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Abstract

This thesis is at the intersection of two active research areas: Association Rule
Mining and Virtual Reality.

The main limitations of the association rule extraction algorithms are that (i)
they produce large amount of rules and (ii) many extracted rules have no interest to
the user.

In practise, the amount of generated rule sets limits severely the ability of the user
to explore these rule sets in a reasonable time. In the literature, several solutions have
been proposed to address this problem such as, post-processing of association rules.
Post-processing allows rule validation and extraction of useful knowledge. Whereas
rules are automatically extract by combinatorial algorithms, rule post-processing is
done by user. Visualisation can help the user deal with large amount of data by
representing it in visual form to improve cognition for acquisition and the use of
new knowledge. In order to find relevant knowledge in visual representations, the
decision-maker needs to freely rummage through large amount of data. Therefore it
is essential to integrate him/her in the data mining process through the use of effi-
cient interactive techniques. In this context, the use of Virtual Reality techniques is
very relevant: it allows the user to quickly view and select rules that seem interesting.

This work addresses two main issues: the representation of association rules to
allow user quickly detection of the most interesting rules and interactive exploration
of rules. The first requires an intuitive metaphor representation of association rules.
The second requires an interactive exploration process allowing the user searching
interesting rules.

The main contributions of this work can be summarised as follows:

1. Classification for Visual Data Mining based on both 3D representa-
tions and interaction techniques

We present and discuss the concepts of visualisation and visual data mining.
Then, we present 3D representation and interaction techniques in the context
of data mining. Furthermore, we propose a new classification for Visual Data
Mining, based on both 3D representations and interaction techniques. Such a
classification may help the user choose a visual representation and an interaction
technique for a given application. This study allows us to identify limitations
of the knowledge visualisation approaches proposed in the literature.
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ii Abstract

2. Metaphor for association rule representation

We propose a new visualisation metaphor for association rules. This new
metaphor takes into account more accurately the attributes of the antecedent
and the consequent, the contribution of each one to the rule, and their correla-
tions. This metaphor is based on the principle of information visualisation for
effective representation and more particularly to enhance rules interestingness
measures.

3. Interactive rules visualisation

We propose a methodology for the interactive visualisation of association rules:
IUCEAR (Interactive User-Centred Exploration of Association Rules) that is
intended to facilitate the user task when facing large sets of rules, taking into
account his/her cognitive capabilities. In this methodology, the user builds
himself/herself a reference rule which will be exploited by local algorithms in
order to recommend better rules based on the reference rule. Then, the user
explores successively a small set of rules using interactive visualisation related
with suitable interaction operators. This approach is based on the principles of
information cognitive processing.

4. Local extraction of association rules

We develop specific constraint-based algorithms for local association rules ex-
traction. These algorithms extract only the rules that our approach is considers
interesting for the user. These algorithms use powerful constraints that signif-
icantly restrict the search space. Thus, they give the possibility to overcome
the limits of exhaustive algorithms such as Apriori (the local algorithm ex-
tracts only a small sub set of rules at each user action). By exploring rules
and changing constraints, the user may control both rules extraction and the
post-processing of rules.

5. The Virtual Reality visualisation tool IUCAREVis

IUCAREVis is a tool for the interactive visualisation of association rules. It
implements the three previous approaches and allows rules set exploration, con-
straints modification, and the identification of relevant knowledge. IUCAREVis
is based on an intuitive display in a virtual environment that supports multiple
interaction methods.

Keywords: Association Rules Mining, Virtual Reality, Visualisation, Visual Data
Mining, Interactive Rules Exploration.
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Introduction

Context

The progress made in day’s current technology allows computer systems to store
very large amounts of data. Never before has data been stored in such large volumes
as today (Keim 2002 [168]). The data are often automatically recorded by computer,
even for each simple transaction of every day life, such as paying by credit card or
using a mobile phone. The data are collected because people believe that they could
potentially be advantageous for management or marketing purposes.

This accumulation of information in databases has motivated the development
of a new research field: Knowledge Discovery in Databases (KDD) (Frawley et al.
1992 [105]) which is commonly defined as the extraction of potentially useful knowl-
edge from data. KDD is an iterative process and requires interaction with the decision
maker both to make choices (pre-processing methods, parameters for data mining al-
gorithms, etc.) and to examine and validate the produced knowledge.

One of the most frequently-used data mining methods is: Association Rules. In
cognitive science, several theories of knowledge representation are based on rules
(Holland et al. 1986 [147]). Generally, the rules are of the following form: ”if an-
tecedent then consequence”, noted Antecedent → Consequent where the antecedent
and the consequence are conjunctions of attributes of the database and values that
they should take. Association rules have the advantage of presenting knowledge ex-
plicitly which can be easily interpreted by an non-expert user. Association rules were
initially introduced by Agrawal et al. 1993 [2] for discovering regularities between
products in large scale databases recorded by supermarkets. It finds combinations
of products that are often purchased together in a supermarket. For example, if a
customer buys milk, then he/she probably also buys bread.

Since the Apriori algorithm proposed by Agrawal and Srikant 1994 [3] which is
the first proposed algorithm for extracting association rules, many other algorithms
have been presented over-time. These algorithms use two interestingness measures
(support and confidence) to validate the extracted association rules. The extracted
rules should be validated beyond a user-specified minimum support and above a user-
specified minimum confidence level. The support measure is the proportion of trans-
actions in the database that satisfies the antecedent and the consequent (for example
3% of customers buy milk and bread ). The confidence measure is the proportion of
transactions that verify the consequent among those that verify the antecedent (for
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example 95% of customers who buy milk buy also bread). The association rules gen-
eration algorithm is usually separated into two steps. Firstly, a minimum support is
applied to find all frequent itemsets in a database. Secondly, these frequent itemsets
are used to form rules whose confidence is above the minimum confidence constraint.

Problematic

One of the characteristics of the association rules extraction algorithms is to be un-
supervised; they do not require target items but consider all possible combinations of
items for the antecedent and for the consequent.
This feature enhances the strength of association rules, since algorithms require no
prior data knowledge. Association rules algorithms can discover rules that the user
considers interesting even if they consist of combinations of attributes which he/she
would not have necessarily thought of. However, the same feature also constitutes
the main limitation of association rules algorithms, since the amount of generated
rules by an algorithm increases exponentially according to the number of attributes
in the database. In practice, the volume of generated rules is prohibitive, reaching
hundreds of thousands of rules.

To handle the large quantity of rules produced by the data mining algorithms,
different solutions have been proposed to assist the user finding interesting rules :

• interestingness measures have been developed to evaluate rules in different per-
spectives (Tan and Kumar 2000 [209], Geng and Hamilton 2006 [117], Guillet
and Hamilton 2007 [131]). They allow the user to identify and reject low-quality
rules, and also to order acceptable rules from the best to the worst.

• redundancy rule reduction is proposed to reduce the number of generated rules
by discarding redundant or nearly redundant rules. If a set of rules means the
same thing or describes the same database rows, then the most general rule
may be preserved.

• the interactive exploration of rules (Fule and Roddick 2004 [115], Yamamoto et
al. 2009 [72], Blanchard et al. 2007 [29]) is proposed to assist the user in finding
interesting knowledge in the post-precessing step. Several software applications
have been developed with this in mind.

• visualisation can be effective for the user by displaying visual representations
of rules (Bruzzese and Davino 2008 [51], Couturier et al. 2007 [80], Beale
2007 [20], Techapichetvanich and Datta 2005 [271]). This facilitates the under-
standing and accelerates rules ownership by the user.

Despite these this progress, several issues still remain. Firstly, the visual repre-
sentations for association rules post-processing are generally not interactive. Thus,
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they are used as complementary tools to present results in a more understandable
form, but do not allow the user to look for interesting rules or to adjust the pa-
rameters of the association rules extraction algorithms. In addition, interactivity in
the association rules post-processing is often poor. Thus, interactions are not fully
adapted to the interactive character of the post-processing approach, and in par-
ticular do not take into account the special status of data. To better consider the
user’s interactivity needs, KDD processes must not only be viewed from the data
mining perspective but also from the user perspective such as in user-centred systems
for decision support. Finally, most of the approaches are massively limited to the
”support/confidence” framework. Alone, these two measures does not allow the user
to evaluate the pertinence of an association rule. Furthermore, the displayed rules
interestingness measures are weakly enhanced although they are crucial indicators
for post-processing. On the other hand, all proposed representations for association
rules visualisation have been developed to represent association rules without paying
attention to the relations between attributes which make up the antecedent and the
consequent, and the contribution of these to the rule, in spite of the fact that the
association rule attributes may be more informative than the rule itself (Freitas 1998
[109]).

The need for visualisation and interaction

Information visualisation can help the user deal with large amount of data by rep-
resenting it in visual form to improve cognition for acquisition and the use of new
knowledge. Unlike scientific visualisation which is constructed from measured or sim-
ulation data representing objects associated with phenomena from the physical world,
information visualisation is therefore a visual representation of information that has
no obvious representation. Visualisation improves cognitive tasks since it is based on
the perceptual abilities of the human visual system. Without considering cognitive
psychology, it can be said that visualisation improves the following attributes (Card
et al. 1999 [60], Ceglar et al. 2003 [63], Ware 2004 [287], Ward et al. 2010 [286]):

• identification of similarities;

• identification of singularities;

• identification of structures;

• memorisation.

In particular, some visual information such as, position, size or colour are pro-
cessed unconsciously and very rapidly by the human brain (Card et al. 1999 [60],
Bertin 1984 [24]). A human can instantly and accurately determine the most popu-
lous city among a hundred other cities on a histogram. Executing the same task from
textual information requires much more time and effort. With the arrival of the com-
puter, visualisation has become dynamic; it is now an interactive activity. Visual Data
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Mining (VDM) (Michalski et al. 1998 [195]), has been defined by Ankerst 2001 [10]
as ”a step in the Data Mining process that utilises visualisation as a communica-
tion channel between the computer and the user to produce novel and interpretable
patterns”. VDM is an approach dedicated to interactive exploration and knowledge
discovery that is built on the extensive use of visual computing (Gross 1994 [129]). In
his ecological approach to visual perception Gibson 1996 [120] established that per-
ception is inseparable from the action. Thus, VDM studies do not only produce the
best representations to improve cognition, but also the best interaction to implement
these representations.

In 2D space, VDM has been studied extensively. More recently, hardware progress
has led to the development of real-time interactive 3D data representation and immer-
sive Virtual Reality (VR) techniques. VR lies at the intersection of several disciplines
such as computer graphics, computer aided design (CAD), simulation and collabora-
tive work. It uses hardware devices and multimodal interaction techniques to immerse
one or more users in a Virtual Environment (VE). These techniques are based on hu-
man natural expression, action and perception abilities (Burdea and Coiffet 1993 [54]
Fuchs et al. 2003 [112]). Thus, aesthetically appealing element inclusion, such as 3D
graphics and animation, increases the intuitiveness and memorability of visualisation.
Also, it makes the perception of the human visual system easier (Spence 1990 [255],
Brath et al. 2005 [47]). In addition VR is flexible, in the sense that it allows different
representations of the same data to better accommodate different human perception
preferences. In other words, VR allows for the construction of different visual repre-
sentations of the same underlying information, but with a different look. Thus, the
user can perceive the same information in different ways. On the other hand, VR
also allows the user to be immersed and thereby provides a way to navigate through
the data and manipulate them from inside. VR hence creates a living experience in
which the user is not a passive observer, but an actor who is part of the world, in
fact, part of the information itself. In VR, the user may see the data sets as a whole,
and/or focus on specific details or portions of the data. Finally, in order to interact
with a virtual world, no mathematical knowledge is required, only minimal computer
skills (Valdes 2003 [283]).

In this context, the use of VR techniques is very relevant: it allows the user to
quickly view and select rules that seem interesting. The selection can be made in-
tuitively, via the use of a gestural interface such as tracking devices or a dataglove
in immersive configurations, or by mouse clicks in desktop configurations. The ad-
vantage of immersive configurations, (large screen and stereoscopic viewing) is that
it improves data visualisation and may support multi-user work. However, VR tech-
niques are still relatively little used in the context of VDM. We believe that this
technological and scientific approach has a high potential to efficiently assist the user
in analytical tasks.
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Contribution

The contribution of the thesis is divided into 5 topics. Firstly, we elaborate an
overview of interaction techniques and 3D representations for data mining. Then,
we propose a new association rule metaphor to represent items that make up the
antecedent and the consequent of an association rule. In addition, we propose a new
approach to assist the user in the post-processing of association rules: interactive
rules visualisation. Then, we adapt the extraction rules to the interactive nature of
post-processing by developing specific algorithms for local association rules extrac-
tion. Finally, we implement our approach in the Virtual Reality visualisation tool
we call IUCAREVis (Interactive User-Centered Association Rules Exploration and
Visualisation).

1. Classification for Visual Data Mining based on both 3D representa-
tions and interaction techniques

We present and discuss the concepts of visualisation and visual data mining.
Then, we present 3D representation and interaction techniques in the context of
data mining. Furthermore, we propose a new classification for VDM, based on
both 3D representations and interaction techniques. Such a classification may
help the user choose a visual representation and an interaction technique for a
given application. This study allows us to identify limitations of the knowledge
visualisation approaches proposed in the literature.

2. Metaphor for association rule representation

We propose a new visualisation metaphor for association rules. This new
metaphor takes into account more accurately the attributes of the antecedent
and the consequent, the contribution of each one to the rule, and their correla-
tions. This metaphor is based on the principle of information visualisation for
effective representation and more particularly to enhance rules interestingness
measures.

3. Interactive rules visualisation

We propose a methodology for the interactive visualisation of association rules:
IUCEAR (Interactive User-Centred Exploration of Association Rules) that is
intended to facilitate the user task when facing large sets of rules, taking into
account his/her cognitive capabilities. In this methodology, the user builds
himself/herself a reference rule which will be exploited by local algorithms in
order to recommend better rules based on the reference rule. Then, the user
explores successively a small set of rules using interactive visualisation related
with suitable interaction operators. This approach is based on the principles of
information cognitive processing.
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4. Local extraction of association rules

We develop specific constraint-based algorithms for local association rules ex-
traction. These algorithms extract only the rules that our approach is considers
interesting for the user. These algorithms use powerful constraints that signif-
icantly restrict the search space. Thus, they give the possibility to overcome
the limits of exhaustive algorithms such as Apriori (the local algorithm ex-
tracts only a small sub set of rules at each user action). By exploring rules
and changing constraints, the user may control both rules extraction and the
post-processing of rules.

5. The Virtual Reality visualisation tool IUCAREVis

IUCAREVis is a tool for the interactive visualisation of association rules. It
implements the three previous approaches and allows rules set exploration, con-
straints modification, and the identification of relevant knowledge. IUCAREVis
is based on an intuitive display in a virtual environment that supports multiple
interaction methods.

Thesis Organisation

This manuscript is organised as follows:

Chapter 2 is concerned with Knowledge Discovery in Databases (KDD), and more
precisely by Association Rule Mining techniques. It provides formal definitions and
considers the limits of the classic algorithms for association rules generation and the
proposed solutions found in the literature.

Chapter 3 introduces the visualisation and the VDM. We describe 3D representation
and interaction techniques for VDM. Then, we present a new classification of visual-
isation tools in data mining, regardless of the mining method used – pre-processing
methods, post-processing methods (association rules, clustering, classification, etc.)

Chapter 4 provides a detailed presentation of virtual reality (VR) and virtual en-
vironments (VEs). We presents and analyses the various interaction devices and
interfaces commonly used in VR. In addition, we review existing 3D interaction tech-
niques and metaphors used in VR applications. Then, we propose a classification of
hardware configurations and visual displays enabling user immersion in VEs. Finally,
we present a comparison between 2D, 3D and virtual reality techniques in the context
of information visualisation and VDM.

Chapter 5 is dedicated to the post-processing IUCARE approach and IUCAREVis
tool; we describe the IUCARE methodology with reference to the principle of infor-
mation visualisation and cognitive principles of information processing. We present
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the visualisation metaphor used to represent association rules, basic choices, and a
validation study. We also present IUCAREVis features that have been achieved, and
describe their implementation in detail.

Chapter 6 provides the association rules local mining algorithms. It present the
architecture of IUCAREVis and discusses its choices that we made during the devel-
opment. Also, it details the interaction techniques proposed in IUCAREVis.

Chapter 7 presents the conclusion of our contribution and give some proposals for
future work.
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1.1 Introduction

Knowledge Discovery in Databases (KDD) is the process of extracting interesting pat-
terns from data. The KDD process is commonly defined in three successive stages:
Data Pre-Processing; Data Mining; and finally Post-Processing. In Data Mining,
different techniques can be applied among which association rule mining is one of the
most popular.

The association rule mining method proposes the discovery of knowledge in the
form of IF Antecedent THEN Consequent noted Antecedent → Consequent. In an
association rule, the antecedent and the consequent are conjunctions of attributes in
a database. More particularly, an association rule Antecedent → Consequent ex-
presses the implicative tendency between the two conjunctions of attributes – from
the antecedent toward the consequent.

The main advantage of the association rule mining technique is the extraction of
comprehensible knowledge. On the other hand, the main disadvantage of this method
is the volume of rules generated which often greatly exceeds the size of the database.
Typically only a small fraction of that large volume of rules is of any interest to the
user who is very often overwhelmed by the massive amount of rules. The cognitive
processing of thousands of rules takes much more time then generating them even by
a less efficient tool. Imielinski et al. 1998 [152] believe that the main challenge facing
association rule mining is what to do with the rules after having generated them.

To increase the efficiency of the rule generation process (to reduce the number
of discovered rules) several methods have been proposed in the literature. Firstly,
different algorithms have been developed to reduce the number of generated rules.
Secondly, several methods have been proposed to help the user to filter the algorithm
results. In this chapter we will look at mainly three of these methods: interestingness
measures, redundancy rule reduction, and interactive rule post-processing.

This chapter starts with a brief presentation of Knowledge Discovery in Databases.
The second part is dedicated to association rule mining, definitions and notations.
The third part presents algorithms for association rule extraction. Finally, the forth
part presents the problematic of association rule techniques and the solutions pro-
posed in the literature to fulfil it.

1.2 Knowledge Discovery in Databases

Knowledge Discovery in Databases (KDD) was defined by Frawley et al. 1992 [105],
and revised by Fayyad et al. 1996 [101], as the non-trivial process of identifying valid,
novel, potentially useful, and ultimately understandable patterns in data.
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KDD is a multi-disciplinary field, being integrated in areas such as artificial intel-
ligence, machine learning, neural networks, data bases, information retrieval and data
visualisation. Furthermore, the KDD process is applied in various research fields. In
the 1990s, there were only a few examples of knowledge discovery in real data. Nowa-
days, more and more domains benefit from the utilisation of KDD techniques, such
as medicine, finance, agriculture, social work, marketing, military, and many others.

The KDD process aims at the extraction of hidden predictive information from
large databases. KDD methods browse databases to find hidden knowledge that ex-
perts may miss because it is outside their expectations. Most companies already
collect and refine massive quantities of data and KDD is becoming an increasingly
important technique to transform this data into knowledge. Thus, KDD is commonly
used in a wide range of domains, and is characterised as being a non-trivial process
because it can decide whether the results are interesting enough to the user. This
defines the degree of evaluation autonomy.

Fayyad et al. 1996 [101] defined four notions to characterise the extracted pat-
terns: validity, novelty, usefulness and comprehension by users. Firstly, the extracted
patterns should be valid for new data with some degree of certainty described by a set
of interestingness measures (e.g. confidence measure for association rules). Secondly,
the novelty of patterns can be measured with respect to previous or expected values,
or knowledge. Next, the patterns should be useful to the user which means that
useful patterns can help the user to take beneficial decisions. The usefulness char-
acteristic considers that knowledge is externally significant, unexpected, non-trivial,
and actionable. Lastly, the extracted patterns should be comprehensible by analysers,
who should be able to use them easily to take decisions.

At least two of the four characteristics (novelty and usefulness) require a direct
user implication in the KDD process which explains the need for interactivity during
the KDD process. Figure 1.1 presents the main KDD steps: Data Pre-Processing,
Data Mining, and Post-Processing of discovered patterns (Fayyad et al. 1996 [281]).

1.2.1 Data Pre-Processing

This step consists of three tasks: Data Cleaning, Data Integration and Data Valida-
tion.

- Data Cleaning
Real-life data contains noise and missing values which are considered inconsistent.
Applying the KDD process over this data may extract data of poor reliability. The
Data Cleaning step consists of detecting and correcting (or removing) inaccurate and
inconsistent data from the database. Generally, automatic systems based on statisti-
cal methods are needed to analyse the data and to replace missing or incorrect data by
one or more plausible values. For example, if values are missing for some attributes,
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Figure 1.1: An overview of the KDD process.

this step allows them to be computed by using heuristics. Another example is when
some values are inserted into the data by error. In this case, a set of methods can be
applied in order to determine which values are incorrect.

- Data Integration
Data Integration is used to collect data from multiple sources and to provide users
with a unified view of these data. The resulting database can presents incoherence
and the Data Integration step proposes solutions for this kind of problem. A valuable
example is redundancy. If an attribute A can be determined from another attribute
B, then A is redundant compared to B. Another type of redundancy is the existence
of two attributes from different sources with different names, but which represent the
same information. One of them should be removed from the final data.

- Data Validation
The goal of Data Cleaning and Data Integration is to generate a database which
contains modified data. This data makes future analysis processes easier. Once the
database has been created, Data Validation is used to achieve two goals. The first
is to verify if the database was well developed during the Data Cleaning and the
Data Integration phases; if needed, data can be re-cleaned. The second goal of this
step is to transform (or to reduce) the data allowing the KDD process to apply
a knowledge discovery technique. Data Mining can only uncover patterns already
present in the data. The target dataset must be large enough to contain these patterns
while remaining concise enough to be mined within an acceptable time frame.

1.2.2 Data Mining

Data Mining step is central in the KDD process. Data Mining consists of applying
data analysis and discovery algorithms to produce knowledge. Four main classes of
tasks have been developed in the literature in order to extract interesting patterns.
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- Classification
Classification builds a model in order to map each datum into one of several pre-
defined classes. The classification is composed of two phases. The first one is the
learning phase – the description of a set of classification rules called a learning model.
The second phase is classification – verifying the precision of the classification rules
generated during the first phase by using test data. For instance, an e-mail program
might attempt to classify an email as legitimate or spam. The main classification
techniques are: Decision Trees, Bayesian Classification, and Neural Networks.

- Clustering
The clustering technique identifies a finite set of classes or clusters which describe
data. This method partitions the data into classes in such a way that the intraclass
similarity be maximised and the interclass similarity be minimised. In a first step,
all the adequate classes are discovered, then the data are classified into those classes.
Compare to classification, the classes are not known from the beginning, they are
discovered using a set of observations. Different methods of clustering have been de-
veloped, among which the K-means method.

- Regression analysis
Regression analysis is the oldest and best-known statistical technique used in Data
Mining. Basically, regression analysis takes a numerical dataset and develops a mathe-
matical formula that fits the data. To create a regression model, a specific parameters
value – which minimise the measure of the error, should be found. A large body of
techniques for carrying out regression analysis has been developed. Familiar methods
such as linear regression and least squares (Legendre 1805 [179]) are presented.

- Association Rules
This technique aims to discover interesting rules from which new knowledge can be
derived. Finding association rules consists of finding regularities in data by searching
for relationships among variables (Piatetsky-Shapiro and Frawley 1991 [219]).
Association rules is a frequent implications in data of the type IF X THEN Y ; X and Y
represent respectively the antecedent and the consequent. The association rule mining
system’s role is to facilitate the discovery and to enable the easy exploitation and
comprehension of results by humans. Association rules have been found to be useful
in many domains such as business, medicine, etc. For example a supermarket might
gather data on customer purchasing habits which aims to predict user behaviour.
Using association rule mining, the supermarket can determine which products are
frequently bought together and uses this information for marketing purposes.

1.2.3 Post-processing of Discovered Patterns

Usually called post-processing (Baesens et al. 2000 [15]) or post-mining, this phase
is the final step of the KDD process. The Data Mining algorithm discovers a list
of patterns with a given level of interest; the purpose of this step is to verify if the
produced patterns can be considered as a knowledge. Not all patterns found by the
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data mining algorithms are necessarily valid.

The notion of interest or interestingness was defined by Silberschatz and Tuzhilin,
1996 [248] to describe the interest of a pattern. This notion is presented as a general
measure over nine characteristics: conciseness, coverage, reliability, peculiarity, diver-
sity, novelty , surprisingness, utility and actionnability. Thus, a pattern which meets
one or more criteria is consider as interesting and can be validated as a knowledge.

In most cases, it is the user who evaluates the discovered patterns, i.e. to deter-
mine if the extracted pattern is interesting or not, in the post-processing step. Several
user-driven methods and statistical database-oriented methods are available to assist
the user in this task. For example, it is common for the classification algorithms to
find patterns in the training set which are not present in the general data set; this
is called overfitting. In this case, it is important that the user be able to eliminate
them. For instance, a Data Mining algorithm trying to distinguish spam from legiti-
mate e-mails would be trained on a training set of sample e-mails. Once trained, the
learned patterns would be applied to the test set of e-mails which had not been used
for training. The accuracy of these patterns can then be measured by how many e-
mails were correctly classified. Another method of pattern evaluation and validation
is visualisation, which is related to the model of extracted patterns (see Chapter 3.3).

1.3 Association Rule Mining

Association rule mining, the task of finding correlations between attributes in a
dataset, has received considerable attention, particularly since the publication of the
AIS and Apriori algorithm by Agrawal et al. 1993 [2] and Agrawal and Srikant 1994
[3]. Initial research was largely motivated by the analysis of market data. The result
of these algorithms allows companies to better understand purchasing behaviour, and,
as a result, better target market audiences. Association rule mining has since been
applied to many different domains – all areas in which relationships among objects
provide useful knowledge. In this section, we present association rules and formally
describe the main notions, since they are at the very foundation of this thesis.

1.3.1 Presentation

Research in association rules was first motivated by the analysis of market basket
data. But, how could a set of shopping tickets produce some modifications in super-
market layout?

In a first analysis of shopping basket data of a supermarket searching for purchas-
ing behaviour, the decision-maker found a strong correlation between two products
A and B, of the form X → Y , where X (antecedent) and Y (consequent) are non-
intersecting sets of attributes. For instance, milk → bread is an association rule
saying that when milk is purchased, bread is likely to be purchased as well. Such
extracted information can be used to make decisions about marketing activities such
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as promotional pricing or product placement. In our example, we could more effi-
ciently target the marketing of bread through marketing to those clients that purchase
milk but not bread. Increasingly, association rules are currently employed in many
application areas including Web use pattern analysis (Srivastava et al. 2000 [260]),
intrusion detection (Luo and Bridges 2000 [186]) and bioinformatics (Creighton and
Hanash 2003 [81]).

1.3.2 Terminology and Annotations

In general, the association rule mining technique is applied over a database D =
{I, T}. Let us consider I = {i1, i2, . . . , im} a set of m binary attributes, called items.
Let T = {t1, t2, . . . , tn} be a set of n transactions, where each transaction ti represents
a binary vector, with ti[k] = 1 if ti contains the item ik, and ti[k] = 0 otherwise. A
unique identifier is associated to each transaction, called TID. Let X be a set of items
in I. A transaction ti satisfies X if all the items of X exist also in ti, formally, we
can say that ∀ik ∈ X, ti[k] = 1. In conclusion, a transaction ti can be viewed as a
subset of I, ti ⊆ I.

Definition 1.3.1
An itemset X = {i1, i2, . . . , ik} is a set of items X ⊆ I. We can denote the

itemset X by i1, i2, . . . , ik, the comma being used as a conjunction, but most commonly
it is denoted by i1i2 . . . ik, omitting the commas.

Example 1.3.2 Let us consider a sample supermarket transaction dataset:

Tuple Milk Bread Eggs

1 1 0 1

2 1 1 0

3 1 1 1

4 1 1 1

5 0 0 1

Table 1.1: Supermarket transaction dataset

Suppose that D is the transaction table shown in Table 1.3.2, which describes
five transactions (rows) involving three items: milk, bread, and eggs. In the table, 1
signifies that the item occurs in the transaction and 0 means that it does not.

The Tuple 4 = Milk Bread Eggs (or Milk, Bread, Eggs) is an itemset composed
by three items: Milk, Bread and Eggs.

Definition 1.3.3
An itemset X is a k-itemset if X is an itemset X ⊆ I and if it contains k items:

|X| = k.
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Example 1.3.4 The itemset Milk, Bread, Eggs is a 3 -itemset.

Definition 1.3.5
Let X ⊆ I and ti ∈ T . t(X) is the set of all transactions which contain the

itemset X. t(X) is defined by:

t : P(I) → T, t(X) = {ti ∈ T | X ⊆ ti}.

In a first attempt, an association rule was defined as an implication of the form
X → yi, where X is an itemset X ⊆ I and yi is an item yi ∈ I with {yi} ∩ X = ∅
Agrawal et al. 1993 [2].

Later, the definition was extended to an implication of the form X → Y , where X
and Y are itemsets and X ∩Y = ∅ (Agrawal and Srikant 1994 [3]). The former, X, is
called the antecedent of the rule, and the latter, Y , is called the consequent of the rule.

A rule X → Y is described by two important statistical factors: support and
confidence.

Definition 1.3.6
The support of an association rule is defined as the support of the itemset created

by the union of the antecedent and the consequent of the rule

supp(X → Y ) = supp(X ∪ Y ) = |t(X ∪ Y )| = P (X ∪ Y )

T
.

The support presents the proportion of transactions in the data set which contains
both X and Y. If supp(X → Y ) = s, s% of transactions contain the itemset X ∪ Y .

Definition 1.3.7
The confidence of an association rule is defined as the probability that a trans-

action containing Y also contains X. Therefore, the confidence is the ratio (c%) of
the number of transactions that contain X, as well as Y :

confidence(X → Y ) =
supp(X → Y )

supp(X)
=

supp(X ∪ Y )

supp(X)
.

In most cases, association rules extraction algorithms seek to satisfy a user-
specified minimum support threshold and a user-specified minimum confidence thresh-
old at the same time. The association rule generation is always a two-step process:
firstly the minimum support threshold is applied to find all frequent itemsets in a
database, then these frequent itemsets and the minimum confidence threshold con-
straint are used to validate the extracted rules.

Definition 1.3.8
We note the minimum support threshold provided by the user as minSupp, and
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the minimum confidence threshold as minConf . An association rule X → Y is valid
if:

• the support of the rule is greater than minSupp: supp(X → Y )minSupp;

• the confidence of the rule is greater than minConf : conf(X → Y )minConf .

Example 1.3.9 Let us consider a sample of supermarket transaction dataset shown
in Table 1.3.2:
The association rule AR: Milk → Bread can be generated from D. The level of rule
support is 60% because the combination of Milk and Bread occurs in three of the
five transactions, and the confidence is 75% because Bread occurs in three of the four
transactions that contain Milk

Definition 1.3.10
The lift was firstly defined by Brin et al. 1997 [48] pointing out the importance

of the correlation between the antecedent and the consequent.

The lift is defined as :

Lift(X → Y ) =
P (X,Y )

P (X)P (Y )
=

supp(X ∪ Y )

supp(X)supp(Y )
=

Confidence(X,Y )

P (Y )

The Lift measures the degree of deviation from an independent case. A rule is
considered independent if X and Y are independent: P (X ∪ Y ) = P (X)P (Y ).

Let us compute the lift value in the case of independence:

lift(X → Y ) =
P (X,Y )

P (X)P (Y )
=

P (X)P (Y )//independence case

P (X)P (Y )
= 1.

Accordingly, the more that lift is greater than 1, the greater the interest of the
rule.

Example 1.3.11 Let us consider a simple association rule Milk → Bread [C =
75%] – in 75% of cases, when we have Milk in a supermarket basket, we also have
Bread. The confidence evaluates the rule as being interesting. On the other hand,
the lift value could prove the contrary. The result depends on the support of the
Bread item in the database. Two cases are possible:

• supp(Bread) = 75%: alone, Bread item appears in 75% of baskets. Thus, it is
not surprising to have a confidence of 75%, because in reality, Milk does not
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increase its chances to be in a supermarket basket. In consequence, computing
the lift as Lift(AR) = 1, indicate that there is no dependence between the two
items Milk and Bread. Therefore, the rule is not interesting.

• supp(Bread)! = 75%: the more the support of Bread is different from 75%, the
more the rule is interesting.

Definition 1.3.12
The Information Gain was defined by Freitas 1999 [107] to evaluate the Infor-

mation Gain of rule antecedent attributes. The Information Gain is defined as :

InfoGain(Ai) = Info(G)− Info(G|Ai)

Info(G) = −
n∑

j=1

Pr(Gj)logPr(Gj)

Info(G|Ai) =
m∑
k=1

Pr(Aik)(−
n∑

j=1

Pr(Gj|Aik))

where :

• n: the number of consequent attribute values;

• m: the number of values of the anticipation attribute Ai;

• InfoGain(Ai): the information gain of each attribute Ai in the rule antecedent;

• Info(G): the information of the rule consequent.

• Info(G|Ai): the information of the consequent attributes G given the antecedent
attribute Ai, Aij denotes the j-th value of attribute Ai;

• Gj: the j-th value of the consequent attribute G;

• Pr(X): the probability of X;

• Pr(X|Y ): the conditional probability of X given Y.

The Information Gain measure can be positive or negative. An item with high
positive Information Gain is considered as a good predictor for the rule consequence.
An item with high negative Information Gain is considered as a bad one and should be
removed from the association rule. From a rule interest perspective, the user already
knows the most important attributes for its field, and the rules containing these items
may not be very interesting. At the same time, a rule including attributes with low
or negative information gain (logically irrelevant for the association rule consequence)
can surprise the user in cases where attribute correlation can make an irrelevant item
into a relevant one.
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Example 1.3.13 Let us consider a simple association rule Milk,Bread → Eggs.
Lets suppose that the Information Gain of Milk and the Information Gain of Bread
are:

InfoGain(Milk) = −0.7

InfoGain(Bread) = 0.34

We can conclude that Bread is more interesting than Milk which has a nega-
tive Information Gain. Each time the consumer purchases Bread, he/she purchases
Eggs but he/she does not purchase Milk. The Information Gain indicates that the
implication Milk → Eggs is not valid.

1.4 Algorithms for Association Rule Extraction

Association mining analysis is a two part process. Firstly the identification of sets of
items or itemsets within the dataset. Secondly, the rule generation from these item-
sets. As the complexity of the itemset identification is significantly greater than that
of rule generation, the majority of research in association rule extraction algorithms
has focused on the efficient discovery of itemsets. Given n distinct items ( n = ∥I∥
)within the search space, there are 2n−1 (excluding the empty set which is not a valid
itemset) possible combinations of items to explore. This is illustrated in Figure 1.2
which shows the search space lattice resulting from I = Milk, Bread, Eggs, Apples,
Pears. Most of the time n is large, therefore naive exploration techniques are often
difficult to solve.

Since the exhaustive reference algorithm proposed by Agrawal and Srikant 1994
[3], called Apriori, many algorithms inspired by Apriori have been proposed to effi-
ciently extract association rules. In parallel, many constraint-based algorithms have
been developed to extract association rules with constraints other than support and
confidence. To summarise, relevant research can be organised into two groups of al-
gorithms:

• Exhaustive algorithms

• Constraint-based algorithms

1.4.1 Exhaustive Algorithms

Exhaustive algorithms for association rule extraction all run on the same determin-
istic task: given a minimum support threshold and a minimum confidence threshold,
they produce all rules that have support above the threshold (generality constraint)
and a confidence above the threshold (validity constraint). Many adaptations and
generalisations of association rules have been also studied. The main ones are: the
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Figure 1.2: Search space lattice.

numeric association rules –involving quantitative variables (Srikant and Agrawal 1996
[257], Fukuda et al. 2001 [114]), the generalised association rules –to operate a hier-
archy of concepts (Srikant and Agrawal 1997 [259], Han and Fu 1995 [135]), a nd the
sequential patterns extracted from temporal data (Srikant and Agrawal 1996 [258],
Mannila et al. 1997 [191], Zaki 2001 [306]).

Association rule extraction algorithms are often decomposed into two separate
tasks:

• discover all frequent itemsets having support above a user-defined threshold
minSupp.

• generate rules from these frequent itemsets having confidence above a user-
defined threshold minConf .
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Differences in performance between the different exhaustive algorithms depend
mainly on the first task (Ng et al. 1998 [207]). The identification of valid itemsets is
computationally expensive, because it requires the consideration of all combinations
of distinct items in I (or 2n − 1 subset). The search space growth is exponential as n
increases. Therefore, it is the first step that requires maximum efforts to optimise the
association rule extraction algorithm. Itemset identification research thus focuses on
reducing the number of passes over the data and on constraining exploration. The
second task (rule generation) is less expensive. Nevertheless, there are two major
problems with association rules generation:

• too many rules are generated (rule quantity problem).

• not all the rules are interesting (rule quality problem).

Both problems are not entirely independent. For example, knowledge about the
quality of a rule can be used to reduce the number of generated rules.

1.4.1.1 Apriori – Classical Association Rule Mining

The fundamental exhaustive algorithm is Apriori which was designed by Agrawal
and Srikant 1994 [3]. To generate frequent itemsets the Apriori algorithm uses the
bottom-up, breadth-first method. This algorithm takes advantage of the downward
closure property (also called anti-monotonic) of support to reduce the search space
of the frequent itemset extraction: if an itemset is not frequent then any of it super-
itemsets is frequent.

The Apriori algorithm has two main parts (i)frequent itemset generation and (ii)
association rule generation.

Table 1.4.1.1 presents a frequent itemset generation task of Apriori which is car-
ried out level by level. The set of candidates L1 is formed by the set of items I,
given k = 1, otherwise it is based on generating-itemset function involving members
of Lk−1. More precisely, The algorithm gradually generates the set of itemsets from
1-itemsets to k-itemsets. In the first pass over the data (line 1 in the algorithm),
support for the 1-itemsets is computed in order to select only the frequent ones. In
the next steps (lines 2 to 10), the algorithm starts from the (k-1)-itemsets and uses
the downward closure property to generate k-itemsets.

Thus, the function generating-itemset (line 3) generates new potentially frequent
k-itemsets from the frequent (k-1)-itemsets already generated in the previous step.
Potentially frequent itemsets are called candidates. During a new pass over the data,
the support of each candidate is computed (lines 4 to 8). Then frequent candidates,
that have support above the threshold, are validated.
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Input: Database D

Output: L: a set of couple (I, sp(I)) when I is an itemset and sp(I) its support

1. L1 = {1-itemsets}
2. forall (k = 2;Lk−1 ̸= ∅; k ++) do begin

3. Ck = generating-itemset(Lk−1)

4. forall transactions t ∈ D do begin

5. Ct = subset(Ck, t)

6. forall candidates c ∈ Ct do

7. c.count++

8. endfor

9. Lk = {c ∈ Ck | c.count ≥ minsup}
10. endfor

generating-itemset(Lk−1)

12. forall itemsets c ∈ Ck do begin

13. forall (k-1)-subsets s of c do begin

14. if (s ∈ Lk−1) then

15. delete c from Ck

16. endfor

17. endfor

18. return L

Table 1.2: Frequent itemset generation in an Apriori algorithm (Agrawal and Srikant
1994 [3]).

The Apriori algorithm has the particularity of using a support counting method.
The function subset (line 5) receives the set of candidates and a transaction t of the
database and returns the set of candidates satisfying the transaction. In line 7 the
support of each candidate is increased. In line 9, the frequent k-itemsets are selected
and they become the entry for the next step of the algorithm. The algorithm ends
when no frequent itemset is generated.

Example 1.4.1 Let us consider a sample of the supermarket transaction database
(Table 1.4.1) and a minimum support threshold of 50%.

In Figure 1.3, we present the process of generating frequent itemsets using by
the Apriori algorithm. The algorithm starts with an empty list of candidates, and,
during the first pass, all 1 -itemsets are generated. Only the itemsets satisfying the
support constraint (50%) become candidates (black). Therefore, the itemsets that
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Tuple Transaction

1 Milk, Bread, Eggs, Apples

2 Milk, Bread, Apples

3 Bread, Eggs

4 Milk, Bread, Eggs, Pears

Table 1.3: Supermarket database sample for the Apriori algorithm example.

have support above the threshold (50%) are eliminated (red). The itemset {Pears}
with the support of 25% does not satisfy the support constraint and consequently is
considered as a non-frequent item and, thus, is not kept as a candidate.

In the next passes, to reduce time execution the not-frequent itemsets are not
computed. The k -itemsets which include an infrequent (k-1)-itemsets are consid-
ered as not frequent. For instance, the {Bread, Pears} {Eggs, Pears} {Milk, Pears}
and {Apples, Pears} 2 -itemsets are not generated. The itemsets not containing the
{Pears} itemset are potentially frequent.

On the other hand, not all generated 2 -itemsets are frequent. For instance, the
itemset {Eggs, Apples} is not frequent even though { Apples} and {Eggs} are fre-
quent. A (k+1)-itemsets is frequent when all sub (k-1)-itemsets are frequent. For
instance, the {Milk, Bread, Eggs} is frequent because the three 2 -itemsets composing
it are frequent {Milk, Bread}, {Milk, Eggs} and {Bread, Eggs}. On the contrary,
the {Milk, Eggs, Apples} itemset is not frequent because one of the three 2 -itemsets
({Eggs, Apple}) composing it is not frequent even though {Milk, Eggs} and {Milk,
Apples} are frequent.

The second step of the Apriori algorithm is rule generation. This step aims to
create association rules from the frequent itemsets generated in the first step. The
algorithm is presented in Table 1.4.1.1.

The method used for rule extraction is very simple. Let us consider the set of
frequent itemsets L. Considering li ∈ L, the method finds all subsets a of li, a ⊆ li,
and proposes a set of rule candidates of the form a → (li − a). Only rules that have
a confidence level above the threshold are generated.

In lines (1-2) the recursive procedure generate − rules is called for each set of
k-itemsets. generate− rule generates recursively the sub-itemsets level by level (line
4) to produce rules which are further tested against the confidence level.
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Figure 1.3: Tree of the frequent itemset generation.

Example 1.4.2 Let us consider the itemset l1 = {Milk, Bread, Eggs} [S = 50%].
six association rules can be extracted:

• R1: Milk, Bread → Eggs conf(R1) = 66%

• R2: Milk, Eggs → Bread conf(R2) = 100%

• R3: Bread, Eggs → Milk conf(R3) = 66%

• R4: Milk → Bread,Eggs conf(R4) = 66%

• R5: Bread → Milk,Eggs conf(R5) = 50%

• R6: Eggs → Milk, Bread conf(R6) = 66%
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Input: Set of itemsets l

Output: Set of association rules Rules

1. forall itemsets lk, k ≥ 2 do

2. call generate− rules(lk, lk);

3. procedure generate− rules(lk: k-itemset, am: m-itemset)

4. A = {(m− 1)-itemsets am−1 | am−1 ⊂ am }
5. forall am−1 ∈ A do begin

6. conf = support(lk)/support(am−1)

7. if (conf ≥ minConf) then

8. R = am−1 ⇒ (lk − am−1)

9. if (m− 1 > 1) then

10. call generate− rules(lk, am−1)

11. Rules = Rules ∪R

12. return Rules

Table 1.4: Rule generation step in Apriori algorithm [3].

We define the confidence threshold minConf = 80%. Only R2 is generated by
the algorithm.

The algorithm provides all frequent itemsets and their support which are neces-
sary to calculate the rules for interestingness measures. For cases where the user is
not interested by all itemsets and their support, algorithms for extracting maximal
frequent itemsets have been developed (Bayardo and Roberto 1998 [18], Teusan et
al. 2000 [272], Gouda and Zaki 2001 [123], Burdick 2001 [55]). Maximum frequent
itemsets are frequent itemsets in which any of it’s super-itemsets are frequent. They
can easily find the frequent itemsets since all the frequent itemsets are composed of
the set of maximal frequent itemsets and their sub-itemsets.

The efficiency of the Apriori algorithm depends on both the minimum support
threshold and the studied data. From a qualitative point of view, we call sparse
data (respectively dense) when the items present in the transactions are infrequent
(respectively frequent) compared to the non-present items (proportion of 1 compared
to 0). For a given support threshold:

• the more the data is sparse, the more the anti-monotonic property is effective
to reduce the search space. Therefore, the algorithm can handle a large number
of items;

• the more the data is dense, the less the anti-monotonic property is effective
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to reduce the search space. Therefore, the algorithm cannot support a large
number of items.

If the number of frequent itemsets generated by an algorithm makes it unusable,
the only way to process the data is to increase the support threshold.

In this section, we saw that the Apriori algorithm is able to extract a set of asso-
ciation rules from a database. In this context, two problems concerning the quality
of the algorithm emerge: the rapidity and the efficiency.

• the rapidity : deals with the capacity of the algorithm to generate the expected
results in a reasonable time without using large quantities of resources. The
frequent itemset generation step is the critical phase of the process. Itemset
generation is an exponential problem, the search space to enumerate all the
frequent itemsets is 2n−1, where n is the number of items. Moreover, the algo-
rithm makes several passes over data depending on the length of the generated
itemsets. These tasks imply an exponential growth of the resources employed
during the rule mining process and an considerable increase of the execution
time. On the other hand, the rule generation step doesn’t need new passes over
the database, and hence, the execution time is not very high.

• the efficiency : deals with the capacity of the algorithm to produce interesting
results. The main drawback of classical association rule mining techniques such
as the Apriori algorithm is the huge number of produced rules which are quasi
unusable by the user (millions of association rules can be extracted from large
databases with a reduced support threshold). To address this shortfall, much
research work has been carried out to reduce the number of extracted rules. In
Section 1.5 we make a survey of rule number reduction methods.

1.4.1.2 Other algorithms

An important number of algorithms, based on Apriori in most cases, have been pro-
posed with the aim of optimising frequent itemset generation step by introducing
condensed representations, dataset partitioning, dataset pruning or dataset access re-
duction. Among the new algorithms we outline the most important ones: FP-Growth
(Han and Pei 2000 [136]), AprioriTID (Agrawal and Srikant 1994 [3]), Partition
(Savasere et al. 1995 [243]), and Dynamic Itemset Couting (DIC) (Brin et al. 1997
[48]).

To generate frequent itemsets, the major part of association rule extraction algo-
rithms generate candidates and then check their support from database transactions.
This is the most expensive step in exhaustive algorithms. The Pattern Growth algo-
rithms have been introduced to eliminate the need for candidate generation and thus
reduce the algorithms execution time. Instead of the candidate generation method,
Pattern Growth algorithms use complex hyperstructures that contain representations
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of the itemsets within the dataset.

The best known Pattern Growth algorithm is the FP-Growth algorithm introduced
by Han and Pei 2000 [136]. Later, in 2005, Grahne and Zhu 2005 [124] developed
the FP-Growth* algorithm which improves the previous algorithm performance due
to FP-array, a new data structure which allows the passes over the FP-tree to be
improved.

FP-Growth is a memory-based algorithm and was developed to process dense data.
The algorithm does not work directly on the data but on a condensed representation
of it (FP-tree) to improve performance and efficiency of the frequent itemset step.
The FP-tree is constructed by passing over all the itemsets in depth first (contrary to
Apriori). The construction step needs two passes over the data. First, the algorithm
constructs an FP-tree using the set of frequent singleton itemsets. Then, it maps
each database transaction into a tree path.

After the construction step, the algorithm generates all frequent itemsets of vari-
ous cardinalities from the FP-tree representation by successively concatenating those
frequent singleton itemsets found in the tree path. If the FP-tree does not fit into the
memory, recursive projections and partitioning are required to break such databases
into smaller pieces. As a result there will be a corresponding performance overhead
which will be similar to the Apriori algorithm. To overcome this limitation, several
improvements of the FP-tree structure FP-Growth algorithm have been proposed
(Cheung and Zaiane 2003 [69], Coenen et al. 2004[76], Li 2001 et al.[182]).

By using a new database for counting the itemset support, the AprioriTID al-
gorithm, developed by Agrawal and Srikant 1994 [3], extends Apriori by eliminating
multiple passes over of the database D. The new database has the form < TID,Ci

k >,
where TID is the identifier of an itemset, and Ci

k represents the subsets of the itemset
TID of length k. Thus, transactions are represented by the k-itemsets that describe
them. For example, if D = (bread,milk, apples), then equivalently Ci

1 = ({bread},
{milk}, {apples}, {pears}), however, Ci

2 contains all potential 2-itemsets within D,
hence Ci

2= ({bread,milk}, {bread, apples}, {bread, pears}, {milk, apples}, {milk, pears}, {apples, pears}).
It is apparent from this example that this new database may be larger than D. Thus,
if Ci

k fits in memory AprioriTID is faster than Apriori, but when Ci
k is too big it

cannot fit in the memory, and the computation time becomes much longer than Apri-
ori. A new algorithm called AprioriHybrid was proposed to fulfil the AprioriTID
algorithm and the Apriori algorithm drawbacks.

As its name denotes, Partition algorithm, developed by Savasere et al. 1995 [243]
is based on the idea of partitioning the database in several parts which may be fitted
into the memory. To be frequent in the complete data, an itemset must be at least
frequent in one part. The Partition algorithm computes all itemsets that are frequent
locally within a part. Therefore the Partition algorithm analyses each part like the
Apriori algorithm, except that the itemset supports are not computed by counting



28 Knowledge Discovery in Databases and Association Rules

the occurrences. Indeed, the part is written in a better format suited to memory
processing which reverses individuals and variables – instead of describing each indi-
vidual with the items, the algorithm describes each item with the list of individuals
which make it, called theid-list (every individual is designed by an id). Each item also
has its id-list, and the number of occurrences of an itemset is given by the number of
inputs in it’s id-list. So to determine the support of an itemset I in a part, it suffices
to calculate the intersection between the id-lists of two of its sub-itemset A and B
such that I = A and B. After analysing all parts, Partition checks for each itemset
found frequently on a one part if it is often frequent in the complete data. Ultimately,
the algorithm makes only two passes over the full data: the first to partition the data
and the second to verify the frequent itemsets.

The Dynamic Itemset Couting (DIC) algorithm, introduced by Brin et al. 1997
[49], is a relaxed version of Apriori. The DIC algorithm reduces the number of passes
over the database by introducing a new interesting idea: possible frequent itemsets –
(k + 1) candidates are computed from the k pass. When a k-itemset is considered
frequent, all the (k+1)-itemset candidates that the latter can produce are generated.
The basic principle is: during a pass over the data, if the occurrences of an itemset
is already sufficiently high so that we know that it is common, then the itemset can
already be used as a candidate for the next level. Therefore, counting occurrences
of k-itemset candidates will be started as soon as the counters of all its sub-itemsets
of length k-1 are high enough toward the support threshold. If the counting of the
new candidate begins on the x-th individual, it will stop on (x-1)-th individual in the
following passes. Finally, DIC makes fewer passes over the data then Apriori.

A comparison of the main association rule mining algorithms has been made by
Hipp et al. 2000 [58], and by Goethals and Zaki 2003 [122] on various real and
synthetic data sets. They show that the algorithm performance may vary according
to the studied data. There is no one better algorithm than an other.

1.4.2 Constraint-based Association Rule Mining

At the same time when exhaustive algorithms were being developed, constraint-based
algorithms which were introduced by Fu and Hah 1995[111]. Constraint-based algo-
rithms extract specific association rules with additional constraints in conjunction
with support and confidence thresholds. Nevertheless, even if these two constraints
are basic, it is quite difficult to find the right values which produce interesting rules.
Using wrong thresholds could have two consequences: firstly, the algorithm may miss
some interesting rules and, secondly, it could generate trivial ones. Furthermore,
users could have difficulties to understand the meaning of data-oriented constraints
and to set minimal thresholds for these constraints. Constraint-based mining pro-
vides the user with the possibility to impose a set of constraints over the content of
the discovered rules. Those constraints can significantly reduce the exploration space
while improving the quality or interest of the results.
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1.4.2.1 Constraints

Constraint-based algorithms use constraints to reduce the search space in the frequent
itemset generation step (the association rule generating step is identical to that of
exhaustive algorithms). The most common constraint is the support minimum thresh-
old. If a constraint is reflexive, its inclusion in the mining process can provide signif-
icant reduction of the exploration space due to the definition of a boundary within
the search space lattice, above or below which exploration is not required. Generally,
constraints (C) are provided by means of different formalisms: user knowledge con-
straints, data constraints, dimensional constraints, interestingness constraints, and
rule constraints.

The role of constraints is very well-defined: they generate only association rules
that are interesting to users (Zhao and Bhowmick 2003 [310], Hipp and Güntzer 2002
[145]). The technique is quite trivial: the rules space is reduced whereby remaining
rules satisfy the constraints. If we take the example of the shopping basket, the con-
straints can be:

1. association rules must end with a product whose price is lowest minprice;

2. the total price of products in the rule antecedent must be less then the total
price of the products in the rule consequent;

3. the rules must include only textile products.

These examples illustrate two important issues. On the one hand, the constraints
can focus on a numerical characteristic of the items (product prices in the examples
1 and 2). On the other hand, the constraints can be expressed using a taxonomy of
concepts describing the items (in example 3, a taxonomy that distinguishes textile
products).

The two main categories of constraints that have been studied are anti-monotonic
constraints and monotonic constraints:

• monotonic constraints are constraints that when valid for an itemset are in-
evitably valid for any of its super-itemsets. For example, consider a rule con-
straint (sum(S) ≥ 50$). If an itemset (S) satisfies the constraint that is the
sum of the prices in the set is greater then 50$, further additional items to S
will increase the cost and will always satisfy the constraint.

• anti-monotonic constraints are constraints that when invalid for an itemset,
are also invalid for any of its super-itemsets. For example, consider a rule
constraint (sum(S) ≤ 50$), if an itemset (S) does not satisfy the constraint
(the price summation of the itemset is more than 50$), then this itemset can
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be pruned from the search space since adding more items into the set will make
it more expensive and thus will never satisfy the constraint.

Therefore, the monotonic constraint is the negation of the anti-monotonic con-
straint and vice-versa. Thus, a constraint-based algorithm is optimised to one con-
strain category among others.

In relation with itemset identification, a reflexive constraint is one that never de-
creases (monotonic constraint) or increases (anti-monotonic constraint) as the number
of items within an itemset increases. Reflexive constraint inclusion can, therefore, re-
duce search space by effectively eliminating all super-itemsets of an invalid itemset.
For example, the support threshold constraint is an anti-monotonic constraint. Given
an invalid itemset whose supportitemset ¡ minsup, all super-sets of this item can be
eliminated. The support constraint was first introduced within the Apriori algo-
rithm (Agrawal and Srikant 1994 [3]). Examples of monotonic and anti-monotonic
constraints are shown in Table 1.4.2.1.

Monotonic constraints Anti-monotonic constraints

S ⊇ I S ⊆ I

min(S) ≤ V min(S) ≥ V

max(S) ≤ V max(S) ≤ V

sum(S) ≤ V sum(S) ≤ V

length(S) ≥ V length(S) ≤ V

Table 1.5: Examples of monotonic and anti-monotonic constrains on an itemset S. I is a
set of items, V is a numeric value

1.4.2.2 Algorithms

Most of the constraint-based algorithms are generalisations of the exhaustive Apriori
algorithm (Agrawal and Srikant 1994 [3]). As Apriori used an anti-monotonic con-
straint (support), all constraint-based algorithms descended from Apriori can exploit
these constraints effectively.

An anti-monotonic constraint can be used before the pass over the data (after
line 4 of the algorithm Table 1.4.1.1), because it needs data reading (like the support
minimum threshold constraint tested in line 9 of the algorithm 1.4.1.1). However, a
monotonic constraint can be used after itemset candidate generation (between line
3 and line 4 in the algorithm Table 1.4.1.1), because it does not need data reading.
Monotonic constraints are able to generate itemsets without generating candidate
itemsets which make them more difficult to use.
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The problem with monotonic constraints as presented by Jeudy and Boulicaut
2002 [160] is that monotonic constraints can deteriorate the anti-monotonic con-
straints by pruning performance (see example below). In this situation, the introduc-
tion of monotonic constraints in the process of frequent itemset generation increases
the size of the research space instead of decreasing it. An other approach that can be
more efficient is to use constraints in the post-processing of the association rule stage
– after generating the frequent itemsets, to filter the obtained results.

Example 1.4.3 Let us consider the data described by a set of items I = (Milk,
Bread,Eggs). The anti-monotonic constraint C1 is the minimum support threshold,
and the monotonic constraint C2 is a constraint which requires that the item Milk
must be in the itemset.

At the end of the algorithm’s first iteration (level k = 2). The sets of itemsets
that verify the two constraints are F2 = ({Milk,Bread}, {Milk,Eggs}). The itemset
{Bread,Eggs} is does not in F2 – it not verify the constraint C2 and, thus, it is not
generated as a candidate for the next level. In the next iteration (level k = 3), the
set of candidate itemsets F3 = ({Milk,Eggs,Bread}) is generated, then it should be
pruned because it does not verify the constraint C1. Suppose that {Bread, Eggs}
does not verify the constraint C1. This information is unknown by the algorithm
since this itemset has not been generated as a candidate from the lower level. There-
fore it is impossible to predict that {Milk, Bread, Eggs} does not verify C1. When
in doubt, {Milk, Bread, Eggs} is kept in F3. The problem is that some itemsets
can be discarded after using the monotonic constraint C2 whereas the anti-monotonic
constraint C1 could prune large parts of the search space.

These general principles for constraint use has been exploited by different re-
searchers. The CAP algorithm proposed by Ng et al. 1998 [207] investigated ap-
plying item constraints (monotonic constraints) to generate frequent itemsets. They
restricted the items or the combinations of items that are allowed to participate in
the mining process. Earlier, in 1992, Smyth and Goodman 1992 [254] described
a constraint-based rule miner integrating an interestingness constraint described by
the dimension of rules, thus, long rules are considered less interesting. The FP-growth
algorithm has also been adapted in constraint-based algorithm. FIC (Pei and Han
2000 [218]) and FPS (Leung et al. 2002 [180]) (extensions of FP-growth algorithm)
were proposed to exploit constraints for mining constrained frequent sets. Jeudy
and Boulicaut 2002 [160] proposed an extension of the Apriori algorithm that uses
a conjunction of monotonic and anti-monotonic constraints. Finally, despite these
various publications, finding the best way to exploit the constraint combinations of
anti-monotonic constraints and monotonic constraints whatever the data remains an
open problem.
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1.4.3 Which approach to choose ?

If the user wants to exploit constraints in order to target association rule extraction
results that interest him/her, then he/she must choose between two alternatives:

• run a constraint-based algorithm;

• run an exhaustive algorithm, then apply constraints in the post-processing step
to filter the algorithm results.

The first solution presents two advantages. The first one is that using constraints
allows the research space to be reduce. This solution avoids consuming resources and
time for association rules that do not interest the user. The second one is that in
some cases constraint-based solutions are the only solutions proposed to process the
data with the same minimum support threshold as exhaustive algorithms. The com-
binatorial explosion of frequent itemset numbers makes it impossible for exhaustive
algorithm execution. Then – since pruning do not only use the minimum support
threshold constraint, it is possible for constraint-based algorithms to use even lower
minimum support thresholds. For instance, very specific association rules can be gen-
erated by a constraint-based algorithm which would not be discovered by an exhaus-
tive algorithm like Apriori because of the combinatorial explosion. The possibility of
applying very specific rules often provides unusual and unknown knowledge for the
user, which make it very interesting (Freitas 1998 [109]).

The second solution has also his own advantages. The first advantage as we saw is
that constraint-based algorithms can not exploit optimally anti-monotonic constraints
in all situations. Sometimes, applying constraints in the post-processing stage can
be faster than generating results with a constraint-based algorithm. The second
advantage takes its strength from the iterative and interactive nature of the data
mining process itself. In the data mining process, the user can multiply successive
association rule extractions. Every new extraction query depends on the antecedent
query results. If an exhaustive algorithm can process all frequent itemsets in an
acceptable response time than all frequent itemsets can be available for any query
request by the user. It can be sufficient to generate association rules – if the minimum
support threshold is not decreased, from the frequent itemset already calculated.
Consequently, if the frequent itemset generation stage is processed completely, the
user doesn’t care about the execution time, and does not change the minimum support
threshold, this solution can promote response time (Geothales and Bussche 1999
[121]).

1.5 Problematic of Association Rules and Solutions

The main disadvantage of the rule extraction process is that the volume of generated
rules often greatly exceeds the size of the underlying database. Typically only a small
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fraction of that large volume of rules is of any interest to the user who is very often
overwhelmed with the massive amount of rules. Cognitive processing of thousands
of rules takes much more time then generating them even by a less efficient tool.
Imielinski 1998 [152] believes that the main challenge facing association rule mining
is what to do with the rules after having generated them.

Association rule generation methods have to face two types of problem:

• rule quantity: the huge number of mined association rules makes manual in-
spection practically infeasible. It also increases the difficulty in interpreting the
results and obtaining relevant knowledge.

• rule quality: an equally or possibly more important issue concerns the quality
of the extracted rules. Rules such as ”age = 10 → unemployed”, while being
statistically valid in a database are obvious since they are trivial knowledge.
For instance, Major and Mangano 1995 [189] mined 529 rules from a hurricane
database of which only 19 were found to be actually novel, useful and relevant.

There has been various research aimed at the attenuation of both problems (rule
quality and rule quantity). Proposed solutions for the rule quality problem rely
on the specification of interestingness measures to represent the novelty, utility or
significance of rules. By ordering the discovered rules according to their degree of
interestingness, one can ensure that only good quality rules are presented first to
the analyst. For the rule quantity problem, various strategies have been proposed,
among them being redundancy reduction and post-processing techniques, these being
the two most widely used.

1.5.1 Interestingness Measures

In association rule mining the user often needs to evaluate an overwhelming number
of rules. Interestingness measures are very useful for filtering and ranking the rules
presented to the user. In the original formulation of association rule discovery prob-
lem, support and confidence are two of the interestingness measures proposed.

Support is necessary because it represents the statistical significance of a pat-
tern. From the marketing perspective, itemset support in a market database justifies
the feasibility of promoting the items together. Support is also good for pruning
the search space since it possesses a nice downward closure property (anti-monotonic
constraint). Tan and Kumar 2000 [209] examined various objective interestingness
measures and demonstrated that support is a good measure because it represents how
statistically significant a pattern is. Support-based pruning is effective because is an
anti-monotonic function, and it allows us to prune mostly uncorrelated or negatively
correlated patterns. Beyond that, it may not serve as a reliable interestingness mea-
sure. For example, rules with high support often correspond to obvious knowledge
about the domain and consequently, may be not interesting to the analyst simply
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because it does no reveal any surprising information. In theory, confidence measures
the conditional probability of events associated with a particular rule. Unfortunately,
confidence can be misleading in many practical situations, as shown by Brin et al.
1997 [48].

Except for these two measures, many other have been proposed in the literature.
Geng and Hamilton 2006 [117] have classified interestingness measures into three cat-
egories : objective, subjective, and semantics-based measures.

• Objective Measures Based on Probability: objective interestingness measures
are based on probability theory, statistics, and information theory. Therefore,
they have strict principles and foundations and their properties can be formally
analysed and compared. Objective Measures take into account neither the con-
text of the domain of application nor the goals and background knowledge of
the user. They evaluate the generality and reliability of association rules. Hil-
derman and Hamilton 1999 [144] surveyed 70 interestingness measures (mostly
objective) that have been successfully employed in data mining application.

• Subjective Measures: in application where the user has background knowledge,
rules ranked highly by objective measures may not be interesting. A subjec-
tive interestingness measure takes into account both the data and the user’s
knowledge. Such a measure is appropriate when:

– the background knowledge of users varies;

– the interests of the users varies;

– the background knowledge of users evolves.

Unlike objective measures, subjective measures may not be represented by sim-
ple mathematical formulae because the user’s knowledge may be representable
in various forms. Instead, they are usually incorporated into the mining pro-
cess. Subjective measures can be classify in:

– Surprisingness

– Novelty

• Semantic Measures: semantic measures consider the semantics and explanations
of the association rules. Geng and Hamilton 2006 [117] consider that semantic
measures are based on:

– Utility

– Actionability
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Later in 2009, Blanchard et al. [30] proposed a Semantics-based classification of
objective interestingness measures. They proposed to classify interestingness mea-
sures according to the subject, the scope and the nature of the measure. This means
that an interestingness measure is evaluated according to the notion that it measures,
the elements concerned by its results, and the type of the measure: descriptive or sta-
tistical.

During the data mining process, interesting measures can be used in two ways.
Firstly, objective measures can be used to prune uninteresting patterns during the
mining process to reduce the search space. However, this may eliminate interesting
rules. For instance, the support threshold can be used to filter out patterns with low
support during the mining process. The direct consequence is that some items are
not taken into account if they are not frequent in the database although they could
be interesting to the user. By eliminating these items the user can waste valuable
information. Secondly, measures can be used during post-processing to select inter-
esting patterns. For instance, we can rank rules by various interestingness measures
and keep only rules with the higher ranking. The problem is that rules that have
the highest rank are not necessarily the good ones. Much research work (Ohsaki et
al. 2004 [211], Tan et al. 2002 [268]) has compared the ranking of rules by human
experts to the ranking of rules by various interestingness measures, and suggested
choosing the measure that produces the ranking that most resembles the ranking of
experts. This problem represents a major gap between the results of data mining and
the use of the mining results. Interestingness measures can play an important role
in the identification of novel, relevant, implicit and understandable patterns from the
multitude of mined rules. They help in automating most of the post-processing work
in data mining. But it should be the analyst who validates rules and designates the
more interesting ones.

1.5.2 Redundancy Rule Reduction

This second section of solutions for the volume of generated rules is dedicated to
redundant rule reduction techniques. Classical algorithms propose good methods for
association rule extraction, but the number of rules is too large and too many rules
are redundant.

Redundancy reduction refers to a set of techniques aimed at pruning out items or
rules which do not reveal interesting knowledge. Pruning techniques can be used to
dynamically reduce the dataset during processing. By discarding unnecessary items,
items pruning generates dataset reduction (D) and further reduces processing time.
Pruning can deal with the quantity problem, if a set of rules means the same thing
or refers to the same feature of the data, then the most general rule may be preserved.

Rule covers (Toivonen et al. 1995 [275]) is a method that retains a subset of the
original set of rules. This subset refers to all transactions (in the database) that the
original rule covered. Another strategy in association rule mining was presented by



36 Knowledge Discovery in Databases and Association Rules

Zaki 2000 [305] based on the concept of closed frequent itemsets that can drastically
reduce the generated rule set. Therefore, the set of generated frequent itemsets is
smaller than the set of all frequent itemsets, especially for dense databases. The
closed frequent itemsets are used to generate a set of rules, from which all other asso-
ciation rules can be inferred. Thus, only a small set of rules can be presented to the
user. These basic rules gives a user only an overview of the domain. Although the
idea was proposed by Zaki 2000 [305], it is in 2004 that Zaki 2004 [304] developed a
real algorithm.

Comparable with the algorithm proposed by Zaki 2000 [305], Pasquier et al. 2005
[217] introduced two condensed associations based on closed frequent itemsets to rep-
resent non-redundant association rules. These two representations calledMin-max
Approximative Basis and Min-max Exact Basis describe different possibilities to ex-
tract non-redundant rules using closed methods. Later, Xu and Li 2007 [298] improved
the definitions suggested by Pasquier et al. 2005 proposing a more concise association
rule basis called Reliable exact basis.

Li 2006 [181] proposed optimal rule sets defined with respect to an interestingness
measure. An optimal rule does not have a more general rule with greater interesting-
ness. Thus, the algorithms produced a set of rules contains all optimal rules.

A set of techniques for the reduction of redundant rules was developed and im-
plemented by Ashrafi et al. 2005 [12]. The proposed techniques are based on gener-
alisation/specification of antecedent/consequent of the rules and they are divided in
methods for multi-antecedent rules and multi-consequent rules.

Several researches suggested that pruning redundant rules can seriously decrease
the number of redundant rules is exponential (Zaki 2004 [304]). Redundancy reduc-
tion methods may not provide an overall picture if the number of the pruned rules is
too large.

1.5.3 Interactive Rule Post-processing

Rule post-processing involves helping user to select rules which are relevant or inter-
esting and, thus, reduce the cognitive load of experts. But, since it is always the user
who decides what is interesting this means that post-processing of association rules
a non trivial task (Roddick et al. 2001 [239], Freitas 1999 [107], Bayardo et al. 1999
[19], Dong and Li 1998 [92], Silberschatz and Tuzhilin 1995 [247], Silberschatz and
Tuzhilin 1996 [249]).

Many authors have stressed that the data mining process is by nature highly
iterative and interactive and requires user involvement (Fayyad 1997 [100]). In par-
ticular Brachman and al. 1996 [45] have pointed out that in order to efficiently assist
the users in their search for interesting knowledge, the data mining process should
be considered not from the point of view of the discovery algorithms but from that
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of the users, as a human-centred decision support system. Thus, to find interesting
rules it is more efficient to incorporate the user into the Data Mining process than
just presenting filtering operators to help the user exploring the association rule ex-
traction algorithm results. Yamamoto et al. 2009 [72] compared the performance of
the user-driven approach I2S (Yamamoto et al. 2007 [299]) with a conventional rule
extraction approach Apriori to illustrate the possibilities of the user-driven solution.
In a case study with a domain specialist, the usefulness of incorporating the analyst
into the data mining process was confirmed. We believe that a closer contact with
the discovery process allows users to obtain interesting rules faster than just running
an algorithm as a black box.

The main approaches for interactive association rule post-processing can be grouped
into three classes:

1. organise an interactive exploration/extraction of association rules;

2. organise an interactive visual exploration of association rule mining results;

3. organise an interactive visual extraction of association rules.

1.5.3.1 Interactive Exploration and Extraction of Association Rules

Rule Browser

Interactive tools of the type rule browser have been developed to assist the user
in interactive post-processing of association rules. Like the file browser, they are in-
teractive interfaces that present information in textual form.

Sahar 1999 [242] proposed to the user to eliminate non interesting rules by re-
moving not interesting items. If a user eliminates an item, all rules in the resulting
list that contain this item are removed. The effectiveness of this approach lies in
its ability to quickly eliminate large families of rules that are not interesting, while
limiting user interactions to a few, simple classification questions. In 2000, Ma et al.
2000 [187] proposed a system where the user explores a summary of rules and he/she
can select interesting rules from it. More recently, a feature-rich rules browser was
presented by Fule and Roddick 2004 [115] (Figure 1.4). It allows the user to filter
association rules by applying more or less general syntactic constraints as they may
use a taxonomy of items. The tool also allows the user to choose what rule interest-
ingness measure should be used for sorting and filtering rules. Furthermore, the user
can save the rules that he/she deems interesting during the exploration.

Some association rule browsers exploit subjective interestingness measures and
then can profit from the user knowledge. For example, Liu et al. 1999 [184] proposed
a rule browser based on subjective interestingness measures. This tool exploits the
user’s knowledge of the data domain to present the rule. Firstly, the user expresses
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Figure 1.4: The RSetNav rules browser [115]

his knowledge under the form of relations by specifying a set of patterns according to
his/her previous knowledge or intuitive feelings. Then, the tool matches and ranks
the discovered rules in different categories according to whether or not they confirm
the user’s wishes. In general, the technique ranks the discovered patterns according
to their conformity to the user’s knowledge or their unexpectedness, or their action-
ability. The assumption of this technique is that some amount of domain knowledge
and the user’s interests are implicitly embedded in his/her specified pattern. With
such a ranking system, the user can check the lists of rules to confirm his/her ex-
pectation, or to find those patterns that are against his/her intuitions, or to discover
those rules that are actionable. This method can be used to confirm user knowledge,
to find unexpected patterns or to discover actionable rules. The main limitation of
the rules browser is their textual representations of the rules which does not suit the
study of large amounts of rules. These tools also have the problem of implementing
only a few interestingness measures (maximum of three).

Query Languages

The concept of Inductive Databases, was introduced by Imielinski and Mannila
1996 in their founding article [151]. The main idea was to extend the database man-
agement system in order to incorporate data mining methods. In other words, it is
about developing a data mining query language, an SQL generalisation that allows
data creation and manipulation and also knowledge discovery from databases (clas-
sify, clusters of association rules, etc.). For the user, he/she manipulates a database
containing both data and knowledge, regardless of whether the information is actually
stored in the database or dynamically generated from data.
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The inductive database was an ambitious and difficult project. Despite research
since 1996, there are still many challenges to meet. Query evaluation and optimisa-
tion are particularly difficult. (we saw in Section 1.4.3 that it is difficult to optimise
the extraction of rules if we do not know the optimal constraint of thresholds in
advance). Many query languages have been developed in the context of Inductive
Databases to extract and manipulate association rules, such as DMQL (Hah et al.
1996 [133]), MSQL (Imielinski and Mannila 1996 [153]), MINERULE (Meo et al.1998
[193]), and XMINE (Braga et al. 2002 [46]). These query languages allow the user to
control the extraction and/or post-processing of association rules. However, they can
be impractical as regards the post-processing of association rules, in the same way as
SQL used alone is not suitable for data analysis.

To remedy this, Bonchi et al. 2009 [34] presented ConQuestSt, a constraint-
based query system for exploratory and interactive association rule discovery, where
the interest of the rules is defined by means of user-defined constraints. The user
can supervise the whole process by defining the parameters of the three tasks (pre-
processing, data mining and post-processing) and evaluating the quality of each step
and, if necessary, re-adjusting the parameters. The tool proposed by the authors
offers many constraint-based association rules and offers the SPQL query language
for pattern discovery as introduced in Bonchi et al. 2006 [33] and extended in Bonchi
et al. 2009 [34]. Moreover, via the graphical interface of the ConQuestSt tool (Figure
1.5) the user can store interesting rules in the DBMS.

Figure 1.5: The ConQuestSt’s pattern browser window [34]
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1.5.3.2 Interactive Visual Exploration and extraction of Association Rules

In the post-processing of association rules, it is often through rule visualisation that
post-processing is performed. Visualisation take advantage of the intuitive appeal of
visual representations such as graphs, colour and charts to attract the user’s atten-
tion. In addition, innovative ways of depicting the results of data mining in two or
three dimensions help provide more realistic information than textual representation
(for more details see Chapter 2 Section 2.4).

Visual representations of data mining results also allow easily interaction. As-
sociation rule representations easily allow navigation at various levels of details by
interactively and iteratively changing the rule views. This mean that different scenar-
ios can be analysed and compared. Groups of rules can be validated on the basis of
their visual representations. This can reduce the cognitive load of the experts when
dealing with many rules.

Visual representations can be used:

• in conjunction with data mining algorithms to facilitate and accelerate the
knowledge analysis;

• as a method of data mining.

Visualisation of association rule mining results

Typical visual representations to display results of association rule mining are
grid-like structures and bar charts. The grid view consists of 2D matrix of cells where
each cell represents a rule. One matrix dimension represents rule antecedent and the
others represent rule consequent. Each cell is filled with coloured bars indicating rule
support and confidence values. However, this representation often suffers from occlu-
sion. Besides, it is difficult to represent rule antecedent or consequent with more then
one item. This restriction can be overcome by extending the matrix dimensions to
represent combinations of items, but it becomes impracticable if there are too many
different items.

Kopanakis and Theodoulidis 2003 [171] introduced a representation using bar
charts coupled with a parallel coordinate visualisation (Inselberg and Dimsdale 1990
[155]) and a grid view. The bar charts (Figure 1.6(a)) map both interest measure
values and rule contents. Each item value (discrete or continuous) from both the
antecedent and the consequent is visually mapped as a bar chart. If the element
is discrete, then a value is indicated in the bar; if it is continuous, an interval is
indicated instead. This approach represents only one rule at a time, and a grid of
representations (Figure 1.6(b)) is used to display multiple rules. A distance measure
is employed to evaluate rule similarity in order to determine their placement on the
grid. The similar rules are placed close to each other. The underlying rationale in the
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parallel coordinate visualisation (Figure 1.6(c)) technique is to map data attributes
(transaction items, in this case) to parallel axes, and map each datum instance (rule,
in this case) as a polyline intersecting each axis at a point corresponding to its partic-
ular value. This approach offers a different perspective to visualise rules but remains
limited to a relatively small set of rules.

(a) (b)

(c)

Figure 1.6: An association rule representation using bar chart for one rule visualisation
(a), grid-like visualisation for multiple rules visualisation (b) and parallel-coordinate visuali-
sation (c) [171].

Wong et al. 1999 [297] introduced a representation based on a two-dimensional
matrix that maps rule-to-item rather then item-to-item relationships. Matrix rows
represent items, whereas matrix columns represent rules. A block placed at the appro-
priate row-column intersections depicts a particular rule-to-item relationship. Blue
blocks indicate rule antecedent and red ones indicate rule consequent. A 3D view of
the matrix is displayed (Figure 1.7), with support and confidence values represented
as a bar chart placed in the scene background. Chakravarthy and Zhang 2003 [64] pro-
posed a two-dimensional matrix view similar to the previous one by Wong et al. 1999
[295] the major difference being that one of the matrix dimensions now represented
rule consequent. In the rules representation proposed by Chakravarthy and Zhang
2003 [64], the rules are grouped according to the number of items at their antecedent,
and bar charts represent their interest measures, namely, support and confidence.
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Each bar represents a quantity of items at the antecedent, and is sub-divided into
interest measure range value (e.g., 60-70% confidence, 80-90% confidence, etc). This
representation gives a broader view of the rules set, and the user may obtain a closer
look by clicking on a bar, which causes a two-dimensional matrix view. Couturier et
al. 2007 [79] combined 2D matrix for visual representations of association rules with
graphical fisheye view. Their goal is to give users a details-on-demand view while
preserving an overview of the overall context. One visualisation area shows rules in
a 2D matrix, with antecedent and consequent mapped to each dimension and values
for interestingness measures (support and confidence) displayed as colours within the
corresponding cell, whose visual area is equally split among measures. The same au-
thors Couturier et al. 2007 [80] proposed an approach for exploring association rules
based on a visual representation of cluster of rules, obtained by applying the k-means
algorithm over the rule characteristics. Each cluster is represented in a grid-cell, and
colours map interest measure values.

Figure 1.7: Visualisation of item associations [297].

Hofmann et al. 2000 [146] introduced a representation using Mosaic plots (Figure
1.8). They display a contingency table to represent an association rule by mapping
the rule support and confidence as areas proportional to their values. The repre-
sentation provides deeper understanding of the correlation between the antecedent
and the consequent of a rule. This approach considers only one itemsets at a time,
and interpreting the visualisation becomes difficult when three or more items appear
either at the antecedent or the consequent.

Unwin et al. 2001 [280] proposed the TwoKey plot a scatter plot visualisation (Fig-
ure 1.9) of the corpus of association rules. The two most common interest measures,
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Figure 1.8: Association rules representation with Mosaic Plots [146].

namely support and confidence, are mapped respectively to the X and Y dimension
of the plot. Therefore, a graphical marker representing a rule is positioned in the
plot according to its support and confidence values, while the marker’s colour maps
the number of item’s in the rule. This representation provides an overview of the
whole rule set, and users can employ filtering operators to direct rule exploration,
e.g., obtaining rules related to a rule query, such as its more specific rules and more
general rules.

Ong et al. 2002 [148] adopted a grid-like visual representation for association rules
with columns ranked by confidence values and rows ranked by support. The rules
are grouped in cells, according to their support and confidence, and represented as
squares whose locations are determined by their support and confidence values. Fil-
ters based on support, confidence or item selection assist user navigation through the
rule set. The authors pointed out that their method shows rules of any size and with
no limitations of rules number. However, only the interest measure value is visually
represented (the itemsets are not represented). The same authors proposed a tree-like
view of rules. The rules are grouped according to their antecedent and consequent.
Antecedent are firstly shown as nodes, according to the number of items. Then, for
each antecedent node, a rule containing the consequent is shown as sub-nodes. The
Tree view represent the main contribution of Ong et al. 2002 [148] compared to the
TwoKey plot proposed by Unwin et al. 2001 [280]. A grid-like rule visualisation
(Figure 1.10) has been also employed later by Techapichetvanich and Datta 2005
[271], where two groups of lines represent items belonging to the antecedent and the
consequent. Each rule is visually represented as a line that connects the item lines.
If an item belong to the rule, the intersection of the rule line and the item line is
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Figure 1.9: A scatter plot of 5807 rules with TwoKey plot [280].

marked by a dot. Either the support or the confidence value is divided into intervals
and mapped to the colour of the line representing the rule.

Figure 1.10: A grid-based visualisation of association rules [271].

Yang 2003 [300] employed parallel coordinate visualisation to display association
rules (Figure 1.11). Rules are represented similarly, by two lines, one for the an-
tecedent and another for the consequent. An arrow connects the lines, and colour
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may map interestingness measure values. Support of a rule is represented by the line
width. Confidence is represented by the colour.

Figure 1.11: A parallel coordinates visualisation of association rules [300].

In the graph-based representation of association rules by Bruzzese and Buono 2004
[50] the colour of a node represents the antecedent (red) or the consequent (green) of
a rule, while edges connecting the nodes depict the association. Confidence is mapped
to the edge length, with colour mapping the support, light and dark blue referring to
low and high support, respectively. A user may further explore subsets of rules us-
ing a parallel-coordinate representation. Unlike the previous visualisation approach,
this representation allows the visualisation of a large set of rules while displaying the
items making up the rules. Otherwise, it offers few interaction operators. Ertek and
Demiriz 2006 [99] proposed to display association rules using a graph-based technique
(Figure 1.12). Items and rules are mapped as nodes, and item-rule connections map
their relations, with directed lines to indicate the direction of the implication. Rule
node colour maps the level of rule confidence. The size of the nodes (area) show
the support interestingness measure. The approach proposed by Yang 2003 [300]
and Ertek and Demiriz [99] generate the results and then visualise both intermediate
result–frequent itemset–and final results–association rules. However, they do not al-
low user interference during the analytical processing.

A few approaches provide visual representations of individual rules (Hofmann
2000 [146], Kopanakis and Theodoulidis 2003 [171]). They used reduced screen space,
which make impossible to avoid a point of saturation when multiple rules are displayed
and from where no rules can be further represented on the screen. This limitation
are faced by all representations based on 2D matrix and on grids. On the other hand,
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Figure 1.12: A graph-based visualisation of 27 association rules [99].

most Graph-based and projection-based approaches are less sensitive to the satura-
tion problem, but suffer from object occlusion, i.e., graphical markers overlap, and
proper interaction mechanisms are required to handle the problem.

Visualisation during association rules mining

Although approaches aimed at visualising the results of association rules mining
help users to find interesting rules within the typically huge amount of rules, they do
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not allow active user participation in the process, for instance by monitoring the asso-
ciation rule extraction algorithm. Active participation allows users to input previous
knowledge into the data mining process itself, which can be done both by driving
the generation of frequent itemsets, and the extraction of association rules. Some
approaches that promote user introduction in the discovery process will be discussed.

The idea was first proposed by Klemettinen et al. 1994 [170] for analysis of fail-
ures in telecommunication networks. By using a browser, the user tries to reach
interesting rules by revising interestingness measures thresholds and applying syntac-
tic constraint (the user can choose the items that should appear or not appear in the
rules) to reduce the number of rules. Then, bar charts are used to map interest mea-
sure values of the association rules. Bar height maps the interest measures values –
support, confidence and their product (named commonness) so that high values catch
the user’s attention during rule exploration. The authors also present a graph-based
visualisation of rules (Figure 1.13) where items are presented as nodes and associa-
tions as directed arrows. Arrow thickness represents rule confidence or, alternatively,
support, and colour can map additional information. Nonetheless, the graph suffers
from a cluttering problem when displaying too many rules. A solution to avoid this
problem is to include merging multiple nodes from a cluster into a single node, or dis-
playing nodes for the antecedent and the consequent in separate regions of the screen.

Figure 1.13: Rule visualisation / rule graph ([170]).

A step in this direction was taken by Liu and Salvendy 2006 [185], who allowed
the exploration of frequent itemsets at each step of the Apriori, but the user cannot
fully drive the process, for two main reasons. Firstly, rules are automatically gener-
ated for all the obtained frequent itemsets and it is not possible to focus on specific



48 Knowledge Discovery in Databases and Association Rules

groups of itemsets at this moment. Secondly, the user does not have full control over
algorithm execution, since he/she cannot change the algorithm parameters during the
process. In an interactive approach for association rule exploration, it is important
for a user to be able to reverse the last action if he/she realises that it is not suitable.
To face such a problem, it is desirable that the user have the possibility to backtrack
(or forward) one step to change parameters or to restart the process with different
parameters.

Kuntz et al. 2000 [174] introduced a new approach inspired by experimental work
on behaviour during a discovery stage. The basic strategy of this approach is to start
from the frequent items, similar to the Appriori algorithm. The user may then select
items of interest and obtain rules involving these and other items (Figure 1.14). The
rule extraction is dynamic: at each step, the user can focus on a subset of potentially
interesting items and launch an algorithm for extracting the relevant associated rules
according to statistical measures. This navigation operation is called forward chain-
ing, and is graphically represented by graph-based visualisation (backward chaining
is also supported). Besides being user-directed this strategy avoids generating un-
wanted rules. Blanchard et al. 2003 [28] proposed a user-centred rule exploration
approach, which adopts a visual metaphor of two arenas to place interesting rules.
The arena holds the generalised and specialised rules separately. Each rule is repre-
sented by a sphere, whose radius maps its support, and by a cone, whose base width
maps its confidence. Additionally, the colours of the sphere and cone redundantly
represent a weighted average of the measures, with the position of the rule at the
arena represents the implication intensity. This work was extended later (Blanchard
et al. 2007 [31]) with two complementary visualisations: the first is the 3D visual
interface ( see Chapter 3) and the other is the neighbourhood relationship between
rules, some of them from the already mentioned work by Kuntz et al. 2000 [174].
Based on the neighbourhood relations, the authors proposed rules that are closer to a
selected rule according to a neighbourhood relation. The available relations are: same
antecedent, forward chaining, antecedent generalisation (which is opposite to forward
chaining),same items, agreement specialisation, exception specialisation, generalisa-
tion and same consequent.

Yamamoto et al. 2007 [299] proposed a System called I2E that relies on an the
interactive execution of Apriori aided by a visual representation of the space of item-
sets. At each execution step the system identifies the frequent k-itemsets. Then,
the users visualise and explore the proposed frequent itemsets via a graph-based vi-
sualisation of the itemsets extracted in the current step(k) . The itemsets that are
similar in content are grouped together in the graph visualisation. After generating
the frequent itemsets, the users can drive the rule extraction by changing the min-
imum support value and by filtering frequent itemsets. This approach supports a
user-driven selective rule extraction that produces fewer rules, but still includes rules
representative of all different groups of similar identified itemsets. After rule extrac-
tion, users can explore the complete rules space via a visual interface that allows
pairwise rule comparisons.
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Figure 1.14: Discovering rules from the selected frequent items [174].

All these proposed approaches suffer from the same limitation. The user cannot
record interesting association rules identified during the exploration and then he can’t
compare the interesting association rules. A typical approach to find interesting
association rules needs its extraction from many subsets of data. Most approaches
allow the visualisation of only one subset of association rules each time. Furthermore,
the user cannot compare association rules extracted from different subsets of data.
The user can forget interesting association rule discoveries if he cannot save and
redisplay them to compare them to other association rules. On the other hand, the
I2E system proposed by Yamamoto et al. 2007 [299] allows only pairwise comparison
of rules using relations. This comparison allow only the comparison between two
rules that have same syntactic relations– same antecedent, same consequent, rule
generated from a subset of the generating itemset, rule generated from a subset of
the generating itemsets and rules generated from the same itemset. Therefore, the
user can’t compare more then 2 rules and he can’t compare two association rules
which aren’t syntactic link.

1.6 Conclusion

In this chapter, we have described processes of Knowledge Discovery in Databases
and, more particularly, we have focused on the association rule mining techniques.
We have presented the definitions, the notations, the extraction algorithms, and the
most important solutions to answer drawbacks that limit the association rule mining
technique.

The algorithms developed for association rule extraction fall into two categories:
exhaustive algorithms and constraint-based algorithms. In absolute terms, neither
approach clearly outperforms the other. The time and memory performance depend
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on the extraction parameters and data studied. In practice, an exhaustive algorithm
can be a suitable solution for hollow data sets or for users who can tolerate a long
processing time but it still produces a huge number of rules. On the other hand, a
constraint-based algorithm can produce a limited number of rules but requires that
the user use the correct values of the constraints.

Different methods have been proposed to address these two problems:

• evaluate, order and filter rules with interestingness measures other than support
confidence;

• reduce the number of proposed rules using redundancy reduction methods;

• organise an interactive exploration (and extraction) of rules.

Nevertheless, the two first approaches have their own limits. Firstly, the interest
and the utility of a rule is decided by the user whereas the interestingness measures
are generally based on database information. Redundancy reduction methods allow a
reduction of the number of rules from millions to thousands, but even so, a user is not
able to manually exploit thousands of rules. In conclusion, the useful characteristic
of patterns suggested by Fayyad et al. cannot be met in this case.

Thus, the last technique allows the introduction of the user in the data mining
process to extract reduced sets of rules which are useful and interesting for him. The
most efficient approach for interaction exploration and extraction are based on visual
interfaces. Moreover, on the one hand, the visualisations adopted in most reviewed
approaches demand considerable screen space, which is quite limited in 2D interfaces.
Given the large amount of visual objects it is impossible to show clearly all of the
rules simultaneously. In addition, visualisation in 2D suffers from a lack of agreeable
semantics for the position and orientation of objects when placed on a 2D grid, which
can cause biased visual feedback.

On the other hand, a very limited number of approaches support a fully user-
driven rule extraction process and no one provides the user with the possibility
of saving and comparing the discovered interesting rules. Thus, new representa-
tion/interaction techniques are needed to extract reduced sets of rules which are
useful and interesting for the user.
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2.1 Introduction

As previously already stated, visualisation and interaction are an important fields
of research in Data Mining (DM). It relies on the fact that the human mind pro-
cesses visual information easily and quickly and may extract a lot of information and
knowledge in this way. In this context, visualisation represents a critical step that is
required at during the Knowledge Discovery in Databases (KDD) process (Fayyad et
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al. 1996 [101]).

As proposed by Fayyad et al. 1996 [281], data visualisation can be viewed as an
approach to the problem of KDD and involves two important aspects (Fayyad et al.
1996 [101]): (i) helping the user in the knowledge discovery step and (ii) enabling
him/her to interact with the knowledge representation (Chernoff 1973 [68], Bertin
1967 [24], Card et al.1999 [60], Becker et al. 1987 [235], Pickett and Grinstein 1988
[220], Tufte 1990 [278], Cleveland 1993 [74], Keim and Kriegel 1996 [167], Wong and
Bergeron 1997 [296], Friendly 2001 [110], Unwin 2000 [279]). Thus, VDM requires
tools and efficient visualisation and interaction techniques enabling the user(s) to
perform such complex tasks.

The emergence of virtual reality (VR) has enabled significant advances in the field
of data visualisation (large-scale, stereoscopic viewing) and user interaction (Fuchs
et al. 2003[112]). VR allows immersive real-time visualisation and interaction with
huge amounts of data. Therefore, VR has a great potential and can be very useful for
VDM. However, current VR systems (many configurations exist), interaction tech-
niques and metaphors are not well suited for the specific tasks involved or required
by VDM and KDD.

In the first part this chapter, we define the concept of VR and Virtual Environ-
ments (VEs). Then, we compare current 2D, 3D and VR techniques to now proposed
in the context of data visualisation. In Section 3, we present and analyse the various
interaction devices and interfaces widely used in current VR applications. In addition,
we review existing 3D interaction techniques and metaphors and give the advantages
and drawbacks of these for DM, both in mono-user and multi-user contexts. Finally,
we propose a classification for hardware configurations of visual displays enabling user
immersion in VEs.

2.2 Concepts and definition of VR

Virtual reality lies at the intersection of several disciplines such as computer graph-
ics, human-computer interaction, computer vision, and robotics. It uses large-scale
advanced visual displays, interaction devices and multimodal interaction techniques
to immerse one or more user(s) in a Virtual Environment (VE). One the advantages
of VR is that the interaction techniques are based on human natural action, percep-
tion and communication abilities, allowing the user to perform complex tasks quite
intuitively (Burdea and Coiffet 1993 [54], Fuchs et al. 2003 [112])

VR is currently used in a wide variety of applications such as engineering, medicine,
biology, education and training, etc. The increasingly widespread use of VR is due to
(i) the rapid evolution of computers (processing and graphic capabilities), interaction
devices coming recently from the game industry such as the WiimoteTM , KinectTM ,
Play Station MoveTM , and low-cost visual displays (3D televisions and projectors),
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and (ii) the increasing development of applications in different sectors (automotive,
aerospace, medicine, education, defence, entertainment, etc.).

Augmented Reality (AR) refers to different techniques allowing the integration
of digital entities (objects, images, text, etc.) in the real world [196]. Milgram and
Kishino [197] coined the term Mixed Reality and proposed to consider it as a contin-
uum which extends from the real world to fully virtual worlds (Figure 2.1).

Mixed Reality (MX)

Real 

Environment
Augmented

Reality (AR)

Augmented

Virtuality

Virtual 
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Figure 2.1: Triangle of Virtual Reality proposed by Burdea and Coiffet [54].

Burdea and Coiffet 1993 [54] introduced the 3I concept: immersion, interaction
and imagination as a new approach to define and analyse VEs (Figure 2.2). In this
concept, Imagination plays a crucial role and characterises user interpretation that
results from a VR experience. Some authors consider VR as an extension of classical
human-computer interfaces. For example, Ellis 1994 [97] proposed that VR is ”an
advanced human-computer interface that simulates a realistic environment and allows
participants to interact with it”. Other researchers define VR as computer simulated
worlds in which the user is the main actor.
In this context, it is important to understand that a user may perceive and un-

Immersion

ImaginationInteraction 

Virtual Reality

Figure 2.2: Triangle of Virtual Reality proposed by Burdea and Coiffet[54].

derstand a VE through various sensory channels such as vision, sound, touch, smell,
etc., but also through movement, action and interaction with virtual objects or data.
Tisseau 2001 [274] defines VR as a universe of models offering the mediation of senses,
actions and mind.

Other definitions of VR from functional, technical, and philosophical points of
view are detailed in Fuchs etal. 2006 [113] and Fuchs etal. 2003 [112]. Fuchs et
al. [112] define VR through its purpose: ”the purpose of VR is to enable a person
(or more) a sensory-motor and cognitive activity in an artificial world, numerically
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created, which can be imaginary, or a symbolic simulation of certain aspects of the
real world”.

Zeltzer 1992 [307] has proposed a model for the description and classification of
VEs. The model, represented by the AIP cube, includes three components: Auton-
omy, Interaction and Presence (Figure 2.3) and is based on the assumption that
every VE has three distinct components which are:

• A set of models and processes (autonomy);

• Action on them (interaction);

• Some sensory modalities (presence).

Using this model, any VR application can be represented using three-dimensional
coordinates (autonomy, interaction, presence), for which the axes are normalised be-
tween 0 (criterion completely absent) and 1 (criterion fully present). Tisseau 2001
[274] also focused on the concepts of presence and autonomy to define VR applica-
tions and propose that the presence itself is supported by immersion and interaction
(Figure 2.4).

Figure 2.3: The AIP cube : autonomy, interaction, presence [307].

2.2.1 Immersion

In the VR community, the term immersion is widely used and it is quite important to
understand what it really means and what are the related aspects. The first level of
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Figure 2.4: Immersion, interaction, andautonomy in VR [274].

immersion is physical or visual (Burkhardt 2003 [56], Mestre and Fuch 2006 [194]).
In fact, immersion reflects the extent to which the human visual field is covered by
the displayed virtual images. The second level of immersion, generally called spatial
immersion, is related to the extent to which the user(s) can act or move in the virtual
world. These two levels of immersion are of course closely linked.

Bowman and Hodges 1999 [39] define immersion as the sensation of being present
in the VE. Thus, a user is physically ”immersed” when he/she feels that the phys-
ical world that surrounds him/her has replaced the virtual world. A further level
of immersion is related to the user’s mental or psychological state. For some VR
applications such as training or simulation, this level of immersion is required.

The user’s sense of presence in a virtual world is another important aspect that
plays a crucial role in immersion. Indeed, the presence provides the user the feeling
of being inside the VE. In this context, it is essential to distinguish between virtual
presence and social presence (Slater et al. 1998 [252], Slater etal. 1996 [253]). The
first type of presence is the feeling that we try to give to the user as he/she is a part
of the virtual world (Burkhardt 2003 [56], Mestre and Fuchs 2006 [194], Stoffregen
et al. 2003[265]). On the other hand, social presence characterises collaborative
VEs in which virtual humans (human avatars or embodied conversational agents) are
present. Social presence involve mutual awareness of the participants and of their
activities within the shared virtual world. Kadri et al. 2007 [162, 163] point out the
importance of user’s representation by avatars in the VE.



56 Virtual Reality Technology

2.2.2 Autonomy

In VR, the notion of autonomy is related to the different components of the VE.
The user is one of those components and he/she is considered as the most active
entity in the virtual space. The user role in VR is not the same as in scientific or
interactive simulations (Tisseau 2001[274]). In scientific simulation, the user sets some
parameters before the simulation and analyses the results afterwards. On the other
hand, in VR applications, the user is exposed to a digital environment which allows
him/her to evolve, to change the VE properties, and to interact with the different
entities in real time. The user’s autonomy lies in his ability to coordinate perceptions
and actions taken during the interaction process.

2.2.3 Interaction

Since the emergence of VR, researchers have been particularly interested in interac-
tion, this being is the core component of any interactive system. Broadly speaking,
Interaction can be defined as a communication language between humans and com-
puters. This communication language is the set of actions/reactions between human
and computer interfaces through input / output devices and interaction techniques.

3D interaction can be defined as a system that links different interaction devices
and software technology to enable real-time modification of VEs. These different
pieces of software allow the use of available materials through drivers which provide
access to low-level devices, and high-level software applications. The different inter-
action techniques are between the hardware layer (low-level) and the application layer
(high-level).

2.3 Virtual Environments

The term Virtual Environment was introduced by researchers from the Massachusetts
Institute of Technology (MIT) in the early 90s as a synonym for VR (Heim 1995 [140]).
A VE is generally considered as a 3D real-time interactive environment representing
real, symbolic or imaginary data, visualised using desk-top or immersive displays (Ha-
chet 2003 [132]). There are different types of VE, based on the degree of immersion
provided to the user (Kalawsky 1996[164]):

• Non-Immersive Virtual Environment (NIVE)

• Semi-Immersive Virtual Environment (SIVE)

• Fully-Immersive Virtual Environment (FIVE)

Table 2.3 shows the qualitative performance of the different types of VR systems
according to the degree of immersion provided by the associated VE.
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In VR, users need to interact with the virtual objects present within the VE using
some interaction techniques. An interaction technique is defined as a method enabling
a task in a VE to be performed (Hachet 2003 [132]). Foley et al. [103] consider
interaction technique as a way of using 3D input devices to accomplish a given task.
Interaction techniques can also be defined as how the user operates a given interface
to interact in real-time with virtual entities and control the application. In VR, the
notion of interaction paradigm or metaphor is used by some authors to define a set
of rules and techniques that allow the user to perform interactive tasks within a VE.

Main features NIVE SIVE FIVE

Resolution High High low-average

Perception Low Low High

Navigation skills Low Average High

Field of view Small Average Large

Shift Low Low High-average

Sense of immersion Low High-average High-average

Table 2.1: Qualitative performance of the various VEs [164].

2.4 From 2D toward 3D and Virtual Reality

There is a controversial debate on the use of 2D versus 3D and VR for information
visualisation. In order to justify our choice for 3D and VR, we first review the differ-
ence between 3D visualisation and VR techniques:

• 3D visualisation is a representation of an object in a 3D space by showing length,
width and height coordinates on a 2D surface such as a computer monitor. 3D
visual perception is achieved using visual depth cues such as lighting, shadows
and perspective;

• VR techniques enable the user immersion in a multi-sensorial VE and use in-
teraction devices and stereoscopic images to increase depth perception and the
relative 3D position of objects. In addition the user is able to navigate and
explore VEs.

2.4.1 2D versus 3D

Little research has been dedicated to the comparison of 2D and 3D representations.
The experiments of Spence 1990 [255] and Carswel et al. 1991 [62] show that there
is no significant difference of accuracy between 2D and 3D for the comparison of
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numerical values. In particular, Spence 1990 [255] pointed out that it is not the
apparent dimensionality of visual structures that counts but rather the actual number
of parameters that show variability. Under some circumstances, information may be
processed even faster when represented in 3D rather than in 2D. Concerning the
perception of global trends in data, the experimental results of Carswel et al. 1991
[62] also show an improvement when answer times using 3D but to the detriment of
accuracy.

Finally, Tavanti and Lind 2001 [270] pointed out that realistic 3D displays could
support cognitive spatial abilities and memory tasks, namely remembering the place
of an object, better than with 2D.

Cockburn and McKenzie 2002 [75] presented their investigation in the domain
of effectiveness of spatial memory in real-world physical models and in equivalent
computer-based virtual systems. The different models vary the user’s freedom to use
depth and perspective in spatial arrangements of images representing web pages. Six
interfaces were used in the evaluation of three physical interfaces and three computer-
based virtual equivalents. Results show that the ability to quickly locate web page
images deteriorated as their freedom to use the third dimension increased. The sub-
jective answers also indicated that the users found the 3D interfaces more cluttered
and less efficient. Spacial memory clearly provides an effective aid to information
retrieval, but the study doesn’t conclude about the role that 3D plays to increase
rapidity of data retrieval in static-perspective spatial organisations. The results in-
dicate that for relatively sparse information retrieval tasks (up to 99 data items), 3D
hinders retrieval.

Tory et al. 2006 [276] compared 2D, 3D, and combined 2D/3D displays for dif-
ferent tasks in order to identify the tasks for which each view is best suited trough 3
experiments: (i) position estimation task, (ii) orientation task, and (iii) qualitative
exploration. These experiments showed that strict 3D displays with additional cues
such as shadows can be effective for approximate relative position estimation and
orientation. However, precise orientation and positioning are difficult with a strict
3D display. For each precise task, the combination of 2D/3D display was better than
strict 2D or 3D display. Compared to strict 2D display, combination displays per-
formed as well or better.

On the other hand, several problems arise, such as intensive computation, more
complex implementations than 2D interfaces, and user adaptation and disorienta-
tion. The first problem can be addressed by using powerful and specialised hardware.
However, one of the main problems of 3D applications is user adaptation. In fact,
most users only have experience with classical windows, icons, menu pointing devices
(WIMP) and 2D-desktop metaphors. Therefore, interaction with 3D presentations
and possibly the use of special devices require considerable adaptation efforts to use
this technology. There is still no commonly-accepted standard for interaction with
3D environments. Some research has shown that it takes users some time to under-
stand what kind of interaction possibilities they actually have (Baumgartner et al.
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2007 [17]). In particular, as a consequence of a richer set of interactions and a higher
degree of freedom, users may be disoriented.

2.4.2 Toward Virtual Reality

Research on human visual perception attests to the complexity and power of human
visual abilities. We perceive a 3D world primarily through a combination of binocular
vision and the use of motion parallax (Harris 2004 [138]). However the brain obtains
many clues such as the depth and shape of objects from the surrounding environment
(ground-plane, shadow, relative motion). Immersive environments allow to a user to
take advantage of the way the brain already interprets visual information (Hubona
and Shirah 2005[149]) and provides key advantages for evaluating and analysing infor-
mation, including the use of peripheral vision to provide global context, body-centric
judgements about 3D spatial relations, and enhanced 3D perception from stereo and
motion parallax (head tracking, Dam etal. 2000[86]).

Together these spatial indicators create a more natural environment and thus
promote more efficient exploration of 3D data. On a regular computer screen, the
strongest available depth cue is motion parallax. As a result, in order to understand
3D data from images on a screen, users need to constantly rotate the view or rock it
back and forth to perceive depth. The motion interfaces with detailed examination
or measurement of displayed data is not required in stereoscopic environments where
other depth cues are available. Furthermore, immersive environments offering head
tracking in addition to stereoscopy enable motion parallax without the user having
to consciously move the 3D data: motion is simply created by moving one’s head or
walking around the data; an intuitive response that does not interfere with analytical
tasks.

To overcome limitations of interaction with 3D representations, VR interfaces
and input devices have been proposed. These interfaces and devices offer simpler and
more intuitive interaction techniques (selection, manipulation, navigation, etc.), and
more compelling functionality (Shneiderman 2003[245]). Latulipe et al. 2005 [176]
demonstrated that a symmetric technique for simultaneous rotation, translation and
scale yields significant performance benefits over the standard single mouse in an im-
age alignment task.

In VR, the user can always access external information without leaving the envi-
ronment and the context of the representation. Also, the user’s immersion in the data
allows him to take advantage of stereoscopic vision that enables him to disambiguate
complex abstract representations (Maletic et al. 2001 [190]). Ware and Franck 1996
[288], compared the visualisation of 2D and 3D graphs. Their work shows a signif-
icant improvement in intelligibility when using 3D. More precisely, they found that
the ability to decide if two nodes are connected or not is improved by a factor of 1.6
when adding stereo cues, by 2.2 when using motion parallax depth cues, and by a
factor of 3 when using stereoscopic as well as motion parallax depth cues.
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Aitsiselmi and Holliman 2009 [6], found that the participants obtained better
scores if they were doing a mental rotation task on a stereoscopic screen instead of
a 2D screen. They found that the participants obtained better scores if they were
doing a mental rotation task on a stereoscopic screen instead of a 2D screen. This
result demonstrates the efficiency of VR and shows that the extra depth information
given by stereoscopic display makes it easier to move a shape mentally.

We can therefore conclude that stereoscopy and interaction are the two most
important components of VE and the most useful to users. Therefore, the equipment
used should be taken into account from the very beginning of application design, and
consequently be taken into account as a part of VDM technique taxonomy.

2.5 Interaction techniques and metaphors

Since the very beginning, researchers have been interested in 3D interaction which
can be regarded as the main component of any VR system. The information visual-
isation community has begun to distinguish between low-level interaction (between
the user and the software interface) and high-level interaction (between the user and
the information space). In low-level interaction, the user’s goal is often to change the
representation to uncover patterns, relationships, trends or other features. Amar et
al. 2005 [7] define a set of low-level tasks that are typically performed with visualisa-
tion. These primitive tasks are to retrieve values, filter, compute derived values, find
extremes, sort, determine ranges, characterised distribution, find anomalies, cluster
and correlate; these all accommodate specific questions that might be asked of a vi-
sualisation, and they can be composed into aggregate functions for more complex
questions.

The P-set model, proposed by Jankun-Kelly et al. 2007 [159], offers an approach
for capturing a user’s sequence of low-level interactive steps in an exploratory vi-
sualisation system. Tracking the investigation process allows the user to see their
current state in the context of prior exploration and can potentially inform future ac-
tions. Tools such as the ones proposed by Palantir [1] are now implementing history
mechanisms that expose the sequence of interactive steps as a sense making aid, and
Aruvi and van-Wijk 2008 [246] integrate history tracking with diagrammatic knowl-
edge capture. In high-level interaction, the user’s goal is to generate understanding.

In this context, understanding the intent of the interaction becomes critical. Yi
et al. 2007 [302] proposed a taxonomy of interaction intents: select, explore, recon-
figure, encode, abstract, filter and connect, that could constitute the components of a
knowledge discovery or confirmation process. Just as low-level interaction capabilities
can be used to assess completeness of an interface (does it allow users to efficiently
and effectively perform each low-level operation?), these higher-level categories can
be used to assess the kind of goals to which an interface could be applied.
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Traditional 2D user interfaces (WIMP) have well-established methods and tech-
niques, such as pull-down menus, buttons, and windows. Generally, these meth-
ods cannot be transferred to VR. Therefore, VE needs completely new interaction
paradigms. Three-dimensional user interfaces (3DUI) are considered to be one of the
alternative of current 2D interfaces (Dachselt and Hinz 2005 [84]). More than a dozen
years of research in the field of VR have produced a rich variety of applications, novel
input and output devices as well as 3D interaction techniques.

There are several classifications of 3D interaction techniques. Mine 1995 [198]
proposed the first classification based on four fundamental tasks: navigation, selec-
tion, manipulation, and scaling. He also defined a fifth task derived from the four
previous tasks: virtual menu and widgets. Hand 1997 [137] introduced the modern
classification basics which were taken over by Bowman et al. 2001 [41] who classifies
the various 3D interaction techniques according to three main tasks: navigation, se-
lection and manipulation, and system control. The authors also discussed the effect of
common interaction devices on user interaction as well as interaction techniques for
generic 3D tasks. Arns 2002 [11] considered that Bowman’s taxonomy is too general
and encompasses too many parts of a VR system. For that reason, she proposed a
classification for virtual locomotion (travel and way-finding) methods. This classi-
fication includes information concerning visual displays, interactions devices, tasks,
and the two primary elements of virtual travel: translation and rotation.

Coquillart and Grosjean 2003 [241] proposed an alternative classification of inter-
action techniques. They broke down each application into basic tasks called Primitive
Virtual Behavioural (PVB). These PVBs are the functional objectives of immersion
and interaction level. These basic tasks may of course be performed by the user
through the proposed interaction techniques. Whatever the application, the PVB
can be grouped into four categories: to observe the virtual world, to move in the
virtual world, to act on the virtual world, and to communicate with others or with
the application. Finally, Dachselt and Hinz 2005 [84] proposed a classification of 3D
widget solutions by interaction purpose/intention of use, e.g, direct 3D object inter-
action, 3D scene manipulation, exploration and visualisation.

In the following, we present an overview of the three 3D interaction tasks involved
in the Bowman’s et al. 2001 classification [41]: navigation, selection and manipula-
tion, and system control. These interaction primitives have been proposed in a general
context of interaction with VEs and are not well suited for Visual Data Mining tasks.
Thus, some specific primitives will have to be designed and integrated in interaction
technique classification in this more complex context.

2.5.1 Navigation

As in the real world, the user needs to move in the virtual world to perform certain
tasks such as exploring large 3D structures or datum sets. During navigation, the
user may need to move his/her head to observe some specific objects or to better
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perceive the 3D layout of the VE through motion parallax. Navigation is generally
defined by a set of methods used to move the virtual camera (the user’s view point)
(Rheingold 1991 [233]). Some researchers (Dumas etal. 1999 [93]) defined naviga-
tion as all user’s movements within the virtual space. For Bowman et al. 2004 [42],
this task is the most relevant user action in large-scale 3D environments. It allows
the user to browse, search and/or operate in virtual space. For example, Wiss and
Carr 1999 [294] have performed a comparative study of three different 3D represen-
tations of information: cam tree, information cube, and information landscape. The
results indicate that one of the most influential factors was navigation. Navigation
may sometime be reduced to locomotion as the user has to propulse himself/herself
in the VE using some physical activities such a walking, bicycling, etc. (Darken etal.
1998[87], Chance etal. 1998[66]).

Navigation presents challenges such as supporting spatial awareness, providing
efficient and comfortable movement between distant locations so that users can focus
on more important tasks. Bowman et al. 1997 [40] define two main components for
navigation: the motor component called travel, and the cognitive component called
wayfinding. Travel is the motor component of navigation and refers to physical move-
ments of the user from one place to another. Wayfinding matches the cognitive com-
ponent of navigation. It allows users to navigate in the environment and choose a
movement path (Fuchs etal. 2003[112]). In this case, the user asks questions such as:
”Where am I?”, ”Where should I go?” , ”How do i get there?”.

Several factors influence navigation techniques quality. Bowman et al. 1997 [40]
define a list of quality factors which represent specific attributes of effectiveness for
virtual travel techniques.

• Travel speed: appropriate velocity;

• Accuracy: proximity to the desired target;

• Spatial Awareness: the user’s knowledge of his/her position and orientation in
the virtual environment during and after navigation;

• Ease of learning: the ability of a novice user to take ownership of the navigation
technique;

• Ease of use: the cognitive load of the technique from the user’s point of view;

• Information gathering: the user’s ability to collect information on the environ-
ment during the navigation;

• Presence: the users sense of immersion within the virtual environment.

Later, the same authors Bowman 1998 [44] proposed a taxonomy of travel tech-
niques in VE. This taxonomy has 3 main components (Figure 2.5): direction/target
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Figure 2.5: Bowman’s taxonomy for travel techniques [44].

selection, velocity/acceleration selection and input condition.

• direction/target selection: in order to move in the VE, the user must indi-
cate where he/she wants to go, or at least in what direction. In the first case,
the user can simply select an exact target to move to, using a direct manipula-
tion technique such as ray-casting, or an indirect technique such as selecting it
in a menu. In the second case , the user may not specify an exact location, but
instead a direction of travel, by pointing with a joystick or physically rotate in
the desired direction for example;

• velocity/acceleration selection: once the user indicates where he/she is
going, the designer should worry about how quickly the user will get there.
Several techniques exist for determining the travel speed. The user can select
a discrete speed (low, medium or fast) or a continuous rang (a slider bar or a
”gas pedal”). Additionally, it is important to specify how the user reaches this
speed. A sudden transition between no motion to fast travel speed will certainly
disorient the user, so it may be beneficial to allow the user to accelerate or
decelerate in a VE;

• input conditions: several input devices can be used to ensure the user travel
in a VE. The user can simply indicate the target or continuously indicate the
target direction. The first technique may be easier for a novice user but can
cause the user disorientation and does not provide as much control as the first
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option, if for example the user changes his mind about where he wants to travel.
Input devices will be studied carefully later.

Other factors was studied in Bowman’s taxonomy include task characteristics,
environment characteristics, user characteristics, and system characteristics.
Arns and Cruz-Neira 2002 [11] think that Bowman’s taxonomy is too general, and
can include too many parts of a VR system. To remedy to this problem, they pro-
posed a new classification system based on the display devices and interaction devices.

Under Bowman’s taxonomy using a wand with constant velocity or an omni-
directional sliding device appear identical because the user moves at constant velocity
in the direction of gaze. However, these two travel techniques lead to very different
experiences for the user. In the same way, the choice of the display device may also
affect the user’s travel in a VE. The authors also define two sub-tasks that the user
performs when travelling: translation and rotation. Both of these operations can be
performed simultaneously or separately.

• Rotation: two rotation methods (Figure 2.6) are defined for the user of a VE
: physical rotation and virtual rotation. Physical rotation is the rotation of the
user with respect to the world. Virtual rotation is the rotation of virtual world
with respect to the user. Usually, when travelling in a physical world, we travel
forward in the direction our body is facing. When we wish to change direction,
we need to orient our body in the new direction and move in that direction.
However, in the real world, we are limited since we can’t rotate around the
vertical axis. In the VE, the user is still subject to the same limitation. However,
he/she is able to fully rotate his/her body in the VE and rotate the VE with
respect to his/her body.

• Translation: similar to rotation, view point translation can be accomplished
using two different methods: physical translation and virtual translation (Fig-
ure 2.7). Physical translation can be simply walking to change the viewpoint.
Because virtual worlds are often much more larger than the physical area in
which the user walks (limitation due to the locomotion device), other methods
may be employed such as a bicycle which allows the user to feel that he/she
is physically walking as he/she translates in the virtual world, while actually
remaining stationary in the physical world. Virtual translation is similar to vir-
tual rotation. In this context, a variety of devices can be used such as a joystick.

Navigation is a conceptually simple task that involves a movement of the view-
point from one location to another. Additionally, viewpoint orientation also needs to
be considered. Bowman et al. 2001 [41] organises the navigation metaphors into five
categories:
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Figure 2.6: Arns’s 2000 [11] taxonomy for rotation techniques.

• Physical movement;

• Manual viewpoint manipulation;

• Steering;

• Target-based travel;

• Route planning.

Physical movement
In most cases of 3D interaction, the concept used for the design of new interaction
techniques is inspired by human interaction with the real environment. For example,
walking is the easiest and most natural way to move from one place to another in
everyday life. This way of moving is widely used in VR. Other navigation metaphors
are also inspired by such natural dynamic gestures.

For example, physical movement uses the motion of the user’s body to travel
through the environment. Ware and Osborne [289] defined one of the first navigation
metaphors based on real walking. The user moves freely within the VE by physically
walking on the spot. To change the walking direction, the user should turn his head
in the desired orientation. Figure 2.8 shows some examples of locomotion devices
such as treadmills, stationary bicycles, walking-pads, dance-pads, and a chair-based
interface. Such techniques need enhanced physical exertion when navigating.
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Figure 2.7: Arns’s 2002 [11] taxonomy of translation techniques.

(a) (b) (c)

Figure 2.8: Examples of locomotion devices : (a): a walking-pad [35], (b): a dance Pad
[22], and (c): a chair-based interface[22].

Another approach based on the user physical movement principle was proposed
by York et al. 2004 [303]. They proposed to calculate the travel speed based on the
speed of ascent or descent of the user knees. There is a strong dependence between
the travel in the virtual scene and physical movement navigation techniques. The
techniques based on the physical movement navigation are easier to use because the
user does not provide any cognitive effort to understand this technique. According
to a study by Usoh et al. 1999 [282] study, the results are better when the used nav-
igation metaphor is close to real walking, because presence is higher for real walkers
than virtual walkers.

Virtual movement
Manual viewpoint manipulation In manual viewpoint manipulation, the user’s hand
motions can be used to simulate travel. Mine et al. 1997 [199] introduced a travel
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technique in which the direction is given by the orientation of the head. It means that
the direction of movement follows the direction of the user’s gaze which is determined
by the movement of the head. It is a cognitively very simple technique but it has
a major drawback since it does not allow the user to visually observe the parts of
the scene that are behind him or to the side, so he will often be forced to navigate
blindly. To overcome this problem, a technique based on the user hand direction
was proposed (Robinett and Holloway 1992 [238], Bowman and Hodges 1999 [39]).
This technique allows the user to move and look in different directions. The travel
direction is determined continuously by the user’s hand orientation. This technique
is somewhat more difficult to learn for some users, but more flexible then the head
tracking techniques. Mine et al. 1997 [199] proposed a technique which uses both
hands to move. Indeed, it is possible to determine both the direction and the velocity
of travel. The main advantage of this technique is based on the knowledge of the posi-
tion of both hands. The velocity is calculated according to the distance between both
hands: the longer the distance is, more rapid the travel is. This technique is cogni-
tively difficult because the user may have difficulty to control the velocity of his travel.

The ”grabbing-the-air” technique (Butterworth et al. 1992 [57]) is another exam-
ple of techniques that use the hand to specify the travel direction. The user pulls
himself along as if with a virtual rope. The direction of movement may be indicated
in several ways, among them, using a joystick. In the metaphor of the flying saucer
introduced by Butterworth et al. 1992 [57], the user uses a joystick to move forward
and backward in the VE. There are 6 degrees of freedom device, 3 degrees for motion
and 3 degrees for rotation. This technique is often performed using Pinch Gloves
and can be used with one or both hands . Usually, when someone talks to others,
it is natural to turn his body toward his interlocutor(s). Bowman et al. 2001 [36]
were inspired by this real-life example to implement the technique that determines
the travel direction with the user torso direction (Figure 2.9).

(a) (b)

Figure 2.9: Pinch Gloves [36]: (a): User wearing Pinch Gloves (b): Two-handed naviga-
tion technique

Target-based travel The user specifies the destination, and the system handles the
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movement. This may take the form of teleportation, where the user jumps immedi-
ately to the new location. This method has a major drawback because it confuses the
user since it gives no information on the traveled distance. To overcome this problem
Butterworth et al. 1992 [57] proposed to fly the user between the starting point and
the destination to avoid user disorientation. Target-based techniques are very simple
from the user’s point of view.

The use of a map is another way to perform a movement in a virtual world pro-
posed by Bowman et al. 1999 [39]. The user is represented by an icon in a 2D map
(Figure 2.10). The movement of the icon by a stylus to a new location on the map
creates the user’s travel. When the icon is pressed, the system moves slowly from the
user’s current location to the new location indicated by the icon.

Figure 2.10: Physical (left) and virtual (right) view of map navigation metaphor [39].

Stoakley et al. 1995 [264] offered the user the possibility to directly manipulate
his viewpoint. The user can move his viewpoint as he/she moves an object in the vir-
tual world. This metaphor is called Worlds In Miniature (WIM). To travel, the user
holds in his hand a virtual model (a miniature representation of the virtual world).
The user’s movements in the virtual world following his/her avatar in the miniature
world. Elvins et al. 1998 [98] propose to represent only a part of the virtual world in
miniature allowing the user to easily find its way. This technique relies on the prin-
ciple of Worldlets that are miniature representations of several parts of the virtual
environment.

Route planning The user specifies the path that should be taken through the en-
vironment, and the system handles the movement (Ahmed and Eades 2005[5]). The
user may manipulate icons or draw a path on a map of the space or in the actual
environment in order to plan a route. Igarashi et al. 1998 [150] proposed another
method that allows the user to draw the intended path directly on the scene, and
the avatar automatically moves along the path. Sternberger 2005 [263] uses a radius
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to draw freely a deformable virtual path to follow during navigation. The purpose
of this interaction is to avoid obstacles that confront the user and that can slightly
change the direction. Once the destination is known, the user can be moved to the
new location.

Steering Continuous specification of the direction of motion. Examples of tech-
niques called gaze-directed steering, where the user’s head orientation determines the
direction of travel, or pointing, where hand orientation is used are called continuous
steering; these techniques are general and efficient.

Thought wizard metaphor The user is relaxed at a fixed point in the 3D space and
uses simple gestures to move the needed information around him or her.

2.5.2 Selection and manipulation

Because direct manipulation is a main interaction modality, not only in the 3D vir-
tual world but also in natural real environments, the design of interaction techniques
for object selection and manipulation has a profound impact on the entire VE user
interface quality.

select an object is a common task in everyday life. Indeed, in order to manipulate
an object, the user needs to take it in his hand or designate it among other objects.
The selection process in VR is often inspired by the selection in the real world. The
selection task is also called a target acquisition task (Zhai etal. 1994[308]), represents
the designation of an object or set of objects to accomplish a given goal within the
VE (Bowman and Frohlich 2005[38]). But how can one tell the system that an object
has been selected?

Selection validation is the task after the designation task. It can be indicated in
several ways according to the selection technique used and the environment in which
the user operates. For example, the user can press a button, use a gesture or a voice
command, but the validation can be done automatically if the interaction system
takes into account the users intentions.

Navigation and selection are tasks that allow humans to have the illusion of living
in a virtual world, to travel within it, and even to touch the objects belonging to
the virtual world. In most cases, the user remains a spectator which is immersed in
the VE. However, the manipulation task allows to the user to be an actor capable
of changing the VE properties. It represents the active component of any interactive
system. It can be defined as a complex process of modifying the properties of an
object or set of objects belonging to the virtual world. These properties can be for
example: position, orientation, colour, scale, and texture.

The manipulation task is related to the selection task, because the user can not
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manipulate an object without having previously selected it. Figure 2.11 present tax-
onomies proposed by Bowman for selecting and manipulating virtual objects (Bow-
man 1998[44]). Interaction techniques for 3D manipulation in virtual environments
should provide means of accomplishing at least one of the 4 basic tasks:

• Object selection;

• Object positioning;

• Object rotation;

• Object scaling.

There are two main category techniques of selection and manipulation depend-
ing on the position and the distance of the user and virtual objects (Poupyrev and
Ichikawa 1999 [228]): Exocentric techniques and Egocentric techniques (Poupyrev et
al. 1998[226]).

Exocentric techniques
In this technique, the virtual world is controlled from outside. In this case, the user
is considered as an actor who is not a part of the virtual scene, but still has the power
to act on objects in the virtual world. Stoakley et al. 1995 [264] proposed one of the
first selection metaphors based on the principle of the exocentric interaction, called
WIM, which uses miniature representations of the virtual scene to allow the user to
act indirectly on the virtual world objects. Each object in the WIM can be selected
using the virtual hand metaphor. The user holds a model of the scene on his/her non-
dominant hand and selects (and/or manipulate) objects with his/her dominant hand.
The main disadvantage of using the miniaturised model of the virtual world is the
selection and manipulation of small objects. Also, all objects should be represented
in the WIM even where the number of objects presented is very large. Pierce et al.
1999 [222] proposed the Voodoo doll technique. This technique offers the user the
ability to create their own miniature objects which are called Dolls. To manipulate
the objects, the user designates the object he/she wishes to handle due to the head
crusher technique (Pierce et al. 1997 [221]). Then, a miniature model of the object
and its immediate environment is created in the non-dominant hand. The dominant
hand is used to move and rotate the miniature created. This technique allows the
manipulation of objects of various sizes.

Egocentric techniques
In this technique, the user proceeds directly from within the environment. The user
can use his own hand to select a virtual object. Sturman et al. 1989 [266] proposed
a selection technique based on the virtual hand metaphor. In this technique, the
user touches the virtual object with his real hand to designate it, then validates the
selection, either by closing his/her wrist, or by remaining in contact with the ob-
ject for some time. This technique is very simple, natural and intuitive but it raises
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(a)

(b)

Figure 2.11: Taxonomies proposed by Bowman 1998 [44] for selection (a) and object
manipulation (b) in VEs.

the problem of selecting distant objects. In this case, the user must move up to be
next to the object in order to designate it by his hand. To overcome this problem,
Poupyrev et al. 1996 [227] proposed the Go-Go technique. It is based on the same
principle as the previous technique, e.g. touching the virtual object to select it. It
is also based on the metaphor of the virtual hand (the hand is represented by a real
hand in the VE). The virtual hand position is calculated by a non-linear function, so
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that the virtual hand goes further than the real hand after having reached a certain
distance D threshold. The user has a virtual arm longer than its real hand allowing
it to reach distant objects. This technique is still limited to the selection and ma-
nipulation of small objects. Frees and Kessler 2005 [106] have proposed a technique
of selection/direct manipulation that can be used to complement manual interaction
techniques such as ray-casting to improve the accuracy of user hand movements. In
fact, the rotation and translation are stabilised when the hand movements slow down
below a certain threshold.

When the virtual objects are not readily available to the user, he/she can select it
through a specific interaction technique. One of the first techniques designed for inter-
action with virtual worlds is the ray-casting technique. This technique was introduced
by Bolt 1980 [32] and enriched over the years by other researchers. The Ray-casting
technique is based on the virtual ray metaphor. An infinite laser ray from a virtual
hand crosses the entire virtual world. The first object intersected in the virtual world
is ready to be selected. Zhai et al. 1994 [308] proposed a new interaction technique
based on the ray-casting technique. They added a 3D semi-transparent cursor at
the end of the ray. The objective of this cursor is to distinguish the virtual ray in
the scene. Later, De Amicis et al. 2001 [88] replaced the cursor by a spherical volume.

Techniques based on the virtual pointer metaphor have the advantage of being
cognitively simple and easy to use, but have a major drawback for the selection of
small and distant objects. Liang and Green 1994 [183] proposed to use an icon in-
stead of the ray to solve this problem. In fact, if distant objects become smaller
with distance, then the selection tool must be larger to be able to easily select it.
Thereafter, Forsberg et al. 1996 [104] proposed to modify the opening angle of the
cone as a function of the object to be selected and its position in the virtual environ-
ment. The selection cone must be wider for distant objects that for close ones. This
technique takes advantage of Fitts’law, which says that the selection time decreases
with an increasing surface to be selected. During the selection process, the user may
face barriers that hide the objects he/she wants to select. To avoid this difficulty,
Olwal and Feiner 2003 [212] proposed the virtual flexible pointer technique which is
an extension of the virtual ray technique. This technique allows a user in a 3D envi-
ronment to point more easily to fully or partially obscured objects, and to indicate
objects to other users more clearly. The flexible pointer can also reduce the need for
disambiguation and can make it possible for the user to point to more objects than
with other presented egocentric techniques (Figure 2.12).

Other researchers prefer to remove unwanted objects that the user does not wish
to select (Steed and Parker 2004[261]). To do this, the user is holding a flashlight
that illuminates some virtual objects, which are considered potentially selected. Un-
wanted objects can be removed by making movement with the lamp. This selection
technique is effective and avoids selection errors but it has a major drawback, since
the user changes the properties of the environment by removing undesirable objects
to select other objects.
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Figure 2.12: The flexible pointer selecting a partially occulted object without interfering
with the occluding object [212].

For the different manipulation techniques that we have cited, the user acts directly
on the virtual objects. There are, however, other techniques of indirect selection which
allow the user to designate distant objects. These techniques are based on the Di-
rected Finger metaphor (Pierce etal. 1997[221]). This metaphor requires that the
index finger is recognisable in the virtual space using a position sensor attached to
the finger called Sticky Finger. Objects are selected using a virtual ray, leading from
the head of the user and passes through his hand index finger. Another technique
based on the same metaphor was proposed by Tanriverdi and Jacob 2000 [269]. In
this technique the user indicates objects with his glance. The user’s head should be
recognisable in the virtual world. This technique has a major problem because the
user can not look around himself during the selection process. Pierce et al. 1997 [221]
proposed an alternative selection technique that uses the movement of a hand. The
user uses his thumb and forefinger to grasp the target object and take it, as if the
image was perceived rather than the 3D object. Other techniques based on the same
principle have been proposed. Among them, the Framing Hands technique (Pierce
etal. 1997[221]). Using this technique, the user positions his hands to form the two
corners of a frame in the 2D image. The user then positions this frame to surround
the object to be selected. Another example of indirect manipulation techniques is
the technique proposed by Kitamura et al. 1999 [169] using Virtual Chopsticks. This
technique allows the user to capture, to move and to rotate virtual objects. For ex-
ample, one of the chopsticks can serve as a rotation axis while the other indicates
the rotation amplitude. Ware and Osborne 1990 [289] proposed the creation of new
objects with shapes similar to virtual objects, on which they perform manipulations.
The user has consistent tactile feedback. Hachet 2003 [132] uses a 2 hand-held steer-
ing wheel device (CAT), to manipulate objects in a scene.
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The variety of reported interaction techniques can be overwhelming for the de-
veloper. However, some general principles regarding the choice of manipulation tech-
niques can be stated. None of the techniques can be identified as the best. Their
performance is task and environment dependent. Often, non-realistic techniques have
better performance than those based on the real world (Bowman et al. 2001[41]). The
evaluation of virtual manipulation techniques helps to quantify performance and is
an important research area.

2.5.3 System control

System Control is a task that can execute a command in order to change the interac-
tion mode and/or the system state. System control refers to indirect manipulation;
it includes all indirect manipulation techniques on the application, the environment
and/or data. Bowman et al. 2006 [37] define the System Control as the change of the
state system or the mode of interaction; it can allow adjusting scalar values too. This
task is at a different conceptual level from the three other tasks. The user interacts
with the system using services provided by the system itself.

In a 2D interface, the System Control can be summarised with a simple click on
an icon or menu. It can be considered as a communication tool between a human
and the application. Well-known 2D techniques have been adapted to VE. In the 3D
interface, the user must consider several degrees of freedom to interact with the sys-
tem. Input/output devices are numerous and more elaborate than those used in 2D.
Since the arrival of the first computers, graphic interfaces have evolved considerably.
Currently, they are more ergonomic, more aesthetic, and easier to use. Early works
reflection on control system techniques in VR proposed to extend or adapt some 2D
widgets to 3D. Conner et al. 1992 [78] defined a widget as ”an encapsulation of geom-
etry and behaviour used to control or display information about application objects”.
Then, they built a library of components such as the colour, selector, and the virtual
sphere rotation widget.

2.5.3.1 2D solutions in 3D environments

The achievement of a 2D menu in 3D interfaces started with the introduction of
WIMP elements into VE such as pop-up menus and pull-down 3D virtual menus.
Jacoby and Ellis 1992 [157] suggested a pop up 2D menu freely positioned and ro-
tated in the virtual space. The user selects and activates the menu using the virtual
pointer metaphor. This concept has been revised and improved by Jacoby et al. 1994
[158] by adding transparency and haptic feedback to facilitate the menu manipula-
tion. By combining 3D interaction with the software support available for a 2D user
interface tool, the user is provided with a familiar interaction concept. Other work
attempted to make 2D widgets available within a 3D context, thus also incorporating
traditional 2D menus. Early work by Feiner et al. 1993 [102] proposed a heads-up
window system, where images of 2D windows are overlaid on the user’s view of the
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physical world. In Coninx et al. 1997 [77] an hybrid 2D/3D user interface is used.
A pinch glove is used for simulating 2D mouse events. More recently, Andujar et al.
2006 [9] suggested to extend current 3D toolkits to display menus and other widgets
such as 2D shapes within the virtual world.

In 2D desktop environments, menus can be operated by pressing a cursor key or
using the mouse pointer. Typically in VE, the user’s finger or laser-pointer is used for
selecting in combination with a button-click on a physical device for activation. This
solution has the advantage of being familiar to users. No learning period is necessary
to teach user(s) how to use the menu.

2.5.3.2 3D menus

Different menus for system control have been proposed and evaluated:

Circular menus: are widely used in VRs. The different elements of the menu
are placed on a circle. The selection is made either by motion in the direction of an el-
ement from the centre, or by circle rotation in order to bring the element of interest in
the area of selection. This concept was firstly used in 2D interfaces. Kurtenbach and
Buxton 1994 [175] proposed a technique that selects a menu item in a circular motion
in one gesture. The user draws a line in the desired element’s direction. This con-
cept was then adapted for triangular menus whose elements are distributed around a
central element. Thus manipulation is more efficient compared to the circular menus
because the elements are equidistant from the centre. Deering 1995 [90] provided a
significant improvement to these menus, adapting them to be hierarchical and then
allowing a greater number of commands. The disadvantage of the hierarchical menu
is that they occupy large a space on the screen. It completely replaces the scene dur-
ing handling. Liang and Green 1994 [183] use circular menus without using hierarchy.
Unlike other circular menus, the menu items are arranged in a circle around a vertical
axis. The menu is then represented as a ring with a hole in the middle. The element
in front of the user is the active element. To change the latter, the user must rotate
the ring according to a predefined axis. This technique has been adopted by Gerber
2004 [119] but instead of displaying a complete circle before the user’s hand, only a
part of the menu is shown. The user selects an item by turning his wrist. Wesche
and Droske 2000 [290], proposed a hybrid technique that uses a circular menu and
pointer technique for selection. Each element is represented by an icon. The various
icons are arranged in front of the user according to a portion of a circular arc and
the selection is done using a virtual ray. A quick menu selection was introduced with
the Spin Menu (Gerber and Bechmann 2005[118]). Items are arranged on a portion
of a circle and controlled by rotating the wrist in the horizontal plane. Since 9-11
items can be displayed on a ring, hierarchical spin menus are suggested with crossed,
concentric, or stacked layouts.

Glove-based menus: these allow more natural selection techniques using the
fingers and hands. Typically, finger pinches are used to control a menu system. The
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Tulip Menu (Bowman and Wingrave 2001[43]) is a drop-down menu based on the use
of the fingers. The user’s hand is equipped with a data glove and each finger is a menu
item (Figure 2.13). The user can select a menu item by pinching the thumb to the
appropriate finger. When the number of menu items is greater than four, it is possi-
ble to use both hands. The little finger is reserved for a ”more options” item. When
the menu was originally selected the first three item would appear on the first three
fingers. Pinching the thumb to the little finger caused the next three items to appear
in the non-dominant hand. This technique allows an accurate and fast selection. It
is interesting because the user does not need to look at his finger to choose which one
should be pinched. On the other hand, this technique is not suitable for a large menu.

Figure 2.13: The tulip menu proposed by Bowman and Wingrave 2001[43].

Speech recognition enhanced menus: one of the problems resulting from
the use of data gloves is that hands can be encumbered to use other tools (Hand
1997[137]). This was the motivation for the development of hands-off interaction
techniques (Jacoby etal. 1994 [158]). The menu items are selected via speech recog-
nition. Other menu solutions employ speech recognition as an alternative input in
addition to graphical selection (multi-modal approach); among them the 3D Palette
by Billinghurst et al. 1997 [26].

Hand-held menus: allow menus to be controlled with only one hand, while
the other hand is used to select items from it. Prominent examples are the interac-
tion techniques developed by Mine et al. 1997 [199]. The tear-off palette contains
miniature representations of available objects which can be selected and added to the
virtual world by the user. Another example for two-handed direct menu selection is
the tool and object palette which is based on tracked props (Szalavari and Gervautz
1997 [267]).

Workbench menus: these are very attractive for direct manipulation (Gros-
jean and Coquillart 2001 [128]). Typically, menus are used by means of a toolbox
containing various 3D-icons. Interaction can be done with a stylus or data glove as
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for example on the responsive workbench system introduced by Cutler et al. 1997
[83]. The C3 (Command and Control Cube) proposed by Grosjean and Coquillart
[128] uses the marking menu concept. It proposes to place the menu at the cube
rather than with a list, in order to accelerate access. The menu consists of 27 boxes
divided into 3 ∗ 3 ∗ 3 boxes. The purpose of this representation is to allow the user
to select a command with a maximum three gesture to reach his goal. Each of the
26 boxes may contain a command, the 27th box, placed on the centre of the cube, is
reserved for the special action to cancel the menu. The user’s hand is represented by
a small cursor always initialised at the centre of the cube. Thus, the user simply has
to make a gesture in the direction of the desired item, then release the device button
to perform the corresponding action. This technique gives excellent results in terms
of speed selection and accuracy.

Body relative menus: these are attached to the user’s body and thus take
advantage of proprioception during operations. The look-at-menu (Mine et al. 1997
[199]) is an example. The menu can be attached to any object in the VE including
the user. It is activated by the intersection of the user’s direction of sight with a
hot point representing a menu. To choose an item the user moves his/her head to
simply look at the desired item to select it. Thus, head position is used instead of
the traditional hand position. In 2007 Dachselt and Hbner [85] proposed a survey of
graphical 3D menu solutions for VEs among others (e.g. augmented reality).

Figure 2.14: Immersive wall of the PREVISE platform [154].

2.6 Visual Display Configurations

Virtual Reality systems are based on different hardware configurations, mainly re-
lated to visual interfaces. These configurations can be classified into two categories:
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Figure 2.15: Example of immersive dome [126].

Figure 2.16: Example of immersive rooms [166].

• Immersive configurations(used in Fully-Immersive Virtual Environment (FIVE))
whose objective is to immerse the user in the VE (immersive virtual reality)
through a stereoscopic display. Note that some configurations do not involve
total recovery of the visual field of the user (wall, workbench);

• Non-immersive (used in Semi-Immersive Virtual Environment (SIVE)) con-
figurations only allow the user to visualise virtual entities in a virtual world,
through a display device such as a computer screen (Isdale 1993 [156]). Then,
the user sees the world through a ”window” represented by the screen. Note
that this configuration does not necessarily imply the absence of Stereoscopic
visualisation (objects appear behind or before the screen plane).
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Figure 2.17: Example of workbench [262].

Figure 2.18: Example of the CAVE-like system [205].

2.6.1 Immersive configurations

Immersive configurations are based on one of the following visual interfaces.

• Immersive walls: these consist of a large flat screen on which images are pro-
jected. Visualisation, generally stereoscopic, is based on the use of polarising
filters (linear or circular) and passive or active glasses for separating the images
for the left eye of those for the right eye. The PREVISE platform of LISA is an
immersive wall (Figure 2.14) which consists of a 2 x 2.5 m visual display with
passive stereoscopic projection.
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Figure 2.19: Example of head-mounted display [234].

• Immersive domes: these are hemispherical screens on which the image is pro-
jected (Figure. 2.15). The main advantage of this configuration is to propose
a projection surface strengthening the sense of visual immersion through an
important recovery of the user’s visual field (Greffard etal. 2011 [126]).

• Immersive rooms: these are typically used to project virtual images on a large
scale and allow a large number of users to simultaneously visualise the view.
The main advantage of this configuration is its size which allows observation
and exploration of large objects such as buildings (Figure 2.16).s

• Workbenchs: these have the form of a real workbench and allow the manipula-
tion of objects in a natural and intuitive way (Paljic et al. 2002 [215], Grosjean
et al. 2002 [127], Lecuyer et al. 2002[178], Steinicke et al. 2005 [262]). Virtual
Workbenches are equipped with one or two stereoscopic displays and require
the use of appropriate glasses (Figure 2.17).

• Visiocubes: the come in the form of a cubic enclosure having four to six large
orthogonal screens. The stereoscopic display is back-projected (Figure 2.18).
In the 6 screen configuration, the visual field of the user is completely covered
and it no longer has any cue from the real world. The CAVETM (Computer
Automatic Virtual Environment) Cruz-Neira etal. 1993 [82], the SAScubeTM

(Nahon 2002 [205]), are two of the well-known visiocubes. Such visual displays
are the most expensive ones and the most difficult to set-up and maintain.

• Head-mounted displays (HMDs): these allow, via real time tracking of the actual
position and orientation of the user’s head, a full user immersion in the virtual
world (Figure 2.19). The main advantage of HMDs is a better immersion of the
user in the VE. However, its use is strictly individual and multiple headsets are
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required for multi-user/or collaborative applications. Another drawback is that
most HMDs have a quite small field of view (FOV).

It is important to also note that the use of HMDs presents ergonomic problems.
Thus, the user mobility is often limited, given the wires connecting the visualisation
device to the computer. On the other hand, its considerable weight and the low
refresh rate may create discomfort and cybersickness.

2.6.2 Non-Immersive Configurations

In non-immersive (desk-top) configurations, the virtual environment is displayed on a
PC screen or more recently on a 2D/3D TV screen. The size of the screen can there-
fore be quite large. These configurations are a relatively more affordable alternative
that immersive configurations.

On a conventional screen, the virtual scene is displayed with quite better char-
acteristics (resolution, light, etc.) than in an immersive (projected) configuration.
Currently, the market of large size, low cost flat screen displays (LCD, OLED or
plasma) allows us to consider non-immersive configurations, for which the displayed
image occupies a larger portion of the user’s visual field (a recent TV screen has a
diagonal size of about 2m ).

In this configuration, the VE is generally viewed through the screen in a non-
colocalised configuration, i.e. with a spatial offset between the display space and the
interaction space (Figure 2.20) or in a colocalised position (Figure 2.21).

Figure 2.20: Illustration of a non-colocalised configuration [65].
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Figure 2.21: Illustration of a colocalised configuration [213].

Several configurations are available for non-immersive display systems such as :

• Screens directly connected to the computer: classic PC screens or more recently,
large display (LCD or plasma);

• Laptop screens such as mobile phones screens or PDA (Personal Digital Assis-
tants);

• Systems of video projection on various surfaces;

• Mixed solutions (Billinghurst et al. 2001 [27]).

The main interest of non-immersive configurations is that the display can be
shared by several users (except laptop screens). In addition, systems using projec-
tors or flat panel displays are independent of the user position and they are low-cost
compared to HMDs. In addition, there are a variety of projection surfaces such as
large screens or walls [232], semi-transparent mirrors (Rauterberg et al. 1997[231]),
and surfaces (Piper et al. 2002[223]).

2.7 Conclusion

In this chapter, we proposed have a comparison between 2D, 3D and virtual reality
techniques, and mentioned better suitability for fully immersive environments. Re-
search work on the comparison between visual representations and interaction tech-
niques have been presented. Then, we have presented and analysed 2D/3D visuali-
sation and virtual reality configurations. In this context, we have giving an overview
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of the existing interaction techniques that can be suited for Visual Data Miming
(in the next Chapter we will present an overview of interaction techniques used in
Visual Data Mining). Different classifications based on fundamental tasks such as
navigation, selection and manipulation of virtual entities have also been analysed.
Furthermore, we have presented a classification of visual displays, focusing on immer-
sive and non-immersive ones. In the next chapter, we will propose a new classification
of Visual Data Mining (VDM) techniques based on the use of 3D and virtual reality
techniques.
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3.1 Introduction

At the output of the Data Mining (DM) process (post-processing), the decision-maker
must evaluate the results and select what he finds interesting (Figure 3.1). Exploring
and analysing the vast volume of knowledge extracted by the DM algorithms can be
a complicated task. However, this task can be improved considerably with visual
representations by taking advantage of human capabilities for perception and spatial
cognition. Visual representations can allow rapid information recognition and show
complex ideas with clarity and efficacy (Card et al.1999 [60]).

In everyday life, we interact with various information media which present us with
facts and opinions based on knowledge extracted from data. It is common to commu-
nicate such facts and opinions in a virtual form, preferably interactive. For example,
when watching weather forecast programmes on TV, the icons of a landscape with
clouds, rain and sun, allow us to quickly build a picture about the weather forecast.

Such a picture is sufficient when we watch the weather forecast, but professional
decision-making is a rather different situation. In professional situations, the decision-
maker is overwhelmed by the DM algorithm results. Representing these results as
static images limits the usefulness of their visualisation. This explains why the
decision-maker needs to be able to interact with the data representation in order
to find relevant knowledge. Interaction with the data representation can be exploited
in two ways (de Oliveira and Levkowitz 2003 [89]):

• interaction with the DM algorithms results in facilitating and accelerating the
analysis of studied data, the intermediate result, or produced knowledge.

• interaction with the DM algorithms.

Visual Data Mining (VDM), presented by Beilken and Spenke 1999 [23] as an
interactive visual methodology ”to help a user to get a feeling for the data, to detect
interesting knowledge, and to gain a deep visual understanding of the data set”, can
facilitate knowledge discovery in data. The advantages of VDM is that the user is
directly involved in the DM process and does not only interact with the data repre-
sentation.

In 2D space, VDM has been studied extensively and a large number of visualisa-
tion techniques have been developed over the last decade to support the exploration of
large data sets. Thus, including aesthetically appealing elements, such as 3D graphics
and animation, increases the intuitiveness and memorability of visualisation. Also, it
eases the perception of the human visual system (Spence 1990 [255], Brath et al. 2005
[47]). Although, there is still a debate concerning 2D vs 3D data visualisation (Shnei-
derman 2003 [245]), we believe that 3D and VR techniques have a better potential to
assist the decision-maker in analytical tasks, and to deeply immerse the user in the
data sets. In many cases, the user needs to explore data and/or knowledge from the
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inside-out and not from the outside-in, as in 2D techniques (Nelson et al. 1999 [206]).
This is only possible by using VR and Virtual Environment (VEs). VEs allow users
to navigate continuously to new positions inside the data sets, and thereby obtain
more information about the data. In KDD, VR has already been studied in different
areas such as pre-processing (Nagel et al. 2008 [203], Ogi et al. 2009 [210]), classi-
fication (Einsfeld et al. 2006 [95]), and clustering (Ahmed et al. 2006 [4]). Although
the benefits offered by VR compared to desk-top 2D and 3D still need to be proved,
more and more researchers are investigating its use with VDM (Cai et al. 2007 [59]).

In this chapter, we firstly introduce research work on information visualisation
regarding visualisation tool design and specially the graphic representation. In Sec-
tion 2, we provide an overview of the current state of research concerning 3D visual
representations. In Section 3, we present our motivation for interaction techniques in
the context of KDD. In Section 4, we propose a new classification for VDM based on
both 3D representations and interaction techniques. In addition, we survey represen-
tative works on the use of 3D and VR interaction techniques in the context of KDD.
Finally, we present possible directions for future research.

Figure 3.1: Illustration of the KDD process.

3.2 Visualisation

Visualisation is the display of information using graphic representations. A single
picture can contain more information, and can be processed much more quickly than
a page of words. This is because the human perceptual system can interpret im-
ages faster then text analysis. Pictures can also be independent of language, whereby
a graph or a map may be understood by a group of people with no common language.

It is impressive to realise the number and types of visualised data that we en-
counter in our everyday activities. Some of these might include:

• train and subway maps;

• the instructions for changing a car headlight;



88 Overview of Visual Data Mining in 3D and Virtual Reality

• a graph which may indicate the increase or decrease the number of unemployed
in a country.

In each case, the visualisation provides an alternative to, or a supplement for,
textual information. It is clear that visualisation provides a richer description of the
information than the word-based counterpart.

3.2.1 Why is visualisation important ?

There are many reasons to explain why visualisation is important. The most obvious
reason can be that sight is one of the human key senses for information understanding.

Figure 3.2 shows a diagram of an organisation that is difficult to describe verbally.
However, the image can be easily comprehensible with only a brief examination (Ward
et al. 2010 [286]). For instance, it is obvious that marketing has the most consultants
and that the driver has the longest chain of command.

Manager

VP Engeneering VP Marketing VP Sales

Director 1 Director 2 Consultant

Director 3Travel agentFinance Consultant

Figure 3.2: An organisation chart. A pattern requires at least one paragraph to describe
it.

Example 3.2.1 In this example we highlight why visualisation is so important in
decision making, and the role of human preferences and training.

Elting et al. 1999 [240] presented 34 clinicians with the preliminary results
from hypothetical clinical trials of a generic conventional treatment compared with a
generic investigation treatment; both treatments treating the same condition. Four
different visualisation techniques are used to represent the two treatment results. The
two treatments differed from one another and one of the treatments is better than
the other. Clinicians seeing that difference should then decide to stop the trial.

Figure 3.3 shows the four presentations of the same data. In the upper left there
is a simple table; in the upper right, pie charts; in the lower left, stacked bar charts;
and in the lower right, a sequence of rectangles. In all representations, both the
conventional and the investigation treatments are presented. The green colour shows
that the drug induced a response and red that none occurred. The decision to stop
varied significantly, depending on the presentation of the data. Correct decisions were
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82% with icon display (lower right), 68% with tables, and 56% with pie charts or bar
graphs. In actual clinical practice, up to 25% of the patients treated according to the
data displayed as bar charts would have received inappropriate treatment. Clearly
the choice of visualisation impacted the decision process. Elting et al. 1999 [240]
noted that most (21/34) clinicians preferred the table, and that several did not like
the icon display. This emphasises that it is not only the visualisation that is key in
presenting data well, but that user preferences are strongly involved.

Figure 3.3: Four various visual representations of a hypothetical clinical trial. [240].

The high use of the web increase the amount of recorded data. The exploration
and analysis of large marketing, financial, security, medical, and biological data sets
produce results that need to be analysed. Given the increasing size of information
available there is a growing need for tools and techniques to help make effective
use of this information overload. Likewise, there is a growing need to find mecha-
nisms for communicating information to people in an efficient and effective way, and
to help educate them about processes and concepts that affect everyday life, from
global warming to economic trends. Visualisation is paramount for these new knowl-
edge discovery tools. Applications often use both static and interactive visualisation
which are much more aesthetic and understandable to the user within applications to
provide alternative views of the data and to help describe some structure, patterns,
knowledge or anomaly in the data. In many domains, visualisation can be, and is
becoming, an effective tool to assist user(s) in analysis and knowledge discovery.
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What is the difference between scientific data visualisation and informa-
tion visualisation ?

Both visualisations forms create visual representations from data that support
user interaction with the aim of finding useful information in the data. In scientific
visualisation, visual representations are typically constructed from measured or sim-
ulated data which represent objects or concepts of the physical world. Figure 3.4(a)
shows an application that provides a VR interface to view the flow field around a
space shuttle. In information visualisation, graphic models present abstract concepts
and relationships that do not necessarily have a counterpart in the physical world,
such as association rules (Agrawal et al. 1993 [2]), etc. For instance, Figure 3.4(b)
shows a 3D tree representation to visualise data clusters.

(a) (b)

Figure 3.4: Scientific visualisation and information visualisation examples: (a): visual-
ization of the flow field around a space shuttle (Laviola 2000 [177]) (b): GEOMIE (Ahmed et
al. 2006 [4])information visualisation framework

3.2.2 The Visualisation Process

Visualisation is often part of a larger process, which may be exploratory data anal-
ysis, knowledge discovery, or visual analysis. To design a new visualisation tool, the
designer should first begin with the analysis of the data to display. The data can come
from different sources and have different structures (simple or complex). Then, the
designer should consider the type of information that should be extracted from these
data by the viewers. Visualisation can be used for different analysis tasks such as
exploration (looking for interesting knowledge) or confirmation of hypotheses (based
on prior beliefs).

To visualise data, the designer needs to define mapping from the data onto the
display (Figure 3.5). There are many ways to realise this mapping and visualisation
principles can provide mechanisms to translate date into more intuitive representa-
tion for users to perform their goals. This means that the data values are used to
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define graphical objects, such as points, lines, and shapes, and their attributes like
colour, position, size, and orientation. Thus, for example, we could map a number to
a colour of a cube or a size of line to get a different way to view the same data.

Another, component of the visualisation process is interactive control of the view-
ing and mapping of variables. Whereas early visualisation was static, nowadays visu-
alisation is a dynamic process. This means that the user controls all process stages,
from data mapping to mapping and viewing. There is no effectiveness guarantee of a
given visualisation. Different users, with different backgrounds, perceptual abilities,
and preferences, will have different opinions on each visualisation. The user’s task will
also affect the usefulness and effectiveness of the visualisation. Each visualised datum
change can have implications on the resulting visualisation. For this, it is essential
to enable users to modify and interact with the visualisation until they achieve their
goal, such as extracting an interesting piece of knowledge or confirming or denying
hypothesis.

The visualisation process is traditionally described as a pipeline because is com-
posed of a succession of stages which can be studied independently (Figure 3.5).
This process starts with data to generate a visualisation. Among several visualisa-
tion pipelines, we selected the one proposed by Card et al. 1999 [60] that we think
is the easiest and simplest representation of the visualisation process. We also noted
two important points: user interaction can take place at any stage in the pipeline
(nodes and link) and visualisation systems may have multiple views at the same time
on the screen. Let us explain more precisely each transformations and stage.

• Data transformation: this is the starting stage of the visualisation process.
It allows data to be transformed into something usable by the visualisation
system. Data transformation deals with data issues such as data too large
for visualisation. Large amounts of data may require ordering, selecting or
filtering. For example, Williamson and Shneiderman 1992 [293] introduced
Dynamic queries which allow users to formulate queries to select the data to
be visualised by adjusting graphical widgets, such as sliders for quantitative
variables and a check box for qualitative variables. The display is updated
instantaneously.

• Rendering Mappings: once the data are ready, they can be represented. This
requires data mapping into graphical objects by associating to each variable
in the data to a graphic variable: shape, colour, and size, for example. The
graphic objects can have from zero to three dimensions - that is point, line, areas
and volumes. It is easy to simply develop a visualisation that conveys wrong
information. Figure 3.6 shows an improper use of bar chart. By having the bars
extend over each of the y-coordinate tick marks, there is an implication that
the y-coordinate is involved, although no such association occurs. For example,
the soybeans in the 5th column, cut across several y-values (INDIA, CHINA,



92 Overview of Visual Data Mining in 3D and Virtual Reality

TURKEY) until reaching BRAZIL. A better representation is the one in Figure
3.7.

• View transformation: this is the final stage of the visualisation process. View
transformation involves the presentation of graphical objects to the user. This
includes interfacing with a computer graphics Application Programmer’s Inter-
face (API). The display view on the screen can be 3D or 2D. Many interaction
techniques for view transformation are available allowing the user to change
the view or the perspective onto the visual representation. The most known
interaction techniques are:

– Viewpoint manipulation: this is carried out by translation, rotation or
zooming.

– Details on demand : this consists of choosing an element in the representa-
tion and bringing up additional information about it (Shneiderman 1996
[244]).

– Focus/context aimed to increase detailed description of certain parts of
data (the point of interest, focus, etc), while the rest of the data is re-
duced in size, in order to provide guidance to the users. The best known
Focus/context techniques are the techniques of distortion, such as the Fish
eye proposed by Furnas 1986 [116]. In the technique of bending backwards,
another variant of the Focus/context technique, the overview of different
objects is not readable, but, miniatures of objects is an index to move di-
rectly to the information sought. However, there are other methods than
the distortion of space. The viewing volume (Mroz and Hauser 2001 [201])
for example, proposes varying the opacity, (colour shades) and frequency
to achieve Focus/context visualisation of 3D data.

– Brushing : this means highlighting a selected subset of the data, but it can
also be done to delete it from view, if the user wants to focus on other
subsets of data.

– Multiple views: this allows the user to have several views of the same rep-
resentation on multiple windows. Interactive changes made in one visual-
isation are automatically reflected in the other visualisations. Connecting
multiple visualisations through interactive linking and brushing provides
more information than considering each visualisation independently.

Some techniques combine several types of transformation. For example, the se-
mantic zoom is a view transformation which changes the data shown (data trans-
formation). The more users zoom, the more the level of detail increase (Hascot and
Beaudoin-Lafon 2001 [139]). From the visualisation process point of view, we can
formalise the differences between the post-processing of association rule methods pre-
sented in Chapter 1 Section 1.5.3 as(Table 3.2.2):
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Figure 3.5: The visualisation process at a high level view [60].

Figure 3.6: Poor use of a bar chart

• Association rule exploration methods (Query Languages and Rules Browser)
only use data transformation;

• Visualisation of association rule mining result methods include Rendering Map-
pings and View transformations but are poor in Data transformation;

• Visualisation during association rule mining methods instantiate all transfor-
mations of the visualisation process.

As we will see later the post-processing of association rule methodology proposed
in this thesis belongs to the 3rd category.

3.2.3 Semiology of graphics

Although many examples of different visualisation techniques have been proposed in
order to determine the most effective encoding based on the variables to represent, we
still lack a comprehensive language to describe our graphical creations. Robertson et
al. 1991 [237] first suggested the creation of a formal model as a foundation for each
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Figure 3.7: Better use of scatter plot

Methods Data transformations Rendering Mappings View transformations

Query Languages •
Rule Browser •
Visualisation of
association rule
mining results

• •

Visualisation dur-
ing association
rule mining

• • •

Table 3.1: Differences among the post-processing of association rules methods from the
visualisation process point of view.

visualisation system. Among the authors who proposed a classification of encoding
graphics, Cleveland and McGill 1984 [73] then Wilkinson 2005 [291] are the best know
concerning static graphic (charts, scatter plots, etc.). The second flow of works comes
from cartography, among them MacEachren 1995 [188] and more importantly Bertin
1967 [24].

In 1967, Bertin published his semiology of graphics (Bertin 1967 [24]). This was
the first rigorous attempt to describe the link between data and visual elements. Al-
though Bertin 1967 [24] draws his representations on paper, its principles are still the
benchmark for today’s representations.
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Bertin presents the fundamentals of information encoding via graphic represen-
tations as a semiology, a science dealing with sign systems. His first key point is
the strict separation of content (the information to encode) from the container (the
properties of the graphic system).

Bertins theory states that graphical presentations use graphical marks, such as
points, lines, and areas, to encode information via their positional and retinal prop-
erties (Bertin’s graphical vocabulary is shown in Table 3.2.3).

Marks Points, lines, and area

Positional Two planar dimensions

Retinial Size, value, texture, colour, orientation, and shape

Table 3.2: Bertin’s graphical vocabulary [24].

Bertin’s system is composed of seven visual graphic variables:

• Position (two planar dimensions);

• Six retinal variables (Figure 3.8): size (height, area, or number), value (satu-
ration), texture (fitness or coarseness), colour (hue), orientation (angular dis-
placement), and shape.

These graphic variables are combined with visual semantics for linking data at-
tributes to visual elements.

Position plays a key role in visualisation because it is the visual information per-
ceptually dominant in a visual representation (Bertin 1967 [24] , Card et al. 1999 [60],
Wilkinson 2005 [291]). The other graphic variables called retinal variables (Table 3.8)
are identified by experimental psychology and represent graphic variations designed
for visual perception. There are called retinal variables because it is possible to per-
ceive their variations without involving the muscles of the optical system unlike for
the position. The implantation of retinal variables can be punctual, linear or zonal.
Krygier and Wood 2005 [173] summarised the most effective use of Bertins retinal
variables for showing qualitative or quantitative differences according to Bertin in
Table 3.8.

As concerns size, this retinal variable denotes more surfaces than lengths. There-
fore, graphical encoding based on surfaces are more relevant than the graphical en-
coding based on length. In some cases, the surface variation is reduced to a single
length variation (in bar charts all rectangles have a side of the same length). To esti-
mate the different possibilities of graphical encoding with the seven graphic variables,
Bertin identified four possible attitudes for a person facing data (Bertin 1967 [24]):
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Figure 3.8: The most effective use of Bertins retinal variables [173].

• Associative perception: the user seeks to combine the different modalities of a
dummy variable;

• Selective perception:the user seeks to distinguish the different modalities of a
dummy variable;

• Orderly perception: the user seeks to perceive the order of ordinal variable
modalities;

• Quantitative perception: the user seeks to perceive relationships among quanti-
tative variable values.

Bertin summarises his principles of visualisation in the Table 3.2.3 which indicates
which graphic variables are adapted to the data representation.

3.3 Visual Data Mining (VDM)

Historically, VDM has evolved from the fields of scientific visualisation and informa-
tion visualisation (Section 3.2). Beilken et al. 1999 [23] presented the purpose of
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Type of variable Dummy Ordinal Quantitative

Perception Associative Selective Orderly Quantitative

Position • • • •
Size • • •

Texture • •
Colour • • •

Orientation • •
Shape •

Table 3.3: Matching graphic variables and variables [24].

VDM as a way to ”help a user to get a feeling for the data, to detect interesting
knowledge, and to gain a deep visual understanding of the data set”. Niggemann
2001 [208] looked at VDM as a visual representation of the data close to the mental
model. We focus on the interactive exploration of data and knowledge that it is built
on extensive visual computing (Gross 1994 [129]).

As humans understand information by forming a mental model which captures
only the main information, in the same way, data visualisation, similar to the mental
model, can reveal hidden information encoded in the data. In addition to the role
of the visual data representation, Ankerst 2001 [10] explored the relation between
visualisation and the KDD process. He defined VDM as ”a step in the KDD process
that utilises visualisation as a communication channel between the computer and the
user to produce novel and interpreted patterns”. He also explored three different ap-
proaches to VDM, two of which affect the final or intermediate visualisation results.
The third approach involves the interactive manipulation of the visual representa-
tion of the data rather than the results of the KDD methods. The three definitions
recognise that VDM relies heavily on human perception capabilities and the use of
interactivity to manipulate data representations. The three definitions also empha-
sise the key importance of the following three aspects of VDM: visual representations;
interaction processes; and KDD tasks.

In most of the existing KDD tools, VDM is only used during two particular steps
of the KDD process: in the first step (pre-processing) VDM can play an important
role since analysts need tools to view and create hypotheses about complex (i.e. very
large and / or high-dimensional) original data sets. VDM tools, with interactive
data representation and query resources, allow domain experts to quickly explore
the data set (Ferreira-de-Oliveira and Levkowitz 2003 [89]). In the last step (post-
processing) VDM can be used to view and to validate the final results that are mostly
multiple and complex. Between these two steps, an automatic algorithm is used to
perform the DM task. Some new methods have recently appeared which aim at
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involving the user more significantly in the KDD process; they use visualisation and
intensive interaction, with the ultimate goal of gaining insight into the KDD problem
described by vast amounts of data or knowledge. In this context, VDM can turn
the information overload into an opportunity by coupling the strengths of machines
with that of humans. On the one hand, methods from KDD are the driving force
of automatic analysis, while on the other side, human capabilities to perceive, relate
and make conclusions turn VDM into a very promising research field. Nowadays,
fast computers and sophisticated output devices can create meaningful visualisation
and allow us not only to visualise data and concepts, but also to explore and interact
with these data in real-time. Our goal is to look at VDM as an interactive process
with the visual representation of data allowing KDD tasks to be performed. The
transformation of data/knowledge into significant visualisation is not a trivial task.
Very often, there are many different ways to represent data and it is unclear which
representations, perceptions and interaction techniques needs to be applied. This
proposed classification (Section 3.4) seeks to facilitate this task according to the
data and the KDD goal to be achieved by reviewing representation and interaction
techniques used in VDM. KDD tasks have different goals and diverse tasks need to be
applied several times to achieve a desired result. Visual feedback has a role to play,
since the decision-maker needs to analyse such intermediate results before making a
decision.

3.3.1 3D Visual Representation for VDM

One of the problems that VDM must address is to find an effective representation
of something that has no inherent form. In fact, it is crucial not only to determine
which information to visualise but also to define an effective representation to con-
vey the target information to the user. The design of a visualisation representation
must address a number of different issues: what information should be presented?
How this should be done? What level of abstraction to support? etc. For exam-
ple, a user tries to find out interesting relations between variables in large databases.
This information may be visualised as a graph (Prykeand and Beale 2005 [230]) or
as an abstract representation based on a sphere and cone (Blanchard et al. 2007 [31]).

Many representations for VDM have been proposed. For instance, some visual
representations are based on abstract representations, such as graphs (Ahmed et al.
2006 [4]), trees (Einsfeld et al. 2007 [96], Buntain 2008 [53]), and geometrical shapes
(Ogi et al. 2009 [210], Nagel et al. 2008 [203], Meiguins et al. 2006 [192]) and others
on virtual worlds objects (Baumgärtner et al. 2007 [17]).

The classification proposed in this section provides some initial insight into which
techniques are oriented to certain data types, but does not assert that one visual
representation is more suitable than others to explore a particular data set. Selecting
a representation depends largely on the task being supported and is still a largely
intuitive process.
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Many researchers have attempted to construct a taxonomy for visualisation. Chi
2000 [71] used the Data State Model (Chi and Riedl 1998 [70]) to classify information
visualisation techniques. This model is composed of 3 dimensions with categori-
cal values: data stages (value, analytical abstraction, visualisation abstraction, and
view), transformation operators (data transformation, visualisation transformation,
and visual mapping transformation), and within stage operators (value stage, analyt-
ical stage, visualisation stage, and view stage). The separation of data states, visual
transformations and operators provides flexibility in handling data/visual abstracts
at different stages using operationally similar or functionally similar operators across
different applications. This model shows how data change from one stage to another
requiring one of the three types of data transformation operators. This state model
helps implementers understand how to apply and implement information visualisa-
tion techniques. Tory and Moller 2004[277] present a high-level taxonomy for visu-
alisation which classifies visualisation algorithms rather than data. Algorithms are
categorised according to the assumption they make about the data being visualised.
Their taxonomy is based on 2 dimensions: values of data (discrete or continuous) and
how much the algorithm designer chooses display attributes (specialisation, timing,
colour, and transparency). Teyseyre and Campo 2009 [273] presented an overview
of 3D representations for visualising software, describing several major aspects like
visual representations, interaction issues, evaluation methods, and development tools.
They also performed a survey of some representative tools to support different tasks,
i.e., software maintenance and comprehension, requirements validation, etc.

Not much work has attempted comparing visual representations. Wiss and Carr
1999 [294] performed a comparative study of 3 different 3D representations of infor-
mation: a cam tree, an information cube, and an information landscape. In this study
the authors chose to visualise a hierarchical file system. The task used to perform the
study is based on the seven high-level information visualisation tasks as defined later
by Shneiderman 2003 [245]: overview, zoom, filter, details-on-demand, relate, history
and extract. The authors propose 3 tasks: search, based on Shneiderman’s zoom
task, count, based on Shneiderman’s relate task, and compare, based on Shneider-
man’s overview task. This study showed that the possibility to get a good local and
global overview is the one most important factors in supporting the types of tasks.
Statistical analysis of the results show that the information cube performed worst for
all tasks, and the Information Landscape performed best. The results indicate that
the most influential factor was overview.

3.3.1.1 Abstract visual representations

3D representations are still abstract and require the user to learn certain conventions,
because they do not look like what they refer to or they do not have a counterpart
in the real-world. There are 3 kinds of abstract representations: graphs, trees, and
geometrical shapes.
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Graphs
A graph (Figure 3.9) is a network of nodes and arcs, where the nodes represent enti-
ties and the arcs represent relationships between entities. For a review on the state
of the art in graph visualisation, see Herman et al.2000 [142] .

Originally, graph visualisation was used in 2D space to represent components
around simple boxes and lines. However, several authors think that larger graph
structures can be viewed in 3D (Parker et al. 1998 [216]).

A technique based on the hyper system (Hendley et al. 1999 [141]) for force-based
visualisation can be used to create a graph representation. The visualisation consists
of nodes and links whose properties are given by the parameters of the data. Data
elements affect parameters such as node size and colour, link strength and elasticity.
The dynamic graphs algorithm enables the self-organisation of nodes in the visualisa-
tion area by the use of a force system in order to find a steady state, and determine
the position of the nodes. For example, Beale et al. 2007 [20] proposed a Haiku
system (Figure 3.9 (b)) which provides an abstract 3D perspective of clustering al-
gorithm results based on the hyper system. One of the characteristics of this system
is that the user can choose which parameters are used to create the distance metrics
(distance between two nodes), and which ones affect the other characteristics of the
visualisation (node size, link elasticity, etc.). Using the hyper system allows related
things (belonging to the same cluster) to be near to each other, and unrelated things
to be far away.

Trees
3D trees (Figure 3.10) is a visualisation technique based on the hierarchical organisa-
tion of data. A tree can represent many entities and the relationships among them. In
general, the visualisation of hierarchical information structures is an important topic
in the information visualisation community (van-Ham and van-Wijk 2002 [284]). Be
cause trees are generally easy to layout and interpret (Card et al.1999 [60]), this ap-
proach finds many applications in classification visualisation (Buntain 2008 [53]). 3D
trees were designed to display a larger number of entities than in 2D representations,
in a comprehensible form (Wang et al. 2006 [285]). Various methods have been devel-
oped for this purpose, among which, space-filling techniques and node-link techniques.

Space-filling techniques (Van-ham and Van-wijk 2002 [284], Wang et al. 2006
[285]) based upon 2D tree-maps visualisation proposed by Johnson and Shneiderman
1991 [161] have been successful for visualising trees that have attribute values at the
node level. Space-filling techniques are particularly useful when users care mostly
about nodes and their attributes but do not need to focus on the topology of the tree,
or consider that the topology of the tree is trivial (e.g 2 or 3 levels). The users of
space-filling techniques also require training because of the unfamiliar layout (Plaisant
et al. 2002 [224]).

Node-link techniques, on the other hand, have long been frowned upon in the
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(a) (b)

(c)

Figure 3.9: An example of graph representations: (a) Ougi[214], (b) Association rules:
Haiku [230], (c) DocuWorld [95]

information visualisation community because they typically make inefficient use of
screen space. Even trees of a hundred nodes often need multiple screens to be com-
pletely displayed, or require scrolling since only part of the tree is visible at a given
time. A well-known node-link representation in cone trees was introduced by Robert-
son et al. 1991 [237] for visualising large hierarchical structures in a more intuitive
way. 3D trees may be displayed vertically (Cone Tree) or horizontally (Cam Tree).

Buntain 2008 [53] used 3D trees for ontology classification visualisation (Figure
3.10 (a)). Each leaf represents a unique concept in the ontology, and the transparency
and size of each leaf is governed by the number of documents associated with the given
concept. A molecule is constructed by clustering together spheres that share common
documents, and surrounds the leaves with a semi transparent shell (Figure 3.10 (b)).

Geometrical shapes
In this technique, 3D objects with certain attributes are used to represent data and
knowledge. The 3D scatter-plot visualisation technique (Nagel et al. 2001 [204]) is
one of the most common representations based on geometric shapes (Figure 3.11).
The main innovation compared to 2D visualisation techniques is the use of volume
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(a) (b)

Figure 3.10: An example of tree representing ontology classification : SUMO [53]

rendering which is a conventional technique used in scientific visualisation. 3D ren-
dering techniques use voxels (instead of pixels in 2D) to present a certain density of
the data. 3D scatter-plot have been adapted by Becker 1997 [21], making the opacity
of each voxel a function of point density. Using scatter-plots is intuitive since each
datum is faithfully displayed. Scatter-plots have been used successfully for detecting
relationships in two dimensions (Bukauskas and Bhlen 2001[52], Eidenberger 2004
[94]). This technique hit limitations if the dataset is large, noisy, or if it contains
multiple structures. With large amounts of data, the amount of displayed objects
makes it difficult to detect any structure at all.

3.3.1.2 Virtual worlds

Trying to find easily-understandable data representations, several researchers pro-
posed the use of real-world metaphors. This technique uses elements of the real-world
to provide insights about data. For example, some of these techniques are based on
a city abstraction (Figure 3.12). The virtual worlds (sometimes called cyber-spaces)
for VDM are generally based either on the information galaxy (Krohn 1996 [172]) or
the information landscape metaphor (Robertson et al. 1998 [236]). The difference
between the two metaphors is that in the information landscape, the elevation of
objects is not used to represent information (objects are placed on a horizontal floor).
The specificity of virtual worlds is that they provide the user with some real world
representations.

Trying to find easily understandable representations of data, several researchers
proposed using real-world metaphors. These techniques use elements of the world to
provide insight about data. For example, some of these techniques are based on a
city abstraction (Figure 3.12). In Imsovision – IMmersive SOftware VISualisatION
(Maletic et al. 2001 [190]), the platform size is proportional to the size of the class
(i.e., number of methods and attributes). The attributes of a class are viewed as
spheres and number functions viewed as columns. This type of natural representa-
tion reduces the cognitive overhead of the visualisation.



3.3 Visual Data Mining (VDM) 103

(a) (b)

(c) (d)

Figure 3.11: Different 3D scatter plots representations: (a) VRMiner [14], (b) 3DVDM
[203], (c) DIVE-ON [8], (d) Visualisation with augmented reality[192]

Figure 3.12: Example of virtual worlds representation: Imsovision [190].

3.3.2 Interaction for VDM

Data Mining (DM) usually deals with massive data sets and most visual techniques
propose mapping each data item into a corresponding graphical element (pixel, line,
icon, etc.). The implication is that they do not scale well when handling millions of
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data items. This made clear the need to interact with the visual representations to
reduce visual clutter and object overlap. Interaction techniques can provide the user
with mechanisms for handling complexity in large data sets.

VDM is not a completely human guided process. DM algorithms analyse a data
set searching for useful information and statistically valid patterns. The degree of
automation of data mining process varies, but still the algorithm, not the user, which
is the one that is looking for patterns. In this context, Ferreira-de-Oliveira and
Levkowitz 2003 [89] denoted that VDM should have a larger role than traditional
applications of visualisation techniques. This creates the potential of greatly increas-
ing user participation in the DM process as a whole, as well as the end user’s overall
understanding of the process. To make it feasible will certainly require a greater
interaction between the information visualisation and DM communities. This allows
increasing recognition within the information visualisation that interaction and in-
quiry are inextricable and that it is through the interactive manipulation of a visual
interface that knowledge is constructed, tested, refined and shared.

Interaction techniques can empower the user’s perception of information when
visually exploring a data set (Hibbard et al. 1995 [143]). The ability to interact with
visual representations can greatly reduce the drawbacks of visualisation techniques,
particularly those related to visual clutter and object overlap, providing the user with
mechanisms for handling complexity in large data sets. Pikea et al. 2009 [292] ex-
plored the relationship between interaction and cognition. They consider that the
central percept of VDM is that the development of human insight is aided by inter-
action with a visual interface. As VDM is concerned with the relationship between
visual displays and human cognition, merely developing only novel visual metaphors
is rarely sufficient to make new discoveries provide confirm or negate prior beliefs.

We can distinguish three different interaction categories: exploration, manipula-
tion and human-centred approaches.

3.3.2.1 Visual exploration

Visual exploration techniques are designed to take advantage of the considerable vi-
sual capabilities of human beings, especially when users try to analyse tens or even
hundreds of graphic variables in a particular investigation. Visual exploration allows
the discovery of data trends, correlations and clusters, to take place quickly, and can
support users in formulating hypotheses about the data. It is essential in some situa-
tions to allow the user to simply look at the visual representation in a passive sense.
This may mean moving around the view point in order to reveal structure in the data
that may be otherwise masked and overlooked . In this way, exploration provides the
means to view information from different perspectives to avoid occlusion and to see
object details. It can be very useful to have the ability to move the image to resolve
any perceptual ambiguities that exist in a static representation when a large amount
of information is displayed at once. The absence of certain visual cues (when viewing



3.3 Visual Data Mining (VDM) 105

a static image) can mask important results (Kalawsky and Simpkin 2006 [165]).

Navigation is often the primary task in 3D worlds and refers to the activity of
moving through the scene. The task of navigation presents challenges such as sup-
porting spatial awareness and providing efficient and comfortable movement among
distant locations. Some systems enable users to navigate without constraint through
the information space (Nagel et al. 2008 [203], Einsfeld et al. 2006 [95], Azzag et
al. 2005 [14]). Other systems restrict movement in order to reduce possible user
disorientation (Ahmed et al. 2006 [4]). As an illustration, in VRMiner (Azzag et
al. 2005 [14]) a six-degree freedom sensor is fixed to the user’s hand (Figure 3.13)
allowing him/her to easily define a virtual camera in 3D space. For example, when
the user moves his hand in the direction of the object, he/she may zoom in or out.
The 3DVDM system (Nagel et al. 2008 [203]) allows the user to fly around and
within the visualised scatter-plot. The navigation is controlled by the direction of a
”wanda” device tracked with 6 degrees of freedom. Dissimilarly, in GEOMI (Ahmed
et al. 2006 [4]), the user can only rotate the representation along the X and Y axes
but not along the Z axis.

Figure 3.13: Illustration of a navigation technique based on the use of a data glove [17].

In visual exploration, the user can also manipulate the objects in the scene. In
order to do this, interaction techniques provide means to select and zoom-in and zoom-
out to change the scale of the representation. Beale et al. 2007 [20] demonstrated that
using a system which supports the free exploration and manipulation of information
delivers increased knowledge even from a well-known dataset. Many systems provide
a virtual hand or a virtual pointer (Einsfeld et al. 2007 [96]), a typical approach used
in VE, which is considered as being intuitive as it simulates real-world interaction (
Bowman et al. 2001[41]).
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• Select: this technique provides users with the ability to mark interesting data
items in order to keep track of them when too many data items are visible,
or when the perspective changes. In these two cases, it is difficult for users to
follow interesting items. By making items visually distinctive, users can easily
keep track of them even in large data sets and/or with changed perspectives.

• Zoom: by zooming, users can simply change the scale of a representation so
that they can see an overview (context) of a larger data set (using zoom-out)
or the detailed view (focus) of a smaller data set (using zoom-in). The essential
purpose is to allow hidden characteristics of data to be seen. A key point here
is that the representation is not fundamentally altered during zooming. Details
simply come into focus more clearly or disappear from view.

Visual exploration (as we can see in Section.7) can be used in the pre-processing
of the KDD process to identify interesting data (Nagel et al. 2008 [203]), and in post-
processing to validate DM algorithm results (Azzag et al. 2005 [14]). For example,
in VRMiner(Azzag et al. 2005 [14]) and in ArVis (Blanchard et al. 2007 [31]), the
user can select an object to obtain information about it.

3.3.2.2 Visual manipulation

In KDD, the user is essentially faced with a mass of data that he/she is trying to
make sense of. He/she should look for something interesting. However, interest is
an essentially human construct, a perspective of relationships among data that is
influenced by tasks, personal preferences, and past experience. For this reason, the
search for knowledge should not only be left to computers; the user has to guide it
depending upon what he/she is looking for, and hence which area to focus computing
power on. Manipulation techniques provide users with different perspectives of the
visualised data by changing the representation.

One of these techniques is the capability of changing the attributes presented in
the representation. For example, in the system shown by Ogi et al. 2009 [210], the
user can change the combination of presented data. Other systems have interaction
techniques that allow users to move data items more freely in order to make the ar-
rangement more suitable for their particular mental model (Einsfeld et al. 2006 [95]).

Filter interaction techniques enable users to change the set of data items being
presented on some specific conditions. In this type of interaction, the user specifies
a range or condition, so that only data meeting those criteria are presented. Data
outside the range or not satisfying the conditions are hidden from the display or shown
differently; even so, the actual data usually remain unchanged so that whenever users
reset the criteria, the hidden or differently-illustrated data can be recovered. The
user is not changing data perspectives, just specifying conditions within which data
are shown. ArVis (Blanchard et al. 2007 [31]), allows the user to look for a rule with
a particular item in it. To do this, the user can search for it in a menu which lists all
the rule items and allows the wanted object to be shown.
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3.3.2.3 Human-centred approach

In most existing KDD tools, interaction can be used in two different ways: exploration
and manipulation. Some new methods have recently appeared ( Baumgärtner et al.
2007 [17], Poulet and Do 2008 [225]), tried to involve the user in the DM process more
significantly and used visualisation and interaction more intensively. In this task, the
user manipulates the DM algorithm and not only the graphical representation. The
user sends commands to the algorithm in order to manipulate the data to be extracted.
We are speaking here about local knowledge discovery. This technique allows the user
to focus on interesting knowledge from his/her point of view, in order to make the
DM tool more generically useful to the user. It is also necessary for the user to either
change the view point or manipulate a given parameter of the knowledge discovery
algorithm and observe its effect. There must therefore be some way in which the
user can indicate what it is considered interesting and what is not, and to do this the
KDD tool needs to be dynamic and versatile (Ceglar et al. 2003[63]). The human-
centred process should be iterative since it is repeated until the desired results are
obtained. From a human interaction perspective, a human-centred approach closes
the loop between the user and the DM algorithm in a way that allows them to respond
to results as they occur by interactively manipulating the input parameters (Figure
3.14). With the purpose of involving more intensively the user in the KDD process,
this approach has the following advantages (Poulet and Do 2008 [225]).

• the quality of the results is improved by the use of human-knowledge recognition
capabilities;

• using domain knowledge during the whole precess (and not only in the inter-
pretation of the results) allows guided searching for knowledge;

• the confidence in the results is improved as the DM process gives more compre-
hensible results.

In Arvis (Blanchard et al. 2007 [31]), the user can navigate among the subsets of
rules via a menu providing neighbourhood relations. By applying a neighbourhood
relation to a rule, the mining algorithm extracts a new subset of rules. The previous
subset is replaced by the new subset in the visualisation area.

3.4 A New Classification for VDM

In this section, we present a new classification of VDM tools based on 3 dimensions:
visual representations, interaction techniques, and KDD tasks. Table 3.4 presents the
different modalities of each of the three dimensions. The proposed taxonomy takes
into account both visual representation and interaction techniques. In addition, many
visualisation design taxonomies include only a small subset of techniques (e.g., loco-
motion Arns 2002 [11]). Currently, visualisation tools have to provide not only
effective visual representations but also effective interaction metaphors to facilitate
exploration and help users achieve insight. Having a good 3D representation without
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Figure 3.14: Illustration of the human-centred approach.

a good interaction technique does not mean having a good tool. Existing metaphors
for visualisation and interaction can be classified under the new system, enabling de-
signers to more easily compare metaphors to see exactly how they are different and
similar to each other. This classification looks at some representative tools for doing
different KDD tasks, e.g., pre-processing and post-processing (classification, cluster-
ing and association rules). Different tables summarise the main characteristics of the
reported VDM tools with regard to visual representations and interaction techniques.
Other relevant information such as interaction actions ( navigation, selection and ma-
nipulation, and system control), input-output devices (CAVEs, mice, hand trackers,
etc.) presentation (3D representation or VR representation) and year of creation is
also reported.

Dimension Modalities

Visual representation Graphs, 3D trees, geometrical shapes, virtual worlds

Interaction techniques Visual exploration, visual manipulation, human-centred

KDD tasks Pre-processing, classification, clustering, association rules

Table 3.4: Dimension modalities

3.4.1 Pre-processing

Pre-processing (in VDM) is the task of data visualisation before the DM algorithm
is used. It is generally required as a starting point of KDD projects so that analysts
may identify interesting and previously unknown data by the interactive exploration of
graphical representations of a data set without heavy dependence on preconceived as-
sumptions and models. The basic visualisation technique used for data pre-processing
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Table 3.5: 3D VDM tool summary for pre-processing KDD task.

is the 3D scatter-plot method, where 3D objects with attributes are used as mark-
ers. The main principle behind the design of traditional VDM techniques, such as
The Grand Tour (Asimov 1985 [13]), the parallel coordinate (Inselberg and Dimsdale
1990 [155]), etc., is that they are viewed from the outside-in. In contrast to this, VR
lets users explore the data from inside-out by allowing users to navigate continuously
to new positions inside the VE in order to obtain more information about the data.
Nelson et al.1999 [206] demonstrated through comparisons between 2D and VR ver-
sions of the VDM tool XGobi that the VR version of XGobi performed better. In
the system proposed by Ogi et al. 2009 [210], the user can see several data set repre-
sentations integrated in the same space. The user can switch the visible condition of
each data set. This system could be used to represent the relationships among several
data sets in 3D space, but it does not allows the user to navigate through the data
set and interact with it. The user can only change the visual mapping of the data
set. However, the main advantage of this system is that the data can be presented
with a high degree of accuracy using high-definition stereoscopic display that can be
beneficial especially when visualising a large amount of data. This system has been
applied to the visualisation and analysis of earthquake data. Using the 3rd dimension
has allowed the visualisation of both the overall distribution of the hypocentre data
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and the individual location on any earthquake, which is not possible with the con-
ventional 2D display. The Figure 3.15 shows hypocentre data recorded over 3 years.

Figure 3.15: Visualisation of earthquakes data using a 4K stereo projection system [210].

The system allows the visualisation of several databases at the same time e.g. map
data, terrain data, basement depth, etc and the user can switch the visible condition
of each datum in the VE. For example, the user can change the visualisation data
from the combination of hypocentre data and basement depth data to the combina-
tion of hypocentre data and terrain data. Thus, the system can show the relationships
between, only, any two data sets among the others.

As a result of using VR, the 3DVDM system (Nagel et al. 2008 [203]) is capa-
ble of providing real-time user response and navigation as well as showing dynamic
visualisation of large amounts of data. Nagel et al.2008 [203] demonstrated that the
3DVDM visualisation system allows faster detection of non-linear relationships and
substructures in data than traditional methods of data analysis. An alternative pro-
posal is available with DIVE-ON (Data mining in an Immersed Visual Environment
Over a Network) system, proposed by Ammoura et al. 2001[8]. The main idea of
DIVE-ON is visualising and interacting with data from distributed data warehouses
in an immersed VE. The user can interact with such sources by walking or flying
towards them. He/she can also can pop up a menu, scroll through it and execute all
environment, remote, and local functions. Thereby, DIVE-ON makes intelligent use
of the natural human capability of interacting with spatial objects and offers consid-
erable navigation possibilities e.g. walking, flying, transporting and climbing.

Inspired by Treemap Wang et al. 2006 [285] presented a novel space-filling ap-
proach for tree visualisation of file systems (Figure 3.16). This system provides a
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good overview for a large hierarchical data set and uses nested circles to make it
easier to see groupings and structural relationships. By clicking on an item (a circle),
the user can see the associated sub-items represented by the nested circles in a new
view. The system provides the user with a control panel allowing him/her to filter
files by types; by clicking on one file type, the other files types are filtered out. A
zoom-in/zoom-out function allows the user to see folder or file characteristics such as
name, size, and date. A user-feedback system means that user interaction techniques
are friendly and easy to use.

Figure 3.16: Representation of a file system with 3D-nested cylinders and spheres [285].

Meiguins et al. 2006 [192] presented a tool for multidimensional VDM visuali-
sation in an augmented-reality environment where the user may visualise and ma-
nipulate information in real time VE without the use of devices such as a keyboard
or mousse and interact simultaneously with other users in order to make a decision
related to the task being analysed. This tool uses a 3D scatter-plot to visualise the
objects. Each visualised object has specific characteristics of position (x, y and z
axes), colour, shape, and size that directly represent data item values. The main
advantages of these tools is that they provide users with a dynamic menu which is
displayed in an empty area when the user wants to execute certain actions. The tool
also allows users to perform many manipulation interaction tasks such as real-time fil-
ter attributes, semantic zoom, rotation and translation of objects in the visualisation
area. A detailed comparison of these techniques is presented in Table 3.5.

3.4.2 Post-processing

Post-processing is the final step of the KDD process. Upon receiving the output of
the DM algorithm, the decision-maker must evaluate and select the interesting part
of the results.
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3.4.2.1 Clustering

Clustering is used for finding groups of items that are similar. Given a set of data
items, this set can be partitioned into a set of classes, so that items with similar
characteristics are grouped together.

The GEOMI system proposed by Ahmed et al. 2006 [4] is a visual analysis tool
for the visualisation of clustered graphs or trees. The system implements block model
methods to associate each group of nodes to corresponding cluster. Two nodes are
in the same cluster if they have the same neighbour set. This tool allows immersive
navigation in the data using 3D head gestures instead of the classical mouse input.
The system only allows the user visual exploration. Users can walk into the network,
move closer to nodes or clusters by simply aiming in their direction. Nodding or
tilting the head rotates the entire graph along the X and Y axes respectively, which
provides users with intuitive interaction.

The objective of @VSIOR (Baumgartner et al. 2007 [17]), which is a human-
centred approach, is to create a system for interaction with document, meta-data,
and semantic relations. Human capabilities in this context are spatial memory and
the fast visual processing of attributes and patterns. Artificial intelligence techniques
assist the user, e.g. in searching for documents and calculating document similar-
ities. Similarly, VRMiner (Azzag et al. 2005 [14]) uses stereoscopic and intuitive
navigation; these allow the user to easily select the interesting view point. VRMiner
users have found that using this tool helps them solve 3 major problems: detecting
correlation between data dimensions, checking the quality of discovered clusters, and
presenting the data to a panel of experts. In this context, the stereoscopic display
plays a crucial role in addition to the intuitive navigation which allows the user to
easily select the interesting view point. A detailed comparison of these techniques is
presented in Table 3.6.
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Table 3.6: 3D VDM tool summary for clustering KDD task
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3.4.2.2 Classification

Given a set of pre-defined categorical classes, how can one determine which of these
classes a specific data item belongs to? In SUMO (Figure 3.10), a tool for document-
class visualisation is proposed (Buntain 2008 [53]). The classes and relations among
them can be presented to the user in a graphic form to facilitate understanding of the
knowledge domain. This view can then be mapped onto the document space where
shapes, sizes, and locations are governed by the sizes, overlaps, and other properties
of the document classes. This view provides a clear picture of the relations among
the resulting documents. Additionally, the user can manipulate the view to show
only those documents that appear in a list of a results from a query. Furthermore,
if the results include details about subclasses of results and ”near miss” elements in
conjunction with positive results, the user can refine the query to find more appro-
priate results or widen the query to include more results if insufficient information is
forthcoming. The third dimension allows the user a more expressive space, complete
with navigation methods such as rotation and translation. In 3D, overlapping lines
or labels can be avoided by rotating the layout to a better point of view.

DocuWorld (Einsfeld et al. 2006 [95]) is a prototype for a dynamic semantic in-
formation system. This tool allows computed structures as well as documents to be
organised by users. Compared to the web Forager (Card et al. 1996[61]), a workspace
to organise documents with different degrees of interest at different distances to the
user, DocuWorld provides the user with more flexible possibilities to store documents
at locations defined by the user and visually indicates cluster-document relations (dif-
ferent semantics of connecting clusters to each other). A detailed comparison of these
techniques is presented in Table 3.7.
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Table 3.7: 3D VDM tool summary for classification KDD task
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3.4.2.3 Association rules

On account of the enormous quantities of rules that can be produced by DM al-
gorithms, association rule post-processing is a difficult stage in an association rule
discovery process. In order to find relevant knowledge for decision-making, the user
needs to rummage through the rules.

Figure 3.17: ArVis : a tool for association rules visualisation [31].

ArVis proposed by Blanchard et al. 2007 [31] is a human-centred approach. This
approach consists of letting the user navigate freely inside the large set of rules by
focusing on successive limited subsets via a visual representation of the rules (Figure
3.17). In other words, the user gradually drives a series of visual local explorations
according to his/her interest for the rules. This approach is original compared to
other rule visualisation methods (Couturier et al. 2007[79], Ertek and Demiriz 2006
[99], Zhao and Liu 2005[309]). Moreover, ARVis generates the rules dynamically
during exploration by the user. Thus, the user’s guidance during association rule
post-processing is also exploited during association rule mining to reduce the search
space and avoid generating huge amounts of rules.

Gotzelmann et al. 2007 [130] proposed a VDM system to analyse error sources
of complex technical devices. The aims of the proposed approach is to extract as-
sociation rules from a set of documents that describe malfunctions and errors for
complex technical devices, followed by a projection of the results on a corresponding
3D model. Domain experts can evaluate the results gained by the DM algorithm
by exploring a 3D model interactively in order to find spatial relationships between
different components of the product. 3D enables the flexible spatial mapping of the
results of statistical analysis. The visualisation of statistical data on their spatial
reference object by modifying visual properties to encode data (Figure 3.12 (a)) can
reveal a priori unknown facts, which where hidden in the database. By interactively
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exploring the 3D model, unknown sources and correlations of failures can be discov-
ered that rely on the spatial configuration of several components and the shape of
complex geometric objects. A detailed comparison of these techniques is presented
in Table 3.8.
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Table 3.8: 3D VDM tools: summary for association rules in KDD tasks.

3.4.2.4 Combination of methods

The Haiku tool (Figure 3.9(b)) proposes combining different DM methods: cluster-
ing, classification and association rules (Beale et al. 2007 [20]). In this tool, the use
of 3D graphs allows the visualisation of high-dimensional data in a comprehensible
and compact representation. The interface provides a large set of 3D manipulation
feature of the structure such as zooming in and out, moving through the representa-
tion (flying), rotating, jumping to specific location, viewing data details, and defining
an area of interest. The only downside is that the control is done using a mouse. A
detailed presentation is shown in Table 3.9.

System Visual

Rep-

resen

tation

Interaction

techniques

Interaction actions Input-

Output

devices

3D/

VR

year

Navigation Selection

and

Manipu-

lation

System

control

Heiku Pryke-
and and Beale
2005 [230] (Figure
3.9(b))

Graph Human-
centred

Manual view
point manip-
ulation + tar-
get based

Object se-
lection

- Mouse + 2D
screen

3D 2005

Table 3.9: 3D VDM tool : combination of methods.
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3.5 Conclusion

In this chapter, we have proposed a new classification of VDM tools composed of
3 dimensions: visual representations, interaction techniques, and data mining tasks.
We have also proposed a survey of visual representations and 3D interaction tech-
niques in data mining and virtual reality. Compared to 2D representation (presented
in Chapter 1 Section 1.5.3) 3D representation allows the display of large data set but
unlike 2D representation of association rules, 3D metaphors do not allow visualisation
and manipulation of rule items. Therefore, the user can not directly find the rules
that contain a given item or he/she can not require the presence of an item in the
extracted rules.

Through this study, we can notice that most of the pre-processing tools use im-
mersive configuration (CAVE) which is not the case of post-processing tools that
still rely on interaction metaphors and devices developed more than a decade ago.
VDM is inherently cooperative requiring many experts to coordinate their activities
to make decisions. Thus, desktop configuration does not allows collective work like
large-scale immersive configuration. We can also see that most tool are suitable only
for data/knowledge exploration and don’t offer manipulation techniques despite the
fact that user participation in the process of data mining is paramount.

Now, it is questionable whether these classical interaction techniques are able to
meet the demands of the ever increasing mass of information or whether we are los-
ing because we still lack the possibilities to properly interact with the databases to
extract relevant knowledge. Devising intuitive visual interactive representations for
data mining and providing real time interaction and mapping techniques that are
scalable to the huge size of many current databases are some of the research chal-
lenges that remain to be addressed.



4
Interactive Extraction and Exploration of

Association Rules

Contents

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
4.2 Constraints of the Interactive Post-processing of Association

Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
4.2.1 Importance of the Individual Attributes of Rules . . . . . . . . . . . . 120

4.2.1.1 Attribute importance . . . . . . . . . . . . . . . . . . . . . . 120
4.2.1.2 Attribute interaction . . . . . . . . . . . . . . . . . . . . . . 121

4.2.2 Hypothesis About The Cognitive Processing of Information . . . . . . 121
4.3 IUCEAR: Methodology for Interactive User-Centred Exploration

of Association Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
4.3.1 Items Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
4.3.2 Local mining: anticipation functions . . . . . . . . . . . . . . . . . . . 124
4.3.3 Association Rule Visualisation, Validation, and Evaluation . . . . . . 127
4.3.4 Browsing History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
4.3.5 Interactive process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

4.4 New Association Rules Metaphor . . . . . . . . . . . . . . . . . . . . 128
4.4.0.1 Rendering Mapping of Association rule metaphor . . . . . . 128
4.4.0.2 Spring-embedded like algorithm . . . . . . . . . . . . . . . . 130

4.4.1 Validation of Association rule metaphors . . . . . . . . . . . . . . . . . 132
4.4.1.1 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
4.4.1.2 Task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
4.4.1.3 Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

4.4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
4.4.2.1 Response Time . . . . . . . . . . . . . . . . . . . . . . . . . . 135
4.4.2.2 Error rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
4.4.2.3 Subjective Aspects . . . . . . . . . . . . . . . . . . . . . . . . 140

4.4.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
4.5 Interactive Visualisation of Association Rules with

117



118 Interactive Extraction and Exploration of Association Rules

IUCEARVis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
4.5.1 Items Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

4.5.1.1 Data Transformations . . . . . . . . . . . . . . . . . . . . . . 143
4.5.1.2 Rendering Mappings . . . . . . . . . . . . . . . . . . . . . . . 143
4.5.1.3 View Transformation . . . . . . . . . . . . . . . . . . . . . . 145

4.5.2 Association Rule Exploration, Evaluation and Validation . . . . . . . 146
4.5.2.1 Data Transformation . . . . . . . . . . . . . . . . . . . . . . 146
4.5.2.2 Rendering Mappings . . . . . . . . . . . . . . . . . . . . . . . 148
4.5.2.3 View Transformation . . . . . . . . . . . . . . . . . . . . . . 150

4.5.3 Browsing History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
4.5.3.1 Rendering Mappings . . . . . . . . . . . . . . . . . . . . . . . 152
4.5.3.2 View Transformation . . . . . . . . . . . . . . . . . . . . . . 155

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

4.1 Introduction

To handle the large amount of rules produced by the data mining algorithms, many
solutions have been proposed in the literature, among them the post-processing of
association rules. This consists of a second search operation with the aim of finding
interesting association rules. Whereas the first operation (data mining) is done au-
tomatically by combinatorial algorithms, the search for interesting rules is generally
left to the user.

In 1996, Brachman et al. 1996 [45] have pointed out that in order to efficiently
assist the users in their search for interesting knowledge, the data mining process
should be considered not only from the point of view of the discovery algorithms,
but also from that of the user, as a human-centred decision-support system. For
post-processing of association rules to be effective, we need to include the user in
the KDD process and combine human flexibility, creativity and knowledge with the
enormous storage capacity and the computational power of today’s computers. Thus,
interactive, efficient tools have to be developed.

In most association rule post-processing approaches, it is often through visualisa-
tion that rule post-processing is performed. Effective interactivity does not involve
only interaction with the graphic representation of rules but with the data mining
process itself. However, in most approaches, interactivity is not present throughout
all the process of association rule generation. Figure 4.1 shows the different steps
of the association rule generation process. The different figures represented in this
diagram show the moments in which experts are involved in the association rule gen-
eration process. Even so, the association rule generation process must be able to rely
on notions of task-oriented systems as defined in human computer interaction (Dia-
per 2003 [91], Greenberg 2003 [125]). In order to find relevant knowledge in visual
representations, the decision-maker needs to freely rummage through large amount of
data. It is therefore essential to integrate him/her in the data mining process through
the use of efficient interactive techniques.
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In this chapter, firstly we propose a new methodology for the interactive visualisa-
tion of association rules designed for the convenience of the user faced with a large set
of rules, this being based on the principle of the cognitive processing of information.
Section 2 is dedicated to a our association rules metaphor based on information vi-
sualisation principles for effective visual representations. In Section 3, we present the
IUCEARVis functions that were used. For this, we refer to the visualisation process
model proposed by Card et al. 1999 [60] for new visualisation tools that highlights
three components: Data transformation, Rendering Mappings and View transforma-
tion.

Figure 4.1: Expert role in the association rule generation process

4.2 Constraints of the Interactive Post-processing of As-
sociation Rules

During the post-processing step, the user is faced with large set of rules. In order
to find interesting knowledge for decision making, he/she needs to (i) interpret the
rules in its business semantics and (ii) evaluate their quality. The decision-making
indicators are (i) the syntax of rules (the items involved in each rule) and (ii) the
association rules interestingness measures.

In this context, the user’s task can be extremely difficult for three main reasons:

• 3D association rule representations does not allow the visualisation of the rule
syntax.

• the huge number of rules at the output of the association rules extraction algo-
rithms makes their exploration a very painful task;
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• association rule extraction is a non-supervised process. Association rules are
typically used when the user does not know what he/she is looking for. There-
fore, the user can not formulate constraints that would directly isolate inter-
esting rules. Usually, the user is looking for knowledge that he/she does not
expect.

4.2.1 Importance of the Individual Attributes of Rules

All techniques proposed for rule visualisation in VR (Chapter 3 Section 3.4.2.3) have
been developed to represent an association rule as a hole without paying attention to
the relations among the attributes that make up the antecedent and the consequent
and the contribution of each one to the rule. Attribute components of an association
rule and their contribution to the rule may be more informative than the rule itself
(Freitas 1998 [109]). Two rules with the same value of rule interestingness measure
can have very different degrees of interestingness for the user, depending on which
attributes occur in the antecedent and in the consequent.

In the same way, the information found in form of relations between the attributes
(correlation) provides the analyst with a better and clearer image than analysing a
rule (Imielinski 1998 [152]). Exploring an association rule attribute enables deeper
insight into the data. Analysts can be interested by these relationships, rather than
a static rule. Many researchers have demonstrated that attribute interaction is a key
concept of association rule mining (Freitas 2001 [108], Chanda et al. 2010 [67], Yao
et al. 1999 [301]).

4.2.1.1 Attribute importance

An attribute can be important for the user if regularities are observed in a smaller
dataset, although being unobservable in the entire data. A rule can be considered as
a disjunction of rules. The size of a disjunct (rule) is the number of items composed
in the rule’s antecedent and the rule’s consequent. For example, r : (milk, bread,
eggs → apples, pears) is a rule. A disjunction of a rule is r1 : (milk → apples,
pears), r2 : (bread → apples, pears), r3 : (eggs → apples, pears), r4 : (apples →
milk, bread, eggs), and r5 : (pears → milk, bread, eggs). At first sight, it seems
that these small rules have no importance, since they can be considered as redundant
rules. Based on this view, most extraction algorithms do not keep these rules in the
results. However, small rules have the potential to show unexpected relationships in
the data (Freitas 1998 [109]). Provost and Aronis 1996 [229] proved that small rules
were considered interesting in their field application. Accordingly, it would beneficial
that the user see automatically these small rules.

In order to evaluate the contribution of each item to a rule, Freitas 1998 [109]
proposed the Information Gain measure which can be positive or negative. The In-
formation Gain measure (Freitas 1998 [109]) was proposed for rules with only one
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item in the consequence. In our representation, if an item ∈ Antecedent has respec-
tively a high positive (negative) Information Gain that mean that: r : (item →
Consequence) is a good (bad) rule whatever the number of items in the consequent.
From a rule interest perspective, a high Information Gain may point out new interest-
ing implications unknown by the user. At the same time, a rule including attributes
with low or negative information gain indicate irrelevant rules. Therefore, the user
does not waste time looking at these rules since he/she already knows that they are
not interesting.

4.2.1.2 Attribute interaction

Two attributes are correlated if they are not independent. Two attributes are inde-
pendent if changing the value of one does not affect the value of the other. The lift
measure calculates the correlation between each attribute pair from the antecedent
or the consequent. The correlation between two attributes represents the amount of
information shared between the two attributes. The lift measure determines whether
two attributes are correlated (lift >1) or not (lift <1) (see Chapter 1 Section 1.3.2).

The Freitas 2001 [108] study showed that the concept of attributes interaction
can be beneficial to the association rule extraction process and proposed to intro-
duce attribute interaction in the design of association rule mining systems. Attribute
interaction enable the detection of surprising knowledge which can’t be discovered
by analysing the whole rule. The relationships expressed in a rule totality is quite
different from the relationships expressed in separate rule parts (antecedent and con-
sequent).

On the other hand, to discover useful association rules, the user needs to get
insight into the data and learn about the data model by exploring attribute relations
(Chanda et al. 2010 [67]). In many case (a biological or genetic context for example)
antecedent items has weak associations with consequent. However, they interact
together in a complicated way to control the consequent (Chanda et al. 2010 [67]).

4.2.2 Hypothesis About The Cognitive Processing of Information

Based on the bounded rationality assumption (Simon 1979 [251]), a decision-making
process can be regarded as seeking a dominant structure. More precisely, the user
faces a set of options about using rules as operators in this search for dominant struc-
ture. This dominant structure is a cognitive structure in which an alternative choice
can be seen as dominant over the others (Montgomery 1983 [200]). This decision
making model can be used for association rule post-processing. According to Mont-
gomery 1983 [200], the user isolates a limited number of potentially interesting rules
and performs comparisons among them. This is done several times during the deci-
sion making process with the aim of finding rules that are more interesting then the
other ones. Considerably early in a decision making process, the decision maker tries
to find promising rules, which can be replaced by more interesting ones during the
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process. These changes can take place several times during the process, particularly
when the user has trouble to find dominant structures.

Bhandari 1994 [25] proposed a machine-assisted knowledge discovery approach.
A computer program guides a decision maker to discover knowledge from data. This
approach was based on experimental data related to user behaviour during a deci-
sion making process study. The machine-assisted knowledge discovery approach is
based on a new KDD methodology called attribute focusing. In this methodology,
an automatic filter detects, using statistical measures, a small number of potentially
interesting items. Attribute focusing aims to point out small and thus more com-
prehensible subsets of items. Later, Hahsler et al. 2007 [134] proposed a two-step
approach called interesting itemsets (e.g., by a mixture of mining and expert knowl-
edge). In the first step, the user defines a set of interesting itemsets and then, in
a second step the system generates rules based only on these itemsets. The inter-
est to target a small number of items in the cognitive processing of information has
also been strongly confirmed by strategy-making work (see Barthelemy 1992 [16] for
more information). In fact, because of the human’s limited cognitive capabilities, the
user can examine at a given moment of time only a small amount of information.
Therefore, the decision maker should be able to save the interesting association rules,
discovered from different subsets of rules, and compare them.

Today, KDD is viewed as a session-driven activity. Therefore, the mining results
are typically displayed on the screen, viewed by the user and subsequently, completely
discarded. Thus the typical lifetime of the discovered knowledge is the duration of
the mining session. There is little or no support for the user to rely on the results
of the previous mining sessions. In such a system, the discovered knowledge from
possibly many mining sessions can be stored in memory. Furthermore, one can build
upon the knowledge accumulated over time.

From these various works on the cognitive processing of information, we estab-
lished five principles underlying our methodology for the post-processing of associa-
tion rules.

• P1 : lets the user choose a limited number of potentially interesting items;

• P2 : provides the user with association rules that may be interesting;

• P3 : allows the user to make comparisons among association rules;

• P4 : allows the user to modify the subset of potentially interesting items at any
time during post-processing;

• P5 : allows the user to note the interesting association rules and save them with
notes.
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4.3 IUCEAR: Methodology for Interactive User-Centred
Exploration of Association Rules

We assign R, the complete set of association rules produced by an exhaustive algo-
rithm for association rule extracting. R contains most of the time a large number of
association rules. Our methodology for association rule post-processing is designed
for the convenience of the user faced with a large size of association rule set R. It
is necessary to let the user navigate in R by exploring limited subsets of association
rules. The association rules and their interesting measures are presented in graphic
form. This means that the user controls, through successive trial and error, a series
of local visual explorations based on his/her interest in the rules (Figure 4.2).

R

S1

S2

S4

S3

Si: subset  explored at the ith step

Figure 4.2: Exploration of limited subsets of association rules in R

Thus, the set R is explored subset after subset. The user never faces all associ-
ation rules at the same time. At each navigation step, the system proposes to the
user a set of association rules that can interested him/her. Then, the user may find
an interesting association rule and decide to keep it in the memory or may take the
decision to choose the next association rules subset to visit. It is through this process,
that the user subjectivity is expressed in the association rules post-processing. Fil-
tering functions can be used to prune the association rule set proposed by the system.

Our methodology includes the guiding principles of the cognitive processing of
information presented in Section 4.2.2 as follows:

1. functions to select a subset of potentially interesting items (P1 );

2. relations to target subset of association rules and to navigate among them (P2
and P4 );

3. the user views subset of rules (P3 ). The visualisation simplifies comparisons
among pieces of information (Ceglar et al. 2003 [63]);
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4. the user saves the association rules that seem interesting (P3 and P5 ).

The functions, relations and visualisation must take into account the two indica-
tors involved in the user task: the syntax of the rules and the interestingness measures
of the values.

4.3.1 Items Selection

Item Selection is the first step of the proposed methodology. We take advantage of
the fact that the user focuses on subsets to display only the subset being explored.
Thus, the functions add to the antecedent and add to the consequent perform
the data transformation from a set of items I to a rule A.

Through this step the user selects a set of interesting items (P1). The function
is defined as follows: in the whole item set I, two relations add to the antecedent
and add to the consequent associate each selected item to the antecedent or to
the consequent (Figure 4.3) of a reference rule (used to target a subset of association
rules). To add an item, the user must make two choices: which relation to apply and
on which item.

Items

Add to antecedent

Add to consequent

Antecedent

Consequent

Figure 4.3: Each relation adds a selected item to the antecedent or to the consequent.

4.3.2 Local mining: anticipation functions

Anticipation functions perform the transformation of a rule A to a set of rules S by
targeting subsets of rules. Interactive operators must be integrated into the visuali-
sation process to allow the user to activate these functions.

These functions define how subsets of rules are constituted from items selected in
the previous step. As a vector of user navigation, those functions are fundamental
elements of the IUCARE methodology. The anticipation functions are defined as fol-
lows: in all sets of rules R, the anticipation functions associate each rule to a limited
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subset of rules that could be interesting to the user (Figure 4.4).

R

 :  Association Rule

Figure 4.4: Anticipation functions associate each association rule chosen or constructed
by the user to a subset of rules.

From a rule the system proposes x rules. To navigate from one subset to an-
other, the user must choose which rule to apply the anticipation functions (from the
proposed x rules) otherwise he/she can always change the selected items (Figure 4.5).

:  Association Rule

Items 

selection

: Anticipation Function

Figure 4.5: To navigate from one subset of rules to another, the user can choose one rule
from the current subset of rules or change the selected items.

∀(r1,r2) ∈ R2, (r2)is − anticipation − rule − of(r1) ⇔(the system determines
that r2 is interesting for the user based on r1). Here, the 5 anticipation functions
(r2)is-anticipation-rule-of(r1):

• r2 is an anticipation rule of r1 if, and only if, r2 has a more general antecedent
than r1 – and has an item more in the antecedent.

• r2 is an anticipation rule of r1 if, and only if, r2 has a more general consequent
than r1 – and has an item more in the consequent.
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• r2 is an anticipation rule of r1 if, and only if, r2 has an item less than r1 in the
antecedent.

• r2 is an anticipation rule of r1 if, and only if, r2 has an item less than r1 in the
consequent. If there is only one item in the antecedent or in the consequent,
this item will be replaced by another item from the database.

• r2 is an anticipation rule of r1 if, and only if, r2 has the same antecedent of r1
and a different consequent .

• r2 is an anticipation rule of r1 if, and only if, r2 has the same consequent of r1
and a different antecedent.

All functions are based on rules syntax (Figure 4.6).

Milk Bread + Eggs

Milk  and Eggs Bread

Milk Bread and Eggs

Eggs Bread

Milk Eggs 

Figure 4.6: Illustration of the anticipation functions.

From all the items of the database, the number of rules constructed by the antic-
ipation functions can be very high. The larger the number of items in the database,
the greater the number of proposed rules. But as we have already mentioned, the
user can not analyse a large number of association rules. Therefore, association rule
ranking functions are used to propose only a limited number of rules to the user at
a time. These functions use the rule’s interestingness measures to rank the set of
rules before issuing them. The user visualises only a small set of high-ranking rules
at a time. The originality of the IUCARE methodology in comparison with other
methods of rule exploration (presented in Section 1.5.3.2) mainly lies in the concept
of anticipation and ranking functions. The user can elaborate hypotheses during the
navigation process, unlike an association rules explorer or a query language, since the
user must lay down his hypothesis before starting the process of extracting associa-
tion rules. Using a rules explorer or a query language, the extraction constraints must
be explicitly set, whereas with the IUCARE methodology, constraints are expressed
implicitly as they are integrated into the anticipation functions. We believe that these
functions facilitates the user task by making constraint specification much easier and
offer knowledge based on the his/her interest because it does not require the user to
know what he/she looking for.
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Example 4.3.1 Consider the following scene in an association rule post-processing
process: The user thinks that the association rule milk , bread , eggs → pears
is interesting but he/she does not know that milk , bread , appels → eggs and
milk , bread → jus are even more interesting. With the IUCARE methodology,
the user has access to valuable information that he/she does not know and that
are based on his/her intentions and preferences. However, if the user uses a query
language to perform post-processing rules, then it will not account for the existence
of these interesting rules because he did not know beforehand. If he/she uses a rules
explorer, then he/she must find each rule manually via the graphical interface. If
the user chooses Arvis (Blanchard et al. 2007 [31]) to explore association rules post-
processing, he/she needs to use two different neighbourhood relationships to achieve
the two rules. In the 3 cases, the user’s task can be tedious.

4.3.3 Association Rule Visualisation, Validation, and Evaluation

The IUCEAR methodology aims to help the user find interesting rules. For that, the
user should be able to evaluate and to compare the association rules proposed by the
anticipation functions.

Visualisation can be very beneficial to association rule mining (Simoff et al. 2008
[250]). In fact, visualisation techniques are an effective means to provide users with
meaningful visual representations instead of poorly intelligible textual lists. Visual-
ising rules makes it easier to find rules that have high interestingness measures and
to compare them (cognitive principle P2 ). A significant flaw in most visual repre-
sentations presented in Chapter 1 Section 1.5.3 such as grid-like structures and bar
charts it is that it does not highlight the rule’s interestingness measures although this
information is crucial to rule validation. For example, matrix visualisation, graph
visualisation, and parallel coordinate visualisation use colour to represent some rules
interestingness measures, even though this graphic encoding for quantitative variables
is known to be bad in information visualisation. The use of colour to represent quan-
titative ordinal variables is very often tolerated when it is used to represent a few
modalities (Wilkinson 2005 [291], Spence 2001 [256]). This can especially be applied
to quantitative variables such as rule interestingness measures if we accept to discre-
tise them. Strictly speaking, such a solution should be rejected because the colours
do not induce any universal order, and their application is unique each time (Bertin
1969 [24], Mulrow 2002 [202]).

4.3.4 Browsing History

Rule exploration may be facilitated by providing the user with a rule navigation card.
During the association rule exploration process, the user can show his/her interest to
some association rules. These association rules are stored as a navigation map. This
navigation card can take the form of a graph indicating the score for each association
rule and the order of their registration (Figure 4.7). This representation would serve
as historical exploration but also to give the user an overview of all the rules he/she
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has visited and that have attracted his/her attention.

R

 :  Association Rule : interesting association Rule

registration order of association rules

Figure 4.7: Illustration of rules navigation card.

4.3.5 Interactive process

The interactive process of the IUCEAR methodology is presented in Figure 4.8. The
process aims at guiding the user through the extraction and post-processing of rules.
First, the user should build a reference rule. Then, taking into account the system
propositions, he/she is able to revise his/her expectations and actions. Functions,
relations and visualisation interact as presented in the Figure 4.8.

4.4 New Association Rules Metaphor

As we have seen in Section 4.2.1, attribute components of an association rule a may be
more informative than the rule itself (Freitas 1998 [109]). In this context, we propose
a new visualisation metaphor for association rules. This new metaphor represents
attributes which make up the antecedent and the consequent, the contribution of each
one to the rule, and the correlations between each pair of the antecedent and each
pair of consequent. This metaphor is developed in 3D to overcome some limitations
of 2D representations.

4.4.0.1 Rendering Mapping of Association rule metaphor

The association rule representation proposed is based on a molecular metaphor. The
association rule representation is composed of several spheres. As advocated by Bertin
1969 [24], we chose graphic encoding based on positions and sizes to enhance the most
important interestingness measures, these being: Information Gain and correlation
between attributes. To have the greatest degree of freedom we chose to use a 3D
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Figure 4.8: Interactive process description for the IUCEAR methodology.

representation.

Our metaphor (Figure 4.9) shows two types of interestingness measures.

The first one matches rule attribute description which consists of categorical vari-
ables from Bertin’s semiology point of view. Each attribute has an associated contin-
uous variable corresponding to its information gain. The user must know if an item
belongs to the antecedent or the consequent. Therefore, we should separate the items
of the antecedent from the items of the consequent in the representation space. Each
sphere represents an item and its size and colour represent its contribution to the
rule. The sphere size represents the contribution of the item and the colour shows if
the contribution is positive (blue) or negative (grey). The chosen graphical encoding
highlights items with high, positives contribution (large blue sphere) and those with
high, negative contributions (large grey sphere). Both sets of information are inter-
esting to the user.

The lift is a positive measure used to indicate to what degree two items of the
antecedent or two items of the consequence are correlated. A distance between each
two items of the same side (antecedent or consequence) is an effective representa-
tion of this measurement. The more the items are correlated, the closer the spheres.
In our representation, the antecedent and the consequence are two separate graphs
in which the nodes are items. To generate item coordinates in 3D space, we use a
modified version of the spring-embedded like algorithm (Hendley et al. 1999 [141]).
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Figure 4.9: The visual association rule metaphor.

This algorithm (see Chapter 3 Section 3.3.1.1 ) enables the spheres self-organisation
in the visualisation area by the use of a force system in order to determine the sphere
positions. Using a force system allows correlated items to be near each other, and
independent items to be far away. The algorithm is described in the following section.
An association rule representation consists of spheres and links whose properties are
given by the rule parameters.

The second type of interestingness measure corresponds to measurements associ-
ated with the rule (support, confidence, etc,.). This meta information that describes
the properties of the rules are quantitative variables according to Bertin’s semiology
1969 [24]. Theoretically, it is possible to represent a large number of metrics using
visual variables appropriate to the area of interest of each user. For example, we can
represent the confidence or the support by a distance between the antecedent and the
consequence. The visual metaphor stresses the rules with a high level of confidence
or support (Figure 4.10). Furthermore, complementary text labels appear above each
object to give the name of the corresponding item.

4.4.0.2 Spring-embedded like algorithm

The graph representing the antecedent items or the consequent items is projected into
a 3D space. Each graph node represents an item. Nodes are represented by spheres.
The node coordinates are determined by a system of attractive forces (Table 4.4.0.2).

The nodes are all connected with edges. The edge is considered as a spring be-
tween two nodes with length and elasticity attributes. The spring length represents



4.4 New Association Rules Metaphor 131

Figure 4.10: Illustration of an association rules set. The distance between the antecedent
and the consequence stresses the rules with a high interestingness measure (support of confi-
dence)

Input: Set of item l, Set of Edge E, Force = (x=0,y=0,z=0)

Output: Set of coordinates C

1. forall item lk ∈ l do

5. forall Edge Em ∈ E connected to lkdo

6. Force = Force + HookeAttraction(lk, Em)

7. endfor

8. Velocity = (Velocity + Force) * damping

9. C = C * Velocity

10. endfor

Table 4.1: The placement algorithm.

the correlation between the two items (1/lift). More the items are correlated, the
more the edge are short and the closer the nodes. To reduce the number of con-
straints, we consider only relevant links whose lift is greater than 1 (see Chapter 1
Section 1.3.2 ).

The Hooke attraction (FH) describes the elasticity of the spring. It is applied
between each pair of nodes and tends to maintain them at the defined distance (1/lift).

Definition 4.4.1
The Hook attraction FH , applied to a node of coordinates C1 linked to another

node of coordinates C2 where k is the virtual stiffness and R the length of the edge.

FH = −k
(|L−R)L

|L|
with L = p2 − p1
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The system produces a physical approximation of the node movement which can
be easily interpreted by a human where the nodes are distributed in space according
to the edge length (correlation among the items).

4.4.1 Validation of Association rule metaphors

In this section, we present the results of the evaluation of four different representations
of association rules with different interaction techniques and visualisation configura-
tion. The four representations considered in this study are based on the metaphor
presented in the previous section. This experiment aims to evaluate the four different
representations in different configurations. In this study, only one association rule
is visualised by users and the different association rules are only one item in the
consequent.

• Metaphor 1 (Figure 4.11(a)): the items are placed in a circle with an ascending
Information Gain;

• Metaphor 2 (Figure 4.11(b)): the items are placed using the spring-embedded
like algorithm;

• Metaphor 3 (Figure 4.11(c)): the items are placed in a circle in pairs with an
ascending Information Gain. The item with the highest Information Gain is
placed first with the most correlated item next to it. The distance between the
two items is proportional to the lift value.

• Metaphor 4 (Figure 4.11(d)): the items are placed in a circle in pairs with an
ascending Information Gain without the distance between the antecedent and
the consequent.

4.4.1.1 Objective

The objective of this study is the determination of i the best metaphor to repre-
sent association rules, ii the more adequate visualisation interface and iii the best
interaction technique, to offer the best performance and most suitable tool for the
user.

4.4.1.2 Task

The task was to answer five different questions about each of the four displayed as-
sociation rule representations.
The five questions are:

• Question 1: What is the item of the consequent?

• Question 2: What is the most influential item of the association rule?
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(a) (b)

(c) (d)

Figure 4.11: The 4 metaphors of association rule : (a) Metaphor 1 (b) Metaphor 2 (c)
Metaphor 3 (d) Metaphor 4

• Question 3: What are the most correlated items of the association rule?

• Question 4: What are the lowest correlated items of the association rule?

• Question 5: What is the total number of antecedent items ?

The displayed association rules have four levels of complexity. Complexity is
proportional to the number of items of association rules. There are four different
association rules extracted from the database of Polytech’Nantes student grades be-
tween 2002 and 2005.

The different rules are:

• Association rule 1 (9 items): Social and Professional Issues(3rd)=B, Information
systems(3rd)=C, Software Engineering(3rd)=B, Applied Mathematics(3rd)=B,
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Foreign Languages(4th)=D, Applied Mathematics(4th)=B, Networking and Com-
munications(4th)=B, Social and Professional Issues(4th)=A → Social and Pro-
fessional Issues(5th)=B

• Association rule 2 (7 items): Software Engineering(2007)=E, Foreign Lan-
guages(2007)=C, Networking and Communications(2007)=C, Information Sys-
tems ID(2007)=D, Social and Professional Issues(2007)=D, Foreign Languages(2008)=B,
Information Systems ID(2008)=D→Humanities and Professional Issues(2009)=C

• Association rule 3 (5 items): Foreign Languages=D, Social and Professional Is-
sues=C, Application of Mathematics and Statistics to Decision-Aide=D, Knowledge-
based Systems=D, Training Periods and Term Projects=C → Information Re-
trieval=C

• Association rule 4 (4 items): Social and Professional Issues=C, Information
Systems=D, Systems and languages=D → Software Engineering=C

To simplify things, each item will be represented by a letter. Subjects should
respond to a total of 20 questions (five questions for each one of the four association
rules). Interaction with the representation is done using rotations on the 3-axis and
a zoom (in/out).

4.4.1.3 Protocol

A total of 36 volunteer subjects, all right handed, participated in this study. These
subjects had normal or corrected vision. Two protocols were used:

• Protocol 1: 24 of the 36 subjects performed the task only once, in one of the
two conditions C1 or C2 (12 C1 and 12 C2);

• Protocol 2: 12 of the 36 subjects performed the task twice without a rest period
between the two tests, in the conditions C3 and C4. 50% of the subjects began
in condition C3, then did the test in condition C4 and 50 % of the subjects
began in condition C4, then do the test in condition C3.

The experimental conditions are the following:

• C1: wiimoteTM and stereoscopic display;

• C2: wiimoteTM and monoscopic display;

• C3: mouse and stereoscopic display;

• C4: mouse and monoscopic display.

To get acquainted with the system, the subjects had to interact with a test asso-
ciation rule in the different conditions, before starting the test. The order of display
of the different association rules was randomly selected for each subject to avoid bias
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due to training transfer. The response time for each question was recorded. The
subjects were equipped with stereoscopic active glasses in conditions C1 and C3 and
were placed in front of the screen at a distance of 1.5 meters (Figure 4.12). To collect
subjective data, a questionnaire was given to each subject at the end of the experi-
ment.

Figure 4.12: The test conditions.

4.4.2 Results

Firstly, we examined the task completion time and the error rate. Then, we examine
the subjective aspects of performance (information collected via the questionnaire).
We also reported the information collected (observation) during the experiment (dif-
ficulties encountered, strategies, subjects behaviour, etc.).

4.4.2.1 Response Time

Recorded data (response time) was processed through the analysis of variance (ANOVA).

Concerning the identification of the consequent item (question 1), the results
shown in Figure 4.13 indicate that metaphor 4 has a better response time than
metaphor 1 and metaphor 3 (F (3, 11) = 2.94, p = 0.04). ANOVA found that
metaphor 4 (M = 9.2s, SD = 3.1) allowed a quicker identification of the consequent
than metaphor 1 (M = 14.3 s, SD = 6.2) and metaphor 2 (M = 14.9 s; SD = 8.0).
No difference was found between metaphors 3 and 4. Therefore, we can deduce that
metaphor 4 is best since the standard deviation is smaller. This result shows that the
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user’s performance is predictable.

For this task, monoscopic viewing is sufficient (Figure 4.14) and stereoscopic
display does not help the user much . The interaction mode (computer mouse or
WiimoteTM ) does not have a significant effect on performance (F (3, 11) = 0.45, p >
0.05) except in the case of using the WiimoteTM with monoscopic viewing. In
this case, ANOVA revealed better results than the stereoscopic display (F (1, 22) =
5.53, p = 0.02). ANOVA also revealed no difference between monoscopic and stereo-
scopic viewing when using the mouse only.

Figure 4.13: Response time to question 1 for different metaphors.

Figure 4.14: Response time to question 1 for different conditions.

To determine the dominant item of the association rule (Question 2), the results
shown in Figure 4.15, indicate that metaphor 3 (M = 16.9 s, SD = 6.3) and metaphor
4 (M = 13.8s, SD = 2.8) are better compared to metaphor 2 (M = 22.7s, SD = 7.9)
in terms of response time (F (3, 11) = 4, 13, p = 0.01).
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The identification of the largest sphere does not require a specific method for
viewing in the case of using the mouse (Figure 4.16) with monoscopic display (M =
15.08s, SD = 6.08) and stereoscopic display (M = 15.0s, SD = 5.67). The use of the
WiimoteTM (M = 21.69s, SD = 8.6) generates a response time higher than the mouse
(M = 15.08s, SD = 6.08) in the case of monoscopic display (F (3.11) = 3.06, p = 0.04).
To this question the mouse is better than the wiimoteTM only in the case of mono-
scopic viewing. In the case of stereoscopic viewing the mode of interaction does not
influence the response time. ANOVA found no differences between monoscopic dis-
play and stereoscopic display with the mouse.

Figure 4.15: Response time to question 2 for different metaphors.

Figure 4.16: Response time to question 2 for different conditions.

The results of identification of the most correlated items (F (3, 11) = 10.78, p =
0.00001) shown in Figure 4.17 indicates that metaphor 3 (M = 19.55s, SD = 4.81)
and metaphor 4 (M = 15.66 s, SD = 3.94) requires a response time lower than needed
by metaphor 1 (M = 31.89s, SD = 14.96) and metaphor 2 (M = 31.81s; SD = 7.04).
We can also assume a slightly better performance of metaphor 4 (M = 15.66 s, SD =
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3.94) compared to the metaphor 3 (M = 19.55s, SD = 4.81) at the average response
time and level of standard deviation.

ANOVA found (F (3, 11) = 2.94, p = 0.04) (Figure 4.17) that for this task using
the configuration wiimoteTM / stereoscopic display (M = 31.46s, SD = 12.16) requires
a response time greater than the configuration of mouse/stereoscopic display (M =
22.74 s, SD = 10.23). However, the display mode in itself is not involved, because we
see no significant difference between the use of stereoscopy or monoscopy with the
mouse. For this task, unlike question 2, using the wiimoteTM required a longer re-
sponse time than the case of stereoscopic viewing (for question 2 it was in the case of
monoscopic display). For monoscopic display the mode of interaction is not involved.
As for question 1, ANOVA (F (1,22) = 4.50, p = 0.04) found that the configuration
wiimote/stereoscopic display had a response time greater than the configuration wi-
imote/monoscopic display. ANOVA found no differences between monoscopic display
and stereoscopic display with the mouse.

Figure 4.17: Response time to question 3 for different metaphors.

For the identification of the least correlated item of an association rule, the re-
sults (F (3, 11) = 3.80, p = 0.02) shown in Figure 4.19 indicates that metaphor 3 (M
= 19.58s, SD = 7.69) and metaphor 4 (M = 17.10s, SD = 5.01) are better compared
to metaphor 1 (M = 27.48s, SD = 11.38).

For the test conditions, as for other tasks, the WiimoteTM /stereoscopic display
configuration requires a greater response time compared to other conditions. ANOVA
(Figure 4.20) (F (3, 11) = 3.88, p = 0.02) revealing that using the WiimoteTM as an
interaction tool in monoscopic display (M = 21.s; SD = 9.55) is better than stereo-
scopic (M = 28.40, SD = 11.71). According to previous tasks, ANOVA revealed
(F (1, 22) = 6.15, p = 0.02) that the WiimoteTM/stereoscopic display configuration
needs a response time greater than the WiimoteTM /monoscopic display configura-
tion. ANOVA did not reveal a significant difference between monoscopic and stereo-
scopic viewing using the mouse. For the last task (identifying the total number of
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Figure 4.18: Response time to question 3 for different conditions.

items from the antecedent), there was no significant difference among the 4 metaphors.

Figure 4.19: Response time to question 4 for different metaphors.

4.4.2.2 Error rate

For the error rate analysis, we consolidated the 5 questions together in the same his-
togram. Figure 4.21 shows that there is no differences among the metaphors. Each
metaphor has its advantages and disadvantages. For instance, its is easier to find the
most influential items (question 2) with metaphor 1 than with the other metaphors
because the spheres are classified in ascending order. For question 3 (the most cor-
related items) it is easier the find the closest spheres with metaphors 3 and 4. For
question 4 (the lowest correlated item) it the information is given only by metaphor 2.

Figure 4.22 shows that the use of WiimoteTM produces a lower error rate relative
to the mouse. When using the WiimoteTM users take much more time to analyse the
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Figure 4.20: Response time to question 4 for different conditions.

representation than with the mouse and produce better results. This shows that the
WiimoteTM is more suitable in a large screen configuration. There is no differences
between stereoscopic and monoscopic display.

Figure 4.21: Error rates of the questions for different metaphors.

4.4.2.3 Subjective Aspects

The observation of the subjects performed during the study revealed that they have no
difficulty to interact with the different representations of association rules. However,
the majority of subjects (90 %) did not use the zoom function. This means that the
distance from the display of the representation was adequate for all the metaphors
and all the subjects. We also note that 70 % of the subjects preferred to use the
WiimoteTM compared to the traditional computer mouse. An adjustment period
was necessary for the WiimoteTM which explains the response time being still higher
compared using the mouse. A more detailed experience concerning the use of the
WiimoteTM is necessary for more reliable conclusions to be drawn.
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Figure 4.22: Error rates of the questions for different conditions.

4.4.3 Discussion

We have presented a series of experiments we conducted to study the relevance and
the influence of different display configurations (monoscopic and stereoscopic) and
interaction devices (mouse, wiimoteTM ) in different tasks involving knowledge extrac-
tion from different representation association rule metaphors. Different experimental
tasks using several interaction configurations have been proposed and validated. A
first experiment was conducted to choose a metaphor among the four proposed to
extract information about association rules with an acceptable compromise between
response time and error rate. This experiment proves that metaphor 3 and metaphor
4 are the best in terms of response time. In a second step the choice of a configura-
tion interaction/visualisation, the experimentation shows that there is no difference
between the monoscopic display and stereoscopic display. In interaction, the best
results were obtained with the mouse. The use of stereoscopy or monoscopy led to
similar results.

The first experiment allowed us to choose a representation of association rules
but did not conclude on the configuration interaction and visualisation to choose.
The data collected through the questionnaire and observation of subjects during the
experiment showed that wiimoteTM provided a sense of freedom of movement more
than the mouse. 90 % of subjects preferred the wiimoteTM to a mouse. Some users
mentioned recurring discomfort when viewing stereoscopically. Using a desktop PC
with a monoscopic display to answer questions was annoying in the case of stereoscopic
display. Some subjects were forced to remove their glasses which generated a longer
response time for stereoscopic over the monoscopic viewing.
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4.5 Interactive Visualisation of Association Rules with
IUCEARVis

The IUCEAR methodology defines some basic principles for developing a tool dedi-
cated to association rule exploration. However, the methodology can be implemented
in multiple ways. In particular, various possibilities have been conceivable for graphic
encoding. In this section we describe the choices that were made to work out the
methodology for the visualisation tool.

To implement the four parts of the IUCEAR methodology, three different inter-
faces were presented to the user (Figure 4.23) for the:

• selection of interesting items;

• exploration and validation of recommended association rules;

• visualisation of the history map of the association rules selected by the user.

Figure 4.23: Illustration of IUCEARVis approach.

As we have seen in Section 4.4, the association rule metaphor was designed to
display the items making up the rules. This metaphor is used in IUCEARVis to im-
plement the IUCARE methodology. Such is the association rule metaphor, that we
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chose an encoding approach based on positions and sizes to highlight the degree of
rules interestingness in IUCEARVis.

We pursue the visualisation process proposed by Card et al. 1999 [60] (presented
in Section 3.2.2) to describe the different visualisation interfaces.

4.5.1 Items Selection

4.5.1.1 Data Transformations

We took advantage of the fact that the user focuses on rule subsets to display only
the subset being explored (cognitive principle (P1) of the IUCEAR methodology).

Initially, the user selects the interesting items that should be in the extracted
association rules. Therefore, the user should build a reference rule by selecting the
items that will make up its antecedent and the items that will make up its conse-
quent. Thus, the functions add to antecedent and add to consequent perform the data
transformation from a set of items I to a rule A. We call A the reference rule, because
it is from the component items of this rule that rules will be generated.

For example, with a set of four items I = (A,B,C,D) the user can build any rule
that he considers interesting (milk → bread) ; (milk, bread → apples), ( milk, bread,
apples → eggs), etc.

To start or restart a rule exploration process, the user has first to select a reference
rule using the item selection interface.

Example 4.5.1 In the example shown in Figure 4.24, the user builds the reference
rule (con=+, n=+, led=+ → clv=0). He/she can immediately note that this is a
poor quality rule (confidence = 27%, support = 4%, and lift = 0.57).

4.5.1.2 Rendering Mappings

Multiple objects are present in this interface (Figure 4.25):

1. list of items: a pick-list contains all database items;

2. cylinders representing the frequency of items: the maximum size of a cylinder
= 1. The most common item in the database will be represented by a cylinder
of size 1. The cylinders may have different colours: blue, green or red. More
precisely, when there is more than one item in the antecedent and more than
one item in the consequent, the contribution of the item to the association rule
can be calculated if the item will be added to the antecedent or if the item will
be added to the consequent. The cylinder colour indicates if the item improves
the quality of the rule’s interestingness. A green colour indicates that the item
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Figure 4.24: Item Selection interface.

improves the rule quality. A blue colour indicates that the item does not change
the rule quality. A red colour indicates that the item degrades the rule quality.;

3. spheres representing the antecedent items have a fixed size. Consequently, the
spheres are all identical;

4. spheres representing the consequent items are identical to the spheres repre-
senting the antecedent items;

5. cylinders representing the support and confidence they are the same size. The
maximum size of the cylinder is equal to 100 % of the interestingness measure.
To represent the values of the reference rule interestingness measures we chose a
graphic encoding based on sizes: the size of a cylinder. The value is represented
by the darker colour, and is also displayed above the cylinder. Since the lift is
an unbounded measure we decided to display only the value without a graphic
object associated to it;

6. a cursor is used to select the thresholds values of interestingness measure (sup-
port and confidence). The threshold values may vary between 0% and 100%.

In this interface we do not use the metaphor of representation of association rules
presented in Section 4.4. This metaphor allows the comparison of association rules,
whereas in this interface only one rule is displayed: the reference rule.
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Figure 4.25: Objects present is the item Selection interface.

4.5.1.3 View Transformation

This interface allows the user to build a reference rule and display the interestingness
measure related to it. Firstly, the user visualise all items (I ) present in the database
in a pick-list. The number of items displayed on the drop down is set to 28. If there
are more then 28 items in the database, the user can easily scroll down the list to
show the hidden items. In order to help the user to get an idea about the data and
to choose interesting items, the item selection interface offers the possibility to mod-
ify the ordering items list criteria. The item pick-list can be ordered in frequency
order, alphabetical order, highest support, highest confidence, and highest lift (the
ordering by interestingness measures is possible only if at least one item occurs in
the antecedent and one item in the consequence). The user can choose to visualise
the contribution of the item to the association rule if it will be in the antecedent or
if it will be in the consequence. The user can also change the support and confidence
minimum thresholds by the algorithms of rule extraction.

To navigate among the different interfaces (item selection, rule exploration, and
browsing history) a command menu allows direct access to the desired interface. This
command menu is present in the three interfaces of IUCEARVis.
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4.5.2 Association Rule Exploration, Evaluation and Validation

After item selection, the system proposes to the user a small set of rules syntactically
close to the reference rule. Then, the user can visualise, evaluate and validate them
through the association rule exploration interface. The algorithms used for association
rule generation will be presented in Section 5.2

4.5.2.1 Data Transformation

After selecting a reference rule A, the anticipation functions perform transformation
of a rule A to a set of rules R by targeting subsets of rules.

Six anticipation functions are taken up in IUCEARVis. Most of them are spe-
cialisation functions or generalisation functions. Specialisation and generalisation are
indeed the two fundamental cognitive processes to generate new rules according to
Holland et al. 1986 [147]. One of the characteristics of the anticipation functions is
the integration of the most important interestingness measures of association rules,
support (supp) and confidence (conf). Each interestingness measure is associated to
a minimum threshold (minsupp and minconf) set by the user to filter rules. These
thresholds can be changed by the user at any time during navigation in R.

To define the anticipation functions, we bring thresholds together in the boolean
function GoodQuality :

∀r ∈ R, GoodQuality(r) ⇔ (supp > minsuppandconf > minconf)

This approach is in the form of the following anticipation functions:

- The association rule of reference has only one item in the antecedent or
only one item in the consequent

• A1(x → Y ) = z → Y |z ∈ I (Y )

• A2(X → y) = X → z|z ∈ I (X)

- The association rule of reference has at least one item in antecedent and
one item in the consequent

• anticipation functions of specialisation: specialisation consists of adding an item
to the rule antecedent or the rule consequent;

– A3(X → Y ) = X ∪ z → Y |z ∈ I (X ∪ Y ) ∧GoodQuality(X ∪ z → Y )
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– A4(X → Y ) = X → Y ∪ z|z ∈ I (X ∪ Y ) ∧GoodQuality(X → Y ∪ z)

• anticipation function of generalisation: generalisation consists of simplifying the
rule antecedent or the rule consequent.

– A5(X → Y ) = Xz → Y |z ∈ X ∧GoodQuality(X z → Y )

– A6(X → Y ) = X → Y z|z ∈ Y ∧GoodQuality(X → Y z)

For the purpose of simplicity, upper case (X,Y ) denotes item sets and lower case
(x, y, z) denotes items. We note X ∪ Y instead of X ∪ Y and X\z instead of X\z.

Example 4.5.2 Let us consider a sample of supermarket transaction data set pre-
sented in Table 4.5.2 with minsupp = 20% and minconf = 80%:

Tuple Milk Bread Eggs Apples Pears

1 1 0 1 0 1

2 1 1 0 1 1

3 1 1 1 1 0

4 1 1 1 1 1

5 0 0 1 1 0

Table 4.2: A supermarket transaction data set.

Let us consider an association rule

Milk,Bread → Apples [supp = 60% and conf = 100%]

• if we used A2, two association rules can be generated (Milk, Bread → Eggs
[Supp= 40% and Conf= 66%]) ; (Milk, Bread→ Pears [supp=40% and conf=66%]).
All the rules have conf ≤ minconf ;

• if we used A3, two association rules can be generated (Milk , Bread, Eggs → Ap-
ples [supp= 40% and conf=100%]) ; (Milk, Bread, Pears → Apples [supp=40%
and conf=100%]). The two rules have supp ≥ minsupp and conf ≥ minconf ;

• if we used A4, two association rules can be generated (Milk, Bread → Apples,
Eggs [supp=40% and conf=66%]) ; (Milk, Bread → Apples, Pears [supp=20%
and conf=50%]). All the rules have conf ≤ minconf ;

• if we usedA5, two association rules can be generated (Milk→Apples [Supp=60%
and Conf=100%]) ; (Bread →, Apples [Supp=60% and Conf=100%]). The two
rules have supp ≥ minsupp and conf ≥ minconf ;
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• A1 and A6 can’t be used because there is a single item in the antecedent.

A total of 8 association rules can be generated, but only 4 will be presented to
the user (supp ≥ minsupp and conf ≥ minconf).

• R1: Milk → Apples :Supp(R1)=60% and Conf(R1)=100% ;

• R2: Bread → Apples Supp(R2)=60% and Conf(R2)=100% ;

• R3: Milk, Bread, Eggs → Apples Supp(R3)= 40% and Conf(R3)=100% ;

• R4: Milk, Bread, Pears → Apples Supp(R4)=40% and Conf(R4)=100%.

According to the number of items present in the database, the number of generated
association rules can be very high. As we have already seen in Chapter 1, human
capabilities can’t deal with large volumes of information. To limit the cognitive load
of analysis, we propose a limited subset of rules at a time. Only the 10 most important
rules will be displayed. In order to select those rules, the user must choose one of the
selection criteria among :

• highest support;

• highest confidence;

• highest lift;

• an aggregate measure = weightSupport * support + weighconfidence*confidence
+ weightlift* lift weights values are defined by the user.

The algorithms developed for the local extraction of association rules are presented
in Section 5.2.

4.5.2.2 Rendering Mappings

Association rule exploration, evaluation and validation is the central interface of
IUCEARVis. It is through this interface that the user explores the subset of rules
generated by the local mining algorithms.

Based on the reference rule A, the system generates and displays a subset of rules
S = F (A) that may interest the user. The reference rule will be consistently added
to any generated subset. This allows comparisons between the reference rule and
the rules proposed by the system. For example, it is interesting to identify which
items can be removed from the rule without degrading the rule quality. Reciprocally,
comparison can be used to check if adding new items to the antecedent or to the
consequent improves the rule quality.

The association rule exploration interface presents 3 different regions: (Figure 4.26)
:
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Figure 4.26: Interface for association rules exploration, validation, and evaluation.

1. at the upper left: the reference rule built by the user via the item selection
interface. Displaying the rule of reference allows the user to compare the rule
that he/she built with the rules proposed by the system. The reference rule is
represented according to our rule metaphor;

2. at the upper right: a 3D Scatter plot (see description Chapter 3 Section 3.3.1.1)
in which the rules are represented . As advocated by the IUCARE methodology,
we chose map encoding based on positions to highlight the rule interestingness
measures. In a 3D scatter plot, the position of an object might allow us to
encode three rule interestingness measures, an interestingness measure on each
axis. To facilitate the perception of depth (z axis) in the 3D space, the intensity
of colour is associated with the depth axis. The closer the object is to the user,
the more intense the colour. To distinguish the rule of reference, it will be
represented in green while other rules are represented in blue. The scatter plot
stresses the good quality rules. More precisely, a rule placed in the top of the
three axes represents a rule whose support, confidence, and lift are high. On the
other hand, a rule placed near the scatter plot origin represents a rule whose
three interestingness measures are weak;

3. at the bottom: In a visual representation, the perceptually dominant informa-
tion is the spatial position. Therefore the interestingness measures which are
fundamental for decision making are represented by the object position. The
user chooses what rules interestingness measure will serve to organise the rules.
Since the range of Information Gain values vary according to the displayed rule
set, IUCAREVis includes a normalisation procedure for allocating sphere sizes
on larger values. This also helps to avoid low values lead to very small spheres
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and large values lead to large spheres.

An association rule can have a score between 0 to 3 given by the user according
to his/her interest to the rule. The colour of links in the representation metaphor is
used to encode the score value as follows (Figure 4.27):

• 0: white colour;

• 1: azure colour;

• 2: medium blue colour;

• 3: dark blue colour.

(a) (b) (c) (d)

Figure 4.27: The different colours of links to encode rules score: (a): score 0 (white
colour), (b): score 1 (azure colour), (c): score 2 (medium blue colour), (d): score 3 (dark blue
colour).

4.5.2.3 View Transformation

Research work in visual perception shows that humans have at first overall percep-
tions of a scene, before paying attention to detail (Hascoet and Beaudoin-Lafon 2001
[139]), this motivated the development of Focus/context approaches (see Chapter 3
Section 3.2.2). This is especially well known in a formula made by Shneiderman 1996
[244] widely used in information visualisation: ”overview first, zoom, and filter, then
details on demand”. In IUCAREVis, the user must be able to pass easily from a
global view to a detailed view by interacting with the visualisation. For that, the
user can focus on one rule among the displayed association rules set. The user selects
the rule that he/she want to show and this rule will be displayed on the front of the
screen. The other rules remain displayed but blurred. The selected rule is displayed
in red to keep the overall context (Figure 4.28). The sphere representing the same



4.5 Interactive Visualisation of Association Rules with
IUCEARVis 151

rule in the 3D scatter plot is displayed in red too. This technique is called brushing
and linking (see Chapter 3 Section 3.2.2). The interestingness measure values relative
to the selected rule are displayed. It is easy to locate the best rules with the scatter
plot. The user can just click on the selected rule to zoom in and examine it more
closely.

Figure 4.28: Linking and brushing: a selected rule is simultaneously highlighted in the
3D scatter plot.

Several system control commands are also available to meet the different needs of
the user in his search for interesting knowledge (Figure 4.29):

1. set a new rule as a reference rule. The user can select any rule from the dis-
played set of rules and make it the new reference rule. The system automatically
triggers the algorithms to generate a new subset of rules according to the an-
ticipation functions.

2. modify the 3D scatter plot axis. To give more flexibility to the user, we give
him/her the possibility to decide which interestingness measure will be repre-
sented on each axis.

3. change the displayed subset of rules. The association rules are displayed by a
set of 10. The user can then display each time the previous or following subset.

4. change the rule interestingness measure used to sort the rules set. The user can
may choose between : support, confidence, lift or global measure (see section
4.5);



152 Interactive Extraction and Exploration of Association Rules

1

2

3

4 5

Figure 4.29: System control commands available in the rules exploration, evaluation and
validation interface.

5. activate/deactivate filter. The user can visualise only rules that have the same
consequent or the same antecedent as the reference rule;

6. set a rule score. During the exploration step, an interesting rule can draw the
attention of the user, then, he/she can give it a score between 1 and 3 and add
it to the history map of interesting rules. The cursor used to set the rule score
is displayed at the user request (Figure 4.30).

4.5.3 Browsing History

Through the browsing history interface, the user visualises all rules which have drawn
his/her attention during the exploration and extraction process. So there is no trans-
formation of data.

4.5.3.1 Rendering Mappings

Unlike the exploration interface where the number of rules is limited to 10, this inter-
face must support large numbers of rules. Therefore, we have chosen a representation
based on the information landscape metaphor to place the association rule set. Specif-
ically in a scale (Figure 4.31).

Since in a visual representation the perceptually dominant information is the spa-
tial position, the interestingness measures which are fundamental for decision making
are represented by the association rule position in the scale. In a 3D information land-
scape, the position of an object allow us to encode three interestingness measures.
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Figure 4.30: A cursor can be displayed at the user request to change a rule note.

Figure 4.31: Interface for browsing history.

As our metaphor for association rule representations uses sphere size to represent the
informational gain items and in order to ensure that the user is not skewed, we chose
not to use depth to place rules. A sphere placed at depth may seem smaller than a
sphere with the same size placed in front. So a user can not compare correctly two
rules placed at different distances from him/her.

However, given that different rules may have the same interestingness measures
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values, it is necessary to leave one dimension in order to distribute the association
rules in space and prevent them from overlapping. Only one interestingness measure
is encoded by the position. In addition, the rules placement on a scale allow high-
lighting the rules with good quality. More precisely, a rule positioned on the bottom
step is a rule whose interestingness measure value is greater than another placed on
the top step. A landscape miniature representation allows users to have the order
of addition of each rule to the history. Instead of each rule displayed in the scale, a
number corresponding to the order of addition of the rule is displayed in the minia-
ture scale.

The scale is composed of 7 steps and on each step rules are distributed from the
centre of the step towards the outside. The size of the scale is the same regardless
the number of displayed rules. However, interestingness measure values correspond-
ing to each step vary depending on the displayed rules (Figure 4.32). Maximum and
minimum interestingness measure values are calculated each time a rule is added or
deleted from the displayed rule set.

For the association rule representation we use our metaphor. The colour of links
among the items corresponds to the note that the user has given to the rule like
in the exploration interface. An Information Gain normalisation procedure is used
normalise the sphere sizes.

Figure 4.32: The rule positions on the scale are based on the interestingness measure
values.
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4.5.3.2 View Transformation

As in the rule exploration and validation interface, the user can focus on one rule
among the displayed association rule set. The user selects the rule that he/she wants
to show and this rule will be displayed on the front of the screen. The other rules
remain displayed but blurred. The selected rule is displayed in red to keep the overall
context. The user can select rules from the miniature scale too (brushing and linking
technique see Chapter 3 Section 3.2.2).

The user can modify the score of a given association rule at any time. Then the
link colour will be modified directly. The user can also delete an association rule
from the history by giving it the score 0. It will immediately be removed from the
interface.

4.6 Conclusion

In this chapter, we have presented the IUCEAR methodology for interactive visu-
alisation of association rules and IUCEARVis an implementation of the IUCEAR
methodology.

IUCEAR methodology is designed for the convenience of the user faced with large
sets of rules taking into account his/her capacity of information processing. We pro-
pose also a new association rule metaphor allowing the visualisation of attributes
composing the association rule. Also, it shows attribute relationships and the contri-
bution of each one of them.

IUCEARVis allows rule exploration and the identification of relevant knowledge.
The tool is based on an intuitive VR representation that supports the extraction of
sets of rules described by several interestingness measures. This representation high-
lights rules interestingness measures and facilitates the re cognition of good quality
rules. IUCEARVis proposes anticipation functions (generalisation and specialisation)
to help the user find interesting rules. Many interaction operators allows users to
guide navigation among rules.

As shown in Chapter 1 Section 1.5.3, 2D association rule visualisation tools are
based on items and see the rule interestingness measures as ancillary information.
On the other hand, a few association rule visualisation tools (Chapter 3 Section
3.4.2.3) are proposed in 3D and VR. Those tools propose: either representations
mainly based on rule interestingness measures (Blanchard et al. 2007 [31]), or a
representation mainly based on items but without highlighting rule interestingness
measures (Gotzelmann et al. 2007 [130]). Other proposed methods offer very few
interaction operators. IUCEARVis is quite different for two mains reasons because
it proposes (i) representation based on both rule items and interestingness measures,
and (ii) many interaction operators based on both rule items and interestingness
measures.
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5.1 Introduction

Merely developing a novel visual metaphor is rarely sufficient to make new discovery.
In the association rule extraction process, the decision-maker is overwhelmed by the
association rule algorithm results. Representing these results as static images limits
the use of the visualisation. This explains why the user needs to be able to interact
with the association rules representation in order to find relevant knowledge.

Interaction also allows the user to be integrated into the association rule extrac-
tion process. The user should be able to manipulate the extraction rule algorithms
and not only the graphical representations. This allows him to focus on interesting
knowledge from his point of view, in order to make the association rule methods be

157
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more generically useful.

In this chapter we firstly present the IUCEARVis rule extraction module. Then
we detail its implementation. Rule extraction is an interactive module that generates
sets of rules and their interestingness measures at each user demand. Thus no rule is
produced in advance. This local extraction approach follows user exploration. It is
conceived to overcome the limitations of exhaustive extraction with which the time
taken may be prohibitive for dense data (Chapter 1 Section 1.5). The local extraction
of association rules is carried out by constraint-based algorithms, designed specifically
to extract on demand the sets of rules generated by the anticipation functions.

In this chapter, we are also interested in presenting the implementation of the
IUCEARVis tool. The tool is based on virtual reality visualisation and intuitive
3D interaction techniques. Firstly, we present the local association rule extraction
algorithms. Then we detail the implementation of IUCEARVis in Section 2. Section 3
is devoted to interaction techniques in IUCEARVis. Finally, we present a case study.

5.2 Interactive Rule Local Mining With IUCEARVis

Many algorithms for association rule extraction exist in the literature (see Chapter
1 Section 1.4). One of the most popular is the Apriori algorithm. Apriori uses an
incremental approach to find all frequent item sets – that have support above the min-
imum threshold. Then, it builds all rules that have confidence above the minimum
threshold. The problem with this algorithm is the large amount of generated associa-
tion rules which makes their analysis almost impossible. Another approach consists of
searching for interesting rules locally, in the neighbourhood of rules that the user al-
ready knows. Instead of generating all rules by means of an exhaustive algorithm, the
new approach consists of generating locally all candidate rules (syntactically close to
the rule selected by the user), and then checking their support and confidence against
the transaction database. This local approach follows user navigation and overcomes
the limitations of exhaustive extraction algorithms. The candidate rules are all pos-
sible interesting rules. After generation, a pass over the database is performed to
compute rule interestingness measures. In order to be present in the output rules
set, rules must conform with the support and confidence thresholds specified by the
user. This association rule extraction module is interactive and generates sets of as-
sociation rules on demand. Local rules extraction is carried out by a constraint-based
algorithm, specifically designed to extract rule sets at the user’s request.

The IUCEARVis constraint-based algorithms were designed with a quite different
perspective to the constraint-based algorithms presented in Chapter 1, Section 1.4.
Whereas the latter is looking to exploit constraint classes as generally as possible,
the IUCEARVis algorithm uses only special constraints induced by the anticipation
functions.
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5.2.1 Constraints in IUCEARVis

The constraint-based algorithms use constraints to reduce the search space. In
IUCEARVis, there are two types of constraints on rules.

• syntactic constraints: what items can or must appear in the antecedent and the
consequent;

• quality constraints: that specify a minimum threshold for both rule interesting-
ness measures of support and confidence.

The syntactic constraints are the most powerful constraints. They allow the search
space to severely restricted.

5.2.2 Association Rule Extraction in IUCEARVis

The general local algorithm for association rules extraction is presented in Table 5.2.2.

This algorithm is organised into four main steps:

• STEP 1: in this step we use syntactic constraints to construct candidate as-
sociation rules. This function enumerates all association rules that satisfy a
syntactic constraint only from the items list without having to consult individ-
uals in the database. Accordingly, this step does not require any pass over the
database;

• STEP 2: the purpose of this step is to calculate the rule interestingness measure
values. First, we must calculate the cardinality of each itemset – number of
individuals who check the itemset in the database, of the rules listed in STEP
1. For the rule: (Milk, Bread → Eggs), three cardinals itemsets should be
calculated, the antecedent cardinal (nmilk,bread), the consequent cardinal (neggs),
and the global itemset [antecedent ∪ consequent] (nmilk,bread,eggs). The cardinals
are determined by counting the itemset occurrences in the database. This step
is the most time expensive step. Once the cardinals are determined, the rule
interestingness measure values can be calculated. The number of transactions in
the database (n) is also necessary to calculate the rule interestingness measures;

• STEP 3: in this step the quality constraints are exploited. The rules are
filtered on the rule interestingness measures relative to the support threshold
and confidence threshold.

• STEP 4: in this step the rules are ranked according to an interestingness mea-
sure specified by the user. Default configuration uses the support; otherwise,
the last ranking measure chose by the user.
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Input: Database D

Association Rule (Reference Rule) RR

Set of candidates Items I

Thresholds (minimum Thresholds of rules interestingness measures)

minSupp and minConf

Ranking interestingness measure RM

Output: Set of couple (AR, M(AR))

when AR is an association rule and M(AR) its interestingness measures SetAR

1. SetAR = ∅
STEP 1: Construction of candidate rules with syntactic constraints

2. forall (Ik in I) do begin

3. AR = construction-rule(Ik, RR)

4. endfor

STEP 2: Calculate the association rule interestingness measure

5. forall (ARk in AR) do begin

6. M(AR) = calculate-interestingnessMeasures(ARk, D)

7. endfor

STEP 3: Eliminate the candidate rules that do not meet

the quality constraints (support threshold and confidence threshold)

8. forall (ARk in AR) do begin

9. SetAR = filters(ARk,M(AR), minSupp,minConf)

10. endfor

STEP 4: Rank the candidate rule set according to the interestingness

measure specified by the user

11. SetAR = Ranking(SetAR,RM)

12. return SetAR

Table 5.1: The local association rule extraction algorithm.

In the following, we give a more detailed description of the local algorithms. Each
algorithm corresponds to one of the anticipation functions of the IUCEAR method-
ology.

The algorithm presented in Table 5.2.2 is used to extract sets of rules defined by
the specialisation anticipation function. This algorithm is used only if there is more
than one item in the antecedent or more than one item in the consequent. Firstly,
in line 2, the algorithm enumerates all candidate items Ik. Ik should not belong
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to the antecedent or to the consequent of the reference rule (line 3). Secondly, the
algorithm creates a new candidate rule by adding the new item to the antecedent of
the reference rule (PRR ∪ Ik → CRR) (line 4). In lines 5, 6, and 7 the algorithm
determines the cardinals of the itemsets needed to calculate the rule interestingness
measures (support, confidence, and lift). If the new rule interestingness measure val-
ues are above the thresholds (line 11), the new rule can be added to the result set
(line 12). The rules that do not satisfy the support and the confidence thresholds are
eliminated. Thirdly, the algorithm creates a new candidate rule by adding the new
item to the consequent of the reference rule (PRR → CRR ∪ Ik ) (line 13). The
same treatment will be repeated for this new rule (lines 14 to 18).

If there is only one item in the antecedent or one item in the consequent of the
reference rule, a specific specialisation algorithm is used to generate association rules.
This algorithm is presented in Table 5.3.

The algorithm presented in Table 5.4 is used to extract sets of rules defined by
the generalisation anticipation function. This step generates a very small number
of association rules. The algorithm involves two important steps. Firstly, for rules
that the number of items in the antecedent is greater than one item, the algorithm
eliminates at each iteration one item. The new candidate rule is of the form: ARi =
(PRR Ik → CRR). Then the algorithm calculates this rule interestingness measure
and adds it to the rule list if their interestingness measure values satisfy the thresholds.

5.3 Implementation

5.3.1 Virtual Reality Technology

In IUCEARVis, we used OpenGL to generate 3D scenes. OpenGL serves two main
purposes: (i) it presents a single, uniform interface for different 3D accelerator hard-
ware and (ii) it supports the full OpenGL feature set, using software emulation if
necessary, for all implementations. OpenGL is evolutionary; it allows additional
functionality through extensions as new technology is created. Several libraries are
built on top of or beside OpenGL to provide features not available in OpenGL itself.
Libraries such as GLU can be found with most OpenGL implementations, and others
such as GLUT and SDL have grown over time and provide rudimentary cross-platform
windowing and mouse functionality. OpenGL does not load directly the display. It
only describes 3D objects, initialises OpenGL rendering which is done by the operat-
ing system API or by the OpenGL Utility Toolkit, GLUT, which is a window system
independent toolkit for writing OpenGL programs. It implements a simple window-
ing application programming interface (API) for OpenGL. The comparison between
2D, 3D and virtual reality approaches realised in Chapter 2, Section 2.4.2 allowing
us to believe that only the stereoscopic enables fully and efficiency exploitation of 3D
representations.
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Input: Database D

Antecedent of the Reference Rule PRR

Consequence of the Reference Rule CRR

Set of candidates Items I

Minimum support Thresholds minSupp

Minimum confidence Thresholds minConf

Ranking interestingness measure RM

Output: a set of couple (AR, M(AR)) when AR is an association rule

and M(AR) its interestingness measures SetAR

1. SetAR = ∅
2. forall (Ik in I) do begin

3. if Ik /∈ PRR and Ik /∈ CRR then

STEP 1

4. ARi = PRR ∪ Ik → CRR

STEP 2

5. calculateCardinal(Ik ∪ PRR,D)

6. calculateCardinal(Ik ∪ CRR,D)

7. calculateCardinal(Ik ∪ CRR ∪ PRR,D)

8. M(ARi, support) = calculateSupport(ARi)

9. M(ARi, confidence) = calculateConfidence(ARi)

10. M(ARi, lift) = calculateLift(ARi)

STEP 3

11. if support(M(ARi)) ≥ minSupp and confidence(M(ARi)) ≥ minConf then

12. SetAR = SetAR ∪ (ARi,M(ARi))

STEP 1

13. ARi+1 = PRR → CRR ∪ Ik

STEP 2

14. M(ARi+1)(support) = calculateSupport(ARi)

15. M(ARi+1) (confidence) = calculateConfidence(ARi+1)

16. M(ARi+1)(lift) = calculateLift(ARi+1)

STEP 3

17. if support(M(ARi+1)) ≥ minSupp and confidence(M(ARi+1)) ≥ minConf then

18. SetAR = SetAR ∪ (ARi+1,M(ARi+1))

19. endfor

STEP 4

20. SetAR = Ranking(SetAR,RM)

21. return SetAR

Table 5.2: The local specialisation anticipation function algorithm.
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Input: Database D

Antecedent of the Reference Rule PRR

Consequence of the Reference Rule CRR

Set of candidates Items I

Minimum support Threshold minSupp

Minimum confidence Threshold minConf

Ranking interestingness measure RM

Output: a set of couple (AR, M(AR)) when AR is

an association rule and M(AR) its interestingness measures SetAR

1. SetAR = ∅
2. calculateCardinal(PRR,D)

3. calculateCardinal(CRR,D)

4. if | PRR | = 1 do begin

5. forall (Ik in I) do begin

6. if (Ik) /∈ PRR and (Ik) /∈ CRR do begin

STEP 1

7. ARi = Ik → CRR

STEP 2

8. calculateCardinal(Ik ,D)

9. M(ARi, support) = calculateSupport(ARi)

10. M(ARi, confidence) = calculateConfidence(ARi)

11. M(ARi, lift) = calculateLift(ARi)

STEP 3

12. if support(M(ARi)) ≥ minSupp and confidence(M(ARi)) ≥ minConf then

13. SetAR = SetAR ∪ (ARi,M(ARi))

14. endfor

15. if |CPR| = 1 do begin

16. forall (Ik in I) do begin

17. if (Ik) /∈ PRR and (Ik) /∈ CRR do begin

STEP 1

18. ARi = PRR → Ik
STEP 2

19. calculateCardinal(Ik ,D)

20. M(ARi, support) = calculateSupport(ARi)

21. M(ARi, confidence) = calculateConfidence(ARi)

22. M(ARi, lift) = calculateLift(ARi)

STEP 3

23. if support(M(ARi)) ≥ minSupp and confidence(M(ARi)) ≥ minConf then

24. SetAR = SetAR ∪ (ARi,M(ARi))

25. endfor

STEP 4

26. SetAR = Ranking(SetAR,RM)

27. return SetAR

Table 5.3: The modified local specialisation anticipation function algorithm.
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Input: Database D

Antecedent of the Reference Rule PRR

Consequence of the Reference Rule CRR

Minimum support Thresholds minSupp and minConf

Minimum confidence Thresholds minConf

Ranking interestingness measure RM

Output: A set of couple (AR, M(AR)) when AR is

an association rule and M(AR) its interestingness measures SetAR

1. SetAR = ∅
2. calculateCardinal(PRR,D)

3. calculateCardinal(CRR,D)

4. forall (Ik ∈ PRR) do begin

STEP 1

5. ARi = PRR Ik → CRR

STEP 2

6. calculateCardinal(PRR Ik ,D)

7. M(ARi, support) = calculateSupport(ARi)

8. M(ARi, confidence) = calculateConfidence(ARi)

9. M(ARi, lift) = calculateLift(ARi)

STEP 3

10. if support(M(ARi)) ≥ minSupp and confidence(M(ARi)) ≥ minConf then

11. SetAR = SetAR ∪ (ARi,M(ARi))

12. endfor

13. forall (Ik ∈ CRR) do begin

STEP 1

14. ARi = PRR → CRR Ik

STEP 2

15. calculateCardinal(CRR Ik ,D)

16. M(ARi, support) = calculateSupport(ARi)

17. M(ARi, confidence) = calculateConfidence(ARi)

18. M(ARi, lift) = calculateLift(ARi)

STEP 3

19. if support(M(ARi)) ≥ minSupp and confidence(M(ARi)) ≥ minConf then

20. SetAR = SetAR ∪ (ARi,M(ARi))

21. endfor

STEP 4

22. SetAR = Ranking(SetAR,RM)

23. return SetAR

Table 5.4: The local generalisation anticipation function algorithm.
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5.3.2 Tool Architecture

The IUCEARVis tool proposes to implement the IUCEAR methodology introduced
in Chapter 4 Section 4.3. For this purpose, we elaborated a modular and evolving
architecture that we designed as shown in Figure 5.1.

Figure 5.1: General architecture of the IUCEARVis tool.

The tool is organised in 3 important parts:

• the data server is the PostgreSQL management system of relational databases;

• the iterative process of local association rules generation;

• visualisation and interaction (OpenGL).

The process of local association rule generation supports rule extraction. It imple-
ments a constraint-based algorithm adapted to the different functions of the module
(anticipation functions, filtering functions, etc.). This module is interactive and pro-
duces subsets of rules on user request. No rules are produced in advance.

Visualisation and interaction is an interactive process that generates the repre-
sentation as the user navigates. Scenes generation does not require database access
and therefore is low in time consumption. Interactivity is the heart of the IUCEAR
methodology. In the association rules field, it is uncommon to find interestingness
knowledge in only one search. Thus, an important contribution of our work is to pro-
pose an interactive approach. The objective of the interactive process (Figure 5.2) is
to help the user find interesting association rules by taking into account user actions.
The interactivity also allows the user to come back to his/her actions to finally find
interesting knowledge.

Firstly, the interactivity of our approach comes from the process itself that is
designed to leave the user the liberty to choose the best action to undertake. Then,
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interaction with the different items/association rules representations increases the
degree of user interactivity, giving him/her more flexibility to navigate into the rep-
resentation. Several steps are suggested as follows:

Figure 5.2: Interactive process description of IUCEARVis.

1. Visualising Items: this first step consists in the development of user expecta-
tions. The user choose which items can be interesting and then, should be in
an interesting association rule. All the database items are available to the user
by means of a pick-list.

2. Ordering Items: the ordering operators help the user to choose items. The
use of operators increases the level of the tool interactivity. It is the user who
chooses which operator he/she wants to apply.

3. Selection Items: in this step, the user chooses which items belong to the an-
tecedent and which items belong to the consequent.

4. Applying anticipation functions: the second step consists of using the items se-
lected by the user to propose a new association rule set which can be interesting
to the user.

5. Ranking Rules: many ranking operators can be used to rank the association
rules proposed by the anticipation functions. It is the user who chooses which
operator to be applied over the association rule set. Letting the user choose
which operators will be applied represents an important point in user interac-
tivity. Choosing the operator is choosing what association rules set is visualised
first.
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6. Filters: this phase proposes two filters to be applied over the ranked association
rules. These filters can be applied whenever the user needs them.

7. Visualising Rules: visualisation is the most important step. It is through visu-
alisation that the user can see the result of his/her actions. An important set
of interestingness measures can be visualised to help the user chooses which is
the most appropriate decision to take.

8. Selection: in this final step, the user chooses a new association rule among
the visualised rules set. Then, he/she returns in step 4 in order to apply an
anticipation function over the new selected association rule.

9. Validation: the user evaluates subjectively the set of rules. In this step, the user
can validate an association rule (add to history) or revise his/her information
(item selection) and restart the research.

10. Visualising History : this step proposes to the user to visualise rules that he/she
judges interesting. He/she can delete the rules whenever he/she wants.

5.4 Interaction in IUCEARVis

As we have seen in Chapter 2, VR applications use interaction devices, metaphors
and sensory interfaces, to offer the user the ability to interact with virtual entities pre-
sented in a virtual context. These interactions are based on usage scenarios (software
layer) and interfaces. They allow navigation, selection and manipulation of virtual
objects, and application control. Virtual reality techniques are relatively little used in
the field of VDM and in particular for association rules visualisation (see Chapter 3).
We propose two VR interaction techniques. The first involves bimanual interaction
(Figure 5.3) and the second evolves single-handed interaction. In the bimanual inter-
action, the user uses his dominant hand to select objects in the scene. Both hands
are used for objects manipulation (rotation) and translation of the virtual camera
(zoom-in and zoom-out). The presence of the user’s hands is detected by a motion
capture system based on infrared cameras. Reflective stickers are attached to the
user’s hand.

These two techniques have been implemented at the (1/2, 1, 0) Point of the
AIP cube (Chapter 2, Section 2.2): solutions (association rules) are generated semi-
automatically through local association rule generating algorithms; solutions are pre-
sented in a virtual context, and objects have no autonomy (they are manipulated by
the user).

5.4.1 Object Selection and Manipulation

The user uses his/her dominant hand for selection, the non-dominant hand is used to
activate selection. When the two user’s hands are detected, movement of both hands
can change the virtual camera coordinates for rotation (rotate the object relative to
its pivot point) and so visualise the object from different points of view. When the
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Figure 5.3: Bimanual interaction.

user moves his/her hands, he/she makes rotation of the virtual camera: (left and
right). When the user moves away his/her hands from each other, he/she performs
right rotation. Otherwise, it performs left rotation. In the second interaction tech-
nique, the user operates an interaction device: WiimoteTM or a classic mouse. He/she
performs the same tasks described previously (selection, rotation) and translation of
the virtual camera (zoom-in and zoom-out). The only difference is that the user need
to click on a button of the mousse or the WiimoteTM to select an object or to activate
the camera movement.

Figure 5.4 illustrates the different possibilities of user actions on the camera.
These actions are:

• increase or decrease of the distance between the camera and the object;

• specify the angle of view of the virtual camera.

The automaton of the camera movement (Figure 5.5) is composed of the following
states:

• R : the camera moves away from the object;

• I : the camera returns to the initial configuration;

• C : the camera approaches the object.
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Figure 5.4: Illustration of the different possibilities of camera controlled movements.

State changes are triggered via button (mouse button or wiimoteTM button) and
modelled by the following logical variables:

• TR : triggering the remoteness of the camera;

• TC : triggering the approach of the camera.

Figure 5.5: Automation governing the distance camera - object.

The automation of the camera rotation (Figure 5.6) is composed of the following
states :

• L : the camera moves in the counterclockwise direction (left);

• U : the camera moves up;
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• I : the camera returns to the initial configuration;

• R : the camera moves in the clockwise direction (right);

• D : the camera moves down.

The camera is always oriented towards the object. The camera movement is
proportional to the offset(∆X or ∆Y) between the position of the mouse at a given
moment t and the position of the mouse at the instant of activation of the button of
rotation in the one-hand configuration or the distance between the two user hands
at a given moment t and the distance between the two user hands at the moment of
detection of the second hand in the bimanual configuration. State changes, related to
the camera’s lateral movement, are triggered by activating the mouse (or WiimoteTM )
left button and its movement or by the detection of the two user hands.

Logical variables used for modelling are:

• ML : the offset of the cursor to the left;

• MR : the offset of the cursor to the right;

• MU : the offset of the cursor to up;

• MD : the offset of the cursor to down;

• MB : activation of rotation (mousse/WiimoteTM left button or the modification
of the distance between the user’s two hands).

At the deactivation of the rotation (deactivation of the mouse/WiimoteTM left
button or the detection of only one user hand), the current state becomes the camera’s
initial state.

5.4.2 System Control

IUCEARVis proposes many interactive operations, such as changing a constraint,
moving from one interface to an other,etc. It appears that the use of a system control
is increasingly important as the complexity of the application increases– in terms of
the number of operations. While it is entirely possible to be satisfied with a rudimen-
tary or nonexistent interface when the only possible action is to move and rotate a
virtual object, it is quite different when the interaction possibilities increase. On the
one hand, it is necessary to allow the user to activate them, but, in the other hand, it
is also preferable that it can be done easily and efficiently. The role of system control
is to offer opportunities, but also and above is to provide efficiency and sensibility.
For this purpose, we propose to represent all the controls as buttons. This solution
is intuitive and easy to use; the user just has to click on a button to activate a control.

The schema relative to the activation of different features of interaction with the
extraction association rule algorithm is shown in Figure 5.7. To facilitate schema
understanding we have added a different interfaces with which the user interacts.
The schema is composed of the following states:
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Figure 5.6: Automaton governing camera rotation.

• Interestingness measure calculation;

• Item selection interface;

• Association rule extraction;

• Association rule exploration interface;

• Interesting Association rules list;

• History visualisation interface.

As we saw earlier, the state changes are triggered by clicking on a button. These
buttons are modelled by the following variables state :

• Add an item to the rule;

• Delete an item from the rule;

• Change the support threshold;

• Change the confidence threshold;

• Specify whether the item will be added to the antecedent or consequent;

• Set a new reference rule;

• Display the item selection interface;

• Display the history visualisation interface;
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• Modification the reference rule;

• Add an association rule to the history list;

• Modify the association rule exploration interface.

Figure 5.7: Illustration of the interaction possibilities with the extraction algorithms.

5.5 Case Study

This study is based on psychological profile database, provided by PerformanSe SA.
This company designs software for human resource management decision support
dedicated to behavioural evaluation and motivation in the workplace. The profile
database contains the profiles of 4065 persons (reference population of French adults).
The profiles are described by ten behavioural traits (Table 5.5). Each behavioural
trait is encoded by a qualitative variable with three modalities coded as {+, 0, -}:
strongly affirmed, moderately affirmed, and weakly affirmed.

We are interested in rigorous people. We begin by studying behavioural traits
involved by searching for independence (AFL = -) and strictness (CON = +). Firstly,
we discovered that these criteria are not very common in the data by means of the
item selection interface (Figure 5.8). Then, we realised that it is a low quality rule
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Behavioral trait Representation

Extroversion E ∈ {- , 0, +}
Pugnacity P ∈ {- , 0, +}
Nevrosism N ∈ {- , 0, +}
ACHievement ACH ∈ {- , 0, +}
CLeVerness CLV ∈ {- , 0, +}
CONscienciousness CON ∈ {- , 0, +}
Emotional STability EST ∈ {- , 0, +}
LEaDership LED ∈ {- , 0, +}
AFfiLiation AFL ∈ {- , 0, +}
RECeptivity REC ∈ {- , 0, +}

Table 5.5: Behavioral traits

Figure 5.8: Illustration 1.

(support = 9%, confidence = 34%, and lift = 1.29 ) (Figure 5.9). We explored
the rules proposed by the anticipation functions by means of the association rule
exploration interface. We looked for rules that have the greatest confidence. So, we
chose to order the proposed association rules by confidence. There are four rules with
high confidence (> 75%). The negative Information Gain (GI) of the item (AFL =
-) draws our attention (Figure 5.10): the search for independence (AFL = -) is a
bad criterion to explain strictness (CON = +). We eliminate (AFL = -) from the
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Figure 5.9: Illustration 2.

Figure 5.10: Illustration 3.

reference rule and choose to add (LED = -): motivation for protection. The system
proposes 102 rules. The 10 first rules are all good rules (72% ≤confidence ≤ 95%, 2%
≤support ≤ 12% and lift ≥ 2.7) (Figure 5.11).

One of the best rules is: (CLV = - , LED = - → CON = + ;confidence = 92% ,
support= 12%, lift = 3.35) which means that lack of cleverness and seeking protection
are good predictors of strictness (Figure 5.12). This is quite a good rule, but we want
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Figure 5.11: Illustration 4.

Figure 5.12: Illustration 5.

to verify whether other characteristics could better predict strictness. To do so, we
select (CLV = - , LED = - → CON = +) as a new reference rule. The new rules
set contains 68 rules. Two rules catch our attention: (CLV = - , LED = -, E = - →
CON = +; confidence = 96% , support= 10%, lift = 3.60) and ( CLV = - , LED =
-, ACH = + → CON = +; confidence = 96% , support= 7%, lift = 3.61). It is the
only rules that does not contain items with negative Information Gain (Figure 5.13).
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Achievement and introversion are good predictors for strictness. We add these rules

Figure 5.13: Illustration 6.

to the list of interesting rules (visualised by the history interface). We select the rule
(CLV = - , LED = -, E = - → CON = +) as a new reference rule to verify if other
characteristics could predict strictness. We look for rules that maximise the three
rule interestingness measures. Thus, we classify rules with the aggregate measure.
The metaphor (distance between the antecedent and the consequence) allows us to
distinguish the rules with good confidence (Figure 5.14). Several new items appear.
They are little correlated with items (CLV = - , LED = -, E = -). These items are
(ACH = + , N = +, EST = -). The items (N = +) and ( EST = -) appear also
in the consequent of two rules that have good interestingness measures: (CLV = - ,
LED = -, E = - → CON = + , EST = -) and (CLV = - , LED = -, E = -→ CON =
+ , N = +). We can conclude that lack of cleverness, motivation for protection and
introversion can explain both strictness and questioning and strictness and anxiety.
To verify other criteria verified by lack of cleverness, motivation for protection and
introversion (CLV = - , LED = -, E = -) we applied the filter same antecedent to
the rule (CLV = - , LED = -, E = - → CON = +). No rule has an equal or higher
quality than the reference rule (Figure 5.15).

Finally, we found five interesting rules :

1. ( CLV = - , LED = -) → ( CON = + ) ( confidence = 92% , support= 12%,
lift = 3.35)

2. ( CLV = - , LED = -, E = -) → ( CON = + ) ( confidence = 96% , support=
10%, lift = 3.60)
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Figure 5.14: Illustration 7.

Figure 5.15: Illustration 8.

3. ( CLV = - , LED = -, ACH = +) → ( CON = + ) ( confidence = 96% ,
support= 7%, lift = 3.61)

4. ( CLV = - , LED = -, E = -) → ( CON = + , EST = -)( confidence = 89% ,
support= 9%, lift = 4.93)

5. ( CLV = - , LED = -, E = -) → ( CON = + , N = +)( confidence = 89% ,
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support= 9%, lift = 4.98)

5.6 Conclusion

This Chapter was consecrated to the implementation of the IUCEARVis tool. IUCEARVis
allows user (s) to interactively generate, explore, and validate the whole set of asso-
ciation rules by means of an iterative process.

Firstly, we have mainly detailed the algorithms used for rule generation. We
adapted the extraction of rules to the rule post-processing interactive character of
the IUCEAR methodology. For that purpose, we developed specific algorithms for
local association rule extraction. These algorithms generate rules based on a reference
rule constructed by the user. They exploit constraints engendered by the anticipa-
tion functions and are specifically optimised for these constraints. With the syntactic
constraints, the space research is drastically reduced; the algorithms are polynomial
depending on the number of items. This local approach gives the possibility to over-
come the limits of the exhaustive algorithms, for instance the Apriori algorithm,
mainly the number of generating rules can be very large. In particular, even very
specific rules can be extracted with local algorithms.

Then, we detailed how the modules which compose the tool were implemented.
We discussed the choices that we made during development, in particular concerning
software technology.

Regarding interaction techniques, we considered two approaches for the selection
and manipulation of virtual objects. The first technique evolves bimanual interaction
and the second evolves single-handed interaction. In the first technique, the presence
of the user’s hands is detected by a motion capture system based on infrared cameras.
In the second one, the user operates an interaction device: WiimoteTM or a classic
mouse.

Testing IUCEARVis on real data shows that the tool helps discover interesting
rules of good quality, and in particular the locally dominant rules (the best rules in
the explored region).
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This thesis is concerned with the merging of two active research domains: Knowledge
Discovery in Databases (KDD), and more precisely the Association Rule Mining and
Virtual Reality techniques.

Data mining algorithms generate association rules in large quantities so that the
user can not generally use them directly. To identify interesting useful knowledge, it is
necessary in the output of the data mining algorithms to carry out a post-processing
of association rules, consisting of a second search operation. Although data mining is
done automatically by combinatorial algorithms, finding interesting rules is done by
the user. This is a tedious task in practice.

Contributions

The contributions of this thesis can be summarised as follows:

• we propose a new classification for VDM techniques based on both 3D repre-
sentations and interaction techniques;

• we propose a new metaphor for association rule representation;

• we establish a methodology for interactive visualisation of association rules;

• we develop specific algorithms for local extraction of association rules;

• we create a tool for the interactive visualisation of association rules in virtual
environments.

Classification for VDM techniques based on both 3D representations and
interaction techniques

We present a new classification of VDM tools based on 3 dimensions: visual rep-
resentations, interaction techniques, and KDD tasks. The proposed taxonomy takes
into account both visual representation and interaction techniques in the context of
data mining applications. Existing metaphors for visualisation and interaction can be
classified under the new system, enabling designers to more easily compare metaphors
to see exactly how they are different and similar to each other.

179
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This classification looks at some representative tools for performing different KDD
tasks, e.g., pre-processing and post-processing (classification, clustering and associa-
tion rules). Different tables summarise the main characteristics of the reported VDM
tools with regard to visual representations and interaction techniques. Other relevant
information such as interaction actions (navigation, selection and manipulation, and
system control), input-output devices (CAVEs, mice, hand trackers, etc.) presenta-
tion (3D representation or VR representation) and year of creation is also reported.

New metaphor for association rule representation

We propose a new visualisation metaphor for association rules. This new metaphor
represents attributes which make up the antecedent and the consequent, the contribu-
tion of each one to the rule, and the correlations between each pair of the antecedent
and each pair of the consequent.

In this context, we developed 3D visual representations to overcome some lim-
itations of 2D representations. This new metaphor is based on the principles of
information visualisation for effective visual representation [24]. The association rule
has a molecular representation based on a Node-Link Algorithm which is used to
calculate item positions in the 3D space. A validation study was carried out for the
evaluation of four different representations of association rules with different inter-
action techniques and visualisation interfaces. Although this test requires deepening
further work, we have shown that this metaphor allows the discovery of interesting
relationships among items that are not visible with the other metaphors.

Methodology for interactive visualisation of association rules: IUCARE

We developed an interactive visualisation methodology for association rules, named
Interactive User-Centred Association Rules Exploration (IUCARE). It is designed to
assist the user when facing large sets of rules taking into account his/her capacity to
process information. This user-centred methodology can really assist the user when
searching for interesting knowledge in a rules set by combining the three main ap-
proaches that are traditionally offered to facilitate the rules post-processing: rules
interestingness measure, interactivity, and visualisation. The user selects interesting
knowledge and the system proposes sets of rules based on this knowledge. Then, the
user can navigate in this rules set using interactive visualisation of rules and their
interestingness measures. Thus, the user directs a series of local visual explorations
based on his/her interest for the rules. The user does not deal with a large set of rules,
but he/she explores it subset by subset. This approach is based on the cognitive prin-
ciples of Montgomery [200]. Based on this principle, we developed the anticipation
functions. These functions allow for the extraction of small subsets of rules based
on items selected by the user. The items selected by the user can be changed at
any time during the navigation. These functions provide genuine originality to our
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methodology. Another original facet of the IUCARE methodology, is the possibility
to note the interesting association rules and visualise them on a dedicated interface.
This interface gives the user the ability to quickly find, view, and compare the rules
that he/she considered interesting during his/her previous explorations.

Algorithms for local association rules extraction

We propose adopting the rule extraction from the interactive nature of rules post-
processing. For this purpose we developed specific algorithms for local association
rules extraction. They are constraints-based algorithms that extract only the rule
sets that the user wishes to view in his/her exploration. Thus, the user operates role
of a heuristically integrated within the process of association rules extraction. The
use of powerful constraints provides the extraction of very few rules compared to the
exhaustive algorithms. In addition, even the very specific rules (regarding a very
small portion of the data) can be extracted with the local extraction algorithms.

The interactive visualisation tool IUCAREVis

We develop an interactive tool for association rules visualisation in virtual real-
ity: IUCAREVis. This tool implements the three approaches described above: new
metaphor for association rule representation, IUCARE methodology, and algorithms
for local association rules extraction. IUCAREVis is based on a virtual reality visu-
alisation and intuitive interaction. This representation enhances rules interestingness
measures and therefore facilitates the recognition of the most suitable rules. IU-
CAREVis incorporates two interaction techniques: bi-manual techniques and a one-
hand interaction technique. These interactions allow the user to navigate among the
sets of rules.

Perspectives

Development of constraint-based algorithms with memory

A higher performance strategy for local rules extraction can be achieved. Saving in-
termediate results will avoid the generation of the same association rule several times.
Extraction with memory is an intermediate solution between exhaustive extraction
(full memory) and constraint-based extraction (without memory). This solution will
decrease the algorithms execution time.

IUCAREVis validation

The tool can be tested by an expert with the same or other data. This would confirm
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our hypothesis with an expert in rule validation. It will allows us to envisage new in-
teractions, anticipation functions, filters, etc, based on expert advice or by analysing
the exploration history of IUCAREVis. Then, it is possible to validate the interaction
and visualisation interfaces proposed in IUCAREVis as we did for the validation of
association rule metaphors. An experimental protocol may consist of asking several
user groups using different configurations of IUCAREVis (monoscopic/stereoscopic
visualisation, tracking / Wiimote interaction devices, etc) to perform the same ex-
ploration tasks on the same data. This experiment can be used also to compare
IUCAREVis tool to other association rules exploration tools. Such experiment would
allow us to compare the accuracy and the speed of the user responses.

The use of ontologies

Rules exploration can be improved by incorporating the possibility of using one or
more item hierarchies. This allows the user to specialise or to generalise the rules
not only by adding or removing items, but also by going down or up the items in
the hierarchy. This approach could be generalised by allowing the introduction of
external knowledge, such as ontology of the subject field, information to explain the
data, or even user annotation. Such associations between knowledge extracted from
the data and external knowledge is ambitious, but we think it would facilitate the
appropriation of knowledge by the user.

A 3D marking menu

The application control can be facilitate with the use of a 3D marking menu. On
the one hand, the use of a menu displayed on the user request allows to free the
view; all the commands will be eliminated from the displayed interface and will be
displayed only if the user needs to use them. On the other hand, a 3D marking menu
can be more ergonomic, more aesthetic, and easier to use. A marking menu can be
used without a visual feedback of the graphical menu (user memorise the gestures
necessary for the activation of a given command), than the user is able to activate a
command without taking his eyes or attention from the main task. The menu can be
manipulated by the user non-dominant hand, thus remains the dominant hand free
for the main tasks of objects selection and manipulation.

A collaborative work system

The association rules mining is preferably performed by different background ex-
perts such as databases, marketing, statistics, machine learning, etc. Very few people
are expert in all these domains. So it is not uncommon that multiple expert should
work together on the same mining process. To work together all the experts should
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be present in the same location. The development of a VE for collaborative associa-
tion rules mining in which each expert is represented by an avatar allows experts to
collaborate without necessarily be present in the same place. Each expert should be
able to identify the other experts actions.
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2003.

[133] Jiawei Hah, Yongjian Fu, Wei Wang, Krzysztof Koperski, and Osmar Zaiane.
Dmql: A data mining query language for relational databases. In Proceedings
of the SIGMOD Worshop on research issues on Data Mining and Knowledge
Discovery, pages 27–33. ACM, 1996.

[134] Michael Hahsler, Christian Buchta, and Kurt Hornik. Selective association rule
generation. Computational Statistics revue, pages 303–315, March 2007.

[135] Jiawei Han and Yongjian Fu. Discovery of multiple-level association rules from
large databases. In Proceedings of the 21th International Conference on Very
Large Data Bases, VLDB ’95, pages 420–431, 1995.

[136] Jiawei Han and Jian Pei. Mining frequent patterns by pattern-growth: method-
ology and implications. ACM SIGKDD Explorations Newsletter, Special issue
on Scalable data mining algorithms, 2(2):14–20, 2000.

[137] Chris Hand. A survey of 3d interaction techniques. Computer Graphics Forum,
16(5):269281, 1997.

[138] Julie M. Harris. Binocular vision: moving closer to reality. Philosophical
transactions - Royal Society. Mathematical, physical and engineering sciences,
362(1825):2721–2739, 2004.

[139] M. Hascot and M. Beaudoin-Lafon. Visualisation interactive dinformation. In-
formation, Interaction, Intelligence, 1:1, 2001.

[140] Michele Heim. Cyberspace/cyberbodies/cyberpunk: cultures of technological em-
bodiment, chapter The design of virtual reality, pages 65–78. 1995.

[141] R. J. Hendley, N. S. Drew, A. M. Wood, and R. Beale. Narcissus: visualising
information. In Proceedings of the IEEE Symposium on Information Visualiza-
tion (INFOVIS ’95), pages 90–96. Morgan Kaufmann Publishers Inc., 1999.

[142] Ivan Herman, Ieee Computer Society, Guy Melancon, and M. Scott Marshall.
Graph visualization and navigation in information visualization: A survey.
IEEE Transactions on Visualization and Computer Graphics, 6:24–43, 2000.

[143] W. Hibbard, H. Levkowitz, J. Haswell, P. Rheingans, and F. Schroeder. Inter-
action in perceptually-based visualization. Perceptual Issues in Visualization,
IFIP Series on Computer Graphics:23–32, 1995.

[144] Robert J. Hilderman and Howard J. Hamilton. Heuristic measures of inter-
estingness. In Proceedings of the Third European Conference on Principles of
Data Mining and Knowledge Discovery, PKDD ’99, pages 232–241, London,
UK, 1999. Springer-Verlag.



References 197
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[153] Tomasz Imieliński and Aashu Virmani. Msql: A query language for database
mining. Data Mining and Knowledge Discovery, 3:373–408, December 1999.

[154] Franois-Xavier Inglese, Philippe Lucidarme, Paul Richard, and Jean-Louis Fer-
rier. Previse - a human-scale virtual environment with haptic feedback. In
Second International Conference on Informatics in Control, automation and
Robotics, pages 140–145. INSTICC Press, 2005.

[155] Alfred Inselberg and Bernard Dimsdale. Parallel coordinates: a tool for vi-
sualizing multi-dimensional geometry. In Proceedings of the 1st conference on
Visualization, VIS ’90, pages 361–378. IEEE Computer Society Press, 1990.

[156] Jerry Isdale. What is virtual reality ? a homebrew introduction and information
resource list, 1993.

[157] Richard H. Jacoby and Stephen R. Ellis. Using virtual menus in a virtual
environment. SPIE, 1668:39–48, 1992.



198 References

[158] Richard H. Jacoby, Mark Ferneau, and Jim Humphries. Hands-off interaction
with menus in virtual spaces. SPIE, 2177:355–371, 1994.

[159] T. J. Jankun-Kelly, Kwan-Liu Ma, and Michael Gertz. A model and frame-
work for visualization exploration. IEEE Transactions on Visualization and
Computer Graphics, 13:357–369, March 2007.

[160] Baptiste Jeudy and Jean-François Boulicaut. Optimization of association rule
mining queries. Intelligent Data Analysis, 6:341–357, September 2002.

[161] Brian Johnson and Ben Shneiderman. Tree-maps: a space-filling approach to
the visualization of hierarchical information structures. In Proceedings of the
2nd conference on Visualization (VIS ’91), pages 284–291. IEEE Computer
Society Press, 1991.

[162] A. Kadri, A. Lecuyer, and J.-M. Burkhardt. The visual appearance of user’s
avatar can influence the manipulation of both real devices and virtual objects.
In IEEE Symposium on 3D User Interfaces, 2007.

[163] A. Kadri, A. Lecuyer, J.-M. Burkhardt, and S. Richir. The influence of visual
appearance of user’s avatar on the manipulation of objects in virtual environ-
ments. In IEEE Symposium on 3D User Interfaces, pages 291 – 292, 2007.

[164] R S Kalawsky. Exploiting virtual reality techniques in education and training:
Technological issues. AGOCGSIMA Report Series, 26(1):1356–5370, 1996.

[165] Roy Kalawsky and Graeme Simpkin. Automating the display of third per-
son/stealth views of virtual environments. Presence: Teleoper. Virtual Envi-
ron., 15(6):717–739, 2006.

[166] L. N. Kalisperis, G. Otto, K. Muramoto, J. S. Gundrum, R. Masters, and
B Orland. An affordable immersive environment in beginning design studio
education. In ACADIA 2002, Thresholds Between Real and Virtual: Design
Research, Education, and Practice in the Space Between the Physical and the
Virtual,, pages 49–56, 2002.

[167] D.A. Keim and H.-P.; Kriegel. Visualization techniques for mining large
databases: a comparison. IEEE Transactions on Knowledge and Data En-
gineering, 8(6):923 – 938, 1996.

[168] Daniel A. Keim. Information visualization and visual data mining. IEEE Trans-
actions on Visualization and Computer Graphics, 8(1):1–8, 2002.

[169] Yoshifumi Kitamura, Tomohiko Higashi, Toshihiro Masaki, and Fumio Kishino.
Virtual chopsticks: Object manipulation using multiple exact interactions. In
Proceedings of the IEEE Virtual Reality, VR ’99, pages 198–, Washington, DC,
USA, 1999. IEEE Computer Society.



References 199

[170] Mika Klemettinen, Heikki Mannila, Pirjo Ronkainen, Hannu Toivonen, and
A. Inkeri Verkamo. Finding interesting rules from large sets of discovered asso-
ciation rules. In Proceedings of the third international conference on Information
and knowledge management, CIKM ’94:, pages 401–407, New York, NY, USA,
1994. ACM.

[171] Ioannis Kopanakis and Babis Theodoulidis. Visual data mining modeling tech-
niques for the visualization of mining outcomes. Journal of Visual Languages
& Computing, 14(6):543–589, 2003.

[172] Uwe Krohn. Vineta: navigation through virtual information spaces. In Pro-
ceedings of the workshop on Advanced visual interfaces(AVI ’96), pages 49–58,
New York, NY, USA, 1996. ACM.

[173] John Krygier and Denis Wood. Making Maps: A Visual Guide to Map Design
for GIS. The Guilford Press, 2005.

[174] Pascale Kuntz, Fabrice Guillet, Rémi Lehn, and Henri Briand. A user-driven
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Résumé
Cette thèse se situe à l’intersection de deux domaines actifs de
recherche : la fouille de règles d’association et la réalité virtuelle.
Les limites majeures des algorithmes d’extraction de règles
d’association sont (i) la grande quantité de règles produites et (ii)
leur faible qualité. Dans la littérature, plusieurs solutions ont été
proposées pour remédier à ce problème, comme le post-traitement
de règles d’association qui permet la validation des règles et
l’extraction de connaissances utiles. Cependant, alors que les
règles sont extraites automatiquement par des algorithmes
combinatoires, le post-traitement de règles est effectué par
l’utilisateur. La visualisation peut aider l’utilisateur à faire face à une
grande quantité de règles en les représentants sous forme visuelle.
Afin de trouver les connaissances pertinentes dans les
représentations visuelles, l’utilisateur doit interagir avec la
représentation de règles d’association. Par conséquent, il est
essentiel de fournir à l’utilisateur des techniques d’interaction
efficaces.
Ce travail aborde deux problèmes essentiels : la représentation de
règles d’association afin de permettre à l’utilisateur de détecter très
rapidement les règles les plus intéressantes et l’exploration
interactive des règles. Le premier exige une métaphore intuitive de
représentation de règles d’association. Le second nécessite un
processus d’exploration très interactif permettant à l’utilisateur de
fouiller l’espace de règles en se concentrant sur les règles
intéressantes.
Les principales contributions de ce travail peuvent être résumées
comme suit :
– Nous proposons une nouvelle classification pour les techniques

de fouille visuelles de données, basée sur des représentations
en 3D et des techniques d’interaction. Une telle classification
aide l’utilisateur à choisir une configuration pertinente pour son
application.

– Nous proposons une nouvelle métaphore de visualisation pour
les règles d’association qui prend en compte les attributs de la
règle, la contribution de chacun d’eux et leurs corrélations.

– Nous proposons une méthodologie pour l’exploration interactive
de règles d’association. Elle est conçue pour faciliter la tâche de
l’utilisateur face à des grands ensembles de règles en tenant en
compte ses capacités cognitives. Dans cette méthodologie, des
algorithmes locaux sont utilisés pour recommander les
meilleures règles basées sur une règle de référence proposée
par l’utilisateur. Ensuite, l’utilisateur peut à la fois diriger
l’extraction et le post-traitement des règles en utilisant des
opérateurs d’interaction appropriés.

– Nous avons développé un outil qui implémente toutes les
fonctionnalités de la méthodologie. Notre outil est basé sur un
affichage intuitif dans un environnement virtuel et prend en
charge plusieurs méthodes d’interaction.

Abstract
This thesis is at the intersection of two active research areas :
Association Rules Mining and Virtual Reality.
The main limitations of the association rule extraction algorithms are
(i) the large amount of the generated rules and (ii) their low quality.
Several solutions have been proposed to address this problem such
as, the post-processing of association rules that allows rule
validation and extraction of useful knowledge. Whereas rules are
automatically extracted by combinatorial algorithms, rule
post-processing is done by the user. Visualisation can help the user
facing the large amount of rules by representing them in visual form.
In order to find relevant knowledge in visual representations, the
user needs to interact with these representations. To this aim, it is
essential to provide the user with efficient interaction techniques.
This work addresses two main issues : an association rule
representation that allows the user quickly detection of the most
interesting rules and interactive exploration of rules. The first issue
requires an intuitive representation metaphor of association rules.
The second requires an interactive exploration process allowing the
user to explore the rule search space focusing on interesting rules.
The main contributions of this work can be summarised as follows :
– We propose a new classification for Visual Data Mining

techniques, based on both 3D representations and interaction
techniques. Such a classification helps the user choosing a
visual representation and an interaction technique for his/her
application.

– We propose a new visualisation metaphor for association rules
that takes into account the attributes of the rule, the contribution
of each one, and their correlations.

– We propose a methodology for interactive exploration of
association rules to facilitate the user task facing large sets of
rules taking into account his/her cognitive capabilities. In this
methodology, local algorithms are used to recommend better
rules based on a reference rule which is proposed by the user.
Then, the user can both drives extraction and post-processing of
rules using appropriate interaction operators.

– We developed a tool that implements all the methodology
functionality. The tool is based on an intuitive display in a virtual
environment and supports multiple interaction methods.

Mots clés
Règles d’association, Réalité virtuelle, fouille visuelle de données,
Visualisation, Exploration Interactive de Règles.

Key Words
Association Rules Mining, Virtual Reality, Visualisation, Visual Data
Mining, Interactive Rules Exploration.
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