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Abstract

The penetration of chloride ions has an essential responsibility in the degradation

of concrete structures caused by reinforcement corrosion leading to a severe impact

on the durability and service life of concrete structures. The problem becomes more

critical with the existence of cracking which accelerate the penetration of chloride

ions into concrete cover. In this work, the FE formulation for the numerical mod-

elling of chloride ions diffusion accounting for chloride binding capacity in mesoscale

concrete is introduced. The mesostructure is based on a two-phase 3D represen-

tation of heterogeneous materials, such as concrete, where stiff aggregates are em-

bedded into a mortar matrix. For this purpose, we turn to the Embedded Finite

Element Method (E-FEM). This is performed by introducing a weak discontinuity

in the chloride concentration field for finite elements where the physical interface is

present. Numerical spatial homogenization experiments based on work Pouya are

also performed on 3D mesostructures to compute macroscopic diffusivity tensors

accounting for two-phase material. Comparison with Maxwell’s equation and ex-

perimental results are carried out to show the accuracy of the proposed numerical

approach. Finally, the meso-macro approach is presented to introduce a numeri-

cal model capable of providing macroscopic information (mean diffusivity tensor)

integrating the level of crack opening, crack path and heterogeneity of materials

in quasi-brittle concrete. The mesoscale coupling with the mass transport part is

based on Fick’s Law with a modified diffusion coefficient taking into account crack

opening and aggregates. The macroscopic diffusivity tensor integrates more com-

plex features such as the cracking evolution process, tortuosity of the crack’s path,

induced-anisotropy and presence of aggregates. The defined tensor is used after-

wards in order to estimate the service-life of concrete structures, including the effect

of the cracking and the internal mesostructure.
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Résumé

La pénétration des ions chlorure est la principale cause de la dégradation des struc-

tures en béton, par corrosion des armatures, entrâınant un impact sévère sur leur

durabilité et leur durée de vie. La pénétration de ces agents agressifs pourrait

être favorisée davantage par la présence des fissures. Dans cet thèse, nous avons

utilisé la méthode des éléments finis (EF) pour résoudre l’équation de la loi de Fick

couplée à la capacité de fixation d’ions chlorure afin de modiliser la diffusion des

ions chlorure à l’echelle mésoscopique. Dans un premier temps, nous avons con-

sidéré une représentation 3D d’un matériau, sain, hétérogène biphasé (comme le

béton) ou les inclusions (granulats) sont noyées dans une matrice de mortier. Le

problème des interfaces (inclusion/matrice) a été résolu en utilisant la méthode E-

FEM (Embedded Finit Element Method). Au niveau de ces interface, nous avons

introduit une discontinuité faible du champ de concentration de chlorure. Une ap-

proche d’homogénéisation par moyennes spatiales se basent sur les travaux de Pouya

est également utilisée pour prédire les tenseurs de diffusivité macroscopiques des

matériaux biphasiques. La comparaison avec l’équation de Maxwell et des résultats

expérimentaux a été réalisée pour montrer la précision de l’approche numérique

proposé.

Dans un second temps, l’approche méso-macro est représentée pour introduire un

modèle numérique capable de fournir des informations macroscopiques (tenseur de

diffusion moyen) intégrant le niveau d’ouverture de fissure, le chemin de fissuration et

l’hétérogénéité d’un matériau quasi fragile tels que le béton. Dans ce cas, des points

clés du processus de fissuration comme l’évolution d’une fissuration répartie dans

l’éprouvette vers une fissuration localisée (macro-fissure(s)), comme la tortuosité

de la fissure et l’anisotropie de la fissuration sont intégrés naturellement dans la

diffusivité macroscopique. En fin, le tenseur défini est ensuite utilisé afin d’estimer

la durée de vie des structures en béton, y compris l’effet de l’endommagement et de

la méso-structure interne.
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Résumé Étendu

Contexte général et étude bibliographique

Dans le domaine du Génie Civil, mettre en place une méthodologie de développement

durable intégrant la pérennité des constructions ou infrastructures est aujourd’hui

primordial. Cette pérennité passe par (1) une meilleure compréhension du comporte-

ment à long terme des matériaux cimentaires sous divers sollicitations environnemen-

tales agressives et (2) par l’évaluation des mécanismes de dégradation alors associés

(vieillissement, perte de capacité portante et risque de rupture). Dans le cadre

des infrastructures du Génie Civil en béton armé, des agents agressifs provenant

d’un milieu extérieur tels que l’eau de mer et les embruns marins et/ou les sels de

déverglaçage, ou des matériaux entrant eux-mêmes dans la composition d’un béton

(sable ou certains adjuvants), sont susceptibles de pénétrer dans le matériau cimen-

taire. Les agents les plus critiques vis-à-vis du béton armé sont les ions chlorure. En

pénétrant peu à peu dans le béton d’enrobage, ils peuvent atteindre les armatures,

détruire la couche passive qui les protège et corroder les armatures, affectant ainsi

la durabilité de l’infrastructure par perte de ses performances mécaniques [Mehta

and Monteiro, 1993]. Par conséquent, la durabilité et la durée de vie de la struc-

ture sont impactées. Le taux de pénétration des ions chlorure dépend fortement

des propriétés microstructurales et des composants du béton. Par ailleurs, la fissur-

ation peut accélérer considérablement cette pénétration d’agents agressifs au sein

du béton. Elle fournit des passages d’écoulement préférentiel et favorise ainsi la

pénétration d’ions chlorure dans le béton. Par conséquent la modélisation de la
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fissuration tenant compte explicitement des différents constituants du béton revêt

un aspect important quant à une prédiction réaliste de la durée de vie des ouvrages.

En ce qui concerne les différents constituants du béton, plusieurs échelles (macro-

scopique, mésoscopique, microscopique et nanoscopique) peuvent être considérées

pour analyser le comportement du béton. En fonction de la puissance de calcul,

des connaissances mécaniques, chimiques, physiques et numériques, une communi-

cation entre ces différentes échelles permet de modéliser avec précision le comporte-

ment du béton. À l’échelle macroscopique (l’échelle de la structure), le matériau

est considéré comme homogène et le comportement est caractérisé au travers de

lois phénoménologiques telles que la plasticité et l’endommagement [Lemaitre et

Chaboche, 2004]. Néanmoins, ces modèles phénoménologiques ne prennent pas en

considération l’impact de la microstructure et des propriétés de chaque constitu-

ant individuel du béton. Il est difficile de décrire correctement les mécanismes

physiques (rupture, dégradation ou mécanismes de transport) prenant naissance à

une échelle plus fine et responsables du comportement macroscopique du béton. No-

tons aussi qu’à l’échelle nano et microscopique, l’existence de différentes phases liées

aux différents constituants du béton, induisent une complexité dans la modélisation

des phases et leur comportement. Cette complexité rend les coûts des calculs assez

prohibitifs. À l’échelle mésoscopique, les hétérogénéités sont moins marquées ; le

béton peut être considéré comme un matériau bi-phasique : agrégats inclus dans une

matrice de mortier. Un modèle à cette échelle est considéré dans cette thèse pour car-

actériser le matériau et fournir une représentation explicite de l’hétérogénéité (forme,

distribution, taille et comportement) présente à l’échelle fine et jouant un rôle fon-

damental dans l’observation de nombreux phénomènes physiques à l’échelle macro-

scopique avec un temps de calcul assez raisonnable. Les propriétés de transfert sont

influencées par de nombreux paramètres d’interaction liés aux compositions difficile-

ment identifiables par des essais expérimentaux au laboratoire [Abyaneh et al., 2013]

d’où l’utilité de prévoir ces propriétés de transfert en fonction de la mésostructure

du béton par des modèles analytiques ou numériques. Au cours des 10 dernières
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années, la simulation du transfert d’agents agressifs au sein des matériaux cimen-

taires à l’aide de modèles définies à l’échelle mésoscopique a connu un essor. Ces

modèles sont apparus efficaces dans la modélisation des caractéristiques principales

du comportement du béton, non seulement dans les aspects mécaniques [Benkemoun

et al., 2010], [Roubin et al., 2015] et [Comby Peyrot et al., 2009], mais aussi dans

l’aspect transfert de masse (Jourdain et al. [Jourdain et al., 2014b], Benkemoun et

al. [Benkemoun et al., 2015] et Grassl et Bolander [Grassl and Bolander, 2016]).

Par conséquent cette approche mésoscopique a été retenue dans cette thèse. Con-

cernant le problème de diffusion, Garboczi et Bentz [Garboczi and Bentz, 1998] ont

proposé un modèle multi-échelle pour la prédiction de la diffusivité du béton en

tenant compte de l’effet de l’auréole ou de l’interface de transition (ITZ). Zheng et

al. [Zheng et al., 2012] ont travaillé sur des modèles treillis pour évaluer la diffusion

de chlorures dans le béton en simulant sa mésostructure. De plus, l’effet de la forme

des agrégats sur la diffusivité d’ions chlorure a été examinée. Zeng [Zeng, 2007] a

utilisé la méthode des éléments finis avec un modèle de structure bi-dimensionnelle

pour analyser le comportement de la diffusivité de chlorures dans le béton. Il a

considéré le béton comme un matériau bi-phasique constitué d’agrégats inclus dans

un mortier. Li et al. [Li et al., 2012] ont également utilisé la méthode des éléments

finis pour prédire la diffusivité d’ions chlorure dans le béton avec un modèle à deux

et trois dimensions tenant compte de la forme bi-phasique du béton. L’effet de l’ITZ

a été pris en considération dans les travaux d’Abyaneh et al. [Abyaneh et al., 2013]

pour l’estimation du coefficient de diffusion de chlorures à l’échelle mésoscopique.

Wang et Ueda [Wang et Ueda, 2009] ont utilisé un modèle de réseau de treillis à

deux dimensions à l’échelle mésoscopique pour estimer la diffusion de chlorures dans

le béton en fonction du temps et de la température. Notons aussi que le transport

d’ions chlorure dans le béton n’est pas un simple processus de diffusion. Il est souvent

associé à de différents phénomènes tels que la migration (interaction électrostatique)

et l’interaction de chlorures avec la matrice cimentaire physiquement et chimique-

ment. De nombreuses recherches ont été menées concernant l’étude de la diffusivité
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d’ions chlorure dans les matériaux cimentaires sous l’effet de différents mécanismes

de transport (perméabilité, migration, fixation du chlorure) [Wang and Ueda, 2009,

Wang and Ueda, 2011b, Krabbenhøft and Krabbenhøft, 2008, Zeng, 2007]. D’autre

part, la modélisation du transport des chlorures est représentative de la réalité

uniquement si elle intègre le mécanisme de dégradation principal des structures

en béton en service, à savoir la fissuration. En effet, cette dernière est responsable,

tout comme les pores du matériau, d’une pénétration des ions chlorures mais cette

pénétration devient privilégiée [Djerbi et al., 2008] et provoque un vieillissement

accéléré de l’infrastructure concernée dès lors que la fissuration localisée (présence

d’une macrofissure par exemple) prend le pas sur la fissuration diffuse [Djerbi-

Tegguer et al., 2013]. En étudiant avec attention la littérature de ces dernières

années, on constate que de nombreux travaux traitant de la simulation numérique

du couplage entre les phénomènes de transfert par diffusion des ions chlorures et

les mécanismes de fissuration sont apparus. Kamali-Bernard et Bernard [Kamali-

Bernard et Bernard, 2009] ont étudié l’influence de fissures obtenues par un essai de

traction sur la diffusivité de l’eau dans le mortier. Dans leurs travaux numériques

basées sur la méthode EF, Jin et al. [Jin et al., 2008], ont pris en compte la fis-

suration dans le coefficient de diffusion en se basant sur les travaux de Djerbi et al.

[Djerbi et al., 2008]. Leurs résultats numériques ont été comparés avec les résultats

expérimentaux obtenus par Ismail et al. [Ismail et al., 2008]. Dans le travail de Jin

et al. [Jin et al., 2008], seule une fissure artificielle est considérée. Aucune simula-

tion mécanique n’est effectuée pour obtenir la fissure. L’orientation et la position de

la fissure dans le maillage sont imposées par l’utilisateur, en tenant compte d’une

largeur, d’une hauteur et d’un angle donnés. Wang et Ueda [Wang et Ueda, 2011]

ont considéré un modèle de type treillis à l’échelle mésoscopique tri-phasique (ITZ,

agrégats, mortier) pour évaluer l’influence de l’interface ITZ et des agrégats sur la

profondeur de la pénétration de chlorures. Encore une fois, dans [Wang et Ueda,

2011], seule une fissure artificielle est prise en compte. Savija et al. [Savija et al.,

2013, Savija et al., 2014] ont simulé la diffusion d’ions chlorure dans le béton fissuré
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avec un modèle mésoscopique en treillis considérant le béton comme un domaine

hétérogène incluant les agrégats, la pâte de ciment et l’auréole de transition (ITZ).

Contrairement aux travaux numériques précédents, des simulations mécaniques sont

réalisées, menant à des fissures réalistes (non artificielles).

Dans ce travail, la Embedded Finite Element Method (E-FEM, [Armero et

Garikipati, 1996], [Oliver, 1996], [Borja, 2000], [Benkemoun et al., 2010]) est in-

troduite pour permettre de prendre en compte l’hétérogénéité du béton à l’échelle

mésoscopique. L’avantage de cette méthode est de conserver tous les points forts

de l’approche des éléments finis (applicabilité pour différentes lois constitutives,

robustesse, compatibilité avec les techniques d’homogénéisation, ...) tout en facil-

itant considérablement l’étape de maillage des discontinuités physiques telles que

les fissures, les fractures et les interfaces du matériau. En effet, le maillage n’a

pas nécessairement besoin de suivre ces discontinuités physiques. Elles sont prises

en compte en enrichissant l’espace d’approximation des éléments finis grâce à des

améliorations spécifiques dans les champs de déplacement/contrainte pour les problèmes

mécaniques et/ou dans le gradient de pression [Alfaiate et al., 2010] et le gradient

de température [Ngo et al., 2013] pour les problèmes multi-physiques, par exemple.

Dans ce cas, avec l’Embedded Finite Element method, le maillage n’a pas besoin

de suivre la discontinuité physique qui est définie ici comme l’interface du matériau

séparant la matrice du mortier et l’agrégat. Par conséquent, certains éléments finis

sont traversés par cette interface et sont donc divisés en deux parties ayant chacune

différentes propriétés de diffusivité. Afin de tenir compte de cette interface dans ces

éléments, l’espace des éléments finis est enrichi par une discontinuité faible, située

à l’interface des deux matériaux. Cette discontinuité faible est introduite dans la

cinématique des champs réel et virtuel de concentration de chlorures libres.

Concernant les travaux de simulations dans la littérature, les modèles numériques

capables de fournir des informations macroscopiques de transport tenant compte

de la fissuration et de l’hétérogénéité du matériau du béton restent peu abordés.

Par conséquent, nous proposons dans ce travail une méthode reposant sur un pro-
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cessus d’homogénéisation dont le but est de fournir une diffusivité macroscopique

(tenseur de diffusion moyen) prenant en compte le caractère hétérogène du béton, le

mécanisme de diffusion, les interactions chimiques (entre les chlorures et la matrice

cimentaire) et intégrant le niveau d’ouverture de fissure et le chemin de fissuration.

Dans ce cas, les points clés du processus de fissuration comme l’évolution d’une

fissuration répartie vers une fissuration localisée (macro-fissure(s)), la tortuosité de

la fissure et l’anisotropie induite par la fissuration sont ainsi intégrés naturellement

dans la diffusivité macroscopique.

Objectifs de la thèse

Les principaux objectifs de la présente étude sont résumés comme suit :

1. Décrire brièvement le rôle crucial de la pénétration des ions chlorure et son

influence sur la durabilité des structures en béton armé et en particulier la

corrosion des armatures.

2. Étudier l’influence des propriétés de la microstructure ainsi que la capacité

de fixation chimique des chlorures par la matrice cimentaire sur les profils de

concentration en chlorure dans le cadre d’une simulation en 1D.

3. Effectuer des études d’homogénéisation numériques sur les méso-structures en

3D afin de calculer les tenseurs de diffusivité macroscopiques tenant compte

du matériau bi-phasique non fissuré.

4. Introduire un couplage entre le transfert ionique par diffusion et la fissuration

mécanique à l’échelle mésoscopique pour la détermination de tenseurs de dif-

fusivité macroscopique dans des matériaux quasi fragiles, hétérogènes tels que

le béton.

5. Étudier l’effet la fixation de chlorures ainsi que la diffusivité induite par la

fissuration sur la durabilité et la prédiction de la durée de vie.
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Organisation de la thèse

Ce mémoire est composé de quatre chapitres : Le premier présent une revue de la

littérature. En général, il contient une revue des mécanismes du transfert ionique

et de la corrosion des armatures due aux attaques des chlorures venant des eaux

de mer et des sels de déverglaçage. Ensuite, les modèles numériques de couplage

entre le transfert ionique par diffusion et endommagement mécanique utilisés dans

la littérature sont décrits et commentés.

Le deuxième chapitre décrit les concepts de base de la méthode des élément

finis utilisée pour résoudre un problème unidimensionnelle de transport. Aussi,

nous présentons la Embedded Finite Element Method (E-FEM) tenant compte de

l’hétérogénéité du béton à l’échelle méso. Ceci est obtenu en introduisant une dis-

continuité faible (dans le champ de concentration de chlorures) afin de capturer les

hétérogénéités. La validité de la formulation EF implantée dans le code d’éléments

finis FEAP [Taylor, 2008] est confirmée par des solutions analytiques unidimension-

nelles pour un matériau semi-infini et bi-phasique. Tout d’abord, il est utilisé pour

examiner l’impact des valeurs du coefficient de diffusion des agrégats et de la matrice

de mortier ainsi que la fixation d’ions chlorure sur le profil de concentration. Une

fois que l’évolution des profils de concentration pour différents intervalles de temps

est connue, l’intervalle de temps jusqu’à l’initiation de la corrosion tcorr peut être

évalué. Ainsi, tcorr se trouve :

• diminué lorsque les effets de la capacité de fixation au chlorure sont pris en

compte;

• augmenté lorsque le rapport entre les coefficients de diffusion de la matrice et

des agrégats Dmatrice/Daggregate accroit.

De toute évidence, afin de mieux prévoir le temps d’initiation à la corrosion,

il est important de tenir compte explicitement de l’influence des propriétés de la

microstructure et de la capacité de d’interaction chimique de la matrice cimen-
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taire sur la pénétration de chlorures. Ceci est crucial pour une estimation précise

de la durée de vie d’une structure. Dans le chapitre 3, en effectuant des sim-

ulations en 3D, nous montrons que la méthode d’homogénéisation retenue dans

ce chapitre combinée à l’E-FEM est bien adaptée au calcul des tenseurs de dif-

fusivité macroscopiques prenant en considération des propriétés de diffusivité de

la microstructure. Des simulations numériques sur des échantillons 3D sont ef-

fectuées pour déterminer la taille du VER. La précision des E-FEM pour le calcul

du tenseur de la diffusivité à l’échelle mésoscopique est prouvée en comparant les

résultats numériques aux résultats de l’équation de Maxwell. La comparaison avec

des résultats expérimentaux est également effectuée pour montrer l’applicabilité de

l’approche numérique proposée concernant l’effet des interactions chimiques. Dans

le chapitre 4, le modèle mécanique utilisé pour prendre en compte la fissuration,

est brièvement présenté dans un premier temps. En plus de la discontinuité faible,

une discontinuité forte est également introduite pour tenir compte de la micro-

fissuration. Dans un deuxième temps, le couplage entre le transfert par diffusion et

la fissuration mécanique est présenté. Ceci repose sur les travaux expérimentaux de

Djerbi et al. [Djerbi et al., 2008]. Ensuite la méthode d’homogénéisation permettant

le calcul du tenseur de diffusivité macroscopique est détaillée. Par ailleurs, un ex-

emple numérique méso-macro est illustré. L’anisotropie induite par la fissuration et

la tortuosité du chemin de la macro-fissure sont les principales caractéristiques con-

sidérées ici. Nous avons montré que le tenseur de diffusivité macroscopique intègre

l’évolution de la fissuration. Une augmentation des valeurs des composantes diag-

onales du tenseur de diffusivité macroscopique est ainsi mise en évidence. Enfin,

nous avons réalisé la prédiction de la durée de vie des structures en béton armé. La

sensibilité des valeurs du tenseur de diffusivité macroscopiques sur l’estimation de

la durée de vie des structures en béton, y compris l’effet de la fissuration et de la

structure interne à l’échelle mésoscopique sont explicitées.
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General introduction

0.1 General

Reliable methods for ensuring and evaluating sustainable development of construc-

tions and infrastructure are essential in the civil engineering industry, specifically in

terms of durability. In order to improve durability, two approaches are needed: (1)

a better understanding of the long-term behavior of cement-based materials sub-

jected to various aggressive environmental conditions, and (2) an assessment of the

mechanisms involved in their degradation.

In reinforced concrete civil engineering facilities, a number of external corrosive

agents, such as dissolved salt in sea water and spray, and deicing salt spread on

roads in winter, as well as in the constituents of concrete (sand or additives) can

penetrate through cement materials. Chloride ions are the most corrosive agents

with regard to concrete. Once they have penetrated the concrete cover, chloride

ions may infiltrate the reinforcement, which can become corroded when the threshold

value is reached [Mehta and Monteiro, 2006].

Consequently, mechanical performances are deteriorated resulting in a severe im-

pact on durability and service life of the structure. The penetration rate of chloride

ions is extremely dependent on the diffusion properties of concrete constituents. In
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addition, cracking can considerably accelerate the ingress of chloride ions inside con-

crete due to the fact that it provides preferential flow channels and enable additional

chlorides to penetrate. Therefore, modeling cracking while explicitly tacking into

account the different constituents of concrete is a challenging issue for a realistic

prediction of the diffusivity of concrete.

Concerning the different constituents of concrete and in a more general way, the

level of heterogeneity retained for the modelling of concrete-like material, several

different representative scales can be regarded for analyzing the impact of this level

of heterogeneity: macro, meso, micro and recently also the nano-scale are worth

noting.

On the one hand, in macroscopic models, concrete is generally considered as

homogeneous material and its behaviour is characterized using phenomenological

laws such as plasticity and damage [Lemaitre and Chaboche, 2004]. These mod-

els are used for instance for structural analysis and design of a global concrete

structure. Nevertheless, the macroscopic scale does not explicitly take into account

the impact of the microstructure and properties of the individual constituents of

concrete. Consequently, physical mechanisms (cracking, degradation or transport

mechanisms) taking place at the fine scales are not captured in these macro-models

and responsible of what it is observed at the upper scale (such as the macro one).

On the other hand, nano and microscopic scales could give an accurate description of

the different constituents and their physical behaviour. Nevertheless, the complex-

ity of the different phases and also their large number make the calculations more

time-consuming and the identification of the material parameters quite complicated.

At the mesoscopic scale, the heterogeneities are less marked: concrete is com-
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monly regarded as coarse aggregates embedded in a mortar matrix. In this sense,

mesoscopic models can be used to characterize quite precisely the material by pro-

viding an explicit representation of the heterogeneity (shape, distribution, size and

behaviour) present at the fine scales while keeping a resaonable time of computa-

tion. In addition, since the pioneering works of Schlangen and van Mier [Schlangen

and van Mier, 1992], modeling a material using mesoscale models that explicitly

take into account the microstructure of the specimen has become increasingly pop-

ular. These models have proved to be effective in modeling both the mechanical

features [Benkemoun et al., 2010,Roubin et al., 2015a,Comby-Peyrot et al., 2009]

and the mass transport aspect [Jourdain et al., 2014b,Benkemoun et al., 2015,Grassl

and Bolander, 2016]) of concrete-like materials. Consequently, we turn to the use

of meso-scale model in this PhD. Concerning diffusion problem solved in the con-

text of meso-scale approach, we can note the following numerical contributions.

Garboczi and Bentz [Garboczi and Bentz, 1998] suggested a comprehensive multi-

scale model to predict the diffusivity of concrete by taking into account the effect

of the Interfacial Transition Zone (ITZ). Zheng et al. [Zheng et al., 2012] worked

with the lattice model to evaluate the chloride diffusion in concrete according to

the simulated meso-structure of concrete. In addition the effect of aggregate shape

on chloride diffusivity was examined. Zeng [Zeng, 2007] utilized the finite element

method with a two-dimensional structure model, to analyze the chloride diffusiv-

ity behavior in concrete. The author simulated concrete as a two-phase composite

made of aggregate and mortar matrix. Li et al. [Li et al., 2012] used also the finite

element method to predict the behavior of chloride diffusivity in concrete with two

and three-dimensional model and as a two-phase composite. The effect of ITZ was
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considered to estimate the chloride diffusion coefficient at mesoscale by Abyaneh

et al. [Abyaneh et al., 2013]. Wang and Ueda [Wang and Ueda, 2009] employed a

two-dimensionnal mesoscale truss network model for estimating chloride diffusion in

concrete and considering the effect of time and temperature [Du et al., 2014].

However, chloride ions transport in concrete is generally not a simple diffusion

process but a mass transport associated to different phenomena such as migration

and also chloride dissipation throughout diffusion process due to chloride binding.

Many researches conducted the study of chloride ions diffusivity in cement-based

material under the effect of different transport mechanisms (permeability, migra-

tion, chloride binding). For instance, a meso-scale truss network model was used

by Wang and Ueda [Wang and Ueda, 2009] to investigate chloride diffusion con-

sidering concrete as a three-phase composite of mortar matrix, aggregates, and the

interfacial transition zone (ITZ). Diffusion law is considered in this work taking into

account the dependency of diffusion coefficient of mortar and ITZ on exposure du-

ration and temperature. The same model was utilized by Wang and Ueda [Wang

and Ueda, 2011b] to evaluate the diffusivity of concrete in order to account for

the microstructure of concrete, the binding effect of chloride ions and the chlo-

ride concentration dependence. Note that in both aformentioned works of Wang

and Ueda, the chloride diffusivity of mortar and ITZ are estimated by analytical

method. The numerical results show the importance of considering the binding ca-

pacity and concentration dependence on chloride ions transport modelling. A Finite

Element method for numerical solution of the Poisson-Nernst-Planck equations was

introduced by [Krabbenhøft and Krabbenhøft, 2008] to model the migration test.

Then, closed-form solutions for the effective chloride diffusivity based on the full
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Poisson-Nernst-Planck equations are derived. However, chloride binding was taken

into account in the work of Zeng [Zeng, 2007] where a Finite Element method was

used to investigate the chloride diffusion behavior of a two-phase concrete material.

The results show that chloride diffusion behavior at the level of heterogeneity is

different from that in its derived homogeneous medium.

As aforementioned, modeling chloride ions transport is only reliable if it takes

into account the principal issue in the degradation of concrete structures, i.e., crack-

ing. Cracking is responsible [Djerbi et al., 2008] for structure-accelerated damage

when localized cracks (such as macrocracks) appear [Djerbi-Tegguer et al., 2013].

In the last few years, some research works have been reported in the literature

on the numerical simulation of the coupling between chloride ions transport and

concrete cracking. Realistic numerical studies are essential because it is extremely

difficult to set up an experimental investigation of this coupling. Herein, considerable

computational work has been done. Kamali-Bernard and Bernard [Kamali-Bernard

and Bernard, 2009] investigated the influence of tensile cracking on diffusivity of

tritiated water in mortar within a numerical microstructure model. In Jin et al. [Jin

et al., 2008], the authors integrate the diffusion coefficient through the crack obtained

in Djerbi et al. [Djerbi et al., 2008] in their numerical model of diffusion based on

the Finite Element method. Jin et al. [Jin et al., 2008] compare their numerical

results with the experimental ones of Ismail et al. [Ismail et al., 2008]. Note that

in the work of Jin et al. [Jin et al., 2008], only artificial crack is considered. The

term “artificial” means that no mechanical simulations are performed to obtain the

crack. The orientation and position of the crack in the mesh are imposed by the

user, considering a given width, height and angle. Wang and Ueda [Wang and Ueda,
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2011a] consider a mesoscale lattice-type model with three phases (ITZ, aggregates,

mortar) to assess the influence of the ITZ and the aggregates on the depth of chloride

penetration. Here again in [Wang and Ueda, 2011a], only artificial crack is taken

into account. S̆avija et al. [Savija et al., 2013, Savija et al., 2014] simulated the

chloride ions diffusion in cracked concrete with a coupled lattice mesoscale model

considering concrete as heterogeneous domain including aggregates, cement paste

and interfacial transition zone (ITZ). Contrary to the previous mentioned works,

mechanical simulations are performed leading to realisitic cracks. In S̆avija et al.

[Savija et al., 2014], according to findings of Yoon et al. [Yoon et al., 2007], the

authors impose a chloride concentration only on cracks wider than 12 µm obtained

after the numerical simulation of a splitting test. In S̆avija et al. [Savija et al.,

2013], the authors assess their numerical model with (1) the experimental results of

Şahmaran [Sahmaran, 2007] and Ismail et al. [Ismail et al., 2008] for cracked mortar

samples by considering Dcr of Djerbi et al. [Djerbi et al., 2008], (2) the experimental

results of Ismail et al. [Ismail et al., 2004a] for cracked bricks samples – using trial and

error method to obtain the equivalent diffusion coefficient – in the context of artificial

cracks. Wang et al. [Wang et al., 2008] presented mesoscale model to simulate

chloride diffusivity in cracked concrete using the Rigid Body Spring Model and the

truss network model. Rigid Body Spring Model (RBSM) is employed to perform the

mechanical analysis to simulate the distribution and width of microcracks. Then,

the truss network model is utilized to assess the chloride diffusivity of the cracked

concrete. The axial compressive and tensile loading conditions are investigated

respectively and the effects of stress level on chloride diffusivity of cracked concrete

are studied.
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Regarding the FE literature, the interest of the computational mechanics com-

munity has significantly increased over the last decades in the use of Enriched Fi-

nite Element Methods such as the Generalized Finite Element Method (G-FEM,

[Strouboulis et al., 2000a], [Strouboulis et al., 2000b]), the eXtended Finite Element

Method (X-FEM, [Belytschko et al., 2001], [Moës et al., 1999], [Mariani and Perego,

2003]), the Nitsche method ( [Hansbo and Hansbo, 2002] and [Annavarapu et al.,

2012]) and the Embedded Finite Element Method (E-FEM, [Armero and Garikipati,

1996], [Oliver, 1996], [Borja, 2000], [Benkemoun et al., 2010]). The advantage of

these methods is to retain all the advantages of the finite element approach (appli-

cability to different constitutive laws, robustness, compatibility with homogenization

techniques, ...) while considerably easing the meshing step of physical discontinuities

such as cracks, fractures, slip lines and material interfaces. Indeed, the mesh does

not necessarily need to match these physical discontinuities. They are taken into

account by enriching the finite element approximation space through specific en-

hancements in the displacement/strain fields for mechanical problems and/or in the

pressure gradient [Alfaiate et al., 2010] and temperature gradient [Ngo et al., 2013]

for multi-physics problems for instance. Consequently, these physical discontinuities

have the representation of their (complex) geometry and its evolution through the

time facilitated by means of these methods. In the literature, the enhancements are

in general sorted into two categories:

• strong enhancements - a jump within the displacement (and/or the pressure,

the temperature, the concentration,...) fields is introduced by the means of a

so-called strong discontinuity ( [Simo et al., 1993]);

• weak enhancements - a jump within the strain (and/or the pressure gradient,
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the temperature gradient, the concentration gradient,...) fields is introduced

by the means of a so-called weak discontinuity ( [Ortiz et al., 1987]).

Consequently modeling chloride ions transport with a meso-scale model based on

the aforementioned Enriched Finite Element Methods might provide yet another

efficient and original way to tackle durability issues relative to chloride ingress in

sound and cracked concrete. It can be an efficient alternative numerical approach

for taking into account the microstructure and cracking in the design of mesoscale

models for chloride ions transport. In this PhD thesis, among the different Enriched

Finite Element Methods evocated in the introduction, we turn to the Embedded

Finite Element Method (E-FEM)

We have to note that macroscopic diffusivity tensors, which depend on the

cracked state of concrete and its overall heterogeneous aspect, have rarely been

computed in the numerical simulation literature. Some explanations for this could

be: (1) by not considering realistic cracks, the authors avoid the connectivity and

tortuosity aspects of the crack pattern and crack width heterogeneities in the com-

putation and/or (2) the authors use an equivalent diffusion coefficient De, which

can be considered a phenomenological variable such as damage or plasticity in me-

chanics [Reynouard et al., 2009]. However, De does not take into account the crack

pattern failure or the heterogeneous aspect of the material explicitly. Clearly, these

macroscopic tensors are critical in terms of the durability and service life of civil

engineering facilities.

Having at hand, an homogenization technique and the Embedded finite element

formulation for mesoscale chloride ions diffusion transport modeling, we estimate the

macroscopic diffusivity tensors taking into account for the heterogeneous mesoscale
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structure of sound and cracked concrete, diffusion mechanism of transport and also

chloride binding phenomena. This is the main originality of my thesis.

The following are the main aims of the present study:

1. To briefly describe the crucial role of chloride ions penetration on the corrosion

of reinforcing steel in civil engineered facilities.

2. To investigate through 1D simulations the influence of the microstructure prop-

erties and the chloride binding capacity on the chloride concentration profiles.

3. To perform numerical homogenization experiments on 3D meso-structures to

compute macroscopic diffusivity tensors accounting for two-phase material.

4. To introduce a cracking/mass transport mesoscale coupling for the determina-

tion of macroscopic diffusivity tensors in heterogeneous quasi-brittle materials

such as concrete.

5. To investigate the influence of chloride binding contribution and also the

cracking-induced diffusivity on the durability and service-life prediction.

To reach these objectives, this thesis is outlined in four chapters.

In Chapter 1 a comprehensive literature review is presented. It contains a review

about chloride ion transport mechanisms and reinforcement corrosion due to chloride

attack. A survey of the literature is then established to show the relevant transport-

cracking coupling models.

Chapter 2 describes the basic concepts of the FE method to carry out a one di-

mensional solution of a transport problem to better understanding the formulation

and the implementation of the FE solution code. While, in section (2-4) of this

chapter, we turn to the Embedded Finite Element Method (E-FEM) in order to
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take into account the heterogeneity of concrete at the mesoscale. The influence of

the microstructure properties and the chloride binding capacity on the chloride con-

centration profiles and consequently on the corrosion initiation time is investigated.

This chapter is limited to 1D description.

Chapter 3 contains the 3D implementation of the computational homogenization

retained in this chapter combined to the E-FEM to compute macroscopic diffusiv-

ity tensors considering the microstructure diffusivity properties. Herein, chloride

binding is taken into account.

In chapter 4, in a first step, the mechanical model used to carry out the me-

chanical calculations is briefly presented and Key points are also highlighted. In a

second step, the coupling between diffusion transfer and mechanical cracking is pre-

sented. It is based on the experimental work of Djerbi et al. ( [Djerbi et al., 2008]).

Then, the homogenization method for calculating a macroscopic diffusivity tensor

is detailed. A meso-macro numerical example is presented to carry out the com-

putation of macroscopic crack-induced diffusivity tensors. Then, the performance

of civil engineering facilities through the investigation of service life prediction is

quantified.
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Chapter 1

Literature review

1.1 Introduction

In the field of Civil Engineering, establishing a methodology for sustainable

development, which integrates the durability of buildings or civil engineering infras-

tructures is essential today. This durability requires (1) a better understanding of

long-term behavior of cement-based materials in various aggressive environments,

and (2) an evaluation of the associated degradation mechanisms (aging, loss of

bearing capacity and risk of collapse, ...). One of the most complex attacks on any

reinforced concrete structure during its service life can be induced by chloride ingress.

There are two primary sources of chloride ions attacks referred as: external or

internal. The external attack could come from seawater weathering or de-icing salt,

while the internal one could arise when water used during concrete mixing contains

chlorides or sometimes certain additions of chloride-based admixtures. External

sources of chlorides are usually responsible for the initiation of corrosion while the
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effect of internal chlorides is often negligible [Jefremczuk, 2004].

When the chloride ions penetrate gradually into reinforcing steel cover, they can

reach the reinforcements, destroy the passive layer that protects the reinforcements

and corrode them [Mehta and Monteiro, 1993], consequently, the durability of the

infrastructure can be affected by a loss of its mechanical performances.

Modelling of different transport mechanisms -diffusion, migration, and

convection- of chloride ions and the behavior of these ions -interactions with

other ions- in a cementitious material -saturated or unsaturated- was the subject

of numerous studies. However, this modeling of chloride ions transport is more

realistic if it integrates the main degradation mechanism of concrete structures

in service, namely cracking. Indeed, as the pores of the material, cracking is

responsible for the chloride ions penetration and can cause an accelerated corrosion

of steel reinforcement, since they may represent a favorable path for the aggressive

agents.

In the literature, some research work has been devoted to studying the transfer of

chloride ions in sound (uncracked) concrete. However, to approximate real loading

conditions where the ions’ transfer is done in the structural elements (columns,

beams), undergoing mechanical loads cracking, it is important to study the coupling

between cracking and chloride ions transport. In this field, most of the previous

studies are limited to Fick’s law for the transfer modelling.

The main objectives of this chapter are: to briefly describe the crucial role of
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chloride ions penetration on the corrosion of reinforcing steel in civil engineering

facilities. The basic principles and existing models of chloride ingress are shown as

well. A survey of the literature is established to light on the relevant transport-

cracking coupling models.

1.2 Corrosion of reinforcement

The normal concrete has a highly alkaline pore solution. At such alkalinity in the

case of reinforced concrete structures, steel is normally protected against corrosion

by a thin passive oxide film. Steel is said to be depassivated if the stability

conditions of the protective layer are changed, the state of passivation ceases and

reinforcement corrosion starts. The enormous expansion of rust products could

increase the internal stresses of concrete elements to cause firstly cracking of the

concrete skin. Two other harmful effects on the performance of the reinforced

concrete structure can occur: a loss of steel section combined with a loss of

steel-concrete bond.

Two external agents contribute to the depassivation of reinforcement: carbon

dioxide and chloride ions. Hereafter, the next section presents the principal

mechanism that may induce corrosion of reinforcing steel by chloride ions ingress

and a description of the corrosion process. The carbonation is out of the domain

of this study. Chloride induced reinforcement corrosion is formed in three steps:

penetration of chloride ions, depassivation, corrosion initiation and propagation.
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Figure 1.1: Schematic representation of pitting corrosion of steel in concrete, Hassan Z. F. [Abu Hassan, 2012]

1.2.1 Penetration of chloride ions

Chloride ions present in the concrete can come from two different sources. Either

when water used during concrete mixing contains chlorides or sometimes certain

additions of chloride-based admixtures. Or from the external environment such as

marine or deicing saltsNaCl and CaCl2), which diffuse into the concrete.

After the entrance of chloride ions either during the mixing process or from

the exterior sources such as sea water or deicing salts, chloride ions in concrete exist

in two forms: free chlorides which are dissolved in the pore solution or chlorides

bound to hydrated cement or adsorbed on the surface of the pore walls. Free

chloride ions can migrate through concrete pores, under the effect of concentration

gradient between the inside and the outside or under the effects of other governing

mechanisms such as capillary suction or hydrostatic pressure.

The transport of these ions is related to the porosity of the concrete. It de-

creases with the W/C ratio and depends on the concentration of the pore solution
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salts.

1.2.2 Depassivation

The immunity of reinforcement is ensured by a kind of passive film Fig.(1.2) which

is commonly formed in a highly alkaline environment with a high pH value of

about 12.5-13.5 to protect the steel from active corrosion [Hansson et al., 2007].

The process of corrosion begins after the concrete cover being penetrated by

Figure 1.2: steel reinforcement protected by a passivating layer

the last mentioned ions, in the conditions of the chloride content increase at the

concrete-steel interface and reaches a critical threshold chloride concentration

causing the active corrosion to be triggered. The methods of determining this

critical chloride threshold concentration are varied.

It is hard to specify in a convincing manner the critical concentration capa-

ble of initiating reinforcement’s corrosion. The influence of different factors such

as quality of concrete, composition of concrete, W/C ratio, relative humidity,

temperature, the microstructure in contact with the reinforcement, the amount of

present sulfate in concrete, and the steel surface condition all are factors that have

an impact on this parameter [Rafiee, 2012].
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Steel corrosion is observed in the presence of an enormous concentration of

chloride ions in the concrete. They alter the morphology of the passive layer giving

ions FeCl−3 or FeCl2. The corrosion products produce a volume several times

greater than the initial steel bar’s size.

1.2.3 Corrosion initiation and propagation

The corrosion-induced deterioration of reinforced concrete can occur in two phases

(see Fig.1.3) :

Figure 1.3: Service life of concrete structure subjected to corrosion [Tuutti, 1980]

Initiation phase: corresponds to the slow chemical and physical changes of the

concrete cover at the micro-scale. It starts from the time where aggressive species

reach reinforcement surfaces and trigger active corrosion, and ends once the corrosion

products starting to accumulate in the concrete-steel interface.
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Propagation or development phase: where the material degradation is visible.

The steel bars will be covered by intermediate products and consequently concrete

cover is damaged. These products have a volume of 2 to 8 times that of steel

bar [Mehta and Monteiro, 1993]. A further rust accumulation will trigger expansive

tensile stress about 10 times the tensile strength of normal concrete and arise up to

27.5 MPa and then cracking in the surrounding concrete [Chen and Mahadevan,

2008]. The result of damage of concrete cover is a significant deterioration in the

load carrying capacity of concrete structure element.

The second dangerous effect of corrosion is the progressive reduction of the

cross-section of steel bars and thereby decreasing the ability to withstand the

applied service loads leading to failure of the structure [Al-Kutti, 2011]. A schematic

sketch of the chloride induced corrosion process is shown in Figure 1.4. The period

of this phase depends principally on the corrosion rate, which is affected by several

factors [Otieno et al., 2008].

Figure 1.4: A schematic sketch of the chloride induced corrosion process [Rafiee, 2012]

31



1.2.4 Threshold Chloride Content

The chloride threshold level can be defined as the required concentration of chlorides

in order to destroy the protective oxide film on surrounding the steel rebars and

trigger the corrosion [Otieno et al., 2008]. Critical chloride concentration classified

as one of the crucial input criteria for design requirements and service life evaluation

to assess the time needed to reach the chloride threshold value at reinforcement level.

Several works have proposed various approaches to reveal the chloride threshold

levels consisting of: free chloride threshold level, total chloride, and [Cl−]/[OH−].

According to Angst et al. [Angst et al., 2009] , threshold values range from0.04

wt% to 8.34 wt% of cement. Many reasons are responsible for this large variation

of threshold value such as: type of steel, concrete quality, cater/cement ratio, etc.

1.3 Mechanisms of chloride transport into con-

crete

Today, there are increasingly premature degradation problems on reinforced

concrete structures in contact with aggressive agents such as seawater or deicing

salts. Several different mechanisms control the chloride ions transport into concrete

such as diffusion, permeation, migration and convection (or capillary suction)

according to the surrounding conditions as shown in Fig.(1.5) (see [Poulsen and

Mejlbro, 2010] for details).

In saturated parts of concrete structures in marine environment, diffusion is the
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main mechanism controlling the chloride ingress in marine environment, while the

convection could be ignored [Al-Kutti, 2011]. In the case of non-saturated parts of

concrete structures, chloride ions are mainly absorbed into concrete pore by capillary

suction mechanism [Djerbi et al., 2008]. In practice, any (combination) of these

mechanisms can govern the ingress of chloride ions into concrete according to the

surrounding conditions (see Fig. 1.5).

Figure 1.5: Exposure zones of concrete structure for marine environment, Ghods et al. [Ghods et al., 2005]

1.3.1 Diffusion

Diffusion is the prevailing transport mechanism of chloride in concrete. It based

on mathematical model formalized by Adolph Eugen Fick (1829-1910).It can be

defined as the movement of free ions from the region of higher concentration to

region of lower concentration. Such conditions are encountered for instance in

the submerged zone and the tidal zone (high tide) of structures under marine

environment. The debut of employing of Fick’s second law of diffusion in the

transport of chloride ions problem had appeared, in the first time, through the
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works of Mario Collepardi in 1970’s [Collepardi et al., 1970,Sillanpää, 2010].

Hence, in steady state flow, mass flux obey Fick’s first law of diffusion (see

Fig. 1.6):

J = −De ▽▽▽c (1.1)

where J the diffusive mass flux of chloride ions expressed in [kg/m2.s], De the

effective diffusion coefficient [m2/s], and c the mass concentration [kg/m3]. Mass

Figure 1.6: Conservation of mass

balance for chloride ions can be expressed as:

∂c

∂t
+ divJ = 0 (1.2)

Injecting equation 1.1 in the mass balance equation [Poulsen and Mejlbro, 2010],
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Ficks second Law is obtained such as:

∂c

∂t
= De

∂2c

∂x2
(1.3)

In the case of constant chloride concentration of the exposure surface, constant

diffusion coefficient De and semi infinite space, Eq. 1.3 has an analytical solution

(see [Crank, 1979]), such as:

c(x, t) = c0 + (cs − c0)

(
1− erf

(
x

2
√
Det

))
(1.4)

where cs = c(x = 0, t > 0) the concentration at the exposure surface, c0 = c(x >

0, t = 0) the initial concentration in the specimen, and erf() the standard error

function [Zhang, 2013].

1.3.2 Migration

As well as being relatively complex, chloride ions diffusion through concrete is

a slow process, and it usually takes several months to several years to reach the

reinforcement. However, to get rid of this long time issue, accelerated techniques

are often used, in the experimental setup, to measure chloride ions diffusivity in

cementitious materials.

These accelerated methods consist in applying an electric field across a concrete

specimen to speed up the transport of ions in the material and reduce the duration

of the test. Within these conditions, the movement of the ions from areas of high

electric potential to areas of low electric potential is governed by an external electric
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field and the ions transport is then defined migration [Arsenault, 1999].

Generally, there are several models found in literature used for interpreting the non-

steady state migration test. Most of these models relies on Nernst-Planck equation

describing the migration of chloride ions in cementitious materials. Nernst-Planck

equation (1.5) describes the flow of ions through a porous material [Nilsson et al.,

1996], such as:

De
∂2c

∂x2
− V De

∂c

∂x
− ∂c

∂t
= 0 (1.5)

The second term is the pure migration term caused by an electrical potential gradi-

ent.

V =
zF |△E|
RTL

where:

z: ion valence

F: Faraday constant

R: gas constant

T: absolute temperature

|△E|: potential difference applied across the sample

L: specimen length

In semi-infinite space where the boundary condition are :

t = 0, x > 0, c = 0

t > 0, x = 0, c = cs

x → ∞, c = 0

In the case of constant chloride concentration of the exposure surface, constant
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diffusion coefficient De and semi-infinite space, Eq. 1.5 has an analytical solution

as:

c =
cs
2

(
eV xerfc

(
x+ V Det

2
√
Det

)
+ erfc

(
x− V Det

2
√
Dt

))
(1.6)

where cs = c(x = 0, t > 0) the concentration at the exposure surface, c0 = c(x >

0, t = 0) the initial concentration in the specimen, and erf() the standard error

function.

1.3.3 Permeation

The permeability can be defined as the capacity of a porous medium to transfer fluids

-liquid or gas- under pressure gradient [Fenaux, 2013]. The parameter, to which

permeability is sensitive, is the volume, distribution, connectivity, and tortuosity of

pores and interconnected microcracks [Zhang, 2013].

The intrinsic permeability of the porous medium k (m2) can be obtained by relying

on the Darcy law for liquids, such as:

JDarcy = −k

ν
▽▽▽p (1.7)

Where JDarcy the Darcy flux (m/s), k the permeability coefficient (m2), ν is the

dynamic viscosity of the fluid (Pa.s) and ▽▽▽p the pressure gradient (Pa/m). Perme-

ability is taken in consideration in water retaining structures like dams and other

large hydraulic structures, where concrete structures being in contact with liquid

under a relative high hydraulic pressure. [Otieno et al., 2008].
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1.3.4 Convection

In the case of chloride ions transport in an unsaturated medium, two mechanisms

govern the process: diffusion and absorption due to capillary phenomena between

liquid and gaseous phases.

When concrete is subjected to repetitive wetting-drying cycles, the chlorides can

penetrate into the concrete by capillary absorption and migrate through the liquid

phase by advection within the material. In this case, ion transport is coupled with

moisture transport. Then, convection can be defined as the transfer of dissolved

chloride ions into pore solution by moisture flux [Guzmán et al., 2011].

This process occurs at a small distance from exposure surface causing inward

and outward movement of moisture due to the wetting and drying cycles, respec-

tively. As shown in Fig.1.7, this region can be defined as the convection zone. It

is followed by the diffusion zone where diffusion being the governing mechanism of

chloride ions movement [Bester, 2014]. Several authors proposed transport models

Figure 1.7: convection and diffusion zones [Bester, 2014]
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to describe chloride penetration into partially saturated concrete. The global

moisture transport in concrete can be expressed such as:

∂θ

∂t
=

∂

∂x

(
Dh(θ)

∂θ

∂x

)
(1.8)

where θ the relative water content and Dh the humidity diffusion coefficient (m2/s).

In the other hand, the governing equation of chloride ions transport in case of the

unsaturated medium is defined such as:

∂ct
∂t

= ▽▽▽. (Dcl(θ)▽▽▽cf ) + cf
∂θ

∂t
(1.9)

where ct the total chloride concentration and equal to the sum of free chloride

concentration cf and bound chloride concentration cb and Dcl the chloride coefficient

of diffusion as a function of relative water content [Ababneh et al., 2003, Wang

et al., 2016b].

Injecting Equ.1.8 in Equ.1.9 leads to the general diffusion-convection equation:

∂ct
∂t

=
∂

∂x

(
Dcl(θ)

∂cf
∂x

+ cf
∂

∂x

(
Dh(θ)

∂θ

∂x

))
(1.10)

1.3.5 Chloride Binding

Chloride ions existing in concrete can be mainly classified into free (or uncombined)

chloride ions -dissolved in the pore solution of cement paste- and bound chloride

ions. Bound chloride can be classified, in turn, to chemically-bonded chloride ions

into cement hydration products to form Friedel’s salt and physically-bound chloride
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ions when it is absorbed by the cement gel surface [Yuan et al., 2009, Van Tran,

2008,Rafiee, 2012].

In consequence, the total bound chloride ions Cb is the sum of those chemically-

bound and those physically-bound chloride ions. The total amount of chloride ions

in concrete is therefore the sum of the bound and free chloride ions, such as:

ct = cb + cf (1.11)

Where ct is the total chloride ions concentration (kg/m3 of concrete), cb and cf are

the bound and free chloride concentration (kg/m3 of concrete), respectively.

For the initiation and propagation stage of steel corrosion of reinforced con-

crete structures, several reviews supposed that only free chloride can be related

to corrosion process as due to its ability to penetrate deeper inside the concrete

cover to reach the surface of embedded steel bars [Tuutti, 1982, Yuan et al.,

2009]. However, chloride binding can act as a retarder agent of corrosion initiation

since it decreases free chloride concentration at the steel bars level. Moreover,

the influence of formation of Friedel’s salt reduces the porosity of concrete cover

and consequently, slows down the transport of chloride ions and decreases the

probability of corrosion [Yuan et al., 2009].

This inhibiting role of chloride binding phenomenon show how crucial to consider

it in chloride ions transport modelling, specifically with regards to acquiring a

more realistic prediction of service life of concrete structures under chloride attack
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environment [Abu Hassan, 2012,Glasser et al., 2008].

The value of bound chloride ions cb depends on the concentration of free chloride

ions cf . This relationship has been described in some of the literature by means

of the so-called binding isotherm. In principle, we can identify three main models.

These are: linear isotherm, Freundlich isotherm, and Langmuir isotherm [Luping

and Nilsson, 1993,Baroghel-Bouny et al., 2012]

1.3.5.1 Linear Isotherm

Although many researchers have stated that the relationship between bound and

free chloride is non-linear [Sergi et al., 1992a, Luping and Nilsson, 1993, Martın-

Pérez et al., 2000], the linear isotherm is frequently used in material models. A

linear binding isotherm was proposed by Tuutti [Tuutti, 1982] for free chloride ions

concentration lower than 20 g/l, such as:

cb = αcf (1.12)

Where cb is the bound chloride concentration, α is a constant and the binding capac-

ity representing the slope of the dotted line in Fig. 1.8 ∂cb
∂cf

is accordingly constant.

However, some authors reported that linear isotherm might overestimate or un-

derestimate the quantity of bound chloride when free chloride elevated or dropped

highly [Delagrave et al., 1997,Nilsson et al., 1996].
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Figure 1.8: Binding isotherms for concrete [Martın-Pérez et al., 2000]

1.3.5.2 Langmuir Isotherm

Langmuir chloride binding isotherm can be expressed as:

cb =
αLcf

1 + βLcf
(1.13)

where αL and βL are constants related to the concrete binder composition and are

obtained from linear [Sergi et al., 1992a] or non-linear [Yuan et al., 2009] regression

analysis of the experimental data. Tang [Tang, 1996] showed that Langmuir isotherm

can represent more precisely the monolayer adsorption -i.e the slope of isotherm

curve has a tendency to approach zero at high concentration of free chloride ions -

at low amounts of free chloride -lower than 0.05 M- [Yuan et al., 2009].

1.3.5.3 Freundlich Isotherm

When free chloride concentration is in the range (0.01-1M), chloride binding can be

described better by Freundlich isotherm as stated by Tang and Nilsson [Luping and
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Nilsson, 1993]. Freundlich isotherm can be expressed as:

cb = αF c
βF

f (1.14)

Where αF and βF are constant parameters determined experimentally.

Different values of isotherm constants α and β for Langmuir and Freundlich

binding isotherm have been resulted by different experimental work and different

boundary conditions. Also, various units used for chloride ions concentration leads

to various values of α and β, (see [Yuan et al., 2009] and [Martın-Pérez et al., 2000]

for details). Many researchers have regarded that the apparent diffusion coefficient

can represent the transport properties of chloride at pore solution taking into account

the effect of chloride binding [Luping and Nilsson, 1993]. So the transport model

based on Fick’s 2nd law in one dimension can be adapted as:

∂cf
∂t

=
∂

∂x

(
D∗

c

∂c

∂x

)
D∗

c =
Dc

1 + 1
ωe

∂cb
∂cf

(1.15)

Where D∗
c is the apparent diffusion coefficient (m2) and ∂cb

∂cf
is the binding capacity

which in turn presented as the slope of the related binding isotherm [Nilsson et al.,

1996].

In previous sections, the equations of chloride transport in several conditions

(saturated, accelerated, ....), binding isotherms are described. All of these mech-

anisms will be used in chapter 2 and 3 to show the methodology of modelling in

(1D and 3D) and how the diffusivity tensor is effected in both sound and cracked

concrete.
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1.4 Transport/cracking coupling works

A considerable amount of effort has been devoted to the modelling of chloride ions

transport mechanisms diffusion, migration, convection and behavior interaction

or not with other ions, [Friedmann et al., 2004, Friedmann et al., 2008] within

cement materials both saturated and unsaturated [Nguyen and Amiri, 2014,Nguyen

and Amiri, 2016]. However, chloride transport modelling is reliable only if the main

degradation factor of concrete structures in service, i.e., cracking, is considered.

Cracking becomes the responsible of the accelerated penetration of chloride ions

inside concrete and consequently the corrosion of reinforcement steel and material

deterioration [Djerbi et al., 2008].

A survey of the literature reveals that during the last couple of years, some

research work has been devoted to the numerical simulation of the coupling between

chloride ions transport and concrete crack formation mechanisms. Numerous

experimental studies were conducted to examine the effect of cracking on chloride

ions transport or to assess the relation between the crack characters -such as crack

width, depth and density- and material properties. Several testing methods have

been followed for testing chloride transport in uncracked concrete basing on the

different chloride transport mechanisms: diffusion, migration, capillary suction,

etc. A number of such methods have been worked with to examine the effect of

cracking on chloride ion ingress. The diffusion tests like NordTest NT Build 443 or

steady-state diffusion test were used by several authors [Gu et al., 2015,Adiyastuti,

2005, Ismail et al., 2004b, Gowripalan et al., 2000, Rodriguez and Hooton, 2003].

However, short time migration tests such as NordTest NT Build 492 or its modified
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method were used by other authors as a rapid method to figure out the chloride ion

transport in concrete [Djerbi et al., 2008,Marsavina et al., 2009,Yoon et al., 2007].

In the other hand, Cracking can be formed in concrete as artificially or mechanically-

produced. The term artificial means that no mechanical simulations are performed

to obtain the crack. Artificial cracks were used by [Rodriguez and Hooton,

2003,Marsavina et al., 2009,Jin et al., 2010] where some factors influencing chloride

penetration such as crack roughness, crack tortuosity and crack shape are not

regarded for the sake of simplicity. The orientation and position of the crack in the

mesh are then imposed by the user, considering a given width, height and angle.

Real cracks were induced by different methods and mechanical loading con-

ditions such as tensile splitting test [Djerbi et al., 2008], four-point bending

setup [Sahmaran, 2007], uniaxial compressive load [Wang et al., 2016a], etc. More

details about testing the chloride penetration in cracked concrete can be found

in [Gu et al., 2015,Blagojevic et al., 2012].

Concerning the coupling, researchers link an equivalent diffusion coefficient De

to a crack width parameter which considered the main crucial factor found to

change the material diffusivity of cracked concrete [Gu et al., 2015]. They propose

models depending on the diffusion coefficient fitted from experimental data. In

Jang et al. [Jang et al., 2011] and Djerbi et al. [Djerbi et al., 2008], a parallel

model (accounting for a crack geometry factor in [Jang et al., 2011]) based upon

the work of Gérard et al. [Gérard and Marchand, 2000] is set out. The model is

then fitted on experimental results achieved from a migration test in steady-state
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regime on samples cracked by a tensile splitting test. Djerbi et al. [Djerbi et al.,

2008] and Jang et al. [Jang et al., 2011] both suggest a linear relationship between

the crack width and the equivalent diffusion coefficient De. In [Djerbi et al., 2008],

an important step forward is made: the authors propose a relationship between the

crack width and the diffusion coefficient through the crack Dcr. This information is

of great interest for the mesoscale coupled approach detailed in this PhD thesis (see

chapter 4). Within the predicted upper and lower threshold crack widths in [Djerbi

et al., 2008], the relation between the diffusion coefficient through the crack Dcr

and the crack width [|u|] such as (see Fig. 1.9):


Dcr(m

2/s) = 2× 10−11[|u|]− 4× 10−10 30µm ≤ [|u|] ≤ 80µm

Dcr(m
2/s) = 14× 10−10 [|u|] > 80µm

(1.16)

The same approach is applied by Jang et al. [Jang et al., 2011]. The authors present

Figure 1.9: Effect of crack width on diffusion coefficient through the crack [Djerbi et al., 2008].

a quantitative relation between crack opening and diffusion coefficient considering a

scalar factor accounting for tortuousity, connectivity and constrictivity of the crack

which is called crack geometry factor.
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Therefore, the equivalent diffusion coefficient is:

Deq = D +
4wcrBcr

πd
Do (1.17)

where Bcr is the crack geometry factor ranged from 0.067 to 0.206. Do, Dcr

and D the diffusion coefficients in free solution, cracked and uncracked sections

respectively, while d the specimen diameter. wcr was introduced as the equivalent

crack width to account for crack widths below the lower critical crack width.

In [Sahmaran, 2007], the author proposed an equivalent diffusion coefficient

of a power function of the crack width. Here the fitting process relies on chloride

concentration profiles. They have been obtained after that cracked samples with

different level of crack width, achieved by a four-point bending setup, have been

exposed to sodium chloride solution such as (see Fig.(1.10)):

Dcr = 3.46 + 0.0001975[|u|]2, [|u|] > 135µm (1.18)

The authors consider the chloride flux as the total of flux in the cracked and

uncracked partitions to evaluate the diffusion coefficient in cracked concrete as shown

in Fig.(1.11)

In addition, Kwon et al. [Kwon et al., 2009] assessed the early-aged cracks effect

function f(w) from regression analysis of field investigations at two different port

wharves to predict a quantitative relationship between the chloride diffusion coeffi-

cient and crack width. The power function relationship for crack width wider than
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Figure 1.10: Diffusion coefficient vs. crack width for mortar deformed under bending load [Sahmaran, 2007].

Figure 1.11: Partition hypothesis of chloride diffusion through cracked discs [Djerbi et al., 2008]

(0.1mm) is expressed as:

Dcr =f(w).Da

f(w) =31.61[|u|]2 + 4.73[|u|] + 1, ([|u|] ≥ 0.1mm)

(1.19)

where Da the apparent chloride diffusion coefficient. Then, this equation had been

used to investigate the chloride behavior in cracked concrete.

Additionally, many studies reported that the growing effect of crack width

on chloride ingress is imperceptible or constant if the value of crack opening is lower

or upper a critical limits as stated in [Ismail et al., 2008, Djerbi et al., 2008, Jin

et al., 2010,Jang et al., 2011]. They showed that only over a threshold crack width

value, the diffusion coefficient starts to increase. The lower threshold width was
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Table 1.1: Upper and lower limits of effective crack widths. [Gu et al., 2015] [Jin et al., 2010]

Reference Lower limit (µm) Upper limit (µm)
(No effect of crack) (Dcr is constant)

[Rodriguez and Hooton, 2003] - 80-680
[Takewaka et al., 2003] <50 >100
[Sahmaran, 2007] <135 >135
[Ismail et al., 2008] <30 >200
[Djerbi et al., 2008] <30 >80
[Audenaert et al., 2009] - 100-200
[Jin et al., 2010] <30 >100
[Wang and Ueda, 2011a] 100 400
[Jang et al., 2011] <55-80 >55-80
[Savija et al., 2013] 21 55

estimated by [Djerbi et al., 2008, Ismail et al., 2008, Jin et al., 2010] as 30µm.

Şahmaran [Sahmaran, 2007] found that for a crack width higher than 135µm the

equivalent diffusion coefficient increases rapidly. However, the diffusion coefficient

is still constant and crack wall can be considered as a chloride exposure surface

once the crack width be greater than un upper value such as 200µm in [Ismail

et al., 2008], 80µm in [Djerbi et al., 2008] and 100µm in [Jin et al., 2010]. More

experimental results can be summarized in table 1.1.

The major difficulty facing the experimental investigation of the coupling is

the complexity of the experimental setup implementation, a lot of time is demanded

and the independent influences of certain parameters can not be identified. Hence,

the importance of numerical studies as realistic as possible.

Regarding the numerical simulation of this coupling, some studies are partic-

ularly relevant. In Jin et al. [Jin et al., ], the authors integrate the diffusion

coefficient through the crack obtained in Djerbi et al. [Djerbi et al., 2008] in their

numerical model of diffusion based on the Finite Element method. Jin et al. [Jin
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et al., ] compare their numerical results with the experimental ones of Ismail et

al. [Ismail et al., 2008]. Note that in the work of Jin et al. [Jin et al., ], only artificial

crack is considered.

Wang and Ueda [Wang and Ueda, 2011a] consider a lattice-type model (see

Grassl [Grassl, 2009] for details) as numerical model of diffusion. First Wang

and Ueda [Wang and Ueda, 2011a] performed the trial and error method to fit

in the experimental results of Ismail et al. [Ismail et al., 2008] again and find an

equivalent diffusion coefficient. Then Wang and Ueda [Wang and Ueda, 2011a]

consider a mesoscale lattice-type model with three phases (ITZ, aggregates, mortar)

in order to gauge the influence of the ITZ and the aggregates on the depth of

chloride penetration. The performance of this mesoscale model is assessed with

the experimental results of Rodriguez et al. [Rodriguez and Hooton, 2003]. Here

again in Wang and Ueda [Wang and Ueda, 2011a], only artificial crack is taken into

account.

In S̆avija et al. ( [Savija et al., 2013] and [Savija et al., 2014]), the authors

propose a numerical coupling between two models: for mechanical and diffusion

simulations respectively, the Delft lattice model (see [Schlangen, 1993] for details)

and the transport lattice model (see [Savija et al., 2013] for details). Contrary

to the prior numerical works, mechanical simulations are performed leading to

realisitic cracks. In S̆avija et al. [Savija et al., 2014], according to findings of Yoon

et al. [Yoon et al., 2007], the authors impose a chloride concentration only on

cracks wider than 12 µm obtained after the numerical simulation of a splitting

50



test. In S̆avija et al. [Savija et al., 2013], the authors assess their numerical model

with (1) the experimental results of Şahmaran [Sahmaran, 2007] and Ismail et

al. [Ismail et al., 2008] for cracked mortar samples by considering Dcr of Djerbi et

al. [Djerbi et al., 2008], (2) with the experimental results of Ismail et al. [Ismail

et al., 2004a] for cracked bricks samples – trial and error method to obtain the

equivalent diffusion coefficient – in the context of artificial cracks.

1.5 Numerical modelling of heterogeneity of ma-

terials

Yet, in many applications, macroscopic properties -such as effective diffusivity- are

only required as material constants in continuum theories. They can be gathered

from subscale properties of material. Although, many studies usually treat concrete

as a homogeneous material and estimate the diffusivity by fitting the experimental

measurements of chloride concentration to evaluate the apparent diffusivity or the

so-called “effective diffusion coefficient” neglecting the effects of individual phase

properties [Xiao et al., 2012]. Concrete as a construction material is composed

generally -at meso scale for instant- of three principal components: aggregate and

cement paste and the interfacial transition zone. Each of them has a relevant

properties concerning the mechanical and transport properties. Therefore, it is

more successful to consider the individual properties in numerical simulation for

better understanding of the mechanical and transport behavior of concrete as whole.

Other studies proposed multiphase analytical models to evaluate the effective
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diffusion coefficient considering the individual transport properties and their

volume fraction as in Hobbs [Hobbs, 1999] and S̆avija et al. [Savija et al., 2013].

In [Hobbs, 1999], the author has presented an equation to estimate diffusion

coefficient of concrete (Dc) as a function of diffusion coefficients of aggregate and

cement paste as well as the aggregate volume fraction such as:

Dc =
[(Da −Dp)Va + (Dp +Da)]Dp

[(Dp +Da) + (Dp −Da)Va]
(1.20)

where Da and Dp are the chloride diffusivity of aggregate and cement paste respec-

tively [Hobbs, 1999]. Va represents the aggregate volume fraction. S̆avija [Savija

et al., 2013] used a similar approach that developed by Caré and Harvé (2014) [Caré

and Hervé, 2004] to represent (Deff ) considering concrete as a three phases

composite (ITZ, aggregate and mortar) and assuming impermeable aggregate as:

Deff

Dm

=
N

D
(1.21)

where:

N = 6DM(1− CA)(CA + CI) + 2CI(DI −DM)(1 + 2CA + 2CI)

D = 3DM(2 + CA)(CA + CI) + 2CI(1− CA − CI)(DI −DM)

Here, DM , and DI are the diffusion coefficient of the mortar and the interface

phase, respectively. Also, CA and CI are volume fractions of the aggregate and the

interface phases, respectively.

Several authors have been suggested a discrete numerical methods using a

lattice-type model on the mesoscale level which has the advantage of a more
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precise representation of transport properties for each phase [Wang and Ueda,

2011a]. Wang and Ueda achieved a such mesoscale lattice-type model with three

phases(ITZ, mortar, aggregate) to estimate the influence of the ITZ and the

aggregate on the chloride penetration depth [Wang and Ueda, 2011a], as shown

in figure 1.12. In [Savija et al., 2013, Savija et al., 2014], the authors presented a

Figure 1.12: Construction of the lattice network model [Wang and Ueda, 2011a]

3D lattice model to predict chloride behavior in saturated and cracked concrete

considering the transport (or mechanical) properties represented in each element.

Here, the particle overlay procedure has been implemented to introduce the material

heterogeneity (see Fig. 1.13). A computer generated material or material structure

achieved by micro-CT scanning might be applied for this aim [Savija et al.,

2013, Savija et al., 2014]. However, regarding this numerical simulation literature,

the computation of macroscopic diffusivity tensors depending on its heterogeneous

aspect is rarely performed especially when the heterogenities include the cracking

state of concrete. From a civil engineering point of view, these macroscopic

tensors are crucial regarding durability and service-life problems of civil engineering

facilities. Therefore, it would be extremely helpful to predict the transport prop-
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Figure 1.13: Two-dimensional particle overlay procedure [Savija et al., 2013]

erties of concrete based on its mesostructure. This is the main objective of my thesis.

To my knowledge, only the work of Nilenius et al. [Nilenius et al., 2015] pro-

vides such macroscopic information. Nilenius et al. implemented the concept of a

statistical volume element (SVE) to generate a 3D model focusing on the mesoscale

of concrete with consideration of cement paste, aggregates and ITZ [Nilenius et al.,

2015].

1.6 Conclusion

In this chapter, a simple review of corrosion process of reinforcing bars of concrete,

its causes and evolution stages were introduced to understand its effect on concrete

deterioration and its service life. The chloride ingress is the main cause induce the

reinforcement corrosion, so we presented the different mechanisms controlling chlo-

ride ions movement through cement-based materials such as diffusion, migration,
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convection and the chloride binding effects.

The experimental and numerical mechanical-transport coupling works were

summarized and they show up the important and crucial role of cracks for increas-

ing the acceleration of chloride penetration by forming a privileged path favoring

the transport of chloride ions and consequently speed up the corrosion process.

Regarding this numerical simulation literature, it would be intensely useful to esti-

mate the transport properties of concrete at macroscale basing on its mesostructure.

As a result, a method is proposed here which has been found on an upscal-

ing process in order to provide macroscopic diffusivity tensors accounting for the

heterogeneous mesoscale structure of concrete with or without the contribution

of chloride binding, and then correlate to the crack pattern and to the crack

width values of numerically-induced cracks. In this context, important features

of the cracking process are taken into account in the macroscopic diffusivity: (1)

the evolution from diffuse cracks in the bulk to localized macro-crack(s), (2) the

tortuosity of the crack pattern and (3) the induced-anisotropy.

In the following chapter, we will present the Finite Element formulation for

the numerical modelling of chloride ions diffusion accounting for the different trans-

port governing mechanisms as well as the chloride binding capacity in meso-scale

concrete.
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Chapter 2

Finite Element Modeling for

Chloride Ions Transport Problem

in Cement-Based Material

2.1 Introduction

Recently, a number of researches have been conducted on the modeling of ion

transport mechanisms in concrete, Specifically in the case of chlorides, provided its

effect on the corrosion of reinforcements mainly in marine environments or as a

consequence of using salts as the deicing agent on bridges and roads.

The developed models take into account the material’s parameters, environmen-

tal conditions and also regard to the different phenomenon that govern transport

process like: diffusion, migration, capillarity suction and chloride binding. Various

approaches have been used to model such process regarding the complexity of
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the transport mechanisms associated and material variation. One of the most

commonly used method is the Finite Element Method.

In this chapter, we present the FE formulation for the numerical modelling of

chloride ions diffusion accounting for different governing mechanism in meso-scale

concrete. A review of chloride ions transport equations is briefly presented in

section (2.2) to recall the governing equations used in the proposed numerical model.

The basic concepts of the FE method are used in section (2.3) to carry out a one

dimensional solution of a transport problem to better understanding the formulation

and the implementation of the FE solution code. Concrete is considered as a

homogeneous material and diffusion is associated with some of other mechanisms

such as migration and chloride binding.

While, in section (2.4) of this chapter, we turn to the Embedded Finite Element

Method (E-FEM) in order to take into account the heterogeneity of concrete at

the meso-scale where concrete is represented as aggregates embedded into a mortar

matrix. We investigate through 1D simulations the influence of the microstructure

properties and the chloride binding capacity on the chloride concentration profiles.

Comparison with analytic solutions are performed to show the accuracy of the

proposed numerical models. We show that taking explicitly into account the diffu-

sion coefficients of the microstructure and the chloride binding capacity are impor-

tant to consider for a better prediction of the time span until corrosion initiation.

57



2.2 Review of chloride ions transport equations

As it is mentioned in chapter one, different mechanisms can control the chloride ions

transport into concrete such as diffusion, permeation, migration and convection (or

capillary suction) according to the surrounding conditions. The primary mechanism

governing ions transport system in saturated porous media is diffusion which occurs

due to a difference in concentration between the two sides of the material. Its

mathematical expression are developed from the mass balance, energy conservation

and constitutive equations where the concentration is the key variable.

In this case and neglecting any other transport mechanism, Ficks second law is

obtained such as (see chapter one):

∂c

∂t
= D

∂2c

∂x2
(2.1)

However, in the case of ionic species -due to the own electric charge or due to

an external electrical field- the diffusion is governed by another mechanism and

accordingly a different expression. The second modified Fick’s law Eq. (2.2) is

applicable for the molecular transport of each ionic species involved in the pore

solution within the porous material in a one-dimensional fully saturated material

[Rubinstein, 1990,Nilsson et al., 1996] such as:

∂c

∂t
= D

∂2c

∂x2
− V D

∂c

∂x
(2.2)

Further, if there is a physical or chemical interaction between chloride ions and the

solid hydrates, D in Eq.(2.1) may be replaced by the effective diffusion coefficient

58



[
D/(1 + ∂cb

∂cf
)
]
which represent the binding capacity. cb is the concentration of

bounded chloride ions and cf is the concentration of free chloride ions. The relation

between the bound and free chloride concentration can be mathematically described

as ”binding isotherm”. Three well-known isotherms are used:

Linear isotherm: cb = αcf

Langmuir isotherm: cb =
αLcf
1+βcf

Freundlich isotherm: αF cf
βF

where α and β are experimentally founded parameters depending on the

composition and properties of concrete. Although the chloride binding is not an

instantaneous process and should take into account other factors such as PH of the

solution and temperature, the binding rate is assumed to be instantaneous and has

a perfect reversible equilibrium between free and bound chloride as in [Barbarulo

et al., 2000].

2.3 Modeling of transport equation in homoge-

neous medium

It is evident that it does not exist an analytical solution to predict the exact data

of chloride distribution when considering concrete as a multiphase domain or by

achieving a three-dimensional simulation due to the variety of boundary conditions
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and material properties. Then, the best way to get approximate distribution is

still the numerical methods like Finite Element formulation. The main goal in this

section is to solve the pre-mentioned transport partial differential equations through

Finite Element method to predict the chloride concentration c in time t and space C.

The mathematical models concerning chloride ions transport in concrete-like

materials which were presented in the previous section introduce general types of

differential equations depending on the mechanism that governs ions movement. In

saturated state of concrete, the transport can be controlled by diffusion associated

with chloride binding isotherm expressed by the second Fick’s law or diffusion

coupled by migration expressed by the modified Fick’s second law.

However, although the intended characteristic of materials in this PhD thesis

is to consider concrete as heterogeneous and cracked medium, it is important to

show the Finite Element formulation for the simplest case assuming that concrete is

homogeneous and sound (not cracked) material. This is owing to the need for under-

standing the Finite Element code FEAP with which solutions have been obtained,

and also for achieving some model verifications with analytical solutions.

2.3.1 FEM formulation for the governing equations

As a general form, Eq. (2.2) is solved hereafter in order to get the concentration

of chloride in time and space. Herein, the variational formulation of the relevant

equations is derived. The boundary conditions assign the concentration c at the

60



Dirichlet boundary and flux Jc at the Neumann boundary:

c = co on Γc (2.3)

Jc = −D
∂c

∂x
on Γq (2.4)

For a one-dimensional bar element, Γc corresponds to x = 0 and Γq to x = L.

The effect of diffusion, migration and nonlinear binding isotherm can be assem-

bled in one equation to get a general finite element formulation. Then one gets:

div(Jc) +
∂c

∂t
+ V D

∂c

∂x
+

∂cb
∂t

= 0 (2.5)

where cb is the bounded chloride and Langmuir isotherm are chosen to define the

relation between cf and cb.

2.3.2 Weak form of the problem

The last equation of chloride ions transport (2.5) is the strong form of the problem.

In order to get the weak form, we choose a test function called w in the space C

such as:

c = {w(x) : Ω → ℜ|w ∈ H1, w = 0 on Γc}

∫
Ω

w(div(Jc) +
∂c

∂t
+ V

∂c

∂x
+

∂cb
∂t

)dΩ = 0 (2.6)

Expanding the former equation to get:

∫
Ω

w[−D
∂2c

∂x2
]dΩ +

∫
Ω

w[
∂c

∂t
]dΩ + V

∫
Ω

w
∂c

∂x
dΩ +

∫
Ω

w
∂cb
∂t

dΩ = 0 (2.7)
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By performing an integration by parts on the firs left side, the second-order derivative

are replaced by first-order terms:

[−wD
∂c

∂x
]S +D

∫
Ω

∂w

∂x

∂c

∂x
dΩ+

∫
Ω

w[
∂C

∂t
]dΩ+V

∫
Ω

w
∂c

∂x
dΩ+

∫
Ω

w
∂cb
∂t

dΩ = 0 (2.8)

Here, S in the first term denotes the element boundary such as S = Γc

∪
Γq where

ω = 0 on Γq has been used, then:

[−wD
∂c

∂x
]Γc +D

∫
Ω

∂w

∂x

∂c

∂x
dΩ+

∫
Ω

w[
∂c

∂t
]dΩ+V

∫
Ω

w
∂c

∂x
dΩ+

∫
Ω

w
∂cb
∂t

dΩ = 0 (2.9)

Also,

q = −D
∂c

∂x
on Γc (2.10)

then,

D

∫
Ω

∂w

∂x

∂c

∂x
dΩ +

∫
Ω

w[
∂c

∂t
]dΩ + V

∫
Ω

w
∂c

∂x
dΩ +

∫
Γc

wqds+

∫
Ω

w
∂cb
∂t

dΩ = 0 (2.11)

2.3.3 Spatial discretization of the problem

The next step is to discretize the domain Γ with an assemble of finite elements e.

The unknown variables are expressed in terms of the nodal interpolation function

N , also known as shape function, and the nodal unknown vectors.

c = N ch

ω = N ωh
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where,

N = [N1;N2]

cT = [c1; c2]
T

for a two-nodes one-dimensional bar element. According to the consistent formu-

lation, the element nodal values of ∂c/∂t are expressed with vector {ċ} and the

variation of ∂c/∂t throughout the element can similarly be expressed as:

∂c/∂t = N {ċ}

Introducing these expressions (i.e. c, ċ and ω) into the weak form equation (2.11),

one gets:

ωh,T

{∫
Ω

NTDNdΩ c+

∫
Ω

BTDBdΩċ+ V

∫
Ω

NTBdΩc+

∫
Γq

NT qdS +

∫
Ω

NT ∂cb
∂t

dΩ

}
= 0

(2.12)

The above equation can be expressed in matrix form as:

Kch +Mċh +Hch +

∫
Γq

NT qdS +

∫
Ω

NT ∂cb
∂t

dΩ = 0 (2.13)

where,

K =

∫
Ω

NTDNdΩ the diffusion matrix

M =

∫
Ω

BTDBdΩ the mass matrix
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H = V

∫
Ω

NTBdΩ the convection matrix.

Note that we have:

NT = [1− x/l; x/l]T

BT = [−1/l; 1/l]T

B is a vector contains the derivatives of the shape functions for bar element of two

nodes N1 and N2 (see Fig. (2.1)).

Figure 2.1: Shape functions N1 (left) and N2 (right)

Introducing these functions into the problem (2.13), one get:

K =
AD

l

 1 −1

−1 1

 (2.14)

M =
Al

6

2 1

1 2

 (2.15)

H =
V AD

2

−1 1

−1 1

 (2.16)

where A the area of the element. We define the external and internal forces as
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follows:

f ext =

∫
Γq

NT qdS

f int = Kch +Mċh +Hch +

∫
Ω

NT ∂cb
∂t

dΩ

(2.17)

The goal is to minimize the residual R1 at each time step t:

R1(c) = f ext − f int

2.3.4 Discretization in time of problem

The time-dependent differential terms in Eq. (2.11) have to be discretized in time

by applying the finite difference method as:

(•) = (•)|n+1 − (•)|n
∆t

=
∆(•)
∆t

Kch +M∆(ch)

∆t
+Hch +

∫
Γq

NT qdS +

∫
Ω

NT ∂cb
∂t

dΩ = 0

Here, the last temporal variation term of chloride binding where the Langmuir non-

linear isotherm has been used as:

cb =
αLNcf

1 + βNcf
, and

∂cb
∂t

=
chb |n+1 − chb |n

∆t
=

∆(chb )

∆t
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then,

Kch +
M
∆t

∆ch +Hch +

∫
Ω

NT ∆(chb )

∆t
dΩ +

∫
Γq

NT qdS = 0

2.3.5 Linearization of the problem

In order to solve the resulting nonlinear equation, it is necessary to accomplish a

consistent linearization to obtain a linear system. We will now linearize discrete

weak form Eq. (2.13) with respect to the value of chloride ions concentration c by

carrying out k iterations at each time step n until achieving the convergence of the

problem.

Let R1 be an equilibrium equation that depends on Xi variables, the linearization

of R1 with respect to Xi is:

L
[
R1|k+1

n+1

]
≃ R1|kn+1 +

∂R1

∂Xi

|kn+1.∆Xi|k+1
n+1 = 0 (2.18)

R1|kn+1 =

[
Kch +

M
∆t

∆ch +Hch +

∫
Ω

NT ∆(chb )

∆t
dΩ +

∫
Γq

NT qdS

]∣∣∣∣∣
k

n+1

(2.19)

∆chb =


= chb |kn+1 − chb |n

=
αLNchf |

k
n+1

1+βNchf |
k
n+1

− αLNchf |n
1+βNchf |n

(2.20)

also,

∂cb
∂cf

∣∣∣∣k
n+1

=
αLN

(1 + βNchf |kn+1)
2
, according to the quotient rule
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then,

K|kn+1∆c|k+1
n+1+

M
∆t

|kn+1∆c|k+1
n+1+H|kn+1∆c|k+1

n+1+

∫
Ω

NT

∆t

(
∂cb
∂cf

∣∣∣∣k
n+1

− ∂cb
∂cf

∣∣∣∣
n

)
∆c|k+1

n+1dΩ

(2.21)

⇒

K|kn+1∆c|k+1
n+1 +

M
∆t

|kn+1∆c|k+1
n+1 +H|kn+1∆c|k+1

n+1 +

∫
Ω

NT

∆t

αLN

(1 + βNchf |kn+1)
2
∆c|k+1

n+1dΩ

(2.22)

⇒

K|kn+1∆c|k+1
n+1 +

M
∆t

|kn+1∆c|k+1
n+1 +H|kn+1∆c|k+1

n+1 +

∫
Ω

NT .N

∆t

αLdΩ

(1 + βNchf |kn+1)
2
∆c|k+1

n+1

(2.23)

Considering ML is equal to
∫
Ω

NT .N
∆t

αL.dΩ
(1+βNchf |

k
n+1)

2 , the last equation will be:

[
K +

M
∆t

+
ML

∆t
+H

]
∆c|k+1

n+1 = −∂R1

∂ci
|kn+1 (2.24)

To numerically evaluate these terms, two gauss points are applied to each ele-

ment, and numerical integration is implemented. In this way, the transformation of

global coordinate xi to local coordinate (ζi) has been used considering the Gauss-

Legender formula (with their corresponding weight Wi at points of numerical in-

tegration). Once ∆c is known and converged for a given (k) called (kcv), we can

update the values for the time step n+ 1 to find the values of c:

cn+1 = cn +∆c(kcv)
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The next section will be the opportunity to validate the numerical model behavior

by comparing model output to corresponding output obtained from the analytical

solution.

2.3.6 Numerical results and validation of model

Implementation of the finite element code has been performed using a user

subroutine through a computer analysis system FEAP [Taylor, 2008]. The model

is validated here using the exact solution of one-dimensional transient chloride

transport problem. As shown previously, Eq. (2.5) is considered as a general

representation of transport problem in saturated concrete-like materials to describe

three phenomena: diffusion, migration and chloride binding. Therefore, it is

important to use the analytical solution corresponding to each transport equation

that contains one or more phenomenon like diffusion with/without migration or

chloride binding as mentioned in chapter one.

In order to illustrate the performance of our model, a simple numerical example

considering a homogeneous bar of 100 mm long and 1 mm2 area is simulated as a

one-dimension flow problem. For a semi-infinite medium, the boundary and initial

conditions are: 
c = c0 for x = x0 and t > 0

c = 0 for x > 0 and t = 0

(2.25)

The closed-solution of the problem governed only by diffusion can be obtained
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-as defined in chapter one-:

c(x, t) = c0

(
1− erf

(
x

2
√
Dt

))
(2.26)

where erf() is the standard error function.

The above equation and the other exact solution -used here- are valid only when

the coefficient of diffusion D and the surface chloride concentration c0 are assumed

to be constant (except when considering chloride binding effect). Moreover, if mi-

gration is considered to provoke chloride ions transport in addition to diffusion

mechanism, the next exact solution is used to compare the numerical results such

as:

c(x, t) =
c0
2

(
eV xerfc

(
x+ V Dt

2
√
Dt

)
+ erfc

(
x− V Dt

2
√
Dt

))
(2.27)

for a semi-infinite medium (cf. chapter one), where erfc is the complementary error

function defined as:

erfc(x) = 1− erf(x)

Additionally, if the contribution of chloride binding is regarded, a comparison

with modified Crank’s solution of Fick’s law is implemented in two steps. Firstly, by

calculating the profile of chloride concentration without binding contribution and

using the nonlinear Langmuir isotherm next to modify the coefficient of diffusion as

in Eq. (2.28).

DL =
Dc

1 + αL

[1+βLC(x,t)]2

(2.28)
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where DL is the modified diffusion coefficient computed at each node.

After that, the solution is updated at each node to find the free chloride concen-

tration cf using the updated values of diffusion coefficient as in Eq. (2.29).

c(x, t) = c0

(
1− erf

(
x

2
√
DLt

))
(2.29)

To examine the numerical model, a bar of 100 mm is discretized with 100 two-

node elements. Diffusion coefficient Dc, electrostatic potential gradient E and tem-

perature T are summarized in Table (2.1) as used in [Savija et al., 2014].

Dc (m
2/s) E (V.m−1) T (K) αL βL

2.78× 10−11 1000 293 1.67 4.08

Table 2.1: Values for the numerical simulations : chloride diffusion with chloride binding.

Values of Langmuir isotherm constants αL and βL were taken according to regres-

sion analysis of the experimental data of [Sergi et al., 1992a], as shown in Table (2.1).

A chloride surface concentration c0 equals to 10−2kg.m−3 is imposed at x = 0 at

the left end of the bar. Figure 2.2 plots the resulting chloride concentration profiles

of finite element solution and exact solution of Eq. (2.1). It is notable that the finite

element simulation results compare very well with analytical solution.

Figures (2.3) and (2.4) also compare the numerical results with the analytical

solution for Eq. (2.2) considering diffusion, migration and chloride binding . These

figures exhibit good agreement between numerical results and results from their

suitable analytic solution again.
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Figure 2.2: Finite element result and analytical solution considering diffusion
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Figure 2.3: Finite element result and analytical solution considering diffusion and migration

2.4 Modeling of transport equation considering

heterogeneous characteristics of concrete

One of the objectives of this chapter is to present a numerical model capable of

integrating material’s variation with the physical phenomena at the mesoscale which

plays a significant role in the behavior of concrete.
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Figure 2.4: Finite element result and analytical solution considering diffusion, migration and nonlinear isotherm

For this reason, we follow a special kinematic enhancement leading to finite

strain jump (discontinuity) at the interface in a typical truss element with different

diffusion properties which denominated as ”Weak discontinuity” [Benkemoun et al.,

2012]. Therefore, certain elements are found to be split into two parts each with

different material properties (see Fig. (2.5)).

Figure 2.5: Bar element split into two parts

The Embedded Finite Element Method (E-FEM, [Armero and Garikipati,

1996, Oliver, 1996, Borja, 2000, Benkemoun et al., 2010]) will be used here after

to retain all the advantages of the finite element approach (applicability to dif-

ferent constitutive laws, robustness, compatibility with homogenization techniques,

...) while considerably easing the meshing step of physical discontinuities such as

material interfaces.
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2.4.1 Governing equation : diffusion accounting for chloride

binding

For a saturated concrete where diffusion process controls transport mechanism of

chloride ions and taking into account the chloride binding capacity, the governing

equation of chloride diffusion can be described as:

∂ct
∂t

+∇ · (Jcf ) = 0 (2.30)

where ct = cf + cb is the total chloride concentration [mol.m−3], representing the

sum of free chloride concentration cf and bound chloride concentration cb. JCf

[J.m−2.s−1] is the flux accounting for chloride ions transport by diffusion. It is such

as :

Jcf = −D∇(cf ) (2.31)

where D is the diffusion coefficient [m2.s−1].

Substituting ct = cf + cb and Eq. (2.31) in Eq. (2.30) yield :

∂cf
∂t

+
∂cb
∂t

−∇ · (D∇(cf )) = 0 (2.32)

Assuming a one dimensional problem through each lattice element, Eq. (2.32)

becomes :

∂cf
∂t

+
∂cb
∂t

−D
∂2cf
∂x2

= 0 (2.33)

where D is assumed to be constant.
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In this work, the Langmuir isotherm model is used to demonstrate the practica-

bility of the Embedded Finite Element method for chloride ions diffusion modeling

with binding isotherm.

Consequently, ∂cb
∂t

can be written such as :

∂cb
∂t

=
∂cb
∂cf

∂cf
∂t

, (2.34)

2.4.2 Embedded Finite Element formulation

The discrete form of Eq. (2.33) is obtained by employing the Galerkin approxima-

tion. This approximation leads to (cf. [Benkemoun et al., 2017a]):

∫
Ω

δcf
∂cf
∂t

dΩ +

∫
Ω

δcf
∂cb
∂t

dΩ +

∫
Ω

∂δcf
∂x

D
∂cf
∂x

dΩ−
∫
∂ΩJcf

δcf J̄cfd∂Ω = 0 (2.35)

where δcf is the virtual free chloride concentration in the space C such as C =

{δcf (x) : Ω 7→ R | δcf ∈ H1, δcf = 0on ∂Ωcf}. We note ∂Ωcf the part of the

boundary where the free chloride concentration is imposed and ∂ΩJcf
where the

flux J̄cf is imposed.

As it is earlier stated in section (2.4) for the finite elements that split into two

parts Ω⊖ and Ω⊕, each part having different diffusivity properties, D⊖, α⊖
L , β

⊖
L and

D⊕, α⊕
L , β

⊕
L . We note D⊖/⊕, α

⊖/⊕
L , β

⊖/⊕
L the diffusivity coefficient and the chloride

binding parameters in Ω⊖/⊕.
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In order to take into account this material interface in these elements, the finite

element space is enriched through a weak discontinuity, located at the interface

of both materials. As performed in [Ibrahimbegovic and Wilson, 1991a] this weak

discontinuity is introduced in the kinematics of both the real and virtual free chloride

concentration fields such as cf and δcf are:

cf = c̄f︸︷︷︸
regular

+ ¯̄cf︸︷︷︸
enriched

(2.36)

δcf = δc̄f︸︷︷︸
regular

+ δ¯̄cf︸︷︷︸
enriched

(2.37)

As in [Simo and Rifai, 1990], we refer to ¯̄cf and δ¯̄cf as the enriched parts of the

free chloride concentration fields. The notation (¯̄•) refers to an enrichment based

upon a weak discontinuity.

Having the form of cf and δcf , we now turn to the discretization of these fields

such as [Benkemoun et al., 2015]:

cf = Nc̄hf +M⊕/⊖¯̄chf (2.38)

δcf = Nδc̄hf +M⊕/⊖δ¯̄chf (2.39)

whereN is a row vector containing the classical shape functions for a bar element. c̄hf

and δc̄hf are column vector containing the real and virtual free chloride concentration

nodal unknowns respectively. The mathematical form of M⊕/⊖ represents a scalar
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function. Fig. (2.6) plots M⊕/⊖ in the 1D case knowing that le the length of the

element and θle the position of the jump of the diffusivity properties. The form of

N and M⊕/⊖ are known as:

NT = [1− x/l; x/l]T

M⊖ = −x/(θl), if x ∈ [0, θl]

M⊕ = x/(l(1− θ))− 1/(1− θ), if x ∈ [θl, l]

Note that the function M⊕/⊖ is also selected in [Moës et al., 2003] for the X-

FEM. They prove that the choice of this function gives convergence rate very close

to the optimal finite element convergence.

b b
Ω⊖ Ω⊕

leθle

−1

M⊕/⊖

Figure 2.6: Enriched function M⊕/⊖ for a typical split element [Benkemoun et al., 2017a].

Including the pre-mentioned expressions 2.36 and 2.37 in Eq. (2.35), the deriva-

tives of cf and δcf in relation with x are needed. Considering Eq. (2.38) and (2.39),

the derivatives are such as :

∂cf
∂x

= Bc̄hf +G⊕/⊖¯̄chf (2.40)

∂δcf
∂x

= Bδc̄hf +G⊕/⊖δ¯̄chf (2.41)

where B is a row vector containing the classical shape functions derivatives for a
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bar element. Considering the form of M⊕/⊖ in Fig. (2.6), Fig. (2.7) plots G⊕/⊖ in

the 1D case knowing that le the length of the element and θle the position of the

jump of the diffusivity properties. G⊕/⊖ is a piecewise linear function over a typical

split element capturing the jump of the diffusivity properties in the gradient of the

free chloride concentration field. The form of B vector and G⊕/⊖ function is known

such as:

BT = [−1/l; 1/l]T

G⊕ = −1/(θl), if x ∈ [0, θl]

G⊖ = 1/l(1− θ), if x ∈ [θl, l]

b b
Ω⊖ Ω⊕

leθle− 1
θle

1
(1−θ)le

G⊕/⊖

Figure 2.7: Enriched function G⊕/⊖ for a typical split element [Benkemoun et al., 2017a].

By inserting Eq. (2.38), (2.39), (2.40) and (2.41) in (2.35) for any δc̄hf and δ¯̄chf ,

we obtain the following:


M ˙̄chf + P ˙̄̄chf +Kc̄hf + F ¯̄chf +

∫
Ω
NT ∂cb

∂t
= f ext

PT ˙̄chf + L ˙̄̄chf + FT c̄hf +H¯̄chf +
∫
Ω
M⊕/⊖ ∂cb

∂t
= 0

(2.42)

where (•̇) represents time derivatives and where the flux J̄cf is applied only on the

regular part of the free chloride concentration field.

We note
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M =

∫
Ω

NTNdΩ, P =

∫
Ω

NTM⊕/⊖dΩ (2.43)

K =

∫
Ω

BTDBdΩ, F =

∫
Ω

BTDG⊕/⊖dΩ (2.44)

L =

∫
Ω

M⊕/⊖M⊕/⊖dΩ, H =

∫
Ω

G⊕/⊖DG⊕/⊖dΩ (2.45)

f ext =

∫
∂ΩJcf

NT J̄cfd∂Ω (2.46)

where M,P ,K,F ,L and H are directly integrated to obtain:

M =
Aele

6

 2 1

1 2



P =
Aele

6

 (θ − 2)

−(θ + 1)



K =
Ae(D⊖θ +D⊕(1− θ))

le

 1 −1

−1 1



F =
Ae(D⊖ −D⊕)

le

 1

−1



L =
Aele

3
(2.47)

H = Ae[
D⊖

θle
+

D⊕

(1− θ)le
] (2.48)

We note Ae the section of a bar element.
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In Eq. (2.42), ∂cb
∂t

is expressed as in Eq. (2.34) where ∂cb
∂cf

represents the chloride

binding capacity. By considering the Langmuir isotherm model in Eq. (2.34), ∂cb
∂cf

can be rewritten such as:

∂cb
∂cf

=
αL

(1 + βLcf )2
. (2.49)

Now, considering Eq. (2.34) with Eq. (2.49), the system (2.42) becomes :


M ˙̄chf + P ˙̄̄chf +Kc̄hf + F ¯̄chf +ML(cf ) ˙̄c

h
f + PL(cf ) ˙̄̄c

h
f = f ext

PT ˙̄chf + L ˙̄̄chf + FT c̄hf +H¯̄chf + PL
T (cf ) ˙̄c

h
f + LL(cf ) ˙̄̄c

h
f = 0

(2.50)

We note

ML(cf ) =

∫
Ω

NT αL

(1 + βLcf )2
NdΩ, PL(cf ) =

∫
Ω

NT αL

(1 + βLcf )2
M⊕/⊖dΩ

(2.51)

LL(cf ) =

∫
Ω

M⊕/⊖ αL

(1 + βLcf )2
M⊕/⊖dΩ (2.52)

The terms in ML(cf ), PL(cf ) and LL(cf ) are evaluated using the numerical

integration at the Gauss points of each sub-domain Ω⊖ and Ω⊕. For instanceML(cf )

is computed through the technology of isoparametric FE such as :

ML(cf ) ≃ NT (ξ⊕)
α⊕
L

(1 + β⊕
L cf (ξ

⊕))2
N(ξ⊕)j⊕w⊕+NT (ξ⊖)

α⊖
L

(1 + β⊖
L cf (ξ

⊖))2
N (ξ⊖)j⊖w⊖

(2.53)

where ξ⊕(⊖), j⊕(⊖) and w⊕(⊖) are respectively the position of the Gauss points, the

determinant of the Jacobian and the weight in Ω⊕(⊖). We aslo note that different

values for αL and βL can be considered in Ω⊕ and Ω⊖.
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
f

int,(k)
n+1 = [M

∆t
+

ML(cf )

∆t
]
(k)
n+1∆c̄hf |

(k)
n+1 +Kc̄hf |

(k)
n+1 + [ P

∆t
+

PL(cf )

∆t
]
(k)
n+1∆¯̄chf |

(k)
n+1 + F ¯̄chf |

(k)
n+1

h
(k)
n+1 = [P

T

∆t
+

PL
T (cf )

∆t
]
(k)
n+1∆c̄hf |

(k)
n+1 + FT c̄hf |

(k)
n+1 + [ L

∆t
+

LL(cf )

∆t
]
(k)
n+1∆¯̄chf |

(k)
n+1 +H¯̄chf |

(k)
n+1

(2.54)

In the transient equation (2.54), the Newmark time integration scheme has been

considered for time dependent terms.

2.4.3 Linearization of the problem

Although several schemes are possible, here we consider obtaining the incremental

updates of the dependent variables ∆c̄hf |
(k+1)
n+1 and ∆¯̄chf |

(k+1)
n+1 by linearizing f

int,(k)
n+1

and h
(k)
n+1 about the current state, defined by c̄hf |

(k)
n+1 and ¯̄chf |

(k+1)
n+1 as in [Benkemoun

et al., 2017a].

By using equation (2.18), the linearization of system (2.54) leads to :


−R1

(k)
n+1 = [M

∆t
+K +

ML(cf )

∆t
]
(k)
n+1∆c̄hf |

(k+1)
n+1 + [ P

∆t
+ F +

PL(cf )

∆t
]
(k)
n+1∆¯̄chf |

(k+1)
n+1

−R2
(k)
n+1 = [P

T

∆t
+ FT +

PL
T (cf )

∆t
]
(k)
n+1∆c̄hf |

(k+1)
n+1 + [ L

∆t
+H +

LL(cf )

∆t
]
(k)
n+1∆¯̄chf |

(k+1)
n+1

(2.55)

System (2.55) represents the system to be solved in terms of ∆c̄hf |
(k+1)
n+1 and

∆¯̄chf |
(k+1)
n+1 . Hereafter, we present the numerical solving strategy for the resolution of

(2.55).
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2.4.4 Global solution strategy

Consider (•)|(k)n+1 is presumed to be the value of the variable (•) at the k−th iteration

of an incremental time step [tn; tn+1]. The numerical solution strategy is attempted

such as(cf. [Benkemoun et al., 2017a]):

i) Expressing the incremental variable ∆¯̄chf |
(k+1)
n+1 as a function of ∆c̄hf |

(k+1)
n+1 by

using the second part of system (2.55) such as:

∆¯̄chf |
(k+1)
n+1 = −R2

(k)
n+1

[
[
L
∆t

+H +
LL(cf )

∆t
]
(k)
n+1

]−1

−
[
[
L
∆t

+H +
LL(cf )

∆t
]
(k)
n+1

]−1

[
PT

∆t
+ FT +

PL
T (cf )

∆t
]
(k)
n+1∆c̄hf |

(k+1)
n+1 (2.56)

ii) Combining (2.56) with the second part of system (2.55), ∆c̄hf |
(k+1)
n+1 is obtained

as the solution of:

[
[
M
∆t

+K +
ML(cf )

∆t
]
(k)
n+1 − [

P
∆t

+ F +
PL(cf )

∆t
]
(k)
n+1

[
[
L
∆t

+H +
LL(cf )

∆t
]
(k)
n+1

]−1

[
PT

∆t
+ FT +

PL
T (cf )

∆t
]
(k)
n+1

]
∆c̄hf |

(k+1)
n+1

= −R1
(k)
n+1 + [

P
∆t

+ F +
PL(cf )

∆t
]
(k)
n+1 R2

(k)
n+1

[
[
L
∆t

+H +
LL(cf )

∆t
]
(k)
n+1

]−1

(2.57)

iii) System (2.57) can be written in a compact form such as :

K̂
(k)
n+1∆c̄hf |

(k+1)
n+1 = F̂

(k)
n+1 (2.58)
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where

K̂
(k)
n+1 =

[
[
M
∆t

+K +
ML(cf )

∆t
]
(k)
n+1 − [

P
∆t

+ F +
PL(cf )

∆t
]
(k)
n+1

[
[
L
∆t

+H +
LL(cf )

∆t
]
(k)
n+1

]−1

[
PT

∆t
+ FT +

PL
T (cf )

∆t
]
(k)
n+1

]
(2.59)

and

F̂
(k)
n+1 = −[f

int,(k)
n+1 − f ext

n+1] + [
P
∆t

+ F +
PL(cf )

∆t
]
(k)
n+1h

(k)
n+1

[
[
L
∆t

+H +
LL(cf )

∆t
]
(k)
n+1

]−1

(2.60)

iv) Once ∆c̄hf |
(k+1)
n+1 is known, ∆¯̄chf |

(k+1)
n+1 is computed through (2.56).

v) Check convergence, when those values have converged for a given (k) called

(kcv), then (•)|(kcv)n+1 is the solution and we can update the values for the time step

n+ 1:

c̄hf |n+1 = c̄hf |n +∆c̄hf |
(kcv)
n+1 (2.61)

¯̄chf |n+1 = ¯̄chf |n +∆¯̄chf |
(kcv)
n+1 (2.62)

2.4.5 Numerical simulations for 1D case and comparison

with analytical solutions

Here we show numerical simulations which investigate the accuracy of the Embed-

ded Finite Element method for the numerical modeling of chloride ions diffusion

in a two-phase material accounting for chloride binding capacity. As first step, the

case without chloride binding is also studied.
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For one-dimensional simulations and semi-infinite two-phase domain, we consider

a bar of length 200 mm and area 1 mm2 for all the simulations. This bar is split into

two sub-domains Ω⊖ and Ω⊕ at x = 28.5 mm and is discretized with 200 two-node

bar element elements connected in series and aligned in the x-direction. The finite

element discretization is illustrated in Fig. (2.8).

b b
Ω⊖ Ω⊕

b bb b b b b b b b b b

Split element at x = 28.5 mm

x = 200 mmx = 0 mm

Figure 2.8: FE discretization with Ω⊖, Ω⊕ and the split element for the numerical simulations. Note that the
number of finite element is not respected [Benkemoun et al., 2017a].

2.4.6 Chloride diffusion without chloride binding

For a case of chloride diffusion without chloride binding, a chloride surface concen-

tration c0 equals to 10−2g/mm3 is imposed at x = 0 at the left side of the bar. The

diffusion coefficient D⊖ of Ω⊖ and D⊕ of Ω⊕ are such that their ratios (D⊖/D⊕)

vary as 5,10 and 100.

The finite element results are compared with results obtained from the analytical

solution proposed for a two-phase semi-infinite domain (see [Lewis et al., 2004] for

instance). The concentrations c⊖f (x, t) in Ω⊖ and c⊕f (x, t) in Ω⊕ are known such as:

c⊖f (x, t) = c0

∞∑
n=0

τn

(
erfc

(2n+ 1)le + x

2
√
(D⊖t)

− τ erfc
(2n+ 1)le − x

2
√
(D⊖t)

)
(2.63)

and

c⊕f (x, t) =
2kc0
k + 1

∞∑
n=0

τnerfc
(2n+ 1)le + kx

2
√

(D⊖t)
(2.64)
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where

k = (
D⊖

D⊕ )
0.5 and τ =

1− k

1 + k
.

Fig. (2.9(a), 2.9(b), 2.9(c)) plot the analytical solution for Ω⊖ and Ω⊕ versus

numerical results (E-FEM) for D⊖

D⊕ equals to 5, 10 and 100, respectively and for t =

50, 100, 500, 1000 and 10000 days. For the computation, we choose n = 10. We

observe a good agreement between the analytical solution and numerical simulations,

notably at x = 28.5 mm where the jump in the diffusion coefficient is located. Note

that for t = 10000 days, we have not superimposed the analytical solution Eq. (2.63

and 2.64) because for this value of t the hypothesis of a semi-infinite medium is no

longer right.

2.4.7 Chloride diffusion with chloride binding

To take the chloride binding capacity in consideration, the values of αL and βL are

considered as indicated by [Sergi et al., 1992b]. A chloride surface concentration c0

is imposed at x = 0 and for t > 0 at the left side of the bar. The ratios D⊖/D⊕

vary as 1,5,10 and 100.

c0 (g/mm3) D⊖/D⊕ (−) chloride binding αL βL

10−2 {1, 5, 10, 100} yes 1.67 4.08

Table 2.2: Values for the numerical simulations : chloride diffusion with chloride binding.

Fig. (2.10, 2.11(a), 2.11(b) and 2.11(c)) plot the numerical simulation results

versus the analytical solution for D⊖

D⊕ = 1,5, 10 and 100, respectively and for t = 50,

100, 500, 1000 and 10000 days. For the case D⊖

D⊕ = 1, D = D⊖ = D⊕, the analytical

solution is built from Crank’s solution Eq. (2.26) with a modified diffusion coefficient
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Figure 2.9: Numerical results (E-FEM) versus exact solution for t = 50, 100, 500, 1000 and 10000 days (no chloride
binding)
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DL accounting for the isotherm is:

cf (x, t) = c0

(
1− erf

(
x

2
√
DLt

))
, (2.65)

where DL is

DL =
D

1 + αL

[1+βLc(x,t)]2

(2.66)

c(x, t) is the typical Crank’s solution with a constant diffusion coefficient D and the

Langmuir isotherm is chosen here. Again, a good agreement is observed between

the numerical simulation results and the analytical solution outputs (2.65). As in

previous case, note that for t = 10000 days, we have not superimposed the analytical

solution Eq. (2.65).
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Figure 2.10: Numerical results versus analytical solution for D⊖

D⊕ = 1 and t = 50, 100, 500, 1000 and 10000 days

(chloride binding)

For the ratios D⊖

D⊕ = 5, 10 and 100, the analytical solution is obtained using Eq.

(2.63) and (2.64) with a modified coefficient D⊖
L in Ω⊖ and D⊕

L in Ω⊕ such as

c⊖L(x, t) = c0

∞∑
n=0

τn

(
erfc

(2n+ 1)le + x

2
√
(D⊖

L t)
− τ erfc

(2n+ 1)le − x

2
√
(D⊖

L t)

)
(2.67)
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and

c⊕L(x, t) =
2kc0
k + 1

∞∑
n=0

τnerfc
(2n+ 1)le + kx

2
√

(D⊖
L t)

(2.68)

where

k = (
D⊖

L

D⊕
L

)0.5 and τ =
1− k

1 + k

We note

D
⊖(⊕)
L =

D⊖(⊕)

1 +
α
⊖(⊕)
L

[1+β
⊖(⊕)
L c

⊖(⊕)
f (x,t)]2

(2.69)

Fig. (2.11(a), 2.11(b) and 2.11(c)) show a good agreement between the numerical

simulation results (E-FEM) and the analytical solutions Eq. (2.67) and (2.68)).

Furthermore, in order to assess the role of chloride binding integration with

chloride diffusion properties, a comparison between the concentration profiles with

chloride binding (“cb”) and without chloride binding (“ncb”) has been done. Fig.

(2.12(a), 2.12(b) and 2.12(c)) show the concentration profiles for D⊖

D⊕ = 5, 10 and

100 and t = 100, 500, 1000 and 10000 days with and without chloride binding. We

note that the amount of free-chlorides (chlorides in solution) that are responsible for

reinforcement corrosion is less important when chloride binding is considered. This

conclusion is similarly figured out in [Martin-Perez et al., 2000] throughout a one

dimensional finite difference model where both no isotherm and linear-non linear

isotherms relations are considered. Consequently for durability issues, it is relevant

to consider chloride binding for not overestimating the time span until corrosion

initiation and consequently for accurately estimating the service life of a structure.

87



0

2

4

6

8

10

0 50 100 150 200

C
h
lo
ri
d
e
co
n
ce
n
tr
at
io
n
c f

(×
10

−
3
g
/m

m
3
)

Depth from exposed surface x (mm)

E-FEM (50 d)
Exact solution (50 d)

E-FEM (100 d)
Exact solution (100 d)

E-FEM (500 d)
Exact solution (500 d)

E-FEM (1000 d)
Exact solution (1000 d)

E-FEM (10000 d)

(a) D⊖

D⊕ = 5

0

2

4

6

8

10

0 50 100 150 200

C
h
lo
ri
d
e
co
n
ce
n
tr
at
io
n
c f

(×
10

−
3
g
/m

m
3
)

Depth from exposed surface x (mm)

E-FEM (50 d)
Exact solution (50 d)

E-FEM (100 d)
Exact solution (100 d)

E-FEM (500 d)
Exact solution (500 d)

E-FEM (1000 d)
Exact solution (1000 d)

E-FEM (10000 d)

(b) D⊖

D⊕ = 10

0

2

4

6

8

10

0 50 100 150 200

C
h
lo
ri
d
e
co
n
ce
n
tr
at
io
n
c f

(×
10

−
3
g
/m

m
3
)

Depth from exposed surface x (mm)

E-FEM (50 d)
Exact solution (50 d)

E-FEM (100 d)
Exact solution (100 d)

E-FEM (500 d)
Exact solution (500 d)

E-FEM (1000 d)
Exact solution (1000 d)

E-FEM (10000 d)

(c) D⊖

D⊕ = 100

Figure 2.11: Numerical results (E-FEM) versus exact solution for t = 50, 100, 500, 1000 and 10000 days (chloride
binding)
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Figure 2.12: Influence of the chloride binding on the chloride concentration for t = 100, 500, 1000 and 10000 days
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2.4.8 Evaluation of the corrosion initiation time t◦

To examine the effect of chloride binding isotherm, we will plot the evolution of cf

in relation with time at x equals to 40 mm, corresponding to the concrete cover

dc. The initiation of corrosion begins when the concentration of chloride around the

reinforcement exceeds the threshold chloride concentration (Cth). When chloride

binding is not considered in calculation, Fig. (2.13) plots the evolution of cf in

relation with time t for different ratios D⊖

D⊕ . The parameters for the study are chosen

from [Liang et al., 2009] and are summarized in Table 2.3. The function f(t) for the

numerical results fitting is chosen such as [Benkemoun et al., 2017a]:

f(t) = A erfc(
B

tn
). (2.70)

where A, B and n are constant values depending on D⊖

D⊕ and erfc the complementary

error function. Fig. (2.13) shows that the corrosion initiation period t◦ equals to

210 days, 142 days and 76 days for D⊖

D⊕ = 5, 10 and 100, respectively.

cth/c0 (-) dc (mm) αL βL

0.32 40 1.67 4.08

Table 2.3: Parameters for the computation of the corrosion initiation time (from [Liang et al., 2009])

However, the evolution of corrosion initiation time t◦ in function of D⊖

D⊕ and the

chloride binding capacity is shown in Fig. (2.14(a), 2.14(b) and 2.14(c)). They show

the evolution of cf , with (“cb”) or without chloride binding (“ncb”), in relation

with time t. The parameters used in this case are chosen from [Liang et al., 2009]

and summarized in Table 2.3.

Fig. (2.14(a), 2.14(b) and 2.14(c)) show that the corrosion initiation period t◦
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Figure 2.13: Evolution of the concentration cf in relation with time t for different ratios D⊖

D⊕ with the corresponding
concentration threshold for t◦

equals to 556 days, 367 days and 198 days for D⊖

D⊕ = 5, 10 and 100, respectively.

The results are sum up in Table 2.4. We can observe that considering the chloride

binding capacity for the study of service life of concrete structures is relevant. It

removes chloride from the diffusion flux, thus retarding the time span until corrosion

initiation as it is illustrated in the numerical results.

D⊖/D⊕ (−) t◦ ncb (days) t◦ cb (days)
5 210 556
10 142 367
100 76 198

Table 2.4: Values for t◦ in relation with D⊖

D⊕ and the chloride binding capacity

2.5 Conclusion

In this chapter, a numerical FE solution of the mass transport problem considering

diffusivity (using Fick’s second law), migration (using Nernst-Planck equation) and

chloride binding (using nonlinear isotherm) is firstly presented by a classical finite

element method.
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Figure 2.14: Evolution of the concentration cf in relation with time t with the corresponding concentration
threshold t◦
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However, the meso-structure of concrete is considered as a mixture of heteroge-

neous materials with aggregates embedded in a mortar matrix .In order to take into

account these heterogeneities without any mesh adaptation. A weak discontinu-

ity is introduced into the strain field. The mathematical and numerical framework

of the E-FEM was presented as an effective method to account for the kinematic

enhancement.

Calibration of the finite element model with analytic solutions have been carried

out considering different transport mechanisms. The comparison was implemented

also for the two-phase element modeling of a simple diffusion problem accounting

for chloride binding. A good agreement between analytical solution and numerical

simulations has been observed in this comparison.

The evaluation of the time span until corrosion initiation is evaluated Knowing

the concentration profiles evolution for different time interval values. Then, it is

noted that t◦ is :

• retarded when chloride binding capacity effects are considered;

• accelerated when Dmatrix/Daggregate is increased.

Consequently, taking explicitly into account the microstructure diffusion coefficients

and the chloride binding effects are important to consider for a better prediction of

the time span until corrosion initiation.

In the next chapter, we turn to 3D simulations. A homogenization method

combined to the E-FEM will be used in order to:

• determine Representative Volume Element through numerical homogenization;
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• compute macroscopic diffusivity tensors accounting for the microstructure dif-

fusivity properties.
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Chapter 3

3D homogenization of chloride

transport in uncracked concrete

3.1 Introduction

It has currently been noticed that the strength-based design cannot ascertain

a reliable estimation of the service life of concrete structures. This means that

durability is a critical aspect in the rational design of concrete structures. The

chloride ion diffusion coefficient is the transport property that is considered as the

most important information on durability design and service life prediction [Wu

et al., 2016]. Note that in the design of dams and other large hydraulic structures,

permeability is also one of the most important transport properties affecting the

durability and serviceability of concrete structures [Li et al., 2016].

However, concrete has a complex mesostructure that contains inclusions embed-

ded in the mortar (or cement paste) as well as the ITZ between them. Transport
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properties are concequently thoroughly affected by the interrelating parameters

associated with the mesoscopic composition which is difficult to assess through

experimental procedures [Abyaneh et al., 2013]. Consequently, this complexity

makes it difficult to determine the realistic diffusivity of concrete. For this reason,

it would be essential to estimate the transport properties ofconcrete depending on

its mesostructure, using analytical or numerical models. While, classic analytical

models presented in literature generally involve predicting of transport properties

according to concrete mixture and cannot account for complex geometrical ar-

rangements and consequently unable to explain the complex transport behavior

of concrete. Some of these models like the Parallel model, the Series model, the

Maxwell-Eucken (ME) model and the Effective Medium Theory (EMT) model are

summarized in [Wang and Pan, 2008].

The reliability and efficiency of the recent numerical analysis tools made

it suitable to simulate the composite behavior of concrete at mesoscopic level.

Modeling chloride ions transport with a mesoscale model in the context of the

previously presented Embedded Finite Element Methods can be regarded as a

successful and alternative numerical approach for considering the microstructure in

the determination of transport properties.

In this chapter, the attention will be paid to the implementation of a homog-

enization method which is described later in this chapter and integrated to the

Embedded Finite Element Method.

The finite element formulation is built through a discrete (lattice) finite element
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model and the meso-structure is based on a two-phase 3D representation of

heterogeneous materials, such as concrete, where stiff aggregates are embedded into

a mortar matrix.

Herein, the suitable information of chloride ions transport and interactions be-

tween the different phases of the material at the meso-scale are used to homogenize

the behavior and to compute effective concrete transport properties.

The remainder of this chapter is organized as follows. The homogenization

method retained to compute effective diffusivity tensor at the macroscale is de-

scribed in Section 2. The suggested method of computation leads to an effective

diffusivity coefficient accounting for chloride binding even in steady-state conditions

is detailed in Section 3. In Section 4, computational homogenization is used to

determine effective diffusivity tensor in RVE containing microstructure embedded

through the E-FEM. Finally, the comparison with the result of Maxwell’s equation

is carried out regarding the case of no binding effect. Comparison with experimental

work is also performed to show the applicability of the proposed numerical approach

regarding the case of binding effect.

3.2 Governing equation and Embedded Finite El-

ement formulation

The homogenization method mentioned above is used to perform the numerical

simulations the calculation of macroscopic diffusivity tensors. To realize this

calculation, a steady-state condition is supposed to achieve a steady flux with no
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variation of chloride ions with time. Steady-state condition is considered here as a

relevant issue following the long term chloride exposure considerations in durability

problems.

However, if the chloride binding is considered in Fick’s Law, one gets:

∂ct
∂t

=
∂cf
∂t

+
∂cb
∂t

= De
∂2c

∂x2
(3.1)

Therefore, Fick’s second law of diffusion can not be used to obtain steady flux

taking into account the effect of chloride binding in the simulations. In order to

overcome this drawback, we used the study of Carrara et al [Carrara et al., 2016],

that leads to an effective diffusivity coefficient accounting for chloride binding even

in steady-state conditions.

3.2.1 Governing equation

To make it possible to to take into account chloride binding capacity when steady-

state conditions are assumed, we consider the total chloride ions concentration ct

instead of considering free chloride ions concentration cf as the problem variable.

Starting from

∂ct
∂t

−∇ · (D∇(cf )) = 0, (3.2)

we can now consider the relationship

∇(cf ) = ∇(ct − cb) = (1− ∂cb
∂ct

)∇(ct). (3.3)
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Equation (3.2) with Eq. (3.3) becomes:

∂ct
∂t

−∇ · ((1− ∂cb
∂ct

)D∇(ct)) = 0. (3.4)

As in [Carrara et al., 2016], we define µB(ct) such as

µB(ct) = (1− ∂cb
∂ct

) (3.5)

leading to the definition of an effective diffusivity coefficient Deff (ct) such as

Deff (ct) = (1− ∂cb
∂ct

)D. (3.6)

Consequently Eq. (3.4) becomes

∂ct
∂t

−∇ · (Deff (ct)∇(ct)) = 0. (3.7)

However, the amount of chloride ions bound cb expressed, in general, by isotherm

models as a function of cf instead of ct, i.e cb = cb(cf ). Hence, a little modification

has to be done for µB(ct) so that it can express the derivative of cb in function of cf

:

µB = (1− ∂cb
∂ct

) =
∂cf
∂ct

= [
∂(cb + cf )

∂cf
]−1 = (1 +

∂cb
∂cf

)−1 (3.8)

where now µB is a function of cf and the classical isotherm models can be used.
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Finally Eq. (3.7) becomes

∂ct
∂t

−∇ · (Deff (cf )∇(ct)) = 0, (3.9)

In conclusion, even if steady-state conditions are now considered the chloride

binding capacity is still accounted for in the governing equation through the effective

diffusivity tensor Deff (cf ) and the problem to be solved is:

∇ · (Deff (cf )∇(ct)) = 0. (3.10)

The consideration of chloride binding in steady state means that all the sites in

cementitious matrix which can bound the chloride are not saturated. This state is

called ”pseudo-steady” [Amiri et al., 1997].

3.2.1.1 Galerkin approximation

The Galerkin approximation of Eq. (3.9) leads to

∫
Ω

δct
∂ct
∂t

dΩ +

∫
Ω

∂δct
∂x

Deff (cf )
∂ct
∂x

dΩ−
∫
∂ΩJct

δctJ̄ctd∂Ω = 0, (3.11)

where δct is the virtual total chloride concentration in the space C such as C =

{δct(x) : Ω 7→ R | δct ∈ H1, δct = 0on ∂Ωct}. We note ∂Ωct the part of the boundary

where the total chloride concentration is imposed and ∂ΩJct
where the flux J̄ct is

imposed.
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3.2.1.2 Discretization of the total chloride concentration field

The discretization of ct and δct is made as in chapter 2 and referring to [Benkemoun

et al., 2015] leading to:

ct = Nc̄ht +M⊕/⊖¯̄cht , (3.12)

δct = Nδc̄ht +M⊕/⊖δ¯̄cht , (3.13)

and

∂ct
∂x

= Bc̄ht +G⊕/⊖¯̄cht , (3.14)

∂δct
∂x

= Bδc̄ht +G⊕/⊖δ¯̄cht . (3.15)

Considering Eq. (3.12), (3.13), (3.14), (3.15) and (3.11) for any δc̄ht and δ¯̄cht yield

:


M ˙̄cht + P ˙̄̄cht +K(cf )c̄

h
t + F(cf )¯̄c

h
t = f ext

PT ˙̄cht + L ˙̄̄cht + FT (cf )c̄
h
t +H(cf )¯̄c

h
t = 0

(3.16)

where (•̇) represents time derivatives and where the flux J̄cf is applied only on the

regular part of the total chloride concentration field. We note

M =

∫
Ω

NTNdΩ, P =

∫
Ω

NTM⊕/⊖dΩ (3.17)

K(cf ) =

∫
Ω

BTDeff (cf )BdΩ, F(cf ) =

∫
Ω

BTDeff (cf )G
⊕/⊖dΩ (3.18)
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L =

∫
Ω

M⊕/⊖M⊕/⊖dΩ, H(cf ) =

∫
Ω

G⊕/⊖Deff (cf )G
⊕/⊖dΩ (3.19)

f ext =

∫
∂ΩJct

NT J̄ctd∂Ω, (3.20)

and Deff (cf ) such as

Deff (cf ) =
D⊕/⊖

(1 + ( ∂cb
∂cf

)⊕/⊖)
(3.21)

The Langmuir isotherm model is considered in this step to represent the relation

( ∂cb
∂cf

) such as:

(
∂cb
∂cf

)⊕/⊖ =
α
⊕/⊖
L

(1 + β
⊕/⊖
L c

⊕/⊖
f )2

(3.22)

Finally Eq. (3.16) have to be coupled to

c
⊕/⊖
f + c

⊕/⊖
b (cf ) = c

⊕/⊖
t (3.23)

in order to compute c
⊕/⊖
f , then Deff (cf ) and consequently to update Eq. (3.16).

To conclude, on the basis of the work of [Carrara et al., 2016], we have suggested

a FE formulation based upon the E-FEM similar to that shown in chapter 2, in

order to take into account the chloride binding capacity in a two-phase material.

The key point being that both in steady-state and transient conditions the chloride

binding capacity is taken into account.
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3.3 Method of homogenization

Upscaling, or homogenization, can be identified as the procedure of substituting

some heterogeneous properties at fine scale like: meso, micro or nano scale, with

an equivalent homogeneous property at macro scale. For example, the assessed

macroscopic transport properties of concrete are supposed to be dependent on the

transport properties and content of aggregate in addition to the composition and

porosity of cement paste. So, it stands to reason that effective property value of

coarse-scale model varies according to the variation of sub-scale features.

Many homogenization techniques were derived to provide such properties. Some

authors predicted the homogenized chloride diffusivity of concrete as two or three-

phases material by taking into account the morphological characteristics and the

physical properties (like transport properties and volume fraction) of each phase

constituent material using analytical methods [Hobbs, 1999,Zheng and Zhou, 2008,

Savija et al., 2013], (see chapter one). This approach considers just one characteristic

of the respective constituent and the volume ratio of the heterogeneities, but neglects

the effect of other aspects.

Other works developed multiscale computational homogenization models where

they were used with success in mechanics and civil engineering domains. In general,

we can distinguish two main types of homogenization methods:

• The averaging technique of homogenization [Samson et al., 1999,Samson et al.,

2005].

• Periodic homogenization technique [Mchirgui et al., 2016,Bourbatache et al.,
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2012]

In this work, the spatial averages is used to compute macroscopic diffusivity

tensor by applying several calculations solved on a mesoscale level under well defined

boundary conditions [Pouya and Fouché, 2009,Jourdain et al., 2014a].

3.3.1 Mean gradient of concentration and mean flux

In this part, we only focus on transport by diffusion in fully saturated conditions.

The chloride ions transport model is governed by Fick’s Law :

q⃗(x⃗) = −Dm · ∇⃗c(x⃗) (3.24)

where q⃗(x⃗) is the mass flux [kg/(m2s)], Dm the mesoscale diffusion coefficient [m2/s],

∇⃗ the gradient operator [1/m] and c(x⃗) the mass concentration [kg/m3]. Inserting

Eq. (3.24) in the mass balance equation [Poulsen and Mejlbro, 2010] , Fick’s sec-

ond Law is obtained and considered as the problem to be solved in terms of mass

concentration field.

The macroscopic diffusivity for the domain Ω is defined by a positive-definite

symmetric tensor D which represents a direct link between the mean concentration

gradient G⃗ and the mean flux Q⃗ such as:

Q⃗ = −D · G⃗ (3.25)

Herein, the mean concentration gradient G⃗ [kg/m4] and the mean flux Q⃗ [kg/(m2s)]

within a domain Ω is defined as spatial averages of the scalars corresponding to the
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mesoscale by the following relationships:

G⃗ =
1

V

∫
Ω

∇⃗c(x⃗)dΩ, (3.26)

Q⃗ =
1

V

∫
Ω

q⃗(x⃗)dΩ, (3.27)

where V is the volume of Ω. We remind that q⃗ is Fick’s velocity at point x⃗ and

∇⃗c(x⃗) is the concentration gradient at this point such as the law of behavior on the

mesoscale (Fick’s Law) gives:

q⃗(x⃗) = −Dm · ∇⃗c(x⃗) (3.28)

where Dm is the mesoscale diffusion coefficient. In order to obtain a matrix which

can represent anisotropic diffusivity, the law of behavior on the fine scale must

be a function of the opening and the orientation of the cracks. The law we use

relates the coefficient of diffusion to the crack width obtained from the mechanical

model calculations. This consideration relies on the experimental results of [Djerbi

et al., 2008] which was presented in chapter one. Djerbi et al. provide the relation

between the diffusion coefficient through the crack Dcr and the crack width values

[|u|] according to their experimental results such as:


Dcr(m

2/s) = 1.8× 10−12, [|u|] < 30µm

Dcr(m
2/s) = 2× 10−11[|u|]− 4× 10−10, 30µm ≤ [|u|] ≤ 80µm

Dcr(m
2/s) = 14× 10−10, [|u|] > 80µm

(3.29)

where Dcr is nothing but the coefficient of diffusion at mesoscale Dm for cracked
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element.

We have to note that the cracking effect on the diffusion of chloride will be

studied in the next chapter.

Pouya et al. [Pouya and Courtois, 2002, Pouya and Fouché, 2009] proposed a

method to compute the macroscopic permeability tensor for hydraulic transport

problem (incompressible flow) in heterogeneous media. This method was developed

by Jourdan et al. [Jourdain et al., 2014a] for gas transport problem (compressible

flow) in cracked media such as concrete. The same method is adopted here to

calculate the macroscopic diffusivity tensor in heterogeneous cracked media. The

volumetric mean values of the flux Q⃗ and the concentration gradient G⃗ can be

computed from the boundary values of concentration and flux on ∂Ω. Green’s

theorem is used to obtain:

G⃗ =
1

V

∫
∂Ω

c(x⃗) n⃗(x⃗) dS, (3.30)

Q⃗ =
1

V

∫
∂Ω

(q⃗ · n⃗) x⃗ dS, (3.31)

n⃗ represents the outward unit vector from the surface S and dS the surface element

on ∂Ω. The last equations [3.30,3.31] define the spatial averages of the chloride

mesoscale flow and concentration on dΩ. They can provide a sequence of numerical

simulation to compute the macroscopic diffusivity tensor in the presence of cracks

and inclusions for any domain shape and any boundary conditions [Pouya and Cour-

tois, 2002].
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3.3.2 Boundary conditions: linear concentration

In the upscaling methods developed for such transport problems, two types of bound-

ary conditions are considered: (1) a permeameter boundary conditions where the

flux is imposed in one main direction and no fluxes are imposed in other direc-

tions [Bailly et al., 2009], (2) a linear pressure boundary conditions at the contour.

The linear boundary conditions is represented in Fig. (3.1) assuming a rectangular

shape in the two-dimensional case [Long et al., 1982]. By following the method

proposed in [Pouya and Courtois, 2002], a linear concentration condition is applied

on the contour as a Dirichlet-type (see Fig. (3.1)) boundary conditions such as:

c(x⃗) = A⃗ · x⃗+ c0, ∀x⃗ ∈ ∂Ω (3.32)

where A⃗ is a constant vector and c0 a constant scalar.

The development proposed in Pouya et al. [Pouya and Courtois, 2002] for hy-

draulic transport problem under the above-mentioned condition leads to the equality

G⃗ = A⃗. Consequently, equation 3.25 can be written as:

Q⃗ = −D · A⃗ (3.33)

This computational method provides a straightforward way for the numerical

computation of the macroscopic diffusivity tensor D. To compute the nine com-

ponents of the tensor D, the mean flux gradient Q⃗ is computed for three dis-

tinct directions of the vector A⃗. These directions are shown in Fig. (3.2) for a
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Figure 3.1: linear concentration boundary condition for a square domain [Pouya and Fouché, 2009].

100 × 100 × 100 mm3 domain: Fig. (3.2(a)) corresponds to X direction, Fig.

(3.2(b)) to the Y direction and Fig. (3.2(c)) to the Z direction of the domain.

(a) A⃗ in the X direction (b) A⃗ in the Y direction (c) A⃗ in the Z direction

Figure 3.2: Condition of linear concentration on the contour in the X, Y and Z directions [Benkemoun et al.,
2017b].

3.4 3D meso-scale simulations and analysis

3D mesostructures with random aggregates are set as numerical example of concrete

in this section. The aggregate particles range from 4 to 20 mm in computational
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with 20, 30 and 44 % of volumic fraction are embedded in a 100×100×100 mm3

computational cube as shown in Fig. 3.3. We note Dm the diffusivity in the mortar

matrix and Da the diffusivity in the aggregate particles.

(a) targeted volume fraction f ≈ 20 % (b) targeted volume fraction f ≈ 30 %

(c) targeted volume fraction f ≈ 45 %

Figure 3.3: 3D mesostructure of concrete generated by randomly placing aggregate particles ranging from 4 to 20
mm in a 100×100×100 mm3 computational cube. The element split into two parts are depicted in dark color and
the elements belonging to the aggregates in light grey. Note that the cement paste is not represented for sake of
clarity [Benkemoun et al., 2017a].
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3.4.1 Mesostructure and RVE determination

The aforementioned numerical homogenization method has been used for the nu-

merical determination of a Representative Volume Element(RVE) to estimate the

homogenized properties of heterogeneous materials like effective diffusivity tensors

D [Benkemoun et al., 2017a].

In this work, the RVE classical definition proposed in [Kanit et al., 2003] is

introduced. The RVE can be defined that for a given cement-based material, it is

large enough and contains a sufficient number of heterogeneities for the macroscopic

moduli to be independent of the boundary conditions [Sab, 1992]. In order to

numerically determine RVE, two convergence criteria proposed in [Li et al., 2016]

are regarded :

• The estimated properties of RVE are independent from realizations in which

aggregates particles are randomly placed. In other words, the CoV of diffusiv-

ity coefficients from these realizations achieves a given accuracy, ϵ1

• The RVE is large enough to be statistically representative of the overall con-

crete diffusivity such as :

ϵLs =

∣∣∣∣D(Ls)−Dt

Dt

∣∣∣∣ ≤ ϵ2 (3.34)

where D(Ls) is the diffusivity coefficient of the 3D concrete sample sized by Ls, Dt

is the overall diffusivity for the concrete and ϵ2 the given error.

Based on these criteria, numerical simulations on 3D samples sized by Ls are

carried out to determine RVE. Concerning the values of Ls for the simulations, we

refer to the work of [Abyaneh et al., 2013]. Indeed, it is stated in [Abyaneh et al.,
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2013] that a computational cube that is 2.5 times the size of the largest aggregate

can give representative results if a sufficient number of realizations are considered

and then the results averaged. In this sense, three sizes Ls for the computational

cube are regarded : 50 mm, 80 mm and 100 mm. Note that we assume a constant

number of nodes - 630000 - for the computational cubes leading to a typical element

size equals to 0.5 mm, 0.8 mm and 1.0 mm for 50×50×50 mm3, 80×80×80 mm3

and 100×100×100 mm3, respectively.

3.4.1.1 Numerical results and discussion

Table 3.2, 3.3 and 3.4 show the convergence criteria values computed from the

numerical simulations for Ls equals to 50 mm, 80 mm and 100 mm, respectively.

Table 3.1 sums up the values retained for the simulations and for the convergence

criteria.

number of realizations targeted volumic fraction (%) ϵ1 (from [Li et al., 2016]) ϵ2 (from [Li et al., 2016])

100 35.5 3.00 E-03 4.00 E-03

Table 3.1: Numerical values for the simulations and the convergence criteria

Diagonal components
numerical results

CoV ϵLs

Dxx/Dm 3.52 E-03 6.58 E-03
Dyy/Dm 3.32 E-03 8.89 E-03
Dzz/Dm 3.80 E-03 8.70 E-03

Table 3.2: Convergence criteria values for 50×50×50 mm3 with 35 % of volumic fraction. Typical element size
equals to 0.5 mm

A decreasing in the CoV of diffusion coefficient is observed when increasing

the sample size. It can be stressed that for Ls equals to 50 mm - limit size of

representativeness regarding the largest size of aggregates - the CoV of diffusivity

coefficients is close to (almost below) the given error ϵ1. Regarding the relative error
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Diagonal components
numerical results

CoV ϵLs

Dxx/Dm 1.93 E-03 9.98 E-03
Dyy/Dm 2.24 E-03 1.33 E-02
Dzz/Dm 2.04 E-03 1.41 E-02

Table 3.3: Convergence criteria values for 80×80×80 mm3 with 35 % of volumic fraction. Typical element size
equals to 0.8 mm

Diagonal components
numerical results

CoV ϵLs

Dxx/Dm 1.32 E-03 1.15 E-02
Dyy/Dm 1.50 E-03 1.52 E-02
Dzz/Dm 1.16 E-03 1.50 E-02

Table 3.4: Convergence criteria values for 100×100×100 mm3 with 35 % of volumic fraction. Typical element size
equals to 1.0 mm

ϵLs , we observe that (1) for Ls equals to 50 mm, ϵLs is not inferior to the given error

ϵ2 and (2) as the sample size increases, the values of ϵLs increase. These two issues

can be justified by the typical finite element size which is increased from 0.5 to 1

mm as the sample size increases. Consequently, the typical finite element size has

to be reduced below 0.5 mm to achieve a value below the given error ϵ2. Table 3.5

presents the convergence criteria values computed from the numerical simulations

for Ls equals to 50 mm with a typical element size now equals to 0.35 mm. Note

that we cannot unfortunately consider an element size below 0.35 mm to keep a

reasonable computational time. The relative error is now below the given error ϵ2.

Consequently, the 50×50×50 mm3 domain with a typical element size equals to 0.35

mm is considered as a RVE for the determination of diffusivity tensors.

Diagonal components
numerical results

CoV ϵLs

Dxx/Dm 2.72 E-03 1.90 E-03
Dyy/Dm 2.95 E-03 7.12 E-04
Dzz/Dm 2.82 E-03 1.18 E-03

Table 3.5: Convergence criteria values for 50×50×50 mm3 with 35 % of volumic fraction. Typical element size
equals to 0.35 mm
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3.4.2 Macroscopic diffusivity tensor computation

Herein, we show numerical results to examine the implementation of the homog-

enization method proposed in Section 3.3. The numerical results include both

diffusivity tensors with and without chloride binding effect. The symmetric and

positive-definiteness of the computed diffusivity tensors are proved hereafter. The

E-FEM model incorporated in the meso-macro approach is validated in both simula-

tion and experimental results. The comparison with the result of Maxwell’s equation

is carried out regarding the case of no binding effect. However, a comparison with

results obtained by experiments is done to check the numerical approach validity. A

sensitivity analysis is implemented to examine the effect of chloride binding isotherm

parameters on the computed diffusivity tensors.

3.4.3 Diffusivity tensor results

The numerical results of macroscopic diffusivity tensor is presented hereafter consid-

ering Da/Dm ratio as: 0.5, 1.0 and 2.0, where Da represents the aggregate diffusion

coefficient and Dm the mortar diffusion coefficient. The dimension of the numerical

sample is chosen according to the previously mentioned RVE as (50×50×50 mm3).

The volume fraction of inclusions equals to 35%. The components of diffusivity

tensor without accounting for chloride binding effect is presented such as:

D

Dm

=


0.793 −3.159× 10−4 5.351× 10−4

−3.160× 10−4 0.795 −5.256× 10−4

5.351× 10−4 −5.256× 10−4 0.795


Da/Dm=0.5
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D

Dm

=


0.992 1.566× 10−6 3.758× 10−6

1.558× 10−6 0.994 6.124× 10−8

3.772× 10−6 4.494× 10−8 0.992


Da/Dm=1.0

D

Dm

=


1.290 −6.427× 10−4 1.146× 10−3

−6.427× 10−4 1.291 −1.174× 10−3

1.146× 10−3 −1.174× 10−3 1.294


Da/Dm=2.0

To affirm the positive-definiteness of the tensor, we compute the eigenvalues.

The tensors eigenvalues set is positive such as: (0.793, 0.796, 0.795)Da/Dm=0.5,

(0.992, 0.992, 0.994)Da/Dm=1.0 and (1.290, 1.291, 1.295)Da/Dm=2.0.

In order to prove that the tensors are symmetric, we compute :

rF =
||A

D
||F

||S
D
||F

(3.35)

where || • ||F is the Frobenius norm, A
D

the anti-symmetric part of D and S
D

the

symmetric part of D [Benkemoun et al., 2017a]. The Frobenius norm can be defined

such as:

||Q||F =

√√√√ n∑
i=1

n∑
j=1

|Qij|2 (3.36)

where Q = {Qij} is a n× n matrix with real coefficients.

S
Q
is the symmetric part of Q such as:

S
Q
=

1

2
(Q+QT ) (3.37)
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And A
Q
the anti-symmetric part of Q such as:

A
Q
=

1

2
(Q−QT ) (3.38)

Table 3.6 shows the values of rF as a function of Da/Dm for both studied cases.

In this way, the prevailing role of D’s symmetric part can be figured out for the case

of no binding and less for case of binding contribution.

Da/Dm

0.5 1.0 2.0
rF (no binding) 5.14 E-08 9.43 E-09 0.00

Table 3.6: Values of rF as a function of Da/Dm

In addition, considering the fact that aggregate particles are placed randomly in

the computational cube, the tested mesostructures are expected to exhibit identical

diffusivity values along the three principal axes and can be represented as a single

scalar value, denoted as Ds. For a volume fraction of aggregates corresponding to

35.5 %, we choose Ds/Dm with a value of 0.795, 0.993 and 1.292 for Da/Dm equals

to 0.5, 1.0 and 2.0.

Furthermore, when the contribution of the effect of binding are considered, the

complete form of the three diffusivity tensors are:

D

Dm

=


0.603 2.367× 10−4 4.279× 10−4

4.609× 10−4 0.602 −5.582× 10−5

1.459× 10−4 −1.142× 10−4 0.603


Da/Dm=0.5
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D

Dm

=


0.782 −7.817× 10−4 1.068× 10−4

−1.657× 10−6 0.779 −3.817× 10−4

6.34× 10−4 −4.244× 10−4 0.782


Da/Dm=1.0

D

Dm

=


1.006 −3.169× 10−3 1.08× 10−3

−6.761× 10−4 0.999 −2.015× 10−3

3.082× 10−3 −2.744× 10−3 1.011


Da/Dm=2.0

The value of Ds obtained from the three diffusivity tensors which are com-

puted forDa/Dm equals to 0.5, 1.0 and 2.0 such as 0.603, 0.781 and 1.01 respectively.

For this case, the three tensors eigenvalues set is obtained

as: (0.604, 0.603, 0.601)Da/Dm=0.5, (0.783, 0.782, 0.779)Da/Dm=1.0 and

(1.013, 1.006, 0.999)Da/Dm=2.0. They are also positive and then the matrix is

proved to be positive-definite for both cases -with and without binding effect-.

However, symmetry of the tensors is not assured when the isotherm parameter β

is increased inducing a strong non-linearity. Table 3.7 shows the values of rF to

examine the symmetry of diffusion coefficient tensors corresponding to different

values of β. The increase of β would induce a strong non-linearities.

α = 1.67
β 0.0 0.1 1.0 4.08
rF 1.09 E-08 4.11 E-06 1.81 E-05 2.34 E-04

Table 3.7: Values of rF as a function of different values of β for Da/Dm equals to 0.5.
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We present the evolution of D’s diagonal components versus the ratio Da/Dm

in Fig. 3.4 for the case of no binding effect. While the evolution of D’s diagonal

components versus the ratio Da/Dm in Fig. 3.5 is ploted for the case of diffusion

with chloride binding effect. We observe that as Da/Dm increases, the diagonal

components also increase. Fig. 3.6 confirm the retarding effect of chloride binding

on macroscopic chloride diffusion coefficient.
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Figure 3.4: Evolution of D’s diagonal components versus the ratio Da/Dm without binding effect.
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Figure 3.5: Evolution of D’s diagonal components versus the ratio Da/Dm with binding effect.
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Figure 3.6: Evolution of D’s diagonal components versus the ratio Da/Dm with and without binding effect.

3.4.4 Comparison with Maxwell’s equation

In order to check the accuracy of the E-FEM for representing a two-phase mate-

rial at the meso-scale, Ds is compared with the Maxwell’s equation. This equa-

tion describes the macroscopic transport property of a binary composite containing

spherical inclusions such as :

Ds

Dm

=
2Dm +Da + 2Va(Da −Dm)

2Dm +Da − Va(Da −Dm)
(3.39)

where Ds is the single value representing the diffusivity along the three axes, Dm

is the diffusivity in the continuous phase (mortar matrix), Da the diffusivity in

the discrete phase (aggregate particles) and Va is the volume fraction of aggregate

particles.

Simulations are carried out on the RVE computed in the previous section. We

consider a volumic fraction of aggregate particles corresponding to 11.5, 25.5 and

35.5 %. Fig. 3.7 shows a good aggreement between the numerical results and

Maxwell’s analytical solution. The computed values tend to be smaller than those

of Maxwell’s analytical solution. However the error is quite acceptable, it is around
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Figure 3.7: Numerical results versus Maxwell’s analytical solution for several aggregates volume fraction.

1 %. This trend is also observed in [Abyaneh et al., 2016]. This comparison is

established for a meso-scale computation of diffusivity without binding effect. In

order to show the efficiency of the E-FEM even with binding effect, we compare in

the next section, numerical results with experimental work.

3.4.5 Discussion of model validation with experimental data

A comparison of results of the meso-macro numerical approach and experimental

findings is necessary to check the applicability of the numerical method. The com-

parison is carried out with the experimental work of Sleiman [Sleiman, 2008].

Four tests where established on four concrete samples (B15, B22,B4 and B30). The

concrete samples were ground to obtain grains of no more than 5mm. They found

that that Langmuir isotherm is well suited to their experimental results for the

four types of concrete. The average values of constant α and β were adjusted as a

function of the experimental results (Table 3.8).
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Concrete type
Isotherm parameters

α β
B15 2.35 E-03 1.2 E-03
B22 3.40 E-03 1.5 E-03
B4 4.20 E-03 1.5 E-03
B30 4.80 E-03 1.7 E-03

Table 3.8: Langmuir isotherm parameters for the 4 concretes [Sleiman, 2008].

For each type of concrete, a migration test was performed to obtain the coefficient

of diffusion as summarized in Table 3.9.

Concrete type B15 B22 B4 B30

Diffusion coefficient (m2/s) 8.91 E-12 5.20 E-12 2.46 E-12 1.0 E-12

Table 3.9: Diffusion coefficient measured by the migration test [Sleiman, 2008].

Recall that in numerical simulations, we need to represent the individual trans-

port property of aggregate and mortar. The aggregate is considered impermeable in

this work. However, in [Sleiman, 2008], the values of coefficient of diffusion of mortar

matrix phase are not given. We assume here a mortar matrix diffusion coefficient

ranges from 1 × 10−11 to 4 × 10−11 for concrete type B30 and B15, respectively, by

fitting the numerical macroscopic diffusion coefficient obtained with experimental

diffusion coefficient of concrete -B30 and B15- found in [Sleiman, 2008]. For the

other two types -B22 and B4-, mortar diffusion coefficient are estimated according

to the relevant compressive strength (see Fig. 3.8) since the chloride diffusion coeffi-

cient and concrete -and consequently mortar- strength are linearly related [Francois

and Arliguie, 1999] as shown in Table 3.10. Note that a diffusion coefficient value

of 2.34 × 10−11 m2/s for mortar after 30 days sodium chloride solution exposure is

used by [Sahmaran, 2007].

Table 3.11 shows that the numerical and experimental results are in accordance.

Moreover, a sensitivity analysis is necessary to investigate the impact of binding
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Concrete type B15 B22 B4 B30

Compressive Strength MPa 15.4 32 39 51
Dm (m2/s) 4.0 E-11 2.6 E-11 2 E-11 1.0 E-11

Table 3.10: Mortar diffusion coefficient.
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Figure 3.8: Diffusion coefficient of mortar for the four type of concrete B15, B22, B4 and B30.

Concrete type B15 B22 B4 B30

Concrete diffusion coefficient (Exp.) 8.91 E-12 5.20 E-12 2.46 E-12 1.0 E-12
Concrete diffusion coefficient (Num.) 8.28 E-12 4.75 E-12 2.70 E-12 1.18 E-12

Table 3.11: Mortar diffusion coefficient.

isotherm parameters α and β on the obtained chloride ions diffusion coefficients. It

is firstly supposed that α varies with a fixed β in order to investigate the effect of

α. Then we examine the effect of β by varying β and a constant α. The results are

shown in Fig. 3.9.

As expected, Ds varies with an increase of α and β. The diffusion coeffi-

cient Ds decreases with an increase in α for a given β. While, the increase in β

for a fixed α leads to an increase in the diffusion coefficient values. Note that the

isotherm parameters for concrete type B30 in [Sleiman, 2008] are used here.
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Figure 3.9: The effect of increasing of isotherm parameters α and β on computed diffusivity coefficient for Da/Dm

equals to 0.5.

3.5 Conclusion

In this chapter, the FE formulation relies on the Embedded Finite Element method

(E-FEM) which introduced in the previous chapter is combined with the homoge-

nization method retained in this chapter to:

• determine Representative Volume Element through numerical homogenization;

• compute macroscopic diffusivity tensors accounting for the microstructure dif-

fusivity properties and whose accuracy is good with respect to analytical or

experimental results.

Besides, it is mentioned in chapter 2 that taking into account the microstructure

diffusion coefficients and the chloride binding effects are important to consider

for a better prediction of the time span until corrosion initiation. Consequently,

the numerical implementation of the FE formulation suggested in section (3.2) is

addressed to take into account binding capacity effects in macroscopic diffusivity
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tensors in steady-state conditions.

Comparison with Maxwell’s equation and experimental work are performed to

show the accuracy of the proposed numerical approach. In next chapter, a meso-

macro numerical approach will be presented in order to determine of macroscopic

diffusivity tensors in heterogeneous quasi-brittle materials such as concrete with the

consideration of cracking.
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Chapter 4

Meso-macro approach for the

numerical modelling of

crack-induced diffusivity in

concrete: application to service

life estimation

4.1 Introduction

Regarding reinforced concrete civil engineering facilities, some corrosive external

agents – sea water and spray, deicing salt or even materials making up concrete (sand

or additives), – are susceptible to penetrate cement materials. The most corrosive

penetrating agents with regards to concrete are chloride ions. Once cover concrete

comes through, chloride ions may reach the reinforced course, erode the passive
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course, and corrode steel reinforcements when the threshold value is reached [Mehta

and Monteiro, 2006]. Consequently, due to deteriorated mechanical performances,

the structure durability and service life are affected [Benkemoun et al., 2017b]. In

the other hand, the presence of cracks (meso and/or macro) provides a preferential

path for the penetration of aggressive agents, accelerating in consequence the degra-

dation of the concrete matrix. Hence, numerical simulations are coupling chloride

ions transport and crack formation mechanisms in concrete is a crucial issue. The

objective of this chapter is to investigate a meso-macro approach allowing to predict

macroscopic diffusivity including the effect of crack-induced diffusivity at mesoscale.

Concerning the coupling, researchers link an equivalent diffusion coefficient De to

a crack width parameter as shown in chapter one. Herein, the relationship between

the crack width and the diffusion coefficient through the crackDcr which proposed in

Djerbi et al. [Djerbi et al., 2008] is adopted. In this chapter, the general spirit of the

present work is to model concrete at the mesoscale as an heterogeneous quasi-brittle

two-phase material based upon the previous work of Benkemoun et al. [Benkemoun

et al., 2010]. The main features of this work are presented in part 4.2.

In part 4.3 of this chapter, a meso-macro numerical example is presented to

carry out the computation of macroscopic crack-induced diffusivity tensors and also

to examine the capability of the approach. In the context of concrete-like materials,

both artificial and realistic crack-induced diffusivity are considered.

Finally in part 4.4, we turn to the performance of civil engineering facilities

through the investigation of service life prediction.
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4.2 Modeling of failure of quasi-brittle materials

Mechanical models suitable for studying concrete fracture can be presented, on meso-

or macroscopic scale, by two general families of numerical approaches: continuum

approaches and discreet approaches.

continuum models (or smeared approaches)

Several authors used the Continuum Damage Mechanics to simulate the initiation

and propagation of microcracks ( [Mazars and Pijaudier-Cabot, 1989]; [Oliver et al.,

1990], [Kachanov and Montagut, 1986]). Through some of these continuum models,

such as damage models, the degradation of the elastic properties of the material

have been described by proposing a scalar damage variable (d) through which crack

representation is taken into consideration, according to Mazars [Mazars, 1984].

As an aspect of the continuum mechanics, a macrocrack that triggers the appearance

of discontinuity in the displacement field even though the structure is regarded as

continuous.

Numerical methods, like Finite Element Method, allow to solve the model equa-

tions but require an extremely fine mesh size to take into account all heterogeneity

aspects, and therefore more time of calculation is required. Besides, these models

cannot reflect the variation of the properties of the concrete composites such as -for

example-: aggregate, cement paste and ITZ. Accordingly, these models neglect -in

general- the heterogeneities of concrete and thus it considered to be a homogenized

material.

This type of homogenization is unable to characterize the process of cracking in

its entirety, from the initiation of macroscopic cracks in the concrete to the propa-
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gation and coalescence of microcracks in addition to the inability to estimate crack

opening which play a crucial role. Furthermore, since there is a transition from a

state of homogeneous deformations to a state of localized deformations due to the

inclusion of strain-softening feature where the fineness of the spatial discretization

is required so as the localization band being narrower and narrower, classical Finite

Element analyses within a continuum mechanics approach are not able to describe

properly the localization of deformation which is of a significant importance and

act as a precursor of macro-cracks. Thus, they give mesh-dependent results and

required a fine resolution of the crack zone [Tejchman and Bobiński, 2012, Oliver

et al., 2002,Crisfield and Wills, 1988].

Other approaches called Discrete models (or cohesive approaches) are also

used. In these approaches, the failure of structural elements is considered to figure

out the nonlinear fracture process. So, the microckrack is represented by two surfaces

and assigned as fictitious crack using cohesive interface elements embedded into the

mesh.

However, the discrete approach suffers from some numerical problems concerning

the characteristic and localization of crack such as crack opening and orientation

since the crack discontinuities need to grow along the element edges. Also the fact

that the crack is restricted to comply with a predefined path along finite element

boundaries leads to unknown crack path a priori.

More disadvantage of these methods could be observed, that is a fine spatial

discretization is required to reproduce the complex cracks patterns leading to a high

computational costs. Nevertheless, neither of these approaches take into account

the fracture processes in detail at the structural level.
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So it was necessary to develop different numerical technique for the simulation

of cracking evolution at the mesoscale. At the mesoscale representation, where

the aggregate inclusions are embedded in the cement paste matrix, it is allowed

to represent the heterogeinities as well as the failure mechanism by introducing a

kinematical enhancements of the Finite Element interpolation.

The first enhancement, which already shown in previous chapter, is the weak

kinematic enhancement. It is adopted to consider the interfaces between the different

phases (sub-domains) included in the concrete composition at mesoscale level by

means of a non-adapted meshing strategy [Ortiz et al., 1987, Benkemoun et al.,

2010,Roubin et al., 2015b]. By using this strategy, a jump within the strain field is

introduced to model the contrast of property in the classical linear elements, leading

to the previously defined weak discontinuity across the interface incorporated

within an element of two different material properties (aggregate and cement matrix

for example).

Regarding the representation of crack initiation and propagation, many works

in literature seek to introduce Finite Element solutions (commonly indicated as

a localization limiter or regularization technique) to get over the problem of the

pathological sensitivity of the results to the mesh size due to the softening behav-

ior. Some of these works based on the local approach of continuum mechanics

such as the smeared crack approach [Hillerborg et al., 1976] or viscous regularized

model [Needleman, 1988]. One of their disadvantages is that it does not provide

the orientation of the cracks. Other works based on the non-local continuum ap-

proach to failure as it was introduced by [Pijaudier-Cabot and Ba v zant, 1987] or

gradient-enhanced models (explicit and implicit gradient models) [Peerlings et al.,
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2000]. These models exhibit some drawbacks such as the poor description of kine-

matic fields in the fracture process zone due to the dependency of the non-locality

on the distance between neighboring points [Giry et al., 2011].

Two decades ago, more stochastic methods developed to enhance the framework

of the standard local continuum model by introducing a strong discontinuity

kinematics where the crack is explicitly represented as a jump in the displacement

fields. This kinematic enhancement is applied within the context of Finite Element

formulation either on the nodes of the fractured elements (global) as in Extended

Finite Element (X-FEM) [Moës et al., 1999] , or on the Gauss points of the

fractured elements (local) as in Embedded Finite Element (E-FEM) [Ortiz et al.,

1987]. These methods allows to eliminate the use of a characteristic length that is

sometimes difficult to identify and represent explicitly crack patterns. According

to [Oliver et al., 2006], no obvious differences in results obtained from these two

methods (E-FEM and X-FEM). However, a problem associated with the use

of X-FEM approach is to increase the size of the stiffness matrix for each new

displacement jump inserted, beside the advantage of simple implementation and

the reasonable computational time of E-FEM make the authors in [Benkemoun

et al., 2010] use E-FEM to perform a numerical fracture model for a cement-like

quasi-brittle materials. The E-FEM model used in the above-mentioned work based

on a double kinematic enhancement introduced at the element level thanks to the

theory of incompatible modes [Ibrahimbegovic and Wilson, 1991b]:

A weak discontinuity [Ortiz et al., 1987] - continuous displacement field and

discontinuous strain field - permits to represent the behavior of heterogeneous

materials.
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A strong discontinuity [Simo et al., 1993] - discontinuous displacement field and

unbounded strain field - allows to represent explicitly the micro-cracks that may

occur in aggregates or matrix or also in the interface zone. It fulfills the major

requirements in terms of capability to provide accurate cracks pattern and cracks

opening coupled with material heterogeneity representation in an efficient and

mesh independent way. Therefore, many advantages pertaining to the use of this

numerical approach might be summarized as:

• Introducing of the non-adaptated meshing process.

• The nodes of its unique homogeneous mesh are placed independently from the

morphology of the aggregates.

• A significant amount of computation time is saved since the stiffness matrix

size and the total number of unknowns for the global system are identical to

the problem without kinematics enhancements.

• The micro-cracks are captured to produce at any of different phases (aggregate

or mortar matrix) or so at the interface (debonding).

• The ability to model softening behavior without remeshing is also ensured.

In the present work, we model concrete at the mesoscale as an heterogeneous

quasi-brittle two-phase material based upon the previous work of Benkemoun et al.

[Benkemoun et al., 2010](cf. [Benkemoun et al., 2017b]). A brief description of this

mechanical model will be presented hereafter and for further details on the method of

resolution, objectivity with respect to the mesh, its numerical implementation and a
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number of illustrative examples of the model predictive capabilities, see [Benkemoun

et al., 2010,Benkemoun et al., 2012].

4.2.1 Kinematics of weak and strong discontinuity

The first kind of kinematics enhancement (cf. Chapter 2) is introduced for the truss

element split into two parts, each having a different Young modulus to represent

material heterogeneity by means of weak discontinuity, (see Fig. (4.1)).

Figure 4.1: Split truss element with weak discontinuity and G1 function [Benkemoun et al., 2012]

Where G
¬/­
1 is a scalar function (first incompatible mode) represents the jump

in strain field as:

G
¬/­
1 =


G¬

1 = − 1
θℓ
, x ∈ [0, θℓ]

G­
1 = 1

(1−θ)ℓ
, x ∈ [θℓ, ℓ]

(4.1)

According to the ”Discrete Strong Discontinuity Approach” [Dias-da Costa et al.,

2009], the fracture surface can be simulated to capture the jump in displacement field

(strong discontinuity). Then, by the flexibility of the E-FEM and the Incompatible

Mode Method, the two-phase bar element was enriched by a second incompatible

mode G2 allowing to incorporate the cracking. The function G2 makes it possible to

capture the cracking either at the interface between phase ¬ and ­ if the element
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is split into two parts, or in one of the two phases if the element is not split into two

parts, (see Fig. (4.2)).

Figure 4.2: Split truss element with strong discontinuity and G2 function [Benkemoun et al., 2012]

The function G2 can be written as [Benkemoun et al., 2010]:

G2 = −1

ℓ
+ δΓ (4.2)

where θ in (Equations[4.1,4.2]) represent a non-dimensional function to position

the interface between the sub-domains of each split elements, and δΓ is the Dirac

generalized function placed at the interface.

The truss element will show two constitutive models: discrete one over the dis-

continuity, and elastic continuum model outside the displacement discontinuity. The

strong discontinuity is activated in element only when a chosen yield function turn

to have zero value, otherwise, the material behavior is still in elastic state. The yield

function can be written such as:

Φ = tΓ − (σu − q) (4.3)

q = σu

(
1− exp

(
−[|u|] σu

Gf

))
(4.4)
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where tΓ is the traction vector over the discontinuity, [|u|] is the crack width and q

is the stress like variable while the fracture energy Gf represents the area under the

tΓ versus [|u|] curve, see (Fig. (4.3(right)).

Figure 4.3: Elastic-quasi-brittle behavior outside the discontinuity (left), at the discontinuity [Benkemoun et al.,
2012]

.

The two enhanced functions G
¬/­
1 and G2 were used in the enhanced strain fields

ϵ̃1 and ϵ̃2 as well as the displacement gradient ∇su as a sum to introduce the total

strain field ϵ, such that:

ϵ = ∇su+ ϵ̃1 + ϵ̃2 (4.5)

The total strain is then written in the context of the EAS (Enhanced Assumed

Strain, [Simo and Rifai, 1990]) method for each phase as:

ϵ¬ = Bd+G¬
1 [|ϵ|] +G2[|u|], ϵ­ = Bd+G­

1 [|ϵ|] +G2[|u|] (4.6)

The strain field (Eq. 4.5) is then introduced in the Hu-Washizu variational

formulation [Ibrahimbegovic, 2009] leading to the Finite Element problem. This

Finite Element framework will be solved in terms of the displacement field d

and the enhanced interpolation parameters [|ϵ|] and [|u|] for the weak and strong

discontinuities, respectively. A local-global solving procedure coupled to a return

mapping algorithm [Simo and Hughes, 1997] is considered for the solving process.
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The crack width values which are computed at the end of each mechanical time step

for each finite element, are used to achieve fine coupling at the mesoscale for the

purpose of computation of macroscopic mass transport properties as in the next part.

In order to model the macroscopic diffusion properties of a cracked cement-based

material according to the former methods, the computation of the displacement

jump as the crack width [|u|] is computed firstly by means of the mechanical model

shown in part (4.2). The crack width values for each finite element obtained from

this model are then used as input data in the chloride ions transport problem

through Dm in Eq. 4.7. This leads to a weak coupling at the mesoscale with the

mechanical problem. The upscaling method which introduced in chapter Three is

then applied with the coefficient Dm in Eq. 4.7.

q⃗(x⃗) = −Dm · ∇⃗c(x⃗) (4.7)

Numerical examples will be presented in the next part to show two numer-

ical examples: one with an artificially cracked domain, and the other one with

mechanically-induced cracked domain.

4.3 Numerical simulation and discussion

We consider a 100 × 100 × 100 mm3 domain as a Representative Volume Element

(RVE) for representing concrete-like materials. The weak coupling procedure pre-

sented in the previous parts is used to compute the macroscopic diffusivity tensors

D. The discretization of the cubic domain is realized with 626315 nodes and element
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size equals to 1 mm (Fig. (4.4(a)). Remind that in the framework of this thesis,

we chose to work with a three-dimensional lattice model (Fig. (4.4(b))). For more

details about the three dimensional discretization method and convergence with re-

gard to mesh, the reader is refered to the Ph.D. thesis of Nathan Benkemoun (in

French) [Benkemoun, 2010].

(a) cubic domain with an un-
structured mesh : 626315 nodes

(b) Lattice finite element mesh

Figure 4.4: 3D diiscretization of cubic homogeneous domain.

4.3.1 Artificially cracked domain: case of of homogeneous

material

Several authors has used artificial cracks to assess the effect of crack width on diffu-

sion coefficient [Marsavina et al., 2009,Jin et al., 2010,Wang and Ueda, 2011a,Ishida

et al., 2009]. The artificial crack is a single, controllable and simple crack with a

constant width where no mechanical simulations are performed and no displacement

or forces are imposed. It can be represented by a plane created manually with known

position, orientation and width for each finite element existing in the intersecting

line of this plane. Herein, in order to create this artificial crack, we generate a plane

parametrized by the angle κ in between the second spatial axis Y and the normal to

the crack, ncrack. Whereas, any value of crack width [|u|] could be imposed, a range
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Figure 4.5: 100×100×100 mm cubic domain with κ equals to 0: the crack (colored in red) is in the plane Y = 50
mm.

of 0 to 500 µm is considered for this work.

To obtain the nine components of the macroscopic diffusivity tensor, the

cracking-transport coupling at the mesoscale is achieved for each value of crack

width, the upscaling method is applied.

4.3.1.1 Crack located in the horizontal plane

For a 100×100×100 mm3 cubic domain for the diffusion-governing problem only in

mortar matrix, i.e. with no aggregate embedded inside the matrix, and a horizontal

artificial crack located at Y = 50 mm as shown in Fig. (4.5), the numerical simu-

lations present the effects of crack width on the diffusivity tensor as shown in Fig.

(4.6) and (4.7).

These figures illustrate the diagonal and off-diagonal components of macroscopic

diffusivity tensor D as a function of the crack width [|u|].

It can be seen in Fig. (4.6) that the diagonal components of the macroscopic

diffusivity tensor exhibit an anisotropy behavior since the diagonal components

of D do not increase in value with the same magnitude. It is notable that

Dxx and Dzz, in this case, increase in value with the same magnitude since the
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macroscopic crack is positioned in the XZ plane. Whereas it is not the case for

Dyy, it remains invariant with respect to the value of the crack width, and has a

value approximately equal to the one in the sound state, 1.8 × 10−12 m2/s for this

numerical example. So, the diagonal components do not evolve in the same way.

These results are comparable, with good agreement, with the results of Nilenius

et al. [Nilenius et al., 2015]. It is important to state that the general behavior of

the diagonal components Dxx and Dzz of Fig. (4.6) is conditioned by the selected

coupling Eq. 4.8 at the mesoscale, such as:


Dcr(m

2/s) = 1.8× 10−12, [|u|] < 30µm

Dcr(m
2/s) = 2× 10−11[|u|]− 4× 10−10, 30µm ≤ [|u|] ≤ 80µm

Dcr(m
2/s) = 14× 10−10, [|u|] > 80µm

(4.8)

Therefore, the diffusivity increases rapidly in value after 30 µm value of crack

width.
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Figure 4.6: Diagonal components of D in relation with the crack width
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Fig. (4.7) plots the off-diagonal components of D. Physically speaking, these

terms correspond to crossed-interactions. For instance, Dxy is the value of D in

the X-direction when a gradient of concentration is applied in the Y -direction. Dxy

and Dzy have the same level of magnitude in terms of value whereas Dxz has higher

value. This result is consistent regarding the location of the crack, namely in the

X − Z plane.
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Figure 4.7: Off-diagonal components of D in relation with the crack width

According to the effective range of crack width that might alter the diffusivity

of cracked medium as stated by Djerbi et al. [Djerbi et al., 2008] of (30 to 80

µm), three values of [|u|] are considered as: 0, 30 and 90 µm to clarify if D is

symmetric and positive-denfinite or not. Hereafter, the results of D demonstrate

that it is symmetric with real coefficients so it is diagonalizable. Moreover, to say

that it is positive-definite, we have to prove that the eigenvalues are positive. The

set of eigenvalues for 0, 30 and 90 µm crack width are found to be all positive:

(1.77, 1.77, 1.77)0µm, (2.52, 1.81, 2.47)30µm and (6.79, 1.87, 6.37)30µm (note that we
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have skipped 10−12 m2/s), so D is positive-definite.

D0µm =


1.77 1.45× 10−5 −4.51× 10−6

1.45× 10−5 1.77 5.48× 10−6

−4.51× 10−6 5.45× 10−6 1.77

× 10−12m2/s

D30µm =


2.51 1.79× 10−3 −2.30× 10−2

1.79× 10−3 1.81 2.67× 10−3

−2.30× 10−2 2.67× 10−3 2.48

× 10−12m2/s

D90µm =


6.65 2.41× 10−3 −1.97× 10−1

2.41× 10−3 1.87 5.27× 10−3

−1.97× 10−1 5.27× 10−3 6.51

× 10−12m2/s

Besides, a comparison between eigenvalues of D0µm and of D30µm with the di-

agonal values of D0µm and of D30µm, and their identity generate a valuable con-

clusion that the off-diagonal terms of D0µm and D30µm are negligible (terms in

10−14 m2/s and 10−15 m2/s). However, for D90µm, this conclusion cannot hold. We

conclude that when the crack width increases, the macroscopic diffusivity will have

important value even in the off-diagonal components and attention must been payed

to the induced-anisotropy.
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4.3.1.2 Crack rotated at an angle k

To analyze the influence of macro-crack’s orientation (rather than its width value),

a perfect crack is parametrized by different values of k. Hence, for a crack width

[|u|] equals to 90µm, four values of k are studied: 20◦, 30◦, 60◦ and 90◦ as shown

in Fig. (4.8)

(a) k = 20◦ (b) k = 30◦ (c) k = 60◦ (d) k = 90◦

Figure 4.8: Position of the perfect crack in relation with k.

The results of the numerical computations give the diffusivity tensor D90µm

k
, its

eigenvalue λ90µm
k and the corresponding eigenvectors f 90µm

k for crack value equals to

90µm and different values of k. The same conclusion with the horizontal perfect

crack that the diffusivity tensor is symmetric and positive-definite is predicted here.

This assures a good agreement with the theoretical work of [Pouya and Courtois,

2002]. Moreover, the diffusivity behavior of diagonal components of the orthogonal

planes YX and ZX (i.e. Dyy and Dzz, respectively) is evolving reciprocally whenever

the angle k increases. Dyy increases while Dzz decreases towards the value of the

diffusion coefficient in the mortar matrix, 1.8×10−12 m2/s. This permutation occurs

around k equals to 45◦.

Concerning Dxx, we can note quasi-symmetric values for κ equals to

0◦ (6.65×10−12m2/s) and 90◦ (5.99×10−12m2/s) and for κ equals to 30◦

(9.15×10−12m2/s) and 60◦ (9.12×10−12m2/s) with higher values for κ equals to

30◦ and 60◦. These results can be explained by the evolution of the crack length
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value when rotation occurs: for κ equals to 0◦ and 90◦, the crack length value is

equal to 100 mm whereas for κ equals to 30◦ and 60◦, it is equal to 115.5 mm. In

addition, the higher the crack length value is, the higher the flux passing through

the crack is (the length of the crack on the other faces of the cube does not change)

and so the higher the value of Dxx is.

Furthermore, the anisotropy of the off-diagonal terms is shifted from the plane

XZ for k = 0◦ (Dxz,0◦ = −1.97× 10−13 m2/s) to the plane XY for k = 90◦ (Dxy,0◦ =

−2.04× 10−13 m2/s).

Also, the resulted values of eigenvectors f 90µm
k demonstrate an accordance with

the corresponding values of crack’s inclination angles k such as: 20.03◦ (for k = 20◦),

29.99◦ (for k = 30◦) and 60.12◦ (for k = 60◦).

Figure 4.9: Diagonal components of D in relation with the angle κ for [|u|] = 90 µm
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D90µm

20◦
=


8.21 7.76× 10−4 −6.19× 10−3

7.79× 10−4 2.25 1.14

−6.20× 10−3 1.14 4.96

× 10−12m2/s

λ90µm
20◦ =


8.21 0 0

0 5.38 0

0 0 1.83

× 10−12m2/s

f 90µm

20◦
=


1.00 0.00 0.00

0.00 0.34 0.94

0.00 0.94 −0.34



D90µm

30◦
=


9.15 4.02× 10−2 6.51× 10−2

4.02× 10−2 2.61 1.35

6.51× 10−2 1.35 4.17

× 10−12m2/s

λ90µm
30◦ =


9.15 0 0

0 4.95 0

0 0 1.83

× 10−12m2/s

f 90µm

30◦
=


−1.00 −0.02 0.00

−0.01 0.50 0.87

−0.02 0.87 −0.50


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D90µm

60◦
=


9.12 −1.22× 10−2 −9.24× 10−3

−1.22× 10−2 4.44 1.50

−9.25× 10−3 1.50 2.69

× 10−12m2/s

λ90µm
60◦ =


9.12 0 0

0 5.30 0

0 0 1.83

× 10−12m2/s

f 90µm

60◦
=


1.00 0.00 0.00

0.00 −0.87 −0.50

0.00 −0.50 0.87



D90µm

90◦
=


5.99 −2.04× 10−1 −1.95× 10−3

−2.04× 10−1 6.03 3.34× 10−3

−1.95× 10−3 3.34× 10−3 1.85

× 10−12m2/s

λ90µm
90◦ =


6.21 0 0

0 5.80 0

0 0 1.85

× 10−12m2/s

f 90µm

90◦
=


0.67 −0.74 0.00

−0.74 −0.67 0.00

0.00 0.00 1.00


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4.3.2 Two-phase mechanically-induced cracked domain

The artificial cracks were represented as parallel smooth walls. Until this point,

just this feature was considered in the numerical examples -presented previously- as

heterogeneity. However, it is obvious to note that artificial crack could not reflect

the reality, since real cracks are more tortuous and rough in addition to the existence

of embedded inclusions in cement past [Van Belleghem et al., 2016].

In this part of our study, the two heterogeneities are studied where both

mechanically-induced cracks and aggregate embedded into a mortar matrix are con-

sidered to produce the heterogeneity and then, assess the influence of the combined

heterogeneities at mesoscale on the macroscopic diffusivity tensor of concrete as a

whole. As a first step of this work, the implementation of mechanical computations

is performed as shown briefly in part (4.2) and detailed in [Benkemoun, 2010]. The

results of this stage will be presented in the forthcoming part as crack opening val-

ues [|u|]. Thereafter, the same simulation procedure - established in part (4.3.1)- is

followed to determine the macroscopic diffusivity tensor.

(a) Φ = 4 mm (b) Φ = 8 mm

Figure 4.10: 100×100×100 mm cubic domain with 35 % of spherical aggregates used for the numerical example.
The domain has 1878945 DOF for the mechanical problem and 626315 DOF for the diffusion problem.

144



4.3.2.1 Tensile test simulation

The domain of a cubic shape of 100 × 100 × 100 mm is again considered and dis-

cretized. Some differences are regarded here where the heterogeneity is composed,

firstly, of macro-cracks, and, secondly, of embedded inclusions in a mortar matrix.

Numerical mechanical computations are performed on cement-based composites con-

taining 35% spherical inclusions with two diameter sizes Φ: 4 and 16 mm as shown

in Fig. (4.10). The tensile test is simulated here to calculate the values of crack

widths. Fig. (4.10) shows two types of lattice elements, obviously, as a set with

the same elastic modulus and no strain discontinuity that laying in the mortar or

aggregate (colored in blue or white, respectively), and the other type is composed of

two materials (mortar and aggregate), simultaneously, that are split by a physical

interface and whose strain discontinuity is activated (colored in red).

Thus, a two-phase material and three mechanical property sets are considered at

the mesoscale, as in Table 4.1. The numerical simulation of the tensile test applied

to the cubic domain is carried out by applying longitudinal or axial displacement

along the second spatial axis Y . Fig. (4.11) and (4.12) show the crack evolution for

phase E (GPa) σu (MPa) Gf (J/m2)
mortar matrix 18 3 5
aggregates 127 elastic elastic
interfaces - 2 5

Table 4.1: Mesoscale material properties for the numerical simulations

Φ equals to 4 and 16 mm, respectively.

According to the mechanical elastic parameters of mortar, aggregates and inter-

face in Table 4.1, the aggregate is appear to be stiffer than the other components

and, consequently, the micro-crack is initiated around the aggregates in the inter-

face elements corresponding to a weak zone whenever the strong discontinuity is
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(a) Micro-crack initiation
around the aggregates

(b) Micro-crack coalescence
process

(c) Macro-crack formation

Figure 4.11: Crack pattern evolution and crack width values for the tensile test with Φ equals to 4 mm.

(a) Micro-crack initiation
around the aggregates

(b) Micro-crack coalescence
process

(c) Macro-crack formation

Figure 4.12: Crack pattern evolution and crack width values for the tensile test with Φ equals to 16 mm.
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Figure 4.13: Cut out in the domain showing the macro-crack path tortuosity for Φ equals to 4 (right) and 16 (left)
mm

activated(Fig. (4.11(a)) and (4.12(a))). The micro-cracks continue to grow with the

increase of macroscale strain to cause cracking coalescence process leading to macro-

cracks formation in the direction roughly orthogonal to the imposed displacement

and passing around the aggregates and until arriving failure criteria (Fig. (4.11(b),

4.12(b))) and (Fig. (4.11(c), 4.12(c))).

It is easy to draw some conclusions from these results (which have been validated

and discussed in [Benkemoun et al., 2010,Benkemoun, 2010,Benkemoun et al., 2012]

that no obvious effect of the difference of aggregate size on the maximum crack

opening values, otherwise, Fig. (4.11(c), 4.12(c) and 4.13) show that the macro-

crack pattern is more tortuous for an aggregate diameter equals to 16 mm and is

rotated around the X and Z axis.

Now, it is the appropriate occasion to use the obtained crack opening values in a

modified diffusivity-crack width relation to establish the transport-cracking coupling

at mesoscale and, then, obtain the macroscopic diffusivity tensor as in the following

part.
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4.3.2.2 Macroscopic diffusivity tensor computation

As it has been already mentioned, the concrete cubic domain is modeled as two-

phase material to represent the contrast of property in the classical linear elements.

For this reason, the experimental law (Eq. 4.8) of Djerbi et al. [Djerbi et al., 2008]

is slightly modified to account for a two-phase material such as:


Dcr(m

2/s) = θD1 + (1− θ)D2 [|u|] < 30µm

Dcr(m
2/s) = 2× 10−11[|u|]− 4× 10−10 30µm ≤ [|u|] ≤ 80µm

Dcr(m
2/s) = 14× 10−10 [|u|] > 80µm

(4.9)

where D1 and D2 are the diffusion coefficient in the mortar matrix and in the aggre-

gates, respectively, and θ is the spatial position of the interface in an element lays

in both mortar and aggregate as shown in Fig. (4.1). Note that when an element is

either in mortar or in aggregate, D1 is equal to D2 and still having the corresponding

mesoscopic diffusion property and the experimental original expression of Djerbi et

al. [Djerbi et al., 2008] is again employed.

The aggregate is set as relatively impermeable is considered in several numerical

works [Du et al., 2015, Savija et al., 2013, Sun et al., 2011], and has a diffusion

coefficient equals to D2 = D1/100. While, mortar diffusion coefficient value is D1 =

1.8 × 10−12m2/s, and accordingly, interface coefficient diffusion determined as in

Table 4.2.

phase Dm (m2/s)
mortar matrix Eq. (4.9): D1 = D2 = 1.8× 10−12

aggregates D2 = 1.8× 10−14

interfaces Eq. (4.9): D1 = 1.8× 10−12 and D2 = 1.8× 10−14

Table 4.2: Mesoscale material diffusion coefficient for the numerical simulations

Fig. (4.14) shows the diagonal components of the macroscopic diffusivity tensor
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as a function of the maximum crack width. These components have been computed

from the upscaling procedure performed from the mesoscale transport-cracking cou-

pling for the last time step corresponding to a maximum crack opening equals to 0.52

mm for Φ equals to 4 mm and 0.53 mm for Φ equals to 16 mm. By looking again

to Fig. (4.12(a)), we can understand the slight increase in the values of the diagonal

components of the macroscopic diffusivity tensor that appears in Fig. (4.14). This

slight increase comes from the initiation of micro-cracks around the stiff aggregate

at early stage of crack formation for a maximum crack width ranging from 0 to 0.25

mm.

One more region can be observed regarding this plot starting from a threshold

value around 0.25 mm where the mechanical simulations have exhibited the peak in

the stress versus strain curve and micro-crack coalescence process leads to a macro-

crack (see Fig. ( 4.11(b) and 4.12(b))). As shown in Fig. (4.14), a significant

increase in the values of the diagonal components of the macroscopic diffusivity

tensor is observed. As a conclusion, we see that the macroscopic diffusivity tensor

integrates the evolution from diffuse cracks to localized crack. Such feature comes

as a by-product result of the meso-macro analysis.

The analysis is also applied to assess the effects of aggregate size on diffusivity.

Taking another look to Fig. (4.14) conducts us to conclude that rising of aggregate

size used from 4 to 16 mm leads to an increase of 8 %, 16.4 % and 4.7 % between

Dxx,4mm and Dxx,16mm, Dyy,4mm and Dyy,16mm, Dzz,4mm and Dzz,16mm, respectively.

The longer and more tortuous crack path for Φ equals to 16 mm is the reason of

the increase in the diagonal components values obtained as clearly observed in 4.13.

This tortuosity leads to a rotation of the macro-crack around the X and Z axis with
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Figure 4.14: Diagonal components in relation with the maximum crack width and the aggregates size

a rotation more important around the X axis.

Basing on the results of this analysis, a service life prediction is established

using the diagonal components values of the macroscopic diffusivity tensor to assess

the impact of cracks-induced diffusivity on durability of concrete structure. In the

following part, a simple physical model is employed to obtain the corrosion initiation

time depending on the macroscopic diffusivity.

4.4 Service-life estimation

Regarding performance and durability of Civil engineering facilities, service life es-

timation is a crucial issue. Service life of concrete structures might be defined as

the period through which a structure achieves its performance requirements without

needing unexpected repair services until damage increase arrives at an impermissible

level. It is very often linked to the ability of concrete to prevent the penetration of

aggressive agents in its porous network.
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According to the widely acceptable model of [Tuutti, 1982], the service life of

a structure is divided into initiation t◦ and propagation tp period. The initiation

of corrosion begins when the concentration of chloride around the reinforcement

exceeds the threshold chloride concentration (Cth). Consequently it is related to

the penetration of chloride ions to steel surface level as shown in Fig. (4.15), This

Figure 4.15: Service life of concrete structure subjected to corrosion [Tuutti, 1982,Adiyastuti, 2005].

initiation time can be described mathematically by a simple physical model proposed

by Baz̆ant [Bazant, 1979], as:

t◦ = f(Cs, Cth, D, L) =
d2c

12D
[
1−

√
Cth

Cs

]2 (4.10)

Where dc is the concrete cover (m), D the diffusion coefficient of chloride ions

(m2/sec), and Cs the surface concentration (kg/m3). The propagation period tp

is considered as the time between initiation and corrosion-induced cracking where

the concrete cover begins to be deteriorated by cracking and spalling because of

the increase of corrosion products. Furthermore, Baz̆ant [Bazant, 1979] introduce
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another model to identify the corrosion propagation time tp as in Eq. (4.11):

tp = ρcor
ds
s

∆ds
jr

,∆ds = 4ft
L

ds
δpp (4.11)

Here, ρcor is the corrosion product density, ds is the diameter of the bar, s the space

between steel bars, jr the rust production rate, δpp the bar hole flexibility. Therefore,

the critical time at which corrosion starts to induce cracks is ( [Bazant, 1979]):

tcr = t◦ + tp (4.12)

Service life estimation, to be as realistic as possible, has to integrate at least the

main degradation factor of concrete structures into service, i.e. cracking. Conse-

quently, we can note here the contribution of the proposed upscaling method in the

context of service life estimation: both cracking and microstructure are integrated

as a by-product result of the meso-macro analysis into the macroscopic diffusivity

tensor components that can be plugged in service life data, t◦ and tp. We propose to

use the aforementioned model of Baz̆ant to estimate the service life tcr, by figuring

out the initiation period of corrosion as an indication adopted by some of previous

study as ( [Zhang and Lounis, 2006], [Liu, 1996] and [Kwon et al., 2009]).

The variation of the predicted service life (initiation and propagation phases)

associated with the values of crack width is investigated with the following pa-

rameters used by [Liang et al., 2009]: concrete cover dc =40(mm), Cth

Cs
=0.32,

jr = 1.5 × 10−15(g/m2.s), the corrosion product density ρcor = 3600(kg/m3), the

space of the steel bar and s = 0.1(m). The corrosion-induced cracks time tcr ac-

cording to Baz̆ant models are illustrated in Fig. (4.16 and 4.17) in relation to crack
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width values and aggregates size.

We note that tcr is affected by the crack width in an anisotropic manner: around

0.5 mm of crack opening value, tcr is almost divided by two in comparison with a

sound concrete for the xx and zz components and whatever the size of the aggregates

is. For the yy component, tcr is smaller for D = 4 mm than for D = 16 mm. This

observation has to be correlated with the smaller diffusivity computed for D = 4

mm in comparison with D = 16 mm (see Fig. (4.14).
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Figure 4.16: Time to induce cracking related to crack width variation for 4 mm aggregate size

From these results it can be clearly observed that a direct link between cracking

phenomenon and heterogeneities at a fine scale can be related to service life models

at the macro scale which might be considered as useful information for engineering

analysis and design requirments.

4.5 Conclusions

We have presented in this chapter a meso-macro numerical approach accounting for

crack- induced diffusivity in heterogeneous quasi-brittle materials such as concrete.
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Figure 4.17: Time to induce cracking related to crack width variation for 16 mm aggregate size

The meso-structure is based on a two-phase 3D representation of heterogeneous

materials where the aggregates are embedded within a mortar matrix.

The previously introduced weak and strong discontinuities have been considered

as well to account for the heterogeneity and crack evolution, respectively. The crack

opening values obtained from the mechanical analysis for each Finite Element at

each time step have been used in the experimental law of Djerbi et al [Djerbi et al.,

2008] to realize the cracking-diffusion coupling at mesoscale. The information from

the mesoscale to the macroscale are upscaled by means of an homogenisation method

based on the work of Pouya and Courtois [Pouya and Courtois, 2002].

The macroscopic diffusivity tensor is the mean goal of this chapter which aim to

obtain material property at macroscale from a fine-scale information in combination

with the mechanical damage effect.

As a conclusion of this chapter, we stress the interest of the proposed upscaling

method coupled to a mesoscale analysis to outline the following features:
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• The macroscopic diffusivity tensors exhibit anisotropic behavior.

• The increase in the values of the diagonal components of the macroscopic

diffusivity tensor starts at a crack opening value threshold of 0.25 mm.

• The higher value of the aggregates diameter - corresponding to a more tortuous

macro-crack path - gives a higher value of the diagonal components of the

macroscopic diffusivity tensor.

• The macroscopic diffusivity tensors can be used to improve the estimation of

the service-life of reinforced concrete structures.
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Chapter 5

General conclusions and

perspectives

A Finite Element formulation to model chloride ion diffusion numerically in

mesoscale concrete, taking account of chloride binding capacity, is described in the

first part of this study. This formulation is based on the Embedded Finite Element

method (E-FEM) which enables meshes that may not correspond to the physical

interface, such as the aggregate/mortar matrix for mesoscale concrete, to be used

without losing the accuracy of the classic finite element approach. This is achieved

by introducing a weak discontinuity in the chloride concentration field to take into

account the heterogeneous nature of concrete-like materials with no mesh adapta-

tion. The validity of the FE formulation, carried out in the finite element code

FEAP [Taylor, 2008], is confirmed for analytical solutions for a 1D semi-infinite

two-phase material. Firstly, it is used to examine the impact of (1) the diffusion

coefficient values of the aggregate and mortar matrix and (2) chloride binding on

changes in concentration profiles. Once the evolution of concentration profiles for
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different time intervals is known, the corrosion initiation time tcorr can be assessed.

Thus, tcorr is found to:

• decrease when the effects of chloride binding capacity are taken into account;

• increase when the ratio of diffusion coefficients Dmatrix/Daggregate increases.

Clearly, in order to predict better tcorr, it is important to consider explicitly the

diffusion coefficients of aggregate and cement matrix with the consideration of chlo-

ride binding effects.This is crucial for an accurate estimation of the service life of a

structure.

In the next part, 3D simulations are presented. The homogenization method

used here in combination with the E-FEM is shown to be effective for:

• revealing the Representative Volume Element by numerical homogenization;

• calculating the macroscopic diffusivity tensors, which represent the microstruc-

ture diffusivity properties and are accurate regarding Maxwells equation.

In addition, the FE formulation that takes account of the binding capacity ef-

fects on macroscopic diffusivity tensors in steady-state conditions is implemented

numerically. Comparison with experimental work is also performed to show the ap-

plicability of the proposed numerical approach regarding the case of binding effect.

It is shown that, in order to rely on chloride ion transport models, regardless of

their complexity, the main factor causing the degradation of concrete structures in

service -cracking- must be taken into account.

In the second part of this study, a meso-macro numerical approach that consid-

ers the diffusivity due to cracking in heterogeneous quasi-brittle materials such as

concrete is described. In addition to the weak discontinuity, a strong discontinuity
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is also added to take into account micro-cracking. In fact, this strong discontinuity

is the main feature of this work with regard to the mesoscale coupling which pro-

vides the crack opening values for each finite element at each time step. Thus, at

the mesoscale, each crack is considered to be a pathway for an oriented flow whose

diffusion coefficient obeys the experimental law of Djerbi et al. [Djerbi et al., 2008].

The same homogenization method used in the first part is employed in this model

resulting in the calculation of macroscopic diffusivity tensors considering fine scale

information.

Although the fine scale models are simple (elastic-brittle behavior for the me-

chanical model and Ficks law in fully saturated conditions for the mass transport

model), more complex features are included in these macroscopic diffusivity tensors

as a secondary result of the two-scale analysis. The major features considered are:

• the induced-anisotropy as shown in chapter 4. Although the mass transport

model does not rely on an anisotropic model, macroscopic diffusivity tensors

behave anisotropically.

• the development of diffuse cracks in the bulk to localized macro-cracks as

described in Section 4.2.2. Fig. [4.14] shows that an increase in the diagonal

component values of the macroscopic diffusivity tensor is generated above the

crack-opening threshold value of 0.25 mm (which is the peak in the stress

versus strain curve for the mechanical simulations).

• the tortuosity of the macro-crack path. Fig. [4.12] illustrates that the macro-

crack becomes more tortuous as the aggregate diameter increases, which can

be explained by the fact that the macro-cracks are localized around the elastic

aggregates. This phenomenon directly impacts the diagonal component values
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of the macroscopic diffusivity tensor as shown in Fig. [4.14]. Thus, a larger

aggregate diameter, leading to a more tortuous macro-crack pathway, entails

a higher diagonal component value of the macroscopic diffusivity tensor. Note

that there is no tortuosity parameter in the mechanical model. The tortu-

osity of the macro-crack pathway is once again included in the macroscopic

diffusivity tensor properties as a secondary result of the meso-macro analysis.

In addition, the macroscopic diffusivity tensors found to be usable to improve the

estimation of the service-life of concrete reinforced structures, including the effect

of the cracking and the internal meso structure.

However, more experimental work is recommended to validate the numerical

results of this study.

As perspective for future work, we propose to extend the present model to con-

sider the case of cracked-unsaturated concrete at the mesoscale. Furthermore, the

mechanical model can be also extended to account for the mechanism of shrinkage

cracking. For this case, the shrinkage-induced crack width can be consider as the

crucial information for the computation of mass transport within cracks and thus to

achieve fine couplings at the mesoscale. To improve this study, other perspectives

are required. We can note:

• To consider a multi-species modelling of chloride ingress which is more realistic

than Fick’s law.

• To carry out an experimental study dealing with the coupling of cracking that

induced by bending, compression,...., and chloride ingress. For this aim, the

tidal simulation available in the laboratory could be used.
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Résumé 
La pénétration des ions chlorure est la principale cause de la dégradation des 

structures en béton, par corrosion des armatures, entraînant un impact sévère 

sur leur durabilité et leur durée de vie. La pénétration de ces agents agressifs 

pourrait être favorisée davantage par la présence de fissures. Dans cet thèse, 

nous avons utilisé la méthode des éléments finis (EF) pour résoudre 

l'équation de la loi de Fick couplée à la capacité de fixation d’ions chlorure 

afin de modéliser la diffusion des ions chlorure à l’échelle mésoscopique. 

Dans un premier temps, nous avons considéré une représentation 3D d’un 

matériau, sain, hétérogène biphasé (comme le béton) ou les inclusions 

(granulats) sont noyées dans une matrice de mortier. Le problème des 

interfaces (inclusion/matrice) a été résolu en utilisant la méthode E-FEM 

(Embedded Finit Element Method). Au niveau de ces interfaces, nous avons 

introduit une discontinuité faible du champ de concentration de chlorures. 

Une approche d’homogénéisation par moyennes spatiales se basant sur les 

travaux de Pouya est également utilisée pour prédire les tenseurs de 

diffusivité macroscopiques des matériaux biphasiques. La comparaison avec 

l'équation de Maxwell et des résultats expérimentaux a été réalisée pour 

montrer la précision de l’approche numérique proposée. Dans un second 

temps, l’approche méso-macro est représentée pour introduire un modèle 

numérique capable de fournir des informations macroscopiques (tenseur de 

diffusion moyen) intégrant le niveau d’ouverture de fissure, le chemin de 

fissuration et l’hétérogénéité des matériaux quasi fragiles tels que les 

matériaux cimentaires (béton, mortier, ….). Dans ce cas, des points clés du 

processus de fissuration comme l’évolution d’une fissuration répartie vers 

une fissuration localisée (macro-fissure(s)), la tortuosité de la fissure et son 

anisotropie sont intégrées naturellement dans la diffusivité macroscopique. 

En fin, le tenseur défini est ensuite utilisé afin d'estimer la durée de vie des 

structures en béton, y compris l'effet de l'endommagement et de la méso-

structure interne. 
 

Abstract 
The penetration of chloride ions has an essential responsibility in the 

degradation of concrete structures caused by reinforcement corrosion 

leading to a severe impact on the durability and service life of concrete 

structures. The problem becomes more critical with the existence of 

cracking which accelerate the penetration of chloride ions into concrete 

cover. In this work, the FE formulation for the numerical modelling of 

chloride ions diffusion accounting for chloride binding capacity in 

mesoscale concrete is introduced. The mesostructure is based on a two-

phase 3D representation of heterogeneous materials, such as concrete, where 

stiff aggregates are embedded into a mortar matrix. For this purpose, we turn 

to the Embedded Finite Element Method (E-FEM). This is performed by 

introducing a weak discontinuity in the chloride concentration field for finite 

elements where the physical interface is present. Numerical spatial 

homogenization experiments based on Pouya’s works are also performed on 

3D mesostructures to compute macroscopic diffusivity tensors accounting 

for two-phase material. Comparison with Maxwell's equation and 

experimental results are carried out to show the accuracy of the proposed 

numerical approach. Finally, the meso-macro approach is presented to 

introduce a numerical model capable of providing macroscopic information 

(mean diffusivity tensor) integrating the level of crack opening, crack path 

and heterogeneity of materials in quasi-brittle concrete. The mesoscale 

coupling with the mass transport part is based on Fick’s Law with a modified 

diffusion coefficient taking into account crack opening and aggregates. The 

macroscopic diffusivity tensor integrates more complex features such as the 

cracking evolution process, tortuosity of the crack’s path, induced-

anisotropy and presence of aggregates. The defined tensor is used afterwards 

in order to estimate the service-life of concrete structures, including the 

effect of the cracking and the internal mesostructure. 
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