ●
●●●●

● ●
●

●●
●

●●
●

●
●

●●
●

●
●●
●●●●● ●●● ●●●●●●●●●● ●● ●●●●●● ●● ●●● ●● ●●●●●●●●● ●●● ●●●● ●●●● ●● ●●●● ●●●

●●

●

●●

●●

●

● ●

●●

●

●

●

● ●●●

●

●● ●

●● ●

●●●● ●

●

●

●●●●●● ●●●●●● ●

●●

●●● ●●

●

●●●

●

●●●

●

●●●●

●

●

●●

●●●● ●●●

●

●●●

●

●●● ●●●

●

●●●●

●

●● ●

●

●

●● ●

●●●

●

●● ●

●

●

●

●●

●●

●●

●●●

●

●●

●

●●

●

●●

●

●

●●●●●
●●
●●

●
● ●

●
● ●
●●

●
●

●
●
● ●●●● ●●

● ●●
● ●●● ●

●
●

●● ●
●●●

● ●
●

●
● ●● ●●

●
●● ●●●●●●●●●●●● ●●●●●●●● ●●●●●●

●
●●
●

●
●
●●●●●
●
●

●●
●
●● ●● ●● ●●●●●●●●●●●● ●●●●●●● ●●● ●●●● ●●●●●●●● ●●● ●●●●●●●●●●●●●●●● ●● ●●●●●● ●●●

●●

●●

●

●

●● ●●

● ●● ●

●

●

● ●

●

●●●●

● ●

●

●●●

●

●

●● ●

●

●●

●●●●●●● ●

●

● ●●

●●

●●●●●

●

●●

●

●●

● ●

●

●

●● ●●

●

●

●

●● ●●●●

●

●

●

● ●

●

●

●

●●●● ●

●

● ●●

●●

●●●●●

●

● ●

●●

●● ●● ●

●

● ●

●

●

●

●

●

●●●

●●

●●●●
●

●●●
●●

●●
●●●
● ●●●●

●
●● ●●

●●●
●●
●

● ●●●●
●●

●●●●
●●●

●●● ●●
●

●
●●

●●●●
●
●●●

●● ●●
● ●
●
●●

●●
●●● ●●●
●

● ●●●●
●
●●●● ●●●●●

●
● ●● ●●●●●● ●●● ●●●● ●●●●● ●● ●● ●●●●●●●●●●●●●● ●●●●●●●●●● ●●●●●●●● ●●●● ●● ●●●●●●●●● ●●●●●●

●
●

●

●●

●

●●

●●

● ●●

●● ●●●● ●

●

●

●●●

●●

●●

●

●●●

●

●

●

●●●●

● ●

●●●● ●

●●●●●

●●

●

●●● ●●

●

●

●

●●● ●

● ●●●

●●

●●●

●

●

●

●

● ●●●

●

● ● ●●

●●

●● ●●

●

●

●●

●●●

●

●●

●

●●

● ●●● ●

●●●●

●● ●

●●

●●

●● ●

●●●●

●

●●● ●

●●

●

●

●

●

●

●

●

●
●
●

● ●●●● ●●
●●●

● ●
●
●

●●●
● ●

●● ●●●
●
●

●●●●
●●●
●

●●●
●●●

● ●
●
●●
●

●
● ●●●●

●
● ●

●●
●●●●●

●
●

●
●●
●

●
●

●
●

●●
●

●●
●

●● ●●● ●●●●●● ●●● ●●●●● ●●●●●●● ●● ●●●●● ●●●●●●●●● ●● ●●●●● ●● ●●● ●●●●●● ●●●● ●●●● ●●●●●●

●

●

●●●●

● ●

●

●

●

●●●●●●

●

●●

● ●

●● ●

●

●

●

●●●

●●●●

●●

●

● ●●

●● ●

●

●

●●

●

●●

●

●●

●●●●●●

●

●

●

●

●

●

● ●

●●●●

● ●

●●● ●

●

●●

●

●

●● ●

●●●

●

●

●●●

●● ●

●

●●

● ●

●●

●● ●

●

●

●● ●●

●

●

●

●

●

●●●●●

●

●

●●

●●●●● ●●

●

●

●

●

● ●

●

●

●

●

●●● ●

●

●

● ●●

●

●

●

●

● ●

●

●

●

●

●

●

● ●●●●

●

● ●

●

●●●●●

●

●●●

●

●

●

●

● ●

●●●●●●●●●●●●●● ●●●●●●●●●● ●●●● ●●●

●

● ●●●● ●●●●●●●●

●

● ●

●●

●●

●● ●

●●

● ●●
●●

●● ●
●
●●

●
●
●●● ●● ●

●
●
●
●●●

●●
●●
●●

●● ●●●●● ●●●● ●●●●●●●●●●● ●

●

●
●●

●

●

●●

●

●

●●

●

●●

●● ●●

●

●

●●

●

●●● ●●●●●●●●●●● ●

●

●

●●

●

●

●

●● ●

●

●

●

● ●●

●

●

● ●●

●

●●

● ●

●

●●

●

●

●

●

●

●●●

●

●● ●

●● ●

●

●

●●●●

●●

● ●●●●●

●

●●●●

●

●

●

●

●

●● ●

●●

●

●

●

●

●● ●●

●●

● ●●

● ●

● ●●

●

●●● ●● ●

●

●●

●

●●

●●

●● ●●

●

●●●

●

●●●

● ●

●

●●

●

●

●●●

●●

●●

● ●

●●●●●●

●

● ●

●

●●

● ●●

●●

●

●●●●

●● ●● ●●

●

●●●●

●

●●● ●● ●

●

●

●●

●●●● ●●

●●● ●

●

●

● ●●

●

●
●

●
●

●
●

●
●

●
●

●
●

●●
●●●●
●●

●●●
●

●
●●

●●
●●●

●● ●● ●●
●
●●●●● ●●●●●●●●●● ●● ●●●●● ● ●●●●●

α1 α2 α3 α4 α5 α6 α7 α8 α9 α10

−
0.

00
3

−
0.

00
1

0.
00

1
0.

00
3

Shape

po
st

er
io

r 
m

ea
n 

−
 tr

ue

●

●

●
●

●●

●

●●

●●●●●● ●●

●●●

●

●

●

●●● ●● ●● ●●●

●●

●●

●

●● ●●●●●

●

●● ●●● ●●

●

●

●●

●

●

●●

●

●

●●

●

●

●●

●●

●

●

●

●

● ●●●

●

●●●●

●●●

●

●

●●

●●

●

●

●●●●●

●●●

●

●

●●●

●

●●

●●

●●

●

●●●

●

●

●●

●

●●

●●

●●

●

●

●●●●

●

●●●

●

●

●● ●●●●●

●●●

●●

●●●

●●

●

●

●

●

●

● ●

●●●●

●●

●●●

●●

●●●●

●

●●●

●

●

●●●●● ●●

●●

●●

●●

●●●

●

●

●●

●

● ●

●●●

●●

● ●●

●●

●

●

●

●

●

●●●

●●●

●

●

●●● ●

●●

●●●●

●

●

●●●

●

●

●
●

●●●
●●●

●●
●●●

●
●●●

●
●

●●●
●
●●
●

●
●

●
●●
●●

●●●●● ●●● ●●● ●●●● ●●

●

●
●

●●● ●

●●

●

●

●●●●

●●

●●●

●●

●●

●●●

●●

●●

●●

●

●

●●

●

●

●

●●● ●●●● ●●●●●●●●

●

● ●● ●●● ●● ●●

●

●

●●

●

●

●

●●

●

●● ●

●

●

●

●

●

●● ●

●

●●●● ●●●

●

● ●

●

● ●●●

●●

●●

●

●

●●●●

●●●●●

●

●

●

●● ●●●

●●

●●

●● ●

●

●●

●

●●●

●●● ●●●●●

●●

●

●

●●●

●

●●

●

●●

●

●

● ●

●

●

●●

●

●● ●

●

●●●

●

● ●●● ●●●●●

●

●●

●

●

●

●●●●●●●● ●●

●●

●

●

●●●● ●

●

●●

●

●●

● ●●

●

●

●●

● ●●

● ●● ●●

●

●●●●●

●●

● ●

●●

●

●●●

●

● ●

● ●●●
●

● ●●●
●●

● ●●● ●
●

●●●
●●
●●

●●
●

●
● ●
● ●●● ●●● ●●● ●●● ●●●● ●

●

●●●

●●

●●●

●

●●●●

●

●

● ●

●

●

●

●●

●● ●●●

●●●●

●●

● ●

●

●

● ●

●●● ●●●●

●

●●● ●●● ●●●●●●●●●●●●●

●

●●●●●●●● ●●●●●● ●●●●

●

●●

●●

●

●

●

●●●

● ●

●

●●

●

●●

●

●●● ●

●

●●●

●

●●

●●

●

●

●

●

●

●●●

●

●●

●

●●●

●●

●●●

●

●●● ●●●●● ●●●

●

●●●

●●

● ●

●●

●

●

● ●●●

●

●●●

●●

●●●●

●

●●

●●●●

●●●●●

●

● ●

●

●●●●●

●●

●●●

●

●

●●

●

●●●

●●●

●

●

●

●●●●●

●

●

●●

●●

●

●

●

●●

●

●

●

●

●

●

●●●

●

●

●

●

● ●

●

●

●

●

●
●
●

●● ●
●●
●●●●

●
●●●●

●
●
●●
●●

●
●●●● ●●●●●●● ●●●●●●●● ●●●●●

●

●

●●●

●

●●

●●●

●

● ●

●●

●

●

●●

●●

●●●●●●

● ●●

●●

●

●● ●

●●●●● ●

●

●

●

●

●

●● ●

●●●●

●●● ●

●

●

●●

●

●

●

●●

●●

●

● ●●●

●

●

●

●●

●

●

●

●

●●

●●●●

●

●●

●

● ●

●

●● ●

●

●

●

●

● ●

●●●● ●●

●●●

●

●●

●

●●

●●

●●

●● ●●

●●●

●

●

●

●

●

●●●

●

●

●

●

●

●●●●●●●

●●●

●●●

●

●●●

●

● ●●

●●

●●

●

●

● ●

●●●

●

●

●

●

● ●

●

●

●

●

●

●

●●●●

●●

●

●

●

●

●

●

●

●●●●

●

●

●●

●●●●●

●●●●

● ●

●●●

●●●●●

●

●●●●

●

●● ●● ●●

●●●● ●●●●●●
●
● ●

●●●
●

●
● ●●●●●●●

●● ●●
●●●
●

●●
●●●●● ●●●● ●●●●●● ●●●● ●●●●

●

●

●

●
● ●●

●

●

● ●

●●

●●●

●●

●

●●● ●

●

●

●●

●

●

●

●●

●●

●

●

●

●●

●

●

●

●●●●●●

●●

●●

●● ●●

●

●

●●

●●

●●

●

● ●

●

●

●

●●●

●

●● ●

●

●●●

●

●●

●●

●● ●●

●●

●

●●●

●

●

●

● ●

●●

●●

● ●●

●

●

● ●

●

●

●●●●

●

●●

●

●

●●

●

●●

●

●

●●

●●●

●

●●

●●

●●●

● ●

●●●

● ●

●

●

●● ●● ●●●

●●

●

●

●●●●●

●

●●●●●

●

●●

●

●

●

●●●

●

●●●

●

●●● ●

●

●

●

●

●●● ●

●●●●●●●●●

●

●●

●

●

●

●

●

●● ●

●●

●

●●●

●

●

●●

●

●●

●

●

●

●

●●

●●

●

●

●

●●
●●●●●

●● ●● ●
●

●
● ●

●
●●

● ●●
●

●
●●

●
● ●

●
●●

●
●
● ●●●●●● ●●● ●●● ●●●●●●●●●

●

●●
●

●●

●●

●●●

●●●

●

●

●

●●●

● ●●●●●

●●

●

●

●●

●●

●●

●●●●

●● ●●

●

●

●●

●

●●●●

●

●

●●

●

●●●●●

●

●●

●●

●

●

●

●●●

●●

●

●

●●

●●●●●

●

●●●

●●

●

●●

● ●●●

●

●

● ●●

● ●●●

●

●

●●

●

●

●●● ●●

●

●

●

●●

●

●●

●

●●

●

●●● ●●● ●

●

●●

●●

●●●●

●

●● ●● ●● ●●●

●

●●

●

●●●●●

●●

●●

●

●●●●●

●● ●

●

●

●●●●●

●●

●

●

●

●

●●

● ●●

●●●●●

●● ●

● ●●

●

●●●●●●

●

●

●

●

● ●

●●

●●●

●

● ●●

● ●●●

●

●●

●

●

●●

●

●

●

●

●

●

●●

●● ●●

●●

●●
● ●
●

●
●

●
●

●
●●

●
●

●
●
●

●
●●

●●
●

●●
●●●●● ●●●●●● ●●●●● ●● ●●●

●

●

●

●●

●●

●

●

●

●●●● ●●

●●●●

●

●

●

●

●

●● ●●●●●

●

●●

●

● ●●●●●●●●

●●

●●

●

●●●

●

●●●

● ●

●

●

●●

●●

●

●

●●●●●●●

●

●●

●

●

●

●●●

●

●

●

● ●

●

●

● ●

●●●

●●●● ●

●●

●

●

●●

●●

●

●●●●

●

●

●●●

●

●

●●

●

●●

●●

●

●

●●

●

●●

●●●● ●

●

●●

● ●●●

●●

●

●

●●●

●

●

●

●

●●

●●●

●●

●

●

●

●

●

●

●

●

●●●●

●

●●● ●●

●

●

●●

●

●

●

●● ●●

●●●

●●

●

●●

●●

●●●

●●

●

●●

● ●

●

●●

●

●

●

●●

● ●●●●●●

● ●●

● ●

● ●●

●

●

●

●

●

●

●● ●

●

●●●

●●

●●
●

●
●

●
●

●●
●
●

●●●
●●

●
●

●
●●

● ●●
●

●●
●

●
●●●
●●●●●●●●●●● ●●●●●●

●
●

●

●●
●●

● ●●

●● ●●● ●

●●

●●

●

●

●●●

●

●●●

●● ●● ●

●●●●

●

●●●● ●●●

●

● ●● ●●

●

●●● ●

●

●●● ●● ●●●●●

●

●●●

●●

●

●●●

●

●●● ●●

●●

●●●● ●●

●

● ●●●●●

●

●●●●●

●●●

● ●●

●●● ●

●

●●

●●●●●●

●

●●

● ●●

●

●

●

●●●●

●

●

●● ●

●●

● ●●

●

●● ●●●

●

●● ●●●●● ●●●

●● ●

●

●●

●●●

●

●●● ●

●

●●

●

● ●●●●●● ●●●●●

●

●

●

●

●

●●

●

●●●●●● ●

●

●●●● ●

● ●

●● ●

●

●

●

●

●

●

●

●●

● ●

●

●● ●

●

●●

●●●●● ●●●

●●●

●

●

●●●

●

● ●
●

●●
●●●

●
●

●
●

● ●●
●

●
●

● ●
●
●●●

●●●
●●● ●●●● ●●●●●●●●●●●

●
● ●●

●●

● ●●

●

●● ●

●●●

●

●

●●

●●

●●

●

●●●

●●

●

●

● ●

●

●

●

●

●●●

●

●●●●●●●

●

●

●

●● ●●●

●

●●●● ●●

●

● ●● ●●●●

●

●●

●

●●●●●● ●●

●

● ●●●●● ●●

●

●●

●

●●●

●

●●

●●

●

●

●●●

●

●

●●

●●●

●●●

●

●

●●●

●●●●●

●

● ●●

●

●

●

●●●● ●●●

●

●

●

●●

●●

●

●●

●

●

●

●

● ●●●●●

●

●●●

●

●●

●●●●

●●●●

●

●●

●●

●●●●●

●

●● ●●

●

●

●●

● ●

● ●

●●●●●●

●

● ●

●●

●●

●

●●

●

●

●

●

●● ●

●●●

●

●

● ●

●

●

●

●●●●●● ●

● ●●

●

●

●

●●

●

●

●●●●
●●●●●●●

●
●●●

●
●●

●
●
●●

●
●●

●●●● ●
●

● ●●●●●● ●●●●● ●● ●●●

●

●
●

●

●

●●●

●

●

●

●

● ●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●●

●●

●●●●

●●

●● ●●●●● ●

●●●●

●●

●●●

●●●● ●●

● ●

●

●

●

●

●

●

● ●

●●

●

●

●● ●●

●●

●●

●

●

● ●●

●●●●

●

●●

●

●

●●●

● ●

●●●

●●

●●●●

●●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●●● ●●

●

●●●

●

●●

●●

●

●

●●●●

●●●

●●●● ●

● ●

●●

●

●● ●

●

●

●●●

●●

●●

●

● ●●

●●●●● ●

●

●

●●

●

●

●●

●●●●

●

●

●

●●●●

●●

●

● ●●

●●● ●

● ●

● ●

●●

● ●● ●●●

●●

●

●

●

●

●●●

●●●

●

● ●●●●

●

● ●●●

●

●●
●

●
●

●
●●

●
●●●●

● ●●
●
●●
●

●
●
●●●●●●●●●●●●●●●●●● ●●●●

●

●

●

●●

●

●●●

● ●●●●

●● ●

●

●●●●● ●●●

●● ●●

●

●● ●

●

●

●●

●

●●

●

●●

●

●

●

●

●

●●●●●

● ●

●

●

●

●

●

●● ●

●●

●

●● ●● ●●

●●

●●

● ●

●●

●

●

●

● ●●

●

●

●

●

●

●

●

● ●●●

●

● ●

●

●

●

●

●

●

●

●●

●●

●● ●

●●

●

● ●

●● ●

●

●

●

●

●

●●

●

●●

●●

●

●●●

● ●

●●●●●

●

● ●

●

●● ●●● ●●●

●

●

●

● ●

●

●●

●

● ●●●●

●

●●● ●

●● ●

●● ●●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

● ●

●

●●●●

● ●●

●● ●●●

●●

●

●

●

●

●●●

●

●

●

●

●●●

●

●

●●

●

●

●●

●●

●

● ●●
●● ●

●●
●

● ●
●●

●●●●
●●

●
● ●
●●●

●●
●

●●●●● ●● ●●●●●●●●● ●●● ●●●●

●

●●

●●

●
●

●●

●●●●

● ●

●● ●●

●●●●

●

●●

●●

●●

●

● ●● ●●

●

●

●●● ●●●●●

●

●●

●

●

●● ●●●● ●●●

●

●

●●●

●

●●

●

●

●●●

●●

●●

●

●

●

●

●●●

●●●

●

●

●

● ●

●

●●●●●

● ●●

●●●

●

●●

●

●●

●

● ●●●●

●

●●●

●

●●

●●● ●

●

●●

●

●

●●●●●●●

●

●●

●

●

●

●●●●●●●●●

●

●●●●●

●●

●●

●

●●●●●●●●●

●●

●

●

●

●

●●●

●

●●

●

●●●●●

●●

●

●

●● ●

●

●●●●

●● ●●

●

●

●●●●

●

●●●●

●

●●●●

●

●●

●●

●

●

●

●●●●●

●

●

●

●●●

●

●

●

●● ●● ●

●

●●

●

●

●●●●●●●● ●●●
●
●●

●●●
●

● ●●
●●●●●●●●●●●●● ●●●●●● ●●●●

β1 β2 β3 β4 β5 β6

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Heating

po
st

er
io

r 
m

ea
n 

−
 tr

ue

●

●

●

● ●

●●●●● ●

●

●●● ●●

●

●●

●●

●

●

● ●●●●●

●

● ●

●

●

●

●

●●●

●

● ●

●

● ●●● ●●●● ●●

●●

● ●

●

●●●●● ●●●●●●● ●●● ●● ●●
●

● ●●●●●
●

●
●

●●
●●

●
●

●
●

●
●

● ●●
●●●

●
●●

●
●
●●

●●
●●●

●
●

●
●● ●

●●
●

● ●
●

●
●●

●
●● ●●●

●●●●
●

● ●
●
● ●● ●
●
●

●
●●●●●●● ●●

●●
●●
●●●●

●●
●
●●

●
●

● ●●●●●●●●●●●●●●●● ●● ●●● ●●●●● ●●●●● ●● ●●● ●● ●●● ●●● ●● ●●● ●●●●●●●●● ●● ●●●●●● ●●●● ●●●●●● ●●●● ●●●●●● ●●● ●● ●●●●●● ●●●●●●●● ●●●●● ●● ●● ●●●●●●●●●

●
●

●

●●

●

●● ●●

●

●

●● ●

●

● ●

●

● ●●●

●

●

●●●●●●

●

●●●●

●

●●●

●

●●

●

●

●

●

●●

●

●●●●●●

●

●

●●●

●

●

●●●● ●●●

●

● ●●●●●●

●

●●●

●

●

● ●

●

●

●

●

●

●

●●

●●

●

●

●●

●

●●

●

●

●

●

●

●

●●

●●● ●

●●●●

●●

●

●

●●

●

●●

●

●●●● ●●●●

●

●●

●●

● ●

● ●●

●●●

●

● ●●●

●●

●● ●

●

●

● ●

●●●● ●●

●●

●●● ●●

●

●●

●●

●●●

●

●

●

●● ●●●

●

●

●

●

●

●● ●●●

●

●●

●

●● ●●●

●●

●●

●●●●

● ●

●

●

●●●●●●
●●

●
●

●●●● ●
● ●

●
●
●●●

●●● ● ●●
●

●●●●
●

●
●

●●
●

●●●●●●●●●●● ●●●● ●●● ●● ●●●● ●●●● ●●● ●●●●●●

●●● ●

●●

●

●

●● ●●●

●

●●

●

●

●

●● ●● ●●

●●●● ●

●

●

●

●

●

●●●●

●

●●●●● ●● ●● ●●● ●●●● ●● ●● ●●●●●●●●●

●

● ●●●
●

●●
●●●

●●
● ●●●● ●●●●

●●
●

●
●●●●

●
●●●●●

●
●
●●

● ●●●●
●
●●● ●
●

●● ●●● ●● ●●
●

●
●●

●
●
● ●●

●
●●

●●
●● ●●●

●
●● ●● ●●
●
●

●
●
●

● ●●
●

● ●●
●●●

●●●●● ●
●

●
●

●●● ●● ●● ●●● ●● ●●●● ●●● ●● ●●●● ●●●●●●● ●● ●●●●●● ●● ●●●● ●● ●●●● ●●● ●●●●● ●●●● ●●●●● ●●●●●● ●●● ●●●●● ●● ●●● ●●● ●● ●●●●●● ●●●●●●● ●●●●● ●●●●● ●●●● ●

●

●●
●●

●

●● ●

●●

●

●●

● ●●

● ●●

●

● ●●

●●●

●●

●

● ●

●

●●●

●

●●

●●●●●

●●

●●

●

●●●●●●

●●

●●●●

●

●●

●

● ●●

●

●●●●

● ●

●● ●●● ●

●

● ●

●

●

●

● ●

●

●

● ●● ●●●●●●

●●

●

●● ●

●

●●

● ●

●

● ●●● ●●

●●

●●●●●● ●●●●

● ●●

●● ●

●

● ●●

●

●●●

●●

●

●

●

●

●●●●●●● ●●

●●

●●●●●●●● ●●● ●●●●●●

●

● ●

●

●●●●● ●●● ●●

●

●● ●●●●● ●●●●●●●

●

●●●●●●●●

●

●

●

●● ●●●

●●

●● ●

●

●

●● ●

●●

●●

●

● ●

● ●●

●

●●●

●

●

●●

●

●

●

●●

●
●
●●●●

●●
●●●

●●
●●

●●
●●●

●● ●● ●●● ●●●●● ●● ●●● ●● ●●●●

γ u

Figure 3.3: Same caption as in Figure 3.2 except λβ = λu = 1 and λα = λγ = 0.5.
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Figure 3.4: The posterior mean of coefficients k minus the true value of the corresponding λ for the
seasonal parameters, based on 300 replications. Top row is for the case were λα = λβ = λγ = λu = 1
and bottom row is for the case where λβ = λu = 1 and λα = λγ = 0.5. Leftmost replications correspond
to the informative method while the rightmost replications correspond to the non informative method.
Results for the other coordinates are not shown here because no significant deviation from 0 was
found on either of these coordinates when the informative prior was used in either case (the empirical
variances on these coordinates were bigger in the non ideal case though, in a similar fashion to what we
observe here).

that the estimations of some of the parameters of the model are improved with the addition of the prior
information (α and u) while some are not (β and γ) in the case where λβ = λu = 1 and λα = λγ = 0.5.
Situations such as λα = λγ = λu = 1 and λβ = 0.5 or λα = λγ = λβ = 1 and λu = 0.5 were studied
too and yielded very similar results i.e. lesser improvements on the estimations of some parameters
only. Note that when some coordinates of k are valued to 0.5 while some are valued to 1, the “similarity”
between A and B is very weak. The strength or weakness of the similarity between A and B cannot
be diagnosed directly from the posterior mean of k itself but we will see that the estimations of the
hyperparameters q and r may provide a partial answer to this question.

We also estimated the hyperparameters (see Section 3.3.1 for the specifications of k, l, r) when the
informative prior was used. Let us first study the hyperparameter k. Its coordinates seem correctly
estimated for the ideal situation where λα = λβ = λγ = λu = 1 as illustrated in the top row of Figure
3.4 which shows the posterior error of k. When λβ = λu = 1 and λα = λγ = 0.5, the estimations
obtained are of lesser quality as demonstrated in the bottom row of Figure 3.4: most of the seasonal
similarity coefficients appear to be biased (while the posterior standard deviation on each coordinate,
not shown here, are greater than in the ideal situation). These estimations may thus be used to quantify
the closeness of the two datasets.

The estimation of the hyperparameter l itself does not seem to provide a lot of information about
the data: during our simulations, its mean value exhibited a lot of variability around the same value
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Figure 3.5: In grey: posterior mean of q (left) and r (right, on a log scale) for the informative prior
(abscissas have been jittered a bit to prevent overlapping, and different shades of grey are used to
indicate the level of the estimated density). 300 replications for each value of λα = λγ tested. In black:
the circles correspond to the averages, while the squares correspond to the 5% and 95% empirical
quantiles. Here λβ = λu = 1.

over the 300 replications for each of the five simulated scenarios and no reasonable conclusion could be
drawn from it.

On the other hand, the estimation of the hyperparameter q does reveal a bit of information about
the two datasets A and B. It is the mean of the coordinates of k on the real axis, as can be seen in the
definition of the informative prior in (3.5) on page 77. However its use remains somewhat limited in
the sense that the parameters β of the two datasets are most often very close (meaning the coordinates
of k that correspond to them is likely close to 1) while other parameters may vary greatly. Hence even
though q provides information about the similarity between A and B, it cannot be interpreted alone
and has to be considered jointly with r. The left part of Figure 3.5 shows the evolution of the posterior
mean of q as λα = λu ranges over [0.5, 1].

The estimation of the hyperparameter r (inverse-variance of the prior distribution on k, see (3.5)
again) does in fact reveal some information about the two datasets too. It is a measure of dispersion of k
around q, in the sense that the (higher it is, the closer to q the coordinates of k should be. Just like q is
the mean of the coordinates of k, r is in fact their inverse-variance. The right part of Figure 3.5 shows a
clear decline of r when λα = λu moves away from the ideal value 1 i.e. when the similarity between the
datasets A and B decrease from strong to weak.

As we previously stated, the similarity between the two datasets has to be assessed simultaneously
with q and r and not q only: the mean q could be close to 1, possibly hinting at a perfect similarity
between the two datasets, while the variance 1/r could be great which would then indicate huge
differences between the two estimated sets of parameters for the two datasets.
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Figure 3.6: In grey: ratio between error predictions for the informative and the non informative approach
(abscissas have been jittered a bit to prevent overlapping, and different shades of grey are used to
indicate the level of the estimated density). 300 replications for each value of λα = λγ (left, where
λβ = λu = 1) and λu (right, where λα = λβ = λγ = 1) tested. In black: circles correspond to the
averages, while squares and diamonds correspond to the 80% and 90% empirical quantiles of these
ratios.

Prediction. We compared the informative and the non informative models using our comparison
criterion defined in (3.13) and computing the ratio between the two models for different values of λα

and λγ, λβ and λu being both set to 1. The left part of Figure 3.6 shows the results we obtained for λα

and λγ simultaneously set to the values 1, 0.95, 0.90, 0.80 and 0.50. Note that since the results appeared
to be approximately symmetric with regard to 1 (i.e. for values 1, 1.05, 1.10, 1.20 and 1.50), we only
included one side of the graph in the present article.

On average, the Bayesian informative model is a clear improvement over the Bayesian non infor-
mative one, its performances being maximised when the parameters ηA and ηB are identical (which
is the ideal situation). The performances in prediction are obviously somewhat weakened when the
difference between the parameters ηA and ηB grows greater, but the use of the informative hierarchical
prior still leads to an average improvement of 15% over the non informative model, as can be seen on
Figure 3.6. The results obtained when λβ or λu are varying while the other coordinates of k are fixed to
1 were very similar (see for example the right part of Figure 3.6).

3.5 APPLICATIONS

The long dataset A needed for the construction of the informative prior corresponds to a specific
population in France frequently referred to as “non metered” because their electricity consumption
is not directly observed by EDF but instead derived as the difference between the overall electricity
consumption and the consumption of the “metered” population. For this population the data ranged
from 07/01/2004 to 07/31/2010.
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Estimation A Estimation B Prediction B
Case 1 1099 125 28
Case 2 1099 144 38

Table 3.1: Sample size (in days) of the datasets for both experiments.

We illustrate the benefit of choosing our informative prior to predict electricity load on short datasets.
We consider two short datasets: the first B corresponds to the “non metered” population for ERDF, a
wholly owned subsidiary of EDF that manages the public electricity network for 95% of continental
France. This population roughly covers the same people that A does, but not exactly. The second
dataset B′ corresponds to a subset of A and represents around 50% of the total load of A.

3.5.1 Benchmark against standard methods

For this application, only the days for which no special tariffs are enforced were considered: the so-
called EJP (“Effacement jour de pointe“ = peak tariff days) were removed from the dataset beforehand
to ensure the signal studied was consistent throughout time. Bank holidays (including the day before
and the day after to avoid any neighbourhood contamination effects), the summer holiday break
(August) and the winter holiday break (late December) were also removed from the dataset for this first
application, as we wanted to benchmark our method against others on a smooth and rather easy-going
signal, so as not to put any one method at a disadvantage due to the signal’s specificity. The temperature
considered in the model is the average temperature over France for the period of study, and the cooling
threshold was chosen to be 16°C throughout the 48 instants of the day.

We benchmarked our Bayesian method with informative prior against four alternative methods,
comparing their predictions on dataset B in two configurations. Roughly speaking, for our first
experiment we estimated the model for B over the period ranging from 12/01/2009 to 06/30/2010
and predicted the next 30 days (same as the application presented Section 3.5.2), while for our second
experiment, we estimated the model for B over the period ranging from 01/01/10 to 07/31/10 and
predicted the previous 30 days. We expect the first configuration to be the easy case and the second
configuration to be the tough case, the signal being very smooth during summer and not so much
during winter. The figures shown in Table 3.1 summarise the exact lengths of the various datasets for
both experiments.

The four alternative methods we benchmarked against our own Bayesian informative method, relied
on four different techniques: the first was the Bayesian non informative method that we exposed earlier
in Section 3.3.2 (recall that it was meant to be an equivalent to the maximum likelihood approach), the
second involved non parametric estimation with kernels (see Fan and Yao, 2005), the third was a double
exponential smoothing (see Taylor, 2003) and the fourth and last was an ARIMA model. Note that for
the second experiment, the data available obviously had to be time-reversed in order to apply some the
last three alternatives methods since time-dependence plays an important role for them. The ARIMA
model was automatically selected (see Hyndman and Khandakar, 2008) and was the best model with
regard to the AIC criterion.

It is clear from the results exposed in Table 3.2 that the informative prior outperforms all the
alternative methods by a large margin in each case. Figure 3.7 shows that the Bayesian informative
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Figure 3.7: Quality of the predictions (MAPE in %) averaged for each instant, for both experiments:
case 1 (left) and case 2 (right). The ordinate axis is in log-scale. Each shade of gray corresponds to one
of the 5 methods tested.

Case 1 Case 2
RMSE MAPE RMSE MAPE

informative prior (I) 770.71 3.08 2041.70 5.71
non informative prior (NI) 24440.52 100.26 7317.56 22.03

non parametric (NP) 1461.52 5.82 25091.68 77.41
double exp. smoothing (DES) 1800.12 7.41 22572.58 71.36

linear time series (ARIMA) 1702.39 6.89 13839.85 43.73

Table 3.2: Overall quality (RMSE in MW, MAPE in %) of the predictions for both experiments.

method is superior to the Bayesian non informative method, the non parametric approach, the double
exponential smoothing method as well as the ARIMA Model throughout the 48 instants of the day in
both cases, with the exception of night-time for Case 1 where the non parametric and ARIMA model
remain competitive. This can be attributed to the nocturnal signal being very smooth in July, compared
to the signal in winter. The overall bad performance of the Bayesian non informative method is not
surprising because at least 3 to 4 years of data are usually required to avoid overfitting, for such a
parametric model.

3.5.2 Role of the hyperparameters

For this application, the setup was the same as the one described at the start of Section 3.5.1. Our aim
was to point out the role of the hyperparameters introduced within the informative prior and show
that besides providing better results than alternative methods as was demonstrated in Section 3.5.1,
they also provided a measure of similarity between the short datasets of interest and the dataset used
to build the prior. We estimated the model for B and B′ over the period ranging from 12/01/2009 to
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06/30/2010 and predicted the next 30 days.

Figure 3.8 shows the predictive quality of the model for both populations B and B′ using the
informative prior as well as the posterior densities of the similarity coefficients k j at midday (we also
looked at the other 47 instants but the look of them was nearly identical to the one we chose to present).
These densities are much more peaked and also centred closer to 1 for population B than they are for
population B′. It thus seems to indicate that dataset B is more similar to A than B′ is, confirming our
prior knowledge that A and B covered approximately the same population whereas B′ represented
around 50% of A: this value of 50% is also visible on Figure 3.8 where we observe two densities centred
around 0.5, which correspond to the similarity coefficients between the offsets ωj of A and these of B′.

Figure 3.9 displays the boxplots for the posterior densities of q and 1/
√

r and seem to corroborate
the fact that B is more similar to A than B′ is. Recall that q and 1/

√
r respectively act as the mean and

standard deviation of the similarity coefficients k j within our informative hierarchical prior. Indeed the
estimated mean of q appears to be closer to 1 while its estimated variance is smaller on B than B′. The
estimated mean and variance of 1/

√
r are also smaller on B than B′.

As we observed in Section 3.4 when we dealt with simulated datasets, the estimated values of q
and r provide some information about the similarity between the datasets considered. Notice also that,
here again, the best predictive performance is obtained when the similarity between the two datasets is
strongest.

3.5.3 Role of the sample size

For this application, the setup is almost identical to the one described at the start of Section 3.5.1 but
the temperature considered in the model is not the average temperature over France anymore but a
transformation of it: it was smoothed using exponential smoothing, which is known to improve the
link existing between the two variables temperature and electricity load (see Bruhns et al., 2005, for
more information about this). The cooling threshold was fixed at 18°C throughout the 48 instants of
the day, and this time, the summer holiday break was not removed from the dataset (but the winter
holiday break and the bank holidays still were), so that the model could benefit from (and be tested on)
the August months in general. Note that for A we used the same dataset that we used for our two first
applications.

We put the focus on the length of the estimation period on B while keeping the same prediction
window. We successively chose the periods ranging from 01/01/2010, 03/01/2010, 05/01/2010,
07/01/2010 to 12/31/2010, reducing the estimation period on B from 12 months to only 6 months,
removing 2 months at a time. The next 6 upcoming months were then predicted i.e. the prediction
window ranged from 01/01/2011 to 06/30/2011. The diagram in Figure 3.10 describes the 4 scenarios
considered.

The non informative prior leads to a better fit than the informative prior as can be seen in Table 3.3.
It should not come as a surprise because the non informative prior was indeed meant to be equivalent
to a maximum likelihood approach whose criterion is precisely to minimise the RMSE. As for the
quality of the predictions associated with the model for both priors, Table 3.3 demonstrates that the
informative prior beats the non informative prior in each of the four proposed configurations. The
improvement appears to be minimal when 12 months are used but as months are removed from the
estimation window, the predictive quality for the non informative prior drops very quickly, while the
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Figure 3.8: Quality of the predictions (MAPE in %) averaged for each instant, for populations B and B′
(left). Posterior densities of the similarity coefficients k j for populations B and B′ at midday (right).
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Figure 3.9: Boxplots of the posterior densities of q (left) and 1/
√

r (right) (mean and standard deviation
of the similarity coefficients k j) for populations B and B′, throughout the 48 instants of the day.
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Figure 3.10: Ranges of the estimation (from 12 to 6 months) and prediction (6 months) time-windows
for the 4 scenarios considered.
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predictive quality for the informative prior remains moderate and stable.

Estimation Prediction
RMSE MAPE RMSE MAPE

non info. info. non info. info. non info. info. non info. info.
12m. 663.02 671.95 1.86 1.87 763.23 737.83 2.01 1.94
10m. 606.04 623.23 1.78 1.82 1509.09 883.07 3.18 2.21

8m. 473.29 493.68 1.49 1.52 8891.81 1318.28 16.72 3.26
6m. 460.60 499.13 1.34 1.44 90356.82 1305.27 224.40 3.62

Table 3.3: Overall quality (RMSE in MW, and MAPE in %) of the estimation (left) and prediction (right)
for the non informative (non info.) and informative (info.) priors, depending on the number of months
used for the estimation (from 12 months to 6 months).

Figure 3.13 shows the average error in prediction for each month while Figures 3.11 and 3.12 display
the average error in prediction for each half hour (from 00:00 to 23:30). It is important to note that
the use of the non informative prior leads to overfitting the model: the results presented in Table 3.3
show that as the estimation window goes smaller, the estimation error decreases while the prediction
error grows very quickly. A close inspection of the posterior densities of the different parameters of the
model revealed that the bias induced by the increasing lack of data is mainly seasonal: this is due to
the seasonality coefficients of the model being overfit. Choosing the informative prior over the non
informative prior makes the estimation and prediction of the model more robust with regard to the lack
of data.

The informative prior especially improves the quality of the predictions when the lack of data is
severe: it provides reasonable forecasts even in the worst scenario considered here, where only 6 months
of estimation were used for 6 months of prediction. In this situation, estimation (from 07/01/2010
to 12/31/2010) and prediction (from 01/01/2011 to 06/30/2011) are performed on non overlapping
areas of the calendar: the informative prior makes up for the unavailable data and prevents the model
from overfitting on the second half of the calendar, while the non informative prior does not and
consequently leads to heavily biased predictions over the first half of the calendar.

3.6 APPENDIX

The two MCMC algorithms presented below were developed because direct simulations from the
posterior distribution were not possible. The justifications are given after the algorithms themselves.
Notice that the full conditional distributions of all the parameters but the threshold u appear to be
common distributions in both cases, due to the presence of multiple semi-conjugacy situations. We
used a Metropolis-within-Gibbs algorithm (see Marin and Robert, 2007, page 96, for a quick description)
based on Gibbs sampling steps for every parameter but u for which we used a Metropolis-Hasting step
based on a Gaussian random walk proposal. The algorithm corresponding to the non informative prior
is detailed first since it is the simplest of the two.
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Figure 3.11: Using the non informative prior: quality of the predictions (MAPE in %) averaged for each
instant (all the 180 or so days within the prediction time-window are used for those averages), with an
estimation period ranging from 12 to 6 months. The ordinate axis is in log-scale. Each shade of gray
corresponds to a different scenario.
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Figure 3.12: Using the informative prior: quality of the predictions (MAPE in %) averaged for each
instant (all the 180 or so days within the prediction time-window are used for those averages), with an
estimation period ranging from 12 to 6 months. The ordinate axis is in log-scale. Each shade of gray
corresponds to a different scenario.
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Figure 3.13: Quality of the predictions (MAPE in %) averaged for each month (all the instants of the 30
or so days within each month are used to compute these averages), with an estimation period ranging
from 12 to 6 months using the non informative prior (left) and using the informative prior (right). The
ordinate axis is in log-scale. Each shade of gray corresponds to a different scenario.

3.6.1 Technical Lemmas

Definition 3.5 (Gaussian conjugacy operator). We define the (commutative and associative) operator ∗ as(
µ1

Σ1

)
∗
(

µ2

Σ2

)
=

(
[Σ−1

1 + Σ−1
2 ]−1(Σ−1

1 µ1 + Σ−1
2 µ2)

[Σ−1
1 + Σ−1

2 ]−1

)
for any vectors µ1 and µ2 in Rd, for any symmetric positive definite matrices Σ1 and Σ2 of size d× d.

Lemma 3.6 (Conjugacy). Let X1 and X2 be two random truncated Gaussian vectors in Rd

X1 ∼ N (µ1, Σ1, S1)

X2 ∼ N (µ2, Σ2, S2)

and denote f1 and f2 their respective densities, then f1 f2 is integrable. Let furthermore Y be a random variable
with density g(y) ∝ f1(y) f2(y), then Y has truncated Gaussian distribution

Y ∼ N (µ, Σ, S1 ∩ S2)

where (
µ

Σ

)
=

(
µ1

Σ1

)
∗
(

µ2

Σ2

)
and this result easily extends to any finite number of random truncated (or not) Gaussian vectors.

Lemma 3.7 (Conditional distribution). Let X be a random Gaussian vector in Rd

X =

[
X1

X2

]
∼ N

[ µ1

µ2

]
,

[
R S
S′ T

]−1

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and X1 and X2 the projections of X over its d1 first and d2 last coordinates (d = d1 + d2). The conditional
distribution of X1 with regard to X2 is then Gaussian

X1|X2 ∼ N (µ1 − R−1S(X2 − µ2), R−1)

Lemma 3.8. Let X and Y be two random vectors respectively in Rd and Rn such as the conditional distribution
of Y with regard to X is Gaussian

Y|X ∼ N
(

Z + MX, σ2 In

)
with M matrix of size n × d that has full rank d < n, and let Z be a fixed vector in Rn. The conditional
distribution of X with regard to Y is then Gaussian too

X|Y ∼ N
(
[M′M]−1M′(Y− Z), σ2M′M

)
.

Proof. Denoting W = Y− Z, straightforward algebra leads immediately to

(W −MX)′σ2 In(W −MX) =
[
(M′M)−1M′W − X

]′
σ2M′M

[
(M′M)−1M′W − X

]
−
[
(M′M)−1M′W

]′
σ2M′M

[
(M′M)−1M′W

]
+ W ′σ2 InW

where the two last terms on the right hand side of the equation do not depend on X.

3.6.2 MCMC algorithm for the estimation of the posterior distribution, using the
non informative prior

The different steps of the MCMC algorithm we used to (approximately) simulate (θ1, . . . , θM) according
to the posterior distribution π(θ|y) that corresponds to the non informative prior we presented earlier
are given in Algorithm 3.1. The justifications for each full conditional distribution used in the Gibbs
sampling steps, including the explicit expressions of µα

t+1, Σα
t+1, µ

β
t+1, Σβ

t+1, µ
γ
t+1, and Σγ

t+1, are given
hereafter. Lemma 3.8 is a key element to these justifications.

Choosing ΣMH. The covariance matrix ΣMH used in the last Metropolis-Hastings step is first es-
timated over a burn-in phase (the iterations coming from this phase are discarded), and then fixed
to its estimated value “asymptotically optimally rescaled” for the final run by a factor

( 2.38
d
)2

(as
recommended for Gaussian proposals in section 2 of Roberts and Rosenthal, 2001).

Full conditional distribution of α. Denote n the size of the vector α, and θ\α the vector θ from which
the coordinates corresponding to α have been removed. The full conditional distribution of α can
directly be deduced from both the prior and the likelihood contributions to it.

Let us first observe that, since the prior distribution we are using on α is flat, the full conditional
distribution of α is in fact proportional to the likelihood function (seen as a function of α). Now
considering the likelihood contribution, we write

π(α|η\α, y) ∝ exp
(
−1

2
σ−2‖y− f (η)‖2

2

)
Let now Lα be the diagonal matrix whose diagonal coefficients are given by

(Lα)tt = Bt•β + Ct, t = 1, . . . , N,
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let Zα be the vector whose coordinates are given by

(Zα)t = γ(Tt − u)1[Tt ,+∞[(u), t = 1, . . . , N,

and denote Mα the matrix Mα = Lα A. We can now rewrite µ and get

π(α|θ\α, y) ∝ exp
(
−1

2
σ−2‖y− (Zα + Mαα)‖2

2

)
.

Using Lemma 3.8, it is then straightforward to see that the full conditional distribution of α is
Gaussian

α|θ\α, y ∼ N (µα, Σα) (3.14)

where (
µα

Σα

)
=

(
[M′α Mα]−1M′α(y− Zα)

σ2M′α Mα

)
.

Full conditional distribution of β. Using similar arguments, we obtain the full conditional distribution
of β. Namely, denoting Zβ the vector whose coordinates are given by

(Zβ)t = (Aα)tCt + γ(Tt − u)1[Tt ,+∞[(u),

and calling Mβ = LβB where Lβ is the diagonal matrix whose diagonal is Aα, we obtain the truncated
Gaussian distribution

β|θ\β, y ∼ N (µβ, Σβ, B
dβ

+ (0, 1)) (3.15)

where (
µβ

Σβ

)
=

(
[M′β Mβ]

−1M′β(y− Zβ)

σ2M′β Mβ

)
.

Full conditional distribution of γ. Using again similar arguments, we obtain the full conditional
distribution of γ. Namely, denoting Zγ the vector whose coordinates are given by

(Zγ)t = (Aα)t((Bβ)t + Ct),

and calling Mγ the vector whose coordinates are (Tt− u)1[Tt ,+∞[(u) we obtain the Gaussian distribution

γ|θ\γ, y ∼ N (µγ, Σγ) (3.16)

where (
µγ

Σγ

)
=

(
[M′γ Mγ]−1M′γ(y− Zγ)

σ2M′γ Mγ

)
.

Full conditional distribution of σ2. No calculations are required, as we immediately identify an
inverse-gamma distribution from (3.7).
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Algorithm 3.1 (MCMC algorithm for the estimation of the posterior distribution, using the non infor-
mative prior.).

For t = 1

Initialise θ1 such that π(θ1|y) 6= 0.

For t > 1

1. Simulate σ2
t+1 cond. to (αt, βt, γt, ut, y) i.e.

σ2
t+1 ∼ IG

(
N
2

,
1
2
‖y− f (η)‖2

2

)
.

2. Simulate γt+1 cond. to (αt, βt, ut, σ2
t+1, y) i.e.

γt+1 ∼ N
(
µ

γ
t+1, Σγ

t+1
)

.

3. Simulate bt+1 cond. to (αt, γt+1, ut, σ2
t+1, y) i.e.

βt+1 ∼ N
(

µ
β
t+1, Σβ

t+1, B
dβ

+ (0, 1)
)

.

4. Simulate at+1 cond. to (βt+1, γt+1, ut, σ2
t+1, y) i.e.

αt+1 ∼ N
(
µα

t+1, Σα
t+1
)

.

5. Simulate δt ∼ N (0, ΣMH) and set ũt ← ut + δt.

6. Compute

ρ(ut, ũt) =
π(ũt|αt+1, βt+1, γt+1, σ2

t+1, y)
π(ut|αt+1, βt+1, γt+1, σ2

t+1, y)
.

7. Simulate υt ∼ U [0, 1]. If υt < ρ(ut, ũt) then set ut+1 ← ũt else set ut+1 ← ut.

3.6.3 MCMC algorithm for the estimation of the posterior distribution, using the
informative prior

The different steps of the MCMC algorithm we used to (approximately) simulate (θ1, . . . , θM) according
to the posterior distribution π(θ|y) that corresponds to the non informative prior we presented earlier
are given in Algorithm 3.2. The justifications for each full conditional distribution used in the Gibbs
sampling steps, including the explicit expressions of µα

t+1, Σα
t+1, µ

β
t+1, Σβ

t+1, µ
γ
t+1, Σγ

t+1, µk
t+1 and Σk

t+1,
are are given hereafter. To derive these full conditional distributions, we will make use of the technical
Lemmas 3.6, 3.7 and 3.8 presented earlier.

Choosing ΣMH. As for Algorithm 3.1, the covariance matrix ΣMH used in the last Metropolis-
Hastings step is first estimated over a burn-in phase (the iterations coming from this phase are dis-
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carded), and then fixed to its estimated value “asymptotically optimally rescaled” for the final run by a
factor

( 2.38
d
)2

(as recommended for Gaussian proposals in section 2 of Roberts and Rosenthal, 2001)

Algorithm 3.2 (MCMC algorithm for the estimation of the posterior distribution, using the informative
prior.).

For t = 1

Initialise θ1 such that π(θ1|y) 6= 0.

For t > 1

1. Simulate σ2
t+1 cond. to (αt, βt, γt, ut, kt, lt, qt, rt, y) i.e.

σ2
t+1 ∼ IG

(
N
2

,
1
2
‖y− f (η)‖2

2

)
2. Simulate rt+1 cond. to (αt, βt, γt, ut, σ2

t+1, kt, lt, qt, y) i.e.

rt+1 ∼ G
(

ar +
d
2

, br +
1
2

d

∑
i=1

(ki − q)2

)
3. Simulate qt+1 cond. to (αt, βt, γt, ut, σ2

t+1, kt, lt, rt+1, y) i.e.

qt+1 ∼ N
(
[σ−2

q + rd]−1(σ−2
q + r

d

∑
i=1

ki), [σ−2
q + rd]−1

)
4. Simulate lt+1 cond. to (αt, βt, γt, ut, σ2

t+1, kt, qt+1, rt+1, y) i.e.

lt+1 ∼ G
(

al +
d
2

, bl +
1
2
(ηt − KµAt )′(ΣA)−1(ηt − KµAt )

)
5. Simulate kt+1 cond. to (αt, βt, γt, ut, σ2

t+1, lt+1, qt+1, rt+1, y) i.e.

kt+1 ∼ N
(

µk
t+1, Σk

t+1

)
6. Simulate γt+1 cond. to (αt, βt, ut, σ2

t+1, kt+1, lt+1, qt+1, rt+1, y) i.e.

γt+1 ∼ N
(

µ
g
t+1, Σg

t+1

)
7. Simulate βt+1 cond. to (αt, γt+1, ut, σ2

t+1, kt+1, lt+1, qt+1, rt+1, y) i.e.

βt+1 ∼ N
(

µb
t+1, Σb

t+1, B
dβ

+ (0, 1)
)

8. Simulate αt+1 cond. to (βt+1, γt+1, ut, σ2
t+1, kt+1, lt+1, qt+1, rt+1, y) i.e.

αt+1 ∼ N
(
µa

t+1, Σa
t+1
)

9. Simulate δt ∼ N (0, ΣMH) and set ũt ← ut + δt

10. Compute

ρ(ut, ũt) =
π(ũt|αt+1, βt+1, γt+1, σ2

t+1, kt+1, lt+1, qt+1, rt+1, y)
π(ut|αt+1, βt+1, γt+1, σ2

t+1, kt+1, lt+1, qt+1, rt+1, y)
.

11. Simulate υt ∼ U [0, 1]. If υt < ρ(ut, ũt) then set ut+1 ← ũt else set ut+1 ← ut.
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Full conditional distribution of α. Denote n the size of the vector α, and θ\α the vector θ from which
the coordinates corresponding to α have been removed. The full conditional distribution of α can
directly be deduced from both the prior and the likelihood contributions to it. Denote θ∗ = (θ, k, l, q, r),
and write the full conditional distribution of α as

π(α|θ∗\α, y) ∝ gL(α)gp(α)

where gL(α) is the contribution of the likelihood (seen as a function of α to the full conditional distri-
bution) and gp(α) is the contribution of the prior (seen as a function of α). We prove that gL and gp

both correspond to Gaussian distributions before using Lemma 3.6 to combine them into yet another
Gaussian distribution.

1. Let us first consider the prior contribution gp. Recall first that α only appears in the following
component of the prior

π(θ|k, l) ∝ l
d
2 exp

(
−1

2
(θ − KµA)′l(ΣA)−1(θ − KµA)

)
,

which directly implies that

gp(α) ∝ exp
(
−1

2
(θ − KµA)′l(ΣA)−1(θ − KµA)

)
.

Denote µ = KµA, Σ = l−1ΣA and denote µα and µη\α the vectors resulting from the extractions
of the coordinates corresponding to α and η\α from µ. Finally denote R(α,α) the matrix resulting
from the extraction of the rows and columns both corresponding to α of Σ−1 and denote S(α,η\α)
the one resulting from the extraction of the rows corresponding to α and columns corresponding
to η\α of Σ−1. Using Lemma 3.6 (and reordering indexes if necessary) it is straightforward that
gp(α) is proportional to the density of a Gaussian distribution

N (µα − R−1
(α,α)S(α,η\α)(η\α− µη\α), R−1

(α,α))

2. Let us now consider the likelihood contribution. Using exactly the same notations that we used
for the full conditional distribution of α for the algorithm associated with the non informative
approach we immediately find that gL(α) is proportional to the density of a Gaussian distribution

N ([M′α Mα]
−1M′α(y− Zα), σ2M′α Mα)

just as in (3.14).

3. With the help of Lemma 3.6 and using the two results above, we can now deduce the posterior
conditional distribution of α and obtain the Gaussian distribution

α|θ∗\α, y ∼ N (µα, Σα)

where (
µα

Σα

)
=

(
µα − R−1

(α,α)S(α,η\α)(η\α− µη\α)

R−1
(α,α)

)
∗
(

[M′α Mα]−1M′α(y− Zα)

σ2M′α Mα

)
.
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Full conditional distribution of β. Using similar arguments, we obtain the full conditional distribution
of β. Namely, keeping the notation introduced to derive (3.15), and combining the prior and the
likelihood contributions together with Lemma 3.6 we obtain the truncated Gaussian distribution

β|θ∗\β, y ∼ N
(

µβ, Σβ, B
dβ

+ (0, 1)
)

where (
µβ

Σβ

)
=

 µβ − R−1
(β,β)S(β,η\β)(η\β− µη\β)

R−1
(β,β)

 ∗( [M′β Mβ]
−1M′β(y− Zβ)

σ2M′β Mβ

)
.

Full conditional distribution of γ. Using again similar arguments, we obtain the full conditional
distribution of γ. Namely, keeping the notation introduced to derive (3.16), and combining the prior
and the likelihood contributions together with Lemma 3.6 we obtain the Gaussian distribution

γ|θ∗\γ, y ∼ N (µγ, Σγ)

where (
µγ

Σγ

)
=

(
µγ − R−1

(γ,γ)S(γ,η\γ)(η\γ− µη\γ)

R−1
(γ,γ)

)
∗
(

[M′γ Mγ]−1M′γ(y− Zγ)

σ2M′γ Mγ

)
.

Full conditional distribution of k. We denote MA = diag(µA) and first notice that MAk = KµA.
Using the definition of the informative prior and Lemma 3.6, we then immediately derive

k|θ∗\k, y ∼ N
(

µk , Σk
)

where (
µk

Σk

)
=

(
q (1, . . . , 1)′

r−1 Id

)
∗
(

(MA)−1η

l−1{(MA)−1ΣA(MA)−1}

)
.

Full conditional distribution of l, q, r and σ2. No calculations are required, as we respectively identify a
gamma distribution, a Gaussian distribution, a gamma distribution, and an inverse-gamma distribution
from (3.6).
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4 An application of particle filters to electricity load

forecasting

In this paper, we are interested in the online prediction of the electricity load, within the Bayesian
framework of dynamic models. We offer a review of sequential Monte Carlo methods, and provide
the calculations needed for the derivation of so-called particles filters. We also discuss the practical
issues arising from their use, and some of the variants proposed in the literature to deal with them,
giving detailed algorithms whenever possible for an easy implementation. We propose an additional
step to help make basic particle filters more robust with regard to outlying observations. Finally we
use such a particle filter to estimate a state-space model that includes exogenous variables in order to
forecast the electricity load for the customers of the French electricity company Électricité de France
and discuss the various results obtained.

4.1 INTRODUCTION

Let {Xn}n>0 and {Yn}n>0 be X ⊂ Rnx and Y ⊂ Rny -valued stochastic processes defined on a mea-
surable space. The observations {Yn}n>0 are assumed conditionally independent given the hidden
Markov process {Xn}n>0 most often referred to as the states of the model, and are characterised by
the conditional density gθ

n(yn|xn). We denote the initial density of the state as µθ(x0) and the Markov
transition density from time n− 1 to time n as f θ

n(xn|xn−1). The superscript θ on these densities is the
parameter of the model, that belongs to an open set Θ ⊂ Rnθ . The model can be summarised (using
practical and common if not exactly rigorous notations) as

X0 ∼ µθ(·), Xn|(Xn−1 = xn−1) ∼ f θ
n(·|xn−1) (4.1)

Yn|(Xn = xn) ∼ gθ
n(·|xn). (4.2)

Within the Bayesian framework, equations (4.1) specify the prior on the states of the model whose
likelihood is defined via (4.2).

Notice here that we restrict ourselves to models with independent observations, but that the
framework can easily be extended to include dependent observations if need be. The class of dynamic
models we consider, known as general state-space models or hidden Markov models (HMM) in the
literature and whose typical representation is given in Figure 4.1, includes many non linear and non
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Gaussian time series models such as

Xn+1 = Fn(Xn, Vn+1) (4.3)

Yn = Gn(Xn, Wn) (4.4)

where {Vn}n>1 and {Wn}n>0 are independent sequences of independent random variables and {Fn}n>1

and {Gn}n>1 are sequences of (possibly non linear) functions. Such models find applications in many
fields including time-series forecasting (Dordonnat, 2009), biostatistics (Rossi, 2004; Vavoulis et al.,
2012), econometrics (Chopin et al., 2012; Johansen et al., 2008; Liu and West, 2001), telecommunications
(Lee et al., 2010), object tracking (Gilks and Berzuini, 2001; Gustafsson et al., 2002; Karlsson, 2005; Rui
and Chen, 2001), etc.

Xn−2 Xn−1 Xn Xn+1 Xn+2

Yn−2 Yn−1 Yn Yn+1 Yn+2

f θ
n−1 f θ

n f θ
n+1 f θ

n+2

gθ
n−2 gθ

n−1 gθ
n gθ

n+1 gθ
n+2

Figure 4.1: A generic hidden Markov Model (HMM).

When the parameter θ is known, on-line inference about the state process given the observations
is a so-called optimal filtering problem. For simple models such as the linear Gaussian state-space
model the problem can be solved exactly using the standard Kalman filter (see for example Durbin and
Koopman, 2001), and the case of a finite state-space also allows for explicit calculations. For non linear
models, the Extended Kalman filter is often used and relies on the approximation of the first derivative
of Fn, although good performances are not guaranteed theoretically. Another technique is the so-called
Unscented Kalman filter (see Wan and van der Merwe, 2000, for the comprehensive details) which
makes use of the unscented transformation to deal with the non linearity of the system.

For our application, we are interested in the on-line prediction of the french electricity load through
the estimation (and prediction) of a dynamic model and choose to consider Sequential Monte Carlo
(SMC) methods also known as particle methods instead. SMC methods are a class of sequential
simulation-based algorithms which aim at approximating the posterior distributions of interest. They
represent a popular alternative to Kalman filters (Kantas et al., 2009) since they are often easy to
implement, apply to non linear non Gaussian models, and have been demonstrated to yield accurate
estimates (Doucet et al., 2001; Liu, 2008).

In Section 4.2 we introduce the key concepts behind sequential Monte Carlo methods. In Section 4.3
we first derive the algorithm for a basic particle filter and discuss common practical issues. We then
review the main techniques appearing in the literature to deal with these issues and we also propose
a new additional step to help make particle filters more robust with regard to outlying observations.
Finally, we propose a new nonlinear dynamic model for the electricity load in Section 4.4 and use a
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particle filter to estimate this model. We compare the predictions we obtain to operational predictions
and show that our model remains competitive, even though its definition is simpler than that of the
model studied in Dordonnat et al. (2008).

4.2 TOWARDS SEQUENTIAL MONTE CARLO

Let us first assume that the parameter θ is known: the model with θ unknown will be discussed later in
Section 4.3.7.

4.2.1 Posterior distribution

Given equations (4.1) and (4.2), the posterior distribution of the states given the observations is

πθ(x0:n|y0:n) ∝
n

∏
k=1

gθ
k(yk|xk)︸ ︷︷ ︸

n likelihoods

·
n

∏
k=1

f θ
k (xk|xk−1)︸ ︷︷ ︸

n transition densities

· µθ(x0)︸ ︷︷ ︸
initial density

. (4.5)

From equation (4.5), three distinct goals might be pursued (see for example Cappé et al., 2010; Chen,
2003)

Filtering: the aim of filtering is to estimate the distribution of the state Xn conditionally to the observa-
tions up to time n, i.e. y0:n.

Smoothing: the aim of smoothing is to estimate the distribution of the state Xn conditionally to the
observations up to time n′ (with n′ > n), i.e. y0:n′ . Note that πθ(xn|y0:n) is both a filtered and a
smoothed distribution.

Predicting: the aim of predicting is to estimate the distribution of the state Xn+τ (with an horizon
τ > 0) conditionally to the observations up to time n, i.e. y0:n. From there, using (4.2), it is easy
to forecast the upcoming observation Yn+τ which is usually the real target. When not explicitly
mentioned, the horizon considered for prediction will be τ = 1.

To summarise, given the available observations, filtering focuses on the current state, smoothing focuses
on the past states, and predicting focuses on the future states. Our goal being the online prediction
of the electricity load, we chose to focus on predicting and filtering, since the filtered distribution of
the state at time n is needed to produce forecasts for time n + τ: ultimately, smoothing only refines
the estimation of past states over time, without influencing the quality of the online prediction, and is
therefore not needed to achieve our goal.

4.2.2 The Monte Carlo toolbox for Bayesian inference

Markov Chains Monte Carlo

MCMC methods (see for example Marin and Robert, 2007; Robert, 1996; Robert and Casella, 2004) cer-
tainly represent a viable estimation procedure: most of the time, nothing really prevents the exploration
via MCMC of the posterior distribution derived in (4.5) from the prior and the likelihood given in (4.1)
and (4.2). From a practical point of view however, MCMC methods are most likely not the optimal tool:
the addition of a new observation yn+1 from the model forces the overall re-estimation of the smoothed
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distribution of the states πθ(x0:n+1|y0:n+1) even when we are interested only in the last marginal of this
distribution i.e. the filtered distribution πθ(xn+1|y0:n+1). The MCMC estimation is thus not recursive
(with regard to the time index) in the sense that the filtered distribution πθ(xn+1|y0:n+1) at time n + 1
cannot be computed from the previous filtered distribution πθ(xn|y0:n) at time n using MCMC methods,
which is a major drawback given the computationally expensive nature of these methods.

Notice also that even though designing the MCMC algorithm can be simple in some cases, the
dimension of the space explored grows linearly with the time index making the assessment of the
convergence of the produced Markov chains all the more complicated.

Sequential Monte Carlo

SMC methods provide a viable and popular alternative to MCMC methods for the Bayesian online
estimation of dynamic models. Particle methods are recursive by nature (thus computationally cheaper
than MCMC) and similar in some ways to the Kalman filter approach. Particle methods essentially
draw their strength from the immediate calculations that we show below

πθ(x0:n|y0:n) =
πθ(y0:n|x0:n)π

θ(x0:n)

πθ(y0:n)
=

πθ(yn, y0:n−1|x0:n)π
θ(x0:n)

πθ(yn, y0:n−1)

=
πθ(yn|y0:n−1, x0:n)π

θ(y0:n−1|x0:n)π
θ(x0:n)

πθ(yn|y0:n−1)πθ(y0:n−1)

=
πθ(yn|y0:n−1, x0:n)π

θ(x0:n|y0:n−1)π
θ(y0:n−1)π

θ(x0:n)

πθ(yn|y0:n−1)πθ(y0:n−1)πθ(x0:n)

=
πθ(yn|x0:n)π

θ(xn|x0:n−1, y0:n−1)

πθ(yn|y0:n−1)
· πθ(x0:n−1|y0:n−1)

i.e. with the notations we introduced earlier:

πθ(x0:n|y0:n) =
gθ

n(yn|xn) f θ
n(xn|xn−1)

πθ(yn|y0:n−1)
· πθ(x0:n−1|y0:n−1) (4.6)

∝ gθ
n(yn|xn) f θ

n(xn|xn−1) · πθ(x0:n−1|y0:n−1).

The recursive equation (4.6) plays a central role in the definition of all particle methods. An integrated
version of this equation is most often presented to emphasise the direct connection between two
consecutive filtered distributions:

πθ(xn|y0:n) =
∫

πθ(x0:n|y0:n)dx0:n−1 (4.7)

∝ gθ
n(yn|xn)

∫
f θ
n(xn|xn−1) · πθ(xn−1|y0:n−1)dxn−1.

The main idea behind particle filters is to make extensive use of equation (4.6) to compute sequential
Monte Carlo approximations of the posterior distributions of interest, in our case, the sequence of filtered
distributions. The general procedure is simple enough and mimics the iterative prediction-correction
structure of any Kalman filter. A each time n the filtered density πθ(xn|y0:n) can be approximated by
the empirical distribution of a large sample of M (M >> 1) weighted random samples termed particles.
The weighted particles evolve over time: they follow the prior dynamic distribution of the model
and get re-adjusted as soon as observations become available. At time n, the two basic steps (a lot of
refinements are possible that we will discuss later on) of particle filters are the following:
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Prediction: given particles distributed along density πθ(xn−1|y0:n−1), we simulate new particles dis-
tributed along density πθ(xn|y0:n−1) with the help of the transition density f θ

n(xn|xn−1).

Correction: we re-weight these particles distributed along density πθ(xn|y0:n−1) depending on the
observation yn with the help of (4.6) to approximate the distribution π(xn|y0:n).

Particle filters essentially combine two basic techniques: Monte Carlo integration and importance
sampling. We offer a brief overview of these two numerical integration techniques to show how closely
they are connected to SMC.

4.2.3 Numerical approximation

Monte Carlo integration allows the estimation of integrals of the form

I = Eπ [h(X)] =
∫

h(x)π(x)dx, (4.8)

where π is a probability density and where h ∈ L1(π). This method is often used to numerically
approximate the expectation of a random variable whose density is π or a moment of higher order.

Importance sampling

The importance sampling method provides a way to estimate (4.8), that extends the results given above.
We now assume that a probability density q (the so-called importance density) is available from which
we can simulate, and such that the support of π is included in that of q. Re-writing

I =
∫

h(x)π(x)dx =
∫ h(x)π(x)

q(x)
q(x)dx,

and remembering that h ∈ L1(π), it is easy to see that hπ/q ∈ L1(q). Hence, it becomes clear that it is
in fact possible to use Monte Carlo integration with q instead of π, and this for any choice of q satisfying
to the support condition.

Given X1, . . . , XM i.i.d. random variables with probability density q, the importance sampling
estimator of I is defined by

ÎIS
M(q) =

1
M

M

∑
j=1

π(X j)h(X j)

q(X j)
=

1
M

M

∑
j=1

w̃jh(X j) (4.9)

where

w̃j =
π(X j)

q(X j)
. (4.10)

For h ∈ L1(π), it is then straightforward that:

Eq[ ÎIS
M(q)] = I, ÎIS

M(q) a.s−→ I.

A drawback of the importance sampling presented above resides in the fact that even though it allows
for an estimation of integrals such as (4.8), it does not provide an approximation of the density π by the
empirical distribution of the particles X j weighted by w̃j because the mean of the weights 1

M ∑M
j=1 w̃j is

not equal to 1. An approximation similar to that obtained for the Monte Carlo estimator is nevertheless
possible given a slight modification to the original importance sampling technique.
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Self-normalised importance sampling

Using the same notations as in the previous section, since π is a probability density, we can also write

I =
∫

h(x)π(x)dx =

∫ h(x)π(x)
q(x)

q(x)dx∫
π(x)
q(x)

q(x)dx
.

A self-normalised importance sampling version of the previous estimator can thus be formulated. Given
X1, . . . , XM i.i.d. random variables with probability density q, the self-normalised importance sampling
estimator of I is defined by

ÎSNIS
M (q) =

M

∑
j=1

h(X j)π(X j)

q(X j)

M

∑
j=1

π(X j)

q(X j)

=
M

∑
j=1

wjh(X j), (4.11)

where, remembering the definition of the weights w̃j given in (4.10), we define the self-normalised
weights as

wj =
w̃j

∑M
k=1 w̃k

. (4.12)

For h ∈ L1(π), even though the estimate is shown to be biased, it achieves consistency (see for example
Geweke, 1989)

Eq[ ÎSNIS
M (q)] −→ I, ÎSNIS

M (q) a.s−→ I.

For q such that
∫ π2(x)

q(x) dx < +∞, and h ∈ L2(π2/q), i.e. such that
∫ h2(x)π2(x)

q(x) dx < +∞, let us denote

σ2
q = Varq[h(X1)π(X1)/q(X1)],

the variance of h(X)π(X)/q(X) when the distribution of X has density q.
We then have (see Geweke, 1989, for the proof)

√
n( ÎSNIS

M − I) d−→ N(0, σ2
q ).

Observe now that using the self-normalised weights wj as defined in (4.12), (4.11) can be reformulated
as:

ÎSNIS
M (q) =

∫
h(x)µSNIS

M (dx), (4.13)

where

µSNIS
M (·) =

M

∑
j=1

wjδ(X j, ·) (4.14)

is a probability measure that yet again approximates the measure of density π consistently.
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Application to dynamic models

We describe the application of self-normalised importance sampling to estimate a sequence of integrals
that involve the posterior distribution (4.5) and that are of the form

In =
∫

h(xn)π
θ(x0:n|y0:n)dx0:n

=
∫

h(xn)π
θ(xn|y0:n)dxn.

We use the self-normalised importance sampling estimator defined in (4.11), with π(x) = πθ(x0:n|y0:n)

and q(x) = q(x0:n|y0:n). Given M particles X1
0:n, . . . , XM

0:n, i.i.d. with probability density qθ(x0:n|y0:n),
we will approximate In by

ÎPF
n,M =

M

∑
j=1

wj
nh(X j

n),

where mimicking the definitions given (4.10) and (4.12) we define

wj
n =

w̃j
n

∑M
k=1 w̃k

n
, (4.15)

with

w̃j
n =

πθ(X j
0:n|y0:n)

qθ(X j
0:n|y0:n)

. (4.16)

Note that to alleviate the notational burden, we voluntarily omit the dependence of the importance
weights on the parameter θ, and will do so for the remainder of the chapter when no confusion is
possible.

A convenient form of importance density

Let us consider an importance density q that can be factorised as follows:

qθ(x0:n|y0:n) = qθ(xn|y0:n−1, x0:n)qθ(x0:n−1|y0:n−1)

= qθ(x0|y0)
n

∏
k=1

qθ(xk|y0:k−1, y0:k). (4.17)

It is now easy to see, using (4.6), that the weights w̃θ
n(X j

0:n) can be updated recursively via

w̃j
n =

πθ(X j
0:n|y0:n)

qθ(X j
0:n|y0:n)

=
gθ

n(yn|X j
n) f θ

n(X j
n|X

j
n−1)π

θ(X j
0:n−1|y0:n−1)

πθ(yn|y0:n−1)qθ(X j
n|X

j
0:n−1, y0:n)qθ(X j

0:n−1|y0:n−1)

= w̃j
n−1

gθ
n(yn|X j

n) f θ
n(X j

n|X
j
n−1)

πθ(yn|y0:n−1)qθ(X j
n|X

j
0:n−1, y0:n)

. (4.18)

where πθ(yn|y0:n−1) does not depend on the index j, and need not be computed at all since the weights
wj

n featured in the estimator are the self-normalised version of the weights w̃j
n (the constant vanishes

after the self-normalisation). Note that wj
n−1 can be substituted to w̃j

n−1 in the recursive update (4.18)
for the very same reason.

107



4. AN APPLICATION OF PARTICLE FILTERS TO ELECTRICITY LOAD FORECASTING

Equation (4.18) lies at the very core of all the particle filters in general, some variants of which we
describe in the next section. It summarises, by itself, the edge that SMC methods have over MCMC
methods in general in the context of dynamic models: it allows for sequential recursive estimations
and predictions. At each time step, two things only are required to estimate the quantity of interest:
simulations from the importance density qθ (the choice of which shall be discussed) and the update of
the particles’ weights via the computation of (4.18).

4.3 PARTICLE FILTERS

From this point on, we adopt the convention that whenever the index j is used, we mean “for all
j = 1, . . . , M“. We present SMC methods designed to approximate the sequence of filtered distributions
πθ(xn|y0:n): at the end of each time step n, the particle filters discussed hereafter return M particles X j

n

with weights wj
n that can be used to approximate for instance

• the filtered distribution πθ(xn|y0:n) by the finite mixture of weighted Dirac masses

π̂(dxn|y0:n) =
M

∑
j=1

wj
nδ(X j

n, dxn),

• integrals such as In =
∫

h(xn)π(xn|y0:n)dxn, with h ∈ L1(π(·|y0:n)), by

În,M =
M

∑
j=1

wj
nh(X j

n).

4.3.1 Sequential Importance Sampling (SIS)

Conception

The SIS filter (sometimes also called Bayesian Importance Sampling) is a direct application of the
calculations shown in the previous section: it relies solely upon the sequential use of the self-normalised
importance sampling technique. The details are given in Algorithm 4.1.

Algorithm 4.1 (Sequential Importance Sampling (SIS) for filtering).

At time n = 0

1. Sample X j
0 ∼ qθ(x0|y0).

2. Compute w̃j
0 =

gθ
0(y0|X

j
0)µ

θ(X j
0)

qθ(X j
0|y0)

and set wj
0 ←

w̃j
0

∑M
k=1 w̃k

0
.

At time n > 1

1. Sample X j
n ∼ qθ(xn|x0:n−1, y0:n).

2. Compute w̃j
n = wj

n−1
gθ

n(yn|X j
n) f θ

n(X j
n|X

j
n−1)

qθ(X j
n|X

j
0:n−1, y0:n)

and set wj
n ←

w̃j
n

∑M
k=1 w̃k

n
.
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At each time step, new particles are first simulated conditionally to the old ones to represent the
predictive distribution of the upcoming state and, as the observation becomes available, their weights
then get readjusted to represent the filtered distribution.

Prediction

The estimation of the predicted distribution πθ(xn+τ |y0:n) (τ > 1) can also be computed from the
estimation of the filtered distribution up to time n. The principle, described for instance in Doucet
(1998), is identical in essence to that developed in Durbin and Koopman (2001) for Kalman filters.
Since the observations at times n + 1, . . . , n + τ are not yet available, no correction may take place after
the predictions of the state that involve the transition densities f θ

n+τ , . . . , f θ
n+1 : formally, the terms

gθ
n+τ , . . . , gθ

n+1 vanish. The details are given in Algorithm 4.2. Observe that in this case, the importance
density qθ(xn+τ |x0:n+τ−1, y0:n) needs to be chosen so as not to involve the yet unknown values of the
upcoming observations yn+1:n+τ .

Algorithm 4.2 (Sequential Importance Sampling (SIS) for predicting).

At time n > 0, for τ = 1, . . .

1. Sample X j
n+τ ∼ qθ(xn+τ |x0:n+τ−1, y0:n).

2. Compute w̃j
n+τ = wj

n+τ−1
f θ
n+τ(X j

n+τ |X
j
n+τ−1)

qθ(X j
n+τ |X

j
0:n+τ−1, y0:n)

and set wj
n+τ ←

w̃j
n+τ

∑M
k=1 w̃k

n+τ

.

Missing observations

When dealing with a missing observation, the SIS filter requires little modification: when observation
Yn is missing, the corresponding state Xn is predicted using Algorithm 4.2 since πθ(xn|y0:n−1) is the
only accessible density under such circumstances. This leads to Algorithm 4.3.

Algorithm 4.3 (Sequential Importance Sampling (SIS) for filtering with missing observations).

At time n > 0, if observation Yn is missing

1. Sample X j
n ∼ qθ(xn|x0:n−1, y0:n−1).

2. Compute w̃j
n = wj

n−1
f θ
n(X j

n|X
j
n−1)

qθ(X j
n|X

j
0:n−1, y0:n−1)

and set wj
n ←

w̃j
n

∑M
k=1 w̃k

n
.

Comments

The major drawback of the SIS filter comes from the fact that the distribution of the weights degenerates,
with the variance of the importance weights increasing over time (see Doucet et al., 2000) meaning that
the estimated distributions become less and less unreliable: after a few iterations, all but one of the
normalised importance weights are close to zero. An important fraction of the calculations involved
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in the algorithm is thus dedicated to particles whose contributions to the estimation are almost null,
making the SIS particle filter an impractical estimation procedure at best.

4.3.2 Monitoring the degeneracy

To alleviate the degeneracy problem that we outlined, additional steps are traditionally implemented
into Algorithm 4.1. Since adding these new steps comes at a non negligible computational cost, it is
important to somehow monitor how badly the weight distribution degenerates at a given time step,
because it is usually interesting to ignore the degeneracy problem unless it reaches a given threshold.

A popular rule of thumb, first introduced in Kong et al. (1994) and later copiously reprised in the
literature (see for instance Chen, 2003; Doucet et al., 2000; Liu, 2008), is to consider the so-called effective
sample size based on the normalised weights wj

n at time step n and defined by

M

1 + Varqθ(·|y0:n)[w1
n]

.

This quantity is usually numerically approximated by the following estimate

ESS(n) =
1

∑M
k=1(wk

n)
2

. (4.19)

It ranges from M (reached when all the particles share equal weights of value 1) to 1/M (reached when
a single particle is given the whole probability mass of the sample, with a weight of 1).

A related degeneracy measure is the coefficient of variation (found in Kong et al., 1994; Liu and
Chen, 1995), ranging from 0 to

√
M− 1, that is given by

CV(n) =

√√√√ 1
M

M

∑
k=1

(Mwk
n − 1)2, (4.20)

and satisfies to

ESS(n) =
M

1 + CV(n)2 . (4.21)

The Shannon entropy of the importance weights, ranging from log M to 0, is sometimes also
mentionned. It is defined by

E(n) = −
M

∑
k=1

wk
n log wk

n. (4.22)

Cornebise (2009) recently proved that the criteria (4.20) and (4.22) are estimators of the χ2-divergence
and the Kullback-Leibler divergence between two distributions which are associated with the impor-
tance and target densities of the particle filter.

The evaluation of one (or more) of these criteria is introduced at each time step, with the additional
procedures that we discuss next taking place if and only if the criterion reaches a certain fixed threshold
so as to reduce the additional computational burden. The most common threshold found in the literature
is ESS(n) < 0.5M. Examples illustrating the behaviours of these criteria are given later in Figures 4.3,
4.4 and 4.5.
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4.3.3 Resample step

A resampling step is most often introduced into Algorithm 4.2 to help and fight the degeneracy problem.
The aim of this resampling step is to favour the living of the interesting particles (the ones with more
important weights, that are more representative of the targeted distribution) and encourage the dying
of the not so interesting particles so as to focus the computational effort upon particles that matter
most for the estimation. The resampling method has to be carefully chosen, in particular it should not
introduce any bias in the final estimate as mentioned in Doucet et al. (2000)

During this new step, particles are resampled according to their weights: a particle with an important
weight is more likely to appear (and ”survive”) in the new sample generated, possibly more than once,
whereas a particle the weight of which is close to zero is more likely not to be drawn at all (and “die“)
from a given time step to the next.

Chen (2003) mentions that there are a few resampling schemes available in the literature. It is
important to note that even though resampling might alleviate the degeneracy problem, it also brings
extra random variation to the samples of particles. As a consequence, the filtered quantities of interest
should preferably be computed before resampling and not after. We only present the details of the
multinomial and residual resampling schemes.

Multinomial resampling

Multinomial resampling is the most popular resampling scheme, most likely because it is the easiest
to both understand and implement: at a given time step, it suffices to simulate a discrete random
variable which takes values Xk

n with probability wk
n. The details of multinomial resampling are given in

Algorithm 4.4 where only the new step is described.

Algorithm 4.4 (Multinomial resampling step).

At time n > 0

3. Sample Zj
n ∼

M

∑
k=1

wk
nδ(Xk

n, dx).

Replace X j
n ← Zj

n and wj
n ← 1/M.

Used as is, it leads to the well-known Sampling Importance Resampling (SIR) filter, sometimes also
called Bootstrap filter, that can be found in Gordon et al. (1993). A straightforward implementation
of the multinomial resampling has complexity O(M log M): it is indeed equivalent to simulating M
draws from a discrete random variable Zn such that P(Zn = k) = wk

n.
A trivial implementation for such simulations requires first to draw U1

n, . . . , UM
n i.i.d. with uniform

distribution and then to find the indexes ij
n for which U j

n ∈]∑i−1
k=1 wk

n, ∑i
k=1 wk

n]. Finding the indexes ij
n

has only complexity O(M) when the random variables are U j
n are ordered, but ordering these random

variables has complexity O(M log M) at least, using for instance the quicksort algorithm (see Hoare,
1962).

A practical implementation of the multinomial resampling is proposed in Doucet (1998) which
circumvents the naive need of sorting M i.i.d. random variables with uniform distribution and relies
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upon a direct simulation trick instead. The complexity of the SIR filter can hence be reduced from
O(M log M) (naive implementation using quicksort) to only O(M) which saves a significant amount of
computational resources.

Residual-multinomial resampling

Residual-multinomial resampling is proposed in Liu and Chen (1998) to reduce the extra variance
introduced by the resamping step. It is partially deterministic as opposed to the multinomial resampling
and is formulated below. Let bxc designate the integer part of a real number x and define for any n > 0:

Rn =
M

∑
k=1
bM · wk

nc, wj
n =

M · wj
n − bM · w

j
nc

M− Rn
.

Algorithm 4.5 (Residual-multinomial resampling step).

At time n > 0

3. Copy bM · ŵj
nc particles X̂ j

n. (Rn particles are thus allocated, say Z1
n, . . . , ZRn

n ).

Sample the remaining particles ZRn+1
n , . . . , ZM

n ∼
M

∑
k=1

wk
nδ(Xk

n, dx).

Replace X j
n ← Zj

n and wj
n ← 1/M.

The details of residual-multinomial resampling are given in Algorithm 4.5 where only the new step
is described. In essence, particles with weights greater than 1/M are forced into the new sample, and
the rest is allocated at random, depending on the remaining probability mass available. Note that
the last part of a residual resampling step is basically a multinomial resampling step on the residual
probability mass, hence the name.

It is shown to be computationally cheaper than the multinomial resampling, due to the fact that only
a fraction of the M particles are randomly allocated. It does not introduce any bias for the estimation
and has the added advantage of having a lower variance than that of the multinomial resampling (see
Douc and Cappe, 2005, for the proofs).

Other resampling techniques

Stratified and systematic resampling also offer an alternative to the multinomial resampling scheme (see
Kitagawa (1996) and Carpenter et al. (1999) or Chen (2003) for a more general overviews). Systematic
resampling appears to be another popular choice in the literature for computational reasons even though
its variance is not guaranteed to be smaller than that of the multinomial resampling as stated in Douc
and Cappe (2005). A short study of these techniques and a numerical comparison of their performance
on an example are offered in Cornebise (2009). Note that residual versions of these techniques also exist,
where they are substituted to the multinomial sampling used in the second half of Algorithm 4.5.

Limitations of the resampling procedure

The resampling procedure alleviates the degeneracy problem but also introduces practical and theoreti-
cal issues (as mentioned in Doucet et al., 2000, for example). From a practical point of view, resampling
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very obviously limits the opportunity of parallelisation of the algorithm. From a theoretical point of
view, simple convergence results are lost due to the fact that after one resampling step the particles are
not independent anymore. Moreover, resampling causes the particles with high importance weights to
be statistically selected many times: the algorithm thus suffers from the so-called loss of diversity.

4.3.4 Move step

The loss of diversity among the particles following the resample step is usually addressed in the
literature with the introduction of yet another additional move step into the algorithm: the idea behind
it is to rejuvenate the diversity after the particles have been resampled.

Using MCMC

Doucet et al. (2001); Gilks and Berzuini (2001) present the so-called Resample-Move algorithm in which
an MCMC step is used after resampling. This new step relies upon the use of Markov transition kernels
with appropriate invariant distributions. Moving the particles according to such kernels formally
guarantees the particles still target the distribution of interest but also give them an additional chance
to move towards an interesting region of the state space while increasing the diversity of the sample at
the cost of an increased computational burden. Doucet and Johansen (2011) underline the possibility
of using even non ergodic MCMC kernels for this purpose and also propose to go a step further and
rejuvenate not only the current state but also some of the (immediate) past states with the so-called
Block Sampling (the computational cost of which is thus even greater).

Using regularisation

Another approach to deal with the loss of diversity is based upon regularisation techniques. Let us
define for x, x∗ ∈ X ⊂ Rnx

Kh(x, x∗) = h−nx · (det Σn)
−1/2 · K

(
Σ−1/2

n · x− x∗

h

)
where K is usually a smooth symmetric unimodal positive kernel of unit mass (hence a probability
measure), h is the bandwidth of the kernel, and Σn designates the empirical covariance matrix of the
sample (see Silverman, 1986, for the idea of whitening the sample via Σn).

Algorithm 4.6 (Regularisation step).

At time n > 0

4. Sample ε
j
n ∼ K(x), and set Zj

n ← X j
n + h · Σ1/2

n · εj
n.

Replace X j
n ← Zj

n and keep wj
n ← wj

n.

Gordon et al. (1993) originally referred to that step as ”jittering“ since it adds a small amount of
noise to each resampled particle. Note that, when used together with the multinomial resampling
scheme described in Algorithm 4.4, the resulting combination of the two steps can be reformulated
as described in Algorithm 4.7: it is then equivalent to resampling new particles from the smoothed
estimated target distribution (using kernel density K).
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Algorithm 4.7 (Alternate formulation for the combination of Algorithms 4.4 and 4.6).

At time n > 0

3+4. Sample Zj
n ∼

M

∑
k=1

wk
nKh(Xk

n, x).

Replace X j
n ← Zj

n and wj
n ← 1/M.

The choice of both the kernel smoothing density K and the bandwidth h obviously has a big impact
on the algorithm. The idea is to resample from a density estimated from the particles at time step n that
best approximates the true target density. Picking K(·) = δ(·, 0) the Dirac mass at the origin turns the
regularised SMC filter back into a simple SMC filter. From a general point of view, we would like the
estimated density to converge as fast as possible towards the true target density as M goes to +∞, since
the number of particles will necessarily be limited by the computational resources.

For the Gaussian kernel (among others), Silverman (1986) shows it is possible to compute the optimal
bandwidth to use, i.e. the bandwidth that minimises the variance of the density estimate. Although it
could be argued that selecting a proper bandwidth is a difficult task, this optimal bandwidth yields
good results in practise and at least provides a rough idea about the scaling of h. As is the case with
kernel density estimates, the choice of h directly influences the trade-off made between variance and
bias of the estimate: if h is chosen too small, the loss of diversity will still be severe, and if h is chosen
too large, the filtered density will roughly be estimated as a single kernel, hence introducing a severe
bias into the estimation.

The use of the Epanechnikov kernel, proportional to 1− ‖x‖2 on the unit ball of the state space, is
recommended in Silverman (1986) because it is asymptotically the most efficient, and Doucet (1998)
claims it can be difficult to choose a ”good” kernel. However, we advocate the use of the Gaussian
kernel whenever possible for computational reasons: simulations from the Gaussian kernel are readily
available on most machines and come at a computationally cheaper price than simulations from the
Epanechnikov kernel. But the non optimality of Gaussian kernel does not outbalance its ease of use,
since the choice of the kernel neither affects the order of the bandwidth nor the rate of convergence as
stated in DasGupta (2008).

From a general point of view it is also possible to choose a nx-dimensional kernel under the form
of a product of nx 1-dimensional (possibly distinct) kernels. Such a choice is preferable when some
coordinates of the state are bounded. It allows for easier simulations on these coordinates using
dedicated truncated kernels whereas a straightforward accept-reject algorithm could turn out to be
highly inefficient (with a low acceptance rate) depending on the boundaries of the state space.

Finally, the regularisation can also be done before resampling thus resulting in the so-called pre-
regularised particle filter (pre-PRF) as opposed to the post-regularised particle filter presented here.
Theoretical convergence results about these regularised filters are available in Oudjane (2000) and Rossi
(2004)
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4.3.5 Detection and removal of outliers

In order to deal with the sensitivity of the particle filters to outliers, we propose a new additional rule at
the end of step 2 of Algorithm 4.1. Its role is to make sure that outliers do not lead to a fully degenerated
situation, that the algorithm would not recover from. The details of it are given in Algorithm 4.8 where
only the additional rule is described.

Algorithm 4.8 (Online detection and removal of outliers.).

At time n > 0

If the degeneracy problem is critical, consider the observation yn as missing (see Algorithm
4.3) and rewind back to step 1.

The rule applies only to situations where the degeneracy of the sample is critical: when the impor-
tance density chosen is the prior density, it triggers only when the current observation is not predicted
efficiently. In that case, we proceed as if the observation was missing. In practise the degeneracy
problem is deemed critical when a criterion such as ESS(n) < ε ·M is met, with ε > 0 very small.

Observations that do not agree with the model are thus detected online and ignored to prevent
immediate degeneracy. This trick is in a way similar to the one introduced in Hu et al. (2008, 2011)
where a resample step is iterated until the likelihood of the current observation with regard to the
resampled particles is above a given threshold. While both techniques ensure that the particles do not
collapse when an outlier is met, the cost paid is different for each. The alteration proposed in Hu et al.
(2008, 2011) can be computationally expensive (with an unbounded runtime) but the observation ends
up being taken into account, while our own modification is definitively cheaper (with a guaranteed
fixed runtime) but discards the observation at hand when it strongly disagrees with the current state of
the model. A significant change of state will still be detected in the long run, because considering the
observation yn as missing automatically implies the variance of the state grows larger (which means
that, if it were to be repeated, the outlying observation, would seem more likely at the next time step,
with regard to the new state).

4.3.6 Choice of the importance density

As previously stated the particle filters rely on the introduction of an importance density that was
chosen of the form given in (4.17) i.e.

qθ(x0:n|y0:n) = qθ(x0|y0)
n

∏
k=1

qθ(xk|y0:k−1, y0:k).

Choosing carefully the importance density qθ can help reduce the variance of the importance weights
and thus alleviate the degeneracy problem. As the choice is abundantly discussed in the literature, we
only selected three representative alternative among the many that are available.

Prior density

A default choice consists of taking qθ(x0|y0) = µθ(x0) and qθ(xn|x0:n−1, y0:n) = f θ
n(xn|xn−1), i.e. taking

the prior density (4.1) of the model as the importance function. This choice works even with missing
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data (as it does not depend on yn) and leads to much simpler calculations for the update of the
importance weights as can be seen directly in the formulae given in Algorithm 4.9.

Algorithm 4.9 (Sequential Importance Sampling (SIS) for filtering, using the prior density as the
importance density).

At time n = 0

1. Sample X j
0 ∼ µθ(x0).

2. Compute w̃j
0 = gθ

0(y0|X
j
0) and set wj

0 ←
w̃j

0

∑M
k=1 w̃k

0
.

At time n > 1

1. Sample X j
n ∼ f θ

n(xn|X j
n−1).

2. Compute w̃j
n = wj

n−1gθ
n(yn|X j

n) and set wj
n ←

w̃j
n

∑M
k=1 w̃k

n
.

Note that using the prior density as the importance density makes the algorithm propose new
particles in a blind way: the new particles are simulated around the current state, not around the
upcoming targeted state. With such a choice of importance density, the algorithm becomes especially
sensitive to outliers. An annealed version of the prior distribution is proposed in Chen (2003) to help
deal with some situations where prior and likelihood do not agree.

Optimal density

Although popular, the choice of the prior density is not optimal: the optimal choice is given by
qθ(x0|y0) = πθ(x1|y1) and qθ(xn|x0:n−1, y0:n) = πθ(xn|yn, xn−1) in the sense that it minimises the vari-
ance of the importance weights conditional upon the past states and the past observations as can be seen
in Doucet et al. (2000). The idea underlying this choice is to take into account the upcoming observation
so that particles are not blind to the upcoming state anymore. Most of the time sampling from these
optimal distributions is not an option however, and it is usually recommended to approximate them if
possible: for example Pitt and Shephard (1999) propose the so-called Auxiliary Particle Filter, Doucet
et al. (2000) use the Extended Kalman filter to derive a Gaussian approximation (relying on a local
linearisation of the state space model) and van der Merwe et al. (2001) discuss the use of the Unscented
Kalman Filter to obtain such approximations (see Wan and van der Merwe, 2000, for the details about
implementing the UKF).

Independent density

Let us mention that it is also possible to use an independent importance density (independent with
regard to the states and observations) but it is strongly recommended to avoid such a choice because it
”ignores” both the current and the upcoming states (see Doucet et al., 2000)
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4.3.7 Parameter estimation

Thus far, state estimation was discussed conditionally to the fact that the parameter θ was known.
However, θ is often unknown and has to be estimated together with the state of the dynamic model.
Kantas et al. (2009) offers a comparative review of the possible choices available for parameter estimation,
presenting maximum likelihood and Bayesian parameter estimation in the context of an offline or online
procedure. We provide here only a brief overview of the Bayesian parameter estimation and direct the
interested reader to the original paper for the complete discussion.

One of the first approach considered in the literature for parameter estimation is to extend the state
Xn at time n into a new state Zn = (Xn, θn) with initial distribution µθ0(x0)π(θ0) and transition density
f θn(xn|xn−1) · δ(θn, θn−1) and then estimate this new extended model with a standard SMC filter as in
Kitagawa (1996). Even though the approach is theoretically sound as claimed in Kantas et al. (2009);
Rossi (2004), it can lead to a strong loss of diversity problem on the coordinate θ when no move step
is implemented as the parameter space is only explored at the initialisation of the algorithm, making
such an approach often unusable. The addition of a move step into the algorithm provides a satisfying
solution to this problem as can be seen in Rossi (2004) who successfully applied the kernel regularisation
technique, or in Andrieu et al. (1999) who makes use of MCMC techniques in a move step to update the
parameter value. Another option is to force a fictitious small dynamic upon the parameter as described
in Higuchi (2001); Kitagawa (1998); Liu and West (2001) so that it is artificially allowed to evolve over
time, even though Kantas et al. (2009) rightly remarks that modifying the model in such a way makes it
hard to quantify how much bias is introduced in the resulting estimates.

A more recent way of estimating the parameter together with the state relies upon the use of so-called
Particle Markov Chain Monte Carlo (PMCMC) methods found in Andrieu et al. (2010). These methods
are computationally expensive both in term of storage and calculations, because their computational
cost typically grows with time as underlined in Chopin et al. (2012), and thus are less fit for online
estimation than some standard SMC filter: the most basic PMCMC method, known as the Particle
Marginal Metropolis-Hastings (PMMH) sampler and described in Kantas et al. (2009), involves running
an SMC filter for each step of a Metropolis-Hastings algorithm used to propose a new value of the
parameter θ.

4.3.8 Asymptotic properties

As the voluminous literature on the topic attests, particle filters are an effective mean of approximating
the targeted filtered density. In the recent years, the huge popularity of these methods has drawn the
attention of the scientific community upon the theoretical problems underlying their use. Although
the convergence (of the approximated filtered distribution towards the true filtered distribution, as the
number of particles M goes to +∞) is rather trivial for the SIS filter given in Algorithm 4.1, such results
are noticeably harder to get as soon as resample and move steps are involved (the difficulty stemming
from the interaction involved within the particles). Some of the most recent and influential works on
the matter include Douc and Moulines (2012); Moral and Guionnet (1999); Oudjane and Rubenthaler
(2005); Rossi (2004) with Chopin (2004); Crisan and Doucet (2002); Douc and Moulines (2008); Hu et al.
(2008) making for a somewhat easier read for the practitioners.
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4.3.9 Summary

In the end, keeping in mind that the original aim is the online estimation and prediction, we imple-
mented an algorithm not too computationally expensive. We chose the importance density to be the
prior density of the model and included a residual resample step coupled with a Gaussian kernel
regularisation move step, that triggered whenever ESS(n) < 0.5M unless ESS(n) < 0.001M, in which
case the current observation was instead considered an outlier and thus treated as missing. As for the
parameter estimation problem, we opted for the solution of extending the state-space and introduced
no artificial dynamic on the parameter θ, which results in the disappearance of the θ superscript on
densities µ, fn and gn in the description of Algorithm 4.10. We did however test the introduction of an
artificial dynamic on the parameters but observed no changes in the measured overall performance.

Algorithm 4.10 (Particle filter used for our application).

At time n = 0

1. Sample X̂ j
0 ∼ µ(x0).

2. Compute w̃j
0 = g0(y0|X

j
0) and set ŵj

0 ←
w̃j

0

∑M
k=1 w̃k

0
.

• if ÊSS(0) < 0.001M, set X j
0 ← X̂ j

0 and wj
0 ← 1/M.

• if 0.001M 6 ÊSS(0) < 0.5M, use residual-multinomial resample (see Algorithm 4.5) and
regularisation move (see Algorithm 4.6) steps to set X j

0 and wj
0.

• if 0.5M 6 ÊSS(0), set X j
0 ← X̂ j

0 and wj
0 ← ŵj

0.

At time n > 1

1. Sample X̂ j
n ∼ fn(xn|X j

n−1).

2. Compute w̃j
n = wj

n−1gn(yn|X j
n) and set ŵj

n ←
w̃j

n

∑M
k=1 w̃k

n
.

• if ÊSS(n) < 0.001M, set X j
n ← X̂ j

n and wj
n ← wj

n−1.

• if 0.001M 6 ÊSS(n) < 0.5M, use residual-multinomial resample (see Algorithm 4.5) and
regularisation move (see Algorithm 4.6) steps to set X j

n and wj
n.

• if 0.5M 6 ÊSS(n), set X j
n ← X̂ j

n and wj
n ← ŵj

n.

4.4 APPLICATION

In this Section we describe an application of particle filters for electricity load forecasting. We quickly
describe the data used for our experimentation and the two similar models that were estimated using
Algorithm 4.10, deal with the problem of initialising the particle filter and discuss the results obtained.
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4.4.1 Data

Calendar information

Time range. The data chosen for the application contain the consolidated half-hourly electricity load
at the ”EDF” perimeter over the period ranging from 04/01/2006 to 03/31/2011 which represents
five years worth of measurements, with 48 points per day. Note that only an estimation of the load
is available in real time. The consolidated data correspond to the true (not estimated) signal that is
available only three weeks later.

Daytypes. The calendar used for the application provides nine distinct daytypes, the list of which is
given in Table 4.1. In essence, this is a very basic calendar that models a single bank-holidays effect
where more detailed calendars would model multiple different ones. Although such a basic calendar
arguably does not reflect the whole variety of daytypes, it is detailed enough for our purpose and helps
keep the dimension of the model we propose as low as possible.

# day
0 mon.
1 tue.-wed.-thu.
2 fri.

# day
3 sat.
4 sun.
5 before BH

# day
6 BH
7 after BH
8 between BH and a weekend

Table 4.1: Daytypes provided by the basic calendar used in the application. BH stands for a bank
holiday.

Note that the operational model used by EDF also require the precise specification of daytypes and
so-called offsets, the latter being used to model breakpoints (see Bruhns et al., 2005, for the details).

From here on, we will call special, the instants in the calendar where specific information is needed
for the operational model to be correctly estimated and predicted. These special instants essentially
correspond to bank-holidays (daytypes from 5 to 8), or the summer and winter holiday breaks and are
signalled on Figure 4.2.

Temperature information

Two different kinds of temperature related data are available for our experimentation. First of all, the
data include the raw observed temperature that we will denote Traw for each instant within the period of
study. A so called smoothed heating temperature (because it appears in the heating part of the model) is
available over the period of study as well that we will denote Theat. This smoothed heating temperature
Theat is a convex combination of the raw temperature Traw and two exponentially smoothed versions of
it as described in Bruhns et al. (2005). Let us define Tϑ

n,i an exponentially smoothed version of the raw
temperature (with smoothing coefficient ϑ) for the day n > 0 and the instant 0 6 i 6 47 as

Tϑ
0,0 = Traw

0,0

Tϑ
n,i = ϑ · Tϑ

n,i−1 + (1− ϑ) · Traw
n,i

where Tϑ
n,−1 is a shorthand for Tϑ

n−1,47. Then Theat is defined by

Theat
n,i = αi · T

ϑ1,i
n,i + βi · T

ϑ2,i
n,i + (1− αi − βi) · Traw

n,i .
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Figure 4.2: Repartition of the bank holidays amidst the calendar from 04/01/2007 to 03/31/2011. Each
column represents a month.

where coefficients ϑ1,i , ϑ2,i , αi , βi depend on the instant i considered and are optimised for the heating
part of an operational model that was estimated on a part of the data available. Similarly, a smoothed
cooling temperature that we will denote Tcool is also provided, that only involves a single exponential
smoothing instead of two, and the coefficients of which are optimised for the cooling part of the same
operational model. Finally from Tcool, another quantity ∆cool is built which is defined as

∆cool
n,i = (Tcool

n,i − ucool
i )1]−∞, Tcool

n,i [(u
cool
i )

and where the coefficients ucool
i were also optimised.

4.4.2 Dynamic models

The formulation of the models that we consider was inspired by the works of Bruhns et al. (2005);
Dordonnat (2009); Launay et al. (2012b). It features three parts (seasonality, heating, cooling) similarly
to what was done in Launay et al. (2012b) (see Chapter 3) and includes a two layers dynamic on the two
most relevant parts with regard to the French electricity load for each of the 48 half-hours (or instants)
within a day. The 48 corresponding independent models are estimated and predicted in parallel, using
the calendar and temperature information described above, the results being aggregated back together
at the end of the process. The dimensions of the parameter and state spaces were voluntarily kept small:
the goal is ultimately to provide competitive one-day-ahead predictions for the electricity load based
on a model as parsimonious as possible within a rather general framework.

Main model

We denote N (µ, Σ) the Gaussian distribution with mean µ and variance Σ, and N (µ, Σ, S) the corre-
sponding truncated Gaussian distribution the support of which is S . For each half-hour, and removing
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the now superfluous i subscript, the main model that we consider is defined by

yn = xn + νn, (4.23)

where νn ∼ N (0, σ2) and where the state xn is made of three parts

xn = xseason
n + xheat

n + xcool
n ,

that are defined by

xseason
n = sn · κdaytypen

xheat
n = gheat

n (Theat
n − uheat)1]Theat

n ,+∞[(u
heat)

xcool
n = gcool∆cool

n .

The various components obey the following prior dynamic

sn = sn−1 + εs
n, εs

n ∼ N
(

0, σ2
s,n, ]− sn−1, +∞[

)
gheat

n = gheat
n−1 + ε

g
n, ε

g
n ∼ N

(
0, σ2

g,n, ]−∞, −gheat
n−1[

)
σs,n = σs,n−1 + ηs

n, ηs
n ∼ N

(
0, σ2

s , ]− σs,n−1, +∞[
)

σg,n = σg,n−1 + η
g
n , η

g
n ∼ N

(
0, σ2

g , ]− σg,n−1, +∞[
)

where daytypen, Theat
n and ∆cool

n correspond to the exogenous variables that we already discussed:

• denoting Ndaytype the number of different daytypes featured in the calendar provided, daytypen ∈
N takes a finite number of values between 0 and Ndaytype − 1 and represents the class to which
the day n belongs with regard to the calendar ;

• Theat
n ∈ R is the temperature used to compute the heating part of the model ;

• ∆cool
n ∈ R+ provides the cooling degrees needed to compute the cooling part of the model.

Using the definitions and notations introduced in Section 4.1, the parameter of the model is given
by θ = (σs, σg, gcool, uheat, κ, σ), these quantities are assumed constant over time in the model. At time
n, the state of the model is given by xn whose components (sn, gn, σs,n, σg,n) ∈ R4 are the quantities
that vary over time according to the dynamic specified. All these quantities are unknown and are to be
estimated.

The model (4.23) includes a seasonal part xseason
n that is essentially made of a signal sn, the dynamic

prior of which is a random-walk process whose standard deviation σs,n itself evolves as a random-walk.
sn is multiplied by a coefficient κdaytypen

that depends on the daytype of the current observation to
model the difference in behaviour between the electricity load on weekdays and weekends or holidays.
For identifiability reason, the sum of the coefficients κj is fixed so that

1
Ndaytype

Ndaytype

∑
j=1

κj = 1.

Note that sn essentially replaces the truncated Fourier series featured in Launay et al. (2012b).
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The model (4.23) also includes two weather-related parts to account for the influence of low (heating
part) and high temperatures (cooling part) upon the electricity load : the heating part xheat

n is based
upon a truncated difference between the temperature Theat

n and a heating threshold uheat, as studied
in Launay et al. (2012a). This difference is multiplied by a gradient gheat

n whose dynamic is similar to
that of sn: the prior is a random-walk whose standard deviation σg,n itself evolves as a random-walk.
Because the cooling effect in France is of a lesser magnitude than the heating effect, the corresponding
model for the cooling part xcool

n is simpler: the precomputed truncated difference ∆cool
n is given to the

model and multiplied by a cooling gradient gcool.
Notice that to ensure the different quantities involved kept consistent signs throughout time, we

specifically used truncated Gaussian distributions. In particular, this means that the random-walks
featured in the dynamic are not symmetric and hence that the mean of the state is a priori expected to
slightly evolve over time. The constraint on εs

n and ε
g
n can of course easily be lifted if need be, and does

not affect the overall predictive performance of the model in any way.

Autonomous model

The dynamic model introduced in (4.23) makes use of the exogenous variables Theat
n and ∆cool

n that
were built using coefficients optimised for an operational model, and it thus depends on that model.
Since ∆cool

n is only related to the cooling part of the model, and because this is the lest prominent part
of the model for the French electricity load, it is usually computed using fixed predefined values for
the smoothing and threshold coefficients, and is thus not optimised for any model in truth. The model
(4.23) hence depends on that other model only via the exogenous variable Theat

n . To remove this link
and obtain a model that can be used on its own, we replace the exogenous variable Theat

n with another
temperature variable in the definition of the model.

Let us recall first that Theat
n is built from the raw observed temperature as a mixture between it and

two exponentially smoothed versions of it. A straightforward approach to replace the precomputed
variable Theat

n is thus to introduce the smoothing coefficients as well as the weights of the mixture as
new parameters into the model and estimate the resulting new model. Unfortunately the weights
and smoothing coefficients involved in the definition of Theat

n typically vary with the instant of the
day and the estimations of these new parameters require the complete time-series of raw observed
temperatures (with an half-hour resolution): this means that the amount of calculations involved
is massively increased (one exponential smoothing to be computed per particle and per time step),
which makes it impossible to estimate such a model online without the corresponding computational
resources.

Another straightforward approach is to replace the smoothed heating temperature Theat
n by its

original raw observed version Traw
n . Though we do not present the detailed results here, let us mention

that the predictions returned by the resulting model were of very poor quality, exceeding a predictive
MAPE of 2% for non special instants, even for one-day-ahead forecasts (whereas predictions from the
operational model have a MAPE close to 1.2%).

Because estimating the smoothing coefficients online is not an option, we opt for a simpler alternative
formulation of the temperature Traw

n as a mixture between the raw observed temperature and an
exponentially smoothed version of it

Tn = p · Tϑ
n + (1− p) · Traw

n
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where p ∈ [0, 1] is a new parameter in the model that needs to be estimated and where ϑ is fixed and
known. The idea behind this new formulation is to let the model find its own temperature somewhere
between the raw observed temperature and a highly smoothed version of it that is still precomputed
(thus avoiding a massive increase of computational burden) but not related to any model in particular.
As mentioned earlier, we need to fix ϑ : large enough so that the parameter p actually matters, but not
too close to the maximal value of 1 either. We choose ϑ = 0.98 which leads to satisfactory results in
practise.

For each half-hour, the autonomous model that we consider is hence defined by

yn = xn + νn, (4.24)

where νn ∼ N (0, σ2) and where the state xn is made of three parts

xn = xseason
n + xheat

n + xcool
n ,

that are defined by

xseason
n = sn · κdaytypen

xheat
n = gheat

n (Tn − uheat)1]Tn ,+∞[(u
heat)

xcool
n = gcool∆cool

n

with

Tn = p · Tϑ
n + (1− p) · Traw

n .

The various components again obey the following prior dynamic

sn = sn−1 + εs
n εs

n, ∼ N
(

0, σ2
s,n, ]− sn−1, +∞[

)
gheat

n = gheat
n−1 + ε

g
n ε

g
n, ∼ N

(
0, σ2

g,n, ]−∞, −gheat
n−1[

)
σs,n = σs,n−1 + ηs

n ηs
n, ∼ N

(
0, σ2

s , ]− σs,n−1, +∞[
)

σg,n = σg,n−1 + η
g
n η

g
n , ∼ N

(
0, σ2

g , ]− σg,n−1, +∞[
)

and where the exogenous variables daytypen and ∆cool
n are the same as in model (4.23) Notice that such

an autonomous model is expected to be somewhat less competitive compared to the main model (4.23)
because the heating temperature involves only one exponentially smoothed temperature instead of two.
The reason why we include only one such smoothed temperature is that including two, with weights p1

and p2, would inevitably lead to identification problems since these temperatures would obviously be
highly correlated.

4.4.3 Initialisation of the particle filter

As was already discussed, the degeneracy of the particles sample over time is a serious matter. The
choice of the initial distribution of the state is thus of the utmost importance because a strong disagree-
ment between this distribution and the first filtered distribution could lead to sample degeneracy after
only a single time step. Two solutions are theoretically viable to choose the initial prior distribution:
one may choose either a vague or an informative distribution.

123
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1. on one hand, a vague prior has the advantage of not biasing the dynamic model before the first
observations. However, the variance of the initial distribution of the state being very large, the
sequence of posterior variances of the filtered distributions of the state tend to decrease very
quickly at first. From an SMC filter point of view, one has to use a very large sample of particles
to cover at the same time the regions of the state space with prior highest probability and with
posterior highest probability: a vague initialisation thus requires the use of a massive number of
particles.

2. on the other hand, designing an informative distribution is a totally different task, but still not
a trivial one: one has to keep in mind that a “bad“ choice of initial distribution may lead to
immediate degeneracy. Intuitively, the ideal solution would be to dispose at time n = −1 of a
filtered distribution πθ(x−1|y−1, . . . , y−m) to use it as a the initial distribution at time n = 0. Such
a choice is of course not possible because observations are only available for time n = 0, . . . , N.

Note that the trick of ignoring outliers introduced into the particle filter (see Algorithm 4.8) does not
alleviate the problem of initialisation, since it can only increase the variance if it is used.

We thus opted for a more general procedure that allows for an automated initialisation of the
particles sample to a fitting state space region from time n = n0, and that combines the two approaches
mentioned above to retrieve the benefits of both:

1. we use a vague distribution to estimate the smoothed distribution up to time n = n0 − 1 using
open-source MCMC generic software such as BUGS (Lunn et al., 2000) or JAGS (Plummer, 2003):
we typically chose n0 = 365 so that the variance of the filtered distribution at time n = n0 − 1 is
already small enough not to require the use of a massive amount of particles ;

2. after this first MCMC initialisation phase, we retrieve particles (approximately) distributed along
the filtered distribution of the state at time n = n0 − 1: this distribution is the one used (through
these particles) to initialise the SMC filter at time n0.

There is however a price to pay for solving the initialisation problem in such a way. First we have to
use MCMC to initialise the particle filter and second it makes it hard to use the particle filter on a time
series with few observations. Note that the first issue raised is but rhetorical: MCMC, even if expensive,
has to be run only once, and not at each time step.

Initial distribution for the MCMC estimation

The initial distribution envisioned for the main model (4.23) is vague and specified by:

s0, gcool ∼ N (0, 108, R+)

gheat
0 ∼ N (0, 108, R−)

uheat ∼ N (14, 1)

κ/Ndaytype ∼ DNdaytype(1, . . . , 1)

σ2, σ2
s,0, σ2

g,0, σ2
s , σ2

g ∼ IG(10−2, 10−2)

where Dd(α1, . . . , αd) is the Dirichlet distribution in Rd
+ with parameter α (in particular Dd(1, . . . , 1) is

the uniform distribution over the simplex of Rd
+ defined by ∑d

i=1 xi = 1). For the autonomous model
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(4.24) the initial distribution is completed with

p ∼ U [0, 1].

Practical issue

We faced some technical issues running the MCMC estimation up until time n0 = 365 since the Markov
Chain outputs were not usable: even with a large burn-in period, the sample returned would not
pass the diagnostic tests for the convergence of the empirical distribution towards the true target (see
Gelman and Rubin, 1992, for example). For the initialisation via MCMC we thus separated the initial
distribution into two parts, essentially isolating the dynamic on the variance of the random-walks, and
proceeded as follows.

First we estimated the models as defined in (4.23) and (4.24) up until time n0 = 365, using MCMC
generic software such as described in Lunn et al. (2000); Plummer (2003), with the following modification

σs,n = σs,n−1 = σs,∗

σg,n = σg,n−1 = σg,∗

with initialisation

σ2
s,∗, σ2

g,∗ ∼ IG(10−2, 10−2),

in essence removing the second layer in the dynamic from the models (since σs,n and σs,n are not allowed
to vary with time anymore). This led to a posterior distribution on a diminished state, that we denote
π̃1(x̃n0−1|y0:n0−1). From there we completed this posterior distribution with an additional prior π̃2 on
σs and σg to serve as an initialisation at for the full models at time n0.

The initial distributions of the particle filter for the full models at time n0 were thus of the form

π(xn0−1|y0:n0−1) ∝ π̃1(x̃n0−1|y0:n0−1)× π̃2(σs,n0−1, σg,n0−1)

with

σ2
s ∼ N (ms, s2

s , R∗+)

σ2
g ∼ N (mg, s2

g, R∗+)

where ms, mg, s2
s , s2

g were values chosen empirically based on π̃1 : for example, we chose ms and mg to
be the standard deviations of the posterior MCMC estimated samples (E[εs

1|y0:n0 ], . . . , E[εs
n0
|y0:n0 ]) and

(E[ε
g
1 |y0:n0 ], . . . , E[ε

g
n0 |y0:n0 ]) respectively.

4.4.4 Predictions

Quality criterion

To assess the quality of the models we propose, we will mainly look at their respective predictive
performances measured by Mean Absolute Percentage Error (MAPE). As a matter of fact, we are
working with half-hourly data and we will model each half-hour independently from one another,
a common choice given the type of data, thus leading to 48 separate daily model (see Section 4.4.2).
Indexing the respective MAPE criteria of these models by the instant i = 0, . . . , 47 to which they are
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associated, and given their respective observations y1,i , . . . , yn,i, these models return 48 τ-day-ahead
predictions defined as the expectations of the predictive distributions i.e. for i = 0, . . . , 47

ŷn+τ,i = E[xn+τ |y0:n,i]. (4.25)

The corresponding predictive (with prediction horizon τ) MAPE criterion that we consider for these 48
models is defined, for i = 0, . . . , 47, by

MAPEi(τ) =
1

n− τ

n−τ

∑
k=1

∣∣∣∣ ŷk+τ,i − yk+τ,i

yk+τ,i

∣∣∣∣
and we will most often aggregate the results as

MAPE(τ) =
1

48

47

∑
i=0

MAPEi(τ)

=
1

48(n− τ)

47

∑
i=0

n−τ

∑
k=1

∣∣∣∣ ŷk+τ,i − yk+τ,i

yk+τ,i

∣∣∣∣ .

Operational predictions

We will also compare these models to the so-called operational prediction (available from 01/01/09
only, i.e. for the second half of our dataset only) i.e. the final prediction that was actually used by EDF.
Note that the operational prediction PredOP cannot be written as a prediction coming from a statistical
model (even though we will sometimes abusively refer to it as the prediction from the operational
model) : it combines manual adjustments and statistical models. PredOP is computed as a 50%–50%
mixture between the two predictions PredDOAAT and PredDCo that we briefly describe below.

The prediction PredDOAAT is obtained as follows. A model similar to the one described in Bruhns
et al. (2005), with an ARIMA part, is first used on a real-time estimated signal corresponding to the
”France” perimeter. An estimated loss is then substracted from it, accounting for the customers within
this perimeter that are not affiliated with EDF. A manual adjustment is finally applied in real-time. It is
a “top-down” prediction in the sense that the “EDF“ perimeter is approximated as a difference between
the “France“ perimeter and a ”France but not EDF” perimeter.

The prediction PredDCo is obtained as follows. Multiple models from Bruhns et al. (2005) are used
upon consolidated signals (not available in real-time, only three weeks later) for sub-perimeters, the
reunion of which is the “EDF“ perimeter. The corresponding predictions are then added together before
a manual adjustment is finally applied in real-time. It is a ”bottom-up“ prediction in the sense that the
”EDF“ perimeter is approximated as the sum of all its parts.

There are a number of differences between the dynamic predictions and the operational predictions.
First of all, the operational predictions are computed using predicted temperatures (since the sequence
of observed temperatures at the time of prediction is clearly not available) whereas the models that
we consider (see Section 4.4.2) are based on the realised temperatures. The operational predictions
make use of a calendar that includes more daytypes and also benefit from high level expertise through
the manual adjustments mentioned. But the biggest difference in nature between these predictions
lies somewhere else: the dynamic predictions are made from one day to the next (with no intraday
correction whatsoever, since we are basically considering 48 independent models), while the operational
predictions are made from one half-hour to the next. Essentially the horizon of prediction for the
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dynamic models is τ = 1 day = 48 half-hours whereas it is much smaller for PredDOAAT, since the new
data get incorporated approximately every 8 half-hours (the computation of PredDOAAT is based upon
a real-time signal though, not consolidated data).

4.4.5 Results

Running the filter

For the estimation and prediction of the models, we used the Algorithm 4.10 with a total number of
M = 105 particles. One time step (filtering and predicting the state with horizon τ = 1, including
90% credible intervals) took approximately 1 second on a single core Intel(R) Xeon(R) E5410 (2.33GHz)
for one of the 48 independent models, which is compatible with the goal of being able to predict the
electricity load in an online manner. The execution time grew a bit larger and reached 3 seconds per
iteration when the predictive horizon was set to τ = 5. Note that providing credible intervals requires
the use of a sorting algorithm, for example quicksort (see Hoare, 1962) with complexity O(M log M)

whereas Algorithm 4.10 has only complexity O(M). Quicker runtimes are thus obviously achievable if
the computation of credible intervals is not needed.

Degeneracy

Before looking at the filtered or predicted distributions that we are most interested in, we actually have
to assess whether the numerical results obtained are actually usable or not. If the degeneracy problem
proved too strong along the estimation process, the estimated values indeed become questionable.

Figures 4.3, 4.4 and 4.5 show the evolution of the various criteria discussed in Section 4.3.2 through-
out time for the main model (4.23) at the instant 12:00. These criteria exhibit a seasonal behaviour
(with a 1 year period), as the time series itself, showing that the particle filter is subject to a little more
degeneracy during winter than during summer (the electricity load is indeed harder to predict, due to
the influence of the temperature). Let us mention that the criteria looked very much the same for the
autonomous model (4.24) which is why the corresponding graphics are not included here. Although
the coefficient of variation CV(n) is only a rescaling of the effective sample size ESS(n) (see (4.21)),
the outliers detected by the Algorithm 4.10 used are much easier to spot on Figure 4.5 than on Figure
4.3. Also observe that even if the entropy and the coefficient of variation approximate two different
divergences (see Cornebise, 2009, for the details), the outliers are as easily spotted on Figures 4.4 and
4.5 and the behaviours of the two criteria are very similar : hence, using the entropy instead of the
effective sample size (or the coefficient of variation, since they are interchangeable) to detect outliers
in Algorithm 4.10 could be doable (after having developed a basic intuition of its scaling, in order to
decide of a threshold) but would not change the results obtained in any major way.

Outliers

We show in Figure 4.6 the number of data that were automatically detected as outliers by both models
for each instant (half-hour) of the day. Recall that, according to Algorithm 4.10, an outlier is detected
whenever the effective sample size would have dropped below 0.1% of the actual sample size. The
amount of outliers varies from one half-hour to the next because an observation flagged as an outlier at
a given instant does not necessarily imply that the observation at the next instant will also be flagged.
In particular, we observe that more outliers are detected during the day than during the night, which
suggests that nighttime is slightly easier to predict than daytime (recall that outliers are essentially data
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Figure 4.3: Relative effective sample size ESS(n)
M for the main model (4.23) at 12:00 as a function of the

day in the calendar. The saturation of the colour used increases with each year. Data detected as outliers
are marked with a circle.
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Figure 4.5: Coefficient of variation CV(n) for the main model (4.23) at 12:00 as a function of the day in
the calendar. The saturation of the colour used increases with each year. Data detected as outliers are
marked with a circle. The ordinate axis is in log-scale.

that are badly predicted). As can be seen on the Figures shown, the amount of variation from one model
to the other is rather small, as far as the number of outliers per instant is concerned (but that is only
logical, recalling that they exhibited similar degeneracy criteria throughout time).

Figure 4.7 shows the number of outliers depending on the calendar. It allows us to pinpoint the
times of the year at which these outliers are actually detected. The summer and winter holiday breaks,
and the daylight saving time adjustments are easily spotted. Note that for these events, no prior
information was available to the dynamic models. Some days before or after bank holidays are also
flagged as outliers (05/02, 05/02, 11/10), even though the dynamic model benefits from some calendar
information. This should not come as a surprise however: the daytype specification that we chose is
rather poor compared to the calendar used for the operational predictions. A more refined calendar,
involving specific daytypes, is likely to help turning these few outliers back into regular data, provided
the initialisation of the particle filter is correctly done.

Table 4.2 summarises what is already guessable from Figures 4.2 and 4.7, i.e. that most of the (few)
instants detected as outliers by the dynamic models are indeed special instants (recall that special
instants are instants in the calendar where specific information is needed for the operational model to
be correctly estimated and predicted).

Performance and instants

We show the overall predictive (horizon τ = 1) performance of the dynamic models (4.23) and (4.24)
against the operational model (OP) in Table 4.3, depending on whether special instants were included
in the calculations or not. The results shown in both cases aggregate the 48 models that were estimated
independently from one another. Over the whole period of study, the operational predictions are better
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Figure 4.6: Number of outliers detected for each instant of the day by the main model (4.23) (left) and
by the autonomous model (4.24) (right).
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Figure 4.7: Number of outliers detected by the main model (4.23) depending on the calendar from
04/01/2007 to 03/31/2011. Each column represents a month. The size of the point and the saturation
of the colour used grow with the number of outliers, as indicated in the legend beneath.
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4.4. APPLICATION

instant outlier not outlier
special 269 [5.60] 16627 [346.40]

not special 38 [0.79] 53194 [1108.21]

instant outlier not outlier
special 238 [4.96] 16658 [347.04]

not special 47 [0.98] 53185 [1108.02]

Table 4.2: Classification of the instants for the main model (4.23) (left) and for the autonomous model
(4.24) (right). The number given between square brackets is an equivalent of the number of instants in
days (i.e. divided by 48).

than the predictions provided by the dynamic models, but they also do benefit from more specific
calendar information being used to compute them. When only the non special instants are considered,
i.e. when holiday breaks and bank-holidays are removed from the calculations, the overall predictive
quality of the dynamic models improves considerably as demonstrated by the results in Table 4.3.

main (4.23) auto (4.24) OP
overall 1.4342 1.5416 1.2344

no special 1.1712 1.2971 1.2185

Table 4.3: Overall predictive (horizon τ = 1) and MAPE (in %) for the dynamic models and the
operational model (OP). The top row results include special instants in the calculations, while the
bottom row results do not.

In fact, looking at Figure 4.8 that represents the predictive MAPE of the main model (4.23) and
operational model (OP) averaged by instant, we are able to see that the main model (4.23) predicts the
electricity load quite well on non special instants, challenging the operational model throughout the
day, except during the morning ascent. The good predictive performance of the dynamic models on non
special days is somewhat surprising because the dynamic predictions, coming from 48 independent
models, are made from one day to the next whereas the operational predictions include an ARIMA
adjustment phase to take advantage of the most recent observations, and also benefit from manual
adjustments.

Figure 4.9 shows a comparison of the predictive MAPE between the main model (4.23) and the
autonomous model (4.24) : the autonomous model yields less accurate predictions than the main model
during daytime, i.e between 08:00AM and 08:00PM roughly, while the performances of these two
models remain sensibly equivalent during nighttime. Such findings are logical, considering that the
link between the temperature and the electricity load is expected to be much more complex and more
important during daytime and also considering that nighttime seasonality is expected to be smoother
than daytime seasonality. Even so, the autonomous model (4.24) provides reasonable results, taking
into account that it is completely independent from any other operational model (recall that model
(4.24) does not use the precomputed optimised smoothed heating temperature that the main model
(4.23) does).

Performance and daytypes

We show the predictive MAPE, averaged by daytype, for both dynamic models and the operational
model on Figure 4.10 again including or excluding special instants. As we previously underlined, the
dynamic model does not provide good predictions for special instants (mainly non regular daytypes, i.e.
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Figure 4.8: Predictive (horizon τ = 1) and MAPE (in %) for the main model (4.23) and the operational
model (OP) for each of the 48 half-hours, including special instants in the calculations (leftmost figure)
and not including special instants in the calculations (rightmost figure). The difference between the two
models is coloured depending on its sign: green when the main model is better than the operational
model and red when not.
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Figure 4.9: Comparison of the predictive (horizon τ = 1) MAPE (in %) of the main model (4.23) and the
autonomous model (4.24) when non special instants are included in the calculations (left) and when
they are not (right). The difference between the two models is coloured depending on its sign: green
when the main model is better than the operational model and red when not.
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4.4. APPLICATION

daytypes 5 to 8). The predictive MAPE, when considering non regular daytypes exclusively, reached
3.34% for the main model (4.23) and 3.46% for autonomous model (4.24).

The relatively poor overall performances of both dynamic models for Mondays (daytype 0) and
Sundays (daytype 4) compared to the operational model are also due to the presence of special instants
within these daytype classes (typically the summer and winter holiday breaks): once these are removed
from the calculations, the dynamic models are seen to remain competitive with the operational model.
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Figure 4.10: Predictive (horizon τ = 1) MAPE (in %) for the dynamic models and the operational model
(OP) for each daytype defined in Table 4.1, including special instants in the calculations (left) and not
including special instants in the calculations (right).

From here on because the main model (4.23) and the autonomous model (4.24) actually share the
same behaviour, we only include Figures and Tables that relates to the main model (4.23).

Performance and temperature

We now focus on the predictive quality of the main model (4.23) depending on the temperature
(exogenous variable). Plotting the predictive error of the model against the temperature (be it the raw
temperature observed or the smoothed temperature used in the model) does not reveal any specific
bias, indicating an overall satisfactory behaviour. As a matter of fact, with the exception of the detected
outliers, the predictive error of the main model (4.23) behaves similarly to the predictive error of the
operational model as can be seen on Figure 4.11. The dynamic model does not exhibit any visible
temperature-based bias but the predictive errors for cold and warm temperatures show slightly more
variability than their counterparts for the operational model.

To investigate the reaction of the main model (4.23) to brusque changes in temperature, we show in
Figures 4.12 and 4.13 the predictive errors of the main model (4.23) and the operational model against
the difference between raw and smoothed temperature. For the dynamic model, a small bias is visible
when only the instants for which the raw temperature was colder than 5°C are considered (see Figure
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Figure 4.11: Predictive (horizon τ = 1) errors of the main model (4.23) (left) and the operational model
(OP) (right) depending on the smoothed temperature. Predictions for data detected as outliers are
marked with a circle for the dynamic model.

4.12): it shows us that the dynamic model slightly underestimates (respectively overestimates) the
load when the smoothed temperature given to the model is late on the raw temperature and the raw
temperature itself is decreasing (respectively increasing), and hints at the possible need of considering a
dynamic smoothing model. However no such phenomenon is detected for the dynamic model on the
other side of the temperature scale, when looking at raw temperatures warmer than 18°C (see Figure
4.13). Note that the operational model overestimates the electricity load for warm temperatures (see
also Figure 4.11) while the dynamic model does not.

Performance and horizon

Since the operational predictions are sometimes required up to τ = 3 days, we now investigate the
predictive quality of our dynamic models as the horizon for prediction grows larger. Figure 4.14, given
hereafter, displays the predictive MAPE for horizon τ = 1, . . . , 5, whether including special instants in
the calculations or not. It is clear that the predictive errors of the models (4.23) and (4.24) increase with
the horizon τ considered for the prediction, confirming that the dynamic model is primarily meant for
short-term forecasts and not long-term forecasts.

Another consequence of increasing the prediction’s horizon is that the credible intervals obtained
around the predictions also tend to grow larger on average as can be observed in Table 4.4. Note that the
uncertainty about the temperature introduced in the autonomous model via the parameter p leads to
larger credible intervals compared to those of the main model. An illustration of the credible intervals
returned by the dynamic models is given in Figure 4.15 where the electricity load is predicted over 48
consecutive instants via the main model (4.23). The predictions clearly improve over time as the model
takes more and more recent information into account: the one-day-ahead predictions about 12/30/2010
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Figure 4.12: Predictive (horizon τ = 1) errors of the main model (4.23) (left) and the operational
model (OP) (right) depending on the difference between raw and smoothed temperatures when raw
temperature is colder than 5°C. Predictions for data detected as outliers are marked with a circle for the
dynamic model. The red line corresponds to an estimation of the bias via the loess function in R with
its 90% confidence interval.
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Figure 4.13: Predictive (horizon τ = 1) errors of the main model (4.23) (left) and the operational
model (OP) (right) depending on the difference between raw and smoothed temperatures when raw
temperature is warmer than 18°C. Predictions for data detected as outliers are marked with a circle for
the dynamic model. The red line corresponds to an estimation of the bias via the loess function in R
with its 90% confidence interval.
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Figure 4.14: Predictive MAPE of the main model (4.23) (left) and the autonomous model (4.24) (right)
for τ = 1, . . . , 5, including special instants in the calculations (leftmost bars) and not including special
instants in the calculations (rightmost bars).
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Figure 4.15: Predictive errors (predictive mean minus true value) of the main model (4.23) for the
observations on 12/30/2010 (48 half-hours) with τ = 1, . . . , 5. The horizontal black line marks the true
load (no predictive error), and crosses mark the various predictive errors with their respective credible
intervals in solid lines. The more recent the predictions are (i.e. the smaller τ is), the more saturated the
colour used is: D+1 Prediction is the most recent prediction (it was made 1 day before) while D+5 is the
oldest prediction (it was made 5 days before).
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provided on 12/29/2010 are much more accurate than the five-days-ahead predictions (of the same day)
that were computed on 12/25/2010. Figure 4.15 also makes it clear that the credible intervals obtained
for a predictive horizon τ = 1 are narrower compared to those obtained for a predictive horizon τ = 5
(but note that their lengths vary over time in both cases).

main (4.23) τ = 1 τ = 2 τ = 3 τ = 4 τ = 5
λ̂90%(xn+τ) 2746.3 3721.1 4505.6 5191.6 5815.3
λ̂90%(yn+τ) 3036.1 3947.7 4696.5 5358.6 5964.9

auto (4.24) τ = 1 τ = 2 τ = 3 τ = 4 τ = 5
λ̂90%(xn+τ) 3078.3 4216.3 5117.1 5894.7 6597.7
λ̂90%(yn+τ) 3309.9 4394.0 5265.5 6024.1 6713.4

Table 4.4: Mean length (in MW) of the symmetric 90% credible intervals (CI) around the predicted states
x̂n+τ and around the predicted observations ŷn+τ of the main model (4.23) (top) and the autonomous
model (4.24) (bottom), for τ = 1, . . . , 5.

main (4.23) τ = 1 τ = 2 τ = 3 τ = 4 τ = 5
χ̂90%(x̂n+τ) 89.569 90.442 92.385 93.479 94.168
χ̂90%(ŷn+τ) 92.531 92.501 93.773 94.472 94.882

auto (4.24) τ = 1 τ = 2 τ = 3 τ = 4 τ = 5
χ̂90%(x̂n+τ) 90.566 90.905 92.790 93.863 94.465
χ̂90%(ŷn+τ) 92.785 92.394 93.743 94.492 94.958

Table 4.5: Empirical coverage (in %) of the symmetric 90% credible intervals (CI) around the pre-
dicted states x̂n+τ and around the predicted observations ŷn+τ of the main model (4.23) (top) and the
autonomous model (4.24) (bottom), for τ = 1, . . . , 5.

The empirical coverages of the symmetric 90% credible intervals around the predicted states and
observations are given in Table 4.5. These values were computed as the ratio between the number of
instants for which the observations fell inside the interval, and the total number of instants. Note that if
the observations were mutually independent outcomes of the same random variable (which they are
not in our situation because of the exogenous variables temperature and calendar), this ratio would
theoretically approximate the true rate of coverage i.e. 90%. Even so, the empirical coverage computed
seems, somewhat reassuringly, to agree with the expected rate.

Filtered weather parts

Figures 4.16 and 4.17 show the filtered heating and cooling parts of the main model (4.23). Both of these
parts actually seem to be piecewise linear with regard to the temperature variables upon which they
depend, with a threshold that depends on the instant considered. The cooling part of the dynamic
model is indeed modelled as such : it does not appear to be exactly piecewise linear on Figure 4.17,
because of the way the cooling degrees ∆cool

n are actually computed from Tcool
n , see (see Bruhns et al.,

2005, for the complete explanation). The heating part however is not modelled as such since the heating
gradient is chosen non constant in the model (4.23). It is thus a bit of a surprise to find this familiar
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piecewise linear shape for the heating part, even though it is quite common for non dynamic models
(see Bruhns et al., 2005, for example).

The behaviour of the dynamic model when confronted with data that include a sudden cold wave is
also visible on the left of Figure 4.18 : three successive such cold waves happened in early 2010, to which
the model reacted by increasing the heating part accordingly. In fact the response of the main model
(4.23) is easier to observe on Figure 4.19 where only the filtered gradient of the model is displayed. The
mean drift in summer should obviously be ignored: it is a direct consequence of the non symmetric
random-walk prior put upon the heating gradient which forces an increase in variance and a change in
mean. Note that this model artifact may easily be avoided with an autonomous model specification that
does not impose sign constraints on the seasonal, heating and cooling parts : though not displayed here,
the results for such a specification were studied, and it indeed led to a flat heating gradient over summer
without impacting the overall performance of the model. As can be seen on the right part of Figure
4.19, the filtered standard deviation of the heating gradient gets larger during summer and smaller
during winter which is logical considering that this gradient cannot be observed during summer (the
temperature being above the corresponding heating threshold, it gets multiplied by zero in the end).

As a matter of fact, the behaviour of the heating gradient over summer is of little practical importance:
while it is true that it cannot be observed accurately for a period of time, it also has no direct impact
on the quality of the model since this is precisely the period over which the heating part of the model
vanishes. The winter and mid-season time windows are of course of bigger interest : the left part of
Figure 4.19 hints at the periodic nature of the heating gradient of the dynamic model with a strong
gradient in winter and a weaker one in mid-season (recall that the heating gradient is negative by
definition of the model, thus stronger actually means lower on Figure 4.19).

Filtered seasonal part

Even though we do not display it here, let us mention that the filtered seasonal part xseason
n of the model

(4.23) exhibits a 1-year period with weekly cycles. Around the main periodic pattern, variations occur :
more so over the winter period, for which the seasonal part is obviously not so well defined, than over
the summer period. Indeed, during summer the seasonal part is the only active dynamic part of the
model, while during winter the heating part also plays an important role : the estimated values of both
parts over winter are thus to be interpreted with caution. Still, the filtered seasonal part seems to react
correctly to the summer and winter holiday breaks (as we will outline in the next Section), although no
particular information was used to flag these time windows for the model.

Because EDF customers now represents a fraction only of the French customers population (instead
of the whole), the perimeter of the data varies over time due to customers departures or arrivals (but
taking into account that EDF and France perimeters were actually identical until a few years ago,
departures are a bit more likely). As a matter of fact, the filtered seasonal part also shows successive
yearly drops from 2008 and onwards, which correspond to the financial crisis that arose in late 2008
(and that impacted the French electricity load), or planned customers’ departures.

Summer break

Since holiday breaks are among the most toughest times of the year for predictions, we investigate
the behaviour of the dynamic models over the summer break to show how the models cope with the
difficulty.
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Figure 4.16: Estimated filtered heating part of the main model (4.23) against the raw temperature Traw
n

(left) and the smoothed temperature Theat
n given to the model (right). 48 distinct colours are used, one

for each of the 48 half-hours. The estimation was done via the loess function in R considering the
filtered mean of the heating part against both temperatures. Only the relative heating part is shown
here, i.e. the heating part divided by the maximum load observed over the whole period.
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Figure 4.17: Estimated filtered cooling part of the main model (4.23) against the raw temperature Traw
n

(left) and the smoothed temperature Tcool
n (right). 48 distinct colours are used, one for each of the 48

half-hours. The estimation was done via the loess function in R considering the filtered mean of the
cooling part against both temperatures. Only the relative cooling part is shown here, i.e. the cooling
part divided by the maximum load observed over the whole period.
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Figure 4.18: Mean of the filtered heating part xheat
n (left) and cooling part xcool

n (right) of the main model
(4.23), averaged over 48 half-hours, as functions of the day in the calendar. The saturation of the colour
used increases with each year. Only the relative heating and cooling parts are shown here, i.e. the parts
divided by the maximum load observed over the whole period.
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Figure 4.19: Mean (left) and standard deviation (right) of the filtered heating gradient gheat
n of the main

model (4.23), averaged over 48 half-hours, as a function of the day in the calendar. The saturation of
the colour used increases with each year. The ordinate axis of the right figure is in log-scale. Only the
relative mean and standard deviation are shown here, i.e. the mean and the standard deviation of gheat

n
divided by the mean of gheat

n over the whole period.
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Evolution of the dynamics. The Figure 4.20 shows the filtered mean of both sn and σs,n, that rules the
dynamic of sn within the main model (4.23). As can be seen on the Figure 4.20, the model is able to
filter out the summer break effectively : to allow for the sharp drop of sn during August, the standard
deviation of its dynamic σs,n suddenly grows (becoming twice as large as usual), reflecting the brusque
increase of variability of the signal over a short period of time. The model also deals with the winter
break in a similar manner.
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Figure 4.20: Mean of the filtered coefficients sn (left) and σs,n (right) of the main model (4.23) averaged
over 48 half-hours, as functions of the day in the calendar. The saturation of the colour used increases
with each year. Only the relative filtered means of sn and σs,n are shown here, i.e. the means divided by
the mean of sn over the whole period.

We have already discussed the behaviour of the heating gradient over summer, shown in Figure 4.19.
Though the scaling is different, the overall behaviour of σg,n (the coefficient that rules the dynamic of
gheat

n ) is identical to the behaviour of the posterior standard deviation of gheat
n which is why we have not

represented it here. During summer the model logically loses track of anything related to the heating
part, which leads to artificially increased values of σg,n.

The reasons behind the increased values of σs,n and σg,n during the summer break are hence entirely
different. Whereas σs,n grows to allow the model to fit data that do not match the current state,
the growth of σg,n merely reflects the lack of cold temperatures that would help estimate any of the
coefficients related to the heating part of the model (4.23).

Predictive errors. Though no information is provided about the summer break (a succession of breaks
mostly occurring on Mondays), we already saw that the dynamic models are able to estimate the
electricity load rather correctly given the peculiar circumstances. We show in Figure 4.21 how the lack
of information typically influences the summer break predictions. For a prediction horizon τ = 1, the
main model (4.23) provides poor predictions mostly on Mondays, weekends and August 15th (a bank
holiday) but adjusts itself for the other days. Focusing on Mondays, it is easy to see that the model
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overpredicts the load on Mondays (although the vast majority of the corresponding instants are not
detected as outliers) but recovers on the following days, i.e. on Tuesdays, as can be observed in the
bottom-left corner of Figure 4.21. Similarly, for a prediction horizons τ = 3 and τ = 5, the model only
recovers on the third or fifth day after each of the successive breaks, i.e on Thursdays or Saturdays, as is
shown in the top row of Figure 4.21.
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Figure 4.21: Predictive error of the main model (4.23) over the whole month of August 2009 for various
horizons : τ = 5 (top-left), τ = 3 (top-right) τ = 1 (bottom-left). The filtered error of the main model
(4.23) over the same period is also shown, labeled as τ = 0 (bottom-right). The colour used for each
instant indicates the daytype. Vertical dotted lines are used to separate each day, with 08/15 highlighted
between two darker lines.

Interestingly, we also observe that the filtered error (the difference between the actual observation
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and the filtered state), labelled as τ = 0 in the bottom-right corner of Figure 4.21, happens to be very
small, except for a few instants that were detected as outliers : 5 instants were flagged as outliers
on the first Monday of August 2009, meaning that the model did not learn from the corresponding
observations at these instants (recall that outliers are treated as missing in Algorithm 4.10) and thus
did not re-adjust itself. For these 5 instants on the following day, the prediction was again poor which
explains why outliers were still detected on 2 of these 5 instants.

A possible way to improve the quality of the forecasts for the days where breaks occur would be to
taylor the transition density of one state to the next specifically for them. This requires much expertise
in practise because the way the load is affected by the summer break also depends on the calendar
configuration: one could for instance introduce adequately modified specifications such as

sn∗ = sn∗−1 − µn∗ + εs
n∗

into the model where µn∗ ∈ R+ is the drop in load expected to happen at time n∗.

Comparison with a linear Gaussian state space model

In this Section, we offer a short comparison of the results obtained by Dordonnat et al. (2008) to put our
own results in perspective. A dynamic model was proposed and studied by Dordonnat et al. (2008)
to model the French electricity load at the national perimeter. Note that the data we consider here are
different from these that they considered (different perimeters and different time ranges) which makes
numerical comparisons hard.

Their model fit in the multivariate linear Gaussian state space models framework which allowed
for the use of Kalman filtering and associated techniques (see Durbin and Koopman, 2001). It is
actually quite a complex and rich model, compared to our own, and includes multiple regressions,
some coefficients of which are allowed to vary over time : a truncated Fourier series is used to model
the seasonality of the signal as in Bruhns et al. (2005) in conjunction with a stochastic trend. Local
trends are also included to model the holiday breaks, and a calendar with various specific daytypes is
used. Heating and cooling parts are defined as well, using fixed threshold values (15◦C and 18◦C) as
well as fixed smoothing parameters (fixed to ϑ = 0.98), and are thus very similar to the ones we use,
although the heating part relied upon the use of two heating gradients (the first corresponding to the
raw temperature, the other to the difference between smoothed and raw temperatures). The model was
estimated using national data from 09/01/1995 to 08/30/2004, and its predictive quality was assessed
from 09/01/2003 to 08/30/2004 only.

Let us first mention that the performances reported by Dordonnat et al. (2008) for their model are in
accord with ours, with a one-day-ahead predictive MAPE varying around 1.30% across the 24 hours
considered, and larger errors during the weekends or holiday breaks. They also found the quality of
the forecasts obtained to be degrading with the predictive horizon, just as we did, and at a similar
rate. Finally, the behaviour of the heating gradient that we reported in Figure 4.19 corroborates the
behaviour of the heating gradients found in Dordonnat et al. (2008) (with this difference that they used
a smoothing approach for the signal extraction, whereas we used a filtering approach).

Still, the dynamic models (4.23) and (4.24) that we propose are much simpler, most notably where
the seasonality part is concerned: our models only include 9 daytypes and at most 2 temperatures,
i.e. 10 random effects whereas the model described in Dordonnat et al. (2008) made use of more than
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30 random effects. Arguably, the estimation time of our models via a particle filter takes more time
than running a Kalman filter, but particle filters naturally allows for more flexibility in the definition
of the model (including non-linear non-Gaussian model). Most importantly, the Algorithm 4.10 that
we implemented for the estimation of our models automatically treats special instants as missing data
when Dordonnat et al. (2008) explicitly and manually had to declare which data had to be considered
as missing data, so as not to throw the model off. Also note that even though the model studied in
Dordonnat et al. (2008) was more complex, the predictive MAPE they obtained for non regular daytypes
exceeded 5% at 09:00AM and 12:00PM the two instants they focused on while dynamic models (4.23)
and (4.24) had an averaged predictive MAPE of 3.34% and 3.46% for non regular daytypes (but once
again keep in mind that the datasets used for their experiments and ours were different which may
possibly explain part of the observed difference).
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5 Conclusion

Dans ce dernier chapitre, nous proposons une synthèse de nos contributions pour chacun des sujets
abordés et discutons quelques pistes possibles pour des travaux de recherche ultérieurs.

5.1 CONSISTANCE DE LA LOI A POSTERIORI ET DE L’ESTIMATEUR DU MAXIMUM DE

VRAISEMBLANCE POUR LA RÉGRESSION LINÉAIRE PAR MORCEAUX

5.1.1 Synthèse

Dans le chapitre 2, nous présentons les résultats asymptotiques obtenus pour un modèle de régres-
sion linéaire par morceaux, qui sert en pratique à modéliser la partie de la consommation d’électricité
liée au chauffage. Grâce à la notion de pseudo-problème introduite par Sylwester (1965), nous prouvons
la consistance de l’estimateur du maximum de vraisemblance et sa normalité asymptotique (avec une
vitesses de convergence “standard“

√
n). Nos résultats complètent ceux de Feder (1975). Nous prouvons

un théorème de Bernstein-von Mises pour le modèle qui généralise les résultats de Ghosh et al. (2006) à
un modèle non-régulier.

5.1.2 Perspectives

Extension des résultats au modèle complet

Le théorème de Bernstein-von Mises démontré au chapitre 2 est obtenu pour le seul modèle de
part chauffage. L’extension de ce résultat au modèle décrit dans Bruhns et al. (2005), par exemple pour
la validation asymptotique de l’analyse statistique présentée au chapitre 3, est envisageable dans la
mesure où le reste du modèle est régulier.

Développement de Edgeworth pour la loi a posteriori

Comme dans le cadre de modèles réguliers (voir Ghosh et al., 2006), le théorème de Bernstein-von
Mises que nous avons démontré au chapitre 2 nous permet d’écrire le développement de Edgeworth
(voir Cramér, 1946) à l’ordre 0

sup
u
|Fn(u)−Φ(u)| = oP(1), (5.1)

où Fn(u) désigne la fonction de répartition de
√

nJ1/2
n · (θ − θ̂n), en notant Jn = 1

n In l’information de
Fisher de l’échantillon, et où Φ dénote la fonction de répartition de la loi gaussienne univariée centrée
réduite.
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5. CONCLUSION

Sous des hypothèses de régularité supplémentaires Johnson (1970) généralise ce résultat pour des
modèles réguliers en prouvant le développement presque sûr suivant

sup
u

∣∣∣∣∣Fn(u)−Φ(u)− φ(u)
k

∑
j=1

ψj(u; X1, . . . , Xn)n−j/2

∣∣∣∣∣ = O
(

n−(k+1)/2
)

, (5.2)

où φ dénote la densité de la loi gaussienne univariée centrée réduite et où chacunes des fonctions
ψj(u; X1, . . . , Xn) est un polynôme en u dont les coefficients sont bornés en X1, . . . , Xn.

Le concept de pseudo-problème introduit par Sylwester (1965) pourrait être réutilisé pour contourner
la difficulté de la non-différentiabilité du modèle (2.1) et obtenir dans un premier temps un dévelop-
pement de Edgeworth pour la loi a posteriori du pseudo-problème. La généralisation au problème
complet pourrait alors s’effectuer dans un second temps.

Lois a priori “matching“

Nous reprenons ci-dessous les notations introduites en section 1.2 pour les lois ”matching”. Datta
and Mukerjee (2004) montrent sous des hypothèses générales de régularité le développement suivant

Pθ

(
θ1 6 qπ

α (x)
)
= α + n−

1
2

φ(z)
π(θ)

∆1(π, θ) + O
(

n−1
)

, (5.3)

où z désigne le quantile d’ordre α et φ la densité de la loi gaussienne univariée centrée réduite et où

∆1(π, θ) =
d

∑
j=1

∂

∂θj

{
π(θ)I j1(θ)

(
I11(θ)

)− 1
2

}
. (5.4)

Pour le modèle de régression linéaire par morceaux, le calcul d’un tel développement se heurte à
nouveau au problème de la non différentiabilité de la vraisemblance. La matrice d’information de
Fisher qui apparaît dans l’expression (5.4) et sur laquelle se base la caractérisation ∆1(π, θ) = 0
des lois “matching” démontrée par Datta and Mukerjee (2004), n’est pas définie en tout point de
l’espace des paramètres et varie avec le nombre d’observations et la variable exogène. L’obtention d’un
développement semblable (5.3) n’est donc pas immédiate.

A nouveau, le concept de pseudo-problème peut vraisemblablement être réutilisé pour contourner la
difficulté de la non-différentiabilité du modèle. Un premier objectif théorique consisterait donc à montrer
l’équivalence entre les notions de lois “matching” pour le pseudo-problème et de lois “matching” pour
le problème complet.

L’extension des résultats de Datta and Mukerjee (2004) au pseudo-problème constitue un deuxième
objectif théorique. Dans le cadre du modèle (2.1), les observations ne sont pas i.i.d. et l’information de
Fisher empirique n’est plus constante. Nous pensons donc qu’il est nécessaire de considérer l’informa-
tion de Fisher asymptotique (définie en (2.7), sous l’hypothèse A1) comme le font par exemple Philippe
and Rousseau (2002) dans le cadre de la longue mémoire. Ceci pourrait permettre de lever la difficulté
liée à la présence d’une variables exogène, sous réserve de connaître l’expression de F la limite des
fonctions de répartition empirique Fn de la variable exogène qui intervient dans l’hypothèse A1 donnée
en page 28.

Dans le cadre de la prévision de consommation d’électricité, il nous paraît également pertinent de
considérer des lois “matching“ vis-à-vis de la loi prédictive. Il s’agit alors de caractériser les lois a priori
pour lesquelles le niveau fréquentiste des intervalles de crédibilité de la loi prédicitive (et non plus de
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la loi a posteriori) tend plus rapidement vers le taux de couverture bayésien. Sweeting (2008) discute
par exemple l’existence et l’unicité de telles lois dans le cadre de modèles multivariés réguliers.

5.2 PRÉVISION EN SITUATION D’HISTORIQUE COURT

5.2.1 Synthèse

Dans le chapitre 3 nous développons une méthode de construction de loi a priori pour un modèle en
situation d’historique court afin d’améliorer la qualité des prévisions. A partir d’un jeu de données long
A et supposé semblable au jeu de données court B, nous construisons une loi a priori hiérarchique en
introduisant des hyperparamètres dont le rôle est de modéliser la ressemblance entre les deux jeux de
données A et B. Nous montrons à travers des applications, sur des données simulées et réelles, l’apport
d’une telle loi a priori sur la qualité des prévisions du modèle utilisé.

5.2.2 Perspectives

Estimations simultanées

La méthode que nous proposons dans le chapitre 3 repose essentiellement sur deux estimations
successives du modèle : estimation sur le jeu de données A à l’aide d’une loi non informative, puis
estimation sur le jeu de données B en incorporant une partie de l’information apprise sur A. Ceci
permet notamment de réutiliser l’estimation effectuée sur le jeu de données A pour plusieurs jeux de
données Bj (j > 1).

Un prolongement possible des travaux présentés dans le chapitre 3 consiste à effectuer une estima-
tion simultanée du modèle sur tous les jeux de donneés Bj (et non plus des estimations séparées) afin
de mutualiser l’information contenue dans chacun d’eux, sous réserve qu’ils partagent tous approxima-
tivement la même ressemblance avec le jeu de données A. Il devient alors nécessaire de modéliser la
relation entre les jeux de données Bj, ce qui constitue une difficulté de cette approche.

Un autre prolongement envisageable consiste à considérer une estimation conjointe du modèle sur
les deux jeux de données A et B (au lieu d’estimer séparément le modèle sur A puis sur B) : dans ce
cas, il est nécessaire de modéliser la relation entre A et B. Signalons néanmoins qu’une telle démarche
introduit implicitement un effet de B surA, qui va à l’encontre de l’approche originale : dans le chapitre
3, seul B est considéré comme un jeu de données d’intérêt et la démarche proposée s’articule par
conséquent autour d’un effet unilatéral de A sur B.

Classification des facteurs de ressemblance

Puisque le comportement des différents facteurs de ressemblance k j du modèle n’est pas homogène,
nous envisageons une séparation des coefficients k j en plusieurs classes.

Nous pensons en premier lieu à une séparation des facteurs de ressemblance k en deux blocs
k = (k1, k2), où le premier bloc k1 regroupe les facteurs de ressemblance des paramètres influencés
par le volume de la population (coefficients de Fourier, gradients), et où le second les coefficients de
ressemblance des paramètres non influencés par le volume de la population (forme de jours, seuil de
chauffage). Pour une telle classification nous suggérons, par exemple, d’utiliser une loi a priori sur k2

(possiblement hiérarchique) centrée en 1 et une loi a priori sur k1 centrée en ρ où ρ désigne le rapport
moyen entre les signaux des deux jeux de données A et B.
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5. CONCLUSION

L’approche que nous venons de décrire se base sur des classes de facteurs de ressemblance déjà
connues mais nous pensons qu’une approche de classification supervisée ou non supervisée (à partir
de lois a priori formulée comme des mélanges) pourrait également s’avérer intéressante.

Compréhension fine de l’apport d’information

Les différents résultats du chapitre 3 montrent l’apport indéniable de l’information a priori dans
les processus d’estimation puis de prévision du modèle, mais il est difficile d’en préciser exactement
l’origine. La formulation de la loi a priori pour le jeu de données B sous la forme d’une loi gaussienne
hiérarchique

N (KµA, l−1ΣA)

permet au modèle d’adapter la moyenne µA pour se caler autour des paramètres du jeu de données
B. Nous pensons qu’une grande partie de l’apport d’information a priori s’effectue à travers la forme
de la matrice de covariance choisie l−1ΣA. Elle impose a priori sur le jeu de données B la même
structure de corrélation que celle obtenue a posteriori sur A. Afin de vérifier cette conjecture, nous
suggérons d’utiliser une décomposition matricielle de Σ appartenant à S+

d (R) l’ensemble des matrices
symétriques définies positives de dimension d, en trois composantes : volume v, forme S et direction D
(la terminologie adoptée faisant référence à la géométrie des ellipsoïdes de confiance associés à une loi
gaussienne de matrice de covariance Σ)

Σ = v · DSD′ (5.5)

où v = {det Σ}1/d, S est une matrice diagonale dont les d coefficients diagonaux S11 > . . . > Sdd > 0
vérifient ∏d

i=1 Sii = 1 et D est une matrice groupe orthogonal Od(R).
Supposées totalement inconnues, les trois composantes v, S et D de la décomposition (5.5) corres-

pondent chacunes à 1, d− 1 et 1
2 d(d− 1) degrés de liberté, et permettent d’identifier Σ de manière

presque unique. Cette décomposition permet de choisir une loi a priori pour le jeu de données B de la
forme

N (KµA, v · DSD′)

en autorisant les paramètres v, D et S à varier autour des valeurs vA, DA et SA (associée à la décompo-
sition (5.5) de la matrice ΣA).

Dans le chapitre 3, la méthode que nous proposons est basée sur cette décomposition avec D = DA

et S = SA : l’hyperparamètre l autorise un degré de liberté sur le volume v.
L’introduction de degrés de liberté supplémentaires dans le modèle peut permettre de préciser

l’importance des différentes composantes, et d’autoriser un contrôle plus fin de la contribution a priori
provenant du jeu de données A. Une approche partiellement informative est par exemple envisageable,
en fixant

D = R · DA,

où R est une matrice du groupe spécial orthogonal SOd(R) a priori ”proche” de la matrice identité (par
exemple une matrice de rotation d’angle faible, ou un produit de telles matrices).

148



5.3. APPLICATION DU FILTRAGE PARTICULAIRE À LA PRÉVISION DE CONSOMMATION D’ÉLECTRICITÉ

5.3 APPLICATION DU FILTRAGE PARTICULAIRE À LA PRÉVISION DE

CONSOMMATION D’ÉLECTRICITÉ

5.3.1 Synthèse

Dans le chapitre 4 nous nous intéressons à des modèles à espace d’états pour obtenir des prévisions
en ligne (i.e. mises à jour au cours du temps, au fur et à mesure de l’arrivée des observations). Nous
abordons les problèmes inhérents à l’utilisation de filtres particulaires, discutons diverses solutions
développées dans la littérature pour y répondre, et fournissons les algorithmes détaillés permettant
une implémentation rapide. Nous proposons également une méthode simple pour rendre les filtres
particulaires plus robustes vis-à-vis de données atypiques (i.e. peu probables étant donné l’état actuel
du modèle). Les deux modèles que nous choisissons d’étudier font principalement appel à deux dyna-
miques (saisonnalité et part chauffage) : le premier modèle repose sur l’utilisation d’une température
lissée précalculée pour un modèle opérationnel tandis que le second détermine de manière autonome
sa propre température de référence comme un mélange entre la température brute et une température
très lissée. Nous montrons que ces deux modèles fournissent globalement des prévisions compétitives
avec les prévisions opérationnelles. L’autonomie du second modèle s’obtient au prix d’une qualité de
prévision légèrement dégradée par rapport au premier modèle.

5.3.2 Perspectives

Amélioration de la technique d’estimation

Comme nous l’avons signalé au cours du chapitre 4, les données atypiques constituent un point
faible reconnu des filtres particulaires les plus basiques. De nombreux efforts sont investis dans la
littérature pour atténuer cette difficulté, par exemple au travers d’un choix adéquat de loi instrumen-
tale dans l’étape d’échantillonnage d’importance (voir la discussion en section 4.3.6). Rappelons que
dans l’algorithme 4.10 retenu, nous choisissons d’utiliser la loi a priori comme loi instrumentale et
compensons la sensibilité du filtre aux données atypiques par leur traitement en tant que données
manquantes. L’implémentation d’autres choix de lois instrumentales, par exemple basées sur des filtres
de Kalman (voir van der Merwe et al., 2001; Wan and van der Merwe, 2000), représente donc un enjeu
important pour exploiter toute l’information disponible dans le contexte des modèles dynamiques, et
éviter d’ignorer la moindre observation.

Modifications mineures du modèle

Deux modifications du modèle peuvent être rapidement envisagées pour améliorer la qualité de
prévision sur les jours les plus difficiles.

L’utilisation d’un calendrier offrant des types de jours plus détaillés constitue une première piste à
explorer et devrait par exemple permettre de corriger sensiblement les mauvaises prévisions obtenues
sur les jours fériés.

Une deuxième piste possible est l’inclusion d’un lissage exponentiel de la température afin de mieux
représenter l’effet de la température sur la consommation d’électricité. Le coefficient de lissage pourra
alors être estimé en ligne qu’il soit choisi fixe au cours du temps ou dynamique.
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Modifications majeures du modèle

Améliorer les prévisions autour des périodes de rupture telles que les congés d’été et d’hiver
représente un enjeu opérationnel fort. Une piste d’exploration possible pour y parvenir consiste à
introduire de nouvelles variables exogènes (appelées interventions) dans la définition du modèle
dynamique pour réajuster le signal prévu au niveau plus faible attendu au début des périodes de
rupture.

Le traitement simultané des 48 instants de la journée (à partir d’un modèle vectoriel), avec introduc-
tion de dépendances entre les instants, est aussi envisageable, comme l’a déjà montré Dordonnat (2009)
avec une modélisation dynamique du signal journalier à partir de fonctions splines.

Une méthode alternative pour traiter les différents instants de la journée consiste à considérer le
signal comme une série temporelle univariée et à la modéliser comme une série périodiquement corrélée
(voir Hurd and Miamee, 2007; Serpedin et al., 2005, par exemple).

La modélisation dynamique proposée au chapitre 4 permet d’estimer des intervalles de confiance
sur les prévisions et la longueur de ces intervalles de confiance varie de manière naturelle au cours du
temps. En considérant l’erreur de prévision opérationnelle actuelle comme nouveau signal d’étude,
l’utilisation d’un modèle dynamique pourrait permettre de proposer un correctif à la prévision existante
pour améliorer sa qualité et également disposer d’intervalles de confiance.
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RÉSUMÉ

Dans ce manuscrit, nous développons des outils de statistique bayésienne pour la prévision de
consommation d’électricité en France. Nous prouvons tout d’abord la normalité asymptotique de
la loi a posteriori (théorème de Bernstein-von Mises) pour le modèle linéaire par morceaux de part
chauffage et la consistance de l’estimateur de Bayes. Nous décrivons ensuite la construction d’une
loi a priori informative afin d’améliorer la qualité des prévisions d’un modèle de grande dimension
en situation d’historique court. A partir de deux exemples impliquant les clients non télérelevés de
EDF, nous montrons notamment que la méthode proposée permet de rendre l’évaluation du modèle
plus robuste vis-à-vis du manque de données. Nous proposons enfin un nouveau modèle dynamique,
non-linéaire, pour prévoir la consommation d’électricité en ligne. Nous construisons un algorithme
de filtrage particulaire afin d’estimer ce modèle et comparons les prévisions obtenues aux prévisions
opérationnelles utilisées au sein d’EDF.

Mots-clés

Consommation d’électricité ; filtrage particulaire ; historique court ; loi a priori hiérarchique ; modèle
dynamique ; prévision ; régression linéaire par morceaux ; théorème de Bernstein-von Mises

ABSTRACT

In this manuscript, we develop Bayesian statistics tools to forecast the French electricity load. We first
prove the asymptotic normality of the posterior distribution (Bernstein-von Mises theorem) for the
piecewise linear regression model used to describe the heating effect and the consistency of the Bayes
estimator. We then build a a hierarchical informative prior to help improve the quality of the predictions
for a high dimension model with a short dataset. We typically show, with two examples involving
the non metered EDF customers, that the method we propose allows a more robust estimation of the
model with regard to the lack of data. Finally, we study a new nonlinear dynamic model to predict
the electricity load online. We develop a particle filter algorithm to estimate the model et compare the
predictions obtained with operationnal predictions from EDF.

Keywords

Bernstein-von Mises theorem ; dynamic model ; electricity load ; forecasting ; hierarchical prior
distribution ; particle filter ; piecewise linear regression ; short dataset
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