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ABSTRACT

The aim of this thesis is to study the performaotehallow foundations resting on spatially
varying soils and subjected to a static or a dywafseismic) loading using probabilistic
approaches. In the first part of this thesis, dicstaading was considered in the probabilistic
analysis. In this part, only the soil spatial vhilidy was considered and the soil parameters were
modelled by random fields. In such cases, MonteloC&mulation (MCS) methodology is
generally used in literature. In this thesis, thearSe Polynomial Chaos Expansion (SPCE)
methodology was employed. This methodology aimsregiacing the finite element/finite
difference deterministic model by a meta-model.sThgads (in the present case of highly
dimensional stochastic problems) to a significaeduction in the number of calls of the
deterministic model with respect to the crude MC®thudology. Moreover, an efficient
combined use of the SPCE methodology and the Gl&mamsitivity Analysis (GSA) was
proposed. The aim is to reduce once again the pilidiec computation time for problems with
expensive deterministic models. In the second pérthis thesis, a seismic loading was
considered. In this part, the soil spatial varigpiand/or the time variability of the earthquake
Ground-Motion (GM) were considered. In this cadee earthquake GM was modelled by a
random process. Both cases of a free field andilaS8acture Interaction (SSI) problem were
investigated. The numerical results have showrsitpaficant effect of the time variability of the
earthquake GM in the probabilistic analysis.
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GENERAL INTRODUCTION

Traditionally, the analysis and design of geotecainistructures are based on deterministic
approaches. In these approaches, constant congervalues of the soil and/or the loading

parameters are considered with no attempt to ctearae and model the uncertainties related to
these parameters. In such approaches, a glob&} sadeor is applied to take into account the soil
and loading uncertainties. The choice of this fa@sobased on the judgment of the engineer

based on his past experience.

During the last recent years, much effort has lpzed for the establishment of more reliable and
efficient methods based on probabilistic analysisshould be mentioned here that in any
probabilistic analysis, there are two tasks thastnbe performed. First, it is necessary to identify
and quantify the soil and/or loading uncertaintiébis task is usually carried out through
experimental investigations and expert judgmenth@lgh this first step is extremely important,
it will not be considered throughout this work. Theues of the soil and loading uncertainties
used in the analysis are taken from the literatéieer the input uncertainties have been
appropriately quantified, the task remains to gifyathe influence of these uncertainties on the
output of the model. This task is referred to asewrainty propagation. In other words, the
uncertainty propagation aims to study the impacthefinput uncertainty on the variation of a

model output (response).

In nature, the soil parameters (shear strengtmpeteas, elastic properties, etc.) vary spatially in
both the horizontal and the vertical directionsaagesult of depositional and post-depositional
processes. On the other hand, the seismic loaditigne varying due to the fact that the fault
break is random which gives the earthquake thisalblr aspect. This leads to the necessity of
modeling the soil uncertain parameters by randaiudgi and the seismic loading by a random
process. As for the uncertainty propagation, dafieérapproaches (especially the meta-modeling
technigues) were developed during the recent y&afrarticular interest are the Polynomial
Chaos Expansion (PCE) methodology and its exterthi@rsparse Polynomial Chaos Expansion
(SPCE) methodology which are used in the framewedrthis thesis to perform the probabilistic

analysis.

The ultimate aim of this work is to study the penfance of shallow foundations resting on
spatially varying soils and subjected to staticdgnamic (seismic) loading using probabilistic
approaches. In the first part of this thesis @leapters Il, Ill and V), static loading cases were

considered in the probabilistic analysis. In thiartp only the soil spatial variability was
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considered and the soil parameters were modelladrmom fields. The system responses were
the ultimate bearing capacity of the foundation #mel footing displacement. However, in the
second part of this thesis (i.e. chapter V), dymafar seismic) loading cases were considered in
the probabilistic analysis. In this part, both fud spatial variability and/or the time variabyliof

the earthquake Ground-Motion (GM) were considerddhe system response was the

amplification of the acceleration.

Before the presentation of the different probatidianalyses performed in this thesis, a literature
review is presented iohapter I. It presents (i) the different sourcesimertainties, (ii) the soil
spatial variability and the time variability of trearthquake ground-motion, (iii) the different
meta-modeling techniques for uncertainty propaga#iaod finally, (iv) the PCE and the SPCE

methodologies which are the methods used in tleisish

Contrary to the existing literature where the vegmputationally-expensive Monte Carlo
Simulation (MCS) methodology is generally used &edmine the probability density function
(PDF) of a high-dimensional stochastic system imwvg spatially varying soil/rock properties; in
chapters Il, Ill and IV, the Sparse Polynomial Ché&xpansion (SPCE) and its extension 'the
combined use of the SPCE and the Global Sensititglysis (GSA)' are employed in the
framework of the probabilistic analysis. Noticetthi@e sparse polynomial chaos expansion is an
extension of the Polynomial Chaos Expansion (P@ER.CE or a SPCE methodology aims at
replacing the finite element/finite difference deteistic model by a meta-model (i.e. a simple
analytical equation). Thus, within the frameworktlo¢ PCE or the SPCE methodology, the PDF
of the system response can be easily obtained.i3Hiscause MCS is no longer applied on the
original computationally-expensive deterministic deh but on the meta-model. The
deterministic models used to calculate the systespanses are based on numerical simulations

using the commercial software FLAC

Contrary to the SLS analysis where the computatioe of a footing deterministic displacement
is not significant, the computational time of treteministic ultimate bearing capacity varies in a
wide range depending on the soil type and the rigogjeometry. The computation time of the
ultimate bearing capacity of a rectangular or autar footing is several times greater than that of
a strip footing. For a given footing geometry, thee cost is the smallest in the case of a purely
cohesive soil (i.e. for the computation of thgcoefficient forp=0). It increases in the case of a

weightless soil (i.e. for the computation of tNg coefficient for¢#0) and becomes the most
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significant in the case of a ponderable soil. Tihetcost is thus the most significant in the case

of a 3D (circular or rectangular) foundation regton a ponderable soil.

In chapter II, the SPCE methodology was employed téope a probabilistic analysis at both
ultimate limit state (ULS) and serviceability limstate (SLS) of strip footings. Relatively non-
expensive deterministic models were used in théptdr since the ULS analysis was performed
in the case of a weightless material. Two caseesuslere considered. The first one involves the
case of strip footings resting on a weightless iafyatvarying soil mass obeying the Mohr-
Coulomb failure criterion and the second one carsidhe case of strip footings resting on a

weightless spatially varying rock mass obeyingHioek-Brown (HB) failure criterion.

As for chapter Ill, the SPCE methodology was used to tiyae the effect of the spatial
variability in three dimensions (3D) through thedst of the ultimate bearing capacity of strip
and square foundations resting on a purely cohesillevith a spatially varying cohesion in the
three dimensions. Although a 3D mechanical prob(enth a greater computation time with
respect to the models of chapter Il) was considéezein, the deterministic model can still be

classified as a relatively non-expensive model bgedt considers a purely cohesive soil.

Chapter IV presents a combination between the SP€todology and the Global Sensitivity
Analysis (GSA). This combination is refered to Imistthesis as SPCE/GSA procedure. The aim
of this procedure is to reduce the probabilistimpatation time of high-dimensional stochastic
problems involving expensive deterministic moddlkis procedure was illustrated through the
probabilistic analysis at ULS of a strip footingstiag on a ponderable soil with 2D and 3D

random fields and subjected to a central vertmad|

Finally, chapter V is devoted to the presentation of thdadistic analysis performed when a

dynamic (or seismic) loading is considered. Thé smtial variability and/or the time variability

of the earthquake Ground-Motion (GM) were consideta this case, the soil parameters were
modelled by random fields and the earthquake GMmadelled by a random process. Given the
scarcity of studies involving the probabilistic s®ic responses, a free field soil medium
subjected to a seismic loading was firstly congdeiThe aim is to investigate the effect of the
soil spatial variability and/or the time variabjliof the earthquake GM using a simple model.

Then, a SSI problem was investigated in the sepanidof this chapter.

The study ends by a general conclusion of the jpahcesults obtained from the analyses.
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CHAPTER I. LITERATURE REVIEW

.1 INTRODUCTION

Traditionally, the analysis and design of geotecainistructures are based on deterministic
approaches. In these approaches, constant congervalues of the soil and/or the loading
parameters are considered with no attempt to ctearae and model the uncertainties related to

these parameters.

Many sources of uncertainties may be encounteregatechnical engineering problems. Some
of these uncertainties result from natural variatend thus are considered as inherent (or
aleatory). Others (called epistemic) arise fromaeklof knowledge or ignorance. The aleatory
sources of uncertainty cannot be reduced or redotieough the collection of additional
information or from expert knowledge. Examples td#atory uncertainty include the natural
spatial variability of the soil properties as aulesf depositional and post-depositional processes
and the time variability of the earthquake grounokion. As for the epistemic sources of
uncertainty, they may be reduced through more chrefeasurement or additional data
collection. In this thesis, only the aleatory unagties and more precisely the spatial variability
of the soil properties and the time variabilitytbé earthquake ground-motion (when a seismic

loading is involved) are considered.

It should be mentioned here that in any probahiliahalysis, there are two tasks that must be
performed. First, it is necessary to identify anmtify the sources of uncertainty (i.e. the soill
spatial variability and the time variability of trearthquake ground motion in our study). This
task is usually carried out through experimentakstigations and expert judgment. Although
this first step is extremely important, it will nbe considered throughout this work. Instead, the
values of the soil and loading uncertainties ugethé analysis are taken from the literature. After
the input uncertainties have been appropriatelyntfid, the task remains to quantify the
influence of these uncertainties on the outputhef model. This task is referred to as the
uncertainty propagation. In other words, the uraety propagation aims to study the impact of

the input uncertainty on the variation of a modgiait (response).

During the recent years, different approaches (@sibe the meta-modeling techniques) were
developed for the uncertainty propagation. Theggagthes are detailed later in this chapter. Of

particular interest are the Polynomial Chaos Exjpen@ CE) methodology and its extension the

20



Sparse Polynomial Chaos Expansion (SPCE) methogoilbdch are used in the framework of
this thesis to perform the probabilistic analysis.

The aim of this thesis is to investigate the effetithe soil spatial variability and the time

variability of the seismic loading (when a seisnfoading is considered) on the response of
geotechnical structures. More specifically, thebaitmlistic analyses were performed in the case
of a strip footing resting on a spatially varyingjlor rock medium and subjected to a static or a

seismic load.

This chapter aims at first presenting the differgmiirces of uncertainties. Then, the soil spatial
variability and the time variability of the earthaje ground-motion are explained in some detail.
This is followed by a brief presentation of thefeliént meta-modeling techniques. Finally, the
PCE and the SPCE methodologies which are the methséd in this thesis are presented in
some detail.

.2 SOURCES OF UNCERTAINTIES

While many sources of uncertainties may exist, #w@ygenerally categorized as either aleatory
or epistemic [Der Kiureghian and Ditlevsen (200®)hcertainties are characterized as epistemic
if the modeler sees a possibility to reduce themghthering more data or by refining the

transformation models as explained later. Unceresrare categorized as aleatory if the modeler

does not foresee the possibility of reducing thieraugh the collection of additional information.

In geotechnical engineering, two types of epistenuiccertainties can be faced: The
measurements and the transformation uncertaiftresfirst one is due to the sampling error that
results from limited amount of information. Thisa@ntainty can be minimized by considering
more samples. The second one is introduced whdd Ge laboratory measurements are
transformed into design soil properties using ermogiror other correlation models. This
uncertainty can be reduced by considering moreedfmathematical or empirical models.

As for the aleatory (inherent) uncertainties, tbd material itself is spatially variable and the
earthquake is temporally variable. The inherenit \amiability primarily results from the natural
geologic processes which modify the in-situ soilsmaAs for the seismic loading, the time
variability results from the fact that the valudstlte acceleration at the different time steps are

random.

In this thesis, only two aleatory uncertainties ethiare the spatial variability of the soil

properties and the time variability of the earthguground-motion are considered. The next two
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sections aim at presenting both the soil spatiabtdity and the time variability of the ground

motion.

.3 SPATIAL VARIABILITY OF THE SOIL PROPERTIES

In this section, one presents (i) the statistitaracterization of the soil spatial variability) ¢(he
method used to model (i.e. calculate at unsampbety) this spatial variability, (iii) an overview
of the random fields discretization methods andallin (iv) the expansion optimal linear
estimation (EOLE) method which is the method ofd@an field discretization used in this thesis

to perform the probabilistic analysis.
[.3.1 Statistical characterization of the soil spatial vaability

In order to statistically characterize the spat@iiability of a soil property, VanMarcke (1977)
stated that three statistical parameters are nedgetthe mean; (ii) the variance (or standard
deviation or coefficient of variation); and (iiifpe@ autocorrelation distanca) ((or more generally

the autocorrelation function).

The coefficient of variation and the autocorrelataistance are measures of the randomness of
the uncertain soil property. An almost homogenaibkwgill have a large value ofaj, whereas
one whose property exhibits strong variation oveals distances has a low value aj.(In other
words, the autocorrelation distance is the distamas which the values of the soil parameter
exhibit strong correlation and beyond which, thepynbe treated as independent random
variables [Jaksa (1995)].

When performing probabilistic studies in geotechhi@ngineering (e.g. determining the
probabilistic ultimate bearing capacity or the p@bitistic settlement of foundations), it is
important to use realistic values of the mean, dtedard deviation and the autocorrelation
distance 4) of the uncertain soil property. For that purposeveral investigations should be
undertaken to quantify these quantities. This isedby performing geotechnical or geophysical
tests. In general, the geotechnical tests involgenall area. They are performed to obtain direct
information on the soil property at different looats. In general, one needs to perform a large
number of tests in order to characterize the véitialof the soil property. As for the geophysical
tests, they are an efficient alternative to thetggmical investigations since they allow one to
explore a large area with a smaller number of teBkey are performed to obtain indirect
measures of the soil property and mainly comprigerpretation of signals (e.g. electrical

conductivity, dielectric constant, density, elagtioperties, thermal properties, and radioactivity)
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to characterize a site. For more details on theisitestigation methods, the reader may refer to

Breysse and Kastner (2003) among others.

After the collection of different values of a giveail property, the determination of the mean and
standard deviation of this property is performethgigshe conventional statistical analysis. This
analysis provides the variability of the soil prage however, it does not provide the spatial
trend. Thus; to characterize the spatial variatibthe soil property, one needs to characterize the
autocorrelation distancea)( For this purpose, two mathematical techniques loa found in
literature to identify the autocorrelation struetwof a soil property. These are the random field
theory and the geostatistics tools. In this theébkis,random field theory is the method used when
performing the probabilistic analysis.

[.3.1.1 Random field theory

The random field theory is commonly used in litaratto describe the soil spatial variability.
According to VanMarcke (1983), the random field dhe should incorporate the observed
behavior that values at adjacent locations are madated than those separated by some distance.
For this purpose, a fundamental statistical prgpettich is the autocorrelation function (ACF) is
introduced in addition to the classical statistigatameters (i.e. the mean and standard deviation
or coefficient of variation). The ACF is a plot thfe correlation coefficient versus the distance.
This ACF may be used to identify (i) the autocatien distance &) or (ii) the scale of
fluctuation ¢). If the soil property of interest is denoted By the correlation coefficient
between the values of that property at two diffetecations is defined as follows:

p(Ah)zC [Z (X, ),ZZ( X )] :J_le{I:Z(Xi ) - 14, :H: Z( Xi+Ah)_:uZ]} (.1)

z

g;

WhereX is the vector which represents the location. given by X = (x) in the case of a one-
dimensional random fieldX =(x, y) in the case of a two-dimensional (2D) random fiahd

X :(x, Y, z) in the case of a three-dimensional (3D) randotdl.fi®n the other hand(X) is

the value of the proper® at locationX;; Z(Xi+ an) is the value of the proper&at location Xis an;

4h is the separation distance between the data paftf;is the expected valuef is the
covariance angz andoz are respectively the mean and standard deviaficgheopropertyZ. It
should be emphasized here that it is not possibl&nbw the value op between any two
arbitrary points. Thus; in practice, one needsdiinine the ACF which allows one to calculate

the value of the correlation coefficient betweery &mo arbitrary points. This can be done by
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collecting some values of the properyalso known as the data samples) at equally semara
distancesh. These values are gathered in the vegtor{Z (X,),...,Z(X,)} wheres is the

number of these data samples afd=X; + 4h. These data samples are then used to determine

the sample ACF as follows:

S_Zk[z (Xi)—ﬂz:ll:Z(Xi+k)—/JZ]

yo) :p(kAh): i1 N » k=0,1, ...,K (|2)
;[Z(Xi)_ﬂzj

The sample ACF is the graph pf for k=0, 1, 2, ..., KwhereK is the maximum allowable

number of lags (data intervals). Generalyssg4 (Box and Jenkins 1970), wheséas the total

number of data samples.

The ACF is often used to determine the distancer avieich a property exhibits strong
correlation. Two measures of this quantity which @ire autocorrelation distanca® Or the scale
of fluctuation ¢) may be evaluated. The autocorrelation distaagas(defined as the distance
required for the autocorrelation function to deé@yn 1 to € (0.3679). On the other hand, the
scale of fluctuation is defined as the area unkderACF [Fenton (1999)]. The determination of
the autocorrelation distanca) (is done by fitting the sample ACF to one of thedels given in
Tablel.1 wherekAh is the lag distance and)(s the autocorrelation distance.

Model Autocorrelation function Scale of fluctuatiG
. . ~|kAh|
Single exponential P, =exp Y o0=2a
_ kAh| T

Square exponential P, =exp| — — o=+m
. . _ 1
Cosine exponential p, =exp(-alkAh]) cog aka b ==
Second-order Markov o, =(1+alkAh])exp(-4 kA 1) 5:2

Table I.1. Theoretical ACF used to determine the autocorlation distance &) [Vanmarcke (1983]

Finally, it should be mentioned that the modelifghe spatial variability is greatly facilitated by
the data being stationary [Uzielli et al. (20p5tationarity is insured if (i) the mean is consta
with distance (i.e. no trend exists in the data)flfe variance is constant with distance; (ifgte

are no seasonal variations; and (iv) there areregular fluctuations. In random field theory,st i
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a common practice to transform a non-stationarg dat to a stationary one by removing a low-
order polynomial trend (i.e. a first or a secondesrpolynomial) using the ordinary least square
method.

1.3.1.2 Geostatistics

Geostatisticsvas firstly developed by Krige and Matheron in gagly 1960s and has since been
applied to many disciplines including: groundwateydrology and hydrogeology; surface
hydrology; earthquake engineering and seismologiiufion control; geochemical exploration;
and geotechnical engineering. In fact, geostatistan be applied to any natural phenomena that
vary spatially or temporally [Journel and Huijbredi978)]. Just as random field theory makes
use of the ACF, geostatistics utilizes the 'senmggam’. The semivariogram is a plot of
semivariances versus the distance. This semivamognay be used to identify the range of
influence @) which is analogue to the autocorrelation distaincéhe random field theory. If the

soil property of interest is denoted Bythe semivariance is defined as follows:

p(on) =~ E{ 2 (%) 2(%)T} (.3)
whereZ(X;) is the value of the proper&at locationXi; Z(Xi: an) is its value at locatior¥i: an; 4h
is the separation distance between the data @aitHE[.] is the expectation operator. Thus, the
semivariance is defined as half the expectatiomesgbr the mean) of the squared difference
betweenZ(X) and Z(Xi+an). Like the ACF, one needs to determine the senageam which
allows one to calculate the value of the semivaeaetween any two arbitrary points. This can

be done by collecting some values of the propértslso known as the data samples) at equally

separation distancgh. These values are gathered in the vep(t@r{z (X1),-Z( X, )} wheres

is the number of these data samples Apd=X; + 4h. These data samples are then used to

determine the sample semivariogram as follows:

_ _1 B 2 _
Vi _y(kAh)-—2N (k);[z(xHK) Z(X)] k=0, 1, ..., K (1.4)
The samples semivariogram is thus the grapp ofor k=0, 1, 2, ..., KwhereK is the maximum

allowable number of lags (data intervals) &(#) is the number of data pairs corresponding to a

given value ok.

As the experimental semivariogram is a discretetfon, it is desirable in geostatistics to adopt a

continuous semivariogram. Hence, analytical mo@ets generally fitted to the experimental
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semivariogram [Journel and Huijbregts (1978)]. Tim®st common theoretical models of
semivariograms are summarized in Tald®e where the range of influenca) (s analogue to the
autocorrelation distance in the random field theory

Model Semivariogram Scale of fluctuatiaj) (
3
. 1.5Ah—0. Kah if kAh<a
Spherical Ve = a a o=a
1 otherwise
kAh
Exponential Vi =1- exr{—Tj 0=3a

kAh)?

Gaussian Y =1- exp(—%} 0=+3a

Table I.2. Theoretical semivariograms used to determinehe range of influence &) [Goovaerts (1998, 1999)

It should be mentioned here that if the data sasn@te stationary and normalised to have a mean
of zero and a variance of 1.0, the semivariogranthis mirror image of the ACF. The

semivariogram and the ACF are relateathe following relationship given by Fenton (1999):

Y :UZ(l_pk) (1.5)
whereo is the standard deviation of the data samples.

[.3.1.3 Values of the statistical parameters of some géaoieal properties

This section aims at providing the commonly usddesof (i) the coefficients of variatiddOVs
of some soil/rock properties, (ii) the coefficienfscorrelation between these parameters, and (iii)

the autocorrelation distanca)(

Values of the coefficients of variation COVs

The aim of this section is to provide the differgatues of the coefficients of variation as given
in literature for the soil shear strength parangefeohesiorc, angle of internal frictiorp), the
soil elastic properties (Young modulls Poisson ratiov) and the rock mass parameters

(Geological Strength Inde&S|, uniaxial compressive strengif) used in this thesis.

Concerning the type of the PDF of the differentartein parameters; unfortunately, there is no
sufficient data to give a comprehensive and corepiietscription of the type of the PDF to be
used in the numerical simulations. The existingréiture [e.g. Griffiths and Fenton (2001),
Griffiths et al. (2002), Fenton and Griffiths (2002003, 2005), Fenton et al. (2003)] tends to
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recommend the use of a lognormal PDF for the Yasingbdulusk, Poisson’s ratioo and
cohesionc. This recommendation is motivated by the fact thatvalues of these parameters are
strictly positive. Concerning the internal frictiangle ¢, it is recommended to adopt a beta
distribution for this parameter to limit its vaii@ in the range of practical values. Finally,
concerning the paramete®SI| and o, Hoek (1998) has recommended the use of a lognorma

PDF for these parameters.
Soil cohesion ¢

For the undrained cohesiay) of a clay, Cherubini et al. (1993) found that twefficient of
variation of this property decreases with the iaseein its mean value. They recommended a

range of 12% to 45% for moderate to stiff soil.

Author COoV, (%)

30 - 50 (UC test)
60 - 85 (highly variable clay)

Lumb (1972)

Morse (1972) 30 - 50 (UC test)
Fredlund and Dahlman (1972) 30 - 50 (UC test)
20 - 50 (clay)
Lee et al. (1983) 25 - 30 (sand)
Ejezie and Harrop-Williams (1984) 28 — 96
12 - 145

Cherubini et al. (1993) 12 - 45 (medium to stiff clay)

5- 20 (clay — triaxial test)
10 - 30 (clay loam)
43 — 46 (sandy loam)

Lacasse and Nadim (1996)

Zimbone et al. (1996) 58 — 77 (silty loam)
10 — 28 (clay)
Duncan (2000) 13-40

Table 1.3. Coefficient of variation of the undrained soilcohesion

Phoon et al. (1995) stated that the variabilitytted undrained soil cohesion depends on the
quality of the measurements. Low variability cop@sds to good quality and direct laboratory or

field tests. In this cas€OV, ranges between 10% and 30%. Medium variabilityesponds to
indirect tests. In this cas€OV, lies in a range from 30% to 50%. Finally, highishiity

corresponds to empirical correlations between theasured property and the uncertain
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parameter. In this cas€OV, ranges between 50% and 70%. The valugs@Y_ as proposed

by other authors in literature are summarized ibldh3.
Angle of internal frictiony of a soil

For the soil internal friction angle, smaller values of the coefficient of variationcasnpared to
those of the soil cohesion have been proposedaraiure. Based on the results presented by
Phoon et al. (1995), the coefficient of variatidrtiee internal friction angle ranges between 5%
and 20% depending on the quality of the measuresnelRor good quality and direct

measurementsCOV,, ranges between 5% and 10%. For indirect measutep@aV, lies in a
range from 10% to 15%. Finally, for the empiricafrelations,COV, ranges between 15% and

20%. Tabld.4 provides the values of the coefficient of vaaa of the soil internal friction angle

¢ as proposed by several authors.

Author COV, (%) Type of soil
Lumb (1966) 9 Different solil types
Baecher et al. (1983) 5-20 Tailings
7 Gravel
Harr (1987) 12 sand
Wolff (1996) 16 Silt
Lacasse and Nadim (1996) 2-5 Sand
5-11 Sand
Phoon and Kulhawy (1999) 412 Clay, Silt

Table 1.4. Values of the coefficient of variation of thesoil internal friction angle

Young's modulus E and Poisson's ratiof a soll

It has been shown in the literature that soils veithall values of the elastic Young modulus
exhibit significant variability (Bauer and Pula 200 Tablel.5 presents some values of the
coefficient of variation of the Young's modul&sused in literature. Concerning the Poisson's
ratio v, there is no sufficient information about its dasént of variation. Some authors suggest
that the variability of this parameter can be neiglé while others proposed a very limited range

of variability.
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Author COV, (%)

Baecher and Christian (2003) 2—-42

Nour et al. (2002) 40 - 50
Bauer and Pula (2000) 15
Phoon and Kulhawy (1999) 30

Table 1.5. Values of the coefficient of variation of the¥oung’s modulus

Geological Strength Index (GSI) and uniaxial conggree strengtho() of a rock mass

For the rock mass parameters, there is no suffigrfiomation about their coefficients of
variation. Hoek (1998) stated that the coefficiehtvariation of the Geological Strength Index
GSIl of a blocky/disturbed or disintegrated and poarkrmass (which is used in this thesis) is
about 10%. As for the uniaxial compressive strergthrelatively large values of its coefficient
of variation have been proposed in literature. @Gllns and Kulhawy (1984) stated that the
coefficient of variation of the uniaxial compressistrength of intact rock ranges between 7% and
59% with an average value of about 27%. On therdthad, Hoek (1998) has proposed a value
of 25%.

Coefficient of correlation r

The coefficient of correlation between two soil graeters represents the degree of dependence
between these parameters. For the soil shear 8trpatgameters andg, Lumb (1970) stated that
the correlation coefficient(c, ¢) ranges from -0.7 to -0.37. Yucemen et al. (1973)ppsed
values in a range between -0.49 and -0.24, whildfiN®985) reported that(c, ¢)=-0.47.
Finally, Cherubini (2000) proposed thgt, ¢)=-0.61. Concerning the correlation coefficient
between the soil elastic propertiEsand v, this coefficient has received a little attention
literature. Bauer and Pula (2000) reported thatethe a negative correlation between these

parameters.

Autocorrelation distance (a)

A literature review on the values of the autocatieh distances of different soil types and for
different soil properties was given by EI-Ramly @30 and is presented in Tahlé. It should be
emphasized here that the autocorrelation functiod the autocorrelation distance) (are
generally site specific, and often challenging dmensufficient site data and high cost of site

investigations.
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Autocorrelation distanca(m)

Test type Soil property Soil type : -
vertical horizontal
VST cu(VST) Organic soft clay 1.2 -
VST cu(VST) Organic soft clay 3.1 -
VST cu(VST) Sensitive clay 3.0 30.0
VST cu(VST) Very soft clay 1.1 22.1
VST cu(VST) Sensitive clay 2.0 -
Qu cu(Qu) Chicago clay 0.4 -
Qu cu(Qu) Soft clay 2.0 40.0
uu cu(UU)N Offshore soll 3.6 -
DSS cu(DSS) Offshore soll 1.4 -
CPT Oc North see clay - 30.0
CPT Je Clean sand 1.6 -
CPT Jc North sea soil - 13.9
CPT Jc North sea soil - 37.5
CPT Oc Silty clay 1.0 -
CPT Oc Sensitive clay 2.0 -
CPT Oc Laminated clay - 9.6
CPT Oc Dense sand - 37.5
DMT Po Varved clay 1.0 -

Table 1.6. Values of the autocorrelation distances of soensoil properties as given by several authors (El-
Ramly 2003)

®/ST, vane shear tesf),, unconfined compressive strength test; UU, uncedfiundrained triaxial test;
DSS, direct shear test; CPT, cone penetrationD4T;, dilatometer test;

®cy(VST), undrained shear strength from VS(Q,), undrained shear strength fro@; c,(UU)x,
normalized undrained shear strength from GYYDSS),, normalized undrained shear strength from DSS;
Je., CPT trip resistancd,, DMT lift-off pressure.

[.3.2 Practical modeling of the soil spatial variabilityusing the Optimal Linear Estimation
(OLE) method

After the characterization of the spatially varyswjl propertyZ using the random field theory or
the geostatistics tools, the mean the standard deviatiary, and the autocorrelation distaneg (
are known quantities. The fact of knowing the valoéthe soil property at some given points
may allow one to approximate the valuezft an arbitrary poinK using the optimal linear
estimation method OLE. Indeed, OLE makes use oéxperimental data samples to estimate the
values of a soil property at unsampled locatiorgs Bection is devoted to the presentation of the
OLE method used to simulate the soil spatial vdrgli.e. the method that can estimate the

value of a spatially varying soil property at amiaary point using an analytical equation). It
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should be noted that the concepts used in OLE rdethibbe employed for the discretization of
a random field by the expansion optimal linearreation EOLE method as will be seen later in
this chapter.

OLE method was presented by Li and Der Kiureghted98). It is sometimes referred to as the
Kriging method. It is a special case of the regossnethod on a linear function [Ditlevsen

(1996)]. In this method, the approximated fiell is defined by a linear function of the

experimental data samplqs={Z (X1),-Z( X, )} as follows:

Z(X)=a(X)+2 h(X) Z( X)= & X+ b( Xx (1.6)
i=1
wheres is the number of experimental data samples inebimeghe approximation. The functions

a(X) andb;(X) are determined by minimizing the variance of etnerar[Z (X)=Z( X)] at

each poinX subjected tcE [Z (X)-Z( X)] =0.

The resolution of the minimization problem allowsedo obtain the unknown functioaéX) and

bi(X) and thus the approximated fielti( X ) as follows:

= T -1
Z(X)=Hs 403 2y e X~ ) (17)
whereuz andoz are respectively the mean and the standard dewiafithe random field, Z;lX

and ZTZ(W are respectively the inverse of the autocorretatnatrix >, and the transpose of the

correlation vectok The autocorrelation matriX,,. - provides the correlation between each

Z(X)3x "

element in the vectoy ={Z (X, ),....Z(X,)} and all the other elements of the same vector.

Thus, it is a square matrix of dimensisxs As for the correlation vectar, it provides the

(X)x?

correlation between each element in the vegtor{Z (X, ),...Z(X,)} and the value of the

1
field at an arbitrary unsampeled pokitThus, it is a vector of dimensi@n The autocorrelation

matrix >, and the correlation vectok are evaluated using the fitted autocorrelation

Z(X)x
function (ACF) determined after the characterizated the spatially varying soil proper#: It

should be mentioned here that the exponential fofnthe ACF is the one that is the most
commonly used in geotechnical engineering as staye®opescu et al. (2005). It is given as

follows:
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Py [(X), (X ')]=exp(—(|x%<l|j J (1.8)

Wherea is a vector that contains the values of the autetation distances as follows;= (ax)
in the case of a one-dimensional random field:,(aK : ay) in the case of a two-dimensional (2D)

random field anda = (aX ', q) in the case of a three-dimensional (3D) randordl fieor n=1,
the autocorrelation function is said to be expoiatwof order 1; however, for n=2, it is said to be
square exponential.

Each elemen( ZX; )

X Ii,

_of the autocorrelation matriz., ., and each elemer(tz ( )X) of the
J , Z(X):

correlation vectoz are calculated using Equatidr8] as follows:

Z(X)x

(ZXJX)i,j:pZ [Xi’XJ:I (1.9)

(Zz(x);)()i =p, [X,, X] (1.10)
wherei=1, ..., s,j=1, ...,s andX is the arbitrary unsampled point.

Finally, one can see that in Equatidi/), the approximated random fielﬁ(x) Is only a

function of the locatiorX because all the other terms in this equation acsvk. As a result, one
needs to introduce a value for the locati®¥nto obtain an approximated value of the

corresponding propertf (X ).

1.3.3 Brief overview of the numerical random fields discetization methods

For computational purposes, the real random #eldhich may be represented by an infinite set

of random variables has to be discretized in otdeyield a finite set of random variables

{)(j '] :1,...,3}, which are assigned to discrete locations. Iffthie element/finite difference

method is the method used in the mechanical asaligsis convenient to evaluate the random
field values in the same way as the finite elenfi@ié difference model (i.e. at the nodes of the
deterministic mesh or at the element mid pointshaf deterministic mesh). The discretization
methods can be divided into three main groups [&uaind Der Kiureghian (2000)]. Each group
involves a number of discretization methods as beageen below. After a brief presentation of
the different methods of the three groups, the E@idthod used in this thesis will be presented

in more detail.
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1.3.3.1 Point discretization methods

In these methods, the random variabjgsused in the analysis are selected values af some

given pointsX;. This group involves the following methods:

a) Midpoint (MP) method

This method was introduced by Der Kiureghian and(¥#98). In this method, the random field
is discretized by associating to each element efithite element/finite difference mesh, a single

random variable defined as the value of the fi¢ltha centroid of that element.

b) Shape function (SF) method

This method was presented by Liu et al. (1986dtbis similar to the MP method with the
difference that the random field is discretizeddsgociating a single random variable to each
node of the finite element/finite difference meshus, the value of the random field within an

element is described in term of these nodal vadneisthe corresponding shape functions.

c) Integration point (IP) method

In this method, the random field is discretizedalsgociating a single random variable to each of

the integration points appearing in the finite edatrresolution scheme.
1.3.3.2 Average discretization methods

a) Spatial average (SA) method

This method was proposed by VanMarcke and Grigd@83). It consists in approximating the
random field in each element of the finite elenfemnté difference mesh by a constant computed
as the average of the original field over that eein This method was extensively used in

geotechnical engineering for the study of the ¢féé¢he soil spatial variability.
1.3.3.3 Series expansion methods

In the series expansion discretization methodsrahdom field is approximated by an expansion
that involves deterministic and stochastic fundiomhe deterministic functions depend on the
coordinates of the point at which the value of thedom field is to be calculated. This group

involves the following methods:

a) Karhunen-Loeve (KL) expansion method
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This method was presented by Spanos and Ghaner)(18&his method, the random field is
expressed as follows:

B N
Z(X)=; +a, )[4 &8(X) (1.12)
j=1
Where 1, and o, are the mean and standard deviation of the rarfd®chZ, (4,,¢ ) are the

eigenvalues and eigenfunctions of the autocorgelditinction p, of the random field Zgj is a

vector of uncorrelated standard normal random kgsand\ is the number of terms retained in

the KL expansion. It should be noticed here tfatdre stochastic variables that represent the

random nature of the uncertain soil parameter. Hewethe eigenfunctiongpj (X )are the

deterministic functions of the KL expansion. Thegncbe evaluated as the solution of the

following integral equation:

[0 (X X )f (X ) dX =2, f (X) (.12)
Q
This integral can be solved analytically only fawf types of the autocorrelation functions

(triangular and first order exponential functioas)d for simple geometries. Otherwise, it has to

be solved numerically.

b) Orthogonal series expansion (OSE) method

This method was proposed by Zhang and Ellingwo®@®4). It was introduced to avoid solving

the eigenvalue integral of Equationl@) using a complete set of orthogonal functidrrjlix)

(i.e. Legendre or Hermite polynomials). Thus, irstmethod, the random field is expressed as

follows:

- N
Z(X)=y +a, ) x;h (X) (1.13)
=1
where y; are zero mean random variables with unit variaace N is the number of terms

retained in the expansion.

c) Expansion optimal linear estimation (EOLE) metho

This method was introduced by Li and Der Kiuregh{@893). It makes use of the (OLE) or the
kriging method concept in the special case of asGan random field. This method uses a
spectral representation of the autocorrelation imafrthe Gaussian random field and it is used in

this thesis. Thus, it will be presented in moreaddtereatfter.
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1.3.3.4 Conclusions

As stated by Sudret and Der Kiureghian (2000), ha MP, SF, IP, and SA methods, the
discretized random field can be expressed asta Bnimmation as follows:

- N
Z(X)=> x;9(X) (1.14)
j=1
whereN is the number of terms retained in the discretraprocedureg (X ) are deterministic

functions andy; are random variables obtained from the discretingbrocedure. They can be

expressed as weighed integrals of the real randelch Z over the volume&? of the system as

follows:

X, =[Z (X )w(X)do (1.15)
Q
where a)(X ) is the weight function. The values of the weighmdtions and the deterministic

functions for all the above mentioned methods avergin Sudret and Der Kiureghian (2000)

and they are reported in Appendix A of this thesis.

Sudret and Der Kiureghian (2000) have stated that deterministic functiongg given in

Equation [.[14) are not optimal in the case of mid point (MBpatial average (SA), shape
function (SF) and integration point (IP) methodsisT means that the number of random
variables involved in the discretization schemedsminimal. Thus, of particular interest are the

series expansion methods. In all these methodsiuhwer of the deterministic functions is

optimal and thus, the number of random variableslired is minimal.

As a conclusion, all the discretization methodsseneed in the first two groups provide non
optimal solution which makes them unattractive sofdr random field discretization. This is

because the number of random variables neededstvetlize the random fields using these
methods is mesh depending. Thus, one obtains @ tangber of random variables for large finite
element/finite difference models. The series exjpansethods solve this problem. They provide
the optimal number of random variables needed torately discretize the random field which

makes them powerful tools for random field dis@ation. From this group, the eigenvalue
problem of the KL method given in Equatidril@) can be solved analytically only for few types
of autocorrelation functions and geometries. As ttoie OSE method, it avoids solving the
eigenvalue problem of the KL method given in Equaif.12). On the other hand, this method is
less attractive in terms of accuracy when comp#wdtie KL and the EOLE method [cf. Sudret
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and Der Kiureghian (2000)]. For this reason, thd.E@nethod which uses the concept of OLE
method is selected herein to perform the randohd @iescretization. This method is described in

some details in the following section.

[.3.4 The expansion optimal linear estimation (EOLE) metlhd for random field

discretization

The expansion optimal linear estimation method (EPlvas proposed by Li and Der Kiureghian
(1993). It makes use of the concepts employed irE @br the kriging method) which was
presented in a previous section. This method oafysdwith uncorrelated Gaussian random fields

because it uses a spectral representation of ttervg ={Z (X1),-Z( X, )} . To overcome the

inconvenience of modeling only uncorrelated Gausséndom fields, Viechovsky (2008) has

extended this method to cover the general casmse$-«orrelated non-Gaussian random fields.

In this section one first presents EOLE method psed by Li and Der Kiureghian (1993) to
model uncorrelated Gaussian random fields. Thenexttension by Vi@chovsky (2008) to cover

the general case of two cross-correlated non-Gausandom fields is presented.

In EOLE method, the fact that the spatially varysgl property is assumed to be Gaussian

allows one to spectrally decompose its autocoicglanatrix =, that includes the correlation
between each element of the vecppr{Z (X,),...Z(X,)} with all the elements of this same

vector. Thusy ={Z (X,),....Z( X, )} can be written as follows:

=t +0, > A&y (1.16)
j=1
where §; (=1, ..., 9 are independent standard normal random varicdnels(A;,¢ ) are the

eigenvalues and eigenvectors of the autocorrelatiatnix >, =~ verifying2 . @ =A@ .

Substituting Equationl.(l6) in to Equation I(6) and solving the OLE problem leads to the

following representation of the approximated randi@td Z (X ):

Z(x>—uz+azf (2) =200 (1.17)

whereuz; andoz are respectively the mean and the standard dewiati the Gaussian random

field Z, Is the correlation vector between each elemettenvectory and the value of

Z(x,y)x
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the field at an arbitrary poi, ¢, is a standard normal random variable, amlthe total number

of point samples.

It should be mentioned that the series expansie@ngin Equationl(17) can be truncated after
N<s terms. This can be done by sorting the eigensd|ua a descending order. This numibér

should assure that the variance of the error isllemthan a prescribed tolerance=10%.

Notice that the variance of the error for EOLE iigeg by Sudret and Der Kiureghian (2000) as

follows:

Var [ Z(X)- Z( X) |=0% {1—%%((44)T ZZ(XM)Z} (1.18)

=

where Z (X )and Z (X ) are respectively the exact and the approximateesabf the random

field at a given poinK and ( @ )T is the transpose of the eigenvecipr.

[.3.4.1 Extension of EOLE for the generation of two crosgeated non-Gaussian random
fields

Let us consider two cross-correlated non-Gaussaadam fieldsZ ® (X ) (i =1,2) described
by: (i) constant means and standard deviatigns §z; | =1,2), (i) non-Gaussian marginal

cumulative density functionsG; (i =1,2), (i) a target cross-correlation matrix

r, r
che :[ as l’zj and (iv) a common autocorrelation functigl® [(X), (X)].

21 2,2

Since EOLE only deals with uncorrelated Gaussiamdoen fields, the common non-Gaussian

autocorrelation matrixiff evaluated using Equatiohq) (where p, in this equation is the non-

Gaussian autocorrelation functigr}'®) and the target non-Gaussian cross-correlationixnat'®

should be transformed into the Gaussian space tisengjlataf correction functionmoposed by
Nataf (1962). This can be done by applying theofeihg formulas:
(Z')‘(;X)i’j =) (Z)'j‘j()l . i=1,...,s;  j=1,....S and k=1,2 (1.19)

Ci, :cq’jCleG : i=1,2 and j=1,2 (1.20)

whereq ; isthe correction factor.
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As a result, one obtains two Gaussian autocoreelatiatricesy’., and 3. , and a Gaussian

XX
cross-correlation matri€ that can be used to discretize the two Gaussiaaora fields (of zero
mean and unit variance) using EOLE as follows:

D
Kij

~ N N : .
ZIG(X):Z \//17I ' ((d] ) .ZIZ(X);)( ' I:1' 2 (|21)
i=1 A
where (/1].i ¢ ; i=1, 2) are the eigenvalues and eigenvectors of the tauss&an autocorrelation

matrices Ei)(; ,+ i=1, 2) respectively,z is the correlation vector between the random vecto

Z(X)x
x and the value of the field at an arbitrary po{ras obtained using EquatioinlQ), and finallyN

is the number of terms (expansion order) retainethe EOLE method. Notice finally thaki'(j ;

i=1, 2) are two cross-correlated blocks of independeahddard normal random variables
obtained using the Gaussian cross-correlation m@tbetween the two fields as follows: (i) one
should compute the diagonal eigenvalues matfixwith its corresponding eigenvectors matrix
@° of the Gaussian cross-correlation mat@ixusing the spectral decomposition of the cross-
correlation matrixC, and (ii) generate the block sample veatSrwhich contains the two cross-

correlated blocks /(i'? i=1, 2) of independent standard random variables usiegfdhowing

J' )

formula:

(k°) =0° (A°)2g" (1.22)
where @° is a (Ax2N) block matrix resulting from the multiplication @ach element in the
matrix @© by the unit matrix of ordeN (the expansion order){® is a (DNx2N) block matrix
resulting from the multiplication of each elementthe matrix4° by the unit matrix of ordeN

and E:{El = (Ellf,ﬁ) 2= (Ef,...ENZ)} is a block vector which contains two blockg (i=1,
2) of N standard Gaussian independent random variablesébr one.

Once the two Gaussian cross-correlated randomsfigld obtained, they should be transformed

to the non-Gaussian space by applying the folloiimgula:

ZiNG(X):G,‘l{CD [ ZG(X)]} i=1, 2 (1.23)
where ®(.) is the standard normal cumulative density functibshould be mentioned here that
the series given by Equatioh2l) are truncated for a number of terids(expansion order)

smaller than the number of grid poirgsafter sorting the eigenvalues\ii(; =1, ...,N) in a
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descending order. This number should assure tleavdhiance of the error given in Equation
(1.18) is smaller than a prescribed tolerance asigusely mentioned. In order to clarify the

EOLE method and its extension by téohovsky (2008), a detailed numerical example is
presented in Appendix B to illustrate the differeséps for generating cross-correlated non-

Gaussian random fields.

.4 TIME VARIABILITY OF THE SEISMIC LOADING

An earthquake is usually initiated by a seriesrdgular slippages along faults, followed by a
large number of random reflections, refractionspdrsions and attenuations of the seismic
waves within the complex ground formations throughich they travel. Consequently, an
earthquake Ground-Motion (GM) exhibits nonstatidiyain both time and frequency domains
[Rezaeian and Der Kiureghian (2008)]. The tempooaistationarity is due to the variation of the
intensity of the earthquake GM over time. This msi¢y evolves with time from zero to a roughly
constant value representing the phase of strongpmand then decreases gradually to zero. The
frequency (or spectral) nonstationarity is the geanf the frequency content of the earthquake
GM over time. Typically, high-frequency compressibfP) waves tend to dominate the initial
few seconds of the motion. These are followed bylenate-frequency shear (S) waves, which
tend to dominate the strong-motion phase of theirgtemotion. Finally, low-frequency surface

waves tend to dominate the end of the motion.

The growing interest to perform probabilistic dynananalysis in recent years has further
increased the need for stochastic modeling of gagke GMs. This is because in such analysis,
one needs a large number of recorded ground motibmsever, for many regions, the database
of recorded motions is not sufficient. As a restligre is an increasing interest in methods for

generation of synthetic GMs.

For many years, stochastic processes and moresehethe zero-mean Gaussian process have
been used to model earthquake GMs [cf. ShinozudleSamo (1967), Liu (1970), Ahmadi (1979),
Kozin (1988), Shinozuka and Deodatis (1988), Z€f\@88), Papadimitriou (1990), Conte and
Peng (1997), Rezaeian and Der Kiureghian (2008)Remheian and Der Kiureghian (2010)]. In
order to establish a valid model to simulate stetibha earthquake GMs, statistical
characterization of existing earthquake GM is neassto correctly model the corresponding
nonstationarities [cf. Liu (1970), Ahmadi (1979r¥a (2009) and Rezaeian and Der Kiureghian
(2008)].

39



[.4.1 Statistical characterization of the time variability of earthquake GMs

An earthquake GM is nonstationary in both the tiamel the frequency domains. Thus, it is
statistically characterized by a time-varying stmadd deviation (i.e. the standard deviation
changes as a function of time) and a time-varyungaorrelation function (or the corresponding
power spectral density (PSD) function [cf. Figudg). It should be mentioned here that the PSD
function represents the autocorrelation functiorthea frequency domain and it is obtained by
applying the Fourier transform on the autocorretafunction. The PSD function is thus used to
statistically characterize the GM in the frequerdymain. In particular, the PSD function
provides the time-varying (i) predominant frequemdyich gives a measure of where the spectral
density is concentrated along the frequency axid,(a) frequency bandwidth, corresponding to

the dispersion of the spectral density around tedgminant frequency [cf. Figute].

% Predominant frequency f;
2 Bandwidth =f,- f,
—\—m_k o
Time [sec] 20 tH 40 60 80
® Frequency [H7] Frequency [Hz]
Figure I.1. Time-varying PSD function Figure 1.2. Predominant frequency and bandwidth

[.4.2 Modeling of the stochastic earthquake GMs

A large number of stochastic models that deschiestairthquake GM for a specific site by fitting
to a recorded motion with known earthquake and eitaracteristics have been developed.
Formal reviews are presented by Liu (1970), Ahn{aélir9), Shinozuka and Deodatis (1988) and
Kozin (1988). The existing stochastic models cawlbssified into four categories [Rezaeian and
Der Kiureghian (2008)]: (i) random processes whale obtained by passing a white noise
through a filter and then multiply it by a time-mddtion function to ensure the temporal
nonstationarity. These models ignore the nonstatignin the frequency domain [Shinozuka and
Sato (1967)]. (i) Random processes which are nbthby passing a Poisson pulse train through
a linear filter [Cornel (1960)]. Through modulatiomtime of these processes, the two types of
nonstationarity can be taken into account. The nmdijéiculty remains to link these processes to

target recorded acceleration time-histories. Rigndom processes which are obtained using the
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ARMA models (Auto-Regressive Moving Average) [ Cort al. (1992)] in which the variation
of the model parameters over time allows to take sccount both types of nonstationarity.
However, it is difficult to relate the model paraers to the physical aspects of the earthquake
GM. (iv) Random processes which are obtained biyuarforms of spectral representation [Der
Kiureghian and Crempien (1989)]. These models regeixtensive treatment of the target

recorded acceleration time history.

The stochastic model used in this thesis is thedaweloped by Rezaeian and Der Kiureghian
(2008, 2010). It consists in passing a Gaussiartewmbise through a linear filter. However,

unlike previous models, the filter has time-varypayameters, which allows the variation of the
spectral content with time. Temporal nonstatiogasitachieved by modulation in time.

The next subsections are organized as followst,Frbrief description of the stochastic model
used in this thesis is presented. It is followedahyresentation of the different parameters related
to this model.

1.4.2.1 The stochastic model description

For the generation of the stochastic synthetichgadke GMs, the model given by Rezaeian and

Der Kiureghian (2008, 2010) is used herein. Ircdstinuous form, it is given as follows:

—00

. 1
X(t) =q(t, a){ j h[t-7,A()] W(r)dr} (1.24)
g,(t)
In this expressiong(t, @) is a deterministic, positive, time-modulating ftinon with parameters
a controlling the shape and the intensity of the GM7) is a white-noise process; the integral
inside the brackets is a filtered white-noise precggh h [t -7, A(r)] denoting the Impulse-

Response Function (IRF) of the filter with time-vagy parameters A(r); and

gﬁ(t):tj h?[t-7, A(r)])dr is the variance of the integral process. Becau$ethe

normalization byo, (t), the process inside the curved brackets has tamtlard deviation. As a
result,q(t, a) equals the standard deviation of the resultinggseX (t) . It should be noted that
the modulating functiorg(t, a) completely defines the time-varying standard dewiabf the

presented stochastic model, whereas the form ofiltee IRF and its time-varying parameters
define its time-varying power spectral density fiorct(PSD). In other words, simulating a

stochastic synthetic earthquake GM consists inipgss Gaussian (white-noise) process (which
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is the source of stochasticity) through a linelerfiwith time-varying parameters. The obtained
filtered white noise (which represents the timeyirag PSD function of the model) is then
normalized it by dividing it by its standard dewwst. Thus, one obtains a normalized filtered
white-noise with nonstationarity in the frequenoydin. Finally, the temporal nonstationarity is
insured by multiplying the normalized filtered wdiboise by a time-modulation function (which

represents the time-varying standard deviatiomefodel).

In order to facilitate digital simulation, the shastic model given in Equation.Z4) is

discretized in the time domain as follows [cf. R&aa and Der Kiureghian (2008)]:

Yhlt-t,aq )& ¢)]u
X =q(t, a)| = (1.25)

JZ h?[t-t, @ ). & 6)]

wheret, =i xAt fori=0, 1, ..., N Atis a small time step and =%+1 with T being the total

duration of the motion. In most earthquake engingeapplicationsAt =0.0X% . Finally,u are a
set of standard normal random variables repreggnindom pulses at the discrete time paints
Thus, these random variablesmay be regarded as a train of random pulses thpesent
intermittent ruptures at the fault. The filtdar[t -, )l(r)] may represent the medium through

which the seismic waves travel (i.e. the soil megiuThus, the obtained earthquake GM is the

superposition of the filter response to those ramgalses.

For a given modulating function and filter IRF,ealization of the process in Equatidr2d) is

obtained by simulating at set of standard normadloan variablesi. fori=1, ..., N
1.4.2.2 The model parameters

In the current work, a ‘Gamma’ modulating functismas selected. This choice was justified by
the fact that this type of function captures thmetevolution of the intensity using a small

number of parameters [Rezaeian (2010)]. It is ga®ifollows:

qt, a)=at®™ expCayt) (1.26)
where a =(a,>0,a,>1,a,> 0). Of the three parameterg; controls the intensity of the
process,u, controls the shape of the modulating function agdontrols the duration of the

motion. These parameters =(a,, a,, a,) are related to three physically based parameters
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(I, Dy s t,iy) Which describe the real recorded GM in the timedin. The first variablel
tn

is the so-called Arias Intensityl () given by: E:% j [att)]” dt [Kramer (1996)]. The
0

second variabl®s_g5 represents the effective duration of the motidns Idefined as the time
interval between the instants at which 5% and 9%% @ expected _ are reached respectively.
Finally, the third variabléyq is the time at the middle of the strong-shakingggh It is selected

as the time at which 45% level of the expectedis reached. The relationships between

a=(a, a, a)and(l, D, .t ,)are given in Appendix C.

For the filter IRF, a form that corresponds to teeymlo-acceleration response of a single-degree-
of-freedom linear oscillator was selected. For naetails on the pseudo-acceleration response of

a single-degree-of-freedom linear oscillator, th&der may refer to Appendix D. It is given by:

h[t—r,A(r)]:1“_’}(?(”exp[—zf(r)wf(rm—r)]xsin[wf NEZ O] st 027)

=0 otherwise

where A(7) =(a (7), {; (1)) is the set of time-varying parameters of the IREhwa (7)
denoting the frequency of the filter anf] (r) denoting its damping ratio. Of these two
parameters,«y (r) controls the predominant frequency of the procass , (7) controls its
bandwidth. These two parametets(r) and {; (7) are related to two physical parameters that

describe the recorded GM in the frequency domathwahich are respectively the predominant
frequency and the bandwidth of the GM. As a meastitke evolving predominant frequency of
the recorded GM, the rate of zero-level up-crossiigyconsidered, and as a measure of its
bandwidth, the rate of negative maxima (peaks) [@ogitive minima (valleys) is considered. In
Rezaeian and Der Kiureghian (2008), the evolutioihe predominant frequency was determined
by minimizing the difference between the cumulativean number of zero-level up-crossings of
the process in time with the cumulative count o ttero-level up-crossings of the recorded
accelerogram. The mean number of zero-level upsorgs being the mean number of time per
unit time that the process crosses the level zenm below. The bandwidth parametér(7),
was determined by minimizing the difference betw#®m mean rate of negative maxima and

positive minima with the observed rate of the samantity in the recorded accelerogram. Details

on the chosen filter IRF which has a form that esponds to the pseudo-acceleration response of
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a single-degree-of-freedom linear oscillator, irieidn to the procedure used to determine the

parametersi(7) = (w (1), ¢, (7)) of this filter are given in Appendix C.

.5 PROBABILISTIC METHODS FOR UNCERTAINTY PROPAGATI ON

Development of efficient methods for uncertaintyogagation in order to perform the
probabilistic analyses has gained much attentiorerrent years due to the importance of
introducing uncertainties in the model parametéh& uncertainty propagation aims to study the
impact of input uncertainty on the variation of adel output (response). This can be done by
first defining the analytical/numerical determimgsinodel. It should be mentioned here that the
chosen deterministic model can be complex and/ompedationally-expensive (Step B in Figure
[.3). The second step consists in identifying theautain input parameters and modeling them by
random variables or random fields (Step A in Figusg The final step consists in propagating
the uncertainty in the input parameters throughditerministic model (Step C in Figuir8). In

the probabilistic framework, all of the relevantormation regarding the uncertainty of the model
output is contained in its PDF. Thus, determining PDF of the system response is the main
goal in all uncertainty propagation methods. Howetlee fact that we are considering numerical
models implies that the relation between the modekrtain inputs and the system response can
not be represented by an analytical expressionsé&prently, it is impossible to obtain a simple
analytical expression of the PDF of the systemarse. However, for design purposes, all the
information contained in the PDF are not necesséys, depending on the type of study that is
carried out, only a set of probabilistic outputa t& used. These probabilistic outputs may be the
statistical moments (mean and standard deviatioteoprobability of failure (or the probability
of exceeding a given threshold value). The diffeqgmbabilistic outputs may be computed as

follows:

ConsiderM input random variablesX(, ..., %1) gathered in a vectof, and letfx(X) denote the
joint PDF of the seK. Furthermore, we note that the system oufpg(X). is a function of the
input vectorX. The expressions of the first two statistical mateeof the system response are

given by:

e :jg(x)fX (X )dXx (1.28)

2
g =[[g(X )= ] fi (X) dX (1.29)
As for the probability of exceeding a threshblghy its expression is given as follows:
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Po= [ fi (X)dX (1.30)

G<0
whereG is the performance function given@s [ max—1~

From these equations, one can notice that theststatimeasures are expressed as an integral and
can be seen as a numerical integration problems,Thariety of methods exists for their
computation. These methods can be divided intornvain categories which are the simulation

methods and the metamodeling methods.

Step A Step B Step C
Quantification of Computation of the Uncertainty
sources of uncertainty system response propagation
Random Model

variables/fields
Materials
/ \ properties
Loading

Figure 1.3. General sketch for the probabilistic analyses

Response variabilit
Probability of failur

.5.1 The simulation methods

This section is devoted to the presentation ofdineulation methods used for the uncertainty
propagation. This category regroups the universahti® Carlo simulation (MCS) methodology
and other more advanced simulation techniquestfieslmportance sampling (IS) and the Subset
simulation (SS)). In spite of being rigorous andust, the simulation methods are well-known to
be very time-expensive especially when dealing iitite element or finite difference models
which do not offer an analytical solution of theatved problem. The time cost is due to the fact
that these methods require a great number of célithe deterministic model to rigorously
determine the PDF of the system response. The adgagsimulation techniques (i.e. the IS and
the SS) are all based on the modification of theSvi@thod in order to simulate more points in a
particular zone of interest and thus they are \atyactive when the probabilistic output of
interest is the probability of failure. Thus, theCE methodology remains the origin of all the
advanced simulation techniques and deserves todbly presented. This is followed by a brief
presentation of the SS method which is the mostl wskvanced simulation method for the

computation of the probability of failure.
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[.5.1.1 Monte Carlo Simulation (MCS) methodology

The Monte Carlo simulation is a universal methodvaluate complex integrals. It consists in
generatingk samples which respect the joint probability dgnginctionfx(X) of theM random
variables Xy, ..., %1) gathered in a vectof. For each sample, the system response is caldulate

Thus; for the K samples, one obtaiksvalues of the system response gathered in a vector

r={r(x m),...,r(x““)} which may be used to determine the estimatorshef first two

statistical moments of the system response (ieentban and the standard deviation). These two

estimators of the first two statistical momengs (7. ) are given as follows:

K

=lr( ) (1.31)

-1
K

g, = ﬁlKl[r(x (i))_ﬂrT (1.32)

It should be mentioned here that MCS methodolo@pigicable whatever the complexity of the
system is. However, a very large number of reabtimatis required to obtain a rigorous PDF of
the system response. Thus, MCS methodology is mattipally applicable when the

deterministic model is computationally-expensivel @specially when computing small failure

probabilities.
[.5.1.2 Subset Simulation (SS) methodology

The basic idea of subset simulation is that thellsfadure probability can be expressed as a
product of larger conditional failure probabilitie€onsider a failure regioR defined by the

condition G<0 whereG is the performance function and (X(l),...,x(K)) be a sample oK

realizations of the vectof composed oM random variables¥, ..., %). It is possible to define

a sequence of nested failure regioks, ..., F, .., Rk, of decreasing size where
FU..0F 0..0F, =F (Figurel.4). An intermediate failure regidf can be defined b§<C; where

Ci is an intermediate failure threshold whose vatulatiger than zero. Thus, there is a decreasing
sequence of positive failure thresholds ..., G, ..., G, corresponding respectively t, ...,
Fj,..., Fn whereCy>...>Cj>...> C=0. In the SS approach, the space of uncertaimeas is

divided into a numbem of levels with equal numbefs of realizations(x (1),...,X(Ks)). An

intermediate leve] contains a safe region and a failure region ddfiweh respect to a given
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failure thresholdC;. The failure probability corresponding to thisemhediate level is calculated

as follows:

P(F|F ) =%Z|Fj (x ®) (1.33)

where I (X(k)) =1if x®¥p F andlI_ (X(")):O otherwise. Notice that in the SS approach, the

first Ks realizations are generated using MCS methodol@ggrding a target joint probability
density functionfx(X). The nextKs realizations of each subsequent level are obtatrsadg

Markov chain method based on Metropolis-HastingsH)Valgorithm.

Fu=F

Level m

" .
-~
-'- W
Level 1], i S _
H e ot
. ‘
Level 0 ey e D N
‘.: e : 5 ., 2 v .
Sora +"
- i

p Ce=G=0

Figure 1.4. Nested Failure domain

The failure probability P(F)=P(F,) of the failure regionF can be calculated from the

sequence of conditional failure probabilities dtofes [Au and Beck (2001)]:

P(F)=P(F,)=P( Fl)l_! P(FIF.) (1.34)
J:
For more details on the SS approach and its extens the case of spatially varying soil
properties, the reader may refer to Ahmed and $o{#812) and Ahmed (2012).

I.5.2 The metamodeling techniques

To overcome the inconvenience of the simulationhogs$, the metamodeling techniques are

proposed in this regard. The aim of these techsigsid¢o replace the original computationally-
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expensive deterministic model by a meta-model @e.analytical equation). A variety of
metamodeling techniques exist. The Response SulMatkodology (RSM) [Box et al. (1978),
Bucher and Bourgund (1990), Myers and MontgomeB89%)] is a well known approach for
constructing simple approximation of complex numarimodel using polynomial regression.
Another interesting metamodeling technique is thigikg method [Sacks et al. (1989), Booker
et al. (1999)] which is based on interpolation.dfy) the Polynomial Chaos Expansion (PCE)
[Spanos and Ghanem (1989), Isukapalli et al. (1L98R) and Karniadakis (2002), Berveiller et
al. (2006), Sudret et al. (2006), Sudret and Béeregj2008), Huang et al. (2009), Blatman and
Sudret (2010)] provides a rigorous approximatiort@hplex numerical models with reasonable
computation effort. This method has gained largenéibn due to its efficiency. The next
subsections aim to briefly present the RSM anditiging method. They are followed by a more
detailed presentation of the PCE methodology wisdhe metamodeling technique employed in

this thesis.
[.5.2.1 The Response Surface Methodology (RSM)

The Response Surface Methodology (RSM) aims atoappating the system responsgX) by
an explicit function of the random variables. Thestpopular form of this function is a second

order polynomial model, which can be expressed as:

M M
Fesu (X ) =3+ aX;+> b X (1.35)
i=1 i=1
where X; are the random variable$/ is the number of random variables a(na),b,) are
coefficients obtained by the least squares metlkddch minimizes the sum of the squares

between the predicted valu€sy,, (X (i)) and the model valuer ={r(x ®),...r (X (K))} where

K is the number of samples points. It should be exsizled here that the second order polynomial
used in the RSM method has limited capability touaately model highly nonlinear response
surfaces. Higher-order polynomial models can bel usemodel a highly nonlinear response
surfaces; however, instabilities may arise [cf.tBar(1992)]. Furthermore, this requires a large
number of sample points. This enormously incredlsescomputation time and make the RSM

solution inadequate in this case.
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[.5.2.2 The Kriging Method

This method was presented and detailed in setBob for the approximation of a random field
at unsampled points using the values of this fatldampled points. This method is used herein to
approximate the system respoiig¥) at any poiniX where the sample points are obtained in this

case using a simulation technique (e.g. the MomtdoGimulation). Thus, foK sample points,
one obtainsK values of the system response gathered in a vir ={r(x ®),...r (X (K))}

which may be used to obtain the approximated systsponse using the Kriging method as
follows [Jin (2005)]:

T -1
rKﬁging (X )=aO+bOZr(x);r2r;r(r_ 80) (|-36)
where ap and by are respectively the mean the standard deviatiothefsystem responses

r ={F(X “’),...,r(x (K’)}, Zj and ZTF(X)_r are respectively the inverse of the autocorrafatio
matrix 2. and the transpose of the correlation veEtgr, . It should be mentioned that a row

I of the autocorrelation matrix gives the valuestld correlation between the value of the
response at the sampled pcr(x (‘)) and all the values of the response at the sanpueds
r:{r(x (”),...,r(x““)} and 3.,  is a vector whose elements provide the correlation

between the value of the response at the unsarppliet/(X) and the values of the response at

the sampled points gathered in the ve«r ={r(x ®),...r(x “”)}. Notice however that the

ACF used to determine the autocorrelation mafjx. and the correlation vectaX, , . is
obtained by fitting one of the analytical ACF givienTablel.1 to the sample ACF obtained using

the available system respon:” :{r (x ®),..r(x (K))} :

1.5.2.3 The Polynomial chaos expansion PCE methodology eldssical truncation scheme

The polynomial chaos expansion (PCE) aims at repmaa complex deterministic model (i.e.
finite element/finite difference numerical model) & meta-model. This allows one to calculate
the system response (when performing MCS) usingporoximate simple analytical equation
[Spanos and Ghanem (1989), Isukapalli et al. (199899), Xiu and Karniadakis (2002),
Berveiller et al. (2006), Huang et al. (2009), Bianh and Sudret (2010), Li et al (2011), Mollon
et al. (2011), Houmadi et al. (2011), Mao et a01(2), Al-Bittar and Soubra (2012)]. Thus, the
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metamodel may be used to perform the probabilastilysis with a significant reduction in the

computation time.

The PCE makes use of multivariate polynomials wtaod orthogonal with respect to the joint
probability density function of the input randomct@. The different types of the joint
probability density functions and their correspogdmultivariate polynomials are given in Table
1.7.

probability density functions Polynomials

Gaussian Hermite
Gamma Laguerre
Beta Jacobi
Uniform Legendre

Table I.7. Usual probability density functions and theircorresponding families of orthogonal polynomials [Xu
and Karniadakis (2002)].

In this work, the Gaussian joint probability depdinction and its corresponding multivariate
Hermite polynomials are used. Notice that the coefits of the PCE may be efficiently
computed using a non-intrusive technique wherad#terministic calculations are done using for
example a finite element or a finite differencetsafe treated as a black box. The most used
non-intrusive method is the regression approachkfisalli et al. (1998, 1999), Sudret et al.
(2006), Huang et al. (2009), Blatman and Sudref@20Li et al (2011), Mollon et al. (2011),
Houmadi et al. (2011), Mao et al. (2012), Al-Biteard Soubra (2012)]. It is used in this thesis.

The PCE methodology can be described as follows:

Consider a mechanical model withl input uncertain parameters gathered in a vector
X={X,, .., X, }. The different elements of this vector can havéedint types of the
probability density function. In order to represent mechanical system response by a PCE, all
the uncertain parameters should be representeduioygae chosen PDF. Tablg presents the
usual probability density functions and their cepending families of orthogonal polynomials.
Based on the Gaussian PDF chosen in this worksybem response can be expanded onto an
orthogonal polynomial basis as follows:

Gl P-1
Coce (€)= D a,W,(8) 0D a,W,(4) (1.37)
B=0 £=0
where & is the vector resulting from the transformation tbe random vectoiX into an

independent standard normal spdees the number of terms retained in the truncasoneme,
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aps are the unknown PCE coefficients to be computed &, are multivariate (or

multidimensional) Hermite polynomials which arehmgjonal with respect to the joint probability
density function of the standard normal randomaeg£tThese multivariate Hermite polynomials
can be obtained from the product of one-dimensidi@tmite polynomials of the different
random variables as follows:

M

W,=[]1H, &) (1.38)

Where H, (.) is thea;-th one-dimensional Hermite polynomial amdare a sequence df non-

negative integer%al, Y } . The expressions of the one-dimensional Hermitgnpmials are

given in Appendix E. In practice, one should truecthe PCE representation by retaining only
the multivariate polynomials of degree less tharegual to the PCE order (i.e. the classical

truncation scheme). Notice that the classical @tioo scheme suggests that the first order norm

||, of any multivariate polynomial , should be less than or equal to the oplef the PCE as

follows [Blatman (2009)]:

M
laf, =2 a <p (1.39)
i=1
Using this method of truncation, the numBesf unknown PCE coefficients is given by:
p-M+p)

M Ip!
As may be seen from Equatio4Q), the numbeP of the PCE coefficients which is the number

(1.40)

of terms retained in Equation.37) dramatically increases with the numbdr of random
variables and the ordgr of the PCE. This number becomes very high in #secof random
fields where the number of random variables isiSgant.

Once the coefficientas of the PCE given by Equatioh37) have been computed, the statistical
moments (mean, standard deviation, skewness, ataklg) can be calculated with no additional
cost. This can be done by performing Monte Camaugations on the meta-model and not on the
original computationally-expensive finite elemeimite difference numerical model. This
significantly reduces the cost of the probabilistitalysis since a large number of Monte Carlo
simulations (say 1,000,000) can be performed iregligible time when using the metamodel.
The next subsection is devoted to the method usethé computation of the coefficierdg of

the PCE using the regression approach.
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Computation of the PCE coefficients by the regmsapproach

Consider a set oK realizations{¢® =(¢,...,§, ),...£*) =(¢,,...&, ) tof the standard normal
random vectolf. These realizations are called experimental de@d) and can be obtained
from Monte Carlo (MC) simulations or any other sdingp scheme (e.g. Latin Hypercube (LH)
sampling or Sobol set). We nor={r({(1)),...,r({“<))}, the corresponding values of the

response determined by deterministic calculatidriee computation of the PCE coefficients
using the regression approach is performed usmdpilfowing equation:

a= (/7T/7)‘1/7T r (1.41)
where the data matrixis defined by:

M5 =¥(&E), i=1..K, B=0,.P-: (1.42)
In order to ensure the numerical stability of treated problem in Equatioh41), the size&K of
the ED must be selected in such a way that thebmafr;)™ is well-conditioned. This implies
that the rank of this matrix should be larger tbarqual to the number of unknown coefficients.
This test was systematically performed while sajvihme linear system of equations of the

regression approach.

Computation of the PCE coefficient of determination

The quality of the output approximatioma a PCE closely depends on the PCE onglefo
ensure a good fit between the meta-model and thee deterministic model (i.e. to obtain the
optimal PCE order), one successively increasedDE order until a prescribed accuracy was

obtained. The simplest indicator of the fit qualgythe well-known coefficient of determination

R’ given by:
R? =1—i ;[/— (E(i))_rSPCE (f(i)”
1 S i — 2 |
=t (143)
where
Fz%gr(fﬁ)) (1.44)

The valueR? =1 indicates a perfect fit of the true model respafisehereasR* =0 indicates

a nonlinear relationship between the true modgdamse/” and the PCE model response. .

The coefficientR? may be a biased estimate since it does not takeairttount the robustness of
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the meta-model (i.e. its capability of correctlegicting the model response at any point which
does not belong to the experimental design). Asrnseguence, one makes use of a more reliable
and rigorous coefficient of determination deno@dBlatman (2009)]. In order to compute this
coefficient of determinatioi®)?, one needs to sequentially remove a point frometk@eriment

design composed & points. Let/;, be the meta-model that has been built from theexyent
design after removing thé" observation and letd' =/ (&7 ) -/, (&) be the predicted

residual between the model evaluation at pdiit and its prediction based of . Thus, the

corresponding coefficient of determinati®A is obtained as follows:

1
K5 (1.45)
S

The two coefficient$? andQ? will be used in this thesis to check the accufdye fit.

Global sensitivity analysis (GSA)

Once the PCE coefficients are determined, a glebaskitivity analysis (GSA) based on Sobol
indices can be easily performed. Notice that tmst forder Sobol index of a given random
variable & (i=1,..., M) gives the contribution of this variable in therighility of the system
response. The first order Sobol index is given élyel (2000) and Sobol (2001) as follows:

var[E(Y 14)]
Var(Y )
whereY is the system responsg(Y|¢) is the expectation of conditional on a fixed value of

S(6)= (1.46)

&, andVar denotes the variance. In the present work, theesysesponse is represented by a

PCE. Thus, by replaciny in Equation (46) with the PCE expression, one obtains the Bobo
index formula as a function of the different terofsthe PCE [Sudret (2008)]. This formula is
given by:

2E LIJ 2
)= (aﬁ)D )] (1.47)

wherea, are the obtained PCE coefficientd,, are the multivariate Hermite polynomials|]

is the expectation operator, abd_. is the variance of the response approximated ®yQE.

The response variand®,.. is given by Sudret (2008) as follows:
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Drce =3 (a,) E[(w,)] (1.48)

B=0
Notice that the terne [(wﬂ)z} that appears in both Equatidm{) and Equationl.@8) is given

by Sudret (2008) as follows:

E(ws)= - a (1.49)

where theo; are the same sequenceMdfnon-negative integefs,,......a,, } used in Equation

(1.38). Notice that; in Equation (47) denotes the set of indicgdor which the corresponding

W, terms are only functions of the random variaflé.e. they only contain the variabfg. It

should be emphasized that EquatidA?) used to compute the Sobol indices can onlyded
when uncorrelated random variables are involvedidddowever that this equation was used in
this thesis to determine the contribution of catedl random fields. For both uncorrelated or
correlated variables, it was assumed that a diedationship exist between each physical variable
and its corresponding standard variable. Althoulgis fassumption is exact in the case of
uncorrelated variables, it is not true in the ca$ecorrelated variables. This means that the
computed Sobol indices using this assumption shtaldhandled with care in the case of
correlated variables. An ongoing research on tpsgctis necessary to lead to rigorous values of
the Sobol indices in this case. Some interestimgracent papers on this subject may be found in
Kucherenko et al. (2012), Li et al. (2010), Da \éeeg al. (2009) and Caniou et al. (2012).

In order to illustrate the construction of a PCHl dhe derivation of the equations providing
Sobol indices, an illustrative example of a PCEoafer p=3 using onlyM=2 random variables

(&1 andé) is presented in Appendix E.

.6 CONCLUSION

In this chapter, a literature review on the spateiiability of the soil properties and the time
variability of the seismic loading was presentetle Tharacterization and modeling of the saill
spatial variability were firstly presented. This svéollowed by the characterization and the
modeling of the time variability of seismic loading this thesis, the soil spatial variability will

be modeled by random fields characterized by t@bability density functions PDFs and their
autocorrelation functions. As for the time varidilof seismic loading, it was modeled by a
parameterized stochastic model that is based ondulated, filtered white-noise process which
should be fitted to a real target acceleration timstory. Finally, the different methods of
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uncertainties propagation used to perform the bilisac analyses were presented. These
methods were divided into two main categories which the simulation methods and the
metamodeling techniques. The simulation methodsluavthe Monte Carlo simulation (MCS)
methodology which is known to be the most rigorand robust probabilistic method and other
more advanced simulation techniques (i.e. the Itapoe sampling (IS) and the Subset
simulation (SS)). As for the metamodeling techngjubree well known methods were presented
which are (i) the Response Surface Methodology (RSM the Kriging method and finally (iii)
the Polynomial Chaos Expansion (PCE). This lasthotktis of particular interest. It is the
method used in the present work. In this method,nieta-model is obtained by expanding the
system response on a suitable basis, which is iassef multivariate polynomials that are
orthogonal with respect to the joint probabilitynday function of the input random variables.
Consequently, the characterization of the PDF @ $lgstem response is equivalent to the
evaluation of the PCE coefficients. In additiorthe PDF, this method allows the computation of
the PCE-based Sobol indices. These indices prdkleontribution of each uncertain parameter

in the variability of the system response.
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CHAPTER II. PROBABILISTIC ANALYSIS OF STRIP FOOTING S
RESTING ON 2D SPATIALLY VARYING SOILS/ROCKS USING S PARSE
POLYNOMIAL CHAOS EXPANSION

1.1 INTRODUCTION

The spatial variability of the soil/rock propertiafects the behavior of geotechnical structures
(bearing capacity, foundation settlement, slopéilig etc.). Several probabilistic analyses on
foundations have considered the effect of the apuadriability of the soil properties [Griffiths
and Fenton (2001), Griffiths et al. (2002), Fenamial Griffiths (2002), Nour et al. (2002), Fenton
and Griffiths (2003), Popescu et al. (2005), Breyssal. (2005), Breysse et al. (2007), Niandou
and Breysse (2007), Youssef Abdel Massih (2007yb&o et al. (2008), Jimenez and Sitar
(2009), Cho and Park (2010) and Breysse (2011)]. fés the probabilistic analyses of
foundations resting on a spatially varying rock sjamly few studies may be found in literature
[Ching et al. (2011)].

It should be mentioned that when dealing with pbolstic studies that involve spatially varying
soil/rock properties, the classical Monte Carlo @ation (MCS) methodology is generally used
to determine the probability density function (P@F)he system response. It is well known that
this method is a very time-expensive approach. iBhecause (i) it generally makes use of finite
element or finite difference models which are gatgtime-expensive and (ii) it requires a great
number of calls of the deterministic model.

To overcome the inconvenience of the time cost, $iparse Polynomial Chaos Expansion
(SPCE) methodology was proposed in this regardicBadhat the sparse polynomial chaos
expansion is an extension of the Polynomial Charpaksion (PCE). A PCE or a SPCE
methodology aims at replacing the finite elemenitéi difference deterministic model by a meta-

model (i.e. a simple analytical equation).

Within the framework of the PCE or the SPCE methagly the PDF of the system response can
be easily obtained. This is because MCS is no loagelied on the original computationally-
expensive deterministic model, but on the meta-mhodkis consists in performing a great
number of simulations on the meta-model. The o#igmificant advantage of the present SPCE
methodology with respect to the classical crude M@8&hod is that it allows one to easily
perform a global sensitivity analysis based on $aimices using the SPCE coefficients. These

indices give the contribution of each random figldhe variability of the system response.
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In this chapter, the SPCE methodology was usedetfopn a probabilistic analysis at both
ultimate limit state (ULS) and serviceability linstate (SLS) of strip footings. Two case studies
were considered in this chapter. The first one Ive® the case of strip footings resting on a
spatially varying soil mass obeying the Mohr-CoultoifMC) failure criterion [Al-Bittar and
Soubra (2011), Al-Bittar and Soubra (2012a, 201&k] Al-Bittar (2012)] and the second one
considers the case of strip footings resting opatially varying rock mass obeying the Hoek-
Brown (HB) failure criterion [Al-Bittar and Soubf2012c)].

In the case of the spatially varying soil massr@babilistic analysis at both ULS and SLS of
vertically loaded strip footings was performed. Hod shear strength parametecsa(dy) were
considered as anisotropic cross-correlated nonsgausandom fields at ULS and the soil elastic
parametersE ando) were considered as anisotropic uncorrelated nams&an random fields at
SLS. Notice that the system response used at ULS the ultimate bearing capacityy();
however, the footing vertical displacemewt\Was considered as the system response at SLS.

Concerning the case of the spatially varying rockssnobeying the Hoek-Brown (HB) failure
criterion, only the ULS case of vertically loadedofings was considered. The uniaxial
compressive strength of the intact roek) fvas modeled as a non-Gaussian random field and th
Geological Strength IndexGSl) was modeled as a random variable. Notice thatsistem

response considered was the ultimate bearing dggagi) of the footing.

Finally, it should be mentioned that the deternticisnodels used to calculate the different
system responses were based on numerical simwdatising FLAC® software. The adaptive
algorithm by Blatman and Sudret (2010) to buildas@PCE was used to obtain an analytical

equation of the system response.

This chapter is organized as follows: The nextiseaims at presenting the SPCE methodology.
It is followed by the presentation of the probadtit analysis and the corresponding numerical
results (PDF of the system response and the camdspy statistical moments) for both cases of
() strip footings resting on a spatially varyingilsmass obeying MC failure criterion and (ii)
strip footings resting on a spatially varying raolass obeying HB failure criterion. Then, a brief
discussion on the validity of the SPCE methodolémythe computation of the probability of
failure is presented. The chapter ends by a colociug the main findings.
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1.2 ADAPTIVE SPARSE POLYNOMIAL CHAOS EXPANSION SPC E - THE
HYPERBOLIC (Q-NORM) TRUNCATION SCHEME

The sparse polynomial chaos expansion (SPCE) whielm extension of the PCE methodology
(cf. sectionl.5.2.3) was proposed by Blatman and Sudret (2QT8,0) to deal with high

dimensional stochastic problems (i.e. when a largaber of random variables is involved). The
idea behind the SPCE came from the fact that thmbeu of significant terms in a PCE is

relatively small [see Blatman (2009)] since the tidithensional polynomial$¥ , corresponding
to high-order interaction (i.e. those resultingnirthe multiplication of thed , with increasing

values) are associated with very small values effentsas. Blatman (2009) also stated that

the term resulting from the multiplication of the , with all =0 (=1, ..., M) leads to a

significant coefficientay in the PCE. This coefficient represents the praissic mean value of
the system response. Based on these observatiorsy @runcation strategy was proposed by

Blatman and Sudret (2009, 2010) in which the mintehsional polynomial$V ; corresponding

to high-order interaction were penalized. This wagormed by considering that tgenorm (not
the first ordre norm) should be smaller than th&R@lerp as follows [Blatman (2009)]:

=[S <o o

i=1

whereq is a coefficient (0g<1). In this formulag can be chosen arbitrarily. Blatman and Sudret

(2010) have shown that sufficient accuracy is olgdiwhen using] = 0.5.

The proposed SPCE methodology leads to a spargagooial chaos expansion that contains a
small number of unknown coefficients. These cogdfits can be calculated from a reduced
number of calls of the deterministic model withpest to the classical PCE methodology. This is
of particular interest in the present case of ramdields which involve a significant number of
random variables. Notice that the SPCE methodoésggroposed by Blatman and Sudret (2010)
is based on an iterative procedure to arrive taramal number for the SPCE coefficients. This

procedure is briefly described as follows:

1. Prescribe a target accura@..r» ag value that satisfieq = 0.5, and a maximal value of the
SPCE ordermp. In this chapter, a target accura@yf,...; =0.99¢, a coefficientq=0.7, and a

maximal SPCE ordgr=5 were used.
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2. Consider a set &f realizations of the standard normal random veftalled experimental
design ED) and collect the corresponding modeluatains in the vectof. Consider also an
empty matrixy. It should be noted here that the random veétalescribes the soil spatial
variability within a given realization. As it wilbbe shown later, the dimension of this vector
increases for smaller values of the autocorrelalistances.

3. Initialization (p=0): add tq (in the first column) the vectoy,, = W, (") fori=1, ..., K(see
Equation [42) where £") is the vector of independent standard normal randeariables

corresponding to thd" realization andy , is a vector that includes the multidimensionalrrHiée

Polynomial of order O (i.e¥,) for the differentk realizations. Notice that th#/, term results

from the multiplication of théd,; where all they; (i=0, 1, ..., M) are equal to zero.

4. Enrichment of the SPCE basis (p=p+1): Two s@psstare performed within this step as
follows:

- Forward step: Add to; (in the subsequent columns) the different vectgrs=W (")
corresponding to increasing values g>0) for which the¥ ; terms have a g-norm satisfying
p—lsHaﬂqu. Then, use the obtainedmatrix to solve the regression problem using Equat

(.41). Save only the vectorg , =W ,(£")) for which a significant increase in the coeffidier

determinatiorQ? is obtained.

- Backward step: Discard fromthe vectorsy , =W ,(£") for which theW ; terms having a g-

norm strictly less than p (i.q‘.qu<p) lead to a negligible decrease in the coefficieht

determinatiorQ?.

5. Go to step 4 to perform an enrichment of the)(BfpaddingK' realizations of the vectarif

the regression problem is ill-posed. Otherwiseqstép 6.

6. Stop if either the target accura@y, ..., is achieved or ip reached the order fixed by the user,
otherwise go to step 4.

One should remember that the coefficient of deteativn Q? used to check the goodness of the
fit of the SPCE was presented in sectldn2.3. Blatman and Sudret (2010) have stated dhat

value of Q% ,.r=0.99 provides accurate estimates of the two $itatistical moments (i.e. mean

and standard deviation). However, the estimatethefthird and fourth moments need a larger

59



Qireer Value (i.e.Qfneer=0.999). This value is the one used in this theSisncerning the

number of realizationk andK' employed in the above procedure, relatively higlues ofK and

K' (sayK=200 andK'=100) were used in case where the deterministicefsagte relatively non-
expensive as the ULS analysis of strip footingdimgson a weightless soil/rock mass (see
sections 11.3.1 and 11.4). In this case, one mayiGvhe successive post-treatment which may be
computationally-expensive. On the contrary, smalldues ofK andK' (sayK=100 andK'=20)
were used in case of more computationally-expendaterministic models as the case of the

square footings resting on a purely cohesive sei Chapter ).

Once the unknown coefficients of the SPCE are detexd, the PDF of the system response and
its corresponding statistical moments (i.e. meastandard deviation, skewness,, and kurtosis

ky) can be easily estimated. This can be done bylatmg a large number of realizations (using

Monte Carlo technique) of the independent standardchal random variables. Simulating a large

number of realizations and their corresponding aasps using the meta-model dramatically

reduces the computation time.

1.3 PROBABILISTIC ANALYSIS OF STRIP FOOTINGS RESTING ON A
SPATIALLY VARYING SOIL MASS OBEYING MOHR-COULOMB (M C)
FAILURE CRITERION

The aim of this section is to present the probstizlinumerical results in the case of strip foading
resting on a spatially varying soil mass and subgeto a vertical loading. Both the ultimate and
the serviceability limit states (i.e. ULS and Sl8¢ considered herein.

11.3.1 The ultimate limit state ULS case

In this section, the probabilistic numerical resubtained from the ULS analysis are presented
and discussed. This analysis involves the compmutaif the ultimate bearing capacityf) of a
strip footing resting on a weightless spatially ywag soil mass. The soil shear strength
parametersqande) were considered as anisotropic cross-correlav@d@aussian random fields.

The soll dilation angles was considered to be related to the soil fricaogleg by ¢ =2¢ /3.

This means that the soil dilation angle was implicssumed as a random field that is perfectly

correlated to the soll friction angle random field.

Notice that the same autocorrelation function (sg@xponential) was used for batlandg. As
for the autocorrelation distances and a, of the two random fieldg and ¢, both cases of

isotropic (i.e.ax=ay) and anisotropic (i.ea#a,) random fields will be treated although the ssil i
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rarely isotropic in reality. For the isotropic caserange of 1.5-100m was considered. For the
anisotropic case, EI-Ramly et al. (2003) have shthamna, is within a range of 10-40m, whibg
ranges from 1 to 3m. These values are in accordaitbethose given by Phoon and Kulhawy
(1999). In our study, the reference values adofuted, anda, werea,=10m anda,=1m while the
wide ranges of 2-50m and 0.5-50m were considersgeatively fora, anda, when performing
the parametric study in order to explore the pdsséxistence of a minimum value for the
probabilistic mean.

The soil cohesior was assumed to be lognormally distributed. Itsmedue and coefficient of

variation (referred to as reference values) wekertaas follows:z, =20kPa, Covy, = 25%. On

the other hand, the soil friction angkewas assumed to be bounded (0es ¢ < 45’). A beta
distribution was selected for this parameter withean value and a coefficient of variation given

as follows: 1, = 30°,Cov¢ =10%. In order to incorporate the dependence betwesdh shear

strength parameters, the cross-correlation coefftaic, ¢) is needed. Yucemen et al. (1973)
reported values that are in a range-0t49<r < -0.24, while Lumb (1970) suggested values of
—0.7<r <£-0.37. In this study, a value of -0.5 was taken as #ference value, and the range of
—0.5<r < 0 was considered in the parametric study. The reéerecross-correlation matrix
1 —O.SJ

between the two random fields ) is thus given by © :( 05 1

The deterministic model was based on numerical Isitioms using the finite difference code
FLAC®P. The soil behavior was modeled using a conventietestic-perfectly plastic model
based on Mohr-Coulomb (MC) failure criterion. Natithat the Young moduluE and the
Poisson ration were assumed to be deterministic since the uléntearing capacity is not
sensitive to these parameters. Their correspondaiges were respectivel{ = BfPa and

v =0.3. Concerning the footing, a weightless strip fouraaof 2m width and 0.5m height was
used. It was assumed to follow an elastic lineadehdE = 25GPa, v =0.4). Finally, the
connection between the footing and the soil mass madeled by interface elements having the
same mean values of the soil shear strength pagesriatorder to simulate a perfectly rough soil-
footing interface. These parameters have been deresl as deterministic in this study.
Concerning the elastic properties of the interfaéicey also have been considered as deterministic

and their values were as follow&, = GRa, K, =1GPa whereKs andK, are respectively the

shear and normal stiffnesses of the interface.
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As shown in Figurdl.1, the adopted soil domain considered in thdyasimais 15m wide by 6m
deep. It should be noted that the size of a givement in the deterministic mesh depends on the
autocorrelation distances of the soil propertiesr Riureghian and Ke (1988) have suggested
that the length of the largest element of the datastic mesh in a given direction (horizontal or
vertical) should not exceed 0.5 times the autotatiom distance in that direction. In order to
respect this criterion for the different autocaatEn distances, two different deterministic
meshes were considered in FLRCThe first one is devoted to the case of modeiatarge

values of the autocorrelation distances (i.e. wage10manda, =1m) [see Figurdl.1(a)] and
the second one for the small values of the autetadion distances (i.e. whdnSm < a < 10mor
0.5m < g <1m) [see Figurdl.1(b)]. For the boundary conditions, the horizintovement on

the vertical boundaries of the grid was restraiveli]e the base of the grid was not allowed to
move in both the horizontal and the vertical dits.

B=2m B=Im

6m

15m

)

Figure I.1. Mesh used for the computation of the ultimatebearing capacity: (a) for moderate to great values
of the autocorrelation distances § =10m and a, 21m ), (b) for small values of the autocorrelation disinces

(a <10m or a, <im)

The following sections are organized as followsstria step-by-step procedure used to obtain the
probabilistic results is presented. It is followey the presentation of some realizations of the
random fields and the PDFs of the system resporiSeslly, the effect of the different
probabilistic governing parameters on the PDF efutiimate bearing capacityy) is presented

and discussed.
[1.3.1.1 Step-by-step procedure used for the computatidheoprobabilistic results

A Matlab 7.0 code was implemented to obtain thédabdlistic results. The different steps of this
code in the general case of two anisotropic crosselated non-Gaussian random fields are as

follows:

62



(a) Introduce the input statistical parameters idlesd in the preceding section.

(b) Discretize the two random fields and ¢ using EOLE method and its extensions by

Vorechovsky (2008) as presented in the first chapieguhe following steps:

Define the stochastic grid: Li and Der Kiureghid®93) have shown that the variance of
the error [EquationI(l8)] is large at the boundaries of the stochadbenain. This
problem can be solved by using a stochastic doniiip that extends beyond the
boundaries of the physical doma@. In this work, a uniform stochastic grid of
dimensiong2re=[16m, 7m] was used while the size of the physittahain wag2=[15m,
6m] (see Figurdl.1). On the other hand, Li and Der Kiureghian 43P have shown that
the number of grid-points in the stochastic gricbsgly depends on the autocorrelation

: . I 1 : .
distances. These authors have shown that a ra@bait 2= ZE provides a sufficient
a

accuracy in terms of the variance of the error wihgr is the typical element size in the
stochastic grid, ana is the autocorrelation distance. In this work, thember of grid
points in the stochastic grid was chosen as folldwvgrid-points were considered within
each autocorrelation distance (horizontal or valbtizvith a minimum of 6 grid-points in
that direction when the autocorrelation distancéaiger than the size of the stochastic
domain. Thus, a fine stochastic mesh was used foiglaly heterogeneous soil and a

coarse stochastic mesh was used for a slightlydggaeous soil.

Calculate the common autocorrelation matE?kf using Equationi(9) (remember here

that the dimension of this matrix depends on tHeesof the autocorrelation distan@ags
anday). Then, compute the corresponding autocorrelatiatrices>’. and Zﬁ;X in the
Gaussian space using Nataf model [Equatidi®)]. Finally, compute for each random
field (c andy) its N largest eigenmodels and ¢; (wherei=c, ¢ andj=1,...,N), for which
the variance of the error is smaller than a thrieslod say € =10%. It should be

mentioned here that both matricg$., and 2., were quasi-similar toZTf and thus the

number of eigenmodes (or the number of random bimsd which is necessary to
discretize each one of the two random fields waslai. As may be seen from Figure
[.2, for smaller values of the autocorrelationtdige &, a or a,=ay), the numbeN of

eigenmodes increases. The total number of randoiabkes retained for different cases

(where two random fields were considered) is priegseim Tablell.1. This number is
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Variance of the error

equal to the number of eigenmodé®f a single random field multiplied by 2 since two

random fields were considered in the analysishdtusd be noticed that the cases where a

significant number of random variables (>88) areedesl correspond to very small

autocorrelation distances (i®<1m anda,<2m). These autocorrelation distances are not

of practical interest [see EI-Ramly et al. (2003)jd can thus be neglected in this study.

1.00

0.90

----- ax=ay=1.5m
---ax=ay=1.8m
----ax=ay=2m
ax=ay=3m
— ax=ay=5m
----ax=ay=10m

Variance of the error

10 15 20 25 30 35 40
Number N of eigenmodes

@

45

1.00

0.90

0.80
0.70 1
0.60
0.50
0.40
0.30
0.20
0.10
0.00

ax=10m, ay=1m
---ax=10m, ay=0.8
----ax=10m, ay=0.5
— ax=4m, ay=1m
----ax=2m, ay=1m

0

5

10 15 20 25 30 35 40 45 50
Number N of eigenmodes

(b)

Figure I1.2. Number N of eigenmodes needed in the EOLE method: (a) isafpic case, (b) anisotropic case

Total number of random variables used to
discretize the two random fields, {)

Isotropic case

Anisotropic case

a, =a, =1.5m
a, =a, =1.8m
a, =a, =2m
a, =a, =3m
a, =a, =om
a, =a, =10m
a, =10m,g =1m
a, =10m,g = 0.8m
a, =10m, g = 0.5m
a, =4m,g =1m
a, =2m,g =1m

70
60
50
24
20
10
24
30
44
48
88

Table 11.1. Number of random variables used to discretizeéhe two random fieldsc and ¢ for both cases of
isotropic and anisotropic autocorrelation distances
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» Calculate the Gaussian cross-correlated mdiriky applying the Nataf model on the
original non-Gaussian cross-correlation ma@h€. This was performed using Equation
(1.20).

» Discretize the two anisotropic cross-correlated $san fieldsc and ¢ using Equation
(1.21) where k&’ was computed using Equatioh2@); the transformation to the non-

Gaussian space being done by applying Equati®8)(

(c) Use the adaptive SPCE methodology by Blatmah SQudret (2010) to determine the meta-
model as follows: First, it should be noted thatdach realization, the values of the two random
fields (c andg) were determined at the centroid of each elemktiteodeterministic mesh using
Equations(21) and [.23). Once the different elements of the mesHibe with values oft and

¢, the ultimate bearing capacityyf) for this specific realization can be determinddhe
experimental design (ED) was obtained by first satiag the initial number of realizations
K=200 of the two random fields (c agl using MCS technique. The relatively large numdier
additional simulation&' =100 is used each time the regression problethpssed (i.e. when the

rank of the matrix used in the regression appraackmaller than the number of unknown

coefficients). The algorithm stops if either thegtet accuracy’, ..., is achieved or ip reached
the maximal order fixed by the user. In this wakarget accurac®?, ..., =0.99¢, a coefficient

g=0.7, and a maximal ord@=5 were used. Notice that for the reference cagelpPm,a,=1m,

r(c, ¢) =-0.5], the algorithm have stopped when the targeturacy was reached. The
corresponding order of the SPCE was equal to #hitncase, where 24 random variables were
needed (see Tablél), the PCE in its "full" truncation schemes dsato P=20,475 unknown
coefficients. This means that a minimum of 20,4@Bocation points (i.e. a minimum of 20,475
calls of the deterministic model) were needed toueately represent the ultimate bearing
capacity by a meta-model. Using the SPCE methogolmgy P=186 unknown coefficients were
retained and only 800 calls of the deterministicdelowere found to be largely sufficient to
construct the meta-model. Consequently, an imporedtuction in the number of calls of the
deterministic model can be obtained using the SPIQIS greatly facilitates the solution of the

problem of random fields.

(d) Use the meta-model to perform the post-treatmEhis consists in determining: (i) the PDF
of the ultimate bearing capacity and the correspundtatistical moments (mean, variance,

skewness, and kurtosis) and (ii) the Sobol indioegach random fieldc@@andg).

65



Finally, it should be mentioned that a link betweééatlab and FLAG® was performed in order

to automatically exchange the data in both dir@stiand thus to decrease the computation time.
[1.3.1.2 Random fields’ realizations and PDFs of the systesponses

It should be remembered here that the computaiioe tequired for the generation of a single
realization is strongly related to the number geemodesN used in the discretization scheme.
For very small values of the autocorrelation disém) the number of eigenmodes significantly
increases leading to a significant computation t{mere than an hour for a single realization).
Figurell.3 presents six realizations for three differennfigurations. As may be seen from this
figure, the anisotropy and the negative cross-tatiom are well reflected by the obtained

random fields realizations.

14 16 18 20 22 24 26 28 30 32 28 285 202053030531 31 53232533335

Cohesion (Pa) @) Friction angle {legrees)
a

14 16 18 20 22 24 26 28 30 32 28 185 192953030531 31 53232533335

Cohesion (IPa) o Friction angle {legrees)
)

i
\

14 16 18 20 22 24 26 2B 30 122 18 285 202053030531 3153232533335

Cohesion (1Pa) (c) Friction angle (legrees)

Figure 11.3. Typical realizations of the random fields :(3 [a,=100m a,=1m, r(c, ¢)=-0.5]; (b) [a,=10m, a,=1m,
r(c, 9)=-0.5]; (c) [&=10m,a,=1m, r(c, ¢)=-0.9]

66



Figurell.4 presents the PDFs of the footing ultimate bwpcapacity and the footing rotation for
the reference case whag=10m,a,=1m, andr(c, ¢)=-0.5. Figurell.5 presents the velocity field
for one single simulation (i.e. a single realizatwf the two random fields andg). As may be
seen from this figure, the spatial variability betsoil properties can produce a non-symmetrical
mechanism even though the footing is subjected synametrical vertical load. Although the
footing rotation of a single realization is not Ina may be seen from Figuié, the mean value

of the rotation for the whole number of realizatas null [see Figurd.4(b)], and the standard
deviation of this rotation was found equal to 1®&%tadians. Concerning the ultimate bearing

capacity, its mean and standard deviation values equal to 658KPa and 93.5KPa

respectively.

5.0 2.5
4.5
4.0 2.0
3.5
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5 3

a 201 a 1.0
1.5
1.0+ 0.5
0.5
0.0 ‘ T ‘ ‘ ‘ ‘ ‘ 0.0 ‘ ‘ ;

0 200 400 600 800 1000 1200 1400 -10 -5 0 5 10
Ultimate bearing capacity (kPa) Footing rotation (%)

@) (b)

Figure 11.4. Bearing capacity and footing rotation for the reference case where,=10m,a,~=1m, andr(c, ¢)=-
0.5: (a) PDF of the ultimate bearing capacity; andb) PDF of the footing rotation

Figure I1.5. Velocity field for a typical realization of the two random fields for the reference case where
a=10m,a~=1m andr(c, ¢) =-0.5
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[1.3.1.3 Probabilistic parametric study

The aim of this section is to study the effectlod different probabilistic governing parameters
(autocorrelation distances, coefficients of vaoiafiof the two random fields and the correlation
between both fields on the PDF of the ultimate ingacapacity of the foundation.

Effect of the autocorrelation distance: The isofoopase

Figure I1.6 provides the PDFs of the ultimate bearing c#pa(i) for different values of the
isotropic autocorrelation distaneg=ay (1.5, 1.8, 2, 3, 5, 10, 50, 100m) wh&a, ¢)=-0.5 and (ii)
for the case of random variables with, ¢)=-0.5. Tabldl.2 presents the four statistical moments

for the cases presented in FigUré.

As expected, the PDF and the statistical momentseggonding to a great value of the
autocorrelation distance&ay,=100m) are close to those given by the case oforaneariables.
This is because the case of random variables caiofdered as the limiting case of random

fields with an infinite value of the autocorrelatidistance.

5.0 g 685.0
4.5+ ax=ay=1.5m % 680.0- homogeneous soil (random variables)
404 A — ax=ay=1.8m E 6750
35 8 ax=ay=2m S 3 670.0-
— -+ - ax=ay=3m £E 6650
mg 3.0 — ax=ay=5m S 2 660.04
X 25+ ---ax=ay=10m 8 & .
T —” 9 & 655.01
a 2.01 --—-ax=ay=50m S ° 65001
154 A\ | T ax=ay=100m E 645.0
101 ----Random variable < '
: S 640.0
0.51 &  635.0 —_—
0.0 el s e 1 2 3 4 5 6 7 8 9 10
0 200 400 600 800 1000 1200 1400 Isotropic autocorrelation distancg=a (m)
Ultimate bearing capacity (kPa) @)
Figure I1.6. Influence of the isotropic autocorrelation Figure 11.7. Influence of the isotropic autocorrelation
distancea,=a, on the PDF of the ultimate bearing distancea,=a, on the probabilistic mean of the ultimate
capacity in the case where(c, )=-0.5 bearing capacity in the case where(c, ¢)=-0.5

Figurell.6 shows that the PDF is less spread out whemtite@correlation distanaiecreases. For
the very large values of the isotropic autocorrefatdistancea,=a,=100m, the coefficient of
variation of the ultimate bearing capacity tendsat@onstant maximal value (see Tahl@)
which is the value corresponding to the case ofloam variables as mentioned above. In this
case, the different values of a shear strengtmpetex € or ¢) of a given realization are perfectly
correlated. This means that for a given simulateosingle value of and a single value of are

affected to the entire soil domain. These valuescapnsen according to the prescribed PDKs of
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andg and thus they may vary in the range of values seddy these PDFs. This leads to a large
variability of the ultimate bearing capacity. Itashd be emphasized here that the large value of
the variability is due to the fact that one obtainkrge variety of homogenous soils with low,
intermediate and high values of the soil sheangtieparameters andg. The decrease in the

autocorrelation distance from infinity to a finkelue (moderate or small wheeg =a, <10m)

limits the correlation (in a given simulation) tdfinite zone which leads to several zones with
different values of the shear strength parametensdy over the entire soil domain. This means
that in a single simulation, one obtains a set @ikvand strong zones for which the position may

change from simulation to another one. The casaeaxferate to small values af = a, leads to

a decrease in the variability of the ultimate begrcapacity since (i) the cases of very high or
very small values of the bearing capacity are ndweat and (ii) the presence of the soll
heterogeneity (zones of weak and strong soil) pritiduce a somewhat close global behavior of
the footing because of the averaging phenomenon tbeepossible failure mechanism. Notice
finally that the decrease in the variability of th#imate bearing capacity becomes the most
significant for the case of a very small value loé fautocorrelation distance because the rapid
change in the values of the shear strength parasnigten element to another neighboring one
leads to quasi-similar values of the ultimate bepdapacity for all the realizations. The soil can

be considered as a homogeneous medium in this case.

a =a,(m) H,, kPa) g, (kPa) COV, (%) 9, () K, ()
1.5 642.6 88.8 13.8 0.06 0.08
1.8 639.8 101.4 15.8 0.19 0.13
2 638.7 108.9 17.0 0.20 0.13
3 639.6 138.8 21.7 0.40 0.30
5 646.4 175.8 27.2 0.67 0.66
10 670.0 217.7 325 0.92 1.48
50 676.5 227.4 33.6 1.07 1.93
100 680.7 229.9 33.8 1.08 2.03
Random variables 682.7 232.8 34.1 1.09 2.47

Table I1.2. Effect of the isotropic autocorrelation distance a,=a, on the statistical moments of the ultimate
bearing capacity
Figurell.7 and Tabldl.2 show that the probabilistic mean value of thigmate bearing capacity
presents a minimum when the autocorrelation distaneay is nearly equal to the footing

breadth B (i.e. in our case whagra,=2m). Notice that the minimal probabilistic meansvedso
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observed by Fenton and Griffiths (2003) and Sowral. (2008). For very large values of the
autocorrelation distanceaga,=100m), the probabilistic mean tends to the one thogé
homogenous soil (case of random variables) as raaebn from Tabl#d.2. On the other hand,
for very small values of the autocorrelation disgrthe probabilistic mean becomes greater than
the minimal value because the weakest path becorme=masingly tortuous and its length is also
longer. As a result, the failure mechanism wilktsta look for shorter path cutting through higher

values of the shear strength parameters.

Tablell.2 shows the impact of the autocorrelation dise&=ay, on both the skewness and the
kurtosis of the PDF. For small values &fay, the skewness and kurtosis of the response are
small which means that the PDF of the responsetidan from a Gaussian one in these cases.
Notice however that these moments increase vegea, increases which means that for great
values ofa=ay, the shape of the PDF of the output becomesdan &t Gaussian one (the point of

maximum density of probability, i.e. the mode mote@smaller values).

Finally, Tablell.3 shows the effect of the autocorrelation dise®=a, on the Sobol indiceS(c)
and S(p) of the two random fields and¢ whenr(c, ¢)=-0.5. This table shows that both indices
are quasi-constant regardless of the autocorralaigtance values. The increasejnay has no
significant impact on the Sobol indices since weréasea,=ay in both fields by the same
amount. Tabldl.3 also shows that the variability of the ultireddearing capacity is mainly due to
the cohesion random field which has a Sobol indeabmut 71%. This result is logical in our
case where a weightless soil was consideredNthéerm which is very sensitive tp being

absent in this case.

a, =&, (m) S(9) S(9)
1.5 0.70 0.30
1.8 0.71 0.29
2 0.72 0.28
3 0.73 0.27
5 0.71 0.29
10 0.73 0.27
50 0.70 0.30
100 0.71 0.29
Random variables 0.69 0.31

Table I1.3. Effect of the isotropic autocorrelation distance a,=a, on the Sobol indices of the two random fields
and ¢
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Effect of the autocorrelation distances: The ansoic case

Figure 11.8 presents the PDFs of the ultimate bearing ciéypdi) for different values ofay
(a8=0.5, 0.8, 1, 2, 5, 8, 50m) whel=10m andr(c, ¢)=-0.5 and (ii) for the case of a one-
dimensional random field with a horizontally varyisoil mass where,=10m andr(c, ¢)=-0.5.
Tablell.4 presents the corresponding four statisticaimants. Similarly, Figurd.9 presents the
PDFs of the ultimate bearing capacity (i) for diffiet values ofy (ax=2, 4, 10, 20, 30, 50m)
when a,=1m andr(c, ¢)=-0.5 and (ii) for the case of a one-dimensionaldoam field with a
vertically varying soil mass whegg=1m andr(c, ¢)=-0.5. Tablell.5 presents the corresponding

four statistical moments.

7.0 8.0
6.0 7.0
6.0
5.0
—~ o 5.0
S 4.0 o
X £ 40+
L
1 )
E 3.0 o 3.01
2.01 2.0+
1.0 1.0
OO T S (n "’Av T T s i = == T OO !
0 200 400 600 800 1000 1200 1400 0 200 400 600 800 1000 1200 1400
Ultimate bearing capacity (kPa) Ultimate bearing capacity (kPa)

Figure 11.8. Influence of the vertical autocorrelation  Figure 11.9. Influence of the horizontal autocorrelation
distancea, on the PDF of the ultimate bearing distancea, on the PDF of the ultimate bearing capacity
capacity in the case where(c, ¢)=-0.5 anda,=10m in the case where(c, ¢)=-0.5 anda,=1m

For the very large values of the autocorrelaticstatice &, or a,), the coefficient of variation of
the ultimate bearing capacity tends to a constaaximmal value which corresponds to the value
obtained in the case of a one-dimensional randeld &s may be seen from Tables 11.4 and II.5.
In this case, the values of(and also those af) are perfectly correlated in a single direction
(vertical or horizontal); however, the other direntis allowed to exhibit variations in the values
of ¢ (and¢) according to the value of the autocorrelatiortagise fixed for that direction. This
leads to a horizontal or a vertical multilayer. Nadues of 32.7 and 15.4 (see Tables 1.4 and
[1.5) concerning the variability of the one-dimemsal random fields are smaller than the value of
34.1 (see Tabl#.2) corresponding to the case of random variabléss is because contrarily to
the random variables case where the shear strgragimeters and ¢ of each simulation are
chosen from their PDFs where small, high and in¢gliate values of these parameters lead to a

large variability; in the present case of one-disienal random field, the horizontal or vertical
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strong layers prevent a large failure mechanismlaad to quasi similar smaller values of the
ultimate bearing capacity and thus to a smallerabdity of this bearing capacity. Finally, the
decrease in the autocorrelation distance fromiigfine. from the case of a 1D random field) to

a finite value recreates variation in the valueshefshear strength parameters which reduces the

values of the ultimate bearing capacity and theabdity of this bearing capacity.

a, (m) t,, (kPa) o, (kPa) COV,, (%) 9, () K, ()
0.5 6655 67.6 10.2 0.20 0.09
0.8 662.1 83.7 12.6 0.27 0.14
1 658.2 93.6 14.2 0.29 0.16
2 660.6 120.7 18.3 0.42 0.26
5 661.0 1473 223 0.55 0.45
8 662.2 148.7 26.8 0.61 0.54
50 672.1 219.2 326 0.95 1.51
Tgnﬁﬁ”rﬁ?@?i' 672.4 219.6 32.7 0.94 1.50

Table I1.4. Effect of the vertical autocorrelation distance a, on the statistical moments of the ultimate bearing
capacity

a(m 1, kPa) o, (Pa) COVW®) 40 & O
2 662.7 55.7 8.4 0.02 0.05
4 660.2 72.1 10.9 0.03 0.11
10 658.2 93.6 14.2 0.29 0.16
20 669.8 100.2 15.0 0.38 0.23
30 673.3 102.6 15.2 0.39 0.27
50 675.2 103.7 15.4 0.40 0.24
r;r'? d‘(’)?;“f‘i:;' | 6760 104.1 15.4 0.45 0.25

Table I1.5. Effect of the horizontal autocorrelation distancea, on the statistical moments of the ultimate
bearing capacity
Figures 11.10 and 11.11 and Tables 1.4 and Il.®whthat the probabilistic mean of the ultimate
bearing capacity presents a minimum value of @88zt a certain value of the rat&/ay (in
our work this value is equal to 10 for the presedilvalues of the soil and footing characteristics).

The presence of a minimum value can be explaindadllasvs:

For a prescribed value of the horizontal autocati@h distancea, [see Figurdl.10 and Table
[1.4], the very small value of the vertical autoedation distancea, (i.e. corresponding to
ada,>>1) creates a horizontal multilayer composed ofyvéhin sublayers for which each
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sublayer may have a large or a small value of tigausstrength parameters [see Figude(a)].
On the other hand, the very large value of the icadrtautocorrelation distancey (i.e.
corresponding ta,/ay<<1) leads to a vertical multilayer (case of a dmaensional random field
with a horizontally varying soil mass) composedadinite number of sublayers for which each

sublayer may have a large or a small value of lieaisstrength parameters [see Figuie(b)].

For both cases of very small and very large vabfes, the variety of sublayers with large and
small values of the shear strength parameters leEadsgreater value of the ultimate bearing
capacity. This large value occurs because the yeitsldnaving large values of the shear strength
parameters play the role of an obstacle. Theretbeefailure mechanism will cut these sublayers
having large values of the soil shear strength maters. Finally, for medium values of the
autocorrelation distances [see Figlr&2(e)], the soil contains a number of stiff zeradjacent

to a number of soft zones whose areas are lesed®ddan both the vertical and the horizontal
directions compared to the two previous cases. 8Hmwvs the development of the failure
mechanism through the soft soil zones and thus, ldads to smaller values of the ultimate

bearing capacity.
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Figure 11.10. Influence of the vertical Figure 11.11. Influence of the horizontal

autocorrelation d_istanceay on the propapilistic mean autocorrelation distancea, on the probabilistic
value of the ultimate bearing capacity in the case  mean value of the ultimate bearing capacity in the
wherer(c, ¢)=-0.5 anda,=10m case where (c, )=-0.5 anda,=1m

Similarly to Figurell.10, Figure 1l.11 shows that for a prescribed value of the igalt
autocorrelation distancay, the very small value of the horizontal autocatieh distancesy
leads to a vertical multilayer composed of a langenber of thin sublayers for which each
sublayer may have a large or a small value of tlieauisstrength parameters [see Figude(c)].
On the other hand, a horizontal multilayer is atedi in the case of a very large valueapfsee
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Figurell.12(d)]. Finally, a soil composed of several saftd stiff zones of finite dimensions is
obtained for intermediate values of the autocotieadistances [see Figuhel2(e)]. For all the
three cases corresponding to small, intermediadenayh values of the horizontal autocorrelation
distance, the explanation given for Figur20 remains valid herein.

T T T 1T 1 1
12 14 16 I8 30 2 24 26 2B 30 32 34 36 12 14 16 18 200 22 24 26 2H 30 32 34 36
Coheszion (kPa) Coheszion (kPa)
(a). &,=10m and &,=02m (b). &=1m and a,=10000m

[T T T T ]
12 14 06 18 20 22 4 26 M 30 32 34 36 12 14 M6 18 0 22 M M 2 30 X M 36

Coheszion (kPa) Coheszion (kPa)
). a&=02m and 3, =1m (d). &:=10000m and a,=1m

12 14 16 I1® 20 22 24 2 X A0 AT 24 3
Cohezzion (kPa)
(). &=10m and &, =Im

Figure 11.12. Cohesion random field for different values &the autocorrelation distances

As a conclusion, one may observe that the increasbe vertical autocorrelation distance in
Figurell.10 from very small to very large values leadsatsoil configuration that varies from a
horizontal to a vertical multilayer. This situatios reversed in Figurdl.11 where the soil
configuration varies from a vertical to a horizdntaultilayer. The ultimate bearing capacity was
found to be the smallest for an intermediate valuthe autocorrelation distanca, ©r a,) where
the failure mechanism can easily develop in thersass.
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Tables 11.4 and 11.5 show the impact of the incee@sa, andax on both the skewness and the
kurtosis of the PDF. As in the case of the isotoputocorrelation distance, the PDF of the

response is not far from a Gaussian one for snadlles ofay or a.

Finally, Tables 1.6 and I1.7 show the effect oétimcrease i, anda, on the Sobol indiceS(c)
andS(p) of the two random fields wheifc, ¢)=-0.5. These tables show, as in the isotropic case,
that the variability of the ultimate bearing capaes mainly due to the cohesion random field

which has a Sobol index of about 71%.

ay(m) S(0 S(¢)

0.5 0.71 0.29 a(m) S(9 S(¢)
0.8 0.71 0.29 2 0.68 0.32
1 0.72 0.28 4 0.71 0.29
2 0.71 0.29 10 0.72 0.28
5 0.72 0.28 20 0.72 0.28
8 0.74 0.26 30 0.73 0.27
50 0.69 0.31 50 0.73 0.27
1D fgglr(‘jdom 072 028 tbrandom 71 0.2
Table 11.6. Effect of the vertical autocorrelation Table 11.7. Effect of the horizontal autocorrelation
distancea, on the Sobol indices ot and ¢ distancea, on the Sobol indices o and ¢

Effect of the cross-correlation coefficient

Figurell.13 presents the PDFs of the ultimate bearingaciy for negatively cross-correlated
r(c, 9)=-0.5 and non-correlatedc, )=0 random fields whea,=10m anda,=1m, and Tablel.8
presents the corresponding four statistical moments

Figurell.13 and Tablell.8 show that the variability of the ultimate biegy capacity decreases
when considering a negative correlation betweenttie random fields. This is because the
increase of one parameter value implies a decrieatbe other parameter. Thus, the total shear
strength slightly varies. This leads to a reducadation in the ultimate bearing capacity. It
should be mentioned that the probabilistic meamesaf the ultimate bearing capacity slightly

increases when a negative correlation betweemiheandom fields exists.

Finally, the Sobol indices presented in Tahbk (in the case whera=10m anda,=1m) show the

same behavior detected in the previous sections.
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Figure 11.13. Influence of the cross-correlation coefficiat on the PDF of the ultimate bearing capacity inhe
case wherea,=10m anda,=1m

rc.¢) 4, kPa) o, (kPa) COV,. (%) 4, () Ky ()
-0.5 658.2 93.6 14.2 0.29 0.16
0 648.3 133.4 20.6 0.42 0.34

Table 11.8. Effect of the cross-correlation coefficient letween the random fields ot and ¢ on the statistical
moments of the ultimate bearing capacity

re.9) S(9) S(#)
-0.5 0.72 0.28
0 0.72 0.28

Table 11.9. Effect of the coefficient of correlation on he Sobol indices of the two random fields and ¢

Effect of the coefficients of variation of the randfields

Figurell.14 presents the PDFs of the ultimate bearingaciy for three different configurations
of the coefficients of variation of the random diel Notice that for the three configurations,
9)=-0.5,a=10m anda,=1m. Tables I.10 and 1l.11 present (for the theeafigurations) the four

statistical moments of the ultimate bearing capaaiid the Sobol indices of the two fieladsf).

Figure 1.14 and Tablell.10 show (as expected) that the variability o€ thltimate bearing
capacity increases when the coefficients of vammabf the random fields increase; the increase

being more significant for the cohesion parameter.
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Figure 11.14. Effect of the coefficients of variation of he random fields on the PDF of the ultimate bearing
capacity in the case where,=10m,a,=1m andr(c, ¢)=-0.5

o, (KPR) o, (kPa) COV, (%) 4, () K, ()
COVc=25% COVg=10%  658.2 93.6 14.2 0.35 0.20
COVc=50% COVg=10%  595.7 141.0 23.7 0.57 0.57
COVc=25% COVg=15%  664.2 108.3 16.3 0.33 0.19

Table 11.10. Effect of the coefficients of variation of he random fieldsc and ¢ on the statistical moments of the
ultimate bearing capacity

S(0) S(#)
COVc=25% COVg=10%  0.68 0.32
COVc=50% COVg=10%  0.91 0.09
COVc=25% COVg=15%  0.51 0.49

Table 11.11. Effect of the coefficients of variation of he random fieldsc and ¢ on the Sobol indices of the two
random fields c and ¢
From Tablell.11, one can see that an increase in the coefficdf variation of a soil parameter
increases its Sobol index and thus its weight exvtariability of the ultimate bearing capacity.
This automatically reduces the contribution of tither uncertain parameter. This increase is
more significant for the soil friction angle. Thesbecause an increase by 100% in the coefficient
of variation of the cohesion parameter increaseSdabol index by about 35%, while increasing
the coefficient of variation of the friction angby only 50% increases its Sobol index by about
50%.
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[1.3.2 The serviceability limit state SLS case

The aim of this section is to present the probstotlinumerical results obtained from the analysis
at the serviceability limit state (SLS) of stripotongs resting on a spatially varying soil and
subjected to a central vertical lod®|) It involves the computation of the central veatifooting

displacement\).

Both the soil Young modulug and the soil Poisson ratiowere firstly considered as random
fields in order to determine the weight of eachd@n field in the variability of the system
response. In a second stage, only the uncertaiameter with a significant weight in the
variability of the system response will be consadens a random field. Notice that the same
autocorrelation function (square exponential) wasdufor both random fields. Both cases of
isotropic (i.e.ax=ay) and anisotropic (i.e#ay) random fields will be treated and the same values
of the autocorrelation distances employed in th&\dhase are used herein.

The soil Young modulu€ was assumed to be lognormally distributed. Its rmealue and
coefficient of variation (referred to as referencealues) were taken as

follows: 1 =60MPa, Cov, = 15%. Similarly, the soil Poisson ratio was assumed to be

lognormally distributed with a mean value and affogent of variation given as follows:
M, =0.3,Cov, = 5%.

The deterministic model was based on numerical Isitioms using the finite difference code
FLAC®P. Even though a serviceability limit state is colesed, the soil behavior was modeled
using a conventional elastic-perfectly plastic mdaesed on Mohr-Coulomb failure criterion in
order to consider the plasticity that may occuthat footing edges even under the service loads.
Notice that the soil cohesian the soil angle of internal frictiom and the soil dilation angle
were assumed to be deterministic since the footargcal displacement is not sensitive to these
variables. Their corresponding values were respalgtic =20kPa, ¢ =30 and ¢ =20.
Concerning the footing and the interface propertiesy were considered as deterministic. The
same mean values used for these properties in tiseddse were employed herein. Moreover,
the soil domain and mesh used in the ULS analgsig-{gurell.1) were also utilized in this case.
Finally, notice that the footing was subjected teegtical applied pressug=500kPa.

The following sections are organized as followsstia global sensitivity analysis is performed

considering both the soil Young moduldsand the soil Poisson ratioas random fields. This is
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followed by a presentation of the parametric stodgsidering only the most influential random

field that has a significant weight in the vari#ibf the system response.
11.3.2.1 Global sensitivity analysis

The aim of this section is to perform a global g@nty analysis which enables one to keep in the
probabilistic parametric study that follows onlyethandom field that has a significant weight in
the variability of the system response. This gyetdtilitates the probabilistic analysis since it
reduces by half the computation time.

The different steps to perform the probabilistialgsis were presented in sectib3.1.1 and are

not repeated herein. The global sensitivity analygas presented for the reference case study
(i.e. whena,=10m anda,~1m) considering both the Young modulasind the Poisson ratioas

two uncorrelated random fields. For this case, &ddom variables were needed in order to

discretize the two random fields (cf. Talild).

Figure 1.15 depicts the values of Sobol indices for therandom variables, as given by the
obtained SPCE. The first 12 random variables §.éor i=1, ..., 12] correspond to the Young
modulus random field and the last 12 random vaemll.e. & for i=13, ..., 24] are those

corresponding to the Poisson ratio random field.

1

0 2 4 6 8 10 12 14 16 18 20 22 24
Index i of random variablé|

Figure 11.15. Sobol indices of the two random fields [the¥oung modulus for & (i=1, ..., 12) and the Poisson
ratio for & (i=13, ..., 24)]
Figurell.15 shows that only three random variablés {; , &) of the Young modulus random
field are the most influential (they involve 98.49f%the response variance). Notice that the first
random variable; provides alone 94% of the response variance. Digsén ratio random field
has a quasi-negligible weight in the variability thie system response (0.14% of the system

variance). For this reason, it can be considerategministic in the following section.
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[1.3.2.2 Probabilistic parametric study

The aim of this section is to study the effect lo¢ wifferent statistical governing parameters
(autocorrelation distances and coefficient of waraof the random fieldE) on the PDF of the

footing vertical displacement)

Effect of the autocorrelation distances: The isptcoand anisotropic cases

Figures 11.16, 11.17 and 11.18 provide the PDFstloé footing vertical displacement) (for (i) the
isotropic case for different values &fay, (ii) the anisotropic case for different valuesapind
(i) the anisotropic case for different valuesapf Tables 11.12, 11.13 and 11.14 present the four

statistical moments for the cases presented iretfigsres.
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Figure 11.16. Influence of the isotropic autocorrelation dstancea,= a, on the PDF of the footing vertical
displacement
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Figure I1.17. Influence of the vertical autocorrelation  Figure 11.18. Influence of the horizontal autocorrelation
distancea, on the PDF of the footing vertical distancea, on the PDF of the footing vertical
displacement in the case whera,=10m displacement in the case whera,=1m
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Concerning the variability of the footing verticdisplacement \{), similar trends as those
obtained in the ULS analysis are obtained hereire €an see that the PDFs are less spread out
when the autocorrelation distance decreases. Tthessame explanations done in the ULS

analysis remain valid herein.

On the other hand, Tables 11.12, 11.13 and Il.14whhat the probabilistic mean value of the
footing vertical displacement does not exhibit aimum and it remains constant regardless of
the value of the autocorrelation distance (thismmealue is found to be slightly greater than the
deterministic value of 28.8mm which makes it matiéaal). The non-presence of a minimum is
contrary to the ULS probabilistic results (as oh¢ai by the present analysis, by Fenton and
Griffiths (2003) and by Soubra et al. (2008)) whareninimum exists for a given value of the
autocorrelation distance. This phenomenon can paieed by the fact that at SLS, the applied
footing pressureg,=500kPa is not sufficiently high to induce or iate a failure mechanism
which may pass through the weakest zones for angiadue of the autocorrelation distance.
Thus; in the SLS analysis, there is no particulu@ of the autocorrelation distance for which

the soil exhibits some weakness with respect tother values of the autocorrelation distance.

a =a,(m) g4 x10°m) g, x10°(m) COV,(%) &u()  wu()

1.5 29.4 1.8 6.1 0.09 0.01
1.8 29.4 2.0 6.8 0.19 0.05
2 29.4 2.2 7.5 0.23 0.07
3 29.4 2.8 9.5 0.33 0.15
5 29.5 3.5 11.9 0.39 0.28
10 29.5 4.1 13.9 0.43 0.33
50 29.5 4.4 14.9 0.47 0.41
100 29.5 4.4 14.9 0.47 0.41

Random variable 29.5 4.4 14.9 0.47 0.41

Table I1.12. Effect of the isotropic autocorrelation disncea.=a, on the statistical moments of the footing
vertical displacement
Tables 11.12, 11.13 and 11.14 also show the impattthe autocorrelation distance on both the
skewness and the kurtosis of the PDF. For smallegalof the autocorrelation distance, the
skewness and kurtosis of the response are clasraonvhich means that the PDF of the response
IS not far from a Gaussian one in these casesc&lbbwever that these moments increase when
the autocorrelation distance increases which méaatsfor great values of the autocorrelation

distance, the shape of the PDF of the output besdandrom a Gaussian one.
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a, (m) 4 x10°(m) g, x10°(m) COV, (%)  &.(-) Ku ()

0.5 29.3 1.6 5.5 0.17 0.03
0.8 29.4 2.0 6.8 0.21 0.06
1 29.4 2.2 7.5 0.24 0.08
2 29.4 3.0 10.2 0.33 0.21
5 29.5 3.8 12.9 0.41 0.31
8 29.4 4.1 13.9 0.42 0.32
50 29.5 4.2 14.2 0.45 0.34
1D random field 29.5 4.2 14.2 0.45 0.34

Table 11.13. Effect of the vertical autocorrelation distancea, on the statistical moments of the footing vertical
displacement whera,=10m

a, (M) #, X10°(m) g, x10°(m) COV, (%)  &u(-) k()
2 29.4 1.6 54 0.09 0.02
4 29.4 1.9 6.5 0.16 0.05
10 29.4 2.2 7.5 0.24 0.08
20 29.4 2.4 8.2 0.25 0.10
30 29.4 2.4 8.2 0.26 0.15
50 29.4 2.4 8.2 0.26 0.15
1D random field 29.4 24 8.2 0.26 0.15

Table 11.14. Effect of the horizontal autocorrelation digancea, on the statistical moments of the footing
vertical displacement whenma,=1m

Effect of the coefficient of variation of the randdield

Figurell.19 presents the PDFs of the footing verticaptiisement\{) for four different values of
the coefficient of variation of the Young modulusndom field. Notice that for these four
configurations,a,=10m, anda,=1m. Tablell.15 presents (for the four configurations) theirfo

statistical moments of the footing vertical disgaent.

As expected, Figurdl.19 and Tablell.15 show that the variability of the footing viedl
displacement increases when the coefficient ofatian of the Young modulus random field
increases. On the other hand, the mean value dibtitang vertical displacement was found to
significantly increase when the coefficient of aion of the Young modulus increases. This is
of particular interest since the probabilistic meatue (29.4mm) obtained for the reference case

whereCov,. =15% becomes unconservative and no longer valid whewahniability of the input

random field significantly increases.
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Figure 11.19. Influence of the coefficient of variationCOVg on the PDF of the footing vertical displacement in
the case where,=10 anda,=1m

COV, (%) 4 x10%(m) g, x10°(m) COV, (%) &, (-) Ku (-)

10 29.0 15 5.2 0 0

20 29.8 3.0 10.1 0.32 0.15
30 31.1 4.7 15.1 0.49 0.41
40 32.9 6.6 20.1 0.65 0.78

Table 11.15. Effect of the coefficient of variation (COVE) of the random field E on the statistical moments of
the footing vertical displacement whera,=10m, a,=1m

Tablell.15 also shows that for the smallest valueColv. (i.e. Cov. =10%), the skewness and

kurtosis of the response are equal to zero whichnsi¢hat the PDF of the response is Gaussian

in this case. Notice however that wh@ov, increases, the shape of the PDF of the output

becomes far from a Gaussian one.

1.4 PROBABILISTIC ANALYSIS OF STRIP FOOTINGS RESTI NG A SPATIALLY
VARYING ROCK MASS OBEYING HOEK-BROWN (HB) FAILURE C RITERION

The aim of this section is to present the probstGlinumerical results in the case of vertically
loaded strip footings resting on a spatially vagymack mass obeying Hoek-Brown (HB) failure
criterion. Only the ultimate limit state ULS is cdered herein. It involves the computation of

the ultimate bearing capacitgf).

The rock mass follows the generalized HB failuigedon [Hoek and Brown (1980), Hoek et al.
(2002), Hoek and Marinos (2007) and Brown (2008)].this criterion, only intact rocks or
heavily jointed rock masses (i.e. with sufficientdlgnse and randomly distributed joints) can be

considered. The HB failure criterion is charactediby four parameters:
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(1) the geological strength indes§))

(i) the uniaxial compressive strength of the intack @g)
(i) the intact rock material constamn)

(iv)  (iv) the disturbance coefficienDj.

Mao et al. (2011, 2012) have modeled these fouarpaters as random variables and have
performed a probabilistic analysis of the ultimbgaring capacityq;) of foundations. These
authors have shown that the variability of thenudtie bearing capacity is mainly due to the
uniaxial compressive strength of the intact roel @nd the geological strength inde®S)).
Based on this study, only these two parameters wensidered herein as uncertain. The rock
uniaxial compressive strength of the intact roek (vas considered as a non-Gaussian (log-
normally distributed) random field characterized By square exponential autocorrelation
function. Its mean value and coefficient of vapati(referred to as reference values) were taken

as follows: 4, =10MPa, COV, = 25%. As for GS| Ching et al. (2011) have stated that this

parameter is based on engineering judgment. ltackerizes the overall rock mass condition and
it does not represent a precise physical parametging in space. Thus, this parameter cannot
be modeled as a random field and will be treateg#iheas a log-normally distributed random
variable with a mean value and a coefficient of iatean given as follows:
Hss) = 25,COVg, = 10% [Brown (2008)]. Finally, it should be mentionedatithe intact rock
material constantg) and the disturbance coefficiem)(were assumed to be deterministic since
the probabilistic ultimate bearing capacity wasndwnot sensitive to the variability of these

parameters [Mao et al. (2012)]. Their correspondiadues were respectivelyn, =8 and

D =0.3.

The deterministic model was based on numerical lsitions using FLAC® software. A footing

of breadth B=1m was considered in the analysistitiercalculation, a rock mass of 20m wide by
6m deep was found necessary (Figr20). The rock behavior was modeled by an elastic
perfectly plastic model obeying the generalized tdBure criterion. It should be emphasized

here that an associated flow rule was consideredisnstudy in order to be able to compare the

obtained results to those given in literature usheglimit analysis theory [Mao et al. (2012) and

Merifield et al. (200€). For this purpose, the confining stress at constalume g;° must be

properly selected. In fact, beyond the valuedgf, no volume changes are expected to appear.
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This means that whew’ /o, is very small, the case of a deformation at caristalume is
rapidly reached and the model can be consideréalltav a non-associated flow rule with a zero
dilation angle. On the contrary, the case of adargue ofo’ /o, means that the deformation at
the constant volume can not be reached easilyrarslthe model can be considered to follow an
associated flow rule. In the present chapter, aevaf o2’ /o, =2 was selected. This value was

chosen since greater values have not significashglyrease the value of the ultimate bearing
capacity.

The present deterministic model was validated byparison of its results with those provided
by Mao et al. (2012) and Merifield et al. (2006) fdifferent configurations of the rock
parameters. The results are presented for the afaseweightless material. The value of the
Poisson ratio adopted in this section is 0.3. Astlie modulus of deformation of the HB rock
mass, Hoek et al. (2002) have proposed the follgwahationship between this parameter and the

HB failure criterion parameters:

E_ z(l_Rj }&.10(((38'_10)/40) (1.2)
2 100

whereE,, in this equation is given in GPa.

Table .16 presents a comparison between the resultsirdut from the present deterministic
model and those given by Mao et al. (2012) and fidddti et al. (2006). It should be mentioned
here that the results given by Merifield et al.q@Dpresent the average values between the upper
and lower bound solutions of the limit analysisaitye On the other hand, Mao et al. (2012)
presents only an upper bound solution of the uliénbeearing capacity. Tablel6 shows that the
present numerical model provides slightly moreiaaltvalues of the ultimate bearing capacity.
This model will be used to perform the probabitistnalysis.

6m

Figure 11.20. Mesh used for the computation of the ultima¢ bearing capacity
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GSI Oc m Mao et al. Merifield et al.

() (MPa) (MPa) FLACT (2012) (2006)

20 7.5 10 1.460 1.600 1.568
20 10 10 1.960 2.130 2.090
20 12.5 10 2.450 2.670 2.613
20 15 10 2.930 3.200 3.135
20 20 10 3.920 4.270 4.180
30 7.5 10 2.784 3.040 2.978
30 10 10 3.710 4.060 3.970
30 12.5 10 4.660 5.070 4.963
30 15 10 5.605 6.120 5.955
30 20 10 7.498 8.080 7.940

Table 11.16. Values ofqy (MPa) as given by FLACP, b)éMerifieId et al. (2006) and by Mao et al. (202) when
D=

As for the autocorrelation distancasanday of the random fieldd), it was assumed here that
a=ax=ay. Notice that the adopted reference value of th®cawrelation distancea) is 2m;
however, a range of 0.5-100m was considered fop#nametric study. For the different values of
the autocorrelation distance)( the total numbeN of random variables (or eigenmodes) that
should be used to discretize the random fieldsoWithin a prescribed value of 10% for the
variance of the error is presented in TdhlE7. Notice that the numbers given in Talllé7 are

those corresponding to the rock dom@iem, 6m] presented iRigurell.20.

Total number of random

Autocorrelation variables used to discretize the
distancea(m) uniaxial compression strength
random field
0.5 120
1 99
2 35
5 8
10 5
50 5
100 5

Table I1.17. Number of random variables needed to discréte the random fielda,

The following subsections are organized as followgst, a global sensitivity analysis is
performed. This is followed by a presentation & garametric study. The aim of this parametric

study is to show the effect of the different gowegnstatistical parameters (autocorrelation
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distance, coefficient of variation) on both the P@fRhe ultimate bearing capacity and the Sobol

indices of the uncertain parameters @geandGS)).
[1.4.1 Global sensitivity analysis

The aim of this section is to perform a global #&nty analysis for the reference case (i.e. when
a=2m). Figurell.21 depicts the values of Sobol indices as gibvgnhe obtained SPCE for (i) the
random variablé& Sl and (ii) the 35 random variables representingrémelom fields.. The first
random variable?; corresponds td5Sl and its Sobol index was found to be equal to 0.66.
However, the last 35 random variables [gefor i=2, ..., 36] are those corresponding to e
random field. The sum of their Sobol indices gitke weight of the random field. in the

variability of the ultimate bearing capacity. Thism was found to be equal to 0.34.

0.8

0.7 1

0.6 B GSI|
OocC

Sobol indices
© o o o o
[l N w SN ol
L L L

o

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35
Index i of random variable &

Figure 11.21. Sobol indices of the random variableGS! [i.e. &(i=1)] and the random fielde, [i.e. &(i=2, ..., 36)]

Figurell.21 shows that only six random variablés, €, &, &, &o, £12) Of theo, random field are
the most influential (they involve 89% of the vaita ofsc). This can be explained by the fact
that the system response (i.e. the ultimate bearamgcity) is a quantity that depends on the
average distribution of the spatially-varying ropkoperty over the entire domain and it is
therefore quite insensitive to small-scale fluatwad of o.. In addition, one can notice that the
Sobol indices of the random variables correspondinghe eigenmodes which are symmetric
with respect to the vertical axis [cf. Blatman aB8ddret (2011)] present the most significant
values. This can be explained by the fact thab#ering capacity is more sensitive to the values
of the rock property situated at the central aXithe footing. Along this axis, the values of the
calculated random field; results from the summation of the maximal valuéshe different
symmetrical eigenmodes; the non-symmetrical eigel@ndeing equal to zero at these locations.

This explains the fact that only the symmetricaje@modes significantly contribute to the
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variability of qu. Notice finally that a similar result was obtainey Blatman and Sudret (2011)

when considering the sttelement problem of foumhati
[1.4.2 Probabilistic parametric study

The aim of this section is to study the effect lo¢ wifferent statistical governing parameters
(autocorrelation distance ef and coefficient of variation of botk, andGS)) (i) on the PDF of

the ultimate bearing capacity and (ii) on Sobolged.
[1.4.2.1 Effect of the isotropic autocorrelation distance (a

Figure 11.22 provides the PDFs of the ultimate bearingacay for different values of the
isotropic autocorrelation distance®f(a =0.5, 1, 2, 5, 10, 50, 100m) and for the case ateis
modeled as a random variable (case of a homogawoksmass). Tabl#.18 presents the four

statistical moments for the cases presented irfiguse.

As expected, the PDF and the statistical momentsegonding to a great value of the
autocorrelation distance@£100m) are similar to those given by the case cdralom variable.

Concerning the effect of the autocorrelation diseéann the variability of the ultimate bearing
capacity, one obtains similar trends as the casgripf footings resting on spatially varying soil

mass. Thus, the same explanations done beforerrermlz herein.
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Figure 11.23. Influence of the isotropic
autocorrelation distancea on the probabilistic mean
of the ultimate bearing capacity

Figure 11.22. Influence of the isotropic autocorrelation
distancea on the PDF of the ultimate bearing capacity

Figure 11.23 and Tablell.18 show that the probabilistic mean value of thiémate bearing
capacity presents a minimum when the autocorrelatistance is nearly equal to the footing

breadth B (i.e. in our case whar=1m). Notice that this minimal probabilistic meaas also
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observed when considering the bearing capacitpwidations resting on a soil mass. Thus, the

same explanation which was done before remaind teliein.

Autocorrelation

distancea(m) th, (MPa) g, (MPa) COV, (%)  &,()  wu()

0.5 1.486 0.288 19.4 0.46 0.31
1 1.459 0.301 20.9 0.45 0.32
2 1.462 0.342 23.4 0.52 0.54
5 1.484 0.408 27.5 0.79 1.10
10 1.512 0.450 29.8 0.88 1.29
50 1.557 0.486 31.4 0.97 1.69
100 1.560 0.488 31.4 0.98 1.73
Random variable 1.560 0.488 31.4 1.02 1.72

Table 11.18. Effect of the autocorrelation distancea on the statistical moments of the ultimate bearingapacity

Tablell.18 also shows the impact of the autocorrelatisstance on both the skewness and the
kurtosis of the PDF. For small values of the autadation distance, the skewness and kurtosis
of the response are small which means that the &fQFe response is not far from a Gaussian

one in these cases.

Finally, Figurell.24 and Tabldl.19 show the effect of the autocorrelation dis&on the Sobol
indices of the random field, and the random variab®Sl The results show that for very large
values of the autocorrelation distance (ee=100m), the variability of the ultimate bearing
capacity is mainly due te.. Similar results were obtained by Mao et al. (20tubere the
uncertain parameters were modeled by random vasallshould be emphasized here thais

the most weighted parameter in the variabilityred tiltimate bearing capacity only in the case of
very large values of the autocorrelation distancenothe case of random variables. Indeed,
Figurell.24 shows that the decrease in the autocorrelatistance oé. reduces its weight in the
variability of the ultimate bearing capacity and@reases the weight @&SL Although this result
was impossible to be detected when a simplifiedetiog (i.e. random variables) of the uncertain
rock parameters was used, it can be explained byfdot that the small values of the
autocorrelation distance increase the rock massdgeneity (i.e. one obtains a set of weak and
strong zones) which will produce a somewhat cloksbal behavior of the footing from
simulation to another one because of the averggiegomenon over the zone of possible failure
mechanism. The expected decrease in the variabilityhe ultimate bearing capacity with the

decrease in the autocorrelation distance.a$ reflected herein by a decrease in the weiglat of
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in the variability of this response. For the limdi case of a very small value of the

autocorrelation distance; can be seen as a deterministic value which imghiasin this case the

variability of the ultimate bearing capacity is pdue toGSlI (i.e. SGS)) tends to one).

10 20 30 40 50 60 70 80 90 100

Autocorrelation distance a (m)

Autocorrelation

distancea(m) S(GS) St
0.5 0.92 0.08
1 0.82 0.18
2 0.66 0.34
5 0.50 0.50
10 0.42 0.58
50 0.38 0.62
100 0.38 0.62
Random variable 0.38 0.62

Figure I1.24. Influence of the autocorrelation distancea  Table 11.19. Influence of the autocorrelation distancea

11.4.2.2 Effect of the coefficient of variation

on the Sobol indices oGSl and o,

on the Sobol indices 0GS| and o,

The effect of the coefficients of variatioBQVs) of the random field; and the random variable
GSilis studied and presented in Figlit25, Tablell.20 and Tabldl.21. Notice that in this study,

the adopted value of the autocorrelation distafidkeorandom field. is the reference value (i.e.

a=2m).
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Figure 11.25. Influence of the coefficients of variationCOVs of the random variableGS| and the random field
o on the PDF of the ultimate bearing capacity: (a)rfluence ofCOVgg; (b) influence of COV,
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COVGSI COVs (o] 'uqun (MPa) Uqun (MPa) COVQu\t (%) dy (') Ky (')

10% 12.5% 1.530 0.307 20.1 0.48 0.46
10% 25% 1.462 0.342 23.4 0.52 0.54
10% 37.5% 1.366 0.364 26.7 0.53 0.58
5% 25% 1.470 0.226 15.4 0.13 0.05
10% 25% 1.462 0.342 23.4 0.52 0.54
15% 25% 1.451 0.458 31.6 0.73 0.77

Table 11.20. Effect of the coefficients of variation COVs) of the random fielde, and the random variableGSI
on the statistical momentsg, o, d,, k) of the ultimate bearing capacity whera=2m

Figurell.25 and Tablel.20 show that the variability of the ultimate bbie@ capacity increases
(as expected) when the coefficient of variationegher the random field. or the random
variable GSI increases; the increase being more significanttierGSI| parameter (see Table
[1.20). This is because an increase in the coefiitcof variation ob. by 50% (with respect to its
reference value) increases @GOV of the ultimate bearing capacity by only abouto¥s. while
increasing the coefficient of variation @Sl by 50% (with respect to its reference value)
increases th€OV of the ultimate bearing capacity by about 34.9%bl€11.20 also shows that
the probabilistic mean value of the ultimate bearicapacity slightly decreases when the

coefficients of variation increase.

10% 12.5% 0.88 0.12
10% 25% 0.66 0.34
10% 37.5% 0.49 0.51
5% 25% 0.32 0.68
10% 25% 0.66 0.34
15% 25% 0.82 0.18

Table I1.21. Effect of the coefficients of variation COVs) of the random fielde, and the random variableGSI
on the Sobol indices oGSl and 6. whena=2m

From Tablell.21, one can see that an increase in the coefficf variation of a rock parameter
increases its Sobol index and thus its weight enutariability of the ultimate bearing capacity;
this automatically reduces the contribution of dtleer uncertain parameter. This increase is more
significant fore.. This is because an increase in the coefficiemaoftion ofGSI by 50% (with

respect to its reference value) increases its Sadek by only about 24.3%, while increasing the
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coefficient of variation ob; by 50% (with respect to its reference value) iases its Sobol index
by about 50%.

1.5 DISCUSSION

Although the focus of this chapter involves the paoiation of the statistical moments of the
different system responses, the aim of this sedtidn briefly discuss the validity of the present
SPCE methodology for the computation of the prdidgbof failure P:. For this purpose, a
comparison between the results obtained usingwhse® Simulation (SS) method by Ahmed and
Soubra (2012) (see sectibb.1.2) and those obtained with the proposed SRE€thodology are
presented herein. The comparison was performeldeitULS case of a strip footing resting on a
weightlessc-¢ soil for the reference case whexg10m, a,=1m, andr(c, ¢)=-0.5. (cf. section
[1.3.1.2). The footing is subjected to a verticahd P=40kN/m The performance function used

to calculate the failure probability ¢s = ';_u_l whereP, is the ultimate footing load.

In order to calculate the failure probabilRyby SS method, an optimal numbl&yof simulations
per level should be selected. This number shouldrbater than 100 to provide a small bias in
the calculatedP; value [Honjo 2008]. In this case study, a numbesimulation per leveKs=200
was chosen. The obtaindd value was equal to 3.5xt0Notice that four levels of SS were
required to calculate thiz value. The total number of simulatiokiss equal to 740. Thig; value
obtained by SS is to be compared to fhevalue of 4.72x18 obtained using the SPCE
methodology. One can observe a small differencevdmt the two methods. It should be
emphasized that this is a preliminary validatiorthef SPCE methodology for the computation of
the failure probability. Further tests are necgstarconfirm the agreement between the results of

the two methods.

1.6 CONCLUSIONS

In this chapter, a probabilistic analysis at badtimate limit state (ULS) and serviceability limit
state (SLS) of strip footings was performed. Tweecatudies were considered in this chapter.
The first one involves the case of strip footingsting on a 2D spatially varying soil mass
obeying the Mohr-Coulomb (MC) failure criterion atite second one considers the case of strip
footings resting on a 2D spatially varying rock sasbeying the Hoek-Brown (HB) failure

criterion.
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In the case of the spatially varying soil massr@babilistic analysis at both ULS and SLS of
vertically loaded strip footings was performed. Hod shear strength parametecsa(dy) were
considered as anisotropic cross-correlated nonsgausandom fields at ULS and the soil elastic
parametersE ando) were considered as anisotropic uncorrelated nams&an random fields at
SLS. Notice that the system response used at ULS the ultimate bearing capacityyf);
however, the footing vertical displacemen} (as considered as the system response at SLS.
Concerning the case of the spatially varying rodssy only the ULS case was considered. The
methodology proposed by Yechovsky (2008) was used to generate the two rarfokbas. The
sparse polynomial chaos expansion (SPCE) methoglod@s employed for the probabilistic
analysis. The adaptive algorithm suggested by BElatmnd Sudret (2010) to build up a SPCE
was adopted to obtain a meta-model (i.e. an apmrabe analytical expression) of the system
responses. These meta-models were employed tarpetifie probabilistic analysis using Monte
Carlo simulation technique. Notice finally; that the ULS analysis, only weightless soil and
weightless rock masses were considered. This igusecintroducing the soil/rock weight in the
deterministic model increases the computation tiram 5 to 10 min per simulation. Although
this difference may not seem to be significantdosingle simulation, it becomes dramatically
important during the probabilistic analyses wherkarge number of simulations is needed for

each probabilistic analysis.

The numerical results have shown the interest ef SPCE methodology with respect to the
classical PCE method in the case of random fieltierev a significant number of random
variables were used in the analysis. The numergsallts have also shown that the variability of
the system responses (i.e. the ultimate bearingodgpin the ULS analysis and the vertical
displacement of the footing in the SLS analysigyeéases (as expected) with the increase in the
coefficients of variation of the random fieldswias also shown that an increase in the coefficient
of variation of a random field increases its Sahdex and thus its weight in the variability of the
system response and decreases the weight of tle® pdrameter. The negative correlation

between the random fields decreases the resporiabilrty.

With a decrease in the autocorrelation distanagsr(a, or a,=ay), a less spread out PDF of the
system response was obtained. The probabilisticmmaaklue of the ultimate bearing capacity (in
both cases of soil and rock masses) presents anommi This minimum was obtained in the
isotropic case when the autocorrelation distanageely equal to the footing breadth B; while
for the anisotropic case (presented only when hrmass is considered), this minimum was

obtained (for prescribed footing and soil charastes) at a given value of the ratio between the
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horizontal and the vertical autocorrelation disemSmall values of the autocorrelation distances
lead to small values of the skewness and kurtdsteeosystem responses. Thus, a PDF of the
system response that is not far from a Gaussianw@®eobtained in these cases. Finally, the
obtained results show the importance of considethey spatial variability of the soil/rock
properties in the probabilistic studies since sootserved phenomena (such as the non-
symmetrical soil failure and the variation in theight of parameters with the autocorrelation
distance) can not be seen when homogenous soi®asalered.
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CHAPTER Ill.  EFFECT OF THE SOIL SPATIAL VARIABILITY IN
THREE DIMENSIONS ON THE ULTIMATE BEARING CAPACITY O F
FOUNDATIONS

1.1 INTRODUCTION

The effect of the spatial variability of a soil/koproperty was extensively investigated in the
previous chapter using a two-dimensional (2D) aialyin this case, the soil/rock mass exhibits
spatial variability in a given plane and remainsfarnm in the direction normal to this plane
where the autocorrelation distance is implicitlyeta as infinite.

Few authors have investigated the effect of thesBID spatial variability. One may cite among
others Fenton and Griffiths (2005) for the foundatsettiement problem, Griffiths et al. (2009)
for the slope stability analysis and Popescu e2805) for the seismic liquefaction problem. To
the best of the authors’ knowledge, there are mestigations on the effect of the 3D soil spatial

variability on the ultimate bearing capacity of flations. This chapter fills this gap.

The effect of the soil spatial variability in thrdenensions is investigated in this chapter through
the study of the ultimate bearing capacity of staipd square foundations resting on a purely
cohesive soil with a spatially varying cohesiontle three dimensions [Al-Bittar and Soubra
(2012d]. For this purpose, the soil cohesion was modeted 8D random field. Both cases of

isotropic and anisotropic random fields were coaisd.

In order to investigate the effect of the spatialiability in the third direction, the results difet

ultimate bearing capacity of foundations obtainsthg a 3D random field were compared to
those corresponding to a 2D random field for tweesaof a strip and a square footing. The
objective is to check the validity of considerin@@ random field in both cases of plane strain

and three-dimensional problems.

1.2 PROBABILISTIC ANALYSIS OF STRIP AND SQUARE FO OTINGS RESTING
ON A 3D SPATIALLY VARYING SOIL MASS

The aim of this section is to perform a probabdistnalysis of shallow foundations taking into
account the soil spatial variability in three dirmems. More specifically, the analysis involves
the computation of the ultimate bearing capaaiy)(of square and strip footings resting on a
purely cohesive soil that exhibits spatial variggpiin three dimensions. Notice that for both the

square and strip footings considered in the arglyke cases of 2D and 3D anisotropic non-
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Gaussian cohesion random fields were investigdtkd.objective is to check the validity of the

commonly used assumption of a 2D random field ithlbases of plane strain and 3D problems.

As for the random field discretization method of 8D random field, a straightforward extension
to the 3D case of the Expansion Optimal Linearr&ation (EOLE) methodology proposed by Li
and Der Kiureghian (1993) and extended byeaéhovsky (2008) (see details in sectldh4.1)
was used in this chapter. It should be emphasieeel that this extension of EOLE method to the

3D case is straightforward because the autocowelahatrix =, , calculated using Equation

(1.9) provides the correlation between each nodinefstochastic mesh and all the nodes of this

mesh. Thusz,  is always a square matrix of dimensigs regardless of the random field

dimension.

Concerning the probabilistic method of analysisg tBparse Polynomial Chaos Expansion
(SPCE) presented in the previous chapter is useeirhelt aims at replacing the FLAE
deterministic model by a meta-model (i.e. a singsialytical equation). This allows one to easily
calculate the system response (when performingptbbabilistic analysis by MCS) using a
simple analytical equation.

The deterministic model was based on numerical lsitioms using the finite difference code
FLAC®P. The undrained soil behavior was modeled usingreventional elastic-perfectly plastic
model based on Tresca failure criterion. On theewothand, an associative flow rule was
considered in this study. This assumption is jiestiby the fact that for purely cohesive materials
no volume changes are expected to appear durisggteformation. Notice that the soil Young
modulusE and Poisson ratio were assumed to be deterministic since the ul@ntegaring
capacity is not sensitive to these variables. Tloarresponding values were respectively
E =60MPa and v =0.49. Concerning the footing, a weightless rigid foutnmta was used. It
was assumed to follow an elastic linear modek=( GRS&, v =0.4). The connection between
the footing and the soil mass was modeled by iaterelements having the same mean values of
the soil shear strength parameters in order to latea perfectly rough soil-footing interface.
These parameters have been considered as deteininighis study. Concerning the elastic
properties of the interface, they also have be@sidered as deterministic and their values were

as follows: K, = GPa, K, =1GPa where Ks and K,, are respectively the shear and normal

stiffnesses of the interface.
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Figurelll.1(a) shows the adopted soil domain consideredhe analysis of the square footing

case. It is 5Smx5m wide by 2m deep. A 'relativehefimesh was considered for the analysis. On
the other hand, the soil domain and the correspgneafiesh for the strip footing case (in the 2D
plane) are similar to those obtained with the cs®sgion of the square footing soil domain at

Y=2.5m or at X=2.5m (cf. Figuril.1(b)).

It should be noted that the size of a given elemerthe deterministic mesh depends on the
autocorrelation distances of the soil propertiesr Riureghian and Ke (1988) have suggested
that the length of the largest element of the data@stic mesh in a given direction (horizontal or
vertical) should not exceed 0.5 times the autotatioe distance in that direction. In order to
respect this criterion for the different autocaaten distances, a refinement of the deterministic
mesh was performed in FLAEfor the very small values of the autocorrelatidstahces (<1m).

This mesh will be called hereafter 'very fine' mesh

For the boundary conditions of the square footiage¢ the horizontal movement on the vertical
boundaries of the grid was restrained, while theehat the grid was not allowed to move in both

the horizontal and the vertical directions. The sdmundary conditions were adopted for the

strip footing case together with another conditielated to the plane strain.
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Figure I11.1. Mesh used for the computation of the ultimae bearing capacity of (a) square footing and (b) 8p

footing

1.3 NUMERICAL RESULTS
In this section, one firstly presents the obtaideterministic numerical results. This is followed

by a presentation of the probabilistic numericalifts.
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111.3.1 Deterministic numerical results

The aim of this section is to present the detemstiminumerical results for both the square and

the strip footings considered in the analysis.

The three-dimensional 'relatively fine' mesh haktte a deterministic value of ultimate bearing
capacity coefficieniN.=6.54 for the square footing case. The differendd the recent finite
element solution N.=5.91) by Gourvenec et al. (2006) and the recemeupound solution
(N;=6.41) by Gourvenec et al. (2006) was respectiedput 9% and 2%. It should be
emphasized here that a ‘very fine’ mesh has legl value ofN.=6.15 which is only 5% smaller
(i.e. better) than the value of 6.54 obtained usireg'relatively fine' mesh. Notice however that
this solution requires an increase in the companatime by 2 hours and thus, this 'very fine'
mesh was not retained in the present probabibstadysis. A similar procedure that makes use of
a 'relatively fine' (not 'very fine') mesh was adated by Griffiths et al. (2002) when performing
a probabilistic analysis. It should be emphasizedein that when dealing with probabilistic
studies based on three-dimensional finite elemai#fdifference deterministic models, the time
cost is very important especially when the soiltighavariability (and more specifically the

variability of the soil property in three dimens®)ns introduced. The reasons are:

(1) The computation time of a single deterministic solu significantly increases with

the increase in the density of the three-dimensideterministic mesh.

(i) The fact of providing (for each simulation of agle probabilistic analysis) different
values of the soil cohesion to the different eletsari the mesh, will add a dramatic

computation time especially for very fine meshes.
(i)  The large number of simulations required for eacbabilistic analysis.

Thus, in order to enable the investigation of tffeat of the soil spatial variability in the three
dimensions for the present three-dimensional mecabproblem, a 'relatively fine' (not 'very
fine’) mesh was considered in the square footinge.cdhis is a compromise between the

computation time and the accuracy of the probdiulgolution.

Concerning the strip footing case, it should beewinered that the same ‘relatively fine’ mesh
used in the central plane of the square footing adipted for the values of the autocorrelation
distances greater than 1m (cf. Figlitel(b)), although a finer mesh would be possibécause

of the relatively small computation time in thissea This choice was adopted in order to

maintain a similarity with the mesh employed foe tbquare footing. Notice that a 'very fine'
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mesh has led in this case to a valuNgf5.43 which is about 5% larger that the closed form
solution Nc=5.14 and it is about 2% larger than the recentefirlement solutioiN.=5.31 by
Gourvenec et al. (2006). The adopted ‘relativehgfimesh has led to a valNe=5.74 which is
about 10% higher than the closed form solutign5.14 and is only 5% higher than the solution

given by the 'very fine' mesh.
[11.3.2 Probabilistic numerical results

In this section, the probabilistic numerical resuf both the square and strip footings resting on
a purely cohesive spatially varying soil are préseénThe soil cohesion parameter was modeled
as anisotropic non-Gaussian (log-normal) randoid fising a square exponential autocorrelation

function. Its mean value and coefficient of vapati(referred to as reference values) were taken

as follows: 1. =20kPa, COV, = 25%.

It should be emphasized here that for both the reqaad strip footings considered in the
analysis, the cases of 2D and 3D cohesion rand@&hisfiwere investigated. As for the
autocorrelation distances, a, and a, of the cohesion random field, both cases of igotro
random fields (i.ea=ay,=a, for the 3D random field case aagFa, for the 2D random field case)
and anisotropic random fields (i.a~as#a, for the 3D random field case amgta, for the 2D

random field case) will be treated although théisairely isotropic in reality.

When isotropic random fields are used, the autetation distance for both the 2D and the 3D
random fields will be denoted bg)(later on in this chapter (i.e=ax=a,=a, for the 3D random
field case an@=a.=a, for the 2D random field case). Also, when refagria anisotropic random
fields, the horizontal autocorrelation distance lfoth the 2D and the 3D random fields will be
denoted bya, (i.e. an==a,=ay for the 3D random field case amg=a, for the 2D random field
case). Furthermore, the vertical autocorrelati@tagice for both the 2D and the 3D random fields
will be denoted by, (i.e.a,=a, for both the 3D and 2D random fields cases).

For the isotropic case, a range of 0.5-10m wasiderexd (cf. Tabldll.1). For the anisotropic

case, the reference values adopted for the hoakamid the vertical autocorrelation distances
were 10m and 1m while the wide ranges of 0.5-10chGfh5-10m were considered respectively
for the horizontal and the vertical autocorrelatitistances when performing the parametric study

for both the square and the strip footings (cf.l&dh1).

For the considered soil domain and for the differetues of the autocorrelation distancesd,

or a,) used in the analysis, the total numbiesf random variables (or eigenmodes) that should be
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used to discretize the cohesion random field withwalue of the variance of the err@0% is
presented in Tabldl.1. It should be emphasized here, that for tleeyvsmall values of the
autocorrelation distance where a large number oflom variables ¥ 500) was needed to
discretize the random field, a maximum number afican variableiN=300 was employed. This
is because beyond this value, numerical difficaltieay occur. The use of this number may lead
to relatively large values of the variance of thee(>10%) but this will not affect the accuracy
of the obtained system response. This is becaudbeofery fast decay of the importance of

random variables in the variability of the systeasponse as was shown in the previous chapter.

3D random field 2D random field
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Table lll.1. Number of random variables needed to discrarze the 3D and 2D cohesion random fields in the
case of the square footing
Figurelll.2(a) presents, for the case of the square fgpta typical realization of the 3D cohesion
random field in the isotropic case where0.5m. Only one half of the soil domain is presented
this figure in order to show the variation of tl@hesion in the plane X=2.5m (i.e. the central plan
under the footing). As may be seen from this figulark regions correspond to small values of

the cohesiomr while light regions refer to lager values.

Figure ll.2(b) presents a 3D view of the failure mechami¢for the random field realization

shown in Figurelll.2(a)) using the contours of the strain rate.isThiew clearly shows the
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influence of the 3D spatial variability on the dbtd failure mechanism in both the central
vertical plane (X=2.5m) and the top horizontal glaepresenting the ground surface. From this
figure, one can see that the failure mechanismoierdeveloped through the weaker zones and is
limited when strong zones are encountered. Cohtriarithe case of a homogeneous soil, a non-
symmetrical mechanism is obtained herein, althaotiighfooting is subjected to a symmetrical

vertical load.

12 14 16 18 20 22 24 26 28 30 32 34

Cohesion (kPa)

(@) (b)

Figure IIl.2. Perspective view of half of the soil domairshowing (a) a random field realization (the contour
lines provide the distribution of the soil cohesioron the envelope of this domain) and (b) the contosi of the
strain rate

On the other hand, the probabilistic numerical ltesuave shown that for the particular case of a
purely cohesive soil, the probabilistic ultimateabeg capacity can be written as follows:

0. = 4N, where £ is the mean value of the random fieldnd N, is the probabilistic ultimate

bearing capacity coefficient. This is because aaghan the mean value of the random fieldor

the same value of the coefficient of variati@®V, = 25%) have led to the same PDF Nf as
may be seen from Figut#.3. Thus, in this chapter, the non-dimensionagficient N, will be

used (instead dd) to represent the ultimate bearing capacity imababilistic framework. This

coefficient depends on the statistical parametetiseorandom field (i.e. autocorrelation distances
and coefficient of variation). Furthermore, thiseffwient (as in the deterministic analysis) is
independent of the values of the soil cohesiondctha footing breadth B. It should be noted that
all the probabilistic results presented in thisptka are provided for the practical value of the

coefficient of variationCOV, = 25%.

Finally, it should be mentioned here that for tbéerence case wheeg=10m anda,=1m, the

computation time is about 45 min per simulationtfee square footing case and about 5 min per
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simulation for the strip footing case. This timeludes the computation of the values of the
cohesion random field at the different elementgro@s of the mesh and their introduction in the
deterministic mesh together with the time requifed the deterministic calculation. This

computation time significantly increases for theryvesmall values of the autocorrelation

distances. This is because the large number oforandariables in these cases will induce
additional computation time to calculate the valokthe cohesion random field for the different
elements centroids of the deterministic mesh. Ndiially, that for the reference case, 300 calls

of the deterministic model were found to be sudfittito construct the meta-model within the

prescribed target accura®y, peer =0.999.
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Figure II1.3. Influence of the mean value of the cohesionn the PDF of the bearing capacity coefficientl; of a
strip footing when using 3D random field fora,=10m, a,=1m and COV.=25%

[11.3.2.1 Effect of the autocorrelation distance: The isotoopase

Table 1.2 presents the effect of the isotropic autoetation distancea) on the statistical
moments of the bearing capacity coefficiditfor both the square and strip footings using a 3D

random field and a 2D random field.

Table 11l.2 table shows that for a small value of the caatrelation distanceaf0.5m), the
variability of the bearing capacity coefficient pegssed by the non-dimensional parameter
COV,, ) is smaller when a 3D random field in considefddwever, for the large values of the
autocorrelation distance£10m), quasi-similar values of the response vdrtglwere obtained

in both cases of 3D and 2D random fields. Theservbsons are valid for both the strip and the

square footings. Figudd.4 confirms these observations.

Tablelll.2 also shows that for both the square and dtgiings, the variability o, decreases

when the autocorrelation distance decreases. Fowéhy large values of the autocorrelation
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distance, the 3D and 2D random fields are superseghdecause they tend to their limiting case
of random variable for which the autocorrelatiorstance is infinite. The decrease in the
autocorrelation distance from infinity to a finkalue (moderate or small wheee< 5m) limits

the correlation (in a given simulation) to a fingene which leads to a smaller variability in the
system response. It should be emphasized herbdhbatise the case of 2D random field exhibits
soil spatial variability in a given plane and shoaveon-varying soil in the direction normal to
this plane (because the cohesion random field rfeqi®y correlated in that third direction), the
variability of N. was found to be larger in that case as compar#tketoase of a 3D random field.
This observation may be explained by the fact thahe case of a 3D random field, the soill
exhibits spatial variability in three directionsdathus, in a single simulation, one obtains a et o
weak and strong zones in the 3D space for whichptigtion may change from simulation to
another one. This case leads to a decrease inatiabiity of N. since the soil heterogeneity
(zones of weak and strong soil) is now presenthin three directions and it will produce a
somewhat close global behavior of the footing fremmulation to another one because of the
averaging phenomenon over the possible three-dimmaisfailure mechanism. This averaging
phenomenon is more limited in the 2D random fieddecbecause of the perfect correlation in the

third direction.

Square footing Strip footing
o a(m)  Hy, gy,  COV, (%) My, gy,  COV, %)
@
e 05 6.34 0.51 8.0 5.38 0.47 8.7
S 1 6.39 1.02 15.9 5.49 0.86 15.7
3 2 6.46 1.38 21.3 5.55 1.15 20.8
o 5 6.51 1.53 23.5 5.69 1.36 24.0
10 6.52 1.58 24.2 5.72 1.40 24.5
s a(m) Hy, gy,  COV, () My, gy,  COV, %)
Q@
e 05 6.34 0.94 14.8 5.41 0.60 11.0
S 1 6.41 1.27 19.9 5.51 0.91 16.6
8 2 6.48 1.46 22.6 5.58 1.20 21.4
Q 5 6.52 1.57 24.1 5.70 1.37 24.1
10 6.52 1.58 24.2 5.73 1.40 24.5

Table 111.2. Effect of the isotropic autocorrelation distance @) on the statistical moments/,INc and g, N, of
the bearing capacity coefficieniN. of square and strip footings using both 3D and 2Eandom fields

Finally, Tablelll.2 shows that for both the square and strip ifugd, the probabilistic mean value

of N. is slightly smaller when considering a 3D randaetdf but this difference is not significant
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and can thus be neglected. The probabilistic medrotih 3D and 2D random field cases is found
to be slightly smaller than the deterministic va(6eb4 for the square footing and 5.74 for the
strip footing) which makes it slightly more critica

40
354 | 3D random field (a=0.5m
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Figure IIl.4. Comparison between the PDFs of the bearingapacity coefficientN. of a square footing when
using 3D and 2D isotropic random fields

[11.3.2.2 Effect of the autocorrelation distance: The aniepic case

Tablelll.3 presents the effect of the vertical autoclatien distance, on the statistical moments
of the bearing capacity coefficieh for the square and strip footings using both 3[d ap
random fields whena,=10m. Similarly, Tablelll.4 present the effect of the horizontal
autocorrelation distanca, on the statistical moments of the bearing capamsfficientN, for

the square and strip footings using 3D and 2D ranfields whera,=1m.

Tables 1II.3 and lll.4 show that for the very smalhlues of the horizontal or vertical
autocorrelation distance, the variability bk (expressed by the non-dimensional parameter

COV,, ) is smaller when a 3D random field is considertnis(difference is negligible when

investigating the effect of the vertical autocaateln distance because the chosen horizontal
autocorrelation distance, i.@,=10m is relatively large and thus the 2D and the@&mom fields
tend to the same one-dimensional vertically vangad mass). However, for the large values of
the horizontal or vertical autocorrelation distaifice. a,=10m ora,=10m), quasi-similar values
of the response variability are obtained in botkesaof 3D and 2D random fields. These
observations are valid for both the strip and thease footings. Figurdl.5 and Figurelll.6

confirm these observations.
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Square footing Strip footing
a, (m) My, Oy, COV, %) My, Oy, COVNC (%)

S 015 6.24 0.96 15.3 5.38 0.66 12.2
£ 025 6.27 1.15 18.3 5.39 0.82 15.3
S 05 6.38 1.38 21.7 5.45 1.04 19.2
3 1 6.48 1.52 23.5 5.58 1.24 22.3
Q 2 6.51 1.57 24.1 5.67 1.36 23.9
5 6.51 1.58 24.2 5.71 1.39 24.4
10 6.52 1.58 24.2 5.72 1.40 24.5
a,m My, gy COV % My, gy  COY ()
D 015 6.24 0.97 15.5 5.39 0.67 12.5
e 025 6.27 1.16 18.5 5.41 0.84 15.5
S 05 6.38 1.39 21.8 5.47 1.06 19.3
8 1 6.48 1.53 23.5 559  1.25 22.4
g 2 6.51 1.57 24.1 5.69 1.36 24.0
5 6.51 1.58 24.2 5.72 1.40 24.4
10 6.52 1.58 24.2 5.73 1.40 24.5

Table 111.3. Effect of the vertical autocorrelation distance @,) on the statistical moments/JNc and O, N, of
the bearing capacity coefficieniN. of square and strip footings using both 3D and 2Eandom fields

Square footing Strip footing
- & m Ly gy, COV, w) My, gy, COV, %)
2
E 0.5 6.34 0.48 7.6 5.41 0.50 9.3
8 1 6.39 1.02 15.9 5.49 0.86 15.7
c
© 2 6.44 1.32 20.4 5.51 1.07 19.5
a 5 6.46 1.48 22.9 5.56 1.20 21.6
10 6.48 1.52 23.5 5.58 1.24 22.3
o & (Mm Ay Oy, COVNc %) My, Oy, COVNc (%)
2
E 0.5 6.35 1.01 15.9 5.43 0.70 12.8
8 1 6.41 1.27 19.9 5.51 0.91 16.6
c
© 2 6.47 1.39 21.5 5.53 1.10 19.9
Q 5 6.47 1.48 22.8 5.57 1.21 21.7
10 6.48 1.53 23.5 5.59 1.25 22.4

Table 111.4. Effect of the horizontal autocorrelation distance @) on the statistical moments/JNC and O, N, of
the bearing capacity coefficieniN. of square and strip footings using both 3D and 2Eandom fields
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Figure |11.5. Comparison between the PDFs of the bearing i re 111.6. Comparison between the PDFs of the bearing
capacity coefficientN, of a square footing when using 3D .54ty coefficientN. of a square footing when using 3D
and 2D anisotropic random fields and fora,=10m and 2D anisotropic random fields and fora,=1m

Tablelll.3 and Tablelll.4 also show that for both the square and doigtings, the variability of

N decreases when the autocorrelation distance dmsea@his can be explained by the fact that
for the very large values of the horizontal autoglation distancey, (a,=10m), the 3D and 2D
random fields tend to their limiting case of a aheensional random field with a vertically
varying soil mass. Similarly, for the very largelues of the vertical autocorrelation distarage
(a,=10m), the 2D and 3D random fields tend respegtiteekheir limiting cases of one- and two-
dimensional random fields with a horizontally vawyi soil masses. In all these cases, the
cohesion random field is perfectly correlated iprascribed direction (horizontal or vertical);
however, the other direction (vertical or horizdnis allowed to exhibit variations in the value of
the cohesion according to the value of the autetaiion distance fixed for that direction. This
induces a reduction in the variability &f with respect to the case whesg=a,=10m. The
decrease in the autocorrelation distance from #se of a horizontally varying soil mass (where
a, =) or a vertically varying soil mass (wheag =) to the case where the infinite value of
the autocorrelation distance decreases to a fiailige, re-create further variations in the value of
the cohesion. This reduces once again the vatialoh N. with respect to the case where

an=a,=10m.

Finally, as in Tabldll.2, Tablelll.3 and Tablelll.4 show that the probabilistic mean in both 3D
and 2D random field cases is found to be slighthalker than the deterministic value but the

difference is negligible.
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111.3.3 Discussion

A comparison between the values of the coefficiefitsariation ofN. (obtained using 3D and
2D random fields) for both the isotropic and amigpic cases and for both the strip and square
footings is provided in Tabl#l.5. This comparison is presented in the formaafatio between

the values of the coefficients of variation of 812 and 2D random fields.

Tablelll.5 shows that for both the square and strip ifigs, the ratioCOVS" / CO\E® is the

smaller for the very small values of the autocatieh distance. This ratio tends to the value of
unity for the very large values of the autocortielatdistances. Thus, the third dimension is
important to be considered only when small valuésth® autocorrelation distances are

encountered.

On the other hand, the numerical results have shbainthe non-dimensional parametefB,
a/B and a/B can be adopted in the probabilistic analysisfmfndations. This is because
changing both the values of the autocorrelatiostadces, anda, (or a) and the footing breadth
B in a way to preserve the same raiB anda,/B (or a/B) have led to the same PDF Ig§.
Therefore, N is a function of onha/B or (a/B anda,/B) and the coefficient of variation of the
cohesion random field. The autocorrelation distaacey, anda, used in all the tables and figures
of this chapter can be replaceddB, a,/B anda,/B respectively since the footing breadth B was
taken equal to 1m in all the above analyses. Thake® all the tables of this chapter non-

dimentional and can be used for any value8 anda,/B (or a/B) whenCOV.=25%.

Values of Values of Values of
COV®/COV°for  COV/COV" for COVS® / COV® for
Autocorrelation differe.nt valugs of the diffgrent values of the different yalues of the
isotropic vertical autocorrelation horizontal

distance (m)

autocorrelation

distancea, when

autocorrelation distance

distance a,=10m a, whena,=1m

Square Strip Square Strip Square Strip

0.15 - - 0.987 0.981 - -

0.25 - - 0.991 0.987 - -
0.5 0.540 0.794 0.995 0.992 0.477 0.724
1 0.803 0.946 0.997 0.994 0.802 0.946
2 0.942 0.969 0.998 0.998 0.948 0.981
5 0.974 0.998 0.999 1.000 0.999 0.991
10 0.998 1.000 0.999 1.000 1.000 0.994

Table 111.5. Ratios between the coefficients of variatiorvalues ofN, (obtained using 3D and 2D random fields)
for both the square and strip footings
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1.4 CONCLUSIONS

A probabilistic analysis that considers the effgcthe spatial variability in three dimensions was
investigated through the study of the ultimate imgacapacity of strip and square foundations
resting on a purely cohesive soil with a spatiallyying cohesion in the three dimensions. The
main reason for which a purely cohesive soil wasdus to investigate the effect of the spatial

variability in the third direction with the use afrelatively non-expensive deterministic model.

In order to investigate the effect of the spatiatiability in the third direction on the ultimate

bearing capacity of foundations, the results oletéinsing a 3D random field were compared to
those corresponding to a 2D random field for the tases of strip and square footings. The
objective is to check the validity of a 2D randomd in both cases of plane strain and three-

dimensional problems.

The soil cohesion parameter was modeled as anmotnon-Gaussian (log-normal) random field
with a square exponential autocorrelation functidrstraightforward extension to the 3D case of
the Expansion Optimal Linear Estimation (EOLE) noelblogy proposed by Li and Der
Kiureghian (1993) and extended by féohovsky (2008) was used in this chapter. The
deterministic model was based on 3D numerical sitinnis using FLAG® software. An efficient
uncertainty propagation methodology that makesais® non-intrusive approach to build up a

sparse polynomial chaos expansion for the systeporese was employed.

The probabilistic numerical results have shown tloat small values of the autocorrelation
distances, the variability of the ultimate bearaapacity computed by considering a 3D random

field is smaller than the one obtained with theraBdom field for both cases of square and strip
footings. The ratioCOVS" / COV,® between the values of the coefficients of variataf N

using the 3D and 2D random fields is the smallettlie very small values of the autocorrelation
distance. This ratio tends to the value of unity tlee very large values of the autocorrelation
distances. Thus, the third dimension is importanbé considered when small autocorrelation
distances are encountered. As for the probabilistéan values, slightly smaller values were

obtained in the case of the 3D random field butdifference is negligible.

109



CHAPTER IV. COMBINED USE OF THE SPARSE POLYNOMIAL
CHAOS EXPANSION METHODOLOGY AND THE GLOBAL SENSITIV ITY
ANALYSIS FOR HIGH-DIMENSIONAL STOCHASTIC PROBLEMS

V.1 INTRODUCTION

In the previous two chapters, an efficient approexideal with uncertainty propagation in the
case of high-dimensional problems (i.e. when aelargmber of random variables is involved)
was presented. This approach is based on the gpalsgemial chaos expansion (SPCE) for the
system response and leads to a reduced computatost as compared to the classical
polynomial chaos expansion (PCE) methodology. Noticat both, the PCE and the SPCE
methodologies, aim at replacing the original comptketerministic model which may be an

analytical model or a finite element/finite difface model by a meta-model. This allows one to
easily calculate the system response (when pemgriiCS) using a simple analytical equation.

When dealing with high-dimensional stochastic peatd making use of computationally-

expensive deterministic models (e.g. three-dimeradianalysis of shallow rectangular or circular
footings resting on 3D spatially varying ponderakdds), the time cost remains important even
with the use of the SPCE. Consequently, a methatl dan reduce once again the cost of the

probabilistic analysis (i.e. the number of calldhe deterministic model) is needed.

In this chapter, an efficient combined use of tiRCE methodology and the Global Sensitivity
Analysis (GSA) is proposed [Al-Bittar and Soubr@12e, 2012f, 20129)]. The basic idea of this
combination is that, for a given discretized randiefd, the obtained random variables do not
have the same weight in the variability of the eystresponse. The variables with a very small
contribution in the variability of the system respe can be discarded which significantly
reduces the dimensionality of the treated probléiis allows one to perform a probabilistic

analysis using a reduced Experiment Design (ED) tamd a smaller number of calls of the

computationally-expensive deterministic model. Thain challenge remains in detecting the
most influential random variables in order to regltitce dimensionality of the problem. For this
purpose, a procedure that makes use of both theeS#@ the GSA (denoted hereafter by
SPCE/GSA) is proposed in this regard.

The proposed methodology was firstly validated gsinrelatively non-expensive model. This
model was extensively investigated in the secondptr of this thesis using the SPCE

methodology. It involves the computation of theiméite bearing capacity of a strip footing
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resting on a weightless spatially varying soil véhtdre soil cohesion and angle of internal friction
(c and ¢) were modeled by two anisotropic non-Gaussian secosrelated random fields.
Secondly, the SPCE/GSA procedure was applied toctwmaputationally-expensive deterministic
models that involve the computation of the PDFhef tiltimate bearing capacity of a strip footing
resting on a ponderable soil in both cases of )r@andom fields and (ii) 3D random fields.
While an extensive parametric study was undertake¢he case of the 2D spatially varying soil,
only a single soil configuration was consideredha case of the 3D spatially varying soil. The
study of the case of rectangular or circular faggimesting on a ponderable 3D spatially varying

soil will be the subject of future studies.

This chapter is organized as follows: The propdSBEE/GSA procedure is firstly presented. It

is followed by the numerical results. The chaptetseby a conclusion of the main findings

IV.2 EFFICIENT COMBINED USE OF THE SPCE METHODOLOGY AND THE
GLOBAL SENSITIVITY ANALYSIS GSA

As mentioned previously, the time cost of the pholxstic analysis remains important even with
the use of the SPCE when dealing with computatipieadpensive deterministic models.

Consequently, a procedure that can reduce once #ygaitime cost is needed.

An efficient combined use of the SPCE methodolagy the GSA is proposed in this section. In
this method, a small SPCE order is firstly selettedpproximate the system response by a meta-
model. It should be noted that the random variaioleslved in the system response are those that
result from the discretization of the random field® a finite number of random variables. A
GSA based on Sobol indices is then performed angitmall SPCE order to determine the weight
of each random variable in the variability of thstem response. As a result, the variables with
very small values of their Sobol indices (i.e. #hdlat have a small weight in the variability of
the system response) can be discarded. Consequantgsponse which only depends on a
smaller number of random variables is obtaineddther words, one obtains a response with an
‘effective dimension'. This dimension is smallarttihe initial dimension where the total number
of random variables was considered. As it will bewn later, the use of a small SPCE order to
perform the GSA is not a concern since higher SBfIers lead to the same influential random
variables. Once the 'effective dimension' was datezd, a higher SPCE order that makes use of
only the most influential random variables can bsedi This significantly reduces the
computation time. The use of a higher SPCE ordeecgssary in order to lead to an improved fit
of the SPCE. The SPCE/GSA procedure can be deddribaore details by the following steps:
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Discretize the random field(s): This step may bedenasing EOLE method and its
extensions by Viechovsky (2008) (see sectitf3.4). After the discretization procedure,
a random field is represented Nyindependent standard normal random variable$elf t
total number of random fields involved in the ass&yis equal tdNgr, the total number of
random variables is thus given By= NgrexN which can be relatively large especially for
small values of the autocorrelation distances as se&n in the previous chapters. Notice
that the equatiomN=NgrgxN is only applicable if all the random fields shdahe same

autocorrelation function.

Select a preliminary small order of the sparse patyial chaos expansion (ejg=2) to

approximate the system response by a meta-modelmEin reason for selecting a small
order is the exploration of the most influentiahdam variables (i.e. those that have a
significant weight in the variability of the systerasponse) using a small Experiment
Design (ED). It should be emphasized here thasthall value of the SPCE order leads to
a significant decrease in the size of the experirdesign, i.e. in the number of calls of

the deterministic model.

Perform a GSA based on Sobol indices (using thaiméd second order SPCE) to
determine the weight of each random variable (@f different random fields) in the
variability of the system response. The variableth wery small values of their Sobol
indices have no significant weight in the varidpilof the system response and can thus
be discarded. Consequently, a response that opgndis on a smaller number of random
variables is obtained. In other words, one obtaingsponse with an 'effective dimension'
Ne that is smaller than the initial dimension whehe ttotal humbemMN: of random
variables was considered. It should be mentioned heat the small SPCE order (i.e.
p=2) used firstly to perform the GSA is sufficient provide the weight of each random
variable in the variability of the system resposs&e higher SPCE orders lead to the

same influential random variables as will be seg¢erlin the numerical results.

Use the same Experiment Design (ED) which was eyepld®efore but this time by only
keeping the most influential random variables. Byglucing the number of random
variables fromNy to Ne (WwhereNe<N7), one has the possibility to use a higher SPCErord
(i.e. p>2). The use of a higher SPCE order is necessdsatbto an improved fit of the
SPCE since the coefficient of determinatioh given in Equation|(45) increases when

the SPCE order increases as it will be shown imthmerical results.
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As a conclusion, the use of the SPCE/GSA procetuexpected to provide a good fit of the
deterministic model with a reduced number of masl@luations as compared to the classical
SPCE approach.

IV.3 NUMERICAL RESULTS

The aim of this section is to make use of the SBBS& approach for the determination of the
probabilistic numerical results of two computatibyr@xpensive deterministic models. More
specifically, one focuses on the computation of pnebability density function (PDF) of the
ultimate bearing capacityy(;) of a strip footing resting on a ponderable soibbth cases of (i)
2D random fields and (ii) 3D random fields. It skbbe mentioned here that a somewhat similar
problem was considered in chapter Il using the SB@froach: Since the SPCE approach was
unable to consider the case of a ponderable soduse of the significant computational cost,

only the case of a weightless soil was considekésh, only 2D random fields were investigated.

The soil cohesiomr and friction angley were modeled by two anisotropic cross-correlatea- n
Gaussian random fields. The deterministic model Wwased on numerical simulations using
FLAC®®. The inputs of the deterministic and probabilistiodels are the same as those
considered irchapter 1l and more precisely in sectih:3.1 where a probabilistic analysis of a
strip footing resting on a weightless 2D spatialfyying €, ¢) soil mass was undertaken. The
only additional parameter used herein is the soil weighty whose value is considered to be
equal to 1&N/n.

Before the presentation of the probabilistic resolt a ponderable soil for both cases of 2D and
3D random fields, it seems necessary to validae phesent SPCE/GSA procedure by
comparison of its results with those obtained l®/ uke of the classical SPCE (in the case of a

weightless soil). This is the aim of the next sultisa.
IV.3.1 Validation of the SPCE/GSA procedure

The aim of this section is the validation of thegent SPCE/GSA approadtor this purpose, a
comparison between the results obtained using ldssical SPCE method and those obtained
with the proposed SPCE/GSA procedure is presentdidei case of a weightless soil (which is a
relatively non-expensive deterministic model).Hbsld be mentioned here that when neglecting
the soil weighty, the computation time decreases from 10 to 5 reinspnulation. Although this
difference may not seem to be significant for agl@nsimulation, it becomes dramatically
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important during the probabilistic analyses wheriarge number of simulations is needed for

each probabilistic analysis.

The validation of the SPCE/GSA procedure is domelffe illustrative caseaf=10m,a,=1m, r(c,
9)=-0.5] referred to hereafter as the reference dagethis configuration, the discretization of
the two random fields and¢ has led to a total number of random varialNesqual to 24 (12
random variables for each random field as was showiablell.1 of chapter Il). By using the
total number of random variablégr, a fourth order SPCE was necessary to reach thgetta

accuracyQ? ...,=0.999. An ED involving 800 points was needed tivesthe regression problem

given in Equationli(41) (i.e. to obtain a well-conditioned regressmmoblem for which the rank

of the matrix(p" )™ is larger than or equal to the number of unknowfficients). On the other

hand, by using the present SPCE/GSA procedure, & @& performed to detect the most
influential random variables. Different SPCE ordérs. orders 2, 3, and 4) were considered in
order to check if the SPCE order has an impacthendetermination of the most influential

random variables.

Figure IV.1 depicts the values of Sobol indices for theraadom variables, as given by the
SPCEs of orders 2, 3 and 4. The first 12 randorabkes [i.e. for i=1, ..., 12] correspond to
the cohesion random field and the last 12 randorabias [i.e.& for i=13, ..., 24] are those
corresponding to the friction angle random fieldgufe IV.1 shows that whatever the SPCE
order is, the two first random variables of bo#lds (i.e.&1, &, &13, £14) are the most influential.
For the two random fields, a very fast decay inwlgght of the random variables is noticed with
quasi negligible values beyond the first two randeamiables. In fact, the first two random
variables of the two random fields, which corregpém the first two eigenmodes of both fields
involve 95% of the response variability as may éensfrom TabldV.1. This is logical since the
system response (i.e. the ultimate bearing capggilyis a quantity that depends on the average
distribution of the soil propertiesc,(¢) which is therefore quite insensitive to smallisca
fluctuations of the spatially varying shear stréngiarameter< and ¢. Notice that the first
eigenmodes provide the average distribution of gshear strength parameters over the soil
domain; however, the remaining eigenmodes givesthall scale fluctuations around this average

distribution.
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Figure IV.1. Sobol indices for SPCEs of orders 2, 3, andusing the total number of eigenmode§ (i=1, ..., 24)

& (i=1, ..., 12) for the cohesion random field
¢1 & &3 Ca s e &7 s o ¢10 ¢ é12

Sobol 5435 0.170 0.002 0.002 0.030 0.002 0.009 2xIH 2x10* 9x10° 2x10° 7 x10°

index

& (1=13, ..., 24) for the friction angle random field
513 514 515 516 517 518 519 520 521 522 523 524

Sobol 540 0.080 0.001 8x10* 0.002 5x10° 6x10° 3x10° 1x10° 4x10° 4x10° 5 x10°

index

Table IV.1. Sobol indices for the reference case whesg=10m,a,~=1m, andr(c,p)=-0.5

Figure IV.1 clearly shows that the Sobol indices of thdfedent random variables do not
significantly change with the SPCE order. Thuse@oad order SPCE is sufficient to identify the
influential random variables (i.e. those that havsignificant weight in the variability of the
ultimate bearing capacity). Increasing the SPCEeotths led to the same influential random
variables which justify the small SPCE order choseperform the preliminary investigations.
The main advantage of a small SPCE order is teatal ED is sufficient to solve the regression
problem. As shown in Tabl®/.2, 150 calls of the deterministic model are rembdo solve the
regression problem for a second order SPCE. Thmsbeu attains 800 for a fourth order SPCE.
This significant increase is because the numbam&hown coefficients significantly increases
from 29 to 144 when one chooses a fourth order SiA€tEad of a second order SPCE. It should
be emphasized here that the number of coefficidnatisappear in Tablp/.2 is that retained by
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the iterative SPCE procedure suggested by BlatmanSaidret (2010). Notice finally that the
number of coefficients of the full PCEs of ordef32and 4 are respectively 325, 2925 and 20475.
This clearly shows that the use of the PCE in e ®f random fields would not be feasible.

SPCE order 2 3 4

Number of unknown 29 35 144
coefficientsP

Number of model 150 350 800
evaluations

Table IV.2. Number of unknown coefficients and model evailations for different SPCE orders

To choose the number of random variables which Ww#l retained hereafter within the
SPCE/GSA procedure, the different random variabfebie two random fields are firstly sorted
in a descending order according to the valuesaf Bobol indices (cf. the first three columns in
Table1V.3). A threshold of acceptandg is then fixed as a percentage of the most inflaént
(weighted) random variable. In the present work, riiost influential random variabledsand it
has a Sobol inde%=0.5. Different values of the threshold were tedefd first line in Table
IV.3). The random variables having a Sobol indexalien than the prescribed threshaldare
discarded (marked with the symbol (-) in the table)this work, a threshold of 2% of the Sobol
index of the most weighed random variable is cargid as sufficient; the corresponding retained
random variables provide 98% of the total variaotéhe system response as may be seen from
the last line of the " column in TabldV.3. For this threshold, an 'effective dimensiblg=5 is
obtained (i.e. five random variables are consideoctie the most weighed). The five retained
random variables&(, &3 &, &4, &) will now be used with the already existing 150 dalbb
evaluations which were firstly employed to approaienthe second order SPCE (using the total

number of random variabl®=24).

The reduction in the number of random variablesfidr=24 toN=5 provides the possibility to
use higher SPCE orders (ig2) with the same ED (i.e. the 150 model evaluafiomhe use of a
higher SPCE order is necessary to lead to an inegrdi of the SPCE since the coefficiefs
and Q® increase when the SPCE order increases as showWabie IV.4 for both the classical
SPCE approach (using the total number of randornamas Nr=24 and the number of model
evaluations of Tabl&/.2) and the present SPCE/GSA procedure (whereffieetive dimension
is equal to 5, i.eNe=5 and the number of model evaluations is fixedl®®). By using the
SPCE/GSA procedure, an SPCE upt® was reached using only 150 model evaluations Th
order is to be compared to the fourth order SPCEvas used in the SPCE methodology.
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Indexiof Random  Sobolindex t:=0.5% x t;=1% X t;=1.5% X 1=2% X t,=2.5% X

random  variabled S (=1, ..., S S S S S
variableg (=1, ..., 24) 24) =0.0025 =0.005 =0.0075 =0.01  =0.0125
1 & $=0.500 0.500 0.500 0.500 0.500 0.500
13 13 S15=0.200 0.200 0.200 0.200 0.200 0.200
2 & $=0.170 0.170 0.170 0.170 0.170 0.170
14 14 $14=0.080 0.080 0.080 0.080 0.080 0.080
5 & $=0.030 0.030 0.030 0.030 0.030 0.030
7 & $=0.009 0.009 0.009 0.009 - :
6 & S$=0.002 0.002 - - - -
17 17 S7=0.002 0.002 - - - -
3 & S$=0.002 0.002 - - - -
4 & S=0.002 0.002 - - - -
15 &1s S15=0.001 - - - - -
16 16 S6=8.0 x10* : . - . :
19 10 S1=6.0 x10* - - - - -
18 1 Sig=5.0 x10* - - - - -
20 &0 $0=3.0 x10* - - - - -
8 & $=2.0 x10* - - - - -
9 o S$=2.0 x10* : . - . -
11 &1 S.=2.0 x10* : . - . -
21 En $:=1.0 x10* : . - . -
10 10 S6=9.0 x10° - - - - -
12 12 S,=7.0 x10° - - - - -
24 24 $4=5.0 x10° - - - - -
22 Eao $,=4.0 x10° : . - . -
23 Eaa $5=4.0 x10° : . - . -
Sum of
Sobol 1.001 0.997 0.989 0.989 0.98 0.98
indices

Table IV.3. Sobol indicesS of the different random variablesé& and the retained random variables for the
different values of the threshold of acceptancg

From TablelV.4, one can notice that with the use of the SRES procedure, th€’ and R?
coefficients increase with the increase of the SP@ter and stabilize beyond the order 5. This
means that there is a need to increase the SPGE tmrdmprove the fit; however, there is no
improvement in the fit beyond the fifth order. Gretother hand, the values ©@f andR? (0.963
and 0.972) given by the present approach for & SSRCE order are smaller than those of the
classical SPCE approach with a fourth order (i.8949 and 0.999). This is because 19 random
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variables were discarded which slightly affect go@dness of the fit. It should be mentioned that
although the values of bo’ andR? are provided, the values of ory could be sufficient for

the analysis because this coefficient is more dgsitharf.

SPCE order 2 3 4 5 6 7 8

Coefficient of

determinatiorg 0998 0999 0.999 - - - i

Total number

of random .

variablesN; ~ Coefficientof o or) 935 0994 - i i .
determinatiorQ

Reduced ~ Coefficientof 4 g61 5963 0068 0970 0972 0972 0972

number of  determinatiorR?

random Coefficient of

variablesNe  determinatiorg? 0791 0883 0.957 0961 0963 0963 0.963

Table IV.4. Coefficients of determination R and @ for different SPCE orders when using the total andhe
reduced number of random variables

Figure IV.2 shows the PDF of the ultimate bearing capaagyobtained by both the classical
SPCE approach (with the total number of randomabdesN=24) and the proposed SPCE/GSA
procedure (using only five random variables). Tdbl& provides the corresponding statistical
moments and coefficients of determinatiBh and Q. Notice that the results of the present
SPCE/GSA approach are given in Tale5 for different values of the number of model
evaluations (from 150 to 800) and for a fifth or&?CE. From this table, one can see that the
coefficientsR? and Q* of the SPCE/GSA procedure are quasi constant tvéthincrease in the
number of model evaluations. This means that 158emnevaluations are sufficient and there is
no need for more model evaluations to improve ttwmuacy of the fit. On the other hand, one
can observe (see Figuié.2 and TabldV.5) that the first two statistical momenis &éndo) are
well estimated with the present SPCE/GSA approaamguhe 150 model evaluations. However,
the third and fourth statistical moment, é&nd x,) need more model evaluations (800 model
evaluations) in order to converge to their refeeema@lues given by the SPCE approach (cf. Table
IV.5). This demonstrates the efficiency of the prasSPCE/GSA procedure to compute only the
first two statistical moments with a much reducednber of the model evaluations (150 model

evaluations) with respect to the classical SPCEagmh (with 800 model evaluations).
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Figure IV.2. PDF of the ultimate bearing capacity for boththe classical SPCE method with the total number
of random variablesN; =24 and the proposed SPCE/GSA procedure with onfive random variablesN, =5
whena=10m,a,~1m andr(c, ¢)=-0.5

Number of Standard

model N(IESQ';‘ deviation Skéevz_r;ess Kzrt(ciils R @
evaluations o (kPa) . !
T Q
SPeX
o O O %
S228 800 658.2 93.57 0.287 0.163  0.999  0.995
£3E3
= ¢
° 150 657.84  90.80 0.105 0013  0.968  0.950
é 0 200 658.98  91.53 0.168 0056 0972  0.951
=¥ 250 659.90  92.10 0.188 0.063 0964  0.953
) 300 659.73  92.15 0.202 0.060 0962  0.963
2% 400 660.05  90.95 0.291 0.050  0.969  0.960
S 500 659.50  90.81 0.296 0.043 0970  0.963
o
£T 600 659.75  90.99 0.272 0116  0.968  0.963
g £ 700 659.50  90.85 0.280 0.164  0.968  0.963
800 659.85  91.20 0.300 0.160  0.970  0.967

Table IV.5. Coefficients of determinationR? and Q° of the SPCE and statistical moments( ¢, 4, and x,,) of
the ultimate bearing capacity as given by the clagsl SPCE approach and by the present SPCE/GSA
procedure

As for the Sobol indices of the two random fietdandg, TablelV.6 shows that the SPCE/GSA
procedure with only 150 model evaluations givesséime results obtained by the classical SPCE
approach using 800 model evaluations which dematestronce again the efficiency of the
present SPCE/GSA procedure.
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Number of

model i 9 (ZLo S8 5(9=3 s s(9)=3 s
m : 12) 24)
a evaluations
= 1 0.500 13 0.200
S 2 0170 14  0.080
£ 3 0.002 15  0.001
% 4 0.002 16 8.0 x10*
- 5 0.030 17  0.002
o3 6 0.002 18 5.0x10*
S 800 ' ' . 0.715 0.285
c = 7 0.009 19 6.0 x10
>
= 8 20x10' 20 3.0x10%
g 9 20x10® 21  1.0x10%
@ 10 9.0x10° 22  4.0x10°
= 11 2.0x10* 23  4.0x10°
= 12 7.0x10° 24 5.0x10°
Number of S (=1, 2 . s
model i 3 i S(=4,5) S(¢=28% S(¢)=25S
_ evaluations = =
T O
Sgw 1 0.510 4 0.076
T © 2
° =%
g g % 150 2 0.200 5 0.190 0.721 0.279
£25%
237 3 0010

Table IV.6. Sobol indices as computed from the classic8IPCE approach (withNt=24) and the present
SPCE/GSA procedure (withN=5).

IV.3.2 Probabilistic results of a ponderable soil for thetwo cases of 2D and 3D random

fields

The aim of this section is to present the probstizlinumerical results in the case of a ponderable

soil mass. The objective is to compute the PDfefultimate bearing capacity of a shallow strip

foundation resting on a 2D and a 3D spatially vagyic, ¢) soil where the soil shear strength

parameters are modeled as two anisotropic croselated non-Gaussian random fields. It

should be emphasized here that the case of a mldesoil significantly increases the

computation time with respect to the case of a htkgs soil.

As shown in FigurdV.3, the adopted soil domain considered in thdyaimis 13m wide by 5m

deep. The footing breadth is equal to 1m. For thendary conditions, the horizontal movement
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on the vertical boundaries of the grid is restrdjnghile the base of the grid is not allowed to

move in both the horizontal and the vertical di@ats.

Sm

Figure IV.3. Adopted soil domain and the corresponding detrministic mesh

In this section, one first presents an extensivarpatric probabilistic study using the SPCE/GSA
procedure to investigate the effect of the diffeq@mbabilistic governing parameters of the two
random fields (autocorrelation distances, coeffitseof variation) and the correlation between
both fields on the PDF of the ultimate bearing catgaof a strip foundation resting on a
ponderable soil with 2D spatially varying shearesgth parameters. This is followed by a
presentation of the probabilistic results obtaimethe case of a ponderable soil and 3D spatially
varying shear strength parameters. It should beethhere that when investigating the effect of
3D random fields, only the reference case peas=a,=10m,a,=a,=1m andr(c, ¢)=-0.5] was
considered. The aim behind considering a pondeilevith 3D random fields is to introduce
an additional computational cost due to the geimraif 3D random fields. Another additional
cost could be introduced by considering the casa wctangular or a circular footing with 3D

spatially varying shear strength parameters.

In both cases of 2D and 3D random fieldgndg are discretized into a finite number of random
variables. As was shown in the previous two chaptiris number is small for the very large
values of the autocorrelation distances and sicamtly increases for the small values of the

autocorrelation distances.

TablelV.7 provides the total numb&tr of random variables needed to discretize the amolom
fields c andg within a prescribed variance of the error of 1086 hoth the 2D and 3D random
fields. This table also provides the numbkrof the retained random variables as obtained using
the SPCE/GSA procedure. One can observe an impagdaction in the dimensionality of the
treated problem with the use of the proposed SPSE/@rocedure. For instance, the reduced

numberN, of random variables is equal to 21 wlena,=0.25m. This number is to be compared
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to the total numbeN=1760 which shows once again that the ultimateibgarapacity is not

sensitive to the very small fluctuations of the @adom fields.

Ne: Number of most
influent random
variables used to

construct the SPCE
whent, =2%XxS,

Nt: Total number of
random variables used
to discretize the two

random fields ¢, ¢)

£ 0.25 1760 21
S = 0.5 460 21
% = 1 120 20
o g 1.5 70 20
92]
§ 5 2 50 20
83 3 24 12
5> 5 20 8
2 10 10 6
S < 0.15 140 22
Ff BRI 0.25 84 21
) RS 0.5 44 13
= = ®©
£ 085 0.8 30 9
g S2% 1 24 5
] N
= 3 5 E 2 24 5
N g & 5 24 5
8 24 5
%q_ - 0.5 200 22
o o 1 120 20
n o
52 ¢ 2 88 20
Q> 2
S o é 4 48 16
55 20 24 12
28 30 24 8
c <
< 50 24 8
E ~
o S
= g e = —
5 s Reference (:_ase:lr[ ax=a,=10m, 50 14
=5 a,=a=1m|
Q90

Table IV.7. Number of random variables used to discretizehe two random fieldsc and ¢ for both cases of 2D
and 3D random fields
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In the following two sections, the extensive paraimoestudy concerning the case of the 2D
spatially varying soil is first presented. Thisf@lowed by a presentation of the probabilistic

results when investigating the 3D spatially varysog.
IV.3.2.1 Probabilistic parametric study in the case of a gerable soil and 2D random fields

In the following subsections, the effect of thefeliént statistical governing parameters of the two
random fields (autocorrelation distances, coeffitseof variation) and the correlation between
these random fields on the PDF of the ultimateibgarapacity was investigated in the particular
case of 2D random fields. Furthermore, a globasisieity analysis based on Sobol indices was

also performed.

Effect of the autocorrelation distances

FigurelV.4 shows the PDFs of the ultimate bearing cagdoit different values of the isotropic
autocorrelation distancg=a, and Figures IV.5 and IV.6 show the PDFs of thenéte bearing
capacity for different configurations with anisqiro autocorrelation distances. Tables 1V.8, IV.9
and IV.10 present the first two statistical momenfsall these PDFs together with those

corresponding to great values of the autocorreialistances.

Figures IV.4, IV.5 and IV.6 and Tables V.8, IV.adaIV.10 show that the variability of the
ultimate bearing capacity decreases when the auedaton distance=ay, ay or a, decreases.
Similar observation was provided in chapter Il he tcase of a weightless soil mass. The
variability of the ultimate bearing capacity de@es with the increase in the soil heterogeneity
since the zone involved by the possible failure maetsm will have (for the very small values of
the autocorrelation distances) somewhat uniforraasbf the shear strength parameters over this
zone because of the large number of high and srakles of the shear strength parameters. This
leads to close values of the ultimate bearing dgptom simulation to another one and thus to a

smaller variability in this bearing capacity.

Figure IV.7 and TablelV.8 show that the probabilistic mean value of thiémate bearing
capacity presents a minimum when the isotropicaurtelation distancex=ay is nearly equal to
the footing breadth B (i.e. in our case whagray,=1m). Notice that the minimal probabilistic
mean was also observed in chapter Il in the ULSyaisawhen isotropic random fields were

studied. Thus, the same explanation which had def@e remains valid herein.
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Figure IV.4. Influence of the isotropic autocorrelation dstancea,=a, on the PDF of the ultimate bearing
capacity in the case where(c, ¢)=-0.5
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Figure IV.6. Influence of the horizontal autocorrelation

distancea, on the PDF of the ultimate bearing capacity in
the case where(c, ¢)=-0.5 anda,=1m

As for the anisotropic soil, Figures IV.8 and IVa&d Tables IV.9 and V.10 show that the

probabilistic mean value of the ultimate bearingamaty presents a minimum at a certain value

of a, (or a,) for a prescribed value @ (or a,). Thus, one may expect that there is a given soil

configuration (corresponding to given valuesagfanday) for which one obtains an absolute

minimal mean value for the ultimate bearing capagik. It should be mentioned here that the

increase in the autocorrelation distaagén FigurelV.8 leads to a soil configuration that varies

from a horizontal to a vertical multilayer with acgession of layers with high and small values

of the shear strength parameters. This situatioaviersed in Figur&/.9 (in which a, increases)

where the soil configuration varies from a vertit¢al a horizontal multilayer. The ultimate

bearing capacity was found to be the smallest foingermediate value of the autocorrelation
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distanceay (or a.) for a prescribed value @i (or ay) where the failure mechanism can easily

develop in the soil mass.

a, =a(m H, (kPa) g, (kPa) cov,, (%)
0.25 1022.3 28.5 2.8
0.5 1019.3 53.2 5.2

1 980.2 103.3 10.5
15 1001.4 127.0 12.6
2 1005.1 136.9 13.6
3 1012.7 169.2 16.7
5 1021.7 195.1 19.1
10 1040.0 216.9 20.9
50 1051.5 230.1 21.9
100 1052.0 230.9 21.9
Random variables 1052.2 230.9 21.9

Table IV.8. Effect of the isotropic autocorrelation distance a,=a, on the statistical momentsg, o) of the
ultimate bearing capacity

ay(m) 7 (kPa) a,. (kPa) cov,, (%)

0.15 1021.5 82.8 8.1 a(m) 4, (kPa) oy, (kPa) COV,, (%)
0.25 1018.5 103.7 10.2 0.5 1017.0 69.7 6.7
0.5 1018.0 133.1 13.1 1 980.2 103.3 10.5
0.8 1020.4 161.8 15.8 2 1004.0 121.1 12.1
1 1022.7 172.0 16.8 4 1010.4 150.4 14.9
2 1032.9 203.2 19.7 10 1022.7 172.0 16.8
5 1038.6 212.2 204 20 1029.2 179.9 17.5
8 1039.4 216.3 20.8 30 1030.4 184.2 17.9
50 1041.0 217.5 20.9 50 1030.5 185.5 18.0
thrandom 10411 2176 209  TPIAMOM 10306 1857 18.0
Table IV.9. Effect of the vertical autocorrelation distancea, on  Table IV.10. Effect of the horizontal autocorrelation digance
the statistical moments g, &) of the ultimate bearing capacity a, on the statistical momentsg, ) of the ultimate bearing
whena,=10m capacity whena,=1m
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Figure IV.7. Influence of the isotropic autocorrelation dstancea,=a, on the probabilistic mean of the ultimate
bearing capacity in the case where(c, ¢)=-0.5.
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distancea, on the probabilistic mean value of the distancea, on the probabilistic mean value of the
ultimate bearing capacity in the case where,=10m ultimate bearing capacity in the case whera, =1m and
andr(c, ¢)=-0.5 r(c, )=-0.5

Finally, Tables IV.11, IV.12, and IV.13 show thdeet of the autocorrelation distanasay, a,
and a;, on the Sobol indiceS(c)andS() of the two random fields and¢. These tables show
that both indices are quasi-constant with the emeeofa=ay, a, or a. This is because we
increase the autocorrelation distances in botldibly the same amount. These tables also show
that the random fields af and¢ have almost the same weight in the variabilityhef ultimate
bearing capacity§(cy0.48 andS()=0.52). These results are to be compared to thbsened

by Al-Bittar and Soubra (2012a) in the case of aghitess soil wher&(cF0.71 andS(p)=0.29.

The large value of5(c) in the case of a weightless soil is due to theematws of the term

responsible of the soil weight in the bearing cépaguation.
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a =a,(m S(9 S(9)

0.25 0.48 0.52
0.5 0.49 0.51
1 0.48 0.52
15 0.48 0.52
2 0.48 0.52
3 0.49 0.51
5 0.47 0.53
10 0.48 0.52
50 0.49 0.51
100 0.49 0.51
Random variables 0.49 0.51
Table IV.11. Effect of the isotropic autocorrelation diseincea,=a, on the Sobol indices of the two random
fieldscand ¢
a, (m) S(0) S(¢)
0.15 0.48 0.52 a, (m) S(9 S(9)
0.25 0.48 0.52 0.5 0.48 0.52
0.5 0.49 0.51 1 0.48 0.52
0.8 0.48 0.52 2 0.48 0.52
1 0.49 0.51 4 0.47 0.53
2 0.47 0.53 10 0.49 0.51
5 0.47 0.53 20 0.48 0.52
8 0.48 0.52 30 0.48 0.52
50 0.48 0.52 50 0.48 0.52
1D random field 0.49 0.51 1D random field 0.49 0.51
Table 1V.12. Effect of the vertical autocorrelation Table 1V.13. Effect of the horizontal autocorrelation
distancea, on the Sobol indices of the two random fields distancea, on the Sobol indices of the two random fields
c and ¢ whena,=10m and ¢ whena,=1m

Effect of the cross-correlation coefficient

Figure V.10 presents the PDFs of the ultimate bearingaciy for negatively cross-correlated
r(c, ¢)=-0.5 and non-correlatedc, ¢)=0 random fields whem=10m anda,~=1m, and Table

IV.14 presents the two corresponding statisticamaots [, o).

FigurelV.10 and TabldV.14 show that the variability of the ultimate bieg capacity decreases
when considering a negative correlation betweenttie random fields. This is because the

increase of one parameter value implies a decrieatdee other parameter. Thus, the total shear
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strength slightly varies. This leads to a reducadation in the ultimate bearing capacity. It
should be mentioned that the probabilistic meawevaf the ultimate bearing capacity slightly
increases when a negative correlation betweenwberandom fields exists. Finally, the Sobol
indices presented in Tabl€.15 show that the negative correlation slightigrneases the weight

of the soil cohesion in the variability of the oiate bearing capacity.
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Figure IV.10. Influence of the cross-correlation coefficiat r(c, ¢) on the PDF of the ultimate bearing capacity
in the case wherea,=10m anda,=1m

re. )
ﬂ%\t (kpa) Jqult (kpa) COVQu\t (%) r (C ' ¢) S(C) S(¢)
-0.5 1022.7 1721 16.8 -0.5 0.49 0.51
0 1019.7 275.1 27.0 0 0.45 0.55
Table 1V.14. Effect of the cross-correlation coefficient(c, ¢) Table IV.15. Effect of the coefficient of
between the random fields ot and ¢ on the statistical momentsg, correlation on the Sobol indices of the two
o) of the ultimate bearing capacity whera,=10m anda,=1m random fields c and ¢ whena,=10m anda,=1m

Effect of the coefficients of variation of the randfields

Tables IV.16 and V.17 present for five differeminéigurations of the coefficients of variation of
the random fields, the two statistical momentsa) of the ultimate bearing capacity and the
Sobol indices of the two fields,(p).

Table V.16 shows that the variability of the ultimatea®g capacity increases (as expected)
when the coefficient of variation of either randéield increases. From Tabl¥.17, one can see

that an increase in the coefficient of variationac$oil parameter increases its Sobol index and
thus its weight in the variability of the ultimabearing capacity. This automatically reduces the

contribution of the other uncertain parameter.
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’Ll%lt (kpa) UQu\t (kpa) COVQuIt (%)

COVc=50% COW = 10% 970.8 241.7 24.9
COVc=37.5% COW = 10% 998.5 205.9 20.6
COVc=25% COW =10% 1022.7 172.0 16.8
COVc=25% COW = 15% 1036.0 224.5 21.7
COVc=25% COW = 20% 1053.7 284.2 27.0

Table IV.16. Effect of the coefficients of variation COVc, COVe) of the random fieldsc and ¢ on the statistical
moments f, ¢) of the ultimate bearing capacity where,=10m,a,=1m andr(c, ¢)= -0.5

S(9) S(9)
COVc=50% COW = 10% 0.79 0.21
COVc=375% COW=10%  0.68 0.32
COVc=25% COVg = 10% 0.49 0.51
COVc=25% COW = 15% 0.28 0.72
COVc=25% COW = 20% 0.17 0.83

Table IV.17. Effect of the coefficients of variation COVc, COVe) of the random fieldsc and ¢ on the Sobol
indices of the two random fieldsc and ¢ whena,=10m,a,=1m andr(c, @)= -0.5

IV.3.2.2 Probabilistic results in the case of a ponderalué and 3D random fields

In this section, one presents the probabilisticltebtained in the case of a ponderable soil and
3D random fields. Only the reference case p&l10m,a,=1m andr(c, ¢)=-0.5] was considered

in the analysis. This is because the effect ofothicing the spatial variability in the third
direction was extensively investigated amapter Ill. The only reason for which the three-
dimensional case was considered herein is to préisercapability of the SPCE/GSA procedure
in solving the computationally-expensive problemBiol were impossible to be considered

before.

The PDF obtained when 3D random fields were consdles compared to that obtained with the
use of 2D random fields in Figut&.11. From this figure, one can see that the \mlitg of the
ultimate bearing capacity is slightly smaller wh@b random fields were considered. Table
IV.18 confirms this observation. Similar results reveobtained in the previous chapter when
considering a purely cohesive soil. Finally, thd&andices presented in TaldM.19 show that
the random fields ot and ¢ have almost the same weight in the variabilitytited ultimate

bearing capacity for both 2D and 3D random fieldses.
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Figure IV.11. PDFs of the ultimate bearing capacity for bth the 2D and the 3D random fields for the
reference case where,=10m,a,~=1m andr(c, ¢)=-0.5

H, (KPa) o, (kPa) COV, (%) S(0) S(4)
2Drandom 45557 1721 16.8 2D random g 4q 0.51
fields fields
3Drandom 15599  167.0 16.3 3Drandom g 45 0.53
fields fields
Table 1V.18. Statistical moments £, ¢) of the ultimate bearing Table IV.19. Sobol indices of the two random fields
capacity using both 2D and 3D random fields for theeference and ¢ in both the 2D and the 3D cases for the
case wherea,=10m,a,=1m andr(c, ¢)=-0.5 reference case where,=10m,a,=1m andr(c, ¢)=-0.5

V.4 CONCLUSIONS

An efficient combined use of the SPCE methodologg the global sensitivity analysis (GSA)
has been proposed in this chapter. The aim isdoceethe cost of the probabilistic analysis of
high-dimensional stochastic problems making usearhputationally-expensive deterministic
models. This methodology was firstly validated imstwork using a relatively non-expensive
deterministic model (case of a strip footing regton a weightless soil mass with 2D random
fields). Then it was applied to two computationakpensive deterministic models (case of a

strip footing resting on a ponderable soil mas&\®&D and 3D random fields).

The validation consists in comparing both the at@ésSPCE method that uses the total number
of random variables and the proposed combinatidwden the SPCE and the GSA that makes
use of a reduced number of random variables. Satwly results were obtained using a smaller
number of model evaluations with the proposed nulogy. The first two statistical moments

and the Sobol indices show good agreement betweeitwo methods. On the other hand, the
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third and fourth statistical moments need more rheglaluations in order to converge to their

reference values obtained using the classical S&ipEdach.

The application of the proposed methodology to éxpensive deterministic models that involve
the computation of the PDF of the ultimate beadagacity in the cases of a ponderable soil with
2D and 3D random fields (which were impossible ¢oconsidered before) have shown that (i)
the variability of the ultimate bearing capacitgre@ases with the increase in the coefficients of
variation of the random fields; (ii) the cohesiardahe friction angle random fields have almost
the same weight in the variability of the ultimdtearing; (iii) the increase in the coefficient of
variation of a soil parameterc (or ¢) increases its Sobol index and thus its weightha
variability of the system response and decreaseswgight of the other parameter; (iv) the
negative correlation between the soil shear sthrepgtameters decreases the response variability;
(v) the decrease in the autocorrelation distanag®r(a, or a,=ay), leads to a less spread out
(PDF) of the ultimate bearing capacity; (vi) thelpabilistic mean value of the ultimate bearing
capacity presents a minimum which was obtainedhénisotropic case when the autocorrelation
distance is nearly equal to the footing breadthwBile for the anisotropic case, this minimum
was obtained (for prescribed footing and soil cbiréstics) at a given value of the ratio between
the horizontal and the vertical autocorrelatiortatises; and finally, (vii) a comparison between
the results obtained using 2D and 3D random fidldge shown that the variability of the
ultimate bearing capacity is smaller when 3D randumhals were considered. As a future work,
one may consider the case of a rectangular orcalairfooting resting on a ponderable soil with

3D spatially varying shear strength parameters.
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CHAPTER V. EFFECT OF THE SOIL SPATIAL VARIABILITY A ND/OR
THE TIME VARIABILITY OF THE SEISMIC LOADING ON THE DYNAMIC
RESPONSES OF GEOTECHNICAL STRUCTURES

V.1 INTRODUCTION

This chapter focuses on the dynamic responses éadiog an earthquake Ground-Motion (GM)

taking into account the soil spatial variabilitydaor the time variability of the seismic loading.

Contrarily to the case of the static loading coestd in the previous chapters where only the soil
and the footing were considered in the analysisgbse the system response was mainly the
ultimate bearing capacity of the footing), the cata seismic loading should consider the soill,
the footing and the superstructure since the seismergy will be dissipated in both the soil and
the superstructure [Sadek (2012)]. Thus, a propadeting of the entire soil-footing-structure
system including the interaction between the swil tne footing should be considered in order to

lead to reliable solutions.

The response of a soil-footing-structure systenjesidd to seismic loading has been extensively
investigated in literature using deterministic ayjgwhes where average values of the soil
properties (shear modulus, angle of internal fricticohesion, etc.) and deterministic recorded
acceleration time-histories were used [Chen anda8aw1983), Leshchinsky and San (1994),
You and Michalowski (1999), Michalowski (2002), Ladis et al. (2003), Sadek and Shahrour
(2004) and Grange et al. (2009a, 2009b) amongsither

It should be mentioned here that when dealing adlsmic loads, an aleatory uncertainty related
to the earthquake Ground-Motion (GM) appears intamdto the soil spatial variability and the

variability of the superstructure. This additiorsdurce of aleatory uncertainty is the time
variability of the earthquake Ground-Motion (GM)osequently, reliable responses of the
superstructure cannot be predicted using a detaticirapproach; a probabilistic technique
seems to be necessary. The probabilistic technignable the rigourous propagation of the

different uncertainties from the input parameterthe system responses.

In this chapter, the effect of the soil spatial ialbility and/or the time variability of the
earthquake GM on the seismic responses of geotmdhsiructures is investigated. The
variability of the superstructure was not considarethe analysis. Given the scarcity of studies

involving the probabilistic seismic responses, eeffield soil medium subjected to a seismic
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loading was firstly considered. The aim is to irtigege the effect of the soil spatial variability
and/or the time variability of the earthquake GMngsa simple model. Then, a soil-structure
interaction SSI problem was investigated in thesdgart of this chapter.

It should be emphasized here that few authors hewd&ed on the analysis of the seismic
responses using probabilistic approaches [Koutakiseet al. (2002), Wang and Hao (2002),
Nour et al. (2003), Popescu et al. (2005, 2006) laygkz-Caballero and Modaressi-Farahmand-
Rasavi (2010)]. In all these works, the classicalnké Carlo Simulation (MCS) methodology
with a very small number of realizations was usedédtermine the probability density function
(PDF) of the seismic response [e.g. only 50 sinuiat were used in Koutsourelakis et al
(2002)]. This is because of the significant compaitatime required per simulation when using

finite element/finite difference dynamic models.

As for the probabilistic methods used in this ckaptwo methods were employed. The first one
is the classical Monte Carlo Simulation (MCS) melblogy and the second one is the Sparse
Polynomial Chaos Expansion (SPCE) methodology whuchsists in substituting the system

response by a meta-model.

This chapter is organized as follows: First, thesecaf an elastic free field soil mass is
investigated. This is followed by the SSI problérhe chapter ends by a conclusion of the main

findings.

V.2 CASE OF AN ELASTIC FREE FIELD SOIL MASS

In this section, the effect of the soil spatialigaility and/or the time variability of the earthake

GM was firstly investigated through the study ofedastic free field soil mass.

The soil shear modulus was modeled as a non-Gaussian random field andatiequake GM

was modeled as a random process. The EOLE methypydplesented in chapter | was used to
discretize the shear modulus random field. As far ¢arthquake GM, the method proposed by
Rezaeian and Der Kiureghian (2010) which consrstgting a parameterized stochastic model to
the real recorded earthquake GM was utilized. Téterchinistic model was based on numerical
simulations using the dynamic option of the finiéference code FLA&. The dynamic

response considered in the analysis was the aogtidn of the maximum acceleration at the soil

surface.
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The following subsections are organized as followve first presents the deterministic numerical
modeling of the dynamic problem and the correspumdesults. Then, the probabilistic analyses
and the corresponding probabilistic results arsgreed and discussed.

V.2.1 Numerical modeling

The deterministic dynamic model is based on nuraésimulations using the finite difference
software FLACP. Two types of modeling were considered in thissihdsee Figur&/.1). The
first one considers a two-dimensional soil mas8Grh width and 24m depth. As for the second
model (called hereafter ‘column’ model), it conssde soil column of 1m width and 24m depth.
The objective of these two types of modeling iv¢oify that the ‘column’ model is sufficient to
simulate the propagation of the seismic waves énsibil mass and to deduce the distribution of
the peak accelerations as a function of depth. ,Treacing the 2D model with the ‘column’
model may significantly reduce the probabilistiongutational time.

Cross-section 1 Cross-section 2 Cross-section 3

— | —

N

24m

‘;,‘ X 30m 1m

(@) (b)

Figure V.1. The two considered numerical models (a) 2D metiand (b) ‘column’ model

The numerical modeling of a mechanical problemhapgresence of dynamic loading requires the
definition of (i) the soil domain and the corresgog mesh, (ii) the soil constitutive model, (iii)
the boundary conditions, (iv) the mechanical damgg@ind (v) the used dynamic (seismic) signal.

These parameters are presented in the followingesitions.
V.2.1.1 Definition of the soil domain and the correspondimgsh

The first step in a numerical modeling is the débn the soil domain and the corresponding
mesh. In the finite difference dynamic analysis FyAC>P, numerical distortions may occur

during the propagation of the seismic waves if él@ments size of the mesh is not convenient.
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Thus, the sizedl of an element of the mesh should respect thevioligp condition [ltasca
(2000)]:
V
Al < K
10*f . (V-1)
whereVs is the shear wave velocity, afighy is the maximum frequency of the incident seismic

signal [Kuhlemeyer and Lysmer, (1973)]. The sheavevvelocityVs in Equation ¥.1) can be

calculated using the values of the soil shear madaland the soil densify as follows:

/G
V.= [— .
s (V.2

The mesh used in this study respects the condifiven by Equation\{.1) and is presented in
FigureV.1.

V.2.1.2 Definition of the soil constitutive model

FLAC®P offers a variety of soil constitutive models. Tinest used ones in dynamic analysis are
the elastic and the elasto-plastic models (pergftening or hardening). Even though an elasto-
plastic model would be more convenient to modeldbié behavior especially for the cases of
medium and high earthquake GMs, an elastic moddlicfwis characterized by reversible
deformations) was used in this work. The aim isineestigate the effect of the soil spatial
variability and/or the time variability of the elguake GM using a simple model. This model is
defined by two parameters which are (i) the sheadutusG, and (ii) the bulk moduluk. Other
constitutive models which may take into accountribalinearity of the soil will be employed in

future works.
V.2.1.3 Definition of the boundary conditions

In dynamic analysis, assuming a null horizontapldisement on the two vertical boundaries of
the soil domain as is the case in the static aisatysly cause reflections of the seismic waves
during their propagation in the model. To overcasueh problem, FLA® offers the option of
applying absorbing boundary conditions of type &quBoundaries” or "free field" [ltasca,
(2000)]. These boundary conditions absorb the gnefgthe wave approaching these limits
which allows avoiding the reflection of these wavés this thesis, the boundary conditions
applied to the lateral vertical boundaries areypét*free field". This type of boundary conditions
is suitable for vertical surfaces while the bougdeonditions of type "quiet Boundaries" are

generally convenient in the case of horizontalae$.
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V.2.1.4 Definition of the mechanical damping

In the natural dynamic systems, the internal frictmay lead to partial dissipation of the energy
of vibration. The software FLA¥ provides a damping of type "Rayleigh damping” (amo
other types of damping) which is based on two patars: (i) the natural frequency of the system
and (ii) the damping ratio (defined as a percentdgbe critical damping). This type of damping
is used in this chapter. The damping ratio usetthéendynamic models presented in this work is
equal to 5% of the critical damping [Bourdeau (200Notice that in most geological materials,

the natural damping ratio is in the range of 2% & the critical damping.
V.2.1.5 Input seismic signal

The input seismic signal used in this work is thyatisetic signal of Nice for which the
corresponding accelerogram is presented in FijuBfa). This signal is used because it is
representative of the French design spectrum [@4B008)]. It has a maximum acceleration
equal to 0.33g. Its corresponding Fourier amplitsppectrum is shown in Figuké2(b). It should

be mentioned here that the use of a different seisignal may lead to different results.

4 Target a(t) o1 Amplitude Spectrum of target a(t)
=0.33g '
3l 0.16-
ol 0.14-
ng ‘f] \ } ’ J 0.12
£ 1t } | J | ’ 1
S L ’ M l‘ l“ MM s °F
Mww | M hipo— =2
2 -1 | ‘ | l 0.06
2 r “ i 0.04
A 0.02
0 5 10 15 20 % 10 20 30 40 50
Time (sec) Frequency (Hz)
(a) (b)
Figure V.2. (a) Accelerogram of the synthetic signal of e and (b) the corresponding Fourier amplitude

spectrum

V.2.2 Deterministic results
V.2.2.1 Validation of the 'column' model

The aim of this section is to check the validity thie ‘column’ model for its use in the
probabilistic analyses. The main reason for whigk desirable to use the ‘column’ model instead

of a two-dimensional (2D) soil domain is its reasiole computation time (40 min per
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simulation). This computation time enormously irases when a 2D model is used (24 hours per
simulation). Remember that the 2D model involvesva-dimensional soil mass (see Figure
V.1(a)) and the 'column’ model involves a one-disi@mal soil column (see Figuk&1(b)). For
both models, the considered dynamic response veagistribution of the maximum acceleration

along a vertical cross-section.

For the dynamic analyses, an elastic constitutieelehwas used to describe the soil behavior.
The values of the shear modulus, bulk modulus aedsity of the soil were as follows:
G=100MPa, K=250MPa, andp=1800kg/nT.

In order to avoid the numerical distortion that nwogur during the propagation of the seismic
waves in the model, the element silemust satisfy the condition given by Equationl().
Using Equation ¥{.2) which provides the value of the shear waveeity as a function of the
values ofG andp, the shear wave velocity was found to be equ&356./m/s From Figure
V.2(b), one can see that the maximal frequefagy is equal to 4Bz Thus, the maximum
element size must be less than or equal to 0.591hel studied model, the selected element size

Al was taken equal to 0.5m (see Figur).

Concerning the boundary conditions, the lower twrial boundary (aloni) was subjected to
the seismic load (i.e. the synthetic accelerogrdnNioe). Boundary conditions of type "free

field" were applied along the lateral vertical bdanes of the model [Bourdeau (2005)].

As for the mechanical damping, Rayleigh damping wsed with a central frequency (natural
frequency)f;=2.5Hz and a damping ratio equal to 5% of the criticalngdang. Notice that the
approximate formula of the natural frequency ofod solumn given by Widmer (2003) (i.e.
fo=VJ4H whereVs is the shear wave velocity calculated using Equa¥.2) andH is the height
of the soil column) was used to calculate the valuthe central frequendy=2.5Hz. As for the

damping ratio, the value of 5% used by Bourdea0%2Was adopted in this thesis.

Figure V.3 shows the distribution of the maximum acceleratas a function of depth for the
three cross-sections of the 2D soil mass and #®rlf soil column. This figure shows that the
four distributions are superimposed, which makdglvihe hypothesis of using a soil column

instead of a 2D soil mass when performing the poiséic analysis.
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Figure V.3. Distribution of the maximum acceleration as dunction of depth for the three cross-sections ohie
2D model and for the 1D soil column

V.2.2.2 Distribution of the maximum acceleration for digat values of the shear modulus G

The aim of this section is to study the effect lné tvariation of the shear modul@ on the
dynamic response (distribution of the maximum aaegionAnay using the '‘column’ model. For
this purpose, a wide range of values@fwas considered. The illustrative value of the bulk
modulusK was taken equal to 2BfPa. In most soils, the shear wave velodifyvaries between
200m/sand 90@n/s[Nour et al. (2003)]. In this thesis, this randesalues was considered with a
step of 5@n/s The corresponding values of the shear mod@Glugere calculated using Equation
(V.2).

Figure V.4 shows the distribution ofnax for five values of the shear modul@s This figure
shows that for very low values &, and very large values @, the amplification (i.e. the ratio
between the value of the maximum acceleration efsilgnal at a given depth and its maximum
value at the base of the soil mass) is relativehals For intermediate values @, this
amplification is more significant. For illustratipRigureV.5 shows the values of the maximum
acceleration at the top of the soil column as ation of the values of the shear modu(Bs
From this figure, one can notice that large amgtiions were obtained for the values @®f

between 16®IPaand 1012.51Pa. This amplification decreases outside this rarfgeatues.

In order to explain the significant values of thapdifications, one should refer to the Fourier
amplitude spectrum of the input seismic signal shawrigureV.2(b). From this figure, one can
see that the predominant frequency band is bet@enand Hz. By using the approximate
formula of the natural frequency of a soil columveg by Widmer (2003)f{=VJ/4H whereVs is
the shear wave velocity amtlis the height of the soil column), one may shoat for the values
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of G comprised between 15Pa and 1012.MPa, the band of predominant frequencies of the
soil column coincides with the predominant frequeband of the input seismic signal. This
coincidence leads to the so-called 'phenomenonesbnance’ which induces the significant

amplification.

Finally, the influence of the bulk modulson the maximum acceleration is presented in Figure
V.6 by considering three values Kf(100MPa, 250MPa and 6001Pa). This figure presents the
values of the maximum acceleration on the top ef ghil column as a function of the shear
modulus value<s for the three values of the bulk modulks It clearly shows that the bulk
modulusK has no influence on the maximum acceleration atttip of the soil column. This
indicates that for a seismic loading, the soil doesexhibit volumetric strains. This is perfectly
acceptable since the seismic signal is composedrapressionaP waves (which dominate the
first short period of the seismic signal) followeg shearS waves that dominate the strong

shaking phase, which make them more influent irsthemic signal.
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modulus G for three values ofK
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V.2.3 Probabilistic dynamic analysis

The aim of this section is to present the probsiozlidynamic analysis. It should be remembered
here that the dynamic system response involvemthe@mum acceleratiorAl,y) at the top of the
soil column. In this study, the effect of both 8wl spatial variability and the time variability o

the earthquake GM on the dynamic response weredsoes.

The soil shear modulus was considered as a one-dimensional (1D) non-Gauszndom field
varying in the vertical direction. It was descrideda square exponential autocorrelation function
and was assumed to be log-normally distributed. Treference mean values of the shear

modulus were considered. The first oneis =72MPa corresponding to a non resonant value

(i.e. this value is located on the left hand pdrthe curve in Figure&/.5) and the second one is

Hs, =288MPa corresponding to a resonant value. For both mednes (4, =72MPa and
Hs, =288MPa), a coefficient of variation equal to 30% was adeeed as the reference value.

As for the vertical autocorrelation distargg the adopted reference value was equal to 2m while
the range of 0.5m-20m was considered when perfayiia parametric study. The computation
time that was necessary for the generation ofahdam field increases when the autocorrelation
distance decreases. Notice however that this tirags mlatively small in the case of the 1D
random field for the range of autocorrelation dis&s considered in the analysis.

In order to simulate the stochastic synthetic eprélke GMs using the method given by Rezaeian
and Der Kiureghian (2010), the synthetic signal Mice (for which the corresponding

accelerogram is presented in Fig\Wt2(a)) was used as a target accelerogram.

The deterministic model was based on numerical lsitimns using the dynamic option of the
finite difference code FLA®. It was presented and detailed in the previousmsedt should be
noted here that in dynamic analysis, the size gizan element in the mesh depends on both the
autocorrelation distances of the soil propertied tre wavelengtli associated with the highest

frequency componeiffit,ax of the input seismic signal.

For the autocorrelation distances of the soil prigge Der Kiureghian and Ke (1988) have
suggested that the length of the largest elemeatgiven direction (horizontal or vertical) should
not exceed 0.5 times the autocorrelation distanc¢éhat direction. As for the wavelength
associated with the highest frequency comporiggt of the input signal, Itasca (2000) has
suggested that the element size should not exdéédd 1/8 this wavelengthin order to avoid

numerical distortion of the propagating waves Egeation ¥.1)). FigureV.2(b) shows that the
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value of the maximum frequencyfis,=40Hz. In order to respect the two mentioned cates,

two different deterministic meshes were considéneBLAC®P. The first one was devoted to the
case of moderate to great valuesapfand Vs where an element size of 0.5m was chosen to
perform the dynamic analysis (i.e. whep=200m /s and a, 21m), and the second one for
small values oby or Vs where the element size was adjusted in order fgeotghe previous two

conditions.

The following subsections are organized as follokisst, a brief description of a step-by-step
procedure used to generate the stochastic eartbqGadk is presented. It is followed by a

presentation of some realizations of this stochastirthquake GM. Finally, one examines the
effect of (i) the soil spatial variability consi@er alone with a deterministic earthquake GM, (ii)
the time variability of the earthquake GM considkeadone with a homogenous soil mass and (iii)
both the soil spatial variability combined with tti@e variability of the earthquake GM.

V.2.3.1 Step-by-step procedure used to generate the sticlasthquake GM

The different steps used to generate the stochemtibquake GMs are summarized as follows:

(@) Introduce the target input seismic signal dreldorresponding time stefb and total duration
T. In this work, the target input seismic signakhe synthetic Nice accelerogram presented in
FigureV.2 which has a time stefi=0.01s and a total duratiom=20s.

(b) Determine the parametess= (a,, a,, a,) of the time modulation function as follows:

First, calculate the three physically-based pararsefi ,, D, ., t ) Which describe the real
recorded GM in the time domain. The first variahlg,is calculated using Equation (C.1). The
second variabl®s-gs is the time interval between the instants at wHieh and 95% ofl | are

reached respectively (cf. Figure C.1). Finally, thied variablety,q is the time at which 45% of

I, is reached (cf. Figure C.1). Then, use these thingsical parameters to deduce the values of
the parameterg = (a,, a,, a,) of the time modulation function using Equations2(C(C.3) and
(C.4). The values of the three physical parametiersD, ., t, ) and the corresponding values

of the time modulation function parameters- (a,, a,, a,) for the synthetic Nice accelerogram

used in this thesis are presented in Table
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The three physical parameters |,=8.5.9 D5.95=6.78& tmi=4.728

The time modulation function parameters a,=0.385 a,=3.537 a,=0.576

Table V.1. Values of the three physical parameters and thcorresponding values of the time modulation
function parameters for the synthetic Nice accelemgram

(c) Determine the filter IRF paramete7r) = (aw (7), ¢, (1)) (with @ (1) =w,, +w (T -t )

denoting the natural frequency agid 7 £ §, denoting the damping ratio) as follows:

First, optimize the frequency parametess, and w as follows:

* Plot the cumulative count of zero-level up-crossimg the target earthquake GM (cf.
FigureV.7(a)). The zero-level up-crossings are the nunolbéimes per unit time that the

process crosses the level zero from below.

* Fit the obtained cumulative count of zero-level aupssings by a second degree

polynomial (p = p,x*+ p,x+ p) (cf. FigureV.7(a)).

* Use the obtained second degree polynomial to deftheciequency parametets,, and
w using Equation (C.7).
The fitted second order polynomial for the synthédice accelerogram is presented in Figure
V.7(a) and it is given byp =-0.05x*+ 8.1k + 36.9. The corresponding frequency parameters

are w, , =7.6Hz andw=-0.1.
Second, optimize the damping ragp as follows:

* Plot the cumulative count of negative maxima (pgakal positive minima (valleys) (cf.
FigureV.7(b)) for the target earthquake GM.

« Generate filtered processes (Equatib®5)) using the frequency parametess, and w

(which were optimized at the previous step) witheasies of constant damping ratio (i.e.

¢, =0.1, 0.2, ..., 0.) and see for which value of the damping ratiodbmulative count

of positive minima and negative maxima of the siedl and target motions fit the most.
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» Compute the optimal value of the damping rafjoas follows: ¢, =7, -e, !M}

(ep ~& )
where {, and {, are the damping ratios that correspond to the lsstabositive and

negative errors respectively aeg ande, are the smallest positive and negative errors

respectively. For the synthetic Nice accelerogrdigure V.7(b) presents the target

cumulative count of positive minima and negativexima and the nine simulated filtered

processes using the optimized values of frequermampetersw, , and w. The

corresponding optimal value of the damping ratiq,is=0.56.
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Figure V.7. Identification of filter parameters for the synthetic Nice accelerogram, (a) matching the
cumulative number of zero level up-crossings (b) ntehing the cumulative count of negative maxima and
positive minima
(d) Use Equationl25) to simulate a stochastic synthetic earthquaké A realization of the

stochastic synthetic acceleration time history lisamed by simulating the vector of standard

normal random variablas (i=1, ..., N :%+1:2001).

V.2.3.2 Realizations of the stochastic earthquake GM

The target acceleration time history used to gdeestochastic earthquake GM is the Nice
synthetic accelerogram shown in FigM&(a). This target acceleration time history wasdito
identify the parameters of the stochastic modetgiin Equation|(25). These parameters were
calculated in the previous section. Thus, realiregiof the stochastic synthetic acceleration time

histories can be performed by generating for eaakisation a vectoy; (i=1, ..., N of standard
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normal random variables whef¢ :%+1:2001 and by applying Equatioh25). Notice that

the computation time that was necessary for thetifilgation of the stochastic model parameters
was negligible (about 2min). Also, the time thatswaeeded to generate a realization of the
stochastic synthetic acceleration time history gaasi-negligible (i.e. smaller than 1min for each

realization).

FigureV.8 presents five realizations of the stochastitheuake GM. This figure shows that the
different simulated acceleration time histories énahfferent maximum accelerations which will

induce different dynamic system responses.
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Figure V.8. (a) Target and five simulated acceleration tire-histories, and (b) their corresponding Fourier
amplitude spectrum

V.2.4 Probabilistic results

The aim of this section is to study the effect o tsoil spatial variability and/or the time
variability of the earthquake GM on the statisticedments oAy« at the top of the soil column
using both the MCS and the SPCE methodologies.

V.2.4.1 Monte-Carlo simulation results

In this section, the results obtained based orvibiete-Carlo simulation (MCS) methodology are
presented and discussed. It should be mentionedthatr the number of simulatioKsto be used
should be sufficient to accurately calculate thmst fiwo statistical moments. This number should
insure the convergence of the mean estimatoA@k at the top of the soil column and its

corresponding coefficient of variation as a funetad the number of simulations.
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FigureV.9 presents the estimators of the mean and caeffiof variation ofAyax at the top of
the soil column as a function of the number of danons. This figure shows that the
convergence is reached for a number of simulatiarger than 300. A number of simulation
K=500 was used hereafter to perform the probalulestalysis using the MCS method.
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Figure V.9. (a) Mean and (b) coefficient of variation of A,y at the top of the soil column as a function of the
number of simulations whena,=0.5m

Effect of the mean value and the autocorrelatictatice

The effect of the soil spatial variability and/bettime variability of the earthquake GM BRax
at the top of the soil column is studied and presgm TableV.2 for the two mean values of the

shear modulus 4 =72MPa and £ =288VIPa) when COVz=30%. Different values of the

vertical autocorrelation distanca£0.5, 2, 5, 10 and 20m) were considered in theyasal

In the case where only the soil spatial variabilitgs considered, TabM.2 shows (as in the
deterministic analysis) that smaller mean valuesAgif at the top of the soil column were

obtained when a non resonant mean value of the shedulusG was used (i.el; =72MPa)

as compared to those obtained when a resonant vaéam of the shear modul@ was utilized

(i.e. 4, =288VIPa). Notice also that for the weak soil configurati@®e. when, =72MPa),

the mean value ohnax decreases when the vertical autocorrelation distapdecreases. This is
because the soil heterogeneity will introduce sstneng zones which will limit the amplification
of the acceleration at the top of the soil colu@n.the contrary, for the strong soil configuration

(i.e. g, =288MPa), the mean value dimaxincreases when the vertical autocorrelation degan
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ay decreases. This is because the soil heterogemgitintroduce some weakness zones which

will increase the amplification of the acceleratadrthe top of the soil column.

On the other hand, TabM.2 shows that the variability ofnax is maximal for the very large
values of the autocorrelation distan@&=@0m). This variability decreases when the vertical
autocorrelation distanc® decreases. The same trend was obtained in the phegious chapters
where static loading cases were considered. Iretbases, the small values of the autocorrelation
distances produce the so-called 'averaging phenamhé&r which the rapid change in the values
of a soil property from element to another neigimmpone leads to quasi-similar behavior for all
the realizations. In the dynamic loading cases, ‘threraging phenomenon' is also produced but
along the wave’s path. Thus, the rapid changeernviues of the shear modulus along the wave
path leads to quasi-similar behavior for all thalimations. This leads to close valuesfgf.« at

the top of the soil column and thus to a smalletakdity in this response. Notice that similar
results were obtained by Al-Bittar et al. (2012dew the dynamic behavior of a spatially varying
slope subjected to stochastic GM was investigatédAppendix F). From Tabl&.2, one can
also observe that the variability Af..x is larger for the case of the weak soil correspuntb a

small mean value of the shear modulus G (e.= 72MPa).

The maximum variability obtained when only the sphtial variability was considered is largely
smaller than the one obtained when only the timgabdity of the earthquake GM was
considered as may be seen from Tabl2. The values of the variability &max obtained when

only the time variability of the earthquake GM wasnsidered (i.e. 20.64% fou, =72MPa
and 18.70% for,uGZ =288VIPa) are about two times larger than those obtainednadnly the

soil spatial variability was taken into account.tide however that the obtained results may

change in the case where a different seismic |gagas considered.

Finally, when both the soil spatial variability atide time variability of the GM have been
considered in the analysis, one obtains a varigloh Anax Which is far below the one obtained
by superposition of the variabilities 8f,ax as obtained from the soil spatial variability ahe t
time variability of the earthquake GM consideredpasately. Thus, if one applies the
superposition method to obtain the variability lo¢ tdynamic responses, the obtained variability

may be largely overestimated.
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Case where only the spatial variability of the sheadulus was considered

M, = (2MPa M, = 288MPa
a(m) My, (M) o, (M) cov, (%) u, (M) o, (miS) cov, (%)
0.5 6.08 0.31 5.12 9.82 0.19 1.92
2 6.19 0.43 6.96 9.76 0.30 3.95
5 6.29 0.54 8.52 9.65 0.49 5.03
10 6.35 0.66 10.34 9.60 0.55 5.75
20 6.38 0.66 10.34 9.53 0.55 5.80

Case where only the time variability of the earddguGM was considered

M, = 12MPa Hs, = 288MPa

7.01 1.45 20.64 8.75 1.63 18.70

Case where both the spatial variability of the smeadulus and time variability of the
earthquake GM were considered

M, = 12MPa Hs, = 288MPa
a(m) My, (M) o, (M) cov, (%) u, (M) o, (M) cov, (%)
0.5 6.85 1.44 20.99 8.66 1.63 18.82
2 6.88 1.45 21.14 8.69 1.64 18.92
5 6.89 1.47 21.26 8.67 1.69 19.52
10 6.98 151 21.69 8.73 1.72 19.69
20 6.99 151 21.69 8.73 1.72 19.69

Table V.2. Effect of the soil spatial variability and/orthe time variability of the earthquake GM on the
maximum acceleration at the top of the soil column

Effect of the coefficient of variation

The aim of this section is to study the effecthod toefficient of variation o on the statistical
moments ofAnax at the top of the soil column considering two sasé deterministic and

stochastic earthquake GMs for the two mean valfies Oy =72MPa and 4, =288VPa).

Three different values of the coefficient of vapat (COVs=15%, 30% and 45%) were

considered in the analyses.

TableV.3 shows that the increase in the coefficientariation ofG has practically no influence
on the mean value d,ax On the other hand, the variability Af..x at the top of the column
increases (as expected) when the coefficient aatian of G increases; this increase is more
significant in the case of the stronger soil ane&mwbnly the soil spatial variability is considered

in the analysis. Finally, notice that the variagilof Anax at the top of the column reaches the
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most significant values in the case of a weak (@il =72MPa) and when both the soil spatial

variability and the time variability of the earttake GM were considered.

Case where only the spatial variability of the shreadulus was considered

M, = 12MPa M, = 288MPa
COVe (%) M, (M) o, (m/s) cov, (%) u,_ (M) o, (m/s) cov, (%)
15 6.13 0.41 6.61 9.74 0.17 1.78
30 6.19 0.43 6.96 9.65 0.49 5.03
45 6.16 0.52 8.42 9.60 0.64 6.70

Case where both the spatial variability of the simeadulus and time variability of the earthquake
GM were considered

M, = 12MPa Hs, = 288MPa
COVe (%)  th,, (MIS) o, (MS) cov, (%) w (M) o, (MS) cov, (%)
15 6.95 1.45 20.87 8.67 1.61 18.59
30 6.88 1.45 21.14 8.70 1.65 18.92
45 6.65 1.50 22.47 8.72 1.70 19.50

Table V.3. Effect of the coefficient of variation of G onA, at the top of the soil column considering
deterministic and stochastic earthquake GM

V.2.4.2 Sparse polynomial chaos expansion results

In this section, the results obtained based onSparse Plynomial Chaos Expansion (SPCE)
methodology are presented. It should be mentiorezd that the 500 simulations which were
used in the previous section to perform the analysethe MCS methodology were employed
herein in order to construct the SPCE. Additiomalusations were performed for the cases where

the regression problem was ill-posed. However, thmber of simulations was not increased
until reaching the target coefficient of determiitia Q7 ., Of 0.999. This is because of the

high computational cost of each dynamic analysishis study, only the case of spatially varying
soil column was considered. This is because intimduthe time variability of the earthquake
GM will add 2001 random variables to the problerhisTvery large number of random variables

makes the SPCE methodology not feasible.

TableV.4 presents the total numbirof random variables (or eigenmodes) that shoulddwszl
to discretize the random field & (within the prescribed value of 10% for the vadarof the

error) for the different values of the vertical @udrrelation distanca,.
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Vertical

autocorrelation Number of random

distancea,(m) variables
0.5 35
2 10
5 5
10 5
20 5

Table V.4. Number of random variables needed to discretezthe random fieldG

Effect of the mean value and the autocorrelatictagdice

The effect of the soil spatial variability on th®P of Anax at the top of the soil column for the

two mean values of the shear modulyg, (=72MPa and f; =288MPa) is studied and

presented in Figur¥.10. Different values of the vertical autocorr&at distance =0.5, 2, 5,

10 and 20m) were considered in the analyses.

FigureV.10 shows that the variability d&,axat the top of the soil column decreases when the
vertical autocorrelation distan@g decreases. Similar observation was provided inpteeious
section where MCS was employed. Even though th&desPresent logical trends (similar to
what was obtained in the previous chapters whestate loading was studied), they can not be
considered as rigorous. This is because relatsmlgll values of the coefficient of determination
Q? were obtained in this case where a seismic loasasjconsidered.
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Figure V.10. Influence of the vertical autocorrelation disancea, on the PDF ofAn. at the top of the soil
column when (a) 4, =72MPa and (b) 4, =288VPa
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TableV.5 presents a comparison between the statisticahents ofAnax at the top of the saill
column as obtained using both the MCS and the SR€todologies. This table also provides
the values of)? obtained when the SPCE methodology was used.

From TableV.5, one can observe a small difference betweenvibefirst statistical moments as
given by both the MCS and the SPCE methodologies ¢wough relatively small values @f
were obtained with the use of the SPCE methodol@gys, the relatively small values @f
may not have a major influence on the two firstisti@al moments, but they certainly affect the

third and fourth statistcal moments. This makesotht@ined PDFs invalid at the distribution tails.

In fact, there are two possible reasons for whightively small values od®* may occur. The first
one is the chosen system respoAsgx wWhich may be obtained at different time steps from
simulation to another one. As for the second reasonay be the number of simulations which
needs to be increased. In order to detect the neason for which the relatively small values of
Q? were obtained, a test on only the chosen systeponseAn.xwas performed. This test was
not presented in this chapter but was providedppehdix G. As for the number of simulations,
the test was not performed because of the signifimmputation time of the dynamic

deterministic model (40 min per simulation).

Yo, = T2MPa
Monte-Carlo simulations Sparse Polynomial Chagsaasion
am) M, (M) o, (M) cov, ) u, (M) o, (M) cov, )  Q
0.5 6.08 0.31 5.12 6.07 0.23 3.97 0.535
2 6.19 0.43 6.96 6.18 0.37 6.00 0.587
5 6.29 0.53 8.52 6.29 0.42 6.68 0.686
10 6.35 0.65 10.34 6.33 0.54 8.53 0.788
20 6.38 0.66 10.34 6.37 0.56 8.80 0.790
M, = 288MPa
Monte-Carlo simulations Sparse Polynomial Chagsafasion
a(m) M, (MS) o (M) cov, ) u, (M) g, (M) cov, *) Q?
0.5 9.82 0.19 1.92 9.81 0.14 1.43 0.555
2 9.76 0.30 3.95 9.76 0.27 2.77 0.665
5 9.65 0.49 5.03 9.65 0.46 4.77 0.810
10 9.60 0.55 5.75 9.60 0.50 5.21 0.800
20 9.53 0.55 5.80 9.53 0.50 5.25 0.750

Table V.5. Comparison between the statistical momentg( o) of Ay at the top of the soil column as obtained
using both the MCS and the SPCE methodologies
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V.3 CASE OF A SOIL-STRUCTURE INTERACTION (SSI) PROB LEM

In this section, the SSI problem was investigatedugh the analysis of a five storey building
[Al-Bittar et al. (2012b)]. In order to study a SBitoblem, three methods can be found in
literature [Pecker (1984)]:

® The superposition method which subdivides the cem@SI problem into simpler
problems (kinematics interaction and inertial iat#ion [Kausel et al. (1978)]), this

method being valid only for linear problems.

(i) The direct methods that use a classical finite elgffinite difference approaches
[Prevost (1999)], but these methods require goaniedge of the constitutive laws

and are very computationally-expensive.

(i)  The hybrid methods that are a combination of the fwevious methods and therefore

they are more attractive because of their compmurtaticost.

The macro-element approach belongs to the lasyj@at@nd it is used to model the present SSI
problem. The macro-element concept developed byaNmwd Montrasio (1991) consists in
condensing the soil (material) and interface (gaan)enonlinearities into a representative point
(the centre of the foundation) and it works witmealized variables (forces and displacements).

It thus allows the simulation of the behaviour lbakow foundations in a simplified way.

The main reason for which the macro-element contepghosen to perform the probabilistic
analysis is that the time cost for a single deteistic calculation is relatively small (five minste
per simulation). Thus, this model is suitable fog probabilistic analysis which requires a great
number of calls of the deterministic model. In tthissis, only the time variability of the seismic

loading was considered in the analysis.

Finally, notice that the dynamic system responegsned for the probabilistic analysis are:
(1) The maximum horizontal displacement at the togheftiuilding.
(i) The three maximum displacements of the footingreent
(i)  The three maximum reaction forces at the contatti@&oil and the footing.

The probabilistic results are presented in the fafnstatistical moments and in the form of

probability of exceeding of predefined thresholds.
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The following subsections are organised as follawve first presents the numerical modeling of
the dynamic problem. Then, the obtained probalmlistimerical results are presented and
discussed.

V.3.1 Numerical modeling

The SSI problem involves a five-storey building.eTBAMUS IV structure [CAMUS (1997)] is
the one chosen in this study. This structure ig3astaled mock-up. It is composed of (i) two
parallel reinforced concrete walls without openargl (ii) six square floors that link these walls
(Figure V.11(a)). The entire structure rests on two readargfootings of 0.8mx2.1m (Figure
V.11(a)). The total height of the model is 5.1m dnel total mass is estimated to be equal to 36
tons. The wall of a given floor is 4m long, 1.70mghand 6cm thick [CAMUS (1997)]. The
building and the footings rest on a high densitydsa he container which contains the sand has a
horizontal cross-section of 4.6mx4.6m and a depédnuo
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| Tf" ———
72 *
(b)

Figure V.11. The five-storey building: (a) The CAMUS IV real model, and (b) the simplified numerical
lumped mass system
For the numerical calculations, the CAMUS IV fiierey building was modelled using a simple
lumped mass system (Figuxel1(b)). In this system, the building was simuthtesing beam
elements and concentrated masses. Thus, each swwasyreduced to a single madsthat has
an inertia equal td;. The values of the masses and the correspondergas for the different
stories are given in TabM.6. The material behaviour of the beams was censdtllinear elastic.

The soil-foundation system was modelled using therotelement concept.

Several 2D macroelements exist in literature [Namd Montrasio (1999), Cassidy et al. (2002)
and Crémer et al. (2001)]. The 2D macro-elementid@ed in Crémer et al. (2002) is adequate
for static, cyclic and dynamic loadings (e.g. equiike) and it considers both the plasticity of the
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soil and the uplift of the foundation. Grange et(28D09a) have extended the macro-element of
Crémer et al. (2002). Their macro-element can sateuthe 3D behaviour of foundations having
different shapes (circular, rectangular and strig)is recent version of the macro-element was
adopted in this thesis to perform the probabilidifjaamic analysis. It should be mentioned here
that the mathematical description of the macro-el#ms summarized in Appendix H. More
details are given in Crémer et al. (2001), Crénteale(2002), Grange (2008), Grange et al.
(2009a) and Grange et al. (2009b).

Elastic parameters
K&,=52VINm/rad

K, =108VIN/m
K& =120MN/m

Heighth; (m) (see Inertia Plastic parameters

: Mass K9) _ _
Figure 1) (Kg.nf) qu=0.58MPa k=1
h;=0.1 M1=4786 J;=1600 a=0.93 =1
h2:1.4 M,=6825 J,=3202 b=0.8 =1
hs=2.3 M3=6825 J3=3202 c=1 a=1
h,=3.2 Ms=6825 J,=3202 d=1 az=1
hs=4.1 Ms=6825 Js=3202 e=1 as=1
he=5 Ms=6388 Js=3124 f=1 as=1

Table V.6. Parameters used to model the five- Table V.7. Parameters used to model the soil-

storey building foundation (macro-element)

The macro-element considered in this study has $wperposed nodes. The first node is
considered fixed and the second node is connectdtiet structure. The dynamic loading is
applied to the first node. For the used high dgrssind, Grange et al. (2009b) have identified the
different parameters of the macro-element by fitihe model to the experimental results given
by Grange (2008). These parameters are presenfeablaV.7 whereqy is the ultimate bearing
capacity of the rectangular footing; b, c, d, e andf are the coefficients that appear in Equation
(H.1); x and ¢ are the parameters of the flow rule; and finally a,, as, a4, and as are the
parameters used to calculate the variabés may be seen in Grange (2008). In the following

sections, the obtained probabilistic results aesgmted and discussed.
V.3.2 Probabilistic numerical results

The aim of this section is to present the probsiozlinumerical results. It should be remembered
here that the dynamic responses considered inrhlysis of the behavior of the five storey

153



building involve (i) the maximum horizontal disptament at the top of the building, (ii) the three
maximum displacements of the footing centre, andllfy (iii) the three maximum reaction forces

at the contact of the soil and the footing.

In this study, only the effect of the time varidyilof the earthquake GM on the dynamic
responses was considered. This is because the ‘@glaonent concept consists in condensing the
soil (material) and interface (geometric) nonlinigas into a representative point (the centre of
the foundation), which make it impossible to mode¢ soil spatial variability of the soil

properties.

The aim of the next two subsections is to presespectively (i) the statistical moments of the
dynamic responses and (ii) the fragility curvesregponding to three different damage levels. A
number of 100,000 stochastic synthetic accelerdtroa histories was used in the analysis. This

large number of samples is necessary to obtairratecualues of the failure probability.
V.3.2.1 Statistical moments of the dynamic responses

TableV.8 presents the two first statistical moments. @i probabilistic mean and the standard
deviation) together with the deterministic meanueal for the following dynamic responses: (i)
the maximum horizontal displacement at the top hd# building, (ii) the three maximum
displacements of the footing centre, and finally {he force resultantsVinax, Nmax Mmay at the

contact of the soil and the footing.

TableV.8 shows that the probabilistic mean value ofrtfaximum horizontal displacement at the
top of the building is almost 10 times larger ttfe¢ one obtained at the footing centre. On the
other hand, large values of the coefficient of aton COV are obtained for the different output
parameters (19.7%30V<41.5). From a probabilistic point of view, largalwes of the coefficient

of variation indicate that the responses are spoeadver a large range of values. This is critical
since in this case the mean values of these respam® not representative and can not be
considered as reliable data for design proceduoe. Séme output parameters (such as the
maximum displacement at the top of the building Hr@dmaximum moment at the bottom), this
phenomenon is amplified by the fact that the prdistic mean value is significantly larger than

the deterministic one.
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Deterministic Probabilistic S.andard - Coefficient

Stochastic dynamic response mean meanux10° deviation of variation
u ox10°  COV(%)
The maximum horizontal displacement
at the top of the building (m) 22.1 315 9.7 30.80
The maximum hc_)rlzontal displacement 24 58 06 2143
of the footing centre (m)
The maximum \(ertlcal displacement of 4.2 53 29 41.50
the footing centre (m)
The maximum rotation of the footing 41 58 19 3276
centre (rad)
The maximum normal force at the
contact of the soil and the footing (MN) 38 5.6 2.3 41.07
The maximum shear force at the contact
of the soil and the footing (MN) 21.9 314 6.2 19.75
The maximum moment at the contact of 343 373 77 20.64

the soil and the footing (MN)

Table V.8. Effect of stochastic Ground-Motion on the stastical moments g, ¢) of the seven dynamic
responses

FigureV.12 presents the PDFs of the maximum horizontgbldcement at the footing centre and
at the top of the building. This figure shows tithe PDF of the maximum horizontal
displacement at the top of the building is moreeadrout and thus more critical.

30 7umaxfooting I
——u___top of the building
70 max it
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[
a
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Figure V.12. PDF of the maximum horizontal displacement (gaat the centre of the footing, and (b) at the top
of the building

155



V.3.2.2 Fragility curves

The probability that a certain level of damagedtable maximum horizontal displacement) will
be exceeded at a specified peak ground accelef@dcan be expressed in the form of fragility

curves.

The fragility curves can be performed since thelstgtic ground motions create variability in the
PGA (0.21<PGA<0.79). In this section, fragility curves for the maximthorizontal displacement
at the top of the building and for the maximum matret the contact of the soil and the footing

are computed.

Figure V.13(a) presents three fragility curves correspogdio the maximum horizontal
displacement at the top of the building for threeels of damage [(i) minor damage for which
Umax=0.01m, (ii) medium damage for whiahy,.,=0.04m and (iii) major damage for which
Umax=0.06m]. On the other hand, Figwel3(b) presents three fragility curves correspongdhe
maximum moment at the contact of the soil and tiwiig for three levels of damage [(i) minor
damage for whichMn,=0.0IMNm, (ii)) medium damage for whicMm,=0.04MNm and (iii)
major damage for whicMm,,=0.08MINm|. These figures allow one to determine the prdiigbi
of exceeding a tolerable value of the dynamic raspocorresponding to a given value of the
peak ground acceleratioRGA).

1 = I
0.8 g
o ®
= =
0.6 06
o o
= =
204 04
=) K =) H
b { o2 ;
a #|—NMinor level of damage gHaX:O.Olm) a | —Minor level of damage (MaX:O.OlMNm)
0.2 ---Medium level of damage rgjuax =0.04m 07 ---Medium level of damage (MaX:O.04MNm
----- Major level of damage waX:O.OGm) - Major level of damage (MaX:O.OGMNm)

8.1 0.2 03 0.4 0.5 0.6 0.7 0.8 8.1 0.2 O.é 0.4 05 06 0.7 08
PGA(g) PGA(g)

(@) (b)

Figure V.13. Fragility curves for different levels of damae (a) maximum horizontal displacement at the topfo
the building, and (b) maximum moment at the contacbf the soil and the footing

156



V.4 CONCLUSIONS

In this chapter, the dynamic responses inducednbgaathquake Ground-Motion (GM) taking
into account the soil spatial variability and/oe tiime variability of the seismic loading were
investigated. It should be mentioned here that whealing with seismic loads, an aleatory
uncertainty which is the time variability of thergmuake GM appears in addition to the soil
spatial variability and the variability of the sugiucture. Given the scarcity of studies involving
the probabilistic seismic responses, a free fieitl medium subjected to a seismic loading was
firstly considered. The aim is to investigate tiffeat of the soil spatial variability and/or theni
variability of the earthquake GM using a simple mlod hen, a SSI problem was investigated in

the second part of this chapter.

In the case where a free field medium was congildéhe effect of the soil spatial variability
and/or the time variability of the earthquake GMsviravestigated through the study of an elastic
free field soil mass. The soil shear moduluisvas modeled as a non-Gaussian random field and
the earthquake GM was modeled as a random protessEOLE methodology was used to
discretize the shear modulus random field. As far ¢arthquake GM, the method proposed by
Rezaeian and Der Kiureghian (2010) which consrstgting a parameterized stochastic model to
the real recorded earthquake GM was utilized. Tyreaunhic response considered in the analysis
was the amplification of the maximum acceleratibtha soil surface. The deterministic dynamic
numerical model was based on numerical simulatiosig the finite difference software
FLAC®P. Two types of modeling were considered in thisptea The first one considers a two-
dimensional soil mass and the second model corssalsoil column. The objective of these two
types of modeling was to verify the validity of tle®lumn' model in simulating the propagation
of the seismic waves in the soil mass. This pertoiteplace the 2D computationally-expensive
model with the relatively non-expensive ‘column’delowhich may significantly reduce the
probabilistic computational time. As for the probisbic methods used in this chapter, two
methods were used. The first one is the classicait® Carlo Simulation (MCS) methodology
and the second one is the Sparse Polynomial Chapangion (SPCE) methodology which

consists in substituting the original deterministiodel by a meta-model.

The deterministic numerical results of the freddfiease have shown that the ‘column' model is
sufficient to study the evolution of the maximuntaleration in the soil mass. This result is of
particular interest for the probabilistic analyseBich require a large number of calls to the

deterministic model. On the other hand, the evoiutf the maximum acceleration as a function
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of the shear modulus have shown that for a givegea@f the shear modulus values, an important
increase in the maximum acceleration was obtairkest. this range of values o, the
predominant frequency band of the soil ‘columntegponds to the predominant frequency band

of the seismic loading, which leads to resonan@pmenon.

As for the probabilistic results of the free figdse, the MCS methodology has shown that for the
Nice accelerogram used in this thesis, the vartgbdbtained when only the soil spatial
variability was considered is largely smaller thlhe one obtained when only the time variability
of the earthquake GM was considered. This resulf ofenge in the case where a different
seismic signal is used. Considering both the gutial variability and the time variability of the
GM has led to a variability ofyax which is far below from that obtained by superpoaiof the
variabilities of Amax @as obtained from the soil spatial variability ahe time variability of the
earthquake GM considered separately. As for the ESRt@thodology results, the obtained
statistical moments d&naxat the top of the soil column are close to thoseltmg from the MCS
methodology, but the obtained PDFs can not be dersil as rigorous because relatively small

values ofQ? were obtained in this case.

In the case where the SSI problem was considergdolzabilistic dynamic analysis of a five-
storey building founded on two rigid rectangulantings was presented. The entire soil-structure
system was considered in the analysis in whichsthleand soil-footing interface were modelled
by a macro-element. The main reason for which tteErorelement concept was chosen to
perform the probabilistic analysis is that the tigwest for a single deterministic calculation is
relatively small (five minutes per simulation). @rthe time variability of the seismic loading
was introduced in the computations; the soil spatdability was not considered in the analysis.
The probabilistic dynamic analyses were performgidgithe classical Monte Carlo Simulation
(MCS) methodology.

The dynamic system responses retained for the piligter analysis of the SSI problem were (i)
the maximum horizontal displacement at the top had building, (i) the three maximum
displacements of the footing centre, and finally ¢(he three maximum reaction forces at the
contact of the soil and the footing.

The probabilistic numerical results of the SSI peab have shown that (i) the probabilistic mean
value of the maximum horizontal displacement attthe of the building was almost 10 times
larger that the one obtained at the footing cerfifetarge values of the coefficient of variation

were obtained for the different output parametars} finally (iii) stochastic ground motion time
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histories create variability in the PGA which al®wne to perform fragility curves for the

different dynamic responses.
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GENERAL CONCLUSIONS

This study focuses on the probabilistic analysissbéllow foundations resting on spatially
varying soils or rocks and subjected to either aicstor a dynamic (seismic) loading. Two

aleatory sources of uncertainty were considerece fitst one is the soil (or rock) spatial

variability which was modeled by random fields. Téecond one is the time variability of the
earthquake GM (when seismic loads were considevedh was modeled by a random process.
Both types of variabilities lead to high dimensibsi@chastic problems.

In this thesis, a literature review on the soil dhd earthquake GM variabilities and the meta-
modeling techniques was first presented. It wds\ia@d by two main parts.

The first part (which is composed of chapterslliahd IV) presents a probabilistic analysis of
shallow foundations resting on spatially varyingissor rocks and subjected to a static loading.
Both cases of strip and square footings were studdso, 2D and 3D random fields were
considered in the analysis. In this part, the pbdlsiic method used to calculate the different
probabilistic outputs was the Sparse PolynomialdShaxpansion (SPCE) methodology and its
extension the SPCE/GSA procedure.

In chapter Il, a probabilistic analysis of shall@vip foundations resting on spatially varying
soils or rocks was presented. Relatively non-expendeterministic models were used in this
chapter since the ULS analysis was performed ircéise of a weightless material. The resulting
ultimate bearing capacity is the one related toNheoefficient in the bearing capacity equation.
In the case of spatially varying soil mass, a pbiistic analysis at both ULS and SLS of
vertically loaded strip footings was performed. Hod shear strength parametecsa(idy) were
considered as anisotropic cross-correlated nonsgausandom fields at ULS and the soil elastic
parametersE ando) were considered as anisotropic uncorrelated neams&an random fields at
SLS. Notice that the system response used at UlsSteaultimate bearing capacity; however,
the footing vertical displacement was considerethassystem response at SLS. Concerning the
case of the spatially varying rock mass obeyingHbek-Brown failure criterion, only the ULS
case of vertically loaded footings was considefidgk uniaxial compressive strength of the intact
rock (o) was considered as a non-Gaussian random fieldtl@d>eological Strength Index
(GS)) was considered as a random variable. Noticetligbystem response considered was the
ultimate bearing capacity of the footing in theeca$ a weightless rock mass. The methodology
proposed by Viechovsky (2008) was used to generate the randdds fiEhe Sparse Polynomial
Chaos Expansion (SPCE) methodology was used torpethe probabilistic analysis.
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In chapter Ill, the effect of the spatial variatyilin three dimensions (3D) was investigated
through the study of the ultimate bearing capacftgtrip and square foundations resting on a
purely cohesive soil with a spatially varying cabesin the three dimensions. This case involves
relatively non-expensive deterministic models alito a 3D mechanical model (with a greater
computation time with respect to the models of thajp) was used. This is because of the use of

a purely cohesive soil.

In chapter IV, an efficient combined use of the &P@ethodology and the Global Sensitivity
Analysis (GSA) was proposed. The aim is to redheeprobabilistic computation time for high-

dimensional stochastic problems involving expensiggerministic models. This procedure was
illustrated through the probabilistic analysis &t3Jof a strip footing resting on a ponderable soil

with 2D and 3D random fields and subjected to dreémertical load.
The main findings of the first part can be sumnetias follows:

* Chapters Il and Il have shown the superiority led SPCE with respect to the classical
MCS commonly used in geotechnical engineering @misl involving spatially varying
soils. The superiority comes from the small nundferalls of the deterministic model. In
addition to the determination of the PDF of thetaysresponse, the SPCE allows one to
easily perform a global sensitivity analysis based Sobol indices using the SPCE
coefficients. These indices give the contributidreach random field in the variability of

the system response.

» The classical SPCE methodology was found to beieffi when relatively non-expensive
deterministic models are involved in the analysig.(the ULS analysis of strip footings

on a weightless material or the ULS analysis off@@ings on a purely cohesive soil).

» The efficient combined use of the SPCE methodokyy the Global Sensitivity Analysis
(GSA) is needed when expensive deterministic mogets strip, rectangular or circular
footings resting on a ponderable soil with 2D/3Mdam fields) are involved in the

analysis.

* The variability of the system responses (i.e. thanate bearing capacity in the ULS
analysis and the vertical displacement of the fapin the SLS analysis) increases (as
expected) with the increase in the coefficientsyariation of the random fields. It was
also shown that an increase in the coefficientasfation of a random field increases its
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Sobol index and thus its weight in the variabibfythe system response and decreases the

weight of the other random field.
e The negative correlation between the random fidlseases the response variability.

* The decrease in the autocorrelation distanagser(a, or a,=ay), lead to a less spread out

PDF of the system response

» The probabilistic mean value of the ultimate beamapacity of strip footings (in both
cases of soil and rock masses) presents a minimibiim.minimum was obtained in the
isotropic case when the autocorrelation distancee&ly equal to the footing breadth B;
while for the anisotropic case (presented only whesoil mass is considered), this
minimum was obtained (for prescribed footing anidl cwaracteristics) at a given value of

the ratio between the horizontal and the vertiotbeorrelation distances.

* The small values of the autocorrelation distanead ko small values of the skewness and
kurtosis of the system responses. Thus, a PDFeafytbtem response that is not far from a

Gaussian one is obtained in these cases.

» For small values of the autocorrelation distantles, variability of the ultimate bearing
capacity computed by considering a 3D random fekinmaller than the one obtained with
the 2D random field for both cases of square anp &totings. Thus, the third dimension

is important to be considered only when small amt@tation distances are encountered.

* Some observed phenomena which can not be seenhehewgenous soils are considered
(such as the non-symmetrical soil failure and theafion in Sobol indices with the
autocorrelation distance) are obtained when consglethe spatial variability of the

soil/rock properties in the probabilistic analysis.

The second part (which is composed of chapter \ésgumts a probabilistic analysis of the
dynamic responses induced by a specific earthq@kend-Motion (GM) (which is the Nice
synthetic accelerogram), taking into account thkesgatial variability and/or the time variability
of the seismic loading. Two cases involving (i) reef field and (i) a SSI problem were
considered in the analysis. In this part, the podistic methods used to calculate the
probabilistic outputs were the classical Monte-Gaimulation (MCS) method and the Sparse

Polynomial Chaos Expansion (SPCE) methodology.
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In the case where a free field medium was congildhe effect of the soil spatial variability
and/or the time variability of the earthquake GMsviravestigated. The soil shear modulaisvas
modeled as a non-Gaussian random field and théogeemike GM was modeled as a random
process. The dynamic response considered in thgsawas the amplification of the maximum
acceleration at the soil surface. Two types of rfingewere considered herein. The first one
considers a two-dimensional soil mass and the skeoadel considers a soil column. The
objective of these two types of modeling was toifyathe validity of the ‘column' model in
simulating the propagation of the seismic wavegha soil mass. As for the case where a SSI
problem was considered, a probabilistic dynamidyais of a five-storey building founded on
two rigid rectangular footings was presented. Tdié and soil-footing interface were modelled
by a macro-element. The main reason for which tlaeroielement concept was used is the
relatively small computation cost of the determntinisnodel. Only the time variability of the
seismic loading was introduced in the computatiothe soil spatial variability was not
considered in the analysis. The dynamic systemoresgs retained for the probabilistic analysis
were: (i) the maximum horizontal displacement attibp of the building, (ii) the three maximum
displacements of the footing centre, and finally ¢(he three maximum reaction forces at the

contact of the soil and the footing. this part, the main findings can be summarizetbdows:

e The 'column’ model was found sufficient to studg thistribution of the maximum
acceleration in the soil mass. This result is oftipalar interest for the probabilistic

analyses which require a large number of callf¢odeterministic model.

* The evolution of the maximum acceleration as a tioncof the shear modulus have
shown that for a given range of the shear modullgeg, an important increase in the
maximum acceleration was obtained. For this rangeatues ofG, the predominant
frequency band of the soil 'column’ correspondhéopredominant frequency band of the

seismic loading, which leads to the resonance phenon.

* When using the Nice accelerogram, the variabililyamed when only the soil spatial
variability was considered was found largely smath@n the one obtained when only the

time variability of the earthquake GM was considere

» Considering both the soil spatial variability aihe time variability of the earthquake GM
has led to a variability of\nax Which is far below from that obtained by superposi of
the variabilities ofAyaxas obtained from the soil spatial variability ahd time variability

of the earthquake GM considered separately.
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e The PDFs ofAax at the top of the soil column obtained using th&€BERmethodology
show similar trends as those obtained when stadidihg cases were considered, but these
PDFs can not be considered as rigorous becaustveslasmall values ofQ* were

obtained in this case.

* When considering the SSI problem involving the gtodl a five-storey building, large

values of the coefficients of variation were obéairior the different system responses.

» The stochastic ground motion time histories creatgability in the PGA which allows

one to perform fragility curves for the differenéimic responses
Ongoing research topics may involve the followitegris:
For the static loading case:

» Consider the case of a rectangular or a circulatirfg resting on a ponderable soil with
3D spatially varying shear strength parametersguia SPCE/GSA procedure.

» Validate of the SPCE methodology for the computatibthe failure probability.

» Use of a rigorous approach for the computationaiidb indices in the case of correlated

random variables.

For the seismic loading case:

* Investigate the effect of 2D random fields (insteE#dthe 1D random fields) on the

dynamic response in the case of the free fieldreedlium.

* Investigate the effect of changing the input setseignal on the obtained probabilistic

results.

* In the SSI problem, introduce the soil spatial abitity in the macro-element. This can be
done by first computing the PDF of the ultimaterbegacapacity. Then, one may use the
obtained PDF (instead of the deterministic value cgf) in the macro-element

formulation.

» Explore new methodologies which may improve theaameobdel in the case of highly

nonlinear models.
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Appendix A.

Weight functions and deterministic basis of the MPSF, SA and OLE methods

Method Weight functiom(X) Deterministic basi®;(X)
MP 3(X -X,) L, (X)
SF 5(x -x,) 1, (X)
SA 1, (X) Polynomial shape function
Q.| N;(X)
OLE 5(X - xj ) (Z)_(%X'Zz(x);)()j

Table A.1. Weight functions and deterministic basi®f the MP, SF, SA and OLE methods

In Table A.1,X is the vector of the coordinates of an arbitraoynp X. is the vector of the
coordinates at the centroid element of the finigenent/finite difference meslx; is the vector of

the coordinates at a noflén the SF method and at a the sample poimthe OLE methodg(.)

X 0Q,

. andQ, is the mesh element.
0 otherwise

denotes the Dirac functioﬂme :{
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Appendix B.

Generation of cross-correlated non-Gaussian randorfields: The illustrative Example

In this illustrative example, one considers a fmilwhich the shear strength parameters (i.e. the
cohesiorc and the internal friction anglg are modeled as two anisotropic cross-correlated n
Gaussian random fields. These two random fieldseh#ive same square exponential
autocorrelation functiop™® (c.f. Equation I(8) with n=2) and a non-Gaussian cross-correlation
1 —0.5}

matrix C\® given as followsC "¢ =
-05 1

The soil cohesiorc was assumed to be lognormally distributed. Its maad coefficient of

variation values were taken as follows:=20kPa, Cov, = 25%. On the other hand, the friction
anglegp was assumed to have a Beta distribution with annvedue and a coefficient of variation

given as follows:y, =30°,Cov, = 10%. In this illustrative example, the soil domain vzmsen

to be small in order to handle small size matri¢es. this purpose, the adopted soil domain
considered in the analysis is 4m wide by 5m deepx{ir=0m, Xmax=4m andymir=0m, yma=5m).
As for the autocorrelation distanceg and a,, the horizontal autocorrelation distanae was
chosen to be equal to 5m and the vertical autoediwa distancea, was fixed to 4m. A
stochastic mesh composed of 3 points in both thiezdmtal and the vertical directions is chosen

in this example (cf. Figure B.1).

Figure B.1. The stochastic mesh used in the analgsi
In order to discretize the two random fieldscodindg, one needs to perform the different steps
described in sectioh3.4.1 as follows:
a) Evaluate the common non-Gaussian autocorrelatimnix ZE‘XG for which each row gives the

correlation between a given gridpoint of the statitamesh with all the others gridpoints of this
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mesh using Equation.9). Table B.1 presents the common non-Gaussisocarrelation matrix

ZTXG for the stochastic mesh presented in Figure B.1.

(0,00 (25,00 5,00 (0,2) (252 (5,2 0,4 (254) (B4
(0,0) 1 0.779 0.368 0.779 0.606 0.286 0.368 0.28613D
(2.5,0) 0.779 1 0.779 0606 0.779 0.606 0.286 0.368 0.286
(5,00 0.368 0.779 1 0.286 0.606 0.779 0.135 0.286368)
(0,2) 0.779 0.606 0.286 1 0.779 0368 0.779 0.606286
(2.5,5) 0.606 0.779 0.606 0.779 1 0.779 0.606 0.779 0.606
(5,2) 0.286 0.606 0.779 0.368 0.779 1 0.286 0.606779D
(0,4) 0.368 0.286 0.135 0.779 0.606 0.286 1 0.779368
(2.5,4) 0.286 0.368 0.286 0.606 0.779 0.606 0.779 1 0.779
(5,4) 0.135 0.286 0.368 0.286 0.606 0.779 0.368 79M.7 1

Table B.1. The non-Gaussian autocorrelation matrix= "¢
XX

b) Transform the common non-Gaussian autocorrelatiatrix ZTXG into the Gaussian space
using Nataf correction functions (cf. Equatidril9)). The obtained Gaussian autocorrelation
matrices are respectively,., and =% . It should be mentioned here that both matriggs and
=* . werequasi-similar tozt‘;3 and thus the number of eigenmodes (number of randoiables)

which is necessary to discretize each one of tleeramdom fields was similafables B.2 and
B.3 present respectively the matritfa}sX and Zﬁ;x obtained after transforming the common non-

Gaussian autocorrelation matrix into the Gaussiaces.

(0,00 (25,00 (5,0 0,2) (2.5,2) (5,2) 0,4 52&) (54

(0,0) 1 0.782 0.372 0.782 0.611 0.290 0.372 0.290130
(2.5,0) 0.782 1 0.782 0.611 0.782 0.611 0.290 0.372 0.290

(5,00 0.372 0.782 1 0.290 0.611 0.782 0.137 0.29037D

(0,2) 0.782 0.611 0.290 1 0.782 0372 0.782 0.61129M®
(25,5 0.611 0.782 0.611 0.782 1 0.782 0.611 0.782 0.611
(5,2) 0.290 0.611 0.782 0.372 0.782 1 0.290 0.61178D

(0,4) 0372 0.290 0.137 0.782 0.611 0.290 1 0.782372D
(2.5,4) 0290 0.372 0.290 0.611 0.782 0.611 0.782 1 0.782
(5,4) 0.137 0.290 0.372 0.290 0.611 0.782 0.372 8D.7 1

Table B.2. The Gaussian autocorrelation matrixZCH of the cohesion random field obtained using the Nat

transformation
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(00 (250 (0 (02 252 (62 04 33 64
(0,0) 1 0.779 0368 0.779 0.607 0.287 0.368 0.287.1339
(2.5,0) 0.779 1 0.779 0.607 0.779 0.607 0.287 0.368 0.287
(5,00 0.368 0.779 1 0.287 0.607 0.779 0.135 0.287.368
(0,2 0.779 0.607 0.287 1 0.779 0368 0.779 0.607.280
(25,5 0.607 0.779 0.607 0.779 1 0.779 0.607 0.779 0.607
(5,2) 0.287 0.607 0.779 0.368 0.779 1 0.287 0.607.779D
(0,4) 0.368 0.287 0.135 0.779 0.607 0.287 1 0.779368
(2.5,4) 0.287 0.368 0.287 0.607 0.779 0.607 0.779 1 0.779
(5,4) 0.135 0.287 0.368 0.287 0.607 0.779 0.368 79.7 1

Table B.3. The Gaussian autocorrelation matrifo‘X of the friction angle random field obtained using he

Nataf transformation

Then, for these two Gaussian autocorrelation nesrk;. and =, one needs to computé

largest eigenmoded’, ¢ and Af’,qﬂ]”(wherejzl,..., N) for which the variance of the error is
smaller than a prescribed threshold (say10%). In this illustrative exampleN was found

equal to 4 and thus only 4 eigenmodes were coresider be the most influent and their values
are presented in Table B.4.

A A A A A A A Al
5.323 1.450 1.450 0.393 5.296 1.453 1.453 0.399

X 95 ¢; 9q ¢! 8 4 A
-0.291 0.459 -0.284 0.500 0.291 0.440 -0.312 0.500
-0.348 0.444 0.104  -1.3x16 0.348 0.450 0.076  7.7x16
-0.291 0.284 0.459 -0.500 0.291 0.312 0.440 -0.500
-0.348 0.104 -0.444  4.4x10 0.348 0.076 -0.450 -1.8x1H
-0.417  1.3x18" 3.8x10"" 3.0x10%° 0.417 -3.6x18° 6.5x10® 2.8x10Y
-0.348 -0.104 0.444 3.9x10 0.348 -0.076 0.450 -2.9x16
-0.291  -0.284 -0.459 -0.500 0.291 -0.312 -0.440  500.
-0.348 -0.444 -0.104  -2.3x16 0.348 -0.450 -0.076  2.2x16
-0.291  -0.459 0.284 0.500 0.291 -0.440 0.312 0.500

Table B.4. The eigenvalues and eigenvectork’, ¢f and /]f,(dfof the matrices 2 and Zi;){ for an
expansion orderN=4

1

c) Transform the non-Gaussian cross-correlationrirag N® :[ 05

_2'5} into the Gaussian

space using the Nataf correction functions (cf. &iqun (.20)). The obtained Gaussian cross-
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. o 1 -0.504 . .
correlation matrix is given as followg: :[ . X } Its corresponding eigenvalues vector
. . . . -0.7071 - 0.707
and eigenvectors matrix are given as followS:= 1.504 0 and @ = ,
0.496 0.7071 -0.707

where the eigenvalues correspond the diagonal vabfighe matrix4“ and the eigenvectors
correspond to the columns of the matiX.

d) Simulate the vectar® composed of two cross-correlated blocks given gyaion (.22) as
follows: (KD )T =P (/\D)%ET where° and @° are the matrices obtained by multiplying each
element of the matrices” and®® by a unit matrix of dimensioN=4, and¢ is a two-block vector
of N=4 standard normal random variablés{g‘c =(£l°,£§,f3°,fj) &7 :(Ef &0 & Eﬂ)} . This

simulation of standard normal random variables esfggmed using the (randn) command in
MATLAB 7.0. A single simulation of this vector ai$ corresponding vecta’ are presented in
Table B.5 and evaluated as follows:

1000 100 100 1000 &
0100 010 010 0100 &
-0.707% - 0.707% 1.5 0x 2
0010 001 001 0010 &

0001 000 000 0001
(KD)T: - X XEX
1000 100 1000 100 &
0100 010 0100 010 &
0.707Xk - 0.707% 0x 0.496x .
0010 001 0010 001 &
i 0001 000 1] 0001 000 1] &

¢ & =003 &=055 & =110 & =154 & =149 & =074 & =-106 & =235

K Ky =072 K, =-011 Ky 3=-043 K, ,=-251 K, =077 K,,=085 K,,=148 K,,=0.16

Table B.5. Values of the vector of standard normalandom variables ¢ and the corresponding cross-
correlated vector x°

d) Evaluate the values of the two Gaussian croe®lated random fields andg at any arbitrary

point (sayx=1m, y=1m) which does not belong to the stochastic mgshpplying the formula
given by Equationli(21) as follows:

4 KD-

4 P
c<x=1,y=1>=zﬁ-(ﬂ ., andg(x =1y = 1=Zf ) =,

i=1
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where ZZ(W and Zf(w are the two correlation vectors between the amlyitpoints x=1m,

y=1m) and all the other points of the stochastichm&seir values are the same in this illustrative
example because the same arbitrary powmtif, y=1m) is used for the two random fieldandg
and they are presented in Table B.6.

(0,00 (2,50 (50 0,2) ((252) (52 04 52 (B4

(1,1) 0.9026 0.8586 0.4953 0.9026 0.8586 0.4953 475 0.5207 0.3004

Table B.6. Values of the correlation vectors® and X* between the arbitrary point (x=1m, y=1m)
Z(X)x Z(X)x

and all the points of the stochastic mesh

Finally the transformation to the non-Gaussian spac performed using the non-Gaussian
distribution function of each random field (cf. Edion (.23)).
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Appendix C.

Determination of the stochastic model parameters

The used stochastic model is a parameterized miedilaltered white-noise process for which
the parameters are calculated by fitting this mdadethe real recorded target acceleration time
historya(t).

The time modulation functiom (a, t ) and its parametersr = (a,, a,, a,)

The time modulation function given by Equatid2¢) is completely defined by three parameters
a =(a,, a,, a;)which are related to three physically-based parersefi ., D, o, t,)- The
three physical paramete($,, D, .., t,,) are calculated from the real target acceleratioe-t

historeya(t) as follows:

_ —iT 2
|a_Zg J;[a(t)] dt (C.1)

whereg is the acceleration due to gravity ahds the duration of the ground-motion. On the
other handjmiq is the time at the middle of the strong shaking;arresponds to the time for
which 45% of the total, is reached. Finally, £ys is the effective duration of the target GM; it
corresponds to the duration that ranges betweera®&95% ofl,. Figure C.1 presents the

identification of these physical parameters fortdrget acceleration time history.

For the selected modulation function given by Edueti.26), Rezaeien and Der Kiureghian

(2010) stated that the square value of this funcfie. q° (a, t )) is proportional to a gamma

probability density function (PDF) having parametalues2a, -1 and 2a, . Lett, represent the

p-percentile variate of the gamma cumulative dstibn function. Thenty, is given in terms of
the inverse of the gamma cumulative distributionction at probability valug%. It follows that

t, is uniquely given in terms of the parametetsand a,and probabilityp%. Consequently, one

can write:
. 1 , 1
D, g5 =tgs—t .=Gaminv(0.95,2a, -1, — ) — Gaminv(0.052a, -1, —) (C.2)
2a, 2a,
t.q =t,s=Gaminv(0.452a, -1, %) (C.3)

3
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For given values dDs-9sandtmid computed from the target acceleration time-histpgrameters

a, and a, can be computed by solving the above two equatibnghermore, one can easily
show thata,is directly related to the expected Arias intensig/ follows [Rezaeian and Der

Kiureghian (2010)]:

T, (20, co

whereT (.) is the gamma function.

O 1 T T
=11

01 , |

I,

095 —
S04,
B /

0.0, | . .

0 5 10 15 20 25 30
Time. s
D o5

Figure C.1. Modulation function physical parametersidentified from the target acceleration time-histay a(t)

The Linear filterh [t=t,, & (t,), {; ()] and its parametersy (t,), ¢; ;)

The linear filter function given by Equation.47) is completely defined by two parameters
aw (r) and ¢, (1) with @ (7) denoting the natural frequency agd(r) denoting the damping

ratio, both dependent on the time of applicatiorthaf pulse. Based on the analysis of a large
number of accelerograms, a linear form is adopbedhfe filter frequency and a constant value is

considered for the filter damping ratio as follows:

@ (T) = Wy +aj(r_tmid) (C.5)
7 6)=4, )

where @, , is the frequency at the middle of the strong shgkin is the rate of change of the

frequency over time (i.e. the slope) dpd is the time at the middle of the strong shaking.
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The parametersy,,, @ and ¢, have interacting influences. Thus, they cannofdeatified
independently for a target (real) accelerogra(t). Therefore, we follow a procedure that first
optimizes the frequency parametens,, and w by matching the cumulative count of zero-level

up-crossings of the simulated and target motioride that the zero-level up-crossings are

number of times per unit time that the processsa®ghe level zero from below [see Figure
C.2]). Then use these optimum frequency parametgrs and w with a series of constant

damping ratio (i.e.{; =0.1, 0.2, ..., 0.) and select the optimum damping ratio for which th
cumulative count of positive minima and negativeximea of the simulated and target motions fit
the most.

For a target acceleration time-histaaft), the cumulative count of zero-level up-crossings

fitted by a second degree polynomigh £ px*+ p,x+ p) as shown in Figure C.3(a). The

frequency parameters),,, and w are deduced from the fitted polynomial as follows:

Wig = 2P, (L) + P, and w = 2p, (C.7)
After determining the frequency parametess, and w, we generate filtered processes using
the frequency parametergy, and w with a series of constant damping ratio (i.e.
¢, =0.1,0.2, ..., 0.) and see for which value of the damping ratio thenulative count of

positive minima and negative maxima of the simulated target motions fit the most [see Figure
C.3(b)]. One can see from Figure C.3(b) that thgetacumulative count of positive minima and

negative maxima fits the simulated one &r=0.4.

positive
Mmininum

time

inegative
maximum

[0 Indicates zero-level up-crossings. ‘

Figure C.2. Sample stochastic process, showing zdevel up-crossings, positive minima, and negative
maxima.
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Figure C.3. Identification of filter parameters, (8) matching the cumulative number of zero level uptossings
(b) matching the cumulative count of negative maxim and positive minima
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Appendix D.

Pseudo-acceleration response of a single degreereiedom linear oscillator subjected to an

impulsive solicitation

A single degree of freedom (SDOF) system is a ggmiass-damper system in which the spring
has no damping or mass, the mass has no stiffne@sping, and the damper has no stiffness or
mass. Furthermore, the mass is allowed to movenly one direction (cf. Figure D.1). The

SDOF system may be subjected or not to an extémailvarying forcef(t).

k

m |— f{(t)

. I—:a u(t)

Figure D.1. Single degree of freedom linear osciliar

The general form of the differential equation désog a SDOF oscillator which results from

balancing the forces on the mass is given by:

d?u du
+c —+ku=f(t D.1
dt? dt M (-1

whereu is the displacement of the systel,is the mass of the system|js the linear viscous

M

damping coefficientk is the linear elastic stiffness coefficient €l is a time-varying external
force. By dividing all the terms of Equation (D.y M, one obtains the reduced form of this

equation as follows:
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d?u du f (1)
+28w —+awu=—2 D.2
dt? d dt M (D-2)

where w=,/k/M is the natural frequency of the oscillatdf,= 2VkM is the critical damping
of the oscillator andf =C/2\/k|V| is its damping ratio.
If the SDOF oscillator is subjected to an impulsfaesingle pulse suddenly applied at an instant

t =1) external forcef (t) =d(t —7), the response of the SDOF oscillatdt) = h(t—7) may be

obtained by solving Equation (D.2) (cf. Figure D.2)

Implusive external force SDOF oscillator response
| T d(r—1) | (\ h(t—7)
| SDOF | /\V,\v
T f oscillator | T v i

Figure D.2. Impulsive external force and SDOF osddtor response

The solution of Equation (D.2) in the case of apusive external force is given as follows:

Fort <r u=0

1 falt-1)
Fort > )= h(t-1)=— %D sin@wJ1- &2 (t- (D.3)
ort>r ut)=h(t-17) - T—fz e sin( & (t-1))

The pseudo-acceleration respog® of the SDOF linear oscillator subjected to an uispve

external force is simply the respong8® multiplied by the squared natural frequency aleves:

A(t) = u(t) =———— e 1- &2 (t-
(t) = awru(t) T € sin(wy1-¢° (t-1)) (D.4)
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Appendix E.

One-dimensional Hermite polynomials

The one-dimensional Hermite polynomials are givgn b

Ho($) =1

H.($)=¢

Hz(f)zfz_l
Hg(f):fs—?f

H, (&) =& -662+3
Hs(f):€5_10§t3+15’;
Ho(&) = £ 148" + 452~ 15

H, (&) =¢H (&) -H .. (¢)
lllustrative Example

In order to illustrate the PCE theory in a simplanmer, a PCE of ordg=3 using onlyM=2

random variablesi( and¢,) will be considered in this illustrative examphes may be easily seen

from Table E.1, the PCE basis contalPs10 terms whose expressiohBﬁ(,B:O,...,g are

computed using Equatioh38).

M M
Order of the tern¥ W, =[Ha (&) E(w2)=[a!
p=0 ) =Ho(§1)XHo(fz):1 a1! X ao!=01x0!1=1

?) =Ha(E)XHo(&)=E a1l X apl=11x0!=1

V5 =Ho(&1) xHi(&)= & ai! X ax!=0Ix1!=1

P3=Hi(l1) xHi(&)= &1 & anl Xapl=11x11=1

p=2 Vo =H2(&1) XHo(&2)= &-1 ay! X ap!=21X0!=2
Vs =Ho(é&1) XHa(&)= -1 ay! X apl=01x21=2
Vo =Ho(C) XHi(&)= (£2-1)¢,  ou! X apl=2!x11=2
V7 =H1(C1) XHa(C2)= & (&2-1)  ou! X apl=11x2!=2
Vs =H3(¢1) XHo($2)= &-3¢6,  ay! X ap!=3!x0!=6
Yo =Ho(¢1) XHa(&2)= £-35,  ay! X ap!=0!x3!=6

p=1

© 0 N ool M WIN P Ol ™

Table E.1. Basis¥F; (B=0, ..., 9) of the PCE and values of (l-IJf;) for a PCE with M=2 andp=3
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By using Table E.1, one can write the PCE as fonatif the input random variable§ @nd¢é,)

as follows:

Mece() =aWota +..+ ¥ o=

aradtaf,t aff o B e alf e o465 [ Jr af s Ty afz 8 D

where the unknown coefficients can be computed gudtguation K41). Once the PCE
coefficients are computed, the first order Sobdidas for the two random variables and¢,)

can be easily obtained using Equatid47). The only additional step is to compuE(Lp;)
corresponding to these two random variables. TRbleprovides the values cB‘(LIJ;) computed
using Equationl(49) for the different¥ ; terms. The expressions of the first order Sobdicies

of the two random variabl€s and¢&, can thus be written as follows:

o + 207 + 68
o ra2d +od+ 24+ 24+ 64+ 63

S(4) =

(E.2)
. o + 200 + 62
)= v aroq 2@+ 24+ 28+ 63+ 63

wherel, =(1,4,9 andl,=(2,5,9).
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Appendix F.

Introduction

The seismic stability of slopes is widely investeghin literature using deterministic approaches.
However, the material properties of soils are kndwrvary greatly from point to another, and
many of these older pen and paper methods havéculliff to successfully model this
heterogeneity. Things are more complicated wherirdeavith dynamic loading situations. In
this paper, the effect of both the soil spatialafaitity and the time variability of Ground-Motion
(GM) on the dynamic responses of a simple slopestudied. Few authors have worked on the
analysis of the dynamic horizontal soil behavianggprobabilistic approaches where the spatial
variability of soil properties and the time varil#lgi of seismic excitations were considered
[Koutsourelakis et al (2002), Popescu et al (2006), In these works, three main deficiencies
can be detected: First, the classical Monte Camouttion (MCS) methodology with a small
number of realizations is used to determine théagdodity density function (PDF) of the system
responses (e.g. 50 simulations). It is well knote in order to be a rigorous approach, MCS is
very time-expensive. Second, the stochastic moalelgénerating synthetic acceleration time-
histories is based on the spectral representatioorder to simulate accelerograms which are
compatible with a prescribed response spectrummahdeal GM acceleration. Finally, the spatial

variability of soil properties is studied for speciautocorrelation distances.

In this study, the three mentioned deficiencied i improved by (i) using a more efficient
probabilistic approach instead of the crude MCS cWhis the Sparse Polynomial Chaos
Expansion (SPCE) [Blatman and Sudret (2010), AlaBiand Soubra (2011)]; (ii) simulating the
stochastic accelerogram using the method given dga8an and Der Kiureghian (2010). This
method has the advantage of solving the majorityprmblems encountered in the previous
models [Rezaeian and Der Kiureghian (2008)]; Gonsidering a large range of autocorrelation
distances for the soil shear modulus G modelechasadropic non-Gaussian random field. The
Expansion Optimal Linear Estimation (EOLE) methadyl proposed by Li and Der Kiureghian

(1993) is used to generate this random field.

The deterministic model is based on numerical simhs using the dynamic option of the finite
difference code FLA®. Samples of the synthetic GM time-histories weemegated and a
dynamic stochastic calculation for each realizatwas performed to compute the dynamic

responses (i.e. the permanent displacement ab¢hef the slope and the maximum amplification
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of the acceleration at the top of the slope). Thpep is organized as follows: The first three
sections aim at presenting (i) the method useceteigate the random field of the shear modulus
G, (i) the method used to generate the stochagtithstic accelerograms based on a real target
one and finally (iii) the SPCE methodology employeddetermine the analytical expression of
the dynamic system responses. These sections|enedd by a presentation of the probabilistic
numerical results in which only the soil spatiatiahility is first considered and then combined
with the time variability of the GM in order to Hitight its effect on the variability of the

dynamic responses.

Generation of non-Gaussian random field

Let's consider the non-Gaussian random fi@d®(x, y)(where G represents the soil shear

modulus) described by: (i) constant meag and standard deviatiosg, (i) non-Gaussian

marginal cumulative distribution functiokg, and (iii) a square exponential autocorrelation
function p)°[(x, y), (X, ¥)] which gives the values of theroelation function between two

arbitrary pointgx, y)and(x', y'). This autocorrelation function is given as follows

PCIx, ), (X y ')]:exp{—(xfTX'J —(%J J (F.1)

wherea, anday, are the autocorrelation distances alor@ndy respectively. The EOLE method
proposed by Li and Der Kiureghian (1993) is userkineto generate the random field @f In
this method, one should first define a stochastid gomposed ofg grid points (or nodes)

obtained from the different combination Bf points in thex (or horizontal) direction, an®
points in they (or vertical) direction assembled is a ve@;r{ Q, =(x,, yv)} whereh=1, ..., H,
v=1, ..., Vandn=l, ..., q Notice that for the vector Q composed of g elesethe values of the

field are assembled in a vectgr={ x, =Z(x,, y,)} whereh=1, ..., H, v=1, ..., \andn=1, ...,

g. Then, one should determine the correlation mafoix which each elemen‘ she ) s
1]

XiX

calculated using Equation (F.1) as follows:

ZNG - NG ) )
( Xix )i,j 'Oz I:Q' Ql ] (F.Z)
wherei=1, ..., gandj=1, ..., g Notice that the matrixzjf in equation (F.2) provides the

correlation between each point in the vegtand all the other points of the same vector. The

non-Gaussian autocorrelation matﬁ%‘;3 should be transformed into the Gaussian space usin
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the Nataf transformation. As a result, one obtaiaussian autocorrelation matig., that can

be used to discretize the random field of the shemdulus G as follows:

Z (X y)_%-'-O-GZ\/f 401 Z(x,y)x (FB)

where (1;,¢ ) are the eigenvalues and eigenvectors of the @auastocorrelation matrnZ”,

> Is the correlation vector between each point exwctory and the value of the field at

Z(x,y)x

an arbitrary point (X, y)¢, is a standard normal random variable, &his the number of terms
(expansion order) retained in EOLE method.

Once the Gaussian random field is obtained, it khbe transformed into the non-Gaussian
space by applying the following formula:

e x, ) =R o[ Zox v} (F.4)

where @(.) is the standard normal cumulative density function

It should be mentioned here that the presentedadethn be applied for both Gaussian and non-
Gaussian random fields. Since non-negative valuest he obtained fo5, a non-Gaussian

(lognormal) random field was used in this paper.
Generation of stochastic Ground Motion accelerogras

In this paper, the method proposed by RezaeiarDan&Kiureghian (2010) was used to generate
stochastic acceleration time histories from a taageelerogram. This method consists in fitting a
parameterized stochastic model that is based omdulaied, filtered white-noise process to a

recorded ground motion. The parameterized stochasidel in its continuous form is defined as:

1() j h[t-7, A(r)] w(r)dr (F.5)

In this expressiong(t, @) is a deterministic, positive, time-modulating ftinono with parameters

x(t)=q(t, a)

a controlling its shape and intensity;(7) is a white-noise process; the integral insidectiveed
brackets is a filtered white-noise process V\ﬂtrﬁt—r, A(r)]denoting the Impulse-Response

Function (IRF) of the filter with time-varying paraters A(r); and

t
oi(t) = j h[t-7r, A(r)]dr is variance of the integral process. Because ohtiimalization by

o, (t), the process inside the curved brackets has anince. As a resulg(t, a) equals the
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standard deviation of the resulting procg@3. It should be clear that the modulating funatio

q(t, a)completely defines the temporal characteristicsheffrocess, whereas the form of the

filter IRF and its time-varying parameters definegpectral characteristics of the process. In this

study, a ‘Gamma’ modulating function is used:

qt, a)=at®™ expCayt) (F.6)
wherea =(a,, a,, a,), a,, a,>0, anda, >1. Of the three parametets, controls the intensity
of the processy, controls the shape of the modulating function @ncbntrols the duration of the

motion. These parameters =(a,, a,, a,)are related to three physically based parameters

(I, Dy s tig) Which describe the real recorded GM in the timmaim; wherel _, is the Arias

Intensity (Al), Ds-g5 represents the effective duration of the motidnsldefined as the time
interval between the instants at which the 5% abéo f the expected Als are reached
respectivelytmiq is the time at the middle of the strong-shakinggeh It is selected as the time at

which 45% level of the expected Al is reached. Taktions betweera =(a,, a,, a,;)and
(I, Doosr t,,q) @re given in details in Rezaeian and Der Kiuregl2@10).

For the filter IRF, we select a form that corresmoial the pseudo-acceleration response of a

single-degree-of-freedom linear oscillator:

@ (1)

ﬁexp[_& (T)a),(T)Q—T)]xsin[a), (‘m)(—rﬂ t<r

=0 otherwise

h[t-7,A()]= F.7)

where A(7) =(a (7), {; (1)) is the set of time-varying parameters of the IREhwa (7)
denoting the frequency of the filter agd(r) denoting its damping ratio. These two parameters,
@ (r)and ¢, (r) are related to two physical parameters that desdtie recorded GM in the

frequency domain and which are respectively thelgrenant frequency and the bandwidth of
the GM. For more details about the identificationgedure between the recorded GM and the
stochastic model described previously, the readay refer to Rezaeian and Der Kiureghian
(2008, 2010).

Sparse Polynomial Chaos Expansion (SPCE) methodolpg

The polynomial chaos expansion (PCE) methodologsait replacing a complex deterministic

model whose input parameters are modeled by randorables by a meta-model which allows
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one to calculate the system response using an dpm@ate analytical equation [Blatman and

Sudret (2010)]. The coefficients of the PCE are poted herein using a regression approach.

For a deterministic numerical model withinput uncertain parameters, the uncertain parasete

should be represented first by independent stantardal random variable[s.;ﬁ } gathered

i=1,..M
in a random vectof. The random respongeof our mechanical model can then be expressed by

a PCE of order p fixed by the user as follows:

© P-1
Moce (6) =D a,W,(6) O a,W ,(é) (F.8)
B=0 B=0
whereP is the number of terms retained in the truncasoheme,as are the unknown PCE

coefficients to be computed andl, are multivariate (or multidimensional) Hermite yrmbmials

which are orthogonal with respect to the joint @oibty distribution function of the standard

M
normal random vectof. These multivariate polynomials are given W:”Ha (), where

H, () is theai-th one-dimensional Hermite polynomial amcare a sequence of M non-negative

integers{al,...,aM}. In practice, one should truncate the PCE reptaten by retaining only

the multivariate polynomials of degree less tharaqual to the PCE ordex. For this reason, a

classical truncation scheme based on the detenomnaif the first order norm is generally

M
adopted in the literature. This first order norndéfined as follows{a|, => a; . The classical
i=1

truncation scheme suggests that the first ordenrsbrould be less than or equal to the opdefr
the PCE. Using this method of truncation, the nun®ef the unknown PCE coefficients is

given byp - (M_+p)!' Thus, the numbeP of the PCE coefficients increases dramaticalljnwit
M Ip!

the numbeM of the random variables and the orgesf the PCE. To overcome such a problem,
it was shown that the number of significant termsai PCE is relatively small since the

multidimensional polynomial$¥ , corresponding to high-order interaction are assediavith
very small values for the coefficienés. Thus, a truncation strategy based on this obBerva
was developed in which the multidimensional polyram ¥, corresponding to high-order

interaction were penalized. This was performed doys@ering the hyperbolic truncation scheme

that considers the g-norm instead of the first orad®rm. The g-norm is given by

|, = (i a0 j% whereq is a coefficient (0g<1). The hyperbolic truncation scheme suggests
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that the g-norm should be less than or equal to diter p of the PCE. The proposed
methodology leads to a SPCE that contains a smaaiber of unknown coefficients which can be
calculated from a reduced number of calls of therd@nistic model. This is of particular interest
in the present case of random fields which inval\sgnificant number of random variables. This
strategy will be used in this paper to build upRCE& of the system response using an iterative
procedure [Blatman and Sudret (2010)]. Once thenawk coefficients of the SPCE are
determined, the PDF of the dynamic responses castbaated using Monte Carlo technique.

Numerical results

The aim of this section is to present the probstigliresults. It should be remembered here that
the dynamic system responses involves the permaligriacement at the toe and the maximum
amplification of the acceleration at the top of ghepe. In this study, the effect of both the soill

spatial variability and the time variability of Gnod-Motion (GM) on the dynamic responses are
considered. The soil shear modulaiss considered as an isotropic lognormal randorhd.fiehe

mean and the coefficient of variation®fare respectively,, = 112MPa andCov; =40%. In

order to simulate the stochastic synthetic timéohiss, the Kocaeli (Turkey 1999) earthquake is
used as the target accelerogram (see Figure Fhg)déterministic model is based on numerical
simulations using the dynamic option of the findi€erence code FLA&. The slope geometry
considered in the analysis is 10m in height arftid#nclination angle (see Figure F.2). It should
be noted that the size of a given element in thehnaepends on both the autocorrelation
distances of the soil properties and the wavelergtssociated with the highest frequency
componentfyax Of the input signal. For the autocorrelation dises of the soil properties, Der
Kiureghian and Ke (1988) have suggested that thgtheof the smallest element in a given
direction (horizontal or vertical) should not exdeé5 times the autocorrelation distance in that
same direction. As for the wavelendtlassociated with the highest frequency compoherDf

the input signal, Itasca (2000) has suggestedthigasmallest element should not exceed 1/10 to
1/8 this wavelength in order to avoid numerical distortion of the prgpang waves. Respecting
these two conditions, a size element of 2m waserhts perform the dynamic analysis. For the
boundary conditions, the bottom horizontal boundeag subjected to an earthquake acceleration
signal and free field boundaries were applied te tight and left vertical boundaries. The
numerical simulations are performed using an ehdastic model based on the Mohr-Coulomb
failure criterion. The corresponding model paramsetee the shear modul@which is modeled

as a random field, the bulk modulKs the cohesiom, the friction angeb, the dilation angey,
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and the soil unit weight which are considered derdanistic. The values of these deterministic

parameters are as follow$=133VIPa, c=10kPa, ¢p=3CF,  =2(, andy =18N/nr.

: Wm 2=30m X
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Figure F.1. Kocaeli (Turkey 1999)

Figure F.2. The slope geometry and FLA mesh
accelerogram

In the following sections, one examines the effecthe soil spatial variability on both the
amplification at the top and the permanent dispteard at the toe of the slope using deterministic

and stochastic GM accelerograms.

Effect of the soil spatial variability on the anfgation at the top of the slope using deterministi

and stochastic GM accelerograms

The effect of the soil spatial variability on thenglification at the top of the slope using
deterministic and stochastic GM accelerogramsudistl and presented in Figures F.3, F.4 and
Table F.1. Different values of the isotropic autwetation distance&=0.5, 1, 2, 3, 5) were
considered in the analyses. Notice that in theettirstudy, the autocorrelation distance has been
nondimensionalized by dividing it by the heighttbé slope. Figures F.3 and F.4 show that the
PDF is less spread out when the isotropic autoledioa distance) decreases. The variability of
the amplification at the top of the slope decreaséls the increase in the soil heterogeneity (i.e.
small values ob). This can be explained by the fact that the tlatibns of the shear modulus are
averaged to a mean value along the seismic wawtts gropagation. This mean is close to the
probabilistic mean value of the random figBl This leads to close values of the responses
amplification and thus to a smaller variability tims response. Notice however that adding the
randomness of the earthquake GM has a significaotdence on the variability of the
amplification. Table F.1 shows that for the rangehe autocorrelation distances considered in
this study, the coefficient of variaticDOV of the amplification is between 2.78% and 10.91%
when deterministic GM accelerogram is used. Thigyeaof COV increases significantly when
the randomness of the earthquake GM is introduicethis case, th€OV of the amplification
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have values between 4.23% and 31.78%. One canenthtat for the largest autocorrelation
distanced=5, the variability of the amplification in the eawhere stochastic GM accelerograms

were used is 2.9 time larger than the one obtam#dthe deterministic GM accelerogram.

1.5 : 1.5 -
—0=0.5 —0=0.5
-—-0=1 |
1t =
5 o | B
A s A~
0.5 — 05 0.5
% 2 g 6 Y2 4 6 3
Amplification at the top of the slope Amplification at the top of the slope

Figure F.3. Amplification at the top of the slope Figure F.4. Amplification at the top of the
with deterministic GM slope with stochastic GM

Table F.1 also showthat the autocorrelation distan@ehas practically no effect on the mean
value of the amplification. This mean value is shot be larger than the corresponding
deterministic value. This means that the probdhlisesults are much more critical than the
deterministic value with a difference of 5% in ttesse where deterministic GM accelerogram is

is used, and 29% in the case where stochastic GBlexograms are used.

Mean inisti
4 x 102 (m) deSvtiaart]iCc')irg COV(%) gﬁtﬁmgféf
05 26 0.073 2784
1 26 0.114 4.364
DeteéT/:”'St'C 2 2.6 0.135 5.176 2.48
3 26 0.166 6.362
5 26 0.285 10.915
Mean inisti
4 x 10% (m) deSvtiaart]iCc')irg COV(%) gﬁtﬁmgféf
0.5 3.2 0.138 4.237
1 3.2 0.301 9.301
Stog,\‘/las“c 2 3.2 0.472 14.610 2.48
3 3.2 0.567 17.565
5 3.2 1.030 31.780

Table F.1. Effect of the autocorrelation distanc® on the statistical momentsy, ¢) of the amplification
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Effect of the soil spatial variability on the perm@at displacement at the toe of the slope using

deterministic and stochastic GM accelerograms

The effect of the soil spatial variability on thermanent displacement at the toe of the slope
using deterministic and stochastic GM accelerogrisnssudied and presented in Figures F.5, F.6
and Table F.2. The same values of the isotropiocautelation distanc@ used in the previous
section are also used herein. Figures F.5 andhew that the PDFs are very close to each other
and thus the shear modulus variability has a smfilience on the permanent displacement. This
is because the permanent displacement appearswiry the plastic phase is reached which
means that the effect of the shear moduBusn this response is relatively small. Table F.2
confirms this observation because very small vabfethe COV of the permanent displacement
are obtained when only the spatial variabilityGfs considered. On the other hand, one can see
that introducing the randomness of the earthquaké @nsiderably affects the permanent
displacement. High values of iV are detected because of the important increageeimean

value of the permanent displacement due to thabiity of the GM.

20 . 4 ‘
—0-0.5 —0=0.5
15} o=l —0-1
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2 ol ; \ ......... 0=3 03
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5t
| . I 0
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Permanent displacement at the toe of the slope ~ Permanent displacement at the toe of the slope

Figure F.5. Permanent displacement at the toe of Figure F.6. Permanent displacement at the toe
the slope with deterministic GM of the slope with stochastic GM

Table F.2 also shows that the mean value of thengeent displacement presents a maximum.
This maximum was detected whén2, i.e. when the isotropic autocorrelation diseargequal

to the height of the soil domain. Wheérdecreases from 5 to 2, one can notice that thex roka
the permanent displacement increases. This caxglaiged by the fact that increasing the soil
heterogeneity introduces weak zones with smalleslof the shear modul@, thus leading to
larger values of the permanent displacement. Tloeedse in the permanent displacement for
values of@ smaller than 2 may be explained by the fact tlsath@® autocorrelation distance

decreases, the propagating wave can face some zstifés which reduce the permanent
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displacement. Finally, on can notice also thatouhticing the soil spatial variability and the
randomness of GM lead to more critical results esiall the mean values of the permanent
displacement obtained in the probabilistic study larger than the corresponding deterministic

value.

Mean Standard COV  Deterministic permanent
ux 10% (m) deviationo (%) displacement
0.5 8.20 0.0005 0.610
o 8.62 0.0014 1.624
petermnisic 8.84 0.0020  2.262 0.0407
3 8.75 0.0021 2.400
5 8.55 0.0025 2.924
Mean Standard COV  Deterministic permanent
ux 102 (m) deviationo (%) displacement
0.5 26.20 0.0596 22.75
_ 1 26.46 0.1248 47.16
Stocnastic 3 2740 0.1267  46.24 0.0407
3 27.17 0.1359 50.02
5 25.57 0.2793 109.23

Table F.2. Effect of the autocorrelation distanc@ on the statistical momentsg, o) of the permanent
displacement

Conclusions

The effect of both the soil spatial variability atid Ground-Motion (GM) time variability on the
dynamic responses is studied. The soil shear medalus considered as an isotropic non-
Gaussian random field. The simulation of variabteederation time histories based on a real
target accelerogram is done using a fully nongtatip stochastic model. The deterministic model
was based on numerical simulations using the dymasption of the finite difference code
FLAC®P. The methodology adopted in this paper makes figenon-intrusive approach to build
up a sparse polynomial chaos expansion (SPCE)htdynamic system responses. The main
conclusions can be summarized as follows: (i) tberease in the autocorrelation distanc&of
(i.,e. the soil heterogeneity) leads to a small alality of the dynamic responses; the
amplification being more affected; (ii)) adding thendomness of the earthquake GM has a
significant incidence on the variability of the aynic responses; (ii) the isotropic
autocorrelation distance affects the probabilistiean values of plastic responses (eg. the

permanent displacement); its effect being neglegdol elastic responses (eg. the amplification).
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Appendix G.

The purpose of this Appendix is to check if thegiole reason for which relatively small values
of Q°> were obtained (when the SPCE methodology was expjiti chapter V) is linked to the
chosen system response (Pgway. Notice that the test was performed using thiifaa' model

and the reference case where = 72MPa anda,=2m.

The test consists in constructing the SPCE not forly,.x at the top of the soil column but for

all the accelerations at the top of the soil coluahthe different time steps (the valuefaf,x can

be deduced from the different SPCEs constructégeadifferent time steps). This test allows one
to detect if the fact of considering directyax as a system response is the reason for which the

relatively small values dd* were obtained.

Notice that a seismic loading of total duratibnl5s and time steplt=0.0% was considered in
the analysis. Thus, it is composed of 301 regisinapoints (or acceleration values). The
construction of the SPCE 301 times is a difficatk. Blatman and Sudret (2011) have suggested
an efficient and fast alternative approach. To iobtae SPCEs for all the accelerations at the
different time steps, Blatman and Sudret (2011ehaoposed the use of the so-caltemhcipal
component analysiPCA). The aim is to capture the main stochastatuiee of the response
using a small number of (non physical) variablesygared to the original number of variables
(i.,e. 301 in the present analysis). This enormoushjuces the computational cost since the
SPCEs are no longer evaluated for all the accedesatt the different time steps, but on a small
number of non physical variables. In the next sectione presents the so-callpdncipal

component analysi®CA). It is followed by the obtained numericaluks.

Principal component analysis (PCA)

Consider an experimental design (EC{¢™ =(¢,...,&,),...£"" =(¢,..4,)} and the
corresponding set of model evaluatior={r(5(”),...,r({(’<))} where K is the number of

realizations. Notice here that each elenr(f(”) is a vector composed qf elements wher®

is the number of response components. In our cdsgewthe acceleration at the top of the
column at different time steps is consider®¢301 which is the number of registration points.
Thus, I is a matrix composed df rows andQ columns. In order to perform the principal

components analysis, the following steps must Insidered:
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* For each column in matril’, one needs to compute the mean value and tharbtmast

this mean value from each element in this samenwolrhis provide a new matrix.

. Compute the covariance matrix as folloC. = 'XI" T

Compute the eigenvalues and eigenvectorsC.. by solving the matrix system
C.V =VD whereV is a matrix whose columns are the eigenvectorsDaisda diagonal

matrix whose entries are the eigenvaltA,, ...,A. ).

e Sort the eigenvalues and the corresponding eigémgein a descending order and retain
only theK' largest eigenvalues. Notice that the valu&'omay be selected such that the

K" K
relative PCA induced error given |€pca :1_2/1; Z/L is less than a prescribed
i=1 i=1

value (say&pc, < 5%). Notice thaV . of dimensionsQ, K'] is a matrix whose columns

are the eigenvectors of thé largest eigenvalues.

« Compute the transformed and reduced response n{agdbed PCA matrix) as follows:

Yo =T"V,.
whereY . is a matrix composed &f rows andK' columns.

Notice that obtaining the orginal model from the/P@atrix Y . is straighforwad. This can be

performed by applying the following equatiol "=V, Y.. Thus, characterizing the model
responsd™ or I' can be achieved indirectly by identifying a funo@l relationship between the

input random vectaf and the PCA output matrY ..

Numerical results

In this section, one presents the numerical reslitained using the PCA which was previously
presented. The aim is to capture the main stochiestture of the response using a small number
of (non physical) variables compared to the origmanber of variables (i.e. 301 in the present
analysis). This enormously reduces the computdtiooat since the SPCEs are no longer
evaluated for all the accelerations at the differitme steps, but on a small number of non
physical variables. The SPCEs computed for the piysical variables are then used to deduce

the SPCEs for all the accelerations at the diffietiere steps.
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In the present work, the original matir is composed oK=500 rows (corresponding to 500
realisations of the input random vecf)randQ=301 columns (corresponding to 301 registration
points of the acceleration). This original matrixasvthen used to deduce the mairix(as
presented in the previous section) which will bedu perform the PCA. The PCA has lead to a

reduced numbeK'=5 of most influent eigenmodes for the prescribedreof £,., =5%. This

means that for the 301 registration points, ontg fsPCEs must be evaluated in order to estimate
the SPCEs of the 301 registration points. The SRE@Eodology was applied on the five most
influent eigenmodes, and the deduced SPCEs ofQhe&}istration points were computed (not
presented herein). Notice that the valueQbfobtained for the five most influent eigenmodes
(when using the 500 MC simulations) were respelsti@e5, 0.6, 0.2, 0.2 and 0.2.

Table G.1 presents the first two statistical momexst obtained from the direct determination of
the SPCEs at three different arbitrary timigsZ4.5s, t,=5s andt;=10s). In the same table, one also
presents the first two statistical moments as obthirom the SPCEs deduced after performing a
PCA on the output matriX. This table shows that the presented results usi@g?CA are in
good agreement with those obtained form the didetermination of the SPCE at the three
chosen times. Even though satisfactory resultshiffist two statistical moments were obtained,
unsatisfactory values @* were obtained when using either the PCA or thectlidetermination

of the SPCE. Thus, for such types of problems, w&eds to find more advanced stochastic

models in order to obtain more rigorous meta-mofitelshe highly non-linear problems.

Determination of the SPCEs

Direct determination of the SPCEs using the PCA

Uy (mid) g, (mis) Q? U, (M/S) o, (m/S)
4=2.5 0 0.80 0.66 -0.05 0.71
t,=5s -1.58 3.33 0.81 -1.52 3.82
t:=10s 0.9 2.67 0.69 0.87 2.90

Table G.1. Values of the first two statistical momets and the coefficient of determinatiornQ?
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Appendix H.

Mathematical description of the macro-element

The purpose of this Appendix is to describe a thigcal model based on strain hardening
plasticity theory which is capable of describing thehavior of a shallow footing when it is
subjected to all possible combinations of vertidadrizontal and moment loading using the

macro-element.

In the framework of the macro-element theory, aradlor deformation path can be applied to the

footing and the corresponding unknowns (deformatimnloads) can be calculated.

The foundation is assumed to be rigid and the nealities of the soil and interface are assumed
to be condensed in a representative point whitheigooting centre. Within that framework, it is
suggested to work with generalized (global) vagabl(i) the force resultants, i.e. the vertical
force V, the horizontal force#y, Hy, and the momentdl,, My and (ii) the corresponding
displacements; i.e. the vertical displacemantthe horizontal displacements anduy, and the
rotationséy andéy,. The torque moment\,) and the corresponding displacement are not taken

into account in the present analysis.

The three-dimensional SSI macro-element takesaotount three different mechanisms: the soil
elasticity, the possible soil plasticity and thesgble uplift of the foundation. The total
displacement can thus be considered as a sum ed tomponents related to the elastic and
plastic behavior of the soil and the uplift behavad the foundation. These three different
mechanisms and their mathematical development stensvely presented in Crémer et al.
(2002), Grange et al. (2009a) and Grange et al92Dand are briefly described herein.

Elastic behaviour
The elastic constitutive model can be written aLE :Ke'(U—Up') where

U:(U'Z u, ', u, G'X) and lf:(V' H, M, H M'X) are the vectors that

represent the dimensionless generalized displadsnaenl forces and® is the elastic stiffness
matrix [Grange et al. (2009a)].

Plastic behaviour - failure criterion and loadingr$ace
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The loading surface used was initially developedCrémer et al. (2001) to describe the
behaviour of a 2D shallow foundation. The extensibthis loading surface to cover the case of a

3D shallow foundation is a five-dimensional surfatés given as follows:

- _ H' a 2 My p |
t.(F.7,0,))= Y o " p
(F.T,p,y) [,oaV'C(y—V') p} +[pbv-e(y—V') P]

2 2
+ H Y 5 —é + M |X - /i -1=0
pav*e(y-v') p pbve(y-Vv) P

The coefficientsaa andb define the size of the surface in the pladeN'), and the coefficients,

(H.1)

d, e andf define the parabolic shape of the surface in thegs ¥'-M") and {'-H’). Theses

parameters can be obtained by fitting this equabaine experimental results. On the other hand,

the vectorf:(a,ﬂ,é,q) Is the kinematics hardening vector. It is composéd kinematics

hardening variables angb is the isotropic hardening variable. The variaplées chosen to

parameterize the second intersection point ofahdihg surface with the' axis and its evolution
in theV' axis (the other point is the origin of the spaddje evolution of the hardening variables
is obtained by considering experimental resultsmnterical simulations [Crémer et al. (2001)].
Notice finally that the failure criterion is givenby Equation (H.1) with

(a.8,0.n.p.y)=(0,0,0,0,1)1.
Uplift behaviour - failure criterion and loading gace

The uplift behaviour is not influenced by the honial forces. For the uplift mechanism, the
failure criterion is given by Grange et al. (20@9)follows:

2
f. =M '2—(£(e"*‘" + qz)) =0 (H.2)
G
whereA is a parameter of the constitutive model apdd) is a couple of integers that takes into
account the shape of the foundation. As for thdilaasurface, its evolution is more complicated
than for a classical plasticity model. Thus, ih@ presented herein. For more details, the reader
may refer to Grange et al. (2009a). The uplift naeceém is coupled with the plasticity
mechanism by using the classical multi-mechanispncgzh.
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