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Abstract

With the rising need to reuse the existing domain knowledge when learn-

ing causal Bayesian networks, the ontologies can supply valuable semantic

information to de�ne explicit cause-to-e�ect relationships and make further

interesting discoveries with the minimum expected cost and e�ort. This

thesis studies the crossing-over between causal Bayesian networks and on-

tologies, establishes the main correspondences between their elements and

develops a cyclic approach in which we make use of the two formalisms in an

interchangeable way. The �rst direction involves the integration of seman-

tic knowledge contained in the domain ontologies to anticipate the optimal

choice of experimentations via a serendipitous causal discovery strategy. The

semantic knowledge may contain some causal relations in addition to the

strict hierarchical structure. So instead of repeating the e�orts that have

already been spent by the ontology developers and curators, we can reuse

these causal relations by integrating them as prior knowledge when apply-

ing existing structure learning algorithms to induce partially directed causal

graphs from pure observational data. To complete the full orientation of the

causal network, we need to perform active interventions on the system under

study. We therefore present a serendipitous decision-making strategy based

on semantic distance calculus to guide the causal discovery process to in-

vestigate unexplored areas and conduct more informative experiments. The

idea mainly arises from the fact that the semantically related concepts are

generally the most extensively studied ones. For this purpose, we propose

to supply issues for insight by favoring the experimentation on the more dis-

tant concepts according to the ontology subsumption hierarchy. The second

complementary direction concerns an enrichment process by which it will be

possible to reuse these causal discoveries, support the evolving character of

the semantic background and make an ontology evolution. Extensive exper-

imentations are conducted using the well-known Saccharomyces cerevisiae



cell cycle microarray data and the Gene Ontology to show the merits of

the SemcaDo approach in the biological �eld where microarray gene expres-

sion experiments are usually very expensive to perform, complex and time

consuming.

Key-words : Causal Bayesian networks, ontologies, experimentations, serendip-

itous, causal discovery, ontology evolution.
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Résumé

En réponse au besoin croissant de réutiliser les connaissances déjà existantes

lors de l'apprentissage des réseaux bayésiens causaux, les connaissances sé-

mantiques contenues dans les ontologies de domaine présentent une excel-

lente alternative pour assister le processus de découverte causale avec le

minimum de coût et d'e�ort. Dans ce contexte, la présente thèse s'intéresse

plus particulièrement au crossing-over entre les réseaux bayésiens causaux

et les ontologies et établit les bases théoriques d'une approche cyclique in-

tégrant les deux formalismes de manière interchangeable. En premier lieu,

on va intégrer les connaissances sémantiques contenues dans les ontologies

de domaine pour anticiper les meilleures expérimentations au travers d'une

stratégie fortuite (qui, comme son nom l'indique, mise sur l'imprévu pour

dégager les résultats les plus impressionnants). En e�et, les connaissances

sémantiques peuvent inclure des relations causales en plus de la structure

hiérarchique. Donc au lieu de refaire les mêmes e�orts qui ont déjà été

menés par les concepteurs et éditeurs d'ontologies, nous proposons de réu-

tiliser les relations (sémantiquement) causales en les adoptant comme étant

des connaissances à priori. Ces relations seront alors intégrées dans le proces-

sus d'apprentissage de structure (partiellement) causale à partir des données

d'observation. Pour compléter l'orientation du graphe causal, nous serons en

mesure d'intervenir activement sur le système étudié. Nous présentons égale-

ment une stratégie décisionnelle basée sur le calcul de distances sémantiques

pour guider le processus de découverte causale et s'engager davantage sur des

pistes inexplorées. L'idée provient principalement du fait que les concepts les

plus rapprochés sont souvent les plus étudiés. Pour cela, nous proposons de

renforcer la capacité des ordinateurs à fournir des éclairs de perspicacité en

favorisant les expérimentations au niveau des concepts les plus distants selon

la structure hiérarchique. La seconde direction complémentaire concerne un



procédé d'enrichissement par lequel il sera possible de réutiliser ces décou-

vertes causales et soutenir le caractère évolutif de l'ontologie. Une étude

expérimentale a été conduite en utilisant les données génomiques concernant

Saccharomyces cerevisiae et l'Ontologie des Gènes pour montrer les poten-

tialités de l'approche SemCaDo dans des domaines ou les expérimentations

sont généralement très coûteuses, complexes et fastidieuses.

Mots-clés : Réseaux bayesiens causaux, ontologies, expérimentations, startégie

fortuite, découvertes causales, évolution ontologique.
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The only immediate utility of all sciences, is to teach us

how to control and regulate future events by their causes.

David Hume (1748), An Enquiry

concerning Human Understanding.

2



Chapter 1

Introduction

1.1 Research context

Debates continue to �ourish over the most important interactions touching

today's technology industries, climate changes, business solutions and many

other aspects of our everyday life. What directly a�ects our health, immune

system, metabolism, behavior and senses ? What mechanisms explain the

planet's shape, its rotation and its gravitational �eld ? What about our

purchasing power ?

Due to these frequent complex situations, the Machine Learning commu-

nity has become increasingly aware of the need for developing approaches

that unify statistical and relational methods for learning. In this context,

the Probabilistic Relational Models [39], a range of Statistical Relational

Learning formalisms, seem to be well placed to reason about uncertainty

and provide relational structure representations. Because of their elegant

way for dealing with variables as well as the relationships that hold amongst

them, the Probabilistic Relational Models have been successfully applied for

a wide variety of domains such as social network analysis, biological systems,

pattern recognition and other domains that involve relational data.

Probabilistic Graphical Models [61] are a class of Probabilistic Relational

Models that can represent rich dependency structures and capture the causal

3



process by which the data was generated. Their popularity essentially comes

from the fruitful marriage between graph theory and probability theory [58].

Depending on the speci�c nature of the pairwise interactions among vari-

ables, there are basically three popular classes of Probabilistic Graphical

Models:

� Directed ones such as Bayesian networks [84, 85, 55] and causal bayesian

networks [45, 88, 98] are popular alternatives in arti�cial intelligence

and machine learning applications. These models are more consistent

in revealing unidirectional causality.

� Undirected Markov networks [68, 85] are more adapted to statistical

physics and computer vision. They are often used to capture the spatial

correlation or mutual dependencies between random variables.

� Chain graphs [67] (hybrid graphs combining directed and undirected

edges) are most useful when there are both causal-explanatory and

symmetric association relations among variables, while Bayesian net-

works speci�cally deal with the former and Markov networks focus on

the later.

In the remainder of this thesis, we will focus on causal bayesian networks

since they are more consistent with our research context. The principle

di�erence between Causal Bayesian Networks and standard ones lies in two

key ways:

� The task of causal structure discovery need interventional data in cases

where purely observational data is inadequate.

� In the causal extension, we move from probabilistic inference to causal

one.

For this purpose, an experimentation phase must be conducted on certain

variables to identify the true causal links connecting them to their neighbor-

hood. However, experiments are often di�cult to conduct, greedy in terms of

resources, costly or even impossible. In this context, the aim of this thesis is

to propose a decisional strategy for allowing more e�cient causal discovery,

4



where experiments are chosen with a great care.

On the other hand, it should be noted that most of the recent knowledge-

based systems are supplemented and enhanced by structured background

knowledge representation such as ontologies. At �rst blush, it seems that

Bayesian networks and ontologies have almost nothing in common but this

does not preclude that some recent studies have addressed some issues re-

lated to the integration of the two formalisms. This work also suggests a way

to integrate ontological knowledge to support the causal discovery process

in the causal bayesian networks and vice versa.

In support of this research perspective, steps have been taken to ensure a

close cooperation between the LARODEC "Laboratoire de Recherche Opéra-

tionnelle et de Contrôle de Processus" and LINA "Laboratoire d'Informatique

de Nantes Atlantiques". Through a partnership project, this thesis has been

following a joint supervision Ph.D. student program from both laboratories.

Our contribution consists in a decisional causal learning method which

is:

� collaborative, since exchanges have been established between the two

main knowledge representation formalisms (causal Bayesian networks

and ontologies).

� iterative, since the experimentation protocol requires several cycles.

� and hybrid, since it relies on data collected from benchmark datasets

and causal prior knowledge.

1.2 Thesis overview

The structure of the thesis is organized around four intertwined topics, see

Figure 1.1.

Chapter 2 reviews the scienti�c background and establishes the termi-

nology required for discussing Causal Bayesian Networks, thus providing the

5



basis for the subsequent chapters of this thesis. It starts o� by reminding

some of the basic notations and de�nitions that are commonly used in the

(Causal) Bayesian Network literature. Moreover, it clari�es what di�eren-

tiates a traditional Bayesian Network from causal one. Having established

these basic facts, we then assess the role of experimentations when making

the causal discovery process. The chapter closes with an overview of existing

approaches for learning Causal Bayesian Networks.

Chapter 3 presents the second formalism that we used in our contribu-

tion. Initially, a brief overview on the structure, scope and application areas

of ontologies is given. Next, we outline the ontology evolution issues and re-

quirements. The chapter ends with a classi�cation of the main contributions

that attempt to combine Bayesian Networks and ontologies.

Chapter 4 gives the main correspondences that we made between the

Bayesian Networks and the ontologies. It is then followed by the thesis con-

tribution in which we identify ways to guide the causal discovery process

meaningfully and accordingly, make ontology evolution.

Chapter 5 concludes the thesis by summarizing the major results that

we obtained through simulations. In addition, the approach was successfully

validated on a real system (S. cerevisiae cell cycle microarray data). We

describe here the idea behind Gene Ontology and the manner in which we

use it in the context of gene pathway discoveries. We conclude by identifying

opportunities for future research.

1.3 Publications

The following parts of this work have previously been published in di�erent

international conferences:

� Chapter 4 was partially incorporated in the proceeding contributions

for ECSQARU 2009 conference [5].

6



Figure 1.1: Interdependencies between chapters of the thesis

� A complete contribution, where we discuss the two interaction facets

associated with coupling between Causal Bayesian Networks and on-

tologies, have been the object of two scienti�c publications in ARCOE

2011 [7] and ECSQARU 2011 [6].

This thesis will include selected passages from the above articles, mostly

in paraphrased form.
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Knowledge Discovery is the most desirable end-product of computing.

Finding new phenomena or enhancing our knowledge about them has a

greater long-range value than optimizing production processes or

inventories, and is second only to task that preserve our world and our

environment. It is not surprising that it is also one of the most di�cult

computing challenges to do well.

Gio Wiederhold, Standford University (1996)
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Chapter 2

Causal Discovery & Bayesian

Network -State of the art

2.1 Introduction

Bayesian networks were introduced in the 1980's as a formalism for repre-

senting and reasoning with models of problems involving uncertainty, adopt-

ing probability and graph theory as a basic framework [85].

Over the last few years, several researchers have proposed algorithms to

learn Bayesian networks structures from purely observational data. However,

it has been proved that only the equivalence class of the underlying structure

can be discovered. This implies a random orientation of some edges to fully

orient the partially directed structures.

In parallel, an extension of traditional Bayesian networks were intro-

duced, where the semantics of edges are viewed as autonomous causal rela-

tions [88]. These causal Bayesian networks need, however, additional data

to fully determine the true causal structure. More precisely, they extract

causal knowledge from performing real experiments on the system under

study. Several approaches and techniques have been developed to handle

causal knowledge and to learn discrete causal Bayesian networks.
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This chapter reviews basic de�nitions of classical Bayesian networks and

causal discovery. Section 2.2 introduces some notations and de�nitions.

Section 2.3 provides an overview of Bayesian networks. Using this back-

ground, Section 2.4 is relative to causal Bayesian networks. Finally, section

2.5 presents existing approaches used to learn these networks.

2.2 Notations and de�nitions

This section gives some notations and basic de�nitions needed in the rest of

this thesis.

2.2.1 Notations

Let V={X1, X2,...,Xn} be a �nite set on n discrete variables. A variable is

denoted by an upper case letter (e.g. X, Y, Xi) and a state or value of that

variable by the same lower-case letter (e.g. x, y, xi). We use DX={x1,...,xn}

to denote the �nite domain associated with each variable Xi and |DX | to
�x the number of cardinalities. A set of variables is denoted by a bold-face

capitalized letter (e.g. X, Y) and the corresponding bold-face lower case

letter (e.g. x, y) denotes n assignments or states for each variable in a given

set. Calligraphic letters (e.g. G) denote statistical models.

2.2.2 De�nitions

  

X3

X1 X2

Figure 2.1: V-structure

� For each arc X1→X2, the node X1 is called its origin and X2 its end.
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� In an arc X1→X2, the node X1 is the parent of X2 and the node X2

is the child of X1.

� A root is a node with no parents.

� A leaf is a node with no children.

� Two nodes linked by an edge are said to be adjacent.

� A path in a directed graph is a sequence of nodes from one node to

another using the arcs.

� A directed path from X1 to Xn in a DAG G is a sequence of directed
edges X1→X2...→Xn. The directed path is a cycle if X1=Xn (i.e. it

begins and ends at the same variable).

� A semi directed path from X1 to Xn in a partially acyclic directed

graph is a path from X1 to Xn such that each edge is either undirected

or directed away from X1.

� A chain in a graph is a sequence of nodes from one node to another

using the edges.

� A cycle is a path visiting each node once and having the same �rst

and last node.

� A DAG is a Directed Acyclic (without cycles) Graph (See Figure

2.3(a)).

For any node Xi∈V corresponds the following sets:

� Pa(Xi): the parent set of Xi.

� Desc(Xi): the descendent set of Xi.

� Ch(Xi): the child set of Xi.

� Anc(Xi): the ancestor set of Xi.

� NeU (Xi): the neighbor set of Xi.

11



� A clique is a set of vertices, such that for every two vertices, there ex-

ists an edge connecting the two. Alternatively, a clique is a subgraph in

which every vertex is connected to every other vertex in the subgraph.

� The skeleton of any DAG is its underlying undirected graph obtained

by transforming the set of directed edges into a set of undirected ones

that preserves the same adjacencies (See Figure 2.3(b)).

� A v-structure is de�ned as an ordered triple of nodes (X1, X2, X3)

such that G contains the directed edges X1→X2 and X3→X2 and X1

and X3 are not adjacent in G (See Figure 2.1).

  

X1

X2 X3

X4 X5

X7 X8X6

X1

X2 X3X2 X3

X4 X5

                 (a) (b)

Figure 2.2: (a) A singly connected DAG, (b) A multiply connected DAG

� A Singly Connected DAG or polytree is a graph that does not

contain any undirected cycles (See Figure 2.2(a)).

� A Multiply Connected DAG is a DAG that contains loops (i.e.

requires two distinct paths between any pair of vertices in the loop)

(See Figure 2.2(b)).

� A Partially Directed Acyclic Graph (PDAG) is a graph that

contains both directed and undirected edges, with no directed cycles

in its directed subgraphs (See Figure 2.3(c)).
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X2

X3 X4

X5

X6

X7

X1 X2

X2

X3 X4

X5

X6

X7

X1 X2

X2

X3 X4

X5

X6

X7

X1 X2

        (a) (b) (c)

Figure 2.3: (a) example of DAG, (b) the skeleton relative to the DAG and

(c) an example of a PDAG.

2.3 Bayesian networks

Over the last decade, Bayesian Networks (BNs) have become a popular rep-

resentation for encoding uncertain expert knowledge in expert systems [51].

Formally, a BN over a set of variables V consists of two components:

� graphical component composed of a DAG G re�ecting the depen-

dency relations relative to the modeled domain. BNs encode the con-

ditional independence assumption exposed in Property (2.1).

� numerical component consisting in a quanti�cation of di�erent links

in the DAG by a conditional probability distribution P(Xi | Pa(Xi))

of each node Xi in the context of its parents Pa(Xi).

The graphical component corresponds to the structure of the problem,

while the numerical component corresponds to the parameters of the model.

Example 2.1. An illustrative example of a BN in a discrete domain is shown

in Figure 2.4.

It depicts the situation of academic activities through a domain abstracted

to �ve binary variables:
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X5= « Y » X5= « N »

X4= « Y » 0.8 0.2
X4= « N » 0.1 0.9

X1 X2

X3

X4

X5

« Cold front »« Warm front »

X3= « Y » X3= « N »

X1= « Y » X2= « Y » 0.9 0.1
X1= « Y » X2= « N » 0.1 0.9
X1= « N » X2= « Y » 0.4 0.6
X1= « N » X2= « N » 0 1

« Rain »

« People blocked »

« Disturbance in 
academic activity»

X4= « Y » X4= « N »

X3= « Y » 0.4 0.6
X3= « N » 0.1 0.9

X2= « Y » X2= « N »

0.5 0.5
X1= « Y » X1= « N »

0.75 0.25

Figure 2.4: An example of BN modeling the weather and the disturbance in

academic activities

� X1: represents the event that we have a warm front.

� X2: represents the event that we have a cold front.

� X3: represents the event that it is rainy.

� X4: represents the event that there are people blocked.

� X5: represents whether the academic activities are disturbed.

For each node in Figure 2.4 is associated a conditional probability table

recording the probability of that variable given a particular values combina-

tion of its parents. For example, given that we have both cold and warm

fronts, the probability that it is rainy is equal to 0.9.

The intuitive interpretation of Figure 2.4 is that X3 depends on X1 and

X2 however X1 and X2 are independent. Also the two variables X1 and
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X4 become independent once we know the value of the middle value of X3.

The derived independence statements are essentially due to the application

of d-separation rules which will be described in a separate section below.

We will now introduce three basic assumptions that we assume to hold

when working with BNs:

� Causal su�ciency assumption: This assumption is satis�ed if there ex-

ist no common unmeasured (also known as hidden or latent) variables

in the domain that are in�uencing one or more observed variables of

the domain.

� Markov assumption: Each variable Xi in G is independent of its non-

descendants given its parents [98].

Xi ⊥⊥ V \(Desc(Xi) ∪ Pa(Xi))|Pa(Xi). (2.1)

This Markov assumption allows us to obtain a factorized representation

of the joint probability distribution (JPD) encoded by a BN via the

following chain rule:

P (X1, X2, ..., Xn) =
∏

i=1..n

P (Xi | Pa(Xi)). (2.2)

Example 2.2. Given the BN represented by the DAG in the �gure

2.4 and the a priori and conditional probabilities in tables, the joint

probability distribution is de�ned by:

P (X1, X2, X3, X4, X5) = P(X1) × P(X2) × P(X3 | X1,X2) × P(X4

| X3) × P(X5 | X4).

For instance, P (X1=Y, X2=Y, X3=Y, X4=Y, X5=Y) = 0.75 × 0.5

× 0.9 × 0.4 × 0.8 = 0.108

� Faithfulness assumption: For a graph G and a probability distribution

P , we say that G satis�es the faithfulness assumption if, based on the

Markov condition, G entails only conditional independencies in P . The
faithfulness assumption allows us to move from probability distribution

to graph.
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2.3.1 The d-Separation criterion

Let us consider three disjoint sets of variables X,Y and Z, which are repre-

sented as nodes in a DAG G. To test whether X is independent of Y given

Z in any distribution compatible with G, we need to test whether the nodes

corresponding to variables Z "block" all paths from nodes in X to nodes in

Y. By blocking we mean stopping the �ow of information (or of dependency)

between the variables that are connected by such paths [88].

In order to de�ne the d-separation criterion, we need �rst to present the

three basic connection structures between variables (see table 2.1).

Hence, the d-separation criterion can be de�ned as follows [85]:

De�nition 2.1. d-separation:

A path p is said to be d-separated by a subset of node Z if and only if:

i) p contains serial or diverging connection such that the middle node is in

Z , or

ii) p contains a converging connection such that the middle node is not in

Z and no descendant of that node is in Z.

The connection between d-separation and conditional independence is

established through the following theorem [88]:

Theorem 2.1. If two sets X and Y are d-separated by Z in a DAG G that

satis�ed the Markov condition, then X is independent of Y conditional on Z.

Name Con�guration

serial Xi → Xj → Xk

diverging Xi ← Xj → Xk

convergingXi → Xj ← Xk

Table 2.1: Elementary structures.

Example 2.3. Let us consider the DAG represented by �gure 2.5
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X1

X3

X2

X4

X5

Figure 2.5: Example of DAG (V = X1, X2, X3, X4, X5)

� The nodes X1 and X4 are d-separated because the path connecting them

contains a converging connection in X3 and the state of X3 is unknown.

In the other case, X1 and X4 will be d-connected given X3.

� However X2 and X5 are d-connected because X2→X4→X5 is a serial

connection and the state of X4 is unknown. If X4 was measured, the

path between X2 and X5 will be blocked by X4. We say that X2 and

X5 are d-separated given X4.

2.3.2 The Markov equivalence

Generally, when learning BNs, an important property known as the Markov

Equivalence is usually taken into consideration. Two BN structures G1 and

G2 are said to be equivalent, if they can be used to represent the same set

of probability distributions.

More formally, Chickering [18] de�nes the Markov equivalence as follows:

De�nition 2.2. Two DAGs G1 and G2 are equivalent if for every BN1=(G1,
Θ1), there exists a BN2=(G2, Θ2) such that BN1 and BN2 de�ne the same

probability distribution, and vice versa.

Example 2.4. If we consider the example of �gure 2.6, the decomposition

of the joint probability distribution for respectively the networks (a) and (b)

is as follows:

P(X1, X2, X3, X4)a=P(X1)×P(X2 | X1)×P(X3 | X1)×P(X4 | X2, X3).
P(X1, X2, X3, X4)b=P(X1 | X3)×P(X3)×P(X2 | X1)×P(X4 | X2, X3).
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X1

X2

X3

X4 X1

X2

X3

X4 X1

X2

X3

X4

X1

X2

X3

X4

        (a)                     (b)                     (c)      

                                (d)                 

Figure 2.6: Markov equivalence

However,

P(X1,X2,X3)b= [P(X3|X1)×P(X1)/P(X3)]×P(X3)×P(X2 | X1)×P(X4 | X2,
X3) =P(X3|X1)×P(X1)×P(X2 | X1)×P(X4 | X2, X3)=P(X1, X2, X3, X4)a

Thus, we demonstrate that the networks (a) and (b) are equivalents. Sim-

ilarly, the network (c) is equivalent to (a) and (b). Only network (d), which

represents an additional v-structure, is not equivalent to the three others.

Moreover, Verma and Pearl [89] propose the following de�nition which

provides a graphical criterion for determining the equivalence of two DAGs:

Theorem 2.2. Two DAGs are equivalent if and only if they have the same

skeletons and the same v-structures.

De�nition 2.3. An arc is said to be reversible if its reversion leads to a

graph which is equivalent to the �rst one. The equivalence class of DAGs

that are Markov equivalent is called CPDAG or essential graph.

2.3.3 Learning Bayesian networks

One of the most challenging tasks in dealing with BNs is certainly learning

their qualitative and quantitative components. The intent of this sub-section

is twofold: �rst of all, we provide a review on principle approaches to learn

18



BN parameters from data. Secondly, we detail the two main strategies for

learning BN structure.

1) Parameters learning

Generally, before learning the parameters of a BN, we assumed that the

network structure is �xed 1. So the network parameters can be:

� �xed by a domain expert.

� or estimated from a dataset.

This estimation comes down to estimating the values of all parameters of

the conditional distribution P(xi | Pa(xi)). We will describe two of the

most used approaches in the literature. More details can be found in [80].

Maximum Likelihood Estimation

TheMaximum Likelihood Estimation (MLE) is the principle of estimating

values of parameters that �t the data best. It is one of the most commonly

used estimators for �xing the probability of an event P(Xi | Pa(Xi)) using

its frequency in the observational data. This gives us:

P̂ (Xi = xk|Pa(Xi) = xj) =
Ni,j,k∑
k

Ni,j,k
(2.3)

where:

Ni,j,k is the number of times that the data contains the event {Xi = xk

and Pa(Xi) = xj}.

The set of parameters found by using this method is denoted by θ̂MLE .

1Generally, in most learning algorithms, parameter learning takes place after structure

learning. However, since it has less of an emphasis in this dissertation, it is described

�rst. Moreover, most books discuss it �rst because structure score depends on parameter

distribution.
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Bayesian estimation

The Bayesian estimation consists of �nding the most likely parameters

P (Xi|Pa(Xi)) when assuming that the prior knowledge is expressed by

means of a prior joint distribution over the parameters (e.g. maximum

a posteriori (MAP) estimation). If we assume that each P (Xi|Pa(Xi))

follows a multinomial distribution, the conjugate distribution follows a

Dirichlet distribution with the parameters αi,j,k.

θ̂MAP
i,j,k = P̂ (Xi = xk|Pa(Xi) = xj) =

Ni,j,k + αi,j,k − 1∑
k

(Ni,j,k + αi,j,k − 1)
(2.4)

where:

αi,j,k are the parameters of the Dirichlet distribution associated with the

prior probability P (Xi = xk|Pa(Xi) = xj).

2) Structure learning

Many studies [29, 30, 106] have reported that the graphical structure of

a network is its most important part, as it re�ects the independence and

relevance relationships between the concerned variables.

De�nition 2.4. Given a set of variables V and a dataset Dobs contain-

ing independent and identically distributed instances samples from an un-

known distribution P the goal of structure learning is to infer the topology

for the belief network G that is compatible with P.

This task leads to an NP-hard problem [20], since the number of possible

structures (DAGs) to search grows super-exponentially in the number

of domain variables. In this context, Robinson [95] derived a recursive

function to determine the number of possible DAGs with n variables:

f(n) =

{
1 if n=0∑n

i=1(−1)i+1Ck
n2i(n−1)f(n− 1) if n>0

(2.5)
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Number of variables Number of possible DAGs

1 1

2 3

3 25

4 543

5 29.281

6 3.781.503

7 1.138.779.265

8 783.702.329.343

9 1.213.442.454.842.881

10 4.175.098.976.430.589.143

Table 2.2: The super-exponential number of DAGs.

In table 2.2, we give an overview of the numbers of possible DAGs with 1

to 10 variables. As this number increases exponentially, it is evident that

it will be not feasible, from a computational viewpoint, to exhaustively

explore the entire space of DAGs.

That's why heuristic-based methods have been proposed in order to make

a trade-o� between the structural network complexity and the network

accuracy. We distinguish three main approaches for learning BN struc-

ture, namely score-based, constraint-based and hybrid ones. All these

methods have the limitation that without extra assumptions about the

underlying distribution, they can only learn the BN up until its Markov

equivalence class.

Constraint-based approach

This �rst series of structure learning approaches, often called search under

constraints, arises from works of di�erent teams: Pearl & Verma for IC

and IC* algorithms [88, 89], Spirtes, Glymour & Scheines [98] for the

SGS, PC and FCI and recently the BN-PC algorithm of Cheng & all [17].
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We will discuss the PC algorithm in details to explain the mechanism of

working of such algorithms.

� Initialization: Construct a complete undirected graph containing

the relations between variables.

� Skeleton discovery : Use the conditional independencies (or depen-

dencies) entailed from data to remove edges.

� Edge orientation: Detect the V-structures.

� Edge orientation, edge propagation: Based on the already oriented

edges, apply some orientation rules called Meek rules [76] to infer

new arcs until no more edges can be oriented. The PC rules can be

summarized as follows [98]:

R1: Directing edges without introducing new v-structures:

∀ Xi, Xj ∈ V, if Xi −→ Xj and Xj and Xk are adjacent, Xi and

Xk are not, and there is no arrow into Xj then orient Xj − Xk as

Xj −→ Xk.

R2: Directing edges without introducing cycles:

∀ Xi, Xj ∈ V, if it exists a directed path between Xi and Xj , and

an edge Xi-Xj , then orient it as Xi −→ Xj .

R3: Directing edges without introducing cycles:

∀ Xi, Xj , Xk, Xl ∈ V, if Xk −→ Xl and Xj −→ Xl and an edge

between Xi-Xj , Xi-Xk and Xi-Xl then orient Xi−Xl as Xi −→ Xl.

R4: Extended Meek Rule whenever background knowledge is avail-

able:

∀ Xi, Xj , Xk, Xl ∈ V, if Xl −→ Xk and Xj −→ Xl and an edge

between Xi-Xj , Xi-Xk and Xi-Xl then orient Xi−Xk as Xi −→ Xk.

� CPDAG to DAG.

In [76], Meek proves that the above rules are proven to be correct and

complete subject to any additional background knowledge. However, in

most cases, the skeleton algorithm will not produce the correct skeleton

and conditioning sets. Therefore, empirical analysis is necessary to un-

derstand when and how errors during the skeleton phase impact edge

orientation.
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Score-based approach

Contrary to the �rst family of methods which tried to �nd conditional

independencies between variables, the following approaches go either look

for the structures which maximize a certain score (i.e. approximation of

the marginal likelihood) re�ecting the goodness of �t and look for the

best structures.

The main limitation with score-based approach lies in the dimension of

the space of DAGs, which grows more than exponentially in the number

of nodes. This means that an exhaustive search is not feasible in all

but the most trivial cases, and has led to an extensive use of heuristic

optimization algorithms. Some examples are:

� greedy search algorithms such as hill-climbing with random restarts

[21]. These algorithms start from a network structure (usually with-

out any arc) to explore the search space by adding, deleting or re-

versing one arc at a time until the score can no longer be improved.

� genetic algorithms, which simulate natural evolution through the it-

erative selection of the "�ttest" models and the hybridization of their

characteristics [65]. In this case the search space is explored through

the crossover (which combines the structure of two networks) and

mutation (which introduces random alterations).

� the simulated annealing algorithm, which performs a stochastic lo-

cal search by accepting both changes that increase or decrease the

network score.

Hybrid approach

Hybrid algorithms aim to combine the strengths of both constraint-based

and score-based algorithms [24]. The two best-known versions of this

family are the Sparse Candidate algorithm (SC) [42] and the Max-Min

Hill-Climbing algorithm (MMHC) [105]. Both of these algorithms are

based on two principle steps:
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� restrict: runs some form of constraint identi�cation algorithm to

restrict the search space of graphical solutions for the next phase.

� maximize: seeks the network that maximizes a given score function

among the ones that satisfy the constraints imposed by the restrict

phase.

2.4 Causal Bayesian networks

The biggest problem when learning BNs from observational data is that we

simply do not observe causal relationships. What we really observe is the

cause, the e�ect and the fact that they occur in a �xed pattern. This cor-

relation implies an unresolved causal structure. In order to provide a causal

interpretation for BNs, a causal extension appears, with speci�c properties

and assumptions [88, 103].

2.4.1 De�nitions and properties

De�nition 2.5. (Causal Bayesian networks) A causal Bayesian network

denoted by CBN, is a Bayesian network in which each directed edge represents

an autonomous causal relation.

Causal Bayesian networks provide a convenient framework for causal

modeling and reasoning as they have a stricter interpretation of the mean-

ing of edges than usual Bayesian network. In fact, every link between two

variables represents a causal mechanism. This makes them more adapted to

make causal inference.

A Causal Bayesian Network is de�ned as a Bayesian network that respects

the following central properties:

� Causal Markov condition

� Causal Su�ciency

� Causal Faithfulness
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Nevertheless, the discovery of the causal mechanisms that underlie many

real world domains is not purely observational and need experimental con-

�rmation.

2.4.2 Observational vs. interventional data

By referring to the Oxford Dictionary we �nd that the observation's term is

de�ned as "the act of watching". In other words, it is a detailed examination

of something before analysis, diagnosis, or interpretation.

Scienti�cally speaking, an observation characterizes evidence for the pres-

ence or absence of an organism or set of organisms through a data collection

event at a location, as de�ned by the Taxonomic Data Working Group's

(TDWG) Observational Data sub-group. Here we will focus on observa-

tional data as the major tool for seeing.

The same Dictionary de�nes the word "intervention" as a scienti�c pro-

cedure undertaken to make a discovery, test a hypothesis, or demonstrate

a known fact. Thus an intervention is synonymous of an action tentatively

adopted without being sure of the outcome. Generally, valuable experiments

is that which can be reproduced by a variety of di�erent investigators and

lends to theoretical analysis.

We should note that all experiments must be led in the respect for the

scienti�c ethics and in the respect for the security of the persons and the

environment. For example, the national and international laws prohibited

to make any vivisection (experimental surgery on a living organism) without

having anesthetized the animal.

2.4.3 Kinds of interventions

Di�erent types of interventions 2 have been proposed in the causal framework

[88, 98, 107]. They di�er depending on how they can be applied and what

2Throughout this text the terms intervention and experiment are used interchangeably.
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can be learned from the system they are applied to. To be distinguished

from normal causal variables, interventions must be exogenous.

De�nition 2.6. (Exogenous) A variable is exogenous if it is caused by

factors or agents from outside the system. More formally, given a set of

variables V, X is called exogenous where X /∈ V and there does not exist a

variable Y ∈ V such that Y is a cause of X.

De�nition 2.7. (Intervention) Given a set of observed variables V, an

intervention I on a subset S ⊆ V must satisfy the following conditions:

� I /∈ V is a variable with two possible states (on/o�) 3 representing

where the intervention can be active or inactive.

� I directly manipulates each variable X ∈ S,

� I is exogenous to V

� When I=o�, the joint distribution over V obtains, i.e.

P (V | I = off) =
∏
Vi∈V

P (Vi | pa(Vi)) = P (S | pa(S))
∏

Vi∈V \S

P (Vi | pa(Vi))

(2.6)

� When I=on, the conditional distribution over S is manipulated , i.e.

P (V | I = on) = P (S | pa(S), I = on)
∏

Vi∈V \S

P (Vi | pa(Vi)) (2.7)

where

P (S | pa(S), I = on) =
∏
X∈S

P ∗(X | pa(X))

and for each X ∈ S, we have:

P ∗(X | pa(X)) 6= P (X | pa(X), I = off) (2.8)

In CBNs, an intervention variable is represented as an additional variable

with direct arrows into each variable in S. There are two types of interven-

tions that can be made: structural and parametric interventions.

3The number of possible states taken by the intervened variable may be increased when

we have to perform di�erent forms of interventions
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The �rst one is represented as an exogenous variable IS (a variable with-

out incoming edges) with two possible values (on/o�) and a single arrow into

the manipulated variable.

De�nition 2.8. Given a set of observed variables V, a structural interven-

tion IS on a subset S ⊆ V must satisfy the following additional constraints:

  

YX

Z

Is=off

YX

Z

Is=on

-a-

-b-

Figure 2.7: Structural experiment

� When IS is set to o�, we keep the passive observational distribution

over the variables.

� When we switch to on, all other incoming edges on the intervened vari-

able are removed, and the probability distribution over the manipulated

variable will be a determinate function of the intervention.

The structural interventions aim to make the manipulated variable inde-

pendent of its normal causes. Various designations are used in the literature

to refer this particular type of intervention: randomization [37], surgical in-

terventions [87], ideal interventions [98] or independent interventions [62].

An intervention is called "structural" when it alone completely determines

the probability distribution of its targets. The use of structural interven-

tions implies possible changes in the causal structure of the system. The

manipulated causal structure is referred to as the post-manipulation graph.
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Given a graph G and a set S of variables subject to a structural interven-

tion, the post-manipulation graph is the graph where all the edges incident

on any intervened variable (X ∈ S) are removed (See Figure 2.7). This change
in causal structure implies a change in the joint probability distribution over

the variables [98].

Theorem 2.3. Let G = {V,E} be a DAG and let I be the set of variables in V

that are subject to a structural intervention. Then Gman is the unmanipulated

graph corresponding to the unmanipulated distribution Pman(V ) and Gman is

the manipulated graph, in which for each variable X ∈ I the edges incident on

X are removed and an intervention variable IS(X) → X is added. A variable

X ∈ V is in man(I) if it is subject to an intervention, i.e. if it is a direct

child of an intervention variable IS(X). Then

Pman(I)(V ) =
∏
X∈V

Pman(I)(X | pa(Gman, X)) (2.9)

Pman(I)(V ) =
∏

X∈man(I)

Pman(I)(X | Is(X) = on).

∏
X∈V \man(I)

Pman(I)(X | pa(Gman, X))
(2.10)

Structural interventions are not the only possible type of system manip-

ulation. A weaker form of intervention when it is not necessary to disconnect

the experimented variable from its causes can be adopted (See Figure 2.8).

This soft version of interventions is also referred to as a partial, conditional

or parametric intervention. For coherent notation we will use parametric

intervention for designating this type of manipulation.

De�nition 2.9. Given a set of observed variables V, a parametric interven-

tion Ip on a subset S ⊆ V must satisfy the following constraint:

� When Ip is set to on, Ip does not make the variable in S independent

of their causes in V (it does not break any edges that are incident on

variables in S). In the factored joint distribution P(V), the term P(S

| pa(S))is replaced by the term P*(S | pa(X), Ip=on), where P*(S |
pa(X), Ip=on) 6= P*(S | pa(X), Ip=o�).
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Figure 2.8: Parametric experiment

Otherwise all terms remain unchanged.

Theorem 2.4. Let G = {V,E} be a DAG and let I be the set of variables

in V that are subject to a parametric intervention. Then Gman is the un-

manipulated graph corresponding to the unmanipulated distribution Pman(V )

and Gman is the manipulated graph, in which for each variable X ∈ I an

intervention variable Ip(X) is added with Ip(X) → X. A variable X ∈ V is

in man(I) if it is subject to an intervention, i.e. if it is a direct child of an

intervention variable Ip(X). Then

Pman(V ) =
∏
X∈V

Pman(I)(X | pa(Gman, X)) (2.11)

Pman(V ) =
∏
X∈I

Pman(X | pa(Gman, X), Ip(X) = on).

∏
X∈V \I

Pman(I)(X | pa(Gman, X))
(2.12)

[33] showed that for N causally su�cient variables N-1 experiments are

su�cient and in the worst case necessary to discover the causal structure

among a causally su�cient set of N variables if at most one variable can be

subjected to a structural intervention per experiment assuming faithfulness.

If multiple variables can be randomized simultaneously and independently
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in one experiment, this bound can be reduced to log(N) + 1 experiments

[34].

2.4.4 The "do" operator

In Pearl framework [88], the noti�cation of external intervention is expressed

by the do operator.

De�nition 2.10. The e�ect of an action "do(X=x)" in a causal model corre-

sponds to a minimal perturbation of the existing system that sets the variable

X to the value x.

The distinction between the seeing and the doing in causal analysis is

expressed as follow:

� Conditional probability that variable Y = y when we see that X = x

is noted:

P(Y = y | see(X = x)) = P(Y = y | X = x) = P(y | x)

� Conditional probability that variable Y =y when we set X to x is noted:

P(Y = y | do(X = x)) = P(y | do(x))

Two alternatives can be applied: either Y is the direct cause of X and

P(y | do(x)) is equal to P(y) (resp. P(x | do(y)) is equal to P(x | y),
or the opposite case where we maintain P(y | do(x)) is equal to P(y

| x) (resp. P(x | do(y)) is equal to P(x) as Y is the direct e�ect of

intervening on X.

In general, the applicability of the causal inference can be decided using

Pearl's do-calculus. This allows �nding answers to questions about the mech-

anisms by which variables come to take on values, or predicting the value

of a variable after some other variable has been manipulated. By ensuring

that, causal inference could have a major impact on the conclusions we draw

in various �elds, from health sciences to policy studies passing through AI

research.

2.4.5 Conditioning vs. manipulating

The formal distinction between the two notions is an important prelude to

the rest of this thesis:
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� Conditioning: corresponds to mapping a probability distribution into

a new distribution in response to �nding out more information about

the state of the world (or seeing).

� Manipulating: corresponds to mapping a probability distribution

into a new probability distribution in response to changing the state

of the world in a speci�ed way.

To illustrate these two notions, let us consider the following example [98].

Example 2.5. Consider a population of �ashlights, each of which has work-

ing batteries and light bulbs, and a switch that turns the light on when it is

in the on position and turns the light o� when it is in the o� position. Let's

note that Switch can take on the value on or o�, and Light can take on the

value on or o�.

We will consider that:

� P(Switch=On)=1/2

� P(Switch=O�)=1/2

� P(Light=On)=1/2

� P(Light=O�)=1/2

The joint distribution relative to this population is the following:

� P(Switch=On, Light=On)=1/2.

� P(Switch=On, Light=O�)=0.

� P(Switch=O�, Light=On)=0.

� P(Switch=O�, Light=O�)=1/2.

Thus, given a randomly chosen �ashlight, the probability that the bulb

is on is 1/2. However, if someone observes that a �ashlight has a switch

in the o� position and don't have any idea about the light; in this case, the

probability of the light being o�, conditional on the switch being o�, is just

the probability of the light being o� in the subpopulation in which the switch

is o�;
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P (Light = off/Switch = off) =
P (Light = off, Switch = off)

P (Switch = off)
= 1.

Similarly, the probability of the switch being o�, conditional on the light

being o�, is just the probability of the switch being o� in the subpopulation

in which the light is o�;

P (Switch = off/Light = off) =
P (Light = off, Switch = off)

P (Light = off)
= 1.

So an important feature of conditioning is that each conditional distribu-

tion is completely determined by the joint distribution (except when condi-

tioning on an event that has the probability 0).

In contrast to conditioning, a manipulated probability distribution is not

usually a distribution in a subprobability of an existing population but is a

distribution in a population formed by externally forcing a value on a variable

in the system. That's why now we will manipulate the light to o�. Of course,

the resulting probability distribution depends on how we manipulated Light to

o�. Suppose that we manipulate Light to o� by unscrewing the light bulb,

this intervention will not make any change since the Light have not a direct

e�ect on the Switch. So we obtain:

P (Switch = off/do(Light = off)) = P (Switch = off) = 1/2.

Hence, P(Switch=o� | do(Light=o�)) 6= P(Switch=o� | Light=o�).

In this case, the manipulation is said to be an "`ideal manipulation"' of

Light because an external cause was introduced (the unscrewing of the light

bulb) that was a direct cause of Light and was not a direct cause of any other

variable in the system.

On the other hand, if we manipulated Light to o� by pressing the Switch

to o�, then the probability that Switch is o� after the manipulation is equal

to 1. That's why it will not be an ideal manipulation.
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This illustrates two key features of manipulations. The �rst is that in

some cases, the manipulated probability is equal to the conditional probability

(e.g., P(Light=o� | do(Switch=o�))=P(Light=o� | Switch=o�)), and in

other cases, the manipulated probability is not equal to the conditional prob-

ability (e.g., P(Switch=o� | do(Light=o�))6=P(Switch=o� | Light=o�). In

this example, conditioning on Light=o� raised the probability of Switch=o�,

but manipulating Light to o� did not change the probability of Switch=o�. In

general, if conditioning on the value of a variable X raises the probability of

a given event, manipulating X to the same value may raise, lower, or leave

the same the probability of a given event.

The second key feature of manipulations is that even though Light=on

if and only if Switch=on in the original population, the joint distributions

that resulted from manipulating the values of Switch and Light were di�erent.

In contrast to conditioning, the results of manipulating depend on more

than the joint probability distribution, they depend on the causal relationships

between variables. The reason that manipulating the switch position changed

the status of the light is that the switch position is a cause of the status of the

light. Thus, discovering the causal relations between variables is a necessary

step to correctly inferring the results of manipulations.

2.5 Learning CBNs

In this section, we will present the studies that have been performed to learn

CBNs from observational and experimental data.

2.5.1 Active learning for CBN structure

Learning CBNs has recently been incorporated with active learning. There

are two formal frameworks covering active learning for CBN structure, namely,

Tong and Koller approach [104] and the utility approach developed by Mur-

phy [79].

These techniques propose to perform experiments based on:
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� the current belief about the structure,

� the causal information that will be gained by an experiment.

The belief is modeled by P (G|Di), a probability distribution over the set

of DAGs given the data seen so far. They update this belief after each ex-

periment and then reiterate the process. Since the space of DAGs is super

exponential in the number of nodes, an approximation is needed for P (G|Di).

By assuming causal su�ciency and faithful distribution, Tong and Koller

[104] consider an active learner that is allowed to conduct experiments. They

assume that there are a number of query variables that can be experimented

on after which the in�uence on all other variables is measured.

An intervention query, denoted by Q=q corresponds to an intervention

performed on a subset of nodes Q by clamping their values to q. In or-

der to choose the optimal experiment they introduce a utility function, the

loss-function, based on the uncertainty of the direction of an edge, to help

indicate which experiment gives the most information. Using the results of

their experiments they update the distribution over the possible networks

and network parameters. Since it is impossible to do this for the entire set

of DAGs they use an approximation based on the ordering of the variables

proposed by [38].

Murphy [79] proposed a similar technique where di�erent approximations

are used to overcome working in the space of DAGs. [79] used MCMC to

approximate the belief state P (G|Di) and importance sampling to calculate

the expected utility.

2.5.2 Causal discovery as a Game

[32, 31] presents a theoretic approach in which the causal discovery is consid-

ered as a two person game between Nature and the Scientist. The scientist

attempts to discover the true causal structure and Nature tries to make

discovery as di�cult as possible (in term of number of experiments). This

approach provides a very general framework for the assessment of di�erent
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search procedures and a principled way of modeling the e�ect of choices

between di�erent experiments.

2.5.3 Active learning of causal networks with intervention

experiments and optimal design

Geng & He [50] developed a framework for active learning of causal structures

via intervention experiments. They discussed two kinds of external interven-

tion experiments: the randomized experiment and the quasi-experiment. In

order to reduce the complexity of the causal discovery task, the authors pro-

ceed by splitting the Markov equivalence class into subclasses and making

experimentations on chain components.

They also proposed two optimal designs of batch (incremental) and se-

quential interventions. For the optimal batch design, a smallest set of vari-

ables to be manipulated have to be found before interventions.The principle

drawback of this strategy is that it does not use orientation results obtained

by manipulating the previous variables during the intervention process. This

weakness will be remedied in the optimal sequential design when the vari-

ables are manipulated sequentially such that the Markov equivalence class

can be reduced to a subclass with potential causal DAGs as little as possible.

They discussed two criteria for optimal sequential designs, the minimax and

the maximum entropy criteria.

2.5.4 Learning CBN from mixture of observational and ex-

perimental data

Cooper and Yoo [23] proposed another score-based method which can learn

the structure from an arbitrary mixture of imperfect observational and ex-

perimental data. A closed-form Bayesian scoring metric was derived that

can be used in this context: the metric takes into account whether the data

is from observations or from experiments and adapts the score likewise. The

new scoring metric is an adaptation of the one proposed by [22, 52] for ob-

servational data alone.
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2.5.5 Decision theoretic approach for learning CBNs

Two major approaches can be distinguished:

� MYCADO approach: Meganck & al. [77] proposed a greedy approach

for learning CBNs from perfect observational data and experiments

known as MYCADO (My Causal Discovery) algorithm. This algo-

rithm �rst assumes as input a perfect observational dataset that can

be modeled by a CBN.

Using traditional structure learning techniques it learns CPDAG from

observational data. Then it selects the best experiments to perform in

order to discover the directions of the remaining edges. The general

overview of MYCADO is given in Figure 2.9.

The choice of best experiment depends on calculating a utility function

U(AXi), where AXi (resp. MXi) denotes performing an experiment on

Xi (resp. measuring the neighboring variables).

The general formula of U(AXi) is expressed by:

U(AXi) =
Card(NeU (Xi)) + Card(inferred(inst(AXi)))

αcost(AXi) + βcost(MXi)
(2.13)

where measures of importance α and β ∈ [0,1] .

The number of undirected edges (i.e. Card(NeU (Xi))) and those sus-

ceptible to be inferred in appropriate instantiation among all instantia-

tions of Xi−NeU (Xi) (i.e. Card(inferred(inst(AXi)))) represent the

gained information in the utility function. Clearly, the utility result

will be proportional to the experimentation gain and inversely propor-

tional to the cost of performing an action (cost(AXi)) and measuring

neighboring variables (cost(MXi)).
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Figure 2.9: MYCADO Algorithm

Hence, depending on the number of undirected neighbors and edges

susceptible to be directed by applying the Meek rules, three decision

criteria were proposed in [77]:

� Themaximax decision criterion favors the choice that might lead

to the most directed edges. For this reason, it is considered as an

optimistic criterion.
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Xbest = argmax
inst(Xi)

(Max U()) (2.14)

� Themaximin decision criterion is a pessimistic one, since it con-

sider the least number of possible inferred edges that can be found

after performing an experiment on a variable Xi.

Xbest = argmax
inst(Xi)

(Min U()) (2.15)

� The expected utility is based on a distribution of edge directions,

using the members in the equivalence of the graph under study,

of any instantiation.

Xbest = argmax
inst(Xi)

(Exp U()) (2.16)

� Learning CBNs from incomplete observational data and interventions

: The basic idea of Borchani et al. approach [10] is to extend the

GES-EM [9] algorithm via performing an additional phase in order to

discover causal relationships.

� adaptive approach : where interventions are performed sequen-

tially and where the impact of each intervention is considered

before starting the next one. The utility of performing an exper-

iment at Xi in function of the number of undirected neighbors

NeU (Xi) (e.g. nodes that are connected to Xi by an undirected

edge) and the neighbors of NeU (Xi).

� non-adaptive approach : where interventions are executed simul-

taneously.

2.5.6 Applications of Causal Discovery with CBNs

When owing the ability to disentangle causality, the BNs can be used in

many di�erent domains:
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� Explaining human causal reasoning requires supplementing the actual

methods developed in computer science with causal domain knowledge

re�ecting the human behavior [96, 91, 46].

� In the domain of medicine, the identi�cation of the causal factors of

diseases and their outcomes, allows better management, prevention

and improvement of health care [75].

� More recently, with the advent of the DNA microarrays technology,

causal discovery techniques based on microarray data [41] have been

proposed in order to build causal networks representing the potential

dependencies between the regulations of the genes.

� Engineers use these models and their diagnostic capabilities to detect

the cause of defect as early as possible to save cost and reduce the

duration of service breach [63].

� Scientists also need CBNs for the domain of ecological prediction and

policy analysis [11].

2.6 Conclusion

In this chapter we showed how probabilistic BNs can be extended to repre-

sent causal relationships between system variables. Furthermore we showed

how this cause to e�ect interpretation allows causal inference in CBNs.

This edge causal interpretation has the consequence that learning the

structure of a CBN no longer amounts to �nding a member of the equiva-

lence class but �nding the complete causal structure. We gave an overview

of state-of-the art algorithms for handling this task.

In the next chapter we will introduce another type of knowledge repre-

sentation based on semantical modeling.
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The process of building or engineering ontologies for use in information

systems remains an arcane art form, which must become a rigorous

engineering discipline.

Guarino (2002), Evaluating Ontological Decisions With Ontoclean
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Chapter 3

Ontology: State of the art

3.1 Introduction

In the previous chapter, we have shown that in order to learn CBNs, the

choice of variables to experiment on can be crucial when the number of ex-

periments is restricted. Therefore, additional knowledge can improve the

causal discovery.

In many cases, available ontologies provide high level knowledge for the

same domain under study [43]. The recourse to ontologies is due essentially

to their ability to capture the semantics of domain expertise. Hence, a lot of

ontological solutions have been implemented in several real applications in

di�erent areas as natural language translation [59], medicine [44], electronic

commerce [70] and bioinformatics [2].

Therefore, the semantical knowledge contained in the ontology can turn

out of a big utility to improve causal discovery. Reciprocally, the causal

knowledge base construction will enable us to relate causal discoveries to

ontologies and participate to the ontology evolution.

In section 3.2, we formally introduce ontologies. Section 3.3 discusses

how such representation can be semantically enriched from other knowledge

sources. Finally, section 3.4 investigates some ways to link ontologies and
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BNs.

3.2 Basics on ontologies

A Knowledge-based system (KBs) provides a consistent reasoning framework

dotted with an inference engine that deductively reason over a logical lan-

guage. Ontology is one such kind of semantic driven knowledge based system.

There are di�erent de�nitions in the literature of what should be ontology.

The most accepted one was given by [47], stipulating that an ontology is an

explicit speci�cation of a conceptualization. The "conceptualization", here,

refers to an abstract model of some phenomenon having real by identifying

its relevant concepts. The word "explicit" means that all concepts used and

the constraints on their use are explicitly de�ned.

De�nition 3.1. In this way, ontology will be de�ned by:

� a set of concepts or classes C={C1, ..., Cn} structured by means of tax-

onomic (is-a) and partonomic (part-of) hierarchy H,

� concept properties or attributes,

� semantic relations between concepts (Rc: Ci × Cj),

� a set of concept (resp. relation) instances I (i.e. occurrences of classes
and semantic relations),

� a set of formal axioms A=< cik, cjm, vn > with cik, cjm ∈ I and vn ∈ V
(i.e. a set of constraints like must, must not, should, should not, etc).

The �rst four components are shown schematically in Figure 3.1, where

concepts are tagged by yellow circles and instances are marked with blue

rhombus. The is-a relations concern inter-related concepts and the non-

labeled ones indicate instantiation relationships. We distinguish between two

types of causal relations in the ontology. The �rst ones which are indicated

in solid lines build causal connections between the ontology concepts. The

other types in dashed lines consider more speci�c causal relations that exist

between concept instances. We restrict the use of semantic relations to only

causal ones between concepts since they are the main relations recovered in
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Figure 3.1: An illustrative example of Risk & Catastrophe Ontology

our approach. For more details on the data model and syntax of the OWL

ontology language, please refer to Appendix A.

3.2.1 Ontology categories

Ontologies may exist at multiple levels of abstraction. Speci�cally we dis-

tinguish amongst three categories of upper, mid-level and domain ontologies

(as illustrated in Figure 3.2).

� An upper (or foundation) ontology, is a top-level, domain-independent

ontology, from which more domain-speci�c ontologies may be derived.

The concepts expressed in such ontology are intended to be meta,

generic and abstract to ensure expressivity for a wide area of domains.

� A Mid-Level ontology is designed speci�cally to serve as the interface

between top-level concepts de�ned in the upper ontology and low-level

concepts speci�ed in a domain ontology. In other terms, a mid-level

ontology is an upper ontology for a speci�c domain.

� However, a domain (or domain-speci�c) ontology models a speci�c �eld

of knowledge, or part of the world. It represents the particular mean-

ings of terms as they apply to that domain. Domain ontologies may

also extend concepts de�ned in both mid-level and upper ontologies.
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For tasks that use speci�c �elds of knowledge, it will be more adequate

to use domain ontologies instead of upper or mid-level ontologies.
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Figure 3.2: The Ontology Categories

3.2.2 Uses of Ontologies

In this section, we provide the basic motivations for using and developing

ontologies. For tasks that use a speci�c �eld of knowledge, it can be more

adequate to utilize domain ontologies instead of more general ones. In doing

so, we sub-divide the space of uses for ontologies into the following three

categories:

� Inter-operability : Many applications based on ontologies address the

issues of interoperability in which di�erent information management

systems are deployed and di�erent system-users need to exchange data

using various software tools. The major contribution for the recourse

to ontologies in domains such as enterprise modeling and multiagent

architectures is the creation of a shared understanding of common do-

mains allowing applications to agree on the terms that they are using
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when communicating. Hence, ontologies, if shared among the interop-

erating applications, allow a semantical data exchange between these

tools.

� System engineering :

A shared and consistent understanding of the problems and the tasks

at hand can assist in the speci�cation of software engineering project.

In this way, software engineering ontologies are developed in order to

represent and communicate over software engineering knowledge.

The development of such "software engineering domain ontology" will

allow us to:

� share and reuse all knowledge accumulated until now in the Soft-

ware Engineering �eld;

� open new avenues to automatic interpretation of this knowledge.

For example, the SWEBOK project 1(Software Engineering Body of

Knowledge [12]), is the result of great e�ort of declarative and pro-

cedural knowledge mining, acquisition and structuring of very diverse

documents (scienti�c papers, congress proceedings, books, chapters,

technical reports, technical standards), and of background knowledge

from �eld experts, consultants and researchers. The SWEBOK project

team established the project with �ve objectives: 1) characterize the

contents of the software engineering discipline; 2) provide topical access

to the software engineering body of knowledge; 3) promote a consis-

tent view of software engineering worldwide. 4) clarify the place and set

the boundaries of software engineering with respect to other disciplines

such as computer science, project management, computer engineering,

and mathematics; 5) provide a foundation for curriculum development

and individual certi�cation material.

� Communication: Recall that ontologies reduce considerably termino-

logical confusion by providing a unifying framework within an organi-

zation. In this way, ontologies enable shared understanding and com-

1http://www.computer.org/portal/web/swebok

45



munication between people with di�erent needs and viewpoints arising

from their particular contexts.

3.2.3 Semantic measures on ontologies

Recently, several works highlighted the importance of evaluating taxonomic

measures inside domain ontologies. We can distinguish three major classes

of semantic measures, namely semantic relatedness, semantic similarity and

semantic distance, evaluating, respectively, the resemblance, the closeness

and the disa�ection between two concepts.

The semantic similarity represents a special case of semantic relatedness.

For instance, if we consider the two concepts wind turbine and wind, they

would be more closely related than, for example the pair wind turbine and so-

lar panel. However the latter concepts are more similar. Therefore, all pairs

of concepts with a high semantic similarity value (i.e. high resemblance)

have a high semantic relatedness value whereas the inverse is not necessarily

true. In the other hand, the semantic distance is an inverse notion to the

semantic relatedness.

The major approaches of measuring semantic distance are Rada et al.'s

distance [92], Sussna's distance [101] and Jiang and Conrath's distance [57].

For the semantic similarity, we �nd Leacock and Chodorow's similarity [69],

Wu and Palmer's similarity [108] and Lin similarity [72], while for semantic

relatedness, the most used one is Hirst and St Onge's relatedness. See [8] for

a comparative study of these measures.

In what follows, we will focus on semantic distances and in particular

on the classical Rada et al.'s distance [92]. This distance is based on the

shortest path between the nodes corresponding to the items being compared

such that the shorter the path from one node to another, the more similar

they are. Thus, given multiple paths between two concepts, we should take

the length of the shortest one. It, also, supposed that all the taxonomic

links between two adjacent concepts have the same value. Formally, given
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two concepts ci and cj the Rada et al.'s distance is de�ned by:

distrada(ci, cj) = min
p∈pths(ci,cj)

lene(p) (3.1)

where:

� pths(ci, cj): set of paths between the concepts ci and cj .

� lene(p): length in number of edges of the path p.

3.3 Ontology evolution

One critical point in applying ontologies to real-world problems is that do-

mains are changing fast (new concepts, concepts changing their meaning,

new relations, new axioms, etc.) and user needs are changing too. Hence,

the corresponding ontologies have to evolve as well.

Ontology evolution is the timely adaptation of the ontology in response

to a certain need. Several reasons for changing ontology have been identi�ed

in the literature. We can summarize them as follows:

� A dynamic change in the modeled domain [99].

� Some need to change the perspective under which the domain is viewed

[81]. For example, consider an ontology describing tra�c connections,

which includes such concepts as roads, cycle tracks, canals, bridges,

and so on. If we adapt the ontology to describe not only the bicycle

perspective but also a water-transport perspective, the conceptualiza-

tion of a bridge changes from a remedy for crossing a canal to a time

consuming obstacle.

� Discovering a design �aw or change in the focus of the original concep-

tualization [90].

� Need to incorporate additional functionalities according to changes in

the user's need [48].
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� New information, previously unknown, classi�ed or otherwise unavail-

able may become available or di�erent features of the domain may

become important [53].

The process of evolution takes ontology from one consistent state to an-

other [16] and can be of two types:

1) Ontology Population : When we get new instances of concept(s) already

present in the ontology. Only the new instance(s) are added and the

ontology is populated.

2) Ontology Enrichment : Which consists in updating (adding or modifying)

concepts, properties and relations in a given ontology.

Most common changes [16] can be summarized as follows:

� Adding new concepts: This is the most common change in any on-

tology. New concepts emerge and have to be accommodated in the

already existing concept hierarchy.

� Modifying concept hierarchy: In this case the concept in focus might

have di�erent hierarchical position to the existing one.

� Changing concept properties: When the concept in focus is already

present in the ontology but its properties are di�erent from the existing

one.

� Changing concept restrictions: In this case, the concept in focus hav-

ing restrictions that are dissimilar from those associated with existing

concepts.

� Adding new relations (taxonomic or non-taxonomic) between existing

concepts.

Example 3.1. Figure 3.3 shows an example of ontology evolution. Here the

modi�cations to perform upon the ontology concern relation's addition and

concept's addition. Hence, the �rst change requirement occurs in the second

ontology level while deleting the is-a relation between the two concepts F2
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Figure 3.3: Gene Ontology Evolution

and SF1 and replacing it by a new one relating F2 to SF2. Secondly we have

to introduce a new causal relation between the concepts X3 and X5. The

last modi�cation concerns the deletion of the concept F3 which implies the

deletion of the two is-a links relating it to the root concept and the gene X5.

Six phases of ontology evolution have been identi�ed in [99], occurring in

a cyclic loop (See �gure 3.4). Initially, we have the change capturing phase,

where the changes to be performed are determined.

Three types of change capturing have been distinguished: structure-

driven, usage-driven and data-driven [49]; these changes are formally rep-

resented during the change representation phase. The third phase is the

semantics of change phase, in which the e�ects of the change(s) to the on-

tology itself are determined; during this phase, possible problems that might

be caused to the ontology by these changes are also identi�ed and resolved.

This guaranteed the validity of the ontology at the end of the process.

For example, if a concept is deleted, we need to determine how to pro-
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Figure 3.4: Ontology Evolution Process [74]

ceed with its instances (e.g. delete them or re-classify them). In [74], it

is suggested that the �nal decision should be made indirectly by the on-

tology engineer, through the selection of certain pre-determined evolution

strategies, indicating the appropriate action in each case. Other manual and

semi-automatic approaches are also possible [49].

The change implementation phase follows, where the changes are physi-

cally applied to the ontology, the ontology engineer is informed of the changes

and the performed modi�cations are logged using appropriate tools guaran-

teeing atomicity, consistency, isolation and durability of changes [49]. When

this step is achieved, all these changes need to be propagated to all dependent

elements; this is the role of the change propagation phase. Indeed, when an

ontology is changed, all dependent applications may not work correctly. An

ontology evolution approach has to recognize which change in the ontology

can a�ect the functionality of those applications and to react correspond-

ingly.

Finally, when reviewing ontology changes, further problems may appear;

in this case, we need to start over by applying a new evolution process until
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reaching the ontology stability.

3.4 Links between ontologies and Bayesian networks

In this section, three topics are discussed to illustrate the possible interac-

tions that can be made between ontologies and BNs. For each topic, we

order the associated approaches from the most general to the most speci�c.

3.4.1 Ontology mapping

The problem of aligning heterogeneous ontologies via semantic mappings has

been identi�ed as one of the major challenges of semantic web technologies.

In order to enable interoperability among heterogeneous information sources,

we often need to establish mappings between ontologies. These mappings

capture the semantic correspondence between concepts in ontologies.

  

Car

Supplement

ColorPrice

Type

Vehicle

Accessory Feature

Colour Cost
Wheel

Spare wheel

Ontology O1 Ontology O2

Figure 3.5: Example of two heterogeneous ontologies and their mappings

Figure 3.5 shows an example of metadata heterogeneity between the two

ontologies O1 and O2. It is clear that a number of similarities exists among
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these two ontologies (the dashed line represents a reasonable mapping be-

tween similar concepts). For instance, the two concepts Color and Colour

will be matched since the word colour is spelled as color in American En-

glish. The meaning of the two words is the same. Also, a subsumption link

will be added between the two entities Wheel and Spare wheel. And �nally,

entities {Car, Price, Supplement} will be respectively matched to {Vehicle,

Cost, Accessory}.

The instance heterogeneity concerns the di�erent representations of in-

stances. For example, a price can be represented as '30000 dinars' and also

as '30000 TND'. We note that many e�orts have been placed on the problem

of metadata heterogeneity and few works focus on instance heterogeneity.

Most of the existing ontology-based semantic integration approaches try

to provide exact mappings in an automatic or semi-automatic way. In this

way, many works have tried to increase ontology mapping precision with

incorporating uncertainty into the mapping process. Three approaches that

use BNs for ontology mapping have been recently reported.

1) RiMOM

[102] formalize the ontology mapping as a decision making problem with

the aim to discover the optimal mapping with the minimal risk. To per-

form this task, an approach called RiMOM (Risk Minimization based

Ontology Mapping) were proposed and the problem have been formu-

lated using Bayesian decision theory.

RiMOM treat the ontology mapping as a classi�cation problem and uses

for this purpose the Naive bayes technique where the observations (i.e.

set of samples) are all entities in the two ontologies to map. Entities

{ei1} in the �rst ontology are viewed as samples and entities {ei2} in the

second one are viewed as classes. So each entity ei1 can be classi�ed to

one "class" ei2. This also means that entity ei1 is mapped onto entity ei2.

For recognizing the optimal mapping, they use p(ei2 | ei1) to denote the

conditional probability of the entity ei1 being mapped onto entity ei2. In
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this way, they de�ne actions as all possible mappings (i.e. all candidate

mappings) in order to �nd the optimal mapping (i.e. the action with

minimal risk).

They also include the two ontologies O1 and O2 in the conditional prob-

ability p(ei2 | ei1, O1, O2), which means that not only the information

relative to entities themselves but also information in O1 and O2 will be

considered for calculating the mapping risk.

2) OMEN

[78] developed a tool called OMEN (Ontology Mapping ENhancer) which

uses Bayesian networks in order to enhance existing ontology mappings

by deriving missed matches and invalidating existing false matches. First

of all, they have to build a BN with the concept mapping. This BN uses

a set of meta-rules based on the semantics of the ontology relations that

expresses how each mapping a�ects other related mappings. Next, the

initial probability distribution will be used to infer probability distribu-

tions for other mappings.

The following summarizes the OMEN algorithm:

3) Bayes OWL

BayesOWL [28] is one of those probabilistic frameworks which aim to

model uncertainty in semantic web. This framework provides a set of

translation rules in order to convert OWL ontologies into a DAG of BN.

The general principle underlying these rules is that all classes (speci�ed

as "Objects" in RDF triples of the OWL �le) are translated into nodes in

BN, and an arc is drawn between two nodes in BN if the corresponding

two classes are related in the OWL �le. Information about the uncer-

tainty of the classes and relations in an ontology is represented as condi-

tional probability tables (CPTs) which can be either provided by domain

expert or learned from web data, by using text classi�cation programs.

With BayesOWL, concept mapping can be processed as some form of
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Algorithm 1 OMEN algorithm
1: Input: source ontologies O and O′, initial probability distribution for

matches

2: Steps:

a) If initial probability of a match is above a given threshold, create a

node representing the match and mark it as evidence node.

b) Create nodes in the BN graph representing each pair of concepts

(C,C ′), such that C ∈ O and C ′ ∈ O′ as a node in the graph and the

nodes are within a distance k of an evidence node.

c) Use the meta-rules to generate CPTs for the BN.

d) Run the BN.

3: Output: a new set of matches.
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Figure 3.6: BayesOWL: Concept mapping process [28]

probabilistic evidential reasoning between the BN1 and BN2, translated

from the Ontologies 1 and 2. This technique allows the two BNs to ex-

54



change beliefs via variables that are similar but not identical. First of

all, they assume that the similarity information between concepts A from

ontology 1 and B from ontology 2 is captured by the joint distribution

P(A,B). Three probability spaces will be de�ned: SA and SB for BN1

and BN2, and SAB for P(A,B). The mapping from A to B amounts to

determine the distribution of B in SB, given the distribution P(A) in SA

under the constraint P(A,B) in SAB.

To propagate probabilistic in�uence across these spaces, they apply the

Je�rey's rule [86] and treat the probability from the source space as soft

evidence to the target space. As depicted in Figure 3.8, mapping A to

B is accomplished by applying Je�rey's rule twice, �rst from SA to SAB,

then SAB to SB.

3.4.2 Probabilistic Ontologies

Uncertainty is an inevitable feature in most world domains since the available

information is mostly incomplete and often imprecise. The Venn diagram of

�gure 3.7 illustrates some countries' memberships in regional and continen-

tal communities. A crisp partOf meronymy cannot express that Turkey is

to some degree part of all three communities in the diagram (Europe, Asia

and Middle East) or traduce the Israeli occupation in both Palestine and

Lebanon.

To overcome the di�culty arising from using the crisp logics, an exten-

sion of ontologies is required in order to capture uncertainty knowledge about

concepts, properties and relations and support reasoning with inaccurate in-

formation.

Along this direction, many works in the past have attempted to ap-

ply di�erent formalisms such as Fuzzy logics [110], Rough Set theory [83]

and Bayesian probability into the ontology de�nition and reasoning. In this

subsection, we will investigate di�erent approaches in the literature that

addressed this problem by proposing probabilistic extensions to ontologies.
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Figure 3.7: A Venn diagram illustrating countries' memberships in regional

and continental communities

1) Ding & Peng OWL Probabilistic extension:

Ding and Peng [27] proposed an approach when they augment the OWL

language to allow additional probabilistic markups so that probability

values can be attached to individual concepts and properties. For exam-

ple, if A and B are classes: P(A) is interpreted as the probability that

an arbitrary individual belongs to class A. P(A | B) traduces the proba-
bility that an individual of class B belongs to A. For this purpose, they

de�ne three kinds of OWL classes (owl:Class): "PriorProbObj", "Cond-

ProbObjT" and "CondProbObjF".

They also developed a set of rules to translate a probability-annotated

ontology into a BN structure. The general principle underlying these rules

is that all classes (speci�ed as "subjects" and "objects" in RDF triples

of the OWL �le) are translated into nodes in BN, and an arc is drawn

between two nodes in BN only if the corresponding two classes are related

by a 'predicate' in the OWL �le with the direction from the superclass to

the subclass if it can be determined. One of the main advantage of this
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probabilistic-extended ontology is that it can support common ontology-

related reasoning tasks as probabilistic inferences.

2) OntoBayes
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Figure 3.8: Ontobayes: Building a BN from an OWL ontology (insurance

ontology)

[109] have proposed the OntoBayes approach, an ontology-driven Bayesian

model for uncertain knowledge representation, to extend ontologies to

probability-annotated OWL in decision making systems. First of all, they

made a probabilistic extension of OWL in order to specify probability-

annotated classes or properties. More precisely, they de�ne three OWL

classes: 'PriorProb', 'CondProb' and 'FullProbDist'. The �rst two classes

are de�ned to identify the prior probability and conditional probability

respectively. They have a same datatype property 'ProbValue', which can

express the probabilistic value between 0 and 1. The last class is used to

specify the full disjoint probability distribution. Then they introduce an

57



additional property element <rdfs:dependsOn> to markup dependency

between class properties in an OWL ontology. Hence any expression for

BNs in OntoBayes is a collection of triples, each consisting of a subject,

a predicate and an object, where the predicate is constantly the primi-

tive <rdfs:dependsOn> and the subject and object are properties. Using

this dependency triples, they enable the BN construction by the following

rules:

� Extracting all dependency triples from an ontoBayes ontology.

� Merging all triples: all nodes with a same identi�er are composed

into one single node. For example, if there are two triples A → B

and B → C, they can be merged into a BN with only one node B

such as A → B → C.

By this way, OntoBayes model preserves the ability to express meaning-

ful knowledge in very large complex domains and extent ontologies to

probability-annotated OWL to facilitate meaningful knowledge represen-

tation in uncertain systems.

3) PR-OWL 1.0:

The logical basis of PR-OWL 1.0 is MEBN logic [66], which combines

Bayesian probability theory with classical First Order Logic. Proba-

bilistic knowledge is expressed as a set of MEBN fragments (MFrags)

organized into MEBN Theories. An MFrag is a knowledge structure

that represents probabilistic knowledge about a collection of related hy-

potheses. Hypotheses in an MFrag may be context (must be satis�ed for

the probability de�nitions to apply), input (probabilities are de�ned in

other MFrags) or resident (probabilities de�ned in the MFrag itself). An

MFrag can be instantiated to create as many instances of the hypotheses

as needed (e.g. an instance of the 'EducationLevel' hypothesis for each

person as depicted in Figure 3.9). Instances of di�erent MFrags may be

combined to form complex probability models for speci�c situations. A

MEBN theory is a collection of MFrags that satis�es consistency con-

straints ensuring the existence of a unique joint probability distribution

over instances of the hypotheses in its MFrags.
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Figure 3.9: Education knowledge domain representation using PR-OWL 1.0

A probabilistic ontology must have at least one individual of class MThe-

ory, which is a label linking a group of MFrags that collectively form a

valid MEBN Theory. Individuals of class MFrag are comprised of nodes,

which can be resident, input, or context nodes. Each individual of class

Node is a random variable and thus has a mutually exclusive and collec-

tively exhaustive set of possible states. In PR-OWL 1.0, the object prop-

erty hasPossibleValues links each node with its possible states, which are

individuals of class Entity. Finally, random variables (represented by the

class Nodes in PR-OWL 1.0) have unconditional or conditional probabil-

ity distributions, which are represented by class Probability Distribution.

4) PR-OWL 2.0:

The major problem with PR-OWL 1.0 is the fail to achieve full com-

patibility with OWL (See Figure 3.10). Therefore, [15] have recently

proposed a new syntax and semantics, de�ned as PR-OWL 2.0, which

improves compatibility between PR-OWL 1.0 and OWL in two impor-
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Figure 3.10: PR-OWL 1.0 lack of mapping from arguments to OWL prop-

erties.

tant respects. First, PR-OWL 2.0 formalizes the association between

random variables from probabilistic theories with the individuals, classes

and properties from OWL. Second, PR-OWL 2.0 allows values of random

variables to range over OWL datatypes.

5) Holi & Hyvönen approach for computing overlaps:

[54] presents a probabilistic method to represent overlap in taxonomies

and to compute the overlap between concepts. Thus an overlap table

can be created for every concept in the taxonomy. The authors give,

as example, the overlap table of Lapland 3.1 based on the Venn dia-

gram of �gure 3.11. The Overlap column lists values expressing the mu-

tual overlap of the selected concept and the other referred concepts, i.e.

Overlap = |Selected∩Referred|
Referred . These values will be then used as measure

of mutual overlap.

So their method consists of two main parts:
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Figure 3.11: A Venn diagram illustrating countries, areas and their overlap

[54]

� A graphical notation by which partial subsumption and concepts

can be represented in a quanti�ed form.

� A method for calculating degrees of overlap between the concepts

of a taxonomy. Overlap is quanti�ed by transforming the taxonomy

into a BN, where nodes are classes, arcs are represented by the rdf :

subClassOf property and CPTs are �xed using the measures of

mutual overlap.

6) MENTOR (Web Adaptive Educational Environment):

[71] presents a study of MENTOR, a web Adaptive Educational Environ-

ment (WBES), where the learner's needs and preferences are diagnosed

using an ontology-based Bayesian network approach during the learning

process (See Figure 3.12).

Firstly, the proposed method uses an OWL ontology to store the Af-

fective Knowledge regarding the learner such as personality, mood and

emotions. In this A�ective Ontology, we �nd the A�ective_Model class,
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Selected Referred Overlap

Lapland World 26/851=0.0306

Europe 26/345=0.0754

Asia 0/414=0.0

EU 16/168=0.0953

Norway 8/36=0.2222

Sweden 8/36=0.2222

Finland 8/36=0.2222

Russia 2/342=0.0059

Table 3.1: The overlap table of Lapland according to �gure 3.11 [54].

A�ective_Tactic class and Emotional_State class. The �rst class repre-

sents the attributes and preferences of the learner. The second represents

the a�ective tactics and the third represents the current emotional state

of the learner which can be positive, negative or neutral.

This ontology is extended to deal with uncertainty so that a BN can be

constructed from it. To express the a�ectively uncertain information the

OWL classes are de�ned: 'Pri_Prob', 'Cond_Prob' and 'Jnt_Prob'

which identify the prior probability, the conditional probability and the

joint probability respectively. The conditional probability distribution for

the A�ective Tactic given the Learner's Emotional State ET is de�ned as

P(AT | ET).

The transformation into a BN uses a set of rules. They �rst introduce

a property element <owl:Dependent> to specify dependency informa-

tion in an OWL ontology. All classes of the ontology are converted into

nodes in the BN using a set of transformation rules. Such strategy allows

them to easily infer the values of the nodes corresponding to the A�ec-

tive information of the learner's model. This model supplies them with

evidences, for selecting the appropriate a�ective tactic given the values

of the A�ective model node.
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Figure 3.12: Mentor Model [71]

3.4.3 BN construction using Ontologies

Ontologies provide a potential knowledge source which could be exploited to

facilitate the creation of the BN structure. Recently, there have been some

researches to construct a BN (semi-)automatically from ontologies. The

challenging tasks encountered in all of these works are:

� The determination of the variables,

� The determination of relationships between variables,

� The calculation of the CPTs for each node.

In this subsection, we give an overview of the principle works which investi-

gate such problem.

1) Constructing BN automatically using ontologies :

[26] de�ned a new ontology of BN concepts and link this to the original do-

main ontology. In order to automatically construct BNs using ontologies,

they expose the following correspondences between the two formalisms:

� Concepts → nodes,

� Concept attributes → CPTs,

� Inheritance relations → links.
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As shown in Figure 3.13, all concepts of interest for the BN inherit from

a node in this new BN ontology. The root concept of the BN ontology

is the BNnode. In order to create the BN, an instance of each leaf class

which inherits from the BNnode class is created. To describe the generic

BNnode, a set of properties and relations have to be de�ned. The two

relations (hasParentNode and hasDelayParentNode) de�ne the in�uential

links between this BNnode instance and other BNinstances. The other

properties include name, CPT, state names and levels.

In addition to the basic BNnode concept, the BN ontology may contain

additional BN concepts. The domain ontology consists of the two do-

main concepts subConceptOfNoInterest and subConceptOfInterest and

their parent concept Concept1. According to this �gure, between the

root node and a conceptOfInterest node, there are two intermediate con-

cepts: BehaviourModelNode and Concept1Node. The BehaviourMod-

elNode concept represents the characteristics of BN nodes required for a

particular application. The Concept1Node concept de�nes characteristics

of Concept1 instances which should be treated in a particular way. The

BN arcs are automatically generated from the domain ontology using a

set of inheritance relations and construction rules.

We note that [26] approach does not delve into the area of estimating

CPTs. They supposed that BN CPTs are learnt incrementally and on-

line from a live feed of network event data.

2) Ontology-based generation of BNs:

The [36] approach is similar to the previous approach [26]. The main

di�erence between them is that Fenz & al. construct the BN directly

from existing domain ontologies and do not require any BN-speci�c on-

tology extensions. They used the security ontology which provides de-

tailed knowledge about threat, vulnerability and control dependencies

to build up the corresponding BN. Their approach is based on a set of

correspondences:
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Figure 3.13: Generic Domain Ontology with BN concepts [26]

� Concepts → nodes: The ontology concepts, which are relevant to

the considered problem and should be represented in the Bayesian

calculation schema are selected to establish the nodes of the BN.

� Ontological relations → links: Ontology relations starting and end-

ing between the selected concepts are used to establish the links

between the BN nodes. While the potential relations can be de-

rived automatically from the ontology, the link direction requires

the human interpretation of the ontological relation.

� Axioms → node scales and weights: Scale- and weight-relevant ax-

ioms are used to determine potential states and weights of the BN

nodes.

� Instances → �ndings: Instances of concepts which are represented

by the BN's leaf nodes are used to derive and enter concrete �ndings

in the BN.

The main limitation of this approach is that no strategy regarding the

generation of CPTs is given.

3) Ontology-based semi-automatic construction of BN models for diagnosing

diseases in e-health applications:
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Figure 3.14: The overall processes of the Jeon & Ko approach for BN con-

struction [56]

[56] developed a semi-automatic BN construction system based on e-

health ontologies. Their system allows developers to select abstraction

levels in e-health ontologies to specify the areas that are mostly useful in

diagnosing diseases for an e-health application.

Their approach is still in its early research stage. This is essentially due

to the lack of reliable correspondences between the two formalisms. The

only two correspondences that are treated are presented as follows:

� Concepts → nodes:

BN nodes are selectively constructed from the selected ontology ar-

eas using a set of rules. For instance, when a class does not have

any subclasses, their system constructs BN nodes with the true and

false states to represent absence or presence of the situation denoted

by the ontology class. However, when the node has subclasses, they

generate another BN, a sub-BN, which only contains nodes con-
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structed by the subclasses.

� Causal links between ontologies → links: Using an application-

speci�c meta-model, BN nodes can be linked with each other semi-

automatically. According to [56] approach, the domain BN meta-

model describes the cause-and-e�ect relationships between two on-

tologies in a speci�c domain and enables the construction of links

between the BN nodes. All the construction steps are illustrated in

Figure 3.14.

3.5 Some critiques of the former approaches

The majority of the previous approaches that tried to combine BNs and

ontologies are still on an early stage of development and research. That is

they mainly focus on the theoretical aspects without any intent to test their

approaches on real or simulated data. Moreover, they lack the capability of

describing potential applications where their approaches would prove valu-

able and even necessary.

The second limit consists on the use of traditional BNs without regard to

any other extensions (Dynamic BNs, Hierarchical BNs, causal Bayesian net-

works, etc.). Due to this lack of specialization, the correspondences between

the two formalisms can be returned to the more general concepts without

focusing on speci�c details. It is worth noticing that in most of the cases,

the BN-Ontology cooperation is used to enhance the probabilistic inference.

However, they do not make any explicit use of traditional structure learning

algorithms.

Finally, we note that the cooperation between BNs and ontologies in all

previous contributions is bene�cial on only one way (i.e. BN �> ontology

or ontology �> BN). One possible direction of research is to develop cyclic

strategies which propose a real cooperation in both ways.
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3.6 Conclusion

In this chapter, we provide some quick background on ontology basics, uses

and evolution. We also present concrete approaches for combining the use

of ontologies and BNs. The next chapter will be devoted to presenting our

contribution aimed at addressing the same problem.

68



Serendipity: the making of pleasant discoveries by accident.

The Oxford American Dictionary
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Chapter 4

SEMCADO: an iterative causal

discovery algorithm for

ontology evolution

4.1 Introduction

We have previously shown that in order to learn CBNs, the choice of

variables to experiment on can be crucial when the number of experiments

is restricted. Therefore, every additional knowledge can improve the causal

discovery.

In many cases, available ontologies provide high level knowledge for the

same domain under study. The recourse to ontologies is due essentially to

their ability to capture the semantics of domain expertise. Sometimes, this

semantical knowledge can turn out of a big utility to improve causal discov-

ery.

This chapter is devoted to introduce a new algorithm, referred to by

SEMCADO (Semantical Causal Discovery), to integrate ontological knowl-

edge for more e�cient causal discovery.
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This chapter is divided into two major sections: Section 4.2 presents the

main principles we suggest to develop our approach. Section 4.3 provides a

complete description of the SemCaDo algorithm.

4.2 SEMCADO Principles

This section includes all necessary theoretical foundations for the new method

and modalities that enable their translation into a practical algorithm.

4.2.1 Serendipity through design

Generally, in the research �eld, scienti�c discoveries represent a payo� for

years of conservation works. This a�rmation did not exclude the case of

other important discoveries that are made while researchers were conducting

research in totally unrelated �elds.

The examples are abundant from Nobel's �ash of inspiration while testing

the e�ect of dynamite, to Pasteur brainstorm when he accidentally discov-

ered the role of attenuated microbes in immunization. In fact, much of our

understanding and causal discoveries comes from scienti�c serendipity (i.e.

the manifestation of creativity in which inspiration comes from curiosity and

unexpected opportunities).

Scattered over many di�erent areas, there is much literature about how

utilizing aspects of serendipity to stimulate creativity. Scienti�c knowl-

edge [93, 94], web search [1, 13] and information retrieval [111, 35] have

all discussed opportunities for insight through coincidences. The search for

Serendipity continues with this work.

So instead of treating serendipity as arcane, mysterious and accidental,

we surround the ability of computers to optimize the opportunities for in-

sight. The idea here is to investigate some ways to combine the power of

CBNs and ontologies, presented in previous chapters. Our main aim is to

propose a new causal discovery algorithm to promote and stimulate fortunate

discoveries when performing experimentations. To this end two collaborative
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and complementary strategies are conceivable:

� Build a CBN using ontological knowledge.

� Enrich the ontology by exploiting causal discoveries from the CBN.

In what follows, we assume that:

� Only a single domain ontology should be speci�ed for each causal dis-

covery task.

� The causal graph nodes and their corresponding ontology concepts

have the same designations.

� The ontology evolution should be realized without introducing incon-

sistencies or admitting axiom violations.

The principle of the proposed causal learning algorithm, referred to by

SEMCADO (Semantical Causal Discovery), is to bene�t of the semantical

distance calculus on the corresponding ontology while keeping the same de-

cision criteria used in mycado (see section 2.5.5).

Once the causal discovery step achieved, the results of experimentations

can be re-used via an ontology evolution process as shown in �gure 3.4.

This knowledge acquisition technique provides on the one hand customized

domain ontology, and on the other hand an updated ontology which can

be used for a variety of semantic tasks such as knowledge management,

information retrieval and so on.

4.2.2 CBN-Ontology correspondence

One of the main motivations when realizing this work is to highlight and

exploit the similarities between CBNs and ontologies. This is particularly

true when comparing the structure of the two models as proposed in Figure

4.1 and Table 4.1:

First, for each CBN node corresponds a single concept from the domain

ontology. Accordingly, the correspondence between the two models in term

of causal links will be as follows:
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Figure 4.1: CBN-Ontology correspondances

� A causal dependency represented by a directed link in the CBN will be

traduced by a speci�c causal relation between the appropriate concepts

in the ontology. In �gure 4.1, we show that the domain ontology can

provide causal logical links between concepts and instances. In this

work, we will only deal with the causal relations between concepts

but this did not exclude the possibility to adapt our correspondences

according to the context of application.

� Reciprocally, a causal relation between two concepts in the ontology

will be traduced by a directed link between the corresponding CBN

nodes.

On a more �ne-grained level, we can associate both observational and

experimental data to the state instantiations of the ontology concepts. All

these correspondences lead to a much larger duality between causal inference

and logic rule reasoning when using the ontology axioms. Nevertheless, this

form of parallelism between the two formalisms may be expressed di�erently

depending on the context of application.
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Table 4.1: The main correspondences between causal Bayesian networks and

domain Ontologies.

CBN Ontology

Nodes (X ) Concepts (C)
Causal dependencies (E) Semantic causal relations (Rc)

Observational & experimental data (Dobs/exp) Concept instances (I)
Causal inference Logic rule reasoning

4.3 SEMCADO Sketch

The general overview of the SEMCADO algorithm is given in Figure 4.2.

So as inputs, SEMCADO needs a perfect observational dataset and a

corresponding ontology. Then it will proceed through:

4.3.1 Learning a partially directed structure using traditional

structure learning algorithms and semantical prior knowl-

edge

The ontology in input may contain some causal relations in addition to hier-

archical and semantic relations. Those causal relations should be integrated

from the beginning in the structure learning process in order to reduce the

task complexity and better the �nal output. More precisely, each direct cause

to e�ect relations will be incorporated as constraints when using structure

learning algorithms. Our main objective is to narrow the corresponding

search space by introducing some restrictions that all elements in this space

must satisfy.

In our context, the only constraint that will be de�ned is edge existence.

All these edge constraints can easily be incorporated in usual BN structure

learning algorithm [25]. Under some condition of consistency, these existence

restrictions shall be ful�lled, in the sense that they are assumed to be true

for the CBN representing the domain knowledge, and therefore all PDAGs

must necessarily satisfy them.
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De�nition 4.1. Given a domain ontology O, let G=(C, Rc) be the DAG

where Rc: Ci × Cj represents the subset of semantic causal relations ex-

tracted from O. This subset included both direct and logically derivable se-

mantic causal relations. Let H=(X, Eh) be a PDAG, where X is the set of

the corresponding random variables and Eh corresponds to the causal depen-

dencies between them. H is consistent with the existence restrictions in G if

and only if:

∀ Ci, Cj ∈ C, if Ci→Cj ∈ Rc then Xi→Xj ∈ Eh.

When we are specifying the set of existence restrictions to be used, it

is necessary to make sure that these restrictions can indeed be satis�ed. In

fact, such causal integration may lead to possible con�icts between the two

models. When this occurs, we have to maintain the initial causal information

in the PDAG since we are supposed to use perfect observational data. On

the other hand, we should ensure the consistency of the existence restrictions

in such a way that no directed cycles are created in G.

4.3.2 Causal discovery process

We start by deciding which experiment will be performed and hence also

which variables will be altered and measured. For this purpose, a decision

theoretic approach (i.e. Maximax, Maximin, Expected Utility) based on the

ontological distance calculus [92] (See section 3.2.3) will be undertaken in

order to guide the iterative causal discovery process and choose the more

signi�cant experimentations. By contrast, our strategy represents the exact

opposite of much traditional experimental designs. Usually, the most stud-

ied concepts are the closest ones referring to the domain ontology. Here, on

the contrary, we will advantage experimentations between the more distant

concepts. By this way, we will accentuate the serendipitous aspect of the

proposed strategy and investigate new and unexpected causal relations on

the graph.

Moreover, distinctly to MYCADO algorithm and GES-EM adaptive ap-

proach (as described in sub-section 2.5.5) , the selection criterion used in the
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decision theoretic approach of SEMCADO is a semantical generalization of

node connectivity.

Thus the utility function U(.) will be an extension of Equation 2.13,

by generalizing the �rst term NeU (Xi) and replacing it by the semantical

inertia, denoted by SemIn(Xi) and expressed by:

SemIn(Xi) =

∑
Xj∈Nei(Xi)∪Xi

distRada(mscs(Nei∗(Xi) ∪X∗i ), X∗j )

Card(Nei(Xi) ∪Xi)
(4.1)

where L∗ represent the set of concepts relative to the set of nodes L,

mscs(L∗) is the most speci�c common subsumer of the set of concepts L∗

and distRada(Ci, Cj) is the size of the shortest path between Ci and Cj .

The semantical inertia presents three major properties:

� When the experimented variable and all its neighbors lie at the same

level in the concept hierarchy, the semantic inertia will be equal to the

number of hierarchical levels needed to reach the mscs.

� If the corresponding concepts have the same parent in H, then SemIn
will be proportional to Card(Nei(.)).

� It essentially depends on semantic distance between the studied con-

cepts. This means that the more this distance is important, the more

the SemIn will be maximized.

Further to these, we also integrate a semantic cumulus relative to the

inferred edges denoted by Inferred_Gain in our utility function. For this

purpose, we use I∗(Xi) to denote the set of concepts corresponding to nodes

attached by inferred edges after performing an experimentation on Xi. So,

the Inferred_Gain formula is expressed as follows:

Inferred_Gain(Xi) =

∑
Xj∈I(Xi)

distRada(mscs(I∗(Xi)), X
∗
j )

Card(I(Xi))
(4.2)
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Figure 4.3: An illustration of is-a Tree (a) and the corresponding CPDAG

(b)

Inferred_Gain also represents a generalization of Card(inferred(inst(.))

(refer to Equation 2.13) and depends on the semantic distance between the

studied concepts.

When using the two proposed terms, our utility function will be as fol-

lows:

U(Xi) =
SemIn(Xi) + Inferred_Gain(Xi)

α.cost(AXi) + β.cost(MXi)
(4.3)

where the two measures of importance α, β are usually chosen proportional

(α, β ∈ [0,1] and max(α, β)/∈ 0).

Through this utility function, we provide a more explicit understanding

that supports the desired e�ects of serendipitous revelation.

Example 4.1. Given the domain ontology of �gure 4.3.a, we analyze the

semantical inertia of the two nodes X2 and X4 in the corresponding CPDAG

presented in Figure 4.3.b.

From the beginning, we show that the �rst node is more connected than

the second so if we proceed with previous approaches, the selected node for

experimentation is obviously X2. But when proceeding with semantical iner-
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tia, the choice of optimal variables to experiment on can change considerably

since the connectivity is not all the time synonymous of higher Rada distance

cumulus.

In what follows, the semantical inertia calculation details of the two nodes

X2 and X4:

NeU (X2)={X1, X3, X5} ;

NeU (X4)={X3};

mscs(X2 ∪ NeU (X2))= {SF1} ;

mscs(X4 ∪ NeU (X4))= {Root};

SemIn(X2)=(2+2+2+2)/4=2;

SemIn(X4)=(3+3)/2=3;

Hence, based on the SemIn criteria, experimenting on X4 is therefore

more interesting than X2.

Now we will assume that we want to perform an action on the node X1

on the same CPDAG. An overview of all possible instantiations of the edge

X1−NeU (X1), the possible structures compatible with each instantiation and

edges susceptible to be inferred is given in Figure 4.4.

According to those results, we will be able to �nd the utility of such action

for each decision criteria. Here, we note that to simplify the calculations, we

will consider equal costs for all decision criteria, namely, Cost(AX1)+Cost(MX1)=1+2=3.

In the third column of Figure 4.4, we represent associated Rada distance cu-

mulus according to domain ontology as shown in Figure 4.3.a.

Hence the three decision criteria will give us the following results:

� Maximax: the maximum inferred cumulus is equal to 12, such that

the utility for Maximax will be:
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Figure 4.4: All possible instantiations for Xi-NeU (Xi), the possible struc-

tures compatible with each instantiation and the result of edge inference
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U(X1) =

SemIn(X1) + max
inst(AX1

)
(#inferred_cumulus(inst(AX1)))

cost(AX1) + cost(MX1)

=
2 + 12

1 + 2
=

14

3
= 4.66

� Maximin: the worst inferred cumulus is equal to 0 since we have an

instantiation with no inferred edges. So the utility for Maximin is given

by:

U(X1) =

SemIn(X1) + min
inst(AX1

)
(#inferred_cumulus(inst(AX1)))

cost(AX1) + cost(MX1)

=
2 + 0

1 + 2
=

2

3
= 0.66

� Expected utility:

As shown in �gure 4.4, there are 12 DAGs in the equivalence class

of the example (all possible structures that can be inferred for all the

instantiations). So the Expected utility for X1 is given by:

U(X1) =

SemIn(X1) +
∑

inst(AX1
)

#inferred_cumulus(inst(AX1))Peq(inst(AX1))

cost(AX1) + cost(MX1)

=
2 + (12× 1

6 + 12× 1
12 + 12× 1

12)

1 + 2
= 2.33

For each decision criteria strategy, we have to calculate all node utilities

and choose the best one in order to improve the causal discovery process.

In table 4.1, we compare the results of U(X1) when applying SemCaDo

(resp. MyCaDo) with the three decision criteria.

4.3.3 Edge orientation

Once the speci�ed intervention performed, we follow the same edge orienta-

tion strategy as in Mycado [77]. Roughly speaking, the intervention takes

place by means of mutilating all incoming arcs on the speci�ed variable in
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`````````````````̀Decision criteria

Strategy
MYCADO SEMCADO

MaxiMax 2 4.66

MaxiMin 0.66 0.66

ExpectedUtility 0.78 2.33

Table 4.2: Comparing decision criteria in MYCADO and SEMCADO.

order to generate the experimental data. The obtained dataset as well as

the initially supplied observations will be transferred to the chi2 adjustment

test in order to determine if the variable experimented on is the cause or the

e�ect of its neighboring variables.

E�ectively, when experimenting on a variable X and measuring the e�ect

on a neighboring variable Y, we have to determine if there is a signi�cant

association between the two rows data produced before and after the inter-

vention on X.

Let Nexp and NexpY=yi be the total number of experimental data and

the number of experiments where we obtain Y=yi (yi ∈ DY ). The corre-

sponding chi square statistic will be equal to:

χ2 =

∑|DY |
i=1 (Nexp(Y=yi) − (Nexp× P (Y = yi)))

2

Nexp× P (Y = yi)
(4.4)

Finally, by applying PC rules (see section 2.3.3), we can infer new undi-

rected edges based on the experimentation edge orientation. If there are still

some non-directed edges, we re-iterate over the second phase and so on, until

no more causal discoveries can be made.

4.3.4 Ontology evolution

The causal knowledge will be then extracted from the CBN and interpreted

for an eventual ontology evolution. More precisely, the causal relations will

be traduced as semantic causal relations between the corresponding ontology
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concepts. We note that, because of the priority given to the ontology axioms

(See subsection 4.2.1), only causal relations ensuring semantic consistency

will be retained for the ontology evolution process. For this purpose, Sem-

CaDo algorithm uses the six-phases evolution process (previously shown in

Figure 3.4):

� Change capturing: the aim of this initial step in the ontology evolution

process is to capture the new discovered causal relations on the current

causal graph which are not actually modeled. It starts after obtaining

a �nal causal structure in order to treat all changes in a consistent and

uni�ed manner.

� Change representation: in order to be correctly implemented, we have

to represent these causal changes formally, explicitly and in a suitable

format. In the context of SemCaDo algorithm, we only handle elemen-

tary changes [100] (i.e. restricted to adding semantic causal relations)

that cannot be decomposed into simpler ones.

� Semantics of change: the semantics of change is the phase that enables

the resolution of ontology changes in a systematic manner by ensuring

the consistency of the ontology. In our case, con�icting knowledge

is highly possible to occur when deducing causal conclusions from the

ontology axioms. Such inconsistencies should be handled by automated

reasoning. This step also prevents the creation of new cycles in the

ontology when integrating the causal discoveries. This consistency rule

is maintained since the causal discovery step in SemCaDo avoids the

creation of cycles during the structure learning.

� Implementation: in order to avoid performing unwanted changes, a list

of all consequences in the ontology and dependent artifacts should be

generated and presented to the ontology engineer, who should then be

able to accept the change or reject it. If the implementer agrees to add

the new causal relationships, all actions to apply the change have to

be performed.

� Propagation: pursuing and adopting the new causal discoveries can

generate additional changes in the other parts of the ontology. These
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changes are called derived changes. That is why, during this step, it is

necessary to determine the direct and indirect types of changes to be

applied. In case of ambiguity, the ontology expert decides on the action

to occur. A human intervention at this level is essential to remove the

ambiguity and to make the �nal decision.

� Validation: change validation enables justi�cation of performed changes

and undoing them at user's request. If the output of SemCaDo causal

discovery step is a partially directed graph, it is possible to restart the

cycle when there is su�cient budget to make further discoveries.

During the causal discovery process, all experimentation results should

be analyzed and interpreted in order to enrich domain ontology with new

causal discoveries as detailed in section 3.3.

4.4 Conclusion

In this chapter, we give the the main correspondences that we made be-

tween the BNs and the ontologies in order to propose a decisional method

for causal discovery and ontology evolution. We have also introduced the

notion of serendipity which will be very useful when setting the experimen-

tal design.

The whole of the next chapter will be devoted to the discussion of exper-

imental results that we obtained with both simulations and application on

real system. Appendix C provides some of the implementation tricks that

we used when developing and testing the SemCaDo approach.
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A major challenge in computational biology is to uncover gene interactions

and key biological features of cellular systems.

Nir Friedman (2001)
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Chapter 5

Experimental Study

5.1 Introduction

The experimental study presented within this chapter covers two main

levels, which are separate but related. First, we proceed through simulated

causal networks and ontologies to demonstrate the e�ciency of SemCaDo.

Then we investigated the application of our approach to the problem of

identifying the best experimental design when learning the gene regulatory

circuitry from Saccharomyces cerevisiae cell cycle microarray data and Gene

Ontology. In the remainder, we mainly focus on the application of SemCaDo

to one biological task but this does not exclude, where appropriate, its ap-

plication to other challenging modeling problems. All the implementations

have been written in C++ using the API ProbT 1.

5.2 Validation through preliminary simulations

While it is important to study our algorithm's e�ectiveness in achieving its

goal, it is also important to compare its performance with other algorithms

designed for the same purpose. In our context, the MyCaDo algorithm

is well suited for an experimental performance comparison with SemCaDo

since it proposes a controlled experimentation's design and shares the same

assumptions about the causal discovery process. A standard methodology

1http://www.probayes.com/
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Figure 5.1: The semantic gain given the number of experiments using My-

CaDo and SemCaDo on relatively small graphs (a) and bigger ones (b)

for evaluating the SemCaDo (resp. MyCaDo) performance is to proceed

through simulations and evaluate the two algorithms in di�erent test condi-

tions.

5.2.1 Structure learning

First, a set of syntectic 50 and 200 node graphs are generated randomly

from a uniform distribution. A DAG-to-CPDAG algorithm [19] is then ap-

plied on those CBNs in order to simulate the result of a structure learning

algorithm working with a perfect in�nite dataset. Then, for each simulated

graph, we automatically generate a corresponding concept hierarchy after

traversing the entire graph using the Depth-First Search algorithm. This

method allows the obtention of a concept hierarchy with representative dis-

tances between the leaves according to the topological order. Finally, we use

the initial causal graph to integrate a varying percentage (10% to 40%) of

the causal relations in the ontology.

5.2.2 Causal discovery process

As we do not dispose of a real system to intervene upon, we decide to sim-

ulate the experimentations directly in the previously generated CBNs as
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in [77] and choose equal measures of importance when calculating the ex-

pected utilities (i.e. α=β=1). We also assume equal costs of intervention

(cost(AXi)=1) and measurement (cost(MXi)= #Nei(Xi)) and proceed us-

ing the MaxiMin decision criterion.

To perform the experimentation on the best node, we have to mutilate

(i.e. disconnect) the node Xbest from Pa(Xbest) in the DAG such that the

manipulated variable become totally independent of its parents in the post-

intervention distribution [87]. We force Xbest to take on random values and

then sample the post-intervention distribution to get our experimental data.

When determining if the experimented variable is the cause or the e�ect of

its neighboring variables, we �x the signi�cance level to 5%.

Another point to consider in our experimental study concerns the calcu-

lation of the semantic gain. In fact, after each SemCaDo (resp. MyCaDo)

iteration, we measure the sum of Rada's distances [92] relative to the new

directed edges in the graph and update a semantic gain:

Sem_gain(Xi) =
∑

Xj∈IN(Dir_inf(Xi)), Xk∈OUT (Dir_inf(Xi))

distRada(Xj , Xk)

(5.1)

where: Dir_inf(Xi) represents the set of edges directly oriented or in-

ferred after performing an experiment on Xi.

IN represents the set of Dir_inf() edge sources.

OUT represents the set of Dir_inf() edge destinations.

In both strategies, the two corresponding curves are increasing in, mean-

ing that the higher is the number of experimented variables, the higher is

the value of the semantic gain. Nevertheless the more the curve is increasing

faster, the more the approach is converging to the best and most impressive

experiments.

Figure 5.1 shows that, during the experimentation process, our approach

comfortably outperforms the MyCaDo algorithm in term of semantic gain.

This is essentially due to the initial causal knowledge integration and the
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causal discovery strategy when performing the experimentations. However

the two curves reach a common semantic maxima when obtaining a fully

directed graph. This is always the case since without using the same ex-

perimentations, the two strategies orient the same number of edges when

�nishing the experimental process. In this regard we should remember that

we are approaching a decision problem which is subject to the experimen-

tation cost and the budget allocation. Taking into account this constraint,

the domination of SemCaDo will be extremely bene�cial when the number

of experiments is limited.

5.2.3 Ontology evolution

Finally, we have to reuse all these discovered causal edges to make the evo-

lution of the joint ontology. However, this latter step is not so signi�cant

since we are generating the ontology from the simulated graphs.

5.3 Validation on S. cerevisiae cell cycle microarray

data

Discovering and modeling gene regulatory circuitry from both observational

and experimental data is one of the most challenging problems facing biol-

ogists today. This is essentially due to the non-negligible number, duration

and cost of experiments and the lack of facilities for conducting genetic 2

(resp. environmental 3) perturbations. In such circumstances, it would be

far better to propose an experimental design to cope with the lack of data

and provide maximal expected information. In this context, we propose to

validate our approach using Saccharomyces cerevisiae cell cycle microarray

data [97] and the corresponding Gene Ontology annotations.

2Gene knockout (deletion of the gene), or overexpression (setting the expression level

higher than its usual level).
3change in one or more non-genetic factors, such as a change in environment, nutrition,

pressure or temperature.
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5.3.1 Molecular biology basics

The basic unit of structure and function in all self-replicating organisms is

the cell. All biological information required for the functioning and devel-

opment of a cell is encoded in the Deoxyribonucleic acid (DNA) sequence

that is passed on from one cell to another in inheritance. The DNA sequence

involves millions or even billions of nucleotide bases. These bases: Adenine

(A), Guanine (G), Cytosine (C) and Thymine (T) are arranged in a speci�c

order according to our genetic ancestry. Small fragments of DNA sequence

encode the genes of an organism. Expression of the genes leads to formation

of proteins. The synthesis procedure of most cellular organisms follows the

central dogma: DNA → RNA → Protein product. The nucleotide sequence

in a DNA (A, T, C, G) is �rst transcribed into another type of polymer

called messenger Ribonucleic Acid (mRNA). mRNA is much smaller yet less

stable than DNA. The nucleobase thymine (T) in a DNA is substituted by

uracil (U) in an mRNA. After the transcription phase, mRNAs are spliced

by removing the introns (i.e. sequences which do not encode proteins) and

ligating together the separated exons (i.e. sequences encoding the same pro-

tein). A spliced mRNA is then translated into a protein by ribosome and

transfer RNAs (tRNAs). The process of gene expression is used by all known

life-eukaryotes (multicellular organisms) and prokaryote (bacteria) to gener-

ate the macromolecular machinery for life. The Human Genome project [64],

one of the primary goals of which was to identify all protein coding genes, has

estimated and identi�ed approximately 20,000-25,000 genes in human DNA.

Since the completion of the project, we have witnessed the emergence of var-

ious high-throughput technologies (such as DNA microarrays [14], protein

arrays [73]). These technologies produce measurement data concerning the

expression (or activity) of all genes in a genome simultaneously. Analysis of

such measurement data requires the use of e�cient and robust computational

tools. The expected output from microarray analysis is a set of genes which

are co or di�erentially expressed. Biological interpretation of such outcome

is then necessary to investigate the mechanisms that cause such expression

and improve our understanding of gene regulation.
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5.3.2 Data description

The experimentation using real biological systems requires the use of gene-

expression microarray data, the Gene Ontology and causal pathway reposi-

tories.

� Gene expression dataset: We consider the Yeast Saccharomyces cere-

visiae cell cycle microarray data [97] since the Yeast genome is rela-

tively small compared to more complex eukaryote organisms and highly

annotated with Gene Ontology functions. In this dataset, the mRNA

concentrations of nearly 6178 genes were measured with three indepen-

dent �uorescence measurement methods. Overall, the data set contains

73 sampling points for all genes. Each of them is measured in di�erent

phases of the yeast cell cycle. According to [97], about 800 of these

genes have been reported with varying transcripts over the cell cycle

stages.

� Gene ontology: Most of the Saccharomyces cerevisiae genes are an-

notated with speci�c biological functions from the Gene Ontology 4

(GO), which remains the most popular initiative aiming at providing

a structured, precisely de�ned, and dynamic controlled vocabulary to

facilitate the description of gene roles and gene product attributes in

the eukaryotic genome. The GO structure is in the form of a rooted

DAG where nearly 30000 concepts are formalized into three related

(sub-)ontologies, referred to as molecular function, cellular component

and biological process (See Figure 5.2). According to the GO consor-

tium, these GO domains represent three separate ontologies which are

unrelated by a common parent node.

The GO concepts are given a unique ID number in the form of GO:N

(where N is a natural number) to identify and characterize some biolog-

ical properties. Generally, the directed edges between concept nodes

represent either subsumption links ("is-a") or composition relation-

ships ("part of"). Nevertheless, another relationship can be found in

the GO where one process (resp. function) directly a�ects another pro-

4http://www.geneontology.org/
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Figure 5.2: Screen capture from the GO

cess (resp. function), i.e. the former regulates the latter. For exam-

ple, as it is depicted in Figure 5.2, "regulation of pigmentation during

development" (GO:0048070) regulates "pigmentation during develop-

ment" (GO:0048066). This "regulates" relationship especially covers

processes, enzyme activities and molecular functions. So its semantics

is quite di�erent from the gene regulatory relations (i.e. �ne-grained

relations) that we try to discover using our approach. This GO struc-

ture (concepts + relationships) re�ects the current representation of

biological knowledge as well as serving as a guide for classifying new

data. In Figure 5.3, we show an example of XML schema that identi�es

the GO:0000079 term. The set of tags indicate basic information such

as: common name, corresponding sub-ontology, de�nition, synonym,

derived is-a relations (resp. part-of relations) and derived regulatory

relations.

According to the existing biomedical literature's assertions, the gene

products may be annotated to as many GO concepts as needed, at the

most speci�c levels possible. For instance, as shown in Figure 5.4, the

92



Figure 5.3: An example of GO term identi�cation in XML format.

gene CLB6 is involved in:

1. the regulation of cyclin-dependent protein kinase activity (GO:0000079),

2. the regulation of S phase of mitotic cell cycle (GO:0007090),

3. the G1/S transition of mitotic cell cycle (GO:0000082).
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Figure 5.4: CLB6 multiple localizations in GO

However, many other genes are not annotated at a particular level

of the GO due to the lack of available biological information or GO

incompleteness. Such a classi�cation will provide a higher-level un-
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Figure 5.5: Semantic distance between two annotated genes in GO.

derstanding of how tissue-speci�c genes are regulated and biologically

expressed.

Given two other genes NPL3 and UFE1 which are respectively anno-

tated with the cell nucleus (GO:0005634) and the SNARE complex

(GO:0031201), we show in Figure 5.5 the multiple paths that can be

found between them. Using our simple path based method, we set the

cell part term (colored in red) as the mscs of the two studied concepts.

If there are multiple paths between any two concepts and their mscs,

only the shortest one is considered. The red dashed lines indicate in

our case the optimal path according to the GO structure. We note

that the best GO-distance between two genes can be equal to 0 when

both of them are annotated to the same GO concept.

� Causal pathway repositories:

However, since the GO structure consists essentially of hierarchical

classi�cation, we will be unable to extract or enrich the GO with reg-

ulatory pathways. An alternative way to identify causal relations is to

use the so-called Biochemical Pathway Repositories where regulatory
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Figure 5.6: Screen capture of the top DRYGIN regulatory pathways involving

the gene CLB6.

information could be available. Fueled by the availability of experi-

mentally determined pairwise gene interactions, di�erent datasets for

delineating the biochemical pathways and reactions have been merged.

Most of these scienti�c databases such as, Data Repository of Yeast

Genetic Interactions (DRYGIN) 5 [60], enable a convenient access to

genes in terms of the biological pathways in which they intervene [4]

(See the DRYGIN screen capture for the top regulatory pathways in-

volving the gene CLB6 in Figure 5.6).

5.3.3 Experimental design

Table 5.1: The set of all possible correspondences between the GRN and the

Gene Ontology.

Gene Regulatory Network Gene Ontology

Nodes Concept instances (i.e. GO annotations)

Causal dependencies Semantic causal relations

Causal inference Logic rule reasoning

5http://drygin.ccbr.utoronto.ca/
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When applying our approach in the context of biological �eld, we were

forced to change some of the initial CBN-ontology correspondences that we

provide in subsection 4.2.2. According to Table 5.1, the GRN nodes which

correspond to genes will be assigned to the most speci�c level of the Gene

Ontology using term annotations (i.e. instances). Then there would no

longer be any need to use the observational and experimental data since we

dispose of an appropriate causal model based on we simulate experimental

treatments. Finally, the causal inference in the GRN will be assigned to the

GO logic rule reasoning6.

To make a meaningful performance comparison between MyCaDo and

SemCaDo algorithms, we will detail the three main blocs of our experimental

strategy (refer to �gure 4.2 in sub-section 4.3 to follow the cycle in more

details):

� Structure learning: Our alternative way for implementing the MyCaDo

(resp. SemCaDo) approaches is to use the Gene Regulatory Network

(GRN) of [40] as a starting causal model and the GO structure as

a source for calculating semantic distances between genes. From a

modeling standpoint, a GRN can be thought as a DAG G = {V, E}
where V is the set of n gene nodes (resp. protein concentrations and

other experimental conditions) and E is the set of directed edges among
the nodes belonging to V. Such models are well suited for representing

cellular processes (i.e. metabolism, signal transduction and transport).

Using the Yeast Saccharomyces cerevisiae cell cycle microarray data

[97], [40] proved that they were able to extract a �ner structure of

regulatory interactions between genes. Their heuristic approach was

aimed at focusing on a pair of features that are common to high-scoring

networks. The �rst type of features they identi�ed is the high con�-

dence Markov relations which assumes that a gene interaction exists

between two genes if no variable in the model mediates the depen-

dence between them. The second feature is synonymous of causality

in the model since, out of all 800 genes they treat, only a few seem

to dominate the order (i.e., appear before many other genes) in the

6refer to Appendix B for additional details.
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Figure 5.7: Graphical representation of the entire GRN [40] employed for

the experimentations

overall networks of a given equivalence class . The intuition is that

precedence over the ordering is indicative of potential cause-to-e�ect

relationships on the cell-cycle process. Using the Tulip Software [3], a

screen capture of the considered causal graph is shown in Figure 5.7.

The main reason for choosing the GRN of [40] is that it is free from

assumptions and don't reuse any prior knowledge. We also note that in-

teractions between genes other than causal relationships (i.e. directed

edges with su�ciently high con�dence in the order between genes)

are not considered. Using this causal model, we apply the DAG-to-

CPDAG algorithm [19] to extract the essential graph where from a

total of 650 arcs we found 250 which become undirected. As a check

of the e�ect of prior knowledge, we also consider three other cases in
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which we orient 10 % (resp. 20 and 30 %) of these undirected edges

before starting the SemCaDo causal discovery.

� Causal discovery process: When calculating the SemCaDo utilities, we

were also forced to add a "fake" term (GO root) as a parent of the

three existing root nodes in the GO (i.e. molecular function, cellular

component and biological process) to perform semantic distance calcu-

lations on one unique ontology. This GO root will be then associated

with a dozen of S. cerevisiae gene products which are not yet anno-

tated with any GO term. The rest of the experimental process remains

unchanged from that used in subsection 5.2.

� Pathway repository evolution: Although, to make the experimental de-

sign more realistic in the context of biological resource management,

we need to modify the third phase of our algorithm by updating the bi-

ological pathway datasets (e.g. DRYGIN repository) instead of making

the GO enrichment. Metabolic pathways in such databases are compu-

tationally predicted using automated literature mining and then man-

ually reviewed to ensure higher accuracy. This new dimension ensures

optimal reuse of causal discoveries obtained from experimentations by

submitting missing gene pairwise interactions. Unfortunately, since we

are not intervening on a real system, we are unable to provide the

dataset curators with any suggestions or corrections. We therefore

content ourselves with a brief outline of the principle.

5.3.4 Results & interpretation

The corresponding results are reported in Figure 5.8 under four di�erent test

conditions. Each graphic displayed the evolution of the semantic cumulus

along the experimental process for both MyCaDo and SemCaDo. This way of

measuring the performance of the two methods is quite original since profes-

sionals from the biotechnology �eld often assume that functionally proximal

genes or proteins are likely to interact with each other [82]. Here we would

like to propose a di�erent approach whose aim is to promote the experimen-

tation on the more distant genes according to the GO. Table 5.2 can be used
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Figure 5.8: Comparison between MyCaDo and SemCaDo without any prior

knowledge (a) and after integrating 10 %, resp. 20 and 30% (b, c, d).

in conjunction with Figure 5.8 to obtain additional statistical information

relative to the gain in cumulus margin, the di�erence between the two curves

areas and the number experiments that we saved when applying SemCaDo.

First of all, we apply both MyCaDo and SemCaDo without any prior

knowledge (See Figure 5.8.a). The di�erence in areas between the two curves

was about 13% and around one hundred experiments have been realized with

the two algorithms. When we integrate 10% of the initial causal relations

before starting the learning process (Figure 5.8.b) , we earned a cumulus

margin of about 24% from the beginning. The di�erence in areas pass to

38% and we save nearly one dozen of experiments. This increasing trend

continues when incorporating 20% of the initial causal relations (Figure 5.8.c)
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to obtain 38% as a cumulus margin, 44% as total di�erence in areas between

the two curves and 24 less experiments. We �nish with the integration of

30% of the initial causal relations (Figure 5.8.d) to reach a cumulus margin

of about 45%, a total di�erence in areas between the two curves exceeding

the 48% and save more than 30 unnecessary experiments.

Table 5.2: Statistical analysis of Figure 5.8.

Causal integration Cumulus gain Di�. curves areas Nb. of saved experiments

0% 0% 13% 0

10% 24% 38% 12

20% 38% 44% 24

30% 45% 48% 30

From all those graphics, it is obvious that the integration of causal prior

knowledge in the pathway modeling have greatly increased the reliability of

SemCaDo in the GRN construction. A lot of experiments and e�orts have

been saved compared to MyCaDo and the most informative interventions

have been reported earlier in the experimental process. This allows a sig-

ni�cant gain in term of relevant experimentations especially when there is

not enough budgets to cover all the required interventions. Our belief is

that SemCaDo top-ranked genes can be targets for medical treatment of

genetic diseases and opportunities to obtain further knowledge about the

biological mechanisms that underlie their gene expression. Potentially, this

gives us scope to explore virgin areas when developing our knowledge-base

on pathway modeling.

5.4 Conclusion

The experimental results, provided in this chapter, show that the proposed

algorithm achieves better performance than MyCaDo, its competing algo-

rithm. The proposed approach was tested through simulations and then

validated on a real system (S. Cerevisiae cell cycle microarray data) using

the Gene Ontology to make gene pathway discoveries. Nevertheless, the
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main problem is that there is no commonly accepted benchmark to help us

to go further towards developing experimental tests that can lead to more

rigorous results.
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Chapter 6

Conclusion

6.1 Summary

With the rising need to reuse the existing knowledge when learning CBNs,

the ontologies can supply valuable semantic information to make further

interesting discoveries with the minimum expected cost and e�ort.

In this thesis, we propose a cyclic approach in which we make use of

the ontology in an interchangeable way. The �rst direction involves the

integration of semantic knowledge to anticipate the optimal choice of ex-

perimentations via a serendipitous causal discovery strategy. The second

complementary direction concerns an enrichment process by which it will be

possible to reuse these causal discoveries, support the evolving character of

the semantic background and make an ontology evolution.

To our knowledge, ours is the �rst attempt to design a two-way approach

for coupling both probabilistic causal networks learning and ontological back-

ground.

Compared to MyCaDo, the experimental results obtained from di�erent

model simulations are very promising. The SemCaDo performance domina-

tion is reinforced through the validation on S. cerevisiae cell cycle microarray

data to learn Gene Regulatory pathways using the Gene Ontology.
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6.2 Advantages

Our new framework has several advantages over existing experimental design

techniques. First, the idea of reusing ontological components can help to

tackle real world learning problems.

So, instead of repeating the e�ort that have already been spent elsewhere

to capture and create the same causal knowledge, one may reuse an existing

domain ontology or some parts of it and make a considerable saving in term

of time and cost. With such approach, we can also increase the reliability of

the domain ontology by giving indication that it is continuously revised and

evaluated through our ontology evolution process.

Moreover, the serendipitous aspect when choosing the experimentations

to perform is another advantage of the proposed strategy. This allows us to

discover virgin areas and move away from what it is usually proposed by the

research community.

6.3 Applications

The results of this thesis are relevant to all communities dealing with Causal

Bayesian Networks and disposing of a corresponding domain ontology. In

chapter 5, we conducted an experimental study in the biological �eld and

tried to learn causal regulatory pathways using the Gene Ontology. We can

imagine innumerable uses for SemCaDo, some more obvious than others. We

therefore outline potentially fruitful areas that can adopt a similar serendip-

itous experimental design.

� Chemistry: mineral processing, experimenting on acids and bases.

� Physics: potential application in the engineering sectors,

� Psychology: there is a real need to underly causes of behavior by study-

ing humans and animals.

� Ecology: reveal the relationships between the organisms and the envi-

ronmental factors.
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� Marketing: can help marketing executives analyze how the various

components of a marketing campaign in�uence consumer behavior.

� Health care: carefully design series of experiments to optimize medical

devices and drug formulations.

6.4 Limitations

Despite our multiple attempts to take into account all interactions that can

occur between the CBN and domain ontology, we are still making strong

assumptions when designing our SemCaDo approach. For example, when

adopting the causal su�ciency assumption, we eliminate a number of latent

variables that can be part of the model to pick up. Those hidden vari-

ables can be of particular relevance to establish useful models for achieving

a correct causal inference and predicting the e�ects of some external criteria.

The second limitation occurs in the ontology evolution process because

of the priority given to the ontology axioms. So in each SemCaDo iteration,

we are obligated to retain only causal relations which ensure the seman-

tic consistency with the domain ontology and to throw away the potential

opportunities to make the ontology revolution.

Finally, when dealing with domain ontology, a unique concept-attribute

is considered when investigating cause-to-e�ect relationships. Unfortunately,

with such strategy, we ignore many other concept-attributes that can be

fruitfully exploited in our approach.

6.5 Issues for Future Research

Our framework o�ers several opportunities for future research, among them

the expansion for better interactions with the ontology axioms during the

causal discovery process, the use of other types of semantic relations and the

integration of probabilities in OWL ontologies.

� Ontology revolution:
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When making the ontology revolution, we accept that some of the

previous ontology axioms become inconsistent with the new ontology

version. Compared to ontology evolution, the scienti�c researches that

treat the ontology revolution are quite rare and until now the technical

speci�cations are not enough well de�ned. Therefore, such research

issue can be of great interest to better investigate the possible ways to

adapt ontology axioms according to the causal discoveries made during

the learning process.

� Generalization to other types of semantic relations:

Another important area of investigation concerns the generalization of

the semantic causal relations. Let us remember that we adopt causal

relations in the ontology when we detect some form of cause-to-e�ect

relationships between shared concept-attributes. Topics for discussions

will include how to generalize �ne-grained causal relations to more

generic forms of semantic relations between concepts.

Moreover, the restriction to only taxonomic and semantic causal rela-

tions can be also relaxed to include other types of relationships. This

requires more speci�city in term of CBN-ontology correspondences and

a detailed study to justify why and how they can contribute to the

causal discovery process.

� Probabilistic ontologies:

The next generation of knowledge-based systems needs to tap into large

domain-speci�c knowledge and combine various modeling formalisms.

Thus, the subsequent goal of coupling causal bayesian networks and

ontologies is to propose a derived formalism combining the power of

probabilistic (resp. causal) reasoning and ontology semantics. We can

expand our interaction model to simulate more sophisticated coordi-

nation in order to obtain real probabilistic ontologies augmented with

a powerful inference mechanism.
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Appendix A

The OWL (Web Ontology Language) is a newly recommended semantic lan-

guage for web resources of W3C (World Wide Web Consortium). The pur-

pose of this language is to present information by categories of the objects

and their interrelationships. As shown on Figure 6.1, OWL extends and sup-

ports earlier W3C standard, such as XML, XML Schema, RDF and RDF

Schema, providing richer vocabulary and modeling primitives.

The main concepts available in OWL are:

� Class: A class de�nes a group of individuals that belong together

because they share some properties;

� rdfs:subClassOf : Class hierarchies may be created by making one or

more statements that a class is a subclass of another class;

� rdf:Property: Properties can be used to state relationships between

individuals or from individuals to data values;

Figure 6.1: OWL in the semantic web architecture
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� rdfs:subPropertyOf : Property hierarchies may be created by mak-

ing one or more statements that a property is a subproperty of one or

more other properties;

� rdfs:domain: A domain of a property limits the individuals to which

the property can be applied;

� rdfs:range: The range of a property limits the individuals that the

property may have as its value; and

� Individual: Individuals are instances of classes, and properties may

be used to relate one individual to another.

OWL development together with many tools for ontology construction

(Protégé 1, OntoStudio 2, etc) made ontologies quite widespread and the

number of available ontologies is fastly growing. OWL provides three in-

creasingly expressive sub-languages designed for use by speci�c communities

of implementers and users:

� a) OWL Lite (is least expressive, suitable for simple class hierarchy

and simple constraints and useful for quick migration path for thesauri

and other taxonomies),

� b) OWL DL (is more expressive, retains Computational Completeness

that is, all conclusions are guaranteed to be computable and has Decid-

ability that is, all computations will �nish in �nite time, and is based

on Description Logic),

� c) OWL Full (is most expressive and has syntactically freedom of RDF

and has no computational guarantees but allows an ontology to aug-

ment the meaning of the pre-de�ned (RDF or OWL) vocabulary and

is not suitable for auto-reasoning).

Simultaneously, the set of OWL ontologies represent a knowledge base

for OWL reasoner. A reasoner can be de�ned as a system that allows the

1http://protege.stanford.edu/
2http://www.ontoprise.de/en/home/products/ontostudio/
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inference of implicitly knowledge from the knowledge that is explicitly con-

tained in a knowledge base. There are a wide range of OWL reasoners in

modern knowledge-based systems. Each version has its own functional and

non-functional trade-o�s including computational complexity, semantic ex-

pressiveness, and processor load. There are a number of semantic reasoners

such as: Pellet 3, RacerPro 4 and Fact++ 5.

3http://clarkparsia.com/pellet/
4http://www.racer-systems.com/
5http://code.google.com/p/factplusplus/
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Appendix B

Inference is an important aspect of ontology driven applications which has

been repeatedly mentioned in the previous chapters when describing the

SemCaDo approach. In what follows we give the basic reasoning rules of the

GO relations:

� Reasoning over is-a:

• is-a ◦ is-a v is-a

The is-a relation is transitive, which means that if A is a B, and

B is a C, then we can infer that A is a C.

� Reasoning over part-of :

• part-of ◦ part-of v part-of

Like is-a, part-of is transitive: if A is part-of B, and B is part-of

C then A is part-of C

• part-of ◦ is-a v part-of
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If a part of relation is followed by an is a relation, it is equivalent

to a part of relation; if A is part of B, and B is a C, we can infer

that A is part of C.

• is-a ◦ part-of v part-of

If the order of the relationships is reversed, the result is the same;

if A is a B, and B is part of C, A is part of C.

� Reasoning over regulates:

• is-a ◦ regulates v regulates

If A is a B, and B regulates C, we can infer that A regulates C.

This rule is true for positively regulates and negatively regulates.

• regulates ◦ is-a v regulates

If we switch the relations around, so that A is a B, and B regulates

C, we can again infer that A regulates C. This rule also holds true

for the positively regulates and negatively regulates relations.

• regulates ◦ part-of v regulates

The GO also uses the rule that if B is part of C, any A that

regulates B also regulates C.
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Appendix C

SEMCADO implementation tricks

This Annexe gives additional guidance and provides hands on useful im-

plementation tricks.

C.1) Divide & conquer: work on connected non directed compo-

nents

Figure 6.2: Graph decomposition

The major problem when computing utilities is that we need to know

the exact number of class equivalence elements. In order to avoid this

problem, we will adopt a graph decomposition strategy, which consists

on eliminating directed edges from the studied PDAG.

We opt for this solution since the instantiation of each undirected sub-

graph is totally independent of other substructures. This forms the
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basis for a divide-and-conquer method working on reduced graphs (i.e.

undirected components) and reducing temporal complexity.

Example 6.1. Figure 6.2 shows an example of graph decomposition.

In the initial graph, we have exactly 13 non-directed edges (edges in blue

color). This imply that we will have 213 or 8192 equivalent class mem-

bers to take into consideration while calculating SEMCADO utilities.

While deleting directed edges (red color), we pass from only one graph

to four reduced components without counting single node components.

In term of equivalent class members, we will obtain: 26 + 23 +23 +

2=64+8+8+2=82

As the learning process proceeds, we obtain more and more small-scale

substructures.

C.2) Using prior restrictions within independence-based learning

algorithms

The learning algorithms based on independence tests typically start

from a complete, undirected graph and delete recursively edges based

on conditional independence decisions given some subset of nodes.

Then they have to direct edges to form head-to-head patterns or v-

structures (triplets of nodes x, y, z such that x and y are not adjacent

and the arcs x → z and y → z exist).

Both activities are guided by the results of χ2 independence test ap-

plied to the available data. This yields an undirected graph which can

then be partially directed and further extended to represent the under-

lying DAG.

For instance, when using PC algorithm [98], we �rst eliminate as many

edges as we can, and after we give direction to some of the non-removed

edges by forming v-structures. Finally, several additional edges may be

directed by using PC rules.
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Figure 6.3: Comparison between using PC algorithm without (resp. with)

prior restrictions

In our context, a simple method to integrate the set of presence re-

strictions is to �x them from the beginning in the complete undirected

graph and proceed the independence test calculations. In �gure 6.3, we

show the di�erent PC iterations when proceeding without (resp. with)

prior restrictions.

The principle advantage when integrating presence restrictions is to

reduce the size of the sets of nodes which are candidate to form the

separating sets employed by the χ2 independence tests. This technique
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reduces considerably the exponential time needed to return the repre-

sentative structure.

C.3) Principle programs
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Algorithm 2 Node Experimentation
Require: Original_CBN,Actual_BN,Node_exp,Obs.DataSet

1: Neigh_List ← Find_Non_Directed_Neighbors(Actual_BN,

Node_exp)

2: num_neighbors ← Neigh_List.size()

3: Exp.DataSet ← Generate_Exp_DataSet(Actual_BN, Node_exp, nb-

Samples, FileName)

4: Chi2Result ← Chi2_Adequation_Test(Obs.DataSet, Exp.DataSet)

5: if Chi2Result=false then

6:

7: for i = 0 to num_neighbors do

8: Add_edge(Node_exp, Neigh_List[i], Actual_BN)

9: end for

10: else

11:

12: for i = 0 to num_neighbors do

13: Add_edge(Neigh_List[i], Node_exp, Actual_BN)

14: end for

15: end if

16: return Actual_BN
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Algorithm 3 Maximax-MyCaDo
Require: Actual_BN,Node_X,Exp_Cost,Obs_Cost

1: nb_instantiations ← 0

2: nb_Poss_Struct_inst ← 0

3: Poss_Struct ← 0

4: All_Obs_Cost ← Obs_Cost[Node_X]

5: nbNodes ← getVariables(Actual_BN)

6: Neigh_List ← Find_Non_Directed_Neighbors(Actual_BN, Node_X)

7:

8: for i = 0 to Neigh_List.size() do

9: nb_instantiations ← nb_instantiations × 2

10: All_Obs_Cost ← Obs_Cost[Neigh_List[i]]

11: end for

12: Mat_Inst ← create_mat_instantiations(Neigh_List)

13:

14: for i = 0 to nb_instantiations do

15: Poss_Struct_inst ← 0

16: Resulting_Network ← Add_edges_instantiation(Mat_Inst[i])

17: Non_Dir_EdgeList_before←Get_Non_Directed_EdgeList(Resulting_Network)

18: Resulting_Network ← Apply_PC_Rules(Resulting_Network)

19: Non_Dir_EdgeList_after←Get_Non_Directed_EdgeList(Resulting_Network)

20: Mat_Poss_Struct← create_mat_instantiations(Non_Dir_EdgeList_before)

21:

22: for i = 0 to Non_Dir_EdgeList_before.size() do

23: nb_Poss_Struct_inst ← nb_Poss_Struct_inst × 2

24: end for

25:

26: for i = 0 to nb_Poss_Struct_inst do

27: Resulting_Network ← Edge_Inf_Result(Actual_BN,

Mat_Poss_Struct)

28: Test_Verif ← V_structure_Test(Resulting_Network)

29: if Test_Verif=false then

30:

31: Poss_Struct_inst ← Poss_Struct_inst+1

32: Poss_Struct ← Poss_Struct+1

33: end if

34: end for

35: Inferred ← Non_Dir_EdgeList_after - Non_Dir_EdgeList_before

36: Inferred_List ← Inferred

37: end for

38: Utility ← (Neigh_List.size() + Max (Inferred_List)) / (Exp_Cost +

Obs_Cost)

39: return Utility
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Algorithm 4 Maximax-SemCaDo
Require: Actual_BN,Node_X,Exp_Cost,Obs_Cost, Ontology

1: Neigh_List ← Find_Non_Directed_Neighbors(Actual_BN, Node_X)

2: Neigh_List ← Node_X

3: All_Subsumers ← Identify_Direct_Subsumers(Neigh_List, Ontology)

4: MSCS ← Identify_MSCS(All_Subsumers, Ontology)

5: Sem_Inertia←Get_Semantical_Inertia(Neigh_List, MSCS, Ontology)

6:

7: nb_instantiations ← 0

8: nb_Poss_Struct_inst ← 0

9: Poss_Struct ← 0

10: All_Obs_Cost ← Obs_Cost[Node_X]

11: nbNodes ← getVariables(Actual_BN)

12: Neigh_List ← Find_Non_Directed_Neighbors(Actual_BN, Node_X)

13:

14: for i = 0 to Neigh_List.size() do

15: nb_instantiations ← nb_instantiations × 2

16: All_Obs_Cost ← Obs_Cost[Neigh_List[i]]

17: end for

18: Mat_Inst ← create_mat_instantiations(Neigh_List)

19:

20: for i = 0 to nb_instantiations do

21: { MaxiMax-MyCaDo instructions from 15 to 36 }
22: Inf_Nodes ← Get_Nodes(Inferred_List)

23: Inf_All_Subsumers ← Identify_Direct_Subsumers(Inf_Nodes, On-

tology)

24: Inf_MSCS ← Identify_MSCS(Inf_All_Subsumers, Ontology)

25: Inf_Gain ← Get_Semantical_Inertia(Inf_Nodes, Inf_MSCS, Ontol-

ogy)

26: end for

27: Utility← (Sem_Inertia + Max (Inf_Gain)) / (Exp_Cost + Obs_Cost)

28: return Utility
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Algorithm 5 Maximin-MyCaDo
Require: Actual_BN,Node_X,Exp_Cost,Obs_Cost

1: nb_instantiations ← 0

2: nb_Poss_Struct_inst ← 0

3: Poss_Struct ← 0

4: All_Obs_Cost ← Obs_Cost[Node_X]

5: nbNodes ← getVariables(Actual_BN)

6: Neigh_List ← Find_Non_Directed_Neighbors(Actual_BN, Node_X)

7:

8: for i = 0 to Neigh_List.size() do

9: nb_instantiations ← nb_instantiations × 2

10: All_Obs_Cost ← Obs_Cost[Neigh_List[i]]

11: end for

12: Mat_Inst ← create_mat_instantiations(Neigh_List)

13:

14: for i = 0 to nb_instantiations do

15: Poss_Struct_inst ← 0

16: Resulting_Network ← Add_edges_instantiation(Mat_Inst[i])

17: Non_Dir_EdgeList_before←Get_Non_Directed_EdgeList(Resulting_Network)

18: Resulting_Network ← Apply_PC_Rules(Resulting_Network)

19: Non_Dir_EdgeList_after←Get_Non_Directed_EdgeList(Resulting_Network)

20: Mat_Poss_Struct← create_mat_instantiations(Non_Dir_EdgeList_before)

21:

22: for i = 0 to Non_Dir_EdgeList_before.size() do

23: nb_Poss_Struct_inst ← nb_Poss_Struct_inst × 2

24: end for

25:

26: for i = 0 to nb_Poss_Struct_inst do

27: Resulting_Network ← Edge_Inf_Result(Actual_BN,

Mat_Poss_Struct)

28: Test_Verif ← V_structure_Test(Resulting_Network)

29: if Test_Verif=false then

30:

31: Poss_Struct_inst ← Poss_Struct_inst+1

32: Poss_Struct ← Poss_Struct+1

33: end if

34: end for

35: Inferred ← Non_Dir_EdgeList_after - Non_Dir_EdgeList_before

36: Inferred_List ← Inferred

37: end for

38: Utility ← (Neigh_List.size() + Min (Inferred_List)) / (Exp_Cost +

Obs_Cost)

39: return Utility
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Algorithm 6 Maximin-SemCaDo
Require: Actual_BN,Node_X,Exp_Cost,Obs_Cost, Ontology

1: Neigh_List ← Find_Non_Directed_Neighbors(Actual_BN, Node_X)

2: Neigh_List ← Node_X

3: All_Subsumers ← Identify_Direct_Subsumers(Neigh_List, Ontology)

4: MSCS ← Identify_MSCS(All_Subsumers, Ontology)

5: Sem_Inertia←Get_Semantical_Inertia(Neigh_List, MSCS, Ontology)

6:

7: nb_instantiations ← 0

8: nb_Poss_Struct_inst ← 0

9: Poss_Struct ← 0

10: All_Obs_Cost ← Obs_Cost[Node_X]

11: nbNodes ← getVariables(Actual_BN)

12: Neigh_List ← Find_Non_Directed_Neighbors(Actual_BN, Node_X)

13:

14: for i = 0 to Neigh_List.size() do

15: nb_instantiations ← nb_instantiations × 2

16: All_Obs_Cost ← Obs_Cost[Neigh_List[i]]

17: end for

18: Mat_Inst ← create_mat_instantiations(Neigh_List)

19:

20: for i = 0 to nb_instantiations do

21: { MaxiMin-MyCaDo instructions from 15 to 36 }
22: Inf_Nodes ← Get_Nodes(Inferred_List)

23: Inf_All_Subsumers ← Identify_Direct_Subsumers(Inf_Nodes, On-

tology)

24: Inf_MSCS ← Identify_MSCS(Inf_All_Subsumers, Ontology)

25: Inf_Gain ← Get_Semantical_Inertia(Inf_Nodes, Inf_MSCS, Ontol-

ogy)

26: end for

27: Utility← (Sem_Inertia + Min (Inf_Gain)) / (Exp_Cost + Obs_Cost)

28: return Utility
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Algorithm 7 Expected-Utility-MyCaDo
Require: Actual_BN,Node_X,Exp_Cost,Obs_Cost

1: nb_instantiations ← 0

2: nb_Poss_Struct_inst ← 0

3: Poss_Struct ← 0

4: All_Obs_Cost ← Obs_Cost[Node_X]

5: nbNodes ← getVariables(Actual_BN)

6: Neigh_List ← Find_Non_Directed_Neighbors(Actual_BN, Node_X)

7:

8: for i = 0 to Neigh_List.size() do

9: nb_instantiations ← nb_instantiations × 2

10: All_Obs_Cost ← Obs_Cost[Neigh_List[i]]

11: end for

12: Mat_Inst ← create_mat_instantiations(Neigh_List)

13:

14: for i = 0 to nb_instantiations do

15: Poss_Struct_inst ← 0

16: Resulting_Network ← Add_edges_instantiation(Mat_Inst[i])

17: Non_Dir_EdgeList_before←Get_Non_Directed_EdgeList(Resulting_Network)

18: Resulting_Network ← Apply_PC_Rules(Resulting_Network)

19: Non_Dir_EdgeList_after←Get_Non_Directed_EdgeList(Resulting_Network)

20: Mat_Poss_Struct← create_mat_instantiations(Non_Dir_EdgeList_before)

21:

22: for i = 0 to Non_Dir_EdgeList_before.size() do

23: nb_Poss_Struct_inst ← nb_Poss_Struct_inst × 2

24: end for

25:

26: for i = 0 to nb_Poss_Struct_inst do

27: Resulting_Network ← Edge_Inf_Result(Actual_BN,

Mat_Poss_Struct)

28: Test_Verif ← V_structure_Test(Resulting_Network)

29: if Test_Verif=false then

30:

31: Poss_Struct_inst ← Poss_Struct_inst+1

32: Poss_Struct ← Poss_Struct+1

33: end if

34: end for

35: Inferred ← Non_Dir_EdgeList_after - Non_Dir_EdgeList_before

36: Inferred_List ← Inferred

37: end for

38: Inf_Inst←Inf_Inst+ (Inferred × Poss_Struct_inst/Poss_Struct)

39: Utility ← (Neigh_List.size() + Inf_Inst) / (Exp_Cost + Obs_Cost)

40: return Utility
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Algorithm 8 Expected-Utility-SemCaDo
Require: Actual_BN,Node_X,Exp_Cost,Obs_Cost, Ontology

1: Neigh_List ← Find_Non_Directed_Neighbors(Actual_BN, Node_X)

2: Neigh_List ← Node_X

3: All_Subsumers ← Identify_Direct_Subsumers(Neigh_List, Ontology)

4: MSCS ← Identify_MSCS(All_Subsumers, Ontology)

5: Sem_Inertia←Get_Semantical_Inertia(Neigh_List, MSCS, Ontology)

6:

7: nb_instantiations ← 0

8: nb_Poss_Struct_inst ← 0

9: Poss_Struct ← 0

10: All_Obs_Cost ← Obs_Cost[Node_X]

11: nbNodes ← getVariables(Actual_BN)

12: Neigh_List ← Find_Non_Directed_Neighbors(Actual_BN, Node_X)

13:

14: for i = 0 to Neigh_List.size() do

15: nb_instantiations ← nb_instantiations × 2

16: All_Obs_Cost ← Obs_Cost[Neigh_List[i]]

17: end for

18: Mat_Inst ← create_mat_instantiations(Neigh_List)

19:

20: for i = 0 to nb_instantiations do

21: { Expected-Utility-MyCaDo instructions from 15 to 36 }
22: Inf_Nodes ← Get_Nodes(Inferred_List)

23: Inf_All_Subsumers ← Identify_Direct_Subsumers(Inf_Nodes, On-

tology)

24: Inf_MSCS ← Identify_MSCS(Inf_All_Subsumers, Ontology)

25: Inf_Gain ← Get_Semantical_Inertia(Inf_Nodes, Inf_MSCS, Ontol-

ogy)

26: end for

27: Inf_Inst←Inf_Inst+ (Inf_Gain × Poss_Struct_inst/Poss_Struct)

28: Utility ← (Sem_Inertia + Inf_Inst) / (Exp_Cost + Obs_Cost)

29: return Utility
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Algorithm 9 Order-Edges
Require: DAG,

1: Topological_Order(DAG)

2: i ← 0

3: A ← Unordered_Edges(DAG)

4: while A 6= 0 do

5: Let y be the lowest ordered node that has an unordered EDGE incident

into it

6: Let x be the highest ordered node for which x → y is not ordered

7: Label x → y with order i

8: i ← i+1

9: end while

10: return DAG with labeled total order on edges
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Algorithm 10 DAG-to-CPDAG
Require: Actual-BN,

1: Order-Edges(Actual-BN)

2: Label every edge in Actual-BN as "unknown"

3: while there are edges labeled "unknown" in Actual-BN do

4: Lat x → y be the lowest ordered edge that is labeled "unknown"

5:

6: for every edge w → x labeled "compelled" do

7: if w is not a parent of y then

8: Label x → y and every edge incident into y with "compelled"

9: GoTo 3

10: else

11: Label w → y with "compelled"

12: end if

13: end for

14: if there exists and edge z → y such that z 6= x and z is not a parent

of x then

15: Label x → y and all "unknown" edges incident into y with "com-

pelled"

16: else

17: Label x → y and all "unknown" edges incident into y with "re-

versible"

18: end if

19: end while

20: return DAG with each edge labeled either "compelled" or "reversible"
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