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Abstract

Suffusion can induce a loss of fine particles to granular soils and consequently a modification of their
mechanical behavior. In this PhD thesis, we aim to study the effect of the loss of fine particles caused by
suffusion on mechanical properties of soils at the macroscopic and microscopic scales by using the Discrete
Element Method (DEM). Granular samples composed of spherical particles with a gap-graded particle
size distribution (PSD) are simulated by the DEM. Due to a very high computational cost, the fluid flow
through the void space between solid particles is not simulated. Instead, we propose a representation of
the internal state of soils after suffusion at three different levels with increasing complexity. For the level
1, a sample considered as eroded is generated at a target density and with a fine content lower than that of
the original sample. The level 2 consists in removing a fraction of fine particles from the original sample at
a given stress state. We proposed thus a method to identify the loose fraction composed of particles which
do not carry significantly stresses. The level 3 aims to take into account the transport of fine particles
in the pore network of the solid skeleton and the blockage of fine particles by constrictions. The key
point in this model is how to describe the pore network. This study showed that fine particles can have
a negligible effect, positive or negative effect on the shear strength depending on fine content. A removal
of fine particles causes a significant reduction in shear strength to gap-graded soils. It was also showed
that a random removal of fine particles leads to a greater reduction in shear strength than a removal of
only fine particles in the loose fraction. For the description of the pore network of the solid skeleton, we
propose a new method for merging neighboring tetrahedra issued from the Delaunay triangulation. This
pore network will be incorporated into a model to take into account the transport and blockage of fine
particles within the pore network of the solid skeleton.
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Résumé

La suffusion peut induire une perte de particules fines au sein de sols granulaires et par conséquent une
modification leur comportement mécanique. Cette thèse a pour objectif d’étudier la conséquence de cette
perte de particules fines sur les propriétés mécaniques des sols aux échelles macroscopique et microscopique
en utilisant la méthode des éléments discrets (MED). Des échantillons granulaires composés de particules
sphériques dont la taille suit une distribution granulométrique lacunaire sont modélisés par la MED. A
cause d’un coût de calcul élevé, l’écoulement du fluide à travers l’espace poral entre particules solides
n’est pas modélisé. Nous proposons plutôt une représentation de l’état interne du sol après la suffusion
suivant trois niveaux de complexité croissante. Pour le niveau 1, des échantillons considérés comme érodés
sont générés à une densité donnée et avec un pourcentage des fines plus petit que celui de l’échantillon
original. Le niveau 2 consiste à retirer une fraction des particules fines de l’échantillon original à un état
de contrainte donné. Pour cela, nous proposons une méthode permettant d’identifier une fraction lâche
composée des particules qui ne participent pas significativement à supporter la sollicitation. Le niveau 3 a
pour objectif de prendre en compte le transport et le blocage des particules fines par des constrictions dans
l’espace poral formé par le squelette solide. Le point essentiel à ce niveau réside dans la description du
réseau des pores. Cette étude a montré que les particules fines peuvent avoir un effet négligeable, positif
ou négatif sur la résistance mécanique selon le pourcentage de fines. Une extraction des particules fines
conduit à une diminution de la résistance mécanique des sols érodés. Nous avons montré que la réduction
de la résistance mécanique est plus forte si des particules fines sont retirées de façon aléatoire que si seules
des particules fines de la fraction lâche sont retirées. Pour la description du réseau des pores, une nouvelle
méthode a été proposée pour associer des tétraèdres voisins résultant de la triangulation de Delaunay. Ce
réseau des pores sera incorporé dans un modèle pour prendre en compte le transport et le blocage des
particules fines au sein de l’espace poral formé par le squelette solide.
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Résumé étendu

1. Contexte général et objectifs

Des milliers d’ouvrages hydrauliques en terre tels que des barrages et des digues ont été construits dans
le monde entier afin d’assurer la protection contre les inondations et la submersion, pour permettre la pro-
duction d’hydroélectricité et pour constituer des réserves d’eau. Plusieurs études ont montré que les deux
principales causes d’instabilités que peuvent subir ces ouvrages hydrauliques en terre sont la surverse et les
différents processus d’érosion interne. La suffusion est un de ces processus et elle mobilise la fraction fine
des sols pulvérulents qui ont une distribution continue convexe ou une distribution lacunaire. Lorsqu’un
sol est sujet au processus de suffusion, une partie de sa fraction fine peut migrer sous l’effet de l’écoulement
interne. Or la fraction fine joue un rôle important dans le comportement mécanique des sols granulaires.
La suffusion peut donc induire d’importantes modifications des propriétés mécaniques des sols ce qui pour-
rait à terme, affecter la stabilité des ouvrages hydrauliques en terre. Plusieurs études expérimentales ont
montré que la suffusion peut produire une réduction de la résistance au cisaillement des sols suffusifs et une
modification de leur comportement, de dilatant à contractant (Chen et al., 2016; Chang and Zhang, 2011).
Toutefois, une interrogation persiste sur le moyen de modéliser le comportement mécanique d’un sol érodé.

Dans la littérature, plusieurs approches ont d’ores et déjà été proposées pour modéliser le comporte-
ment mécanique d’un sol érodé. Hicher (2012, 2013) a développé une technique d’homogénéisation afin
de prendre en compte les modifications de la microstructure du sol induites par la suffusion. Rousseau
et al. (2018) ont utilisé la théorie poro-élasto-plastique pour modéliser le comportement mécanique en
supposant une variation irréversible au cours du cisaillement du sol à cause de la porosité induite par
la suffusion. Ces deux modèles prédisent que la suffusion va s’accompagner d’une diminution de la ré-
sistance au cisaillement. Toutefois, il convient de noter que la suffusion provoque un accroissement de
l’hétérogénéité de l’échantillon qui n’est pas prise en compte dans ces deux modèles. Vis-à-vis de cette
problématique, la Méthodes des Eléments Discrets (DEM) apparaît être un outil adapté pour modéliser le
comportement mécanique de sols granulaires à l’échelle des grains. Cette méthode permet de reproduire
les principales caractéristiques du comportement mécanique des sols granulaires: telles que la non linéar-
ité, l’adoucissement, la dilatance et l’anisotropie (Belheine et al., 2009). L’un des principaux avantages
de cette méthode réside dans la possibilité d’accéder aux informations locales à l’échelle des particules
permettant ainsi de caractériser le milieu poreux d’un point de vue micromécanique. Par ailleurs, la DEM
peut être couplée à un modèle de fluide pour décrire son écoulement dans le milieu et prendre ainsi en
considération l’interaction fluide – particules solides. Plusieurs couplages DEM-modèle de fluide ont ainsi
été développées comme DEM-CFD (Zhao et Shan, 2013; Benmezroua, 2011), DEM-LDM (Lominé et al.,
2013; Tran et al., 2017) et DEM-SPH (Sjah, 2013; Robinson et al., 2013). Toutefois ces méthodes couplées
DEM-fluide nécessitent d’importants moyens de calculs et engendrent d’énormes temps de calcul car à
l’intérieur du réseau poral, le fluide est modélisé très précisément à l’échelle des particules. Dans ce con-
texte, des méthodes simplifiées ont été proposées comme la méthode DEM-PFV (Chareyre et al., 2012;
Catalano et al., 2014) et la méthode simplifiée DEM-CFD (Zhao et Shan, 2013; Hu et al., 2019; Shafipour
et Soroush, 2008; Kawano et al., 2018; Pirnia et al., 2019). Au lieu de modéliser finement le fluide, ces
méthodes simplifiées décrivent en moyenne le fluide à l’intérieur de l’espace poral réduisant ainsi le temps
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de calcul. Néanmoins le temps de calcul reste trop important pour simuler le processus de suffusion dans
un sol à distribution lacunaire ou continue convexe et seule l’initiation du processus peut être simulée (Hu
et al., 2019; Kawano et al., 2018; Pirnia et al., 2019; Aboul Hosn, 2017). Une alternative qui consiste à
enlever une fraction des particules solides de l’échantillon initial a été développée par différents auteurs
sans utiliser de modèle de fluide (Wood and Maeda, 2008; Muir Wood et al., 2010; Scholtès et al., 2010;
Aboul Hosn, 2017). Ces développements ont permis de reproduire la réduction de la résistance au cisaille-
ment sus-évoquée. Il convient toutefois de noter que ce type d’approche nécessite d’identifier les particules
fines qui sont enlevées et qu’il convient de prendre aussi en compte le transport et le blocage éventuel des
particules fines.

Dans ce contexte, cette thèse a pour objectif d’étudier les conséquences de la suffusion sur le comporte-
ment mécanique des sols érodés en utilisant la DEM. Pour simuler l’ensemble du processus de suffusion,
au lieu d’utiliser une méthode qui couple la DEM et un modèle de fluide qui est très couteuse en temps
de calcul, seule la fraction solide est modélisée mais trois niveaux de complexité sont développés pour
représenter l’état du sol érodé. Le premier niveau est inspiré de l’étude expérimentale de Sterpi (2003)
dans laquelle aucun essai de suffusion n’est réalisé. Par contre l’auteur a préparé des échantillons avec
une proportion de particules fines plus faible que le sol initial et les a compacté en visant une densité
donnée. Ces échantillons sont supposés représenter le sol érodé mais à ce niveau, aucun mécanisme de
suffusion n’est réellement pris en compte. Le deuxième niveau est inspiré de l’étude expérimentale réalisée
par Chen et al. (2016) qui ont remplacé une partie des particules fines par du sel qui se dissout lorsque
de l’eau est injectée. Cette approche expérimentale est comparable à l’enlèvement de particules fines par
la méthode DEM. Deux processus d’enlèvement de particules fines sont utilisés: l’enlèvement aléatoire
et l’enlèvement de particules fines faiblement chargées mécaniquement. L’identification de ces particules
faiblement chargées est réalisée par la détermination des chaines de forces faibles et fortes. Donc à ce
niveau, seul le détachement des particules est pris en compte.

Le troisième niveau a pour objectif de considérer aussi le transport des particules détachées et leur
éventuel blocage géométrique au sein du milieu poreux. Le milieu poreux est représenté par un squelette
constitué des particules qui ne sont pas détachables. Le réseau poral qui entoure ce squelette est décomposé
en pores et constrictions qui peuvent être traversés par les particules détachables. Toutefois une particule
détachable sera bloquée dans une constriction si elle est plus grosse que la taille de la constriction. Les
travaux réalisés dans le cadre de cette thèse sont présentés en cinq chapitres et sont suivis par les conclu-
sions et perspectives qui peuvent être élaborées à partir des travaux menés.

2. Chapitre 1

L’étude bibliographique fait l’objet de ce premier chapitre et dresse un bilan du rôle des particules fines
dans le comportement mécanique des sols granulaires ainsi que les conséquences de la suffusion sur les pro-
priétés mécaniques des sols érodés. Plusieurs conclusions peuvent être établies: La présence de particules
fines influence fortement la densité du sol et l’indice des vides est minimal pour un pourcentage particulier
de particules fines. Les particules fines jouent un rôle important dans le comportement mécanique des sols
granulaires avec une variation de la résistance mécanique et de la dilatance en fonction du pourcentage
de fines. Jusqu’à ce jour les conséquences de la suffusion sur le comportement mécanique sont méconnues
mais des études préliminaires indiquent que la suffusion semble induire une diminution de la résistance
mécanique et une dilatance des sols érodés. Les méthodes numériques et plus particulièrement la DEM
qui ont été développées pour modéliser la suffusion et le comportement mécanique des sols érodés sont
également présentées. Ces méthodes consistent à enlever les particules les plus petites et les moins chargées
mécaniquement. Les conclusions de ces travaux correspondent aux conclusions des études expérimentales
préliminaires. Toutefois les méthodes numériques reposent sur l’hypothèse de l’accroissement de porosité
induite par la suffusion sans réarrangement des grains; or la validité de cette hypothèse constitue toujours
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une interrogation.

3. Chapitre 2

Dans le chapitre 2 sont présentées la méthode des éléments discrets (DEM) ainsi que la procédure
pour simuler des essais triaxiaux. Des échantillons constitués de mélanges de billes de verre à distribution
lacunaire sont modélisés avec un gap ratio (rapport du diamètre maximum et du diamètre minimal de
l’étendu lacunaire) de 3 et un pourcentage de fines compris entre 0 et 100%. Une analyse du volume élé-
mentaire représentatif est réalisée afin de limiter le temps de calcul tout en garantissant la représentativité
des simulations. Pour un pourcentage de fines fc ≤ 60%, le volume élémentaire représentatif peut être
défini par le rapport L/Dmax > 7,0 avec L: longueur de l’échantillon et Dmax: diamètre maximum des
grains. Pour un pourcentage de fines fc > 60%, le rapport L/Dmax est réduit afin d’avoir des temps de
calcul raisonnables. Par ailleurs, le comportement mécanique du mélange étant majoritairement piloté par
la fraction fine, le mélange modélisé avec fc > 60% est considéré comme le volume élémentaire représen-
tatif. Des échantillons à granulométrie lacunaire et avec plusieurs pourcentages de fines sont compactés
pour obtenir les états les plus denses et les plus lâches. L’étude montre que l’indice des vides est minimal
pour un pourcentage de fines fc = 32%. Des essais triaxiaux sont effectués sur les échantillons lâches et
denses. L’effet des particules fines sur le comportement contrainte-déformation du mélange a pu être mis
en évidence pour un pourcentage de fines fc ≥ 20%. La dilatance et la résistance au cisaillement sont plus
élevées pour fc = 32% qui correspond aussi au minimum de l’indice des vides. A partir de 60% de fines,
le comportement contrainte-déformation semble indépendant du pourcentage de fines.

4. Chapitre 3

Ce chapitre est dédié à l’étude micromécanique des effets de la fraction fine sur le comportement mé-
canique des échantillons à distribution lacunaire et avec un pourcentage de fines compris entre 0 et 100%.
Cette étude est menée en identifiant la contribution à la résistance au cisaillement macroscopique, des con-
tacts entre les différentes particules, c’est-à-dire entre les particules grossières (contact grossier-grossier),
entre les particules grossières et les particules fines (contact grossier-fine) et entre les particules fines (con-
tact fine-fine). Pour un pourcentage de fines fc < 20%, les particules fines flottent dans le réseau poral
et ne participent pas de manière significative à la résistance au cisaillement. A partir de 20%, les fines
ont deux effets opposés sur la microstructure: elles viennent au contact des particules grossières et con-
tribuent à renforcer la microstructure, mais elles peuvent aussi séparer les particules grossières et fragiliser
la microstructure. Au fur et à mesure de l’accroissement du pourcentage de fines, l’effort de cisaillement
est supporté de plus en plus par les contacts grossier-fine et de moins en moins par les contacts grossier-
grossier. Pour un pourcentage de fines inférieur à 30%, la résistance au cisaillement est principalement
supportée par les contacts grossier-grossier. La diminution de la contribution des contacts grossier-grossier
est compensée par un fort accroissement par la contribution des contacts grossier-fine. Il en résulte un
accroissement de la résistance au cisaillement du mélange, mais au-delà de 30% de fines, la résistance au
cisaillement diminue. Les contacts fine-fine n’ont une contribution significative à la résistance mécanique
qu’à partir d’un pourcentage de fines supérieur à 40%. A partir de 60% de fines, ce sont les contacts
fine-fine qui contribuent majoritairement à la résistance au cisaillement. Il a été également observé que
les chaines de forces fortes pour les mélanges étudiés incluent presque toutes les particules grossières,
mais jamais plus de 50% des particules fines. Ainsi une majorité des contacts fine-fine est située dans les
chaines de forces faible. Pour un pourcentage de fines fc < 20% les particules grossières constituent le
squelette solide. Entre 20 et 60% de fines, les fines participent activement à la résistance au cisaillement en
renforçant le squelette solide. Au-delà de 60% de fines, les particules grossières se comportent comme des
inclusions dans la matrice formée par les fines. A partir de cette étude, quatre catégories de microstruc-
ture sont proposées en fonction du pourcentage de fines et en prenant en compte le rôle des trois types de
contacts.
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5. Chapitre 4

L’objet de ce chapitre concerne les conséquences de la perte de particules fines sur le comportement
mécanique des échantillons. L’état initial de l’échantillon est représenté suivant le niveau 2. Différentes
méthodes d’enlèvement des particules sont présentées. L’enlèvement inspiré des travaux expérimentaux de
Chen et al. (2016) est réalisé de manière aléatoire. Pour un pourcentage initial de fines supérieur à 20%;
la résistance au cisaillement diminue avec l’accroissement de l’enlèvement de particules fines. Toutefois
certaines particules ainsi enlevées peuvent être fortement chargées mécaniquement et donc probablement
non mobilisables par la suffusion. Il convient donc d’identifier les particules fines faiblement chargées
qui pourraient être enlevées. Scholtès et al. (2010) identifient les particules fines les moins chargées
en utilisant le tenseur des moments défini pour chaque particule. Toutefois une petite particule tend à
avoir une faible valeur de ce tenseur et finalement ce critère aboutit sensiblement aux mêmes résultats
que l’enlèvement aléatoire. Nous proposons une nouvelle méthode d’identification des particules fines à
enlever sur la base du réseau des chaines de forces. Seules les particules fines comprises dans la chaine
de forces faible peuvent être enlevées. Suivant cette méthode, l’enlèvement des particules perturbe moins
le squelette solide et l’impact sur la résistance au cisaillement s’en trouve réduit. Donc pour un même
l’état initial, différentes méthodes d’enlèvement des particules peuvent conduire à différents comporte-
ments contrainte-déformation.

6. Chapitre 5

Dans ce chapitre, un modèle de réseau poral est introduit afin de représenter le sol érodé suivant
le niveau 3. Les particules sont tout d’abord différenciées en deux catégories: non-détachables si elles
appartiennent au squelette solide et détachable si elles appartiennent aux chaines de forces faibles. Les
particules détachables peuvent se déplacer dans le réseau poral qui entoure le squelette solide constitué par
les particules non détachables. Si la taille d’une particule détachable excède la taille d’une constriction,
elle est bloquée, sinon elle traverse la constriction et atteint donc le pore voisin. Cette méthode suppose
toutefois une description fine du réseau poral avec identification des pores et des constrictions qui les
séparent. Suivant cet objectif, les différentes techniques décrites dans la littérature pour représenter ce
réseau poral sont analysées. Ensuite à partir de la triangulation de Delaunay, une nouvelle méthode de
définition du réseau poral est élaborée. La fusion de pores voisins fait aussi l’objet de développements en
comparant les distributions de tailles de pores et de tailles de constrictions obtenues à l’aide des différentes
méthodes susmentionnées.

7. Conclusion et perspectives

Les travaux de cette thèse traitent des conséquences de la suffusion sur le comportement mécanique
des sols granulaires en utilisant la méthode des éléments discrets (DEM). Tout modèle couplé DEM-fluide
nécessite d’importants moyens de calculs et génèrent de très importants temps de calcul. Pour contourner
cette difficulté, seule la fraction solide est modélisée et l’état initial du sol érodé est représenté suivant
trois niveaux de complexité. Au niveau 1, l’échantillon est préparé suivant la même distribution et la
même densité que le sol érodé mais sans considérer les mécanismes de la suffusion. Le niveau 2 consiste
à mimer la perte de fines en enlevant des particules fines suivant différentes méthodes. Pour le niveau
3, le réseau poral est décrit afin de prendre en compte le transport et l’éventuel blocage géométrique
des particules détachées. Les échantillons étudiés ont une distribution lacunaire avec un gap ratio de
3 et un pourcentage de fines fc compris entre 0 et 100%. Après l’identification du volume élémentaire
représentatif, une étude micromécanique est réalisée sur les effets de la faction fine sur le comportement
mécanique des échantillons. L’influence des fines est significative à partir d’un pourcentage fc > 20%.
Pour un pourcentage fc < 30%, la contribution des contacts grossier-fine permet un accroissement de la

xx



Résumé étendu

résistance au cisaillement mais pour un pourcentage fc supérieur, la résistance au cisaillement diminue.
Au-delà d’un pourcentage fc > 60%, les particules grossières se comportent comme des inclusions au
sein de la matrice de fines. Lorsque l’enlèvement des particules fines est réalisé de manière aléatoire, la
résistance au cisaillement diminue en fonction de l’enlèvement. La nouvelle méthode d’enlèvement proposée
est basée sur le réseau des chaines de forces et dans ce cas, l’enlèvement des particules a moins d’impact
sur la résistance au cisaillement. Enfin pour réaliser l’enlèvement des particules suivant le niveau 3, le
réseau poral est défini à partir de la triangulation de Delaunay et une nouvelle méthode de fusionnement des
pores. Ces travaux permettent d’obtenir une meilleure compréhension du rôle complexe des particules fines
dans le comportement mécanique des sols granulaires. Ils permettent également d’ouvrir de nombreuses
perspectives de recherche concernant les conséquences de la suffusion sur le comportement mécanique des
sols érodés et à terme, sur son implication dans les instabilités des ouvrages hydrauliques en terre.
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General introduction

Nowadays thousands of earth structures, such as dams and dikes exist all over the world to prevent
flooding and submersion, but also to produce hydropower, to store freshwater water for drinking or irriga-
tion. Overtopping and internal erosion are two main causes of failure of such earth structures. Suffusion is
a particular form of internal erosion, which might occur inside granular soils having gap-graded or widely
graded particle size distributions. When a granular soil subjected to suffusion, due to the seepage force
of the fluid flow, a fraction of fine particles migrate throughout the void space between coarser particles,
causing a loss of fine particles to the suffusive soil. Fine particles play an important role in mechanical
behavior of granular soils; as a consequence, suffusion can lead to a change in mechanical properties of
suffusive soils, which might affect the stability of earth structures. Several experimental studies have
shown that suffusion causes a reduction in shear strength and dilatancy to suffusive soils (Chen et al.,
2016; Chang and Zhang, 2011). On open question is how to model the mechanical behavior of an eroded
soil.

Several approaches have been proposed to model the mechanical behavior of an eroded soil. Hicher
(2012, 2013) developed a homogenization technique to take into account the structural changes resulting
from the loss of fine particles caused by suffusion. Rousseau et al. (2018) used the poro-elastoplastic theory
to develop a model of the mechanical behavior of eroded soils by assuming that part of irreversible volume
changes during the shear loading due to a variation in porosity caused by suffusion. Both models predicted
a reduction in the shear strength of the soil subjected to suffusion. It should be noted that suffusion causes
the increase of the heterogeneity in the sample which is not taken into account in these two models.

Discrete Element Method (DEM) appears to be a tool very suited to modeling of granular materials
at the particle scale. This method is able to reproduce the main features of the mechanical behavior of
granular materials such as the non-linearity, the softening phase, the dilatancy and the induced anisotropy
Belheine et al. (2009). One of its main advantages is that any local information at the particle scale can be
accessed, which makes the DEM very suitable for investigating granular media from a micro-mechanical
point of view. The DEM can be coupled to a fluid model to describe the fluid flow throughout the
void space and to take into consideration interaction between fluid and solid particles. Several coupled
DEM-fluid models have been developed such as DEM-CFD (Zhao and Shan, 2013; Benmezroua, 2011),
DEM-LBM (Lominé et al., 2013; Tran et al., 2017) and DEM-SPH (Sjah, 2013; Robinson et al., 2013).
However, these coupled DEM-fluid models require a powerful computational resources and a huge com-
putational time since they model finely the fluid flow within the void space. Some simplified DEM-fluid
models have been proposed such as DEM-PFV (Chareyre et al., 2012; Catalano et al., 2014) and simplified
DEM-CFD models (Zhao and Shan, 2013; Hu et al., 2019; Shafipour and Soroush, 2008; Kawano et al.,
2018; Pirnia et al., 2019). Instead of modeling finely the fluid flow, these simplified models describe the
fluid flow throughout the void space in an average sense to reduce the computational cost. Despite this
simplification, these models are still very expensive to simulate the suffusion process within a gap-graded
or widely graded granular material and only the early stage of the suffusion process can be simulated
(Hu et al., 2019; Kawano et al., 2018; Pirnia et al., 2019; Aboul-Hosn, 2017). Alternative methods which
consist in removing a fraction of fine particles from the original samples have been used by several authors
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to represent the internal state of a soil subjected to suffusion without resort to a coupled DEM-fluid model
(Wood and Maeda, 2008; Wood et al., 2010; Scholtès et al., 2010; Aboul-Hosn, 2017). These methods
were found to be capable of reproducing a reduction in shear strength of the eroded soil. It is of great
importance in this kind of approaches to identify accurately fine particles to be removed and to take into
account the transport and blockage of fine particles within the void space.

This PhD thesis aims to study the consequences of suffusion on the mechanical behavior of eroded soils
by using the DEM. Instead of using a coupled DEM-fluid model to simulate the whole suffusion process,
the internal state of an eroded soil is represented at three different levels with increasing complexity:

• The level 1 is inspired from the experimental study of Sterpi (2003) in which no suffusion test is
performed. The author prepared samples with fine content lower than the original fine content and
compacted them to obtain a target relative density. These samples are considered as being eroded.
This procedure is adopted in our study to represent the internal state of eroded samples. At this
level, no main mechanism of suffusion is taken into consideration.

• The level 2 is inspired from the experimental study of Chen et al. (2016) in which a fraction of fine
particles were first replaced by salts which were subsequently dissolved by an injection of water.
This experimental procedure is similar to a removal of fine particles from the original sample, which
can be performed by the DEM. Two methods will be used for removing fine particles. For the first
method, fine particles are randomly removed, while only loose fine particles, which do not carry
significantly stresses, are removed for the second method. These loose fine particles are identified
by investigating the strong and weak force chains. This level takes into consideration only the
detachment of fine particles.

• The level 3 is aimed at taking into account the transport and blockage of fine particles within the
void space by using a pore network model. The pore network composed of pores and constrictions
is formed by the undetachable particles. A detachable particle is moved from one pore to another
according to a certain rule until either it is blocked by a constriction smaller than its size or it
moves out the sample.

This PhD thesis report is divided into five chapters:

• Chapter 1 presents a literature review about the role of fine particles in the mechanical behavior
of granular soils, suffusion and its consequences on the mechanical properties of eroded soils. We
present also some numerical methods, particularly the DEM and coupled DEM-fluid models, which
have been developed to model the suffusion process and the mechanical behavior of eroded soils.

• Chapter 2 gives a brief description of the DEM and of the procedure to simulate triaxial tests on
numerical samples. Gap-graded samples composed of spherical particles with different fine contents
are simulated. An analysis of the representative volume element for the simulated samples will be
then presented. Finally, the effect of fine content on the void ratios and on the stress-strain behavior
of the simulated samples will be presented and discussed.

• Chapter 3 is dedicated to a micro-mechanical investigation of the effect of fine content on the
mechanical behavior of the simulated gap-graded samples. This micro-mechanical investigation
focuses on how fine content affects the micro-structure and the transmission of the shear stress
through the contact network. The participation of the fine particles in carrying the shear stress will
be also analyzed. Based on this micro-mechanical investigation, we will propose a new classification
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of gap-graded soils according to fine content.

• Chapter 4 presents a study of the consequences of a loss of fine particles on the mechanical behavior
of eroded samples. The internal state of eroded samples is represented at the level 2. Different
methods for removing fine particles will be used. A new method will be proposed to identify the
loose fine particles which do not carry significantly stresses by considering the weak and strong
force chains. A comparison between different methods will be presented.

• In Chapter 5, a pore network model will be introduced to represent the internal state of eroded
samples at the level 3. The primary importance in such a model lies in the description of the
pore network formed by the solid skeleton. This chapter focuses then on different methods in the
literature to describe the pore network based on the Delaunay triangulation. Their drawbacks will
be put in evidence and a new method will be proposed to overcome these drawbacks. Although the
proposed pore network model is not complete yet, the capability of the new method proposed in
this chapter to extract the pore network will be demonstrated by comparing it to other methods.
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Chapter 1

Literature review

1.1 Introduction

This chapter presents a literature review of the role of the fine particles in widely graded soils and
consequences of a loss of fine particles caused by internal erosion on their mechanical behavior. We start
this literature review by a brief presentation of granular materials in earth-filled structures: classification
of these materials and some generalities of their mechanical behavior in Section 1.2. The variation of the
void ratios and the mechanical behavior of widely graded soils with fine content will be discussed in Section
1.3. An earth-filled structure might be subjected to suffusion, a particular form of internal erosion, during
which fine particles are washed out from the soil solid skeleton by seepage flow. Sections 1.4 and 1.5 will
be dedicated to suffusion and its impact on the mechanical behavior of the eroded soils. Last but not
least, Section 1.6 presents some approaches for modeling suffusion and the mechanical behavior of eroded
soils. Then we end this literature by setting up some conclusions.

1.2 Granular materials in earth-filled structures

1.2.1 Classification of granular materials

In soil mechanics, a material is said to be granular when it consists of grains or solid elements that
interact at contact zones. Figure 1.1 presents a classification of granular materials in order to promote
the understanding of the various terms used (Salot, 2007). Three families of granular materials can be
distinguished: synthetic materials (created from scratch by humans), model materials, much used in re-
search (steel beads, glass beads, ..) and geomaterials such as soils and rocks. Among the geomaterials, we
can distinguish natural materials from geocomposites such as sand-gravel mixtures, sand-tire mixture or
concrete,whose mechanical and geometrical are modified by humans.

Natural soils are classified into two families: cohesive soils and cohesionless soils. The latter ones can
also be referred to as frictional soils. These two families of natural soils can be differentiated by the type
of predominant interactions between grains. For cohesionless soils, interactions between two particles are
dominated by friction forces. On the other hand, the interactions between grains of cohesive soils are
dominated by surface forces, such as Van Der Walls forces or electric forces that create cohesion. Another
type of contact forces such as capillary forces are exerted by the liquid bridges within the granular medium.
The magnitude of capillary forces depends on the quality of the existing liquid and also on the particle
shape, orientation and surface properties, such as contact angle and roughness. Cohesive particles can
be linked also by solid joints which can be developed by cementing of carbonates, silicas, aluminas, iron
oxides and organic compounds.
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Figure 1.1: Non-exhaustive flow chart of granular materials in soil mechanics (Salot, 2007).
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Figure 1.2: Classification of natural soils (NYSDOT, 2013).

Natural soils are often used for construction of hydraulic earth-filled structures such as dikes, levees,
embankment dams, etc. Embankment dams are of two types: the earth-filled dam made of compacted
soil and the rock-filled dam, which are mainly built with rocks and/or gravels. Natural soils used in the
earth-filled dams are divided into two categories: the coarse-grained soils and the fine-grained soils. Based
on the classification proposed in the design manual of the New York State Department of Transportation
(NYSDOT, 2013), these two categories can be defined as follow:

- Coarse-grained soils that contain less than 50% of soil particles passing through 0.075 mm opening.
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Figure 1.3: Three main types of the shape of particles (NYSDOT, 2013).

- Fine-grained soils that contain more than 50% of soil particles passing through 0.075 mm opening.

Figure 1.2 presents this classification of the natural soils. It can be seen that the coarse-grained soils
consist predominately of cobbles, gravels or sands which are cohesionless soils. The fine-grained soils con-
sist of silt or clay.

According to NYSDOT (2013), particle shape of granular soils can be classified into three mains types:
rounded, subrounded and angular as shown Figure 1.3. Angular grains have sharp edges and relatively
plane sides with unpolished surfaces. Subrounded grains have nearly plane sides but have well rounded
corners and edges, while rounded grains have smoothly curved sides and no edges.

Granular soils can be also classified according to their grain size distribution. There are two main
types: well-graded and gap-graded size distributions. A well-graded soil is defined by a broad gradation
and has a good representation of all sizes (curves A and B in Figure 1.4). Sherard and Dunnigan (1989)
proposed to classify well-graded soils into three different categories according to their fine content, which
is defined as the ratio of the mass of the fine particles to the total mass. In the first category for the fine
content smaller than 5%, the fine particles only fill part of the pores formed by the coarse and medium-
sized particles (Figure 1.5(a)). In the second category where the fine content is between 5% and 20%,
some of the coarse and medium-sized particles are enclosed by fine particles (Figure 1.5(b)). In the third
category where the fine content is more than 20%, the pores formed by the coarse particles are fully filled
by the medium-sized particles and the pores between the medium-sized particles are fully filled by the fine
particles (Figure 1.5(c)).

For a gap-graded soil, a portion of grain sizes is significantly under-represented (curve C in Figure
1.4) or completely absent (curve D in Figure 1.4). Referring to the classification proposed by Sherard
and Dunnigan (1989), gap-graded soils are classified into three different categories according to their fine
content. In the first category, the fine content is less than 10% and fine grains only fill part of the pores
formed by the coarse (Figure 1.6(a)). In the second category, the fine content is between 10% and 35%
and the coarse particles are enclosed by the fine particles (Figure 1.6(b)). In the third category, the fine
content is more than 35% and the coarse particles float in the fine particles (Figure 1.6(c)).

1.2.2 Mechanical behavior of granular soils

In an earth-filled structure, soils are usually subjected to shear loading and they reach rupture when
the shear stress goes beyond their shear resistance. The shear resistance of a granular soil is characterized
by the friction angle and the cohesion. These two parameters can be determined by performing tests on
soil samples in the laboratory with the triaxial device or with the shear box. The triaxial test consists in
consolidating first the tested sample until the fluid pressure achieves a target pressure, and then increasing
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Figure 1.4: Illustration of grain size distribution curves for well-graded and gap-graded soils. (Chang and
Zhang, 2013).

Figure 1.5: Classification of well-graded soils: (a) with fine content less than 5%; (b) with fine content
between 5% and 20%; (c) with fine content more than 20% (Sherard and Dunnigan, 1989).

Figure 1.6: Classification of gap-graded soils: (a) with fine content less than 10%; (b) with fine content
between 10% and 35% ; (c) with fine content more than 35%. (Sherard and Dunnigan, 1989).

the stress σ1 in the longitudinal axis (the major principal stress), while keeping the lateral stresses, σ2 and
σ3 constant and equal to the confining pressure. The difference between the axial stress and the lateral
stresses causes shear stress to develop in the sample. The triaxial test can be conducted in drained or
undrained conditions.

The behavior of dense and loose soils under a triaxial test are illustrated in Figure 1.7. In this figure, q
is the deviatoric stress (q = σ1−σ3) and εv is the volumetric strain. The mechanical behavior differs from
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the loose soil to the dense one. For the dense soil, the shear stress increases and then reaches a maximum
value (the peak state). After the peak, the shear stress decreases and finally reaches a constant value (the
critical state). In the case of a loose soil, the shear stress increases steadily during the test and tends to a
constant value at the critical state. During the test, the dense soil shows first a small contractant phase
followed by a strong dilatant phase, while the loose soil shows only a contractant phase. It is interesting
to note that no volumetric variation is observed at the critical state and the residual shear strength is the
same for both soils.

Figure 1.7: Deviatoric stress q versus axial strain ε1 (left); volumetric strain εv versus axial strain ε1
(right).

1.3 Effect of fine particles on the mechanical properties of granular soils

In Section 1.2.1, different types of natural soils were presented, which can be classified as coarse-grained
soils, fine-grained soils or mixtures of both fine and coarse particles. Based on the grain size distribution,
granular soils can be also classified as well-graded or gap-graded. In the following, we focus on gap-graded
soils, in particular cohesionless mixtures composed of fine and coarse particles such as mixtures of sand
and gravel. The amount of fine particles is characterized by fine content fc which is a vital parameter
to study the composition of mixed soils. Sherard and Dunnigan (1989) distinguished many categories of
mixtures based on the value of fine content fc as illustrated in Figures 1.5 and 1.6. Some studies showed
that fine content fc influences the density of soils (Lade et al., 1998; Yang et al., 2006). Other studies
showed that fine content fc has a significant influence on the mechanical behavior of soils (Salgado et al.,
2000; Thevanayagam et al., 2002; Nguyen, 2014; Benahmed et al., 2015). Some main results in the liter-
ature about the effect of fine content on the internal state and on the mechanical behavior of mixed soils
are presented in the following.

A gap-graded soil can be considered as a multi-phase material composed of fine particles, coarse
particles and voids between solid particles as illustrated in Figure 1.8(a). It has a total volume V and a
total mass m. The fraction of fine particles has a mass mf and a solid volume V f

s ; the fraction of coarse
particles has a mass mc and a volume V c

s ; and the void volume is Vv (Figure 1.9). A gap-graded soil is
characterized by a fine content fc defined as the ratio of the mass of the fine particles mf to the total
mass m (fc = mf/m with m = mf +mc). Its density can be characterized by the global void ratio e or
the global porosity n:

e =
Vv

Vs
=

Vv

V f
s + V c

s

, and n =
Vv

V
. (1.1)
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(a) (b) (c)

Figure 1.8: (a) A binary mixture, (b) the case when the fine particles are inactive (gray color) and (c) the
case when the coarse particles are inactive.

In a gap-graded soil that contains a fine content smaller than a threshold value, coarse particles may
constitute a solid skeleton to carry mainly the overburden stress. A significant fraction of fine particles
may be confined within pores between the former ones so they may not participate in sustaining the
shear stress as stated by several authors (Skempton and Brogan, 1994; Thevanayagam and Mohan, 2000).
According to Thevanayagam and Mohan (2000), the global void ratio e may not adequate to describe
the density of such a mixture. Therefore, the authors introduced an intergranular void ratio, ec, and an
interfine void ratio, ef , defined as follows:

ec =
Vv + V f

s

V c
s

=
e+ fc
1− fc

, ef =
Vv

V f
s

=
e

fc
. (1.2)

The intergranular void ratio ec is defined by assuming that all the fine particles do not sustain any stress
and can be considered as the intercoarse voids as illustrated in Figure 1.8.b. On the other hand, the
interfine void ratio ef is defined by assuming that the coarse particles do not participate in sustaining
the loading and they can be removed from the sample as illustrated in Figure 1.8.c. According to this
definition, the intergranular void ratio ec describes the density of the coarse fraction, while the interfine
void ratio ef describes the density of the fine fraction.

Figure 1.9: Characteristics of mixed soils.

1.3.1 Effect of fine particles on the internal state

This section aims to present several studies of the effect of fine content on the internal state of the
mixture of soils. Lade et al. (1998) studied experimentally the void ratio of mixtures of coarse and fine
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spherical balls. In these experiments, coarse balls of the same diameter D are mixed with fine spherical
balls of the same diameter d. The coarse balls are deposited first in a container and the fine balls are
added from the top, while the container is vibrated. For the binary mixtures with the ratio D/d = 3.5
(dfines=0.91 mm), Figure 1.10(a) shows that the global void ratio e decreases when the fine content varies
between 0% and 40%. This phenomenon can be explained by the fact that, when fines particles are added,
they fill the voids left by the coarse particles, thus the global void ratio e decreases in this case. The
minimum void ratio is obtained at fine content of 40%, above which the global void ratio increases with
fine content. This means that, at fc = 40%, fine particles fully fill the voids between coarse particles
without separating them. Above this optimal fine content, fine particles tend to separate coarse ones,
leaving more void space in the mixtures. It is interesting to note that in Figure 1.10(a), the minimum
void ratio of mixtures decreases and tends to a limit value as the gap ratio D/d of the big ball diameter
to the small ball diameter increases, due to the fact that the gap ratio is an important characteristic of
the grain size distribution. In this case the minimum void ratio of the mixture depends on the grain size
distribution of the mixture.

(a) (b)

Figure 1.10: Variations of void ratios with fine content presented in Lade et al. (1998): (a) for binary
mixtures of small and big spherical balls with different gap ratios D/d, and (b) for the mixtures of coarse
and fine Nevada sands.

Lade et al. (1998) studied also the variation of void ratio with the fine content fc with gap-graded
mixtures of coarse Nevada sand (diameter between 0.18 mm and 0.3 mm) and fine Nevada sand (diameter
between 0.075 mm and 0.18 mm) with gap ratio between the coarse and fine particles equal to 3.31. In
this study, the binary mixtures was compacted according to the ASTM standards D4253-00 and D4254-00
(ASTM D4253-00, 2000; ASTM D4254-00, 2000) to obtain the minimum and the maximum void ratios
emin and emax. Figure 1.10(b) shows the variations of emin and emax with respect to fine content fc. These
two void ratios decrease first and then increase with fine content. The optimal fine content for these
mixtures is between 20% and 25%. The gap ratio of this mixture is close to the gap-ratio of the mixture of
spherical balls presented above (see Figure 1.10(a)), but the two mixtures did not have the same optimal
fine content, for that, the optimal fine content can depend also on the particle shape.

Yang et al. (2006) used silt-sand mixtures whose grain size distribution curves are shown in Figure
1.11(a). In this case, the sand represents the coarse particles and the silt represents the fine particles.
They studied experimentally the variation of the minimum and the maximum void ratios emin and emax

with the fine content. As shown in Figure 1.11(b), both emin and emax reach their minimum values at fc
= 30% which corresponds to the optimal fine content. This optimal fine content was considered as the
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transitional fine content coefficient (TFC), at which sand-dominated behavior changes to silt-dominated
behavior. Nguyen (2014) considered silty-sand and found a lower optimal fine content of about 20%.

(a) (b)

Figure 1.11: (a) Grain size distributions for the silt-sand mixtures presented in Yang et al. (2006) and (b)
maximum and minimum void ratios versus fine content for these silt-sand mixtures.

Thevanayagam et al. (2002) performed tests on gap-graded mixes of Ottawa sand (d between 0.09 mm
and 1 mm) and silica fines (d < 0.074 mm) with fine content fc varying between 0% and 100%. The
particle size distribution (PSD) curves of these mixtures are shown in Figure 1.12(a). For these tests, the
global void ratio e is controlled as much as possible around 0.6. Figure 1.12(b) shows the variation of the
three void ratios e, ec and ef with fine content fc. It can be seen that for fc < 25%, the intergranular void
ratio ec increases slightly, while the interfine void ratio ef decreases strongly with fine content fc. This
means that, within this range of fine content, the fine particles fill the voids between the coarse particles
and they also separate slightly the latter ones. Starting from 25% of fine content, the fine particles fully
fill intercoarse voids. A further addition of fine particles needs to discard strongly the coarse particles to
increase the void space between them. As a consequence, the intergranular void ratio ec increases strongly,
while the interfine void ratio ef decreases slightly. The optimal fine content for this type of gap-graded
soils seems to be about 30%.

0 10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

(%)

(a) (b)

Figure 1.12: (a) Grain size distributions for the silica-sand mixtures presented in Thevanayagam et al.
(2002), and (b) variations of ec and ef of these mixtures with fine content fc.
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1.3.2 Effect of fine particles on the mechanical behavior

We have shown in the last section that fine content affects greatly the internal state of granular
mixtures. In this section, we show how this parameter influences drained and undrained mechanical
behaviors of granular mixtures.

1.3.2.1 Drained behavior

Salgado et al. (2000) performed triaxial drained tests on gap-graded mixtures of silt (d between 0.0006
mm and 0.07 mm) and Ottawa sand (d between 0.07 mm and 1mm), whose particle size distribution
curves are presented in Figure 1.13. Loose and dense samples with fine contents varied between 0% and
20% are tested. The relative density Dr is defined by:

Dr =
emax − e

emax − emin
× 100%, (1.3)

where emax presents the void ratio of the loosest state of the mixture and emin presents the densest state
of the mixture. In these tests, Dr is controlled between 25% and 40% for loose samples and between 74%
and 80% for dense samples.

Figure 1.13: Grain size distribution of Ottawa sand and the silt considered in Salgado et al. (2000).

Figures 1.14 and 1.15 show the deviatoric stress σ′
1 − σ′

3 and the volumetric strain εv versus the axial
stress for the loose and dense samples with different fine contents. It can be observed that an addition of
silt to the sand leads clearly to an increase in the shear stiffness (initial slope of the stress-strain curve)
and in the shear strength at the peak and critical state, particularly for the dense samples. Indeed, the
critical-state friction angle is 33o for the dense sample with 20% of fine content, significantly higher than
the value of 29o for the clean sand. The silt-sand mixtures show a more marked softening phase after the
peak state than the clean sand. It can be also observed in Figure 1.15 that the dense silt-sand mixtures
dilate strongly when they are subjected to shearing and their dilatancy increases as well with fine content.
The authors explained these results by the fact that, for low fine contents (≤ 20%), the solid skeleton
is mainly constituted of the sand particles and the silt particles occupy void spaces between the sand
particles, increasing particle interlocking and then making the soil more dilative and stronger.

Sterpi (2003) studied experimentally the effect of the removal of fine particles on the mechanical
behavior of a well graded silty sand whose particle size distribution is presented in Figure 1.16 by the
dashed line curve. The fine content, defined as the percentage by weight of particles with diameter smaller
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Figure 1.14: Drained triaxial compression tests on loose samples of Ottawa sand with various silt contents
under moderately high effective confining stress (Salgado et al., 2000).

Figure 1.15: Drained triaxial compression tests on dense samples of Ottawa sand with various silt contents
under low effective confining stress (Salgado et al., 2000).

than 0.0074 mm, is 20%. For the laboratory tests, only the particles with d < 2 mm was considered, due
to the relatively small size of the experimental device. The author introduced a parameter µe which is
the percentage by weight of fine particles removed from the original soil. It is worth mentioning that this
parameter was called percentage by weight of eroded fine particles by the author; however, no erosion test
was performed to erode fine particles to investigate the mechanical behavior of eroded soils. The author
assumed that the erosion leads to a decrease in fine content and a modification of the relative density so
they removed a fraction of fine particles from the original soil and reconstituted samples with a target
relative density. Drained triaxial compression tests are then performed on three samples with µe = 0,
µe = 0.1 and µe = 0.2 corresponding to the respective fine contents of 20%, 10% and 0%. The two last
samples, which correspond respectively to the soil after partial and full erosion, were compacted to relative
densities of 30% and 70%. Their mechanical behaviors were compared to that of the sample with µe = 0
(the original soil) compacted to the relative density of 70%. Figure 1.17 shows a comparison between the
mechanical behavior of the original soil and those of the eroded sols with different percentages of removed
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Figure 1.16: Grain size distribution for the original soil (dashed line) and for the soil used in the laboratory
tests (solid line) (Sterpi, 2003).

fine particles. Surprisingly, the eroded samples with µe = 0.1 and µe = 0.2 show stiffer stress-strain curves
and better shear strengths than those of the original sample; and the two eroded samples dilate more than
the original one. Even though the eroded sample with µe = 0.2 is at lower relative density (30%), it has
a much better shear strength than the original one at the relative density of 70%. These results mean
that the shear strength and dilatancy increase as fine content decreases, which contradicts the results of
Salgado et al. (2000) shown above.

Figure 1.17: Deviatoric stress and volumetric strain versus axial strain, from triaxial compression tests on
dense samples (Sterpi, 2003).

1.3.2.2 Undrained behavior

In what follows, the role of fine particles under undrained stress-strain behaviors of granular soils is
studied. Thevanayagam et al. (2002) studied the effect of fine content on the mechanical behavior under
undrained conditions for mixes of Ottawa sand and silica fines (see Figure 1.12 for their size distribution
curves). The samples with fine content fc = 0, 7 et 15% were prepared at the same global void ratio
e = 0.6. The samples with fc = 25%, 40% and 60% are too fragile to be prepared at e = 0.6 so they were
prepared at much lower values of e (their void ratios are 0.46, 0.425 and 0.516, respectively). The pure
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silt sample (fc = 100%) was tested at e = 0.77. The stress-strain behavior of these samples is presented
in Figure 1.18. It was found that the silty samples with fc ≤ 25% are weaker than the dense clean sand
(fc = 0) and this weakness increases with an increase in fine content. This is due to the fact that these
samples are looser than the clean sand in terms of intergranular void ratio ec and the interfine void ratio
ef is very high. Although the sample with fc = 25% was prepared at e = 0.46, the value of ec is 0.947
compared to the value of 0.864 for the sample with fc = 15% prepared at e = 0.6. Murthy et al. (2007)
also found that the silty sand with 10% of fine content is less dilative and weaker than the clean sand
even though the silty sand is denser than the clean sand in terms of global void ratio e. A further increase
in fine content leads, on one hand, to an increase of ec, but on the other hand, to a strong decrease of
ef . The sample with fc = 40% reaches a maximum value of ec = 1.375, while its value of ef reduces to
1.06. Starting from fc = 25%, the undrained shear strength increases with fine content. The sample with
fc = 40% is indeed stronger than the sample with fc = 25%. It is worth noting that the former is looser
in terms of ec but much denser in terms of ef than the latter (ef = 1.06 for fc = 40% compared to the
value of 1.84 for fc = 25%). The fine content of 25% can be considered as a threshold value, under which
the undrained shear strength decreases with fine content but above which the undrained shear strength
increases with fine content. It should be noted that the above statement is valid when the global void
ratio e is controlled. Indeed, the undrained shear strength increases with an increase in fine content in the
case where the intergranular void ratio ec was controlled, as shown by Thevanayagam et al. (2002).

Figure 1.18: Undrained stress-strain behavior of the samples with different fine contents tested by The-
vanayagam et al. (2002).

Nguyen (2014) performed two series of undrained triaxial tests on silty-sand with fine content varied
between 0 and 20%. The global void ratio e is controlled to be almost the same for all the tested samples
in the first series, while the intergranular void ratio ec is controled to be almost the same for all the tested
samples in the last series. Figure 1.19 shows the undrained friction angle φ′ at the peak state versus fine
content for these two series of tests. The undrained friction angle φ′ is defined according to the Mohr-
Colomb criterion σ′

1 − σ′
3 = sin(φ′)(σ′

1 + σ′
3) + 2c cos(φ′) for a cohesive soil, but for these tests, the soils

are cohesionless, and the Mohr-Colomb criterion becomes σ′
1 − σ′

3 = sin(φ′)(σ′
1 + σ′

3). It can be seen that
the undrained shear strength decreases first and then increases with an increase in fine content for the
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(a) (b)

Figure 1.19: Undrained friction angle of silty sand at the peak state versus fine content: (a) global void
ratio e is controlled and (b) the intergranular void ratio ec is controlled (Nguyen, 2014).

first series, while it increases with an increase in fine content for the second series. These results are in
agreement with those obtained by Thevanayagam et al. (2002) shown above.

Andrianatrehina et al. (2016) performed undrained triaxial tests on mixtures of sand (0.1 mm < d <
0.315 mm) and gravel (2 mm < d < 16 mm). Sand particles are considered as fines and their content varies
from 5% to 30%. The relative density Dr is controlled to be around 60% for all the samples. Figure 1.20
shows the maximum deviator stress q versus fine content for two confining pressures of 100 kPa and 200
kPa. It is shown that the undrained shear strength increases with fine content. It is worth mentioning that
this result is different from those obtained by Thevanayagam et al. (2002) who showed that the undrained
shear strength decreases with an increase in fine content up to 25% and then increases with an increase
in fine content above 25%. This might be related to the fact that the relative density Dr was controlled
in the former study, while the global void ratio e was controlled in the latter one.

Figure 1.20: Undrained shear strength versus fine content shown in Andrianatrehina et al. (2016).
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1.3.3 Discussions

In Sections 1.3.1 and 1.3.2, we presented some studies in the literature on the effect of fine particles on
the global, intergranular and interfine void ratios and on the drained and undrained mechanical behaviors
of mixed soils. In terms of void ratios, there exists an optimal fine content, at which the global void ratio
reaches its minimum value. This optimal fine content have been found to depend on the grain size distri-
bution and on the particle shape. In terms of mechanical behavior, different studies showed contradictory
results. Salgado et al. (2000) showed that the drained shear strength increases with an increase in fine
content for the loose and dense gap-graded soils. On the contrary, the drained shear strength was found
by Sterpi (2003) to decrease with an increase in fine content for well graded soils. Regarding the undrained
behavior, Thevanayagam et al. (2002) and Nguyen (2014) found a threshold value of fine content f th

c for
the case where the global void ratio is controlled to be the same: fine particles weaken granular mixtures
when fc < f th

c but strengthen them when fc > f th
c . On the other hand, Andrianatrehina et al. (2016)

found that an increase in fine content between 0 and 30% leads to an increase in undrained shear strength
of granular mixtures. It should be noted that the effect of fine content depends strongly on the way the
initial density of mixtures is controlled. Thevanayagam et al. (2002) and Nguyen (2014) showed that
when the intergranular void ratio ec is controlled to be the same, a further addition of fine particles makes
granular mixtures stronger under undrained conditions.

Figure 1.21: Classification of soil mixes proposed by Thevanayagam et al. (2002).

It is generally accepted that an addition of fine particles to granular mixtures leads to a variation
of their microstructure. Thevanayagam et al. (2002) proposed a classification of the microstructure of
granular soil mixes into three main category by using a threshold fine content f th

c : (a) coarse grain soil
mix when fc ≤ f th

c , (b) fine grain soil mix when fc > f th
c and (a) layered soil mix as illustrated in Figure

1.21. In soil mixes of category (a), the coarse grains are primarily in contact and they play a primary
role in the soil’s shear response, while the fines offer a secondary contribution. This category is also split
into three subsets: the fines are confined within the void spaces between the coarse grain skeleton [case
(i)]; they are partially supporting the coarse grain skeleton [case (ii)]; or they partially separate the coarse
grain skeleton [case (iii)]. In category (b), the fine grains are primarily in contact with each other and they
play a primary role in sustaining the shear stress, while the coarse grains are separated by the fine ones
and provide a secondary reinforcement effect. For category (c), the soil mix is constituted of a layer of
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fine particles and a layer of coarse particles. It should be noted that this classification of the microstruc-
ture of granular mixtures is intuitive without any investigation of granular mixtures at the particle scale.
Such an investigation might be performed by using X-ray tomography imaging technology (Kim et al.,
2012), however, this technique is quite delicate and expensive. To the best of our knowledge, no experi-
mental investigation of the effect of fine content on the granular micro-structure has been performed so far.

It has been shown previously that the fine particles play an important role in the mechanical behavior
of granular soil mixtures. Granular soils in earth-filled structures are usually gap graded or well graded.
During the water flow through out the soils, their fine particles might be eroded by the seepage force. This
phenomenon is called suffusion and presents an important risk of instability to earth-filled structures.
The suffusion causes a reduction in fine content and a modification of the compactness and of the micro-
structure to eroded soils. As a consequence, their mechanical properties might change. In the next section,
we introduce the suffusion phenomenon and present some studies of its consequences on the mechanical
behavior of eroded soils.

1.4 Particle case of internal erosion: Suffusion

1.4.1 Definition

The internal erosion phenomenon is defined as the migration of soil particles caused by fluid flow.
Internal erosion occurs when the hydraulic forces exerted by water seeping through the pores or cracks of
the material in the earth structure (such as dam, dike or levee) are sufficient to detach fine particles and
transport them out of the structure. Internal erosion is especially dangerous: it is one of main causes of
failure in levees and in earth-filled dams. Statistical analyses showed that internal erosion is the governing
failure mode of approximately half of the failures observed in embankment dams (Foster et al., 2000;
Richards and Reddy, 2007).

Internal erosion can be classified into four different forms: concentrated leak erosion, backward ero-
sion, soil contact erosion, and suffusion (Fell and Fry, 2007; Chang et al., 2012) as illustrated in Figure
1.22. While the three first forms of internal erosion occur at the interface between the soil and fluid
or between the fine soil and the coarse soil, suffusion occurs inside the soil. It is characterized by a
migration of fine particles caused by the seepage flow through the void space of the solid skeleton consti-
tuted of coarser particles. These migrant particles are not retained by the solid skeleton due to internal
instability of grading and high enough seepage gradient. The suffusion process is illustrated in Figure 1.23.

Figure 1.22: Illustration of internal erosion by four modes (Chang et al., 2012).
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Figure 1.23: Illustration of suffusion process in a bimodal soil: a) intact sample, b) sample during suffusion
process, c) sample after full erosion of the fine fraction (Yerro et al., 2017).

Suffusion comprises three main mechanisms: detachment of fine particles, transport of detached fine
particles through the void space of the solid skeleton and retention of migrant fine particles by constric-
tions. Fine particles are detached when the seepage force is sufficiently high. If the detached fine grains
are sufficiently small, they pass through constrictions of the solid skeleton formed by coarser particles.
Otherwise, they are retained in the soil by constrictions.

1.4.2 Criteria for assessing suffusion

Suffusion occurs in a granular soil if three following main conditions are met according to Venn diagram
shown in Figure 1.24.

• Material susceptibility: it is related to the ability of the soil to lose fine particles by detachment
and migration of these particles. This detachment and migration are related mainly to the grain
size distribution, the shape of grains and the compactness of the soil.

• Stress condition: it is referred to the ability to resist suffusion due to the magnitude of effective
stress within the body of the soil. It is worth noting that this stress varies spatially or temporally
within the body of the soil.

• Hydraulic load: it is associated with the action of seepage flow that is sufficient enough to detach
and carry away fine particles. It can be related to the seepage gradients, velocities or hydraulic
shear stress presented in the hydraulic structure.

The detachment of fine particles and their subsequent transport throughout the porous network of
the soil requires that the sizes of constrictions formed by coarser particles are sufficiently large. These
constriction sizes are conditioned not only by the granular size distribution, but also by the grain shape
and the density of the granular packing. Lafleur et al. (1989) distinguished four main gradation curves
as illustrated in Figure 1.25: uniform distribution (curve 1), upwardly convex distribution (curve 2), gap-
graded distribution (curve 3) and upwardly concave distribution (curve 4). The soils whose grain size
distribution curve corresponds to curves 1 or 2 are generally stable to suffusion (Lafleur et al., 1989). On
the other hand, the soils whose grain size distribution curve corresponds to curves 3 or 4 are likely to
suffer from suffusion (Fell and Fry, 2007; Burenkova, 1993; Wan and Fell, 2008).

Many geometric criteria have been proposed to assess the susceptibility of soil to internal erosion
based on the particle size distribution curve. Sherman (1953); Istomina (1957) considered the coefficient
of uniformity Cu = D60/D10 and stated that suffusion might occur in cohesionless granular materials if
Cu > 20. Kézdi (1979) presented a method that consists in splitting the grain size distribution curve of a
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Figure 1.24: Venn diagram, showing internal erosion mechanisms for three overlapping adverse conditions
(Garner and Fannin, 2010).

Figure 1.25: Main types of gradation curve (Lafleur et al., 1989).

cohesionless soil into coarse and fine components. The coarse particles serve as a filter to prevent erosion
of the fine particles. According to this criterion, a soil is internally unstable or susceptible to internal
erosion if d15c/d85f > 4, where d15c is the diameter of the 15% mass passing in the coarse part and d85f
is the diameter of the 85% mass passing in the fine part. Moffat and Fannin (2006) found experimentally
that a soil considered as stable and not susceptible to internal erosion if d15c/d85f ≤ 4 and as unstable
if d15c/d85f ≥ 7. Kenney and Lau (1985) presented a geometric criterion based on the shape of particle
size grading curve. The authors used an index ratio H/F where H is the mass fraction of grains with a
diameter between D and 4D and F is the mass fraction of grains smaller than D. A soil is not susceptible
to suffusion if H/F > 1.

According to Chang and Zhang (2013), the susceptibility of gap-graded soils to internal erosion is
assessed by using the gap ratio defined as Gr = dmax/dmin where dmax and dmin are the maximal and
minimal particle sizes of the missing fraction, respectively. According to this criterion, a gap-graded soil
is stable if Gr < 3 for fine content fc < 10%, if Gr < 0.3fc for 10% ≤ fc ≤ 35% or if fc > 35%.
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It should be noted that only consideration of the particle size distribution is not sufficient to assess if
a sol is susceptible or not to suffusion. The stress and hydraulic conditions need to taken into account.
Therefore, Marot et al. (2011) proposed a new method to represent the hydraulic load, based on the energy
dissipated by the fluid. This energy is computed by time integration of the total flow power which takes
into account the difference of head and the flow rate. Moreover, the hydraulic loading on one hand, and the
induced erosion on the other hand, must be independently characterized. Thus, the energy dissipated by
the water seepage (Eflow) and the cumulative loss of dry mass (mdry) are computed respectively. Finally,
at the end of each test, which corresponds to the invariability of the hydraulic conductivity and the
decrease of the erosion rate, the erosion resistance index is expressed by: Iα = -log(mdry/Eflow). From
this energy-based method, six categories of suffusion soil sensibility are proposed: from highly resistant to
highly erodible (Marot et al., 2011).

1.5 Impact of suffusion on the mechanical behavior of granular soils

As mentioned above, large amount of fine particles are eroded during suffusion, which might trigger
the rearrangement of soil grains into a stable packing. As a consequence, the soil structure is modified
and the mechanical behavior of soil after suffusion may be strongly affected. In this section, several
experimental studies in the literature on consequences of suffusion on the mechanical behavior of eroded
granular materials will be presented. These experimental studies are classified into three categories: (i)
studies without any suffusion test, (ii) studies with partial suffusion tests and (iii) studies with full suffusion
tests.

1.5.1 Experimental studies without any suffusion test

Sterpi (2003) and Andrianatrehina et al. (2016) presented studies on mechanical properties of eroded
soils by performing drained and undrained triaxial tests. In these studies, the authors made an assumption
that suffusion causes only a reduction of fine content and a modification of the density to eroded soils so
they reduced fine content on the particle size distribution curve and reconstituted samples with a target
density. By doing so, the effect of suffusion is merely the effect of the reduction of fine content and
of the modification of the density of the eroded samples. These studies have been presented in Section
1.3.2. These studies showed contradictory results. Sterpi (2003) concluded that suffusion is favorable
to the drained shear strength which increases with an increase in percentage of eroded particles. On
the contrary, Andrianatrehina et al. (2016) showed that suffusion is unfavorable to the undrained shear
strength which decreases as the percentage of eroded particles increases.

1.5.2 Experimental studies with partial suffusion tests

The experimental study carried out by Chen et al. (2016) consists in replacing some amount of fine
particles in the original soils by salt particles with the same particle size distribution. Two original soils,
namely A and B, are mixtures of granite particles with 20% and 35% of fine particles whose diameter is
between 0.09 mm and 0.15 mm (their PSD curves are shown in Figure 1.26). For each original soil, different
samples where a certain amount of fine particles are replaced by salt particles was prepared, compacted
and consolidated under an isotropic confining pressure of 50 kPa. After that, the carbon dioxide and
deaired water were injected to saturate the samples and dissolve the salt. After the salt was completely
dissolved, drained triaxial tests were performed on the samples. It should be noted that the salt dissolution
process considered in this study does not represent fully the suffusion process. Indeed, the salt particles
are randomly distributed inside the samples and their dissolution leaves local pores that are also randomly
distributed. As a result, the samples issued from the dissolution process remains more or less homoge-
neous, compared to those obtained after a full suffusion test, which might be strongly heterogeneous. In
addition, the dissolution of the salt particles imitates the loss of fine particles by suffusion so it represents
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Figure 1.26: Grain size distributions of the original soils A and group B considered in (Chen et al., 2016).

only the detachment of fine particles during the suffusion process. It should be noted that a fine particle
detached by the seepage flow can be transported and dropped off somewhere else in the samples, making
the latter ones more heterogeneous. After the dissolution of salt, the eroded samples become much more
porous compared to the original ones, despite a decrease in their porosity due to the rearrangement of
particles, as shown in Table 1.1.

Table 1.1: Changes in porosity of the eroded samples after dissolution of salt.

Test identifier Salt content (%) Porosity before erosion Porosity after erosion

A1 0 0.315 0.315

A2 5 0.315 0.339

A3 10 0.315 0.364

A4 15 0.315 0.391

B1 0 0.273 0.273

B2 10 0.273 0.322

B3 20 0.273 0.343

B4 30 0.273 0.372

Figure 1.27 presents the shear strength and the volumetric strain versus the axial strain for the eroded
samples of the soils A and B with different percentages by mass of fine particles replaced by salt. It can
be seen that the shear strength and the dilativeness decrease greatly with an increase in salt content.
This is consistent to a great increase in the porosity of the eroded samples with increasing salt content
after the salt dissolution. Moreover, the shear strength of the soil with 35% of fine content is much more
degraded by the loss of fine particles than that with 20% of fine content. It is worth mentioning that
soils containing soluble materials such as salt, limestone, gypsum, anhydrite, dolomite and halite can be
found in geotechnical structures such as earth dams and reservoirs and these soils may experience internal
erosion of fine particles throughout the dissolution of soluble materials (Bell, 2007).
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Figure 1.27: Stress-strain relationships with loss of different amounts of fine particles in the soil A: (a)
and (b), and in the soil B: (c) and (d) (Chen et al., 2016).

1.5.3 Experimental studies with full suffusion tests

Chang and Zhang (2011) developed a testing apparatus that allows the authors to carry out first a
suffusion test to erode a soil sample and then a triaxial compression test on the eroded sample to study
the change in mechanical behavior of soils subjected to suffusion. Experimental tests were carried out on a
mixture of sand and granite with a sand content of 35%. The tested samples were eroded at different stress
state characterized by the effective mean stress p′ and the deviatoric stress q. It was found out that the
amount of eroded particles after the suffusion test depends strongly on the stress state: it increases as the
deviatoric stress increases. Figure 1.28 shows the mechanical behavior of the samples eroded at different
stress states. It can be seen that the tested soil changes the behavior of a dense soil before suffusion to the
behavior of a loose soil after suffusion. This means that suffusion causes a reduction in the dilativeness
and the shear strength to soils. This conclusion is also shared by several authors (Chang et al., 2012; Yin
et al., 2014; Li et al., 2017; Aboul-Hosn, 2017).

To explain the changes in the mechanical behavior of soils subjected to suffusion, Nguyen et al. (2019)
used X-ray tomography technique to experimentally characterize the impact of suffusion on a gap-graded
soil microstructure. These X-ray CT can measure different physical properties during suffusion, such as
fine content f , void ratio e and inter-granular void ratio eg. Figure 1.29 presents the values of the physical
properties for each scan for the whole sample. Scan 1 presents the scan after the saturation phase, scan
2 presents the scan after applying a very low flow rate, scan 3 and 4 present the scan after applying an
important flow rate. It can be seen that, no visible changes of these properties is observed between scan
1 and scan 2 due to the absence of erosion of particles, then from scan 2 to scan 4, as the flow rate is
increased, the fine content decreases with the development of erosion which influence the microstructure
of the gap-graded sample and then the mechanical behavior of this sample.
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Figure 1.28: Stress-strain relationships without and with suffusion at different stress states: (a) deviatoric
stress versus axial strain and (b) volumetric strain versus axial strain (Chang and Zhang, 2011).

Figure 1.29: Void ratio e, inter-granular void ratio eg and fine content f of the four successive scans
(Nguyen et al., 2019).

1.6 Numerical modeling of suffusion and its mechanical consequences

It was shown in the last section that suffusion erodes fine particles from the soil solid skeleton, causing
a modification of the mechanical behavior to eroded soils. In this section, we will show some numerical
models in the literature which can be used to predict mechanical consequences of suffusion. These numer-
ical models can be classified into two main categories: numerical models based on the Discrete Element
Method (DEM) and numerical models based on the homogenization technique.

1.6.1 Models based on the DEM

1.6.1.1 Coupled DEM-fluid models

The DEM has been widely used to simulate numerically granular media. According to this method,
a dry cohesionless granular soil is modeled as an assembly of distinct particles which are assumed to be
rigid. The interaction between particles can only occur at frictional interfaces. The DEM has the two fol-
lowing main ingredients: (i) Newton-Euler dynamic equations to describe the translational and rotational
motions of each rigid particle, and (ii) a contact law to calculate the interaction forces at the contact
between two particles. An explicit or implicit time-stepping scheme is used to numerically integrate the
dynamic equations. At each step, the velocity and the position of each particle are integrated up to the
end of the step. At the same moment, contacts between particles are detected and contact forces are
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calculated from the velocity and the position of particles in contact. There are two main approaches for
the DEM, which differ from each other in the way of modeling the interaction at contact. The Molecular
Dynamic (MD) approach considers a small compliance effect at the contact point so the contact force can
be uniquely determined from the elastic relative displacement at the contact point Luding (2008). On
the other hand, the Contact Dynamic (CD) approach neglects the compliance effect at the contact point.
As a consequence, the contact force cannot be uniquely determined from the relative displacement at the
contact point without considering the dynamic equations of the whole system Radjai and Richefeu (2009).
In both approaches, Coulomb’s friction law is used in the tangential direction to limit the tangential force.
For the MD approach, an explicit integration scheme of high order can be used with a time step sufficiently
small to describe accurately the dynamic process at the contact point. For the CD approach, the numeri-
cal integration can only be done implicitly, but with a time step much bigger than that used in the MD
approach. The DEM was found to be able to reproduce the main features of the mechanical behavior of
granular materials such as the non-linearity, the softening phase, the dilatancy and the induced anisotropy
Belheine et al. (2009). One of its main advantages is that any local information at the particle scale can be
accessed, which makes the DEM very suitable for investigating granular media from a micro-mechanical
point of view. The DEM based on the MD method is adopted in our work and will be presented in details
in Chapter 2.

In recent years, many efforts have been devoted to couple the DEM, which is used to simulate the
motion of the solid particles, to a fluid model to simulate the fluid flow through the void space between the
solid particles. During the simulation, the action of the fluid flow on each particle is computed by means
of the fluid model and then the position of each solid particle is updated by means of the DEM. Several
couplings have been developed such as DEM-CFD (coupled DEM and Computational Fluid Dynamics)
(Benmezroua, 2011; Zhao and Shan, 2013), DEM-LBM (coupled DEM and lattice Boltzmann method)
(Lominé et al., 2013; Tran et al., 2017) and DEM-SPH (coupled DEM and Smoothed Particle Hydrody-
namics)(Sjah, 2013; Robinson et al., 2013).

The coupled DEM-CFD model consists in using the Navier-Stokes equation to model the fluid motion:

ρf
∂v

∂t
+ ρfv.∇v = −∇p+ µ∇2v + fp, (1.4)

where v and p are respective fluid velocity and pressure; ρf and µ are respective fluid mass density and
viscosity; and fp is the external force exerted on a unit volume of the fluid. The Navier-Stokes equation is
solved by using a finite element discretization of the void space. To describe well the motion of the fluid,
the mesh issued from the discretization must be sufficiently fine compared to the particle size as illustrated
in Figure 1.30.a.

The coupled DEM-LBM model solves the simplified form of Boltzmann equation for the fluid motion:

∂f

∂t
+

∂f

∂x
.c = −

f − f eq

τ
, (1.5)

where f(x, c, t) is a distribution function defined as the probability density for the presence of a fluid
particle at position x with velocity c and at time t; f eq(x, c, t) is the distribution function at thermody-
namic equilibrium; and τ is a relaxation time. The Boltzmann Equation (1.5) is discretized on a regular
lattice (rectangular lattice in 2D as illustrated in Figure 1.30.b and cubic lattice in 3D). Like the coupled
DEM-CFD, the coupled DEM-LBM requires a sufficiently fine mesh to obtain a good resolution of the
fluid flow between solid particles.

Unlike the coupled DEM-CFD or DEM-LBM, the coupled DEM-SPH does not need a meshing of
the void space. The SPH method consists in modeling the fluid as a collection of particles with their
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(a) (b)

Figure 1.30: (a) Mesh used in the coupled DEM-CFD (Benmezroua, 2011) and (b) regular lattice used in
the coupled DEM-LBM (Tran et al., 2017)

microscopic quantities such as mass, density, volume, velocity, pressure, etc. These particles interact each
other and move according to the equation of motion. Fluid quantities such as velocity and pressure at a
given position are interpolated from known microscopic quantities of neighboring particles. To obtain a
good resolution of the fluid flow between solid particles, the number of fluid particles needed by the SPH
method must be sufficiently big. Sjah (2013) used about 120000 fluid particles to represent a fluid domain,
to model a spherical solid particle free falling in this domain.

The three coupled models mentioned above has been used by several authors to simulate the internal
erosion in granular materials. Lominé et al. (2013) and Tran et al. (2017) used the coupled DEM-LBM to
perform 2D simulation of the piping erosion and backward erosion. Galindo-Torres et al. (2015); Harshani
et al. (2015) simulated the suffusion in 3D granular media. Due to large memory requirement and com-
putation time, the numbers of coarse and fine particles were limited to respective 30 and 13 000 and only
the onset of suffusion was simulated. Up to date, it seems to be impossible to simulate a full suffusion
process in a widely graded material with a full coupled DEM and fluid model.

As mentioned above, a good resolution of fluid flow in the void space between solid particles is compu-
tationally very expensive. To overcome this limitation, Chareyre et al. (2012) and Catalano et al. (2014)
proposed a coupled DEM-PFV (DEM - Pore-scale Finite Volume) model, in which the void space between
solid particles is partitioned into pores and every couple of adjacent pores share a throat. The regular
Delaunay triangulation is used to subdivide a granular sample into tetrahedra, each of which joins the
centers of four neighboring particles. The void space contained within a given tetrahedron is considered as
a pore whose center is the regular Voronoi center of the tetrahedron under consideration (Figure 1.31.a).
The void space on the triangular face shared by two adjacent tetrahedra defines a throat (Figure 1.31.b
and c). The condition for the incompressible fluid in a pore i implies that:

j4∑

j=j1

qij = 0, (1.6)

where j ∈ {j1, j2, j3, j4} are four pores adjacent to the pore i and qij is the fluid flux from the pore i to
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the pore j. The relation between qij and the pressure difference between two pores i and j is expressed
using a local conductance gij :

qij = gij
pi − pj
Lij

, (1.7)

where Lij is the distance between the centers of pores i and j. The local conductance gij between two
adjacent pores i and j is related to the geometry of the throat between them by adapting the Hagen–
Poiseuille relation, which was initially derived for a fluid flow through a cylinder, to the channel of complex
geometry between the two adjacent pores.

gij =
AijR

h
ij

2

2µ
, (1.8)

where Aij is the void area on the throat between two pores i and j and Rh
ij is a hydraulic radius which is

defined as the ratio between the volume Φij occupied by the fluid in the channel and the area γij of its
solid-fluid interface.

The coupled DEM-PFV is still computationally very expensive to simulate the suffusion process despite
a great simplification of the fluid model. This is due to a big number of pores to be handled when a widely
graded soil is considered. In addition, during the suffusion process, fine particles move greatly so the
Delaunay triangulation and the Voronoi decomposition must be updated frequently during the simulation.
Aboul-Hosn (2017) used coupled DEM-PFV to simulate only the onset of the suffusion for a widely graded
sample composed of 10000 particles. Wautier et al. (2019) used also a coupled DEM-PFV to simulate
the suffusion for a widely graded sample composed of 5000 particles to investigate the microstructure
modifications during suffusion, such as force chain orientation and transport of particles distances.

(a) (b) (c)

Figure 1.31: (a) Pore and (b) throat and (c) pore network defined in the coupled DEM-PFV model
(Chareyre et al., 2012).

There exist also some simplified versions of the coupled DEM-CFD to reduce the computational cost
(Shafipour and Soroush, 2008; Zhao and Shan, 2013; Hu et al., 2019; Kawano et al., 2018; Pirnia et al.,
2019). In these simplified versions, instead of solving the Navier-Stokes equation (1.4) on a mesh suffi-
ciently fine in the void space between solid particles, the Navier-Stokes equation and mass conservation
equation are integrated on a coarse mesh of cells whose size is several times larger than the mean particle
diameter. The main issue in this resolution is how the interaction force between the solid particles and
fluid in each cell (force fp) is estimated. No clear relation has been established so different empirical
relations were used. Like the coupled DEM-PFV, these simplified version of the coupled DEM-CFD are
computationally expensive so they were used by some authors (Hu et al., 2019; Kawano et al., 2018; Pirnia
et al., 2019) to simulate only the early stage of the suffusion process.
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The coupled particle-fluid models, which have been developed up to date, are used in different domains
such as mechanical and chemical, like the transport of fluid-particles in iron pipes and dissolution of solid
particles in a fluid. But these models are computationally very expensive to simulate a complete suffusion
process. In order to investigate numerically the impact of suffusion on the mechanical behavior of eroded
soils, some authors proposed to represent the internal state of an eroded soil by removing some fraction
of fine particles from the original soil (Wood and Maeda, 2008; Wood et al., 2010; Scholtès et al., 2010).
These approaches will be presented in the next section.

1.6.1.2 DEM with particle removal

Wood and Maeda (2008) and Wood et al. (2010) proposed to remove progressively a fraction of the
smallest particles from an original sample to represent the internal state of the sample after suffusion.
According to this approach, a sample composed of disks with a given well-graded particle size distribution
is first isotropically compressed and then sheared to a certain stress state. At the target stress state, the
smallest particle is removed from the sample to mimic the detachment of fine particles by the seepage
force. The removal of this particle might perturb the equilibrium of the sample so it is next stabilized
while external stresses are controlled and kept constant. The sample reaches then a new equilibrium state
and some deformations are induced by this perturbation. This process of removing particles is repeated
until reaching 25% of the axial strain or 5% of removed particles. Figure 1.32 shows the behavior of the
original sample and that of the sample during the process of particle removal at different stress-ratio states
(τm/σm), where τm and σm are the shear and the isotropic stresses applied on the sample. It can be seen
that the removal of particles leads to a contractive volumetric deformation at a low stress ratio but to a
dilative volumetric deformation at a high stress ratio.

Figure 1.32: Tests with particle removal : (a) stress ratio; (b) volumetric strain (Wood and Maeda, 2008).

In a widely graded granular sample subjected to a shear stress state, some fine particles are not
stressed or weakly stressed, while other fine particles are highly stressed. The seepage flow tends to wash
out preferentially the less stressed fine particles from the solid skeleton as stated by Skempton and Brogan
(1994). Scholtès et al. (2010) proposed to consider not only the size but also the degree of interlocking
of each fine particle in the process of particle removal. To quantify the degree of interlocking, an internal
moment tensor Mp is defined for each particle (Staron et al., 2005):

Mp
ij =

∑

c∈p

rcif
c
j , (1.9)

where subscript c runs over all contacts on particle p; rc is the vector connecting the center of particle p
to the contact point and f c is the contact force. The mean internal moment mp (mp = tr(Mp)) defines
the degree of interlocking of particle p. Among the smallest particles, the one with the lowest degree of
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interlocking is removed from the sample. A stabilization is performed so that the sample reaches a new
equilibrium state before removing the next particle. This process of particle removal is repeated until the
percentage of removed particles is up to 5%.

Figure 1.33: Particle extraction at different value of stress ratio η = q/p (0, 0.31, 0.57, 0.72, 0.75, 0.78,
0.86) followed by a triaxial compressions. The thick black line corresponds to the initial dense sample
(Scholtès et al., 2010).

Figure 1.33 shows the evolutions of the stress ratio η = q/p of and of the volumetric strain during the
process of particle removal and during the triaxial compression. The authors found that the behavior of
the sample is strongly influenced by the stress state at which fine particles are removed. Indeed, the soil
shows a contractive behavior if the extraction process was performed at low stress ratios η = 0, 0.31 and
0.57 (red lines in Figure 1.33), but a dilative behavior if the extraction process was performed at high
stress ratios η= 0.72, 0.75, 0.78 and 0.86 (green lines in Figure 1.33). Figure 1.33 also shows that the loss
of fine particles leads to a reduction in shear strength and dilativeness, which is in good agreement with
the experimental results presented in Section 1.5.

Another approach for removing fine particles was proposed by Aboul-Hosn (2017). The coupled DEM-
PFV presented above was used to simulate the onset of suffusion in a widely graded sample. The equi-
librium of each solid particle subjected to contact forces exerted by its neighbors and to the fluid force is
checked by comparing the magnitude of the unbalanced force on the particle with the magnitude of the
contact forces. The magnitude of the unbalanced force on a particle p is defined as:

fp
unb =

∥∥∥
∑

c∈p

f c + f
p
f

∥∥∥, (1.10)

where c runs over all contacts of particle p; f c is the contact force; f
p
f is the force exerted by fluid on

particle p; and ‖.‖ denotes the norm of a vector. A particle is considered to be out of equilibrium if the
unbalanced force is significant compared to the mean magnitude of the contact forces according to the
following criterion:

fp
unb > λ〈‖f c‖〉, for c ∈ p, (1.11)

where 〈.〉 denotes the average operator; and λ is a threshold value that was chosen to be equal to 0.1.
A particle out of equilibrium is considered to be detached from the solid skeleton. It is then considered
to be transported by fluid through the interstitial space if its diameter is smaller than an empirical value
taken as Dc35 which is the constriction size for which 35% of constrictions are smaller than this size. If a
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particle is considered to be detached and transported by fluid, it is removed from the sample.

Figure 1.34 shows a comparison between the behavior of samples eroded at different hydraulic gradients
and that of a dense initial sample (NE) during drained triaxial tests. The eroded samples show clearly a
significant reduction in shear strength at the peak state and dilativeness, particularly when the hydraulic
gradient is bigger than 6 (group 2).

(a) (b)

Figure 1.34: (a) Stress ratio q/p and (b) volumetric strain ǫv versus the axial strain for samples eroded at
different hydraulic gradients i, compared to that of the intact sample (NE) (Aboul-Hosn, 2017).

The methods presented above allow us to represent the internal state of an eroded soil by removing
a fraction of its fine particles and then to study the impact of this particle removal on the mechanical
behavior of eroded samples from a micro-mechanical point of view. However, these methods based on
the DEM are limited to the sample scale and cannot be extended to the scale of earth-filled structures to
predict the consequences of suffusion on their mechanical stability. In the next section, we present a model
based on the homogenization technique, which allows us to take into consideration the impact of suffusion
in a constitutive law for eroded soils. The latter can be used in a finite element modeling to predict the
impact of suffusion on the mechanical behavior of an earth-filled structure.

1.6.2 Models based on the homogenization technique

The goal of a homogenization technique is to establish a link the macroscopic behavior of a material at
the scale of a representative element volume (REV) to the local properties of the material. For a granular
material, the local scale is usually defined at contacts between particles. Figure 1.35 shows the scheme
of a homogenization technique for granular materials. According to this scheme, the macroscopic stresses
(σ) and strains (ε) can be determined from the forces of contact (f c) and the relative displacements at
contact points (uc) at the local scale using homogenization operators. Inversely, we can use the localiza-
tion operators to determine the microscopic quantities from the macroscopic ones. The contact force f c

and the relative displacement at contact point uc are related by a microscopic constitutive law.

Hicher (2012, 2013) proposed a homogenization technique to take into account the structural changes
resulting from the loss of fine particles caused by suffusion. The basic idea of this model is to view a gran-
ular material as a set of microsystems which correspond to the contact planes with different orientations.
A local constitutive law is introduced to relate interparticle forces and displacements along a set of contact
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Figure 1.35: Scheme of a homogenization technique for granular media (Jean and Cambou, 2001).

planes. The overall stres–strain relationship is then obtained from averaging the contact plane behavior.
This model is summarized below. Interested readers can refer to Hicher (2012, 2013) for more details.

• Starting from a macroscopic stress increment δσ, the force on each contact plane is localized:

δf c
j = δσijA

−1
ik lckV, (1.12)

where lc is the vector joining the centers of two particles at contact c; V is the total volume of the
REV; and A a fabric tensor describing the micro-structure of the material under consideration:

Aik =

N∑

c=1

lci l
c
k, (1.13)

where N is the number of contacts.

• The local behavior at each contact plane is modeled by an elasto-plastic law, from which contact
force δf c and inter-particle displacement δuc are related by

δf c
i = kcijδu

c
j , (1.14)

where kc is an elasto-plastic stiffness tensor (see Chang and Hicher (2005) for a detailed expression
of this tensor). In this local constitutive law, the initial global void ratio e0 is considered as a state
parameter of the soil. The author assumed that the loss of fine particles leads to an increase in
void ratio so the void ratio of an eroded soil is calculated as e0 = (e0)ne+(∆e)er where (e0)ne is the
initial void ratio of the corresponding intact soil and (∆e)er is the increase in void ratio due to the
loss of fine particles fe: (∆e)er = fe(1+(e0)ne)/(1−fe) with fe being the fraction of eroded particles.

• The local displacement δuc at each contact plane is calculated from the contact force δf c by using
the local constitutive relation (1.14).

• The macroscopic strain δε is calculated by averaging local inter-particle displacements by using the
following homogenization operator:

δuj,i = A−1
ik

N∑

c=1

δucjl
c
k and δεij =

1

2
(δuj,i + δui,j) (1.15)
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The author compared the results obtained with the above model with those given by the DEM simula-
tions. For this comparison, the parameters of this model are calibrated on the numerical samples presented
in Scholtès et al. (2010) for which a fraction of fine particles are removed to mimic the loss of fine particles
due to suffusion. As shown in Figure 1.36, the model based on the homogenization technique is capable
of reproducing the reduction in shear strength and the contractive behavior of eroded samples.

(a) (b)

(c) (d)

Figure 1.36: Comparison between the results obtained with the DEM simulations (a and c) with those
given by the homogenization technique presented in Hicher (2013) (b and d).

It should be noted that the above model assumes that the main effect of suffusion is the increase in
void ratio due to the loss of a solid fraction. As the void ratio increases after suffusion, the shear strength
of eroded soils decreases according to this model. The erosion of fine particles from the solid skeleton
triggers a rearrangement of the microstructure and also an increases of the heterogeneity of the eroded
soil. Even though the above model takes into account this rearrangement of particles, it does not take
into account the heterogeneity of the eroded soil caused by suffusion.

1.7 Conclusions

We have presented above a literature review of the role of fine particles in the mechanical behavior
of widely graded granular soils and the consequences of the loss of fine particles caused by suffusion on
the mechanical properties of eroded soils. We also presented several approaches based on the DEM and
on the homogenization technique to model suffusion and its impact on the mechanical behavior of eroded
soils. The following conclusions can be drawn:
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• A presence of fine particles affects greatly the density of mixed soils. There exists an optimal fine
content where a mixed soil reaches its minimum void ratio. An addition of fine particles leads to a
decrease in void ratio if fine content is smaller than this threshold value but to an increase in void
ratio otherwise.

• Fine particles play an important role in the mechanical behavior of a mixed soil. An increase in fine
content might lead to an increase or a decrease in shear strength and dilativeness of mixed soils, de-
pending on the particle size distribution curve, on the way the initial density is controlled, and so on.

• When a mixed soil is subjected to suffusion, some fraction of fine particles is eroded by the fluid
flow. This loss of fine particles might change greatly the mechanical behavior of eroded soils. Up to
date, mechanical consequences of suffusion are not well understood yet. Some preliminary studies
have showed that suffusion causes a reduction in shear strength and in dilativeness to eroded soils.
Further investigation on this topic are needed.

• Several coupled DEM-fluid models have been developed to simulate fluid flow through a granular
soil. These models are computationally very expensive; therefore they have been used to simulate
only the onset of suffusion. Up to date, it is difficult to simulate the whole suffusion process with
these coupled DEM-fluid models.

• Models based on the DEM with particle removal have been proposed to mimic the loss of fine
particles of a given sample caused by suffusion. These models consist in removing the smallest and
the less loaded particles from the sample at a target stress state. Numerical simulations with these
models show a reduction in shear strength and in dilativeness of eroded samples, which are qualita-
tively in agreement with the experimental finding. It should be noted that only the detachment of
fine particles among three main mechanisms of suffusion is taken into account in this kind of model.

• Models based on the homogenization technique have been introduced to predict the impact of
suffusion on the mechanical behavior of eroded soils. In this kind of models, the increase in void
ratio caused by the loss of a solid fraction is assumed to be the main effect of suffusion. The validity
of such an assumption is questioned.

In this work, we aim to bring a better understanding of consequences of the loss of fine particles on the
mechanical behavior of eroded soils by performing numerical simulations with the DEM. This work is
divided into two parts. The first part is dedicated to a study of the effect of fine content on the mechan-
ical behavior of mixed soils at the macro-scale and at the particle scale. This study will be presented in
Chapters 2 and 3. In the second part, we aim to study the mechanical behavior of eroded soils. We do not
use a coupled particle-fluid model to simulate a full suffusion process. Instead, we propose three following
levels for representing the internal state of eroded soils:

• Level 1: at this level, the effect of suffusion is assumed to be a reduction in fine content on the
particle size distribution (PSD) curve. Starting from an initial PSD, a fine content is removed
from this initial PSD curve and a sample is generated according to the new PSD curve, which is
considered as the eroded sample.

• Level 2: this level consists in removing some fraction of fine particles from an original sample to
obtain an eroded sample. We use different methods to remove fine particles. We propose a new
method to identify the fine particles which are susceptible to be detached by the seepage flow.

33



Chapter 1: Literature Review

• Level 3: we aim to take into account the transport of fine particles and the blockage of fine particles
by constrictions of the pore network to represent the internal state of eroded soils.

The second part of our work will be presented in Chapters 4 and 5.
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Chapter 2

Discrete element simulations of gap-graded

soils

2.1 Introduction

Granular materials are composed of distinct rigid particles which interact each other through contacts
between them. These materials are strongly discontinuous and heterogeneous. Their macroscopic proper-
ties are then governed by properties at the particle scale such as friction at contacts, particle shape and
arrangement of particles. The Discrete Element Method (DEM) has been introduced to model this kind of
material as a collection of rigid distinct elements (Cundall and Strack, 1979; Luding, 2008). Each element
can move independently according to Newton-Euler equations of motion and the interaction between them
occurs only at their contact according to a contact law. One of the main advantages of this method is
that it is capable to modeling the complex behavior of a granular medium with few parameters. As every
local information at the particle scale (particle position, particle velocity and contact force, etc.) can be
accessed during simulation, the DEM is a powerful tool to study the behavior of granular material at the
particle scale. It should be noted that such a study is difficult to be carried out experimentally. In this
work, we perform numerical simulations with the DEM to investigate the effect of the fine particles on the
mechanical behavior of gap-graded soils and consequences of a loss of fine content on their macroscopic
properties at the particle scale.

This chapter starts by a brief presentation of the DEM in Section 2.2. After that, numerical samples
simulated in our work are presented in Section 2.3. It is vital to highlight that the DEM is computationally
very expensive so the number of particles should be carefully chosen to gain the computation time, while
guaranteeing the representativity of the simulated samples. Section 2.4 is thus dedicated to an analysis
of the representativity of the simulated samples in our simulations. In Section 2.5, we study the effect of
fine content on the compactness and on the mechanical behavior of loose and dense gap-graded samples.

2.2 A brief review of the Discrete Element Method (DEM)

There are two main approaches for the DEM: Molecular Dynamic (MD) approach and Contact Dynamic
(CD) approach. Both approaches model a granular material as a collection of distinct rigid particles whose
motion follows the Newton-Euler law but they differ from each other in the way of modeling the interaction
at contact. The Molecular Dynamic (MD) approach considers a small compliance effect at the contact
point so the contact force can be uniquely determined from the elastic relative displacement at the contact
point Luding (2008). On the other hand, the Contact Dynamic (CD) approach neglects the compliance
effect at the contact point. As a consequence, the contact force cannot be uniquely determined from the
relative displacement at the contact point without considering the dynamic equations of the whole system
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Radjai and Richefeu (2009). In addition, as particles are assumed to be perfectly rigid, a discontinuity of
the particle velocity occurs when two particles collide each other. This discontinuity render the numerical
resolution of the CD approach much more complex than that of the MD approach. The DEM based on
the MD approach is chosen in our work in view of its simplicity in the numerical resolution. The main
ingredients of the MD approach are presented below.

2.2.1 Particle shapes

Most studies based on the DEM have used simplified particle shapes as disks or spheres. The main
advantages of these simple shapes are that the contact between two adjacent circular or spherical particles
occurs at only one point and the distance between them is easily calculated. However, circular or spher-
ical particles roll easily on each other and cannot represent the real soil. Many studies tried to consider
complex shapes such as polygons or polyhedra (Szarf et al., 2011; Radjaï and Dubois, 2011). For these
complex shapes, a great computational effort is required to detect contacts and to calculate contact forces
and torques. An alternative approach makes use of clumps of spherical particles to represent a real particle
shape (Salot, 2007; Das, 2007). As shown by Das (2007), a real particle shape can be approximated by a
cluster of overlapping spheres (Figure 2.1). However, many spheres are needed to model a real particle,
increasing greatly the computation time to simulate a real soil sample. Belheine et al. (2009); Oda and
Iwashita (2000) pointed out that the behavior of a real granular material such as sand can be reproduced
by simulating a numerical sample composed of spherical particles with an appropriate contact model to
take into account the rolling and twisting resistances at contacts between two non-spherical particles.

(a) (b)

Figure 2.1: (a) A real sand particle and (b) particle shape obtained by clustering overlapping spheres
(Das, 2007).

In this study, we aim to study the mechanical behavior of gap-graded soils composed of fine particles
and coarse particles. To simulate such granular materials, a great number of particles is needed so the
simulation is very time-consuming. Spherical particles are considered in our simulations to keep the
computation time reasonable.

2.2.2 Newton-Euler equations

Each particle p in the DEM has six degrees of freedom: three translational displacements and three
rotations. Its position is located by the vector xp = [xp1, x

p
2, x

p
3] and its three rotations along the three axes
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1, 2 and 3 are denoted by the vector θp = [θp1, θ
p
2, θ

p
3] (Figure 2.2). Its dynamics follows the Newton-Euler

equations of motion:

1

2

3

xp

θ
p
2

θ
p
1

θ
p
3

O

Figure 2.2: Position vector xp and three rotations θp1, θ
p
2 and θp3 of each particle.





mpẍpi =
∑

c∈Cp

f c
i + f ext,p

i , for i = 1, 2, 3

Ipθ̈pi =
∑

c∈Cp

M c
i +M ext,p

i ,
(2.1)

where:
• ẍp and θ̈p denote the translational and rotational accelerations, respectively;
• mp and Ip are the mass and the moment of inertia of particle p, respectively;
• superscript c runs over the set of contacts Cp of particle p;
• f c and M c are the contact force and the moment of the contact force with respect to the particle

center, respectively; and
• F ext,p and M ext,p are the exterior force and moment applied on particle p, respectively.

The system of Equations (2.1) combined with the initial conditions xp(t = 0) = x
p
0, θ

p(t = 0) = θ
p
0,

ẋp(t = 0) = ẋ
p
0 and θ̇p(t = 0) = θ̇

p
0 constitutes an initial value problem to be solved. It can be numerically

integrated by using the central-difference method with a time increment ∆t as follows:
• Translational and rotational accelerations ẍpi and θ̈pi at time t are calculated with Equation 2.1;
• Then, the translational and rotational velocities ẋpi and θ̇pi at time t + ∆t/2 are calculated from

those calculated at time t−∆t/2:
{
ẋpi (t+∆t/2) = ẋpi (t−∆t/2) + ẍpi (t)∆t

θ̇pi (t+∆t/2) = θ̇pi (t−∆t/2) + θ̈pi (t)∆t;
(2.2)

• Finally, the position of the particle center xpi and rotation θpi at time t + ∆t are calculated from
those calculated at time t:

{
xpi (t+∆t) = xpi (t) + ẋpi (t+∆t/2)∆t

θpi (t+∆t) = θpi (t) + θ̇pi (t+∆t/2)∆t.
(2.3)

2.2.3 Interaction law at contacts

When two particles touch each other, a contact model is needed to calculate the force at the contact.
The DEM based on the MD approach allows a small overlap at contact although the particles are assumed
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to be rigid as illustrated in Figure 2.3.b. The overlap δc at the contact between two spherical particles i
and j with respective diameters Ri and Rj is calculated as:

δc = (Ri +Rj)− ‖xi − xj‖. (2.4)

Two particles are in contact if δc ≥ 0. In this case, we use a simple model illustrated in Figure 2.3.a for
their interaction at the contact. This model consists in modeling the normal interaction by a normal spring
with stiffness Kc

n and the tangential interaction by a tangential spring with stiffness Kc
t and a slider that

represents friction at the contact point. This model does not take into account the rolling and twisting
resistances at contacts between two spherical particles.

Figure 2.3: (a) Interaction law according to (Cundall and Strack, 1979), (b) overlap δc at the contact.

Figure 2.4: Force–displacement relations (a) in the normal direction and (b) in the tangential direction.

Figure 2.4 illustrates the force-displacement relations obtained with a linear contact model adopted in
our work. According to this contact model, the normal force f c

n at the contact is given by:

f c
n = max(0,Kc

nδ
c), (2.5)

and the tangential force is calculated incrementally:

δft = Kc
t δu

c
t , (2.6)

where uct is the relative tangential displacement. Coulomb’s friction law limits the tangential force ft:

| f c
t |≤ f c

n tanϕ, (2.7)
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where ϕ is the friction angle at the contact.

The contact normal and tangential stiffnesses Kc
n and Kc

t used in Equations (2.5) and (2.6) are cal-
culated from the respective particle stiffnesses kn and kt of two contacting particles i and j by assuming
that the latter ones are connected in series in each direction:

Kc
n =

kink
j
n

kin + kjn
, Kc

t =
kitk

j
t

kit + kjt
(2.8)

2.2.4 Computation cycle

The computation in the DEM is performed in a stepping manner as illustrated in Figure 2.5. Each
step corresponds to an interval of time [t, t + ∆t]. At the beginning of each computation step, all local
information such as particle position, particle velocities and contact forces are known from the previous
step. The Newton-Euler equations of motion are first integrated according to the method presented in
Section 2.2.2 to compute the particle positions and velocities at the end of the step. All contacts between
particles are next detected to update the list of contacts. Finally, interaction forces at each contact are
calculated according to the contact model presented in Section 2.2.3. This computation cycle is repeated
until the end of our simulation.

Figure 2.5: Computation cycle of the DEM.

2.2.5 Time step

A granular material is modeled by the DEM is a system composed of masses and springs joining every
couple of masses. For such an oscillating system, the stability of the central difference scheme presented
in Section 2.2.2 is guaranteed if the time step ∆t is sufficiently small to allow the propagation of waves
in the system. Indeed, the time step ∆t must be chosen to be sufficiently small compared to the natural
period TN of each oscillating mode in the system. The natural period is expressed by the following relation
(Catalano, 2012):

TN =

√
mi

Kj
i

, (2.9)

where mi is the mass of particle i; and Ki
j is an equivalent stiffness that is evaluated by considering all

the contacts of particle i for each degree of freedom j = 1, 2, 3 and 4 (j = 4 corresponds to the rotational
stiffness). The critical time step is defined as the minimum natural period:

∆tcrit = min
(i,j)

√
mi

Kj
i

. (2.10)

The time step is chosen as ∆t = α∆tcrit with α < 1 is a coefficient of safety.
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2.2.6 Numerical damping

The DEM is a dynamic method that consists in solving the Newton’s second law of dynamics for
each particle as presented in Section 2.2.2. Thus, any action applied to the system generates waves that
propagate throughout the medium. When simulating a quasi-static granular sample, these wave must
be damped such that the system remains in a quasi-equilibrium state. This damping can be achieved
by adding dashpots in series with the springs in the normal and tangential directions at each contact.
For this viscous damping, it is not easy to choose values of the normal and tangential viscosities to avoid
the over-damping. Cundall and Strack (1979) proposed a non-viscous numerical damping by adding a
damping force F d,p and a damping moment, Md,p to the right hand side of Equation 2.1:

{
F d,p
i = −ζ | F p

i | sign(ẋpi ),

Md,p
i = −ζ | Mp

i | sign(θ̇pi ),
(2.11)

where ζ is the damping coefficient which can be chosen between 0 and 1; F p and Mp are resultant force
and moment acting on particle p.

2.3 Numerical simulations of binary mixtures

In our study, we simulate triaxial compression tests on 3D granular samples by using the open-source
software YADE which is an C++ open-source for the DEM framework (Šmilauer et al., 2015). In the
following, we first discuss how parameters are chosen in our simulations and then we present how numerical
samples are generated, compacted and sheared by triaxial compression tests.

2.3.1 Parameters

The numerical samples simulated in our work are composed of spherical particles whose sizes are se-
lected to match the gap-graded PSD curve shown in Figure 2.6(a). This gap-graded curve is characterized
by a gap ratio Gr = Dmin/dmax where Dmin is the minimum diameter of coarse particles and dmax is
the maximum diameter of fine particles. According to Chang and Zhang (2013), internal instability for
internal erosion due to seepage flow for a gap-graded material might occur for a gap ratio Gr ≥ 3. In our
simulations, the gap ratio Gr = 3 is chosen to keep the computation time reasonable since a higher value
of Gr leads to a larger number of particles and then to a very long computation time. The fine content fc
is varied from 0% to 100%. Figure 2.6(b) illustrates a simulated gap-graded sample.
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Figure 2.6: (a) The considered gap-graded grain size distribution and (b) a simulated granular mixture.
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The parameters used in the simulated samples are shown in Table 2.1. The microscopic parameters
used in the contact model are identical to those used in the paper of Scholtès et al. (2010). It should be
noted that the normal particle stiffness kn must be sufficiently large so that the particles can be considered
to be rigid. The particle rigidity can be assessed by using the following dimensionless number κ:

κ =
kn
D.p

, (2.12)

where D is the average particle diameter and p is the confining pressure. The value of kn/D = 250 MPa
shown in Table 2.1 and a confining pressure p = 100 kPa result in κ = 2500. Combe (2001) recommended
a value of κ between 500 to 40 000. In our simulations, κ = 2500 is sufficient to consider that the particles
are rigid. The inter-granular friction angle ϕ = 35◦ is chosen in our simulations to obtain a reasonable
shear resistance of the simulated samples with spherical particles.

Table 2.1: Chosen values of the numerical parameters.

Local parameters Value

Mass density ρ 2600 kg/m3

Particle stiffness kn/D 250 MPa

Particle stiffnesses ratio kt/kn 0.5

Inter-granular friction angle ϕ 35◦

Damping coefficient ζ 0.3

Safety coefficient of the time step α 0.8

2.3.2 Sample generation and compaction

Particles are first randomly instantaneously generated into a cube composed of six rigid walls. At this
stage, each particle diameter is reduced by a factor of 2.0. Particles are then progressively expanded to
reach the target size distribution. After that, the box dimensions are slowly reduced until the stresses
σi (i = 1, 2, 3) reach a target confining stress of 100 kPa. To promote the arrangement of particles, the
inter-granular friction angle ϕ is reduced during the compaction process. As shown by O’Sullivan (2011),
the void ratio largely varies as the inter-granular friction angle ϕ decreases. The loosest state is obtained
with ϕ = 35◦ and the densest state is obtained with ϕ = 0. At the end of the compaction, the initial
value of the friction angle must be reset. The gravity is set to zero to avoid an anisotropic arrangement
of particles during the generation and compaction of the samples. The above generation and compaction
methods allow us to obtain isotropic and homogeneous samples.

2.3.3 Triaxial compression tests

After the compaction, triaxial compression tests are performed on the numerical samples. During
these tests, a strain rate ε̇1 is imposed in direction 1, while the stresses σ2 and σ3 in the respective lateral
directions 2 and 3 are kept constant and equal to 100 kPa. The strain rate ε̇1 must be low enough such that
the dynamic effect induced by the shearing is low and then the simulated samples remain in a quasi-static
regime. The dynamic effect can be quantified by an inertia number I defined as:

I = ε̇1

√
m

D.p
, (2.13)
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where m is the average particle mass, D is the average particle diameter and p is the confining pressure.
A strain rate ε̇1 = 0.01 s−1 is chosen in our simulations, which corresponds to an inertia number I about
10−4. Sibille (2006) recommended a value of I smaller than 10−2 for a quasi-static test. Figure 2.7 shows
the behavior of a simulated loose sample of 8 000 particles with zero fine content during the triaxial com-
pression. It can be seen that, the behavior of this loose sample is dilative but, normally, loose samples
have contractive behavior. This contradiction can be explained by the fact that in numerical samples, the
particles are spherical which are different than the real ones. The rolling between these particles is easier
in comparison with that of the real particles. For that, we can see a dilative behavior for some loose samples.
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Figure 2.7: Stress ratio q/p and volumetric strain εv versus axial strain ε1 for a loose sample.

For a simulated sample, it is important to choose a number of particles sufficient such that the condi-
tions of a representative elementary volume (REV) are achieved and the computation time is reasonable.
This point will be discussed in the next section.

2.4 REV for gap-graded soils under triaxial compression tests

2.4.1 REV in the DEM

The REV is a key concept for studying random heterogeneous materials such as granular materials.
The REV is a sample that contains the constituents of the heterogeneous material under consideration
(solid phase, fluid phase, voids, etc.). On one hand, this sample must be sufficiently small compared to
the size of the structure such that the REV can be considered as a point at the structure scale. On the
other hand, it must be sufficiently big compared to the size of the local constituents such that it can
be considered to be representative of the material under consideration. Figure 2.8 shows a conceptual
representation of the change in a material property as the sample size V increases. If the the sample size
is smaller than a threshold value Vmin, the material property fluctuates. In this case, we obverse the ma-
terial at the microscopic scale at which the material is very heterogeneous. When V > Vmin, the material
property does not change with the sample size as long as the sample size is smaller than a second threshold
value Vmax. The sample in this case contains a sufficiently large number of microscopic constituents so an
average of the corresponding property of the microscopic constituents leads to only minor fluctuations. A
further increase in V beyond Vmax leads to a change in the material property. In this case, the sample is
not representative of the material at a point in the structure since it includes the spacial variability at the
structure scale. The REV size must be then between Vmin and Vmax.
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Figure 2.8: Conceptualization of the representative elementary volume (REV) (Brown et al., 2000).

The REV size depends mainly on the material under consideration and on the property that we want
to study. A sample can be considered as a REV if the two following conditions are satisfied:

• An increase in its size does not lead to a significant change in the material property under consid-
eration;

• Different random generations of microscopic constituents give close values of the material properties
under consideration.

The choice of the sample size when performing experimental tests on granular soils is usually based on
experimental standards. The ASTM standard (ASTM D4767-88, 1988) recommends that the ratio of the
specimen diameter to the largest particle size is larger than 6, while the French standard (NFP 94-074,
1994) recommends a value larger than 5 for widely graded soils and 10 for uniformly graded soils. Al-
Raoush and Papadopoulos (2010) studied the REV for a sand by using the X-ray microtomography. The
authors considered different material properties such as porosity, particle size distribution and coordina-
tion number (average number of contacts per particle) to determine the REV size. They found that the
minimum sizes of the REV obtained for the particle size distribution and coordination number are larger
than that for the porosity. On the whole, the ratio of the REV volume to the volume of a sphere with
diameter D50 must be greater than 2× 104. This means that the REV diameter must be 27 times greater
than the particle diameter D50. Moreover, a larger size of the REV is required as the uniformity coefficient
Cu = D60/D10 is increased.

For DEM numerical simulations, no clear rule has been established. Wiącek and Molenda (2016)
showed that for polydisperse granular packings which are not widely graded and are subjected to uniaxial
compression, the REV size is about 15 times the average particle diameter, i.e. the sample must include
at least 15 × 15 × 15 = 3375 particles. Salot (2007) found out that the REV size for simulating a triax-
ial compression test on samples having a tight and uniform PSD is about 8000 particles. Other studies
considered samples composed of 10000 particles (Plassiard et al., 2009; Belheine et al., 2009; Widuliński
et al., 2009; Wang and Li, 2014). For a gap-graded PSD, the number of particles required for a REV must
be varied with fine content, and 10000 particles are, in general, not enough. Shire et al. (2014a) stated
that a gap-graded sample with a minimum of 500 coarse particles can be considered as a REV when
simulating an isotropic compression. Kawano et al. (2016) used 30000 particles in their simulations of
gap-graded samples subjected to isotropic compression. In numerical simulations of isotropic compression
tests performed by Minh et al. (2014), the number of particles for binary mixtures is varied with fine
content. A shear loading might require a larger number of coarse particles to achieve a RVE. It is worth
noting that the RVE size for granular materials is determined in a statistical sense. This means that differ-
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ent random generations of samples with the same size must give close results as stated by Chareyre (2003).

In the next section, we will show a study of the REV size when simulating triaxial compression tests on
gap-graded soils with the PSD shown in Figure 2.6. For each value of fine content, several samples with dif-
ferent sizes are simulated and for each sample size, different random generations of particles are performed.
Different macroscopic and microscopic properties such as porosity, peak stress ratio (q/p)max and coordi-
nation number are considered for determining the REV size. The dilatation angle which characterizes the
volumetric strain of samples is not considered in this study due to the difficulty in its determination. The
coordination number, defined as the average number of contacts per particle, is usually used to describe
the density of a granular sample at the micro-scale. This microscopic variable is not adequate for a binary
mixture for which the number of contacts per coarse particle is very different from the number of contacts
per fine particle. For such a system, a coordination number for the coarse fraction should be separated
from the one defined for the fine fraction as suggested by Minh and Cheng (2013). The coordination
number NC−C

C for the coarse fraction, which is defined as the average number of coarse-coarse contacts
per coarse particle, is considered in our study. As the computation time is very long when simulating
gap-graded samples, fine content fc is limited between 0 and 20%. Based on the obtained results, we
propose a relation between the REV size and fine content fc to extrapolate the REV size for greater values
of fine content. In the following, the variation of the considered properties with the sample size and the
dispersion of these properties for a given sample size but with different random generations will be studied
for loose samples. It should be noted that if the REV conditions are satisfied by a sample at the loose
state, they are obviously satisfied at the dense state as dense materials show lower dispersion of their
properties than loose materials.

2.4.1.1 Variation of the sample properties with the sample size

For this study, triaxial compression tests are performed on loose samples with gap ratio Gr = 3 which
are obtained by setting the inter-granular friction angle ϕ = 35◦ during the compaction phase presented
in Section 2.3.2. For each sample size, from 5 to 10 samples with random generations of particles are
simulated and a mean value is determined for each property (porosity, shear resistance (q/p)max and the
coordination number NC−C

C ). Figure 2.9 shows the variation of the mean values of the porosity n and of
the coordination number NC−C

C with respect to the ratio L/Dmax of the sample size L to the maximum
diameter Dmax. The variation of the peak shear strength (q/p)max with sample size is shown in Figure
2.10. It can be seen that the porosity n decreases and the coordination number NC−C

C increases with the
sample size and tend to reach constant values when the sample size is big enough. The shear strength
(q/p)max fluctuates strongly when the sample size is small and tends to reach a constant value as the
sample size is increased. For the samples composed of only coarse particles (fc = 0), a slight variation of
these properties is observed when the sample size L/Dmax is greater than 10.62. This value is agreement
with the results found by several authors who stated that the REV size must be, at least, 10 times bigger
than the mean particle diameter (Radjai, 2001). For binary mixtures, as a whole, these properties do not
fluctuate significantly when L/Dmax > 6. This means that the REV size for a binary mixture might be
much smaller than that for a uniformly graded sample.

To quantify the variation of a given sample property, namely x, with respect to the sample size, we
define a variation measure ǫ:

ǫ =
| xi − xi+1 |

xi
× 100%, (2.14)

where xi is the value of the considered property obtained for a given sample size Li and xi+1 is the value
obtained for the next sample size Li+1 considered in our simulations. This variation measure ǫ is calculated
for the porosity n, the coordination number NC−C

C and the shear strength (q/p)max at different sample
sizes. Figure 2.11 shows the obtained results for different fine contents. This figure confirms a stronger
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Figure 2.9: Mean values of the porosity n and of the coordination number NC−C
C versus sample size: a)

fc = 0%, b) fc = 5% , c) fc = 10% , d) fc = 15%, e) fc = 20%
.
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Figure 2.10: Mean value of the shear strength (q/p)max versus sample size: a) fc = 0%, b) fc = 5% , c)
fc = 10% , d) fc = 15%, e) fc = 20%

.

variation of the shear strength (q/p)max with respect to the sample size, compared to those of the porosity
n and the coordination number. This means that the REV size must be defined by considering the shear
strength (q/p)max. We define a minimum REV size for a given fine content if the variation measure ǫ for
(q/p)max does not exceed 5%. Figure 2.12 shows the minimum REV sizes determined for fine contents fc
from 0 to 20%. It is clear that the minimum REV size tends to decrease with an increase in fine content.

2.4.1.2 Dispersion of sample properties

For a given sample size, we simulate different samples generated randomly to study the dispersion of
their porosity n, of their coordination number NC−C

C and of their peak shear strength (q/p)max. Random
samples with different sample sizes and different fine contents are simulated with a gap ratio Gr = 3.

Figure 2.13 shows the dispersion of the stress-strain curves of 10 random loose samples with fc = 0
for different sample sizes L/Dmax. We can see that the dispersion is very high for L/Dmax = 8.47 which
corresponds to 2000 particles, and this dispersion decreases as the sample size is increased. It becomes
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Figure 2.11: Variation measure ǫ of the mean values of the shear strength (q/p)max versus sample size: a)
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Figure 2.12: Minimum REV size versus fine content fc.

small for L/Dmax = 13.35 which corresponds to 8000 particles.

In order to quantify the dispersion of a given property obtained for different random samples of the
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Figure 2.13: Dispersion of the stress-strain curves for 10 samples with fc = 0: (a) L/Dmax = 8.47, (b)
L/Dmax = 10.62; (c) L/Dmax = 13.35

same size, we use the coefficient of dispersion Cv defined as Cv = σ/µ where σ is the standard variation
and µ is the mean value of the considered property. For the samples with fc = 0 shown in Figure 2.13,
the coefficient of dispersion Cv calculated for the shear strength (q/p)max is about 9.8% for the sample
size L/Dmax = 8.47, 3.0% for L/Dmax = 10.62 and 1.3% for L/Dmax = 13.35. Figure 2.14 shows the
coefficient of dispersion Cv calculated for the porosity n, the shear strength (q/p)max and the coordination
number NC−C

C versus the sample size for different fine contents. It can be seen that these properties
disperse greatly when the sample size is small and their dispersion is attenuated as the sample size is
increased. Among the three considered properties, the shear strength (q/p)max shows the most important
dispersion. Therefore, the shear strength (q/p)max should be considered to determine the REV size for
granular soils subjected to shear loading, rather than the initial porosity n at the macro-scale and the
initial coordination number NC−C

C at the micro-scale. If we consider that a REV must have Cv ≤ 5% for
the shear strength (q/p)max, the minimum REV size can be determined for each fine content. Figure 2.15
shows the minimum REV size obtained with this method, compared to that obtained when the variation
of the shear strength with respect to the sample size was considered (Figure 2.12). It is shown that the
minimum REV size decreases with an increase in fine content. This suggests that the number of coarse
particles, which determines the sample size, could be reduced when fine content is increased to keep the
computation time reasonable, while the REV conditions are verified for the simulated samples. Moreover,
the REV size is larger when analyzing the dispersion of the shear strength for the same sample size than
when analyzing its variation with respect to the sample size. Therefore, we determine the REV size of the
simulated samples by analyzing the dispersion of the shear strength (q/p)max.
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Figure 2.15: Minimum REV size versus fine content fc = 5% to 20% obtained when analyzing the dispersion
and the variation of the shear strength with the sample size.

For fc > 20%, the above study is difficult to be carried out since the computation time for samples with
fc > 20% is very long. A question is how to determine the REV size for these large values of fine content.
We propose to extrapolate the REV size for fc > 20% from the values determined for fc ≤ 20%. To do
so, we determine a relation of the coefficient of dispersion Cv calculated for the shear strength (q/p)max to
the sample size L/Dmax and fine content fc by performing a linear regression on the data obtained from
the simulated samples with Gr = 3 and fc ≤ 20%/. The following relation is obtained:

Cv = −2.0(L/Dmax)− 0.196fc + 21.8, (2.15)

where Cv and fc are expressed in percentage. The coefficient of correlation R2 is 0.93, meaning a good
quality of the linear regression. This is confirmed in Figure 2.16 where values of Cv calculated with
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Equation (2.15) are plotted versus the corresponding values in the brute data. The plotted points are
located more or less on the diagonal of the figure. Equation (2.15) indicates that the dispersion of the
shear strength (q/p)max decreases with an increase in the sample size L/Dmax and with an increase in fine
content fc. It allows us to estimate the REV size for a given fine content by defining an admissible value
of the coefficient of dispersion Cv. For example, if the admissible value of Cv is 1%, the REV size L/Dmax

for fc = 40% must be greater than 6.5. A rough estimation gives that the REV for fc = 40% contains at
least 500 coarse particles and 62000 fine particles for a target porosity of 0.4.
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Figure 2.16: Values of Cv calculated with Equation (2.15) versus their corresponding brut values.
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Figure 2.17: Number of particles estimated for the REV for different fine contents fc and different gap
ratios Gr.

It should be noted that Equation (2.15) is only valid for the gap ratio Gr = 3. In order to take into
account the gap ratio Gr in such a relation for Cv, samples with different sizes and different random
generations are simulated for Gr = 2 with fc being varied from 5% to 20% and Gr = 4 for fc = 5% and
10% (simulations with Gr = 4 are very time consuming). A linear regression gives the following relation:

Cv = −2.11(L/Dmax)− 0.15fc + 1.41Gr + 17.96. (2.16)

A coefficient of correlation R2 equal to 0.9 means that the performed linear regression works also quite
well. Equation (2.16) means that the coefficient of dispersion Cv for the shear strength (q/p)max increases
with an increase in gap ratio Gr. This means that a larger REV size is required for a bigger gap ratio
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Gr. Equation (2.16) can be used to roughly estimate the number of particles needed for simulating a
gap-graded sample. Figure 2.17 shows a rough estimation of the number of particles required for the REV
size for binary mixtures with different gap ratios Gr and different fine contents fc by using Equation (2.16)
with an admissible value of Cv equal to 5% and a target porosity of 0.4. We can notice that as the gap
ratio Gr value increases, the number of particles increases greatly, specially for high values of fine content
fc. For Gr = 4 and fc > 10%, more than 100000 particles are required for a REV so the computational
cost is very expensive.

2.4.2 Size of simulated loose and dense binary mixtures

Based on the previous study, we can estimate the minimum size of a binary mixture with a given
fine content by using Equation (2.16) with an admissible value for the coefficient of dispersion Cv = 5%.
To respect the minimum sample size recommended by French experimental norm (NFP 94-074, 1994), a
minimum value of 5 is required for all simulated samples. For each simulation, the sample size is carefully
chosen such that it is bigger than the minimum size roughly estimated and the number of particles is
reasonable to gain the computation time. Table 2.2 shows the number of coarse particles, the number
of fine particles, the sample size L/Dmax and the estimated minimum sample size (L/Dmax)min for loose
binary mixtures with fine contents between 0 and 30%.

fc Nc Nf L/Dmax (L/Dmax)min

0 % 8000 0 13.35 8.4

5 % 1533 17078 7.73 7.9

10 % 1541 36000 7.75 7.4

15 % 1324 47241 7.25 6.9

25 % 1349 93315 7.43 6.0

30 % 1407 121751 7.6 5.5

Table 2.2: Respective numbers, Nc and Nf , of coarse and fine particles, sample size L/Dmax and the
estimated minimum sample size (L/Dmax)min for different values of fine content fc for loose samples.

For dense binary mixtures, fine content fc is varied from 0 to 100%. To keep the computation time
reasonable, the sample size is decreased when the fine content is increased. For fine contents between 0
and 20%, five random samples with the same size are simulated to calculate the coefficient of dispersion
Cv for the shear strength (q/p)max. As shown in Table 2.3, the values of Cv for these fine contents are
small, meaning that the chosen sample sizes are enough to verify the REV conditions. For fc ≥ 25%, we
did not perform this repeatability study because the simulation of samples with a high fine content is very
time-consuming. However, the samples with 25% ≤ fc ≤ 60% could be considered as REVs as their sizes
are almost equal to the sample size for fc = 20%. Starting from 60% of fine content, the fine particles play
a primary role in the mechanical behavior of binary mixtures as we will see in Chapter 3. The sample size
is not large enough compared to the size of coarse particles, but large enough compared to the size of fine
particles. As their mechanical behavior is mainly governed by fine particles, these binary mixtures could
be expected to be REVs.
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Table 2.3: Respective numbers, Nc and Nf , of coarse and fine particles, sample size L/Dmax, the estimated
minimum sample size (L/Dmax)min and coefficient of dispersion Cv for different values of fine content fc
for dense samples.

fc Nc Nf L/Dmax (L/Dmax)min Cv fc Nc Nf L/Dmax (L/Dmax)min

0 6000 0 11.9 8.4 1.0% 40% 982 141198 7.2 5.0

5% 1347 15305 7.3 7.9 3.0% 50% 748 164350 7.1 5.0

10% 1266 30346 7.2 7.4 2.3% 60% 567 183529 7.0 5.0

15% 1276 48571 7.2 6.9 1.6% 70% 331 166454 6.5 5.0

20% 1273 68646 7.2 6.4 1.7% 80% 193 166016 6.3 5.0

25% 1296 93170 7.3 6.0 90% 90 173963 6.2 5.0

30% 1 246 115186 7.4 5.5 100% 0 19489 17.5 -

35% 1 063 123 386 7.2 5.0

2.5 Macroscopic behavior of binary mixtures

To study the effect of fine content on the mechanical behavior of gap-graded soils, loose and dense
numerical binary mixtures with different fine contents are considered. For the loose mixtures, the fine
content fc is varied from 0 to 30% and their size is shown in Table 2.2. For dense samples whose size is
shown in Table 2.3, fine content fc is varied from 0 to 100%. In the following, we will show first how fine
content affects the density of binary mixtures. After that, the mechanical behavior of binary mixtures
with different fine contents will be analyzed.

2.5.1 Void ratios
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Figure 2.18: Minimum and maximum void ratios, emax and emin, versus fine content fc.

Numerical samples are compacted by the isotropic compaction method shown in Section 2.3.2. The
inter-granular friction angle ϕ can be varied to vary the density of a sample after compaction. We assume
that the maximum and minimum void ratios, emax and emin, is obtained by setting 35◦ and 0◦ to the
friction angle ϕ during the compaction process, respectively. Figure 2.18 shows the variation of emax and
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emin with fine content fc. For the loose samples, fine content fc is varied only between 0% and 30%.
Figure 2.18 shows that, as fine content fc is increased, emin decreases first, reaches then its minimum
value at fine content fc of 32% and increases when fc > 32%. The same tendency would be obtained if
loose samples with fc > 30% were simulated. This numerical result is qualitatively in good agreement
with the experimental results shown by Lade et al. (1998), Yang et al. (2006) and Thevanayagam et al.
(2002). Nevertheless, the optimal fine content of 32% found in this study is a little bit bigger than the
experimental values of around 25% found by Lade et al. (1998) and Yang et al. (2006) but is quite close to
the value of about 30% found by Minh et al. (2014) who performed simulations of binary mixtures with
the DEM. It is worth noting that this optimal fine content depends on several factors, particularly on the
particle size distribution and the particle shape.
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Figure 2.19: Global void ratio e, intergranular void ratio ec and interfine void ratio ef versus fine content
fc.

Figure 2.19 presents the global void ratio e, the intergranular void ratio ec and the interfine void ratio
ef versus fine content fc between 0% and 100% for the dense simulated samples (see Section 1.3 for the
definition of ec and ef ). It can be seen that the intergranular void ratio ec increases, while the interfine
void ratio ef decreases with an increase in fine content fc. Four remarkable ranges of fine content with
three threshold fine contents of 20%, 32% and 60% can be identified. For the range (i) with fc < 20%,
the intergranular void ratio ec remains more or less constant, while the interfine void ratio ef decreases
greatly with increasing fine content fc. This means that the fine particles fill the voids left by the coarse
particles without separating the latter ones. As a result, the global void ratio e decreases as the fine
content increases. It is worth mentioning that the interfine void ratio ef for this range of fine content is
very high compared to the intergranular void ratio ec and the curve for ef cannot be fully represented in
the chosen scale in Figure 2.19. Within the range (ii) with 20% ≤ fc < 32%, the fine particles separate
the coarse ones and occupy the void space between them. The fine-grained matrix gets denser but the
coarse-grained matrix gets looser. It should be noted that, for this range of fine content, the coarse-grained
matrix is still denser than the fine-grained matrix. One would expect that there exists an intermediate
configuration where all the fine particles fill fully voids between coarse particles without separating them;
however, this is not the case. As shown in Figure 2.19, at fc = 20%, fine particles begin to separate coarse
ones but the interfine void ratio ef is still very large. This means that intercoarse voids are not fully
filled yet by the fine particles. It is interesting to note that, at the optimal fine content of 32% where the
global void ratio e reaches its minimum value, the interfine void ratio ef is equal to the intergranular one
ec. For the range (iii) with 32% ≤ fc < 60%, the coarse particles are greatly separated by the fine ones
and the coarse-grained matrix gets looser than the fine-grained matrix. When fc ≥ 60% (range (iv)) the
intergranular void ratio ec is very large compared to the interfine void ratio ef which remains more or less
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constant. This means that, for this range of fine content, the coarse particles are strongly dispersed by
the fine ones.

It has been shown above that fine content affects greatly the void ratios of binary mixtures. By
increasing fine content while keeping the same compaction procedure, the internal state of binary mixtures
varies from a state where the coarse-grained matrix is much denser than the fine-grained matrix to a state
where the fine-grained matrix becomes much denser than the coarse-grained matrix. When the void ratios
of these two matrices are equal, the global void ratio is minimum. The variation of the internal state of
binary mixtures with fine content leads to a variation of their mechanical behavior. In the next section,
we will show how fine content affects the mechanical behavior of gap-graded soils.

2.5.2 Mechanical behavior

To study the mechanical behavior of gap-graded soils, we simulate triaxial compression tests on nu-
merical binary mixtures presented in Section 2.4.2. The procedure to perform a triaxial compression test
was described in Section 2.3.3. During triaxial tests, a strain rate ε̇1 = 0.01 s−1 is prescribed in the major
principal stress direction 1, while the lateral stresses σ2 and σ3 are kept equal to 100 kPa. Two series of
tests are performed: the initial relative densities Dr which are defined in Equation (1.3) are controlled to
be equal to 0, 100% and 50% in the first series, while the initial intergranular void ratio ec is controlled
to be equal more or less to 0.74. In the following, we present first the results obtained for the first series
of tests and then for the second series of tests.

2.5.2.1 Initial relative densities Dr controlled

The loosest and densest samples with different fine contents, whose void ratios e, ec and ef were
analyzed in Section 2.5.1, correspond to relative densities Dr of 0 and 100%. Samples with an intermediate
relative density Dr of 50% are also simulated. The samples with fc ≤ 40% are loaded until 15% of the
axial strain ε1 which is the value recommended by the ASTM standard (ASTM D4767-88, 1988) to achieve
the critical state. For the samples with fc > 40%, the triaxial tests are conducted until about 10% of the
axial strain due to a very long computation time for these samples.

a) Dr = 0%

Figure 2.20 shows the stress ratio q/p and the volumetric strain εv versus the axial strain ε11 for the
simulated loosest samples. The global void ratio e, the intergranular void ratio ec and the interfine void
ratio ef , the maximum stress ratio (q/p)max and the residual stress ratio (q/p)residual at the critical state
of these samples are shown in Table 2.4. Two opposite tendencies can be observed when fine content fc
increases. Indeed, an addition of fine particles weaken gap-graded materials for fc ≤ 15% but strengthen
them when fc > 15%. The sample with fc = 15% is weaker than the sample with fc = 0, while the sample
with fc = 30% is much stronger than the sample with fc = 0. Therefore, fine content fc = 15% can be
considered as a threshold fine content, under which gap-graded samples get weaker with an increase in fine
content, but above which they get stronger. Thevanayagam et al. (2002) also observed that silty sands
with fine content fc < 25% show a lower undrained shear strength than the clean sand (fc = 0%) but
they are stronger than the clean sand when fc > 25%. It is interesting to note that the sample with 30%
of fine content behaves like a dense granular sample although it is at the loosest state. It shows a marked
peak on the stress-strain curve, a marked softening phase and a strong dilatant behavior. It has a much
higher shear strength at the peak state but a lower shear strength at the critical state than the sample
with no fine particle.

By looking at the variation of the void ratios e, ec and ef with fine content, we can explain the above
results. For fine content fc ≤ 15%, the fraction of fine particles is very loose so the fine particles have no
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Figure 2.20: Stress ratio q/p and volumetric strain εv versus axial strain ε11 for the loose samples with
different fine contents.

fc (%) 0 5 10 15 20 25 30

e 0.69 0.67 0.60 0.53 0.44 0.36 0.34

ec 0.69 0.76 0.77 0.78 0.79 0.81 0.91

ef 13.3 5.9 3.5 2.1 1.5 1.1

(q/p)max 0.8 0.9 0.8 0.8 0.8 0.9 1

(q/p)residual 0.8 0.8 0.7 0.8 0.6 0.7 0.5

Table 2.4: Global void ratio e, the intergranular void ratio ec, the interfine void ratio ef , maximum and
residual stress ratios (q/p)max and (q/p)residual for the loosest samples with fine content fc varied from 0%
to 30%

significant role in the binary mixtures, while the fraction of coarse particles becomes looser as fine content
is increased because coarse particles are separated by fine ones. As a result, their shear strength decreases
with an increase in fine content. When fine content fc > 15%, the fine particles are sufficiently close to
each other and close to the coarse particles. Therefore, they reinforce the coarse particles and participate
in carrying the shear stress.
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b) Dr = 100%

Figure 2.21 shows the stress ratio q/p and the volumetric strain εv versus the axial strain ε11 for the
densest samples with fine content fc varied from 0% to 100%. For the samples with fc ≤ 40%, we perform
triaxial tests until 15% of the axial strain. Due to a high computation cost, the triaxial tests for the
samples with fc > 40% are conducted until 10% of the axial strain. It should be noted that the critical
state has not been achieved yet for the last tests so the residual stress ratio q/p could not be determined for
the samples with fc > 40%. Table 2.5 shows the void ratios e, ec, ef , the maximum stress ratio (q/p)max

and the residual stress ratio (q/p)residual at the critical state for these samples.

Figure 2.21(a) shows that the stress-strain behavior of the samples with fc < 20% is not significantly
affected by fine content. Unlike the loose samples, the dense samples with fc = 5%, 10% and 15% have
a slightly higher shear resistance than the sample with fc = 0%. Starting from fc = 20%, fine content
has opposite effects on the shear strength and dilatancy of the binary mixtures. The shear strength at
the peak state and the dilatancy increase with fine content fc ≤ 32% (Figure 2.21(b)) but decrease when
fc > 32% (Figure 2.21(c)). It is interesting to note that the threshold fine content of 32% found here is
also the threshold value observed in Figure 2.19(a) at which the intergranular and interfine void ratios ec
and ef are equal and the global void ratio e is minimum. The same tendency is observed for the material
dilatancy except that the threshold fine content for it is about 35%, which is also quite close to the value
of 32% observed for the maximum shear strength. It can be seen in Figure 2.21(d) that the stress-strain
behavior of granular mixtures is not affected by fine content fc ≥ 60%.

Table 2.5: Global void ratio e, the intergranular void ratio ec, the interfine void ratio ef , maximum and
residual stress ratios (q/p)max and (q/p)residual for the dense samples with fine content fc from 0% to 100%.

fc (%) 0 5 10 15 20 25 30 32 35 40 50 60 70 80 90 100

e 0.6 0.54 0.46 0.4 0.33 0.29 0.28 0.28 0.30 0.32 0.35 0.39 0.43 0.47 0.51 0.57

ec 0.6 0.62 0.63 0.64 0.66 0.72 0.83 0.89 1.0 1.2 1.7 2.5 3.8 6.3 13.3

ef 11.5 4.6 2.8 2.6 1.6 0.95 0.90 0.85 0.79 0.71 0.65 0.62 0.59 0.57 0.57

(q/p)max 1.2 1.1 1.2 1.2 1.3 1.5 1.6 1.6 1.5 1.4 1.4 1.3 1.3 1.2 1.2 1.2

(q/p)residual 0.8 0.8 0.9 0.7 0.8 0.7 0.5 0.5 0.4 0.6

The above result means that a reasonable fine content (20% ≤ fc ≤ 32%) can make granular materials
stronger and more dilatant. This is in good agreement with the experimental results of Salgado et al.
(2000) who performed drained triaxial tests on mixtures of clean Ottawa sand and silt. However, in this
study, the role of fine particles was clearly observed even at a low fine content (fc ≤ 15%). This might be
explained by the fact that the sand-silt mixtures considered in their study have continuous and broadly
graded PSDs, for which fine particles might fill the void space between coarse particles even at low fine
content. Figure 2.21(b) also shows that a too high fine content (fc > 32%) can be a factor unfavorable
to the shear strength and dilatancy of granular mixtures. The mixture with fc = 40% has indeed a lower
shear strength and a lower dilatancy than the mixture with fc = 30%.

A dense granular sample exhibits a peak on the stress-strain curve, followed by a marked softening
phase. This kind of behavior can be observed for the mixtures with fc ≥ 20%. It is interesting to note
in Figures 2.21(b) and (c) that the fine particles, on one hand, strengthen granular mixtures at the peak
state, but on the other hand, weaken them at the critical state. Indeed, the stress ratio q/p for fc = 30%
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Figure 2.21: Stress ratio q/p and volumetric strain εv versus axial strain ε11 for the densest samples: (a)
0% ≤ fc ≤ 15%, (b) 20% ≤ fc ≤ 32%, (c) 35% ≤ fc ≤ 60% and (d) 60% ≤ fc ≤ 100%.
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is 0.5 at the critical state, much lower than the value of 1.6 at the peak state.

It can be concluded that, for the dense binary mixtures, the presence of fine particles has (i) no
significant effect on the shear strength for fine content fc < 20%, (ii) a positive effect for fine content
20% ≤ fc ≤ 32% but (iii) a negative effect for fine content 32% < fc ≤ 60%, and (iv) no significant effect
for fine content fc > 60%. One could try to explain the above result by using the dependency of the void
ratios e, ec and ef upon fine content fc shown in Figure 2.19. The negligible effect of the fine particles
on the stress-strain behavior observed for the mixtures with fc < 20% is related to the fact that the fine-
grained matrix is very loose (range (i) in Figure 2.19) so the fine particles do not participate actively in
supporting the external loading. When fc > 60% (range (iv) in Figure 2.19), the shear strength remains
more or less constant with an increase in fine content since the coarse particles are strongly dispersed
by the fine ones and the mechanical behavior of the mixtures for this range of fine content is mainly
governed by the fraction of fine particles. However, it is not easy to explain why the shear strength
and the dilatancy increase with fine content when fc < 32% but decrease when fc > 32%, and why a
mixture with a significant fine content shows a marked softening phase. It should be noted that adding
fine particles into a mixture leads to two opposing effects: on one hand, the coarse-grained matrix gets
looser, which weakens the mixture, but on the other hand, the fine-grained matrix gets denser, which
strengthens the mixture. It is not well understood yet which effect is more important than the other for
a given fine content.

c) Dr = 50%
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Figure 2.22: Stress ratio q/p and volumetric strain εv versus axial strain ε1 (a) for the samples of Dr = 50%
with fine content fc varied from 0 to 30% and (b) for the sample of fc = 30% with Dr = 0, 50% and 100%.

Triaxial tests are also performed on the binary mixtures with fine content between 0 and 30% for
which the initial relative density Dr is controlled to be more or less equal to 50%. Figure 2.22(a) shows
the stress-strain behavior of these samples. It can be seen that the effect of fine content observed in this
case is similar to that observed for the densest samples. Figure 2.22(b) shows the behavior of the sample
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with 30% of fine content at three relative densities Dr = 0, 50% and 100%. It is shown that the behav-
ior of this sample at Dr = 50% is very different from that at Dr = 0% but quite close to that at Dr = 100%.

Table 2.6: Global void ratio e, the intergranular void ratio ec, the interfine void ratio ef , maximum and
residual stress ratios (q/p)max and (q/p)residual for the samples of Dr = 50% with fine content fc varied
from 0% to 30%.

fc (%) 0 5 10 15 20 25 30

e 0.74 0.66 0.56 0.48 0.40 0.31 0.28

ec 0.74 0.74 0.74 0.74 0.74 0.74 0.83

ef 13.1 2.6 3.2 2.0 1.2 0.95

(q/p)max 0.75 0.82 0.86 0.91 1.2 1.56 1.6

(q/p)residual 0.75 0.82 0.74 0.83 0.76 0.68 0.5

In order to compare the mechanical behavior of gap-graded samples at different values of relative
density Dr, Figure 2.23 presents the maximum stress ratio (q/p)max versus fine content at different values
of Dr. This figure shows that, for low values of fine content (fc < 20%), the maximum stress ratio for the
three relative densities Dr = 0, 50% and 100% are very different and the values of the maximum stress
ratio for Dr = 50% are intermediary between the values of Dr = 0% and Dr = 100%. But it can be seen
that, for high values of fine content (fc ≥ 20%), the maximum stress ratios for Dr = 50% become quite
close to that at Dr = 100%.
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Figure 2.23: Maximum stress ratio (q/p)max versus fine content for different value of relative density Dr.

2.5.2.2 Intergranular void ratio ec controlled

As shown above, the intergranular void ratio ec increases, while the interfine void ratio ef decreases
with an increase in fine content if the same compaction procedure is used for all the samples. In this case,
the fine particles discard the coarse ones and then weaken the solid skeleton constituted of coarse parti-
cles. A question that arises here is how fine content affects the stress-strain behavior of binary mixtures
if their fraction of coarse particles remains more or less undisturbed by the fine particles. To answer to
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this question, we control the intergranular void ratio ec of the binary mixtures with 0 ≤ fc ≤ 30% to be
more or less equal to 0.74. This can be done by decreasing the intergranular friction angle ϕ when fine
content is increased to better compact the fraction of coarse particles. As shown in Table 2.6, a constant
value of ec equal to 0.74 can be achieved for the samples with fc < 25%. However, despite the effort made
to compact the sample with fc = 30%, ec for this sample is larger than the target value since the coarse
particles are strongly separated by the fine ones and it is very hard to reduce further the intergranular
void ratio ec. Thevanayagam et al. (2002) controlled the intergranular void ratio ec of mixed soils in their
experimental study of the effect of fine content on the undrained shear strength. The authors encountered
also difficulties to obtain a constant value of ec for all fine contents.
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Figure 2.24: Stress ratio q/p and volumetric strain εv versus axial strain ε11 for fc varied between 0 and
30%. For these samples, the intergranular void ratio ec is controlled to be more or less equal to 0.74.

As can be seen in Figure 2.24, the effect of fine content on the mechanical behavior of the binary
mixtures considered in this case is clearly observed even at low fine contents. These binary mixtures get
stronger and more dilatant when fine particles are added between the coarse particles. In this case, the
fine particles reinforce greatly the solid skeleton constituted of coarse particles, which remains more or less
undisturbed. Thevanayagam et al. (2002) also showed that the undrained shear strength of silty sands
increases with an increase in fine content when their intergranular void ratios are controlled to be more or
less the same.

2.6 Conclusions

This chapter presented numerical simulations of the mechanical behavior of gap-graded granular soils
by using the DEM based on the molecular dynamic approach. As a great number of particles is needed
to simulate gap-graded soils, spherical particles are considered to keep the computation time reasonable.

Gap-graded granular samples with a gap ratio of 3 and fine content varied between 0 and 100% are
simulated. A study on the representative elementary volume (REV) of the simulated samples was pre-
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sented to determine the sample size to guarantee the conditions required for the REV. With the chosen
sample sizes L/Dmax > 7.0, the REV conditions are achieved for the simulated mixtures with fine content
fc ≤ 60%. For fine content fc > 60%, the sample size L/Dmax is reduced to keep the computational time
reasonable. For this range of fine content, the mechanical behavior of the binary mixtures is mainly gov-
erned by the fraction of fine particles. Consequently, the binary mixtures for fc > 60% could be expected
to be the REVs.

Based on variations of the global void ratio e, of the intergranular void ratio ec and of the interfine
void ratio ef with fine content fc, four ranges of fine content fc were observed. For the range (i) with
fc < 20%, the fine particles are very loose and do not disturb the coarse particles. The fine particles
separate the coarse ones and get denser for the range (ii) with 20% < fc ≤ 32%. For this range of fine
content, the coarse fraction is denser than the fine fraction. For the range (iii) with 32% < fc ≤ 60%, the
fine particles separate strongly the coarse ones and they become denser than the coarse ones. The coarse
particles are fully dispersed by the fine particles for the range (iv) of fine content with fc > 60%.

Two series of triaxial compression tests were performed on gap-graded samples. In the first series, the
relative density Dr of the tested samples was controlled to be equal to 0 (loosest state), 50% (intermediate
state) and 100% (densest state). In the second series, the intergranular void ratio ec was controlled to
be almost the same for all the tested samples. For the first series of tests, on the whole, fine content in
the range (i) does not have a significant effect on the stress-strain behavior of gap-graded samples. The
dilatancy and the shear strength increase with an increase in fine content in the range (ii), but decrease
with an increase in fine content in the range (iii). For the range (iv) of fine content, the stress-strain
behavior of gap-graded samples is almost independent of fine content. For the second series of tests, the
effect of fine content is visible even at low fine content: the shear strength and dilatancy increase clearly
with an increase in fine content.
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Micro-mechanical behavior of gap-graded

granular soils

3.1 Introduction

The literature review presented in Section 1.3 showed that the fine particles play an important role
in the mechanical behavior of widely graded soils: they strength or weaken these materials depending on
their fine content, on their density, etc. The numerical simulations presented in Section 2.5 confirmed
this statement. To explain this result from a micro-mechanical point of view, Thevanayagam et al. (2002)
made a conjecture that, with an increase in fine content, the micro-structure of granular mixtures can
change from a category where contacts between coarse grains are dominant to a category where contacts
between fine grains are dominant. This conjecture should be verified by investigating experimentally the
granular micro-structure. Such an investigation might be performed by using X-ray tomography imaging
technology (Kim et al., 2012), however, this technique is quite delicate and expensive. To the best of our
knowledge, no experimental investigation of the effect of fine content on the granular micro-structure has
been performed so far.

One of the main advantages of the DEM is that any local information at the particle scale can be ac-
cessed, which makes the DEM very suitable for investigating granular media from a micro-mechanical point
of view. This method has been recently used by some authors to investigate the micro-structure and the
micro-mechanical behavior of granular mixtures. Minh et al. (2014); Minh and Cheng (2016) studied the
contact force distribution and the force networks in granular mixtures under one-dimensional compression.
Shire and O’Sullivan (2013); Shire et al. (2016) investigated the micro-structure and micro-properties of
granular mixtures under isotropic compression. It is worth mentioning that a granular material subjected
to a one-dimensional or an isotropic compression shows only a contractive behavior and never reaches the
failure. Voivret et al. (2009) studied the shear behavior and force transmission in highly polydisperse 2D
granular materials composed of disks by simulating direct simple shear tests. Surprisingly, the authors
found that the shear strength is almost independent of the particle size polydispersity although the solid
fraction increases with the latter parameter. As the polydispersity increases, more and more large particles
but less and less small particles are included in strong force chains which sustain primarily the shear stress.
Dai et al. (2015) also found in their simulations of undrained biaxial tests that fine particles leave the solid
skeleton as fine content increases, resulting in a decrease in undrained shear strength. It is noteworthy that
these findings at the micro-scale cannot explain why the drained shear strength increases with fine content
as reported by several authors mentioned previously. Aboul-Hosn (2017) simulated triaxial tests on 3D
granular mixtures with fine content from 5% to 15% and found a slight increase of the shear strength with
fine content. At the micro-scale, the author observed that more coarse-fine contacts and fine-fine contacts
are created with increasing fine content to support the shear stress. These preliminary results need to be
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completed with higher fine contents and with a profound micro-mechanical investigation to shed light on
the role of fine particles in sustaining the shear loading.

In this chapter, we present a numerical study of the effect of fine content on the micro-mechanical be-
havior of granular mixtures during triaxial compression tests. The micro-mechanical investigation focuses
on (i) the role of fine particles in the granular micro-structure (Section 3.2), (ii) the stress transmission
through the contact network and the force networks in a granular mixture (Sections 3.3 and 3.4), and (iii)
the contribution of the fine particles in carrying the overburden stress (Section 3.5). Based on this study,
a classification of binary mixtures in terms of their micro-structure is proposed in Section 3.6.

3.2 Micro-structure

3.2.1 Coordination numbers

Coordination number, denoted by N , is defined as the average number of contacts per particle. It is
usually used to describe the density of a granular assembly at the micro-scale. However, this definition of
the coordination number is not appropriate for a mixture of coarse and fine particles because the number of
contacts per coarse particle is very different from that per fine particle. As mentioned previously, a binary
granular mixture can be thought of being a multi-phase medium which is composed of the coarse-grained
matrix, the fine grained matrix and the interface between them. The interaction between particles in
each phase occurs through C − C contacts (between two coarse particles), F − F contacts (between two
fine particles), respectively; and these two phases interact each other through C − F contacts (between
a coarse and a fine particle). Describing the local density of the coarse-grained and fine-grained matrices
and the interface between them needs thus three coordination numbers, denoted by NC−C

C , N F−F
F and

NC−F
C , which are defined as the respective average numbers of C−C contacts per coarse particle, of F −F

contacts per fine particle, and of C − F contacts per coarse particle:

NC−C
C =

2NC−C
c

NC
p

, NC−F
C =

2NC−F
c

NC
p

, and N F−F
F =

2NF−F
c

NF
p

, (3.1)

where NC−C
c , NC−F

c and NF−F
c are respective numbers of C − C, C − F and F − F contacts; and NC

p

and NF
p are respective numbers of coarse and fine particles. Minh and Cheng (2013), Shire et al. (2014a)

and Shire et al. (2016) also defined similar coordination numbers to study the micro-structure of granular
mixtures.

Figure 3.1 presents the evolution of the three coordination numbers NC−C
C , NC−F

C and N F−F
F during

triaxial compression test for three dense mixtures with fc = 20%, 30% and 40%. It can be seen that
these three coordination numbers decrease during the shear loading. This is due to the fact that when
a dense sample is sheared, it dilates to resist the shearing and this dilatant behavior leads to a loss of
contacts between particles. This loss of contacts during shearing is responsible for the softening phase
on the stress-strain curve after the peak stated as observed in Figure 2.21. For fc = 30%, high values of
NC−F

C and N F−F
F at the initial state, mean that the fraction of fine particles in this mixture is initially

dense. Moreover, the strongest decrease in NC−C
C and NC−F

C during the shear loading is observed for
this mixture: NC−C

C and NC−F
C decrease from 3.8 and 44.9 at the initial state to 1.8 and 9.1 at the

critical state, respectively. This drastic drop in these coordination numbers is in good agreement with
the strongest dilatancy observed for the mixture with fc = 30% (Figure 2.21(b)). This means that the
micro-structure of this mixture is strongly altered after the peak state, which explains why it exhibits a
marked softening phase as shown in Figure 2.21(b).

Starting with the dense samples presented in Section 2.5 having Dr = 100%, Figures 3.2(a), (b) and
(c) show the respective coordination numbers NC−C

C , NC−F
C and N F−F

F versus fine content fc at the
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Figure 3.1: Coordination numbers (a) NC−C
C , (b) NC−F

C and (c) N F−F
F versus axial strain ε11 for fc =

20%, 30% and 40%.

initial, peak and critical states. It is clear that the average number of contacts per coarse particle is much
bigger than that per fine particle. At the initial state, the coordination number NC−C

C remains more or
less constant and the coordination numbers N F−F

F and NC−F
C are very small for fc < 20%. This confirms

the statement made in Section 2.5.1 that the fine particles are almost floating within voids between coarse
ones and they do not modify the granular skeleton which is mainly constituted of coarse particles. Starting
from 20% of fine content, a further addition of fine particles leads, on the whole, to a strong increase in
NC−F

C and N F−F
F , particularly for NC−F

C , but to a remarkable decrease in NC−C
C . This means that the

presence of an important fine content in a granular material induces two opposing effects. Fine particles
disrupt contacts between coarse ones so they weaken the coarse fraction. On the other hand, a significant
quantity of fine particles around each coarse particle reinforce the interface between the coarse-grained and
fine-grained matrices. Furthermore, more contacts between fine particles are created, allowing the shear
stress to be transmitted through the fine-grained matrix as will be shown in the next section. Shire et al.
(2014a) also observed a decrease in number of contacts par coarse particle and an increase in number of
contacts per fine particle with increasing fine content for granular mixtures with bigger values of the gap
ratio Gr. The best shear strength at the peak state for fc = 30% shown in Figure 2.21(b) can be attributed
to the fact that the coarse particles are strongly reinforced by an important number of fine particles around
them (about 50 fine particles, on average), despite the fact that they are slightly weakened by a loss of
contacts between them.

When fc > 60%, the coordination number NC−C
C becomes very small, while the coordination numbers

NC−F
C and N F−F

F become very high: NC−F
C can reach of a value of 100, meaning that there are, on aver-

age, 100 fine particles in contact with each coarse particle which will be verified in the next section using
analytical estimation. The coarse particles are strongly dispersed by the fine particles which constitute a
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Figure 3.2: Coordination numbers (a) NC−C
C , (b) NC−F

C and (c) N F−F
F versus fine content fc at the

initial, peak and critical states for dense samples.

dense packing for this range of fine content. This result in terms of coordination numbers is in good agree-
ment with the result in terms of intergranular and interfine void ratios observed for the range (iv) of fine
content in Figure 2.19, for which the intergranular void ratio ec becomes much larger than the interfine
void ratio ef . In this case, the solid skeleton is mainly constituted of fine particles. Moreover, values
more or less constant of NC−F

C and N F−F
F indicate that the solid skeleton remains more or less constant

with an increase in fine content. This explains why the stress-strain behavior of the binary mixtures with
fc > 60% is not significantly affected by fine content as shown in Figure 2.21(d). It should be noted that,
in this study, the fine and the coarse particles are instantaneously generated, which means that the coarse
particles are not fixed. With the addition of fine particles, the coarse particles can be separated from
each other, for that, we can see that the three coordination numbers and specially NC−C

C are variable
with respect to fine content fc. But with another generation mode of samples, for example, if the coarse
particles are firstly generated and they are fixed, then after that the fine particles are added, in this case
the coordination number NC−C

C will not vary with respect to fine content fc. So we can say that the varia-
tions of coordinations numbers with respect the fine content depend on the generation mode of the samples.
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The coordination number NC−F
C reached a high value of 100, which means that there exist about

100 fine particles in contact with each coarse particle. To verify this large number of fine particles, an
analytical estimation which is presented in 2D in Figure 3.3, will be used. The solid angle ω is equal to
the area of the fine particle divided by diameter of coarse particle plus the diameter of fine particle (ω =
s/(D+d)2). If we have an hexagonal arrangement, in this case the number of fine particles in contact with
one coarse particle is maximum and the solid angle ω = 0.91x4xπxN, where N represents the number of
fine particles in contact with one coarse particle. Using the two previous equations, N is found to be equal
to 0.91x4x(D+d2)/d2, and for our case D = 9 mm (average diameter of coarse particles) and d = 1.5 mm
(average diameter of fine particles), by calculation, N = 178 fine particles. So for the densest numerical
samples with high fine content, NC−F

C = 100 can be an acceptable value.

Figure 3.3: Analytical interpretation of the big number of fine particles in contact with one coarse particle.

For the loose samples having Dr = 0%, Figures 3.4(a), (b) and (c) show the respective coordination
numbers NC−C

C , NC−F
C and N F−F

F versus fine content fc at the initial, peak and critical states for
fc ≤ 30%. It is clear that the average number of contacts per coarse particle is much bigger than that
per fine particle. At the initial state, the coordination number NC−C

C remains more or less constant
and the coordination numbers N F−F

F and NC−F
C are very small for fc < 20%. That means that the

variations of the three coordination numbers for the loose samples are almost the same of dense samples
for fc < 20%. For fc ≥ 20%, a further addition of fine particles leads to a strong increase in NC−F

C and
N F−F

F , particularly for NC−F
C , but a remarkable decrease in NC−C

C . So we can see that these variations
of the tree coordination numbers are almost the same of those of dense samples for fc ≥ 20%. But the
difference between the coordination numbers of loose samples and those of dense samples is that those of
dense samples are much bigger than those of loose samples, where this variation is normal because in dense
sample the particles are close to each other where a big number of contacts between the particles can be
obtained. But generally, we can say that loose samples and dense samples have almost a close variation
of the micro-structure with respect to fine content. Next we are going to present the micro-structure
properties for only the dense samples having Dr = 100%.

3.2.2 Anisotropy

Different fabric tensors have been proposed in the literature to describe the fabric of granular materials
in terms of orientation of contacts (Satake, 1982). For a binary mixture composed of fine and coarse
spherical particles, we use the following fabric tensor:

Hij =
∑

k

lknk
i n

k
j , (3.2)
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Figure 3.4: Coordination numbers (a) NC−C
C , (b) NC−F

C and (c) N F−F
F versus fine content fc at the

initial, peak and critical states for loose samples.

where superscript k runs over all the contacts in the volume under consideration; nk is the unit normal
vector at contact k; and lk is the length of the branch joining the centers of two particles in contact. If
the fabric tensor H is isotropic, the granular material under consideration is isotropic, i.e., the contacts
are uniformly oriented. When a sample is subjected to a triaxial compression test, contacts tend to be
preferentially oriented in the major principal direction of the stress (direction 1), causing the anisotropy
to the sample. As a result, H1 increases, while H2 and H3 are almost equal and decrease during the test.
The anisotropy of the sample is quantified by the following index:

Hd =
H1 −H3

tr(H)
, and tr(H) =

∑

k

lk. (3.3)

The fabric tensor defined by (3.2) can split into three parts HC−C , HC−F and HF−F which are the
contributions of the three respective categories of C − C, C − F and F − F contacts:

H = HC−C +HC−F +HF−F . (3.4)
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For example, the part HC−C relative to the C − C contacts is defined as:

HC−C
ij =

∑

k∈C−C

lknk
i n

k
j , (3.5)

where superscript k runs only over the set of C − C contacts. The contribution of the C − C contacts to
the anisotropy index Hd defined in (3.3) is (HC−C

1 −HC−C
3 )/tr(H).
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Figure 3.5: Contributions of the C − C, C − F and F − F contacts to the anisotropy index Hd versus
axial strain ε11 for (a) fc = 20%, (b) fc = 30% and (c) fc = 60%.

Figure 3.5 shows the evolution of the anisotropy index Hd and the contributions of the C −C, C − F
and F − F contacts during the triaxial compression tests for fine contents of 20%, 30% and 60%. It can
be seen that the anisotropy develops during the shearing and reaches the maximum value almost at the
peak state where the shear strength reaches its maximum value. After the peak state, the solid skeleton
collapses and a rearrangement of the micro-structure is triggered, leading to a decrease in anisotropy. Fig-
ure 3.5 indicates that the contributions of the C−C, C−F and F −F contacts to the anisotropy depend
strongly on fine content. The C − C contacts contribute primarily to the anisotropy for fine content of
20%, while the C−F contacts contribute primarily for fine content of 30%. The contribution of the F −F
contacts is quite small for fine contents of 20% and 30% but it becomes primary for fine content of 60%.

Figure 3.6 shows the anisotropy index Hd at the peak state and the contributions of the C−C, C−F
and F − F contacts to the anisotropy versus fine content fc. It is shown that the anisotropy of binary
mixtures induced by the shearing results primarily from the distribution of the C − C contacts at low
fine contents (fc < 20%) but results primarily from the distribution of the F − F contacts at very high
fine contents (fc > 60%). Between fine contents of 20% and 60%, the role of the C − F contacts in the
anisotropy becomes important. Furthermore, the contribution of the C − F contacts increases as fine
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Figure 3.6: Anisotropy index Hd at the peak state and the contributions of the C −C, C − F and F − F
contacts versus fine content fc.

content is increased up to around 25%; after this fine content, the contribution of the C − F contacts
decreases with an increase in fine content. It is interesting to note that the anisotropy is minimum for the
mixture of fc = 35%, which is quite close to the optimum fine content of 32% for which the shear strength
is the best (Figure 2.21(b)). This suggests that the micro-structure of this mixture is so strong that it can
bear the deviatoric loading without developing greatly the anisotropy.

By using the fabric tensor defined for each category of contacts, the anisotropy index relative to this
category of contacts can be calculated. For example, the anisotropy index for the C − C contacts is
calculated from the tensor HC−C defined in (3.5):

HC−C
d =

HC−C
1 −HC−C

3

tr(HC−C)
. (3.6)

This anisotropy index gives information about the distribution of orientation of the C − C contacts. If
HC−C

d = 0, the C −C contacts are uniformly oriented; and if HC−C
d > 0, these contacts are preferentially

oriented in the major principal direction of the stress tensor. Due to small number of F − F contacts,
HF−F

d is not calculated for fc ≤ 20%, while HC−C
d is not calculated for fc > 70% due to a small number

of C − C contacts.

In Figure 3.7, the three anisotropy indexes HC−C
d , HC−F

d and HF−F
d defined for the respective cate-

gories of C−C, C−F and F −F contacts are plotted versus the axial strain ε11 for three fine contents of
20%, 30% and 60%. In addition, Figure 3.8 presents the isotropic index Hd for each category of contacts
at the peak state versus fine content fc. It can be seen that the distribution of orientation of contacts
depends strongly on the category of contacts and on fine content. For fc < 20%, the global anisotropy is
mainly governed by the C−C contacts and the anisotropy of these contacts remains more or less constant.
Starting from 20% of fine content, the anisotropy of the C −C contacts increases quickly with an increase
in fine content, while the anisotropy of the C−F and F −F contacts remains more or less constant. This
means that the C −C contacts tend to be more preferentially oriented in the major principal direction of
the stress as fine content is increased. Among three categories of contacts, the distribution of orientation
of the C−C contacts is the most anisotropic. Despite this fact, these contacts do not contribute primarily
to the global anisotropy for fc > 20% (Figure 3.6), because the number of these contacts is small compared
to the number of C−F and F −F contacts. Analyses of force networks presented in Section 3.4 will allow
us to explain why the C − C contacts develop strongly the anisotropy.

The above study of the variation of the three coordination numbers NC−C
C , NC−F

C and N F−F
F and the

anisotropy of the three categories of contacts with fine content allows us to confirm that:
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Figure 3.7: Anisotropy index Hd calculated for the C − C, C − F and F − F contacts versus axial strain
ε11 for (a) fc = 20%, (b) fc = 30% and (c) fc = 60%.

• the solid skeleton of the binary mixtures with fc < 20% (range (i) of fine content) is mainly consti-
tuted of coarse particles so fine content has a negligible effect on the mechanical behavior of these
mixtures;

• the solid skeleton of the binary mixtures with fc > 60% (range (iv) of fine content) is mainly
constituted of fine particles and it remains more or less constant with an increase in fine content.
As a consequence, the mechanical behavior of the mixtures with fc > 60% does not change with
an increase in fine content.

It is not clear yet why the shear strength increases with an increase in fine content when fc < 30% but
decreases when fc > 30%. To explain this, we will study how the shear stress is transmitted through the
coarse-coarse, coarse-fine and fine-fine contacts in granular mixtures in the next section.

3.3 Stress transmission through the contact network

When a granular sample is subjected to an external loading, contacts between particles participate
in transferring forces (Thornton, 1997; Radjai and Wolf, 1998). The stress tensor at the macro-scale can
be defined from contact forces at the micro-scale. Let’s consider a volume V that contains a number of
solid particles as illustrated in Figure 3.9. The boundary of the volume V is assumed to be tangent to the
particles that are close to it. The macroscopic stress σ defined on the volume V can be expressed as an
average stress of the field of the microscopic stress σ(x) defined at each point in the volume:
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Figure 3.9: Illustration of a volume on which the stress tensor σ is defined.

σij =
1

V

∫

V

σij(x)dV. (3.7)

For a dry granular assembly, the microscopic stress σ(x) is not zero only for the solid particles. It follows
that Equation (3.7) can be rewritten as:

σij =
1

V

∑

p∈V

(∫

V
p
s

σij(x)dV
)
=

1

V

∑

p∈V

Mp
ij , (3.8)

where superscript p runs over all the solid particles included in the volume V ; and the tensor Mp is defined
over each particle as follows:

f 1

f 3

r3

r1

r2

f 2

Figure 3.10: Contact forces fk and contact vectors rk on a particle.
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Mp
ij =

∫

V
p
s

σij(x)dV. (3.9)

where V p
s is the solid volume of each particle.

Each solid particle is assumed to be a continuum in equilibrium. Therefore, the equilibrium condition
divσ(x) = 0 is verified at every point x in this continuum. By using this equilibrium condition and
Gauss-Ostrogradski theorem, the volume integral (3.9) can be transformed into a surface integral:

Mp
ij =

∫

∂V
p
s

fixjdS, (3.10)

where ∂V p
s denotes the boundary of the particle volume; f = σ.n is the stress vector at a point x on

the boundary where the outward normal vector is n. For a particle subjected to some contact forces as
illustrated in Figure (3.10), Equation (3.10) can be rewritten in a discrete form as follows:

Mp
ij =

∑

k∈p

fk
i x

k
j , (3.11)

where superscript k runs over all the contacts of particle p.

f k,a

rk,b

f k,b

rk,a

Figure 3.11: Contact forces fk and contact vectors rk at a given contact shared by two particles.

It can be proven that when the particle is in equilibrium, the tensor Mp defined by (3.11) does not
depend on the choice of the origin of the coordinate system and it is symmetric. We can choose the particle
center as the origin of the coordinate system; as a result, Equation (3.11) becomes:

Mp
ij =

∑

k∈p

fk
i r

k
j , (3.12)

where rk is a contact vector that joins the particle center to the contact point. The tensor Mp is called
internal moment tensor by Moreau (1996). The mean stress tensor σp over each particle is defined as:

σp
ij =

1

V p
s

∫

V
p
s

σij(x)dV. (3.13)

By comparing Equations (3.9) and (3.13), we have σp = Mp/V p
s so the physical meaning of the internal

moment tensor Mp is similar to that of the mean stress tensor σp.

For a given contact k shared by two particles a and b, the two contact vectors on particles a and b are
denoted by the respective vectors rk,a and rk,b; and the two contact forces exerted on particle a by particle
b and on particle b by particle a are denoted by the respective vectors fk,a and fk,b with fk,b = −fk,a as
illustrated in Figure 3.11. It is easy to obtain that:
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fk,a
i rk,aj + fk,b

i rk,bj = fk,a
i rk,aj − fk,a

i rk,bj = fa
i (r

k,a
j − rk,bj ) = fk,a

i lkj = fk
i l

k
j (3.14)

where lk is a branch vector that joins the center of particle a to the center of particle b (Figure 3.9).
We can also replace fk,a

i by fk
i which is the contact force exerted by particle b on particle a. By using

Equations (3.12) and (3.14), Equation (3.8) becomes:

σij =
1

V

∑

k∈V

fk
i l

k
j , (3.15)

where superscript k runs over not only all contacts between particles (interior contacts) but also all con-
tacts between particles and the boundary. For a contact between two particles, fk is the contact force and
lk is the branch vector joining two particle centers at this contact. For a contact between a particle and the
boundary, fk is the force exerted by the exterior to the particle and the vector lk joins the particle center
to the contact point (Figure 3.9). Equation (3.15) is the well known static homogenization operator which
have been established by different approaches and different authors (Christoffersen et al., 1981; Moreau,
1996).

It has been well known in the literature that the static homogenization operator (3.15) gives a good
estimation of the macroscopic stress tensor if the volume under consideration contains a sufficient num-
ber of particles. This can be confirmed in Figure 3.12 where the mean stress p estimated with (3.15) is
compared to the value of 100 kPa applied on the boundary at the initial state for different values of fine
content fc. Figure 3.12 also shows that the contribution of the contacts on the boundary (the rigid walls
in our simulations) to the macroscopic stress tensor σ is not negligible (about 10% for fc ≤ 20%) and it
decreases as fine content fc increases (about 4.5% for fc = 40%). This is due to the fact that the sample
sizes L chosen for the simulated samples (Table 2.3) are not too large compared to the maximum particle
size Dmax so the number of contacts on the boundary is not negligible compared to the number of interior
contacts. It is expected that the stress part relative to the contacts on the boundary is negligible compared
to that relative to the interior contacts when the sample size is big enough compared to the particle size.
In Figure 3.13, the relative error of the mean stress p obtained by Equation (3.15) by considering only the
interior contacts, compared to the value of 100 kPa applied on the boundary of the sample with fc = 0%
is plotted against the sample size L/Dmax. It can be seen that the part relative to the contacts on the
boundary decreases as the sample size is increased and it is smaller than 2% of the macro-stress when
L/Dmax = 38. But to decrease this error for the samples having low values of L/Dmax, we must replace the
total volume of the sample V used in Equation (3.15) by a reduced volume which represents the packing
without taking into account the contacts between the particles and the boundary of the sample, but the
difficulty is how we can determine the contour of this new volume.

The stress part relative to the contacts between particles can be split into three parts σC−C , σC−F

and σF−F which correspond to the contributions of the respective categories of C −C, C −F and F −F
contacts. For example, the contribution of the set of C − C contacts to the stress tensor σ is computed
as:

σC−C
ij =

1

V

∑

k∈C−C

fk
i l

k
j . (3.16)

The stress tensors σC−C , σC−F and σF−F have the same principal directions as those of the macro-stress
tensor σ. The contributions of each category of contacts to the macroscopic mean and deviatoric stresses,
p and q, can be calculated, for example pC−C = (σC−C

11 + 2σC−C
33 )/3 and qC−C = σC−C

11 − σC−C
33 . Minh

et al. (2014) used the same stress decomposition to study the contributions of each category of contacts
to the macro-stress for binary mixtures under one-dimensional compression.
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Figure 3.12: The mean stress p estimated with (3.15) at the initial state is compared to the mean stress
p = 100 kPa applied on the boundary of samples with different values of fine content fc. Black and gray
colors represent the contributions of the interior contacts and of the contacts on the boundary, respectively.
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Figure 3.13: The relative error of the mean stress p estimated with (3.15) at the initial state for the sample
with fc = 0 versus sample size L/Dmax.

The contributions of the three categories of C−C, C−F and F −F contacts to the macroscopic mean
and deviatoric stresses, p and q, are plotted versus the axial strain ε11 in Figure 3.14 for fine contents
of 20%, 30%, 60% and 80%. Their values at the peak and critical states are plotted versus fine content
fc in Figure 3.15. It can be seen that for fc < 20%, the C − F and F − F contacts do not contribute
significantly to the macro-stress. For instance, for fc = 15%, all the C − F contacts contribute to only
4% of the macroscopic mean and deviatoric stresses at the peak state. A major part of the macro-stress is
carried by the C−C contacts and it remains more or less constant for fc < 20%. This is in agreement with
the result shown in Figure 3.2 where the coordination numbers NC−F

C and N F−F
F are negligible compared

to NC−C
C which is not affected by a low fine content.

Starting from fc = 20%, the C −F contacts contribute to supporting the shear stress (see also Figure
3.14(a)). For this threshold value, the C − F contacts carry about 10% of the macro-stress despite a low
value of NC−F

C , while the stress part carried by the C − C contacts is almost the same as that for the
samples with fc < 20%. This explains why the effect of fine content on the shear strength is visible starting
from 20% (Figure 2.21(b)). It is worth mentioning that it is not easy to explain this if we look only at the
void ratios in Figure 2.19 and at the coordination numbers in Figure 3.2. The C − F and F − F contacts
participate more and more in sharing the macro-stress as fc increases from 20% as shown in Figure 3.15. At
fc = 30%, the C−F contacts actually contribute to the deviatoric stress q as much as the C−C contacts
(see also Figure 3.14(b)). Interestingly, they contribute even more to the mean stress p than the latter ones.
The role of the C − F contacts becomes more important than the role of the C −C contacts at fc = 40%
at which the former ones contribute to about 53% of the deviatoric stress q at the peak state, compared to
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Figure 3.14: Contributions of the three categories of C−C, C−F and F −F contacts to the macroscopic
mean and deviatoric stresses, p and q, versus axial strain ε11 for (a) fc = 20%, (b) fc = 30%, (c) fc = 60%,
(d) fc = 80%.
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Figure 3.15: Contributions of the three categories of contacts to the macroscopic mean and deviatoric
stresses versus fc: (a) and (b) at the peak state and (c) and (d) at the critical state.

a value of 35% for the latter ones. The increasing role of the C−F contacts and the decreasing role of the
C − C contacts with an increase in fine content in the range 20% ≤ fc ≤ 30% are related to the increase
in the coordination number NC−F

C and to the decrease in the coordination number NC−C
C , respectively,

as shown in Figure 3.2. Starting from 30% of fine content, despite the fact that the coordination number
NC−F

C continues to increase, the stress part carried by the C −F contacts start to decrease. At the same
time, the F − F contacts participate more and more in carrying the shear stress. The contribution of
the F −F contacts to the macro-stress even becomes greater than that of the C−F contacts for fc > 60%.

One can remark that the C − C and C − F contacts reverse their roles in sustaining the shear stress
at the threshold fine content of 30%: above this value, the latter ones sustain more the shear stress than
the former ones. We can explain why the best shear strength is obtained at fine content of 30% as fol-
lows. The contribution of the C − F contacts to the macro-stress increases quickly with fc ≤ 30%, which
compensates a decrease in the contribution of the C − C contacts. As a consequence, the shear strength
at the peak state increases with fine content fc ≤ 30%. However, an increase in fine content fc from 30%
does not lead to a significant increase in the stress part carried by the C−F contacts but leads to a strong
decrease in the stress part carried by the C − C contacts. Consequently, the shear strength at the peak
state decreases with fine content fc > 30%. It is interesting to note that, Minh et al. (2014) also observed
a transition at 30% of fine content for binary mixtures subjected to one-dimensional compression with a
gap ratio of 4.0, above which the C −F contacts overtake the C −C contacts in carrying the shear stress.

Starting from a fine content of 60%, the C − C contacts do not contribute significantly to the macro-
stress. For instance, all the C − C contacts contribute to only 5% of the macroscopic mean stress and to
only 10% of the macroscopic deviatoric stress at the peak state for fc = 60%. This result is in agreement
with the result shown in Figure 3.2, where the coordination number NC−C

C is negligible compared to the
coordination numbers NC−F

C and N F−F
F for fc ≥ 60%. The F−F contacts primarily carry the shear stress

for this range of fine content and the stress part carried by the C −F contacts decreases with an increase
in fine content. The solid skeleton is mainly constituted of F − F contacts, which sustain primarily the
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shear stress. Consequently, the shear strength remains more or less constant in this range of fine content
as shown in Figure 2.21(d).

Figure 3.15 also shows a marked decrease in the deviatoric stresses supported by the three categories
of contacts at the critical state for the samples with fc ≥ 30%. The most drastic drop is observed for the
sample with 30% of fine content where the deviatoric stresses supported by the C−C and C−F contacts
are reduced by a factor > 3 from the peak state to the critical state. As a consequence, its shear strength
is greatly reduced at the critical state, which is consistent with the great degradation of its micro structure
after the peak state as shown in Figure 3.2. The deviatoric stress carried by the C − C contacts for the
sample with fc = 30% becomes much lower than that for the sample with fc = 0% at the critical state. In
addition, the C − F contacts in the former sample suffer a great softening phase. This explains why the
residual shear strength for fc = 30% is lower than that for fc = 0% (Table 2.5). It is interesting to note
in Figure 3.15 that the mean stress at the critical state is then primarily carried by the C − F contacts
for fc ≥ 30%, and the F − F contacts carry almost no stress at this state.

We have shown in this section that the external stress applied to a binary mixture is primarily trans-
mitted through the C − C contacts for the range of fine content < 20%, while it is primarily transmitted
through the F − F contacts for the range of fine content > 60%. For a fine content between 20% and
60%, the shear stress is mainly shared by the C−C and C−F contacts and the stress part carried by the
C−F contacts becomes greater than that carried by the C−C contacts starting from 30% of fine content.
It should be noted that all the contacts in each category do not carry in the same manner the external
stress since force transmission through a granular medium is well known to be very heterogeneous. In the
same system, there exist strong and weak force networks with different roles in sustaining the shear stress.
In the next section, we analyze how the contacts in each category constitute the strong and weak force
networks.

3.4 Strong and weak force networks
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Figure 3.16: Probability density function (Pdf) of contacts forces, normalized by the average force f̄ , for
different fine contents.

Dantu (1957) observed in his experiment on granular assemblies composed of photoelastic disks that
forces at contacts are very heterogeneous: some contacts carry strong forces, while the others carry a weak
forces. This observation is confirmed for binary mixtures in Figure 3.16 where the probability density
function of contact forces is plotted for different fine contents. It can be seen that there are much more
contacts that carry weak forces (weak contacts) than contacts that carry strong forces in binary mixtures
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(strong contacts). In addition, the proportion of weak contacts tends to increase with an increase in fine
content for fc ≤ 30%. Voivret et al. (2009) also found in their numerical simulations of highly polydisperse
assemblies composed of disks that the force transmission through contacts becomes more heterogeneous
as the polydispersity is increased. It is interesting to note that the fine content of 30% is also a threshold
value in terms of distribution of contacts forces. The heterogeneity of the force transmission is the highest
at this fine content and decreases as fine content is further increased. This result means that the binary
mixture of 30% of fine content contains the biggest number of weak contacts. Voivret et al. (2009) did not
found such a threshold fine content in their study. We can also observe that the turning points observed
for the curves in Figure 3.16 correspond to values of f/f̄ close to 1.0, which is also the value found by
several authors (Radjai and Wolf, 1998).

Radjai and Wolf (1998) distinguished two force networks, namely weak and strong force networks,
which are composed of the contacts where the contact force f c is smaller and bigger than the average
contact force f̄ , respectively. The authors found that the strong network sustains almost the shear stress
and the weak network behaves like a liquid without bearing any shear stress. The same result is obtained
for the binary mixtures considered in this study as shown in Figure 3.17, in which the mean and deviatoric
stresses carried by the weak and strong force networks at the peak state are plotted against fine content.
It can be seen that the weak network sustains a small part of the mean stress p but a negligible part of
the deviatoric stress q for any fine content, despite the fact that the number of weak contacts in binary
mixtures is dominant compared to the number of strong contacts as shown in Figure 3.18. It is interesting
to note that the percentage of weak contacts is maximum for a fine content about 30%, at which the shear
strength is the best. This means that the shear strength is not proportional to the percentage of contacts
in the strong force network: fewer strong contacts can carry a bigger shear stress. This does not mean that
the weak contacts do not play any role in the micro-structure. On the contrary, they play an important
role in sustaining laterally the strong force network, allowing the latter one to support better the shear
stress.

Figure 3.19 shows the fraction of C −C, C − F and F − F contacts in the strong network versus fine
content fc at the peak state. For example, the fraction of C − C contacts in the strong force network
is defined as the ratio of the number of C − C contacts in the strong force network to the total number
of C − C contacts. It can be seen that, at low fine content (fc < 20%), the strong force network is
constituted of about 40% of C − C contacts and a much smaller fraction of C − F contacts. As fine
content increases, more C − C contacts participate in the strong force network. Interestingly, more than
95% of C − C contacts actually take part in the strong force network for 30% ≤ fc ≤ 90%. Voivret et al.
(2009) also showed that the strong force network passes preferentially through coarse particles in highly
polydisperse samples. This result can be explained by the fact that the presence of fine particles around
coarse ones makes contacts between coarse particles stronger so they carry a much bigger force. It does
not mean, however, that the C − C contacts can carry a bigger stress: they carry, indeed, a lower stress
at fc = 30% than at fc = 10% (Figure 3.15) because more C − C contacts are disrupted by fine particles
at fc = 30%. Figure 3.19 also shows that an increasing fraction of C −F and F −F contacts take part in
the strong force network as fine content increases so they sustain more the shear stress. However, a major
fraction of these contacts are located in the weak force network (more than half of C −F and F −F con-
tacts). Minh et al. (2014) obtained similar results for binary mixtures under one-dimensional compression.

The above analyzes have shown how the macroscopic stress is transmitted through the contact network
in a granular mixture but they do not show how much stresses the coarse-grained and fine-grained matrices
carry. According to Skempton and Brogan (1994), the stress carried by the fine fraction is an important
factor that influences the susceptibility of a granular material to internal erosion. In the next section, we
define first the stresses carried by each matrix, and then we show how they depend on fine content.
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Figure 3.17: Contributions of the strong and weak force chains to the mean stress p and the deviatoric
stress q at the peak state versus fine content fc.
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Figure 3.18: Percentage of weak contacts at the peak state versus fine content fc.
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Figure 3.19: Fraction of C − C, C − F and F − F contacts in the strong network at the peak state.

3.5 Stress carried by the fine and coarse fractions

In addition to the coarse-grained matrix (C) and the fine-grained matrix (F) in a granular mixture,
voids (V), which can be filled by water or not, are present between solid particles. By homogenizing
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the stress field in this heterogeneous medium, the macroscopic stress can be defined from its counterpart
within each phase:

σij =
∑

α∈{F,C,V }

φασα
ij =

∑

α∈{F,C,V }

σ̂α
ij . (3.17)

For each phase α, φα is its volume fraction, i.e. the ratio of its volume V α to the total volume V . The
intrinsic averaged stress σα is defined as the average of the microscopic stress field σ(x) which prevails in
the phase under consideration:

σα
ij =

1

V α

∫

x∈V α

σij(x)dV. (3.18)

According to the mixture theory, the tensor σ̂α = φασα, called partial stress, is defined as:

σ̂ij
α =

1

V

∫

x∈V α

σij(x)dV. (3.19)

The partial stress σ̂α can be understood as the contribution of the phase under consideration to the
macroscopic stress σ. It should be noted that it is the intrinsic averaged stress σα that gives information
on how much the phase under consideration is stressed. For a dry mixture, voids bear zero-stress so we
obtain:

σij = φFσF
ij + φCσC

ij = (1− n)[fcσ
F
ij + (1− fc)σ

C
ij ]. (3.20)

The volume fraction φF of the fine fraction is related to fine content fc and the porosity n by φF = (1−n)fc.

Using the definition (3.18) and following the transformations presented in Section 3.3, the intrinsic
averaged stresses σF and σC in the fine and coarse fractions can be expressed as follows:

σF
ij =

1

V F
s

∑

p∈F

Mp
ij , σC

ij =
1

V C
s

∑

p∈C

Mp
ij , (3.21)

where superscript p runs over all the particles in each fraction; V F
s and V C

s are the respective total solid
volumes of the fine and coarse fractions; and the internal moment tensor Mp is defined in (3.12) for each
particle p. Equation (3.21) can also be transformed to

σF
ij =

1

V F
s

∑

p∈F

σp
ijV

p
s , σC

ij =
1

V C
s

∑

p∈C

σp
ijV

p
s , (3.22)

where σp is the mean stress tensor defined for each particle in (3.13).

In the same manner, the partial stresses σ̂F and σ̂C of the fine and coarse fractions can be expressed
as follows by using the definition (3.19):

σ̂F
ij =

1

V

∑

p∈F

Mp
ij , σ̂C

ij =
1

V

∑

p∈C

Mp
ij . (3.23)

Based on the stress tensors σF and σC , the mean and deviatoric stresses carried by the fine and coarse
fractions can be calculated. Inspired from the stress reduction factor α that was introduced by Skempton
and Brogan (1994), we define a stress reduction factor α for the fine fraction as α = pF /p where pF is the
mean stress in the fraction of fine particles and p is the macroscopic mean stress. It is worth mentioning
that if both fractions carried the same stress, the stress reduction factor would be α = 1/(1−n). Shire et al.
(2014b) defined a similar stress reduction factor for the fine fraction. The authors computed the averaged
stress σF in the fine fraction using the definition (3.22). However, instead of considering the solid volume
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V p
s of each particle, the authors associated to each particle an amount of void surrounding it, so the volume

considered for each particle when computing the averaged stress σp is V p = V p
s /(1 − n). By doing so, a

binary mixture is considered as a biphasic material: the fine and coarse fractions with the respective total
volumes V F = V F

s /(1− n) and V C = V C
s /(1− n). As a consequence, the resulting stress tensor σF is no

longer intrinsic to the solid fraction of the fine particles according to (3.18) and the resulting stress factor
α is lower than that defined in the current study. A low value of the stress reduction factor α means that
the fine particles are not sufficiently stressed and they are susceptible to be washed out by the seepage flow.
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Figure 3.20: The mean stress p and the deviatoric stress q carried by the fine and coarse fractions versus
axial strain for (a) fc = 20% and (b) fc = 30%.

Figure 3.20 shows the mean and deviatoric stresses of each fraction versus the axial strain, compared
to the macroscopic mean and deviatoric stresses, for fc = 20% and 30%. Their values at the peak state
are plotted against fine content in Figure 3.21. The stress reduction factor α at the initial, peak and
critical states is plotted against fine content in Figure 3.22. It can be seen that at a low fine content
(fc ≤ 20%), the fine fraction carries almost zero-stress. This confirms that the fine particles are almost
floating in voids between coarse particles and carry low stress. According to Skempton and Brogan (1994),
a significant proportion of fine particles in this case can be easily washed out by water flow even at low
hydraulic gradient – in other words, these mixtures are internally unstable. It should be noted that a low
stress carried by the fine fraction is just a necessary condition for the internal instability. This just means
that fine particles can be easily detached by water flow. The sufficient condition is whether or not the
primary fabric formed by solid particles allow detached fine particles to migrate within the interstices of
this framework.

At a higher fine content, the fine particles participate in carrying the applied stress, and its participa-
tion increases with fine content. It is interesting to note in Figure 3.21 that the fine fraction plays a more
important role in carrying the mean stress than in carrying the deviatoric stress: at fc = 40%, pF /p = 1.0
compared to qF /q = 0.6 at the peak state. Shire et al. (2014b) also found that the stress reduction factor
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Figure 3.21: The mean stress p (a) and the deviatoric stress q (b) of the fine and coarse fractions at the
peak state versus fine content fc.

Figure 3.22: The stress reduction factor α at the initial, peak and critical states versus fine content fc.

α at the isotropic stress state increases with fine content; moreover it depends significantly on the gap
ratio Gr. By investigating the stress factor α during the shear loading, we find that the shearing leads to a
significant reduction in the stress carried by the fine fraction (Figure 3.22). For the mixture with fc = 30%,
which exhibits the most marked softening behavior as shown in Figure 2.21(b), the stress reduction factor
α reduces indeed from 0.84 at the initial state to 0.43 at the critical state. This result indicates that the
fine particles are softened by the shear loading, which might make them more vulnerable to internal erosion.

Concerning the coarse fraction, since voids do not carry any stress and the fine fraction carries a stress
smaller than the macroscopic stress, it carries a stress much bigger than the macroscopic stress. As shown
in Figure 3.21, the stress carried by the coarse fraction is indeed about 1.6 times the macroscopic stress.
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Furthermore, it increases with fine content for fc ≤ 30% but decreases for fc > 30% (Figure 3.21). This
result confirms the optimal fine content fc = 30% under which the coarse fraction is reinforced by fine
particles but above which the coarse fraction is weakened since fine particles strongly separate them. Even
at a very high fine content, the shear stress in the fraction of coarse particles is higher than the stress in
the fraction of fine particles.

Figure 3.23: A granular binary mixture is assimilated to a system of gears. Black and gray gears correspond
to particles included in the strong and weak force networks, respectively.

Let us now give an explanation of why the stress carried by the coarse fraction as well as the shear
strength of granular binary mixtures increase with fine content fc between 20% and 30%. Solid particles
with frictional surface can be thought of as gears in a mechanical transmission system so a granular bi-
nary sample can be assimilated to a system of small gears and big gears (Figure 3.23). Black and gray
gears correspond to particles included in the strong and weak force networks, respectively. For fc ≤ 30%,
the strong force network is primarily constituted of big gears. In such a system, small gears have the
two following important roles. Firstly, small gears intercalated between strong force columns serve as a
bracing system to laterally stabilize the latter ones: without them, strong force columns would collapse.
Secondly, an important number of small gears around big gears wedge the latter ones, thus prevent greatly
their rotation. In this case, sliding and rolling at contacts between big gears are greatly reduced; thus,
the coarse fraction gets stronger and the shear strength of granular mixtures increases with increasing fine
content. Indeed, Calvetti et al. (2003) and Belheine et al. (2009) showed that a granular sample resists
better shearing if the particle rotation is prohibited or reduced.

The partial stresses σ̂F and σ̂C defined in (3.23) give the contribution of each fraction to the macro-
scopic stress. If the solid fraction was homogeneous, the contribution of the fine fraction would be pro-
portional to fine content fc, e.g. 40% of fine content would contribute to 40% of the macroscopic stress.
Figure 3.24 shows that the contribution of the fine fraction to the macroscopic stress is far from being pro-
portional to fine content for fc ≤ 50% but it is proportional to fine content for fc > 50%. More precisely,
the fine particles do not significantly contribute to the macroscopic stress when fc < 20%. For this range
of fine content, the shear stress is mainly carried by the coarse particles. For the range of fine content
between 20% and 60%, the fine particles participate actively in carrying the shear stress. Interestingly,
they contribute more to the mean stress p than to the deviatoric stress q: for fc = 40%, 21.5% of the
deviatoric stress q is provided by the fine particles, which is much lower than the value of 30.9% of the
mean stress p. For this range of fine content, the coarse particles constitute primarily the solid skeleton,
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while the fine particles play the role of a matrix that reinforces the solid skeleton. For a fine content
higher than 60%, the fine particles primarily carry the shear stress and the coarse particles play the role
of inclusions in the matrix formed by the fine particles.
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Figure 3.24: Contributions of the fine fraction to the macroscopic mean and deviatoric stresses, p and q,
at the peak state versus fine content fc.

3.6 Classification of granular mixtures

According to Thevanayagam et al. (2002), the micro-structure of granular mixtures can be constituted
in many different ways, depending on fine content. The authors proposed three limiting categories of
micro-structure: (a) the coarse-coarse contacts are dominant, (b) the fine-fine contacts are dominant,
and (c) the fine and coarse particles form a layered system. The current study brought several interest-
ing insights into the variation of the granular micro-structure and how the coarse-coarse, coarse-fine and
fine-fine contacts participate in sustaining the shear stress, depending on fine content. It turns out that
the fine-coarse contacts play an important role in the micro-structure and there exists an intermediate
category between (a) and (b), where these contacts primarily bear the shear stress. We propose, therefore,
the following classification of granular mixtures into four limiting categories of micro-structure with three
threshold values as illustrated in Figure 3.25.

f th
c,3f th

c,2f th
c,1

0% 100%

fc

(i) (ii) (iii) (iv)

Figure 3.25: Four categories of micro-structure for granular gap-graded soils

• Category (i) for fc < f th
c,1: the fine particles are almost floating within intercoarse voids, hence they
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have a little contribution to supporting the shear stress. The shear strength is then not affected by
fine content.

• Category (ii) for f th
c,1 ≤ fc < f th

c,2: the fine particles partially fill intercoarse voids but they partially
separate coarse ones. The fine-coarse contacts are created and contribute to transmitting the shear
stress. However, contacts between coarse particles primarily carry the shear stress. In this case,
the shear strength increases with fine content.

• Category (iii) for f th
c,2 ≤ fc < f th

c,3: the fine particles fully fill intercoarse voids and greatly destroy
coarse-coarse contacts. The fine-fine contacts participate in carrying the shear stress. The major
contribution to the shear stress is provided by the fine-coarse contacts. In this case, the shear
strength decreases with fine content.

• Category (iv) for fc ≥ f th
c,3: the coarse particles are fully dispersed by the fine ones. The behavior

of granular mixtures of this category is mainly governed by the fine particles. The shear strength
is independent of fine content in this case.

It is should be noted that this classification does not include the category (c) of layered micro-structure
considered by Thevanayagam et al. (2002) For the binary mixtures considered in our study, the first and
second threshold values, f th

c,1 and f th
c,2, are about 20% and 30%, respectively. For the third threshold value

f th
c,3, we found this value is about 60% which is also the value founded by Minh et al. (2014) for binary

mixtures under one-dimensional compression with a gap ratio about 4.0.

3.7 Conclusions

In this chapter, we have presented a study on the effect of fine content on the mechanical behavior of
granular gap-graded materials subjected to shear loading. Numerical samples composed of fine and coarse
spherical particles with fine content varied from 0 to 100% are simulated using the DEM. Triaxial compres-
sion tests are then performed on these samples and their behavior is investigated at the micro-scale. This
study brought a lot of insights into the granular micro-structure and the stress transmission in granular
mixtures, which allowed us to explain why the fine particles can have no effect, positive effect or negative
effect on their stress-strain behavior, depending on fine content. At a low fine content (fc < 20%), the fine
particles are almost floating within the void space between the coarse particles so they do not participate
significantly in carrying the shear stress. Starting from 20% of fine content, the fine particles cause two
opposite effects to the granular micro-structure: on one hand, they come into contact with coarse par-
ticles and reinforce the micro-structure, but on the other hand, they separate coarse particles and then
weaken the micro-structure. As a consequence, the shear stress is transmitted more and more through
the coarse-fine contacts but less and less through the coarse-coarse contacts as fine content increases. The
optimal fine content is about 30% under which the coarse-coarse contacts primarily support the shear
stress. A decrease in the stress part carried by them is compensated by a strong increase in the stress
part carried by the coarse-fine contacts. As a result, the shear strength increases with fine content. Above
this optimal fine content, the coarse-fine contacts overtake the coarse-coarse contacts in carrying the shear
stress. The coarse fraction is greatly weakened and is not sufficiently reinforced by the coarse-fine contacts,
hence the shear strength decreases. The fine-fine contacts have little contribution to the macro-stress for
a fine content smaller than 40% but their contribution is significant and increases with an increase in fine
content > 40%. Starting from 60%, the fine-fine contacts primarily sustain the shear stress. It was also
found that the strong force network in the studied granular mixtures includes almost all the coarse-coarse
contacts but no more than 50% of coarse-fine contacts. Furthermore, a major fraction of fine-fine contacts
are located in the weak force network.

85



Chapter 3: Micro-mechanical behavior of gap-graded granular soils

For fine content < 20%, the coarse particles constitute primarily the solid skeleton to resist to shear
loading, leaving the fine particles under lower stress. For the range of fine content between 20% and 60%,
the fine particles participate actively in sustaining the shear stress. They play the role of a matrix that
reinforces the solid skeleton primarily constituted of coarse particles. Above 60% of fine content, the fine
particles carries primarily the shear stress and the coarse particles play the role of inclusions in the matrix
formed by the fine particles.

Based on this study, a classification of binary mixtures into four limiting categories of micro-structure
was proposed. The particularity of the proposed classification is that it considers the importance of the
coarse-fine contacts in the micro-structure. By increasing fine content, the micro-structure of binary mix-
ture can change from a category where the coarse-coarse contacts primarily constitute the solid skeleton, to
a category where the coarse-fine contacts primarily constitute the solid skeleton, and finally to a category
where the fine-fine contacts are dominant in the solid skeleton.
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Chapter 4

Behavior of samples eroded by removal of

fine particles

4.1 Introduction

As mentioned in Section 1.6.1, several coupled particle-fluid models such DEM-CFD, DEM-LBM,
DEM-SPH and DEM-PFV have been developed to simulate the fluid flow through granular materials.
However, these models are computationally very expensive to simulate a full suffusion process on widely
graded granular materials. Alternative methods based on particle removal have been then proposed by
several authors (Wood and Maeda, 2008; Wood et al., 2010; Scholtès et al., 2010; Aboul-Hosn, 2017)
to represent the internal state of the soil after internal erosion. These methods consist in removing the
smallest and the less loaded fine particles from an original sample at a given stress state to mimic the loss
of fine particles caused by suffusion. We use a similar method to represent the internal state of eroded
soils and then to investigate the mechanical consequences of the loss of fine particles on the mechanical
behavior of gap-graded soils.

We propose a representation of the internal state of eroded soils at different levels as mentioned in
Section 1.7:

• Level 1: an eroded sample is obtained by reducing fine content of the original sample and then
reconstituting the eroded sample at a given density. We assumed that the eroded sample has the
same relative density as that of the original sample. For example, if the original soil is at the dens-
est state and contains 30% of fine content, an erosion of 10% of fine content results in an eroded
sample with 20% of fine content and at the densest state. Sterpi (2003) used a similar method to
investigate experimentally the mechanical consequences of suffusion. It should be noted that only
the reduction in fine content caused by suffusion is taken into consideration and none of the three
main mechanisms of suffusion (detachment, transport and retention of fine particles) is considered
at this level. Studying the effect of suffusion by adopting this level is similar to the study of the
effect of fine content on the mechanical behavior of gap-graded soils, which was presented in Chap-
ter 2 at the macro-scale and Chapter 3 at the micro-scale.

• Level 2: a fraction of fine particles is removed from the original sample at a given stress state. The
key point in this level is how to identify the fine particles to be removed. Two different particle re-
moval methods are proposed. In the first method, a fraction of fine particles is randomly removed
from the original sample. This method is inspired from the experimental study of Chen et al.
(2016), in which a fraction of fine particles was randomly replaced by salt and are then dissolved
when the water is injected into the original sample (see Section 1.5.2 for more details about this
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study). The second method consists in removing a fraction of fine particles which is located in the
weak force network. It is worth mentioning that only the detachment of fine particles is taken into
consideration at this level.

• Level 3: Among all fine particles susceptible to be removed at the level 2, only those who can move
through the pore network formed by the coarse particles are moved from the original sample. We
propose, for this level, a model for the transport and retention of fine particles in the pore network.

This chapter focuses on the level 2 for a representation of the internal state of eroded soils and is
divided into three main sections. In Section 4.2, we present the method based on the random extraction
of fine particles. In Section 4.3, we propose another method to identify the fine particles susceptible to
be removed by considering the weak force network in the original sample. Section 4.4 is dedicated to a
comparison between different extraction methods. The densest gap-graded samples presented in Chapter 2
having Dr = 100% are considered as original samples and fine particles are extracted only at the isotropic
stress state (q/p = 0).

4.2 Random extraction of fine particles

According to this method, fine particles are randomly removed from an original sample by successive
extraction steps. For each extraction step, a fraction ∆µe of fine particles is randomly removed from the
original sample and a sufficient number of computation cycles is performed to bring the sample to the
equilibrium while its stress state is kept constant. This extraction process is repeated until we reach a
target fraction µe of removed fine particles, which is defined as the ratio of the mass of the removed fine
particles to the total solid mass of the corresponding original sample. For example, µe = 10% means that
the original sample loses 10% of its solid mass due to the removal of fine particles. The fraction ∆µe of
fine particles removed at each extraction step can be thought of as the rate of erosion. Indeed, to erode
experimentally the same mass from a sample, we can apply a high hydraulic gradient to erode quickly
the sample but we can also erode slowly the sample by applying a moderate hydraulic gradient. In the
study of Scholtès et al. (2010), only one fine particle is removed at each extraction process. This particle
by particle extraction process requires very long computational time. In this study, we aim at increasing
the rate of extraction to lessen the computational time of the extraction process. The influence of the
parameter ∆µe on the mechanical behavior of eroded samples is studied in the next section.

4.2.1 Effect of the extraction rate ∆µe

We considered first the well-graded sample presented in Scholtès et al. (2010), on which the extraction
method proposed by Scholtès et al. (2010) (see Section 1.6.1.2) is used. Instead of removing fine particles
one by one as done by Scholtès et al. (2010), we remove 1% of fine particles (∆µe = 1%) at each extraction
step until 5% of fine particles is removed from the original sample. As a result, we need only 5 extraction
steps to achieve the 5% of removed fine particles and 5 times for stabilizing the sample, compared to 2000
times when we extract one by one fine particles. Figure 4.1 shows stress-strain behavior of the intact
sample and that of the eroded samples obtained with one by one particle extraction and with ∆µe = 1%.
It can be seen that the extracting each time 1% of fine particles from the original sample gives the same
result as that obtained when fine particles are removed from the original sample one by one. In addition,
the former method allows us to reduce significantly the computation time.

Figure 4.2 shows the stress-strain behavior of the original sample with fc = 30% and that of the
samples with 5% and 20% of eroded mass. Different extraction rates ∆µe = 0.1%, 1%, 2.5% and 5% are
used. The symbol fc is used to refer to fine content of the original sample. It can be seen that a high
value of ∆µe = 5% induces a greater fluctuation of the stress-strain curve of eroded samples. However,
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Figure 4.1: Stress ratio q/p and volumetric strain εv versus axial strain ε11 of the original sample considered
in Scholtès et al. (2010) and of the eroded samples obtained with one by one particle extraction and with
∆µe = 1%.
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Figure 4.2: Stress-strain behavior of the original sample with fc = 30% and of the samples eroded with
different extraction rates ∆µe: (a) for 5% of eroded mass and (b) for 20% of eroded mass.

the extraction rate ∆µe has a negligible effect on the mechanical behavior of the eroded samples. The
same result is observed for the original samples fc = 10% and 20% and with different fractions of eroded
mass.
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A study on the computational cost of the extraction of fine particles using different values of extraction
rate ∆µe is needed. Figure 4.3 presents the number of iterations of the extraction process of µe = 5% and
10% of fine particles for the sample of fc = 30% with different values of extraction rate ∆µe. It can be
seen that, for the two values of µe, the number of iterations decrease with the increase of the extraction
rate ∆µe. This decrease becomes small after ∆µe = 0.5% and for that, ∆µe = 1% is chosen for the
studies presented in the following. We can also remark that the fraction µe of eroded fine particles affects
greatly the mechanical behavior of eroded samples. The effect of this parameter will be studied in the
next section.
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Figure 4.3: Number of iterations versus extraction rate ∆µe after the extraction of 5% and 10% of fine
particles from the sample of fc = 30%.

4.2.2 Macroscopic investigation

In this section, we aim to study the consequences of the random extraction of fine particles on the void
ratios of eroded samples and on the mechanical behavior of eroded samples. The three densest gap-graded
samples with fc = 10%, 20% and 30% whose mechanical behavior was presented in Section 2.5 are consid-
ered as the original samples. These samples are eroded by the random extraction method with different
percentages µe of eroded fine particles. It should be noted that the parameter µe is defined as percentage
of the mass of the fine particles removed from a given sample, compared to the total solid mass of the
original sample.

Table 4.1 shows the change in the global void ratio e, the intergranular void ratio ec and the interfine
void ratio ef for the samples with fc = 10%, 20% and 30% when different percentages µe of fine particles
are removed from these samples. It is obvious that a removal of fine particles leads to an increase in the
global void ratio e and the interfine void ratio ef . On the other hand, the intergranular void ratio ec
remains almost constant, meaning that the extraction of fine particles does not disturb significantly the
coarse particles. However, a small decrease in ec is observed when removing 20% of fine content from the
sample with fc = 30%.

Figure 4.4 shows the stress ratio q/p and the volumetric strain εv versus axial strain ε11 for the intact
samples with fc = 10% and 30% and for the eroded samples with different percentages µe of removed
fine particles. It is shown in Figure 4.4(a) that the stress-strain behavior of the sample fc = 10% is not
significantly affected by a loss of fine particles. Even though this sample loses all the fine particles, its
stress-strain behavior remains almost unchanged. This result can be explained by the fact that the fine
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µe fc = 10% fc = 20% fc = 30%

e ec ef e ec ef e ec ef

0 0.50 0.67 5.0 0.35 0.69 1.75 0.29 0.84 0.95

5% 0.58 0.67 11.0 0.42 0.69 2.67 0.35 0.83 1.34

10% 0.67 0.67 - 0.50 0.69 4.5 0.43 0.83 1.91

15% - - - 0.59 0.69 10.0 0.51 0.83 2.9

20% - - - 0.69 0.69 - 0.57 0.81 4.3

Table 4.1: Void ratios e, ec and ef for different percentages µe of fine particles removed from the original
samples with fc = 10%, 20% and 30%.

particles in this sample are floating within voids between coarse particles and do not play a significant
role in carrying the shear stress. As a result, they can be removed without changing significantly the
mechanical behavior of the sample. On the other hand, a loss of fine particles leads a great change in the
mechanical behavior of the sample with fc = 30% as can be seen in Figure 4.4(b). The sample becomes
looser with a decrease in shear strength and dilatancy as the percentage µe of eroded fine particles is
increased. With a loss of 20% of fine particles, the sample with fc = 30% changes its behavior from that
of a dense sample to that of a very loose sample. Table 4.2 presents the reduction in shear strength at the
peak state of the samples with fc = 10%, 20% and 30% when different percentages µe of fine particles are
removed from them. Starting from 20%, a loss of fine particles leads to a significant reduction in shear
strength at the peak state. This is related to the fact that the fine particles participate to carry the shear
stress starting from 20% of fine content as shown in Chapter 3. A removal of particles that share the shear
stress from a granular material makes it weaker. The sample with fc = 30% loses half of its shear strength
when 20% of fine particles is removed. Table 4.2 shows also that, with the same amount of removed fine
particles, the reduction in shear strength caused by the loss of fine particles is more accentuated for a
higher value of the initial fine content fc. Indeed, the sample with fc = 30% looses about 30% of its shear
strength when it loses 10% of fine particles, while the sample with fc = 20% loses only 12% of its shear
strength with the same amount of removed fine particles. It is interesting to note in Figure 4.4 that the
loss of fine particles causes a great reduction in shear strength at the peak state but not at the critical
state. The shear strength at the critical state is actually more or less the same for different percentages
µe of removed fine particles.

µe fc = 10% fc = 20% fc = 30%

5 % 0.8 5.5 20.0

10 % 2.5 12.1 29.3

15 % - 14.4 51.5

20 % - 18.4 50.0

Table 4.2: Loss in percentage (%) of the maximum shear strength of the samples with fc = 10%, 20%,
30% when 5%, 10%, 15% and 20% of fine particles are removed from them.
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Figure 4.4: Stress-strain behavior of the intact samples and of the eroded samples with different percentages
µe of removed fine particles: (a) for fc = 10% and (b) for fc = 30%.

The numerical results shown above are qualitatively in good agreement with the experimental results
obtained by Chen et al. (2016) (see Section 1.5.2 for some results of this study). In this study, the author
replaced randomly a fraction of fine granite particles by salt particles that are dissolved when the water
is injected into the samples. This experimental procedure is quite similar to the random removal of fine
particles from an original sample in our simulation. The authors found that the dissolution of fine particles
leads to a great reduction in shear strength at the peak of the tested granular mixtures but not at the
critical state. In addition, the consequences of the loss of fine particles are more marked for the samples
with 35% of fine content than for the samples with 20% of fine content.

As shown in Section 3.5, the fine particles carry no more than 20% of the shear stress applied to
the sample with fc = 30% at the peak state (Figure 3.24). A removal of fine particles does not disturb
significantly the coarse particles as shown above. A question that arises here is why a removal of 20% of
fine particles from this sample leads to a reduction of 50% in its shear strength at the peak state. In the
next section, we will try to answer to this question by investigating the effect of the loss of fine particles
at the microscopic scale.

4.2.3 Microscopic investigation

In this section we aim to study the effect of the random extraction of fine particles on the behavior of
eroded samples at the micro-scale. The microscopic investigation focuses on the variation of coordination
numbers with the percentage µe of removed fine particles and how the shear stress is carried by the fine
and coarse particles in an eroded sample.

4.2.3.1 Coordination numbers

For each eroded sample, the three coordination numbers NC−C
C , NC−F

C and N F−F
F defined in Section

3.2.1 are calculated. As shown in Section 3.2.1, the coordination numbers NC−F
C and N F−F

F are very
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small for the original samples fc ≤ 20%. In this case, the fine particles are almost floating within the void
space between the coarse particles. As a consequence, a removal of fine particles disturb slightly only the
coarse particles: a slight decrease in coordination number NC−C

C is observed when removing fine particles
as shown in Table 4.3. For the original sample with fc = 30%, fine particles are in contact with coarse
ones and form a strong interface between the fine and coarse fractions: the coordination number NC−C

C

equal to 45 is very high. A removal of fine particles from this sample does not destroy strongly the fraction
of coarse particles but destroys strongly this interface: the coordination NC−F

C decreases strongly with
an increase in percentage µe of removed particles, while the coordination number NC−C

C remains more or
less constant. This means that this sample loses C − F contacts between fine and coarse particles when
fine particles are removed from it. It should be noted that the C − F contacts play a very important role
in sustaining the shear stress as shown in Section 3.3. Therefore, a loss of these contacts reduces greatly
its bearing capability. In the next section, we will show how the loss of fine particles reduces the bearing
capability of the coarse and fine fractions.

µe fc = 10% fc = 20% fc = 30%

NC−C
C NC−F

C N F−F
F NC−C

C NC−F
C N F−F

F NC−C
C NC−F

C N F−F
F

0 5.3 0.0 0.0 5 0.4 0.0 3.8 44.9 2.2

5% 4.7 0.0 0.0 4.6 0.4 0.0 3.8 21.8 0.7

10% 4.7 0.0 0.0 4.6 0.2 0.0 3.7 11.8 0.3

15% - - - 4.6 0.1 0.0 3.2 4.2 0.1

20% - - - 4.6 0.0 0.0 3.2 1.3 0.1

Table 4.3: Coordination numbers NC−C
C , NC−F

C and N F−F
F for different percentages µe of fine particles

removed from the original samples with fc = 10%, 20% and 30% at the initial state.

4.2.3.2 Stress carried by the fine and coarse fractions

For each eroded sample, we calculate the partial stress tensors σ̂F and σ̂C of the fine and coarse
fractions (see Equation (3.23)) to study the stress carried by each fraction. The partial stress of each
fraction is its contribution to the macroscopic stress. The mean stresses carried by these fractions are
denoted by p̂F and p̂C ; and the deviatoric stresses carried by these fractions are denoted by q̂F and q̂C .
Figure 4.5 shows the mean and deviatoric stresses carried by each fraction versus the axial strain for three
eroded samples obtained from the respective original samples with fc = 10%, 20% and 30% by removing
10% of fine particles. These partial stresses for each eroded sample are compared to those obtained for
the corresponding original sample. Figure 4.6 shows the values of these stresses at the peak state with
different percentages µe of extracted fine particles for two original fine contents fc = 20% and 30%. It
can be seen that even though the sample of fc = 10% loses all fine particles, the coarse particles carry
almost the same stresses as those they carry in the original sample. However, for the samples with fc =
20% and 30%, a loss of fine particles leads to a great reduction in stresses carried by the coarse fraction.
It is interesting to note that the deviatoric stress q̂C carried by the coarse fraction is much more reduced
than the mean stress p̂C , especially for fc = 30%. Figure 4.6(b) shows clearly that the deviatoric stress
q̂C decreases strongly, while the mean stress p̂C decreases slightly with an increase in percentage µe of
removed fine particles for fc = 30%. The coarse particles in this sample lose half of their capability to
carry the deviatoric stress when it loses only 10% of fine particles. A loss of fine particles leads obviously
to a reduction in stresses carried by the fine fraction as this fraction becomes looser and its solid volume
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is reduced.
In order to explain why a removal of fine particles leads to a great reduction in shear strength of an

eroded sample, it is important to understand the role of the removed fine particles in the corresponding
original sample. For this purpose, the mean and deviatoric stresses carried by the extracted fine particles
in the corresponding original sample are calculated. Their values at the peak state, normalized by the
macroscopic values, are plotted versus percentage µe of extracted fine particles for the original samples
with fc = 10%, 20% and 30% in Figure 4.7. For example, Figure 4.7 indicates that 10% of fine particles
that are removed from the original sample with fc = 30% carried initially about 12% of the mean stress
p and about 7% of the deviatoric stress q applied to this original sample. The role of the removed fine
particles with any value of µe in carrying the shear stress is small, compared to the role of the coarse frac-
tion. If the coarse fraction kept its bearing capability, the sample with fc = 30% would lose no more than
12% of its capability in carrying in the shear stress at the peak state when 10% of fine content is removed
from it. Table 4.2 shows that this sample loses actually about 30% of its bearing capability when it losses
10% of its fine content even though the coarse fraction is not significantly disturbed by this removal of
fine particles as shown in Section 4.2.3.1. In fact, for this sample, the coarse particles constitute the solid
skeleton that carries primarily the shear stress and the fine particles form a matrix that reinforces the
solid skeleton as shown in Chapter 3. The contacts between fine and coarse particles participate strongly
in transferring the shear stress. When a fraction of fine particles is removed, the fine fraction gets looser
and contacts between fine and coarse particles are disrupted. As a consequence, the coarse fraction losses
the reinforcement from the fine fraction, causing a great reduction in its bearing capability.

The main drawback of the random extraction method presented above is that fine particles that are
strongly loaded can be also removed. If a fine particle is strongly loaded, it is not easily detached by the
seepage flow. Kenney and Lau (1985) stated that a granular soil possesses a primary fabric, also called
solid skeleton, that supports primarily the shear stress. Particles within the pores of this primary fabric
do not support significantly the shear stress and they are susceptible to be detached by the seepage flow.
These particles are called loose particles. The extraction process presented above should be applied only
on this loose fraction. The key point here is how loose particles are identified. In the next section, we
will present two methods to identify loose particles and the consequences of a loss of loose particles on the
mechanical behavior of eroded samples.

4.3 Extraction of loose particles

We discuss first the method proposed by Scholtès et al. (2010) which identifies loose particles based on
the internal moment tensor Mp, and another method based on the stress tensor σp defined for each fine
particle in Section 3.3. We propose then another method based on the weak and strong force networks in
Section 4.3.2.

4.3.1 Methods based on the internal moment tensor M p and on the stress tensor σp

The internal moment tensor Mp for each particle was defined in Equation (3.12). This tensor can be
understood as the contribution of each particle to the macro-stress (see Equation (3.8)). Scholtès et al.
(2010) proposed to consider the mean internal moment mp = tr(Mp) as the degree of loading of the
particle under consideration. For a given sample, particles having a low degree of loading are considered
as loose particles. Among the smallest particles in the sample, the authors removed the loosest ones.

The mean internal moment mp of each particle is plotted against the particle diameter in Figure 4.8
for the sample with fc = 30% at the initial state (Figure 4.8(a) for all particles and Figure 4.8(b) for only
the fine particles). In this figure, particle diameters are sorted in an increasing order. It can be clearly
seen that small particles tend to take small values of the mean internal moment mp. This is consistent to
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Figure 4.5: Mean and deviatoric stresses carried by the coarse and fine fractions versus axial strain ε11 for
three eroded samples with µe = 10% and with different initial fine contents: (a) fc = 10%, (b) fc = 20%
and (c) fc = 30%.
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Figure 4.6: The mean and deviatoric stresses p and q carried by the fine and coarse fractions, compared
to the macroscopic ones, versus percentage mue of removed fine particles at the peak state: (a) fc = 20%
and (b) fc = 30%.
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original samples with fc = 10%, 20% and 30% versus percentage µe of removed fine particles.
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Figure 4.8: Mean internal moment mp versus the diameter of the particles in the gap-graded sample with
fc = 30% at initial state: (a) for all particles, (b) for only fine particles.

the fact that a small particle has a small contribution to the macro-stress since its size is small. Let’s look
at the definition of the internal moment tensor Mp in Equation (3.12). As the contact force fk is not
disproportionately scaled up with the particle radius r, the internal moment tensor Mp is indeed scaled
up with r. As a consequence, a small particle that is greatly loaded can have a small value of mp. This
result means that the mean internal moment mp might not be a relevant index for the degree of loading
of fine particles since it depends closely on the particle size.

One might consider the stress tensor σp defined in Equation (3.13) to assess the degree of loading of a
fine particle. Peters et al. (2005) used this stress tensor to separate strongly stressed particles from weakly
stressed ones. The mean stress σm = tr(σp)/3 is considered as the degree of loading for each particle.
Figure 4.9 presents the mean stress σm versus the particle diameter for the sample with fc = 30% at the
initial state. This figure shows clearly that small particles tend to have high values of the mean stress σm.
Let’s look at the stress tensor σp in Equation (4.1) for a spherical particle:

σp
ij =

1

V p
s

∑

k∈p

fk
i r

k
j =

3

4πr3

∑

k∈p

fk
i rn

k
j =

3

4πr2

∑

k∈p

fk
i n

k
j , (4.1)

where r is the particle radius and nk is the unit normal vector at a contact. As the contact force fk is
not scaled down with r and the number of contacts on each fine particle is limited, the stress tensor σp
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Figure 4.9: Variation of the isotropic stress σm of each particle versus the diameter of each particle of the
gap-graded sample fc = 30% at initial state: (a) for all particles, (b) for fine particles.

defined in Equation (4.1) tends to be scaled up with 1/r2. It should be noted that the stress tensor σp

defined in Equation (4.1) for a particle subjected to few discrete contact forces does not have the physical
meaning of a Cauchy stress tensor: it is a Cauchy stress tensor only when it is used for a collection that
contains a sufficient number of particles as stated by Moreau (1996).

The internal moment tensor Mp and stress tensor σp might be not adequate to assess the degree of
loading of the fine particles as they depend on the particle size. In the next section, we propose another
method to separate the loose fraction from the solid skeleton based on the force networks.

4.3.2 Method based on the force chain networks

The method proposed in this section consists in classifying the particles into two categories: (i) the first
category contains particles that belong to the solid skeleton, which are considered as the non-detachable
particles, and (ii) the second is the loose fraction which contains the weakly loaded particles. The particles
in the loose fraction are considered to be detachable and they can be removed from the original sample.

4.3.2.1 Extraction method

The weak and strong force networks were defined in Section 3.4. The strong force network is composed
of the strong contacts where contact force is greater than the mean contact force according to Radjai and
Wolf (1998). It was also shown that the strong force network constitutes the solid skeleton that carries
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primarily the shear stress applied to a granular sample. We assume that a particle belongs to this solid
skeleton if the strong force network passes through it, i.e., it has at least two contacts in the strong force
network. By doing so, a particle in the solid skeleton has at least two contacts with other particles in the
solid skeleton as illustrated in Figure 4.10. It is worth mentioning that, to define force chains in a granular
system based on the particle stress tensor defined in Equation (3.13), Peters et al. (2005) also considered
that a particle in a strong force chain must have at least two strong contacts with other particles. Particles
which do not belong to the solid skeleton according to the above criterion belong then to the loose fraction
as illustrated in Figure 4.10.

Strong force chain

Solid skeleton

Loose particle

Figure 4.10: Illustration of the solid skeleton and the loose fraction in a granular assembly.
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Figure 4.11: Mean stress p and deviatoric stress q carried by the solid skeleton and the loose fraction at
the peak state versus fine content fc.

Figure 4.11 shows the contributions of the solid skeleton and of the loose fraction to the macroscopic
mean and deviatoric stresses, p and q, versus fine content fc. This figure confirms that the solid skeleton
carries primarily the shear stress. The loose fraction carries a small part of the mean stress but a negligi-
ble part of the deviatoric stress. Table 4.4 presents the percentages by mass of fine and coarse particles
in the loose fraction and the percentage of floating fine particles (particles having no contact with their
neighbors) for different fine contents at the initial state. These percentages are calculated with respect
to the total solid mass of all the particles. It is shown that the loose fraction includes a major fraction
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fc % of loose fines % of loose coarses % of floating fines

5% 5.0% 26.0% 5.0%

10% 10.0% 29.3% 10.0%

15% 15.0% 23.0% 14.9%

20% 20.0% 20.3% 19.8%

25% 24.13% 1.0% 19.12%

30% 22.0% 0.1% 10.0%

Table 4.4: Percentages by mass of fine and coarse particles in the loose fraction and that of floating fine
particles for different fine contents fc.

of fine particles but a small fraction of coarse particles. For fc ≤ 20%, almost all of fine particles belong
to the loose fraction and they are floating particles which carry no stress. The solid skeleton is mainly
constituted of coarse particles. However, a significant fraction of coarse particles (about 30% among all
the coarse particles) are located in the loose fraction. Starting from 20% of fine content, more and more
fine particles participate in carrying the shear stress and then take part in the solid skeleton. Interestingly,
almost all of coarse particles are included in the solid skeleton for fc ≥ 25%, i.e., the loose fraction contains
almost only fine particles. For 30% of fine content, a fine content of 22% is included in the loose fraction,
among them 10% (with respect to the total mass) are floating particles. This means that a fine content
of 8% is included in the solid skeleton.

A fraction of fine particles in the loose fraction is removed to mimic the loss of fine particles caused
by suffusion. We assume that the degree of interlocking of each fine particle in the loose fraction depends
on the number of contacts with its neighbors. Therefore, for each extraction step, we remove a fraction
∆µe of fine particles which have the lowest number of contacts (we remove first the particles with zero
contact, then those with one contact, then those with two contacts and so on). After each extraction step,
the sample is stabilized until it reaches a new equilibrium at which a new solid skeleton and a new loose
fraction are identified. This extraction procedure is presented in Figure 4.12.

Figure 4.13 shows the mechanical behavior of the intact sample with fc = 30% and that of the eroded
samples with 20% of fine content removed by using the above procedure. Two extraction rates ∆µe =
0.1% and 1% are used. It is shown that the extraction rate ∆µe has a little effect on the mechanical
behavior of eroded samples. Therefore, the extraction rate ∆µe = 1% is used in the following.

4.3.2.2 Macroscopic investigation

The macroscopic behavior of samples eroded by removing fine loose particles with the method based
on the force chain networks is studied in this section. The behavior of samples eroded by this method
is compared to that obtained by the random extraction method presented in Section 4.2. Figure 4.14
shows the mechanical behavior of the eroded samples with 10% and 20% of fine particles removed from
the original sample with fc = 30% by using the two aforementioned extraction methods. It is important to
remind that 10% of fine particles removed refers to 10% of the total solid mass of the original sample under
consideration; it does not mean 10% of the total mass of the fine particles. Like the random extraction
of fine particles, the extraction of fine particles in the loose fraction leads a reduction in shear strength
and in dilatancy of eroded samples. The mechanical behavior of eroded samples is more degraded with an
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Figure 4.12: Scheme of the extraction procedure based on the force networks.

increase in the percentage µe of removed fine particles. It is interesting to note that the extraction of fine
particles in the loose fraction disturbs less the mechanical behavior of eroded samples than the random
extraction of fine particles. Indeed, with the same amount of removed fine particles, the shear strength
of the samples eroded by the former method is significantly higher than that of the samples eroded by
the latter method. The reduction of the peak shear strength caused by the extraction of fine particles is
plotted against the percentage µe of removed fine particles in Figure 4.15 for fc = 20% and 30%. It can
be seen that the results given by the two extraction methods are quite close for fc = 20%. This is due to
the fact that almost all of fine particles extracted from this original sample by both methods are floating
particles as indicated in Table 4.4. However, these two extraction methods give different results for the
sample with fc = 30%. The random extraction of 20% of fine particles causes a reduction of about 50% in
shear strength to this sample, which is much higher than a value of about 28% given by the extraction of
the same amount of fine particles in the loose fraction. It is clear that the difference between the results
given by these methods increases with an increase in the initial fine content fc and with an increase in the
percentage µe of removed fine particles.

It should be noted that the floating particles in the original samples are identified at the initial state
and they do not carry any stress at this state. This does not mean that these floating particles do not
play any role in the mechanical behavior of the original samples. An extraction of 20% of fine particles
from the original sample with fc = 20%, which are floating particles, leads indeed to a reduction of about
15% in shear strength (Figure 4.15(a)). The sample with fc = 30% also loses about 10% of its bearing
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Figure 4.13: Stress ratio q/p and volumetric strain εv versus axial strain ε11 of the eroded samples with
20% of fine particles removed from the original sample with fc = 30% by using the extraction method
based on the force networks with different extraction rates ∆µe.
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Figure 4.14: Stress ratio q/p and volumetric strain εv versus axial strain ε11 of the samples eroded from
the original sample with fc = 30% by using the random extraction method and the method based on the
force chain network: (a) for µe = 10% and (b) for µe = 20%.

capability when it loses 10% of fine particles, which are almost floating particles. Note that a particle
which is floating at a given state might become active and participate then in carrying the shear stress
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Figure 4.15: Reduction in the shear strength of the eroded samples versus the percentage µe of removed
fine particles. The original samples with (a) fc = 20% and (b) fc = 30% are eroded by using the random
extraction method and the method based on the force chain network.

later on. This is the reason why removing the floating particles from the original samples degrades their
bearing capability.

By comparing Figures 4.15(a) and 4.15(b), one can remark that an extraction of less than 10% of fine
particles in the loose fraction by using the method based on the force chain network causes almost the
same reduction in shear strength (about 10%) to both samples with fc = 20% and fc = 30%. However,
an extraction of more than 10% of fine particles leads to a stronger reduction in shear strength observed
for the sample with fc = 30% than for the sample with fc = 20%. For µe = 20%, the former sample
loses indeed about 28% its shear strength, while the latter one loses only about 15% its shear strength.
It is worth mentioning that, to achieve more than 10% of extracted fine particles, we need to remove also
active fine particles that carry stress from the sample with fc = 30%, while only floating particles are
removed from the sample with fc = 20%. This result means that removing active fine particles that carry
stress causes a greater degradation to granular samples than removing floating particles that carry no stress.

It has been shown previously that removing randomly fine particles from the original sample with
fc = 30% causes a greater reduction in shear strength than removing only loose particles which do not
carry significantly stress. In the next section, we will bring some insights into this sample to explain this
difference.

4.3.2.3 Microscopic investigation

The mean and deviatoric stresses carried by the fine and coarse fractions in the eroded samples obtained
from the original sample fc = 30% by removing randomly fine particles and by removing only fine particles
in the loose fraction. These stresses are plotted against the axial strain for 10% and 20% of removed fine
particles in Figure 4.16. It is clearly shown that a random extraction of fine particles leads to a stronger
reduction in the stresses (particularly the deviatoric stress) carried by not only the fine fraction but also
by the coarse fraction than an extraction of loose fine particles. This means that, with the same amount of
removed particles, a random extraction of fine particles degrades more strongly the coarse fraction than an
extraction of only fine particles in the loose fraction. This can be explained by the fact that fine particles
in the solid skeleton are removed by the random extraction, which causes a collapse to the solid skeleton.
It is worth mentioning that when fine particles in the loose fraction are removed, the solid skeleton is less
disturbed although it loses the reinforcement from the fine fraction. These are the reasons which explain
why a random extraction of fine particles causes a stronger reduction in shear strength to the original
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Figure 4.16: Mean and deviatoric stresses, p̂ and q̂, carried by the fine and coarse fractions in the eroded
samples with (a) µe = 10% and (b) µe = 20% obtained from the original sample with fc = 30%.

sample with fc = 30% than an extraction of fine particles in the loose fraction.

4.4 Comparison between different extraction methods

We presented in Sections 4.2 and 4.3.2 two particle extraction methods to mimic the loss of fine par-
ticles caused by suffusion: fine particles are randomly removed from the original sample for the first one,
while only fine particles in the loose fraction, which do not carry significantly stress, are removed from the
original sample for the last one. The loose fraction of a granular sample at a given state is defined based
on the force chain network. A comparison between these two methods was presented in Section 4.3.2.2. In
this section, we present a comparison of these two methods with the method proposed by Scholtès et al.
(2010) (see Section 4.3.1) and the method of level 1 mentioned at the beginning of the chapter. For the
last method, the fine content on the particle size distribution curve of a given original sample is reduced
and a new sample, considered as an eroded sample, is prepared at the same relative density as that of the
original sample.

Let’s start this comparison by considering the well-graded sample used by Scholtès et al. (2010). Figure
4.17 shows the stress-strain behavior of the samples eroded at the initial state with 5% of removed fine
particles by using the random extraction method, the extraction method based on the force chain network
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Figure 4.17: Stress ratio q/p and volumetric strain εv versus axial strain ε11 after the extraction of 5% of
fine particles from the well-graded sample used by Scholtès et al. (2010) using different extraction methods.

and the method of Scholtès et al. (2010). It can be seen that the eroded samples obtained with the random
extraction method and the method of Scholtès et al. (2010) show similar stress-strain behaviors but greatly
different from that given by the extraction method based on the force chain network which gives a smaller
change in stress-strain behavior of the eroded sample. Similar results are observed for the eroded samples
obtained from the gap-graded sample with fc = 30% as shown in Figure 4.18. The difference between the
results given by these particle extraction methods increases with an increase in percentage of removed fine
particles as shown in Table 4.5. For a loss of 20% of fine content, the method of Scholtès et al. (2010)
gives a reduction of about 59% in shear strength, much higher than the value of about 28% given by the
method based on the force chain network.

µe Level 1 Scholtès et al. method Random extraction method Force chain network method

5 % 6.06 18.2 20.0 6.6

10 % 17.94 25.0 29.3 10.5

15 % 25.91 48.2 51.5 23.4

20 % 28.63 58.8 54.7 28.1

Table 4.5: Loss in % of the shear strength of the sample with fc = 30% caused by an extraction of fine
particles by using different methods.

As discussed in Section 4.3.1, Scholtès et al. (2010) considered the internal moment tensor Mp to
identify the less loaded fine particles. The tensor Mp might get a small value for a small particle, even
though it is strongly loaded and belongs to a strong force chain. This small particle might be removed
from the original sample according to this method. A removal of fine particles from the strong force
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Figure 4.18: Stress ratio q/p and volumetric strain εv versus axial strain ε11 for the eroded samples with
(a) 10% and (b) 20% of fine particles removed from the original sample fc = 30% with different methods.

chains disturbs strongly the granular micro-structure, leading to a great reduction in shear strength. It is
worth noting that fine particles are also removed from the strong force chains by the random extraction
method. This might explain why the random extraction method and the method of Scholtès et al. (2010)
give similar results. On the other hand, the method based on the force chain network removes only fine
particles from the weak force network. The granular micro-structure is thus less disturbed, which explains
why this method gives a smaller reduction in shear strength than the random extraction method and the
method of Scholtès et al. (2010).

Method µe = 10% µe = 20%

Level 1 0.35 0.50

Method of Scholtès et al. 0.43 0.60

Random extraction 0.42 0.57

Force chain network method 0.43 0.60

Table 4.6: Initial global void ratio e of the eroded samples obtained with different methods from the
original sample with fc = 30%.

It is also shown in Figure 4.18 that the method of level 1 gives a result greatly different from those given
by the other methods. Interestingly, although the eroded samples given by this method are compacted
to reach the densest state, their shear strength at the peak state is lower than that obtained with the
method based on the force chain network, which are much looser. As shown in Table 4.6, the eroded
sample with µe = 10% obtained with the method of level 1 (e = 0.35) is indeed much denser than that
obtained with the method based on the force chain network (e = 0.43); however, the former sample is
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less strong than the latter sample. This might be related to the fact the original sample with fc = 30%
possesses a strong solid skeleton constituted of almost all of coarse particles and of an important fraction
of fine particles. Despite a loss of fine particles in the loose fraction, an important fraction of fine particles
remain in the solid skeleton and participate in carrying stress. For the eroded sample given by the method
of level 1, despite a lower apparent void ratio, almost all of fine particles are floating and do not carry
significantly stress. It is also interesting to note that the three eroded samples with µe = 10% obtained
with the method of Scholtès et al., with the random extraction method and with the method based on the
force chain network have close void ratios but they show different stress-strain behaviors. Hicher (2013)
assumed in his homogenization technique that the reduction in shear strength of an eroded soil results
only from an increase in porosity caused by suffusion (see Section 1.6.2). The above result brings this
assumption into question.

4.5 Conclusions

Different particle removal methods have been presented in this chapter to represent the internal state
of a soil after suffusion. The random extraction method was inspired from the salt dissolution experiment
performed by Chen et al. (2016). According to this method, fine particles are randomly removed from
the original sample to mimic the loss of fine particles caused by suffusion. The shear strength of eroded
soils has been found to decrease with an increase in percentage of removed fine particles for the original
samples with fine content greater than 20%. This reduction in shear strength is related to the fact that
the coarse fraction, which constitutes primarily the solid skeleton to carry the shear stress, loses the rein-
forcement from the fine fraction when fine particles are removed. The main drawback of this method is
that it removes also fine particles which are strongly loaded. In fact, when a granular soil is subjected to
suffusion, the seepage flow tends to wash out only slightly stressed fine particles. In order to mimic the
detachment of fine particles caused by the seepage flow, it is then necessary to identify slightly loaded fine
particles to be removed.

Scholtès et al. (2010) identified the less loaded fine particles by using the internal moment tensor Mp

defined for each particle. However, a small particle tends to have a small value of Mp, even though it
is strongly loaded. Strongly loaded fine particles might be removed by this method. As a consequence,
this method gives a result quite similar to that given by the random extraction method. We proposed
a method to identify slightly loaded fine particles based on the force chain network. According to this
method, particles that have at least two contacts in the strong force chains are considered to belong to
the solid skeleton and cannot be washed out by the seepage flow. The other particles belong to the loose
fraction which does not carry significantly stress. Only fine particles in the loose fraction are removed.
A comparison with the random extraction method showed that removing fine particles according to this
method disturbs less the solid skeleton so the impact of the loss of fine particles on the shear strength
of eroded samples is reduced. It was also shown that different particle removal methods lead to different
stress-strain behaviors of eroded samples although their initial void ratios are quite close. In comparison
with the method of level 1, which consists in reconstituting a sample with lower fine content than the
original one, the new method leads, on one hand, to a higher global void ratio of the eroded sample, but
on the other hand, to higher shear strength and dilatancy of the eroded sample for the same amount of
eroded fine particles.

It is worth mentioning that the three particle removal methods presented above do not take into
account the transport of fine particles and the blockage of fine particles by constrictions. A fine particle
detached by the seepage flow does not necessarily move out from the original sample as it might be blocked
by a constriction smaller than its size. In the next chapter, we will present a strategy to take into account
these two main mechanisms in a particle removal method with the aim to mimic the loss of fine particles
caused by suffusion.
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Chapter 5

Description of the pore network based on

the Delaunay triangulation

5.1 Introduction

In Chapter 4, we have introduced two methods to represent the internal state of a soil after suffusion
based on the DEM. In these methods, the representation of the internal state of an eroded soil is based
on level 2, which is the removal of fine particles from the intact samples to obtain eroded samples. Fine
particles are randomly removed in the first method, while only fine particles which do not participate
significantly in sustaining the shear stress are removed in the last method. It should be noted that only
the detachment of fine particles is considered at this level of representation. A detached fine particle can
move in the void space and can be blocked by constrictions smaller than its size. Only the removal of fine
particles does not represent fully the main mechanisms of suffusion.

Pores

Particles within

solid skeleton

Particles within

loose fraction

Blocked particle

Constriction

Transported particle

Figure 5.1: Strategy for representing the internal state of an eroded sample at level 3.

We aim to introduce a representation of level 3 for which in addition to the detachment of fine parti-
cles, the transport and the blockage of fine particles by constrictions in the pore network are taken into
account. The particles are split into two categories: non-detachable particles which constitute the solid
skeleton and detachable particles which belong to the loose fraction (the solid skeleton and the loose frac-
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tion are defined by using the method presented in Section 4.3.2). The detachable particles are contained
within pores formed by the non-detachable particles as illustrated in Figure 5.1. Each detachable particle
is moved from one pore to a neighboring one according to a certain rule. If the size of the detachable
particle is bigger than the constriction size, the particle is retained by the constriction. Otherwise, it
passes through the constriction to go to another pore. All the detachable particles are moved within the
pore network until all of them are blocked by constrictions or move out of the sample. It is important in
this pore network model to define the pore network formed by the solid skeleton.

This chapter focuses mainly on the description of the pore network of a granular sample. This chapter is
organized as follows. The numerical samples considered in this chapter will be first presented. A literature
review of pore network models and of methods for describing the pore network of granular materials is
then presented. Next, we propose a new method for defining the pore network based on the Delaunay
triangulation. This method will be finally compared to other methods.

5.2 Numerical samples

The numerical samples considered in this chapter are identical to those considered by Reboul et al.
(2008, 2010); Sjah and Vincens (2013); Seblany et al. (2018). They are composed of spherical particles.
Two samples have a uniform particle size distribution (UG) and the two others have a gap-graded particle
size distribution (GG). The particle size of the samples UG varies from 3 mm to 12 mm as shown in
Figure 5.2(a) with a coefficient of uniformity Cu = 1.7. For the GG samples, the grain size distribution
curve is presented in Figure 5.2(b) with particle size between 0.7 mm to 10 mm, a coefficient of uniformity
Cu = 3.6 and a fine content of about 20%.

Figure 5.2: Particle size distribution for (a) UG samples and (b) GG samples (Seblany et al., 2018).

For the generation of these samples, we use the same method as the one used by Seblany et al. (2018).
A loose cloud of spheres with a prescribed particles size distribution is initially generated in a box. Spheres
fall freely then in the box under gravity. This process is terminated when all particles reach a quasi-static
equilibrium. The loosest and the densest states are obtained by setting the inter-particle friction coeffi-
cient µ to 0.7 and 0, respectively. The parameters used for the simulated samples are shown in Table 5.1.
The characteristics of the loosest and densest numerical samples UG and GG are summarized in Table 5.2.
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Local parameters Value

Mass density ρ 2530 kg/m3

Particle stiffness kn/D 250 MPa

Particle stiffnesses ratio kt/kn 1

Inter-particle friction ϕ 0.7 (loosest state) - 0 (densest state)

Damping coefficient ζ 0.7

Table 5.1: Parameters of the considered samples.

Material UG GG

Coefficient of uniformity (Cu) 1.7 3.6

D0-D100 (mm) 3-12 0.7-10

Number of particles 6000 25000

Maximum porosity 0.4 0.34

Minimum porosity 0.34 0.25

Table 5.2: Characteristics of the numerical samples UG and GG.

5.3 Literature review

Void space in a granular soil is a continuous network of pores. Pore bodies are associated to the
relatively wide portions and pore throats, also called constrictions, are the relatively narrow portions that
separate the pore bodies. Vogel and Roth (2001); Reboul et al. (2008) reported that pores and constrictions
constitute a partition of the void space accessible to define respectively its morphology and its topology.
Seblany (2018) reported that constrictions play a major role in understanding the filtration properties of
granular materials because they form the main obstacles at which the fine particles can be trapped if their
diameter is bigger than the constriction diameter. Therefore, it is very important to represent pores and
constrictions by a 3D network of pores interconnected by constrictions. A pore network can be used to
compute important macroscopic transport properties.

There exist two ways to represent 3D networks of interconnected pores and constrictions. The first
method consists in creating an equivalent network using distributions of basic morphologic parameters by
idealizing the complicated soil structure. The second method is to directly map a specific porous medium
onto a network structure. The fundamental difference between the two methods is that the direct map-
ping provides a one-to-one spatial correspondence between the porous medium structure and the network
structure, whereas the pore network obtained with the first method is equivalent only in a statistical
sense to the modeled system. However, the first method is simple and able to quickly generate fluid flow
characteristics in a complex soil structure (heterogeneous soil). We will present some studies in literature
which are based on these two methods in Sections 5.3.1 and 5.3.2
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5.3.1 Idealized pore networks

To compute the probability of the fine particles passing through the constrictions, it is very important
to determine the constriction size distribution (CSD) of a given granular soil, so the CSD is a parameter to
assess the soil retention capability. Silveira (1965) proposed a multi-layered constriction network involving
one-directional transport of fine particles. Every layer has an associated constriction size and the fine
particles can cross the layer if their sizes are smaller than the associated constriction size of this layer.
Kenney et al. (1985) also used a filter model consisting of a number of unit layers. Each layer is modeled
by a plate containing holes that are identical in size distribution to the constriction size distribution of
the filter material. Figure 5.3 represents the proposed model of the filter containing many layers. The
length of flow path increases by addition of unit layers. The aim of this model is to determine D′

c which is
the minimum constriction size along a flow path that governs the size of the largest particle which can be
transported along that flow path. After that, they computed the maximum possible size D⋆

c of particles
that can be transported through a filter of specific thickness. In fact, D⋆

c is equal to the maximum value
of D′

c among all flow paths. In this pore network model, flow paths are only vertically aligned, which is a
high simplification of the true pore network.

Figure 5.3: Pore network of a granular filter modeled as plates containing holes by Kenney et al. (1985).

Indraratna and Vafai (1997) used an alternative model representing the filter voids as a series of parallel
channels, where the smallest constriction (D0) controls the size of base particles that can cross the filter
as illustrated in Figure 5.4.

Schuler (1996); Locke et al. (2001) used a regular cubic network model as illustrated in Figure 5.5. In
such a model, each node corresponds to a pore and every two neighboring pores are connected by a tube
representing a constriction. As a result, each pore is connected to its six neighboring pores by six tubes.
The size of tubes is specified to match a given constriction size distribution. Sjah and Vincens (2013);
Vincens et al. (2015) used this regular cubic network to determine the probability of the movement of a
particle within granular filters. Recently, Shire and O’Sullivan (2017) have also used the regular cubic
network to develop the pore-network model that uses an area-biased random walk approach to simulate
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Figure 5.4: Void channel model (Indraratna and Vafai, 1997).

the percolation of a base material through a given filter using the filter constriction size distribution (CSD)
and the base particle size distribution (PSD). It should be noted that the pore networks presented above
are highly idealized and are far from the true pore network of a granular material. In the next section, we
will present some methods to extract the true pore network.

Figure 5.5: (a) Cubic network pore model; (b) single pore with six constrictions (Schuler, 1996).

5.3.2 Methods for extracting the true pore network

5.3.2.1 Methods developed for physical granular samples

Different experimental techniques have been developed to extract the pore network of a granular
material. Witt (1986, 1993) used a high elastic liquid rubber to fill a gravel material until its saturation;
after hardening, all grains were removed and the elastic matrix was dissected into single pores. A statistical
study was carried out over these imprints to determine the pore and constriction sizes. The disadvantages
of this technique are that it takes a long time to be applied, due to a large amount of pores and it is difficult
to apply for materials of small particles. Another advanced technique makes use of the micro-computerized
tomography scanning (micro-CT) of real soils. Figure 5.6(a) shows a 3D image of Fountainebleau sandstone
obtained with the micro-CT scanning. A numerical technique is then applied to detect the portions and
the sizes of the pores and constrictions from the image data. The maximal ball algorithm (Silin et al.,
2003; Dong and Blunt, 2009) consists in finding the largest inscribed spheres centered on each voxel of
the image that just touch the grain or the boundary and then removing spheres that are included in
other spheres. The largest maximal balls identify pores while the smallest balls between pores are throats.
Figure 5.6(b) shows the pore network extracted from the 3D image shown in Figure 5.6(a) by using the
maximal ball algorithm. Lindow et al. (2011); Homberg et al. (2012) proposed another algorithm based
on the Voronoï graph. Figures 5.7 shows the Voronoï graph for a sample composed of spherical particles.
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For this graph, the edge between two Voronoï nodes is curved and run along the maximal distance to
the surrounding solid spheres. The centers of pores are located where the distance to the surrounding
spheres is maximal along the edge, while the centers of constrictions are located where the distance to the
surrounding spheres is minimal along the edge. It should be noted that the Voronoï decomposition leads
to an excessive artificial partition of the void space so neighboring pores must be merged to form single
pores (Vincens et al., 2015). The criterion proposed in Seblany et al. (2018) consists in comparing the
size of a given constriction dCij

to the sizes dPi
and dPj

of the two adjacent pores sharing this constriction
by defining a relative diameter difference tdiff (Pi, Cij , Pj) = dP − dCij

)/dP with dP = min(dPi
, dPj

). The
relative diameter difference tdiff indicates then the degree of separation between two adjacent pores. If
tdiff < t with t being a user-specified value, two adjacent pores are not sufficiently separated so they
are merged together. It is worth mentioning that the two algorithms mentioned above are efficient to
extract the pore network from realistic granular materials. However, they are very time-consuming and
the micro-CT scanning technology is very expensive and not accessible to any research team.

Figure 5.6: (a) A 200x200x200 voxels image of Fontainebleau sandstone and (b) the pore network extracted
by the maximal ball algorithm (Silin et al., 2003).

Figure 5.7: Voronoï graph indicating the center of a pore (blue sphere) and the location of the constrictions
(red sphere) (Vincens et al., 2015).

5.3.2.2 Methods developed for virtual granular samples

Instead of using the micro-CT scanning to obtain a 3D image of physical granular materials, the DEM
can be used to create virtual granular samples, for instance the numerical samples composed of spherical
particles presented in Section 5.2. Each spherical particle is fully described by its center and its radius.
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The pore network of these numerical samples can be extracted by using methods based on the Delaunay
triangulation proposed by several authors (Al-Raoush et al., 2003; Reboul et al., 2008; Okabe et al., 2009;
Sufian et al., 2015; Shire et al., 2016; Seblany et al., 2018).

(a) (b)

Figure 5.8: (a) A 3D Delaunay tetrahedron and (b) 2D illustration of the Delaunay triangulation (Reboul
et al., 2008).

The Delaunay triangulation consists in subdividing a granular volume into a set of tetrahedra whose
vertices are the centers of four neighboring spheres (Figure 5.8(a)). The void volume within a tetrahedron
defines a pore and the void area on each face of a tetrahedron defines a constriction. Edelsbrunner and
Shah (1996) modified the classical Delaunay triangulation to the weighted Delaunay triangulation by gen-
eralizing the first one to weighted points, where weights account for the radius of spheres. It is generally
accepted that the weighted Delaunay triangulation leads to an incorrect identification of pore locations
and sizes since this technique tends to subdivide a single pore into multiple smaller pores as stated by
Reboul et al. (2008); Vincens et al. (2015); Seblany et al. (2018). Therefore, neighboring tetrahedra need
to be merged to form correct pores.

Figure 5.9: 2D illustration of three cases where two adjacent inscribed void spheres (a) overlap greatly,
(b) overlap slightly and (c) do not overlap

Al-Raoush et al. (2003) introduced the concept of an inscribed void sphere which is tangent to the
four adjacent solid spheres of each tetrahedron. A numerical technique for identifying the inscribed void
sphere for each tetrahedron was presented in Reboul et al. (2008). Figure 5.8(b) shows a 2D illustration
of the Delaunay triangulation: each triangle and each dashed circle correspond to a tetrahedron and an
inscribed void sphere in the 3D case, respectively. We can notice that inscribed void spheres might overlap
each other. Figure 5.9 shows three cases where two adjacent inscribed void spheres overlap greatly, overlap
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slightly and do not overlap. The overlap between two adjacent inscribed spheres indicates the degree of
interconnection between the two corresponding adjacent tetrahedra.

Figure 5.10: Overlap δ between two adjacent inscribed spheres.

Al-Raoush et al. (2003) proposed to merge every couple of adjacent tetrahedra if the center of an
inscribed void sphere is located inside the other void sphere. By using this criterion, the two adjacent
tetrahedra of case (a) in Figure 5.9 are merged together, while those of cases (b) and (c) are not merged.
Sufian et al. (2015) proposed a stricter criterion for which every couple of adjacent tetrahedra are merged
together if their inscribed void spheres overlap by any amount. This means that no overlap between two
adjacent inscribed void spheres is allowed. According to this criterion, the couples of adjacent tetrahedra
(a) and (b) in Figure 5.9 are merged together, while the couple of adjacent tetrahedra (c) are not merged.
We can see that it is not easy to choose an admissible overlap between two adjacent inscribed void
spheres. Therefore, Shire et al. (2016) introduced a user-specified admissible overlap. Every couple of
adjacent tetrahedra are merged together if the relative overlap γ between their inscribed void spheres
exceeds a user-specified value γth:

γ =
δ

min(d1, d2)
> γth, (5.1)

where δ is the absolute overlap between the two adjacent inscribed spheres with diameters d1 and d2 (see
Figure 5.10). The criterion of Al-Raoush et al. (2003) corresponds to γth = 0.5, while the criterion of
Sufian et al. (2015) corresponds to γth = 0.

The size of each pore can be defined either as the diameter of an equivalent void sphere whose volume
is equal to the pore volume or as the number of tetrahedra comprised in the pore. Figure 5.11 presents
the pore size distributions in terms of equivalent sphere diameter and in terms of number of tetrahedra
of each pore for different values of the user-specified threshold γth between 0 and 0.5 for the UG loose
and dense samples. We can see that the pore size distribution changes greatly as the value of γth de-
creases from 0.5 to 0. For the loose UG sample, a small value of γth leads to formation of very large
pores that comprise many tetrahedra (Figures 5.11(a) and (b)). For γth = 0, the number of tetrahedra
of each pore varies largely and can go up to 101. Figure 5.12 shows two pores composed of 66 and 101
tetrahedra. It can be seen that they are not single pores, but rather ducts. Reboul et al. (2008); Se-
blany et al. (2018) also observed that merging every couple of adjacent tetrahedra whose inscribed void
spheres overlap by any amount would over-merge tetrahedra. In addition, as the pore size distribution
given by the criterion of Shire et al. (2016) depends hardly on the value of γth, it is not easy to choose
a value of γth to obtain a good representation of the pore network. Figures 5.11(c) and (d) show that
the pore size distribution for the dense UG sample is less sensitive to the threshold value γth than that
for the loose sample. For such a dense sample, γth = 0 does not generate large pores with many tetrahedra.
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Figure 5.11: Pore size distributions obtained with the criterion of Shire et al. (2016) for different values
of γth for the loose UG sample (a and b) and for the dense UG sample (c and d). The left and right
columns correspond to the pore size distributions in terms of equivalent sphere diameter and of number
of tetrahedra comprised in each pore, respectively.

(a) 66 tetrahedra (b) 101 tetrahedra

Figure 5.12: Examples of two pores composed of (a) 66 tetrahedra and (b) 101 tetrahedra obtained with
the criterion of Shire et al. (2016) with γth = 0.

Reboul et al. (2008) proposed to merge every couple of adjacent tetrahedra if their inscribed void
spheres overlap by any amount (γth = 0) and introduced different merging levels to limit the pore size.
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Figure 5.13: 2D illustration of the L1 merging criterion of Reboul et al. (2008).
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Figure 5.14: Comparison between the pore size distributions obtained with the criterion of Shire et al.
(2016) for γth = 0 and with the the L1 criterion of Seblany et al. (2018) for (a and b) the loose UG sample
and for (c and d) the dense UG sample.

To form a single pore, a host tetrahedron that has the largest inscribed void sphere is first identified.
Only direct neighboring tetrahedra are merged to the host tetrahedron according to the merging level
L1 as illustrated in Figure 5.13. For the level L2, the merging can be extended to next neighbors of the
host tetrahedron (neighbors of direct neighbors). Seblany et al. (2018) introduced a merging level L′

0

before applying the merging levels L1 and L2 to eliminate flat tetrahedra. For this level, two adjacent
tetrahedra are merged together if either their inscribed void spheres almost overlap (the overlap is greater
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than 99.9999%) or they share a constriction whose size is greater than the pore sizes. Figure 5.14 shows
a comparison between the pore size distribution obtained with the L1 merging criterion of Seblany et al.
(2018) and that given by the criterion of Shire et al. (2016) with γth = 0 for the loose and dense UG
samples. It can be seen that the L1 merging criterion of Seblany et al. (2018) leads to smaller pores than
those given by the criterion of Shire et al. (2016) and the over-merging of tetrahedra is avoided by using
the former criterion. However, the L1 merging criterion of Seblany et al. (2018) has a drawback: as the
pore size is artificially limited, in some particular cases a single pore might be subdivided into several
smaller pores. For instance, a single pore composed of 6 tetrahedra might be subdivided into a pore of
five tetrahedra and a pore of one tetrahedron. Figure 5.15 illustrates this drawback by considering a 2D
case where a single pore is subdivided into a pore of three triangles and a pore of one triangle.

Figure 5.15: A 2D single pore might be subdivided into two smaller pores by the L1 merging criterion of
Seblany et al. (2018).

As we have shown previously, merging criteria based on the overlap between two inscribed void spheres
defined for two adjacent tetrahedra have two main issues. Firstly, an admissible overlap γth between two
adjacent inscribed void spheres needs to be specified as proposed by Shire et al. (2016). However, it is not
easy to choose a good value of γth as the pore size distribution is quite sensitive to γth. Moreover, a small
value of γth leads to an over-merging of tetrahedra and to a formation of very large pores. Secondly, to
avoid the over-merging of tetrahedra, a merging level is needed to stop merging as proposed by Reboul
et al. (2008) and Seblany et al. (2018). By doing so, the pore size is artificially limited and a single pore
might be subdivided into several smaller pores. In the next section, we aim to propose a new merging
criterion to overcome the two mentioned drawbacks.

5.4 New merging technique

In this section, we will propose a new technique to merge tetrahedra obtained from the weighted
Delaunay triangulation of a numerical granular assembly. We first define what is a pore in our approach
and then show how to obtain pores and constrictions. Finally, we show some results in terms of pore size
and constriction size distributions obtained with the new technique.

5.4.1 Definition of a pore

The new merging technique is based on a subdivision of a granular sample into polyhedral sub-domains.
Each polyhedral sub-domain can be composed of one tetrahedron or several neighboring tetrahedra, and
the void space within each sub-domain defines a pore as illustrated in Figure 5.16(a) for 3D case and in
5.16(b) for 2D case. The concept of the inscribed void sphere for each tetrahedron, which was introduced
by Al-Raoush et al. (2003), is generalized to each polyhedral sub-domain. The inscribed void sphere for a
given sub-domain is the maximal ball that can be contained within the void space of the sub-domain (see
Figure 5.16).
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Inscriped void sphere

Solid spheres Solid spheresInscribed void sphere

Sub-domain

(a) A 3D sub-domain with the inscribed void sphere (b) A 2D sub-domain with the inscribed void circle

Figure 5.16: Illustration of 3D and 2D sub-domains.

The inscribed void sphere for each sub-domain is identified by a minimization procedure. Given a
sphere located inside the void space of the sub-domain with center x and radius R, the distance di
between this void sphere and a solid sphere with center xi and radius Ri is di =| ‖x − xi‖ − (R + Ri) |.
The cost function f is defined as the sum of all distances from the void sphere to all the solid spheres of
the sub-domain:

f =
N∑

i=1

| di |, (5.2)

where the subscript i runs over all the solid particles of the sub-domains. By minimizing the cost function
f , we obtain the center x and the radius R of the inscribed void sphere for the sub-domain under consid-
eration. This minimization can be solved by using the Nelder-Mead simplex method (Gao and Han, 2012)
implemented in the package SciPy. It should be noted that this minimization procedure can be used to
identify the inscribed void sphere for each tetrahedron mentioned in the previous section.

d1

d3

d4
d2

d5

Minimization

Void sphere with center x and radius R

Solid sphere with center xi and radius Ri

Figure 5.17: Minimization procedure to identify the inscribed void sphere for each sub-domain.

According to the new merging criterion, a pore contained within each sub-domain must fulfill three
following conditions to define the pore geometry:

• 1st condition: the inscribed void sphere of a sub-domain must not intersect solid particles of its
adjacent sub-domains. If a couple of adjacent sub-domains do not fulfill this condition, they are
merged together to form a new sub-domain for which a new inscribed void sphere is identified, as
illustrated in Figure 5.18.

• 2nd condition: the center of the inscribed void sphere of a sub-domain must be located inside
the sub-domain. If a sub-domain fulfills this condition, it is not flat and its pore size (diameter
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Merging

New sub−domainTwo adjacent sub−domains

New inscribed sphere

Figure 5.18: Merge a couple of adjacent sub-domains which do not fulfill the 1st condition.

of its inscribed void sphere) is bigger than the sizes of the constrictions that it shares with its
neighbors (the constriction will be defined in Section 5.4.3). It should be noted that by definition
the constriction size must be smaller than the sizes of the adjacent pores. For a couple of adjacent
sub-domains, if the center of the inscribed void sphere of a sub-domain is located outside that
sub-domain but inside the other sub-domain, they are merged together to form a new sub-domain
with a new inscribed void sphere, as illustrated in Figure 5.19.

Two adjacent sub−domains New sub−domain

New inscribed sphere

Merging

Figure 5.19: Merge a couple of adjacent sub-domains which do not fulfill the 2nd condition.

• 3rd condition: two inscribed void spheres of two adjacent sub-domains must be sufficiently sepa-
rated from each other, i.e., the overlap between them must be sufficiently small. For this condition,
we use a separation criterion similar to that used by Shire et al. (2016). Two adjacent inscribed void
spheres are sufficiently separated if the relative overlap γ = δ/min(d1, d2) < γth (δ is the absolute
overlap between the two inscribed void spheres with diameters d1 and d2). γth is an admissible
overlap specified by the user. If two adjacent inscribed void spheres do not fulfill this condition,
i.e. γ ≥ γth, the corresponding couple of adjacent tetrahedra are merged together to obtain a new
sub-domain and a new inscribed void sphere is identified as illustrated in Figure 5.20.

It is important to note that whenever a couple of adjacent sub-domains are merged together, a new
inscribed void sphere is identified for the new sub-domain. The minimization procedure presented above
requires guess values for the center x and the radius R of the inscribed void sphere. For this, we use
the centers and the radii of the two inscribed void spheres before merging as the guess values, the global
minimizer is taken as the center and the radius of the new inscribed void sphere.

5.4.2 Merging algorithm

Figure 5.21(a) presents the main merging algorithm of this new merging technique. We start the merg-
ing procedure by performing the weighted Delaunay triangulation of the granular sample under condition
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Merging

New sub−domain
Two adjacent sub−domains

New inscribed sphere

Figure 5.20: Merge a couple of adjacent sub-domains which do not fulfill the 3nd condition

Weighted Delaunay triangulation

Each tetrahedron is a sub-domain   

Merge all couples of adjacent 

sub-domains which do not full l 

the 1st condition   

(a) Principal algorithm (b) Sub-algorithm for each merging step

Figure 5.21: Merging algorithm of the new criterion criterion.

with the package CGAL (CGAL Project, 2019). At this first step, each tetrahedron is considered as a
sub-domain and an inscribed void sphere is identified for each sub-domain. The second and third steps
consist in merging all the couples of adjacent sub-domains that do not fulfill the first and second conditions
mentioned above, respectively. The second and third steps are called primary merging procedure for which
no user-specified value is needed. More than 50% of tetrahedra are merged at the end of this primary
merging procedure; however, the neighboring sub-domains still overlap greatly. Therefore, we merge all
the couples of adjacent sub-domains that do not fulfill the third condition at the final step. At this step,
a user-specified value for the admissible overlap between two adjacent inscribed void spheres is needed.

The sub-algorithm for each merging step is shown in Figure 5.21(a). At each step, we impose a con-
dition among the three conditions mentioned above. Merging of adjacent sub-domains is performed in an
iterative way. For each iteration, we first identify a couple of adjacent sub-domains that do not fulfill the
condition under consideration and then merge them together. At the end of the iteration, we identify a
new inscribed void sphere for the new sub-domain before moving to the next iteration. This is the key
feature of the new merging technique which allows us to avoid over-merging of tetrahedra. The loop is
finished when all the couples of adjacent sub-domains fulfill the condition under consideration.

For the second and final merging steps, all the couples of adjacent sub-domains are ordered according
to the relative intersection ξ between inscribed void spheres and solid particles and to the relative overlap
γ between two inscribed void spheres, respectively. The relative intersection between an inscribed void
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sphere and a solid sphere is defined as ξ = δ/d where δ is the intersection between the void and solid
spheres and d is the diameter of the void sphere. The couple of adjacent sub-domains merged at each
iteration correspond to the maximal relative intersection ξmax for the second step and the maximal relative
overlap γmax for the final step.

5.4.3 Definition of a constriction in the new method

We have shown previously the new merging technique to obtain pores from the weighted Delaunay
triangulation. In this section, we present how constrictions that are shared by neighboring pores are de-
fined. According to Reboul et al. (2010), the void area on each triangular face shared by two adjacent
pores is a constriction. The intersection between the plane of the face and the three solid spheres whose
centers are the three vertices of the face gives three solid disks on the plane. The authors defined the
constriction size as the diameter of the largest empty disk that can be inscribed between the three solid
disks. In some cases, this largest empty disk intersects another solid disk which is the intersection between
the plane and an adjacent solid particle. In such cases, the intersected solid disk is taken into account to
identify a new largest empty disk as illustrated in Figure 5.22. It is worth noting that the constriction
size defined by Reboul et al. (2010) corresponds to the opening size on the plane of each triangular face.
In some particular cases, if the largest empty disk is replaced by an empty sphere with the same radius
and the same center, this largest empty sphere might intersect adjacent solid particles out of the plane as
shown in Figure 5.23. This means that, for some particular cases, a solid spherical particle with the same
size as the constriction size can not move through the constriction formed by the three particles of the
face and their neighbors.

Figure 5.22: Definition of the largest empty disk on a face (Seblany et al., 2018).

We aim to correct the drawback mentioned above of the method of Reboul et al. (2010) by modifying
slightly the definition of a constriction. Two adjacent pores can share one or several adjacent triangular
faces; therefore a constriction can be formed by one or several triangular faces according to the new def-
inition. Most of the constrictions have one triangular face (Figure 5.24(a)), but some of them can have
two or three adjacent triangular faces (Figure 5.24(b)). This means that the centers of the solid particles
that form a constriction must not necessarily lie on the same plane. The constriction size is defined as the
diameter of the largest empty sphere that can pass through the void space between the solid particles of the
constriction. This largest empty sphere is identified by using the same minimization procedure presented
in Section 5.4.1 and by imposing that its center must be located on the planes of the triangular faces of
the constriction. This largest empty sphere is illustrated in Figure 5.24(a) for a constriction formed by one
triangular face and in Figure 5.24(b) for a constriction formed by two triangular faces. In the case where
this largest empty sphere intersects other solid particles, these intersected ones are taken into considera-
tion in the minimization procedure to guarantee that the largest empty sphere of a constriction does not
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(a) (b)

Figure 5.23: (a) Largest empty disk (green one) on the plane and (b) largest empty sphere (green one)
intersects the adjacent particle (red one) out of the plane.

intersect any solid particle. It is worth mentioning that the new definition of a constriction includes also
a merging of several adjacent triangular faces to form a single constriction as shown in Figure 5.24(b).

Constriction

Constriction

(a) (b)

Figure 5.24: Constrictions formed by (a) one or (b) two triangular faces and the largest empty sphere (red
one).

Figure 5.25 shows a comparison between the constriction size distribution (CSD) obtained with the
method of Reboul et al. (2010) and the CSD obtained with the new method presented above. Both
methods are used for the same pore network which is extracted from the loose UG sample by using the
new merging technique with an admissible overlap γth = 0. We can see that the new method leads to
constrictions of smaller size, in comparison with the method of Reboul et al. (2010); nevertheless, the
difference between these two methods is quite small. This means that most of the constrictions are formed
by one triangular face; and for such constrictions, both methods give the same result. In the following,
the new method is used to determine the constriction size.

5.4.4 Results obtained with the new merging technique

In this section, we will show some results in terms of pore size distribution and constriction size dis-
tribution obtained with the new merging technique presented above. Pore networks are extracted from
the loose and dense UG samples with different user-specified values γth for the admissible overlap between
two adjacent inscribed void spheres.

Figure 5.26 presents the pore size distributions in terms of equivalent sphere diameter and in terms of
number of tetrahedra comprised in each pore, which are obtained with different user-specified values γth
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Figure 5.25: Comparison between the CSD obtained with the method of Reboul et al. (2010) and the
CSD obtained with the new method. The pore network is extracted from the loose UG sample by using
the new merging technique with an admissible overlap γth = 0.
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Figure 5.26: Pore size distributions obtained with the new merging technique for different values of γth:
(a and b) for the loose UG sample, and (c and d) for the dense UG sample.

for the loose and dense UG samples. First of all, it can be seen that the pore size distribution changes
significantly from that obtained directly from the weighted Delaunay triangulation by using only the pri-
mary merging procedure without resort to any user-specified value. Secondly, the pore size distribution
continues to be shifted rightward when the pore separation condition is applied with decreasing value of
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(a) (b)

Figure 5.27: Pores composed of (a) 12 tetrahedra, (b) 20 tetrahedra and (c) 30 tetrahedra. Green balls
are the inscribed void spheres.

γth. By comparing Figure 5.11(a) and Figure 5.26(a), the pore size distribution obtained with the new
merging technique for the loose UG sample is much less sensitive to the user-specified value γth that that
obtained with the criterion of Shire et al. (2016). The new merging technique with a small value of γth does
not lead to over-merging of tetrahedra, which is the main drawback of the criterion of Shire et al. (2016)
(see Figure 5.26(b)). Indeed, the biggest pore obtained with the new merging technique with γth = 0 is
composed of 30 tetrahedra and large pores do not have duct shapes as shown in Figure 5.27. Lastly, the
pore size distribution for the dense UG sample is much less sensitive to γth than for the loose UG sample
and the largest pore is composed of 20 tetrahedra.

Let’s new analyze the constriction size distribution (CSD) obtained with the new merging technique.
Figure 5.28 shows the CSD curves obtained with different values of the admissible overlap γth for the loose
and dense UG samples. It can be seen that the CSD curve is slightly shifted leftward as γth decreases
from 0.5 to 0. In comparison with the pore size distribution shown in Figure 5.26, the constriction size
distribution obtained with the new merging technique is less sensitive to γth. Figure 5.29 shows the CSD
curves obtained with the criterion of Shire et al. (2016) for the loose and dense UG samples. It can be
seen that the CSD obtained with the new merging technique is significantly less sensitive to γth than that
obtained with the criterion of Shire et al. (2016), particularly for the loose sample.
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Figure 5.28: CSD curves for different values of γth obtained with the new merging technique (a) for the
loose UG sample and (b) for the dense UG sample.

We have presented above a new technique to merge tetrahedra obtained from the weighted Delaunay
triangulation. We have demonstrated two main advantages of this new merging technique. Firstly, it
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Figure 5.29: CSD curves for different values of γth obtained with the criterion of Shire et al. (2016) (a)
for the loose UG sample and (b) for the dense UG sample.

allows us to avoid the over-merging of tetrahedra, a drawback observed for the criterion of Shire et al.
(2016), without using any stopping criterion as proposed by Reboul et al. (2008); Seblany et al. (2018),
which would be an artificial limitation of the pore size. Secondly, both particle and constriction size
distributions given by the new merging technique are significantly less sensitive to the user-specified value
of the admissible overlap γth than those given by the criterion of Shire et al. (2016).

5.4.5 Comparison between different merging criteria

In this section, we will compare the new merging criterion proposed above with the merging criterion
of Shire et al. (2016) and the L1 merging criterion proposed by Reboul et al. (2008), subsequently modified
by Seblany et al. (2018). The admissible overlap γth between two adjacent inscribed void spheres is set
to 0 for both new criterion and that of Shire et al. (2016). This comparison is made on the UG (uniform
particle size distribution) and GG (gap-graded particle size distribution) samples at the loose and dense
states presented in Section 5.2.

Let’s consider first the UG samples for this comparison. Figure 5.30 shows the pore size distributions
extracted from these samples by using the three merging criteria mentioned above. It can be seen that
these three merging criteria give different results for the loose UG sample. The criterion of Shire et al.
(2016) leads to formation of very large pores due to an over-merging of tetrahedra. The criterion of Se-
blany et al. (2018). limits the pore size so smaller pores are formed. The new criterion gives a pore size
distribution curve intermediate between those given by the two other criteria. It should be noted that the
pore size distribution given by the new criterion is quite close to that given by the criterion of Seblany
et al. (2018). but very far from that given by the criterion of Shire et al. (2016). We can also remark that
the difference between the results obtained with these three criteria gets smaller for the dense UG sample.

Figure 5.31 shows the constriction size distributions (CSD) given by the three considered criteria. In
comparison to the difference in pore size distribution shown above, the difference in CSD obtained with the
three criteria is less marked. The CSD given by the new criterion is intermediate between those given by
the two other criteria. Unlike the pore size distribution, the CSD curve given by the new criterion is closer
to that given by the criterion of Shire et al. (2016) than that given by Seblany et al. (2018). This might be
due to the fact that the criterion of Seblany et al. (2018). might subdivide a single pore into several smaller
pores, resulting in constrictions of large size. Regarding the criterion of Shire et al. (2016), it over-merges
tetrahedra, resulting in constrictions of smaller size. It should be noted that merging tetrahedra obtained
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Figure 5.30: Pore size distributions obtained with the three merging criteria for (a) the loose UG sample
and (b) the dense UG sample.

from the weighted Delaunay triangulation aims not only to form single pores and but also to eliminate
large constrictions which are artifacts of the weighted Delaunay triangulation. We can also remark that
the difference between the CSD curves given by the three considered criteria is quite small for the dense
UG sample.
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Figure 5.31: Constriction size distributions obtained with the three merging criteria for (a) the loose UG
sample and (b) the dense UG sample.

Let’s now consider the GG samples with a gap-graded particle size distribution for the comparison.
Figures 5.32 and 5.33 show the respective pore size and constriction size distributions obtained with the
three considered merging criteria for the loose and dense GG samples. In comparison to the results shown
above for the UG samples, these three merging criteria give similar results for the GG samples. However,
the new criterion gives, on one hand, a pore size distribution curve closer to the one given by the criterion
of Seblany et al. (2018), and on the other hand, a constriction size distribution closer to the one given by
the criterion of Shire et al. (2016) for the GG loose sample, compared to those obtained for the UG loose
sample. We can also remark that the difference in terms of constriction size distributions given by the
three criteria is quite small for the GG samples, even for the loose one; and the three criteria give close
pore size and constriction size distributions for the dense one.
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Figure 5.32: Pore size distributions obtained with the three merging criteria for (a) the loose GG sample
and (b) the dense GG sample.
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Figure 5.33: Constriction size distributions obtained with the three merging criteria for (a) the loose GG
sample and (b) the dense GG sample.

5.5 Conclusions

In this chapter, we introduced a representation of the internal state of a granular soil after suffusion at
level 3 by using a pore network model. For such a model, the granular soil is constituted of a solid skeleton
and a loose fraction that contains the erodible particles. The solid skeleton forms the pore network, and
the erodible particles are moved within this pore network until they are either blocked by constrictions or
leave the pore network. The key point in such model is how to construct the pore network of the solid
skeleton, which is the main concern of this chapter.

We analyzed then two techniques based on the weighted Delaunay triangulation to extract the pore
network from a numerical sample. The main drawback of the first technique proposed by Shire et al.
(2016) is that it leads to an over-merging of tetrahedra, hence a formation of ducts if the value for the
admissible overlap γth between adjacent inscribed void spheres is small. This drawback is remediated by
the second technique proposed by Reboul et al. (2008), subsequently modified by Seblany et al. (2018), in
which different merging levels were used. However, this technique might lead to a sub-division of single
pores to several smaller pores as it limits artificially the pore size.
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We proposed then a new merging technique to remediate the drawbacks of the two techniques men-
tioned above. We introduced the concept of polyhedral sub-domains for each of which an inscribed void
sphere is identified by using a minimization procedure. We imposed three conditions that each sub-
domain must fulfill to define the pore geometry. If a sub-domain does not fulfill a condition, it is merged
to its neighbors. With the new technique, tetrahedra issued from the weighted Delaunay triangulation are
merged in an iterative and progressive manner. We also proposed a new definition of constrictions between
two adjacent pores based on the concept of a largest empty sphere that can pass through a constriction
and a new procedure to determine the constriction size.

Like the technique of Shire et al. (2016), a user-specified value γth for the admissible overlap between
inscribed void spheres is needed in the new technique. It was shown that the pore size and constriction
size distributions obtained with the new technique change with γth. However, they are much less sensitive
to this user-specified value than those given by the criterion of Shire et al. (2016). In addition, the new
merging technique allows us to avoid the over-merging of tetrahedra even for γth = 0 without resort to a
stopping criterion as the ones proposed by Reboul et al. (2008).

A comparison between these three merging criteria was made on the UG (uniformly graded) and GG
(gap-graded) samples at the loose and dense states. It was observed that the new merging technique gives
a pore size distribution closer to that obtained with the criterion of Seblany et al. (2018) than to that
given by the criterion of Seblany et al. (2018). An opposite result was found for the constriction size
distributions given by these three merging techniques. This difference is well marked for the loose samples
but becomes smaller for the dense samples. For the gap-graded samples, these three different techniques
give close constriction size distribution curves, particularly for the dense one.

The results shown in this chapter demonstrated a good capability of the new merging technique to
construct the pore network from a numerical sample based on the Delaunay triangulation. The constructed
pore network will be included in the pore network model that we envisage developing to take into account
the transport and blockage of erodible particles in the void space formed by the non-erodible particles.
Taha et al. (2019) and Taha et al. (2017)
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In this PhD thesis report, we presented a study of the consequences of suffusion on the mechanical
behavior of gap-graded soils by using the Discrete Element Method (DEM). A DEM-fluid coupled model
was not used to simulate the suffusion process due to a very high computational cost. Instead, the inter-
nal state of granular soils subjected to suffusion is represented at three different levels by making some
simplistic assumptions. At the level 1, a sample considered as eroded is prepared and compacted in the
same way as the intact sample but with fine content lower than the original one. The level 2 consists in
removing a fraction of fine particles from the intact sample to mimic the loss of fine particles caused by
suffusion. For the level 3, a pore network was introduced to take into consideration the transport and the
blockage of fine particles with the void space formed by the solid skeleton.

Gap-graded samples with a gap ratio of 3 and fine contents between 0 and 100% were simulated using
the DEM. These samples were compacted in different ways to obtain the loosest and densest states. It
was shown that, by adding fine particles in binary mixtures, the coarse fraction gets looser, while the fine
fraction gets denser. Based on the variations of the global void ratio e, the intergranular void ratio ec
and the interfine void ratio ef with fine content fc, four ranges of fine content can be distinguished: (i)
fc ≤ 20% where the fine fraction is very loose and does not disturb the coarse fraction; (ii) 20% < fc ≤ 32%
where the global void ratio e decreases with fc and the fine fraction is looser than the coarse one; (iii)
32% < fc ≤ 60% where the global void ratio e increases with fc and the fine fraction becomes denser
than the coarse one; and (iv) fc > 60% where the coarse fraction is very loose, compared to the fine fraction.

Triaxial tests were performed on the binary mixtures. The stress-strain behavior of binary mixtures
was found to remain almost unchanged with an increase in fine content in the ranges (i) and (iv). The
shear strength and dilatancy of binary mixtures increase with fine content fc in the range (ii), while they
decrease with fc in the range (iii). At the optimal fine content of 32% where the global void ratio e is
minimum; the shear strength and dilatancy are highest.

The micro-structure of binary mixtures varies greatly with an increase in fine content starting from
20%. Fine particles, on one hand, come into contact with coarse particles and reinforce the micro-structure,
but on the other hand, they separate coarse particles and then weaken the micro-structure. As a conse-
quence, the shear stress is transmitted more and more through the coarse-fine contacts but less and less
through the coarse-coarse contacts as fine content increases. The coarse-coarse contacts primarily support
the shear stress for the range (ii) of fine content, while the coarse-fine contacts primarily carry the shear
stress for the range (iii) of fine content. For the range (iv) of fine content, coarse particles are strongly
separated by fine ones and fine-fine contacts primarily sustain the shear stress.

As fine particles play an important role in the micro-structure and in carrying the shear stress in granu-
lar mixtures, a loss of fine particles has great consequences on the stress-strain behavior of these materials.
The internal state of binary mixtures after suffusion is represented at the level 2 by two particle removal
methods. A fraction of fine particles are randomly removed from the original sample for the first method,
while only fine particles in the loose fraction, which belong to the weak force chains, are removed for the
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second method. Both methods predicted a reduction in shear strength of eroded samples starting from
20% of fine content. This reduction in shear strength is more marked for gap-graded samples with high
fine content and increases with an increase in percentage of removed fine particles. A random removal of
fine particles causes a much stronger degradation to eroded samples than a removal of loose fine particles.
A loss of fine particles does not destroy greatly the contact network between coarse particles; however, it
causes a great reduction in bearing capability to the coarse fraction due to the loss of contacts between
coarse particles and removed fine particles. A removal of loose particles was found to disturb less the
coarse fraction than a random removal of fine particles.

A pore network model was introduced to take into consideration the transport and blockage of detached
particles within the void space of the solid skeleton to represent the internal state of soils after suffusion
at the level 3. A new method was proposed to extract the pore network from a numerical sample by using
the Delaunay triangulation. This method makes use of a concept of polyhedral sub-domains, for each of
which a inscribed void sphere is identified. Three different conditions are required for each sub-domain
such that the void space within it can be considered as a single pore. If a given sub-domain does not fulfill
one of these three conditions, it is merged to its neighbors. A comparison of this new merging technique
to the techniques of Shire et al. (2016) and of Seblany et al. (2018) showed that it is capable of extracting
the pore network from a numerical sample without leading to an over-merging of tetrahedra and without
any artificial limitation of the pore size.

The studies presented in this report, has opened new research paths that can be interesting. In what
follows, recommendations for future research work are presented which concerns the numerical approach.

We have represented the suffusion under different levels to study its consequences on the mechanical
behavior of gap-graded soils. In the future works, it is important to study these consequences on other type
of soils specially soils which are susceptible to suffusion like soils whose grain size distribution corresponds
to upwardly concave curve.

In this study, we used a simplified particle shapes such as spherical, and the main advantage of these
shapes is that the contact between two adjacent spherical particles occurs only at one point and the dis-
tance between them is easily calculated. But these shapes cannot represent the real soil.Therefore, to
better represent the real soil, complex shapes such as polygons or polyhedra can be tackled.

According to the literature review, the effect of the fine content on the mechanical behavior of soils, are
not always the same under drained and undrained stress-strain conditions, for that, it is very important
to study this effect under undrained conditions, since in our study we have considered only the drained
conditions.

In some cases, there exist a difficulty to study the mechanical behavior of coarse-grained soils by the
classical testing devices due to the presence of large particles that disturb or prevent the performance of
tests. So to study the mechanical behavior using the classical lab devices, we must clip or substitute a part
of these coarse particles, and this clipping may result the increase of fine content. For that, it is important
to compare the variation of the shear strength with the increase of fine content presented in level 1 and the
variation of the shear strength with the increase of fine content due to the clipping of some coarse particles.

In chapter 4, we presented two particle-removal methods, at which the extraction of particles was in the
initial stress state of gap-graded samples, but according to Scholtès et al. (2010), the behavior of eroded
samples is strongly influenced by the stress state at which fine particles are removed. For that, we can study
the influence of removal of fine particles at different stress states using the two methods of particle removal.
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The pore network model has not been completed yet in this PhD thesis. Nevertheless, the pore network
of the solid skeleton can be correctly built by using the new method mentioned above; this constitutes an
important advance to develop such a model. To complete this pore network model, a procedure to move
particles in the pore network needs to be established.
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Titre : Comportement mécanique des sols érodés: étude numérique basée sur la méthode des 
éléments discrets 

Mots clés :  sols granulaires . suffusion . méthode des éléments discrets . comportement 
mécanique . micro-structure . extraction des particules fines . réseau des pores 

Résumé :   La suffusion peut induire une perte de 
particules fines au sein de sols granulaires et par 
conséquent une modification leur comportement 
mécanique. Cette thèse a pour objectif d'étudier la 
conséquence de cette perte de particules fines sur 
les propriétés mécaniques des sols aux échelles 
macroscopique et microscopique en utilisant la 
méthode des éléments discrets (MED). Des 
échantillons granulaires composés de particules 
sphériques dont la taille suit une distribution 
granulométrique lacunaire sont modélisés par la 
MED. A cause d'un coût de calcul élevé, 
l'écoulement du fluide à travers l'espace poral entre 
particules solides n'est pas modélisé. Nous 
proposons plutôt une représentation de l'état interne 
du sol après la suffusion suivant trois niveaux de 
complexité croissante. Pour le niveau 1, des 
échantillons considérés comme érodés sont 
générés à une densité donnée et avec un 
pourcentage des fines plus petit que celui de 
l'échantillon original. Le niveau 2 consiste à retirer 
une fraction des particules fines de l'échantillon 
original à un état de contrainte donné. Pour cela, 
nous proposons une méthode permettant d'identifier  

une fraction  lâche composée   des  particules  qui 
ne participent  pas significativement à supporter la 
sollicitation. Le niveau 3 a pour objectif de prendre 
en compte le transport et le blocage des particules 
fines par des constrictions dans l'espace poral 
formé par le squelette solide. Le point essentiel à ce 
niveau réside dans la description du réseau des 
pores. Cette étude a montré que les particules fines 
peuvent avoir un effet négligeable, positif ou négatif 
sur la résistance mécanique selon le pourcentage 
de fines. Une extraction des particules fines conduit 
à une diminution de la résistance mécanique des 
sols érodés. Nous avons montré que la réduction de 
la résistance mécanique est plus forte si des 
particules fines sont retirées de façon aléatoire que 
si seules des particules fines de la fraction lâche 
sont retirées. Pour la description du réseau des 
pores, une nouvelle méthode a été proposée pour 
associer des tétraèdres voisins résultant de la 
triangulation de Delaunay. Ce réseau des pores 
sera incorporé dans un modèle pour prendre en 
compte le transport et le blocage des particules 
fines au sein de l'espace poral formé par le 
squelette solide. 
 

 

Title : Mechanical behavior of eroded soils : numerical study based on the DEM 

Keywords :  granular soils . suffusion . Discrete Element Method . mechanical behavior . micro-
structure . extraction of fine particles . pore network 

Abstract :  Suffusion can induce a loss of fine 
particles to granular soils and consequently a 
modification of their mechanical behavior. In this PhD 
thesis, we aim to study the effect of the loss of fine 
particles caused by suffusion on mechanical 
properties of soils at the macroscopic and 
microscopic scales by using the Discrete Element 
Method (DEM). Granular samples composed of 
spherical particles with a gap-graded particle size 
distribution (PSD) are simulated by the DEM. Due to 
a very high computational cost, the fluid flow through 
the void space between solid particles is not 
simulated. Instead, we propose a representation of 
the internal state of soils after suffusion at three 
different levels with increasing complexity.  For the 
level 1, a sample considered as eroded is generated 
at a target density and with a fine content lower than 
that of the original sample. The level 2 consists in 
removing a fraction of fine particles from the original 
sample at a given stress state. We proposed thus a  
method to  identify  the  loose  fraction  composed  of 

particles which do not carry significantly stresses. 
The level 3 aims to take into account the transport 
of fine particles in the pore network of the solid 
skeleton and the blockage of fine particles by 
constrictions. The key point in this model is how to 
describe the pore network. This study showed that 
fine particles can have a negligible effect, positive or 
negative effect on the shear strength depending on 
fine content. A removal of fine particles causes a 
significant reduction in shear strength to gap-graded 
soils. It was also showed that a random removal of 
fine particles leads to a greater reduction in shear 
strength than a removal of only fine particles in the 
loose fraction. For the description of the pore 
network of the solid skeleton, we propose a new 
method for merging neighboring tetrahedra issued 
from the Delaunay triangulation. This pore network 
will be incorporated into a model to take into 
account the transport and blockage of fine particles 
within the pore network of the solid skeleton. 

 


