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ABSTRACT 

The aim of this thesis is to study the performance of shallow foundations resting on spatially 

varying soils and subjected to a static or a dynamic (seismic) loading using probabilistic 

approaches. In the first part of this thesis, a static loading was considered in the probabilistic 

analysis. In this part, only the soil spatial variability was considered and the soil parameters were 

modelled by random fields. In such cases, Monte Carlo Simulation (MCS) methodology is 

generally used in literature. In this thesis, the Sparse Polynomial Chaos Expansion (SPCE) 

methodology was employed. This methodology aims at replacing the finite element/finite 

difference deterministic model by a meta-model. This leads (in the present case of highly 

dimensional stochastic problems) to a significant reduction in the number of calls of the 

deterministic model with respect to the crude MCS methodology. Moreover, an efficient 

combined use of the SPCE methodology and the Global Sensitivity Analysis (GSA) was 

proposed. The aim is to reduce once again the probabilistic computation time for problems with 

expensive deterministic models. In the second part of this thesis, a seismic loading was 

considered. In this part, the soil spatial variability and/or the time variability of the earthquake 

Ground-Motion (GM) were considered. In this case, the earthquake GM was modelled by a 

random process. Both cases of a free field and a Soil-Structure Interaction (SSI) problem were 

investigated. The numerical results have shown the significant effect of the time variability of the 

earthquake GM in the probabilistic analysis. 
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GENERAL INTRODUCTION 

Traditionally, the analysis and design of geotechnical structures are based on deterministic 

approaches. In these approaches, constant conservative values of the soil and/or the loading 

parameters are considered with no attempt to characterize and model the uncertainties related to 

these parameters. In such approaches, a global safety factor is applied to take into account the soil 

and loading uncertainties. The choice of this factor is based on the judgment of the engineer 

based on his past experience.  

During the last recent years, much effort has been paid for the establishment of more reliable and 

efficient methods based on probabilistic analysis. It should be mentioned here that in any 

probabilistic analysis, there are two tasks that must be performed. First, it is necessary to identify 

and quantify the soil and/or loading uncertainties. This task is usually carried out through 

experimental investigations and expert judgment. Although this first step is extremely important, 

it will not be considered throughout this work. The values of the soil and loading uncertainties 

used in the analysis are taken from the literature. After the input uncertainties have been 

appropriately quantified, the task remains to quantify the influence of these uncertainties on the 

output of the model. This task is referred to as uncertainty propagation. In other words, the 

uncertainty propagation aims to study the impact of the input uncertainty on the variation of a 

model output (response).  

In nature, the soil parameters (shear strength parameters, elastic properties, etc.) vary spatially in 

both the horizontal and the vertical directions as a result of depositional and post-depositional 

processes. On the other hand, the seismic loading is time varying due to the fact that the fault 

break is random which gives the earthquake this variable aspect. This leads to the necessity of 

modeling the soil uncertain parameters by random fields and the seismic loading by a random 

process. As for the uncertainty propagation, different approaches (especially the meta-modeling 

techniques) were developed during the recent years. Of particular interest are the Polynomial 

Chaos Expansion (PCE) methodology and its extension the Sparse Polynomial Chaos Expansion 

(SPCE) methodology which are used in the framework of this thesis to perform the probabilistic 

analysis. 

The ultimate aim of this work is to study the performance of shallow foundations resting on 

spatially varying soils and subjected to static or dynamic (seismic) loading using probabilistic 

approaches. In the first part of this thesis (i.e. chapters II, III and IV), static loading cases were 

considered in the probabilistic analysis. In this part, only the soil spatial variability was 
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considered and the soil parameters were modelled by random fields. The system responses were 

the ultimate bearing capacity of the foundation and the footing displacement. However, in the 

second part of this thesis (i.e. chapter V), dynamic (or seismic) loading cases were considered in 

the probabilistic analysis. In this part, both the soil spatial variability and/or the time variability of 

the earthquake Ground-Motion (GM) were considered. The system response was the 

amplification of the acceleration.  

Before the presentation of the different probabilistic analyses performed in this thesis, a literature 

review is presented in  chapter I. It presents (i) the different sources of uncertainties, (ii) the soil 

spatial variability and the time variability of the earthquake ground-motion, (iii) the different 

meta-modeling techniques for uncertainty propagation and finally, (iv) the PCE and the SPCE 

methodologies which are the methods used in this thesis.  

Contrary to the existing literature where the very computationally-expensive Monte Carlo 

Simulation (MCS) methodology is generally used to determine the probability density function 

(PDF) of a high-dimensional stochastic system involving spatially varying soil/rock properties; in 

chapters II, III and IV, the Sparse Polynomial Chaos Expansion (SPCE) and its extension 'the 

combined use of the SPCE and the Global Sensitivity Analysis (GSA)' are employed in the 

framework of the probabilistic analysis. Notice that the sparse polynomial chaos expansion is an 

extension of the Polynomial Chaos Expansion (PCE). A PCE or a SPCE methodology aims at 

replacing the finite element/finite difference deterministic model by a meta-model (i.e. a simple 

analytical equation). Thus, within the framework of the PCE or the SPCE methodology, the PDF 

of the system response can be easily obtained. This is because MCS is no longer applied on the 

original computationally-expensive deterministic model, but on the meta-model. The 

deterministic models used to calculate the system responses are based on numerical simulations 

using the commercial software FLAC3D.  

Contrary to the SLS analysis where the computation time of a footing deterministic displacement 

is not significant, the computational time of the deterministic ultimate bearing capacity varies in a 

wide range depending on the soil type and the footing geometry. The computation time of the 

ultimate bearing capacity of a rectangular or a circular footing is several times greater than that of 

a strip footing. For a given footing geometry, the time cost is the smallest in the case of a purely 

cohesive soil (i.e. for the computation of the Nc coefficient for φ=0). It increases in the case of a 

weightless soil (i.e. for the computation of the Nc coefficient for φ#0) and becomes the most 



 

18 

significant in the case of a ponderable soil. The time cost is thus the most significant in the case 

of a 3D (circular or rectangular) foundation resting on a ponderable soil. 

In  chapter II, the SPCE methodology was employed to perform a probabilistic analysis at both 

ultimate limit state (ULS) and serviceability limit state (SLS) of strip footings. Relatively non-

expensive deterministic models were used in this chapter since the ULS analysis was performed 

in the case of a weightless material. Two case studies were considered. The first one involves the 

case of strip footings resting on a weightless spatially varying soil mass obeying the Mohr-

Coulomb failure criterion and the second one considers the case of strip footings resting on a 

weightless spatially varying rock mass obeying the Hoek-Brown (HB) failure criterion.  

As for  chapter III, the SPCE methodology was used to investigate the effect of the spatial 

variability in three dimensions (3D) through the study of the ultimate bearing capacity of strip 

and square foundations resting on a purely cohesive soil with a spatially varying cohesion in the 

three dimensions. Although a 3D mechanical problem (with a greater computation time with 

respect to the models of chapter II) was considered herein, the deterministic model can still be 

classified as a relatively non-expensive model because it considers a purely cohesive soil. 

Chapter IV presents a combination between the SPCE methodology and the Global Sensitivity 

Analysis (GSA). This combination is refered to in this thesis as SPCE/GSA procedure. The aim 

of this procedure is to reduce the probabilistic computation time of high-dimensional stochastic 

problems involving expensive deterministic models. This procedure was illustrated through the 

probabilistic analysis at ULS of a strip footing resting on a ponderable soil with 2D and 3D 

random fields and subjected to a central vertical load.  

Finally, chapter V is devoted to the presentation of the probabilistic analysis performed when a 

dynamic (or seismic) loading is considered. The soil spatial variability and/or the time variability 

of the earthquake Ground-Motion (GM) were considered. In this case, the soil parameters were 

modelled by random fields and the earthquake GM was modelled by a random process. Given the 

scarcity of studies involving the probabilistic seismic responses, a free field soil medium 

subjected to a seismic loading was firstly considered. The aim is to investigate the effect of the 

soil spatial variability and/or the time variability of the earthquake GM using a simple model. 

Then, a SSI problem was investigated in the second part of this chapter.  

The study ends by a general conclusion of the principal results obtained from the analyses.  
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CHAPTER I. LITERATURE REVIEW 

I.1 INTRODUCTION 

Traditionally, the analysis and design of geotechnical structures are based on deterministic 

approaches. In these approaches, constant conservative values of the soil and/or the loading 

parameters are considered with no attempt to characterize and model the uncertainties related to 

these parameters.  

Many sources of uncertainties may be encountered in geotechnical engineering problems. Some 

of these uncertainties result from natural variation and thus are considered as inherent (or 

aleatory). Others (called epistemic) arise from a lack of knowledge or ignorance. The aleatory 

sources of uncertainty cannot be reduced or resolved through the collection of additional 

information or from expert knowledge. Examples of aleatory uncertainty include the natural 

spatial variability of the soil properties as a result of depositional and post-depositional processes 

and the time variability of the earthquake ground-motion. As for the epistemic sources of 

uncertainty, they may be reduced through more careful measurement or additional data 

collection. In this thesis, only the aleatory uncertainties and more precisely the spatial variability 

of the soil properties and the time variability of the earthquake ground-motion (when a seismic 

loading is involved) are considered.  

It should be mentioned here that in any probabilistic analysis, there are two tasks that must be 

performed. First, it is necessary to identify and quantify the sources of uncertainty (i.e. the soil 

spatial variability and the time variability of the earthquake ground motion in our study). This 

task is usually carried out through experimental investigations and expert judgment. Although 

this first step is extremely important, it will not be considered throughout this work. Instead, the 

values of the soil and loading uncertainties used in the analysis are taken from the literature. After 

the input uncertainties have been appropriately quantified, the task remains to quantify the 

influence of these uncertainties on the output of the model. This task is referred to as the 

uncertainty propagation. In other words, the uncertainty propagation aims to study the impact of 

the input uncertainty on the variation of a model output (response).  

During the recent years, different approaches (especially the meta-modeling techniques) were 

developed for the uncertainty propagation. These approaches are detailed later in this chapter. Of 

particular interest are the Polynomial Chaos Expansion (PCE) methodology and its extension the 
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Sparse Polynomial Chaos Expansion (SPCE) methodology which are used in the framework of 

this thesis to perform the probabilistic analysis. 

The aim of this thesis is to investigate the effect of the soil spatial variability and the time 

variability of the seismic loading (when a seismic loading is considered) on the response of 

geotechnical structures. More specifically, the probabilistic analyses were performed in the case 

of a strip footing resting on a spatially varying soil or rock medium and subjected to a static or a 

seismic load.  

This chapter aims at first presenting the different sources of uncertainties. Then, the soil spatial 

variability and the time variability of the earthquake ground-motion are explained in some detail. 

This is followed by a brief presentation of the different meta-modeling techniques. Finally, the 

PCE and the SPCE methodologies which are the methods used in this thesis are presented in 

some detail. 

I.2 SOURCES OF UNCERTAINTIES 

While many sources of uncertainties may exist, they are generally categorized as either aleatory 

or epistemic [Der Kiureghian and Ditlevsen (2009)]. Uncertainties are characterized as epistemic 

if the modeler sees a possibility to reduce them by gathering more data or by refining the 

transformation models as explained later. Uncertainties are categorized as aleatory if the modeler 

does not foresee the possibility of reducing them through the collection of additional information.  

In geotechnical engineering, two types of epistemic uncertainties can be faced: The 

measurements and the transformation uncertainties. The first one is due to the sampling error that 

results from limited amount of information. This uncertainty can be minimized by considering 

more samples. The second one is introduced when field or laboratory measurements are 

transformed into design soil properties using empirical or other correlation models. This 

uncertainty can be reduced by considering more refined mathematical or empirical models. 

As for the aleatory (inherent) uncertainties, the soil material itself is spatially variable and the 

earthquake is temporally variable. The inherent soil variability primarily results from the natural 

geologic processes which modify the in-situ soil mass. As for the seismic loading, the time 

variability results from the fact that the values of the acceleration at the different time steps are 

random. 

In this thesis, only two aleatory uncertainties which are the spatial variability of the soil 

properties and the time variability of the earthquake ground-motion are considered. The next two 
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sections aim at presenting both the soil spatial variability and the time variability of the ground 

motion. 

I.3 SPATIAL VARIABILITY OF THE SOIL PROPERTIES  

In this section, one presents (i) the statistical characterization of the soil spatial variability, (ii) the 

method used to model (i.e. calculate at unsampled points) this spatial variability, (iii) an overview 

of the random fields discretization methods and finally (iv) the expansion optimal linear 

estimation (EOLE) method which is the method of random field discretization used in this thesis 

to perform the probabilistic analysis. 

I.3.1 Statistical characterization of the soil spatial variability  

In order to statistically characterize the spatial variability of a soil property, VanMarcke (1977) 

stated that three statistical parameters are needed: (i) the mean; (ii) the variance (or standard 

deviation or coefficient of variation); and (iii) the autocorrelation distance (a) (or more generally 

the autocorrelation function).  

The coefficient of variation and the autocorrelation distance are measures of the randomness of 

the uncertain soil property. An almost homogenous soil will have a large value of (a), whereas 

one whose property exhibits strong variation over small distances has a low value of (a). In other 

words, the autocorrelation distance is the distance over which the values of the soil parameter 

exhibit strong correlation and beyond which, they may be treated as independent random 

variables [Jaksa (1995)].  

When performing probabilistic studies in geotechnical engineering (e.g. determining the 

probabilistic ultimate bearing capacity or the probabilistic settlement of foundations), it is 

important to use realistic values of the mean, the standard deviation and the autocorrelation 

distance (a) of the uncertain soil property. For that purpose, several investigations should be 

undertaken to quantify these quantities. This is done by performing geotechnical or geophysical 

tests. In general, the geotechnical tests involve a small area. They are performed to obtain direct 

information on the soil property at different locations. In general, one needs to perform a large 

number of tests in order to characterize the variability of the soil property. As for the geophysical 

tests, they are an efficient alternative to the geotechnical investigations since they allow one to 

explore a large area with a smaller number of tests. They are performed to obtain indirect 

measures of the soil property and mainly comprise interpretation of signals (e.g. electrical 

conductivity, dielectric constant, density, elastic properties, thermal properties, and radioactivity) 
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to characterize a site. For more details on the site investigation methods, the reader may refer to 

Breysse and Kastner (2003) among others. 

After the collection of different values of a given soil property, the determination of the mean and 

standard deviation of this property is performed using the conventional statistical analysis. This 

analysis provides the variability of the soil property; however, it does not provide the spatial 

trend. Thus; to characterize the spatial variation of the soil property, one needs to characterize the 

autocorrelation distance (a). For this purpose, two mathematical techniques can be found in 

literature to identify the autocorrelation structure of a soil property. These are the random field 

theory and the geostatistics tools. In this thesis, the random field theory is the method used when 

performing the probabilistic analysis.  

I.3.1.1 Random field theory  

The random field theory is commonly used in literature to describe the soil spatial variability. 

According to VanMarcke (1983), the random field theory should incorporate the observed 

behavior that values at adjacent locations are more related than those separated by some distance. 

For this purpose, a fundamental statistical property which is the autocorrelation function (ACF) is 

introduced in addition to the classical statistical parameters (i.e. the mean and standard deviation 

or coefficient of variation). The ACF is a plot of the correlation coefficient versus the distance. 

This ACF may be used to identify (i) the autocorrelation distance (a) or (ii) the scale of 

fluctuation (δ). If the soil property of interest is denoted by Z, the correlation coefficient ρ 

between the values of that property at two different locations is defined as follows: 

( ) ( ) ( ) ( ) ( ){ }2 2

, 1i i h

i Z i h Z
Z Z

C Z X Z X
h E Z X Z Xρ µ µ

σ σ
+∆

+∆

  ∆ = = − −        ( I.1) 

Where X is the vector which represents the location. It is given by ( )X x=  in the case of a one-

dimensional random field, ( ),X x y=  in the case of a two-dimensional (2D) random field and 

( ), ,X x y z=  in the case of a three-dimensional (3D) random field. On the other hand, Z(Xi) is 

the value of the property Z at location Xi; Z(Xi+ ∆h) is the value of the property Z at location, Xi+ ∆h; 

∆h is the separation distance between the data pairs; E[.] is the expected value; C is the 

covariance and µZ and σZ are respectively the mean and standard deviation of the property Z. It 

should be emphasized here that it is not possible to know the value of ρ between any two 

arbitrary points. Thus; in practice, one needs to determine the ACF which allows one to calculate 

the value of the correlation coefficient between any two arbitrary points. This can be done by 
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collecting some values of the property Z (also known as the data samples) at equally separation 

distance ∆h. These values are gathered in the vector ( ) ( ){ }1 ,..., sZ X Z Xχ =  where s is the 

number of these data samples and Xi+ 1=Xi + ∆h. These data samples are then used to determine 

the  sample ACF as follows: 
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The sample ACF is the graph of ρk for k=0, 1, 2, ..., K, where K is the maximum allowable 

number of lags (data intervals). Generally, K=s/4 (Box and Jenkins 1970), where s is the total 

number of data samples. 

The ACF is often used to determine the distance over which a property exhibits strong 

correlation. Two measures of this quantity which are the autocorrelation distance (a) or the scale 

of fluctuation (δ) may be evaluated. The autocorrelation distance (a) is defined as the distance 

required for the autocorrelation function to decay from 1 to e-1 (0.3679). On the other hand, the 

scale of fluctuation is defined as the area under the ACF [Fenton (1999)]. The determination of 

the autocorrelation distance (a) is done by fitting the sample ACF to one of the models given in 

Table  I.1 where k∆h is the lag distance and (a) is the autocorrelation distance. 

Model Autocorrelation function Scale of fluctuation (δ) 

Single exponential expk

k h

a
ρ

 − ∆ 
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 2aδ =  

Square exponential 

2

expk

k h

a
ρ
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Cosine exponential ( ) ( )exp cosk a k h ak hρ = − ∆ ∆  
1

a
δ =  

Second-order Markov ( ) ( )1 expk a k h a k hρ = + ∆ − ∆  
4

a
δ =  

Table  I.1. Theoretical ACF used to determine the autocorrelation distance (a) [Vanmarcke (1983)]  

Finally, it should be mentioned that the modeling of the spatial variability is greatly facilitated by 

the data being stationary [Uzielli et al. (2005)]. Stationarity is insured if (i) the mean is constant 

with distance (i.e. no trend exists in the data); (ii) the variance is constant with distance; (iii) there 

are no seasonal variations; and (iv) there are no irregular fluctuations. In random field theory, it is 
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a common practice to transform a non-stationary data set to a stationary one by removing a low-

order polynomial trend (i.e. a first or a second order polynomial) using the ordinary least square 

method.  

I.3.1.2 Geostatistics 

Geostatistics was firstly developed by Krige and Matheron in the early 1960s and has since been 

applied to many disciplines including: groundwater hydrology and hydrogeology; surface 

hydrology; earthquake engineering and seismology; pollution control; geochemical exploration; 

and geotechnical engineering. In fact, geostatistics can be applied to any natural phenomena that 

vary spatially or temporally [Journel and Huijbregts (1978)]. Just as random field theory makes 

use of the ACF, geostatistics utilizes the 'semivariogram'. The semivariogram is a plot of 

semivariances versus the distance. This semivariogram may be used to identify the range of 

influence (a) which is analogue to the autocorrelation distance in the random field theory. If the 

soil property of interest is denoted by Z, the semivariance is defined as follows: 

( ) ( ) ( ){ }21

2 i h ih E Z X Z Xγ +∆∆ = −    ( I.3) 

where Z(Xi) is the value of the property Z at location Xi; Z(Xi+ ∆h) is its value at location, Xi+ ∆h; ∆h 

is the separation distance between the data pairs; and E[.] is the expectation operator. Thus, the 

semivariance is defined as half the expectation value (or the mean) of the squared difference 

between Z(Xi) and Z(Xi+ ∆h). Like the ACF, one needs to determine the semivariogram which 

allows one to calculate the value of the semivariance between any two arbitrary points. This can 

be done by collecting some values of the property Z (also known as the data samples) at equally 

separation distance ∆h. These values are gathered in the vector ( ) ( ){ }1 ,..., sZ X Z Xχ =  where s 

is the number of these data samples and Xi+ 1.=Xi + ∆h. These data samples are then used to 

determine the sample semivariogram as follows: 
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The samples semivariogram is thus the graph of kγ  for k=0, 1, 2, ..., K, where K is the maximum 

allowable number of lags (data intervals) and N(k) is the number of data pairs corresponding to a 

given value of k. 

As the experimental semivariogram is a discrete function, it is desirable in geostatistics to adopt a 

continuous semivariogram. Hence, analytical models are generally fitted to the experimental 
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semivariogram [Journel and Huijbregts (1978)]. The most common theoretical models of 

semivariograms are summarized in Table  I.2, where the range of influence (a) is analogue to the 

autocorrelation distance in the random field theory. 

Model Semivariogram Scale of fluctuation (δ) 

Spherical 

3
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 
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Table  I.2. Theoretical semivariograms used to determine the range of influence (a) [Goovaerts (1998, 1999)]  

It should be mentioned here that if the data samples are stationary and normalised to have a mean 

of zero and a variance of 1.0, the semivariogram is the mirror image of the ACF. The 

semivariogram and the ACF are related via the following relationship given by Fenton (1999): 

( )2 1k kγ σ ρ= −  ( I.5) 

where σ is the standard deviation of the data samples.  

I.3.1.3 Values of the statistical parameters of some geotechnical properties 

This section aims at providing the commonly used values of (i) the coefficients of variation COVs 

of some soil/rock properties, (ii) the coefficients of correlation between these parameters, and (iii) 

the autocorrelation distance (a).  

Values of the coefficients of variation COVs 

The aim of this section is to provide the different values of the coefficients of variation as given 

in literature for the soil shear strength parameters (cohesion c, angle of internal friction φ), the 

soil elastic properties (Young modulus E, Poisson ratio υ) and the rock mass parameters 

(Geological Strength Index GSI, uniaxial compressive strength σc) used in this thesis.  

Concerning the type of the PDF of the different uncertain parameters; unfortunately, there is no 

sufficient data to give a comprehensive and complete description of the type of the PDF to be 

used in the numerical simulations. The existing literature [e.g. Griffiths and Fenton (2001), 

Griffiths et al. (2002), Fenton and Griffiths (2002, 2003, 2005), Fenton et al. (2003)] tends to 
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recommend the use of a lognormal PDF for the Young’s modulus E, Poisson’s ratio ν and 

cohesion c. This recommendation is motivated by the fact that the values of these parameters are 

strictly positive. Concerning the internal friction angle φ, it is recommended to adopt a beta 

distribution for this parameter to limit its variation in the range of practical values. Finally, 

concerning the parameters GSI and σc, Hoek (1998) has recommended the use of a lognormal 

PDF for these parameters. 

Soil cohesion c 

For the undrained cohesion cu of a clay, Cherubini et al. (1993) found that the coefficient of 

variation of this property decreases with the increase in its mean value. They recommended a 

range of 12% to 45% for moderate to stiff soil. 

Author 
ucCOV  (%) 

Lumb (1972) 
30 - 50 (UC test) 

60 - 85 (highly variable clay) 

Morse (1972) 30 - 50 (UC test) 

Fredlund and Dahlman (1972) 30 - 50 (UC test) 

Lee et al. (1983) 
20 - 50 (clay) 
25 - 30 (sand) 

Ejezie and Harrop-Williams (1984) 28 – 96 

Cherubini et al. (1993) 
12 - 145 

12 - 45 (medium to stiff clay) 

Lacasse and Nadim (1996) 
5 - 20 (clay –  triaxial test) 

10 - 30 (clay loam) 

Zimbone et al. (1996) 
43 – 46 (sandy loam) 
58 – 77 (silty loam) 

10 – 28 (clay) 

Duncan (2000) 13 – 40 

Table  I.3. Coefficient of variation of the undrained soil cohesion 

Phoon et al. (1995) stated that the variability of the undrained soil cohesion depends on the 

quality of the measurements. Low variability corresponds to good quality and direct laboratory or 

field tests. In this case, 
ucCOV  ranges between 10% and 30%. Medium variability corresponds to 

indirect tests. In this case, 
ucCOV  lies in a range from 30% to 50%. Finally, high variability 

corresponds to empirical correlations between the measured property and the uncertain 
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parameter. In this case, 
ucCOV  ranges between 50% and 70%. The values of 

ucCOV  as proposed 

by other authors in literature are summarized in Table  I.3. 

Angle of internal friction φ of a soil 

For the soil internal friction angle φ, smaller values of the coefficient of variation as compared to 

those of the soil cohesion have been proposed in literature. Based on the results presented by 

Phoon et al. (1995), the coefficient of variation of the internal friction angle ranges between 5% 

and 20% depending on the quality of the measurements. For good quality and direct 

measurements, COVϕ  ranges between 5% and 10%. For indirect measurements, COVϕ  lies in a 

range from 10% to 15%. Finally, for the empirical correlations, COVϕ  ranges between 15% and 

20%. Table  I.4 provides the values of the coefficient of variation of the soil internal friction angle 

φ as proposed by several authors.  

Author COVϕ  (%) Type of soil 

Lumb (1966) 9 Different soil types 

Baecher et al. (1983) 5 – 20 Tailings 

Harr (1987) 
7 
12 

Gravel 
Sand 

Wolff (1996) 16 Silt 

Lacasse and Nadim (1996) 2 – 5 Sand 

Phoon and Kulhawy (1999) 
5 – 11 
4 – 12 

Sand 
Clay, Silt 

Table  I.4. Values of the coefficient of variation of the soil internal friction angle 

Young's modulus E and Poisson's ratio ν of a soil 

It has been shown in the literature that soils with small values of the elastic Young modulus 

exhibit significant variability (Bauer and Pula 2000). Table  I.5 presents some values of the 

coefficient of variation of the Young's modulus E used in literature. Concerning the Poisson's 

ratio ν, there is no sufficient information about its coefficient of variation. Some authors suggest 

that the variability of this parameter can be neglected while others proposed a very limited range 

of variability. 
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Author ECOV  (%) 

Baecher and Christian (2003) 2 – 42 

Nour et al. (2002) 40 – 50 

Bauer and Pula (2000) 15 

Phoon and Kulhawy (1999) 30 

Table  I.5. Values of the coefficient of variation of the Young’s modulus 

Geological Strength Index (GSI) and uniaxial compressive strength (σc) of a rock mass 

For the rock mass parameters, there is no sufficient infomation about their coefficients of 

variation. Hoek (1998) stated that the coefficient of variation of the Geological Strength Index 

GSI of a blocky/disturbed or disintegrated and poor rock mass (which is used in this thesis) is 

about 10%. As for the uniaxial compressive strength σc, relatively large values of its coefficient 

of variation have been proposed in literature. Gunsallus and Kulhawy (1984) stated that the 

coefficient of variation of the uniaxial compressive strength of intact rock ranges between 7% and 

59% with an average value of about 27%. On the other hand, Hoek (1998) has proposed a value 

of 25%. 

Coefficient of correlation r  

The coefficient of correlation between two soil parameters represents the degree of dependence 

between these parameters. For the soil shear strength parameters c and φ, Lumb (1970) stated that 

the correlation coefficient r(c, φ) ranges from -0.7 to -0.37. Yucemen et al. (1973) proposed 

values in a range between -0.49 and -0.24, while Wolff (1985) reported that r(c, φ)=-0.47. 

Finally, Cherubini (2000) proposed that r(c, φ)=-0.61. Concerning the correlation coefficient 

between the soil elastic properties E and ν, this coefficient has received a little attention in 

literature. Bauer and Pula (2000) reported that there is a negative correlation between these 

parameters.  

Autocorrelation distance (a) 

A literature review on the values of the autocorrelation distances of different soil types and for 

different soil properties was given by El-Ramly (2003) and is presented in Table  I.6. It should be 

emphasized here that the autocorrelation function and the autocorrelation distance (a) are 

generally site specific, and often challenging due to insufficient site data and high cost of site 

investigations. 



 

30 

Autocorrelation distance a(m) 
Test type Soil property Soil type 

vertical horizontal 

VST cu(VST) Organic soft clay 1.2 - 

VST cu(VST) Organic soft clay 3.1 - 

VST cu(VST) Sensitive clay 3.0 30.0 

VST cu(VST) Very soft clay 1.1 22.1 

VST cu(VST) Sensitive clay 2.0 - 

Qu cu(Qu) Chicago clay 0.4 - 

Qu cu(Qu) Soft clay 2.0 40.0 

UU cu(UU)N Offshore soil 3.6 - 

DSS cu(DSS)N Offshore soil 1.4 - 

CPT qc North see clay - 30.0 

CPT qc Clean sand 1.6 - 

CPT qc North sea soil - 13.9 

CPT qc North sea soil - 37.5 

CPT qc Silty clay 1.0 - 

CPT qc Sensitive clay 2.0 - 

CPT qc Laminated clay - 9.6 

CPT qc Dense sand - 37.5 

DMT Po Varved clay 1.0 - 

Table  I.6. Values of the autocorrelation distances of some soil properties as given by several authors (El-
Ramly 2003) 

aVST, vane shear test; Qu, unconfined compressive strength test; UU, unconfined undrained triaxial test; 
DSS, direct shear test; CPT, cone penetration test; DMT, dilatometer test;  
bcu(VST), undrained shear strength from VST; cu(Qu), undrained shear strength from Qu; cu(UU)N, 
normalized undrained shear strength from UU; cu(DSS)N, normalized undrained shear strength from DSS; 
qc, CPT trip resistance; Po, DMT lift-off pressure.  

I.3.2 Practical modeling of the soil spatial variability using the Optimal Linear Estimation 

(OLE) method 

After the characterization of the spatially varying soil property Z using the random field theory or 

the geostatistics tools, the mean µZ, the standard deviation σZ, and the autocorrelation distance (a) 

are known quantities. The fact of knowing the values of the soil property Z at some given points 

may allow one to approximate the value of Z at an arbitrary point X using the optimal linear 

estimation method OLE. Indeed, OLE makes use of the experimental data samples to estimate the 

values of a soil property at unsampled locations. This section is devoted to the presentation of the 

OLE method used to simulate the soil spatial variability (i.e. the method that can estimate the 

value of a spatially varying soil property at an arbitrary point using an analytical equation). It 
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should be noted that the concepts used in OLE method will be employed for the discretization of 

a random field by the expansion optimal linear estimation EOLE method as will be seen later in 

this chapter. 

OLE method was presented by Li and Der Kiureghian (1993). It is sometimes referred to as the 

Kriging method. It is a special case of the regression method on a linear function [Ditlevsen 

(1996)]. In this method, the approximated field Zɶ  is defined by a linear function of the 

experimental data samples ( ) ( ){ }1 ,..., sZ X Z Xχ = as follows: 

( )
1

( ) ( ) ( ) ( ) ( )
s

T
i i

i

Z X a X b X Z X a X b Xχ
=

= + = +∑ɶ  ( I.6) 

where s is the number of experimental data samples involved in the approximation. The functions 

a(X) and bi(X) are determined by minimizing the variance of the error ( ) ( )Var Z X Z X − 
ɶ  at 

each point X subjected to ( ) ( ) 0E Z X Z X − = 
ɶ .  

The resolution of the minimization problem allows one to obtain the unknown functions a(X) and 

bi(X) and thus the approximated field ( )Z Xɶ  as follows: 

( ) ( )1

( ); ;

T

Z Z ZZ X
Z X

χ χ χ
µ σ χ µ−= + −∑ ∑ɶ  ( I.7) 

where µZ and σZ are respectively the mean and the standard deviation of the random field Z, 
;

1

χ χ

−∑  

and 
( );Z X

T

χ
Σ  are respectively the inverse of the autocorrelation matrix ;χ χ∑ and the transpose of the 

correlation vector ( );Z X χΣ . The autocorrelation matrix ;χ χ∑  provides the correlation between each 

element in the vector ( ) ( ){ },...,i sZ X Z Xχ =  and all the other elements of the same vector. 

Thus, it is a square matrix of dimension sxs. As for the correlation vector ( );Z X χΣ , it provides the 

correlation between each element in the vector ( ) ( ){ },...,i sZ X Z Xχ =  and the value of the 

field at an arbitrary unsampeled point X. Thus, it is a vector of dimension s. The autocorrelation 

matrix ;χ χ∑  and the correlation vector ( );Z X χΣ  are evaluated using the fitted autocorrelation 

function (ACF) determined after the characterization of the spatially varying soil property Z. It 

should be mentioned here that the exponential form of the ACF is the one that is the most 

commonly used in geotechnical engineering as stated by Popescu et al. (2005). It is given as 

follows: 
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'
[( ), ( ')] exp

n

X

X X
X X

a
ρ

  − 
 = −  
   

 ( I.8) 

Where a is a vector that contains the values of the autocorrelation distances as follows; ( )xa a=  

in the case of a one-dimensional random field, ( ),x ya a a=  in the case of a two-dimensional (2D) 

random field and ( ), ,x y za a a a=  in the case of a three-dimensional (3D) random field. For n=1, 

the autocorrelation function is said to be exponential of order 1; however, for n=2, it is said to be 

square exponential. 

Each element ( ); ,i jχ χ
Σ of the autocorrelation matrix ;χ χ∑  and each element 

( )( );Z X iχ
Σ  of the 

correlation vector ( );Z X χΣ  are calculated using Equation ( I.8) as follows: 

( ); ,
,Z i ji j

X Xχ χ ρ  Σ =    ( I.9) 

( )( ) [ ]; ,Z iZ X
i

X Xχ ρΣ =  ( I.10) 

where i=1, …, s, j=1, …, s and X is the arbitrary unsampled point. 

Finally, one can see that in Equation ( I.7), the approximated random field ( )Z Xɶ  is only a 

function of the location X because all the other terms in this equation are known. As a result, one 

needs to introduce a value for the location X to obtain an approximated value of the 

corresponding property ( )Z Xɶ . 

I.3.3 Brief overview of the numerical random fields discretization methods 

For computational purposes, the real random field Z which may be represented by an infinite set 

of random variables has to be discretized in order to yield a finite set of random variables 

{ }, 1,...,j j sχ = , which are assigned to discrete locations. If the finite element/finite difference 

method is the method used in the mechanical analysis, it is convenient to evaluate the random 

field values in the same way as the finite element/finite difference model (i.e. at the nodes of the 

deterministic mesh or at the element mid points of this deterministic mesh). The discretization 

methods can be divided into three main groups [Sudret and Der Kiureghian (2000)]. Each group 

involves a number of discretization methods as may be seen below. After a brief presentation of 

the different methods of the three groups, the EOLE method used in this thesis will be presented 

in more detail. 
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I.3.3.1 Point discretization methods 

In these methods, the random variables jχ  used in the analysis are selected values of Z at some 

given points Xj. This group involves the following methods: 

a) Midpoint (MP) method  

This method was introduced by Der Kiureghian and Ke (1998). In this method, the random field 

is discretized by associating to each element of the finite element/finite difference mesh, a single 

random variable defined as the value of the field at the centroid of that element. 

b) Shape function (SF) method  

This method was presented by Liu et al. (1986a,b). It is similar to the MP method with the 

difference that the random field is discretized by associating a single random variable to each 

node of the finite element/finite difference mesh. Thus, the value of the random field within an 

element is described in term of these nodal values and the corresponding shape functions. 

c) Integration point (IP) method 

In this method, the random field is discretized by associating a single random variable to each of 

the integration points appearing in the finite element resolution scheme. 

I.3.3.2 Average discretization methods 

a) Spatial average (SA) method  

This method was proposed by VanMarcke and Grigoriu (1983). It consists in approximating the 

random field in each element of the finite element/finite difference mesh by a constant computed 

as the average of the original field over that element. This method was extensively used in 

geotechnical engineering for the study of the effect of the soil spatial variability.  

I.3.3.3 Series expansion methods 

In the series expansion discretization methods, the random field is approximated by an expansion 

that involves deterministic and stochastic functions. The deterministic functions depend on the 

coordinates of the point at which the value of the random field is to be calculated. This group 

involves the following methods: 

a) Karhunen-Loeve (KL) expansion method 
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This method was presented by Spanos and Ghanem (1989). In this method, the random field is 

expressed as follows: 

1

( ) ( )
N

Z Z j j j
j

Z X Xµ σ λ ξ φ
=

= + ∑ɶ  ( I.11) 

Where Zµ  and Zσ  are the mean and standard deviation of the random field Z, ( ,j jλ φ ) are the 

eigenvalues and eigenfunctions of the autocorrelation function Zρ  of the random field Z, ξj is a 

vector of uncorrelated standard normal random variables and N is the number of terms retained in 

the KL expansion. It should be noticed here that ξj are stochastic variables that represent the 

random nature of the uncertain soil parameter. However, the eigenfunctions ( )j Xφ are the 

deterministic functions of the KL expansion. They can be evaluated as the solution of the 

following integral equation: 

( ) ( ) ( ), ' ' 'Z j j jX X f X dX f Xρ λ
Ω

=∫  ( I.12) 

This integral can be solved analytically only for few types of the autocorrelation functions 

(triangular and first order exponential functions) and for simple geometries. Otherwise, it has to 

be solved numerically. 

b) Orthogonal series expansion (OSE) method 

This method was proposed by Zhang and Ellingwood (1994). It was introduced to avoid solving 

the eigenvalue integral of Equation ( I.12) using a complete set of orthogonal functions ( )jh X  

(i.e. Legendre or Hermite polynomials). Thus, in this method, the random field is expressed as 

follows: 

1

( ) ( )
N

Z Z j j
j

Z X h Xµ σ χ
=

= + ∑ɶ  ( I.13) 

where jχ  are zero mean random variables with unit variance and N is the number of terms 

retained in the expansion.  

c) Expansion optimal linear estimation (EOLE) method  

This method was introduced by Li and Der Kiureghian (1993). It makes use of the (OLE) or the 

kriging method concept in the special case of a Gaussian random field. This method uses a 

spectral representation of the autocorrelation matrix of the Gaussian random field and it is used in 

this thesis. Thus, it will be presented in more detail hereafter. 
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I.3.3.4 Conclusions  

As stated by Sudret and Der Kiureghian (2000), in the MP, SF, IP, and SA methods, the 

discretized random field can be expressed as a finite summation as follows:  

1

( ) ( )
N

j j
j

Z X Xχ φ
=

=∑ɶ  ( I.14) 

where N is the number of terms retained in the discretization procedure, ( )j Xφ  are deterministic 

functions and jχ  are random variables obtained from the discretization procedure. They can be 

expressed as weighed integrals of the real random field Z over the volume Ω of the system as 

follows: 

( ) ( )j Z X X dχ ω
Ω

= Ω∫  ( I.15) 

where ( )Xω  is the weight function. The values of the weight functions and the deterministic 

functions for all the above mentioned methods are given in Sudret and Der Kiureghian (2000) 

and they are reported in Appendix A of this thesis. 

Sudret and Der Kiureghian (2000) have stated that the deterministic functions jφ  given in 

Equation ( I.14) are not optimal in the case of mid point (MP), spatial average (SA), shape 

function (SF) and integration point (IP) methods. This means that the number of random 

variables involved in the discretization scheme is not minimal. Thus, of particular interest are the 

series expansion methods. In all these methods, the number of the deterministic functions jφ  is 

optimal and thus, the number of random variables involved is minimal. 

As a conclusion, all the discretization methods presented in the first two groups provide non 

optimal solution which makes them unattractive tools for random field discretization. This is 

because the number of random variables needed to discretize the random fields using these 

methods is mesh depending. Thus, one obtains a large number of random variables for large finite 

element/finite difference models. The series expansion methods solve this problem. They provide 

the optimal number of random variables needed to accurately discretize the random field which 

makes them powerful tools for random field discretization. From this group, the eigenvalue 

problem of the KL method given in Equation ( I.12) can be solved analytically only for few types 

of autocorrelation functions and geometries. As for the OSE method, it avoids solving the 

eigenvalue problem of the KL method given in Equation ( I.12). On the other hand, this method is 

less attractive in terms of accuracy when compared to the KL and the EOLE method [cf. Sudret 
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and Der Kiureghian (2000)]. For this reason, the EOLE method which uses the concept of OLE 

method is selected herein to perform the random field discretization. This method is described in 

some details in the following section.  

I.3.4 The expansion optimal linear estimation (EOLE) method for random field 

discretization 

The expansion optimal linear estimation method (EOLE) was proposed by Li and Der Kiureghian 

(1993). It makes use of the concepts employed in OLE (or the kriging method) which was 

presented in a previous section. This method only deals with uncorrelated Gaussian random fields 

because it uses a spectral representation of the vector ( ) ( ){ }1 ,..., sZ X Z Xχ = . To overcome the 

inconvenience of modeling only uncorrelated Gaussian random fields, Vořechovsky (2008) has 

extended this method to cover the general case of cross-correlated non-Gaussian random fields.  

In this section one first presents EOLE method proposed by Li and Der Kiureghian (1993) to 

model uncorrelated Gaussian random fields. Then, the extension by Vořechovsky (2008) to cover 

the general case of two cross-correlated non-Gaussian random fields is presented. 

In EOLE method, the fact that the spatially varying soil property is assumed to be Gaussian 

allows one to spectrally decompose its autocorrelation matrix ;χ χΣ  that includes the correlation 

between each element of the vector ( ) ( ){ }1 ,..., sZ X Z Xχ =  with all the elements of this same 

vector. Thus ( ) ( ){ }1 ,..., sZ X Z Xχ = can be written as follows: 

1

s

Z Z j j j
j

χ µ σ λ ξ φ
=

= + ∑  ( I.16) 

where jξ  (j=1, …, s) are independent standard normal random variables and ( ,j jλ φ ) are the 

eigenvalues and eigenvectors of the autocorrelation matrix ;χ χΣ  verifying ; j j jχ χφ λ φΣ =  . 

Substituting Equation ( I.16) in to Equation ( I.6) and solving the OLE problem leads to the 

following representation of the approximated random field ( )Z Xɶ : 

( ) ( );
1

( ) . .
s Tj

Z Z j Z X
j j

Z X µ χ

ξ
σ φ

λ=

= + Σ∑ɶ  ( I.17) 

where µZ and σZ are respectively the mean and the standard deviation of the Gaussian random 

field Z, ( , );Z x y χΣ  is the correlation vector between each element in the vector χ and the value of 
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the field at an arbitrary point X, jξ is a standard normal random variable, and s is the total number 

of point samples.  

It should be mentioned that the series expansion given in Equation ( I.17) can be truncated after 

N<s terms. This can be done by sorting the eigenvalues λj in a descending order. This number N 

should assure that the variance of the error is smaller than a prescribed tolerance 10%ε ≈ . 

Notice that the variance of the error for EOLE is given by Sudret and Der Kiureghian (2000) as 

follows: 

( )( )2
2

( );
1

1
( ) ( ) 1

N T

Z j Z X
j j

Var Z X Z X χσ φ
λ=

   − = − Σ  
  

∑ɶ  ( I.18) 

where ( )Z X and ( )Z Xɶ are respectively the exact and the approximate values of the random 

field at a given point X and ( )Tjφ is the transpose of the eigenvector jφ . 

I.3.4.1 Extension of EOLE for the generation of two cross-correlated non-Gaussian random 

fields  

Let us consider two cross-correlated non-Gaussian random fields ( )NG
iZ X ( 1,2i = ) described 

by: (i) constant means and standard deviations (µZi, σZi; 1,2i = ), (ii) non-Gaussian marginal 

cumulative density functions Gi ( 1,2i = ), (iii) a target cross-correlation matrix 

1,1 1,2

2.1 2,2

NG
r r

C
r r

 
=  
 

 and (iv) a common autocorrelation function NG
Zρ [(X), (X')].  

Since EOLE only deals with uncorrelated Gaussian random fields, the common non-Gaussian 

autocorrelation matrix 
;

NG

χ χ
Σ  evaluated using Equation ( I.9) (where Zρ  in this equation is the non-

Gaussian autocorrelation function NG
Zρ ) and the target non-Gaussian cross-correlation matrix CNG 

should be transformed into the Gaussian space using the Nataf correction functions proposed by 

Nataf (1962). This can be done by applying the following formulas: 

( ) ( ); , ;, ,

k NG
i ji j i jχ χ χ χωΣ = Σ ;  i=1,…, s; j=1,…, s  and  k= 1, 2  ( I.19) 

, , ,
NG

i j i j i jC Cω=  ;  i=1, 2  and  j=  1, 2.  ( I.20) 

where ,i jω  is the correction factor.  
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As a result, one obtains two Gaussian autocorrelation matrices 1
;χ χΣ  and 2

;χ χΣ , and a Gaussian 

cross-correlation matrix C that can be used to discretize the two Gaussian random fields (of zero 

mean and unit variance) using EOLE as follows: 

( )
( );

,

1

( ) . .
Z X

j

DN Ti jG i i
i ji

j

Z X
χ

κ
φ

λ=

= Σ∑ɶ ;                i=1, 2  ( I.21) 

where ( ,i i
j jλ φ ; i=1, 2) are the eigenvalues and eigenvectors of the two Gaussian autocorrelation 

matrices ( ;
i
χ χΣ ; i=1, 2)  respectively, ( );Z X χΣ  is the correlation vector between the random vector 

χ and the value of the field at an arbitrary point X as obtained using Equation ( I.10), and finally N 

is the number of terms (expansion order) retained in the EOLE method. Notice finally that (,
D
i jκ ; 

i=1, 2) are two cross-correlated blocks of independent standard normal random variables 

obtained using the Gaussian cross-correlation matrix C between the two fields as follows: (i) one 

should compute the diagonal eigenvalues matrix Λ
C with its corresponding eigenvectors matrix 

Φ
C of the Gaussian cross-correlation matrix C using the spectral decomposition of the cross-

correlation matrix C, and (ii) generate the block sample vector Dκ which contains the two cross-

correlated blocks ( ,
D
i jκ ; i=1, 2) of independent standard random variables using the following 

formula: 

( ) 1
2( )

TD D D Tκ ξ= Φ Λ  ( I.22) 

where ΦD is a (2Nx2N) block matrix resulting from the multiplication of each element in the 

matrix ΦC by the unit matrix of order N (the expansion order), ΛD is a (2Nx2N) block matrix 

resulting from the multiplication of each element in the matrix ΛC by the unit matrix of order N 

and ( ) ( ){ }1 1

1 1 1 2 2 2,..., , ,...,
NNξ ξ ξ ξ ξ ξ ξ= = = is a block vector which contains two blocks (iξ ; i=1, 

2) of N standard Gaussian independent random variables for each one.  

Once the two Gaussian cross-correlated random fields are obtained, they should be transformed 

to the non-Gaussian space by applying the following formula: 

{ }1( ) ( ) 1, 2NG G
i i iZ X G Z X i−  = Φ = 
ɶ ɶ  ( I.23) 

where (.)Φ  is the standard normal cumulative density function. It should be mentioned here that 

the series given by Equation ( I.21) are truncated for a number of terms N (expansion order) 

smaller than the number of grid points s, after sorting the eigenvalues (ijλ ; j=1, …, N) in a 
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descending order. This number should assure that the variance of the error given in Equation 

( I.18) is smaller than a prescribed tolerance as previously mentioned. In order to clarify the 

EOLE method and its extension by Vořechovsky (2008), a detailed numerical example is 

presented in Appendix B to illustrate the different steps for generating cross-correlated non-

Gaussian random fields. 

I.4 TIME VARIABILITY OF THE SEISMIC LOADING 

An earthquake is usually initiated by a series of irregular slippages along faults, followed by a 

large number of random reflections, refractions, dispersions and attenuations of the seismic 

waves within the complex ground formations through which they travel. Consequently, an 

earthquake Ground-Motion (GM) exhibits nonstationarity in both time and frequency domains 

[Rezaeian and Der Kiureghian (2008)]. The temporal nonstationarity is due to the variation of the 

intensity of the earthquake GM over time. This intensity evolves with time from zero to a roughly 

constant value representing the phase of strong motion, and then decreases gradually to zero. The 

frequency (or spectral) nonstationarity is the change of the frequency content of the earthquake 

GM over time. Typically, high-frequency compressional (P) waves tend to dominate the initial 

few seconds of the motion. These are followed by moderate-frequency shear (S) waves, which 

tend to dominate the strong-motion phase of the ground-motion. Finally, low-frequency surface 

waves tend to dominate the end of the motion.  

The growing interest to perform probabilistic dynamic analysis in recent years has further 

increased the need for stochastic modeling of earthquake GMs. This is because in such analysis, 

one needs a large number of recorded ground motions. However, for many regions, the database 

of recorded motions is not sufficient. As a result, there is an increasing interest in methods for 

generation of synthetic GMs. 

For many years, stochastic processes and more precisely the zero-mean Gaussian process have 

been used to model earthquake GMs [cf. Shinozuka and Sato (1967), Liu (1970), Ahmadi (1979), 

Kozin (1988), Shinozuka and Deodatis (1988), Zerva (1988), Papadimitriou (1990), Conte and 

Peng (1997), Rezaeian and Der Kiureghian (2008) and Rezaeian and Der Kiureghian (2010)]. In 

order to establish a valid model to simulate stochastic earthquake GMs, statistical 

characterization of existing earthquake GM is necessary to correctly model the corresponding 

nonstationarities [cf. Liu (1970), Ahmadi (1979), Zerva (2009) and Rezaeian and Der Kiureghian 

(2008)]. 
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I.4.1 Statistical characterization of the time variability of earthquake GMs 

An earthquake GM is nonstationary in both the time and the frequency domains. Thus, it is 

statistically characterized by a time-varying standard deviation (i.e. the standard deviation 

changes as a function of time) and a time-varying autocorrelation function (or the corresponding 

power spectral density (PSD) function [cf. Figure  I.1]). It should be mentioned here that the PSD 

function represents the autocorrelation function in the frequency domain and it is obtained by 

applying the Fourier transform on the autocorrelation function. The PSD function is thus used to 

statistically characterize the GM in the frequency domain. In particular, the PSD function 

provides the time-varying (i) predominant frequency which gives a measure of where the spectral 

density is concentrated along the frequency axis, and (ii) frequency bandwidth, corresponding to 

the dispersion of the spectral density around the predominant frequency [cf. Figure  I.2]. 

Figure  I.1. Time-varying PSD function 

 

Figure  I.2. Predominant frequency and bandwidth  

I.4.2 Modeling of the stochastic earthquake GMs 

A large number of stochastic models that describe the earthquake GM for a specific site by fitting 

to a recorded motion with known earthquake and site characteristics have been developed. 

Formal reviews are presented by Liu (1970), Ahmadi (1979), Shinozuka and Deodatis (1988) and 

Kozin (1988). The existing stochastic models can be classified into four categories [Rezaeian and 

Der Kiureghian (2008)]: (i) random processes which are obtained by passing a white noise 

through a filter and then multiply it by a time-modulation function to ensure the temporal 

nonstationarity. These models ignore the nonstationarity in the frequency domain [Shinozuka and 

Sato (1967)]. (ii) Random processes which are obtained by passing a Poisson pulse train through 

a linear filter [Cornel (1960)]. Through modulation in time of these processes, the two types of 

nonstationarity can be taken into account. The major difficulty remains to link these processes to 

target recorded acceleration time-histories. (iii) Random processes which are obtained using the 
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ARMA models (Auto-Regressive Moving Average) [ Conte et al. (1992)] in which the variation 

of the model parameters over time allows to take into account both types of nonstationarity. 

However, it is difficult to relate the model parameters to the physical aspects of the earthquake 

GM. (iv) Random processes which are obtained by various forms of spectral representation [Der 

Kiureghian and Crempien (1989)]. These models require extensive treatment of the target 

recorded acceleration time history.  

The stochastic model used in this thesis is the one developed by Rezaeian and Der Kiureghian 

(2008, 2010). It consists in passing a Gaussian white noise through a linear filter. However, 

unlike previous models, the filter has time-varying parameters, which allows the variation of the 

spectral content with time. Temporal nonstationarity is achieved by modulation in time.  

The next subsections are organized as follows: First, a brief description of the stochastic model 

used in this thesis is presented. It is followed by a presentation of the different parameters related 

to this model. 

I.4.2.1 The stochastic model description 

For the generation of the stochastic synthetic earthquake GMs, the model given by Rezaeian and 

Der Kiureghian (2008, 2010) is used herein. In its continuous form, it is given as follows: 

[ ]1
( ) ( , ) , ( ) ( )

( )

t

h

x t q t h t w d
t

α τ λ τ τ τ
σ −∞

 
= − 

 
∫ɶ  ( I.24) 

In this expression, ( , )q t α  is a deterministic, positive, time-modulating function with parameters 

α controlling the shape and the intensity of the GM; ( )w τ  is a white-noise process; the integral 

inside the brackets is a filtered white-noise process with [ ], ( )h t τ λ τ−  denoting the Impulse-

Response Function (IRF) of the filter with time-varying parameters ( )λ τ ; and 

[ ]2 2( ) , ( )
t

h t h t dσ τ λ τ τ
−∞

= −∫  is the variance of the integral process. Because of the 

normalization by ( )h tσ , the process inside the curved brackets has unit standard deviation. As a 

result, ( , )q t α  equals the standard deviation of the resulting process ( )x tɶ . It should be noted that 

the modulating function ( , )q t α  completely defines the time-varying standard deviation of the 

presented stochastic model, whereas the form of the filter IRF and its time-varying parameters 

define its time-varying power spectral density function (PSD). In other words, simulating a 

stochastic synthetic earthquake GM consists in passing a Gaussian (white-noise) process (which 
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is the source of stochasticity) through a linear filter with time-varying parameters. The obtained 

filtered white noise (which represents the time-varying PSD function of the model) is then 

normalized it by dividing it by its standard deviation. Thus, one obtains a normalized filtered 

white-noise with nonstationarity in the frequency domain. Finally, the temporal nonstationarity is 

insured by multiplying the normalized filtered white-noise by a time-modulation function (which 

represents the time-varying standard deviation of the model). 

In order to facilitate digital simulation, the stochastic model given in Equation ( I.24) is 

discretized in the time domain as follows [cf. Rezaeian and Der Kiureghian (2008)]: 

[ ]

[ ]
1

2

1

, ( ), ( )
ˆ ( ) ( , )

, ( ), ( )

N

i f i f i i
i

N

i f i f i
i

h t t t t u
x t q t

h t t t t

ω ζ
α
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 ( I.25) 

where it i t= × ∆  for i=0, 1, …, N, t∆ is a small time step and 1
T

N
t

= +
∆

 with T being the total 

duration of the motion. In most earthquake engineering applications, 0.01t s∆ = . Finally, ui are a 

set of standard normal random variables representing random pulses at the discrete time points ti. 

Thus, these random variables ui may be regarded as a train of random pulses that represent 

intermittent ruptures at the fault. The filter [ ], ( )h t τ λ τ−  may represent the medium through 

which the seismic waves travel (i.e. the soil medium). Thus, the obtained earthquake GM is the 

superposition of the filter response to those random pulses. 

For a given modulating function and filter IRF, a realization of the process in Equation ( I.25) is 

obtained by simulating at set of standard normal random variables ui. for i=1, …, N. 

I.4.2.2 The model parameters 

In the current work, a ‘Gamma’ modulating function was selected. This choice was justified by 

the fact that this type of function captures the time-evolution of the intensity using a small 

number of parameters [Rezaeian (2010)]. It is given as follows: 

2 1
1 3( , ) exp( )q t t tαα α α−= −  ( I.26) 

where 1 2 3( 0, 1, 0)α α α α= > > > . Of the three parameters, α1 controls the intensity of the 

process, α2 controls the shape of the modulating function and α3 controls the duration of the 

motion. These parameters 1 2 3( , , )α α α α=  are related to three physically based parameters 
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5 95( , , )a midI D t−  which describe the real recorded GM in the time domain. The first variable, aI  

is the so-called Arias Intensity (aI ) given by: [ ]2

0

( )
2

nt

aI a t dt
g

π= ∫  [Kramer (1996)]. The 

second variable D5−95 represents the effective duration of the motion. It is defined as the time 

interval between the instants at which 5% and 95% of the expected aI  are reached respectively. 

Finally, the third variable tmid is the time at the middle of the strong-shaking phase. It is selected 

as the time at which 45% level of the expected aI  is reached. The relationships between 

1 2 3( , , )α α α α= and 5 95( , , )a midI D t− are given in Appendix C.  

For the filter IRF, a form that corresponds to the pseudo-acceleration response of a single-degree-

of-freedom linear oscillator was selected. For more details on the pseudo-acceleration response of 

a single-degree-of-freedom linear oscillator, the reader may refer to Appendix D. It is given by: 

[ ] [ ] 2

2

( )
, ( ) exp ( ) ( )( ) sin ( ) 1 ( ) ( )

1 ( )

0 otherwise

f
f f f f

f

h t t t t
ω ττ λ τ ζ τ ω τ τ ω τ ζ τ τ τ

ζ τ
 − = − − × − − ≤
 −

=

 ( I.27) 

where ( ) ( ( ), ( ))f fλ τ ω τ ζ τ=  is the set of time-varying parameters of the IRF with ( )fω τ  

denoting the frequency of the filter and ( )fζ τ  denoting its damping ratio. Of these two 

parameters, ( )fω τ  controls the predominant frequency of the process and ( )fζ τ controls its 

bandwidth. These two parameters ( )fω τ  and ( )fζ τ  are related to two physical parameters that 

describe the recorded GM in the frequency domain and which are respectively the predominant 

frequency and the bandwidth of the GM. As a measure of the evolving predominant frequency of 

the recorded GM, the rate of zero-level up-crossings is considered, and as a measure of its 

bandwidth, the rate of negative maxima (peaks) and positive minima (valleys) is considered. In 

Rezaeian and Der Kiureghian (2008), the evolution of the predominant frequency was determined 

by minimizing the difference between the cumulative mean number of zero-level up-crossings of 

the process in time with the cumulative count of the zero-level up-crossings of the recorded 

accelerogram. The mean number of zero-level up-crossings being the mean number of time per 

unit time that the process crosses the level zero from below.  The bandwidth parameter ( )fζ τ , 

was determined by minimizing the difference between the mean rate of negative maxima and 

positive minima with the observed rate of the same quantity in the recorded accelerogram. Details 

on the chosen filter IRF which has a form that corresponds to the pseudo-acceleration response of 
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a single-degree-of-freedom linear oscillator, in addition to the procedure used to determine the 

parameters ( ) ( ( ), ( ))f fλ τ ω τ ζ τ=  of this filter are given in Appendix C. 

I.5 PROBABILISTIC METHODS FOR UNCERTAINTY PROPAGATI ON  

Development of efficient methods for uncertainty propagation in order to perform the 

probabilistic analyses has gained much attention in recent years due to the importance of 

introducing uncertainties in the model parameters. The uncertainty propagation aims to study the 

impact of input uncertainty on the variation of a model output (response). This can be done by 

first defining the analytical/numerical deterministic model. It should be mentioned here that the 

chosen deterministic model can be complex and/or computationally-expensive (Step B in Figure 

 I.3). The second step consists in identifying the uncertain input parameters and modeling them by 

random variables or random fields (Step A in Figure  I.3). The final step consists in propagating 

the uncertainty in the input parameters through the deterministic model (Step C in Figure  I.3). In 

the probabilistic framework, all of the relevant information regarding the uncertainty of the model 

output is contained in its PDF. Thus, determining the PDF of the system response is the main 

goal in all uncertainty propagation methods. However, the fact that we are considering numerical 

models implies that the relation between the model uncertain inputs and the system response can 

not be represented by an analytical expression. Consequently, it is impossible to obtain a simple 

analytical expression of the PDF of the system response. However, for design purposes, all the 

information contained in the PDF are not necessary. Thus, depending on the type of study that is 

carried out, only a set of probabilistic outputs can be used. These probabilistic outputs may be the 

statistical moments (mean and standard deviation) or the probability of failure (or the probability 

of exceeding a given threshold value). The different probabilistic outputs may be computed as 

follows: 

Consider M input random variables (X1, …, XM) gathered in a vector X, and let fX(X) denote the 

joint PDF of the set X. Furthermore, we note that the system output Γ=g(X). is a function of the 

input vector X. The expressions of the first two statistical moments of the system response are 

given by: 

( ) ( )Xg X f X dXµΓ = ∫  ( I.28) 

( ) ( )2

Xg X f X dXσ µΓ Γ = − ∫  ( I.29) 

As for the probability of exceeding a threshold Γmax, its expression is given as follows: 
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( )
0

f X

G

P f X dX
≤

= ∫  ( I.30) 

where G is the performance function given as G= Γmax – Γ 

From these equations, one can notice that the statistical measures are expressed as an integral and 

can be seen as a numerical integration problem. Thus, variety of methods exists for their 

computation. These methods can be divided into two main categories which are the simulation 

methods and the metamodeling methods.  
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Figure  I.3. General sketch for the probabilistic analyses  

I.5.1 The simulation methods 

This section is devoted to the presentation of the simulation methods used for the uncertainty 

propagation. This category regroups the universal Monte Carlo simulation (MCS) methodology 

and other more advanced simulation techniques (i.e. the Importance sampling (IS) and the Subset 

simulation (SS)). In spite of being rigorous and robust, the simulation methods are well-known to 

be very time-expensive especially when dealing with finite element or finite difference models 

which do not offer an analytical solution of the involved problem. The time cost is due to the fact 

that these methods require a great number of calls of the deterministic model to rigorously 

determine the PDF of the system response. The advanced simulation techniques (i.e. the IS and 

the SS) are all based on the modification of the MCS method in order to simulate more points in a 

particular zone of interest and thus they are very attractive when the probabilistic output of 

interest is the probability of failure. Thus, the MCS methodology remains the origin of all the 

advanced simulation techniques and deserves to be firstly presented. This is followed by a brief 

presentation of the SS method which is the most used advanced simulation method for the 

computation of the probability of failure. 
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I.5.1.1 Monte Carlo Simulation (MCS) methodology 

The Monte Carlo simulation is a universal method to evaluate complex integrals. It consists in 

generating K samples which respect the joint probability density function fX(X) of the M random 

variables (X1, …, XM) gathered in a vector X. For each sample, the system response is calculated. 

Thus; for the K samples, one obtains K values of the system response gathered in a vector 

( ) ( ){ }(1) ( ),..., KX XΓ = Γ Γ  which may be used to determine the estimators of the first two 

statistical moments of the system response (i.e. the mean and the standard deviation). These two 

estimators of the first two statistical moments (,µ σΓ Γɶ ɶ ) are given as follows: 

( )( )
1

1 K
i

i

X
K

µΓ
=

= Γ∑ɶ  ( I.31) 

( )( )
2

1

1

1

K
i

i

X
K

σ µΓ Γ
=

 = Γ −
 − ∑ɶ ɶ  ( I.32) 

It should be mentioned here that MCS methodology is applicable whatever the complexity of the 

system is. However, a very large number of realizations is required to obtain a rigorous PDF of 

the system response. Thus, MCS methodology is not practically applicable when the 

deterministic model is computationally-expensive and especially when computing small failure 

probabilities.  

I.5.1.2 Subset Simulation (SS) methodology 

The basic idea of subset simulation is that the small failure probability can be expressed as a 

product of larger conditional failure probabilities. Consider a failure region F defined by the 

condition G<0 where G is the performance function and let ( )(1) ( ),..., KX X  be a sample of K 

realizations of the vector X composed of M random variables (X1, …, XM). It is possible to define 

a sequence of nested failure regions F1, …, Fj, ..., Fm of decreasing size where 

1 ... ...j mF F F F⊃ ⊃ ⊃ ⊃ =  (Figure  I.4). An intermediate failure region Fj can be defined by G<Cj where 

Cj is an intermediate failure threshold whose value is larger than zero. Thus, there is a decreasing 

sequence of positive failure thresholds C1, …, Cj, ..., Cm corresponding respectively to F1, …, 

Fj,…, Fm where C1>…>Cj>...> Cm=0. In the SS approach, the space of uncertain parameters is 

divided into a number m of levels with equal number Ks of realizations ( )( )(1),..., sKX X . An 

intermediate level j contains a safe region and a failure region defined with respect to a given 
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failure threshold Cj. The failure probability corresponding to this intermediate level j is calculated 

as follows: 

( )( )1
1

1
( )

s

j

K
k

j j F
ks

P F F I X
K−

=

= ∑  ( I.33) 

where ( )( ) 1
j

k

FI X =  if ( )k
jX F∈  and ( )( ) 0

j

k

FI X =  otherwise. Notice that in the SS approach, the 

first Ks realizations are generated using MCS methodology according a target joint probability 

density function fX(X). The next Ks realizations of each subsequent level are obtained using 

Markov chain method based on Metropolis-Hastings (M-H) algorithm. 

 

Figure  I.4. Nested Failure domain 

The failure probability ( ) ( )mP F P F=  of the failure region F can be calculated from the 

sequence of conditional failure probabilities as follows [Au and Beck (2001)]: 

( ) ( ) ( ) ( )1 1
2

|
m

m j j
j

P F P F P F P F F−
=

= = ∏  ( I.34) 

For more details on the SS approach and its extension to the case of spatially varying soil 

properties, the reader may refer to Ahmed and Soubra (2012) and Ahmed (2012). 

I.5.2 The metamodeling techniques 

To overcome the inconvenience of the simulation methods, the metamodeling techniques are 

proposed in this regard. The aim of these techniques is to replace the original computationally-
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expensive deterministic model by a meta-model (i.e. an analytical equation). A variety of 

metamodeling techniques exist. The Response Surface Methodology (RSM) [Box et al. (1978), 

Bucher and Bourgund (1990), Myers and Montgomery (1995)] is a well known approach for 

constructing simple approximation of complex numerical model using polynomial regression. 

Another interesting metamodeling technique is the Kriging method [Sacks et al. (1989), Booker 

et al. (1999)] which is based on interpolation. Finally, the Polynomial Chaos Expansion (PCE) 

[Spanos and Ghanem (1989), Isukapalli et al. (1998), Xiu and Karniadakis (2002), Berveiller et 

al. (2006), Sudret et al. (2006), Sudret and Berveiller (2008), Huang et al. (2009), Blatman and 

Sudret (2010)] provides a rigorous approximation of complex numerical models with reasonable 

computation effort. This method has gained large attention due to its efficiency. The next 

subsections aim to briefly present the RSM and the Kriging method. They are followed by a more 

detailed presentation of the PCE methodology which is the metamodeling technique employed in 

this thesis. 

I.5.2.1 The Response Surface Methodology (RSM)  

The Response Surface Methodology (RSM) aims at approximating the system response Γ(X) by 

an explicit function of the random variables. The most popular form of this function is a second 

order polynomial model, which can be expressed as: 

( ) 2
0

1 1

M M

RSM i i i i
i i

X a a X b X
= =

Γ = + +∑ ∑  ( I.35) 

where Xi are the random variables, M is the number of random variables and ( )ii b,a  are 

coefficients obtained by the least squares method, which minimizes the sum of the squares 

between the predicted values ( )( )i
RSM XΓ  and the model values ( ) ( ){ }(1) ( ),..., KX XΓ = Γ Γ  where 

K is the number of samples points. It should be emphasized here that the second order polynomial 

used in the RSM method has limited capability to accurately model highly nonlinear response 

surfaces. Higher-order polynomial models can be used to model a highly nonlinear response 

surfaces; however, instabilities may arise [cf. Barton (1992)]. Furthermore, this requires a large 

number of sample points. This enormously increases the computation time and make the RSM 

solution inadequate in this case. 
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I.5.2.2 The Kriging Method 

This method was presented and detailed in section  I.3.2 for the approximation of a random field 

at unsampled points using the values of this field at sampled points. This method is used herein to 

approximate the system response Γ(X) at any point X where the sample points are obtained in this 

case using a simulation technique (e.g. the Monte Carlo simulation). Thus, for K sample points, 

one obtains K values of the system response gathered in a vector ( ) ( ){ }(1) ( ),..., KX XΓ = Γ Γ  

which may be used to obtain the approximated system response using the Kriging method as 

follows [Jin (2005)]: 

( ) ( )1

0 0 0( ); ;

T

Kriging X
X a b a

−

Γ Γ Γ Γ
Γ = + Γ −∑ ∑  ( I.36) 

where a0 and b0 are respectively the mean the standard deviation of the system responses 

( ) ( ){ }(1) ( ),..., KX XΓ = Γ Γ , 
;

1

Γ Γ

−∑  and 
( );X

T

Γ Γ
Σ  are respectively the inverse of the autocorrelation 

matrix ;Γ Γ∑  and the transpose of the correlation vector( );XΓ ΓΣ . It should be mentioned that a row 

i of the autocorrelation matrix gives the values of the correlation between the value of the 

response at the sampled point ( )( )iXΓ  and all the values of the response at the sampled points 

( ) ( ){ }(1) ( ),..., KX XΓ = Γ Γ  and ( );XΓ ΓΣ  is a vector whose elements provide the correlation 

between the value of the response at the unsampled point Γ(X) and the values of the response at 

the sampled points gathered in the vector ( ) ( ){ }(1) ( ),..., KX XΓ = Γ Γ . Notice however that the 

ACF used to determine the autocorrelation matrix ;Γ Γ∑  and the correlation vector ( );XΓ ΓΣ  is 

obtained by fitting one of the analytical ACF given in Table  I.1 to the sample ACF obtained using 

the available system responses ( ) ( ){ }(1) ( ),..., KX XΓ = Γ Γ . 

I.5.2.3 The Polynomial chaos expansion PCE methodology - the classical truncation scheme 

The polynomial chaos expansion (PCE) aims at replacing a complex deterministic model (i.e. 

finite element/finite difference numerical model) by a meta-model. This allows one to calculate 

the system response (when performing MCS) using an approximate simple analytical equation 

[Spanos and Ghanem (1989), Isukapalli et al. (1998, 1999), Xiu and Karniadakis (2002), 

Berveiller et al. (2006), Huang et al. (2009), Blatman and Sudret (2010), Li et al (2011), Mollon 

et al. (2011), Houmadi et al. (2011), Mao et al. (2012), Al-Bittar and Soubra (2012)]. Thus, the 
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metamodel may be used to perform the probabilistic analysis with a significant reduction in the 

computation time.  

The PCE makes use of multivariate polynomials which are orthogonal with respect to the joint 

probability density function of the input random vector. The different types of the joint 

probability density functions and their corresponding multivariate polynomials are given in Table 

 I.7.  

probability density functions Polynomials 

Gaussian Hermite 

Gamma Laguerre 

Beta Jacobi 

Uniform Legendre 

Table  I.7. Usual probability density functions and their corresponding families of orthogonal polynomials [Xiu 
and Karniadakis (2002)]. 

In this work, the Gaussian joint probability density function and its corresponding multivariate 

Hermite polynomials are used. Notice that the coefficients of the PCE may be efficiently 

computed using a non-intrusive technique where the deterministic calculations are done using for 

example a finite element or a finite difference software treated as a black box. The most used 

non-intrusive method is the regression approach [Isukapalli et al. (1998, 1999), Sudret et al. 

(2006), Huang et al. (2009), Blatman and Sudret (2010), Li et al (2011), Mollon et al. (2011), 

Houmadi et al. (2011), Mao et al. (2012), Al-Bittar and Soubra (2012)]. It is used in this thesis. 

The PCE methodology can be described as follows: 

Consider a mechanical model with M input uncertain parameters gathered in a vector 

{ }1 MX= X , ..., X . The different elements of this vector can have different types of the 

probability density function. In order to represent our mechanical system response by a PCE, all 

the uncertain parameters should be represented by a unique chosen PDF. Table  I.7 presents the 

usual probability density functions and their corresponding families of orthogonal polynomials. 

Based on the Gaussian PDF chosen in this work, the system response can be expanded onto an 

orthogonal polynomial basis as follows: 

1

0 0

( ) ( ) ( )
P

PCE a aβ β β β
β β

ξ ξ ξ
∞ −

= =

Γ = Ψ ≅ Ψ∑ ∑  ( I.37) 

where ξ  is the vector resulting from the transformation of the random vector X into an 

independent standard normal space, P is the number of terms retained in the truncation scheme, 
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aβ are the unknown PCE coefficients to be computed and βΨ  are multivariate (or 

multidimensional) Hermite polynomials which are orthogonal with respect to the joint probability 

density function of the standard normal random vector ξ. These multivariate Hermite polynomials 

can be obtained from the product of one-dimensional Hermite polynomials of the different 

random variables as follows: 

1

( )
i

M

i

Hβ α ξ
=

Ψ = ∏  ( I.38) 

Where (.)
i

Hα  is the αi-th one-dimensional Hermite polynomial and αi are a sequence of M non-

negative integers { }1, ..., Mα α . The expressions of the one-dimensional Hermite polynomials are 

given in Appendix E. In practice, one should truncate the PCE representation by retaining only 

the multivariate polynomials of degree less than or equal to the PCE order p (i.e. the classical 

truncation scheme). Notice that the classical truncation scheme suggests that the first order norm 

1
.  of any multivariate polynomial βΨ  should be less than or equal to the order p of the PCE as 

follows [Blatman (2009)]: 

1
1

M

i
i

pα α
=

= ≤∑  ( I.39) 

Using this method of truncation, the number P of unknown PCE coefficients is given by: 

( )!

! !

M p
P

M p

+=  ( I.40) 

As may be seen from Equation ( I.40), the number P of the PCE coefficients which is the number 

of terms retained in Equation ( I.37) dramatically increases with the number M of random 

variables and the order p of the PCE. This number becomes very high in the case of random 

fields where the number of random variables is significant.  

Once the coefficients aβ of the PCE given by Equation ( I.37) have been computed, the statistical 

moments (mean, standard deviation, skewness, and kurtosis) can be calculated with no additional 

cost. This can be done by performing Monte Carlo simulations on the meta-model and not on the 

original computationally-expensive finite element/finite difference numerical model. This 

significantly reduces the cost of the probabilistic analysis since a large number of Monte Carlo 

simulations (say 1,000,000) can be performed in a negligible time when using the metamodel. 

The next subsection is devoted to the method used for the computation of the coefficients aβ of 

the PCE using the regression approach. 
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Computation of the PCE coefficients by the regression approach 

Consider a set of K realizations ( ) ( )(1) ( )
1 1{ ,..., ,..., ,..., }K

M Mξ ξ ξ ξ ξ ξ= = of the standard normal 

random vector ξ. These realizations are called experimental design (ED) and can be obtained 

from Monte Carlo (MC) simulations or any other sampling scheme (e.g. Latin Hypercube (LH) 

sampling or Sobol set). We note ( ) ( ){ }(1) ( ),..., Kξ ξΓ = Γ Γ , the corresponding values of the 

response determined by deterministic calculations. The computation of the PCE coefficients 

using the regression approach is performed using the following equation: 

1( )T Ta η η η−= Γ⌢
 ( I.41) 

where the data matrix η is defined by: 

( )( ), 1,..., , 0,..., 1i
i i K Pβ βη ξ β= Ψ = = −  ( I.42) 

In order to ensure the numerical stability of the treated problem in Equation ( I.41), the size K of 

the ED must be selected in such a way that the matrix 1( )Tη η −  is well-conditioned. This implies 

that the rank of this matrix should be larger than or equal to the number of unknown coefficients. 

This test was systematically performed while solving the linear system of equations of the 

regression approach. 

Computation of the PCE coefficient of determination 

The quality of the output approximation via a PCE closely depends on the PCE order p. To 

ensure a good fit between the meta-model and the true deterministic model (i.e. to obtain the 

optimal PCE order), one successively increases the PCE order until a prescribed accuracy was 

obtained. The simplest indicator of the fit quality is the well-known coefficient of determination 

R2 given by: 

( )( ) ( )( )
( )( )

K 2
i i

SPCE
2 i 1

K 2
i

i 1

1

K
R 1

1

K 1

Γ ξ Γ ξ

Γ ξ Γ
=

=

 −
 

= −
 −
 −

∑

∑
 

where 

( I.43) 

( )( )
K

i

i 1

1

K
Γ Γ ξ

=

= ∑  ( I.44) 

The value 2R 1=  indicates a perfect fit of the true model response Γ, whereas 2R 0=  indicates 

a nonlinear relationship between the true model response Γ and the PCE model response PCEΓ . 

The coefficient R2 may be a biased estimate since it does not take into account the robustness of 
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the meta-model (i.e. its capability of correctly predicting the model response at any point which 

does not belong to the experimental design). As a consequence, one makes use of a more reliable 

and rigorous coefficient of determination denoted Q2 [Blatman (2009)]. In order to compute this 

coefficient of determination Q2, one needs to sequentially remove a point from the experiment 

design composed of K points. Let \iξΓ  be the meta-model that has been built from the experiment 

design after removing the i th observation and let i ( i ) ( i )
\i( ) ( )ξ∆ Γ ξ Γ ξ= − be the predicted 

residual between the model evaluation at point ( i )ξ and its prediction based on \iξΓ . Thus, the 

corresponding coefficient of determination Q2 is obtained as follows: 

( )
( )( )

2K
i

2 i 1
K 2

i

i 1

1

K
Q 1

1

K 1

∆

Γ ξ Γ
=

=

= −
 −
 −

∑

∑
 ( I.45) 

The two coefficients R2 and Q2 will be used in this thesis to check the accuracy of the fit. 

Global sensitivity analysis (GSA) 

Once the PCE coefficients are determined, a global sensitivity analysis (GSA) based on Sobol 

indices can be easily performed. Notice that the first order Sobol index of a given random 

variable ξi (i=1,…, M) gives the contribution of this variable in the variability of the system 

response. The first order Sobol index is given by Salteli (2000) and Sobol (2001) as follows:  

( )
( )

|
( ) i

i

Var E Y
S

Var Y

ξ
ξ

  =  ( I.46) 

where Y is the system response, ( )| iE Y ξ  is the expectation of Y conditional on a fixed value of 

iξ , and Var denotes the variance. In the present work, the system response is represented by a 

PCE. Thus, by replacing Y in Equation ( I.46) with the PCE expression, one obtains the Sobol 

index formula as a function of the different terms of the PCE [Sudret (2008)]. This formula is 

given by:  

( ) ( )2 2

( ) iI
i

PCE

a E

S
D

β β
βξ ∈

 Ψ  
=
∑

 ( I.47) 

where aβ  are the obtained PCE coefficients, βΨ  are the multivariate Hermite polynomials, [ ].E  

is the expectation operator, and PCED  is the variance of the response approximated by the PCE. 

The response variance PCED  is given by Sudret (2008) as follows:  
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( ) ( )
21 2

0

P

PCED a Eβ β
β

−

=

 = Ψ  ∑  ( I.48) 

Notice that the term ( )2
E β
 Ψ  

 that appears in both Equation ( I.47) and Equation ( I.48) is given 

by Sudret (2008) as follows:  

( )2

1

!
M

i
i

E β α
=

Ψ = ∏  ( I.49) 

where the αi are the same sequence of M non-negative integers{ }1, ....., Mα α  used in Equation 

( I.38). Notice that I i in Equation ( I.47) denotes the set of indices β for which the corresponding 

βΨ  terms are only functions of the random variable ξi (i.e. they only contain the variable ξi). It 

should be emphasized that Equation ( I.47) used to compute the Sobol indices can only be used 

when uncorrelated random variables are involved. Notice however that this equation was used in 

this thesis to determine the contribution of correlated random fields. For both uncorrelated or 

correlated variables, it was assumed that a direct relationship exist between each physical variable 

and its corresponding standard variable. Although this assumption is exact in the case of 

uncorrelated variables, it is not true in the case of correlated variables. This means that the 

computed Sobol indices using this assumption should be handled with care in the case of 

correlated variables. An ongoing research on this topic is necessary to lead to rigorous values of 

the Sobol indices in this case. Some interesting and recent papers on this subject may be found in 

Kucherenko et al. (2012), Li et al. (2010), Da Veiga et al. (2009) and Caniou et al. (2012). 

In order to illustrate the construction of a PCE and the derivation of the equations providing 

Sobol indices, an illustrative example of a PCE of order p=3 using only M=2 random variables 

(ξ1 and ξ2) is presented in Appendix E. 

I.6 CONCLUSION 

In this chapter, a literature review on the spatial variability of the soil properties and the time 

variability of the seismic loading was presented. The characterization and modeling of the soil 

spatial variability were firstly presented. This was followed by the characterization and the 

modeling of the time variability of seismic loading. In this thesis, the soil spatial variability will 

be modeled by random fields characterized by their probability density functions PDFs and their 

autocorrelation functions. As for the time variability of seismic loading, it was modeled by a 

parameterized stochastic model that is based on a modulated, filtered white-noise process which 

should be fitted to a real target acceleration time history. Finally, the different methods of 
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uncertainties propagation used to perform the probabilistic analyses were presented. These 

methods were divided into two main categories which are the simulation methods and the 

metamodeling techniques. The simulation methods involve the Monte Carlo simulation (MCS) 

methodology which is known to be the most rigorous and robust probabilistic method and other 

more advanced simulation techniques (i.e. the Importance sampling (IS) and the Subset 

simulation (SS)). As for the metamodeling techniques, three well known methods were presented 

which are (i) the Response Surface Methodology (RSM), (ii) the Kriging method and finally (iii) 

the Polynomial Chaos Expansion (PCE). This last method is of particular interest. It is the 

method used in the present work. In this method, the meta-model is obtained by expanding the 

system response on a suitable basis, which is a series of multivariate polynomials that are 

orthogonal with respect to the joint probability density function of the input random variables. 

Consequently, the characterization of the PDF of the system response is equivalent to the 

evaluation of the PCE coefficients. In addition to the PDF, this method allows the computation of 

the PCE-based Sobol indices. These indices provide the contribution of each uncertain parameter 

in the variability of the system response.  
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CHAPTER II. PROBABILISTIC ANALYSIS OF STRIP FOOTING S 

RESTING ON 2D SPATIALLY VARYING SOILS/ROCKS USING S PARSE 

POLYNOMIAL CHAOS EXPANSION 

II.1 INTRODUCTION 

The spatial variability of the soil/rock properties affects the behavior of geotechnical structures 

(bearing capacity, foundation settlement, slope stability, etc.). Several probabilistic analyses on 

foundations have considered the effect of the spatial variability of the soil properties [Griffiths 

and Fenton (2001), Griffiths et al. (2002), Fenton and Griffiths (2002), Nour et al. (2002), Fenton 

and Griffiths (2003), Popescu et al. (2005), Breysse et al. (2005), Breysse et al. (2007), Niandou 

and Breysse (2007), Youssef Abdel Massih (2007), Soubra et al. (2008), Jimenez and Sitar 

(2009), Cho and Park (2010) and Breysse (2011)]. As for the probabilistic analyses of 

foundations resting on a spatially varying rock mass, only few studies may be found in literature 

[Ching et al. (2011)]. 

It should be mentioned that when dealing with probabilistic studies that involve spatially varying 

soil/rock properties, the classical Monte Carlo Simulation (MCS) methodology is generally used 

to determine the probability density function (PDF) of the system response. It is well known that 

this method is a very time-expensive approach. This is because (i) it generally makes use of finite 

element or finite difference models which are generally time-expensive and (ii) it requires a great 

number of calls of the deterministic model.  

To overcome the inconvenience of the time cost, the Sparse Polynomial Chaos Expansion 

(SPCE) methodology was proposed in this regard. Notice that the sparse polynomial chaos 

expansion is an extension of the Polynomial Chaos Expansion (PCE). A PCE or a SPCE 

methodology aims at replacing the finite element/finite difference deterministic model by a meta-

model (i.e. a simple analytical equation).  

Within the framework of the PCE or the SPCE methodology, the PDF of the system response can 

be easily obtained. This is because MCS is no longer applied on the original computationally-

expensive deterministic model, but on the meta-model. This consists in performing a great 

number of simulations on the meta-model. The other significant advantage of the present SPCE 

methodology with respect to the classical crude MCS method is that it allows one to easily 

perform a global sensitivity analysis based on Sobol indices using the SPCE coefficients. These 

indices give the contribution of each random field to the variability of the system response.  
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In this chapter, the SPCE methodology was used to perform a probabilistic analysis at both 

ultimate limit state (ULS) and serviceability limit state (SLS) of strip footings. Two case studies 

were considered in this chapter. The first one involves the case of strip footings resting on a 

spatially varying soil mass obeying the Mohr-Coulomb (MC) failure criterion [Al-Bittar and 

Soubra (2011), Al-Bittar and Soubra (2012a, 2012b) and Al-Bittar (2012)] and the second one 

considers the case of strip footings resting on a spatially varying rock mass obeying the Hoek-

Brown (HB) failure criterion [Al-Bittar and Soubra (2012c)].  

In the case of the spatially varying soil mass, a probabilistic analysis at both ULS and SLS of 

vertically loaded strip footings was performed. The soil shear strength parameters (c and φ) were 

considered as anisotropic cross-correlated non-Gaussian random fields at ULS and the soil elastic 

parameters (E and υ) were considered as anisotropic uncorrelated non-Gaussian random fields at 

SLS. Notice that the system response used at ULS was the ultimate bearing capacity (qult); 

however, the footing vertical displacement (v) was considered as the system response at SLS. 

Concerning the case of the spatially varying rock mass obeying the Hoek-Brown (HB) failure 

criterion, only the ULS case of vertically loaded footings was considered. The uniaxial 

compressive strength of the intact rock (σc) was modeled as a non-Gaussian random field and the 

Geological Strength Index (GSI) was modeled as a random variable. Notice that the system 

response considered was the ultimate bearing capacity (qult) of the footing.  

Finally, it should be mentioned that the deterministic models used to calculate the different 

system responses were based on numerical simulations using FLAC3D software. The adaptive 

algorithm by Blatman and Sudret (2010) to build up a SPCE was used to obtain an analytical 

equation of the system response.  

This chapter is organized as follows: The next section aims at presenting the SPCE methodology. 

It is followed by the presentation of the probabilistic analysis and the corresponding numerical 

results (PDF of the system response and the corresponding statistical moments) for both cases of 

(i) strip footings resting on a spatially varying soil mass obeying MC failure criterion and (ii) 

strip footings resting on a spatially varying rock mass obeying HB failure criterion. Then, a brief 

discussion on the validity of the SPCE methodology for the computation of the probability of 

failure is presented. The chapter ends by a conclusion of the main findings. 
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II.2 ADAPTIVE SPARSE POLYNOMIAL CHAOS EXPANSION SPC E – THE 

HYPERBOLIC (Q-NORM) TRUNCATION SCHEME 

The sparse polynomial chaos expansion (SPCE) which is an extension of the PCE methodology 

(cf. section  I.5.2.3) was proposed by Blatman and Sudret (2009, 2010) to deal with high 

dimensional stochastic problems (i.e. when a large number of random variables is involved). The 

idea behind the SPCE came from the fact that the number of significant terms in a PCE is 

relatively small [see Blatman (2009)] since the multidimensional polynomials βΨ  corresponding 

to high-order interaction (i.e. those resulting from the multiplication of the 
i

H α with increasing αi 

values) are associated with very small values of coefficients aβ. Blatman (2009) also stated that 

the term resulting from the multiplication of the 
i

H α with all αi=0 (i=1, …, M) leads to a 

significant coefficient a0 in the PCE. This coefficient represents the probabilistic mean value of 

the system response. Based on these observations, a new truncation strategy was proposed by 

Blatman and Sudret (2009, 2010) in which the multidimensional polynomials βΨ  corresponding 

to high-order interaction were penalized. This was performed by considering that the q-norm (not 

the first ordre norm) should be smaller than the PCE order p as follows [Blatman (2009)]: 

( )
1

1

qM
q

iq
i

pα α
=

 = ≤ 
 
∑  ( II.1) 

where q is a coefficient (0<q<1). In this formula, q can be chosen arbitrarily. Blatman and Sudret 

(2010) have shown that sufficient accuracy is obtained when using 0.5q ≥ .  

The proposed SPCE methodology leads to a sparse polynomial chaos expansion that contains a 

small number of unknown coefficients. These coefficients can be calculated from a reduced 

number of calls of the deterministic model with respect to the classical PCE methodology. This is 

of particular interest in the present case of random fields which involve a significant number of 

random variables. Notice that the SPCE methodology as proposed by Blatman and Sudret (2010) 

is based on an iterative procedure to arrive to a minimal number for the SPCE coefficients. This 

procedure is briefly described as follows: 

1. Prescribe a target accuracy 2
TARGETQ , a q value that satisfies 0.5q ≥ , and a maximal value of the 

SPCE order p. In this chapter, a target accuracy 2 0.999TARGETQ = , a coefficient q=0.7, and a 

maximal SPCE order p=5 were used.   



 

59 

2. Consider a set of K realizations of the standard normal random vector ξ (called experimental 

design ED) and collect the corresponding model evaluations in the vector Γ. Consider also an 

empty matrix η. It should be noted here that the random vector ξ describes the soil spatial 

variability within a given realization. As it will be shown later, the dimension of this vector 

increases for smaller values of the autocorrelation distances. 

3. Initialization (p=0): add to η (in the first column) the vector ( )
0 0( )i

iη ξ= Ψ  for i= 1, …, K (see 

Equation ( I.42) where ( )iξ  is the vector of independent standard normal random variables 

corresponding to the i th realization and 0iη  is a vector that includes the multidimensional Hermite 

Polynomial of order 0 (i.e. 0Ψ ) for the different K realizations. Notice that the 0Ψ  term results 

from the multiplication of the Hαi where all the αi (i=0, 1, …, M) are equal to zero. 

4. Enrichment of the SPCE basis (p=p+1): Two sub steps are performed within this step as 

follows: 

- Forward step: Add to η (in the subsequent columns) the different vectors ( )( )i
i β βη ξ= Ψ  

corresponding to increasing β values (β>0) for which the βΨ  terms have a q-norm satisfying 

1
q

p pα− ≤ ≤ . Then, use the obtained η matrix to solve the regression problem using Equation 

( I.41). Save only the vectors ( )( )i
i β βη ξ= Ψ  for which a significant increase in the coefficient of 

determination Q2 is obtained. 

- Backward step: Discard from η the vectors ( )( )i
i β βη ξ= Ψ  for which the βΨ  terms having a q-

norm strictly less than p (i.e. 
q

pα < ) lead to a negligible decrease in the coefficient of 

determination Q2. 

5. Go to step 4 to perform an enrichment of the (ED) by adding K' realizations of the vector ξ if 

the regression problem is ill-posed. Otherwise go to step 6. 

6. Stop if either the target accuracy 2
TARGETQ  is achieved or if p reached the order fixed by the user, 

otherwise go to step 4. 

One should remember that the coefficient of determination Q2 used to check the goodness of the 

fit of the SPCE was presented in section  I.5.2.3. Blatman and Sudret (2010) have stated that a 

value of 2
TARGETQ =0.99 provides accurate estimates of the two first statistical moments (i.e. mean 

and standard deviation). However, the estimates of the third and fourth moments need a larger 
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2
TARGETQ  value (i.e. 2

TARGETQ =0.999). This value is the one used in this thesis. Concerning the 

number of realizations K and K' employed in the above procedure, relatively high values of K and 

K' (say K=200 and K'=100) were used in case where the deterministic models are relatively non-

expensive as the ULS analysis of strip footings resting on a weightless soil/rock mass (see 

sections II.3.1 and II.4). In this case, one may avoid the successive post-treatment which may be 

computationally-expensive. On the contrary, smaller values of K and K' (say K=100 and K'=20) 

were used in case of more computationally-expensive deterministic models as the case of the 

square footings resting on a purely cohesive soil (see chapter III). 

Once the unknown coefficients of the SPCE are determined, the PDF of the system response and 

its corresponding statistical moments (i.e. mean µ, standard deviation σ, skewness δu, and kurtosis 

κu) can be easily estimated. This can be done by simulating a large number of realizations (using 

Monte Carlo technique) of the independent standard normal random variables. Simulating a large 

number of realizations and their corresponding responses using the meta-model dramatically 

reduces the computation time.  

II.3 PROBABILISTIC ANALYSIS OF STRIP FOOTINGS RESTI NG ON A 

SPATIALLY VARYING SOIL MASS OBEYING MOHR-COULOMB (M C) 

FAILURE CRITERION 

The aim of this section is to present the probabilistic numerical results in the case of strip footings 

resting on a spatially varying soil mass and subjected to a vertical loading. Both the ultimate and 

the serviceability limit states (i.e. ULS and SLS) are considered herein.  

II.3.1 The ultimate limit state ULS case 

In this section, the probabilistic numerical results obtained from the ULS analysis are presented 

and discussed. This analysis involves the computation of the ultimate bearing capacity (qult) of a 

strip footing resting on a weightless spatially varying soil mass. The soil shear strength 

parameters (c and φ) were considered as anisotropic cross-correlated non-Gaussian random fields. 

The soil dilation angle ψ was considered to be related to the soil friction angle φ by 2 / 3ψ ϕ= . 

This means that the soil dilation angle was implicitly assumed as a random field that is perfectly 

correlated to the soil friction angle random field.  

Notice that the same autocorrelation function (square exponential) was used for both c and φ. As 

for the autocorrelation distances ax and ay of the two random fields c and φ, both cases of 

isotropic (i.e. ax=ay) and anisotropic (i.e. ax#ay) random fields will be treated although the soil is 
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rarely isotropic in reality. For the isotropic case, a range of 1.5-100m was considered. For the 

anisotropic case, El-Ramly et al. (2003) have shown that ax is within a range of 10-40m, while ay 

ranges from 1 to 3m. These values are in accordance with those given by Phoon and Kulhawy 

(1999). In our study, the reference values adopted for ax and ay were ax=10m and ay=1m while the 

wide ranges of 2-50m and 0.5-50m were considered respectively for ax and ay when performing 

the parametric study in order to explore the possible existence of a minimum value for the 

probabilistic mean. 

The soil cohesion c was assumed to be lognormally distributed. Its mean value and coefficient of 

variation (referred to as reference values) were taken as follows: 20 , 25%c ckPa Covµ = = . On 

the other hand, the soil friction angle φ was assumed to be bounded (i.e. 0 45≤ ≤ oϕ ). A beta 

distribution was selected for this parameter with a mean value and a coefficient of variation given 

as follows: 030 , 10%Covϕ ϕµ = = . In order to incorporate the dependence between the soil shear 

strength parameters, the cross-correlation coefficient r(c, φ) is needed. Yucemen et al. (1973) 

reported values that are in a range of 0.49 0.24r− ≤ ≤ − , while Lumb (1970) suggested values of 

0.7 0.37r− ≤ ≤ − . In this study, a value of -0.5 was taken as the reference value, and the range of 

0.5 0r− ≤ ≤  was considered in the parametric study. The reference cross-correlation matrix 

between the two random fields (c, φ) is thus given by 
1 0.5

0.5 1
NGC

− 
=  − 

.  

The deterministic model was based on numerical simulations using the finite difference code 

FLAC3D. The soil behavior was modeled using a conventional elastic-perfectly plastic model 

based on Mohr-Coulomb (MC) failure criterion. Notice that the Young modulus E and the 

Poisson ratio υ were assumed to be deterministic since the ultimate bearing capacity is not 

sensitive to these parameters. Their corresponding values were respectively 60=E MPa and 

0.3=ν . Concerning the footing, a weightless strip foundation of 2m width and 0.5m height was 

used. It was assumed to follow an elastic linear model ( 25E GPa= , 0.4ν = ). Finally, the 

connection between the footing and the soil mass was modeled by interface elements having the 

same mean values of the soil shear strength parameters in order to simulate a perfectly rough soil-

footing interface. These parameters have been considered as deterministic in this study. 

Concerning the elastic properties of the interface, they also have been considered as deterministic 

and their values were as follows: 1sK GPa= , 1nK GPa=  where Ks and Kn are respectively the 

shear and normal stiffnesses of the interface. 
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As shown in Figure  II.1, the adopted soil domain considered in the analysis is 15m wide by 6m 

deep. It should be noted that the size of a given element in the deterministic mesh depends on the 

autocorrelation distances of the soil properties. Der Kiureghian and Ke (1988) have suggested 

that the length of the largest element of the deterministic mesh in a given direction (horizontal or 

vertical) should not exceed 0.5 times the autocorrelation distance in that direction. In order to 

respect this criterion for the different autocorrelation distances, two different deterministic 

meshes were considered in FLAC3D. The first one is devoted to the case of moderate to large 

values of the autocorrelation distances (i.e. when 10xa m≥ and 1ya m≥ ) [see Figure  II.1(a)] and 

the second one for the small values of the autocorrelation distances (i.e. when 1.5 10xm a m≤ < or 

0.5 1ym a m≤ < ) [see Figure  II.1(b)]. For the boundary conditions, the horizontal movement on 

the vertical boundaries of the grid was restrained, while the base of the grid was not allowed to 

move in both the horizontal and the vertical directions. 

 

Figure  II.1. Mesh used for the computation of the ultimate bearing capacity: (a) for moderate to great values 
of the autocorrelation distances ( 10xa m≥  and 1ya m≥ ), (b) for small values of the autocorrelation distances 

( 10xa m<  or 1ya m< ) 

The following sections are organized as follows: First, a step-by-step procedure used to obtain the 

probabilistic results is presented. It is followed by the presentation of some realizations of the 

random fields and the PDFs of the system responses. Finally, the effect of the different 

probabilistic governing parameters on the PDF of the ultimate bearing capacity (qult) is presented 

and discussed. 

II.3.1.1 Step-by-step procedure used for the computation of the probabilistic results  

A Matlab 7.0 code was implemented to obtain the probabilistic results. The different steps of this 

code in the general case of two anisotropic cross-correlated non-Gaussian random fields are as 

follows: 
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(a) Introduce the input statistical parameters described in the preceding section. 

(b) Discretize the two random fields c and φ using EOLE method and its extensions by 

Vořechovsky (2008) as presented in the first chapter using the following steps:  

• Define the stochastic grid: Li and Der Kiureghian (1993) have shown that the variance of 

the error [Equation ( I.18)] is large at the boundaries of the stochastic domain. This 

problem can be solved by using a stochastic domain ΩRF that extends beyond the 

boundaries of the physical domain Ω. In this work, a uniform stochastic grid of 

dimensions ΩRF=[16m, 7m] was used while the size of the physical domain was Ω=[15m, 

6m] (see Figure  II.1). On the other hand, Li and Der Kiureghian (1993) have shown that 

the number of grid-points in the stochastic grid strongly depends on the autocorrelation 

distances. These authors have shown that a ratio of about 
1

5
RFl

a
=  provides a sufficient 

accuracy in terms of the variance of the error where lRF is the typical element size in the 

stochastic grid, and a is the autocorrelation distance. In this work, the number of grid 

points in the stochastic grid was chosen as follows: 6 grid-points were considered within 

each autocorrelation distance (horizontal or vertical) with a minimum of 6 grid-points in 

that direction when the autocorrelation distance is larger than the size of the stochastic 

domain. Thus, a fine stochastic mesh was used for a highly heterogeneous soil and a 

coarse stochastic mesh was used for a slightly heterogeneous soil.  

• Calculate the common autocorrelation matrix 
;

NG

χ χ
Σ  using Equation ( I.9) (remember here 

that the dimension of this matrix depends on the values of the autocorrelation distances ax 

and ay). Then, compute the corresponding autocorrelation matrices ;
c
χ χΣ  and ;

ϕ
χ χΣ  in the 

Gaussian space using Nataf model [Equation ( I.19)]. Finally, compute for each random 

field (c and φ) its N largest eigenmodesijλ and i
jϕ (where i=c, φ and j=1,…, N), for which 

the variance of the error is smaller than a threshold of say 10%ε ≈ . It should be 

mentioned here that both matrices ;
c
χ χΣ  and ;

ϕ
χ χΣ  were quasi-similar to 

;

NG

χ χ
Σ and thus the 

number of eigenmodes (or the number of random variables) which is necessary to 

discretize each one of the two random fields was similar. As may be seen from Figure 

 II.2, for smaller values of the autocorrelation distance (ax, ay or ax=ay), the number N of 

eigenmodes increases. The total number of random variables retained for different cases 

(where two random fields were considered) is presented in Table  II.1. This number is 
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equal to the number of eigenmodes N of a single random field multiplied by 2 since two 

random fields were considered in the analysis. It should be noticed that the cases where a 

significant number of random variables (>88) are needed correspond to very small 

autocorrelation distances (i.e. ay<1m and ax<2m). These autocorrelation distances are not 

of practical interest [see El-Ramly et al. (2003)], and can thus be neglected in this study. 

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0 5 10 15 20 25 30 35 40 45

Number N of eigenmodes
(a)

V
ar

ia
nc

e
 o

f 
th

e
 e

rr
or

ax=ay=1.5m 
ax=ay=1.8m
ax=ay=2m
ax=ay=3m
ax=ay=5m
ax=ay=10m

 

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0 5 10 15 20 25 30 35 40 45 50

Number N of eigenmodes
(b)

V
a

ria
n

ce
 o

f t
h

e
 e

rr
o

r

ax=10m, ay=1m 
ax=10m, ay=0.8m
ax=10m, ay=0.5m
ax=4m, ay=1m
ax=2m, ay=1m

Figure  II.2. Number N of eigenmodes needed in the EOLE method: (a) isotropic case, (b) anisotropic case 

 
Total number of random variables used to 

discretize the two random fields (c, φ) 
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Table  II.1. Number of random variables used to discretize the two random fields c and φ for both cases of 
isotropic and anisotropic autocorrelation distances 
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• Calculate the Gaussian cross-correlated matrix C by applying the Nataf model on the 

original non-Gaussian cross-correlation matrix CNG. This was performed using Equation 

( I.20). 

• Discretize the two anisotropic cross-correlated Gaussian fields c and φ using Equation 

( I.21) where κD was computed using Equation ( I.22); the transformation to the non-

Gaussian space being done by applying Equation ( I.23). 

(c) Use the adaptive SPCE methodology by Blatman and Sudret (2010) to determine the meta-

model as follows: First, it should be noted that for each realization, the values of the two random 

fields (c and φ) were determined at the centroid of each element of the deterministic mesh using 

Equations ( I.21) and ( I.23). Once the different elements of the mesh are filed with values of c and 

φ, the ultimate bearing capacity (qult) for this specific realization can be determined. The 

experimental design (ED) was obtained by first simulating the initial number of realizations 

K=200 of the two random fields (c and φ) using MCS technique. The relatively large number of 

additional simulations K' =100 is used each time the regression problem is ill-posed (i.e. when the 

rank of the matrix used in the regression approach is smaller than the number of unknown 

coefficients). The algorithm stops if either the target accuracy 2
TARGETQ  is achieved or if p reached 

the maximal order fixed by the user. In this work, a target accuracy 2 0.999TARGETQ = , a coefficient 

q=0.7, and a maximal order p=5 were used. Notice that for the reference case [ax=10m, ay=1m, 

r(c, φ) =-0.5], the algorithm have stopped when the target accuracy was reached. The 

corresponding order of the SPCE was equal to 4. In this case, where 24 random variables were 

needed (see Table  II.1), the PCE in its "full" truncation schemes leads to P=20,475 unknown 

coefficients. This means that a minimum of 20,475 collocation points (i.e. a minimum of 20,475 

calls of the deterministic model) were needed to accurately represent the ultimate bearing 

capacity by a meta-model. Using the SPCE methodology, only P=186 unknown coefficients were 

retained and only 800 calls of the deterministic model were found to be largely sufficient to 

construct the meta-model. Consequently, an important reduction in the number of calls of the 

deterministic model can be obtained using the SPCE. This greatly facilitates the solution of the 

problem of random fields.   

 (d) Use the meta-model to perform the post-treatment. This consists in determining: (i) the PDF 

of the ultimate bearing capacity and the corresponding statistical moments (mean, variance, 

skewness, and kurtosis) and (ii) the Sobol indices for each random field (c and φ). 
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Finally, it should be mentioned that a link between Matlab and FLAC3D was performed in order 

to automatically exchange the data in both directions and thus to decrease the computation time. 

II.3.1.2 Random fields’ realizations and PDFs of the system responses 

It should be remembered here that the computation time required for the generation of a single 

realization is strongly related to the number of eigenmodes N used in the discretization scheme. 

For very small values of the autocorrelation distances, the number of eigenmodes significantly 

increases leading to a significant computation time (more than an hour for a single realization). 

Figure  II.3 presents six realizations for three different configurations. As may be seen from this 

figure, the anisotropy and the negative cross-correlation are well reflected by the obtained 

random fields realizations. 

 

Figure  II.3. Typical realizations of the random fields :(a) [ax=100m, ay=1m, r(c, φ)=-0.5]; (b) [ax=10m,  ay=1m, 
r(c, φ)=-0.5]; (c) [ax=10m, ay=1m, r(c, φ)=-0.9] 
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Figure  II.4 presents the PDFs of the footing ultimate bearing capacity and the footing rotation for 

the reference case where ax=10m, ay=1m, and r(c, φ)=-0.5. Figure  II.5 presents the velocity field 

for one single simulation (i.e. a single realization of the two random fields c and φ). As may be 

seen from this figure, the spatial variability of the soil properties can produce a non-symmetrical 

mechanism even though the footing is subjected to a symmetrical vertical load. Although the 

footing rotation of a single realization is not null as may be seen from Figure  II.5, the mean value 

of the rotation for the whole number of realizations is null [see Figure  II.4(b)], and the standard 

deviation of this rotation was found equal to 1.6x10-4 radians. Concerning the ultimate bearing 

capacity, its mean and standard deviation values are equal to 658.2kPa and 93.57kPa 

respectively. 
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Figure  II.4. Bearing capacity and footing rotation for the reference case where ax=10m, ay=1m, and r(c, φ)=-

0.5: (a) PDF of the ultimate bearing capacity; and (b) PDF of the footing rotation 

 

Figure  II.5. Velocity field for a typical realization of the two random fields for the reference case where 
ax=10m, ay=1m and r(c, φ) =-0.5 
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II.3.1.3 Probabilistic parametric study 

The aim of this section is to study the effect of the different probabilistic governing parameters 

(autocorrelation distances, coefficients of variation) of the two random fields and the correlation 

between both fields on the PDF of the ultimate bearing capacity of the foundation. 

Effect of the autocorrelation distance: The isotropic case 

Figure  II.6 provides the PDFs of the ultimate bearing capacity (i) for different values of the 

isotropic autocorrelation distance ax=ay (1.5, 1.8, 2, 3, 5, 10, 50, 100m) when r(c, φ)=-0.5 and (ii) 

for the case of random variables with r(c, φ)=-0.5. Table  II.2 presents the four statistical moments 

for the cases presented in Figure  II.6.  

As expected, the PDF and the statistical moments corresponding to a great value of the 

autocorrelation distance (ax=ay=100m) are close to those given by the case of random variables. 

This is because the case of random variables can be considered as the limiting case of random 

fields with an infinite value of the autocorrelation distance.  
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Figure  II.6. Influence of the isotropic autocorrelation 

distance ax=ay on the PDF of the ultimate bearing 
capacity in the case where r(c, φ)=-0.5 
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Figure  II.7. Influence of the isotropic autocorrelation 

distance ax=ay on the probabilistic mean of the ultimate 
bearing capacity in the case where r(c, φ)=-0.5 

Figure  II.6 shows that the PDF is less spread out when the autocorrelation distance decreases. For 

the very large values of the isotropic autocorrelation distance ax=ay=100m, the coefficient of 

variation of the ultimate bearing capacity tends to a constant maximal value (see Table  II.2) 

which is the value corresponding to the case of random variables as mentioned above. In this 

case, the different values of a shear strength parameter (c or φ) of a given realization are perfectly 

correlated. This means that for a given simulation, a single value of c and a single value of φ are 

affected to the entire soil domain. These values are chosen according to the prescribed PDFs of c 
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and φ and thus they may vary in the range of values imposed by these PDFs. This leads to a large 

variability of the ultimate bearing capacity. It should be emphasized here that the large value of 

the variability is due to the fact that one obtains a large variety of homogenous soils with low, 

intermediate and high values of the soil shear strength parameters c and φ. The decrease in the 

autocorrelation distance from infinity to a finite value (moderate or small where 10x ya a m= ≤ ) 

limits the correlation (in a given simulation) to a finite zone which leads to several zones with 

different values of the shear strength parameters c and φ over the entire soil domain. This means 

that in a single simulation, one obtains a set of weak and strong zones for which the position may 

change from simulation to another one. The case of moderate to small values of x ya a=  leads to 

a decrease in the variability of the ultimate bearing capacity since (i) the cases of very high or 

very small values of the bearing capacity are now absent and (ii) the presence of the soil 

heterogeneity (zones of weak and strong soil) will produce a somewhat close global behavior of 

the footing because of the averaging phenomenon over the possible failure mechanism. Notice 

finally that the decrease in the variability of the ultimate bearing capacity becomes the most 

significant for the case of a very small value of the autocorrelation distance because the rapid 

change in the values of the shear strength parameters from element to another neighboring one 

leads to quasi-similar values of the ultimate bearing capacity for all the realizations. The soil can 

be considered as a homogeneous medium in this case.  

x ya a= (m)  (kPa)
ultqµ   (kPa)

ultqσ  (%)qultCOV   (-)uδ   (-)uκ  

1.5 642.6 88.8 13.8 0.06 0.08 

1.8 639.8 101.4 15.8 0.19 0.13 

2 638.7 108.9 17.0 0.20 0.13 

3 639.6 138.8 21.7 0.40 0.30 

5 646.4 175.8 27.2 0.67 0.66 

10 670.0 217.7 32.5 0.92 1.48 

50 676.5 227.4 33.6 1.07 1.93 

100 680.7 229.9 33.8 1.08 2.03 

Random variables 682.7 232.8 34.1 1.09 2.47 

Table  II.2. Effect of the isotropic autocorrelation distance ax=ay on the statistical moments of the ultimate 
bearing capacity 

Figure  II.7 and Table  II.2 show that the probabilistic mean value of the ultimate bearing capacity 

presents a minimum when the autocorrelation distance ax=ay is nearly equal to the footing 

breadth B (i.e. in our case when ax=ay=2m). Notice that the minimal probabilistic mean was also 
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observed by Fenton and Griffiths (2003) and Soubra et al. (2008). For very large values of the 

autocorrelation distance (ax=ay=100m), the probabilistic mean tends to the one of the 

homogenous soil (case of random variables) as may be seen from Table  II.2. On the other hand, 

for very small values of the autocorrelation distance, the probabilistic mean becomes greater than 

the minimal value because the weakest path becomes increasingly tortuous and its length is also 

longer. As a result, the failure mechanism will start to look for shorter path cutting through higher 

values of the shear strength parameters.  

Table  II.2 shows the impact of the autocorrelation distance ax=ay on both the skewness and the 

kurtosis of the PDF. For small values of ax=ay, the skewness and kurtosis of the response are 

small which means that the PDF of the response is not far from a Gaussian one in these cases. 

Notice however that these moments increase when ax=ay increases which means that for great 

values of ax=ay, the shape of the PDF of the output becomes far from a Gaussian one (the point of 

maximum density of probability, i.e. the mode moves to smaller values).  

Finally, Table  II.3 shows the effect of the autocorrelation distance ax=ay on the Sobol indices S(c) 

and S(φ) of the two random fields c and φ when r(c, φ)=-0.5. This table shows that both indices 

are quasi-constant regardless of the autocorrelation distance values. The increase in ax=ay has no 

significant impact on the Sobol indices since we increase ax=ay in both fields by the same 

amount. Table  II.3 also shows that the variability of the ultimate bearing capacity is mainly due to 

the cohesion random field which has a Sobol index of about 71%. This result is logical in our 

case where a weightless soil was considered; the Nγ term which is very sensitive to φ being 

absent in this case. 

x ya a= (m) ( )S c  ( )S ϕ  

1.5 0.70 0.30 

1.8 0.71 0.29 

2 0.72 0.28 

3 0.73 0.27 

5 0.71 0.29 

10 0.73 0.27 

50 0.70 0.30 

100 0.71 0.29 

Random variables 0.69 0.31 

Table  II.3. Effect of the isotropic autocorrelation distance ax=ay on the Sobol indices of the two random fields c 
and φ  
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Effect of the autocorrelation distances: The anisotropic case 

Figure  II.8 presents the PDFs of the ultimate bearing capacity (i) for different values of ay 

(ay=0.5, 0.8, 1, 2, 5, 8, 50m) when ax=10m and r(c, φ)=-0.5 and (ii) for the case of a one-

dimensional random field with a horizontally varying soil mass where ax=10m and r(c, φ)=-0.5. 

Table  II.4 presents the corresponding four statistical moments. Similarly, Figure  II.9 presents the 

PDFs of the ultimate bearing capacity (i) for different values of ax (ax=2, 4, 10, 20, 30, 50m) 

when ay=1m and r(c, φ)=-0.5 and (ii) for the case of a one-dimensional random field with a 

vertically varying soil mass where ay=1m and r(c, φ)=-0.5. Table  II.5 presents the corresponding 

four statistical moments.  
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Figure  II.8. Influence of the vertical autocorrelation 

distance ay on the PDF of the ultimate bearing 
capacity in the case where r(c, φ)=-0.5 and ax=10m  
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Figure  II.9.  Influence of the horizontal autocorrelation 
distance ax on the PDF of the ultimate bearing capacity 

in the case where r(c, φ)=-0.5 and ay=1m  

For the very large values of the autocorrelation distance (ax or ay), the coefficient of variation of 

the ultimate bearing capacity tends to a constant maximal value which corresponds to the value 

obtained in the case of a one-dimensional random field as may be seen from Tables II.4 and II.5. 

In this case, the values of c (and also those of φ) are perfectly correlated in a single direction 

(vertical or horizontal); however, the other direction is allowed to exhibit variations in the values 

of c (and φ) according to the value of the autocorrelation distance fixed for that direction. This 

leads to a horizontal or a vertical multilayer. The values of 32.7 and 15.4 (see Tables II.4 and 

II.5) concerning the variability of the one-dimensional random fields are smaller than the value of 

34.1 (see Table  II.2) corresponding to the case of random variables. This is because contrarily to 

the random variables case where the shear strength parameters c and φ of each simulation are 

chosen from their PDFs where small, high and intermediate values of these parameters lead to a 

large variability; in the present case of one-dimensional random field, the horizontal or vertical 
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strong layers prevent a large failure mechanism and lead to quasi similar smaller values of the 

ultimate bearing capacity and thus to a smaller variability of this bearing capacity. Finally, the 

decrease in the autocorrelation distance from infinity (i.e. from the case of a 1D random field) to 

a finite value recreates variation in the values of the shear strength parameters which reduces the 

values of the ultimate bearing capacity and the variability of this bearing capacity. 

(m) ya   (kPa)
ultqµ   (kPa)

ultqσ  (%)qultCOV   (-)uδ   (-)uκ  

0.5 665.5 67.6 10.2 0.20 0.09 

0.8 662.1 83.7 12.6 0.27 0.14 

1 658.2 93.6 14.2 0.29 0.16 

2 660.6 120.7 18.3 0.42 0.26 

5 661.0 147.3 22.3 0.55 0.45 

8 662.2 148.7 26.8 0.61 0.54 

50 672.1 219.2 32.6 0.95 1.51 

1D horizontal 
random field 

672.4 219.6 32.7 0.94 1.50 

Table  II.4. Effect of the vertical autocorrelation distance ay on the statistical moments of the ultimate bearing 
capacity 

( )xa m   (kPa)
ultqµ   (kPa)

ultqσ  (%)qultCOV   (-)uδ   (-)uκ  

2 662.7 55.7 8.4 0.02 0.05 

4 660.2 72.1 10.9 0.03 0.11 

10 658.2 93.6 14.2 0.29 0.16 

20 669.8 100.2 15.0 0.38 0.23 

30 673.3 102.6 15.2 0.39 0.27 

50 675.2 103.7 15.4 0.40 0.24 

1D vertical 
random field 

676.0 104.1 15.4 0.45 0.25 

Table  II.5. Effect of the horizontal autocorrelation distance ax on the statistical moments of the ultimate 
bearing capacity 

Figures II.10 and II.11 and Tables II.4 and II.5 show that the probabilistic mean of the ultimate 

bearing capacity presents a minimum value of 658.2kPa at a certain value of the ratio ax/ay (in 

our work this value is equal to 10 for the prescribed values of the soil and footing characteristics). 

The presence of a minimum value can be explained as follows:  

For a prescribed value of the horizontal autocorrelation distance ax [see Figure  II.10 and Table 

 II.4], the very small value of the vertical autocorrelation distance ay (i.e. corresponding to 

ax/ay>>1) creates a horizontal multilayer composed of very thin sublayers for which each 
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sublayer may have a large or a small value of the shear strength parameters [see Figure  II.12(a)]. 

On the other hand, the very large value of the vertical autocorrelation distance ay (i.e. 

corresponding to ax/ay<<1) leads to a vertical multilayer (case of a one-dimensional random field 

with a horizontally varying soil mass) composed of a finite number of sublayers for which each 

sublayer may have a large or a small value of the shear strength parameters [see Figure  II.12(b)].  

For both cases of very small and very large values of ay, the variety of sublayers with large and 

small values of the shear strength parameters leads to a greater value of the ultimate bearing 

capacity. This large value occurs because the sublayers having large values of the shear strength 

parameters play the role of an obstacle. Therefore, the failure mechanism will cut these sublayers 

having large values of the soil shear strength parameters. Finally, for medium values of the 

autocorrelation distances [see Figure  II.12(e)], the soil contains a number of stiff zones adjacent 

to a number of soft zones whose areas are less extended in both the vertical and the horizontal 

directions compared to the two previous cases. This allows the development of the failure 

mechanism through the soft soil zones and thus, this leads to smaller values of the ultimate 

bearing capacity. 
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Figure  II.10. Influence of the vertical 
autocorrelation distance ay on the probabilistic mean 

value of the ultimate bearing capacity in the case 
where r(c, φ)=-0.5 and ax=10m 
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Figure  II.11. Influence of the horizontal 
autocorrelation distance ax on the probabilistic 

mean value of the ultimate bearing capacity in the 
case where r(c, φ)=-0.5 and ay=1m  

Similarly to Figure  II.10, Figure  II.11 shows that for a prescribed value of the vertical 

autocorrelation distance ay, the very small value of the horizontal autocorrelation distance ax 

leads to a vertical multilayer composed of a large number of thin sublayers for which each 

sublayer may have a large or a small value of the shear strength parameters [see Figure  II.12(c)]. 

On the other hand, a horizontal multilayer is obtained in the case of a very large value of ax [see 
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Figure  II.12(d)]. Finally, a soil composed of several soft and stiff zones of finite dimensions is 

obtained for intermediate values of the autocorrelation distances [see Figure  II.12(e)]. For all the 

three cases corresponding to small, intermediate and high values of the horizontal autocorrelation 

distance, the explanation given for Figure  II.10 remains valid herein. 

 

Figure  II.12. Cohesion random field for different values of the autocorrelation distances 

As a conclusion, one may observe that the increase in the vertical autocorrelation distance in 

Figure  II.10 from very small to very large values leads to a soil configuration that varies from a 

horizontal to a vertical multilayer. This situation is reversed in Figure  II.11 where the soil 

configuration varies from a vertical to a horizontal multilayer. The ultimate bearing capacity was 

found to be the smallest for an intermediate value of the autocorrelation distance (ax or ay) where 

the failure mechanism can easily develop in the soil mass. 
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Tables II.4 and II.5 show the impact of the increase in ay and ax on both the skewness and the 

kurtosis of the PDF. As in the case of the isotropic autocorrelation distance, the PDF of the 

response is not far from a Gaussian one for small values of ay or ax.  

Finally, Tables II.6 and II.7 show the effect of the increase in ay and ax on the Sobol indices S(c) 

and S(ϕ) of the two random fields when r(c, φ)=-0.5. These tables show, as in the isotropic case, 

that the variability of the ultimate bearing capacity is mainly due to the cohesion random field 

which has a Sobol index of about 71%. 

 

Table  II.6. Effect of the vertical autocorrelation 
distance ay on the Sobol indices of c and φ 

ay(m) ( )S c  ( )S ϕ  

0.5 0.71 0.29 

0.8 0.71 0.29 

1 0.72 0.28 

2 0.71 0.29 

5 0.72 0.28 

8 0.74 0.26 

50 0.69 0.31 

1D random 
field 

0.72 0.28 

 

Table  II.7. Effect of the horizontal autocorrelation 
distance ax on the Sobol indices of c and φ 

ax(m) ( )S c  ( )S ϕ  

2 0.68 0.32 

4 0.71 0.29 

10 0.72 0.28 

20 0.72 0.28 

30 0.73 0.27 

50 0.73 0.27 

1D random 
field 

0.71 0.29 

Effect of the cross-correlation coefficient 

Figure  II.13 presents the PDFs of the ultimate bearing capacity for negatively cross-correlated 

r(c, φ)=-0.5 and non-correlated r(c, φ)=0 random fields when ax=10m and ay=1m, and Table  II.8 

presents the corresponding four statistical moments.  

Figure  II.13 and Table  II.8 show that the variability of the ultimate bearing capacity decreases 

when considering a negative correlation between the two random fields. This is because the 

increase of one parameter value implies a decrease in the other parameter. Thus, the total shear 

strength slightly varies. This leads to a reduced variation in the ultimate bearing capacity. It 

should be mentioned that the probabilistic mean value of the ultimate bearing capacity slightly 

increases when a negative correlation between the two random fields exists.  

Finally, the Sobol indices presented in Table  II.9 (in the case where ax=10m and ay=1m) show the 

same behavior detected in the previous sections.  
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Figure  II.13. Influence of the cross-correlation coefficient on the PDF of the ultimate bearing capacity in the 
case where ax=10m and ay=1m  

( , )r c ϕ   (kPa)
ultqµ   (kPa)

ultqσ  (%)qultCOV   (-)uδ   (-)uκ  

-0.5 658.2 93.6 14.2 0.29 0.16 

0 648.3 133.4 20.6 0.42 0.34 

Table  II.8. Effect of the cross-correlation coefficient between the random fields of c and φ on the statistical 
moments of the ultimate bearing capacity 

( , )r c ϕ  ( )S c  ( )S ϕ  

-0.5 0.72 0.28 

0 0.72 0.28 

Table  II.9. Effect of the coefficient of correlation on the Sobol indices of the two random fields c and φ 

Effect of the coefficients of variation of the random fields 

Figure  II.14 presents the PDFs of the ultimate bearing capacity for three different configurations 

of the coefficients of variation of the random fields. Notice that for the three configurations, r(c, 

φ)=-0.5, ax=10m and ay=1m. Tables II.10 and II.11 present (for the three configurations) the four 

statistical moments of the ultimate bearing capacity and the Sobol indices of the two fields (c, φ). 

Figure  II.14 and Table  II.10 show (as expected) that the variability of the ultimate bearing 

capacity increases when the coefficients of variation of the random fields increase; the increase 

being more significant for the cohesion parameter.  
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Figure  II.14. Effect of the coefficients of variation of the random fields on the PDF of the ultimate bearing 
capacity in the case where ax=10m, ay=1m and r(c, φ)=-0.5  

   (kPa)
ultqµ   (kPa)

ultqσ  (%)qultCOV   (-)uδ   (-)uκ  

25% 10%COVc COVϕ= =  658.2 93.6 14.2 0.35 0.20 

50% 10%COVc COVϕ= =  595.7 141.0 23.7 0.57 0.57 

25% 15%COVc COVϕ= =  664.2 108.3 16.3 0.33 0.19 

Table  II.10. Effect of the coefficients of variation of the random fields c and φ on the statistical moments of the 
ultimate bearing capacity 

  ( )S c  ( )S ϕ  

25% 10%COVc COVϕ= =  0.68 0.32 

50% 10%COVc COVϕ= =  0.91 0.09 

25% 15%COVc COVϕ= =  0.51 0.49 

Table  II.11. Effect of the coefficients of variation of the random fields c and φ on the Sobol indices of the two 
random fields c and φ 

From Table  II.11, one can see that an increase in the coefficient of variation of a soil parameter 

increases its Sobol index and thus its weight in the variability of the ultimate bearing capacity. 

This automatically reduces the contribution of the other uncertain parameter. This increase is 

more significant for the soil friction angle. This is because an increase by 100% in the coefficient 

of variation of the cohesion parameter increases its Sobol index by about 35%, while increasing 

the coefficient of variation of the friction angle by only 50% increases its Sobol index by about 

50%. 
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II.3.2 The serviceability limit state SLS case 

The aim of this section is to present the probabilistic numerical results obtained from the analysis 

at the serviceability limit state (SLS) of strip footings resting on a spatially varying soil and 

subjected to a central vertical load (Pv). It involves the computation of the central vertical footing 

displacement (v).  

Both the soil Young modulus E and the soil Poisson ratio υ were firstly considered as random 

fields in order to determine the weight of each random field in the variability of the system 

response. In a second stage, only the uncertain parameter with a significant weight in the 

variability of the system response will be considered as a random field. Notice that the same 

autocorrelation function (square exponential) was used for both random fields. Both cases of 

isotropic (i.e. ax=ay) and anisotropic (i.e. ax#ay) random fields will be treated and the same values 

of the autocorrelation distances employed in the ULS case are used herein.  

The soil Young modulus E was assumed to be lognormally distributed. Its mean value and 

coefficient of variation (referred to as reference values) were taken as 

follows: 60 , 15%E EMPa Covµ = = . Similarly, the soil Poisson ratio υ was assumed to be 

lognormally distributed with a mean value and a coefficient of variation given as follows: 

0.3, 5%Covν νµ = = .  

The deterministic model was based on numerical simulations using the finite difference code 

FLAC3D. Even though a serviceability limit state is considered, the soil behavior was modeled 

using a conventional elastic-perfectly plastic model based on Mohr-Coulomb failure criterion in 

order to consider the plasticity that may occur at the footing edges even under the service loads. 

Notice that the soil cohesion c, the soil angle of internal friction φ and the soil dilation angle ψ 

were assumed to be deterministic since the footing vertical displacement is not sensitive to these 

variables. Their corresponding values were respectively 20c kPa= , 30oϕ =  and 20oψ = . 

Concerning the footing and the interface properties, they were considered as deterministic. The 

same mean values used for these properties in the ULS case were employed herein. Moreover, 

the soil domain and mesh used in the ULS analysis (cf. Figure  II.1) were also utilized in this case. 

Finally, notice that the footing was subjected to a vertical applied pressure qa=500kPa.  

The following sections are organized as follows: First, a global sensitivity analysis is performed 

considering both the soil Young modulus E and the soil Poisson ratio υ as random fields. This is 
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followed by a presentation of the parametric study considering only the most influential random 

field that has a significant weight in the variability of the system response.  

II.3.2.1 Global sensitivity analysis 

The aim of this section is to perform a global sensitivity analysis which enables one to keep in the 

probabilistic parametric study that follows only the random field that has a significant weight in 

the variability of the system response. This greatly facilitates the probabilistic analysis since it 

reduces by half the computation time.  

The different steps to perform the probabilistic analysis were presented in section  II.3.1.1 and are 

not repeated herein. The global sensitivity analysis was presented for the reference case study 

(i.e. when ax=10m and ay=1m) considering both the Young modulus E and the Poisson ratio υ as 

two uncorrelated random fields. For this case, 24 random variables were needed in order to 

discretize the two random fields (cf. Table  II.1).  

Figure  II.15 depicts the values of Sobol indices for the 24 random variables, as given by the 

obtained SPCE. The first 12 random variables [i.e. ξi for i=1, …, 12] correspond to the Young 

modulus random field and the last 12 random variables [i.e. ξi for i=13, …, 24] are those 

corresponding to the Poisson ratio random field.  
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Figure  II.15. Sobol indices of the two random fields [the Young modulus for ξi (i=1, …, 12) and the Poisson 
ratio for ξi (i=13, …, 24)] 

Figure  II.15 shows that only three random variables (ξ1, ξ2 , ξ4) of the Young modulus random 

field are the most influential (they involve 98.4% of the response variance). Notice that the first 

random variable ξ1 provides alone 94% of the response variance. The Poisson ratio random field 

has a quasi-negligible weight in the variability of the system response (0.14% of the system 

variance). For this reason, it can be considered as deterministic in the following section.  
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II.3.2.2 Probabilistic parametric study 

The aim of this section is to study the effect of the different statistical governing parameters 

(autocorrelation distances and coefficient of variation of the random field E) on the PDF of the 

footing vertical displacement (v). 

Effect of the autocorrelation distances: The isotropic and anisotropic cases 

Figures II.16, II.17 and II.18 provide the PDFs of the footing vertical displacement (v) for (i) the 

isotropic case for different values of ax=ay, (ii) the anisotropic case for different values of ay and 

(iii) the anisotropic case for different values of ax. Tables II.12, II.13 and II.14 present the four 

statistical moments for the cases presented in those figures.  
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Figure  II.16. Influence of the isotropic autocorrelation distance ax= ay on the PDF of the footing vertical 

displacement 
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Figure  II.17. Influence of the vertical autocorrelation 

distance ay on the PDF of the footing vertical 
displacement in the case where ax=10m  
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Figure  II.18. Influence of the horizontal autocorrelation 

distance ax on the PDF of the footing vertical 
displacement in the case where ay=1m  
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Concerning the variability of the footing vertical displacement (v), similar trends as those 

obtained in the ULS analysis are obtained herein. One can see that the PDFs are less spread out 

when the autocorrelation distance decreases. Thus, the same explanations done in the ULS 

analysis remain valid herein.  

On the other hand, Tables II.12, II.13 and II.14 show that the probabilistic mean value of the 

footing vertical displacement does not exhibit a minimum and it remains constant regardless of 

the value of the autocorrelation distance (this mean value is found to be slightly greater than the 

deterministic value of 28.8mm which makes it more critical). The non-presence of a minimum is 

contrary to the ULS probabilistic results (as obtained by the present analysis, by Fenton and 

Griffiths (2003) and by Soubra et al. (2008)) where a minimum exists for a given value of the 

autocorrelation distance. This phenomenon can be explained by the fact that at SLS, the applied 

footing pressure qa=500kPa is not sufficiently high to induce or initiate a failure mechanism 

which may pass through the weakest zones for a given value of the autocorrelation distance. 

Thus; in the SLS analysis, there is no particular value of the autocorrelation distance for which 

the soil exhibits some weakness with respect to the other values of the autocorrelation distance. 

x ya a= (m) -3 x10vµ (m) -3 x10vσ (m) (%)vCOV  δu (-) κu (-) 

1.5 29.4 1.8 6.1 0.09 0.01 

1.8 29.4 2.0 6.8 0.19 0.05 

2 29.4 2.2 7.5 0.23 0.07 

3 29.4 2.8 9.5 0.33 0.15 

5 29.5 3.5 11.9 0.39 0.28 

10 29.5 4.1 13.9 0.43 0.33 

50 29.5 4.4 14.9 0.47 0.41 

100 29.5 4.4 14.9 0.47 0.41 

Random variable 29.5 4.4 14.9 0.47 0.41 

Table  II.12. Effect of the isotropic autocorrelation distance ax=ay on the statistical moments of the footing 
vertical displacement 

Tables II.12, II.13 and II.14 also show the impact of the autocorrelation distance on both the 

skewness and the kurtosis of the PDF. For small values of the autocorrelation distance, the 

skewness and kurtosis of the response are close to zero which means that the PDF of the response 

is not far from a Gaussian one in these cases. Notice however that these moments increase when 

the autocorrelation distance increases which means that for great values of the autocorrelation 

distance, the shape of the PDF of the output becomes far from a Gaussian one. 
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ya (m) -3 x10vµ (m) -3 x10vσ (m) (%)vCOV  δu (-) κu (-) 

0.5 29.3 1.6 5.5 0.17 0.03 

0.8 29.4 2.0 6.8 0.21 0.06 

1 29.4 2.2 7.5 0.24 0.08 

2 29.4 3.0 10.2 0.33 0.21 

5 29.5 3.8 12.9 0.41 0.31 

8 29.4 4.1 13.9 0.42 0.32 

50 29.5 4.2 14.2 0.45 0.34 

1D random field 29.5 4.2 14.2 0.45 0.34 

Table  II.13. Effect of the vertical autocorrelation distance ay on the statistical moments of the footing vertical 
displacement when ax=10m 

xa (m) -3 x10vµ (m) -3 x10vσ (m) (%)vCOV  δu (-) κu (-) 

2 29.4 1.6 5.4 0.09 0.02 

4 29.4 1.9 6.5 0.16 0.05 

10 29.4 2.2 7.5 0.24 0.08 

20 29.4 2.4 8.2 0.25 0.10 

30 29.4 2.4 8.2 0.26 0.15 

50 29.4 2.4 8.2 0.26 0.15 

1D random field  29.4 2.4 8.2 0.26 0.15 

Table  II.14. Effect of the horizontal autocorrelation distance ax on the statistical moments of the footing 
vertical displacement when ay=1m 

Effect of the coefficient of variation of the random field 

Figure  II.19 presents the PDFs of the footing vertical displacement (v) for four different values of 

the coefficient of variation of the Young modulus random field. Notice that for these four 

configurations, ax=10m, and ay=1m. Table  II.15 presents (for the four configurations) the four 

statistical moments of the footing vertical displacement.  

As expected, Figure  II.19 and Table  II.15 show that the variability of the footing vertical 

displacement increases when the coefficient of variation of the Young modulus random field 

increases. On the other hand, the mean value of the footing vertical displacement was found to 

significantly increase when the coefficient of variation of the Young modulus increases. This is 

of particular interest since the probabilistic mean value (29.4mm) obtained for the reference case 

where 15%ECov =  becomes unconservative and no longer valid when the variability of the input 

random field significantly increases.  
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Figure  II.19. Influence of the coefficient of variation COVE on the PDF of the footing vertical displacement in 
the case where ax=10 and ay=1m  

(%)ECOV  -3 x10vµ (m) -3 x10vσ (m) (%)vCOV  δu (-) κu (-) 

10 29.0 1.5 5.2 0 0 

20 29.8 3.0 10.1 0.32 0.15 

30 31.1 4.7 15.1 0.49 0.41 

40 32.9 6.6 20.1 0.65 0.78 

Table  II.15. Effect of the coefficient of variation (COVE) of the random field E on the statistical moments of 
the footing vertical displacement when ax=10m, ay=1m 

Table  II.15 also shows that for the smallest value of ECov  (i.e. 10%ECov = ), the skewness and 

kurtosis of the response are equal to zero which means that the PDF of the response is Gaussian 

in this case. Notice however that when ECov increases, the shape of the PDF of the output 

becomes far from a Gaussian one. 

II.4 PROBABILISTIC ANALYSIS OF STRIP FOOTINGS RESTI NG A SPATIALLY 

VARYING ROCK MASS OBEYING HOEK-BROWN (HB) FAILURE C RITERION 

The aim of this section is to present the probabilistic numerical results in the case of vertically 

loaded strip footings resting on a spatially varying rock mass obeying Hoek-Brown (HB) failure 

criterion. Only the ultimate limit state ULS is considered herein. It involves the computation of 

the ultimate bearing capacity (qult).  

The rock mass follows the generalized HB failure criterion [Hoek and Brown (1980), Hoek et al. 

(2002), Hoek and Marinos (2007) and Brown (2008)]. In this criterion, only intact rocks or 

heavily jointed rock masses (i.e. with sufficiently dense and randomly distributed joints) can be 

considered. The HB failure criterion is characterized by four parameters:  
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(i) the geological strength index (GSI)  

(ii)  the uniaxial compressive strength of the intact rock (σc)  

(iii)  the intact rock material constant (mi)  

(iv) (iv) the disturbance coefficient (D).  

Mao et al. (2011, 2012) have modeled these four parameters as random variables and have 

performed a probabilistic analysis of the ultimate bearing capacity (qult) of foundations. These 

authors have shown that the variability of the ultimate bearing capacity is mainly due to the 

uniaxial compressive strength of the intact rock (σc) and the geological strength index (GSI). 

Based on this study, only these two parameters were considered herein as uncertain. The rock 

uniaxial compressive strength of the intact rock (σc) was considered as a non-Gaussian (log-

normally distributed) random field characterized by a square exponential autocorrelation 

function. Its mean value and coefficient of variation (referred to as reference values) were taken 

as follows: 10 , 25%
c c

MPa COVσ σµ = = . As for GSI, Ching et al. (2011) have stated that this 

parameter is based on engineering judgment. It characterizes the overall rock mass condition and 

it does not represent a precise physical parameter varying in space. Thus, this parameter cannot 

be modeled as a random field and will be treated herein as a log-normally distributed random 

variable with a mean value and a coefficient of variation given as follows: 

25, 10%GSI GSICOVµ = =  [Brown (2008)]. Finally, it should be mentioned that the intact rock 

material constant (mi) and the disturbance coefficient (D) were assumed to be deterministic since 

the probabilistic ultimate bearing capacity was found not sensitive to the variability of these 

parameters [Mao et al. (2012)]. Their corresponding values were respectively 8im =  and 

0.3D = .  

The deterministic model was based on numerical simulations using FLAC3D software. A footing 

of breadth B=1m was considered in the analysis. For this calculation, a rock mass of 20m wide by 

6m deep was found necessary (Figure  II.20). The rock behavior was modeled by an elastic 

perfectly plastic model obeying the generalized HB failure criterion. It should be emphasized 

here that an associated flow rule was considered in this study in order to be able to compare the 

obtained results to those given in literature using the limit analysis theory [Mao et al. (2012) and 

Merifield et al. (2006)]. For this purpose, the confining stress at constant volume cv
3σ  must be 

properly selected. In fact, beyond the value of cv
3σ , no volume changes are expected to appear. 
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This means that when cv
3 cσ σ  is very small, the case of a deformation at constant volume is 

rapidly reached and the model can be considered to follow a non-associated flow rule with a zero 

dilation angle. On the contrary, the case of a large value of cv
3 cσ σ  means that the deformation at 

the constant volume can not be reached easily and thus the model can be considered to follow an 

associated flow rule. In the present chapter, a value of cv
3 c 2σ σ =  was selected. This value was 

chosen since greater values have not significantly decrease the value of the ultimate bearing 

capacity.  

The present deterministic model was validated by comparison of its results with those provided 

by Mao et al. (2012) and Merifield et al. (2006) for different configurations of the rock 

parameters. The results are presented for the case of a weightless material. The value of the 

Poisson ratio adopted in this section is 0.3. As for the modulus of deformation of the HB rock 

mass, Hoek et al. (2002) have proposed the following relationship between this parameter and the 

HB failure criterion parameters: 

( )( )GSI 10 / 40c
m

D
E 1 .10

2 100

σ − = − 
 

 ( II.2) 

where Em in this equation is given in GPa. 

Table  II.16 presents a comparison between the results obtained from the present deterministic 

model and those given by Mao et al. (2012) and Merifield et al. (2006). It should be mentioned 

here that the results given by Merifield et al. (2006) present the average values between the upper 

and lower bound solutions of the limit analysis theory. On the other hand, Mao et al. (2012) 

presents only an upper bound solution of the ultimate bearing capacity. Table  II.16 shows that the 

present numerical model provides slightly more critical values of the ultimate bearing capacity. 

This model will be used to perform the probabilistic analysis. 

  

20m 

6m

B=1m

 

Figure  II.20. Mesh used for the computation of the ultimate bearing capacity 
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GSI 
(-) 

σc 

(MPa) 
mi 

(MPa) 
FLAC3D 

Mao et al. 
(2012) 

Merifield et al. 
(2006) 

20 7.5 10 1.460 1.600 1.568 

20 10 10 1.960 2.130 2.090 

20 12.5 10 2.450 2.670 2.613 

20 15 10 2.930 3.200 3.135 

20 20 10 3.920 4.270 4.180 

30 7.5 10 2.784 3.040 2. 978 

30 10 10 3.710 4.060 3.970 

30 12.5 10 4.660 5.070 4.963 

30 15 10 5.605 6.120 5.955 

30 20 10 7.498 8.080 7.940 

Table  II.16. Values of qult (MPa) as given by FLAC3D, by Merifield et al. (2006) and by Mao et al. (2012) when 
D=0 

As for the autocorrelation distances ax and ay of the random field (σc), it was assumed here that 

a=ax=ay. Notice that the adopted reference value of the autocorrelation distance (a) is 2m; 

however, a range of 0.5-100m was considered for the parametric study. For the different values of 

the autocorrelation distance (a), the total number N of random variables (or eigenmodes) that 

should be used to discretize the random field of σc within a prescribed value of 10% for the 

variance of the error is presented in Table  II.17. Notice that the numbers given in Table  II.17 are 

those corresponding to the rock domain [20m, 6m] presented in Figure  II.20. 

Autocorrelation 
distance a(m) 

Total number of random 
variables used to discretize the 
uniaxial compression strength 

random field  

0.5 120 

1 99 

2 35 

5 8 

10 5 

50 5 

100 5 

Table  II.17. Number of random variables needed to discretize the random field σc  

The following subsections are organized as follows: First, a global sensitivity analysis is 

performed. This is followed by a presentation of the parametric study. The aim of this parametric 

study is to show the effect of the different governing statistical parameters (autocorrelation 
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distance, coefficient of variation) on both the PDF of the ultimate bearing capacity and the Sobol 

indices of the uncertain parameters (i.e. σc and GSI). 

II.4.1 Global sensitivity analysis 

The aim of this section is to perform a global sensitivity analysis for the reference case (i.e. when 

a=2m). Figure  II.21 depicts the values of Sobol indices as given by the obtained SPCE for (i) the 

random variable GSI and (ii) the 35 random variables representing the random field σc. The first 

random variable ξ1 corresponds to GSI and its Sobol index was found to be equal to 0.66. 

However, the last 35 random variables [i.e. ξi for i=2, …, 36] are those corresponding to the σc 

random field. The sum of their Sobol indices gives the weight of the random field σc in the 

variability of the ultimate bearing capacity. This sum was found to be equal to 0.34.  
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Figure  II.21. Sobol indices of the random variable GSI [i.e. ξi(i=1)] and the random field σc [i.e. ξi(i=2, …, 36)] 

Figure  II.21 shows that only six random variables (ξ2, ξ4, ξ6, ξ8, ξ9, ξ12) of the σc random field are 

the most influential (they involve 89% of the variance of σc). This can be explained by the fact 

that the system response (i.e. the ultimate bearing capacity) is a quantity that depends on the 

average distribution of the spatially-varying rock property over the entire domain and it is 

therefore quite insensitive to small-scale fluctuations of σc. In addition, one can notice that the 

Sobol indices of the random variables corresponding to the eigenmodes which are symmetric 

with respect to the vertical axis [cf. Blatman and Sudret (2011)] present the most significant 

values. This can be explained by the fact that the bearing capacity is more sensitive to the values 

of the rock property situated at the central axis of the footing. Along this axis, the values of the 

calculated random field σc results from the summation of the maximal values of the different 

symmetrical eigenmodes; the non-symmetrical eigenmodes being equal to zero at these locations. 

This explains the fact that only the symmetrical eigenmodes significantly contribute to the 
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variability of qult. Notice finally that a similar result was obtained by Blatman and Sudret (2011) 

when considering the sttelement problem of foundations. 

II.4.2 Probabilistic parametric study 

The aim of this section is to study the effect of the different statistical governing parameters 

(autocorrelation distance of σc and coefficient of variation of both σc and GSI) (i) on the PDF of 

the ultimate bearing capacity and (ii) on Sobol indices. 

II.4.2.1 Effect of the isotropic autocorrelation distance (a) 

Figure  II.22 provides the PDFs of the ultimate bearing capacity for different values of the 

isotropic autocorrelation distance of σc (a =0.5, 1, 2, 5, 10, 50, 100m) and for the case where σc is 

modeled as a random variable (case of a homogenous rock mass). Table  II.18 presents the four 

statistical moments for the cases presented in this figure.  

As expected, the PDF and the statistical moments corresponding to a great value of the 

autocorrelation distance (a=100m) are similar to those given by the case of a random variable. 

Concerning the effect of the autocorrelation distance on the variability of the ultimate bearing 

capacity, one obtains similar trends as the case of strip footings resting on spatially varying soil 

mass. Thus, the same explanations done before remain valid herein.  
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Figure  II.22. Influence of the isotropic autocorrelation 
distance a on the PDF of the ultimate bearing capacity 
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Figure  II.23. Influence of the isotropic 

autocorrelation distance a on the probabilistic mean 
of the ultimate bearing capacity 

Figure  II.23 and Table  II.18 show that the probabilistic mean value of the ultimate bearing 

capacity presents a minimum when the autocorrelation distance is nearly equal to the footing 

breadth B (i.e. in our case when a =1m). Notice that this minimal probabilistic mean was also 
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observed when considering the bearing capacity of foundations resting on a soil mass. Thus, the 

same explanation which was done before remains valid herein. 

Autocorrelation 
distance a(m) ultqµ (MPa) 

ultqσ (MPa) (%)
ultqCOV  δu (-) κu (-) 

0.5 1.486 0.288 19.4 0.46 0.31 

1 1.459 0.301 20.9 0.45 0.32 

2 1.462 0.342 23.4 0.52 0.54 

5 1.484 0.408 27.5 0.79 1.10 

10 1.512 0.450 29.8 0.88 1.29 

50 1.557 0.486 31.4 0.97 1.69 

100 1.560 0.488 31.4 0.98 1.73 

Random variable 1.560 0.488 31.4 1.02 1.72 

Table  II.18. Effect of the autocorrelation distance a on the statistical moments of the ultimate bearing capacity 

Table  II.18 also shows the impact of the autocorrelation distance on both the skewness and the 

kurtosis of the PDF. For small values of the autocorrelation distance, the skewness and kurtosis 

of the response are small which means that the PDF of the response is not far from a Gaussian 

one in these cases. 

Finally, Figure  II.24 and Table  II.19 show the effect of the autocorrelation distance on the Sobol 

indices of the random field σc and the random variable GSI. The results show that for very large 

values of the autocorrelation distance (i.e. a =100m), the variability of the ultimate bearing 

capacity is mainly due to σc. Similar results were obtained by Mao et al. (2012) where the 

uncertain parameters were modeled by random variables. It should be emphasized here that σc  is 

the most weighted parameter in the variability of the ultimate bearing capacity only in the case of 

very large values of the autocorrelation distance or in the case of random variables. Indeed, 

Figure  II.24 shows that the decrease in the autocorrelation distance of σc reduces its weight in the 

variability of the ultimate bearing capacity and increases the weight of GSI. Although this result 

was impossible to be detected when a simplified modeling (i.e. random variables) of the uncertain 

rock parameters was used, it can be explained by the fact that the small values of the 

autocorrelation distance increase the rock mass heterogeneity (i.e. one obtains a set of weak and 

strong zones) which will produce a somewhat close global behavior of the footing from 

simulation to another one because of the averaging phenomenon over the zone of possible failure 

mechanism. The expected decrease in the variability of the ultimate bearing capacity with the 

decrease in the autocorrelation distance of σc is reflected herein by a decrease in the weight of σc 
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in the variability of this response. For the limiting case of a very small value of the 

autocorrelation distance, σc can be seen as a deterministic value which implies that in this case the 

variability of the ultimate bearing capacity is only due to GSI (i.e. S(GSI) tends to one). 
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Figure  II.24. Influence of the autocorrelation distance a 

on the Sobol indices of GSI and σc 

Autocorrelation 
distance a(m) 

S(GSI) S(σc) 

0.5 0.92 0.08 

1 0.82 0.18 

2 0.66 0.34 

5 0.50 0.50 

10 0.42 0.58 

50 0.38 0.62 

100 0.38 0.62 

Random variable 0.38 0.62 

Table  II.19. Influence of the autocorrelation distance a 
on the Sobol indices of GSI and σc 

II.4.2.2 Effect of the coefficient of variation 

The effect of the coefficients of variation (COVs) of the random field σc and the random variable 

GSI is studied and presented in Figure  II.25, Table  II.20 and Table  II.21. Notice that in this study, 

the adopted value of the autocorrelation distance of the random field σc is the reference value (i.e. 

a=2m).  
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(b) 

Figure  II.25. Influence of the coefficients of variation COVs of the random variable GSI and the random field 
σc on the PDF of the ultimate bearing capacity: (a) influence of COVGSI; (b) influence of COVσc 
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GSICOV  σc
COV  

ultqµ (MPa) 
ultqσ (MPa) (%)

ultqCOV  δu (-) κu (-) 

10% 12.5% 1.530 0.307 20.1 0.48 0.46 

10% 25% 1.462 0.342 23.4 0.52 0.54 

10% 37.5% 1.366 0.364 26.7 0.53 0.58 

5% 25% 1.470 0.226 15.4 0.13 0.05 

10% 25% 1.462 0.342 23.4 0.52 0.54 

15% 25% 1.451 0.458 31.6 0.73 0.77 

Table  II.20. Effect of the coefficients of variation (COVs) of the random field σc and the random variable GSI 
on the statistical moments (µ, σ, δu, κu) of the ultimate bearing capacity when a=2m 

Figure  II.25 and Table  II.20 show that the variability of the ultimate bearing capacity increases 

(as expected) when the coefficient of variation of either the random field σc or the random 

variable GSI increases; the increase being more significant for the GSI parameter (see Table 

 II.20). This is because an increase in the coefficient of variation of σc by 50% (with respect to its 

reference value) increases the COV of the ultimate bearing capacity by only about 13.9%, while 

increasing the coefficient of variation of GSI by 50% (with respect to its reference value) 

increases the COV of the ultimate bearing capacity by about 34.9%. Table  II.20 also shows that 

the probabilistic mean value of the ultimate bearing capacity slightly decreases when the 

coefficients of variation increase. 

GSICOV  σc
COV  S(GSI) S(σc) 

10% 12.5% 0.88 0.12 

10% 25% 0.66 0.34 

10% 37.5% 0.49 0.51 

5% 25% 0.32 0.68 

10% 25% 0.66 0.34 

15% 25% 0.82 0.18 

Table  II.21. Effect of the coefficients of variation (COVs) of the random field σc and the random variable GSI 
on the Sobol indices of GSI and σc when a=2m 

From Table  II.21, one can see that an increase in the coefficient of variation of a rock parameter 

increases its Sobol index and thus its weight in the variability of the ultimate bearing capacity; 

this automatically reduces the contribution of the other uncertain parameter. This increase is more 

significant for σc. This is because an increase in the coefficient of variation of GSI by 50% (with 

respect to its reference value) increases its Sobol index by only about 24.3%, while increasing the 
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coefficient of variation of σc by 50% (with respect to its reference value) increases its Sobol index 

by about 50%. 

II.5 DISCUSSION 

Although the focus of this chapter involves the computation of the statistical moments of the 

different system responses, the aim of this section is to briefly discuss the validity of the present 

SPCE methodology for the computation of the probability of failure Pf. For this purpose, a 

comparison between the results obtained using the Subset Simulation (SS) method by Ahmed and 

Soubra (2012) (see section  I.5.1.2) and those obtained with the proposed SPCE methodology are 

presented herein. The comparison was performed in the ULS case of a strip footing resting on a 

weightless c-φ soil for the reference case where ax=10m, ay=1m, and r(c, φ)=-0.5. (cf. section 

 II.3.1.2). The footing is subjected to a vertical load Ps=400kN/m. The performance function used 

to calculate the failure probability is 1u

s

P
G

P
= −  where Pu is the ultimate footing load. 

In order to calculate the failure probability Pf by SS method, an optimal number Ks of simulations 

per level should be selected. This number should be greater than 100 to provide a small bias in 

the calculated Pf value [Honjo 2008]. In this case study, a number of simulation per level Ks=200 

was chosen. The obtained Pf value was equal to 3.5x10-4. Notice that four levels of SS were 

required to calculate this Pf value. The total number of simulations K is equal to 740. The Pf value 

obtained by SS is to be compared to the Pf value of 4.72x10-4 obtained using the SPCE 

methodology. One can observe a small difference between the two methods. It should be 

emphasized that this is a preliminary validation of the SPCE methodology for the computation of 

the failure probability. Further tests are necessary to confirm the agreement between the results of 

the two methods. 

II.6 CONCLUSIONS 

In this chapter, a probabilistic analysis at both ultimate limit state (ULS) and serviceability limit 

state (SLS) of strip footings was performed. Two case studies were considered in this chapter. 

The first one involves the case of strip footings resting on a 2D spatially varying soil mass 

obeying the Mohr-Coulomb (MC) failure criterion and the second one considers the case of strip 

footings resting on a 2D spatially varying rock mass obeying the Hoek-Brown (HB) failure 

criterion.  
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In the case of the spatially varying soil mass, a probabilistic analysis at both ULS and SLS of 

vertically loaded strip footings was performed. The soil shear strength parameters (c and φ) were 

considered as anisotropic cross-correlated non-Gaussian random fields at ULS and the soil elastic 

parameters (E and υ) were considered as anisotropic uncorrelated non-Gaussian random fields at 

SLS. Notice that the system response used at ULS was the ultimate bearing capacity (qult); 

however, the footing vertical displacement (v) was considered as the system response at SLS. 

Concerning the case of the spatially varying rock mass, only the ULS case was considered. The 

methodology proposed by Vořechovsky (2008) was used to generate the two random fields. The 

sparse polynomial chaos expansion (SPCE) methodology was employed for the probabilistic 

analysis. The adaptive algorithm suggested by Blatman and Sudret (2010) to build up a SPCE 

was adopted to obtain a meta-model (i.e. an approximate analytical expression) of the system 

responses. These meta-models were employed to perform the probabilistic analysis using Monte 

Carlo simulation technique. Notice finally; that at the ULS analysis, only weightless soil and 

weightless rock masses were considered. This is because introducing the soil/rock weight in the 

deterministic model increases the computation time from 5 to 10 min per simulation. Although 

this difference may not seem to be significant for a single simulation, it becomes dramatically 

important during the probabilistic analyses where a large number of simulations is needed for 

each probabilistic  analysis. 

The numerical results have shown the interest of the SPCE methodology with respect to the 

classical PCE method in the case of random fields where a significant number of random 

variables were used in the analysis. The numerical results have also shown that the variability of 

the system responses (i.e. the ultimate bearing capacity in the ULS analysis and the vertical 

displacement of the footing in the SLS analysis) increases (as expected) with the increase in the 

coefficients of variation of the random fields. It was also shown that an increase in the coefficient 

of variation of a random field increases its Sobol index and thus its weight in the variability of the 

system response and decreases the weight of the other parameter. The negative correlation 

between the random fields decreases the response variability. 

With a decrease in the autocorrelation distances (ax or ay or ax=ay), a less spread out PDF of the 

system response was obtained. The probabilistic mean value of the ultimate bearing capacity (in 

both cases of soil and rock masses) presents a minimum. This minimum was obtained in the 

isotropic case when the autocorrelation distance is nearly equal to the footing breadth B; while 

for the anisotropic case (presented only when a soil mass is considered), this minimum was 

obtained (for prescribed footing and soil characteristics) at a given value of the ratio between the 
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horizontal and the vertical autocorrelation distances. Small values of the autocorrelation distances 

lead to small values of the skewness and kurtosis of the system responses. Thus, a PDF of the 

system response that is not far from a Gaussian one was obtained in these cases. Finally, the 

obtained results show the importance of considering the spatial variability of the soil/rock 

properties in the probabilistic studies since some observed phenomena (such as the non-

symmetrical soil failure and the variation in the weight of parameters with the autocorrelation 

distance) can not be seen when homogenous soils are considered. 
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CHAPTER III. EFFECT OF THE SOIL SPATIAL VARIABILITY  IN 

THREE DIMENSIONS ON THE ULTIMATE BEARING CAPACITY O F 

FOUNDATIONS 

III.1 INTRODUCTION 

The effect of the spatial variability of a soil/rock property was extensively investigated in the 

previous chapter using a two-dimensional (2D) analysis. In this case, the soil/rock mass exhibits 

spatial variability in a given plane and remains uniform in the direction normal to this plane 

where the autocorrelation distance is implicitly taken as infinite.  

Few authors have investigated the effect of the 3D soil spatial variability. One may cite among 

others Fenton and Griffiths (2005) for the foundation settlement problem, Griffiths et al. (2009) 

for the slope stability analysis and Popescu et al. (2005) for the seismic liquefaction problem. To 

the best of the authors’ knowledge, there are no investigations on the effect of the 3D soil spatial 

variability on the ultimate bearing capacity of foundations. This chapter fills this gap.  

The effect of the soil spatial variability in three dimensions is investigated in this chapter through 

the study of the ultimate bearing capacity of strip and square foundations resting on a purely 

cohesive soil with a spatially varying cohesion in the three dimensions [Al-Bittar and Soubra 

(2012d)]. For this purpose, the soil cohesion was modeled as a 3D random field. Both cases of 

isotropic and anisotropic random fields were considered.  

In order to investigate the effect of the spatial variability in the third direction, the results of the 

ultimate bearing capacity of foundations obtained using a 3D random field were compared to 

those corresponding to a 2D random field for two cases of a strip and a square footing. The 

objective is to check the validity of considering a 2D random field in both cases of plane strain 

and three-dimensional problems.  

III.2 PROBABILISTIC ANALYSIS OF STRIP AND SQUARE FO OTINGS RESTING 

ON A 3D SPATIALLY VARYING SOIL MASS 

The aim of this section is to perform a probabilistic analysis of shallow foundations taking into 

account the soil spatial variability in three dimensions. More specifically, the analysis involves 

the computation of the ultimate bearing capacity (qult) of square and strip footings resting on a 

purely cohesive soil that exhibits spatial variability in three dimensions. Notice that for both the 

square and strip footings considered in the analysis, the cases of 2D and 3D anisotropic non-
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Gaussian cohesion random fields were investigated. The objective is to check the validity of the 

commonly used assumption of a 2D random field in both cases of plane strain and 3D problems. 

As for the random field discretization method of the 3D random field, a straightforward extension 

to the 3D case of the Expansion Optimal Linear Estimation (EOLE) methodology proposed by Li 

and Der Kiureghian (1993) and extended by Vořechovsky (2008) (see details in section  I.3.4.1) 

was used in this chapter. It should be emphasized here that this extension of EOLE method to the 

3D case is straightforward because the autocorrelation matrix ;χ χΣ  calculated using Equation 

( I.9) provides the correlation between each node of the stochastic mesh and all the nodes of this 

mesh. Thus, ;χ χΣ  is always a square matrix of dimensions sxs regardless of the random field 

dimension.  

Concerning the probabilistic method of analysis, the Sparse Polynomial Chaos Expansion 

(SPCE) presented in the previous chapter is used herein. It aims at replacing the FLAC3D 

deterministic model by a meta-model (i.e. a simple analytical equation). This allows one to easily 

calculate the system response (when performing the probabilistic analysis by MCS) using a 

simple analytical equation.  

The deterministic model was based on numerical simulations using the finite difference code 

FLAC3D. The undrained soil behavior was modeled using a conventional elastic-perfectly plastic 

model based on Tresca failure criterion. On the other hand, an associative flow rule was 

considered in this study. This assumption is justified by the fact that for purely cohesive materials 

no volume changes are expected to appear during plastic deformation. Notice that the soil Young 

modulus E and Poisson ratio υ were assumed to be deterministic since the ultimate bearing 

capacity is not sensitive to these variables. Their corresponding values were respectively 

60=E MPa and 0.49ν = . Concerning the footing, a weightless rigid foundation was used. It 

was assumed to follow an elastic linear model ( 25E GPa= , 0.4ν = ). The connection between 

the footing and the soil mass was modeled by interface elements having the same mean values of 

the soil shear strength parameters in order to simulate a perfectly rough soil-footing interface. 

These parameters have been considered as deterministic in this study. Concerning the elastic 

properties of the interface, they also have been considered as deterministic and their values were 

as follows: 1sK GPa= , 1nK GPa=  where Ks and Kn are respectively the shear and normal 

stiffnesses of the interface. 
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Figure  III.1(a) shows the adopted soil domain considered in the analysis of the square footing 

case. It is 5mx5m wide by 2m deep. A 'relatively fine' mesh was considered for the analysis. On 

the other hand, the soil domain and the corresponding mesh for the strip footing case (in the 2D 

plane) are similar to those obtained with the cross-section of the square footing soil domain at 

Y=2.5m or at X=2.5m (cf. Figure  III.1(b)).  

It should be noted that the size of a given element in the deterministic mesh depends on the 

autocorrelation distances of the soil properties. Der Kiureghian and Ke (1988) have suggested 

that the length of the largest element of the deterministic mesh in a given direction (horizontal or 

vertical) should not exceed 0.5 times the autocorrelation distance in that direction. In order to 

respect this criterion for the different autocorrelation distances, a refinement of the deterministic 

mesh was performed in FLAC3D for the very small values of the autocorrelation distances (<1m). 

This mesh will be called hereafter 'very fine' mesh.  

For the boundary conditions of the square footing case, the horizontal movement on the vertical 

boundaries of the grid was restrained, while the base of the grid was not allowed to move in both 

the horizontal and the vertical directions. The same boundary conditions were adopted for the 

strip footing case together with another condition related to the plane strain. 

 
(a) 

 
 

5m

2m

B=1m

x

z

5m

2m

B=1m

x

z

 
 

(b) 

Figure  III.1. Mesh used for the computation of the ultimate bearing capacity of (a) square footing and (b) strip 
footing 

III.3 NUMERICAL RESULTS 

In this section, one firstly presents the obtained deterministic numerical results. This is followed 

by a presentation of the probabilistic numerical results. 
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III.3.1  Deterministic numerical results 

The aim of this section is to present the deterministic numerical results for both the square and 

the strip footings considered in the analysis.  

The three-dimensional 'relatively fine' mesh has led to a deterministic value of ultimate bearing 

capacity coefficient Nc=6.54 for the square footing case. The difference with the recent finite 

element solution (Nc=5.91) by Gourvenec et al. (2006) and the recent upper-bound solution 

(Nc=6.41) by Gourvenec et al. (2006) was respectively about 9% and 2%. It should be 

emphasized here that a ‘very fine’ mesh has led to a value of Nc=6.15 which is only 5% smaller 

(i.e. better) than the value of 6.54 obtained using the 'relatively fine' mesh. Notice however that 

this solution requires an increase in the computation time by 2 hours and thus, this 'very fine' 

mesh was not retained in the present probabilistic analysis. A similar procedure that makes use of 

a 'relatively fine' (not 'very fine') mesh was advocated by Griffiths et al. (2002) when performing 

a probabilistic analysis. It should be emphasized herein that when dealing with probabilistic 

studies based on three-dimensional finite element/finite difference deterministic models, the time 

cost is very important especially when the soil spatial variability (and more specifically the 

variability of the soil property in three dimensions) is introduced. The reasons are: 

(i) The computation time of a single deterministic solution significantly increases with 

the increase in the density of the three-dimensional deterministic mesh.  

(ii)  The fact of providing (for each simulation of a single probabilistic analysis) different 

values of the soil cohesion to the different elements of the mesh, will add a dramatic 

computation time especially for very fine meshes.  

(iii)  The large number of simulations required for each probabilistic analysis.  

Thus, in order to enable the investigation of the effect of the soil spatial variability in the three 

dimensions for the present three-dimensional mechanical problem, a 'relatively fine' (not 'very 

fine') mesh was considered in the square footing case. This is a compromise between the 

computation time and the accuracy of the probabilistic solution.  

Concerning the strip footing case, it should be remembered that the same ‘relatively fine’ mesh 

used in the central plane of the square footing was adopted for the values of the autocorrelation 

distances greater than 1m (cf. Figure  III.1(b)), although a finer mesh would be possible because 

of the relatively small computation time in this case. This choice was adopted in order to 

maintain a similarity with the mesh employed for the square footing. Notice that a 'very fine' 



 

100 

mesh has led in this case to a value of Nc=5.43 which is about 5% larger that the closed form 

solution Nc=5.14 and it is about 2% larger than the recent finite element solution Nc=5.31 by 

Gourvenec et al. (2006). The adopted ‘relatively fine' mesh has led to a value Nc=5.74 which is 

about 10% higher than the closed form solution Nc=5.14 and is only 5% higher than the solution 

given by the 'very fine' mesh. 

III.3.2  Probabilistic numerical results 

In this section, the probabilistic numerical results of both the square and strip footings resting on 

a purely cohesive spatially varying soil are presented. The soil cohesion parameter was modeled 

as anisotropic non-Gaussian (log-normal) random field using a square exponential autocorrelation 

function. Its mean value and coefficient of variation (referred to as reference values) were taken 

as follows: 20 , 25%c ckPa COVµ = = .  

It should be emphasized here that for both the square and strip footings considered in the 

analysis, the cases of 2D and 3D cohesion random fields were investigated. As for the 

autocorrelation distances ax, ay and az of the cohesion random field, both cases of isotropic 

random fields (i.e. ax=ay=az for the 3D random field case and ax=az for the 2D random field case) 

and anisotropic random fields (i.e. ax=ay#az for the 3D random field case and ax#az for the 2D 

random field case) will be treated although the soil is rarely isotropic in reality.  

When isotropic random fields are used, the autocorrelation distance for both the 2D and the 3D 

random fields will be denoted by (a) later on in this chapter (i.e. a=ax=ay=az for the 3D random 

field case and a=ax=az for the 2D random field case). Also, when referring to anisotropic random 

fields, the horizontal autocorrelation distance for both the 2D and the 3D random fields will be 

denoted by ah (i.e. ah=ax=ay for the 3D random field case and ah=ax for the 2D random field 

case). Furthermore, the vertical autocorrelation distance for both the 2D and the 3D random fields 

will be denoted by av (i.e. av=az for both the 3D and 2D random fields cases).  

For the isotropic case, a range of 0.5-10m was considered (cf. Table  III.1). For the anisotropic 

case, the reference values adopted for the horizontal and the vertical autocorrelation distances 

were 10m and 1m while the wide ranges of 0.5-10m and 0.15-10m were considered respectively 

for the horizontal and the vertical autocorrelation distances when performing the parametric study 

for both the square and the strip footings (cf. Table  III.1).  

For the considered soil domain and for the different values of the autocorrelation distances (a, ah 

or av) used in the analysis, the total number N of random variables (or eigenmodes) that should be 
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used to discretize the cohesion random field within a value of the variance of the error 10%≤  is 

presented in Table  III.1. It should be emphasized here, that for the very small values of the 

autocorrelation distance where a large number of random variables ( 500≥ ) was needed to 

discretize the random field, a maximum number of random variables N=300 was employed. This 

is because beyond this value, numerical difficulties may occur. The use of this number may lead 

to relatively large values of the variance of the error (>10%) but this will not affect the accuracy 

of the obtained system response. This is because of the very fast decay of the importance of 

random variables in the variability of the system response as was shown in the previous chapter. 
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Table  III.1. Number of random variables needed to discretize the 3D and 2D cohesion random fields in the 
case of the square footing 

Figure  III.2(a) presents, for the case of the square footing, a typical realization of the 3D cohesion 

random field in the isotropic case where a=0.5m. Only one half of the soil domain is presented in 

this figure in order to show the variation of the cohesion in the plane X=2.5m (i.e. the central plan 

under the footing). As may be seen from this figure, dark regions correspond to small values of 

the cohesion c while light regions refer to lager values.  

Figure  III.2(b) presents a 3D view of the failure mechanism (for the random field realization 

shown in Figure  III.2(a)) using the contours of the strain rate. This view clearly shows the 
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influence of the 3D spatial variability on the obtained failure mechanism in both the central 

vertical plane (X=2.5m) and the top horizontal plane representing the ground surface. From this 

figure, one can see that the failure mechanism is more developed through the weaker zones and is 

limited when strong zones are encountered. Contrarily to the case of a homogeneous soil, a non-

symmetrical mechanism is obtained herein, although the footing is subjected to a symmetrical 

vertical load.  
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                                    (a)                                                                          (b) 

Figure  III.2. Perspective view of half of the soil domain showing (a) a random field realization (the contour 
lines provide the distribution of the soil cohesion on the envelope of this domain) and (b) the contours of the 

strain rate 

On the other hand, the probabilistic numerical results have shown that for the particular case of a 

purely cohesive soil, the probabilistic ultimate bearing capacity can be written as follows: 

ult c cq Nµ=  where cµ  is the mean value of the random field c and cN  is the probabilistic ultimate 

bearing capacity coefficient. This is because a change in the mean value of the random field c (for 

the same value of the coefficient of variation 25%cCOV = ) have led to the same PDF of Nc as 

may be seen from Figure  III.3. Thus, in this chapter, the non-dimensional coefficient cN  will be 

used (instead of qult) to represent the ultimate bearing capacity in a probabilistic framework. This 

coefficient depends on the statistical parameters of the random field (i.e. autocorrelation distances 

and coefficient of variation). Furthermore, this coefficient (as in the deterministic analysis) is 

independent of the values of the soil cohesion c and the footing breadth B. It should be noted that 

all the probabilistic results presented in this chapter are provided for the practical value of the 

coefficient of variation 25%cCOV = .  

Finally, it should be mentioned here that for the reference case where ah=10m and av=1m, the 

computation time is about 45 min per simulation for the square footing case and about 5 min per 
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simulation for the strip footing case. This time includes the computation of the values of the 

cohesion random field at the different elements centroids of the mesh and their introduction in the 

deterministic mesh together with the time required for the deterministic calculation. This 

computation time significantly increases for the very small values of the autocorrelation 

distances. This is because the large number of random variables in these cases will induce 

additional computation time to calculate the values of the cohesion random field for the different 

elements centroids of the deterministic mesh. Notice finally, that for the reference case, 300 calls 

of the deterministic model were found to be sufficient to construct the meta-model within the 

prescribed target accuracy 2TARGETQ =0.999. 
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Figure  III.3. Influence of the mean value of the cohesion on the PDF of the bearing capacity coefficient Nc of a 

strip footing when using 3D random field for ah=10m, av=1m and COVc=25% 

III.3.2.1 Effect of the autocorrelation distance: The isotropic case 

Table  III.2 presents the effect of the isotropic autocorrelation distance (a) on the statistical 

moments of the bearing capacity coefficient Nc for both the square and strip footings using a 3D 

random field and a 2D random field.  

Table  III.2 table shows that for a small value of the autocorrelation distance (a=0.5m), the 

variability of the bearing capacity coefficient (expressed by the non-dimensional parameter 

cNCOV ) is smaller when a 3D random field in considered. However, for the large values of the 

autocorrelation distance (a=10m), quasi-similar values of the response variability were obtained 

in both cases of 3D and 2D random fields. These observations are valid for both the strip and the 

square footings. Figure  III.4 confirms these observations.  

Table  III.2 also shows that for both the square and strip footings, the variability of Nc decreases 

when the autocorrelation distance decreases. For the very large values of the autocorrelation 



 

104 

distance, the 3D and 2D random fields are superimposed because they tend to their limiting case 

of random variable for which the autocorrelation distance is infinite. The decrease in the 

autocorrelation distance from infinity to a finite value (moderate or small where 5a m≤ ) limits 

the correlation (in a given simulation) to a finite zone which leads to a smaller variability in the 

system response. It should be emphasized here that because the case of 2D random field exhibits 

soil spatial variability in a given plane and shows a non-varying soil in the direction normal to 

this plane (because the cohesion random field is perfectly correlated in that third direction), the 

variability of Nc was found to be larger in that case as compared to the case of a 3D random field. 

This observation may be explained by the fact that in the case of a 3D random field, the soil 

exhibits spatial variability in three directions and thus, in a single simulation, one obtains a set of 

weak and strong zones in the 3D space for which the position may change from simulation to 

another one. This case leads to a decrease in the variability of Nc since the soil heterogeneity 

(zones of weak and strong soil) is now present in the three directions and it will produce a 

somewhat close global behavior of the footing from simulation to another one because of the 

averaging phenomenon over the possible three-dimensional failure mechanism. This averaging 

phenomenon is more limited in the 2D random field case because of the perfect correlation in the 

third direction. 

  Square footing Strip footing 

a  (m)  
cNµ   

cNσ  
cNCOV (%)  

cNµ   
cNσ  

cNCOV (%) 

0.5 6.34 0.51 8.0 5.38 0.47 8.7 

1 6.39 1.02 15.9 5.49 0.86 15.7 

2 6.46 1.38 21.3 5.55 1.15 20.8 

5 6.51 1.53 23.5 5.69 1.36 24.0 3D
 r

an
do

m
 fi

el
d 

10 6.52 1.58 24.2 5.72 1.40 24.5 

a  (m)  
cNµ   

cNσ  
cNCOV (%)  

cNµ   
cNσ  

cNCOV (%) 

0.5 6.34 0.94 14.8 5.41 0.60 11.0 

1 6.41 1.27 19.9 5.51 0.91 16.6 

2 6.48 1.46 22.6 5.58 1.20 21.4 

5 6.52 1.57 24.1 5.70 1.37 24.1 2D
 r

an
do

m
 fi

el
d 

10 6.52 1.58 24.2 5.73 1.40 24.5 

Table  III.2. Effect of the isotropic autocorrelation distance (a) on the statistical moments  
cNµ and  

cNσ of 

the bearing capacity coefficient Nc of square and strip footings using both 3D and 2D random fields 

Finally, Table  III.2 shows that for both the square and strip footings, the probabilistic mean value 

of Nc is slightly smaller when considering a 3D random field, but this difference is not significant 
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and can thus be neglected. The probabilistic mean in both 3D and 2D random field cases is found 

to be slightly smaller than the deterministic value (6.54 for the square footing and 5.74 for the 

strip footing) which makes it slightly more critical. 
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Figure  III.4. Comparison between the PDFs of the bearing capacity coefficient Nc of a square footing when 
using 3D and 2D isotropic random fields 

III.3.2.2 Effect of the autocorrelation distance: The anisotropic case 

Table  III.3 presents the effect of the vertical autocorrelation distance av on the statistical moments 

of the bearing capacity coefficient Nc for the square and strip footings using both 3D and 2D 

random fields when ah=10m. Similarly, Table  III.4 present the effect of the horizontal 

autocorrelation distance ah on the statistical moments of the bearing capacity coefficient Nc for 

the square and strip footings using 3D and 2D random fields when av=1m.  

Tables III.3 and III.4 show that for the very small values of the horizontal or vertical 

autocorrelation distance, the variability of Nc (expressed by the non-dimensional parameter 

cNCOV ) is smaller when a 3D random field is considered (this difference is negligible when 

investigating the effect of the vertical autocorrelation distance because the chosen horizontal 

autocorrelation distance, i.e. ah=10m is relatively large and thus the 2D and the 3D random fields 

tend to the same one-dimensional vertically varying soil mass). However, for the large values of 

the horizontal or vertical autocorrelation distance (i.e. ah=10m or av=10m), quasi-similar values 

of the response variability are obtained in both cases of 3D and 2D random fields. These 

observations are valid for both the strip and the square footings. Figure  III.5 and Figure  III.6 

confirm these observations. 
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  Square footing Strip footing 

va  (m)  
cNµ   

cNσ  
cNCOV (%)  

cNµ   
cNσ  

cNCOV (%) 

0.15 6.24 0.96 15.3 5.38 0.66 12.2 

0.25 6.27 1.15 18.3 5.39 0.82 15.3 

0.5 6.38 1.38 21.7 5.45 1.04 19.2 

1 6.48 1.52 23.5 5.58 1.24 22.3 

2 6.51 1.57 24.1 5.67 1.36 23.9 

5 6.51 1.58 24.2 5.71 1.39 24.4 

3D
 r

an
do

m
 fi

el
d 

10 6.52 1.58 24.2 5.72 1.40 24.5 

va  (m)  
cNµ   

cNσ  
cNCOV (%)  

cNµ   
cNσ  

cNCOV (%) 

0.15 6.24 0.97 15.5 5.39 0.67 12.5 

0.25 6.27 1.16 18.5 5.41 0.84 15.5 

0.5 6.38 1.39 21.8 5.47 1.06 19.3 

1 6.48 1.53 23.5 5.59 1.25 22.4 

2 6.51 1.57 24.1 5.69 1.36 24.0 

5 6.51 1.58 24.2 5.72 1.40 24.4 

2D
 r

an
do

m
 fi

el
d 

10 6.52 1.58 24.2 5.73 1.40 24.5 

Table  III.3. Effect of the vertical autocorrelation distance (av) on the statistical moments  
cNµ and  

cNσ of 

the bearing capacity coefficient Nc of square and strip footings using both 3D and 2D random fields 

  Square footing Strip footing 

ha  (m)  
cNµ   

cNσ  
cNCOV (%)  

cNµ   
cNσ  

cNCOV (%) 

0.5 6.34 0.48 7.6 5.41 0.50 9.3 

1 6.39 1.02 15.9 5.49 0.86 15.7 

2 6.44 1.32 20.4 5.51 1.07 19.5 

5 6.46 1.48 22.9 5.56 1.20 21.6 3D
 r

an
do

m
 fi

el
d 

10 6.48 1.52 23.5 5.58 1.24 22.3 

ha  (m)  
cNµ   

cNσ  
cNCOV (%)  

cNµ   
cNσ  

cNCOV (%) 

0.5 6.35 1.01 15.9 5.43 0.70 12.8 

1 6.41 1.27 19.9 5.51 0.91 16.6 

2 6.47 1.39 21.5 5.53 1.10 19.9 

5 6.47 1.48 22.8 5.57 1.21 21.7 2D
 r

an
do

m
 fi

el
d 

10 6.48 1.53 23.5 5.59 1.25 22.4 

Table  III.4. Effect of the horizontal autocorrelation distance (ah) on the statistical moments  
cNµ and  

cNσ of 

the bearing capacity coefficient Nc of square and strip footings using both 3D and 2D random fields 
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Figure  III.5. Comparison between the PDFs of the bearing 
capacity coefficient Nc of a square footing when using 3D 

and 2D anisotropic random fields and for ah=10m 
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Figure  III.6. Comparison between the PDFs of the bearing 
capacity coefficient Nc of a square footing when using 3D 

and 2D anisotropic random fields and for av=1m 

Table  III.3 and Table  III.4 also show that for both the square and strip footings, the variability of 

Nc decreases when the autocorrelation distance decreases. This can be explained by the fact that 

for the very large values of the horizontal autocorrelation distance ah (ah=10m),_the 3D and 2D 

random fields tend to their limiting case of a one-dimensional random field with a vertically 

varying soil mass. Similarly, for the very large values of the vertical autocorrelation distance av 

(av=10m), the 2D and 3D random fields tend respectively to their limiting cases of one- and two-

dimensional random fields with a horizontally varying soil masses. In all these cases, the 

cohesion random field is perfectly correlated in a prescribed direction (horizontal or vertical); 

however, the other direction (vertical or horizontal) is allowed to exhibit variations in the value of 

the cohesion according to the value of the autocorrelation distance fixed for that direction. This 

induces a reduction in the variability of Nc with respect to the case where ah=av=10m. The 

decrease in the autocorrelation distance from the case of a horizontally varying soil mass (where 

va = ∞ ) or a vertically varying soil mass (where ha = ∞ ) to the case where the infinite value of 

the autocorrelation distance decreases to a finite value, re-create further variations in the value of 

the cohesion. This reduces once again the variability of Nc with respect to the case where 

ah=av=10m. 

Finally, as in Table  III.2, Table  III.3 and Table  III.4 show that the probabilistic mean in both 3D 

and 2D random field cases is found to be slightly smaller than the deterministic value but the 

difference is negligible. 
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III.3.3  Discussion 

A comparison between the values of the coefficients of variation of Nc (obtained using 3D and 

2D random fields) for both the isotropic and anisotropic cases and for both the strip and square 

footings is provided in Table  III.5. This comparison is presented in the form of a ratio between 

the values of the coefficients of variation of the 3D and 2D random fields.  

Table  III.5 shows that for both the square and strip footings, the ratio 3 2

c c

D D
N NCOV COV  is the 

smaller for the very small values of the autocorrelation distance. This ratio tends to the value of 

unity for the very large values of the autocorrelation distances. Thus, the third dimension is 

important to be considered only when small values of the autocorrelation distances are 

encountered.  

On the other hand, the numerical results have shown that the non-dimensional parameters a/B, 

ah/B and av/B can be adopted in the probabilistic analysis of foundations. This is because 

changing both the values of the autocorrelations distances ah and av (or a) and the footing breadth 

B in a way to preserve the same ratio ah/B and av/B (or a/B) have led to the same PDF of Nc. 

Therefore, Nc is a function of only a/B or (ah/B and av/B) and the coefficient of variation of the 

cohesion random field. The autocorrelation distances a, ah and av used in all the tables and figures 

of this chapter can be replaced by a/B, ah/B and av/B respectively since the footing breadth B was 

taken equal to 1m in all the above analyses. This makes all the tables of this chapter non-

dimentional and can be used for any value of ah/B and av/B (or a/B) when COVc=25%. 

Values of 
3 2

c c

D D
N NCOV COV for 

different values of the 
isotropic 

autocorrelation 
distance 

Values of 
3 2

c c

D D
N NCOV COV for 

different values of the 
vertical autocorrelation 

distance av when 
ah=10m 

Values of 
3 2

c c

D D
N NCOV COV for 

different values of the 
horizontal 

autocorrelation distance 
ah when av=1m 

Autocorrelation 
distance (m) 

Square Strip Square Strip Square Strip 

0.15 - - 0.987 0.981 - - 

0.25 - - 0.991 0.987 - - 

0.5 0.540 0.794 0.995 0.992 0.477 0.724 

1 0.803 0.946 0.997 0.994 0.802 0.946 

2 0.942 0.969 0.998 0.998 0.948 0.981 

5 0.974 0.998 0.999 1.000 0.999 0.991 

10 0.998 1.000 0.999 1.000 1.000 0.994 

Table  III.5. Ratios between the coefficients of variation values of Nc (obtained using 3D and 2D random fields) 
for both the square and strip footings 
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III.4 CONCLUSIONS 

A probabilistic analysis that considers the effect of the spatial variability in three dimensions was 

investigated through the study of the ultimate bearing capacity of strip and square foundations 

resting on a purely cohesive soil with a spatially varying cohesion in the three dimensions. The 

main reason for which a purely cohesive soil was used is to investigate the effect of the spatial 

variability in the third direction with the use of a relatively non-expensive deterministic model.  

In order to investigate the effect of the spatial variability in the third direction on the ultimate 

bearing capacity of foundations, the results obtained using a 3D random field were compared to 

those corresponding to a 2D random field for the two cases of strip and square footings. The 

objective is to check the validity of a 2D random field in both cases of plane strain and three-

dimensional problems.  

The soil cohesion parameter was modeled as anisotropic non-Gaussian (log-normal) random field 

with a square exponential autocorrelation function. A straightforward extension to the 3D case of 

the Expansion Optimal Linear Estimation (EOLE) methodology proposed by Li and Der 

Kiureghian (1993) and extended by Vořechovsky (2008) was used in this chapter. The 

deterministic model was based on 3D numerical simulations using FLAC3D software. An efficient 

uncertainty propagation methodology that makes use of a non-intrusive approach to build up a 

sparse polynomial chaos expansion for the system response was employed.  

The probabilistic numerical results have shown that for small values of the autocorrelation 

distances, the variability of the ultimate bearing capacity computed by considering a 3D random 

field is smaller than the one obtained with the 2D random field for both cases of square and strip 

footings. The ratio 3 2

c c

D D
N NCOV COV  between the values of the coefficients of variation of Nc 

using the 3D and 2D random fields is the smaller for the very small values of the autocorrelation 

distance. This ratio tends to the value of unity for the very large values of the autocorrelation 

distances. Thus, the third dimension is important to be considered when small autocorrelation 

distances are encountered. As for the probabilistic mean values, slightly smaller values were 

obtained in the case of the 3D random field but the difference is negligible. 
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CHAPTER IV. COMBINED USE OF THE SPARSE POLYNOMIAL 

CHAOS EXPANSION METHODOLOGY AND THE GLOBAL SENSITIV ITY 

ANALYSIS FOR HIGH-DIMENSIONAL STOCHASTIC PROBLEMS 

IV.1 INTRODUCTION 

In the previous two chapters, an efficient approach to deal with uncertainty propagation in the 

case of high-dimensional problems (i.e. when a large number of random variables is involved) 

was presented. This approach is based on the sparse polynomial chaos expansion (SPCE) for the 

system response and leads to a reduced computational cost as compared to the classical 

polynomial chaos expansion (PCE) methodology. Notice that both, the PCE and the SPCE 

methodologies, aim at replacing the original complex deterministic model which may be an 

analytical model or a finite element/finite difference model by a meta-model. This allows one to 

easily calculate the system response (when performing MCS) using a simple analytical equation.  

When dealing with high-dimensional stochastic problems making use of computationally-

expensive deterministic models (e.g. three-dimensional analysis of shallow rectangular or circular 

footings resting on 3D spatially varying ponderable soils), the time cost remains important even 

with the use of the SPCE. Consequently, a method that can reduce once again the cost of the 

probabilistic analysis (i.e. the number of calls of the deterministic model) is needed.  

In this chapter, an efficient combined use of the SPCE methodology and the Global Sensitivity 

Analysis (GSA) is proposed [Al-Bittar and Soubra (2012e, 2012f, 2012g)]. The basic idea of this 

combination is that, for a given discretized random field, the obtained random variables do not 

have the same weight in the variability of the system response. The variables with a very small 

contribution in the variability of the system response can be discarded which significantly 

reduces the dimensionality of the treated problem. This allows one to perform a probabilistic 

analysis using a reduced Experiment Design (ED) and thus a smaller number of calls of the 

computationally-expensive deterministic model. The main challenge remains in detecting the 

most influential random variables in order to reduce the dimensionality of the problem. For this 

purpose, a procedure that makes use of both the SPCE and the GSA (denoted hereafter by 

SPCE/GSA) is proposed in this regard.  

The proposed methodology was firstly validated using a relatively non-expensive model. This 

model was extensively investigated in the second chapter of this thesis using the SPCE 

methodology. It involves the computation of the ultimate bearing capacity of a strip footing 
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resting on a weightless spatially varying soil where the soil cohesion and angle of internal friction 

(c and φ) were modeled by two anisotropic non-Gaussian cross-correlated random fields. 

Secondly, the SPCE/GSA procedure was applied to two computationally-expensive deterministic 

models that involve the computation of the PDF of the ultimate bearing capacity of a strip footing 

resting on a ponderable soil in both cases of (i) 2D random fields and (ii) 3D random fields. 

While an extensive parametric study was undertaken in the case of the 2D spatially varying soil, 

only a single soil configuration was considered in the case of the 3D spatially varying soil. The 

study of the case of rectangular or circular footings resting on a ponderable 3D spatially varying 

soil will be the subject of future studies. 

This chapter is organized as follows: The proposed SPCE/GSA procedure is firstly presented. It 

is followed by the numerical results. The chapter ends by a conclusion of the main findings 

IV.2 EFFICIENT COMBINED USE OF THE SPCE METHODOLOGY AND THE 

GLOBAL SENSITIVITY ANALYSIS GSA 

As mentioned previously, the time cost of the probabilistic analysis remains important even with 

the use of the SPCE when dealing with computationally-expensive deterministic models. 

Consequently, a procedure that can reduce once again this time cost is needed.  

An efficient combined use of the SPCE methodology and the GSA is proposed in this section. In 

this method, a small SPCE order is firstly selected to approximate the system response by a meta-

model. It should be noted that the random variables involved in the system response are those that 

result from the discretization of the random fields into a finite number of random variables. A 

GSA based on Sobol indices is then performed on this small SPCE order to determine the weight 

of each random variable in the variability of the system response. As a result, the variables with 

very small values of their Sobol indices (i.e. those that have a small weight in the variability of 

the system response) can be discarded. Consequently, a response which only depends on a 

smaller number of random variables is obtained. In other words, one obtains a response with an 

'effective dimension'. This dimension is smaller than the initial dimension where the total number 

of random variables was considered. As it will be shown later, the use of a small SPCE order to 

perform the GSA is not a concern since higher SPCE orders lead to the same influential random 

variables. Once the 'effective dimension' was determined, a higher SPCE order that makes use of 

only the most influential random variables can be used. This significantly reduces the 

computation time. The use of a higher SPCE order is necessary in order to lead to an improved fit 

of the SPCE. The SPCE/GSA procedure can be described in more details by the following steps: 
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• Discretize the random field(s): This step may be made using EOLE method and its 

extensions by Vořechovsky (2008) (see section  I.3.4). After the discretization procedure, 

a random field is represented by N independent standard normal random variables. If the 

total number of random fields involved in the analysis is equal to NRF, the total number of 

random variables is thus given by NT= NRFxN which can be relatively large especially for 

small values of the autocorrelation distances as was seen in the previous chapters. Notice 

that the equation NT=NRFxN is only applicable if all the random fields share the same 

autocorrelation function. 

• Select a preliminary small order of the sparse polynomial chaos expansion (e.g. p=2) to 

approximate the system response by a meta-model. The main reason for selecting a small 

order is the exploration of the most influential random variables (i.e. those that have a 

significant weight in the variability of the system response) using a small Experiment 

Design (ED). It should be emphasized here that the small value of the SPCE order leads to 

a significant decrease in the size of the experiment design, i.e. in the number of calls of 

the deterministic model. 

• Perform a GSA based on Sobol indices (using the obtained second order SPCE) to 

determine the weight of each random variable (of the different random fields) in the 

variability of the system response. The variables with very small values of their Sobol 

indices have no significant weight in the variability of the system response and can thus 

be discarded. Consequently, a response that only depends on a smaller number of random 

variables is obtained. In other words, one obtains a response with an 'effective dimension' 

Ne that is smaller than the initial dimension where the total number NT of random 

variables was considered. It should be mentioned here that the small SPCE order (i.e. 

p=2) used firstly to perform the GSA is sufficient to provide the weight of each random 

variable in the variability of the system response since higher SPCE orders lead to the 

same influential random variables as will be seen later in the numerical results. 

• Use the same Experiment Design (ED) which was employed before but this time by only 

keeping the most influential random variables. By reducing the number of random 

variables from NT to Ne (where Ne<NT), one has the possibility to use a higher SPCE order 

(i.e. p>2). The use of a higher SPCE order is necessary to lead to an improved fit of the 

SPCE since the coefficient of determination Q2 given in Equation ( I.45) increases when 

the SPCE order increases as it will be shown in the numerical results.  
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As a conclusion, the use of the SPCE/GSA procedure is expected to provide a good fit of the 

deterministic model with a reduced number of model evaluations as compared to the classical 

SPCE approach. 

IV.3 NUMERICAL RESULTS 

The aim of this section is to make use of the SPCE/GSA approach for the determination of the 

probabilistic numerical results of two computationally-expensive deterministic models. More 

specifically, one focuses on the computation of the probability density function (PDF) of the 

ultimate bearing capacity (qult) of a strip footing resting on a ponderable soil in both cases of (i) 

2D random fields and (ii) 3D random fields. It should be mentioned here that a somewhat similar 

problem was considered in chapter II using the SPCE approach: Since the SPCE approach was 

unable to consider the case of a ponderable soil because of the significant computational cost, 

only the case of a weightless soil was considered. Also, only 2D random fields were investigated.  

The soil cohesion c and friction angle φ were modeled by two anisotropic cross-correlated non-

Gaussian random fields. The deterministic model was based on numerical simulations using 

FLAC3D. The inputs of the deterministic and probabilistic models are the same as those 

considered in  chapter II and more precisely in section  II.3.1 where a probabilistic analysis of a 

strip footing resting on a weightless 2D spatially varying (c, φ) soil mass was undertaken. The 

only additional parameter used herein is the soil unit weight γ whose value is considered to be 

equal to 18 kN/m3.  

Before the presentation of the probabilistic results of a ponderable soil for both cases of 2D and 

3D random fields, it seems necessary to validate the present SPCE/GSA procedure by 

comparison of its results with those obtained by the use of the classical SPCE (in the case of a  

weightless soil). This is the aim of the next subsection. 

IV.3.1 Validation of the SPCE/GSA procedure 

The aim of this section is the validation of the present SPCE/GSA approach. For this purpose, a 

comparison between the results obtained using the classical SPCE method and those obtained 

with the proposed SPCE/GSA procedure is presented in the case of a weightless soil (which is a 

relatively non-expensive deterministic model). It should be mentioned here that when neglecting 

the soil weight γ, the computation time decreases from 10 to 5 min per simulation. Although this 

difference may not seem to be significant for a single simulation, it becomes dramatically 
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important during the probabilistic analyses where a large number of simulations is needed for 

each probabilistic analysis.  

The validation of the SPCE/GSA procedure is done for the illustrative case [ax=10m, ay=1m, r(c, 

φ)=-0.5] referred to hereafter as the reference case. For this configuration, the discretization of 

the two random fields c and φ has led to a total number of random variables NT equal to 24 (12 

random variables for each random field as was shown in Table  II.1 of  chapter II). By using the 

total number of random variables NT, a fourth order SPCE was necessary to reach the target 

accuracy 2
TARGETQ =0.999. An ED involving 800 points was needed to solve the regression problem 

given in Equation ( I.41) (i.e. to obtain a well-conditioned regression problem for which the rank 

of the matrix 1( )Tη η −  is larger than or equal to the number of unknown coefficients). On the other 

hand, by using the present SPCE/GSA procedure, a GSA was performed to detect the most 

influential random variables. Different SPCE orders (i.e. orders 2, 3, and 4) were considered in 

order to check if the SPCE order has an impact on the determination of the most influential 

random variables.  

Figure  IV.1 depicts the values of Sobol indices for the 24 random variables, as given by the 

SPCEs of orders 2, 3 and 4. The first 12 random variables [i.e. ξi for i=1, …, 12] correspond to 

the cohesion random field and the last 12 random variables [i.e. ξi for i=13, …, 24] are those 

corresponding to the friction angle random field. Figure  IV.1 shows that whatever the SPCE 

order is, the two first random variables of both fields (i.e. ξ1, ξ2, ξ13, ξ14) are the most influential. 

For the two random fields, a very fast decay in the weight of the random variables is noticed with 

quasi negligible values beyond the first two random variables. In fact, the first two random 

variables of the two random fields, which correspond to the first two eigenmodes of both fields 

involve 95% of the response variability as may be seen from Table  IV.1. This is logical since the 

system response (i.e. the ultimate bearing capacity qult) is a quantity that depends on the average 

distribution of the soil properties (c, φ) which is therefore quite insensitive to small-scale 

fluctuations of the spatially varying shear strength parameters c and φ. Notice that the first 

eigenmodes provide the average distribution of the shear strength parameters over the soil 

domain; however, the remaining eigenmodes give the small scale fluctuations around this average 

distribution.  
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Figure  IV.1. Sobol indices for SPCEs of orders 2, 3, and 4 using the total number of eigenmodes ξi (i=1, ..., 24) 

 

ξi (i=1, ..., 12) for the cohesion random field 

 ξ1 ξ2 ξ3 ξ4 ξ5 ξ6 ξ7 ξ8 ξ9 ξ10 ξ11 ξ12 

Sobol 
index 

0.500 0.170 0.002 0.002 0.030 0.002 0.009 2 x10-4 2 x10-4 9 x10-5 2x10-4 7 x10-5 

ξi (i=13, ..., 24) for the friction angle random field 

 ξ13 ξ14 ξ15 ξ16 ξ17 ξ18 ξ19 ξ20 ξ21 ξ22 ξ23 ξ24 

Sobol 
index 

0.200 0.080 0.001 8x10-4 0.002 5x10-4 6x10-4 3x10-4 1x10-4 4 x10-5 4 x10-5 5 x10-5 

Table  IV.1. Sobol indices for the reference case where ax=10m, ay=1m, and r(c,φ)=-0.5 

Figure  IV.1 clearly shows that the Sobol indices of the different random variables do not 

significantly change with the SPCE order. Thus, a second order SPCE is sufficient to identify the 

influential random variables (i.e. those that have a significant weight in the variability of the 

ultimate bearing capacity). Increasing the SPCE order has led to the same influential random 

variables which justify the small SPCE order chosen to perform the preliminary investigations. 

The main advantage of a small SPCE order is that a small ED is sufficient to solve the regression 

problem. As shown in Table  IV.2, 150 calls of the deterministic model are needed to solve the 

regression problem for a second order SPCE. This number attains 800 for a fourth order SPCE. 

This significant increase is because the number of unknown coefficients significantly increases 

from 29 to 144 when one chooses a fourth order SPCE instead of a second order SPCE. It should 

be emphasized here that the number of coefficients that appear in Table  IV.2 is that retained by 
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the iterative SPCE procedure suggested by Blatman and Sudret (2010). Notice finally that the 

number of coefficients of the full PCEs of order 2, 3 and 4 are respectively 325, 2925 and 20475. 

This clearly shows that the use of the PCE in the case of random fields would not be feasible.  

SPCE order 2 3 4 

Number of unknown 
coefficients P 

29 35 144 

Number of model 
evaluations  

150 350 800 

Table  IV.2. Number of unknown coefficients and model evaluations for different SPCE orders 

To choose the number of random variables which will be retained hereafter within the 

SPCE/GSA procedure, the different random variables of the two random fields are firstly sorted 

in a descending order according to the values of their Sobol indices (cf. the first three columns in 

Table  IV.3). A threshold of acceptance ta is then fixed as a percentage of the most influential 

(weighted) random variable. In the present work, the most influential random variable is ξ1 and it 

has a Sobol index S1=0.5. Different values of the threshold were tested (cf. first line in Table 

 IV.3). The random variables having a Sobol index smaller than the prescribed threshold ta are 

discarded (marked with the symbol (-) in the table). In this work, a threshold of 2% of the Sobol 

index of the most weighed random variable is considered as sufficient; the corresponding retained 

random variables provide 98% of the total variance of the system response as may be seen from 

the last line of the 7th column in Table  IV.3. For this threshold, an 'effective dimension' Ne=5 is 

obtained (i.e. five random variables are considered to be the most weighed). The five retained 

random variables (ξ1, ξ13, ξ2, ξ14, ξ5) will now be used with the already existing 150 model 

evaluations which were firstly employed to approximate the second order SPCE (using the total 

number of random variables NT=24).  

The reduction in the number of random variables from NT=24 to Ne=5 provides the possibility to 

use higher SPCE orders (i.e. p>2) with the same ED (i.e. the 150 model evaluations). The use of a 

higher SPCE order is necessary to lead to an improved fit of the SPCE since the coefficients R2 

and Q2 increase when the SPCE order increases as shown in Table  IV.4 for both the classical 

SPCE approach (using the total number of random variables NT=24 and the number of model 

evaluations of Table  IV.2) and the present SPCE/GSA procedure (where the effective dimension 

is equal to 5, i.e. Ne=5 and the number of model evaluations is fixed to 150). By using the 

SPCE/GSA procedure, an SPCE up to p=8 was reached using only 150 model evaluations. This 

order is to be compared to the fourth order SPCE which was used in the SPCE methodology. 
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Index i of 
random 

variable ξi 

Random 
variable ξi 

(i=1, ..., 24) 

Sobol index 
Si (i=1, ..., 

24)   

ta=0.5% x 
S1   

=0.0025 

ta=1% x 
S1   

=0.005 

ta=1.5% x 
S1   

=0.0075 

ta=2% x 
S1   

=0.01 

ta=2.5% x 
S1   

=0.0125 

1 ξ1 S1=0.500 0.500 0.500 0.500 0.500 0.500 

13 ξ13 S13=0.200 0.200 0.200 0.200 0.200 0.200 

2 ξ2 S2=0.170 0.170 0.170 0.170 0.170 0.170 

14 ξ14 S14=0.080 0.080 0.080 0.080 0.080 0.080 

5 ξ5 S5=0.030 0.030 0.030 0.030 0.030 0.030 

7 ξ7 S7=0.009 0.009 0.009 0.009 - - 

6 ξ6 S6=0.002 0.002 - - - - 

17 ξ17 S17=0.002 0.002 - - - - 

3 ξ3 S3=0.002 0.002 - - - - 

4 ξ4 S4=0.002 0.002 - - - - 

15 ξ15 S15=0.001 - - - - - 

16 ξ16 S16=8.0 x10-4 - - - - - 

19 ξ19 S19=6.0 x10-4 - - - - - 

18 ξ18 S18=5.0 x10-4 - - - - - 

20 ξ20 S20=3.0 x10-4 - - - - - 

8 ξ8 S8=2.0 x10-4 - - - - - 

9 ξ9 S9=2.0 x10-4 - - - - - 

11 ξ11 S11=2.0 x10-4 - - - - - 

21 ξ21 S21=1.0 x10-4 - - - - - 

10 ξ10 S10=9.0 x10-5 - - - - - 

12 ξ12 S12=7.0 x10-5 - - - - - 

24 ξ24 S24=5.0 x10-5 - - - - - 

22 ξ22 S22=4.0 x10-5 - - - - - 

23 ξ23 S23=4.0 x10-5 - - - - - 

 
Sum of 
Sobol 
indices 

1.001 0.997 0.989 0.989 0.98 0.98 

Table  IV.3. Sobol indices Si of the different random variables ξi  and the retained random variables for the 
different values of the threshold of acceptance ta 

From Table  IV.4, one can notice that with the use of the SPCE/GSA procedure, the Q2 and R2 

coefficients increase with the increase of the SPCE order and stabilize beyond the order 5. This 

means that there is a need to increase the SPCE order to improve the fit; however, there is no 

improvement in the fit beyond the fifth order. On the other hand, the values of Q2 and R2 (0.963 

and 0.972) given by the present approach for a sixth SPCE order are smaller than those of the 

classical SPCE approach with a fourth order (i.e. 0.994 and 0.999). This is because 19 random 
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variables were discarded which slightly affect the goodness of the fit. It should be mentioned that 

although the values of both Q2 and R2 are provided, the values of only Q2 could be sufficient for 

the analysis because this coefficient is more rigorous than R2. 

 SPCE order 2 3 4 5 6 7 8 

Coefficient of 
determination R2 

0.998 0.999 0.999 - - - - Total number 
of random 

variables NT Coefficient of 
determination Q2 

0.824 0.932 0.994 - - - - 

Coefficient of 
determination R2 

0.961 0.963 0.968 0.970 0.972 0.972 0.972 Reduced 
number of 
random 

variables Ne 
Coefficient of 

determination Q2 
0.791 0.883 0.957 0.961 0.963 0.963 0.963 

Table  IV.4. Coefficients of determination R2 and Q2 for different SPCE orders when using the total and the 
reduced number of random variables 

Figure  IV.2 shows the PDF of the ultimate bearing capacity as obtained by both the classical 

SPCE approach (with the total number of random variables NT=24) and the proposed SPCE/GSA 

procedure (using only five random variables). Table  IV.5 provides the corresponding statistical 

moments and coefficients of determination R2 and Q2. Notice that the results of the present 

SPCE/GSA approach are given in Table  IV.5 for different values of the number of model 

evaluations (from 150 to 800) and for a fifth order SPCE. From this table, one can see that the 

coefficients R2 and Q2 of the SPCE/GSA procedure are quasi constant with the increase in the 

number of model evaluations. This means that 150 model evaluations are sufficient and there is 

no need for more model evaluations to improve the accuracy of the fit. On the other hand, one 

can observe (see Figure  IV.2 and Table  IV.5) that the first two statistical moments (µ and σ) are 

well estimated with the present SPCE/GSA approach using the 150 model evaluations. However, 

the third and fourth statistical moments (δu and κu) need more model evaluations (800 model 

evaluations) in order to converge to their reference values given by the SPCE approach (cf. Table 

 IV.5). This demonstrates the efficiency of the present SPCE/GSA procedure to compute only the 

first two statistical moments with a much reduced number of the model evaluations (150 model 

evaluations) with respect to the classical SPCE approach (with 800 model evaluations).  
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Figure  IV.2. PDF of the ultimate bearing capacity for both the classical SPCE method with the total number 
of random variables NT =24 and the proposed SPCE/GSA procedure with only five random variables Ne =5 

when ax=10m, ay=1m and r(c, φ)= -0.5 

 
Number of 

model 
evaluations 

Mean µ 
(kPa) 

Standard 
deviation 
σ (kPa)  

Skewness 
δu (-) 

Kurtosis 
κu (-) 

R2 Q2 

W
ith

 th
e 

to
ta

l 
nu

m
be

r 
of

 
ra

nd
om

 
va

ria
bl

es
 N

T
=

24
 

800 658.2 93.57 0.287 0.163 0.999 0.995 

150 657.84 90.80 0.105 0.013 0.968 0.950 

200 658.98 91.53 0.168 0.056 0.972 0.951 

250 659.90 92.10 0.188 0.063 0.964 0.953 

300 659.73 92.15 0.202 0.060 0.962 0.963 

400 660.05 90.95 0.291 0.050 0.969 0.960 

500 659.50 90.81 0.296 0.043 0.970 0.963 

600 659.75 90.99 0.272 0.116 0.968 0.963 

700 659.50 90.85 0.280 0.164 0.968 0.963 

W
ith

 th
e 

re
du

ce
d 

nu
m

be
r 

of
 

ra
nd

om
 v

ar
ia

bl
es

 N
e=

5 
 

800 659.85 91.20 0.300 0.160 0.970 0.967 

Table  IV.5. Coefficients of determination R2 and Q2 of the SPCE and statistical moments (µ, σ, δu and κu) of 
the ultimate bearing capacity as given by the classical SPCE approach and by the present SPCE/GSA 

procedure 

As for the Sobol indices of the two random fields c and φ, Table  IV.6 shows that the SPCE/GSA 

procedure with only 150 model evaluations gives the same results obtained by the classical SPCE 

approach using 800 model evaluations which demonstrates once again the efficiency of the 

present SPCE/GSA procedure. 
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Number of 

model 
evaluations 

i 
Si (i=1, ..., 

12) 
i 

Si (i=13, ..., 
24) 

( )
12

1
i

i

S c S
=

=∑  ( )
24

13
i

i

S Sϕ
=

=∑  

1 0.500 13 0.200 

2 0.170 14 0.080 

3 0.002 15 0.001 

4 0.002 16 8.0 x10-4 

5 0.030 17 0.002 

6 0.002 18 5.0 x10-4 

7 0.009 19 6.0 x10-4 

8 2.0 x10-4 20 3.0 x10-4 

9 2.0 x10-4 21 1.0 x10-4 

10 9.0 x10-5 22 4.0 x10-5 

11 2.0 x10-4 23 4.0 x10-5 

W
ith

 th
e 

to
ta

l n
um

be
r 

of
 r

an
do

m
 v

ar
ia

bl
es

 
N

T
=

24
 

800 

12 7.0 x10-5 24 5.0 x10-5 

0.715 0.285 

 
Number of 

model 
evaluations 

i 
Si (i=1, 2, 

3) 
i Si (i=4, 5) ( )

3

1
i

i

S c S
=

=∑  ( )
5

4
i

i

S Sϕ
=

=∑  

1 0.510 4 0.076 

2 0.200 5 0.190 

W
ith

 th
e 

re
du

ce
d 

nu
m

be
r 

of
 r

an
do

m
 

va
ria

bl
es

 N
e=

5 
 150 

3 0.010   

0.721 0.279 

Table  IV.6. Sobol indices as computed from the classical SPCE approach (with NT=24) and the present 
SPCE/GSA procedure (with Ne=5). 

IV.3.2 Probabilistic results of a ponderable soil for the two cases of 2D and 3D random 

fields 

The aim of this section is to present the probabilistic numerical results in the case of a ponderable  

soil mass. The objective is to compute the PDF of the ultimate bearing capacity of a shallow strip 

foundation resting on a 2D and a 3D spatially varying (c, φ) soil where the soil shear strength 

parameters are modeled as two anisotropic cross-correlated non-Gaussian random fields. It 

should be emphasized here that the case of a ponderable soil significantly increases the 

computation time with respect to the case of a weightless soil.  

As shown in Figure  IV.3, the adopted soil domain considered in the analysis is 13m wide by 5m 

deep. The footing breadth is equal to 1m. For the boundary conditions, the horizontal movement 
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on the vertical boundaries of the grid is restrained, while the base of the grid is not allowed to 

move in both the horizontal and the vertical directions.  

 

Figure  IV.3. Adopted soil domain and the corresponding deterministic mesh 

In this section, one first presents an extensive parametric probabilistic study using the SPCE/GSA 

procedure to investigate the effect of the different probabilistic governing parameters of the two 

random fields (autocorrelation distances, coefficients of variation) and the correlation between 

both fields on the PDF of the ultimate bearing capacity of a strip foundation resting on a 

ponderable soil with 2D spatially varying shear strength parameters. This is followed by a 

presentation of the probabilistic results obtained in the case of a ponderable soil and 3D spatially 

varying shear strength parameters. It should be noticed here that when investigating the effect of 

3D random fields, only the reference case [i.e. ah=ax=ay=10m, av=az=1m and r(c, φ)=-0.5] was 

considered. The aim behind considering a ponderable soil with 3D random fields is to introduce 

an additional computational cost due to the generation of 3D random fields. Another additional 

cost could be introduced by considering the case of a rectangular or a circular footing with 3D 

spatially varying shear strength parameters. 

In both cases of 2D and 3D random fields, c and φ are discretized into a finite number of random 

variables. As was shown in the previous two chapters, this number is small for the very large 

values of the autocorrelation distances and significantly increases for the small values of the 

autocorrelation distances.  

Table  IV.7 provides the total number NT of random variables needed to discretize the two random 

fields c and φ within a prescribed variance of the error of 10% for both the 2D and 3D random 

fields. This table also provides the number Ne of the retained random variables as obtained using 

the SPCE/GSA procedure. One can observe an important reduction in the dimensionality of the 

treated problem with the use of the proposed SPCE/GSA procedure. For instance, the reduced 

number Ne of random variables is equal to 21 when ax=ay=0.25m. This number is to be compared 
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to the total number NT=1760 which shows once again that the ultimate bearing capacity is not 

sensitive to the very small fluctuations of the two random fields. 

   

NT: Total number of 
random variables used 
to discretize the two 
random fields (c, φ) 

Ne: Number of most 
influent random 
variables used to 

construct the SPCE 
when ta =2%xS1 

0.25 1760 21 

0.5 460 21 

1 120 20 

1.5 70 20 

2 50 20 

3 24 12 

5 20 8 

Is
ot

ro
pi

c 
ca

se
 w

ith
 v

ar
yi

ng
 

va
lu

es
 o

f a
x=

a
y 
(m

) 

10 10 6 

0.15 140 22 

0.25 84 21 

0.5 44 13 

0.8 30 9 

1 24 5 

2 24 5 

5 24 5 A
ni

so
tr

op
ic

 c
as

e 
w

ith
 

va
ry

in
g 

va
lu

es
 o

f  
a y

 (
m

) 
w

he
n a

x=
10

m
 

8 24 5 

0.5 200 22 

1 120 20 

2 88 20 

4 48 16 

20 24 12 

30 24 8 

2D
 r

an
do

m
 fi

el
ds

 (c,
 φ

) 

A
ni

so
tr

op
ic

 c
as

e 
w

ith
 

va
ry

in
g 

va
lu

es
 o

f 
a x

 (
m

) 
w

he
n a

y=
1m

 

50 24 8 

3D
 r

an
do

m
 

fie
ld

s 
(c

, φ
) 

Reference case [ah=ax=ay=10m, 
av=az=1m] 

50 14 

Table  IV.7. Number of random variables used to discretize the two random fields c and φ for both cases of 2D 
and 3D random fields 
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In the following two sections, the extensive parametric study concerning the case of the 2D 

spatially varying soil is first presented. This is followed by a presentation of the probabilistic 

results when investigating the 3D spatially varying soil.  

IV.3.2.1 Probabilistic parametric study in the case of a ponderable soil and 2D random fields 

In the following subsections, the effect of the different statistical governing parameters of the two 

random fields (autocorrelation distances, coefficients of variation) and the correlation between 

these random fields on the PDF of the ultimate bearing capacity was investigated in the particular 

case of 2D random fields. Furthermore, a global sensitivity analysis based on Sobol indices was 

also performed. 

Effect of the autocorrelation distances 

Figure  IV.4 shows the PDFs of the ultimate bearing capacity for different values of the isotropic 

autocorrelation distance ax=ay and Figures IV.5 and IV.6 show the PDFs of the ultimate bearing 

capacity for different configurations with anisotropic autocorrelation distances. Tables IV.8, IV.9 

and IV.10 present the first two statistical moments of all these PDFs together with those 

corresponding to great values of the autocorrelation distances.  

Figures IV.4, IV.5 and IV.6 and Tables IV.8, IV.9 and IV.10 show that the variability of the 

ultimate bearing capacity decreases when the autocorrelation distance ax=ay, ay or ax decreases. 

Similar observation was provided in chapter II in the case of a weightless soil mass. The 

variability of the ultimate bearing capacity decreases with the increase in the soil heterogeneity 

since the zone involved by the possible failure mechanism will have (for the very small values of 

the autocorrelation distances) somewhat uniform values of the shear strength parameters over this 

zone because of the large number of high and small values of the shear strength parameters. This 

leads to close values of the ultimate bearing capacity from simulation to another one and thus to a 

smaller variability in this bearing capacity. 

Figure  IV.7 and Table  IV.8 show that the probabilistic mean value of the ultimate bearing 

capacity presents a minimum when the isotropic autocorrelation distance ax=ay is nearly equal to 

the footing breadth B (i.e. in our case when ax=ay=1m). Notice that the minimal probabilistic 

mean was also observed in chapter II in the ULS analysis when isotropic random fields were 

studied. Thus, the same explanation which had done before remains valid herein.  
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Figure  IV.4. Influence of the isotropic autocorrelation distance ax=ay on the PDF of the ultimate bearing 

capacity in the case where r(c, φ)=-0.5 
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Figure  IV.5. Influence of the vertical autocorrelation 

distance ay on the PDF of the ultimate bearing 
capacity in the case where r(c, φ)=-0.5 and ax=10m 
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Figure  IV.6. Influence of the horizontal autocorrelation 

distance ax on the PDF of the ultimate bearing capacity in 
the case where r(c, φ)=-0.5 and ay=1m 

As for the anisotropic soil, Figures IV.8 and IV.9 and Tables IV.9 and IV.10 show that the 

probabilistic mean value of the ultimate bearing capacity presents a minimum at a certain value 

of ay (or ax) for a prescribed value of ax (or ay). Thus, one may expect that there is a given soil 

configuration (corresponding to given values of ax and ay) for which one obtains an absolute 

minimal mean value for the ultimate bearing capacity qult. It should be mentioned here that the 

increase in the autocorrelation distance ay in Figure  IV.8 leads to a soil configuration that varies 

from a horizontal to a vertical multilayer with a succession of layers with high and small values 

of the shear strength parameters. This situation is reversed in Figure  IV.9 (in which ax increases) 

where the soil configuration varies from a vertical to a horizontal multilayer. The ultimate 

bearing capacity was found to be the smallest for an intermediate value of the autocorrelation 



 

125 

distance ay (or ax) for a prescribed value of ax (or ay) where the failure mechanism can easily 

develop in the soil mass. 

( )x ya a m=  
ultqµ (kPa) 

ultqσ (kPa) (%)
ultqCOV  

0.25 1022.3 28.5 2.8 

0.5 1019.3 53.2 5.2 

1 980.2 103.3 10.5 

1.5 1001.4 127.0 12.6 

2 1005.1 136.9 13.6 

3 1012.7 169.2 16.7 

5 1021.7 195.1 19.1 

10 1040.0 216.9 20.9 

50 1051.5 230.1 21.9 

100 1052.0 230.9 21.9 

Random variables 1052.2 230.9 21.9 

Table  IV.8. Effect of the isotropic autocorrelation distance ax=ay on the statistical moments (µ, σ) of the 
ultimate bearing capacity 

 

(m) ya  
ultqµ (kPa) 

ultqσ (kPa) (%)
ultqCOV  

0.15 1021.5 82.8 8.1 

0.25 1018.5 103.7 10.2 

0.5 1018.0 133.1 13.1 

0.8 1020.4 161.8 15.8 

1 1022.7 172.0 16.8 

2 1032.9 203.2 19.7 

5 1038.6 212.2 20.4 

8 1039.4 216.3 20.8 

50 1041.0 217.5 20.9 

1D random 
field 

1041.1 217.6 20.9 

Table  IV.9. Effect of the vertical autocorrelation distance ay on 
the statistical moments (µ, σ) of the ultimate bearing capacity 

when ax=10m 

( )xa m  ultqµ (kPa) 
ultqσ (kPa) (%)

ultqCOV  

0.5 1017.0 69.7 6.7 

1 980.2 103.3 10.5 

2 1004.0 121.1 12.1 

4 1010.4 150.4 14.9 

10 1022.7 172.0 16.8 

20 1029.2 179.9 17.5 

30 1030.4 184.2 17.9 

50 1030.5 185.5 18.0 

1D random 
field 

1030.6 185.7 18.0 

Table  IV.10. Effect of the horizontal autocorrelation distance 
ax on the statistical moments (µ, σ) of the ultimate bearing 

capacity when ay=1m 
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Figure  IV.7. Influence of the isotropic autocorrelation distance ax=ay on the probabilistic mean of the ultimate 
bearing capacity in the case where r(c, φ)=-0.5. 
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Figure  IV.8. Influence of the vertical autocorrelation 
distance ay on the probabilistic mean value of the 

ultimate bearing capacity in the case where ax=10m 
and r(c, φ)=-0.5  
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Figure  IV.9. Influence of the horizontal autocorrelation 
distance ax on the probabilistic mean value of the 

ultimate bearing capacity in the case  where ay =1m and 
r(c, φ)=-0.5 

Finally, Tables IV.11, IV.12, and IV.13 show the effect of the autocorrelation distances ax=ay, ay 

and ax on the Sobol indices S(c) and S(φ) of the two random fields c and φ. These tables show 

that both indices are quasi-constant with the increase of ax=ay, ay or ax. This is because we 

increase the autocorrelation distances in both fields by the same amount. These tables also show 

that the random fields of c and φ have almost the same weight in the variability of the ultimate 

bearing capacity (S(c)=0.48 and S(φ)=0.52). These results are to be compared to those obtained 

by Al-Bittar and Soubra (2012a) in the case of a weightless soil where S(c)=0.71 and S(φ)=0.29. 

The large value of S(c) in the case of a weightless soil is due to the absence of the term 

responsible of the soil weight in the bearing capacity equation. 
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( )x ya a m=  ( )S c  ( )S ϕ  

0.25 0.48 0.52 

0.5 0.49 0.51 

1 0.48 0.52 

1.5 0.48 0.52 

2 0.48 0.52 

3 0.49 0.51 

5 0.47 0.53 

10 0.48 0.52 

50 0.49 0.51 

100 0.49 0.51 

Random variables 0.49 0.51 

Table  IV.11. Effect of the isotropic autocorrelation distance ax=ay on the Sobol indices of the two random 
fields c and φ 

(m) ya  ( )S c  ( )S ϕ  

0.15 0.48 0.52 

0.25 0.48 0.52 

0.5 0.49 0.51 

0.8 0.48 0.52 

1 0.49 0.51 

2 0.47 0.53 

5 0.47 0.53 

8 0.48 0.52 

50 0.48 0.52 

1D random field 0.49 0.51 

Table  IV.12. Effect of the vertical autocorrelation 
distance ay on the Sobol indices of the two random fields 

c and φ when ax=10m 

( )xa m  ( )S c  ( )S ϕ  

0.5 0.48 0.52 

1 0.48 0.52 

2 0.48 0.52 

4 0.47 0.53 

10 0.49 0.51 

20 0.48 0.52 

30 0.48 0.52 

50 0.48 0.52 

1D random field 0.49 0.51 

Table  IV.13. Effect of the horizontal autocorrelation 
distance ax on the Sobol indices of the two random fields c 

and φ when ay=1m 

Effect of the cross-correlation coefficient 

Figure  IV.10 presents the PDFs of the ultimate bearing capacity for negatively cross-correlated 

r(c, φ)=-0.5 and non-correlated r(c, φ)=0 random fields when ax=10m and ay=1m, and Table 

 IV.14 presents the two corresponding statistical moments (µ, σ).  

Figure  IV.10 and Table  IV.14 show that the variability of the ultimate bearing capacity decreases 

when considering a negative correlation between the two random fields. This is because the 

increase of one parameter value implies a decrease in the other parameter. Thus, the total shear 
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strength slightly varies. This leads to a reduced variation in the ultimate bearing capacity. It 

should be mentioned that the probabilistic mean value of the ultimate bearing capacity slightly 

increases when a negative correlation between the two random fields exists. Finally, the Sobol 

indices presented in Table  IV.15 show that the negative correlation slightly increases the weight 

of the soil cohesion in the variability of the ultimate bearing capacity. 
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Figure  IV.10. Influence of the cross-correlation coefficient r(c, φ) on the PDF of the ultimate bearing capacity 
in the case where ax=10m and ay=1m 

( , )r c ϕ  
ultqµ (kPa) 

ultqσ (kPa) (%)
ultqCOV  

-0.5 1022.7 172.1 16.8 

0 1019.7 275.1 27.0 

Table  IV.14. Effect of the cross-correlation coefficient r(c, φ) 
between the random fields of c and φ on the statistical moments (µ, 
σ) of the ultimate bearing capacity when ax=10m and ay=1m 

( , )r c ϕ  ( )S c  ( )S ϕ  

-0.5 0.49 0.51 

0 0.45 0.55 

Table  IV.15. Effect of the coefficient of 
correlation on the Sobol indices of the two 

random fields c and φ when ax=10m and ay=1m 

Effect of the coefficients of variation of the random fields 

Tables IV.16 and IV.17 present for five different configurations of the coefficients of variation of 

the random fields, the two statistical moments (µ, σ) of the ultimate bearing capacity and the 

Sobol indices of the two fields (c, φ).  

Table  IV.16 shows that the variability of the ultimate bearing capacity increases (as expected) 

when the coefficient of variation of either random field increases. From Table  IV.17, one can see 

that an increase in the coefficient of variation of a soil parameter increases its Sobol index and 

thus its weight in the variability of the ultimate bearing capacity. This automatically reduces the 

contribution of the other uncertain parameter. 
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ultqµ (kPa) 

ultqσ (kPa) (%)
ultqCOV  

50% 10%COVc COVϕ= =  970.8 241.7 24.9 

37.5% 10%COVc COVϕ= =  998.5 205.9 20.6 

25% 10%COVc COVϕ= =  1022.7 172.0 16.8 

25% 15%COVc COVϕ= =  1036.0 224.5 21.7 

25% 20%COVc COVϕ= =  1053.7 284.2 27.0 

Table  IV.16. Effect of the coefficients of variation (COVc, COVφ) of the random fields c and φ on the statistical 
moments (µ, σ) of the ultimate bearing capacity when ax=10m, ay=1m and r(c, φ)= -0.5 

 ( )S c  ( )S ϕ  

50% 10%COVc COVϕ= =  0.79 0.21 

37.5% 10%COVc COVϕ= =  0.68 0.32 

25% 10%COVc COVϕ= =  0.49 0.51 

25% 15%COVc COVϕ= =  0.28 0.72 

25% 20%COVc COVϕ= =  0.17 0.83 

Table  IV.17. Effect of the coefficients of variation (COVc, COVφ) of the random fields c and φ on the Sobol 
indices of the two random fields c and φ when ax=10m, ay=1m and r(c, φ)= -0.5 

IV.3.2.2 Probabilistic results in the case of a ponderable soil and 3D random fields 

In this section, one presents the probabilistic results obtained in the case of a ponderable soil and 

3D random fields. Only the reference case [i.e. ah=10m, av=1m and r(c, φ)=-0.5] was considered 

in the analysis. This is because the effect of introducing the spatial variability in the third 

direction was extensively investigated in  chapter III. The only reason for which the three-

dimensional case was considered herein is to present the capability of the SPCE/GSA procedure 

in solving the computationally-expensive problems which were impossible to be considered 

before.  

The PDF obtained when 3D random fields were considered is compared to that obtained with the 

use of 2D random fields in Figure  IV.11. From this figure, one can see that the variability of the 

ultimate bearing capacity is slightly smaller when 3D random fields were considered. Table 

 IV.18 confirms this observation. Similar results were obtained in the previous chapter when 

considering a purely cohesive soil. Finally, the Sobol indices presented in Table  IV.19 show that 

the random fields of c and φ have almost the same weight in the variability of the ultimate 

bearing capacity for both 2D and 3D random fields cases. 



 

130 

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0 500 1000 1500 2000 2500

Ultimate bearing capacity (kPa)

P
D

F
(x

1
0-3

)

2D random fields

3D random fields

 

Figure  IV.11. PDFs of the ultimate bearing capacity for both the 2D and the 3D random fields for the 
reference case where ah=10m, av=1m and r(c, φ)=-0.5  

 
ultqµ (kPa) 

ultqσ (kPa) (%)
ultqCOV  

2D random 
fields 

1022.7 172.1 16.8 

3D random 
fields 

1020.9 167.0 16.3 

Table  IV.18. Statistical moments (µ, σ) of the ultimate bearing 
capacity using both 2D and 3D random fields for the reference 

case where ah=10m, av=1m and r(c, φ)=-0.5  

 ( )S c  ( )S ϕ  

2D random 
fields 

0.49 0.51 

3D random 
fields 

0.47 0.53 

Table  IV.19. Sobol indices of the two random fields c 
and φ in both the 2D and the 3D cases for the 

reference case where ah=10m, av=1m and r(c, φ)=-0.5  

IV.4 CONCLUSIONS 

An efficient combined use of the SPCE methodology and the global sensitivity analysis (GSA) 

has been proposed in this chapter. The aim is to reduce the cost of the probabilistic analysis of 

high-dimensional stochastic problems making use of computationally-expensive deterministic 

models. This methodology was firstly validated in this work using a relatively non-expensive 

deterministic model (case of a strip footing resting on a weightless soil mass with 2D random 

fields). Then it was applied to two computationally-expensive deterministic models (case of a 

strip footing resting on a ponderable soil mass with 2D and 3D random fields).  

The validation consists in comparing both the classical SPCE method that uses the total number 

of random variables and the proposed combination between the SPCE and the GSA that makes 

use of a reduced number of random variables. Satisfactory results were obtained using a smaller 

number of model evaluations with the proposed methodology. The first two statistical moments 

and the Sobol indices show good agreement between the two methods. On the other hand, the 
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third and fourth statistical moments need more model evaluations in order to converge to their 

reference values obtained using the classical SPCE approach.  

The application of the proposed methodology to two expensive deterministic models that involve 

the computation of the PDF of the ultimate bearing capacity in the cases of a ponderable soil with 

2D and 3D random fields (which were impossible to be considered before) have shown that (i) 

the variability of the ultimate bearing capacity increases with the increase in the coefficients of 

variation of the random fields; (ii) the cohesion and the friction angle random fields have almost 

the same weight in the variability of the ultimate bearing; (iii) the increase in the coefficient of 

variation of a soil parameter (c or φ) increases its Sobol index and thus its weight in the 

variability of the system response and decreases the weight of the other parameter; (iv) the 

negative correlation between the soil shear strength parameters decreases the response variability; 

(v) the decrease in the autocorrelation distances (ax or ay or ax=ay), leads to a less spread out 

(PDF) of the ultimate bearing capacity; (vi) the probabilistic mean value of the ultimate bearing 

capacity presents a minimum which was obtained in the isotropic case when the autocorrelation 

distance is nearly equal to the footing breadth B; while for the anisotropic case, this minimum 

was obtained (for prescribed footing and soil characteristics) at a given value of the ratio between 

the horizontal and the vertical autocorrelation distances; and finally, (vii) a comparison between 

the results obtained using 2D and 3D random fields have shown that the variability of the 

ultimate bearing capacity is smaller when 3D random fields were considered. As a future work, 

one may consider the case of a rectangular or a circular footing resting on a ponderable soil with 

3D spatially varying shear strength parameters. 
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CHAPTER V. EFFECT OF THE SOIL SPATIAL VARIABILITY A ND/OR 

THE TIME VARIABILITY OF THE SEISMIC LOADING ON THE DYNAMIC 

RESPONSES OF GEOTECHNICAL STRUCTURES 

V.1 INTRODUCTION 

This chapter focuses on the dynamic responses induced by an earthquake Ground-Motion (GM) 

taking into account the soil spatial variability and/or the time variability of the seismic loading. 

Contrarily to the case of the static loading considered in the previous chapters where only the soil 

and the footing were considered in the analysis (because the system response was mainly the 

ultimate bearing capacity of the footing), the case of a seismic loading should consider the soil, 

the footing and the superstructure since the seismic energy will be dissipated in both the soil and 

the superstructure [Sadek (2012)]. Thus, a proper modeling of the entire soil-footing-structure 

system including the interaction between the soil and the footing should be considered in order to 

lead to reliable solutions. 

The response of a soil-footing-structure system subjected to seismic loading has been extensively 

investigated in literature using deterministic approaches where average values of the soil 

properties (shear modulus, angle of internal friction, cohesion, etc.) and deterministic recorded 

acceleration time-histories were used [Chen and Sawada (1983), Leshchinsky and San (1994), 

You and Michalowski (1999), Michalowski (2002), Loukidis et al. (2003), Sadek and Shahrour 

(2004) and Grange et al. (2009a, 2009b) among others].  

It should be mentioned here that when dealing with seismic loads, an aleatory uncertainty related 

to the earthquake Ground-Motion (GM) appears in addition to the soil spatial variability and the 

variability of the superstructure. This additional source of aleatory uncertainty is the time 

variability of the earthquake Ground-Motion (GM). Consequently, reliable responses of the 

superstructure cannot be predicted using a deterministic approach; a probabilistic technique 

seems to be necessary. The probabilistic techniques enable the rigourous propagation of the 

different uncertainties from the input parameters to the system responses.  

In this chapter, the effect of the soil spatial variability and/or the time variability of the 

earthquake GM on the seismic responses of geotechnical structures is investigated. The 

variability of the superstructure was not considered in the analysis. Given the scarcity of studies 

involving the probabilistic seismic responses, a free field soil medium subjected to a seismic 
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loading was firstly considered. The aim is to investigate the effect of the soil spatial variability 

and/or the time variability of the earthquake GM using a simple model. Then, a soil-structure 

interaction SSI problem was investigated in the second part of this chapter.  

It should be emphasized here that few authors have worked on the analysis of the seismic 

responses using probabilistic approaches [Koutsourelakis et al. (2002), Wang and Hao (2002), 

Nour et al. (2003), Popescu et al. (2005, 2006) and Lopez-Caballero and Modaressi-Farahmand-

Rasavi (2010)]. In all these works, the classical Monte Carlo Simulation (MCS) methodology 

with a very small number of realizations was used to determine the probability density function 

(PDF) of the seismic response [e.g. only 50 simulations were used in Koutsourelakis et al 

(2002)]. This is because of the significant computation time required per simulation when using 

finite element/finite difference dynamic models.  

As for the probabilistic methods used in this chapter, two methods were employed. The first one 

is the classical Monte Carlo Simulation (MCS) methodology and the second one is the Sparse 

Polynomial Chaos Expansion (SPCE) methodology which consists in substituting the system 

response by a meta-model.  

This chapter is organized as follows: First, the case of an elastic free field soil mass is 

investigated. This is followed by the SSI problem. The chapter ends by a conclusion of the main 

findings. 

V.2 CASE OF AN ELASTIC FREE FIELD SOIL MASS 

In this section, the effect of the soil spatial variability and/or the time variability of the earthquake 

GM was firstly investigated through the study of an elastic free field soil mass.  

The soil shear modulus G was modeled as a non-Gaussian random field and the earthquake GM 

was modeled as a random process. The EOLE methodology presented in chapter I was used to 

discretize the shear modulus random field. As for the earthquake GM, the method proposed by 

Rezaeian and Der Kiureghian (2010) which consists in fitting a parameterized stochastic model to 

the real recorded earthquake GM was utilized. The deterministic model was based on numerical 

simulations using the dynamic option of the finite difference code FLAC3D. The dynamic 

response considered in the analysis was the amplification of the maximum acceleration at the soil 

surface.  
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The following subsections are organized as follows: one first presents the deterministic numerical 

modeling of the dynamic problem and the corresponding results. Then, the probabilistic analyses 

and the corresponding probabilistic results are presented and discussed. 

V.2.1 Numerical modeling  

 The deterministic dynamic model is based on numerical simulations using the finite difference 

software FLAC3D. Two types of modeling were considered in this thesis (see Figure  V.1). The 

first one considers a two-dimensional soil mass of 30m width and 24m depth. As for the second 

model (called hereafter 'column' model), it considers a soil column of 1m width and 24m depth. 

The objective of these two types of modeling is to verify that the 'column' model is sufficient to 

simulate the propagation of the seismic waves in the soil mass and to deduce the distribution of 

the peak accelerations as a function of depth. Thus, replacing the 2D model with the 'column' 

model may significantly reduce the probabilistic computational time. 

 
(a) 

 
(b) 

Figure  V.1. The two considered numerical models (a) 2D model and (b) 'column' model 

The numerical modeling of a mechanical problem in the presence of dynamic loading requires the 

definition of (i) the soil domain and the corresponding mesh, (ii) the soil constitutive model, (iii) 

the boundary conditions, (iv) the mechanical damping and (v) the used dynamic (seismic) signal. 

These parameters are presented in the following subsections. 

V.2.1.1 Definition of the soil domain and the corresponding mesh 

The first step in a numerical modeling is the definition the soil domain and the corresponding 

mesh. In the finite difference dynamic analysis by FLAC3D, numerical distortions may occur 

during the propagation of the seismic waves if the elements size of the mesh is not convenient. 

X 

Z 
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Thus, the size ∆l of an element of the mesh should respect the following condition [Itasca 

(2000)]: 

max10*
sV

l
f

∆ ≤  ( V.1) 

where Vs is the shear wave velocity, and fmax is the maximum frequency of the incident seismic 

signal [Kuhlemeyer and Lysmer, (1973)]. The shear wave velocity Vs in Equation ( V.1) can be 

calculated using the values of the soil shear modulus G and the soil density ρ as follows: 

s

G
V

ρ
=  ( V.2) 

The mesh used in this study respects the condition given by Equation ( V.1) and is presented in 

Figure  V.1. 

V.2.1.2 Definition of the soil constitutive model 

FLAC3D offers a variety of soil constitutive models. The most used ones in dynamic analysis are 

the elastic and the elasto-plastic models (perfect, softening or hardening). Even though an elasto-

plastic model would be more convenient to model the soil behavior especially for the cases of 

medium and high earthquake GMs, an elastic model (which is characterized by reversible 

deformations) was used in this work. The aim is to investigate the effect of the soil spatial 

variability and/or the time variability of the earthquake GM using a simple model. This model is 

defined by two parameters which are (i) the shear modulus G, and (ii) the bulk modulus K. Other 

constitutive models which may take into account the nonlinearity of the soil will be employed in 

future works. 

V.2.1.3 Definition of the boundary conditions 

In dynamic analysis, assuming a null horizontal displacement on the two vertical boundaries of 

the soil domain as is the case in the static analysis may cause reflections of the seismic waves 

during their propagation in the model. To overcome such problem, FLAC3D offers the option of 

applying absorbing boundary conditions of type "quiet Boundaries" or "free field" [Itasca, 

(2000)]. These boundary conditions absorb the energy of the wave approaching these limits 

which allows avoiding the reflection of these waves. In this thesis, the boundary conditions 

applied to the lateral vertical boundaries are of type "free field". This type of boundary conditions 

is suitable for vertical surfaces while the boundary conditions of type "quiet Boundaries" are 

generally convenient in the case of horizontal surfaces. 
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V.2.1.4 Definition of the mechanical damping 

In the natural dynamic systems, the internal friction may lead to partial dissipation of the energy 

of vibration. The software FLAC3D provides a damping of type "Rayleigh damping" (among 

other types of damping) which is based on two parameters: (i) the natural frequency of the system 

and (ii) the damping ratio (defined as a percentage of the critical damping). This type of damping 

is used in this chapter. The damping ratio used in the dynamic models presented in this work is 

equal to 5% of the critical damping [Bourdeau (2005)]. Notice that in most geological materials, 

the natural damping ratio is in the range of 2 to 5% of the critical damping. 

V.2.1.5 Input seismic signal  

The input seismic signal used in this work is the synthetic signal of Nice for which the 

corresponding accelerogram is presented in Figure  V.2(a). This signal is used because it is 

representative of the French design spectrum [Grange (2008)]. It has a maximum acceleration 

equal to 0.33g. Its corresponding Fourier amplitude spectrum is shown in Figure  V.2(b). It should 

be mentioned here that the use of a different seismic signal may lead to different results. 
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(b) 

Figure  V.2. (a) Accelerogram of the synthetic signal of Nice and (b) the corresponding Fourier amplitude 
spectrum 

V.2.2 Deterministic results 

V.2.2.1 Validation of the 'column' model 

The aim of this section is to check the validity of the 'column' model for its use in the 

probabilistic analyses. The main reason for which it is desirable to use the 'column' model instead 

of a two-dimensional (2D) soil domain is its reasonable computation time (40 min per 
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simulation). This computation time enormously increases when a 2D model is used (24 hours per 

simulation). Remember that the 2D model involves a two-dimensional soil mass (see Figure 

 V.1(a)) and the 'column' model involves a one-dimensional soil column (see Figure  V.1(b)). For 

both models, the considered dynamic response was the distribution of the maximum acceleration 

along a vertical cross-section.  

For the dynamic analyses, an elastic constitutive model was used to describe the soil behavior. 

The values of the shear modulus, bulk modulus and density of the soil were as follows: 

G=100MPa, K=250MPa, and ρ=1800 kg/m3.  

In order to avoid the numerical distortion that may occur during the propagation of the seismic 

waves in the model, the element size ∆l must satisfy the condition given by Equation ( V.1). 

Using Equation ( V.2) which provides the value of the shear wave velocity as a function of the 

values of G and ρ, the shear wave velocity was found to be equal to 235.7m/s. From Figure 

 V.2(b), one can see that the maximal frequency fmax is equal to 40Hz. Thus, the maximum 

element size must be less than or equal to 0.59m. In the studied model, the selected element size 

∆l was taken equal to 0.5m (see Figure  V.1). 

Concerning the boundary conditions, the lower horizontal boundary (along X) was subjected to 

the seismic load (i.e. the synthetic accelerogram of Nice). Boundary conditions of type "free 

field" were applied along the lateral vertical boundaries of the model [Bourdeau (2005)].  

As for the mechanical damping, Rayleigh damping was used with a central frequency (natural 

frequency) fc=2.5Hz and a damping ratio equal to 5% of the critical damping. Notice that the 

approximate formula of the natural frequency of a soil column given by Widmer (2003) (i.e. 

fo=Vs/4H where Vs is the shear wave velocity calculated using Equation ( V.2) and H is the height 

of the soil column) was used to calculate the value of the central frequency fc=2.5Hz. As for the 

damping ratio, the value of 5% used by Bourdeau (2005) was adopted in this thesis.  

Figure  V.3 shows the distribution of the maximum acceleration as a function of depth for the 

three cross-sections of the 2D soil mass and for the 1D soil column. This figure shows that the 

four distributions are superimposed, which makes valid the hypothesis of using a soil column 

instead of a 2D soil mass when performing the probabilistic analysis. 
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Figure  V.3. Distribution of the maximum acceleration as a function of depth for the three cross-sections of the 
2D model and for the 1D soil column 

V.2.2.2 Distribution of the maximum acceleration for different values of the shear modulus G 

The aim of this section is to study the effect of the variation of the shear modulus G on the 

dynamic response (distribution of the maximum acceleration Amax) using the 'column' model. For 

this purpose, a wide range of values of G was considered. The illustrative value of the bulk 

modulus K was taken equal to 250MPa. In most soils, the shear wave velocity Vs varies between 

200m/s and 900m/s [Nour et al. (2003)]. In this thesis, this range of values was considered with a 

step of 50m/s. The corresponding values of the shear modulus G were calculated using Equation 

( V.2).  

Figure  V.4 shows the distribution of Amax for five values of the shear modulus G. This figure 

shows that for very low values of G, and very large values of G, the amplification (i.e. the ratio 

between the value of the maximum acceleration of the signal at a given depth and its maximum 

value at the base of the soil mass) is relatively small. For intermediate values of G, this 

amplification is more significant. For illustration, Figure  V.5 shows the values of the maximum 

acceleration at the top of the soil column as a function of the values of the shear modulus G. 

From this figure, one can notice that large amplifications were obtained for the values of G 

between 162MPa and 1012.5MPa. This amplification decreases outside this range of values.  

In order to explain the significant values of the amplifications, one should refer to the Fourier 

amplitude spectrum of the input seismic signal shown in Figure  V.2(b). From this figure, one can 

see that the predominant frequency band is between 3Hz and 9Hz. By using the approximate 

formula of the natural frequency of a soil column given by Widmer (2003) (fo=Vs/4H where Vs is 

the shear wave velocity and H is the height of the soil column), one may show that for the values 
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of G comprised between 162MPa and 1012.5MPa, the band of predominant frequencies of the 

soil column coincides with the predominant frequency band of the input seismic signal. This 

coincidence leads to the so-called 'phenomenon of resonance' which induces the significant 

amplification. 

Finally, the influence of the bulk modulus K on the maximum acceleration is presented in Figure 

 V.6 by considering three values of K (100MPa, 250MPa and 600MPa). This figure presents the 

values of the maximum acceleration on the top of the soil column as a function of the shear 

modulus values G for the three values of the bulk modulus K. It clearly shows that the bulk 

modulus K has no influence on the maximum acceleration at the top of the soil column. This 

indicates that for a seismic loading, the soil does not exhibit volumetric strains. This is perfectly 

acceptable since the seismic signal is composed of compressional P waves (which dominate the 

first short period of the seismic signal) followed by shear S waves that dominate the strong 

shaking phase, which make them more influent in the seismic signal. 
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Figure  V.4. Distribution of the maximum acceleration 
for different values of the shear modulus G 
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Figure  V.5. Variation of the maximum acceleration at the 
top of the column as a function of the shear modulus G 
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Figure  V.6. Variation of the maximum acceleration at the top of the column as a function of the shear 
modulus G for three values of K 
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V.2.3 Probabilistic dynamic analysis 

The aim of this section is to present the probabilistic dynamic analysis. It should be remembered 

here that the dynamic system response involves the maximum acceleration (Amax) at the top of the 

soil column. In this study, the effect of both the soil spatial variability and the time variability of 

the earthquake GM on the dynamic response were considered.  

The soil shear modulus G was considered as a one-dimensional (1D) non-Gaussian random field 

varying in the vertical direction. It was described by a square exponential autocorrelation function 

and was assumed to be log-normally distributed. Two reference mean values of the shear 

modulus were considered. The first one is 
1

72G MPaµ =  corresponding to a non resonant value 

(i.e. this value is located on the left hand part of the curve in Figure  V.5) and the second one is 

2
288G MPaµ =  corresponding to a resonant value. For both mean values (

1
72G MPaµ =  and 

2
288G MPaµ = ), a coefficient of variation equal to 30% was considered as the reference value. 

As for the vertical autocorrelation distance ay, the adopted reference value was equal to 2m while 

the range of 0.5m-20m was considered when performing the parametric study. The computation 

time that was necessary for the generation of the random field increases when the autocorrelation 

distance decreases. Notice however that this time was relatively small in the case of the 1D 

random field for the range of autocorrelation distances considered in the analysis. 

In order to simulate the stochastic synthetic earthquake GMs using the method given by Rezaeian 

and Der Kiureghian (2010), the synthetic signal of Nice (for which the corresponding 

accelerogram is presented in Figure  V.2(a)) was used as a target accelerogram.  

The deterministic model was based on numerical simulations using the dynamic option of the 

finite difference code FLAC3D. It was presented and detailed in the previous section. It should be 

noted here that in dynamic analysis, the size of a given element in the mesh depends on both the 

autocorrelation distances of the soil properties and the wavelength λ associated with the highest 

frequency component fmax of the input seismic signal.  

For the autocorrelation distances of the soil properties, Der Kiureghian and Ke (1988) have 

suggested that the length of the largest element in a given direction (horizontal or vertical) should 

not exceed 0.5 times the autocorrelation distance in that direction. As for the wavelength λ 

associated with the highest frequency component fmax of the input signal, Itasca (2000) has 

suggested that the element size should not exceed 1/10 to 1/8 this wavelength λ in order to avoid 

numerical distortion of the propagating waves (see Equation ( V.1)). Figure  V.2(b) shows that the 
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value of the maximum frequency is fmax=40Hz. In order to respect the two mentioned criterions, 

two different deterministic meshes were considered in FLAC3D. The first one was devoted to the 

case of moderate to great values of ay and Vs where an element size of 0.5m was chosen to 

perform the dynamic analysis (i.e. when 200 /sV m s≥  and 1ya m≥ ), and the second one for 

small values of ay or Vs where the element size was adjusted in order to respect the previous two 

conditions.  

The following subsections are organized as follows: First, a brief description of a step-by-step 

procedure used to generate the stochastic earthquake GM is presented. It is followed by a 

presentation of some realizations of this stochastic earthquake GM. Finally, one examines the 

effect of (i) the soil spatial variability considered alone with a deterministic earthquake GM, (ii) 

the time variability of the earthquake GM considered alone with a homogenous soil mass and (iii) 

both the soil spatial variability combined with the time variability of the earthquake GM. 

V.2.3.1 Step-by-step procedure used to generate the stochastic earthquake GM  

The different steps used to generate the stochastic earthquake GMs are summarized as follows: 

(a) Introduce the target input seismic signal and the corresponding time step ∆t and total duration 

T. In this work, the target input seismic signal is the synthetic Nice accelerogram presented in 

Figure  V.2 which has a time step ∆t=0.01s and a total duration T=20s.  

(b) Determine the parameters 1 2 3( , , )α α α α=  of the time modulation function as follows: 

First, calculate the three physically-based parameters 5 95( , , )a midI D t−  which describe the real 

recorded GM in the time domain. The first variable, aI  is calculated using Equation (C.1). The 

second variable D5−95 is the time interval between the instants at which 5% and 95% of aI  are 

reached respectively (cf. Figure C.1). Finally, the third variable tmid is the time at which 45% of 

aI  is reached (cf. Figure C.1). Then, use these three physical parameters to deduce the values of 

the parameters 1 2 3( , , )α α α α=  of the time modulation function using Equations (C.2), (C.3) and 

(C.4). The values of the three physical parameters 5 95( , , )a midI D t−  and the corresponding values 

of the time modulation function parameters 1 2 3( , , )α α α α=  for the synthetic Nice accelerogram 

used in this thesis are presented in Table  V.1.  
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The three physical parameters aI =8.5s.g D5-95=6.78s tmid=4.728s 

The time modulation function parameters 1α =0.385 2α =3.537 3α =0.576 

Table  V.1. Values of the three physical parameters and the corresponding values of the time modulation 
function parameters for the synthetic Nice accelerogram 

(c) Determine the filter IRF parameters ( ) ( ( ), ( ))f fλ τ ω τ ζ τ=  (with '( ) ( )f mid midtω τ ω ω τ= + −  

denoting the natural frequency and ( )f fζ τ ζ= denoting the damping ratio) as follows: 

First, optimize the frequency parameters midω  and 'ω  as follows: 

• Plot the cumulative count of zero-level up-crossings of the target earthquake GM (cf. 

Figure  V.7(a)). The zero-level up-crossings are the number of times per unit time that the 

process crosses the level zero from below. 

• Fit the obtained cumulative count of zero-level up-crossings by a second degree 

polynomial ( 2
1 2 3p p x p x p= + + ) (cf. Figure  V.7(a)).  

• Use the obtained second degree polynomial to deduce the frequency parameters midω  and 

'ω  using Equation (C.7). 

The fitted second order polynomial for the synthetic Nice accelerogram is presented in Figure 

 V.7(a) and it is given by: 20.05 8.11 36.96p x x= − + + . The corresponding frequency parameters 

are midω =7.63Hz and 'ω =-0.1.  

Second, optimize the damping ratio fζ  as follows: 

• Plot the cumulative count of negative maxima (peaks) and positive minima (valleys) (cf. 

Figure  V.7(b)) for the target earthquake GM. 

• Generate filtered processes (Equation ( I.25)) using the frequency parameters midω  and 'ω  

(which were optimized at the previous step) with a series of constant damping ratio (i.e. 

0.1, 0.2, ..., 0.9fζ = ) and see for which value of the damping ratio the cumulative count 

of positive minima and negative maxima of the simulated and target motions fit the most.  
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• Compute the optimal value of the damping ratio fζ  as follows: 
( )
( )

p n

f p p

p n

e
e e

ζ ζ
ζ ζ

 −
 = −

−  

 

where pζ  and nζ  are the damping ratios that correspond to the smallest positive and 

negative errors respectively and pe  and ne  are the smallest positive and negative errors 

respectively. For the synthetic Nice accelerogram, Figure  V.7(b) presents the target 

cumulative count of positive minima and negative maxima and the nine simulated filtered 

processes using the optimized values of frequency parameters midω  and 'ω . The 

corresponding optimal value of the damping ratio is fζ =0.56. 
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Figure  V.7. Identification of filter parameters for the synthetic Nice accelerogram, (a) matching the 
cumulative number of zero level up-crossings (b) matching the cumulative count of negative maxima and 

positive minima  

(d) Use Equation ( I.25) to simulate a stochastic synthetic earthquake GM. A realization of the 

stochastic synthetic acceleration time history is obtained by simulating the vector of standard 

normal random variables ui (i=1, …, 1
T

N
t

= +
∆

=2001). 

V.2.3.2 Realizations of the stochastic earthquake GM 

The target acceleration time history used to generate stochastic earthquake GM is the Nice 

synthetic accelerogram shown in Figure  V.2(a). This target acceleration time history was used to 

identify the parameters of the stochastic model given in Equation ( I.25). These parameters were 

calculated in the previous section. Thus, realizations of the stochastic synthetic acceleration time 

histories can be performed by generating for each realisation a vector ui (i= 1, …, N) of standard 
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normal random variables where 1
T

N
t

= +
∆

=2001 and by applying Equation ( I.25). Notice that 

the computation time that was necessary for the identification of the stochastic model parameters 

was negligible (about 2min). Also, the time that was needed to generate a realization of the 

stochastic synthetic acceleration time history was quasi-negligible (i.e. smaller than 1min for each 

realization). 

Figure  V.8 presents five realizations of the stochastic earthquake GM. This figure shows that the 

different simulated acceleration time histories have different maximum accelerations which will 

induce different dynamic system responses.  
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Figure  V.8. (a) Target and five simulated acceleration time-histories, and (b) their corresponding Fourier 
amplitude spectrum 

V.2.4 Probabilistic results 

The aim of this section is to study the effect of the soil spatial variability and/or the time 

variability of the earthquake GM on the statistical moments of Amax at the top of the soil column 

using both the MCS and the SPCE methodologies. 

V.2.4.1 Monte-Carlo simulation results 

In this section, the results obtained based on the Monte-Carlo simulation (MCS) methodology are 

presented and discussed. It should be mentioned here that the number of simulations K to be used 

should be sufficient to accurately calculate the first two statistical moments. This number should 

insure the convergence of the mean estimator of Amax at the top of the soil column and its 

corresponding coefficient of variation as a function of the number of simulations.  
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Figure  V.9 presents the estimators of the mean and coefficient of variation of Amax at the top of 

the soil column as a function of the number of simulations. This figure shows that the 

convergence is reached for a number of simulations larger than 300. A number of simulation 

K=500 was used hereafter to perform the probabilistic analysis using the MCS method. 

0 100 200 300 400 500
6

6.05

6.1

6.15

6.2

6.25

6.3

6.35

Number of simulations

M
ea

n 
of

 th
e 

am
pl

ifi
ca

tio
n

 

 
Monte-Carlo simulations

 
(a) 

0 100 200 300 400 500
0

0.01

0.02

0.03

0.04

0.05

0.06

Number of simulations

C
O

V
 o

f 
th

e 
am

pl
ifi

ca
tio

n
 

 
Monte-Carlo simulations

(b) 

Figure  V.9. (a) Mean and (b) coefficient of variation of Amax at the top of the soil column as a function of the 
number of simulations when ay=0.5m 

Effect of the mean value and the autocorrelation distance  

The effect of the soil spatial variability and/or the time variability of the earthquake GM on Amax 

at the top of the soil column is studied and presented in Table  V.2 for the two mean values of the 

shear modulus (
1

72G MPaµ =  and 
2

288G MPaµ = ) when COVG=30%. Different values of the 

vertical autocorrelation distance (ay=0.5, 2, 5, 10 and 20m) were considered in the analyses.  

In the case where only the soil spatial variability was considered, Table  V.2 shows (as in the 

deterministic analysis) that smaller mean values of Amax at the top of the soil column were 

obtained when a non resonant mean value of the shear modulus G was used (i.e. 
1

72G MPaµ = ) 

as compared to those obtained when a resonant mean value of the shear modulus G was utilized 

(i.e. 
2

288G MPaµ = ). Notice also that for the weak soil configuration (i.e. when 
1

72G MPaµ = ), 

the mean value of Amax decreases when the vertical autocorrelation distance ay decreases. This is 

because the soil heterogeneity will introduce some strong zones which will limit the amplification 

of the acceleration at the top of the soil column. On the contrary, for the strong soil configuration 

(i.e. 
2

288G MPaµ = ), the mean value of Amax increases when the vertical autocorrelation distance 
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ay decreases. This is because the soil heterogeneity will introduce some weakness zones which 

will increase the amplification of the acceleration at the top of the soil column. 

On the other hand, Table  V.2 shows that the variability of Amax is maximal for the very large 

values of the autocorrelation distance (ay=20m). This variability decreases when the vertical 

autocorrelation distance ay decreases. The same trend was obtained in the three previous chapters 

where static loading cases were considered. In these cases, the small values of the autocorrelation 

distances produce the so-called 'averaging phenomenon' for which the rapid change in the values 

of a soil property from element to another neighboring one leads to quasi-similar behavior for all 

the realizations. In the dynamic loading cases, this 'averaging phenomenon' is also produced but 

along the wave’s path. Thus, the rapid change in the values of the shear modulus along the wave 

path leads to quasi-similar behavior for all the realizations. This leads to close values of Amax at 

the top of the soil column and thus to a smaller variability in this response. Notice that similar 

results were obtained by Al-Bittar et al. (2012a) when the dynamic behavior of a spatially varying 

slope subjected to stochastic GM was investigated (cf. Appendix F). From Table  V.2, one can 

also observe that the variability of Amax is larger for the case of the weak soil corresponding to a 

small mean value of the shear modulus G (i.e. 
1

72G MPaµ = ).  

The maximum variability obtained when only the soil spatial variability was considered is largely 

smaller than the one obtained when only the time variability of the earthquake GM was 

considered as may be seen from Table  V.2. The values of the variability of Amax obtained when 

only the time variability of the earthquake GM was considered (i.e. 20.64% for 
1

72G MPaµ =  

and 18.70% for 
2

288G MPaµ = ) are about two times larger than those obtained when only the 

soil spatial variability was taken into account. Notice however that the obtained results may 

change in the case where a different seismic loading was considered. 

Finally, when both the soil spatial variability and the time variability of the GM have been 

considered in the analysis, one obtains a variability of Amax which is far below the one obtained 

by superposition of the variabilities of Amax as obtained from the soil spatial variability and the 

time variability of the earthquake GM considered separately. Thus, if one applies the 

superposition method to obtain the variability of the dynamic responses, the obtained variability 

may be largely overestimated. 
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Case where only the spatial variability of the shear modulus was considered 

 
1

72G MPaµ =  
2

288G MPaµ =  

ay(m) 
maxAµ (m/s2) 

maxAσ (m/s2) 
max

 ACOV (%) 
maxAµ (m/s2) 

maxAσ (m/s2) 
max

 ACOV (%) 

0.5 6.08 0.31 5.12 9.82 0.19 1.92 

2 6.19 0.43 6.96 9.76 0.30 3.95 

5 6.29 0.54 8.52 9.65 0.49 5.03 

10 6.35 0.66 10.34 9.60 0.55 5.75 

20 6.38 0.66 10.34 9.53 0.55 5.80 

Case where only the time variability of the earthquake GM was considered 

 
1

72G MPaµ =  
2

288G MPaµ =  

 7.01 1.45 20.64 8.75 1.63 18.70 

Case where both the spatial variability of the shear modulus and time variability of the 
earthquake GM were considered 

 
1

72G MPaµ =  
2

288G MPaµ =  

ay(m) 
maxAµ (m/s2) 

maxAσ (m/s2) 
max

 ACOV (%) 
maxAµ (m/s2) 

maxAσ (m/s2) 
max

 ACOV (%) 

0.5 6.85 1.44 20.99 8.66 1.63 18.82 

2 6.88 1.45 21.14 8.69 1.64 18.92 

5 6.89 1.47 21.26 8.67 1.69 19.52 

10 6.98 1.51 21.69 8.73 1.72 19.69 

20 6.99 1.51 21.69 8.73 1.72 19.69 

Table  V.2. Effect of the soil spatial variability and/or the time variability of the earthquake GM on the 
maximum acceleration at the top of the soil column 

Effect of the coefficient of variation 

The aim of this section is to study the effect of the coefficient of variation of G on the statistical 

moments of Amax at the top of the soil column considering two cases of deterministic and 

stochastic earthquake GMs for the two mean values of G (
1

72G MPaµ =  and 
2

288G MPaµ = ). 

Three different values of the coefficient of variation (COVG=15%, 30% and 45%) were 

considered in the analyses.  

Table  V.3 shows that the increase in the coefficient of variation of G has practically no influence 

on the mean value of Amax. On the other hand, the variability of Amax at the top of the column 

increases (as expected) when the coefficient of variation of G increases; this increase is more 

significant in the case of the stronger soil and when only the soil spatial variability is considered 

in the analysis. Finally, notice that the variability of Amax at the top of the column reaches the 
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most significant values in the case of a weak soil (
1

72G MPaµ = ) and when both the soil spatial 

variability and the time variability of the earthquake GM were considered. 

Case where only the spatial variability of the shear modulus was considered 

 
1

72G MPaµ =  
2

288G MPaµ =  

COVG (%) 
maxAµ (m/s2) 

maxAσ (m/s2) 
max

 ACOV (%) 
maxAµ (m/s2) 

maxAσ (m/s2) 
max

 ACOV (%) 

15 6.13 0.41 6.61 9.74 0.17 1.78 

30 6.19 0.43 6.96 9.65 0.49 5.03 

45 6.16 0.52 8.42 9.60 0.64 6.70 

Case where both the spatial variability of the shear modulus and time variability of the earthquake 
GM were considered 

 
1

72G MPaµ =  
2

288G MPaµ =  

COVG (%) 
maxAµ (m/s2) 

maxAσ (m/s2) 
max

 ACOV (%) 
maxAµ (m/s2) 

maxAσ (m/s2) 
max

 ACOV (%) 

15 6.95 1.45 20.87 8.67 1.61 18.59 

30 6.88 1.45 21.14 8.70 1.65 18.92 

45 6.65 1.50 22.47 8.72 1.70 19.50 

Table  V.3. Effect of the coefficient of variation of G on Amax at the top of the soil column considering 
deterministic and stochastic earthquake GM 

V.2.4.2 Sparse polynomial chaos expansion results 

In this section, the results obtained based on the Sparse Plynomial Chaos Expansion (SPCE) 

methodology are presented. It should be mentioned here that the 500 simulations which were 

used in the previous section to perform the analyses by the MCS methodology were employed 

herein in order to construct the SPCE. Additional simulations were performed for the cases where 

the regression problem was ill-posed. However, the number of simulations was not increased 

until reaching the target coefficient of determiniation 2
TARGETQ  of 0.999. This is because of the 

high computational cost of each dynamic analysis. In this study, only the case of spatially varying 

soil column was considered. This is because introducing the time variability of the earthquake 

GM will add 2001 random variables to the problem. This very large number of random variables 

makes the SPCE methodology not feasible.  

Table  V.4 presents the total number N of random variables (or eigenmodes) that should be used 

to discretize the random field of G (within the prescribed value of 10% for the variance of the 

error) for the different values of the vertical autocorrelation distance ay. 
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Vertical 
autocorrelation 
distance ay(m) 

Number of random 
variables 

0.5 35 

2 10 

5 5 

10 5 

20 5 

Table  V.4. Number of random variables needed to discretize the random field G 

Effect of the mean value and the autocorrelation distance  

The effect of the soil spatial variability on the PDF of Amax at the top of the soil column for the 

two mean values of the shear modulus (
1

72G MPaµ =  and 
2

288G MPaµ = ) is studied and 

presented in Figure  V.10. Different values of the vertical autocorrelation distance (ay=0.5, 2, 5, 

10 and 20m) were considered in the analyses.  

Figure  V.10 shows that the variability of Amax at the top of the soil column decreases when the 

vertical autocorrelation distance ay decreases. Similar observation was provided in the previous 

section where MCS was employed. Even though these PDFs present logical trends (similar to 

what was obtained in the previous chapters where a static loading was studied), they can not be 

considered as rigorous. This is because relatively small values of the coefficient of determination 

Q2 were obtained in this case where a seismic loading was considered.  
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Figure  V.10. Influence of the vertical autocorrelation distance ay on the PDF of Amax at the top of the soil 
column when (a) 

1
72G MPaµ =  and (b) 

2
288G MPaµ =  
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Table  V.5 presents a comparison between the statistical moments of Amax at the top of the soil 

column as obtained using both the MCS and the SPCE methodologies. This table also provides 

the values of Q2 obtained when the SPCE methodology was used.  

From Table  V.5, one can observe a small difference between the two first statistical moments as 

given by both the MCS and the SPCE methodologies even though relatively small values of Q2 

were obtained with the use of the SPCE methodology. Thus, the relatively small values of Q2 

may not have a major influence on the two first statistical moments, but they certainly affect the 

third and fourth statistcal moments. This makes the obtained PDFs invalid at the distribution tails.  

In fact, there are two possible reasons for which relatively small values of Q2 may occur. The first 

one is the chosen system response Amax which may be obtained at different time steps from 

simulation to another one. As for the second reason, it may be the number of simulations which 

needs to be increased. In order to detect the main reason for which the relatively small values of 

Q2 were obtained, a test on only the chosen system response Amax was performed. This test was 

not presented in this chapter but was provided in Appendix G. As for the number of simulations, 

the test was not performed because of the significant computation time of the dynamic 

deterministic model (40 min per simulation). 

 
1

72G MPaµ =  

 Monte-Carlo simulations Sparse Polynomial Chaos Expansion 

ay(m) 
maxAµ (m/s2) 

maxAσ (m/s2) 
max

(%)ACOV  
maxAµ (m/s2) 

maxAσ (m/s2) 
max

(%)ACOV  Q2 

0.5 6.08 0.31 5.12 6.07 0.23 3.97 0.535 

2 6.19 0.43 6.96 6.18 0.37 6.00 0.587 

5 6.29 0.53 8.52 6.29 0.42 6.68 0.686 

10 6.35 0.65 10.34 6.33 0.54 8.53 0.788 

20 6.38 0.66 10.34 6.37 0.56 8.80 0.790 

 
2

288G MPaµ =  

 Monte-Carlo simulations Sparse Polynomial Chaos Expansion 

ay(m) 
maxAµ (m/s2) 

maxAσ (m/s2) 
max

(%)ACOV  
maxAµ (m/s2) 

maxAσ (m/s2) 
max

(%)ACOV  Q2 

0.5 9.82 0.19 1.92 9.81 0.14 1.43 0.555 

2 9.76 0.30 3.95 9.76 0.27 2.77 0.665 

5 9.65 0.49 5.03 9.65 0.46 4.77 0.810 

10 9.60 0.55 5.75 9.60 0.50 5.21 0.800 

20 9.53 0.55 5.80 9.53 0.50 5.25 0.750 

Table  V.5. Comparison between the statistical moments (µ, σ) of Amax at the top of the soil column as obtained 
using both the MCS and the SPCE methodologies 
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V.3 CASE OF A SOIL-STRUCTURE INTERACTION (SSI) PROB LEM 

In this section, the SSI problem was investigated through the analysis of a five storey building 

[Al-Bittar et al. (2012b)]. In order to study a SSI problem, three methods can be found in 

literature [Pecker (1984)]:  

(i) The superposition method which subdivides the complex SSI problem into simpler 

problems (kinematics interaction and inertial interaction [Kausel et al. (1978)]), this 

method being valid only for linear problems.  

(ii)  The direct methods that use a classical finite element/finite difference approaches 

[Prevost (1999)], but these methods require good knowledge of the constitutive laws 

and are very computationally-expensive. 

(iii)  The hybrid methods that are a combination of the two previous methods and therefore 

they are more attractive because of their computational cost.  

The macro-element approach belongs to the last category and it is used to model the present SSI 

problem. The macro-element concept developed by Nova and Montrasio (1991) consists in 

condensing the soil (material) and interface (geometric) nonlinearities into a representative point 

(the centre of the foundation) and it works with generalized variables (forces and displacements). 

It thus allows the simulation of the behaviour of shallow foundations in a simplified way.  

The main reason for which the macro-element concept is chosen to perform the probabilistic 

analysis is that the time cost for a single deterministic calculation is relatively small (five minutes 

per simulation). Thus, this model is suitable for the probabilistic analysis which requires a great 

number of calls of the deterministic model. In this thesis, only the time variability of the seismic 

loading was considered in the analysis.  

Finally, notice that the dynamic system responses retained for the probabilistic analysis are:  

(i) The maximum horizontal displacement at the top of the building.  

(ii)  The three maximum displacements of the footing centre. 

(iii)  The three maximum reaction forces at the contact of the soil and the footing. 

The probabilistic results are presented in the form of statistical moments and in the form of 

probability of exceeding of predefined thresholds.  
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The following subsections are organised as follows: one first presents the numerical modeling of 

the dynamic problem. Then, the obtained probabilistic numerical results are presented and 

discussed. 

V.3.1 Numerical modeling 

The SSI problem involves a five-storey building. The CAMUS IV structure [CAMUS (1997)] is 

the one chosen in this study. This structure is a 1/3 scaled mock-up. It is composed of (i) two 

parallel reinforced concrete walls without opening and (ii) six square floors that link these walls 

(Figure  V.11(a)). The entire structure rests on two rectangular footings of 0.8mx2.1m (Figure 

 V.11(a)). The total height of the model is 5.1m and the total mass is estimated to be equal to 36 

tons. The wall of a given floor is 4m long, 1.70m high and 6cm thick [CAMUS (1997)]. The 

building and the footings rest on a high density sand. The container which contains the sand has a 

horizontal cross-section of 4.6mx4.6m and a depth of 4m.  

 
(a) (b) 

Figure  V.11. The five-storey building: (a) The CAMUS IV real model, and (b) the simplified numerical 
lumped mass system 

For the numerical calculations, the CAMUS IV five-storey building was modelled using a simple 

lumped mass system (Figure  V.11(b)). In this system, the building was simulated using beam 

elements and concentrated masses. Thus, each storey i was reduced to a single mass Mi that has 

an inertia equal to Ji. The values of the masses and the corresponding inertias for the different 

stories are given in Table  V.6. The material behaviour of the beams was considered linear elastic. 

The soil-foundation system was modelled using the macro-element concept.  

Several 2D macroelements exist in literature [Nova and Montrasio (1999), Cassidy et al. (2002) 

and Crémer et al. (2001)]. The 2D macro-element developed in Crémer et al. (2002) is adequate 

for static, cyclic and dynamic loadings (e.g. earthquake) and it considers both the plasticity of the 



 

153 

soil and the uplift of the foundation. Grange et al. (2009a) have extended the macro-element of 

Crémer et al. (2002). Their macro-element can simulate the 3D behaviour of foundations having 

different shapes (circular, rectangular and strip). This recent version of the macro-element was 

adopted in this thesis to perform the probabilistic dynamic analysis. It should be mentioned here 

that the mathematical description of the macro-element is summarized in Appendix H. More 

details are given in Crémer et al. (2001), Crémer et al. (2002), Grange (2008), Grange et al. 

(2009a) and Grange et al. (2009b).  

Height hi (m) (see 
Figure 1) 

Mass (Kg) 
Inertia 
(Kg.m2) 

h1=0.1 M1=4786 J1=1600 

h2=1.4 M2=6825 J2=3202 

h3=2.3 M3=6825 J3=3202 

h4=3.2 M4=6825 J4=3202 

h5=4.1 M5=6825 J5=3202 

h6=5 M6=6388 J6=3124 

Table  V.6. Parameters used to model the five-
storey building 

Elastic parameters 
elKθθ =52MNm/rad  

el
hhK =105MN/m  

el
zzK =120MN/m  

Plastic parameters 

qult=0.58MPa κ=1 

a=0.93 ξ=1 

b=0.8 a1=1 

c=1 a2=1 

d=1 a3=1 

e=1 a4=1 

f=1 a5=1 

Table  V.7. Parameters used to model the soil-
foundation (macro-element) 

 The macro-element considered in this study has two superposed nodes. The first node is 

considered fixed and the second node is connected to the structure. The dynamic loading is 

applied to the first node. For the used high density sand, Grange et al. (2009b) have identified the 

different parameters of the macro-element by fitting the model to the experimental results given 

by Grange (2008). These parameters are presented in Table  V.7 where qult is the ultimate bearing 

capacity of the rectangular footing; a, b, c, d, e and f are the coefficients that appear in Equation 

(H.1); κ and ξ are the parameters of the flow rule; and finally a1, a2, a3, a4 and a5 are the 

parameters used to calculate the variable γ as may be seen in Grange (2008). In the following 

sections, the obtained probabilistic results are presented and discussed.  

V.3.2 Probabilistic numerical results 

The aim of this section is to present the probabilistic numerical results. It should be remembered 

here that the dynamic responses considered in the analysis of the behavior of the five storey 
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building involve (i) the maximum horizontal displacement at the top of the building, (ii) the three 

maximum displacements of the footing centre, and finally (iii) the three maximum reaction forces 

at the contact of the soil and the footing.  

In this study, only the effect of the time variability of the earthquake GM on the dynamic 

responses was considered. This is because the macro-element concept consists in condensing the 

soil (material) and interface (geometric) nonlinearities into a representative point (the centre of 

the foundation), which make it impossible to model the soil spatial variability of the soil 

properties.  

The aim of the next two subsections is to present respectively (i) the statistical moments of the 

dynamic responses and (ii) the fragility curves corresponding to three different damage levels. A 

number of 100,000 stochastic synthetic acceleration time histories was used in the analysis. This 

large number of samples is necessary to obtain accurate values of the failure probability. 

V.3.2.1 Statistical moments of the dynamic responses 

Table  V.8 presents the two first statistical moments (i.e. the probabilistic mean and the standard 

deviation) together with the deterministic mean values for the following dynamic responses: (i) 

the maximum horizontal displacement at the top of the building, (ii) the three maximum 

displacements of the footing centre, and finally (iii) the force resultants (Vmax, Nmax, Mmax) at the 

contact of the soil and the footing.  

Table  V.8 shows that the probabilistic mean value of the maximum horizontal displacement at the 

top of the building is almost 10 times larger that the one obtained at the footing centre. On the 

other hand, large values of the coefficient of variation COV are obtained for the different output 

parameters (19.75<COV<41.5). From a probabilistic point of view, large values of the coefficient 

of variation indicate that the responses are spread out over a large range of values. This is critical 

since in this case the mean values of these responses are not representative and can not be 

considered as reliable data for design procedure. For some output parameters (such as the 

maximum displacement at the top of the building and the maximum moment at the bottom), this 

phenomenon is amplified by the fact that the probabilistic mean value is significantly larger than 

the deterministic one. 
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Stochastic dynamic response 
Deterministic 

mean 
Probabilistic 
mean µx10-3 

Standard 
deviation 
σx10-3 

Coefficient 
of variation 
COV (%) 

The maximum horizontal displacement 
at the top of the building (m) 

22.7 31.5 9.7 30.80 

The maximum horizontal displacement 
of the footing centre (m) 

2.4 2.8 0.6 21.43 

The maximum vertical displacement of 
the footing centre (m) 

4.2 5.3 2.2 41.50 

The maximum rotation of the footing 
centre (rad) 

4.1 5.8 1.9 32.76 

The maximum normal force at the 
contact of the soil and the footing (MN) 

3.8 5.6 2.3 41.07 

The maximum shear force at the contact 
of the soil and the footing (MN) 

27.9 31.4 6.2 19.75 

The maximum moment at the contact of 
the soil and the footing (MN) 

34.3 37.3 7.7 20.64 

Table  V.8. Effect of stochastic Ground-Motion on the statistical moments (µ, σ) of the seven dynamic 
responses 

Figure  V.12 presents the PDFs of the maximum horizontal displacement at the footing centre and 

at the top of the building. This figure shows that the PDF of the maximum horizontal 

displacement at the top of the building is more spread out and thus more critical.  
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Figure  V.12. PDF of the maximum horizontal displacement (a) at the centre of the footing, and (b) at the top 
of the building 
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V.3.2.2 Fragility curves 

The probability that a certain level of damage (tolerable maximum horizontal displacement) will 

be exceeded at a specified peak ground acceleration PGA can be expressed in the form of fragility 

curves.  

The fragility curves can be performed since the stochastic ground motions create variability in the 

PGA (0.2g<PGA<0.7g). In this section, fragility curves for the maximum horizontal displacement 

at the top of the building and for the maximum moment at the contact of the soil and the footing 

are computed.  

Figure  V.13(a) presents three fragility curves corresponding to the maximum horizontal 

displacement at the top of the building for three levels of damage [(i) minor damage for which 

umax=0.01m, (ii) medium damage for which umax=0.04m and (iii) major damage for which 

umax=0.06m]. On the other hand, Figure  V.13(b) presents three fragility curves corresponding the 

maximum moment at the contact of the soil and the footing for three levels of damage [(i) minor 

damage for which Mmax=0.01MNm, (ii) medium damage for which Mmax=0.04MNm and (iii) 

major damage for which Mmax=0.06MNm]. These figures allow one to determine the probability 

of exceeding a tolerable value of the dynamic response corresponding to a given value of the 

peak ground acceleration (PGA).  
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Figure  V.13. Fragility curves for different levels of damage (a) maximum horizontal displacement at the top of 
the building, and (b) maximum moment at the contact of the soil and the footing  
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V.4 CONCLUSIONS 

In this chapter, the dynamic responses induced by an earthquake Ground-Motion (GM) taking 

into account the soil spatial variability and/or the time variability of the seismic loading were 

investigated. It should be mentioned here that when dealing with seismic loads, an aleatory 

uncertainty which is the time variability of the earthquake GM appears in addition to the soil 

spatial variability and the variability of the superstructure. Given the scarcity of studies involving 

the probabilistic seismic responses, a free field soil medium subjected to a seismic loading was 

firstly considered. The aim is to investigate the effect of the soil spatial variability and/or the time 

variability of the earthquake GM using a simple model. Then, a SSI problem was investigated in 

the second part of this chapter.  

In the case where a free field medium was considered, the effect of the soil spatial variability 

and/or the time variability of the earthquake GM was investigated through the study of an elastic 

free field soil mass. The soil shear modulus G was modeled as a non-Gaussian random field and 

the earthquake GM was modeled as a random process. The EOLE methodology was used to 

discretize the shear modulus random field. As for the earthquake GM, the method proposed by 

Rezaeian and Der Kiureghian (2010) which consists in fitting a parameterized stochastic model to 

the real recorded earthquake GM was utilized. The dynamic response considered in the analysis 

was the amplification of the maximum acceleration at the soil surface. The deterministic dynamic 

numerical model was based on numerical simulations using the finite difference software 

FLAC3D. Two types of modeling were considered in this chapter. The first one considers a two-

dimensional soil mass and the second model considers a soil column. The objective of these two 

types of modeling was to verify the validity of the 'column' model in simulating the propagation 

of the seismic waves in the soil mass. This permits to replace the 2D computationally-expensive 

model with the relatively non-expensive 'column' model which may significantly reduce the 

probabilistic computational time. As for the probabilistic methods used in this chapter, two 

methods were used. The first one is the classical Monte Carlo Simulation (MCS) methodology 

and the second one is the Sparse Polynomial Chaos Expansion (SPCE) methodology which 

consists in substituting the original deterministic model by a meta-model.  

The deterministic numerical results of the free field case have shown that the 'column' model is 

sufficient to study the evolution of the maximum acceleration in the soil mass. This result is of 

particular interest for the probabilistic analyses which require a large number of calls to the 

deterministic model. On the other hand, the evolution of the maximum acceleration as a function 
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of the shear modulus have shown that for a given range of the shear modulus values, an important 

increase in the maximum acceleration was obtained. For this range of values of G, the 

predominant frequency band of the soil 'column' corresponds to the predominant frequency band 

of the seismic loading, which leads to resonance phenomenon.  

As for the probabilistic results of the free field case, the MCS methodology has shown that for the 

Nice accelerogram used in this thesis, the variability obtained when only the soil spatial 

variability was considered is largely smaller than the one obtained when only the time variability 

of the earthquake GM was considered. This result may change in the case where a different 

seismic signal is used. Considering both the soil spatial variability and the time variability of the 

GM has led to a variability of Amax which is far below from that obtained by superposition of the 

variabilities of Amax as obtained from the soil spatial variability and the time variability of the 

earthquake GM considered separately. As for the SPCE methodology results, the obtained 

statistical moments of Amax at the top of the soil column are close to those resulting from the MCS 

methodology, but the obtained PDFs can not be considered as rigorous because relatively small 

values of Q2 were obtained in this case.  

In the case where the SSI problem was considered, a probabilistic dynamic analysis of a five-

storey building founded on two rigid rectangular footings was presented. The entire soil-structure 

system was considered in the analysis in which the soil and soil-footing interface were modelled 

by a macro-element. The main reason for which the macro-element concept was chosen to 

perform the probabilistic analysis is that the time cost for a single deterministic calculation is 

relatively small (five minutes per simulation). Only the time variability of the seismic loading 

was introduced in the computations; the soil spatial variability was not considered in the analysis. 

The probabilistic dynamic analyses were performed using the classical Monte Carlo Simulation 

(MCS) methodology. 

The dynamic system responses retained for the probabilistic analysis of the SSI problem were (i) 

the maximum horizontal displacement at the top of the building, (ii) the three maximum 

displacements of the footing centre, and finally (iii) the three maximum reaction forces at the 

contact of the soil and the footing.  

The probabilistic numerical results of the SSI problem have shown that (i) the probabilistic mean 

value of the maximum horizontal displacement at the top of the building was almost 10 times 

larger that the one obtained at the footing centre; (ii) large values of the coefficient of variation 

were obtained for the different output parameters; and finally (iii) stochastic ground motion time 
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histories create variability in the PGA which allows one to perform fragility curves for the 

different dynamic responses. 
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GENERAL CONCLUSIONS 

This study focuses on the probabilistic analysis of shallow foundations resting on spatially 

varying soils or rocks and subjected to either a static or a dynamic (seismic) loading. Two 

aleatory sources of uncertainty were considered. The first one is the soil (or rock) spatial 

variability which was modeled by random fields. The second one is the time variability of the 

earthquake GM (when seismic loads were considered) which was modeled by a random process. 

Both types of variabilities lead to high dimensional stochastic problems. 

In this thesis, a literature review on the soil and the earthquake GM variabilities and the meta-

modeling techniques was first presented. It was followed by two main parts. 

The first part (which is composed of chapters II, III and IV) presents a probabilistic analysis of 

shallow foundations resting on spatially varying soils or rocks and subjected to a static loading. 

Both cases of strip and square footings were studied. Also, 2D and 3D random fields were 

considered in the analysis. In this part, the probabilistic method used to calculate the different 

probabilistic outputs was the Sparse Polynomial Chaos Expansion (SPCE) methodology and its 

extension the SPCE/GSA procedure. 

In chapter II, a probabilistic analysis of shallow strip foundations resting on spatially varying 

soils or rocks was presented. Relatively non-expensive deterministic models were used in this 

chapter since the ULS analysis was performed in the case of a weightless material. The resulting 

ultimate bearing capacity is the one related to the Nc coefficient in the bearing capacity equation. 

In the case of spatially varying soil mass, a probabilistic analysis at both ULS and SLS of 

vertically loaded strip footings was performed. The soil shear strength parameters (c and φ) were 

considered as anisotropic cross-correlated non-Gaussian random fields at ULS and the soil elastic 

parameters (E and υ) were considered as anisotropic uncorrelated non-Gaussian random fields at 

SLS. Notice that the system response used at ULS was the ultimate bearing capacity; however, 

the footing vertical displacement was considered as the system response at SLS. Concerning the 

case of the spatially varying rock mass obeying the Hoek-Brown failure criterion, only the ULS 

case of vertically loaded footings was considered. The uniaxial compressive strength of the intact 

rock (σc) was considered as a non-Gaussian random field and the Geological Strength Index 

(GSI) was considered as a random variable. Notice that the system response considered was the 

ultimate bearing capacity of the footing in the case of a weightless rock mass. The methodology 

proposed by Vořechovsky (2008) was used to generate the random fields. The Sparse Polynomial 

Chaos Expansion (SPCE) methodology was used to perform the probabilistic analysis.  
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In chapter III, the effect of the spatial variability in three dimensions (3D) was investigated 

through the study of the ultimate bearing capacity of strip and square foundations resting on a 

purely cohesive soil with a spatially varying cohesion in the three dimensions. This case involves 

relatively non-expensive deterministic models although a 3D mechanical model (with a greater 

computation time with respect to the models of chapter II) was used. This is because of the use of 

a purely cohesive soil. 

In chapter IV, an efficient combined use of the SPCE methodology and the Global Sensitivity 

Analysis (GSA) was proposed. The aim is to reduce the probabilistic computation time for high-

dimensional stochastic problems involving expensive deterministic models. This procedure was 

illustrated through the probabilistic analysis at ULS of a strip footing resting on a ponderable soil 

with 2D and 3D random fields and subjected to a central vertical load.  

The main findings of the first part can be summarized as follows: 

• Chapters II and III have shown the superiority of the SPCE with respect to the classical 

MCS commonly used in geotechnical engineering problems involving spatially varying 

soils. The superiority comes from the small number of calls of the deterministic model. In 

addition to the determination of the PDF of the system response, the SPCE allows one to 

easily perform a global sensitivity analysis based on Sobol indices using the SPCE 

coefficients. These indices give the contribution of each random field in the variability of 

the system response.  

• The classical SPCE methodology was found to be efficient when relatively non-expensive 

deterministic models are involved in the analysis (e.g. the ULS analysis of strip footings 

on a weightless material or the ULS analysis of 3D footings on a purely cohesive soil).  

• The efficient combined use of the SPCE methodology and the Global Sensitivity Analysis 

(GSA) is needed when expensive deterministic models (e.g. strip, rectangular or circular 

footings resting on a ponderable soil with 2D/3D random fields) are involved in the 

analysis.  

• The variability of the system responses (i.e. the ultimate bearing capacity in the ULS 

analysis and the vertical displacement of the footing in the SLS analysis) increases (as 

expected) with the increase in the coefficients of variation of the random fields. It was 

also shown that an increase in the coefficient of variation of a random field increases its 
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Sobol index and thus its weight in the variability of the system response and decreases the 

weight of the other random field.  

• The negative correlation between the random fields decreases the response variability. 

• The decrease in the autocorrelation distances (ax or ay or ax=ay), lead to a less spread out 

PDF of the system response 

• The probabilistic mean value of the ultimate bearing capacity of strip footings (in both 

cases of soil and rock masses) presents a minimum. This minimum was obtained in the 

isotropic case when the autocorrelation distance is nearly equal to the footing breadth B; 

while for the anisotropic case (presented only when a soil mass is considered), this 

minimum was obtained (for prescribed footing and soil characteristics) at a given value of 

the ratio between the horizontal and the vertical autocorrelation distances.  

• The small values of the autocorrelation distances lead to small values of the skewness and 

kurtosis of the system responses. Thus, a PDF of the system response that is not far from a 

Gaussian one is obtained in these cases.  

• For small values of the autocorrelation distances, the variability of the ultimate bearing 

capacity computed by considering a 3D random field is smaller than the one obtained with 

the 2D random field for both cases of square and strip footings. Thus, the third dimension 

is important to be considered only when small autocorrelation distances are encountered. 

• Some observed phenomena which can not be seen when homogenous soils are considered 

(such as the non-symmetrical soil failure and the variation in Sobol indices with the 

autocorrelation distance) are obtained when considering the spatial variability of the 

soil/rock properties in the probabilistic analysis. 

The second part (which is composed of chapter V) presents a probabilistic analysis of the 

dynamic responses induced by a specific earthquake Ground-Motion (GM) (which is the Nice 

synthetic accelerogram), taking into account the soil spatial variability and/or the time variability 

of the seismic loading. Two cases involving (i) a free field and (ii) a SSI problem were 

considered in the analysis. In this part, the probabilistic methods used to calculate the 

probabilistic outputs were the classical Monte-Carlo simulation (MCS) method and the Sparse 

Polynomial Chaos Expansion (SPCE) methodology. 
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In the case where a free field medium was considered, the effect of the soil spatial variability 

and/or the time variability of the earthquake GM was investigated. The soil shear modulus G was 

modeled as a non-Gaussian random field and the earthquake GM was modeled as a random 

process. The dynamic response considered in the analysis was the amplification of the maximum 

acceleration at the soil surface. Two types of modeling were considered herein. The first one 

considers a two-dimensional soil mass and the second model considers a soil column. The 

objective of these two types of modeling was to verify the validity of the 'column' model in 

simulating the propagation of the seismic waves in the soil mass. As for the case where a SSI 

problem was considered, a probabilistic dynamic analysis of a five-storey building founded on 

two rigid rectangular footings was presented. The soil and soil-footing interface were modelled 

by a macro-element. The main reason for which the macro-element concept was used is the 

relatively small computation cost of the deterministic model. Only the time variability of the 

seismic loading was introduced in the computations; the soil spatial variability was not 

considered in the analysis. The dynamic system responses retained for the probabilistic analysis 

were: (i) the maximum horizontal displacement at the top of the building, (ii) the three maximum 

displacements of the footing centre, and finally (iii) the three maximum reaction forces at the 

contact of the soil and the footing. In this part, the main findings can be summarized as follows: 

• The 'column' model was found sufficient to study the distribution of the maximum 

acceleration in the soil mass. This result is of particular interest for the probabilistic 

analyses which require a large number of calls to the deterministic model.  

• The evolution of the maximum acceleration as a function of the shear modulus have 

shown that for a given range of the shear modulus values, an important increase in the 

maximum acceleration was obtained. For this range of values of G, the predominant 

frequency band of the soil 'column' corresponds to the predominant frequency band of the 

seismic loading, which leads to the resonance phenomenon.  

• When using the Nice accelerogram, the variability obtained when only the soil spatial 

variability was considered was found largely smaller than the one obtained when only the 

time variability of the earthquake GM was considered.  

• Considering both the soil spatial variability and the time variability of the earthquake GM 

has led to a variability of Amax which is far below from that obtained by superposition of 

the variabilities of Amax as obtained from the soil spatial variability and the time variability 

of the earthquake GM considered separately.  
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• The PDFs of Amax at the top of the soil column obtained using the SPCE methodology 

show similar trends as those obtained when static loading cases were considered, but these 

PDFs can not be considered as rigorous because relatively small values of Q2 were 

obtained in this case.  

• When considering the SSI problem involving the study of a five-storey building, large 

values of the coefficients of variation were obtained for the different system responses. 

• The stochastic ground motion time histories create variability in the PGA which allows 

one to perform fragility curves for the different dynamic responses 

Ongoing research topics may involve the following items: 

For the static loading case: 

• Consider the case of a rectangular or a circular footing resting on a ponderable soil with 

3D spatially varying shear strength parameters using the SPCE/GSA procedure. 

• Validate of the SPCE methodology for the computation of the failure probability. 

• Use of a rigorous approach for the computation of Sobol indices in the case of correlated 

random variables.  

For the seismic loading case: 

• Investigate the effect of 2D random fields (instead of the 1D random fields) on the 

dynamic response in the case of the free field soil medium. 

• Investigate the effect of changing the input seismic signal on the obtained probabilistic 

results. 

• In the SSI problem, introduce the soil spatial variability in the macro-element. This can be 

done by first computing the PDF of the ultimate bearing capacity. Then, one may use the 

obtained PDF (instead of the deterministic value of qult) in the macro-element 

formulation.  

• Explore new methodologies which may improve the meta-model in the case of highly 

nonlinear models. 
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Appendix A.   

Weight functions and deterministic basis of the MP, SF, SA and OLE methods 

Method Weight function ω(X) Deterministic basis φj(X) 

MP ( )cX Xδ −  ( )1
e

XΩ  

SF ( )jX Xδ −  ( )1
e

XΩ  

SA 
( )1

e

e

XΩ

Ω
 Polynomial shape function 

Nj(X) 

OLE ( )jX Xδ −  ( )( )1
; ;. Z X

j
χ χ χ
−Σ Σ  

Table A.1. Weight functions and deterministic basis of the MP, SF, SA and OLE methods 

In Table A.1, X is the vector of the coordinates of an arbitrary point, Xc is the vector of the 

coordinates at the centroid element of the finite element/finite difference mesh, Xj is the vector of 

the coordinates at a node j in the SF method and at a the sample point j in the OLE method, ( ).δ  

denotes the Dirac function, 
1

1
0e

eX

otherwiseΩ

∈Ω
= 


 and eΩ  is the mesh element. 
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Appendix B.   

Generation of cross-correlated non-Gaussian random fields: The illustrative Example 

 In this illustrative example, one considers a soil for which the shear strength parameters (i.e. the 

cohesion c and the internal friction angle φ) are modeled as two anisotropic cross-correlated non-

Gaussian random fields. These two random fields have the same square exponential  

autocorrelation function ρNG (c.f. Equation ( I.8) with n=2) and a non-Gaussian cross-correlation 

matrix CNG given as follows: 
1 0.5

0.5 1
NGC

− 
=  − 

. 

The soil cohesion c was assumed to be lognormally distributed. Its mean and coefficient of 

variation values were taken as follows: 20 , 25%c ckPa Covµ = = . On the other hand, the friction 

angle φ was assumed to have a Beta distribution with a mean value and a coefficient of variation 

given as follows: 30 , 10%o Covϕ ϕµ = = . In this illustrative example, the soil domain was chosen 

to be small in order to handle small size matrices. For this purpose, the adopted soil domain 

considered in the analysis is 4m wide by 5m deep (i.e. xmin=0m, xmax=4m and ymin=0m, ymax=5m). 

As for the autocorrelation distances ax and ay, the horizontal autocorrelation distance ax was 

chosen to be equal to 5m and the vertical autocorrelation distance ay was fixed to 4m. A 

stochastic mesh composed of 3 points in both the horizontal and the vertical directions is chosen 

in this example (cf. Figure B.1).  
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Figure B.1. The stochastic mesh used in the analysis 

In order to discretize the two random fields of c and φ, one needs to perform the different steps 

described in section  I.3.4.1 as follows: 

a) Evaluate the common non-Gaussian autocorrelation matrix NG

χχ
Σ  for which each row gives the 

correlation between a given gridpoint of the stochastic mesh with all the others gridpoints of this 
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mesh using Equation ( I.9). Table B.1 presents the common non-Gaussian autocorrelation matrix 

NG

χχ
Σ  for the stochastic mesh presented in Figure B.1.  

  (0,0) (2.5,0) (5,0) (0,2) (2.5,2) (5,2) (0,4) (2.5,4) (5,4) 

(0,0) 1 0.779 0.368 0.779 0.606 0.286 0.368 0.286 0.135 

(2.5,0) 0.779 1 0.779 0.606 0.779 0.606 0.286 0.368 0.286 

(5,0) 0.368 0.779 1 0.286 0.606 0.779 0.135 0.286 0.368 

(0,2) 0.779 0.606 0.286 1 0.779 0.368 0.779 0.606 0.286 

(2.5,5) 0.606 0.779 0.606 0.779 1 0.779 0.606 0.779 0.606 

(5,2) 0.286 0.606 0.779 0.368 0.779 1 0.286 0.606 0.779 

(0,4) 0.368 0.286 0.135 0.779 0.606 0.286 1 0.779 0.368 

(2.5,4) 0.286 0.368 0.286 0.606 0.779 0.606 0.779 1 0.779 

(5,4) 0.135 0.286 0.368 0.286 0.606 0.779 0.368 0.779 1 

Table B.1. The non-Gaussian autocorrelation matrix 
;

NG

χ χ
Σ  

b) Transform the common non-Gaussian autocorrelation matrix NG

χχ
Σ  into the Gaussian space 

using Nataf correction functions (cf. Equation ( I.19)). The obtained Gaussian autocorrelation 

matrices are respectively ;
c
χ χΣ  and ;

ϕ
χ χΣ . It should be mentioned here that both matrices ;

c
χ χΣ  and 

;
ϕ
χ χΣ  were quasi-similar to 

;

NG

χ χ
Σ and thus the number of eigenmodes (number of random variables) 

which is necessary to discretize each one of the two random fields was similar. Tables B.2 and 

B.3 present respectively the matrices ;
c
χ χΣ  and ;

ϕ
χ χΣ  obtained after transforming the common non-

Gaussian autocorrelation matrix into the Gaussian space.  

  (0,0) (2.5,0) (5,0) (0,2) (2.5,2) (5,2) (0,4) (2.5,4) (5,4) 

(0,0) 1 0.782 0.372 0.782 0.611 0.290 0.372 0.290 0.137 

(2.5,0) 0.782 1 0.782 0.611 0.782 0.611 0.290 0.372 0.290 

(5,0) 0.372 0.782 1 0.290 0.611 0.782 0.137 0.290 0.372 

(0,2) 0.782 0.611 0.290 1 0.782 0.372 0.782 0.611 0.290 

(2.5,5) 0.611 0.782 0.611 0.782 1 0.782 0.611 0.782 0.611 

(5,2) 0.290 0.611 0.782 0.372 0.782 1 0.290 0.611 0.782 

(0,4) 0.372 0.290 0.137 0.782 0.611 0.290 1 0.782 0.372 

(2.5,4) 0.290 0.372 0.290 0.611 0.782 0.611 0.782 1 0.782 

(5,4) 0.137 0.290 0.372 0.290 0.611 0.782 0.372 0.782 1 

Table B.2. The Gaussian autocorrelation matrix 
;

c

χ χ
Σ of the cohesion random field obtained using the Nataf 

transformation 
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  (0,0) (2.5,0) (5,0) (0,2) (2.5,2) (5,2) (0,4) (2.5,4) (5,4) 

(0,0) 1 0.779 0.368 0.779 0.607 0.287 0.368 0.287 0.135 

(2.5,0) 0.779 1 0.779 0.607 0.779 0.607 0.287 0.368 0.287 

(5,0) 0.368 0.779 1 0.287 0.607 0.779 0.135 0.287 0.368 

(0,2) 0.779 0.607 0.287 1 0.779 0.368 0.779 0.607 0.287 

(2.5,5) 0.607 0.779 0.607 0.779 1 0.779 0.607 0.779 0.607 

(5,2) 0.287 0.607 0.779 0.368 0.779 1 0.287 0.607 0.779 

(0,4) 0.368 0.287 0.135 0.779 0.607 0.287 1 0.779 0.368 

(2.5,4) 0.287 0.368 0.287 0.607 0.779 0.607 0.779 1 0.779 

(5,4) 0.135 0.287 0.368 0.287 0.607 0.779 0.368 0.779 1 

Table B.3. The Gaussian autocorrelation matrix 
;χ χ

ϕΣ of the friction angle random field obtained using the 

Nataf transformation 

Then, for these two Gaussian autocorrelation matrices ;
c
χ χΣ  and ;

ϕ
χ χΣ  one needs to compute N 

largest eigenmodes ,c c
j jλ φ and ,j j

ϕ ϕλ φ (where j=1,…, N) for which the variance of the error is 

smaller than a prescribed threshold (say 10%ε ≈ ). In this illustrative example, N was found 

equal to 4 and thus only 4 eigenmodes were considered to be the most influent and their values 

are presented in Table B.4. 

1
cλ  2

cλ  3
cλ  4

cλ  1
ϕλ  2

ϕλ  3
ϕλ  4

ϕλ  

5.323 1.450 1.450 0.393 5.296 1.453 1.453 0.399 

1
cϕ  2

cϕ  3
cϕ  4

cϕ  1
ϕϕ  2

ϕϕ  3
ϕϕ  4

ϕϕ  

-0.291 0.459 -0.284 0.500 0.291 0.440 -0.312 0.500 

-0.348 0.444 0.104 -1.3x10-17 0.348 0.450 0.076 7.7x10-17 

-0.291 0.284 0.459 -0.500 0.291 0.312 0.440 -0.500 

-0.348 0.104 -0.444 4.4x10-17 0.348 0.076 -0.450 -1.8x10-16 

-0.417 1.3x10-17 3.8x10-17 3.0x10-16 0.417 -3.6x10-17 6.5x10-18 2.8x10-17 

-0.348 -0.104 0.444 3.9x10-17 0.348 -0.076 0.450 -2.9x10-16 

-0.291 -0.284 -0.459 -0.500 0.291 -0.312 -0.440 -0.500 

-0.348 -0.444 -0.104 -2.3x10-16 0.348 -0.450 -0.076 2.2x10-16 

-0.291 -0.459 0.284 0.500 

 

0.291 -0.440 0.312 0.500 

Table B.4. The eigenvalues and eigenvectors ,c c
j jλ φ and ,j j

ϕ ϕλ φ of the matrices ;
c
χ χΣ  and ;

ϕ
χ χΣ  for an 

expansion order N=4 

c) Transform the non-Gaussian cross-correlation matrix 
1 0.5

0.5 1
NGC

− 
=  − 

 into the Gaussian 

space using the Nataf correction functions (cf. Equation ( I.20)). The obtained Gaussian cross-
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correlation matrix is given as follows: 
1 0.504

0.504 1
C

− 
=  − 

. Its corresponding eigenvalues vector 

and eigenvectors matrix are given as follows: 
1.504 0

0 0.496
C  

Λ =  
 

 and 
0.7071 0.7071

0.7071 0.7071
C − − 

Φ =  − 
, 

where the eigenvalues correspond the diagonal values of the matrix ΛC and the eigenvectors 

correspond to the columns of the matrix Φ
C. 

d) Simulate the vector κD composed of two cross-correlated blocks given by Equation ( I.22) as 

follows: ( ) 1
2( )

TD D D Tκ ξ= Φ Λ where ΛD and ΦD are the matrices obtained by multiplying each 

element of the matrices ΛC and ΦC by a unit matrix of dimension N=4, and ξ is a two-block vector 

of N=4 standard normal random variables ( ) ( ){ }1 2 3 4 1 2 3 4, , , , , , ,c c c c c ϕ ϕ ϕ ϕ ϕξ ξ ξ ξ ξ ξ ξ ξ ξ ξ ξ= = = . This 

simulation of standard normal random variables is performed using the (randn) command in 

MATLAB 7.0. A single simulation of this vector and its corresponding vector κD are presented in 

Table B.5 and evaluated as follows:  

( )

1 0 0 0 1 0 0 0 1 0 0 0

0 1 0 0 0 1 0 0 0 1 0 0
0.7071 0.7071 1.504

0 0 1 0 0 0 1 0 0 0 1 0

0 0 0 1 0 0 0 1 0 0 0 1

1 0 0 0 1 0 0 0

0 1 0 0 0 1 0 0
0.7071 0.7071

0 0 1 0 0 0 1 0

0 0 0 1 0 0 0 1

TDκ

     
     
     − × − × ×
    
    

     = ×            × − ×             

1

2

3

4

1

2

3

4

1 0 0 0

0 1 0 0
0

0 0 1 0

0 0 0 1

1 0 0 0 1 0 0 0

0 1 0 0 0 1 0 0
0 0.496

0 0 1 0 0 0 1 0

0 0 0 1 0 0 0 1

c

c

c

c

ϕ

ϕ

ϕ

ϕ

ξ
ξ
ξ
ξ
ξ
ξ
ξ
ξ

     
     
     ×
      
      

     ×                  × ×                    

 

ξ 1
cξ = 0.03 2

cξ = 0.55 3
cξ = 1.10 4

cξ = 1.54 1
ϕξ = -1.49 2

ϕξ = -0.74 3
ϕξ = -1.06 4

ϕξ = 2.35 

κ
D ,1

D
cκ = 0.72 ,2

D
cκ = -0.11 ,3

D
cκ = -0.43 ,4

D
cκ = -2.51 ,1

D
ϕκ = 0.77 ,2

D
ϕκ = 0.85 ,3

D
ϕκ = 1.48 ,4

D
ϕκ = 0.16 

Table B.5. Values of the vector of standard normal random variables ξ and the corresponding cross-
correlated vector κD 

d) Evaluate the values of the two Gaussian cross-correlated random fields c and φ at any arbitrary 

point (say x=1m, y=1m) which does not belong to the stochastic mesh by applying the formula 

given by Equation ( I.21) as follows: 

( )
( );

4
,

1

( 1, 1) . .
Z X

j

D
Tc j c c

jc
j

c x y
χ

κ
φ

λ=

= = = Σ∑  and ( )
( );

4
,

1

( 1, 1) . .
Z X

j

D
Tj

j
j

x y
χ

ϕ ϕ ϕ
ϕ

κ
ϕ φ

λ=

= = = Σ∑  
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where 
( );Z X

c

χ
Σ  and 

( );Z X χ

ϕΣ  are the two correlation vectors between the arbitrary points (x=1m, 

y=1m) and all the other points of the stochastic mesh. Their values are the same in this illustrative 

example because the same arbitrary point (x=1m, y=1m) is used for the two random fields c and φ 

and they are presented in Table B.6. 

  (0,0) (2.5,0) (5,0) (0,2) (2.5,2) (5,2) (0,4) (2.5,4) (5,4) 

(1,1) 0.9026 0.8586 0.4953 0.9026 0.8586 0.4953 0.5474 0.5207 0.3004 

Table B.6. Values of the correlation vectors 
( );Z X

c

χ
Σ  and 

( );Z X χ

ϕΣ between the arbitrary point (x=1m, y=1m) 

and all the points of the stochastic mesh 

Finally the transformation to the non-Gaussian space is performed using the non-Gaussian 

distribution function of each random field (cf. Equation ( I.23)). 
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Appendix C.   

Determination of the stochastic model parameters  

The used stochastic model is a parameterized modulated, filtered white-noise process for which 

the parameters are calculated by fitting this model to the real recorded target acceleration time 

history a(t).  

The time modulation function ( ),q tα  and its parameters 1 2 3( , , )α α α α=  

The time modulation function given by Equation ( I.26) is completely defined by three parameters 

1 2 3( , , )α α α α= which are related to three physically-based parameters 5 95( , , )a midI D t− . The 

three physical parameters 5 95( , , )a midI D t−  are calculated from the real target acceleration time-

historey a(t) as follows: 

[ ]2

0

( )
2

T

aI a t dt
g

π= ∫  (C.1) 

where g is the acceleration due to gravity and T is the duration of the ground-motion. On the 

other hand, tmid is the time at the middle of the strong shaking; it corresponds to the time for 

which 45% of the total Ia is reached. Finally, D5-95 is the effective duration of the target GM; it 

corresponds to the duration that ranges between 5% and 95% of Ia. Figure C.1 presents the 

identification of these physical parameters for the target acceleration time history.  

For the selected modulation function given by Equation ( I.26), Rezaeien and Der Kiureghian 

(2010) stated that the square value of this function (i.e. ( )2 ,q tα ) is proportional to a gamma 

probability density function (PDF) having parameter values 22 1α −  and 32α . Let tp represent the 

p-percentile variate of the gamma cumulative distribution function. Then, tp is given in terms of 

the inverse of the gamma cumulative distribution function at probability value p%. It follows that 

tp is uniquely given in terms of the parameters 2α  and 3α and probability p%. Consequently, one 

can write: 

5 95 95 5D t t− = − =Gaminv(0.95, 22 1α − , 
3

1

2α
) – Gaminv(0.05, 22 1α − , 

3

1

2α
) (C.2) 

45midt t= =Gaminv(0.45, 22 1α − , 
3

1

2α
) (C.3) 
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For given values of D5−95 and tmid computed from the target acceleration time-history, parameters 

2α  and 3α  can be computed by solving the above two equations. Furthermore, one can easily 

show that 1α is directly related to the expected Arias intensity as follows [Rezaeian and Der 

Kiureghian (2010)]: 

( )
( )

22 1

3
1

2

2

2 1
aI

αα
α

α

−

=
Γ −

 (C.4) 

where ( ).Γ  is the gamma function. 

 

Figure C.1. Modulation function physical parameters identified from the target acceleration time-history a(t) 

The Linear filter [ ], ( ), ( )i f i f ih t t t tω ζ−  and its parameters ( ), ( )f i f it tω ζ  

The linear filter function given by Equation ( I.27) is completely defined by two parameters 

( )fω τ  and ( )fζ τ  with ( )fω τ  denoting the natural frequency and ( )fζ τ denoting the damping 

ratio, both dependent on the time of application of the pulse. Based on the analysis of a large 

number of accelerograms, a linear form is adopted for the filter frequency and a constant value is 

considered for the filter damping ratio as follows: 

'( ) ( )f mid midtω τ ω ω τ= + −  (C.5) 

( )f i ftζ ζ=  (C.6) 

where midω is the frequency at the middle of the strong shaking, 'ω  is the rate of change of the 

frequency over time (i.e. the slope) and tmid is the time at the middle of the strong shaking. 



 

188 

The parameters midω , 'ω  and fζ  have interacting influences. Thus, they cannot be identified 

independently for a target (real) accelerogram a(t). Therefore, we follow a procedure that first 

optimizes the frequency parameters midω  and 'ω  by matching the cumulative count of zero-level 

up-crossings of the simulated and target motions (notice that the zero-level up-crossings are 

number of times per unit time that the process crosses the level zero from below [see Figure 

C.2]). Then use these optimum frequency parameters midω  and 'ω  with a series of constant 

damping ratio (i.e. 0.1, 0.2, ..., 0.9fζ = ) and select the optimum damping ratio for which the 

cumulative count of positive minima and negative maxima of the simulated and target motions fit 

the most.  

For a target acceleration time-history a(t), the cumulative count of zero-level up-crossings is 

fitted by a second degree polynomial ( 2
1 2 3p p x p x p= + + ) as shown in Figure C.3(a). The 

frequency parameters midω  and 'ω  are deduced from the fitted polynomial as follows: 

1 22 ( )mid midp t pω = +  and '
12pω =  (C.7) 

After determining the frequency parameters midω  and 'ω , we generate filtered processes using 

the frequency parameters midω  and 'ω  with a series of constant damping ratio (i.e. 

0.1, 0.2, ..., 0.9fζ = ) and see for which value of the damping ratio the cumulative count of 

positive minima and negative maxima of the simulated and target motions fit the most [see Figure 

C.3(b)]. One can see from Figure C.3(b) that the target cumulative count of positive minima and 

negative maxima fits the simulated one for 0.4fζ = . 

 

Figure C.2. Sample stochastic process, showing zero-level up-crossings, positive minima, and negative 
maxima. 
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(a) (b) 

Figure C.3. Identification of filter parameters, (a) matching the cumulative number of zero level up-crossings 
(b) matching the cumulative count of negative maxima and positive minima 
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Appendix D.   

Pseudo-acceleration response of a single degree of freedom linear oscillator subjected to an 

impulsive solicitation  

A single degree of freedom (SDOF) system is a spring-mass-damper system in which the spring 

has no damping or mass, the mass has no stiffness or damping, and the damper has no stiffness or 

mass. Furthermore, the mass is allowed to move in only one direction (cf. Figure D.1). The 

SDOF system may be subjected or not to an external time-varying force f(t).  

 

Figure D.1. Single degree of freedom linear oscillator 

The general form of the differential equation describing a SDOF oscillator which results from 

balancing the forces on the mass is given by: 

2

2
( )

d u du
M c ku f t

dt dt
+ + =  (D.1) 

where u is the displacement of the system, M is the mass of the system, c is the linear viscous 

damping coefficient, k is the linear elastic stiffness coefficient and f(t) is a time-varying external 

force. By dividing all the terms of Equation (D.1) by M, one obtains the reduced form of this 

equation as follows: 
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2
2

2

( )
2

d u du f t
u

dt dt M
ξω ω+ + =  (D.2) 

where k Mω =  is the natural frequency of the oscillator, 2c kMξ =  is the critical damping 

of the oscillator and 2c kMξ =  is its damping ratio. 

If the SDOF oscillator is subjected to an impulsive (a single pulse suddenly applied at an instant 

t τ= ) external force ( ) ( )f t tδ τ= − , the response of the SDOF oscillator ( ) ( )u t h t τ= −  may be 

obtained by solving Equation (D.2) (cf. Figure D.2).  

 

Figure D.2. Impulsive external force and SDOF oscillator response 

The solution of Equation (D.2) in the case of an impulsive external force is given as follows: 

For t τ<  u=0 

For t τ≥  ( ) 2

2

1
( ) ( ) sin( 1 ( ))

1

tu t h t e t
m

ξω ττ ω ξ τ
ω ξ

− −= − = − −
−

 (D.3) 

The pseudo-acceleration response A(t) of the SDOF linear oscillator subjected to an impulsive 

external force is simply the response u(t) multiplied by the squared natural frequency as follows: 

2
2 ( ) 2

2
( ) ( ) sin( 1 ( ))

1

tA t u t e t
m

ξω τωω ω ξ τ
ω ξ

− −= = − −
−

 (D.4) 
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Appendix E.   

One-dimensional Hermite polynomials 

The one-dimensional Hermite polynomials are given by: 

 

( ) ( ) ( )

0

1

2
2

3
3

4 2
4

5 3
5

6 4 2
6

'
2 1

( ) 1

( )

( ) 1

( ) 3

( ) 6 3

( ) 10 15

( ) 14 45 15

.

.

.

n n n

H

H

H

H

H

H

H

H H H

ξ
ξ ξ
ξ ξ
ξ ξ ξ
ξ ξ ξ
ξ ξ ξ ξ
ξ ξ ξ ξ

ξ ξ ξ ξ− −

=
=

= −

= −

= − +

= − +

= − + −

= −

 

Illustrative Example 

In order to illustrate the PCE theory in a simple manner, a PCE of order p=3 using only M=2 

random variables (ξ1 and ξ2) will be considered in this illustrative example. As may be easily seen 

from Table E.1, the PCE basis contains P=10 terms whose expressions ( )0,...,9β βΨ =  are 

computed using Equation ( I.38).  

β Order of the term Ψβ  
1

( )
=

Ψ = ∏ i

M

i
i

Hβ α ξ
 

( )2

1

!
M

i
i

E β α
=

Ψ = ∏
 

0 p=0 Ψ0 =H0(ξ1)xH0(ξ2)=1 α1! x α2!= 0!x0!=1 

1 Ψ1 =H1(ξ1)xH0(ξ2)=ξ1 α1! x α2!= 1!x0!=1 

2 
p=1 

Ψ2 =H0(ξ1) xH1(ξ2)= ξ2 α1! x α2!= 0!x1!=1 

3 Ψ3 =H1(ξ1) xH1(ξ2)= ξ1 ξ2 α1! x α2!= 1!x1!=1 

4 Ψ4 =H2(ξ1) xH0(ξ2)=  2
1 1ξ −  α1! x α2!= 2!x0!=2 

5 

p=2 

Ψ5 =H0(ξ1) xH2(ξ2)=  2
2 1ξ −  α1! x α2!= 0!x2!=2 

6 Ψ6 =H2(ξ1) xH1(ξ2)=  ( )2
1 21ξ ξ−  α1! x α2!= 2!x1!=2 

7 Ψ7 =H1(ξ1) xH2(ξ2)=  ( )2
1 2 1ξ ξ −  α1! x α2!= 1!x2!=2 

8 Ψ8 =H3(ξ1) xH0(ξ2)=  3
1 13ξ ξ−  α1! x α2!= 3!x0!=6 

9 

p=3 

Ψ9 =H0(ξ1) xH3(ξ2)=  3
2 23ξ ξ−  α1! x α2!= 0!x3!=6 

Table E.1. Basis Ψβ (β=0, …, 9) of the PCE and values of ( )2E βΨ  for a PCE with M=2 and p=3 
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By using Table E.1, one can write the PCE as function of the input random variables (ξ1 and ξ2) 

as follows: 

( ) ( )
0 0 1 1 9 9

2 2 2 2 3 3
0 1 1 2 2 3 1 2 4 1 5 2 6 1 2 7 1 2 8 1 1 9 2 2

( ) ...

+a ( 1) ( 1) 1 1 ( 3 ) ( 3 )

PCE a a a

a a a a a a a a a

ξ

ξ ξ ξξ ξ ξ ξ ξ ξ ξ ξ ξ ξ ξ

Γ = Ψ + Ψ + + Ψ =

+ + + − + − + − + − + − + −
 (E.1) 

where the unknown coefficients can be computed using Equation ( I.41). Once the PCE 

coefficients are computed, the first order Sobol indices for the two random variables (ξ1 and ξ2) 

can be easily obtained using Equation ( I.47). The only additional step is to compute ( )2E βΨ  

corresponding to these two random variables. Table E.1 provides the values of ( )2E βΨ  computed 

using Equation ( I.49) for the different βΨ  terms. The expressions of the first order Sobol indices 

of the two random variables ξ1 and ξ2 can thus be written as follows: 

2 2 2
1 4 8

1 2 2 2 2 2 2 2 2 2
1 2 3 4 5 6 7 8 9

2 6
( )

2 2 2 2 6 6

a a a
S

a a a a a a a a a
ξ + +=

+ + + + + + + +
 

2 2 2
2 5 9

2 2 2 2 2 2 2 2 2 2
1 2 3 4 5 6 7 8 9

2 6
( )

2 2 2 2 6 6

a a a
S

a a a a a a a a a
ξ + +=

+ + + + + + + +
 

(E.2) 

where ( )1 1,4,8I =  and ( )2 2,5,9I = . 



 

194 

Appendix F.   

Introduction 

The seismic stability of slopes is widely investigated in literature using deterministic approaches. 

However, the material properties of soils are known to vary greatly from point to another, and 

many of these older pen and paper methods have difficulty to successfully model this 

heterogeneity. Things are more complicated when dealing with dynamic loading situations. In 

this paper, the effect of both the soil spatial variability and the time variability of Ground-Motion 

(GM) on the dynamic responses of a simple slope are studied. Few authors have worked on the 

analysis of the dynamic horizontal soil behavior using probabilistic approaches where the spatial 

variability of soil properties and the time variability of seismic excitations were considered 

[Koutsourelakis et al (2002), Popescu et al (2006), ...]. In these works, three main deficiencies 

can be detected: First, the classical Monte Carlo Simulation (MCS) methodology with a small 

number of realizations is used to determine the probability density function (PDF) of the system 

responses (e.g. 50 simulations). It is well known that in order to be a rigorous approach, MCS is 

very time-expensive. Second, the stochastic model for generating synthetic acceleration time-

histories is based on the spectral representation in order to simulate accelerograms which are 

compatible with a prescribed response spectrum and not real GM acceleration. Finally, the spatial 

variability of soil properties is studied for specific autocorrelation distances. 

In this study, the three mentioned deficiencies will be improved by (i) using a more efficient 

probabilistic approach instead of the crude MCS which is the Sparse Polynomial Chaos 

Expansion (SPCE) [Blatman and Sudret (2010), Al-Bittar and Soubra (2011)]; (ii) simulating the 

stochastic accelerogram using the method given by Rezaeian and Der Kiureghian (2010). This 

method has the advantage of solving the majority of problems encountered in the previous 

models [Rezaeian and Der Kiureghian (2008)]; (iii) considering a large range of autocorrelation 

distances for the soil shear modulus G modeled as an isotropic non-Gaussian random field. The 

Expansion Optimal Linear Estimation (EOLE) methodology proposed by Li and Der Kiureghian 

(1993) is used to generate this random field.  

The deterministic model is based on numerical simulations using the dynamic option of the finite 

difference code FLAC3D. Samples of the synthetic GM time-histories were generated and a 

dynamic stochastic calculation for each realization was performed to compute the dynamic 

responses (i.e. the permanent displacement at the toe of the slope and the maximum amplification 
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of the acceleration at the top of the slope). The paper is organized as follows: The first three 

sections aim at presenting (i) the method used to generate the random field of the shear modulus 

G, (ii) the method used to generate the stochastic synthetic accelerograms based on a real target 

one and finally (iii) the SPCE methodology employed to determine the analytical expression of 

the dynamic system responses. These sections are followed by a presentation of the probabilistic 

numerical results in which only the soil spatial variability is first considered and then combined 

with the time variability of the GM in order to highlight its effect on the variability of the 

dynamic responses. 

Generation of non-Gaussian random field 

Let’s consider the non-Gaussian random field ( , )NG
GZ x y (where G represents the soil shear 

modulus) described by: (i) constant mean µG and standard deviation σG, (ii) non-Gaussian 

marginal cumulative distribution function FG, and (iii) a square exponential autocorrelation 

function NG
Zρ [(x, y), (x', y')] which gives the values of the correlation function between two 

arbitrary points (x, y) and (x', y'). This autocorrelation function is given as follows: 

22
' '

[( , ), ( ', ')] exp
Z

NG

x y

x x y y
x y x y

a a
ρ

   − − = − −          

 (F.1) 

where ax and ay are the autocorrelation distances along x and y respectively. The EOLE method 

proposed by Li and Der Kiureghian (1993) is used herein to generate the random field of G. In 

this method, one should first define a stochastic grid composed of q grid points (or nodes) 

obtained from the different combination of H points in the x (or horizontal) direction, and V 

points in the y (or vertical) direction assembled is a vector Q={ }( , )n h vQ x y=  where h=1, …, H, 

v=1, …, V and n=1, …, q. Notice that for the vector Q composed of q elements, the values of the 

field are assembled in a vector { }( , )n h vZ x yχ χ= = where h=1, …, H, v=1, …, V and n=1, …, 

q. Then, one should determine the correlation matrix for which each element ( ); ,

NG

i jχ χ
Σ  is 

calculated using Equation (F.1) as follows: 

( ); ,
,

Z

NG NG
i j

i j
Q Q

χ χ
ρ  Σ =    (F.2) 

where i=1, …, q and j=1, …, q. Notice that the matrix 
;

NG

χ χ
Σ in equation (F.2) provides the 

correlation between each point in the vector χ and all the other points of the same vector. The 

non-Gaussian autocorrelation matrix 
;

NG

χ χ
Σ  should be transformed into the Gaussian space using 
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the Nataf transformation. As a result, one obtains a Gaussian autocorrelation matrix ;
G
χ χΣ  that can 

be used to discretize the random field of the shear modulus G as follows: 

( , );
1

( , ) . .
Z x y

N
j

G G G j
j j

Z x y µ
χ

ξ
σ φ

λ=

= + Σ∑ɶ  (F.3) 

where ( ,j jλ φ ) are the eigenvalues and eigenvectors of the Gaussian autocorrelation matrix ;
G
χ χΣ , 

( , );Z x y χΣ  is the correlation vector between each point in the vector χ and the value of the field at 

an arbitrary point (x, y), jξ is a standard normal random variable, and N is the number of terms 

(expansion order) retained in EOLE method. 

Once the Gaussian random field is obtained, it should be transformed into the non-Gaussian 

space by applying the following formula: 

{ }1( , ) ( , )NG
G G GZ x y F Z x y−  = Φ  
ɶ ɶ  (F.4) 

where (.)Φ  is the standard normal cumulative density function. 

It should be mentioned here that the presented method can be applied for both Gaussian and non-

Gaussian random fields. Since non-negative values must be obtained for G, a non-Gaussian 

(lognormal) random field was used in this paper. 

Generation of stochastic Ground Motion accelerograms 

In this paper, the method proposed by Rezaeian and Der Kiureghian (2010) was used to generate 

stochastic acceleration time histories from a target accelerogram. This method consists in fitting a 

parameterized stochastic model that is based on a modulated, filtered white-noise process to a 

recorded ground motion. The parameterized stochastic model in its continuous form is defined as: 

[ ]1
( ) ( , ) , ( ) ( )

( )

t

f

x t q t h t w d
t

α τ λ τ τ τ
σ −∞

 
= − 

 
∫  (F.5) 

In this expression, ( , )q t α  is a deterministic, positive, time-modulating function with parameters 

α controlling its shape and intensity; ( )w τ  is a white-noise process; the integral inside the curved 

brackets is a filtered white-noise process with [ ], ( )h t τ λ τ− denoting the Impulse-Response 

Function (IRF) of the filter with time-varying parameters ( )λ τ ; and 

[ ]2 2( ) , ( )
t

h t h t dσ τ λ τ τ
−∞

= −∫ is variance of the integral process. Because of the normalization by 

( )h tσ , the process inside the curved brackets has unit variance. As a result, ( , )q t α  equals the 
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standard deviation of the resulting process x(t). It should be clear that the modulating function 

( , )q t α completely defines the temporal characteristics of the process, whereas the form of the 

filter IRF and its time-varying parameters define the spectral characteristics of the process. In this 

study, a ‘Gamma’ modulating function is used: 

2 1
1 3( , ) exp( )q t t tαα α α−= −  (F.6) 

where 1 2 3( , , )α α α α= , 1 3, 0α α > , and 2 1α > . Of the three parameters, α1 controls the intensity 

of the process, α2 controls the shape of the modulating function and α3 controls the duration of the 

motion. These parameters 1 2 3( , , )α α α α= are related to three physically based parameters 

5 95( , , )a midI D t−  which describe the real recorded GM in the time domain; where aI , is the Arias 

Intensity (AI), D5−95 represents the effective duration of the motion. It is defined as the time 

interval between the instants at which the 5% and 95% of the expected AIs are reached 

respectively. tmid is the time at the middle of the strong-shaking phase. It is selected as the time at 

which 45% level of the expected AI is reached. The relations between 1 2 3( , , )α α α α= and 

5 95( , , )a midI D t− are given in details in Rezaeian and Der Kiureghian (2010). 

For the filter IRF, we select a form that corresponds to the pseudo-acceleration response of a 

single-degree-of-freedom linear oscillator: 

[ ] [ ] 2

2

( )
, ( ) exp ( ) ( )( ) sin ( ) 1 ( ) ( )

1 ( )

0 otherwise

f
f f f f

f

h t t t t
ω ττ λ τ ζ τ ω τ τ ω τ ζ τ τ τ

ζ τ
 − = − − × − − ≤
 −

=

 
(F.7) 

where ( ) ( ( ), ( ))f fλ τ ω τ ζ τ=  is the set of time-varying parameters of the IRF with ( )fω τ  

denoting the frequency of the filter and ( )fζ τ  denoting its damping ratio. These two parameters, 

( )fω τ and ( )fζ τ are related to two physical parameters that describe the recorded GM in the 

frequency domain and which are respectively the predominant frequency and the bandwidth of 

the GM. For more details about the identification procedure between the recorded GM and the 

stochastic model described previously, the reader may refer to Rezaeian and Der Kiureghian 

(2008, 2010).  

Sparse Polynomial Chaos Expansion (SPCE) methodology 

The polynomial chaos expansion (PCE) methodology aims at replacing a complex deterministic 

model whose input parameters are modeled by random variables by a meta-model which allows 
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one to calculate the system response using an approximate analytical equation [Blatman and 

Sudret (2010)]. The coefficients of the PCE are computed herein using a regression approach.  

For a deterministic numerical model with M input uncertain parameters, the uncertain parameters 

should be represented first by independent standard normal random variables { } 1,....,i i M
ξ

=
 gathered 

in a random vector ξ. The random response Γ of our mechanical model can then be expressed by 

a PCE of order p fixed by the user as follows: 

1

0 0

( ) ( ) ( )
P

PCE a aβ β β β
β β

ξ ξ ξ
∞ −

= =

Γ = Ψ ≅ Ψ∑ ∑  (F.8) 

where P is the number of terms retained in the truncation scheme, aβ are the unknown PCE 

coefficients to be computed and βΨ  are multivariate (or multidimensional) Hermite polynomials 

which are orthogonal with respect to the joint probability distribution function of the standard 

normal random vector ξ. These multivariate polynomials are given by ( )
1

i

M

i

Hβ α ξ
=

Ψ = ∏ , where 

(.)
i

H α  is the αi-th one-dimensional Hermite polynomial and αi are a sequence of M non-negative 

integers { }1,..., Mα α . In practice, one should truncate the PCE representation by retaining only 

the multivariate polynomials of degree less than or equal to the PCE order p. For this reason, a 

classical truncation scheme based on the determination of the first order norm is generally 

adopted in the literature. This first order norm is defined as follows: 
1

1

M

i
i

α α
=

=∑ . The classical 

truncation scheme suggests that the first order norm should be less than or equal to the order p of 

the PCE. Using this method of truncation, the number P of the unknown PCE coefficients is 

given by ( ) !

! !

M p
P

M p

+= . Thus, the number P of the PCE coefficients increases dramatically with 

the number M of the random variables and the order p of the PCE. To overcome such a problem, 

it was shown that the number of significant terms in a PCE is relatively small since the 

multidimensional polynomials βΨ  corresponding to high-order interaction are associated with 

very small values for the coefficients aβ. Thus, a truncation strategy based on this observation 

was developed in which the multidimensional polynomials βΨ  corresponding to high-order 

interaction were penalized. This was performed by considering the hyperbolic truncation scheme 

that considers the q-norm instead of the first order norm. The q-norm is given by 
1

1

qM
q
iq

i

α α
=

 =  
 
∑  where q is a coefficient (0<q<1). The hyperbolic truncation scheme suggests 
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that the q-norm should be less than or equal to the order p of the PCE. The proposed 

methodology leads to a SPCE that contains a small number of unknown coefficients which can be 

calculated from a reduced number of calls of the deterministic model. This is of particular interest 

in the present case of random fields which involve a significant number of random variables. This 

strategy will be used in this paper to build up a SPCE of the system response using an iterative 

procedure [Blatman and Sudret (2010)]. Once the unknown coefficients of the SPCE are 

determined, the PDF of the dynamic responses can be estimated using Monte Carlo technique. 

Numerical results 

The aim of this section is to present the probabilistic results. It should be remembered here that 

the dynamic system responses involves the permanent displacement at the toe and the maximum 

amplification of the acceleration at the top of the slope. In this study, the effect of both the soil 

spatial variability and the time variability of Ground-Motion (GM) on the dynamic responses are 

considered. The soil shear modulus G is considered as an isotropic lognormal random field. The 

mean and the coefficient of variation of G are respectively 112.5G MPaµ =  and 40%GCov = . In 

order to simulate the stochastic synthetic time histories, the Kocaeli (Turkey 1999) earthquake is 

used as the target accelerogram (see Figure F.1). The deterministic model is based on numerical 

simulations using the dynamic option of the finite difference code FLAC3D. The slope geometry 

considered in the analysis is 10m in height and 45o in inclination angle (see Figure F.2). It should 

be noted that the size of a given element in the mesh depends on both the autocorrelation 

distances of the soil properties and the wavelength λ associated with the highest frequency 

component fmax of the input signal. For the autocorrelation distances of the soil properties, Der 

Kiureghian and Ke (1988) have suggested that the length of the smallest element in a given 

direction (horizontal or vertical) should not exceed 0.5 times the autocorrelation distance in that 

same direction. As for the wavelength λ associated with the highest frequency component fmax of 

the input signal, Itasca (2000) has suggested that the smallest element should not exceed 1/10 to 

1/8 this wavelength λ in order to avoid numerical distortion of the propagating waves. Respecting 

these two conditions, a size element of 2m was chosen to perform the dynamic analysis. For the 

boundary conditions, the bottom horizontal boundary was subjected to an earthquake acceleration 

signal and free field boundaries were applied to the right and left vertical boundaries. The 

numerical simulations are performed using an elastoplastic model based on the Mohr-Coulomb 

failure criterion. The corresponding model parameters are the shear modulus G which is modeled 

as a random field, the bulk modulus K, the cohesion c, the friction angel φ, the dilation angel ψ, 
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and the soil unit weight which are considered as deterministic. The values of these deterministic 

parameters are as follows: K=133MPa, c=10kPa, φ=30o, ψ =20o, and γ =18kN/m3. 

In the following sections, one examines the effect of the soil spatial variability on both the 

amplification at the top and the permanent displacement at the toe of the slope using deterministic 

and stochastic GM accelerograms. 

Effect of the soil spatial variability on the amplification at the top of the slope using deterministic 

and stochastic GM accelerograms 

The effect of the soil spatial variability on the amplification at the top of the slope using 

deterministic and stochastic GM accelerograms is studied and presented in Figures F.3, F.4 and 

Table F.1. Different values of the isotropic autocorrelation distance (θ=0.5, 1, 2, 3, 5) were 

considered in the analyses. Notice that in the current study, the autocorrelation distance has been 

nondimensionalized by dividing it by the height of the slope. Figures F.3 and F.4 show that the 

PDF is less spread out when the isotropic autocorrelation distance θ decreases. The variability of 

the amplification at the top of the slope decreases with the increase in the soil heterogeneity (i.e. 

small values of θ). This can be explained by the fact that the fluctuations of the shear modulus are 

averaged to a mean value along the seismic wave’s path propagation. This mean is close to the 

probabilistic mean value of the random field G. This leads to close values of the responses 

amplification and thus to a smaller variability in this response. Notice however that adding the 

randomness of the earthquake GM has a significant incidence on the variability of the 

amplification. Table F.1 shows that for the range of the autocorrelation distances considered in 

this study, the coefficient of variation COV of the amplification is between 2.78% and 10.91% 

when deterministic GM accelerogram is used. This range of COV increases significantly when 

the randomness of the earthquake GM is introduced. In this case, the COV of the amplification 

0 10 20 30
-4

-3

-2

-1

0

1

2

3

4

Time, sec

A
cc

e
le

ra
tio

n
 (

m
/s2 )

 

 

 
Figure F.1. Kocaeli (Turkey 1999) 

accelerogram 

 
Figure F.2. The slope geometry and FLAC3D mesh 
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have values between 4.23% and 31.78%. One can notice that for the largest autocorrelation 

distance θ=5, the variability of the amplification in the case where stochastic GM accelerograms 

were used is 2.9 time larger than the one obtained with the deterministic GM accelerogram.  

Table F.1 also shows that the autocorrelation distance θ has practically no effect on the mean 

value of the amplification. This mean value is shown to be larger than the corresponding 

deterministic value. This means that the probabilistic results are much more critical than the 

deterministic value with a difference of 5% in the case where deterministic GM accelerogram is 

is used, and 29% in the case where stochastic GM accelerograms are used.  

Table F.1. Effect of the autocorrelation distance θ on the statistical moments (µ, σ) of the amplification 

 
Figure F.3. Amplification at the top of the slope 

with deterministic GM 

 
Figure F.4. Amplification at the top of the 

slope with stochastic GM 

 θ 
Mean  

µ x 10-2 (m) 
Standard  

deviation σ  
COV (%) 

Deterministic 
amplification 

0.5 2.6 0.073 2.784 

1 2.6 0.114 4.364 

2 2.6 0.135 5.176 

3 2.6 0.166 6.362 

Deterministic 
GM 

5 2.6 0.285 10.915 

2.48 

 θ 
Mean  

µ x 10-2 (m) 
Standard  

deviation σ  
COV (%) 

Deterministic 
amplification 

0.5 3.2 0.138 4.237 

1 3.2 0.301 9.301 

2 3.2 0.472 14.610 

3 3.2 0.567 17.565 

Stochastic 
GM 

5 3.2 1.030 31.780 

2.48 
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Effect of the soil spatial variability on the permanent displacement at the toe of the slope using 

deterministic and stochastic GM accelerograms 

The effect of the soil spatial variability on the permanent displacement at the toe of the slope 

using deterministic and stochastic GM accelerograms is studied and presented in Figures F.5, F.6 

and Table F.2. The same values of the isotropic autocorrelation distance θ used in the previous 

section are also used herein. Figures F.5 and F.6 show that the PDFs are very close to each other 

and thus the shear modulus variability has a small influence on the permanent displacement. This 

is because the permanent displacement appears only when the plastic phase is reached which 

means that the effect of the shear modulus G on this response is relatively small. Table F.2 

confirms this observation because very small values of the COV of the permanent displacement 

are obtained when only the spatial variability of G is considered. On the other hand, one can see 

that introducing the randomness of the earthquake GM considerably affects the permanent 

displacement. High values of the COV are detected because of the important increase in the mean 

value of the permanent displacement due to the variability of the GM.  

Table F.2 also shows that the mean value of the permanent displacement presents a maximum. 

This maximum was detected when θ=2, i.e. when the isotropic autocorrelation distance is equal 

to the height of the soil domain. When θ decreases from 5 to 2, one can notice that the mean of 

the permanent displacement increases. This can be explained by the fact that increasing the soil 

heterogeneity introduces weak zones with small values of the shear modulus G, thus leading to 

larger values of the permanent displacement. The decrease in the permanent displacement for 

values of θ smaller than 2 may be explained by the fact that as the autocorrelation distance 

decreases, the propagating wave can face some stiff zones which reduce the permanent 

 
Figure F.5. Permanent displacement at the toe of 

the slope with deterministic GM 

 
Figure F.6. Permanent displacement at the toe 

of the slope with stochastic GM 
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displacement. Finally, on can notice also that introducing the soil spatial variability and the 

randomness of GM lead to more critical results since all the mean values of the permanent 

displacement obtained in the probabilistic study are larger than the corresponding deterministic 

value. 

Table F.2. Effect of the autocorrelation distance θ on the statistical moments (µ, σ) of the permanent 
displacement 

Conclusions 

The effect of both the soil spatial variability and the Ground-Motion (GM) time variability on the 

dynamic responses is studied. The soil shear modulus G is considered as an isotropic non-

Gaussian random field. The simulation of variable acceleration time histories based on a real 

target accelerogram is done using a fully nonstationary stochastic model. The deterministic model 

was based on numerical simulations using the dynamic option of the finite difference code 

FLAC3D. The methodology adopted in this paper makes use of a non-intrusive approach to build 

up a sparse polynomial chaos expansion (SPCE) for the dynamic system responses. The main 

conclusions can be summarized as follows: (i) the decrease in the autocorrelation distance of G 

(i.e. the soil heterogeneity) leads to a small variability of the dynamic responses; the 

amplification being more affected; (ii) adding the randomness of the earthquake GM has a 

significant incidence on the variability of the dynamic responses; (iii) the isotropic 

autocorrelation distance affects the probabilistic mean values of plastic responses (eg. the 

permanent displacement); its effect being negligible on elastic responses (eg. the amplification). 

 θ 
Mean  

µ x 10-2 (m) 
Standard 

deviation σ  
COV 
(%) 

Deterministic permanent 
displacement 

0.5 8.20 0.0005 0.610 

1 8.62 0.0014 1.624 

2 8.84 0.0020 2.262 

3 8.75 0.0021 2.400 

Deterministic 
GM 

5 8.55 0.0025 2.924 

0.0407 

 θ 
Mean  

µ x 10-2 (m) 
Standard  

deviation σ  
COV 
(%) 

Deterministic permanent 
displacement 

0.5 26.20 0.0596 22.75 

1 26.46 0.1248 47.16 

2 27.40 0.1267 46.24 

3 27.17 0.1359 50.02 

Stochastic 
GM 

5 25.57 0.2793 109.23 

0.0407 
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Appendix G.   

The purpose of this Appendix is to check if the possible reason for which relatively small values 

of Q2 were obtained (when the SPCE methodology was applied in chapter V) is linked to the 

chosen system response (i.e. Amax). Notice that the test was performed using the 'column' model 

and the reference case where 
1

72G MPaµ =  and ay=2m. 

The test consists in constructing the SPCE not only for Amax at the top of the soil column but for 

all the accelerations at the top of the soil column at the different time steps (the value of Amax can 

be deduced from the different SPCEs constructed at the different time steps). This test allows one 

to detect if the fact of considering directly Amax as a system response is the reason for which the 

relatively small values of Q2 were obtained.  

Notice that a seismic loading of total duration T=15s and time step ∆t=0.05s was considered in 

the analysis. Thus, it is composed of 301 registration points (or acceleration values). The 

construction of the SPCE 301 times is a difficult task. Blatman and Sudret (2011) have suggested 

an efficient and fast alternative approach. To obtain the SPCEs for all the accelerations at the 

different time steps, Blatman and Sudret (2011) have proposed the use of the so-called principal 

component analysis (PCA). The aim is to capture the main stochastic feature of the response 

using a small number of (non physical) variables compared to the original number of variables 

(i.e. 301 in the present analysis). This enormously reduces the computational cost since the 

SPCEs are no longer evaluated for all the accelerations at the different time steps, but on a small 

number of non physical variables. In the next section, one presents the so-called principal 

component analysis (PCA). It is followed by the obtained numerical results. 

Principal component analysis (PCA) 

Consider an experimental design (ED) ( ) ( )(1) ( )
1 1{ ,..., ,..., ,..., }K

M Mξ ξ ξ ξ ξ ξ= =  and the 

corresponding set of model evaluations ( ) ( ){ }(1) ( ),..., Kξ ξΓ = Γ Γ  where K is the number of 

realizations. Notice here that each element ( )( )iξΓ  is a vector composed of Q elements where Q 

is the number of response components. In our case where the acceleration at the top of the 

column at different time steps is considered, Q=301 which is the number of registration points. 

Thus, Γ  is a matrix composed of K rows and Q columns. In order to perform the principal 

components analysis, the following steps must be considered: 
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• For each column in matrix Γ , one needs to compute the mean value and then to subtract 

this mean value from each element in this same column. This provide a new matrix Γ'. 

• Compute the covariance matrix as follows: ' ' 'TC xΓ = Γ Γ  

Compute the eigenvalues and eigenvectors of 'CΓ  by solving the matrix system 

'C V VDΓ =  where V is a matrix whose columns are the eigenvectors and D is a diagonal 

matrix whose entries are the eigenvalues (1,..., Kλ λ ).  

• Sort the eigenvalues and the corresponding eigenvectors in a descending order and retain 

only the K' largest eigenvalues. Notice that the value of K' may be selected such that the 

relative PCA induced error given by 
'

1 1

1
K K

PCA i i
i i

ε λ λ
= =

= −∑ ∑  is less than a prescribed 

value (say 5%PCAε ≤ ). Notice that 'KV  of dimensions [Q, K'] is a matrix whose columns 

are the eigenvectors of the K' largest eigenvalues. 

• Compute the transformed and reduced response matrix (called PCA matrix) as follows: 

' ''K KY V= Γ . 

where 'KY  is a matrix composed of K rows and K' columns. 

Notice that obtaining the orginal model from the PCA matrix 'KY  is straighforwad. This can be 

performed by applying the following equation: ' '' K KV YΓ = . Thus, characterizing the model 

response Γ' or Γ can be achieved indirectly by identifying a functional relationship between the 

input random vector ξ and the PCA output matrix 'KY .  

Numerical results 

In this section, one presents the numerical results obtained using the PCA which was previously 

presented. The aim is to capture the main stochastic feature of the response using a small number 

of (non physical) variables compared to the original number of variables (i.e. 301 in the present 

analysis). This enormously reduces the computational cost since the SPCEs are no longer 

evaluated for all the accelerations at the different time steps, but on a small number of non 

physical variables. The SPCEs computed for the non-physical variables are then used to deduce 

the SPCEs for all the accelerations at the different time steps.  
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In the present work, the original matrix Γ  is composed of K=500 rows (corresponding to 500 

realisations of the input random vector ξ) and Q=301 columns (corresponding to 301 registration 

points of the acceleration). This original matrix was then used to deduce the matrix Γ' (as 

presented in the previous section) which will be used to perform the PCA. The PCA has lead to a 

reduced number K'=5 of most influent eigenmodes for the prescribed error of 5%PCAε ≈ . This 

means that for the 301 registration points, only five SPCEs must be evaluated in order to estimate 

the SPCEs of the 301 registration points. The SPCE methodology was applied on the five most 

influent eigenmodes, and the deduced SPCEs of the 301 registration points were computed (not 

presented herein). Notice that the values of Q2 obtained for the five most influent eigenmodes 

(when using the 500 MC simulations) were respectively 0.65, 0.6, 0.2, 0.2 and 0.2. 

Table G.1 presents the first two statistical moments as obtained from the direct determination of 

the SPCEs at three different arbitrary times (t1=2.5s, t2=5s and t3=10s). In the same table, one also 

presents the first two statistical moments as obtained from the SPCEs deduced after performing a 

PCA on the output matrix Γ. This table shows that the presented results using the PCA are in 

good agreement with those obtained form the direct determination of the SPCE at the three 

chosen times. Even though satisfactory results for the fist two statistical moments were obtained, 

unsatisfactory values of Q2 were obtained when using either the PCA or the direct determination 

of the SPCE. Thus, for such types of problems, one needs to find more advanced stochastic 

models in order to obtain more rigorous meta-models for the highly non-linear problems.  

 Direct determination of the SPCEs 
Determination of the SPCEs 

using the PCA 

 Aµ (m/s2) Aσ (m/s2) Q2 Aµ (m/s2) Aσ (m/s2) 

t1=2.5s 0 0.80 0.66 -0.05 0.71 

t2=5s -1.58 3.33 0.81 -1.52 3.82 

t3=10s 0.9 2.67 0.69 0.87 2.90 

Table G.1. Values of the first two statistical moments and the coefficient of determination Q2 
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Appendix H.   

Mathematical description of the macro-element 

The purpose of this Appendix is to describe a theoretical model based on strain hardening 

plasticity theory which is capable of describing the behavior of a shallow footing when it is 

subjected to all possible combinations of vertical, horizontal and moment loading using the 

macro-element.  

In the framework of the macro-element theory, any load or deformation path can be applied to the 

footing and the corresponding unknowns (deformations or loads) can be calculated.  

The foundation is assumed to be rigid and the nonlinearities of the soil and interface are assumed 

to be condensed in a representative point which is the footing centre. Within that framework, it is 

suggested to work with generalized (global) variables: (i) the force resultants, i.e. the vertical 

force V, the horizontal forces Hx, Hy, and the moments Mx, My and (ii) the corresponding 

displacements; i.e. the vertical displacement uz, the horizontal displacements ux and uy, and the 

rotations θx and θy. The torque moment (Mz) and the corresponding displacement are not taken 

into account in the present analysis.  

The three-dimensional SSI macro-element takes into account three different mechanisms: the soil 

elasticity, the possible soil plasticity and the possible uplift of the foundation. The total 

displacement can thus be considered as a sum of three components related to the elastic and 

plastic behavior of the soil and the uplift behavior of the foundation. These three different 

mechanisms and their mathematical development are extensively presented in Crémer et al. 

(2002), Grange et al. (2009a) and Grange et al. (2009b) and are briefly described herein. 

Elastic behaviour 

The elastic constitutive model can be written as ( )el plF K u u= −
� � �

 where 

( )' ' ' ' 'z x y y xu u u uθ θ=�  and ( )' ' ' ' 'x y y xF V H M H M=
�

 are the vectors that 

represent the dimensionless generalized displacements and forces and Kel is the elastic stiffness 

matrix [Grange et al. (2009a)].  

Plastic behaviour - failure criterion and loading surface 
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The loading surface used was initially developed in Crémer et al. (2001) to describe the 

behaviour of a 2D shallow foundation. The extension of this loading surface to cover the case of a 

3D shallow foundation is a five-dimensional surface. It is given as follows: 

( ) ( )

( ) ( )

2 2

2 2

''
( , , , )

' ' ' '

' '
1 0

' ' ' '

yx
c d fc e

y x
d fc e

MH
f F

aV V bV V

H M

aV V bV V

α βτ ρ γ
ρ ρρ γ ρ γ

δ η
ρ ρρ γ ρ γ

   
   ≡ − + −
   − −   

   
   + − + − − =
   − −   

�

 (H.1) 

The coefficients a and b define the size of the surface in the plane (H'-M'), and the coefficients c, 

d, e and f define the parabolic shape of the surface in the planes (V'-M') and (V'-H'). Theses 

parameters can be obtained by fitting this equation to the experimental results. On the other hand, 

the vector ( ), , ,τ α β δ η=�  is the kinematics hardening vector. It is composed of 4 kinematics 

hardening variables and ρ  is the isotropic hardening variable. The variable γ is chosen to 

parameterize the second intersection point of the loading surface with the V' axis and its evolution 

in the V' axis (the other point is the origin of the space). The evolution of the hardening variables 

is obtained by considering experimental results and numerical simulations [Crémer et al. (2001)]. 

Notice finally that the failure criterion is given by Equation (H.1) with 

( ) ( ), , , , , 0,0,0,0,1,1α β δ η ρ γ = . 

Uplift behaviour - failure criterion and loading surface 

The uplift behaviour is not influenced by the horizontal forces. For the uplift mechanism, the 

failure criterion is given by Grange et al. (2009) as follows: 

( )
2

2 '
2

1

'
' 0AVV

f M e q
q

−
∞

 
≡ − + = 

 
 (H.2) 

where A is a parameter of the constitutive model and (q1, q2) is a couple of integers that takes into 

account the shape of the foundation. As for the loading surface, its evolution is more complicated 

than for a classical plasticity model. Thus, it is not presented herein. For more details, the reader 

may refer to Grange et al. (2009a). The uplift mechanism is coupled with the plasticity 

mechanism by using the classical multi-mechanism approach. 

 


