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GENERAL INTRODUCTION

Thesis objectives
Battery-powered embedded devices are characterized by limited battery lifespan. In most of these de-

vices and in some applications, such as military, health, and environmental, replacing batteries makes them
less affordable. Consequently, green solutions based on environmental energy have become economically
conceivable for many application fields. Furthermore, energy harvesting for small devices such as wireless
sensors offers many technological advantages, such as the continuous replenishment of battery or capacitor,
better flexibility and reliability for remote monitoring, complete autonomy and efficiency [4], [5]. As a
consequence, energy harvesting technology has been facing a spectacular growth in global interest in the
last decade and this development will continue in the years to come.

This thesis seeks to settle a crucial scheduling problem in hard real-time systems with energy harvest-
ing considerations often called autonomous real-time systems. In general, such systems consist of a set of
programs called tasks with periodic executions, each one in charge of controlling/monitoring an external
environment [6]. In addition, some tasks said to be aperiodic may occur and require to be executed as
soon as possible while preserving feasibility of the periodic tasks. Under fixed priority as well as dynamic
priority settings, many research efforts have been made from the eighties in order to propose solutions to
solve the underlying scheduling problem [7]. This problem can be simply described as follows: how to
execute jointly the hard periodic tasks set mixed with the dynamically occurring soft aperiodic tasks? Many
scheduling solutions i.e. aperiodic task servers, have been proposed in the literature, including several ones
proved to be optimal. However, all of them have been designed for systems with no energy limitation and
they do not take energy into consideration. Providing an optimal solution for the energy harvesting context
represents the central objective of this work for dynamic priority systems. Accordingly, this thesis provides
a novel set of approaches to cope with the problem of minimizing aperiodic responsiveness while guaran-
teeing the schedulability of periodic tasks. ED-H (earliest deadline for energy harvesting) has been proved,
in 2014, the optimal scheduling scheme for real-time energy harvesting (RTEH) systems composed of hard
deadline tasks [8]. Consequently, it will represent the bearing of our research.

Thesis contributions
When processor time and energy resource are limited, they have to be exploited as efficiently as possible

to respect timing constraints. In RTEH systems, ED-H is the optimal uniprocessor scheduling strategy that
is responsible for scheduling hard deadline jobs by smartly using both processor time and energy resource
so as to meet the deadlines and to avoid energy starvation. ED-H is based on computing two key data, on
line, respectively called slack time and slack energy. According with these requirements, the existing ED-
H scheduling algorithm would be merged with other strategies in order to tackle the scheduling problem
that concerns minimization of aperiodic response times while guaranteeing the timing constraints of jobs
that issue from the periodic tasks. Our study has lead to three novel aperiodic task scheduling algorithms
often known as aperiodic servers. Firstly, we propose two servers, namely BEP (Background with Energy
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Preserving) and BES (Background with Energy Surplus) that both rely on the classical background approach
[9]. Our experimental evaluation shows that BEP outperforms BES in terms of aperiodic response time but
with much more overhead. The major disadvantage of these two servers lies in their limited performance
even if they offer relatively simple implementation.

For that reason, the SSP (Slack Stealing with energy Preserving) aperiodic task server is proposed.
Based on the slack stealing mechanism, it profits whenever possible from available extra processing time
and available extra energy so as to service the aperiodic tasks as soon as possible [10], [11], [12], [13].
Our key contribution here is the optimality proof for this new server in a context of energy harvesting. We
illustrate the performance improvements, in terms of aperiodic responsiveness and other criteria, which are
brought by this approach, compared to the previous background approaches.

To cope with the time complexity issue that characterizes the previous servers, we finally propose an
approach which is based on the bandwidth preserving technique that was initially proposed at the end of the
eighties by Buttazzo et all [13], [14], [15]. In other words, we show how to extend the famous TB server to
the energy harvesting context. We show how to adequately assign a fictive deadline to any occurring aperi-
odic task and permit to schedule it according to the ED-H algorithm together with the periodic tasks. The
experimentation permits to state its good behaviour in terms of implementation complexity and scheduling
performance.

Thesis organization
The first chapter of this manuscript starts with description of the basic and necessary concepts relative

to real-time computing systems.

Chapter 2 focuses on new generation systems which are powered through the environment, called
energy harvesting systems. This chapter presents a description of the main energy storage devices and
available energy sources dedicated to energy harvesting technology.

Chapter 3 treats the scheduling problem in energy autonomous systems. It describes the model for
the energy harvesting system under study. And we recall the principles of ED-H the scheduling policy for
periodic tasks that was adopted in this thesis. The main relevant approaches for scheduling aperiodic tasks
with no energy limitation, which were established previously in the literature, are also reviewed.

Chapter 4 is the first contribution. It formalizes the problem of jointly scheduling soft aperiodic tasks
and hard deadline periodic tasks under energy constraints. Two novel solutions for aperiodic servicing with
energy harvesting considerations are proposed. Both are based on background approaches.

Chapter 5 investigates the problem of improving the response times of aperiodic tasks due to limita-
tions of background servers. Based on the slack stealing technique, a novel aperiodic task server, called
SSP is described. The theoretical performance analysis is presented and proves the theoretical optimality
of this server.

In Chapter 6, the simulations that were carried out effectively show that the proposed slack stealing-
based mechanism satisfies the optimal responsiveness of aperiodic tasks. The performance evaluation of
SSP promises and demonstrates that it reduces the aperiodic responsiveness among different conditions
when compared to background approaches.

In order to further improve the run-time overhead incurred by the use of SSP, the TB-H server and its
main properties are introduced in Chapter 7. Experimental results show that this server provides good
performance with reasonable complexity. This improvement is realized by giving the total bandwidth of
the server, whenever possible, to each aperiodic task that enters in the system. Consequently, this chapter
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shows that the TB-H is a good candidate for aperiodic servicing.

Finally, a general summary of our work is presented and recalls the main results that have been obtained
for aperiodic task scheduling in a real time energy harvesting context. Some perspectives are additionaly
given for the continuation of our work.
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CHAPTER 1
FUNDAMENTALS OF REAL-TIME COMPUTING

Summary
This chapter presents an introduction to real-time computing systems. It includes description of the

classical techniques or approaches proposed by the literature for the analysis and scheduling of hard real-
time systems. The main idea is to give an overview of the state of the art in this domain, mainly dedicated
to mono-processor architectures. Our objective is to justify some choice for our analytical approach and
assumptions that we will describe later on.

Contents
1.1 Real-time Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
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1.3 Periodic Task Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.3.1 The EDF scheduling algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.4 Aperiodic Task Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.4.1 Background Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.4.2 Dynamic priority servers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.1 Real-time Systems

1.1.1 Basic Concepts
"The actual time during which a process or event occurs" is the definition of real-time by the Oxford

dictionary. Technically, the real-time systems are computing systems that have timing constraints, i.e. they
are characterized by the fact that they require temporal correctness as well as logical correctness. In other
words, "the correctness of the systems doesn’t depend on the computational results only, but also on the
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8 CHAPTER 1 : Fundamentals of Real-time Computing

time when they are produced" [16]. Today, real-time computing plays a crucial role in our society, since
an increasing number of complex systems relies, in part or completely, on computer control/monitoring.
Examples of applications that require real-time computing include the following:

– Aircraft Monitoring applications: systems are responsible of automatic navigation, detection of hard-
ware malfunctions and of monitoring a set of smoke detectors on the aircraft board. Warning lamps
are illuminated with red when consecutive non valid readings are received from sensors or when
smoke is detected.

– Automotive management applications: systems monitor and control the speed of the car using a cruise
control function. It also monitors the mileage, average speed, and fuel consumption.

– Multimedia and entertainment applications: systems periodically perform the following jobs: read,
decompress, and display video and audio streams.

– Metal industry applications: systems are typically used in controlling processes such as casting, hot
rolling, cold rolling, finishing, annealing, soaking, and other metal processing functions.

– Electric utility monitoring and control applications: computers are needed in this application to mon-
itor and control plant equipment, to ensure optimal operation and safety, and to prevent costly un-
scheduled outages. Large quantities of coal or oil are typically consumed by the boilers in the utilities
plants. A slight deviation from the optimal efficient performance of these boilers, even for a short
period of time, can seriously impact the cost of electrical energy.

– Petrochemical applications: the production of high commodity chemicals such as ethylene and propy-
lene is supervised and controlled by computers. These systems require high performance real-
time features and should provide interfaces to regulatory control instrumentation systems and Pro-
grammable logic controllers. In petrochemical applications in general, safety related requirements
are very important since a system failure may cause an environmental catastrophe.

– Mobile and data communication applications: systems are used as communication processors to pro-
vide key features of packet switched networks such as high speed real-time communication, perfor-
mance capabilities that can handle both on-line, concurrently with background communication tasks,
as well as extensive line handling for communication protocols.

Based on these examples of real-time applications, we can notice that the concept of time is not an
intrinsic property of a control system, either natural or artificial, but it is strictly related to the environment
in which the system operates. It does not make sense to design a real-time computing system for flight
control without considering the timing characteristics of the aircraft. More precisely, a real-time computing
system should be predictable i.e. every real-time computation must be completed in an interval of certain
length. The beginning of the interval is called release time and the end is called deadline. Depending on
the consequences that may occur because of a missed deadline, three categories of real time system can be
distinguished:

Hard: producing the results after a given timing constraint (deadline) may cause catastrophic consequences
on the system under control.

Firm: producing the results after the deadline is useless for the system, but does not cause any damage.
Soft: producing the results after the deadline has still some utility for the system, although it causes a

performance degradation.
For instance, aircraft monitoring and control systems require a strict respect of timing constraints,

whereas media and communication systems can tolerate timing delays without major consequences.

1.1.2 States of a Task
The main software part of a real-time system consists of tasks, i.e., computing processes. A task is a

computation code that has to be executed by the CPU. In that thesis, we consider that tasks are totally inde-
pendent, do not synchronize with each others and do not suspend except for preemption of the scheduler.

The main objective of a real-time scheduler is to guarantee the correctness of the results while respecting
the timing constraints of the tasks (no deadline miss). It is important to clarify that real-time scheduling
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does not necessarily mean executing tasks as soon as possible, but instead taking scheduling decisions that
guarantee that the timing constraints are satisfied. Based on the decisions of the scheduler, a real-time task
can be in one of the three following states:

Running A task enters this state as it executes on the processor.

Ready A task is ready when it has received its release signal but is waiting (volontarily or not) for the
processor. All descriptors (defined as a data structure associated to every task) of ready tasks are
maintained in a queue, called the ready queue.

Waiting A task is waiting when blocked until the occurrence of a specific event such as synchronization
event or a release event.

Ready Run

Wait

Dispatch

Preemption

Signal Wait

Activate

Figure 1.1: States transition for a real-time task

The different states of tasks are shown in Figure 1.1. Moreover, a real-time scheduler controls the
transitions between the ready and running states of tasks, but it has no control over the external events that
block the execution of tasks.

1.1.3 Real-time Task Model
A real-time application is composed of a set of tasks denoted by τ . It is composed of n tasks where

τ = {τ1, τ2, ..., τn}. Each task τi is assumed to generate one or more identical instances which are called
jobs. In general, a real-time task τi can be characterized by the following parameters:

Arrival time ai is the time at which a task becomes ready for execution; it is also referred as request time
or release time and indicated by ri.

Computation time Ci is the time necessary for the processor to execute the task without interruption.

Absolute Deadline di is the time before which a task should be completed to avoid damage to the system.

Relative Deadline Di is the difference between the absolute deadline and the request time: Di = di − ri.
Start time si is the time at which a task starts its execution.

Finishing time fi is the time at which a task finishes its execution.

Response time Ri is the difference between the finishing time and the request time: Ri = fi − ri.
Criticality is a parameter related to the consequences of missing the deadline (typically, it can be hard,

firm, or soft).

Value vi represents the relative importance of the task with respect to the other tasks in the system.

Lateness Li: Li = fi − di represents the delay of a task completion with respect to its deadline (note that
if a task is completed before the deadline, its lateness will be negative).

Tardiness or Exceeding time Ei: Ei = max(0, Li) is the time a task stays active after its deadline.
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Laxity or Slack time Xi: Xi = di − ai − Ci is the maximum time a task can be delayed on its activation
to complete within its deadline.

There are possibly additional important parameters that characterize real-time tasks [17, 18]. For exam-
ple, it could be:

– Resources Constraints i.e. those derived from the access with mutual exclusion to critical resources.
– Synchronization Constraints that can be described by a set of precedence relations (or prior) which

determine the order in which tasks have to undergo their treatment. When there is no precedence
relation between tasks, tasks are said to be independent.

– Execution Constraints are based on two types of tasks, preemptible and non-preemptible. When any
task is preemptible, its execution can be interrupted at any moment and resumed later. In contrast, a
non preemptive task executes with no interruption from its start time to its finishing time.

The real-time computing theory also allows for the classification of tasks as periodic or aperiodic. Pe-
riodic tasks consist of an infinite sequence of identical activities, called instances or jobs, that are regularly
activated at a constant rate. For the sake of clarity, from now on, a periodic task set τ will be denoted
as follows: τ = {τi | 1 ≤ i ≤ n}. Each periodic task τi has a period Ti, a relative deadline Di and a
constant worst case execution time (WCET) Ci (normalized to processor computing capacity). We con-
sider a constrained-deadline task set τ in which 0 < Ci ≤ Di ≤ Ti. Task τi generates jobs which are
released at times 0, Ti, 2Ti,... and must complete by times Di, Ti + Di, 2Ti + Di,... The hyper-period
H of a periodic task set is defined as the least common multiple (LCM) of the request periods Ti, that is
H = LCM(T1, T2, ..., Tn). The processor utilization of the periodic task set τ is Upp =

∑
τiετ

Ci

Ti
and is less

than or equal to 1. A job is any request that a task makes. (rj, Cj, dj) is associated with a job Jj and gives
its release time, WCET and (absolute) deadline, respectively.

Aperiodic tasks also consist of an infinite sequence of identical jobs (or instances); however, their activa-
tions are not regularly interleaved. An aperiodic task, where consecutive jobs are separated by a minimum
inter-arrival time, is called a sporadic task. We will use the following notation throughout the thesis: Ap is
a stream of aperiodic occurrences defined as Ap = Api(ai, ci), i = 1..m, where ai is the arrival time and ci
is the worst case execution time. The finish time of Api will be denoted by fi. Figures 1.2 and 1.3 show an
example of task instances for a periodic and an aperiodic task.

Figure 1.2: Model of a periodic job Figure 1.3: Model of an aperiodic job

1.2 Scheduling Problems
A real-time scheduling problem describes the conflicts due to concurrent accesses to the processor by

the tasks. Typically, a real-time scheduler takes its decision based on the timing parameters of the ready
tasks. The scheduling function is a service of the operating system (the scheduler), which allocates the



1.2 Scheduling Problems 11

processor along time in accordance with the tasks in the ready state. According to the performance criteria
in general maximization of deadline success, the scheduler determines for every time interval, identity of
the task to execute on the processor. A scheduler may implement one or more scheduling algorithms that
specify the rules for selecting the ready task that will be running. The time schedule of the tasks which
is constructed by a scheduling algorithm is called sequence or schedule and is generally represented by a
Gantt chart. Each line is associated to a given task. An additional line may be used to describe busy vs idle
periods of the processor.

1.2.1 Classification of Scheduling Algorithms
Real-time scheduling is divided into several categories based on various criteria: the scheduling rule

and instants where to apply the scheduling rule. Most of real time schedulers are priority driven ones and
preemptive. They can be classified as follows:

Preemptive vs. Non-preemptive – In preemptive algorithms, the running task can be interrupted at any
time to assign the processor to another ready task, according to a predefined scheduling policy.

– In non-preemptive algorithms, a task, once started, is executed by the processor until completion.
In this case, all scheduling decisions are taken when any task terminates its execution.

Static vs. Dynamic – Static priority algorithms are those in which scheduling decisions are based on fixed
parameters, assigned to tasks before the activation starts.

– Dynamic priority algorithms are those in which scheduling decisions are based on dynamic param-
eters that may change along time during the application lifetime.

Off-line vs. Online – A scheduling algorithm is off-line if it constructs the sequence on the entire task set
before the system starts operation. The schedule generated in this way is stored in a table and is
later executed by a dispatcher.

– A scheduling algorithm is online if scheduling decisions are taken at runtime every time a new task
enters the system, when a running task terminates or more generally when an event should be taken
into account. In a next chapter, we will see that such an event may connected to the energy storage.

Optimal vs. Heuristic – An algorithm is said to be optimal if it minimizes some given cost function de-
fined over the task set. When no cost function is defined and the only concern is to achieve a
feasible schedule, an algorithm is said to be optimal if it is able to find a feasible schedule, if one
exists.

– An algorithm is said to be heuristic if it is guided by a heuristic function when taking its scheduling
decisions. A heuristic algorithm tends toward the optimal schedule, but does not guarantee finding
it.

Monoprocessor vs. Multiprocessor – An algorithm is said to be monoprocessor, when all tasks can only
run on the same processor.

– An algorithm is said to be multiprocessor when multiple processors are available in the system.

Idling vs. Non-idling – An algorithm is said to be non-idling or work-conservative if a processor performs
the highest priority task as soon as it is ready for execution and can not delay it if it has nothing to
do, i.e., it works without the insertion of idle time.

– An algorithm is said to be idling; when a task is ready, it may be elected or it may wait for a period
of time before running, even if the processor is free.

Centralized vs. Distributed – An algorithm is said to be distributed if the scheduling decisions are taken
by an algorithm locally at each node.

– An algorithm is said to be centralized when the scheduling algorithm for the whole system, whether
distributed or not, is extracted on a privileged node.

Clairvoyant vs. Non Clairvoyant – An algorithm is said to be clairvoyant if it knows the future; that is,
it knows in advance the arrival times of all the tasks. Although such an algorithm does not exist in
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reality, it can be used for comparing the performance of real algorithms against the best possible
one.

1.2.2 Real-time Feasibility and Schedulability
We present here a description of the properties of the scheduling algorithms presented in terms of

schedulability analysis and feasibility:

Definition 1 A schedule Γ for τ is said to be valid if the deadlines of all jobs of τ are met in Γ.

Definition 2 A system is feasible if there exists at least one valid schedule for τ .

Definition 3 An algorithm is optimal if it finds a valid schedule whenever one exists

Definition 4 A schedulability analysis or feasibility analysis is performed to test the validation of a system
on an off-line analysis.

1.2.3 Complexity of Scheduling Algorithms
Associated with the metrics described above, the efficiency of a scheduling algorithm is also evaluated

based on its computational complexity [19, 20]. In general, the overhead incurred by scheduling at run time
is calculated by evaluating the number of implemented elementary operations. It means that the number
of basic instructions of any programming language (addition, subtraction, assignment, test,...) and this,
according to the number of input data of the problem. Let ξ be the complexity function of an algorithm
representing the largest number of elementary operations that this algorithm requires to solve a problem Π,
and n the size of the problem Π, that means the amount of input data required to write Π. This leads to the
following definitions [21]:

Definition 5 An algorithm is said to be polynomial time if its complexity function ξ is O(p(n)) where p is
polynomial. When p is linear, the algorithm is called of linear complexity.

Definition 6 An algorithm is said to be pseudo-polynomial time if its complexity function ξ has the form of
a polynomial function. The execution time depends not only on the length of the inputs of the problem but
also on the size of them.

Definition 7 An algorithm is said in exponential time if its complexity function ξ is O(n!) or O(kn),
k > 1 or else O(nlog(n)). Polynomial algorithms are of course the most interesting because they lead to the
solution of a scheduling problem in a reasonable considered time, unlike the exponential complexity. Note
again that, more the algorithmic complexity is high, more their overhead implementation will be important.

Polynomial algorithms are of course the most interesting ones because they lead to the implementation of
a scheduling algorithm in a reasonable time, unlike the exponential complexity. Note again that, higher is
the algorithmic complexity, more important and costly is the overhead incurred by the on line execution of
the scheduler.

1.3 Periodic Task Scheduling
The majority of real time schedulers rely on the notion of priority. If the priority is set at the initialization

time for all tasks, the algorithm is said to be fixed priority driven. If the priority is not constant over time, the
algorithm is said to be dynamic priority driven. The study reported in this thesis only deals with preemptive
dynamic priority scheduling, and does not consider resource and precedence constraints. We now recall
the famous EDF (Earliest Deadline First) scheduling algorithm with a description of its behaviour with its
associated performance and feasibility conditions [22].
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1.3.1 The EDF scheduling algorithm

By definition, at each instant, the EDF algorithm gives the highest priority to the task with the closest
absolute deadline di [23, 24, 22]. In case of conflicts, the task with the earliest arrival time may be the first
for execution.

Example 1 Principles of the EDF algorithm are illustrated with a set of tasks Γ = {τi(Ci, Di, Ti), i =
1 to 2}. Let τ1 = (4, 9, 9) and τ2 = (3, 12, 12).
The EDF schedule produced on Γ during the first hyperperiod is depicted in Figure 1.4:
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Figure 1.4: Illustration of EDF schedule

1.3.1.1 Optimality Results

EDF has been proved to be optimal for preemtively scheduling independent hard deadline tasks [25].
In particular, that signifies that if a set of independent periodic tasks is schedulable by any algorithm then it
is also schedulable by EDF .

In the non-preemptive case, the scheduling problem is known to be NP − hard [26]. However, if we
consider only non-idling scheduling, the problem is again solvable. In this sub-class of non-preemptive
schedulers, EDF algorithm is optimal as it is shown in George et al. [27].

1.3.1.2 Schedulability Conditions

A schedulability test, based on a necessary and sufficient condition [22], can be reported for the EDF
algorithm:

Theorem 1 A periodic task system Γ such that ∀i = {1 · · ·n}, Di = Ti is schedulable by EDF if and
only if the utilization factor U satisfies (see [22]):

U =
n∑
i=1

Ci
Ti
≤ 1 (1.1)

Later, Dertouzos [25] proved that EDF is optimal among all preemptive scheduling (periodic, sporadic
and aperiodic task systems). This means that if a task set is not schedulable by EDF , then it cannot be
scheduled by any other algorithm.

Under EDF , the schedulability analysis of periodic tasks with deadlines less than or equal to periods
can also be conducted using the processor demand criterion proposed by Baruah et al. [28].
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Theorem 2 A task set is schedulable by EDF if and only if, in every interval of length L, the overall com-
putational demand is not greater than the available processing time, that is, if and only if U ≤ 1 and

∀L > 0,
n∑
i=1

bL+ Ti −Di

Ti
cCi ≤ L (1.2)

Where bxc denotes the floor of a rational number, that is, the highest integer less than or equal to x (see
[28]).

The complexity of this feasibility test is pseudo-polynomial. However, in some restrictive hypotheses,
the same authors show that the schedulability analysis under EDF has a complexity in O(n) [28].

1.4 Aperiodic Task Scheduling

Real-time scheduling algorithms that deal with a combination of mixed sets of periodic real-time tasks
and aperiodic tasks have been extensively studied in the literature, both under fixed and dynamic priority
assignments for about 30 years. By definition, an aperiodic task server is optimal if it minimizes the re-
sponse times of aperiodic tasks while guaranteeing that the deadlines of the periodic tasks are met. Several
important approaches for servicing aperiodic tasks are discussed in what follows.

1.4.1 Background Scheduling
A Background (BG) Server executes the aperiodic tasks at the lowest priority level. In other terms, it

makes use of any extra CPU cycles for aperiodic servicing. Any Background Server executes whenever the
processor is idle (i.e. not executing any periodic tasks and no periodic tasks are pending). Consequently, the
schedule produced on periodic tasks is identical with and without aperiodic tasks. We notice that when the
processor utilization of the periodic task set is high, the processing utilization left for aperiodic servicing
is low. With background servicing, this will result in high response times for the aperiodic tasks because
opportunities are relatively infrequent and the periodic schedule is not flexible [9].

Example 2 The illustrative example of Figure 1.5 shows the schedule produced by the BG server. We
consider a task set composed of two periodic tasks and two aperiodic tasks as imparted in Tables 1.1 and
1.2, respectively. The periodic tasks are scheduled according to the EDF algorithm.

Table 1.1: Parameters of periodic tasks

Task Ci Di Ti
τ1 4 9 9
τ2 3 12 12

Table 1.2: Parameters of aperiodic tasks

Task ai ci
Ap1 9 1
Ap2 18 3

The response times of Ap1 and Ap2, offered through the Background servicing mechanism, are 8 and 14
time units respectively, which do not reveal a good performance for this servicing approach.
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Figure 1.5: Illustration of the Background Server

1.4.2 Dynamic priority servers
Most of the methods studied for fixed priority algorithms have been extended to dynamic priority al-

gorithms. Several approaches have been proposed under EDF by Ghazalie and Baker [29] (Deadline De-
ferrable Server, Deadline Sporadic Server, and Deadline Exchange Server), by Spuri and Buttazzo [13, 14]
(Dynamic Sporadic Server, Dynamic Priority Exchange Server, and Improved Priority Exchange Server),
by Gutiérrez and al. [30] (Minimum Deadline Assignment Server), and by Butazzo and Sensini [15] (Im-
proved Total Bandwidth Server)

We will not describe their behavior in this part. We shall consider the algorithms studied in the frame-
work of the thesis: EDL [10], TBS [13, 14], and TB∗ [31], taking into account their basic properties and
their optimality.

1.4.2.1 EDL Server

Using the available slack of periodic tasks for advancing the execution of aperiodic requests is the
basic principle adopted by the EDL server [13, 14]. This aperiodic servicing algorithm can be viewed
as a dynamic version of the Slack Stealing algorithm described in [11]. The definition of the Earliest
Deadline as Late as possible (EDL) server makes use of some results presented by Chetto and Chetto [10]
to determine the location and length of idle time in any window of a sequence generated by the two different
implementations of EDF : EDS and EDL.
Under EDS the active tasks are processed as soon as possible, whereas they are processed as late as possible
under EDL. An important property of EDL is that in any interval [0, t] it guarantees the maximum available
idle time.
Let us present the terminology used by the authors in [10]. fXY is the availability function defined for a task
set Y and a scheduling algorithm X .

fXY (t) =

{
1, if the processor is idle at t
0, else (1.3)

where fXY (t) is defined with respect to a task set Y that is scheduled according to the scheduling algo-
rithm X in the time interval [0, t]. So, for two instants t1 and t2, the integral

∫ t2
t1

fXY (t)dt gives the total idle
time available in the interval [t1, t2]. Denote this quantity as ΩX

Y (t1, t2).

1.4.2.1.1 Static Idle Times under EDL The function fEDL computes the static EDL schedule off-line
for the task set Γ. In this case, we have to estimate the localization and duration of idle times within
the EDL schedule from time t = 0 till the end of the hyperperiod. Let H = lcm(T1, T2, · · · , Tn), the
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hyperperiod be equal to the least common multiple of the task periods. The EDL schedule for the interval
[0, H] can be described by means of the two following vectors:

– Static Deadline Vector K: The static deadline vector K = {k0, k1, · · · , ki, ki+1, · · · , kq} represents
the time instants from 0 to the end of the first hyperperiod at which idle times occur and is constructed
from the distinct deadlines of tasks. We note that q ≤ N+1 whereN denotes the number of instances
within [0, H]. Consequently, instances ki of vector K are defined as follows:

ki = x.dj (1.4)

Where x = {1, · · · , H
Tj
}, ki < ki+1, k0 = 0 and kq = H −min{Tj; 1 ≤ i ≤ n}

– Static Idle Time Vector D: it represents the lengths of the idle times which start at time instants given
by K. D = {∆0,∆1, · · · ,∆i,∆i+1, · · · ,∆q}.
The recurrence formula for the calculation of vector D is:
The duration of idle time of vector D = {∆0,∆1, · · · ,∆i,∆i+1, · · · ,∆q} calculated on [0, H[ is
defined as:

∆q = min{Ti|1 ≤ i ≤ n} (1.5)

∆i = max(0, Fi), for i = q − 1 down to 0 (1.6)

where

Fi = (H − ki)−
n∑
j=1

dH − ki
Tj

eCj −
q∑

k=i+1

∆k (1.7)

The complexity for computing the EDL static schedule is O(N) where N is the total number of periodic
instances in the hyperperiod [18].

Example 3 Let us consider the previous task set Γ. By applying the above formulas, we obtain:
K = (0, 9, 12, 18, 24, 27) and D = (5, 0, 2, 2, 0, 2).
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Figure 1.6: Illustration of the static EDL Schedule

1.4.2.1.2 Dynamic Idle Times under EDL
– Dynamic Deadline Vector K(t): We denote by t the current time at which we want to apply the EDL

scheduling algorithm. We must compute the dynamic deadline vector K(t) which represents the time
instants that are greater than or equal to t in the current hyperperiod, at which idle times occur. As in
the static case, it is constructed from the distinct deadlines of periodic tasks.
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Let h be an index such that kh = sup{d, dεK and d < t}. So, this vector contains the instances such
that K(t) = (t, kh+1, · · · , ki, · · · , kq).

– Dynamic Idle Time VectorD(t): The dynamic idle time vectorD(t) = (∆h(t),∆h+1(t), · · · ,∆i(t), · · · ,∆q(t))
represents the length of the idle times that starts at time instants given by K(t). ∆i(t) denotes the
length of idle time that follows time ki for h < i ≤ q.
At time t, each periodic task τi is characterized by Aj(t) which denotes the amount of processing
completed on the current request of τi. Let M be the greatest deadline of the current periodic re-
quest, which means the greatest deadline among the ready task instances. Let index f be such that
kf = min{ki | ki > M} [10].

The dynamic idle time vector D(t) = (∆h(t),∆h+1(t), · · · ,∆i(t), · · · ,∆q(t)) is defined as:

∆i(t) = ∆i for i = q down to f (1.8)

∆i(t) = max(0, Fi(t)) for i = f − 1 down to h+ 1 (1.9)

with

Fi(t) = (H − ki)−
n∑
j=1

dH − ki
Tj

eCj +
n∑

j=1(dj>ki)

Aj(t)−
q∑

k=i+1

∆k(t) (1.10)

∆h(t) = (H − τ)−
n∑
j=1

dH − t
Tj
eCj +

n∑
j=1(dj>ki)

Aj(t)−
q∑

k=h+1

∆k(t) (1.11)

The overall time complexity of dynamic EDL schedule is O(K.n) and K is equal to dR
p
e, where n is

the number of periodic tasks, R is the longest deadline and p is the shortest period [18].

In summary, the EDL server consists in executing the periodic tasks as soon as possible whenever there
are no pending aperiodic tasks then maximizing the processing time which could be available for processing
aperiodic tasks in the future. Whenever at least one aperiodic task is present in the system, the dynamic
EDL schedule is computed so as to determine the precise time intervals where to execute the periodic tasks
and the other ones where to execute the aperiodic ones.

The scheduling outline of the EDL server can be described by the pseudo-code (Algorithm 1):

Example 4 Let us assume that the previous periodic task set has been scheduled according to EDF (i.e.
EDS) from time zero until time t = 9. Suppose that an aperiodic request occurs at this time. We want to
execute the aperiodic tasks as soon as possible and consequently the periodic ones as late as possible. This
requires that at run time, at the arrival of the aperiodic task, at t = 9, we compute the dynamic idle time
vector in order to know when to execute the periodic tasks and when to execute the aperiodic ones.

So we wish to calculate the maximum CPU time which is free in the interval [9, 36]. Thanks to equations
1.8, 1.9, 1.10 and 1.11, we get K(t) = (9, 12, 18, 24, 27), and D(t) = (3, 2, 2, 0, 2). This is illustrated in
Figure 1.7:

In this example, the idle times of an EDL schedule recomputed at t = 9, as shown in Figure 1.7, permit
to provide an optimal response time for the aperiodic request. We observe in Figure 1.8 that two aperiodic
tasks which are depicted in Table 1.2 arrive into the system at two different times. We can see that if there is
no aperiodic tasks in the system, the periodic tasks would be scheduled according to EDS. Upon the arrival
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Algorithm 1 EDL schedule
Require:

t: current time
Γ(t): list of ready periodic tasks
Ap(t): list of ready aperiodic tasks
INITIALISATION(Γ(t), D, K) {Calculation of the static idle vector D and of static deadline vector K
from Γ(t)}
while True do

if Ap(t) is not empty then
Update the dynamic vectorsK andD in order to schedule the periodic tasks of Γ(t) in the EDL busy
periods
if SlackTime(t)>0 then

Schedule Ap(t) according to FCFS
else

Schedule Γ(t) according to EDF
end if

else
Schedule Γ(t) according to EDF

end if
t := t+ 1

end while

of Ap1 for example, the two dynamic vectors are updated as described above. As the slack time at time
t = 9 is equal to 3, Ap1 is serviced immediately within one unit of time. At that time, the highest periodic
task is serviced. The maximum delay invoked in terms of periodic activities gives the optimal aperiodic
responsiveness; 1 and 3 units of time for Ap1 and Ap2, respectively.

We can conclude that the EDF scheduler can be used with high flexibility by executing tasks as soon
as possible (EDS) or as late as possible (EDL), according to the deadlines. We shall see in a next chapter
how to use such flexibility to execute the tasks neither strictly ASAP or ALAP, but depending on energy
availability.

1.4.2.1.3 EDL Server Properties Applying the EDL scheduling rule to the periodic tasks at a given
time instant leads to maximize the available processing time from this time instant. This is precisely stated
in the following Theorem 3.

Theorem 3 [18] Let X be any on-line preemptive algorithm. At any time t,

ΩX
T (0, t) ≤ ΩEDL

T (0, t) (1.12)

The optimality of the EDL server is a direct consequence of the previous theorem. Whenever there
are soft aperiodic tasks pending for execution, the periodic tasks are executed as late as possible while
guaranteeing their schedulabilty with providing a minimal response time for every aperiodic task. The
optimality of the EDL server is stated in the following Corollary.

Corollary 1 [18] The EDL server minimizes the response time of every soft aperiodic task.

We now present another well known aperiodic server which also provides optimal responsiveness.
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Figure 1.7: New EDL idle times at t = 9.
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Figure 1.8: Schedule produced with EDL server at t = 9.
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1.4.2.2 TBS Server

The Total Bandwith Server (TBS) [13], [14] is a simple mechanism for servicing aperiodic tasks in con-
junction with periodic tasks in a dynamic priority environment using EDF. Whenever an aperiodic request
enters the system, the TBS server assigns to it a deadline according to the time bandwidth reserved for the
server (i.e. the available CPU capacity). When the kth aperiodic request arrives at time t = rk, a fictive
deadline dk is assigned to it as follows:

dk = max(rk, dk−1) +
ck
Ups

(1.13)

where ck is the execution time of the newly occurring aperiodic task and Ups is the server utilization
factor (i.e. its time bandwidth). By definition, d0 = 0. Moreover, when a new deadline dk is assigned,
the bandwidth already allocated to the previous requests is taken into account by the value dk−1. Once this
fictive deadline is assigned to the aperiodic request, it is scheduled jointly with the periodic tasks according
to the EDF algorithm.

1.4.2.2.1 Schedulability Plainly, the assignment must be done in such a way that the overall processor
utilization of the aperiodic requests never exceeds Ups. Thus, the schedulability of a periodic task set in the
presence of a TBS server can be tested by verifying condition of theorem 4 that is formally proved in [14].
But let us first prove that the periodic processor utilization does not exceed Ups.

Lemma 1 In each interval of time [t1, t2], if Cape is the total execution time demanded by aperiodic tasks
arrived at t1 or later and served with deadlines less than or equal to t2, then

Cape ≤ (t2 − t1)Ups (1.14)

Proof:
By definition,

Cape =
∑

t1≤rk,dk≤t2

Ck.

Given the deadline assignment of the TB server, there must be two indexes k1 and k2 such that∑
t1≤rk,dk≤t2

Ck =

k2∑
k=k1

Ck.

It follows that

Cape =

k2∑
k=k1

Ck

= Ups

k2∑
k=k1

[dk −max(rk, dk−1)]

≤ Ups[dk2 −max(rk1 , dk1)]
≤ Ups(t2 − t1).

�

Theorem 4 [14] Given a set of n periodic tasks with processor utilization Upp and a set of aperiodic tasks
served by TBS with processor utilization Ups, the whole set is schedulable if and only if

Upp + Ups ≤ 1. (1.15)
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Proof: "If". Suppose there is an overflow at time t. The overflow is preceded by a period of continuous
utilization of the processor. Furthermore, from a certain point t′ on, only jobs (periodic or aperiodic) ready
at t′ or later and having deadlines less than or equal to t are running. Let C be the total execution time
demanded by these jobs. Since there is an overflow at time t, we must have

t− t′ < C.

We also know that

C ≤
n∑
i=1

bt− t
′

Ti
cCi + Cape

≤
n∑
i=1

bt− t
′

Ti
cCi + (t− t′)Ups

≤ (t− t′)(Upp + Ups).

It follows that

Upp + Ups ≤ 1,

a contradiction.
"Only If". If an aperiodic request enters the system periodically, say each Ts > 0 units of time, and has

execution time Cs = TsUps, the server behaves exactly as a periodic task with period Ts and execution time
Cs. Being the processor utilization U = Upp + Ups, again from Theorem 7 of [22] we can conclude that
Upp + Ups ≤ 1. �

Example 5 The following example shows two schedules produced by the EDF algorithm, using the dead-
line assignment by the TBS server as shown in Figure 1.9. Let us consider the same task set of two periodic
tasks and two aperiodic tasks imparted in Tables 1.1 and 1.2 respectively. The periodic tasks are scheduled
according to the EDF algorithm. It is worth noting that the periodic utilization is Upp = 0.7 leaving a low
bandwidth for the aperiodic tasks. The condition Upp + Ups ≤ 1 is verified, hence the system is considered
feasible.

When the aperiodic task Ap1 arrives at time 9, it receives a fictive deadline computed by equation 1.13
(d1 = 13) according to the TBS server. As 13 is the earliest deadline,Ap1 is immediately serviced. A second
aperiodic taskAp2 arrives at time 18. Identically, it receives a fictive deadline (d2 = 28), is executed at time
22 as τ1 with nearest deadline, and is is active at this point. We note through the resulting schedule that the
response time of Ap1 and Ap2 is 1 and 7 units of time respectively, which shows a moderate performance
with respect to the low bandwidth dedicated to aperiodic tasks.

1.4.2.2.2 Implementation Complexity Among the servers presented in the literature, the TB server is
considered to be the simplest one. We only need to keep track of the deadline assigned to the last occurring
aperiodic task (dk − 1) to properly assign the deadline to the new occurring task. Therefore, the task can be
inserted in the ready queue and processed by EDF as any other periodic job. Consequently, the overhead is
practically negligible.

Besides its simplicity, TBS was extended towards optimality to reduce the aperiodic response time. In
the following section, we will briefly recall the optimal algorithm TB∗.
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Figure 1.9: Illustration of the TBS server

1.4.2.3 TB∗ Server

The Total Bandwidth Server algorithm TBS is capable of achieving good aperiodic responsiveness with
high simplicity. However, its performance is perfectible. How? If we look at the example in Figure 1.9, we
can argue that, if we assign a shorter deadline, the second aperiodic task Ap2 may be better served without
jeopardizing the schedulability of periodic tasks, especially that the periodic jobs have enough laxity to be
preempted.
Thus, the optimal Total Bandwidth Server algorithm, namely TB∗ [15] is an optimization of the TB server
in the sense that it assigns to each aperiodic request a shorter fictive deadline than that provided by TBS.
Thus, whenever an aperiodic task arrives, TB∗ first assigns to it a deadline according to the TBS algorithm.
Then, it will try to shorten this deadline to the maximum so as to improve the response time of the aperiodic
requests without compromising the execution of the periodic tasks. If d0k corresponds to the first deadline
assigned by TBS, the new deadline d1k will be set at the estimated worst-case finishing time of the aperiodic
task f 0

k , scheduled with d0k. The process of shortening this deadline is applied iteratively until no improve-
ment is possible, while guaranteeing the schedulability of the periodic task set.
Consequently, if dsk is the deadline assigned to the aperiodic request Apk at step s, the schedulability is
guaranteed by assigning to Apk a new deadline given by:

f sk = ds+1
k = t+ ck + Ip(t+ dsk) (1.16)

where t is the current time (corresponding to the maximum between the release rk of the request Apk
and the completion time of the previous request), ck is the worst case execution time required by Apk, and
Ip(t, d

s
k) is the interference due to periodic jobs in the interval [t, dk).

The periodic interference Ip(t, dsk) is given by the sum of two terms, Ia(t, dsk) and If (t, dsk). Ia(t, dsk) cor-
responds to the interference due to the periodic jobs which are active at the current time with deadlines
strictly less than dsk. If (t, d

s
k) corresponds to the future interference due to the periodic jobs having their

arrival date greater than the current time t with deadlines less than dsk.
Formulas are given below:

Ia(t, d
s
k) =

∑
τactive;di<dsk

ci(t) (1.17)

and

If (t, d
s
k) =

n∑
i=1

max(0, dd
s
k − nextri(t)

Ti
e)Ci (1.18)

where nextri(t) is the next arrival of task τi greater than or equal to t.
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1.4.2.3.1 TB∗ Server Properties If the actual execution time of tasks is equal to their worst-case exe-
cution time, the TB∗ deadline assignment algorithm will achieve optimality. In that case, it minimizes the
response time of each aperiodic task among all scheduling algorithms which meet all periodic task dead-
lines, assuming that aperiodic requests are processed in FIFO order, and that deadlines are broken in favour
of aperiodic tasks. This result is summarized in the following theorem.

Theorem 5 [31] For any periodic task set and any aperiodic arrival stream processed in FIFO order,
the TB∗ algorithm is optimal because it minimizes the response time of every aperiodic task among all
scheduling algorithms which meet all periodic task deadlines.

Example 6 Let us assume the same task set Γ of Table 1.1. The periodic utilization ratio is Upp = 0.7.
The bandwidth allocated to the TB∗ server is such that Ups = 1 − Upp = 0.3. Condition Upp + Ups ≤ 1 is
verified, hence the system is considered feasible. An aperiodic task Ap1 occurs at t = 9. It receives a fictive
deadline d1 = 13 (optimal) according to the TBS algorithm. A second aperiodic task Ap2 occurs at t = 18.
It receives a fictive deadline (d2 = 28) according to the TBS algorithm. Using equations 1.17 and 1.18, we
get: Ia(18, 28) = c1(18) = 4 and If (18, 28) = 0.
By equation 1.16, we obtain d12 = t+ c1 + Ia + If = 25. We repeat the process until the deadline coincides
with the finish time. In our example, only two steps are performed in order to shorten the first deadline
assigned by TBS. These steps are shown in Table 1.3. The schedule produced by EDF using the shortest
deadline d∗2 = d12 = 25 is shown in Figure 1.10.

Table 1.3: Deadlines and finishing times computed by the TB∗ algorithm

step dsk f sk
0 28 25
1 25 25
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Figure 1.10: Illustration of the TB∗ server

A significant result of the TB∗ deadline assignment rule is that Ia and If can be computed in O(n). The
overall complexity of the TB∗ server is O(N.n), where N is the maximum number of steps that have to
be done by the algorithm to shorten the initial deadline assigned by TBS[31]. So balancing performance
vs complexity is the main feature of the TB∗ server, which allows it to be adapted to different application
requirements.
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1.5 Conclusion
An introduction to scheduling in real time systems was presented in this chapter. Terminology and

concepts related to the real-time domain were first addressed. Secondly, we presented the EDF scheduling
algorithm for optimally scheduling periodic tasks, noting in particular the conditions of feasibility. Next, we
examined the state of the art in terms of aperiodic task servicing. We have presented the basic Background
server due to its very simple implementation and despite its inefficiency. And the two optimal dynamic
priority servers were described: first, the EDL server based on the slack stealing mechanism and second,
the TB∗ server based on the adequate attribution of a deadline to each aperiodic task.

Although EDL and TB servers are difficult to implement, they present the best achievable response time
for soft aperiodic tasks which make them good candidates for scheduling mixed task sets. Our objective in
a next chapter will be to show how to modify these servers so as to use them in the energy harvesting context.

In the next chapter, we will focus on a state of the art on energy harvesting techniques that may be
applied to design autonomous real-time systems which draw their energy from environmental sources.
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CHAPTER 2
RENEWABLE ENERGY FOR COMPUTING
SYSTEMS

Summary
In this chapter, we set the stage for our study of energy harvesting technology. We start by describing

the architecture of a EHWSN (Energy Harvesting-based Wireless Sensor Network) node. Then, we review
the main harvesting techniques to draw and convert energy from ambient sources in order to power wireless
devices. In the following sections, we describe the common storing devices used to buffer these devices
and we have a look on harvesters found in the market.
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2.1 Introduction
Recently, Internet of Things (IoT) and machine to machine (M2M) have been the focus of the attention

of consumers and markets. IoT and M2M are not only adduced to cellular phones and personal computers
connected through the Internet, but also to the wireless interconnection of all of the billions of "things" such
as sensors through the Internet or local area networks.

27
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Realizing that supplying the power needed to maintain all these sensors operating for their expected
lifespan was a linchpin that could potentially short-circuit the IoT, scavenging energy from the IoT node’s
environment comes to offer a straightforward solution for easily powering those remote devices using clean
green energy. The umbrella term for the group of harvesting technologies is called Energy Harvesting (EH).
Energy harvesting techniques use power generating elements to convert light (solar), heat (thermoelectric),
vibration (piezoelectric), or RF energy (such as energy emitted from cellphone towers) into electricity in a
stable way and without a lot of loss. Energy harvesting allows the design of systems that are able to function
for years on these ambient power sources, getting rid of the battery-change problem.

That does not mean that there is no need for a battery in these systems. When the ambient energy is
collected, it must be temporarily stored to provide the required current at a time when: 1) it is needed (IoT
nodes have low duty cycles, which is a sensor taking periodic air temperature samples that might only be
active a few milliseconds per hour, and can be in sleep mode the remaining time) or 2) when the source of
energy is not available (e.g., no sun’s rays at night). Classical rechargeable coin cell batteries can be used
in this manner and so can thin film rechargeable solid-state batteries as well as supercapacitors.[32]

A key consideration that affects power management in an energy harvesting system is that instead of
minimizing the energy consumption and maximizing the lifetime achieved, as in classical energy storage
operated devices, the system operates in a so-called energy neutral mode by consuming only as much energy
as harvested.

2.2 Wireless Sensor Networks

Wireless sensor networks (WSNs) are typically embedded real-time systems. They are composed of a
collection of sensor nodes designed to perform a common duty and implement tasks in charge of sensing,
processing, and communicating data. Today, most of sensor nodes are powered by limited-energy sources,
typically small batteries. This makes energy efficiency a vital criterion in the development of WSNs. So,
the main emphasis has been placed on prolonging the lifetime of WSNs.
Any sensor node is equipped with four components as depicted in Figure 2.1: 1) a sensing unit to capture
data such as temperature, pressure, humidity, etc. 2) a micro-processor (or micro-controller) to process the
data; 3) a transceiver for transmitting data and 4) an energy storage unit to supply energy to all the compo-
nents. It is well-understood that data communication in a sensor node consumes much more energy than
data computing.

The major sources of existing environmental energy for WSNs are solar, wind, vibration and thermal.
In order to enable sensor nodes to take advantage from EH technology, a new type of sensor node equipped
with an EH unit has been developed to perpetuate the lifetime of WSNs [33].

Figure 2.2 presents the system architecture of a wireless sensor node which is composed of the following
components: 1) The energy harvester(s), responsible of converting external ambient or human-generated
energy to electricity; 2) a power management unit, that draws electrical energy from the harvester. Then
the energy is stored or delivered to the other system components for immediate usage; 3) energy storage,
for conserving the harvested energy for future usage; 4) a microcontroller that consumes the energy due to
processing activities; 5) a radio transceiver which consumes energy by transmitting and/or receiving data;
6) sensing equipment; 7) A/D converter to digitize analog signals generated by the sensors and makes it
available to the microcontroller for additionnal processing, and 8) memory to store data and code.
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Figure 2.1: Architecture of a wireless sensor node [1].

Figure 2.2: An Energy Harvesting sensor node.

2.3 Environmental energy sources

Energy harvesting devices have to capture small amounts of energy over a long time from sources, such
as ambient light, wind, vibration, linear motion, temperature differential, radio frequency (RF) energy, etc.
We now present the most usual types of energy source and we provide a brief description of them and
relevant references. Before going into details, the variety of energy sources are shown in Figure 2.3.

2.3.1 Mechanical energy
Mechanical energy harvesting denotes the technique of converting mechanical energy into electricity by

using vibrations, mechanical stress and pressure, strain from the surface of the sensor, high-pressure motors,
waste rotational movements, fluid, and force. Converting the energy of the displacements and oscillations
of a spring mounted mass component inside the harvester into electrical energy is the main pillar behind
mechanical energy harvesting [34, 35].
Mechanical energy harvesting can be: piezoelectric, electrostatic and electromagnetic.

Piezoelectric energy harvesting is based on the piezoelectric effect for which mechanical energy from
pressure, force or vibrations is transformed into electrical power by straining a piezoelectric material. The
technology of a piezoelectric harvester is usually based on a cantilever structure with a seismic mass at-
tached into a piezoelectric beam. The latter has contacts on both sides of the piezoelectric material [35].
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Figure 2.3: Summary of energy harvesting systems [1]

In particular, strains in the piezoelectric material generate charge separation across the harvester, creating
an electric field, and hence voltage, proportional to the stress generated [36, 37]. The variation of voltage
depends on the strain and time, and an irregular AC signal is generated. Piezoelectric energy conversion
has the benefit that it produces the desired voltage directly, without the need for a separate voltage source.
However, piezoelectric materials are breakable and can suffer from charge leakage [38][39][35]. Examples
of piezoelectric energy harvesters are presented in [40][41][42]

Electrostatic energy harvesting is based on varying the capacitance of a vibration dependent variable
capacitor [43][39]. In order to scavenge the mechanical energy, a variable capacitor is created by oppos-
ing two plates, one fixed and one moving, and is initially charged. When vibrations separate the plates,
mechanical energy is transformed into electrical energy from the capacitance variation. This type of har-
vesters can be integrated into microelectronic-devices due to their incorporated circuit-compatible nature
[44]. However, an additional voltage source is required to initially charge the capacitor [39]. Recent efforts
to prototype sensor-size electrostatic energy harvesters are presented in [45][46].

Electromagnetic energy harvesting is based on Faraday’s law of electromagnetic induction. An electro-
magnetic harvester utilizes an inductive spring mass system for converting mechanical energy to electrical
one. It induces voltage by moving a mass of magnetic material through a magnetic field created by a sta-
tionary magnet. Particularly, vibration of the magnet attached to the spring inside a coil changes the flux
and generates an induced voltage [43][35][36]. The benefits of this process don’t include mechanical con-
tact between parts nor separate voltage source, which improves the reliability and reduces the mechanical
damping in this type of harvesters [38, 39]. However, it is difficult to integrate them in sensor nodes because
of the large size of electromagnetic materials [38].
Some examples of electromagnetic energy harvesting systems can be found in [47][48].

Photovoltaic energy harvesting is the technique of converting incoming photons from sources such as
solar or artificial light into electricity. Photovoltaic energy can be harnessed by using photovoltaic (PV)
cells. These ones consist of two different types of semiconducting materials called n-type and p-type. An
electrical field is formed in the area of contact between these two materials. Photovoltaic energy con-
version is a traditional, mature, and commercially established energy-harvesting technology. It provides
higher power output levels compared to other energy harvesting techniques and is suitable for larger-scale
energy harvesting systems. However, its generated power and the system efficiency strongly depend on
the availability of light and on environmental conditions. Other factors, including the materials used for
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the photovoltaic cell, affect the efficiency and level of power produced by photovoltaic energy harvesters
[38][49]. Some recent examples of photovoltaic harvesters are presented in [50][51][52][53].

2.3.2 Thermal energy

Thermal energy harvesting is implemented by thermoelectric energy harvesting and pyroelectric energy
harvesting.
Thermoelectric energy harvesting is the technique of creating electrical energy from temperature differ-
ence (thermal gradients) using thermoelectric power generators (TEGs). The main element of a TEG is a
thermopile formed by arrays of two dissimilar conductors, i.e., a p-type and n-type semiconductor (thermo-
couple), placed between a hot and a cold plate and connected in series. A thermoelectric harvester harvests
the energy based on the Seebeck effect, which states that electrical voltage is generated when two dissim-
ilar metals joined at two junctions that are kept at different temperatures [54]. This is because the metals
respond differently to the temperature difference, creating heat flow through the thermoelectric generator.
This generates a voltage difference that is proportional to the temperature difference between the hot and
cold plates. Energy is scavenged as long as the temperature difference is maintained.
Pyroelectric energy harvesting is the technique of producing voltage by heating or cooling pyroelectric
materials. These materials do not need a temperature gradient similar to a thermocouple. As alternative,
they need time-varying temperature modifications. Modifications in temperature change the locations of
the atoms in the crystal structure of the pyroelectric material, which generates voltage. To keep producing
power, the whole crystal should be continuously affected by temperature change. Otherwise, the produced
pyroelectric voltage gradually disappears due to the leakage current [55]. Pyroelectric energy scavenging
attains greater performance compared to thermoelectric scavenging. It supports scavenging from high tem-
perature sources, and is much simpler to get to work using limited surface heat exchange. On the other hand,
thermoelectric energy harvesting supplies higher scavenged energy levels. The maximum performance of
thermal energy harvesting is limited by the Carnot cycle [43]. Because of the various sizes of thermal har-
vesters, they can be placed on the human body, on structures, and on equipment. Some prototypes of this
type of harvesters for WSN nodes are described in [56][57].

2.3.3 Wireless energy

Wireless energy harvesting techniques can be categorized into two main categories: RF energy harvest-
ing and resonant energy harvesting.
RF energy harvesting is the technique of converting electromagnetic waves into electricity by a rectifying
antenna, or rectenna. Energy can be scavenged from either ambient RF power from sources such as radio
and television broadcasting, mobile phones, WiFi communications and microwaves, or from EM signals
produced at a specific wavelength. Although there is a great number of possible ambient RF power, the
energy of existing EM waves are exceedingly low because energy quickly decreases as the signal spreads
farther from the source. Therefore, in order to harvest RF energy effectively from existing ambient waves,
the harvester must remain close to the RF source. Another possible solution is to use a dedicated RF trans-
mitter to produce more powerful EM signals only for the purpose of providing energy to sensor nodes. Such
RF energy harvesting is able to efficiently delivers powers from micro-watts to few milliwatts, depending
on the distance between the RF transmitter and the harvester.

Resonant energy harvesting, also known as resonant inductive coupling, is the technique of delivering
and harvesting electrical energy between two coils, which are extremely resonant at the same frequency.
Particularly, an external inductive transformer device, coupled to a primary coil, can send power through the
air to a device provided with a secondary coil. The primary coil generates a time-varying magnetic flux that
passes through the secondary coil, inducing a voltage. Generally, there are two possible implementations of
resonant inductive coupling: weak inductive coupling and strong inductive coupling. The first one requires



32 CHAPTER 2 : Renewable energy for computing systems

that the distance between the coils must be very small (few centimeters). However, if the receiving coil
is quite tuned to match the external powered coil, a "strong coupling" between electromagnetic resonant
devices can take place and powering is possible over longer distances. It is worth noting that resonant
inductive coupling is considered a wireless energy harvesting technique since the primary and secondary
coil are not physically connected. Some recent examples of wireless energy harvesting techniques for
WSNs can are presented [58] [59].

2.3.4 Wind energy
Wind energy harvesting is the technique of converting wind energy (air flow) into electrical energy. A

wind turbine with proper size is used to profit from linear motion coming from wind for generating electrical
energy. Small sized wind turbines, that are eligible for producing enough energy to power WSN nodes, exist
[60]. However, effective design of miniature wind energy harvesting is still in progress, challenged by very
low flow rates, fluctuations in wind strength, unpredictability of flow sources, etc. Furthermore, even though
the performance of large-scale wind turbines is extremely efficient, small scale wind turbines show inferior
efficiency due to the relatively high viscous drag on the blades at low Reynolds numbers [61][34].

2.3.5 Biochemical energy
Biochemical energy harvesting is the technique of converting oxygen and endogenous substances into

electricity through electrochemical reactions [62][63]. Specifically, biofuel cells behaving as active en-
zymes and catalysts can be exploited to scavenge the biochemical energy in biofluid into electrical energy.
Human body fluids comprise many types of substances that have scavenging potential [64]. Amongst these
substances, glucose is the most common used fuel source. As known in theory, it releases 24 free electrons
per molecule when oxidized into carbon dioxide and water. Even if biochemical energy harvesting can be
better than other energy harvesting processes with regards to continuous power output and biocompatibility
[62], its efficiency relies on the type and availability of fuel cells. Advantages and disadvantages using
enzymatic fuel cells for energy production engenders advantages and disadvantages are presented in [65].
Research efforts such as [62][63] are examples of recent proposed prototypes that use biochemical energy
harvesting to provide energy to microelectronic devices.

2.3.6 Acoustic energy
Acoustic energy harvesting is the technique of converting high and continuous acoustic waves from the

environment into electrical energy by using an acoustic transducer or resonator. The acoustic emissions
can be in the form of longitudinal, transverse, bending, and hydrostatic waves varying from very low to
high frequencies [66]. Typically, acoustic energy harvesting is used where local long term power is not
available, as in the case of remote or isolated locations, or where cabling and electrical commutations are
difficult to use such as inside sealed or rotating systems [67, 66]. However, the performance of harvested
acoustic power is low and such energy can only be harvested in real acoustical environments. Harvested
energy from acoustic waves theoretically yields 0.96 µW /cm3 , which is much lower than what is attainable
by other energy harvesting techniques. In principle, ongoing researches are still performed to investigate
this kind of harvesters.
Implementations of acoustic energy harvesting systems can be found in [68][69].

All the previously described harvesting techniques can be combined and concurrently used on a single
platform (hybrid energy harvesting).

A survey of the quantity of energy which can be harvested from different sources is given in Table 2.1.
We show the power density for each energy harvesting technique. The power density gives the harvested
energy per unit volume, area, or mass. Common unit measures of power density include watts per square
centimeter and watts per cubic centimeter.
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Table 2.1, taken from [2], shows power outputs for typical energy harvesting devices.

Table 2.1: Power density of energy scavenging techniques [2]

Energy Harvesting technique Power density

Photovoltaic Outdoors (direct sun): 15 mW/cm3

Outdoors (cloudy day): 0.15 mW/cm3

Indoors: < 10 mW/cm3

Thermoelectric Human: 30 µW/cm3

Industrial: 1 to 10 µW/cm3

Pyroelectric 8.64 µW/cm3 at the temperature rate of 8.5◦ C gradient

Piezoelectric 250 µW/cm3

330 µW/cm3 (shoe inserts)

Electromagnetic Human motion: 1 to 4 µW/cm3

Industrial: 306 µW/cm3 or 800 µW/cm3

Electrostatic 50 to 100 µW/cm3

RF GSM 900/1800 MHz: 0.1 µW/cm3

WiFi 2.4 GHz: 0.01 µW/cm3

Wind 380 µW/cm3 at the speed of 5 m/s

Acoustic (noise) 0.96 µW/cm3 at 100 dB

0.003 µW/cm3 at 75 dB

In our work, we are mainly concerned by solar energy. There are many reasons for using this type of en-
ergy: light is present outdoor as well as indoor which makes it accessible by a lot of wireless sensor nodes,
high power output compared to other scavenging technologies, maturity of this harvesting technology and
absence of moving parts in the harvester which makes solar panels maintenance-free.

For efficient utilization of energy, we need to buffer it for temporary storing. Characteristics of energy
storage technologies are presented in the next section.

2.4 Energy Storage Devices

The production of renewable energies strongly depends on the variable environment conditions (sun-
shine, etc.). It does not follow the growing trend of demand. Therefore, it seems crucial to store this energy
at the time it is harvested for future use. Although it is possible in some particular applications to directly
consume the energy obtained by the harvester, with no energy storage (harvest-use architecture [33]), in
general it does not meet the constraints of most of applications. Let us recall that the application software
that executes in a node is composed of real-time tasks with timing constraints. Such tasks should execute
and consume energy in specific time intervals. And this imposes that sufficient energy is available during
these time intervals.

A reasonable architecture enables the node to directly use the harvested energy. But it also includes a
storage component that acts as an energy buffer for the system, with the main objective of preserving the
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harvested energy. Once the harvesting rate is greater than the current usage, the buffer unit stores surplus
energy for later use, thus supporting variations in the power level emitted by the environmental source.

For energy storage, there are two widely used alternatives: secondary rechargeable batteries and super-
capacitors (or ultracapacitors).

2.4.1 Batteries

Primary (non rechargeable) batteries compared to secondary (rechargeable) batteries are relatively long
lasting. However, a large-scale adoption would result in important environmental issues. Rechargeable
batteries require to be accessed for recharging them which is not always possible.

Batteries are the most widely used energy storage technology for all electronic devices [70]. It is due
to the generation of energy-hungry portable devices such as digital cameras, camera phones, PDAs, ...
etc. Lithium-ion (Li-Ion) batteries are nowadays the secondary batteries leader of the market for powering
portable devices. NiCd batteries market is shrinking and is being replaced by NiMH for environmental
reasons.
Since the battery is the most important design choice regarding system lifetime, it is vital to investigate the
characteristics of a battery type whenever we need to buffer the harvested energy. Several types of battery
technologies exist, each with different strengths and weaknesses. Some have a low discharge rate but may be
dangerous to the environment. Other ones can store a large amount of energy but have a high discharge rate.

Several factors must be taken into consideration when operational lifetime is estimated [71, 72]:
– Ampere-hour: It is the amount of electric charge carried by a current of 1 A flowing during 1 hour.
– Capacity (C) or Nominal Capacity (NC): It is the amount of charge expressed in Ampere-hour that

can be delivered by a battery.
– Charge rate: A charge or discharge current of a battery is measured in C-rate. A discharge current of

1C draws a current equal to the rated capacity. For example, a battery rated at 1000 mAh provides
1000 mA for one hour if discharged at 1C rate.

– Cycle life: It is the number of cycles that a battery can be charged and discharged. Primary batteries
or non-rechargeable batteries have a unitary cycle life whereas secondary batteries are also called
rechargeable batteries and have a cycle life greater than one, dependent on the battery chemistry.

– Nominal voltage: The nominal voltage, also called average discharge voltage, is defined as the mid-
point voltage of the battery voltage range during charge or discharge. For example, a battery with a
voltage range of 1.8V to 2.8V has a nominal voltage of 2.3V .

– Self-discharge: Capacity loss during storage due to the internal leakage.
The most commonly used batteries are LiPo and NiMH due to their high energy density, low self discharge,
and high number of recharge cycles. Today, processors have a power consumption in sleep mode that is
lower than most batteries’ self discharge. This makes it increasingly important to choose efficient battery
cells. A summary about the most known battery types is found in table 2.2.

To conduct an efficient selection of the energy storage, it is not sufficient to study the characteristics
of the device to be powered. It becomes necessary to investigate how to charge the device. For example,
some batteries, such as LiPo and NiMH, have relatively sensitive charging and discharging procedures. On
the contrary, NiMH batteries can often be recharged up to 1000 times if managed properly, but the charge
current can be several hundreds of milliamps (mA) for several hours, which is not a feasible output from
solar panels. Moreover, LiPo batteries have similar requirements on charge current. As a result, we must
trickle charging the battery, that means keeping the battery fully charged by charging it constantly with a
very small current. It can be achieved even by small solar panels.
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Table 2.2: Battery types [3]

Type Voltage Energy Density Specific Energy Self discharge

Lead-acid 2.0 V 60− 75 Wh/dm3 30− 40 Wh/kg 3− 20 % /month

Nickel Cadmium 1.2 V 50− 150 Wh/dm3 40− 60 Wh/kg 10 % /month

Nickel Metal Hydrid 1.2 V 140− 300 Wh/dm3 30− 80 Wh/kg 30 % /month

Lithium-Ion 3.6 V 270 Wh/dm3 160 Wh/kg 5 % /month

Lithium-polymer 3.7 V 300 Wh/dm3 130− 200 Wh/kg 1− 2 % /month

It is also important to note that some battery types have a severely reduced lifetime if they are recharged
incorrectly. To address this issue, rechargeable batteries should be only charged under suitable conditions
with the correct charge current. It is also good to fully discharge the battery and then recharge it to prolong
its lifetime. The problem is that the system will need a secondary energy storage to be powered when the
battery is being cycled. Supercapacitors can be used for this purpose.

2.4.2 Supercapacitors
Supercapacitors are similar to common capacitors, but they offer very high capacitance with small size.

Compared to rechargeable batteries, they offer various benefits [73]. First of all, when typical lifetimes
of an electrochemical battery is less than 1000 cycles, supercapacitors can be recharged and discharged
virtually with unlimited number of times [74]. Second, they can be quickly charged using simple charg-
ing circuits, thus reducing system complexity. They do not need full-charge or deep discharge protection
circuits. They also have higher charging and discharging efficiency than electrochemical batteries [73]. A
further advantage is reduction of environmental issues related to battery disposal. Thanks to these charac-
teristics, many platforms with harvesting opportunities use supercapacitors as energy storage, either as the
unique storage unit [75] or in combination with batteries [76] [77] [78]. Other systems focus on platforms
with only rechargeable batteries [79] [80] [49].

Supercapacitors are rated in units of 1 F and higher. The gravimetric energy density is 1− 10 Wh/kg.
This energy density is lower in comparison to batteries. Supercapacitors provide the energy of approxi-
mately one tenth of the NiMH battery. The voltage of the supercapacitors drops linearly from full voltage to
zero volts. Consequently, supercapacitors are unable to deliver the full charge to the load. The percentage
of charge that is available to be given depends on the supply voltage of the load to power [74].

Supercapacitors are insensitive for over and under-charge, and can be recharged a virtually unlimited
number of times. These features make supercapacitors ideal to be used especially by sensor nodes equipped
with energy scavenging devices. This is because energy-scavenging devices often cannot produce a 100%
stable charge current over time.

The major disadvantages with supercapacitor are: the extremely high self-discharge rate since it can
drain itself in only a few days. They are unable to deliver the full energy stored since the voltage discharge
curve is not flat. Supercapacitors have low voltages and low energy density.

Advantages of supercapacitors are: unlimited cycle life (not subject to the wear and aging experienced
by the electrochemical battery), low impedance (enhances pulse current handling by paralleling with an
electrochemical battery), rapid charging (low impedance supercapacitors charge in seconds), simple charge
methods (voltage-limiting circuit compensates for self-discharge; no full-charge detection circuit needed)
and cost-effective energy storage (lower energy density is compensated by a very high cycle count).
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2.5 Option beyond ambient energy harvesting
The concept of energy harvesting has been around for over a decade. However, the implementation of

ambient energy-powered systems in the real-world environment has been cumbersome, complex and costly.
For example, solar energy harvesting is a definite possibility if the panel size is dimensioned appropriately.
Also, researchers and vendors are concentrating on many indoor applications where solar energy is not a
possible solution. Moreover, solar photovoltaic panels are expensive to manufacture. Nevertheless, there
are several companies who are focusing on finding efficient energy scavengers for embedded devices.

The main application sectors are: military (battlefield surveillance, reconnaissance of opposing forces
and terrain, battle damage assessment), environmental (tracking the movements of animals, forest fire detec-
tion, observation of small size bio-diversity, level of air pollution,...) and health (telemonitoring of human
physiological data,...).

New companies such as AdaptiveEnergy, EnOcean, Cymbet and Perpetuum, among others are special-
ized in energy harvesting embedded systems. Also, big electronics’ manufacturers, such as Texas Instru-
ment and Analog Devices Inc, are building microcontrollers, digital signal processors and sensors adapted to
the energy harvesting technology. In what follows, we describe typical products based on energy harvesting.

– Micropelt [81] offers products powered by thermoelectric and inductive energy harvesting. One of
them is MPG-D655 2.4; Thin-film Thermogenerator Chip converts heat energy (temperature differ-
ence) into electrical energy. The miniaturized dimensions of the MPGD655 makes the thermogen-
erator chip ideal for ultracompact equipment. Due to the 288 thermoelectric pairs, the MPG-D655
outputs an open circuit voltage of 80 mV/K, which enables extremely efficient voltage converter
solutions (DC-Booster) and operation at very low temperature differences (e.g. 5 degrees Celsius).

Figure 2.4: Micropelt thin-film thermoelectric chip: MPG-D655

– Vibration harvesters V21BL from Mide Volture [82] are attractive because they have two piezo
fibers packaged for serial or parallel connection. The parallel connection offers a peak-to-peak of
20 V. Figure 2.5 shows the fiber mounted on the box that houses a motor and cam for generating
vibrations. To ensure that the system resonates effectively with the source, a suitable tipping mass is
applied. The piezo fiber generates peak power at resonance.

– EnOceaon [83] offers the energy module ECO 200, an energy converter for linear motion (Figure
2.6). It can be used to power the PTM 330 radio module or derivates. The energy output at every
actuation of the spring is sufficient to transmit 3 sub-telegrams with a PTM 330 module (enables
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Figure 2.5: Vibration energy generation from Mide Volture’s V21BL-piezo fiber.

the implementation of wireless sensors and switches without batteries. Key applications are handled
remote controls or industrial switches). Possible applications are miniaturized switches and sensors
in building technology and industrial automation.

Figure 2.6: ecOcean ECO-200.

2.6 Conclusion
This chapter was concerned by an introduction to the new generation systems said to be energy harvest-

ing since powered through the energy that may be created from a source by some physical process. The
Internet of Things will need the energy harvesting technology so as to power all the autonomous object-
s/sensors that compose it. A wireless sensor is typically an embedded system with real-time constraints.
This is why we have focussed on the possible ambient energy harvesting solutions for electronic devices.
We also have presented the technology for storing energy i.e. rechargeable batteries and super capacitors
since energy needs to be stored before consumption. Finally, we have presented some typical electronic
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products that use the energy harvesting technology.

In the next chapter, we will describe the real-time scheduling issue that arises in energy harvesting real-
time systems. As introduced in the current chapter, what characterizes energy harvesting systems is both
the possible variation in energy production by the source and limitation in the energy that can be stored. Let
us recall that we are mainly concerned with wireless sensor nodes. Such devices are constrained in weight,
volume and price. All these parameters impact the selection of the energy harvester, the energy storage unit
and the computing device. As a consequence, a central question will be to make the best use of the energy
and the processing unit under physical limitations and the classical real-time constraints that were described
in the previous chapter.
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CHAPTER 3

REAL-TIME SCHEDULING WITH ENERGY
HARVESTING CONSIDERATIONS

Summary

In this chapter, we give the specificities of the energy harvesting device under study. Next, we de-
scribe the issue due to energy autonomy of such device which consists in guaranteeing energy neutrality.
We describe scheduling techniques firstly aimed to minimize energy consumption in classical energy pow-
ered systems and secondly those which are adapted to energy autonomous systems by achieving energy
neutrality.
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3.1 Introduction
The objective of any autonomous system is to ensure perpetual operation without human intervention

thanks to batteries (or any other type of energy storage devices), which recharge continuously over time
from a renewable energy source. Existing alternative energy sources in our environment described in the
previous chapter can be exploited to achieve this goal: it is energy harvesting. It consists of converting
energy from the environment and filling an energy storage unit formed by a battery or a supercapacitor.
Such an energy storage unit is required because the embedded system needs to operate continuously with-
out missing the available energy (in the storage unit). So using renewable energy (solar, piezoelectric, ..)
to power embedded systems requires to reconcile the performances and energy consumption. And this
constraint is added to time constraints in real-time systems where the violation of one of them will lead to
system failure. Later, we will recall the main scheduling techniques that exist in the literature.

An autonomous system is built around three components (Figure 3.1):
– The energy harvester choosed in dependance on the nature of the environmental energy, the amount

of energy required, etc.
– The energy storage unit, such as a battery or a super-capacitor, choosed in dependance on the dynam-

ics of the system, the design constraints and/or cost constraints, etc.
– The energy consumer which here represents the execution support of the real-time tasks. In this

chapter, we assume that the energy consumed by the operational part of the embedded device (actu-
ator, LED, etc.) is separately powered, as in the transmitter/receiver module. The energy consumer
therefore denotes the electronic card built around a micro-controller or a micro-processor.
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Figure 3.1: Diagram of the ambient energy harvesting system.

3.2 Approaches for minimizing energy consumption
To reduce the energy consumption of a computer system, two types of methods are traditionally applied.
– Methods known as Dynamic Power Management (DPM) allow dynamic management of system ac-

tivity by switching from idle mode to active mode and vice versa [84]. This is because DPM methods
reduce the power consumption of the system without significantly degrading the performance by
switching to standby mode when there is no task to be performed, and to switch again to active mode
when the processor is requested. These methods may apply to processors that have a sleep function.
Therefore, the processor is temporarily switched off whenever necessary. This means that it will con-
sume little energy (called static energy) in this idle state. For example, the processor Intel 80200 has
three operating modes with two energy-saving modes that differ by the number of components [84].
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– Methods known as DVFS (Dynamic Voltage and Frequency Scaling) allow to dynamically change
the frequency of the processor when necessary. Therefore, these methods apply to processors which
permit varying the supply voltage and thus the operating frequency [84]. However, let us note that
if the processor frequency is reduced, the running job will take longer time to execute and possibly
will violate its deadline constraint. For example, if the frequency is halved (reduced to half), the job
will take twice as long to execute. Since energy consumption is a quadratic function of frequency,
the reduction in energy consumption has a significant impact of energy consumption. In this context,
saving energy is done at the expense of stretching the execution times which must be controlled so
that the timing constraints of all the hard deadline tasks can still be met. For example, the Trans-
meta Crusoe processor, the lpARM processor (UC Berkeley) and the Intel Pentium 4M processor are
candidate for the DVFS techniques [85, 86] Scheduling real-time tasks on such processors consists
to establish an execution order between the tasks, in order that each one of them may be fully exe-
cuted before deadline. Additionally, the scheduler has an energy management capability in order to
determine at all time instants the eligible operating frequency of the processor so to minimize energy
consumption.

Techniques for reducing energy consumption using the DPM method have been studied by Benini et
al. in [87]. Yao et al. [88] were the first researchers to propose a scheduling algorithm that computes
the energy operating frequencies for a set of hard deadline tasks such as periodic ones. The underlying
scheduling policy is EDF ans has been proved optimal in the sense of minimal energy consumption. Then,
Aydin et al. [89] proposed an approach based on the DVFS technique. In that work, the power received by
the source is constant. The algorithm permits to minimize the total energy consumption of periodic tasks
by guaranteeing their execution before deadline. Techniques have also been developed for periodic and
aperiodic tasks to reduce the energy consumption of the system [90, 91].

3.3 Scheduling approaches for energy neutrality

In this part, we present algorithms which have been presented in the literature for scheduling tasks
that operate in real-time energy harvesting systems. Research in that domain is relatively recent since first
articles appeared in the beginning of the current century. In most of works, a system is composed of a
processing unit that executes tasks with deadlines and consequently consumes the energy that can be stored
in a reservoir after production by an environmental source. In some papers, power delivered by this source
is invariable along time. In most of papers, the energy storage unit is assumed to be fully charged at the
initial time.

From now, it is important to characterize the notion of optimality attached to any scheduling algorithm
in the energy harvesting context. Let us assume a given platform which is characterized by the storage unit
with given capacity, the energy harvester with given profile of energy production. A scheduling algorithm
is optimal if it produces a feasible schedule each time another scheduler produces a feasible schedule under
the same conditions i.e. with identical energy harvester and identical energy storage unit.

3.3.1 Algorithm of Allavena and Mossé

In [92], Allavena et al. address the problem of finding a feasible schedule for a set of independent peri-
odic tasks with the same periods (frame based systems). Consequently, the order of task execution within
a frame is not crucial for whether the task set is schedulable or not. Moreover, the power scavenged by the
energy source is assumed to be constant and all tasks consume energy at a constant rate. Tasks are separated
into 2 categories: recharging ones and discharging ones. Whenever a recharging task executes, the energy
level of the storage unit increases.
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The basic principle of the scheduler is to execute tasks successively from the same category. The sched-
uler, therefore, chooses discharging tasks so that the available energy level in the storage unit decreases as
much as possible to reach the minimum level Emin. Then it selects recharging tasks such that the energy
level increases as much as possible until it reaches the maximum level Emax, thus maintaining the energy
level between the two limits Emin and Emax. Preemption occurs whenever the energy level reaches one of
these two values.

Every task is characterized by parameter wi and belongs to one of the two lists: list of recharging tasks
R or list of discharging tasks D. Furthermore, if the sum of power consumption causes the energy level to
finish below its original level (|R| < |D|), an idle time tidle that causes the system to recharge with rate r is
inserted, where tidle = |D|−|R|

r
.

ConditionR < D is initially verified off-line and then tested on-line each time the energy level reaches
one of the two boundaries. If this condition is initially true and if the sum of the execution time (Ci) plus the
idle time exceeds the deadline (

∑n
i=1Ci + tidle ≤ Di), it can be concluded that the system is not feasible.

Condition (
∑n

i=1Ci + tidle ≤ Di) is therefore a necessary and sufficient schedulability condition.

This work is certainly the first one to concentrate on a rechargeable system with hard real-time con-
straints. The approach is unfortunately unusable because based on a non realistic assumption. As a sum-
mary, the main drawbacks of this work are the following:
(i) The model is too restrictive (on energy consumption, task timing parameters), i.e. the solution only deals
with frame based systems under the restrictive hypothesis where each task is characterized by an instanta-
neous power consumption which is constant along time.
(ii) The solution consists of an off-line scheduler which does not provide sufficient flexibility to new gener-
ation real-time applications.

3.3.2 Scheduling algorithm LSA
The Lazy Scheduling algorithm (LSA) [93] firstly described in 2006 is one of the most interesting

primitive work related to real-time scheduling with energy harvesting considerations. LSA can be described
as a variant of the EDF scheduling algorithm since tasks are selected for execution according to their relative
urgency. Let us recall that classical EDF is non idling which signifies that the processor is never let idle if
at least one task is pending for execution. On the contrary, LSA is an idling version of EDF that may let
the processor idle depending on energy availability either currently or in future. LSA specifically intends to
keep the energy storage level as high as possible and starts executing task τi at time t only if the following
conditions are met:

1. τi is ready for execution,

2. τi has the earliest deadline among ready tasks,

3. The sensor node will not run out of energy if it executes τi to completion (at its maximum power),

4. τi will not miss its deadline if the node starts executing it at time t.

LSA introduces the concept of energy variability characterization curve (EVCC), which captures the dy-
namics of the energy source. This concept is used to determine the schedulability of a set of tasks. More
particularly, the LSA algorithm uses an off-line schedulability test, given the EVCC of the energy source,
the capacity of the energy storage, and the maximum power requirement of a running task. LSA determines
whether all the deadlines of a given set of tasks can be met or not.

Although proved to be optimal in [94], LSA suffers several drawbacks: (i) The energy consumed by any
task is assumed to be proportional to its execution time. The ratio is given by the speed of the processor.
(ii) Optimality is effective only if the processor is able to continuously adjust its consumption power to
the source power. (iv) The performance of LSA is highly dependent on the process for predicting future
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incoming energy. This aspect is the most challenging one in scheduling for real-time energy harvesting
systems. Many applications based on this algorithm were recently proposed:

– LDPC Decoding: a complexity reducing method for iterative message passing decoding algorithms
of Low-Density Parity-Check (LDPC) codes in [95],

– L-CSMA/CA scheme: it allows individual nodes to continually estimate the current demand for a
broadcast channel and adjust their transmission schedules accordingly in [96],

– Lazy scheduling for assigning jobs in hypercube computers: a scheduling scheme which is uded
along with the buddy allocation scheme to process jobs in a multiuser environment in [97].

3.3.3 Multi-Version scheduling algorithm
The multi-version scheduling algorithm introduced in [98] considers that each periodic task has several

execution versions with different resulting values. The objective is to execute the most important and
valuable versions while meeting all the timing and energy constraints. This static (offline) scheduling
solution determines the best task versions, and their execution speeds the maximize rewards. While in [99],
the authors proposed dynamic algorithms with Dynamic Voltage Scaling (DVS), according to which the
node periodically check the current energy storage and accordingly reschedule the tasks.

3.3.4 EDeg scheduling algorithm
In [100], [101], [102], and [103] EL Ghor et al. introduce a new online scheduling algorithm, called

EDeg (Earliest Deadline with energy guarantee) which is a variant of the Earliest Deadline First algorithm.
EDeg maintains energy neutrality by making sure that before a task is started, sufficient energy will be avail-
able for all future occurring tasks. This scheduler assumes that for taking any decision, it has knowledge
on future task arrival times. Edeg is clearly an idling scheduler which may decide when to let the processor
in idle state and when to let it busy executing the most urgent ready task. When the stored energy drops
below a given threshold, EDeg stops the current running task and starts recharging the storage unit during
maximum authorized time. This recharging time is computed so as to keep the system slack time positive
and consequently so as to avoid any deadline missing.
The relative performance of the heuristic EDeg has been evaluated in [102]. This study has permitted to
prove that EDeg outperforms the classical EDF scheduler in terms of deadline success even if no theoretical
evaluation permitted to formally establish its superiority. The requirement to know in advance arrival times,
deadlines, and energy demands of all the tasks, seriously limits the applicability of this algorithm in real-life
application scenarios. In addition, tasks are assumed to be periodic.

3.3.5 Fixed priority scheduling algorithms
With fixed priority settings, research is recent since the first works appeared in 2011 [104, 105, 106].

A novel fixed priority driven algorithm called (FPCASAP ) was proposed and proved to be optimal (among
fixed priority schedulers). It is an idling variant of the well known non-idling FP scheduler that assigns
a static priority to every task. As EDeg, the FPCASAP algorithm requires clairvoyance to predict future
occurring tasks and future incoming energy [107].

3.4 Model and Terminology
We have given a brief state of the art on schedulers for energy harvesting real-time systems. Now, we

will precisely describe the model studied in our thesis. And we will be prepared to describe the dynamic
priority scheduler ED-H introduced in 2014 by M. Chetto which is central for contributing to the aperiodic
task servicing issue [8].
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3.4.1 System model
Hereafter, we describe the so-called RTEH model (Real Time Energy Harvesting) that comprises a

computing element, a set of jobs, an energy storage unit, an energy harvesting unit, and the environmental
energy source (Figure 3.2).

Production
 and Energy Harvesting

Pp(t)

Energy Prediction 
Algorithm
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Ready Queue

Job2 Job3 Job4 Job5

Figure 3.2: The RTEH model.

3.4.1.1 Job model

We will consider the following assumptions: A periodic task set τ can be denoted as follows: τ =
{τi | 1 ≤ i ≤ n}. Each periodic task τi has a period Ti, a relative deadline Di, a constant worst case execu-
tion time Ci (normalized to processor computing capacity), and a constant worst case energy requirement
Ei. Ci and Ei can be derived by a static analysis of the source code. So we use a periodic task model with
the four-tuple (Ci, Ei, Di, Ti) associated with τi. We consider a constrained-deadline task set τ in which
0 < Ci ≤ Di ≤ Ti. Task τi generates jobs which are released at times 0, Ti, 2Ti,... and must be completed
by times Di, Ti +Di, 2Ti +Di,... The hyper-period H of a periodic task set is defined as the least common
multiple (LCM) of the request periods Ti, that is H = LCM(T1, T2, ..., Tn). The processor utilization of
the periodic task set τ is Upp =

∑
τiετ

Ci

Ti
which is less than or equal to 1. Similarly, we define the energy

utilization of τ as Uep =
∑

τiετ
Ei

Ti
which characterizes the average energy consumption of τ per time unit.

A job is any request that a task makes. A four-tuple (rj, Cj, Ej, dj) is associated with a job Jj and gives
its release time, WCET, WCEC, and (absolute) deadline, respectively. The task set τ gives rise to an infinite
set of jobs which are scheduled by the optimal uniprocessor scheduler ED-H.
During each time unit, we know an upper bound on the energy consumption of every job equal to eMax

energy units. The exact amount of energy effectively drained in every time unit is however not known
beforehand.

Throughout the thesis, we will assume that the processor has one operating frequency and its energy
consumption is only due to dynamic switching energy.

3.4.1.2 Energy production model

At every time t, the harvester (e.g. solar panel) draws energy from ambient and converts it into electrical
power with instantaneous charging rate Pp(t) that incorporates all losses. The energy harvested in the time
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interval [t1, t2) is thus given by Ep(t1, t2) =
∫ t2
t1
Pp(t)dt. We assume that the energy production times can

overlap with the consumption times. The energy consumed in any unit time-slot is not less than the energy
produced in the same unit time-slot. Consequently, the residual capacity of the energy storage is never
increasing every time a job is executed. And the remaining energy needed by any job executing on the
processor has to be drawn from the reservoir. The energy produced by the source is not controllable and not
necessarily a constant value. It can be predicted with precision in an immediate future and with negligible
processing and energy costs.

3.4.1.3 Energy storage model

Our system uses an ideal energy storage unit also called reservoir (e.g. super-capacitor or rechargeable
battery) to continue operation even when there is no energy to harvest. Its nominal capacity C corresponds
to the maximum amount of energy that can be stored at any time. The energy reservoir receives power
from the harvester and delivers power to the processor. The stored energy at any time t is denoted E(t).
The energy reservoir does not leak any energy over time. If it is fully charged at time t and we continue to
charge it, energy is wasted. In contrast, if it is fully discharged at time t (energy depletion), no job can be
executed.
We consider the energy to be wasted when the storage unit is fully charged while we continue to charge
it. In contrast, the storage unit is considered fully discharged at time t if 0 ≤ E(t) < eMax denoted by
E(t) ≈ 0. The application starts with a fully charged storage unit(i.e. E(0) = C). The stored energy may
be used at any later time and does not leak energy over time.

3.4.2 Types of starvation

According to the RTEH model, a job misses its deadline if one of the two following situations occurs:
– When the job reaches its deadline at time t, its execution is incomplete because the time required to

process the job by its deadline is not sufficient.
– When the job reaches its deadline at time t, its execution is incomplete because the energy required

to process the job by its deadline is not available. The energy in the reservoir is exhausted when the
deadline violation occurs.

3.4.3 Terminology

We now give new definitions peculiar to energy constrained computing systems that we will need
throughout the remainder of this thesis.

Definition 8 A schedule Γ for τ is said to be time-valid if the deadlines of all jobs of τ are met in Γ,
considering that ∀i ∈ 1, ..., n, Ei = 0.

Definition 9 A job set τ is said to be time-feasible if there exists a time-valid schedule for τ .

Definition 10 A schedule Γ for τ is said to be energy-valid if the deadlines of all jobs in τ are met in Γ,
considering that ∀i ∈ 1, ..., n,Ci = 0.

Definition 11 A job set τ is said to be energy-feasible if there exists an energy-valid schedule for τ .

Definition 12 A scheduling algorithm S is said to be energy-clairvoyant if it needs knowledge of the future
energy production to take its runtime decisions.
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3.5 Fundamental concepts

3.5.1 Processor demand
Definition 13 The slack time of a hard deadline job Ji at current time t is given by

STJi(t) = di − t− h(t, di) (3.1)

where h(t, di) is the total processing demand of uncompleted jobs at t with deadline at or before di. STJi(t)
gives the available processor time after executing uncompleted jobs with deadlines at or before di.

Definition 14 The slack time of a periodic task set τ at current time t is given by

STτ (t) = min
di>t

STJi(t) (3.2)

The slack time gives the maximum continuous processor time that could be made available from time t
while still guaranteeing the deadlines of all the jobs generated by τ .

3.5.2 Energy demand
Definition 15 The slack energy of Ji at current time t is given by

SEJi(t) = E(t) + Ep(t, di)− g(t, di) (3.3)

where g(t, di) represents the total energy required by jobs on the time interval [t, di). It concerns both jobs
which are ready at t but not completed at di and future jobs, with deadline less than or equal to di.

Clearly, SEJi(t) represents the maximum energy surplus that could be consumed within [t, di) whilst
guaranteeing enough energy for jobs with deadline less than or equal to di. In other words, if there exists
some job Ji such that SEJi(t) = 0, executing any other job with a deadline higher than di within [t, di) will
involve energy starvation for Ji.

Definition 16 The slack energy of the periodic task set τ at current time t is given by

SEτ (t) = min
t<di

SEJi(t) (3.4)

SEτ (t) represents the maximum energy surplus that the system could consume instantaneously at t.

Definition 17 Let d be the deadline of this active job. The preemption slack energy at the current time t is
given by

PSE(t) = min
t<di<d

SEJi(t) (3.5)

PSE(t) gives the maximum energy that could be consumed by the active job whilst guaranteeing absence
of energy starvation for jobs that may preempt it.

3.6 ED-H Scheduling
Let us describe the ED-H scheduler proved to be optimal for the RTEH model.
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3.6.1 Informal description
The classic EDF is a greedy scheduler because it runs the jobs as soon as possible and thus spends

the energy stored in the storage unit ignoring the future energy needs. In the version of EDF called EDS
(Earliest Deadline as Soon as possible), the processor is never inactive if there is at least one job waiting to
run. Assuming a set of jobs that can be time-feasible by EDF, the energy starvation for a job Ji can only
come from the execution of a job Jj that runs before the arrival of Ji with dj > di. The starvation of energy
of Ji caused by Jj with dj ≤ di could not be avoided by any scheduler. It is clear that the clairvoyance
of the arrival of jobs and of the production of energy will help EDF to anticipate an energy starvation and
a deadline violation. Therefore, the main idea of the ED-H is to allow the execution of jobs only if no
starvation can occur.

3.6.2 Rules of ED-H
Let Lp(tc) be the list of jobs ready for execution at time tc. The scheduling algorithm ED-H obeys the

following rules:
– Rule 1:The order of priority of EDF is used to select the future running job in Lp(tc).
– Rule 2:The processor is imperatively idle in [tc, tc + 1) if Lp(tc) = ∅.
– Rule 3:The processor is imperatively idle in [tc, tc + 1) if Lp(tc) 6= ∅ and one of the following

conditions is satisfied:

1. E(tc) ≈ 0

2. PSEτ (tc) ≈ 0

– Rule 4: The processor is imperatively busy in [tc, tc + 1) if Lp(tc) 6= ∅ and one of the following
conditions is satisfied:

1. E(tc) ≈ C

2. STτ (tc) = 0

– Rule 5:The processor can equally be idle or busy if Lp(tc) 6= ∅, 0 < E(tc) < C, STτ (tc) > 0 and
PSEτ (tc) ≈ 0.

Description of ED-H

– The processor must be inactive if the energy storage unit is empty, or if the execution of a job pre-
vents at least one job in the future from being executed because this execution results in an energy
starvation; the preemption slack energy being insufficient at time tc.

– The processor cannot remain inactive if the energy level of the energy storage unit is at its maximum
or if the availability of the processor leads to deadline violation due to a zero slack time at time tc.

– The processor may equally adopt the idle or active state if the energy storage unit is neither full nor
empty, and if the system has both a non-null slack time and a non-null preemption slack energy.

– We begin to recharge the energy storage unit when it is empty or when there is not enough energy to
guarantee the possible execution of all future jobs.

In the following example, the preemption slack energy is illustrated:

Example 7 Let us consider two jobs J1 and J2 with release times r1 = 2, r2 = 0, execution times C1=1,
C2 = 2, energy consumptions E1 = 12, E2 = 15, absolute deadlines d1 = 6, d2 = 8. Let us consider that
the energy level of the battery at time 0 is given by E(0) = 29, the capacity of the battery is C = 40 and
the source power is constant and given by Pp = 5.

At time 0, J2 is the highest priority task that is ready to be processed. Here, computation of the preemp-
tion slack energy is necessary because J1 with deadline less than deadline of J2 will be released after time
t = 0. Preemption Slack energy is calculated as follows:
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SE(J1, 0) = E(0) +

∫ 6

0
Ppdt− E1 = 47

SE(J2, 0) = E(0) +
∫ 8

0
Ppdt− (E1 + E2) = 42

PSE(0) = min(SE(J1, 0), SE(J2, 0)) = 42 > 0
Since E(0) = 29 and preemption slack energy is positive, J2 is authorized to execute immediately. At

time t = 2, E(2) = 24. Now, J1 has the highest priority. It is executed till t = 3, where E(3) = 17 energy
units 3.3.
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Figure 3.3: Illustration of Preemption Slack Energy.

Now, an example illustrating the ED-H schedule is presented:

Example 8 Consider a periodic task set Γ that is constituted of two tasks, Γ = {τi | 1 ≤ i ≤ 2 and τi =
(Ci, Di, Ti, Ei)}. Let τ1 = (3, 6, 6, 8) and τ2 = (2, 8, 8, 5). We suppose that the energy storage capacity is
E = 4. To simplify, the rechargeable power, Pp, is taking constant along time and equals 2.

Figure 3.4 represents the resulting schedule under ED-H over the hyperperiod H = 24. Let us describe
it.

First of all, we have to schedule the periodic task set Γ according to ED-H. Since all the tasks are ex-
ecuted before their deadline and without expending the energy reservoir, we confirm that Γ is schedulable
(Figure 3.4). In details:
At time t = 0, all tasks are released. τ1 is the task with highest priority and is executed until t = 3 where
E(3) = E(0) − E1 + Pp ∗ C1 = 2 energy units. At time t = 3, τ2 is the task with highest priority and is
executed until t = 5 where E(5) = E(3)− E2 + Pp ∗ C2 = 1 energy unit.
From time t = 5 up to t = 6, the processor remains idle because there are no pending tasks. During that
time interval, the energy storage will recharge and the energy level at t = 6 is given byE(6) = E(5)+Pp =
3 energy units.
τ1 is now the highest priority task and is executed until t = 9 where the capacity of energy storage becomes
1 energy unit. At t = 9, τ2 is the highest priority task ready to be processed but, for execution, there is
insufficient energy in the energy storage unit. So, we have to insert an idle time to let the processor passive
as long as the energy storage has not replenished completely and the further start time of the next periodic
task has not been reached. The slack time is equal to 1. Hence, the processor is let idle till t = 10 where the
energy reservoir will recharge leading to E(10) = 3 energy units. At time t = 10, τ2 is the highest priority
task, ready to be processed, runs and finishes at t = 12. E(12) = 2 energy units.
We continue to schedule Γ in the same way till the end of the hyperperiod, where the energy reservoir has 4
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energy units at t = 24.
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Figure 3.4: ED-H scheduling

3.6.3 Properties of ED-H

3.6.3.1 Optimality analysis

Theorem 6 [8] The ED-H scheduling algorithm is optimal for the RTEH model.

The optimality of ED-H means that ED-H can produce a valid sequence if and only if:
– there is no time interval with a duration smaller than the processor demand.
– and there is no time interval where energy demand exceeds the total energy available in that interval.

3.6.3.2 Clairvoyance analysis

The following theorem gives an important restriction on ED-H. It precisely gives the length of the time
interval in future where prediction is required.

Theorem 7 [8] The ED-H scheduling algorithm is online lookahead-D.

It was proved in [108] that no online scheduling algorithm can be optimal without clairvoyance on at
least D units of time. To make a decision at any time tc, ED-H requires to know both the arrival process of
the jobs and the energy production process on the following D units of time. Regarding clairvoyance, no
scheduler can be better than ED-H which is precisely lookahead-D.

3.6.3.3 ED-H Schedulability test

The objective of any schedulability/feasibility test is to test whether time and energy will be sufficient to
meet the time requirements of all executing jobs during the whole lifetime of the application. In the design
of real-time systems composed of well-known periodic tasks, without energy constraints, we perform an
off-line test and use an online algorithm to schedule and execute jobs such as EDF, FP, etc.
For the RTEH model, the test can be performed off-line only if 1) all the jobs are precisely known (that
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is the case of periodic task instances), and 2) the profile of the incoming environmental energy is charac-
terized for the entire lifetime of the application. In many applications, the source power varies with time.
Consequently, there two possibilities. Either an off line schedulability test is implemented by taking into
account the worst case situation in terms of energy production. This option has the drawback to be too
pessimistic and leads to consider a system as non schedulable even if it is actually schedulable. The second
option is to implement schedulability testing at run time periodically for example. The schedulability test
is performed using specific prediction techniques which are adapted to the nature of the incoming energy.
The on line schedulability test permits to verify that all jobs released on the next window of time will be
properly scheduled. If the test gives a negative answer, a decision could be to commute on a degraded mode
with a resulting lower quality of service. This can be achieved by discarding some jobs (those judged as
the less important ones for the application). The approach called skip-over [109] is one of these approaches
[110].

The schedulability test of the ED-H scheduler consists of a necessary and sufficient condition [8] as
reported in the following theorem:

Theorem 8 [8] A set of jobs τ compliant with the RTEH model is feasible if and only if

SSTτ ≥ 0 and SSEτ ≥ 0 (3.6)

SSTτ is defined as the static slack time of a set of jobs τ (see Definition 10 in [8]). SSEτ is the static
slack energy of a job set τ (see Definition 17 in [8]).

This feasibility test is implemented in O(n2) since n2 time intervals are the object of static slack time
calculation and we assume to predict the ambient energy on each time interval by a finite number of values.

3.7 Conclusion
In this chapter, we have restricted our study to energy autonomous real-time systems with a mono-

frequency uniprocessor platform. We have presented a brief state of the art related to scheduling tasks with
deadlines with energy harvesting considerations. In majority of reasearch studies, the objective is to mini-
mize the total energy consumed by software so as to maximize the lifetime of the application or to maximize
duration between two recharges of batteries. In contrast, the objective of scheduling under energy harvest-
ing setting is to guarantee energy neutrality that is to make sure that the system will never consume more
energy than harvested while satisfying the real-time constraints expressed in deadline success.

This scheduling issue is much more difficult compared to real-time systems with no energy limitation.
The complexity here comes from the variation of the energy produced by the source which does not neces-
sarily fit to the timing characteristics of the real-time tasks. Consequently, any scheduling algorithm clearly
includes a power management procedure which is able to decide on-line when to make the processor busy
and for how long time, when to let the processor idle then permitting the energy storage unit recharging.

We have precisely described the system model under study which includes hard deadline tasks, may be
periodic or not. The optimal dynamic scheduler ED-H proved to be optimal in 2014 for this model was
introduced. As a variant of the EDF scheduler, we will assume to apply it to a set of periodic tasks, main
part of the application software.

The next chapter will give the first contribution of our thesis. We will be concerned with the scheduling
issue that arises when additional aperiodic tasks need to be executed with the hard deadline periodic ones.
This problem has been extensively studied with no energy limitation. We will first introduce two new
servers, namely BEP and BES servers that can be used in conjunction with the ED-H scheduler.
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CHAPTER 4

BACKGROUND-BASED SERVERS: BES AND
BEP

Summary

The purpose of this chapter is to study the scheduling issue related to an hybrid set of tasks composed
of hard deadline periodic tasks and soft aperiodic tasks in the energy harvesting context. Our study is
conducted with the system model that was described in the previous chapter. The objective is to provide a
servicing procedure which is able to minimize the response time of occurring aperiodic tasks. We assume
that the hard deadline periodic tasks are scheduled preemptively according to the optimal scheduler ED-
H (see Chapter 3 Section 3.6). In addition, the FCFS (First Come First Serve) rule is applied to service
the pending aperiodic tasks. In that chapter, we propose two aperiodic servers based on the background
principle, respectively named BES and BEP. The effectiveness of these servers will be proved in Chapter 6
of this thesis in comparison with other servers.

Contents
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4.1 Introduction

How to extend the classical Background servicing (BG) approach to energy harvesting hypotheses is
the central issue of this chapter. The most important problem with this approach is that under high peri-
odic processor utilization, aperiodic response times may be very long and too long for some applications.
However, the BG server is the simplest method to handle aperiodic tasks in the presence of periodic ones.
Any pending aperiodic task is executed only when there are no periodic task ready to be executed. In other
terms, the background server can be assimilated to the lowest priority task of the system.
Firstly, we propose the "Background with Energy Surplus" (BES) server which benefits from energy surplus
in the storage unit to execute the aperiodic tasks. Secondly, we propose the "Background with Energy Pre-
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serving" (BEP) which executes the aperiodic tasks as long as no energy starvation is involved for periodic
tasks.

4.2 System Model and Terminology
We consider the RTEH model described previously. In addition to periodic tasks with deadlines, aperi-

odic tasks arrive in the system irregularly. Each aperiodic task has worst case execution time and worst case
energy requirement considered to be known at its arrival time i.e. the time at which the task is activated and
becomes ready to execute. Any aperiodic task has no deadline and unpredictable arrival time.

We will use the following notation throughout the chapter: Ap is a stream of aperiodic occurrences
defined as Ap = Api(ai, ci, ei), i = 1..m, where ai is the arrival time, ci is the worst case execution time,
and ei is the worst case energy requirement. The aperiodic tasks are processed in FIFO (FCFS) order.

From the characteristics of each aperiodic task, we are interested in the following variables:

fi: Finish time of Api,

si: Start time of Api,

RTi: Response time: RTi = fi − ai,
JTi: Jitter time: JTi = si − ai,
LTi: Latency time: LTi = fi − si,
ARTi: Normalized response time:ARTi = fi−ai

ci
,

AJTi: Normalized jitter time: AJTi = si−ai
fi−ai ,

ALTi: Normalized latency time: ALTi = fi−si
ci

.

4.3 The Background with Energy Surplus (BES) Server
Aperiodic tasks are executed when there is no ready periodic task and the energy reservoir is fully re-

plenished. That means that any aperiodic task consumes the energy which would be wasted if there were no
aperiodic task in the system. According to this approach, an aperiodic task is authorized to execute as long
as its execution permits to guarantee that the storage unit be full when the next periodic task will release.

The algorithm behind the BES server is described below (Algorithm 1):

Example 9 Consider a periodic task set Γ that is composed of two tasks, Γ = {τi | 1 ≤ i ≤ 2 and τi =
(Ci, Di, Ti, Ei)}. Let τ1 = (4, 9, 9, 18) and τ2 = (3, 12, 12, 18). Let us consider also Ap = {Apj | Apj =
(aj, cj, ej)} the stream of 2 aperiodic tasks where Ap1 = (9, 1, 5) and Ap2 = (18, 3, 15). We suppose that
the energy storage capacity is E(0) = 10. To simplify, the rechargeable power Pp is taking constant along
time and equals 4.

Figure 4.1 illustrates the actual schedule with the BES server during one hyperperiod H = 36.
At time t = 0, all periodic tasks are released. τ1 is the highest priority one and executes until t = 4 where
E(4) = E(0) − E1 + Pp ∗ C1 = 8 energy units. At time t = 4, τ2 is the highest priority task and executes
until t = 7 where E(7) = 2 energy units.

From time t = 7 up to t = 9, the processor remains in the idle state since there are no pending tasks.
During that time interval, the energy storage unit recharges. And the energy level at t = 9 is given by
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Algorithm 2 BES server
Require:

t: current time
L(t): list of ready periodic tasks at t
J(t): list of ready aperiodic tasks at t

1: while TRUE do
2: if L(t) not empty then
3: schedule_ED-H(L(t))
4: else if J(t) is not empty AND energy reservoir is FULL then
5: schedule_FCFS (one time unit of J(t))
6: else
7: let processor idle
8: end if
9: t := t+ 1

10: end while

E(9) = 2 + 8 = 10 energy units.

At t = 9, Ap1 is released. As τ1 is now the highest priority task, it is executed until t = 13 where the
energy storage level becomes 8 energy units. τ2 is now executed until t = 16 where the energy storage
level becomes 2 energy units. At t = 13, Ap1 can’t be processed as the storage unit is not fully charged.
Accordingly, we continue to schedule Γ. Ap1 is authorized to execute only from t = 33, where the ready
periodic list is empty and the energy storage is completely charged (E(33) = 10 energy units). Ap1 is
executed till t = 34 where E(34) = 9 energy units. Its response time is 25 time units. Ap2 is authorized to
execute at time t = 35 until t = 38 where E(38) = 7 energy units and its response time is 20 units of time.

Consequently, the BES aperiodic server (Figure 4.1) shows poor performance in terms of aperiodic
responsiveness even if with a very simple implementation and consequently low run-time overhead.

4.4 The Background with Energy Preserving (BEP) Server
Despite its simplicity, BES shows poor performance theoretically because it performs totally back-

ground in terms of time and energy, i.e. it executes the aperiodic tasks in the remaining idle times and
energy. Still we could achieve better aperiodic response times if we agree to pay something more. For
example, looking at the example in Figure 4.1, we could argue that the two aperiodic jobs may be served
sooner if we take benefit from the non execution of periodic tasks as well of the availability of energy in the
system, without compromising the feasibility of the system. For that reason, system slack energy at time t,
the minimum of the slack energy of all periodic jobs in the system, is the maximum amount of energy that
can be consumed from t continuously while still satisfying all the timing constraints of the tasks.

Therefore, the main idea of BEP server is executing a ready aperiodic task if and only if a) the energy
reservoir is not empty, b) no periodic task is pending for execution and c) the system slack energy is strictly
positive; the system slack energy is calculated on all periodic jobs in order to avoid any energy starva-
tion. If these three conditions are satisfied, the processor cannot be inactive and should run the occurring
job. Indeed, the process of BEP implies a modification of the periodic tasks scheduling with respect to the
schedule produced when there are no aperiodic tasks.

The procedure of generating the BEP schedule is summarized in the following pseudo-code (Algorithm
2).

Example 10 As an example, we consider the same hypothesis which we studied in the previous section.
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Figure 4.1: Aperiodic servicing with the BES server.

Figure 4.2 illustrates the schedule produced by BEP during the hyperperiod H = 36. It shows the same
behavior of BES until the arrival of the aperiodic task Ap1 at time t = 9. But as its execution conditions
are not all verified (i.e. the ready periodic list is not empty), Ap1 cannot be executed. It is processed at time
t = 16 where all conditions are applied (storage unit is not empty, no ready periodic task, and by applying
equation 3.4 of Chapter 3, we have SE(16) = E(16) +

∫ 18

16
Ppdt = 2 + 2 ∗ 4 = 10 > 0). Ap1 is finished at

t = 17, where E(17) = 1 energy unit. Finally, we note that the response time of Ap1 is 8 time units.

At t = 22, Ap2 cannot be executed because only two among three conditions are verified (empty ready
periodic list and not empty energy level). On the other hand, SE(22) = E(22) +

∫ 24

22
Ppdt = 4 > 11 which

is less than 15, the energy to be consumed by Ap2. In this way, Ap2 is executed at t = 32 until t = 35,
where E(35) = 3 energy units. Its response time equals 17 units of time. The example shows that BEP
server performs better than BES for each of Ap1 and Ap2. For example, the response time of Ap1 is 60%
shorter compared to that under BES.

4.5 Implementation and overhead considerations

This chapter described two algorithms for scheduling aperiodic tasks among periodic ones in the energy
harvesting context. For these two background approaches, we assume that the operating system maintains
two queues. In the ready periodic tasks list, the jobs are placed and ordered according to deadlines (EDF
rule used by the ED-H scheduler). Each newly arrived aperiodic task is placed in the aperiodic queue and
is served in FCFS order. The two servers are simple to implement, nevertheless the complexity of BEP
comes mainly from slack energy computations which involve more overhead. So, the complexity of BEP in
the worst-case scenario is the same as the slack energy computation algorithm, which has a complexity of
O(m.n) where m is the number of iterations and n is the number of tasks [101]. We note that the number
of iterations m depends on the periods and deadlines of the tasks and is bounded by max1<i<n(Di)

min1<i<n(Ti)
. Thus, the

complexity of BEP is pseudo-polynomial.
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Algorithm 3 BEP server
Require:

t: current time
L(t): list of ready periodic tasks at t
J(t): list of ready aperiodic tasks at t

1: while TRUE do
2: if L(t) is not empty then
3: schedule_ED-H(L(t))
4: else if J(t) is not empty AND reservoir is not empty AND SlackEnergy(t) > 0 then
5: schedule_FCFS (J(t))
6: else
7: let processor idle
8: end if
9: t := t+ 1

10: end while

4.6 Conclusion
According to the classical Background aperiodic servicing approach, aperiodic tasks are scheduled and

executed only at times when there is no periodic task ready for execution. This approach will clearly produce
a correct schedule in that sense that presence of aperiodic tasks does not influence the scheduling of periodic
tasks. Consequently, periodic tasks are guaranteed to respect their deadline requirements. However, the
response times of aperiodic tasks is prolonged unnecessarily.
Two variants of the Background server were proposed. Under the BES server, aperiodic tasks should wait
for the total replenishment of the storage unit. Under the BEP server, aperiodic tasks execute only if their
energy consumption does not provoke possible energy starvation for any periodic task. This is guaranteed
by computing the so-called slack energy of the system which gives at every instant, the maximum energy
which could be consumed while still guaranteeing energy feasibility of periodic tasks. We may easily
predict that the BEP server will outperform the BES server. Nevertheless, this is at the cost of the on line
computing of the slack energy. Simulation results will be reported in Chapter 6 to evaluate the performance
of the BEP and BES servers.
In the next chapter, we will describe an alternative technique in order to enhance the average aperiodic
responsiveness over these two Background approaches.
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Figure 4.2: Aperiodic servicing with the BEP server.



CHAPTER 5
SLACK STEALING-BASED SERVER: SSP

Summary
This chapter presents a new algorithm for servicing aperiodic tasks called SSP (Slack Stealing with

energy Preserving). SSP can be viewed as an extension of the EDL server which is optimal with no energy
considerations. This Slack Stealing server works in the same way as the EDL server but taking into account
variations on energy availability. We will see here that the concept of slack concerns both time and energy.
The optimality of the SSP server is established in the sense that SSP provides the shortest aperiodic response
time among all possible aperiodic servers for real-time energy harvesting systems.
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5.1 Task model
The model associated to SSP is same as the one described in Section 4.2, Chapter 4.

5.2 Energy model
SSP is able to work with any energy source and storage models, theoretically and experimentally as we

will see in Chapter 6. The energy produced by the source Pp(t) is not controllable and not necessarily a
constant value. To avoid short-term energy shortages, we have an accurate estimation of short-term energy
within some prediction errors margin. Furthermore, an ideal energy reservoir (e.g. super-capacitor or
rechargeable battery) is considered to continue operation even when there is no energy to harvest. The
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energy reservoir receives power from the harvester and powers the processor. The stored energy at any time
t is denoted E(t). The energy reservoir does not leak any energy over time. If it is fully charged at time
t and if we continue to charge it, energy is wasted. In contrast, if it is fully discharged at time t (energy
depletion), no job can be executed.

5.3 Informal description

We present a new server, namely SSP (Slack Stealing with energy Preserving) which builds upon pre-
vious research into slack stealing algorithms including the EDL scheduler described in the state of the art.
Let us recall that the EDL server determines the maximum processing time which may be stolen from hard
deadline periodic tasks, without jeopardising their timing constraints. Periodic tasks are scheduled accord-
ing to the EDF scheduler. The EDL server was extended to tasks with synchronization constraints. An
approximate version of the EDL server was proposed to reduce the runtime overheads due to high compu-
tation costs. The original slack stealer, EDL is greedy since the available slack time is always consumed if
there is at least one aperiodic task ready to run.

The main principle of the slack stealer SSP for aperiodic servicing with ED-H is to authorize aperiodic
job executions as long as it does not involve a deadline violation for all the jobs generated by the periodic
task set τ . Let us recall that a deadline violation occurs either because of processing time starvation (lack
of time to complete a task before deadline) or energy starvation (lack of energy to complete a task before
deadline).

This leads us to consider the system slack at current time t as a pair of values respectively called slack
time and slack energy. The slack time of τ at time t is defined as the maximum processing time which is
available at t after executing timely the tasks of τ . Slack time is a dynamic value that expresses variation
of processing surplus. Its computation permits to determine whenever necessary for how long time the
processor could be let either idle or busy executing additional tasks such as aperiodic ones.
The slack energy of τ at time t is defined as the maximum energy which is available at t after executing
timely the tasks of τ . Slack energy is also a dynamic value that expresses variation in energy surplus. Its
computation permits to determine whenever necessary how much energy could be either wasted or con-
sumed executing additional tasks such as aperiodic ones.

In summary, the basic idea of the SSP server is to steal as much as possible both processing time and
energy. It leads to execute the aperiodic tasks as soon as possible while avoiding energy starvation and
deadline missing for periodic tasks. Whenever no aperiodic tasks are present, the periodic tasks are oper-
ated classically with the ED-H scheduler.

Whenever new aperiodic task arrives, it uses the collected values of slack time and slack energy to de-
cide to service either an aperiodic task or a periodic one.

The slack stealer SSP can be viewed as a task which is ready for execution whenever the aperiodic
queue is non-empty. This task is suspended when the queue is empty. The slack stealer receives the highest
priority whenever there is slack i.e both slack time and slack energy. It receives the lowest priority whenever
there is either no slack time or no slack energy. The slack stealer SSP selects the aperiodic tasks in FCFS
order.

The framework of the SSP server can be described by the following pseudo-code:
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Algorithm 4 SSP
Require:

t: current time
L(t): list of ready periodic tasks at t
Ap(t): list of ready aperiodic tasks at t

1: while TRUE do
2: if Ap(t) is not empty AND energy reservoir is not empty AND SlackEnergy(t) > 0 AND

SlackT ime(t) > 0 then
3: schedule_FCFS (Ap(t))
4: else
5: schedule_ED-H(L(t))
6: end if
7: t := t+ 1
8: end while

5.4 Slack computations

5.4.1 Computing the current slack time
The system slack time, denoted ST (t) in this dissertation, is the same as EDL in Section 1.4.2.1, Chapter

1. It is used to delay periodic tasks executions as long as possible by anticipating all the available slack time.
The tasks are scheduled according to EDF in Section 1.3.1, Chapter 1. EDL is used in the energy-harvesting
systems context to maximize replenishment periods. The slack time in classical scheduling concepts shows
the maximum length of idle periods within a time interval. When the system is energy constrained, it uses
the slack time notion to replenishment as in the ED-H model [8].

When an aperiodic job is ready to be executed at time t, the SSP computes the available system slack
time. Then, the ready job is executed only if the system slack time is positive, the system slack energy is
positive, and the energy is sufficient to execute. Otherwise, if a periodic job is ready to execute, the SSP
will give it permission. If the energy reservoir is empty, the ready job is delayed until the slack time is fully
consumed. The computation of slack time with EDF scheduling is described in Section 1.4.2.1, where we
recall the static offline approach as well as the dynamic online one. In order to compute the system slack
time, we recall some definitions about the dynamic approach notions presented in [8]. Formally:

The slack time of a hard deadline job Ji at current time t is

STJi(t) = di − t− h(t, di) (5.1)

where h(t, di) is the total processing demand of uncompleted jobs at t with deadline at or before di. STJi(t)
gives the available processor time after executing uncompleted jobs with deadlines at or before di. The
equation of the processor demand h(t, di) is given by the following equation:

h(t, di) = Σdk≤diCk (5.2)

We may then define the slack time of job τ at current time t as follows:

STτ (t) = min
di>t

STJi(t) (5.3)

The slack time as computed with (5.3) gives the maximum continuous processor time that could be made
available from time t while still guaranteeing the deadlines of all the jobs generated by τ .

The computation of slack time is widely described and illustrated in Section 1.4.2.1, Chapter 1..
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5.4.2 Computing the current slack energy
As mentioned in previous section, the Slack Stealer executes an aperiodic task whenever there is slack

time and slack energy in the system, i.e. ST (t) > 0 and SE(t) > 0. Moreover, the intuition behind ED-H
is to run jobs according to EDF rules, but this decision is constrained by the use of the notion of slack
energy to predict eventual future energy failures. If a job has the potential to miss its deadline in the future
due to energy insufficiency, the current jobs are delayed as long as possible by expanding the available
slack time to replenish a maximum of energy. In our algorithm, we use the EDL server [18] to compute
the slack time and determine the busy periods of periodic tasks. Furthermore, when the energy reservoir is
fully replenished during an idle period, the algorithm resumes executions in order to avoid energy waste.
By definition, the slack energy of a job Ji at time t represents the maximum energy that can be consumed
to execute jobs from t until the deadline of Ji, while still guaranteeing energy requirements and deadlines
[8].In other words, it means the maximum amount of idle time that can be used to delay executions without
violating deadlines. Two cases are examined:

1. If this quantity is positive, the ready aperiodic job is authorized to execute and consume at most
SE(t).

2. If there is no slack, it is delayed as much as available slack time without wasting energy.

Thus, we have to compute the slack energy of every job with deadline less than or equal to di. The
minimum of the values of all periodic jobs in the system will gives us the system slack energy; i.e. the
maximum energy surplus that the system can consume instantaneously at t to execute an aperiodic job
ready at t. However, the minimum of the slack energy of all periodic jobs at time t with a higher priority
than an active, say Ji gives us the preemption slack energy; i.e. the maximum energy that can be consumed
by Ji whilst guaranteeing absence of energy starvation for jobs that may preempt it. The computation of
the slack energy of Ji at current time t is performed as follows:

SEJi(t) = E(t) + Ep(t, di)− g(t, di) (5.4)

Where E(t) is the energy storage capacity at time t. g(t, di) represents the total energy required by jobs
on the time interval [t, di). It concerns both jobs which are ready at t but not completed at di and future
jobs, with deadline less than or equal to di. The total energy produced by the source within [t, di) is
Ep(t, di) =

∫ di
t
Pp(t)dt where Pp(t) gives the source power that varies with time t.

So, the slack energy of Ji is the difference between the energy available within the interval [t, di), i.e.
E(t) +

∫ di
t
Pp(t)dt, and the energy demand of Ji and higher priority jobs that are released at or after t

and have a deadline earlier than di. The equation of the energy demand g(t, di) is given by the following
equation:

g(t, di) = Σdk≤diEk (5.5)

Before running the job that is ready to be executed at time t, the system slack energy denoted SE(t) is
computed. Its computation is summarized as follows:

g(t, di) = Σdk≤diEk

SEJi(t) = E(t) +

∫ di

t

Pp(t)dt− g(t, di)

SE(t) = min
t<di

SEJi(t)

Illustrations of slack energy
We will illustrate an expanded example to show the meaning of this concept. However, let us first recall
the definition we gave in Chapter 3 for each of the Preemption slack energy notion and System slack energy
notion.
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– Preemption slack energy gives the maximum energy that could be consumed by the active job whilst
guaranteeing absence of energy starvation for jobs that may preempt it.

– System slack energy represents the maximum energy surplus that the system could consume instanta-
neously at t.

An example illustrating the use of the preemption slack energy and its computation, was presented in
Example 7, Chapter 3, by considering a periodic job set.

Now, let us consider scheduling both periodic and aperiodic task sets. The periodic task set is scheduled
according to ED-H till the release of an aperiodic task. System Slack energy must then be computed to
check whether it can be executed or not. In details:

Example 11 We will take another example to handle the joint scheduling. Let us illustrate the case where
the slack energy of the system reveals to be positive at a given time t. We consider a periodic task set Γ,
composed of two periodic tasks τi with τi = (Ci, Di, Ti, Ei). Let τ1 = (1, 5, 6, 12) and τ2 = (4, 8, 10, 15).
We assume that the energy level at time 0 is E(0) = 25 and that the capacity of the battery is C = 35. For
simplicity, we assume that the rechargeable power is constant along time with (Pp = 5).

Before beginning to schedule the task set Γ, we verify the energy feasibility condition. Ue =
∑n

i=0
Ei

Ci
=

149
30
≤ 5. Consequently, Ue ≤ Pp. That means that the average instantaneous power consumption of Γ is no

more than the average power drained from the environmental source, here constant along time.
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Figure 5.1: Illustration of Slack Energy.

At t= 0, τ1 is the highest priority task. It is executed until time t = 1 where E(1)= 18. At t= 1, τ2 is
the highest priority task. It is executed until time t = 5 where E(5)= 23. At t=6, the aperiodic task Ap1
arrives with computation time c1 = 2 and energy consumption e1 = 8 energy units. System slack energy is
then computed at time t=6, it is given by the minimum of the slack energy of all periodic instances in the
system. The processor remains inactive until t = 6, where E(6)= 28. The following steps summarize the
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computation of system slack energy.
SE(τ1, 6) = E(0) +

∫ 11

6
Ppdt− (E1 + E2) = 31

SE(τ2, 6) = E(0) +
∫ 8

6
Ppdt− E1 = 23

SEτ (6) = min(SE(τ1, 6), SE(τ2, 6)) = 23 > 0
We abide by two conditions of three to execute Ap1, since system slack energy and the energy reservoir

level are positive. However, slack time must be computed in the way we explain with the dynamic EDL
(see Chapter 1). If slack time is also positive, Ap1 is formally authorized to execute (Figure 5.1).

5.5 Illustration of SSP
Example 12 As an example, we consider a set of 2 periodic tasks that we studied in the previous chapter.
Suppose that the first aperiodic job Ap1 has computation time 1, energy consumption of 5 energy units, and
is released at t = 9. Another aperiodic task with computation time 3 and energy consumption 15 energy
units, is released at t = 18.

At time 0, the residual capacity of the storage unit is maximum since the storage is full. τ1 is the highest
priority task which finishes at time 4 and consumes 18 energy units. At time 4, the residual capacity is given
by Emax − E1 + Pp ∗ C1 = 8. Now, τ2 has the highest priority. It executes completely until time 7 and
consumes 18 energy units. The residual capacity equals 2 energy units.

From t = 7 until t = 9, the processor remains idle and the energy level at t = 9 is E(9) = 10 energy
units.
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Figure 5.2: Aperiodic servicing with the slack stealer SSP.

At time 9, Ap1 is released. As the storage unit is not empty, the slack time is positive (equal to 5) and the
slack energy is positive (equal to 4), Ap1 is authorized to execute and to consume a maximum of 5 energy
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units. After its execution, the residual capacity falls at 9. At time 10, according to the ED-H scheduler, we
continue to schedule the tasks till time 18 where the aperiodic task Ap2 is released. Here, we have to check
again if we abide by the three conditions: 1) the reservoir is not empty (5 energy units), 2) the slack time is
strictly positive, equal to 5 and 3) the slack energy is strictly positive and equal to 23. Consequently, Ap2
is authorized to execute immediately for executing during 3 units of time and for consuming 15 units of
energy. Periodic tasks execute according to ED-H till the end of the hyperperiod where the energy reservoir
contains 4 energy units, as illustrated by Figure 5.2.

We notice that the aperiodic tasks Ap1 and Ap2 are executed at the earliest time instant regarding pro-
cessor and energy availabilities whilst the periodic tasks are deferred as much as possible. We observe that
the response times of the aperiodic tasks Ap1 and Ap2 are 1 and 3 units of time, respectively, which is a
clear evidence of minimizing the aperiodic responsiveness.

Moreover, in comparison with the background servers described in the previous chapter, we notice the
following: the response time of Ap1 is 95% and 87% shorter in comparison to BES and BEP, respectively.
This important gain confirms the optimality of SSP.

5.6 Optimality Analysis

Optimality of SSP is stated in the following theorems.

Theorem 9 All periodic tasks meet their deadlines when scheduled according to ED-H with the slack
stealer SSP for aperiodic servicing.

Proof: We prove the theorem by contradiction. Suppose that a job, say J1, issued from a periodic task
misses its deadline at d1. And d1 is the first deadline that is missed in the schedule. This violation is due to
one of the two following reasons: The time starvation case is when deadline d1 is missed with the energy
reservoir that is not exhausted at d1. The energy starvation case is when the reservoir is exhausted at d1
and J1 is not completed. As the periodic task set is feasible, the deadline violation necessarily comes from
the execution of aperiodic tasks. Let t0 be the latest time instant before d1 where an aperiodic task, say
Ap0 executes. By definition of the slack stealer, Ap0 was authorized to execute within [t0 − 1, t0) because
ST (t0− 1) > 0 and SE(t0− 1) > 0. And Ap0 stops execution at t0, because either the system has no more
slack time i.e. ST (t0) = 0 or the system has no more slack energy i.e. SE(t0) = 0. Let us examine the two
cases.
Case 1: ST (t0) = 0
The slack time, ST (t0) as computed at t0 with (3.2), gives the maximum processing time that could be
made available from time t0, while still guaranteeing the deadlines of all the jobs issued from the periodic
tasks ready at or from time t0.
The condition ST (t0) = 0 guarantees that if the jobs are executed from time t0 according to the earliest
deadline first rule, all periodic jobs can be completed by deadlines even if one of these jobs is completed
exactly at deadline. This contradicts that d1 is violated.

Case 2: SE(t0) = 0
The slack energy, SE(t0) as computed at t0 with (3.4), gives the maximum energy surplus that the system
could consume instantaneously at t0, while preventing an energy starvation for all the jobs issued from the
periodic tasks ready at or after time t0. From t0 to d1, no energy is wasted (definition of ED-H) and all
the jobs that execute within [t0, d1) are periodic ones. Consequently there is no energy starvation, which
contradicts the deadline violation at d1 with E(d1) = 0.�
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Theorem 10 For any periodic task set scheduled according to ED-H and a stream of aperiodic tasks pro-
cessed in FCFS order, the slack stealing algorithm SSP minimizes the response time of every aperiodic task,
amongst all algorithms which are guaranteed to meet all deadlines.

Proof: We prove the theorem by showing that any alternative algorithm, A, which results in a shorter
response time for any aperiodic task cannot guarantee that the deadlines of all the periodic tasks will be
met. Let Ap0 be the first aperiodic task which has a shorter response time when scheduled by algorithm A.
As Ap0 is the first such task, the response times of all previously serviced soft tasks must be the same as,
or longer than when scheduled by the slack stealer. Once at the head of the queue, Ap0 is serviced by the
dynamic slack stealer so long as SE(t) > 0 and ST (t) > 0. For algorithm A to result in a lower response
time, it must process Ap0 for at least one clock tick when the slack stealer is unable to do so. We denote the
time at which this occurs by t0. The slack stealer computes two data at time t0. The first one is the slack
time i.e. the spare processing time which may be stolen. The second one is the slack energy i.e. the spare
energy which may be stolen. One of these two data is zero at time t0.
First case: ST (t0) = 0.
Hence, for at least one job of periodic task, say J1, we have STJ1(t0) = 0. In servicing aperiodic task Ap0
from t0 to t0 + 1, algorithm A has therefore lead to STJ1(t0 + 1) = −1 culminating in the impossibility to
complete job J1 by its deadline. Algorithm A cannot, therefore, guarantee that the deadline of job J1 will
be met.

Second case: SE(t0) = 0.
Hence, for at least one job of periodic task, say J1, we have SEJ1(t0) = 0. It means that any additional
energy consumption between t0 and t0 + 1 leads to SEJ1(t0 + 1) < 0 culminating in insufficient energy to
execute job J1 entirely by its deadline. Algorithm A cannot therefore guarantee that the deadline of job J1
will be met due to energy starvation.�

5.7 Implementation and overhead considerations

The complexity of SSP is O(m.n), where m is the number of iterations and n is the number of periodic
tasks. We note that the number of iterations, m, depends on the periods and deadlines of the hard deadline
tasks, thus the complexity of algorithm is pseudo-polynomial. Compared to the background-based servers,
SSP suffers from high time overheads resulting from repeated slack time and slack energy calculations, as
well as from high preemptions number. These dynamic computations are duplicated as long as there are
aperiodic tasks in the list. However, additional processing time and energy are exploited in the optimal slack
stealing approach, whenever possible, for the aperiodic activities, by delaying the execution of periodic
activities. This process, called procrastination, shows a trade-off between efficiency and complexity of the
SSP.

5.8 Conclusion
SSP, a new optimal server for enhancing average response time for aperiodic tasks is the central contri-

bution of this thesis. SSP is particularly adapted to a dynamic real time energy harvesting platform where
periodic tasks are scheduled according to the optimal ED-H algorithm.
The SSP server profits from energy surplus as well as from processing time surplus to execute aperiodic
tasks with optimal responsiveness as it was proved theoretically. Nevertheless, let us notice that this the-
oretical performance evaluation does not consider the runtime overheads which are incurred by the online
computations of the so-called slack time and slack energy values. And necessarily, such overheads will
influence the actual performance of SSP.
In the next chapter, experimentations will point out the effective performance of this new slack stealing
server in comparison to background servers.
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CHAPTER 6
PERFORMANCE EVALUATION OF THE
APERIODIC TASK SERVERS

Summary

This chapter is devoted to compare and evaluate by simulation the performance of the aperiodic servers
that we described in chapters 4 and 5. We want to show to what extent SSP constitutes a contribution to
the problem of minimizing aperiodic responsiveness. In order to show its advantages and limits, we will
systematically compare the SSP server against the two background base servers. In that objective, we will
consider different application profiles in terms for example of processing loads and energy limitations. The
experimentation aims in addition to exhibit the influence of different parameters (i.e. capacity of the energy
storage unit, power produced by the environmental source) on the response time of soft aperiodic tasks.
That is why, several simulations have been performed by changing these parameters.
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6.1 Description of the performance analysis

Let us recall that the ED-H scheduler is chosen to schedule the periodic tasks. Aperiodic tasks are
served according to the FCFS policy. In that section, we present the simulation environment. We introduce
the metrics applied to evaluate the performance of the SSP, BEP and BES algorithms.
We made several assumptions:

– the total processing load Up incorporates 50% of the periodic processor utilization Upp and 50% of
the aperiodic utilization Ups.

– Identically, the total energy load Ue includes 50% of the periodic energy utilization Uep and 50% of
the aperiodic energy utilization Ues.

The results of simulations are carried out as a function of the total energy/processing utilization and/or
aperiodic utilization.
We will show the behaviour of each aperiodic task server under different perspectives including average re-
sponse time of aperiodic tasks, normalized response time jitter of aperiodic tasks, normalized input-output
latency of aperiodic tasks, number of preemptions, and overhead.

It is worth noting that the objective is to improve mean response time, jitter, and latency of the soft aperi-
odic tasks without jeopardizing schedulability of the periodic tasks with the lowest possible implementation
costs i.e. minimum number of preemptions and minimum number of computing operations.

In this perspective, we made two different sets of experiments. In the first one, the incoming source
power is assumed constant while it is variable in the second set of experiments.

6.1.1 Simulation Environment
We developed a simulator in Matlab. The resulting two-dimensional and three-dimensional graphs are

plotted with high resolution. Our code is able to produce any simulation with given parameters that are
specified by the user.

To design the task generator of periodic tasks, the simulator receives the number n of desired periodic
tasks, the hyper-period H, the assigned periodic processing utilization Upp, and periodic energy utilization
Uep. The simulator infrastructure automatically generates a periodic task set τ of quadruples (Ci, Ei, Di, Ti)
| 1 ≤ i ≤ n}. Periods and computation times are distributed uniformly in discrete time steps, depending on
Upp =

∑n
i=1

Ci

Ti
. Energy consumption of every task is proportional to its period and depends on the setting

of Uep =
∑n

i=1
Ei

Ti
. Periodic task sets are generated so as to remain feasible in terms of processing time and

energy i.e. Upp ≤ 1 and Uep ≤ Pp where Pp is the recharging power.

A task generator of aperiodic tasks is also designed. Be given the number of desired tasks m, the ape-
riodic processing utilization factor Ups and the aperiodic energy utilization Ues, a stream of aperiodic tasks
is generated according to a uniform distribution by simulating a poisson aperiodic arrival.

A simulation run consists of one task set composed of n = 20 periodic tasks. To reduce the bias effect
of random generation procedure, simulations are performed throughout 10 hyperperiods. Each point in the
curves corresponds to 100 runs. The mean value is computed from the results obtained at each run. The
energy reservoir is assumed to be initially full which is the hypothesis always retained in the literature. That
is the amount of energy available at time zero is the capacity of the storage unit.
The value of this capacity has been chosen so as to equalEmin, defined as the minimum size of the reservoir
that permits to guarantee the system feasibility.

The energy produced by the source is not controllable and not necessarily a constant value. Thus, the
recharging power Pp is considered constant in the experiments in Section 6.2. Thereafter, it is considered
as variable in the experiments in 6.3. To avoid short-term energy shortages, we assume to have an accurate
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estimation of short-term energy within some prediction errors margin. In summary, four different energy
profiles are considered in our performance evaluation: constant, sine wave signal of period π = 2, a rectifier,
and a pulse signal with a 20% duty-cycle (Figure 6.1). The different waveforms produced are periodic. It is
worth mentioning that Ep

min of each profile p should not be less than the area Ap.
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Figure 6.1: Energy source profiles under study.

6.1.2 Evaluation metrics
In our study, we address the following metrics:

1. Average response time of aperiodic tasks: It is the average duration taken by an aperiodic task from
its arrival time until its finishing time (Ri = fi−ai), normalized with respect to the average aperiodic
computation time. It is defined as:

ARTi =
fi − ai
ci

(6.1)

A value of 10 on the y-axis means an average response time 10 times longer than the task computation
time.

2. Average response time jitter of aperiodic tasks: Real-time systems, especially software control
systems, are developed to meet the requirements of real-time automation systems. One such crucial
requirement is reducing the delay and jitter of tasks in such systems. Jitter represents the induced
offset between the release time of the aperiodic task and its start of execution (JTi = si − ai).
Therefore, we evaluate the average jitter which is normalized with respect to its response time.

AJTi =
si − ai
fi − ai

(6.2)

Hence a value of 1 on the y-axis corresponds to a jitter equal to its response time; a value of 0
corresponds to the minimum achievable jitter time and means that the task was immediately serviced
without being blocked.
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3. Average input-output latency of aperiodic tasks: There are many factors that influence the latency
of a task. A task can be usually interrupted either by a leakage of energy or by a task of highest
priority (preemption). These interruptions could invoke a time dilation and therefore a delay of tasks
execution and/or deadline violation. Latency allows us to confine the total time that elapses between
the start time of execution of a task and the time of its effective end (LTi = fi − si) to guarantee the
relevance of the final results. Its average normalized value is given by:

ALTi =
fi − si
ci

(6.3)

The normalized latency of a job is 1 if the job is not preempted at all.
4. Preemption task rate: It represents the runtime overhead due to context switches. It is defined by

the ratio of the number of preemptions per the number of processed jobs. Preemption occurs when
the execution of a task is interrupted in favor of a higher priority task. The execution of the preempted
task is then resumed later in time.

PE =
number of preemptions

total number of jobs
(6.4)

5. Overhead: Overhead is the time taken by the kernel in performing a service on behalf of a specific
task, such as invoking, resuming, or terminating it. In case of our scheduling algorithms, overhead
occurs for example when the operating system has to compute on-line either the slack time or the
slack energy. Thus, overhead depends on the complexity for computing slack time and slack energy
and frequency of these computations along time in the SSP aperiodic server. In contrast such variables
do not need to be computed in the BES server.

6.2 First set of experiments: constant energy profile

6.2.1 Motivations
The most important item in energy harvesting systems is surely the harvester, and the most common

one is a solar cell. The electricity generated by the harvester needs to be converted into a useful voltage or
current to power the system. Taking full advantage of the solar power may be the most convenient in wire-
less sensors usage. Surely, outdoor solar power is time and season dependent. However, the power which
is produce is stable in that sense it does not change every milli-second. Consequently, whatever indoor or
outdoor, the dynamics of variation of solar energy is very low in comparison to the periods of the sensing
tasks in most of applications. The consequence is that we may assume that for large periods of time, the
source power is constant.

Another example of constant source power is thermal energy. Energy harvesting is also a key technol-
ogy to enable self-sustained wearable devices in medical applications. Thermoelectric generators (TEG)
for scavenging of human body heat are today a promising option because of their independence of light
conditions and the activity of the wearer. These harvesters can power a lot of different wearables such as a
multi-sensor bracelet that measures activity, acquires images and displays results. The human body offers a
constant heat source because typically a constant temperature difference exists between the body core and
the environment. Even when the wearer is not in movement and situated in a dark room during sleep for
example, energy can be produced. It is clear that lower ambient temperatures or increased activity of the
wearer will drastically increase the amount of accumulated energy. But here too, we may assume that these
change in power production does not appear with high frequency.

In summary, there are many energy harvesting devices which may profit from stable power generation
characteristics of the environmental source. That is why, we may consider two types of profiles for energy
production: constant and variable.
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6.2.2 Experiment 1: Average response time of aperiodic tasks

6.2.2.1 Varying Ue/Pp

Aperiodic responsiveness is measured for three processing load profiles: 1) weakly constrained with
Up = 20%, 2) fairly constrained with Up = 40% and 3) highly constrained with Up = 80%. Ue/Pp varies
from 5% to 100% in order to show the impact of energy availability on aperiodic responsiveness. Results
are reported in Figures 6.2 and 6.3, respectively.

As expected, the SSP server outperforms the two background policies BES and BEP for all configuration
settings.

It is worth mentioning that the higher the energy limitation, the wider the performance of SSP over the
background techniques. BES shows inferior performance for high energy requirements since aperiodic tasks
may execute only when the reservoir is fully replenished. BES and BEP behave similarly when renewable
incoming energy is greatly available in comparison to energy requirements.

For the first experiment, (Figure 6.2, Up = 20%), we examine a system which is softly constrained
by processing utilization. In other terms, the system is often idle. We can see that the Slack Stealer SSP
has aperiodic response time which is at least 25% lower compared to background servers for all energy
conditions.

For Up = 80% (Figure 6.3), the SSP server benefits from time slack stealing to optimize the processor
utilization and performs much better than background servers. They both behave poorly even when there
is no energy limitation. When the system is highly constrained both in terms of time and energy, the
performance of the slack stealing based server approaches that of the background servers.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

10

20

30

40

50

60

70

Ue/Pp

N
or

m
al

iz
ed

 R
es

po
ns

e 
T

im
e

Up= 0.2

 

 
BES
BEP
SSP

Figure 6.2: Normalized aperiodic response time with respect to Ue/Pp, for Up=0.2.

6.2.2.2 Varying Up

This set of experiments includes two simulations which show the performance of the algorithms as a
function of the total processing utilization Up for two energy utilization (Ue/Pp = 0.2 and Ue/Pp = 0.8).
Figures 6.4 and 6.5 show that the background service strategies offer higher response times than SSP. When
the system has low energy constraints (i.e. Ue/Pp = 0.2), the response times achieved by BES and BEP
are close to one for a lower total load, meaning that aperiodic tasks execute immediately. When the total
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Figure 6.3: Normalized aperiodic response time with respect to Ue/Pp, for Up=0.8.

load increases, the two background servers perform poorly and have a similar performance. From Up = 0.5
until Up = 1, the Slack Stealing server outperforms the other algorithms. It has a normalized response time
which is reduced by more than 15 % with respect to the Background curves.

Figure 6.5 shows the case in which Ue/Pp = 0.8. The normalized response times of BES and BEP
increase with the increase of Up. BEP services the aperiodic tasks 1.5 times faster than BES and converges
gracefully to BES as Up increases. The execution of aperiodic tasks is done as long as there is always
sufficient energy for future periodic tasks. The SSP can still provide a significant reduction in aperiodic
responsiveness compared to the background services regardless of the increase of the energy constraint.
With the variation of Up, the response time of SSP is at least 30% less than BES and BEP.

The previous experiment proves that the SSP server exhibits the best performance in reducing the ape-
riodic responsiveness by taking advantage of the energy slack stealing.

6.2.3 Experiment 2: Average jitter of aperiodic tasks
In this section, the experiment aims to show how much SSP reduces delays and jitters of aperiodic tasks

in energy constrained real-time systems, which are enforced by the operating system, control tasks, kernel
mechanisms, etc.

Many experiments were performed. To limit the number of graphs, we only present two experiments
where SSP is evaluated as a function of the total energy utilization Ue/Pp and is compared with the back-
ground policies in terms of jitter for a fixed total processing utilization. The results of both simulations are
shown in Figures 6.6 and 6.7 for Up = 0.2 and Up = 0.8 respectively.

We observe that the SSP server reduces the delay and jitter of the aperiodic tasks in comparison with
the background servers. The results in Figure 6.6 show that the jitter of SSP is at least 14% lower than BEP
and BES.

In case of Up = 0.8 (Figure 6.7), the results show that when the total energy utilization is low, BES
and BEP have similar performance and the difference between them increases for a large range of energy
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Figure 6.4: Normalized aperiodic response time with respect to Up, for Ue/Pp=0.2.
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Figure 6.5: Normalized aperiodic response time with respect to Up, for Ue/Pp=0.8.

utilization. The large range of energy utilization confirms that SSP is more effective (13% lower jitter time)
and can guarantee the prompt service of aperiodic tasks when the system is adopted to high processing and
energy constraints due to its stealing concepts.

6.2.4 Experiment 3: Average latency of aperiodic tasks
In this experiment, we compare the latency of the optimal SSP algorithm versus the two background

mechanisms (BEP and BES) as a function of the total energy utilization. The two graphs shown in Figures
6.8 and 6.9 correspond to two different total processing utilizations, low and high, as addressed above.
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Figure 6.6: Normalized jitter time with respect to Ue/Pp, for Up=0.2.
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Figure 6.7: Normalized jitter time with respect to Ue/Pp, for Up=0.8.

We observe from each graph, that the SSP algorithm can provide a significant reduction in latency time
compared to BES or BEP service (lower at least 6%). The performance of BES and BEP depends on
the energy utilization. For low energy utilization, BES performs as well as BEP, but as the total energy
utilization increases, their performance tends to be different from each other showing that BEP outperforms
BES by a 11% deviation.

This implies that SSP has the optimal deviation time relative to the arrival time of the aperiodic task, and
the lowest number of interruptions that may occur from the start to the end of its execution due to energy
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shortage or highest priority periodic task preemption.
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Figure 6.8: Normalized latency time with respect to Ue/Pp, for Up=0.2.
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Figure 6.9: Normalized latency time with respect to Ue/Pp, for Up=0.8.

6.2.5 Experiment 4: Relative performance with different reservoir sizes
In this set of experiments, we evaluate the performance of the servers by varying the reservoir size with

Emin, 5*Emin, and 9*Emin. Emin is the minimum size of the reservoir that guarantees time and energy
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feasibility, for given Up, Ue and Pp. Here, we report the results for systems which are not time-constrained
i.e. Up = 0.2. In the Table 6.1, the 3rd, 4th and 5th columns give the aperiodic responsiveness of BEP, BES
and SSP servers, respectively, for two profiles in terms of energy constraints.

Table 6.1 shows that the SSP server achieves significant reduction in aperiodic responsiveness, com-
paring with BEP and BES servers under all parameter settings. BEP achieves low aperiodic response time
compared to BES. For example, when the system uses 20% of available energy with minimum reservoir
size, the response time under SSP is 19% and 29% lower compared to BEP and BES respectively. If the
energy requirement is set to 80%, all servers record relatively high response times. However, the optimal
slack stealer still beats the background servers by a large difference due to optimal exploitation of slack
energy.

For each of the three servers, higher is the size of the reservoir, lower is the normalized aperiodic
response time for a given energy setting. When the reservoir size is set to Emin and the system uses 80% of
available energy, the BES, BEP, and SSP servers have aperiodic response time respectively equal to 37.4,
35.2 and 26.2. When increasing the reservoir size to 9 ∗Emin, the response time of BES, BEP and SSP will
be respectively reduced by 64%, 75% and 76%. Such a significant improvement in aperiodic responsiveness
comes from possible immediate service through extra energy which is available in the reservoir. We can
see that the BES algorithm achieves the lowest reduction in response time over all the servers. It is because
under BES, aperiodic job executions have to wait for the energy reservoir be fully replenished.

Table 6.1: Relative performance with different reservoir sizes

Reservoir Capacity Ue/Pp BES BEP SSP

Emin

0.2 2.4 2.1 1.7
0.8 37.4 35.2 26.2

5 ∗ Emin
0.2 2.0 1.7 1.4
0.8 23.0 15.8 14.7

9 ∗ Emin
0.2 1.5 1.3 1.1
0.8 13.4 8.7 6.3

6.2.6 Experiment 5: Impact of the harvested power and the reservoir capacity on
the responsiveness

The system can be rich in energy or deficient, due to harvesting unit status and the nature of energy
source.

In this set of experiments, the impact of the harvested power Pp and the capacity of storage Emin on
the aperiodic responsiveness of SSP is studied. For that purpose, we evaluate the proposed algorithm with
four different harvesting power settings extracted from Profile 2 in Figure 6.1: Pp, 2 ∗Pp, 4 ∗Pp and 8 ∗Pp;
Pp is considered the lowest value. Also five different storage capacities sweeping from Emin to 9*Emin
are considered. Emin being the minimum size of the reservoir that guarantees time and energy feasibility
depends on the configuration parameters of each experiment.

Results recorded in Figures 6.10 and 6.11 show the plots of sweeping both harvest power and storage
capacity for different processing and energy constraint settings. They are classified into four processing/en-
ergy constrained systems:
1)weakly processing constrained system (Up = 0.4) and weakly energy constrained system (Ue/Pp = 0.2),
2)weakly processing constrained system (Up = 0.4) and highly energy constrained system (Ue/Pp = 0.8),
3)highly processing constrained system (Up = 0.8) and weakly energy constrained system (Ue/Pp = 0.2),
and 4)highly processing constrained system (Up = 0.8) and highly energy constrained system (Ue/Pp =
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0.8).

Before analysing the results, it is necessary to notice that, for presentation issue, the aperiodic response
times on the y-axis are normalized as following:

RT =

∑m
i=1

fi−ai
ci

m
(6.5)

Thus, a value of 1 on the y-axis corresponds to the shortest response time, and a value of zero to the worst
response time.

From the graphs,

1. An important reduction of aperiodic responsiveness is noticed when the capacity and/or the power
harvested increase. When the couple of capacity and/or power is much more significant, the response
times become higher (close to one) for all configuration settings. And the most important increase
occurs under higher power Pp and capacity Emin parameters.

2. The normalized response time increases in a significant and progressive way with the increase of
the processing utilization Up. For example, see Figures 6.10a and 6.11a, when Up increases, the
normalized response time declines by a factor of 32%.

3. The normalized response time increases significantly with the increase of the energy utilization. For
example, see Figures 6.10a and 6.10b, when Ue increases, the normalized response time declines by
a factor of 23%.

4. As the results show, all aperiodic tasks can be executed as soon as possible within their deadlines,
without involving energy starvation for future periodic tasks due to the extra energy coming from the
power source or storage unit.

6.2.7 Experiment 6: Task preemption rate
It is interesting because of practical consequences to compare the number of preemptions which are

generated by the various algorithms. This is in order to properly evaluate the run time overheads due to
context switching. The simulations presented below evaluate the number of preemptions which are gener-
ated by the three strategies BES, BEP, and SSP algorithms as a function of the aperiodic load Ups for two
total energy load settings: 1) low energy utilization (Uep/Pp = 0.1, Ues/Pp = 0.1) in Figure 6.12 and high
energy utilization (Uep/Pp = 0.4, Ues/Pp = 0.4) in Figure 6.13.

In view of the results, we can say that globally, the SSP servicing algorithm induces a great number of
preemptions with the variation of the aperiodic load Ups. This is because an aperiodic task can preempt a
periodic one when an aperiodic task occurs and the slack time is positive. And an aperiodic task can be
preempted when the slack time is zero or the slack energy is zero. By way of illustration, for Upp = 0.3 and
Ue = 0.2, the average preemption rate generated by the SSP algorithm reaches a maximum value of 1.47%
(Figure 6.12).

On the other hand, under the two background strategies, we observe that the preemption rate is indepen-
dent from the aperiodic load applied to the system, i.e. the aperiodic tasks never preempt the periodic ones.
Nevertheless, any running aperiodic task may be preempted whenever a periodic task releases. As shown
in Figure 6.13, under SSP, the number of preemptions is higher than before because slack energy is lower
and falls to 0 more often. For example, for Upp = 0.3 and Ue = 0.8, the average preemption rate generated
by the SSP algorithm reaches a maximum value of 1.6%, whereas the curves of BES and BEP are identical
to the previous ones because background scheduling does not depend on energy.
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Figure 6.10: Impact of storage capacity and harvested energy on responsiveness of SSP for weakly process-
ing constrained system.

The previous set of experiments illustrates how the theoretical highest performance of the SSP server
may be affected due to preemptions. The background-based servers are the most competitive in terms
of preemption rate as long as the periodic load is low. The variation in the periodic load and the energy
utilization affect the efficiency of the SSP algorithm: higher are these two parameters, more important is
the performance deviation of SSP with respect to the two background servers.

6.2.8 Experiment 7: Overhead

We consider here one kernel cost: overhead. Overhead is the time taken by the kernel in performing a
service on behalf of a specific task such as computing dynamic variables each time the scheduler is invoked.
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Figure 6.11: Impact of storage capacity and harvested energy on responsiveness of SSP for highly process-
ing constrained system.

In some applications, system services are very often performed. And, they can take a considerable time
in comparison with the execution times of the tasks. For that reason, overhead wields a particular influence
upon the actual timing behaviour of tasks. And some scheduling mechanism may be more susceptible to a
given parameter than another one. Overhead in the SSP server is incurred by on line computing/updating
slack time and slack energy is a must. Since slack time under ED-H is computed when we recharge the
battery, its overall impact increases as tasks increases their energy consumption. On the other hand, slack
energy of the system under ED-H is computed every time we have to start the execution of a job within [t, di]
while higher priority jobs need to be processed in the future. It is worth mentioning that higher priority jobs
concern both jobs which are ready at t but not completed at di and future jobs, with deadline less than or
equal to di. Consequently, the global impact of slack energy increases as the number of jobs increases.
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Figure 6.12: Preemption rate with respect to Ups, for low energy utilization.
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Figure 6.13: Preemption rate with respect to Ups, for high energy utilization.

The overall overhead for the SSP server is explained by the total overhead due to on-line computations
of slack time plus the total overhead due to on-line computations of slack energy.

6.2.8.1 Varying Ups

The present section discusses this subject and testifies its practical importance by measuring the average
overhead time which is normalized, for performance evaluation, with respect to the periodic and aperiodic
processing loads. Such overhead is measured for the three algorithms BES, BEP, and SSP as a function of
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Figure 6.14: Time Overhead with respect to Ups, for low energy utilization.
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Figure 6.15: Time Overhead with respect to Ups, for high energy utilization.

the aperiodic load, for a constant periodic load Upp = 0.3 and two energy load settings: 1) weakly con-
strained with Uep/Pp = 0.1 and Ues/Pp = 0.1 and highly constrained with Uep/Pp = 0.9 and Ues/Pp = 0.1.
Overhead results are depicted in Figures 6.14 and 6.15 respectively.

For all these tests, the power Pp received from the environment is assumed constant and equal to 5.
From Figure 6.14, it can be easy concluded that, under BEP and BES, as Ups increases, slack time is

approximately constant since we computed it each time the battery is deplenished. So, it depends on energy
variation and not on the processing variation. Also, under the two background servicing approaches, slack
energy is nearly constant because the higher priority task utilization, which is supposed the periodic load
Upp, is constant. Since the slack time is computed under BEP each time an aperiodic task occurs, its curve
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is higher than that of BES.
Under SSP, as Ups varies, the overhead due to slack energy and slack time happens each time a periodic/ape-
riodic task is ready to be executed. But since the periodic load is constant, the total overhead is considered
at the variation of the aperiodic computation time. Thus, it slightly increases with the increase of Ups and
reaches a moderate average value of 1.16.

We observe in Figure 6.15 that when the periodic energy utilization Uep increases, the performance of
the background servers do not change and remain approximately constant for the same reasons mentioned
above. But under SSP, with the increase of energy utilization, the total overhead of SSP exhibits a significant
degradation (the overhead increases quickly to reach a high value, i.e. the time overhead of one worst case
execution time worth 8.3 when Ups = 0.7. Such deterioration can be explained as follows, comparing to the
results in Figure 6.14: When the periodic energy utilization increases, the energy consumed by the periodic
tasks increases. Therefore, the requirement of inserting an idle time becomes mandatory which increases
significantly the overhead due to slack time. On the other hand, slack energy depends on Ue/Pp and is
computed each time a job starts its run-time. This will increase the overhead due to slack energy. As a
consequence, under a high energy factor, there is a higher impact on SSP behaviour than the Background
servers, since the average time overhead increases by about 86% from low to high energy utilization.
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Figure 6.16: Time Overhead with respect to Ue/Pp, for low processing utilization.

6.2.8.2 Varying Ue/Pp

With varying the total energy utilization Ue/Pp, Figures 6.16 and 6.17 show the evaluation of time
overhead normalized for the three servers for two total processing settings Up = 0.2 and Up = 0.8. In
particular, the overhead is normalized with respect to the total number of periodic and aperiodic jobs. It
is evident for the reader to conclude that the overhead increases with the increase of Ue/Pp from 0.5 to
1. When the energy utilization varies, the energy consumed by tasks increases. In that case, the need of
inserting idle times and of computing the maximum energy to consume by future jobs increases too. Thus,
the computations of slack time and slack energy variables become more frequent.

The overhead is notorious in Figure 6.17 compared to that in Figure 6.16; 67% higher. That signifies
that tasks with high processing load are more prone to significant overhead.
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Figure 6.17: Time Overhead with respect to Ue/Pp, for high processing utilization.

6.3 Second set of experiments: variable energy profile

In previous experiments, the three servicing algorithms have been compared under constant energy
profile. In this set of experiments, we have evaluated their performance with respect to various energy
aspects.

6.3.1 Experiment 1: Average response time of aperiodic tasks

As previously, we have varied the incoming environmental energy in order to study the impact of the
four different profiles on the normalized response time of each of SSP, BES, and BEP servers. The power
for the first profile was supposed constant and equal to 5. The output power of the three profiles (Figure 6.1)
is supposed variable between 2 and 17. The minimum size of the reservoir (Emin) for the different profiles
should not be less than the area of each profile.

The evaluation are performed for a total energy utilization applied to the system, which varies from 5%
to 100%, while the total processing utilization load remains constant (Up = 0.6). The four simulation exper-
iments depicted in Figures 6.18, 6.19, 6.20 and 6.21 refer to the results obtained for constant profile, Sine
wave with period π = 2, Rectifier signal and Pulse signal of 20% duty-cycle respectively. They illustrate
the mean aperiodic response time which is normalized with respect to the aperiodic computation time.

The graphs plainly show that SSP outperforms the other algorithms under all energy profiles. This
confirms our theoretical analysis whas been performed without any restrictive assumption on the production
of energy along time. BEP performs better than BES with a small deviation and exhibits a significant
degradation with respect to the BEP algorithm (Figure 6.21) under the Pulse signal profile. It is expected that
the results of the Pulse model show that the performance obtained for the three algorithms and in particular
for BES is slightly less than ones obtained under the three other models. For example, the responsiveness
by BES under the Pulse signal profile is at least 12.5% less than the other profiles. The reason is that the
power is only harvested on 20% duty-cycle of the overall signal and BES permits aperiodic tasks to be only
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executed when the energy reservoir is full, which leads to an increase in aperiodic responsiveness.
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Figure 6.18: Normalized aperiodic response time with respect to Ue/Pp, for Up=0.6 under constant profile.
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Figure 6.19: Normalized aperiodic response time with respect to Ue/Pp, for Up=0.6 under sinusoidal signal
of period π/2.

6.3.2 Experiment 2: Number of preemptions for various energy profiles

6.3.2.1 Varying Ue/Pp

In this section, we compare the cost incurred by SSP over BEP and BES due to preemptions with vary-
ing the total energy utilization Ue/Pp. The Table here below illustrates this metric with four different power
profiles in Figure 6.1 assuming that Pp can be accurately predicted. The 3rd and 4th columns report the



6.3 Second set of experiments: variable energy profile 91

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

30

35

Ue/Pp

N
or

m
al

iz
ed

 R
es

po
ns

e 
T

im
e

Up= 0.6

 

 

BES
BEP
SSP

Figure 6.20: Normalized aperiodic response time with respect to Ue/Pp, for Up=0.6 under rectifier signal.
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Figure 6.21: Normalized aperiodic response time with respect to Ue/Pp, for Up=0.6 under pulse signal.

overhead results for SSP vs BEP and SSP vs BES respectively for the processing utilization ratio Up sweep-
ing from 0.2 to 0.8, stepped by 0.2 under constant profile, while for a fairly constrained system (Up = 0.4)
under other profiles.
It is shown in Table 6.2 that the percentual overhead of each of SSP vs BES and SSP vs BEP slightly de-
creases when total utilization is higher because the preemptions number of BES and BEP increases with
long execution times at the release of periodic tasks. For example, it decreases by only 10% from low
processing utilization to high processing utilization which shows a good impact on the SSP performance.
However, we can conclude that the issued overhead ratio doesn’t exceed 31.5%. This number is still ac-
ceptable and does not affect the SSP performance.

We can also report that the different ratio values show minor differences in all profile when Up = 0.4.
There is no correlation between overhead and the variable profiles Sine wave, Pulse and Rectifier, since

they offer results in the same margin than the constant profile. However, the Pulse signal allows a low
overhead ratio of SSP over BES. This is because, according to the energy harvested on bounded duty-cycle
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of the overall Pulse signal, BES permits aperiodic tasks to be only executed on this bound. This leads to an
important number of preemptions in BES.

Table 6.2: Overhead of SSP over BEP and BES with respect to preemption rate with varying total energy
utilization.

Profile Up
Overhead of SSP (%)

SSP vs BEP SSP vs BES

Constant

0.2 31.5 28.3
0.4 30.9 27.8
0.6 29.9 27.0
0.8 28.3 23.9

Sine wave signal 0.4 29.4 23.5
Pulse signal 0.4 29.2 14.2

Rectifier 0.4 30.2 28.4

6.3.2.2 Varying Up

Table 6.3 reports a performance comparison between SSP and background policies in terms of number
of preemptions with four different power profiles in Figure 6.1 assuming that the incoming power Pp can
be accurately predicted in the future. The results are recorded in the 3rd and 4th columns for four different
total energy utilization settings varying from 0.2 to 0.8 under constant profile, and for Ue/Pp = 0.4 under
other profiles.

From the Table here below, under constant profile, we notice that as the total energy load becomes
reletively high, a little increase of the number of preemptions is shown. Such deterioration can be explained
as follows: When the normalized energy utilization factor increases, the energy consumed by the periodic
and aperiodic tasks increases and therefore the slack energy decreases and is declared with a null value,
very often. Despite this behavior, a high energy factor (i.e. 0.8) has an acceptable impact on the percentage
overhead since it increases by 5.8% from low to high energy utilization. And the highest resulting overhead
does not exceed 29.5%.

On the other hand, we report for each variable ambient energy profile an overhead ratio close to that
provided in constant profile for Ue/Pp = 0.4. The exception is with SSP vs BES for Pulse signal for the
same reason as mentioned in previous section.

In summary, we have used a normalized metric to evaluate the sensitivity of the different servers to
preemptions. Our study permits to certify that the SSP server is no more influenced by preemptivity than
the background servers under the various energy profiles which were selected in our thesis.

Table 6.3: Overhead of SSP over BEP and BES with respect to preemption rate with varying total processor
utilization Up.

Profile Ue/Pp
Overhead of SSP (%)

SSP vs BEP SSP vs BES

Constant

0.2 27.8 26.1
0.4 27.9 26.3
0.6 29.4 27.4
0.8 29.5 27.8

Sine wave signal 0.4 28.1 20.4
Pulse signal 0.4 27.9 14.3

Rectifier 0.4 28.5 24.2
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6.4 Performance summary
The simulation experiments reported above allow us to give useful insights on the different parameters

that can affect aperiodic responsiveness. Here below is a summary of our simulation results and the conclu-
sions we may draw from them:

– BEP and BES show poor performance in terms of response time, jitter time, and latency regardless
of time or energy utilization.

– BES is not optimal, especially when it is exposed to high timing and energy constraints. This is
because it executes aperiodic task which consumes only processor time and energy which should be
wasted if there was no aperiodic task.

– The advantage of the background servers lies in their simplicity.
– BEP invokes the calculation of the slack energy less often than SSP. For that, it shows a less time

overhead.
– The SSP algorithm can provide a significant reduction in aperiodic responsiveness, jitter time, and

latency, compared to the background services and regardless of the processing/energy constraints
variation. It is due to the use of the available idle times and energy surplus in the system.

– the normalized response time of SSP increases by about 20% in fairly processing constrainted system
relative to the weakly one, by about 39% in quite highly processing constrainted system relative to
the fairly system , and about 60% in highly processing constrainted system relative to the latter one.

– Compared to SSP and BEP, BES is not affected by the process of increasing the reservoir size because
it reclaims a complete reservoir replenishment to execute the aperiodic task.

– The Background servers illustrate the lower preemptions rate than SSP because, in general, an aperi-
odic task never preempts a periodic task. This means that they have low overhead.

– SSP has the higher overhead due to the higher preemptions rate and to the slack time and slack energy
computations.

6.5 Conclusion
In that chapter, we reported an extensive simulation that was carried out to measure the relative perfor-

mance of the optimal (theoretical performance) server SSP, compared with the two background strategies
BEP and BES. We formally reported their properties by showing the behaviour of each one under various
perspectives like aperiodic responsiveness, jitter, latency, preemptions rate, etc.

The servers work in a dynamic real-time energy constrained environment, where the periodic tasks are
scheduled according to the optimal ED-H algorithm and respecting their timing constraints is a commit-
ment. Globally, the simulations confirm that the SSP policy allows a much better responsiveness for the
aperiodic activities, taking profit from energy surplus as well as processing time surplus to execute the
aperiodic tasks at the earliest time instant. Other properties typically claimed for SSP, such as better jitter
control, better latency, in all time and energy conditions, and under various harvested energy profiles.

The real advantage of BEP and BES over SSP is their simple implementation because the latter reveals
a high computational complexity and high run time overheads due to the frequent dynamic computation
of the slack energy and the slack time. Consequently, the computation requirements of the slack stealing
server may be too high in some cases and not compatible with implementation specifications. Let us recall
that such scheduler will be dedicated to small devices with very severe limitations in terms of processing
power and memory space. So the idea could be to look for a compromise between performance and im-
plementation efficiency. The last chapter of the thesis aims to propose a new server that could be such
compromise.
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CHAPTER 7

BANDWIDTH-PRESERVING BASED SERVERS:
TB-H AND TB∗-H

Summary

We propose, in this chapter, a new method that deals with the mixed scheduling of periodic tasks and
soft aperiodic tasks with energy harvesting considerations. In the first part of the chapter, we successively
describe the so-called TB-H and TB∗-H task servers. We prove that TB∗-H is optimal in terms of aperiodic
responsiveness. Secondly, our additional contribution lies in extensive simulations that were carried out to
show the effectiveness of this Bandwidth based server with respect to background and the slack stealing
server, SSP. In this chapter, we only focus on constant renewable energy profiles.

Contents
7.1 The TB-H Server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

7.1.1 Background materials with no energy constraints . . . . . . . . . . . . . . . . . . 96

7.1.2 Total Bandwidth for energy harvesting settings . . . . . . . . . . . . . . . . . . . 97

7.1.3 Implementation considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

7.2 The TB∗-H Server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

7.3 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

7.3.1 Experiment 1: Average response time of aperiodic tasks . . . . . . . . . . . . . . 101

7.3.2 Experiment 2: Average jitter of aperiodic tasks . . . . . . . . . . . . . . . . . . . 102

7.3.3 Experiment 3: Average latency of aperiodic tasks . . . . . . . . . . . . . . . . . . 103

7.3.4 Experiment 4: Relative performance with different reservoir sizes . . . . . . . . . 104

7.3.5 Experiment 5: Impact of harvested power and reservoir capacity on responsiveness 106

7.3.6 Experiment 6: Tasks preemption rate . . . . . . . . . . . . . . . . . . . . . . . . 106

7.3.7 Experiment 7: Overhead . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

7.4 Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

7.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

95



96 CHAPTER 7 : Bandwidth-preserving based servers: TB-H and TB∗-H

7.1 The TB-H Server

7.1.1 Background materials with no energy constraints
We have presented in Chapter 1 the foundation of the so-called TB server. We gave the formula proposed

by Spuri and Butazzo to compute the fictive deadline of any occurring aperiodic task so that the fraction
of processing time demanded by any aperiodic job never exceeds the server utilization Ups. The proposed
formula is as follows [13]:

dk = max(rk, dk−1) +
ck
Ups

(7.1)

And the condition for schedulability of the periodic task set with the TB aperiodic task server (TBS) is
given as follows:

Lemma 2 In each interval of time [t1, t2], if Cape is the total execution time demanded by aperiodic tasks
arrived at t1 or later and served with deadlines less than or equal to t2, then

Cape ≤ (t2 − t1)Ups (7.2)

Proof: Cape =

k2∑
k=k1

ck

= Ups

k2∑
k=k1

[dk −max(rk, dk−1)]

≤ Ups[dk2 −max(rk1 , dk1)]
≤ Ups(t2 − t1)

Theorem 11 Given a set of n periodic tasks with processor utilization Upp and a set of aperiodic tasks
served by TBS with processor utilization Ups, the whole task set is schedulable if and only if

Upp + Ups ≤ 1. (7.3)

Proof: "If". Suppose there is an overflow at time t. The overflow is preceded by a period of continuous
utilization of the processor . Furthermore, from a certain point t′ on, only jobs (periodic or aperiodic) ready
at t′ or later and having deadlines less than or equal to t are running. Let C be the total execution time
demanded by these jobs. Since there is an overflow at time t, we must have t− t′ < C.
We also know that

C ≤
n∑
i=1

bt− t
′

Ti
cCi + Cape

≤
n∑
i=1

bt− t
′

Ti
cCi + (t− t′)Ups

≤ (t− t′)(Upp + Ups).
It follows that Upp + Ups ≤ 1, a contradiction.�

"Only If". If an aperiodic request enters the system periodically, say each Ts > 0 units of time, and has
execution time Cs = TsUps, the server behaves exactly as a periodic task with period Ts and execution time
Cs. Being the processor utilization U = Upp + Ups, again from Theorem 7 of [22] we can conclude that
Upp + Ups ≤ 1. �
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7.1.2 Total Bandwidth for energy harvesting settings
Let us now demonstrate how to assign the deadlines to the aperiodic tasks when the energy availability

is limited in each interval of time. We have to consider that the fraction of energy consumed by the aperi-
odic tasks should not exceed the aperiodic energy utilization of the server, say Ues. This is proved by the
following lemma.

Lemma 3 Given a periodic task set n with an average energy consumption of τ per time unit Uep and a
stream of aperiodic tasks processed in FCFS order by a Bandwidth based server with an aperiodic energy
utilization Ues. In each interval of time [t1, t2], consider thatEape is the total energy demanded for aperiodic
tasks arrived at t1 or later and serviced with deadlines less than or equal to t2, then

Eape ≤ (E(t1) + (t2 − t1)Pp)
Ues
Pp

(7.4)

Proof: Suppose that, within the interval [t1, t2], there exist m aperiodic tasks having a release time
greater than or equal to t1 and lower than t2. Also, the total energy produced by the source within this
interval is equal to (E(t1) + (t2− t1)Pp), where Pp is the constant source power. As Ues

Pp
is the proportion of

energy available for aperiodic tasks, it follows intuitively that the total energy demanded by aperiodic tasks
after t1 and before t2 is less than or equal to (E(t1) + (t2 − t1)Pp)Ues

Pp
. �

Now we have to prove that the aperiodic energy utilization does not exceed Ues

Pp
.

Theorem 12 Given a set of n periodic tasks with periodic energy utilizationUep and a stream of m aperiodic
tasks served by a TB-H server with aperiodic energy utilization Ues, the whole set is schedulable only if:

Uep + Ues ≤ Pp. (7.5)

Proof: We prove the theorem by contradiction. Suppose there is a deadline violation due to an energy
starvation at time t. The deadline violation comes from the execution of periodic and/or aperiodic tasks.
Let t0 be the time instant before t where only periodic or aperiodic jobs ready at t0 or later and having
deadlines less than or equal to t are executed. Let E be the total energy demanded by these jobs within
[t0, t]. Since there is an energy starvation at time t caused by the fact that the energy demand exceeds the
energy produced between t0 and t, we must have E > E(t0) + (t− t0)Pp.
We also know that

E ≤ ( 1
Pp
∗

n∑
i=1

bt− t0
Ti
cEi) + Eape

≤ (
1

Pp
∗

n∑
i=1

bt− t0
Ti
cEi) + (E(t0) + (t− t0)Pp) ∗

Ues
Pp

≤ (E(t0) + (t− t0)Pp)(Uep + Ues) ∗
1

Pp

It follows that Uep + Ues ≤ Pp, a contradiction.�

Since the energy required by the aperiodic tasks never exceeds the energy available in a certain interval
of time, we will prove that the new deadline assigned can be computed as described by theorem 13.

Lemma 2 states that there exists some interval [t1, t2] where the aperiodic energy demand Eape is lower
than the energy equal to (E(t1) + (t2 − t1)Pp)Ues that could be available in [t1, t2]. We may draw Theorem
13, the new deadline assignment method for an aperiodic task under energy harvesting constraints.
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Theorem 13 Let Ues be the aperiodic energy utilization such that Uep + Ues ≤ Pp. The fictive deadline of
a k-th aperiodic task arriving at time t = rk must be computed as follows:

d̃k = max(rk, ˜dk−1) + dEk
Ues
− E(rk)e (7.6)

Proof: When aperiodic task Apk arrives at time t = rk, the assignment of the deadline is done. Suppose
that Apk has an energy demand Ek. Therefore, the fictive deadline must be computed in such way that the
occurring task may benefit from this amount of energy. We know that Ek cannot exceed the energy avail-
able in the interval [rk, d̃k]. It follows that Ek ≤ (E(rk) + (d̃k − rk)Ues), hence the following inequality
d̃k ≥ Ek−E(rk)

Ues
+ rk.

We recall that an aperiodic task cannot be preempted by another aperiodic one and thus ˜dk−1 < d̃k. Finally,
in the worst-case, Apk−1 may finish its execution at ˜dk−1. Then the next aperiodic job Apk starts to run at
t = max(rk, ˜dk−1) and we obtain: d̃k ≥ Ek−E(rk)

Ues
+max(rk, ˜dk−1). �

Hereafter, we present the deadline assignment with both real time and energy harvesting constraints
with TB-H (Total Bandwidth for energy Harvesting systems).

Theorem 14 Given a set of n periodic tasks and a stream of m aperiodic tasks served by the TB-H server.
A suitable deadline for an aperiodic task Apk is computed as follows:

dfk = max(dk, d̃k) (7.7)

Proof: From formula 7.1 and formula 7.6 in Theorem 13, it is the case that formula 7.7 is satisfied. �

The pseudocode of the TB-H aperiodic task server is illustrated as follows:

Algorithm 5 The Total Bandwidth server TB-H with ED-H
Require:

t: current time
Apk: Aperiodic task that occurs at t

1: while True do
2: if Ap(t) is not empty then
3: dk = max(t, dk−1) + dck/Use
4: d̃k = max(t, dk−1) + dek/Uese
5: dfk ← max(dk, d̃k)
6: assign dfk to Apk
7: insert Apk in the ready queue
8: end if
9: execute the ED-H scheduler

10: end while

Example 13 The following example illustrates the TB-H deadline assignment procedure when any ape-
riodic task occurs. We consider the same sets of periodic and aperiodic tasks that was presented in the
previous chapters. A task set Γ of three periodic tasks is considered and represented in Table 7.1.
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Table 7.1: Parameters of periodic tasks with energy considerations

Task Ci Di Ti Ei
τ1 4 9 9 18
τ2 3 12 12 18

We assume that the energy storage capacity is C = 10 energy units at t = 0. The rechargeable power
is constant along the hyperperiod and equal to 4 (Pp = 4).

We suppose that the first aperiodic job Ap1 has computation time 1, energy consumption 5 energy units,
and is released at t = 9. Another aperiodic task with computation time 3 and energy consumption 15
energy units is released at t = 18.

The periodic processor utilization is Upp = 0.7 and the periodic energy utilization is Uep = 3.5. This
leads to get a bandwidth of processing time Ups = 0.3 and bandwidth of energy Ues = 0.5 dedicated to the
aperiodic tasks.

At time 0, the residual capacity is the greatest one since the storage unit is full. τ1, the highest priority
periodic task, runs and finishes at time 4 and consumes 18 energy units. At time 4, the residual capacity is
given by Emax − E1 + Pp ∗ C1 = 8. Now, τ2 has the highest priority. It executes completely until time 7
and consumes 18 energy units. The residual capacity equals 2 energy units. At time 7, the storage unit is
recharging since the processor is let idle. At time 9, Ap1 arrives. It receives a fictive deadline d1 = 13 by
equation 7.1 (due to processing time bandwidth of the server) and a second deadline d̃1 = 19 by equation
7.6 (due to energy bandwidth of the server). Finally, the deadline df1 = max(d1, d̃1) = 17 is assigned to
Ap1.
That means that Ap1 will not be serviced immediately, as τ1 has an earliest deadline. Ap1 will be jointly
scheduled with the periodic tasks under the ED-H scheduler using the deadline newly assigned at t = 13
and consumes a maximum of 5 energy units.At time 14, the highest priority task τ2 executes completely
according to ED-H where the residual capacity equals 7. Periodic tasks run till time 18 where a new ape-
riodic task Ap2 is released. Ap2 is assigned a deadline df2 = 49. But it is not executed immediately, since
at time t = 18, there is an active periodic task with a shorter deadline equal to 27. Tasks of the system ex-
ecute timely according to ED-H till the end of the hyperperiod where the energy reservoir has 8 energy units.

Let us notice that the response times of aperiodic tasks Ap1 and Ap2 are respectively 5 units of time and
16 units of time.

7.1.3 Implementation considerations
As the classical TB server, TB-H is very simple to implement. For assigning a suitable deadline to a

new arriving aperiodic task, we have to keep track of the deadline assigned to the last occurring aperiodic
task. After computation of its deadline, the aperiodic task is inserted in the list of ready tasks which gathers
all the tasks, periodic ones and aperiodic ones. Consequently, the scheduler has to manage only one list of
ready tasks.
Simulations hereafter will show that TB-H exhibits better performance than background servers even if they
have both the same low implementation costs.

7.2 The TB∗-H Server

In this section, we propose a new deadline assignment method that improves the performance of the
previous TB-H server. Our idea is to try to find a deadline which is shorter than that given by TB-H while
still guaranteeing the feasibility of the system.
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Figure 7.1: Illustration of the TB-H server.

The deadline assignment of the new TB∗-H works as follows: the formula given by TB-H is used to de-
termine the deadline of any aperiodic task which arrives while there is no more aperiodic task present in
the system. Then, a recurring formula, is used to shorten as much as possible this deadline in order to
enhance aperiodic responsiveness. The new deadline is computed so as to be the worst case finishing time
of the aperiodic task which takes into account the interferences with the periodic tasks. This procedure
was described in Section 1.4.2.3 and is used here in the same way in the case where the periodic tasks are
scheduled by ED-H.
Let us recall that the formula is:

ds+1
k = t+ ck + Ip(t+ dsk) (7.8)

Here t denotes the current time, ck is the worst case execution time of the aperiodic task. Ip(t + dsk) repre-
sents the interference on the aperiodic task due to the jobs of the periodic tasks between t and the deadline.
Here the tasks are scheduled by ED-H instead of EDF. But these two schedulers are the same in terms of
decision rule for selecting the future active task. Both selects the task with the closest deadline. The only
difference these two schedulers is the placement of idle time intervals. Although we did not prove its opti-
mality, we may intuitively expect that TB∗-H is an optimal server as the SSP server.

Consequently, the final deadline assigned by TB∗-H to an aperiodic task Apk is computed as follows:

dfk = max(ds+1
k , d̃k) (7.9)

The pseudo-code of TB∗-H is similar to that of TB-H with a difference in the computation of deadline.
Today, the optimality of this new server has not been stated yet.
In summary, the TB∗-H server can be considered as the optimal version of the TB-H server which contains
only one iteration for computing the deadline of any aperiodic task. We may imagine different versions of
TB∗-H according to the number of iterations which are performed to determine the exact optimal deadline.
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But higher is the number of iterations, higher will be the performance of the server. But higher will be the
overhead due to the computational complexity for determining the deadline.

Example 14 We use the same example as one which illustrated the TB-H server. The periodic processor
utilization is Upp = 0.7 and the periodic energy utilization is Uep = 3.5. This leads to get a bandwidth
of processing time Ups = 0.3 and bandwidth of energy Ues = 0.5 dedicated to the aperiodic tasks. By
applying equation 7.8, we obtain d1 = 13 for Ap1 and d∗2 = d12 = 25 for Ap2. Then, by applying equation
7.6, we got d̃1 = 13 and d̃2 = 25 for Ap1 and Ap2, respectively. Finally, 7.9 gives us the final deadlines
df1 = max(d1, d̃1) = 19 and df2 = max(d∗2, d̃2) = 49. Hence, the example results lead to the same schedule
illustrated under the TB-H server in Figure 7.1.

7.3 Performance Evaluation

TB-H, TB∗-H, SSP, BEP, and BES are simulated to compare their performance in terms of aperiodic re-
sponsiveness, jitter, latency, preemptions task rate, overhead, and impact of power and/or energy reservoir.
In all experiments, we adopted the identical simulation environment presented in Chapter 6 to generate and
schedule the periodic tasks set and the soft aperiodic tasks stream.
The total processing load Up incorporates 50% of the periodic processor utilization Upp and 50% of the ape-
riodic utilization Ups. Identically, the total energy load Ue includes 50% of the periodic energy utilization
Uep and 50% of the aperiodic energy utilization Ues.

In this work, we consider that the storage capacity is initially full and the recharging power Pp is con-
stant.

7.3.1 Experiment 1: Average response time of aperiodic tasks

In this first set of experiments, SSP, TB∗−H , TB-H, BEP, and BES algorithms have been simulated to
compare the average response times of soft aperiodic tasks with respect to the total energy load.

Simulation results reported in Figures 7.2 and 7.3 are carried out for a processing load equal to 0.2, and
0.8 respectively, varying the energy load (5%≤ Ue ≤100).

From the graphs, we can say that the SSP server and the TB servers offer better performance compared
to the two BG servers. Moreover, this advantage is more significant as the energy load Ue is higher. The
major difference in the performance between the optimal servers (SSP and TB∗−H ) and the naive servers
(BEP and BES) appears for heavy energy loads. Note that, TB-H and TB∗ − H have about the same
responsiveness when the energy load is low, and they show a slightly different behavior for high energy
conditions.

In all graphs, the maximum difference between the performance of SSP and the optimal TB∗−H is no
more than 7%, even for high energy load.

For the first experiment (Figure 7.2, Up = 0.2 ), the SSP and the TB servers provide a significant de-
crease of at least 16% of response times compared to the background servers for Ue ≥ 70%.

In the third experiment (Figure 7.3), the SSP and the TB servers always provide the best response time
performance still with a highly processing constrained system (Up = 0.8). For example, if we consider
the performance of SSP and TB∗ − H when the total energy load equal to 90%, the aperiodic response
time offered is reduced by at least 28% in comparison with the background strategies. The optimality of
TB∗ − H server has to be paid with the increasing number of shortening steps where SSP takes profit of
the energy slack stealing to outperform the other servers.
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Figure 7.2: Normalized aperiodic response time with respect to Ue/Pp, for Up=0.2.
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Figure 7.3: Normalized aperiodic response time with respect to Ue/Pp, for Up=0.8.

7.3.2 Experiment 2: Average jitter of aperiodic tasks
The behaviour of SSP, BES, BEP, and TB servers is studied as a function of the total energy utilization

for two processing utilization settings (Up = 0.2 and Up = 0.8). The normalized jitter time measured is
illustrated in Figures 7.4 and 7.5, respectively. Globally, the Total Bandwidth and Slack Stealing servers
can provide a significant reduction in jitter time compared to background servers; their maximum reached
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normalized jitter time is less than the half of their corresponding response time, which means that they do
not take a lot of time to service the aperiodic tasks.

The results ahow that the TB-H and TB∗ −H approaches record the same jitter time for all the energy
utilization steps and under all workload settings.

In Figure 7.4, all algorithms linearly increase with the increase of tasks energy consumption.
For higher load (Figure 7.5), the jitter time is increasing with the increase of the energy utilization. For

heavy energy consumption tasks (i.e. Ue/Pp>0.8), the jitter is reduced at the expense of tasks with lower
energy consumption, because a small jitter time increase of tasks is detected.

Then, as expected, the SSP and TB servers still beat BEP and BES algorithms by a large margin. For
example, TB-H reduces the jitter time by 16%, compared to BES. That means that the aperiodic task in
TB-H doesn’t take so much time to be serviced upon its release.
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Figure 7.4: Normalized jitter time with respect to Ue/Pp, for Up=0.2.

7.3.3 Experiment 3: Average latency of aperiodic tasks
To test the latency of the algorithms with respect to the total processing load, two simulations were

performed, using Up = 0.2 and Up = 0.8. The results achieved by the TB, SSP, and background servers
depending on the total energy utilization are shown in Figures 7.6 and 7.7.

We can observe, that TB-H and TB∗-H decrease the maximum latency time compared to the other
algorithms. For low processing utilization (Figure 7.6), the two proposed preserving bandwidth algorithms
and the SSP do not have significant differences in their performance. Their effectiveness over BEP and
BES is achieved for heavy energy utilization. For high processing utilization (Figure 7.7), the TB servers
outperform the SSP server by a maximum difference of 21%. For high energy utilization, the aperiodic
jobs are executed at the expense of the presence of periodic tasks because a reduced latency indicates that
aperiodic jobs are not so much interrupted and because of the minimum deadline assigned by the TB servers.

The result of this set of experiments suggests that it may not be worth using sophisticated algorithms as
SSP server, because the latency time achievable in TB servers are not so much affected by high processing
and/or energy utilization.
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Figure 7.5: Normalized jitter time with respect to Ue/Pp, for Up=0.8.
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Figure 7.6: Normalized latency time with respect to Ue/Pp, for Up=0.2.

7.3.4 Experiment 4: Relative performance with different reservoir sizes
In this set of experiments, we evaluate the performance of the servers by varying the reservoir size with

Emin, 5*Emin, and 9*Emin. Emin is the minimum size of the reservoir that guarantees time and energy
feasibility, for given Up, Ue, and Pp. Here, we report the results for systems which are not time-constrained
i.e. Up = 0.2. In Table 6.1, the 3rd, 4th, 5th, 6th and 7th columns give the aperiodic responsiveness of BEP,
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Figure 7.7: Normalized latency time with respect to Ue/Pp, for Up=0.8.

BES, SSP, TB-H, and TB∗ −H servers, respectively, for two profiles in terms of energy constraints.

Table 7.2 shows that the Total bandwidth servers achieve significant reduction in aperiodic responsive-
ness, comparing with the Background servers under all parameter settings, and a very close performance
(sometimes similar under some energy conditions) to SSP.

For example, when the system uses 20% of available energy with minimum reservoir size, the response
time under TB-H is 14% and 25% lower compared to BEP and BES respectively. If the energy requirement
is set to 80%, all servers record relatively high response times. However, the optimal Total Bandwidth
server TB∗ −H tends to approach the SSP server and still outperforms the background servers by a large
difference due to optimal deadline assignment and the smart utilization of the extra energy.

For each of the five strategies, the higher is the size of the reservoir, the lower is the normalized ape-
riodic response time for a given energy setting. For example, if the reservoir size is set to Emin and the
system uses 80% of available energy, the TB-H and the TB∗ − H servers have aperiodic response time
equal to 29.0 and 28.1 respectively. When increasing the reservoir size to 9 ∗ Emin, their response time is
respectively reduced by 75%.

Such a significant improvement in aperiodic responsiveness comes from possible immediate service
through extra energy which is available in the reservoir.
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Table 7.2: Relative performance of TB-H and TB∗-H with different reservoir sizes

Capacity Ue/Pp BES BEP SSP TB-H TB∗-H

Emin

0.2 2.4 2.1 1.7 1.8 1.7
0.8 37.4 35.2 26.2 29.0 28.1

5 ∗ Emin
0.2 2.0 1.7 1.4 1.5 1.4
0.8 23.0 15.8 14.7 14.9 14.7

9 ∗ Emin
0.2 1.5 1.3 1.1 1.2 1.1
0.8 13.4 8.7 6.3 7.3 7.0

7.3.5 Experiment 5: Impact of harvested power and reservoir capacity on respon-
siveness

In this experiment, we tested the impact of the harvested power and the reservoir capacity on the ape-
riodic responsiveness of TB-H. For presentation issue, the aperiodic response times on the y-axis are nor-
malized as following:

RT =

∑m
i=1

fi−ai
ci

m
. (7.10)

Thus, a value of 1 on the y-axis corresponds to the shortest response time, and a value of zero to the worst
response time. Figure 7.8 illustrates the three-dimensional plots of normalized response time of the TB-H
server by sweeping both harvest power and reservoir capacity for three different total energy utilization
settings: Ue/Pp = 0.2, 0.4 and 0.8. It is worth recalling that the values of variable power Pp is extracted
from Profile 2 in (Figure 6.1, Chapter 6); Pp, 2 ∗ Pp, 4 ∗ Pp, and 8 ∗ Pp where Pp is considered the lowest
value. Also five different storage capacities sweeping from Emin to 9*Emin are considered; Emin, being
the minimum size of the reservoir that guarantees time and energy feasibility depends on the configuration
parameters of each experiment.

The simulation results in Figure 7.8 show that, in addition to the total energy utilization, the harvested
power Pp and the reservoir capacityEmin also affect the performance of TB-H. For weakly and fairly energy
constrained systems, TB-H exhibits good aperiodic responsiveness. For highly energy constrained system,
its performance degrades by at least 20%. In all experiments, the higher the harvested power and/or the
reservoir capacity, the better the response time achieved by TB-H. This appears because of the excess of
energy introduced by the power or the reservoir. As shown in the plots, the reservoir capacity has the most
impact on responsiveness since the improvement in reducing the normalized response time is significant
with the increase of the reservoir capacity, e.g. the response time is reduced by 49% when rising from Emin
to 9*Emin and by only 6% when sweeping from Pp to 8 ∗ Pp in Figure 7.8c.

7.3.6 Experiment 6: Tasks preemption rate
As previously mentioned, the task preemption rate serves to evaluate the overhead involved by context

switching. The fewer are the preemptions, the fewer are the context changes, and the more efficient is the
scheduler. The number of preemptions is compared as a function of the aperiodic load Ups, between the
BEP, the BES, the SSP, and the TB servers, for low and high total energy utilization settings in Figure 7.9
and 7.10, respectively.

For Uep/Pp = 0.1 and Ues/Pp = 0.1 (Figure 7.9), BES and BEP exhibit similar performance in terms
of preemption rate which is constant with the variation of Ups. This phenomenon appears because of
the constant periodic processing utilization. The preemption rate of SSP increases and differs from the
background servers by at least 76%. As expected, TB-H and TB∗ − H outperform SSP by 41.3% when
the processor utilization is close to one. For Uep/Pp = 0.4 and Ues/Pp = 0.4 (Figure 7.9), the preemption
rate obtained with BES and BEP are also similar. The curve of SSP behaves higher than in previous
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Figure 7.8: Impact of storage capacity and harvested energy on Responsiveness of TB-H for different energy
utilization settings.
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Figure 7.9: Preemption rate with respect to Uap, for low energy utilization.
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Figure 7.10: Preemption rate with respect to Uap, for high energy utilization.

case. The TB servers outperform also the SSP server by 43.8% when Ups = 0.7. The low number of
preemptions provided by the TB servers reveals that they incur a low context switching overhead, and that
their implementation is more simpler than SSP.
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Figure 7.11: Time Overhead with respect to Ue/Pp, for low processing utilization.
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Figure 7.12: Time Overhead with respect to Ue/Pp, for high processing utilization.

7.3.7 Experiment 7: Overhead
In this section, we evaluated the effect of total processing utilization Ue/Pp on the computing overheads.

Figures 7.11 and 7.12 show the normalized overhead introduced by the SSP, BEP, BES, TB-H, and TB∗−H
algorithms with two different processing utilization settings (light and heavy): 1) Up = 0.2 and 2) Up = 0.8.
The normalized time overhead is the number of times where we compute either the slack time or the slack
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energy relative to the total number of jobs in SSP.
The graphs show that the harvesting-aware (TB-H and TB∗ − H) servers consistently outperform the

slack stealing approach, in terms of overhead, for a light energy utilization (Figure 7.11). For a heavy
energy utilization (Figure 7.12), they outperform SSP by 81.69%, and BEP by 19.5%, with exception of
the BES server that incurs less overhead than the TB servers. The difference between BES and TB-H is
considered negligible in practical applications.

7.4 Synthesis
The aim of the simulations is to evaluate the performance of the Total Bandwidth algorithms (TB-H and

TB∗-H) proposed in this chapter, in comparison with the Slack Stealer and Background algorithms intro-
duced in the previous chapters. Table 7.3 summarizes the properties of the evaluated algorithms.

In this table, the X represents the good performance of the scheduling algorithms at a given criterion.
These results highlight the existence of a performance-complexity trade-off. In fact, this classification
shows the poor performance of the background-based algorithms (BES and BEP), which is characterized by
simple implementation. Moreover, this table highlights the performance prevalence of the SSP algorithm,
which is acquired at the expense of an increase of complexity computation and implementation. The TB-H
and TB∗-H provide good results by balancing performance against implementation complexity.

Table 7.3: Algorithms comparison summary.

BG-based SS-based BP-based
BES BEP SSP TB-H TB∗-H

Optimality not optimal not optimal optimal not optimal optimal
Complexity O(n) pseudo-polynomial pseudo-polynomial O(n) O(n)

Worst-case scenario O(n.m) pseudo-polynomial pseudo-polynomial O(n.m) O(Nn.m)
Average Response Time X X X XX XX XX

Average Jitter Time X X X XX XX XX
Average Latency Time X X XXX XX XX

Preemptions Rate X X XXX XX XX
Time Overhead X X X XXX XX XX

7.5 Conclusion
In this chapter, we presented a new family of aperiodic task servers for energy harvesting systems. The

server TB-H is an extension of the Total Bandwidth server introduced by Spuri and Buttazzo in 1994. It
consists in: 1) computing a first suitable deadline to each ready aperiodic job while still ensuring that the
timing constraints are met, 2) computing a second suitable deadline while still guaranteeing that the energy
constraints are met, 3) assigning a final fictive deadline which is the maximum of the two deadlines com-
puted in step 1 and step 2 and finally 4) inserting the aperiodic task into the system ready queue together
with the periodic tasks. A refinement of TB-H called TB∗−H has been proposed. Its optimality is intuitive
as the server TB∗ was proved optimal by Buttazzo in 1999 under no energy consideration.

Compared with the slack stealing and background approaches, TB-H was proved to provide identical
performance in terms of response time, jitter time, and latency. TB-H is very simple to implement, and
no additional overhead is required since aperiodic tasks are processed with the periodic ones in one queue.
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However, its main drawback is that the energy model assumes a constant source power. To the contrary, the
slack stealing server SSP has no restriction on the energy source model.
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GENERAL CONCLUSION

Motivations
The issue we dealt with in this thesis is fundamental because of the following reasons:

– Energy-harvesting technologies eliminate the need for batteries and consequently remove the obstacle
to the success of the Internet of Things. Indeed, energy harvesting presents a straightforward way to
easily power remote devices in the IoT using clean energy (solar, thermal, mechanical, etc.).

– Most of devices connected to the IoT are things with real-time constraints. These wireless terminals
are equipped with sensors. They collect information about the environment that surrounds the sensor
terminal, regularly and continuously along time.

– The application software in a wireless sensor node can be modelled by a set of periodic tasks with
hard deadlines in conformance to the classical model of Liu and Layland.

– Nevertheless, in the so called real time energy harvesting system, each task is characterized not only
by its timing parameters but in addition by its energy requirements. And the system is characterized
by two additional elements: the storage unit with a given capacity for transient storage of energy and
the energy harvester with a given energy production profile.

– Although most of tasks are periodic, some additional tasks said to be aperiodic may be activated on
the occurrence of certain events. Theses ones have consequently irregular and unpredictable arrival
times. They require to be processed as soon as possible still guaranteeing the feasible execution of
the periodic tasks.

Issue addressed in the thesis
This dissertation addressed the problem of scheduling mixed sets of tasks with time and energy constraints:
hard periodic tasks and soft aperiodic tasks. Based on real-time energy harvesting system concepts, this
work tackled the following issue: how to optimize the response times of the aperiodic tasks without injur-
ing the schedulability of periodic tasks on a dynamic-priority basis. Considerable research has been done
in this area but not for real-time systems with energy harvesting capabilities.

This problem concerns a uniprocessor hardware architecture that is powered by one or several energy
harvesters which allow it to achieve perpetual energy autonomy known as energy neutrality.

The problem of scheduling a mixed set of hard periodic tasks and soft aperiodic tasks has been widely
considered when there are no energy restrictions. Under that hypothesis, famous aperiodic task servers were
proposed. Among them, there are three important families: Background, Slack Stealing and Total Band-
width. The objective of that thesis was to investigate how to extend these servers to the energy harvesting
constrained systems.
All the methods we proposed assume that periodic tasks are scheduled by the ED-H algorithm. ED-H is an
optimal algorithm with no restriction on energy production profile. It is dynamic and may achieve maxi-
mum processor utilization and maximum energy utilization.

113



114 CHAPTER 7 : Bandwidth-preserving based servers: TB-H and TB∗-H

Proposals of the thesis
The key contribution of this work was to provide the real-time system designer with new on-line algorithms
for servicing aperiodic tasks in real time energy harvesting systems. Our proposal includes:

– two Background based servers respectively called Background with Energy Surplus (BES) and Back-
ground with Energy Preserving (BEP) (chapter 4).
BES executes an aperiodic task only if no periodic task is pending for execution and the energy reser-
voir is fully replenished. BEP executes an aperiodic task if there is no awaiting periodic task and the
system slack energy is positive so as to avoid energy starvation. Theoretically and experimentally,
BEP significantly enhances the performance of BES with no much additional overhead. Besides the
simplicity of the two background-based servers, the performances they provide in terms of aperiodic
responsiveness are so poor and crave strongly to be optimized.

– a new slack stealing based server called SSP (Slack Stealing with energy Preserving) (chapter 5).
SSP contains a method for determining the maximum processing time (slack time) and the maximum
energy (slack energy) which may be stolen from hard deadline periodic tasks, without jeopardizing
their timing constraints and without provoking energy starvation.
We have presented the theoretical foundations for the SSP server. Our main contribution is that we
proved SSP to be optimal. Optimality is in terms of providing the shortest aperiodic response time
among all aperiodic task servers. We compared the performance of the optimal SSP server to the pre-
vious Background servers with extensive simulations (chapter 6). The results of these tests confirm
the theoretical analysis. The SSP server outperforms the two background servers for all harvested
power models and any processing and/or energy utilizations.
In contrast to Background based servers, the SSP server is not so simple to implement. This is be-
cause we need to keep track of the two key dynamic data: slack time and slack energy. And their
computation is pseudo-polynomial in time. This makes SSP requiring a relatively large overhead to
be practical for some real-world applications.

– two new Bandwidth based servers called TB-H (Total Bandwidth for Energy Harvesting systems) and
TB∗-H (chapter 7).
Both servers consists in assigning a suitable deadline to any new aperiodic task that enters the system.
Firstly, the TB-H server is proposed as an extension of the TB server that does not consider energy
issues. Secondly, we further extend the TB-H server to provide a better method for assigning dead-
lines with an iterative manner to the soft aperiodic tasks. Basically, we reduce the deadline assigned
by TB-H to enhance responsiveness but still guaranteeing the deadlines of periodic tasks.
A valuable feature of this approach is to be flexible: we may improve the performance of the TB-H
server up the best one at the cost of additional computational complexity and consequently at the cost
of additional run-time overhead.

Extensions of the thesis
All the perspectives that we consider affordable can either bring improvements or innovations to the con-
tributions made by our work. In a short future, we propose to relax some of the assumptions introduced in
our real time energy harvesting (RTEH) model.

– Demonstrating the optimality of the TB∗ −H server,
– Sharing mutually exclusive resources,
– Adding aperiodic tasks with deadlines,
– Considering a more realistic model for the energy storage unit,
– Considering a processor with DVFS capabilities.
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CHAPTER 8

CONTRIBUTIONS À L’ORDONNANCEMENT EN
TEMPS RÉEL POUR LES SYSTÈMES
AUTONOMES EN ENERGIE

Sommaire

Ce chapitre présente succinctement les différents points abordés dans la thèse. Dans un premier temps,
nous y introduisons brièvement l’ordonnancement des systèmes temps réel et les plus importants algo-
rithmes à priorité dynamique existants dans la litérature. Puis, le modèle de la récupération d’énergie et
la technique d’ordonnncement que nous avons adaptée sous contraintes temporelles et énergétiques sont
donnés. Dans un second temps, nous y résumons les contributions principales de cette thèse. Nous les
classifions selon trois familles d’ordonnancement: arrière-plan (en anglais, Background), vol de temps
(en anglais, Slack Stealer) et préservation de bande totale (en anglais, Total bandwidth). Dans un dernier
temps, nous rapportons les résultats d’une étude comparative des performances des différents algorithmes
proposés.

8.1 Introduction

L’objectif d’un système autonome est d’assurer un fonctionnement perpétuel sans l’intervention hu-
maine et ceci grâce à des batteries (ou tout autre type de réservoirs d’énergie), qui se rechargent en continu
au cours de temps à partir d’une source d’énergie renouvelable. Des sources d’énergie alternatives existantes
dans notre environnemnt peuvent être exploitées pour assurer cet objectif: c’est la récupération d’énergie.
Elle consiste à convertir l’énergie de l’environnement et remplir un réservoir d’énergie formé d’une batterie
ou d’un super-condensateur. Un tel réservoir d’énergie est requis parce que le système embarqué a besoin
de fonctionner continuellement sans jamais manquer l’énergie disponible (dans le réservoir).

Donc utiliser une énergie renouvelable (solaire, piezo-électrique,..) pour alimenter des systèmes embar-
qués demande de concilier performances et consommations énergétiques. Et cette contrainte s’ajoute aux
contraintes temporelles dans le cadre des systèmes temps réel d’où la violation de l’une d’elles conduira à
la défaillance du système.

Dans la suite, nous aborderons le problème de l’ordonnancement des tâches périodiques conjointement
avec des tâches apériodiques non critiques avec des contraintes énergétiques. Dans ce contexte, l’objectif
d’un algorithme d’ordonnancement est de minimiser le temps de réponse des tâches apériodiques en don-
nant garantie aux tâches périodiques de s’exécuter dans ses propres échéances selon ED-H [8], dans les
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systèmes centralisés monoprocesseur. La problématique décrite, reposant sur la minimisation du temps de
réponse, étend le serveur classique dit en arrière plan au contexte de récupération d’énergie, en proposant
deux nouveaux serveurs. Comme ces derniers offrent des performances limitées, nous proposons un nou-
veau serveur basé sur la technique du vol de temps creux avec contraintes énergétiques. Cette approche tend
à tirer profit des temps creux libérés et de la quantité d’énergie excédée, de manière àaméliorer le temps de
réponse des tâches apériodiques. Optimalité établie, il présente une implémentation relativement complexe.
C’est pourquoi, nous nous proposons un nouveau serveur dit à préservation de bande, basé sur l’attribution
d’échéances fictives avec une implémentation plus simple.

8.2 Ordonnancement temps réel

Nous considérons un système temps réel et nous nous intéressons au problème de l’ordonnancement
monoprocesseur de tâches périodiques et de tâches apériodiques non critiques sous contraintes temporelles
et énergétiques.

8.2.1 Modèle de tâches périodiques

Le modèle de tâches périodiques classique est le plus utilisé dans la modélisation des systèmes temps
réel. Ce modèle permet de définir plusieurs paramètres pour une tâche. Ces paramètres sont de deux types
: paramètres statiques relatifs àla tâche elle-même et les paramètres dynamiques relatif à chaque instance
de la tâche. Dans un système de tâches périodiques Γ, une tâche périodique τi est caractérisée par les
paramètres statiques (ri, Ci, Di, Ti, Ei):

– ri: sa date de réveil,
– Ci : sa durée d’exécution au pire cas (WCET),
– Di : son échéance relative,
– Ti : sa période,
– Ei : sa demande énergétique au pire cas (WCEC).

Dans cette définition, la tâche τi fait son initiale requête à l’instant 0 et ses requêtes suivantes aux instants
kTi; k = 1; 2; ... appelé dates de réveil ri. Ti représente la séparation temporelle entre deux jobs successifs
d’une tâche τi. Donc le kime job de la tâche τi est relâché à l’instant ri + (k− 1)Ti et devra s’exécuter pour
Ci unités de temps avant l’instant ri + (k − 1)Ti +Di.

Les paramètres dynamiques d’une tâche déterminent le comportement pendant l’exécution de la tâche
τi. Ces paramètres sont définis pour chaque instance ou job i noté Ji par :

– Ci : sa durée d’exécution au pire cas (WCET),
– di : di = Ri + Di son échéance absolue, c’est la date dont le dépassement entraîne une faute tem-

porelle,
– Ei : sa demande énergétique au pire cas (WCEC),
Un job peut être interrompu et reprend exécution plus tard à n’importe quel instant et aucune perte de

durée ou d’énergie est associée à une telle préemption.

8.2.2 Modèle de tâches apériodiques non critiques

Nous considérons de plus une configuration de tâches apériodiques non critiques Ap dans laquelle une
tâche apériodique Api est caractérisée par :

– ai: la date coïncidant l’arrivée d’une tâche apériodique non critique,
– ci: sa durée d’exécution au pire cas, connue au temps d’arrivée,
– ei: sa demande énergétique.

fi est le temps qui s’écoule entre la date d’arrivée et la fin d’exécution de la tâche apériodique.
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Les tâches apériodiques sont rangées selon un ordre FIFO (le premier arrivé est le premier servi). Par
la suite nous présentons différents serveurs permettant d’exécuter conjointement les tâches périodiques et
apériodiques tout en garantissant le respect des échéances des tâches périodiques.

8.2.3 Algorithmes d’ordonnancement

Nous distinguons dans la théorie de l’ordonnancement temps réel à priorité dynamique, trois familles
de serveurs qui traitent les tâches apériodiques conjointement avec les tâches périodiques. Nous les citons
brièvement dans cette sous-section.

L’algorithme BG (Background Server)
Le serveur des tâches apériodiques Background (BG) [9] ordonnance les tâches apériodiques non critiques
lorsqu’il n’y a aucune activité périodique au sein du système. Le principal avantage de ce serveur réside
dans sa simplicité de mise en œuvre, en plus du fait qu’il garantisse que les tâches n’affecteront pas le
comportement des tâches périodiques. Par contre, l’inconvénient majeur provient du fait que le temps de
réponse aux requêtes apériodiques peut être grand.

L’algorithme EDL (Earliest Deadline as Late as possible)
Le serveur Earliest Deadline as Late as possible (EDL) repose sur la technique de Slack Stealing, capable
d’assurer la gestion de tâches apériodiques au sein d’une application temps-réel. Il consiste à exécuter
les tâches périodiques au plus tôt lorsqu’il n’y a aucune activité apériodique. Dans le cas contraire, chaque
fois qu’une tâche apériodique survient, toutes les tâches périodiques sont ordonnancées au plus tard, dans le
respect de l’ensemble des échéances des tâches. En d’autres termes, l’algorithme EDL tire profit de la laxité
effective (c’est-à-dire de l’intervalle entre la date de fin d’exécution et l’échéance) des tâches périodiques,
afin de minimiser le temps de réponse des apériodiques. Dans [10], Chetto et Chetto présentent une méthode
simple pour déterminer la localisation et la durée des temps creux dans n’importe quelle fenêtre d’une
séquence produite par EDL.

Il a été démontré [18] que le serveur EDL nécessite un calcul en-ligne des temps creux du processeur
uniquement aux instants relatifs à l’occurrence d’une nouvelle tâche apériodique. La propriété fondamen-
tale du serveur EDL est qu’il garantit le maximum de temps creux dans un intervalle donné pour n’importe
quel ensemble de tâches. EDL a été démontré optimal [18].

Un autre résultat significatif réside dans la complexité de l’établissement de la séquence EDL. Le cal-
cul en-ligne des temps creux [18] s’effectue en O(dR

p
en) où n désigne le nombre de tâches périodiques, R

l’échéance la plus éloignée parmi les tâches actives et p la plus petite période.

L’algorithme TBS (Total Bandwidth Server)
L’approche principale derrière le serveur Total Bandwith Server (TBS) [13, 14] est d’affecter une proche
échéance possible à chaque tâche apériodique, de façon que l’utilisation totale du processeur n’excède pas
une valeur maximale spécifiée de Ups. Le nom du serveur provient du fait que, à chaque fois une tâche
apériodique entre dans le système, la bande passante totale du serveur (en termes de temps d’exécution
de CPU), est affectée si c’est possible. Cela se fait simplement en affectant une échéance appropriée à
la tâche, qui est ordonnancée conjointement suivant l’algorithme EDF avec toutes les tâches périodiques.
L’attribution de l’échéance est faite pour améliorer le temps de réponse de la tâche apériodique non critique,
tout en conservant l’ordonnançabilité des tâches périodiques. Lorsque la kème tâche apériodique arrive à
l’instant t = rk, elle reçoit une échéance fictive: dk = max(rk, dk−1) + ck

UPS
, où ck est le temps d’exécution

de la tâche et UPS est le facteur d’utilisation du serveur. Par définition, d0 = 0. La tâche est par suite
insérée dans la liste d’attente du système et ordonnancée par EDF comme n’importe quelle tâche périodique.
Notons que, à l’attribution d’une nouvelle échéance dk, la bande passante déjà attribuée aux précédentes
tâches est prise en compte par la valeur de dk−1.

Intuitivement, l’affectation des échéances fictives est telle que le rapport alloué aux requêtes apéri-
odiques par EDF dans chaque intervalle de temps ne dépasse jamais Ups. Par conséquent, l’ordonnançabilité
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de l’ensemble des tâches périodiques sous TBS peut simplement être testée en vérifiant la condition suiv-
ante: Upp+Ups ≤ 1 [14], où Upp est le facteur d’utilisation des tâches périodiques. En dépit de sa simplicité,
le TBS représente un bon rapport de performance/coût et peut facilement être optimisé afin de minimiser le
temps de réponse de chaque requête apériodique.

L’algorithme TBS∗ (Optimal Total Bandwidth Server)
L’algorithme TBS∗ [31] est une amélioration de l’algorithme TBS dans le sens où il permet d’assigner à
chaque tâche apériodique une échéance fictive plus petite que celle fournie par TBS. A chaque fois qu’une
tâche apériodique arrive, le serveur TBS∗ lui assigne en premier lieu une échéance selon l’algorithme TBS.
Celui-ci va ensuite essayer de raccourcir au maximum cette échéance de manière à optimiser le temps de
réponse des tâches apériodiques sans compromettre l’exécution des tâches périodiques. Si d0k correspond
à la première échéance assignée à la tâche apériodique Apk selon TBS, le processus de raccourcissement
de cette échéance est appliqué de façon itérative jusqu’à ce qu’aucune amélioration ne soit plus possible,
tout en conservant l’ordonnançabilité de la configuration des tâches périodiques. Par conséquent, si dsk est
l’échéance assignée à la tâche apériodique Apk au pas s, l’ordonnançabilité est conservée en assignant à
Apk une nouvelle échéance donnée par: ds+1

k = t+ ck + Ip(t+dsk), où t est le temps courant (correspondant
à la date de réveil rk de la tâche Apk ou bien à la date de terminaison de la tâche précédente), ck est la
durée d’exécution au pire cas requise par Apk, et Ip(t+dsk) est l’interférence due aux jobs périodiques dans
l’intervalle [t, dk). L’interférence périodique Ip(t+dsk) est la somme de deux termes, Ia(t+dsk) et If (t+dsk).
Ia(t+dsk) correspond à l’interférence due aux jobs périodiques actifs au temps courant ayant des échéances
strictement inférieures à dsk. If (t + dsk) correspond à l’interférence future due aux jobs périodiques ayant
leur date d’arrivée supérieure au temps courant t et ayant leur échéance inférieure à dsk. Leurs formules sont
données ci-après,

Ia(t, d
s
k) =

∑
τactive;di<dsk

ci(t)

et

If (t, d
s
k) =

n∑
i=1

max(0, dd
s
k − nextri

Ti
e)Ci, où nextri est le prochain réveil de la tâche τi supérieur ou

égal à t.

8.3 Ordonnancement temps réel et considération énergétiques
L’objectif d’un système autonome est d’assurer un fonctionnement perpétuel sans l’intervention hu-

maine et ceci grâce à des batteries (ou tout autre type de réservoirs d’énergie), qui se rechargent en continu
au cours de temps à partir d’une source d’énergie renouvelable. Des sources d’énergie alternatives existantes
dans notre environnemnt peuvent être exploitées pour assurer cet objectif: c’est la récupération d’énergie.
Elle consiste à convertir l’énergie de l’environnement et remplir un réservoir d’énergie formé d’une batterie
ou d’un super-condensateur. Un tel réservoir d’énergie est requis parce que le système embarqué a besoin
de fonctionner continuellement sans jamais manquer l’énergie disponible (dans le réservoir).

Donc utiliser une énergie renouvelable (solaire, piezo-électrique,..) pour alimenter des systèmes embar-
qués demande de concilier performances et consommations énergétiques. Et cette contrainte s’ajoute aux
contraintes temporelles dans le cadre des systèmes temps réel où la violation de l’une d’elles conduira à
la défaillance du système. Par la suite, nous devons présenter et spécifier l’algorithme d’ordonnancement
ED-H qui est optimal pour le modèle RTEH.

8.3.1 Modèle d’énergie RTEH
Le modèle de récupération d’énergie (RTEH, Real Time Energy Harvesting system en Anglais), est

composé d’une unité de traitement, d’un ensemble de tâches, d’une unité de stockage d’énergie appelée
réservoir, d’une unité de récupération d’énergie et de la source d’énergie (voir Figure 3.1):
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– Le réservoir d’énergie comme une batterie ou un super-condensateur dont le choix est dicté par les
dynamiques du système, des contraintes de dimensionnement, de coût, etc.

– Le récupérateur d’énergie (harvester, en anglais) dont le choix dépend de la nature de l’énergie
environmentale, de la quantité d’énergie requise, etc.

– Le consommateur d’énergie que représente ici le support d’exécution des tâches temps-réel. Il
désigne la carte électronique construite autour d’un microcontrôleur ou d’un microprocesseur.

Soit Pp(t) le taux de recharge instantanée produite par la source environmentale qui inclut toutes les
pertes. L’énergie produite sur [t1, t2) est notée Ep(t1, t2) =

∫ t2
t1
Pp(t)dt. Nous considérons que l’énergie

produite dans une unité de temps et l’énergie consommée dans une unité de temps peuvent avoir lieu si-
multanément. Notre système utilise une unité de stockage d’énergie idéale avec une capacité nominale de
C d’unités d’énergie. Le niveau d’énergie au temps t est notée E(t). L’unité de stockage est complètement
chargée initialement (c.à.d. E(0) = C). L’énergie stockée peut être utilisée à tout instant plus tard et ne
perd pas d’énergie au fil de temps .

8.3.2 L’ordonnanceur ED-H
L’EDF classique est un ordonnanceur goulu puisqu’il exécute les jobs au plus tôt et dépense ainsi

l’énergie stockée dans le réservoir ignorant les besoins futurs en énergie. Dans cette version d’EDF ap-
pelé EDS (Earliest Deadline as Soon as possible), le processeur n’est jamais inactif s’il y a au moins un
job en attente pour s’exécuter. Supposons un ensemble de jobs temporellement faisable par EDF, la pénurie
d’énergie pour un job Ji ne peut provenir que de l’exécution d’un job Jj qui s’exécute avant l’arrivée de
Ji avec dj > di. La pénurie d’énergie de Ji causée par Jj avec dj ≤ di ne pourrait être évitée par aucun
ordonnanceur. Il est évident que la clairvoyance relative à l’arrivée des jobs et à la production d’énergie
va pouvoir aider EDF à anticiper une pénurie d’énergie et une violation d’échéance. Par conséquent, l’idée
principale de l’ED-H est d’autoriser l’exécution des jobs seulement si aucune pénurie ne peut se produire.

8.3.2.1 la laxité énergétique

Une tâche est exécutée seulement si la laxité énergétique (la quantité d’énergie maximale consommée
par une tâche tout en garantissant de l’énergie suffisante pour les tâches de haute priorité) est positive.
La laxité énergétique du système nous permet de déterminer des bornes minorantes sur l’énergie future
consommée et empêche la violation des échéances en cas de pénurie d’énergie. Si l’énergie n’est pas
suffisante pour exécuter les tâches courantes ou qui vont arriver dans le futur, le système reste passif tant
que la laxité temporelle est positive et le réservoir n’a pas atteint une valeur plafond pré-spécifiée. Ainsi, le
système ne peut pas être actif si la laxité temporelle est positive et si la batterie est vide.

Nous introduisons ici de nouveaux concepts dynamiques pour l’analyse de faisabilité de jobs carac-
térisés par leur besoin énergétique.

Definition 18 La laxité énergétique d’un job Ji à l’instant tc est donnée par SEJi(tc) = E(tc)+Ep(tc, di)−
g(tc, di).

g(tc, di) étant la demande énergétique entre tc et di, SEJi(tc) représente la quantité d’énergie maximum
qui pourrait être consommée dans [tc, di). S’il existe un job τi tel que SEJi(tc) = 0, alors l’exécution entre
tc et di de tout job d’échéance supérieure à di provoquera une pénurie d’énergie pour Ji.

Definition 19 Soit d l’échéance du job actif à l’instant tc. Nous définissons la laxité énergétique de préemp-
tion de l’ensemble J à tc, comme: PSEJ(tc) = mintc<ri<di<d SEJi(tc).

La laxité énergétique de préemption à l’instant tc se définit comme la plus grande quantité d’énergie
consommable par le job actif sans remettre en question la faisabilité des jobs susceptibles de le préempter.
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8.3.2.2 la laxité temporelle

La demande processeur d’un ensemble de jobs J sur l’intervalle de temps [t1, t2) se définit par la quantité
de traitement requise entre t1 et t2, donnée par h(t1, t2).

Definition 20 Soit ATi la durée d’exécution restante des jobs non terminés à tc d’échéance inférieure ou
égale à di. La laxité temporelle du job Ji à l’instant tc est donnée par: STJi(tc) = di− tc−h(tc, di)−ATi.
La grandeur STJi(tc) représente la quantité totale de temps processeur disponible dans [tc, di) après avoir
exécuté tous les jobs d’échéance inférieure ou égale à di.

Definition 21 La laxité temporelle de l’ensemble de jobs J à l’instant courant tc est donnée par: STJ(tc) =
mindi>tc STJi(tc).

La laxité temporelle représente le temps processeur continu à partir de tc pendant lequel le processeur
pourrait rester inactif ou exécuter des jobs autres que ceux de l’ensemble τ . Le calcul de STJ(tc) fait appel
à la construction de la séquence EDL à partir de tc décrite initialement dans [10].

ED-H consiste à permettre au processeur d’être inactif si la laxité temporelle est positive. En revanche,
le processeur doit impérativement commencer à exécuter un job si la laxité temporelle est nulle. En outre,
une laxité d’énergie de préemption positive signifie que le job actuellement actif peut continuer l’exécution.
Et une laxité d’énergie de préemption nulle entraîne l’arrêt de l’exécution et impose la recharge de l’unité
de stockage d’énergie.

Description de ED-H
– le processeur doit être inactif si le réservoir est vide ou si l’exécution d’un job empêche au moins un

job au future d’être exécuté car cette exécution entraîne un pénurie d’énergie, la laxité énergétique de
préemption étant insuffisante à l’instant tc.

– le processeur ne peut rester inactif si le niveau d’énergie du réservoir se trouve au maximum ou
si l’oisivité du processeur entraîne une violation d’échéance du fait d’une laxité temporelle nulle à
l’instant tc.

– le processeur peut indifféremment adopter l’état de veille ou d’activité si le réservoir n’est ni plein ni
vide et si le système possède à la fois une laxité temporelle et une laxité d’énergie de préemption.

– nous commençons à recharger le réservoir lorsqu’il est vide ou lorsqu’il n’y a pas assez d’énergie
pour garantir l’exécution possible de tous les futurs jobs.

8.3.3 Propriétés de ED-H

8.3.3.1 Analyse d’optimalité

Théorème 8.3.1 [8] L’algorithme d’ordonnancement ED-H est optimal pour le modèle RTEH.

8.3.3.2 Analyse de clairvoyance

Théorème 8.3.2 [8] L’algorithme d’ordonnancement ED-H est D-omniscent.

Nous savons qu’aucun algorithme en ligne ne peut être optimal sans une clairvoyance au moins égale à D
unités de temps [108]. Pour prendre une décision à tout instant tc, ED-H requière de connaître à la fois le
processus d’arrivée des jobs et l’énergie récupérée sur les D unités de temps suivantes. Par suite, ED-H est
D-omniscent.
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8.3.3.3 Test d’ordonnançabilité

Nous présentons ci-après un test pour vérifier que les échéances de jobs de J sont respectées, étant
donné un réservoir d’énergie caractérisé par sa capacité et un récupérateur d’énergie caractérisé par une
puissance de production instantanée Pp(t). Nous donnons une condition nécessaire et suffisante pour
l’ordonnaçabilitéde ED-H. Comme ED-H est optimal, la condition est aussi une condition de faisabilité.

Théorème 8.3.3 [8] Un ensemble de jobs J conforme au modèle RTEH est faisable si et seulement si
SSTJ ≥ 0 et SSEJ ≥ 0.

L’objectif du test de faisabilité est de prédire si le temps et l’énergie seront suffisantes pour respecter
les exigences de temps de tous les jobs. Dans la conception de systèmes temps réel composées de tâches
périodiques bien connus, sans contraintes énergétiques, nous effectuons un test hors ligne et nous utilisons
un algorithme en ligne pour ordonnancer et exécuter les jobs. Pour le modèle RTEH, le test peut être effectué
hors ligne seulement si les jobs sont des instances de tâches périodiques et puis si le profil énergétique est
caractérisé pour toute la durée de vie de l’application. Dans tous les autres cas, le test d’ordonnançabilité
doit être réalisé lors de l’exécution en considérant la technique de prédiction. Cela signifie que le test
d’ordonnançabilité est effectué afin de vérifier que tous les jobs libérés sur la fenêtre de temps suivante
seront faisablement ordonnancés. Sinon, une décision doit être prise dans le but de rendre le système
faisable en éliminant des jobs et par conséquent obtenir une moindre qualité de service.

8.4 Nos contributions
Cette section consiste à étudier le problème d’ordonnancement lié à un ensemble hybride de tâches com-

posé de tâches périodiques et de tâches apériodiques souples dans le contexte de la récupération d’énergie.
Les algorithmes traités dans la littérature avec des contraintes de récolte d’énergie considèrent seulement
les ensembles de tâches périodiques. Cependant, de nombreuses applications nécessitent plusieurs types de
tâches.
Notre étude est menée avec le modèle de système qui a été décrit dans la section précédente. L’objectif
est de fournir un algorithme d’ordonnancement qui permet de minimiser le temps de réponse des tâches
apériodiques. Nous supposons que les tâches périodiques sont ordonancées de manière préemptive selon
l’optimal ED-H. Dans la suite, nous présentons quatre serveurs apériodiques appartenent à différentes
familles d’ordonanncement, respectivement nommés BES, BEP, SSP et TB-H qui est étendu à l’optimal
TB∗ −H .

8.4.1 L’algorithme BES
Les tâches apériodiques sont exécutées avec BES, seulement s’il n’y a pas de tâches périodiques prêtes

et si le réservoir est entièrement plein. Ce qui signifie que la tâche apériodique ne consomme que l’énergie
qui doit être gaspillée s’il n’y a pas de tâches périodiques au cours d’exécution. A noter que les tâches
périodiques sont ordonnancées selon ED-H.

8.4.2 L’algorithme BEP
Dans cet algorithme, une tâche apériodique est exécutée si et seulement si a) le réservoir d’énergie n’est

pas vide, b) aucune tâche périodique est en cours d’exécution, et c) tant que cette exécution n’entraîne pas
une pénurie d’énergie pour les futures tâches périodiques. Si à un instant t, aucune tâche périodique n’est
prête à être servie et de tâches apériodiques sont en attente, une tâche apériodique est élue pour s’exécuter
selon FIFO. Dans ce modèle, les tâches périodiques sont aussi ordonnancées selon l’algorithme ED-H.
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Considérons à présent le même ensemble de tâches hybrides que celui utilisé précédemment pour illustrer
le serveur BES.

8.4.3 L’algorithme SSP
L’algorithme proposé SSP (Slack Stealing with energy Preserving) est une stratégie qui s’appuie sur

l’algorithme EDL avec ED-H. Il utilise la laxité temporelle pour exécuter les tâches apériodiques le plus
proche possible et la laxité d’énergie pour exécuter les fulures tâches périodiques sans entraîner une pénurie
d’énergie. Si aucune tâche apériodique n’arrive, les tâches périodiques sont ordonnancées selon ED-H. Et
si une tâche apériodique arrive, il utilise le surplus d’énergie et la non-activité du processeur pour servir les
tâches apériodiques. Si le réservoir d’énergie n’est pas vide, et si le système possède à la fois une laxité
temporelle et une laxité énergétique, la tâche apériodique est servie selon FIFO tant que la liste des tâches
périodiques est non vide.

Optimalité de SSP
L’optimalité du SSP est énoncée dans les théorèmes suivants.

Théorème 8.4.1 Toutes les tâches périodiques respectent leurs échéances lorsqu’elles sont ordonnancées
selon ED-H avec le SSP pour servir les tâches apériodiques (voir Chapitre 5).

Théorème 8.4.2 Pour tout ensemble de tâches périodiques ordonnancé selon ED-H et un ensemble de
tâches périodiques traitées selon l’ordre FCFS, l’algorithme SSP minimise le temps de réponse de chaque
tâche apériodique, parmi tous les algorithmes qui sont garantis à respecter leurs échéances (voir Chapitre
5).

8.4.4 L’algorithme TB-H
L’algorithme TB-H est une stratégie qui s’appuie sur le serveur Total Bandwith Server (TBS)[14] per-

mettant de servir des tâches apériodiques en améliorant leur temps de réponse. A chaque fois qu’une tâche
apériodique entre dans le système, le serveur TBS lui assigne une échéance fictive en fonction de sa largeur
de bande CPU Ups telle que Upp + Ups ≤ 1 [14]. Les tâches apériodiques ayant une échéance fictive as-
signée seront ordonnancées conjointement avec les tâches périodiques selon EDF. En cas de contraintes
énergétiques, l’échéance fictive calculée est vérifiée suivant Uep +Ues ≤ Pp, où Ues représente la largeur de
bande énergétique du serveur.

Théorème 8.4.3 Soit une configuration de n tâches périodiques et une configuration de tâches périodiques
servies par un serveur TBS, l’échéance fictive d’une tâche apériodique Ap est calculée comme suit:

d̃k = max(rk, ˜dk−1) + d
Ek
Ues
−E(rk)

Pp
e

Ues est la bande passante énergétique telle que Ues = Pp − Uep.
Par conséquent, nous présentons deux algorithmes basés sur TBS: TB-H et TB∗-H.
Ces deux algorithmes diffèrent par le calcul de leur échéance fictive:

1. avec TB-H: Obtenir l’équation de l’échéance fictive de la tâche apériodique Ap est résumée par:
dk = max(rk, dk−1) + ck

Ups

d̃k = max(rk, ˜dk−1) + d
Ek
Ues
−E(rk)

Pp
e

dfk = max(ds+1
k , d̃k)
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2. avec TB∗ −H: Obtenir l’équation de l’échéance fictive de la tâche apériodique Ap est résumée par:
ds+1
k = t+ ck + Ip(t+ dsk)

d̃k = max(rk, ˜dk−1) + d
Ek
Ues
−E(rk)

Pp
e

dfk = max(ds+1
k , d̃k)


Les algorithmes TB-H et TB∗ − H ont le même principe; ils se diffèrent seulement par la formule du

calcul de l’échéance fictive. Donc, une fois l’échéance fictive de la tâche apériodique est calculée soit avec
TB-H ou TB∗ −H , elle est ajoutée à la liste des tâche apériodiques. A chaque instant t, la tâche ayant la
plus proche échéance sera choisie pour être exécutée, parmi la liste des tâches périodiques prêtes et la liste
des tâches apériodiques prêtes. Seulement si la laxité énergétique du système est positive et si l’énergie
disponible dans la batterie est suffisante, cette tâche sera exécutée.

8.4.5 Contexte de simulations et critères usuels d’évaluation
Contexte de simulations

Pour évaluer comparativement la performance des stratégies précédemment décrites, des simulations sont
effectuées. Notre simulateur supporte les données suivantes. Un générateur de tâches périodiques prend en
entrée les paramètres suivants:

– n : le nombre de tâches périodiques générées constituant la configuration,
– PPCMmax : le ppcm maximal des périodes des tâches périodiques constituant la configuration,
– Upp : la charge processeur associée aux tâches périodiques,

En sortie, le générateur génère une configuration de tâches τ = τi(Ci, Di, Ti, Ei), i = 1...n.
– Les tâches périodiques sont indépendantes et préemptables.
– Les périodes des tâches Ti sont aléatoirement choisies.
– Les durées d’exécution des tâches au pire-cas Ci sont générées aléatoirement et le choix dépend de
Upp =

∑n
i=1

Ci

Ti
.

– Les demandes énergétiques des tâches Ei sont générées aléatoirement et le choix dépend de U ep =∑n
i=1

Ei

Ti
.

Un générateur de tâches apériodiques prend en entrée les paramètres suivants:
– m : le nombre de tâches apériodiques générées constituant la configuration,
– Ups : la charge temporelle dédiée aux tâches apériodiques est définie par l’utilisateur,
– Ues: la charge énergétique dédiée aux tâches apériodiques est définie par l’utilisateur„

En sortie, le générateur génère une configuration de m tâches apériodiques non critiquesAp = Api(ai, ci, ei), i = 1...m.
– les temps ai coïncidant avec l’arrivée d’une tâche apériodique non critique,
– Les durées d’exécution des tâches au pire-cas ci sont générées aléatoirement et le choix dépend de
Ups.

– Les demandes énérgétiques des tâches ei sont générées aléatoirement en fonction de Ues.
Donc, le simulateur consiste à ordonnancer en-ligne ces différentes configurations de tâches pour les algo-
rithmes d’ordonnancement: BES, BEP, SSP, TB-H et TB∗-H.

Critères usuels d’évaluation
Nous présentons les critères utilisés pour évaluer les algorithmes proposés.
Le temps de réponse normalisé moyen : représente la moyenne, sur l’ensemble des tâches apériodiques

non critiques exécutées, du temps nécessaire à une tâche pour s’exécuter, normalisé par rapport à sa
durée d’exécution: ARTi = fi−ai

ci
,

Le temps de gigue normalisé moyen : représente la moyenne, sur l’ensemble des tâches apériodiques
non critiques exécutées, du temps nécessaire à une tâche pour démarrer, normalisé par rapport à son
temps de réponse: AJTi = si−ai

fi−ai ; si étant la date écoulant depuis l’arrivée de la tâche jusqu’à son
début d’exécution.
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Le temps de latence normalisé moyen : représente la moyenne, sur l’ensemble des tâches apériodiques
non critiques exécutées, du temps écoulant entre le début d’exécution de la tâche et sa fin effective,
normalisé par rapport à sa durée d’exécution: ALTi = fi−si

ci
.

– Taux de préemption: représente la moyenne du rapport entre le nombre de préemptions et le nombre
des instances traitées. Ce facteur permet d’évaluer les surcoûts dus aux changements de contextes.
Par définition, il y a préemption lorsque l’exécution d’une tâche est interrompue au profit d’une
tâche plus prioritaire. L’exécution de la tâche préemptée est alors reprise plus tard dans le temps:
PE = nombre de premptions

total nombre des instances

– Surcoût (ou overhead, en anglais): ici, nous considèrons le surcoût dû au calcul fréquent de la laxité
temporelle et de la laxité énergétique.

8.4.6 Synthèse de travail et conclusion
BES et BEP

– BEP améliore significativement les performances du BES sans frais supplémentaires.
– Les deux serveurs sont simples à implémenter.
– Les performances sont les plus médiocres en termes de temps de réponse, de temps de gigue et de

temps de latence quelle que soit l’utilisation temporelle ou énergétique, et nécessitent une optimisa-
tion.

SSP

– Le SSP est optimal; l’optimisation consiste à fournir le temps de réponse apériodique le plus court
parmi tous les serveurs de tâches apériodiques.

– SSP présente de meilleures performances que BES et BEP pour tous les modèles de récupération
d’énergie et quelle que soit l’utilisation temporelle ou énergétique
Contrairement aux serveurs basés sur l’arrière plan, le serveur SSP n’est pas si simple à implémenter.
C’est parce que nous devons considérer les deux notions dynamiques clés: laxité temporelle et laxité
énergétique. Sa complexité est pseudo-polynomiale, ce qui augmente les surcoûts présentés.

TB-H et TB∗-H

– Expérimentalement, les deux serveurs offrent un bon comportement en termes de complexité, d’implémentation
et de performance.

– Ils offrent un soût supplémentaire quant au serveur classique TBS prénté sans contraintes énergétiques
par Butazzo.
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Thèse de Doctorat

Rola EL OSTA

Contributions à l’Ordonnancement en Temps Réel pour les Systèmes
Autonomes en Energie.

Contributions to Real Time Scheduling for Energy Autonomous Systems.

Résumé
La récupération de l’énergie ambiante en temps réel est une tech-
nique qui permet d’allonger significativement la durée de vie des
systèmes embarqués, aujourd’hui limitée par la quantité d’énergie
stockable dans les batteries traditionnelles. La récupération d’éner-
gie renouvelable (energy harvesting) comme celle envisagée pour
de nombreux objets sans fil, rend possible un fonctionnement quasi-
perpétuel de ces systèmes, sans intervention humaine, car sans
recharge périodique de batterie ou de pile. Concevoir ce type de
système autonome d’un point de vue énergétique devient très com-
plexe lorsque celui-ci a en plus un comportement contraint par le
temps et en particulier doit respecter des échéances de fin d’exécu-
tion au plus tard. Comme pour tout système temps réel, une problé-
matique incontournable est de trouver un mécanisme d’ordonnan-
cement dynamique capable de prendre en compte conjointement
deux contraintes clés : le temps et l’énergie. Proposer et évaluer
de nouvelles techniques d’ordonnancement pour que le système
adopte un comportement énergétiquement neutre dans le respect
des contraintes temps réel constitue le point central cette thèse.
Plus précisément, nous considérons ici un ensemble de tâches
mixtes constitué de tâches périodiques et de tâches apériodiques
souples sans échéance. L’architecture matérielle retenue est mono-
processeur. Les tâches apériodiques ne sont connues qu’au moment
de leur arrivée et les tâches périodiques sont supposées ordonnan-
çables par l’ordonnanceur optimal ED-H. La question à laquelle nous
voulons apporter une réponse se résume comme suit : comment ser-
vir les tâches apériodiques pour minimiser leur temps de réponse
sans remettre en question la faisabilité des tâches périodiques. Dans
cette thèse, nous répondons à cette question de façon incrémentale.
Dans un premier temps, nous étendons le serveur classique dit en
arrière plan au contexte du energy harvesting avec la proposition
de deux nouveaux serveurs. Simples à implémenter, ces techniques
offrent toutefois des performances limitées. C’est pourquoi, dans un
second temps, nous proposons un nouveau serveur basé sur le vol
de temps creux (en anglais, Slack Stealing), au sens des notions
de laxité temporelle et de laxité énergétique. Une évaluation théo-
rique de celui-ci nous permet d’établir son optimalité. Vu l’implémen-
tation relativement complexe de ce serveur, dans un dernier temps,
nous proposons un nouveau serveur dit à préservation de bande (en
anglais, Total Bandwith), basé sur l’attribution d’échéances fictives
avec une implémentation plus simple. Une étude expérimentale ac-
compagne nos propositions et permet d’attester la performance de
nouveaux serveurs de tâches apériodiques spécifiquement conçus
pour les systèmes temps réel autonomes.

Abstract
Real-time energy harvesting is a technology that significantly ex-
tends the lifetime of embedded systems. This technology is limited
at present by the amount of energy that can be stored in traditional
batteries. Renewable energy harvesting such as that envisaged for
many wireless things, allows the quasi-perpetual systems opera-
tion without human intervention because it works without periodic
recharging of battery. From an energy point of view, the design of this
type of autonomous system becomes more complex since this pro-
cess has in addition a behavior constrained by time, and particularly
has to meet latest timing deadlines. As with any real-time system, an
unavoidable problem is to find a dynamic scheduling mechanism able
of considering jointly two key constraints: time and energy. Thus, the
main objective of this thesis is to propose and evaluate new schedul-
ing techniques that enable the system to adopt an energy-neutral
behavior while respecting the real-time constraints. More precisely,
we consider here a set of mixed tasks consisting of periodic tasks
and soft aperiodic tasks without deadline. The hardware architecture
chosen is monoprocessor.
Aperiodic tasks are only known at the time of their arrival while pe-
riodic tasks are assumed to be schedulable by the optimal ED-H
scheduler. In this thesis, we will provide appropriate solutions for
the following question: how to serve aperiodic tasks in order to mini-
mize their response time without challenging the feasibility of periodic
tasks.
Initially, we extend the conventional server (called Background) to
the context of energy harvesting by the proposal of two new servers.
These techniques can be easily implemented and offer limited perfor-
mance. Secondly, we propose a new server based on Slack Stealing
which uses the slack time and slack energy concepts. A theoretical
evaluation of this one allows us to establish its optimality. Finally,
due to the relatively complex implementation of this server, we pro-
pose a new server, called Total Bandwidth. This server is based
on fictive deadlines assignment with a simpler implementation. All
propositions are illustrated by experimental studies that allow us to
investigate the performance of new aperiodic task servers specifi-
cally designed for autonomous real-time systems.

Mots clés
Earliest Deadline First, récupération d’énergie,
service apériodique, ordonnancement préemptif.

Key Words
Earliest Deadline First, energy harvesting,
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