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Résumé étendu (Extended French Abstract)
Introduction
L’estimation de paramètres par méthode de traitement du signal est un sujet très important dans

de nombreux domaines (radar, sismique, sonar, surveillance électronique, etc). Mes travaux de

recherche se sont focalisés sur deux domaines de traitement du signal : le traitement d’antenne

multi-capteurs et l’estimation des temps de retard.

Pour le traitement d’antenne multi-capteurs, je me suis focalisé sur la localisation de sources en

champ proche. La localisation de sources a pour objectif d’estimer les paramètres de position

des sources. La localisation de sources est largement appliquée dans de nombreux domaines

(radar, sonar, télécom, etc), notamment avec l’aide de méthodes à sous-espace (MUSIC, ES-

PRIT, MPM, etc). En champ lointain, une source est paramétrée seulement par sa direction

d’arrivée (DDA). Quand les sources sont proches du réseau de capteurs (situation de champ

proche), cette hypothèse n’est plus valide. En effet, dans ce cas, le front d’onde du signal est

sphérique et deux paramètres sont alors nécessaires pour localiser les sources: la direction

d’arrivée et la distance entre la source et le réseau de capteurs (Fig. 2-4).

Pour la localisation de sources en champ proche, de nombreux progrès sont encore attendus à

ce jour, comme:

(1) la réduction de la complexité calculatoire des méthodes existantes,

(2) l’amélioration de la résolution et de la précision des méthodes.

L’estimation des temps de retard est également largement appliquée dans de nombreux domaines

(radar, sonar, ultra-son, etc). Dans le cadre de mes recherches, je me suis essentiellement fo-

calisé sur l’estimation des temps de retard avec les radars géophysiques afin de déterminer les

épaisseurs d’un milieu stratifié. Le radar géophysique permet de ≪ pointer ≫ les maximums

des échos reçus. Il permet ainsi de déterminer les temps de retard des échos reçus afin d’évaluer

par la suite les épaisseurs du milieu stratifié sondé. L’estimation des temps de retard est une ap-

plication qui peut être considérée comme≪ proche≫ des problématiques de traitement d’an-

tenne car le modèle de signal utilisé dans ces deux applications est proche. Dans cette appli-

cation, le signal reçu provient du même émetteur, ainsi les échos sont cohérents et donc les
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méthodes à sous-espace ne peuvent pas être appliquées directement. En effet, des algorithmes

de ≪ décorrélation ≫ des échos sont alors nécessaires. En outre, certains échos reçus par le

radar géophysique peuvent être relativement faibles et il devient alors difficile d’interpréter les

résultats, notamment dans un environnement bruité. Le challenge dans cette partie a été de pro-

poser une méthode de traitement haute résolution et précise dans un environnement bruité, mais

sans utiliser de méthode de≪ décorrélation≫.

Depuis quelques années, les méthodes de≪ Compressive Sensing≫ (CS) sont très populaires

à l’international dans les domaines de la recherche et notamment dans les domaines des mathé-

matiques appliquées, de l’informatique et du génie électrique. En théorie, ces méthodes per-

mettent d’atteindre une résolution très élevée avec une très bonne précision et un nombre de

mesures faible. De plus, elles peuvent aussi être utilisées sans prétraitement sur des signaux

corrélés (comme des signaux provenant du radar géophysique).

De plus, depuis plusieurs années, les méthodes basées sur les statistiques d’ordre supérieur sont

aussi très populaires, car elles permettent d’une part d’augmenter le degré de libertés des sig-

naux reçus et d’autre part d’améliorer leur robustesse au bruit de nature gaussienne. En effet,

leur intérêt est d’annuler l’influence du bruit gaussien, sous l’hypothèse d’observer un signal de

sources non gaussiennes, additionné d’un bruit gaussien.

Ainsi, cette thèse a pour objectif de proposer et développer de nouvelles méthodes de traite-

ment du signal rapides et efficaces basées sur des méthodes à sous-espace et/ou sur la théorie

≪ compressive sensing≫, et/ou sur des statistiques d’ordre supérieur. Dans cette thèse, deux

applications sont investiguées: la première application consiste à localiser les sources en champ

proche, la deuxième application, qui peut être considérée comme un cas particulier de la pre-

mière application d’un point de vue ≪ traitement du signal ≫, consiste à estimer les temps

de propagation des ondes électromagnétiques dans une chaussée. L’objectif de cette thèse est

d’améliorer la précision, la résolution et le temps de calcul des méthodes de traitement du signal

pour les applications envisagées.

Les méthodes proposées dans cette thèse sont évaluées en termes de résolution, du rapport signal

sur bruit et du temps de calcul sur des signaux simulés et réels. Elles sont aussi comparées aux

méthodes à sous-espaces de référence de la littérature comme par exemple MUSIC, ESPRIT….

II



Modèle du signal et localisation de sources en champ proche
Tout d’abord, le modèle de signal utilisé pour localiser les sources en champ lointain et en champ

proche est présenté (section 2.2). De nombreuses recherches ont déjà été réalisées pour localis-

er des sources en champ proche avec des méthodes à sous espace basées sur des statistiques de

second ordre comme 2D-MUSIC par exemple. Pour la méthode haute résolution 2D-MUSIC,

une recherche à deux dimensions est alors nécessaire (section 2.3.2). Ainsi, cette méthode pos-

sède une complexité calculatoire très importante. Afin de réduire cette complexité calculatoire,

la méthode≪ modified 2D-MUSIC≫ propose d’utiliser les statistiques de second ordre pour

construire une matrice ne contenant pas le paramètre lié à la≪ distance≫ (section 2.3.3). Ain-

si, ≪ modified 2D-MUSIC ≫ permet de réaliser une recherche monodimensionnelle pour es-

timer seulement le paramètre DDA. Ensuite, une nouvelle matrice est construite pour estimer le

deuxième paramètre: la distance. Cette méthode présente de très bons résultats et une complex-

ité calculatoire plus faible que 2D-MUSIC. Comme indiqué dans l’introduction, les méthodes

basées sur les statistiques d’ordre supérieur permettent d’une part d’augmenter le degré de lib-

ertés des signaux reçus et d’autre part d’améliorer la robustesse au bruit de nature gaussienne.

La notion d’ordre supérieur (cumulant) ainsi que ses propriétés sont présentées en détail dans

la section 2.4.1. Puis, les méthodes≪ modified ESPRIT≫ (section 2.4.2) et≪Modified 2D-

MUSIC ≫ (section 2.4.3) qui ont aussi été proposées dans la littérature avec des statistiques

d’ordre supérieur sont présentées. ≪ Modified 2D-MUSIC ≫ nécessite le calcul de deux ma-

trices quand seulement une est nécessaire pour 2D-MUSIC. Enfin, la borne de Cramer-Rao pour

la localisation de sources en champ proche est présentée dans la section 2.5.

Nouvelles méthodes à sous-espace basées sur les statistiques
d’ordre supérieur pour la localisation de sources en champ
proche
Dans ce chapitre, trois propositions d’amélioration de méthodes à sous-espace sont présentées

dans le contexte de la localisation de sources en champ proche. Pour les applications avec des

dispositifs avancés, dont la capacité de calcul peut être très importante, la complexité calcula-

toire n’est pas un problème majeur. En revanche, pour des systèmes dont la puissance de calcul

est limitée (système portatif par exemple), la complexité de calcul reste encore un enjeu majeur
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(économie d’énergie).

La première proposition (section 3.3) est basée sur les statistiques d’ordre supérieur et est insp-

irée de la méthode ≪ Modified 2-D MUSIC ≫ (section 2.4.3). On montre que la méthode

MUSIC peut être appliquée avec une seule matrice cumulant (du quatrième ordre) non-

Hermitienne. Ainsi, grâce à cette matrice spécifique, les DDA et les distances peuvent être

estimées séparément. De plus, une seule décomposition en éléments propres est réalisée. Cette

proposition permet ainsi de réduire la charge de calcul par comparaison avec la méthode≪Mo-

dified 2-D MUSIC ≫ basée sur les statistiques d’ordres deux et supérieur (section 3.2). Les

résultats de simulation montrent que la méthode proposée possède presque les mêmes perfor-

mances que la méthode≪ Modified 2-D MUSIC ≫ (section 3.2), avec une complexité calcu-

latoire inférieure.

Ensuite (section 3.4), nous proposons d’utiliser une matrice cumulant dont les colonnes (lignes)

peuvent aussi être définies comme la combinaison linéaire des colonnes (lignes) de deux ma-

trices≪ modes≫. Le sous-espace≪ orthogonal≫ au vecteur modèle peut alors être obtenu

directement avec le principe du≪ propagateur≫. Cette proposition est ensuite combinée avec

la première amélioration. Ainsi, la décomposition en élément propre n’est plus nécessaire et la

complexité calculatoire est davantage réduite.

Enfin (section 3.5), nous proposons d’agrandir virtuellement l’ouverture du réseau de capteurs

afin d’améliorer la résolution et la précision dans l’estimation de la distance. Ainsi, une nou-

velle matrice (de grande taille) est construite à partir des statistiques d’ordre supérieur. Puis, le

principe développé en section 3.3 est utilisé afin de réduire la complexité de calcul.

Nouvelle méthode de ≪ compressive sensing ≫ basée sur les
statistiques d’ordre supérieur pour la localisation de sources
en champ proche
Dans ce chapitre, nous présentons tout d’abord la théorie du ≪ Compressive Sensing ≫ (CS)

(section 4.1). Ensuite, la localisation de sources en champ lointain basée sur la théorie du CS

est présentée (section 4.2). Puis, nous proposons d’appliquer cette théorie pour la localisation

de sources en champ proche (section 4.3). Comme≪Modified 2-D MUSIC≫ (section 2.3.3),

les deux paramètres (distances et DDAs) sont estimés séparément afin de ne pas construire un
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dictionnaire surdimensionné 2D (qui engendrerait une charge de calcul beaucoup trop grande).

Tout d’abord, une matrice spécifique basée sur les statistiques d’ordre supérieur est proposée,

puis la reconstruction du signal basée sur la théorie CS est réalisée d’une part avec cette ma-

trice spécifique et d’autre part avec sa transposée. Ainsi, la méthode proposée utilise seule-

ment deux dictionnaires surdimensionnés 1D (au lieu d’un dictionnaire 2D surdimensionné)

permettant ainsi d’estimer les deux paramètres séparément avec une charge de calcul faible. De

plus, cette reconstruction contient aussi des informations pouvant être utilisées pour relier les

deux paramètres provenant d’une même source. Ainsi, une méthode d’appariement basée sur la

théorie du≪ clustering≫, permettant d’exploiter pleinement la méthode CS, est proposée. Les

simulations (section 4.4) ont montré que la méthode proposée possédait une meilleure résolution

et une plus grande précision que les méthodes à sous-espace.

Application du radar géophysique dans un environnement
bruité
Dans ce chapitre, nous proposons d’améliorer la détection des interfaces de chaussée et

l’estimation des épaisseurs d’un milieu stratifié par radar géophysique dans un contexte de faible

Rapport Signal sur Bruit (RSB). Tout d’abord le modèle de signal (section 5.1) est présenté.

Dans cette application, le signal reçu provient du même émetteur, ainsi les échos sont cohérents

et donc les méthodes à sous-espace ne peuvent pas être appliquées directement. En effet, des

algorithmes de≪ décorrélation≫ des échos sont nécessaires. Une méthode de référence de

≪ décorrélation≫ est alors présentée dans la section 5.2. De plus, certains échos reçus peuvent

être relativement faibles et il devient alors difficile d’interpréter les résultats, notamment dans

un environnement bruité. Ainsi, dans ce chapitre, nous avons proposé tout d’abord une méthode

pour améliorer le signal bruité reçu par le radar géophysique. Cette méthode présentée dans la

section 5.3.1 est basée sur une méthode à sous-espace et sur une méthode de≪ clustering≫.

Ensuite, nous proposons d’utiliser le principe de CS sur ce nouveau signal afin d’estimer le

temps de retard des échos rétrodiffusés (section 5.3.2). Cette méthode permet ainsi d’obtenir

une résolution et une estimation plus précise que les méthodes à sous-espace, sans utiliser de

méthode de ≪ décorrélation ≫. Plusieurs simulations et une expérimentation sont présentées

pour montrer l’efficacité de nos propositions (section 5.4).
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Conclusions et perspectives
L’objectif de cette thèse a été d’améliorer la précision, la résolution et le temps de calcul des

méthodes de traitement du signal pour localiser des sources en champ proche ou pour estimer

les temps de retard. Pour atteindre cet objectif, de nouvelles méthodes de traitement du signal

basées sur des méthodes à sous-espace et/ou sur la théorie CS, et/ou sur des statistiques d’ordre

supérieur, ont été proposées. L’efficacité des méthodes proposées a été évaluée par des simula-

tions et des expérimentations.

A l’issue de ce travail, plusieurs orientations peuvent être proposées comme perspectives. En

matière d’amélioration deméthodes de localisation de sources en champ proche, nous proposons

dans la continuité de cette thèse de:

• réduire la charge de calcul par des méthodes polynomiales (comme root-MUSIC par

exemple);

• d’étendre les méthodes développées à des signaux large bande (dans cette thèse, seuls

les signaux à bande étroite ont été utilisés);

• et d’étendre les méthodes lorsque les sources sont totalement corrélées.

Une autre perspective àmoyen terme consisterait à tester ces méthodes de localisation de sources

en champ proche avec des données réelles afin d’analyser leur comportement sur le terrain.

Une dernière perspective concerne l’application de ces méthodes (localisation de sources et

temps de retard) à l’imagerie radar géophysique 2D et 3D. De nombreuses autres problématiques

du génie civil concernent la détection-localisation d’objets de dimensions réduites. L’extension

des algorithmes à la détection de tels objets nécessite d’un modèle du signal 2D ou 3D prenant

en compte la cohérence des sources. La redondance d’information existante d’un profil radar à

l’autre (A-scan) pourrait aussi être exploitée.
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Chapter Introduction

Chapter 1

Introduction
In this chapter, we begin by introducing the background and motivation for carrying out

the source localization research. Then we review its development that has been achieved in the

past decades. Compressive Sensing (CS, also called signal reconstruction), a newly proposed

technique especially for source localization problems, will be specially introduced. As an ap-

plication of source localization, the Ground Penetrating Radar (GPR) will also be reviewed. At

last, we conclude our main contributions and present the organization of the dissertation.

1.1 Background and Motivation

1.1.1 Background

Signal processing is an important topic for modern communication technology. Traditional

signal processing technology aims to deal with the information received by a single sensor.

In recent decades, array signal processing has been attracting a lot of attention. Array signal

processing considers the signals received by an array, which is made of several sensors in a

specific configuration. This technology can enhance the target signal while minimizing the

interference and noise. Compared to a single sensor, there aremany advantages in the application

of an array of sensors, such as spatial gain and resolution.

Nowadays, array signal processing has been widely applied and obtained many significant

achievements in radar, sonar, communications, seismology and other fields.

(1) Radar is the field in which the antenna array is firstly used. In most cases, radar systems

are active and the array is used to both transmit and receive signals.

(2) Sonar systems can be classified into active ones and passive ones. Active sonar systems

are similar to active radar systems. A passive sonar system detects the incoming acoustic signals

and gathers information to analyze their temporal and spatial characteristics.
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Investigation on Near-field Source Localization and the Corresponding Applications

(3) Satellite communication and territorial wireless communication concentrate on trans-

mitting signals to specific users or receiving information from interested direction. Using an

antenna array can help to focus the energy and minimize the interferences.

(4) In seismology, a geophone array is used to detect and locate the underground activities,

such as nuclear explosion and earthquake. When an earthquake occurs, the epicenter can be

measured and the underground medium can be analyzed with information gathered by the array.

In conclusion, array signal processing focuses mainly on the following problems:

(1) Signal separation, which aims to recover the individual signal from a mixture of several

signals [1–3].

(2) Channel estimation, which aims to estimate the parameters of the channel between the

source and the array [4, 5].

(3) Source localization, which aims to estimate the position parameters of the received

signals.

(4) Spatial multiplexing, which aims to increase communication system capability.

(5) Spatial filtering, which aims to fix the main lobe at a desired direction and enhance the

received signal.

(6) Interference rejection, which aims to form a beam null in the direction of the jamming

to reduce and eliminate interference.

Source localization is becoming more and more attractive because of its wide range of ap-

plications especially in radar, sonar and other detection techniques. Scholars from all over the

world have been working hard into this topic for the past decades, and have proposed a lot of

methods. The scope of its applications has been enlarged thanks to their effort. The develop-

ment of source localization plays an important role in the national defense or the economic field

[6]. The crack detection for architectures or railways relies heavily on the source localization

technique [7]. Fig. 1-1 shows an array of sensors of a wireless signal monitoring center.

When a signal impinges on an array, there would be a phase difference among the received

signals of different sensors, which contains enough information to determine the position of the

signal source. Indeed, the phase difference can be modeled by the position parameters, leading

to the feasibility to directly localize sources.

For the construction and maintenance of roads or buildings, safety concerns and econom-
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Fig. 1-1 Wireless signal monitoring center

ical savings are surely two important factors. Subsurface deformations and cracks inside can

cause sudden collapse, resulting in the fatal damage to the human lives and economical devel-

opment. Therefore, detecting and monitoring the changes inside buildings or roads are of great

importance. Among all the tools, the non-destructive ones attract, no doubt, the most attention.

GPR is a non-destructive probing tool. Its main work is to carry out the Time-Delay Esti-

mation (TDE) of the backscattered signal echoes, which are reflected by cracks or other damages

inside the roads or buildings. The TDE is also a parameter estimation problem. Indeed, the sig-

nal model is very similar to that of source localization. We can consider it as an application of

source localization and many methods for source localization can be directly applied to the TDE

with GPR.

1.1.2 Problem Statement and Motivation

For source localization, most of the algorithms have been developed to estimate the Direc-

tion Of Arrival (DOA) of the signal sources under the assumption that the sources are in far-field.

In this far-field case, the range of a source is far beyond the Fresnel region and the wavefront of

signal is assumed to be a plane wave when it impinges the sensor array. Each source is parame-

terized by only the DOA. However, in many cases, the sources are within the Fresnel region. In
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this case, the plane wave assumption can no longer hold and the signal wavefronts are spherical.

Both the DOAs and ranges will be necessary to localize these near-field sources, which would

result in a more complicated problem. This dissertation mainly concentrates on the research in

the near-field situation.

Basically, the most direct idea to localize near-field sources is to estimate the DOA and

range of each source simultaneously. This idea inspires many researchers to directly extend the

DOA estimators, originally designed for far-field source localization, to estimate both the DOA

and range. This extension shows a satisfying performance. However, the drawback is also

very obvious that the computational complexity would be much higher than that of far-field

estimators.

For applications with advanced devices, whose computational power is very strong, the

complexity is not a big problem. Actually, in this case, we can offer to achieve a high accuracy

with a high computational burden. But for portable detecting devices whose computational

power is limited, the computational complexity is still an important concern, which aims to save

as much energy as possible and to provide realtime results. This is especially true for long-time

field applications, where the electronic energy can not be always guaranteed.

Interestingly, it has been proved that the two position parameters, DOA and range, can be

estimated in a decoupled way. A two-dimensional (2D) estimator can be replaced by several

one-dimensional (1D) ones [8]. In return, the estimation procedure needs to be repeated for

several times, and for some methods an extra paring algorithm is necessary [9]. This family of

methods has the advantage of simplicity and other properties [10]. In general, the computational

complexity of these methods would be much lower than those of the direct extension of far-field

estimators, which is very important to realtime applications.

For other applications which require high accuracy and resolution, the performance of tra-

ditional methods is limited by many factors. The most common constraint is the array aperture.

A big value of the array aperture can directly improve the estimation accuracy and resolution

ability. Thus, another problem of source localization is the achievement of maximum expansion

of the array aperture.

The newly developed technique, CS, has already shown a higher accuracy and resolution

than traditional methods for parameter estimation, and many researchers have successfully ap-
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plied this new technique to far-field source localization. However, for the more complicated

near-field situation, there are still very few works.

For near-field source localization, this dissertation tries to answer three major challenges:

(1) The first one is to simplify the existing methods, which estimate the DOA and range in

a decoupled way.

(2) The second one is to expand the aperture of the existing methods for higher resolution

and accuracy.

(3) The third one is to apply the CS technique to near-field source localization while avoid-

ing some unnecessary computational burden.

For GPR applications, although there are cases where the targets would emit independent

signals and source localization methods can be directly applied, it is more common that GPR

needs to transmit detection signal and determine the time-delay of the echo signals. In this case,

the signals are coherent and traditional location estimators can not be directly applied. Some

decorrelation algorithms are necessary when traditional methods are applied. But the estimation

results may suffer from an aperture loss or other drawbacks. Besides, some echoes could be

relatively weak and it is difficult to gather valuable information about them, especially when

the environment is noisy. Our challenge is then to apply signal processing methods to GPR data

for high resolution and accuracy, but without decorrelation algorithms. Furthermore, the poor

detection environment will also be taken into account, and another challenge is to ensure the

effectiveness of our methods in a noisy context.

1.2 Review of Source Localization
Array signal processing started in the middle of last century when the adaptive antenna

array was proposed [11]. Beamforming (BF), or spatial filtering, is an important research topic

in array signal processing. It controls theweighting factors of all the sensors of the array to fix the

array output in the desired direction. The expected signal will be enhanced and the interference

and noise will be minimized [12–15]. Actually, BF is also a technique to estimate the DOA of

source signal. By changing the weighting factors, the array can search the whole space. The

direction that leads to the maximum power of the weighted array output is determined as the

DOAs of source signal.
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However, there is a resolution limit for the DOA estimation through BF. This is called the

Rayleigh limit, determined by the array length. Methods that can go further than the Rayleigh

limit are considered as high resolution methods. The most famous high resolution methods are

the MUltiple SIgnal Classification (MUSIC) algorithm and Estimation of Signal Parameters

via Rotation Invariant Technique (ESPRIT) algorithm. These two important methods are both

subspace-based and have been studied for decades.

In 1979, Schmidt firstly proposed MUSIC algorithm [16], which achieves the high res-

olution DOA estimation. This method has greatly promoted the development of array signal

processing. MUSIC applies the EigenValue Decomposition (EVD) to the covariance matrix of

the received signal and finds a signal subspace and a noise subspace. By using the orthogo-

nality between the steering matrix and the noise subspace, the DOA can be estimated through

the MUSIC spectrum. Later, many methods, such as weighted MUSIC [17, 18], were proposed

to improve its performance. The disadvantage of MUSIC algorithm is the high computational

complexity in the spectrum search. A. Barabell in 1983 proposed the root-MUSIC method [19]

to reduce this search. But this method requires that the phase shifts linearly along the elements

of the steering vector, which limits its application.

A. Paulraj et al. made the first proposal of ESPRIT algorithm in 1985 [20]. Like MUSIC,

ESPRIT needs to apply the EVD to the covariance matrix of the received signal to get the signal

subspace. It estimates the parameter with the rotation invariant property of the signal subspace.

ESPRIT algorithm needs no spectrum search and the computational complexity is much lower

than MUSIC. But it also requires a linear phase shift.

The propagator method is based on a partition of the steering matrix. It is possible to

construct a subspace orthogonal with the steering matrix directly through the propagator. It

is also a subspace-based method but without the EVD of the covariance matrix. Therefore,

the complexities of propagator-based methods are lower than those of MUSIC-based methods

[21, 22].

The methods above are all based on the assumption that the sources are in the far field. In

practical applications, it is very common that the sources are in the near-field, which needs their

DOAs as well as ranges to describe their positions. For MUSIC algorithm, Yung-Dar Huang

in 1991 proved that the orthogonality between the steering matrix and the noise subspace still
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holds true in the near-field source localization [23]. Therefore, they proposed a 2D MUSIC

estimator which is almost the same as the 1D MUSIC for far-field DOA estimation, but with

a 2D spectrum search for both the DOA and range. The main drawback of the 2D MUSIC

estimator is that the 2D search would result in an extremely huge computational complexity,

which has a much higher requirement for the hardware than the 1D MUSIC.

In order to reduce the computational burden for 2D MUSIC spectrum search, Jin He et

al. in [8] proposed to build a matrix that can eliminate the parameter related to the range, and

apply 1D MUSIC for estimating the other parameter related only to the DOA. Then, another

matrix is constructed for the estimation of the range. The results showed the effectiveness and

the excellent performance. But the complexity reduction is at the cost of the aperture loss, which

would have an impact on the resolution and estimation accuracy.

Due to the development of high-order cumulant and its application in signal processing,

Raghu N. Challa et al. in 1995 proposed an ESPRIT-like method based on fourth-order cumulant

[9]. The cumulant of any Gaussian-distributed signal is zero when the order of the cumulant is

more than three [24]. Therefore, methods based on high-order cumulant are robust to Gaussian

noise, no matter it is white or coloured. The use of high-order cumulant can also increase the

degrees of freedom. It is often used to create virtual sensors, which can be used either to expand

the array aperture or to gain desired output. R. N. Challa et al. in [9] created a specific cumulant

matrix to estimate the two position parameters of near-field sources separately. It was the first

development of the application of high-order cumulant to near-field source localization.

Junli Liang in [25] proposed to use a modified 2D MUSIC based on high-order cumulant,

which can avoid the aperture loss of [8]. But the construction of two cumulant matrices increases

the computational complexity. Later, Bo Wang in [10] proposed to improve this high-order

method by reducing the number of required cumulant matrices and replacing one of them with

a covariance matrix. This method allows to reduce the computational complexity.

1.3 Review of Compressive Sensing (CS)
In the digital signal era, analog signals are often converted into digital ones, which are easi-

er to be processed, stored or transmitted. The Analog to Digital Converter (ADC) is a key access

to the digital signal. According to the Shannon-Nyquist sampling theorem [26], the sampling
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frequency should be at least double the maximum frequency of the signal frequency band so that

the signal can be perfectly recovered. However, the CS theory proves that this is not the neces-

sary condition for signal recovery [27, 28]. The CS theory brings revolutionary improvements

in this field. On the one hand, the sparse signal can be reconstructed through only very few

samples, achieving an impressive release of the storage space. On the other hand, the sampling

frequency of ADC can be much lower than the Nyquist frequency, lowering down the require-

ment for the hardware. Thus, it provides a much easier realization when wideband signals are

involved. More remarkably, the CS theory makes it possible to carry out ultra-wideband signal

applications that were not available before because of the unsatisfying sampling frequency.

In the 1990s, there were already some studies about applying CS to the estimation of spatial

spectrum such as [29, 30]. But this research did not receive enough attention until the twenty-

first century [31–33]. Recent research shows that the estimation based on CS outperforms the

traditional high resolution methods, such as MUSIC and ESPRIT, in both the resolution and

accuracy. In [34], Stephane G. Mallat et al. proposed the Matching Pursuit method (MP), an

iterative algorithm for representing signal, whose basic principle is to select suitable atoms in

a given dictionary. Y. C. Pati et al. improved MP and proposed Orthogonal Matching Pursuit

(OMP) [35]. Irina F. Gorodnitsky et al. in [30] proposed the FOCal Underdetermined System

Solver (FOCUSS), which combined the classical optimization and learning-based algorithms.

As one of its applications, the DOA estimation was presented in [30], but the application was

only for the one-snapshot situation. Shane F. Cotter et al. proposed in [36] to extend the applica-

tion of FOCUSS and OMP to the multiple snapshot situation, which are called M-FOCUSS and

M-OMP respectively. But it results in a large computational complexity, and the performance

turns out to be dependent on the suitable selection of parameters [37].

In 2005, Dmitry Malioutov et al. proposed an ℓ1 norm-based method to estimate the DOA

with multiple snapshots [38]. The ℓ1-term is used to ensure the sparsity of the optimization

solution while the small residual is guaranteed by the ℓ2-term. Unlike the ℓp∈(0,1) norm, which

was proposed to replace the ℓ0 norm in [29, 39, 40], the ℓ1 norm optimization is a convex problem

and can be easily solved by the Second-Order Cone Programming (SOCP). Furthermore, in

order to reduce the huge computational complexity for reconstructing the multiple snapshot

signal, they also proposed an ℓ1-Singular Value Decomposition (SVD). Only the signal subspace
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would be reconstructed and the corresponding length is only the number of the sources, which

is far less than the number of the snapshots. This impressive improvement greatly promotes

the development of CS on the estimation of spatial spectrum. The performance with multiple

snapshots is much better than that with a single snapshot, and the computational complexity is

only a little higher.

Indeed, the perfect mathematical model for the CS is the ℓ0 norm and the ℓ1 norm is just an

approximation. But the ℓ0 norm is not convex, and it is very difficult to get the solution. When

the signal is sparse enough, the ℓ1 norm is able to provide a similar performance. But in order

to get the performance closer to that of the ℓ0-norm, some researchers , based on the ℓ1-SVD,

proposed to weight the ℓ1-norm [41, 42].

1.4 Review of Ground Penetrating Radar (GPR)
Back in the beginning of the last century, ElectroMagnetic Signals (EMS) were already

used to detect metal targets underground. Leimback and Lowy in 1910 made a formal proposal

of GPR in Germany. Although there were some GPR applications before 1970, only a few

researchers showed the interest into it. Compared with the study of air medium, the medium

underground is very complicated and the dielectric coefficient decays rapidly.

In the 1970s, the development of the electronic and signal processing technique brought

the possibility to promote the application of GPR to many other fields. One of the first existing

research documents was made at that time by the Federal Highway Adminstration (FHWA) [43].

The goal is to extend from weakly lossy medium to complicated lossy ones. Takazi in 1971

used GPR to detect the quarry in limestone terrain. Cook applied it to the measurement of salt

formation in 1974. Later in that decade, GPR showed an impressive potential and attracted more

and more attention. In 1986, the first international conference on GPR was held in the USA.

In fact, researchers from universities and institutes are only parts of the ones who show interest

in GPR. There are also many companies which are working on GPR, to extent its application,

improve its performance or produce newGPR systems, such as Geophysical Survey System Inc.

(GSSI) and GeoRadar Inc. in the USA, Sensors & Software Inc. in Canada and others.

The research about GPR began much later in China. At present, the main research organi-

zations include Tsinghua University, Xi’an Jiaotong University, Chinese Academy of Sciences,
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Southeast University and others. Many of them have already achieved impressive developmen-

t, and some products have been put into use. The most common ones include GPR-1 from

Southeast University and DTL-1 from Dalian University of Technology. In 2016, the 16th In-

ternational Conference of Ground Penetrating Radar was held in Hongkong.

For the past decades, the applications with GPR, including evaluating the thickness of lay-

ers [44] and inspecting concrete structures [45], have developed a lot. Indeed, these applications

require some suitable signal processing methods to process GPR data. One goal of the applica-

tions of signal processing is to improve the quality of the collected data. In the 1980s, Yilmaz

Ozdogan processed the seismic data with signal processing technique [46, 47]. In 2010, sub-

space methods such as MUSIC and ESPRIT were applied to the time-delay estimation (TDE)

with GPR [48], to achieve an enhanced time resolution. For the same goal, there are also other

similar studies about applying signal processing methods to GPR, for example, the deconvolu-

tion methods [49–51].

1.5 Main Contributions
Firstly, we try to improve the high-order MUSIC for near-field source localization. In this

dissertation, we propose three methods to improve either the processing speed or the estimation

accuracy.

(1) The first proposal is a different way to carry out near-field source localization with

high-order modified 2D MUSIC. In our proposal, we firstly prove that MUSIC algorithm can

be carried out for DOA estimation with the eigenvectors associated with the zero eigenvalues of

a non-Hermitian matrix. To further improve the efficiency, we then orthogonalize the remained

eigenvectors associated with the non-zero eigenvalues to estimate the range. Only 1 matrix and

1 EVD are needed in our method, and the results of simulation show that the proposed method

maintains the same high accuracy with other high-order MUSIC methods, but with a lower

computational complexity and higher processing speed.

(2) The second improvement is based on the first proposal. Noticing that the high-order

cumulant is free from Gaussian noise, we know that the columns (rows) of the constructed cu-

mulant matrix are the linear combination of the columns (rows) of two specific steering matri-

ces respectively. The corresponding orthogonal subspaces can be directly obtained through the
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propagator. By doing this, even the single EVD can be avoided. The computational complexity

can be further reduced. But the drawback of this proposal is that the accuracy would be affected

by the noise, which is more serious than the first proposal.

(3) The last proposal is to enlarge the array aperture virtually for the range estimation.

Although the computational complexity of the algorithm will be higher after the aperture en-

largement, enlarging the array aperture can directly improve the resolution and the estimation

accuracy. In some applications with a great calculation capacity, the estimation accuracy would

be of a great importance and the aperture-enlargement proposal makes sense in this case. Fur-

thermore, we still carry out thismethod based on the first proposal to lower down the unnecessary

computational complexity, without any negative effect on the estimation accuracy.

Secondly, we successfully applied the CS technique to near-field source localization. Sim-

ilar to the modified 2DMUSIC, we propose a separate estimation of the two position parameters

and the construction of a high-complexity 2D overcomplete dictionary can be avoided. We pro-

pose to construct a specific cumulant matrix, which can be regarded as the product of a steering

matrix and a signal matrix, both of which contain one position parameter of a near-field source.

The estimation of the parameter contained in the steering matrix is carried out in the same way

as in the far-field source situation in [38]. But the difference is that we also take advantage of

the reconstructed signal. By introducing a pairing method based on the clustering theory, we

only need to reconstruct signals twice. The advantages of this proposal are as follows:

(1) Use the CS technique to localize near-field sources, leading to a higher resolution and

estimation accuracy than sub-space based methods.

(2) Use two 1D overcomplete dictionaries to replace a 2D dictionary.

(3) The pairing method can make full use of the CS technique and reconstruct only two

signals.

Finally, we consider an application of source localization in the context of GPR. More

especially, we propose to apply CS to estimate the time-delay of backscattered echoes. When the

echoes overlap with each other, some high resolution signal processing methods are necessary

to ensure the accurate estimation. In most cases, the echoes are coherent and some decorrelation

algorithms need to be performed before applying the signal processing methods. We propose

to apply the CS technique to the TDE, which can deal with coherent signals directly and avoid
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the application of a decorrelation algorithm. Furthermore, we propose to enhance the received

signals, so that the TDE can still be accurate enough even when the Signal-Noise Radio (SNR)

is low. The contribution of this proposal can be concluded as follows:

(1) Avoid using decorrelation algorithms.

(2) Use the CS technique to estimate the time-delay, leading to a higher resolution and

estimation accuracy than sub-space based methods.

(3) Improve the performance of the TDE especially when the SNR is low with signal en-

hancement.

1.6 Organization
The rest of the dissertation is organized as follows:

In the second chapter, we firstly present a brief introduction of the far-field signal model

and the corresponding localization methods. Next, we introduce the signal model of the near-

field situation and review some classical methods based on second-order statistics for localizing

near-field sources. We then introduce the concept of high-order cumulant and its properties in

detail, as well as the corresponding methods, ESPRIT-like method and the modified 2DMUSIC

based on high-order cumulant. Finally, we present the Cramer-Rao Bound (CRB). Especially,

we calculate the CRB for near-field source localization, which can be directly used to evaluate

our proposed methods.

Chapter 3 presents three improvements for classical subspace-based near-field source lo-

calization methods. Based on high-order cumulant and inspired by [10, 25, 52], the first im-

provement shows that MUSIC can be applied with a non-Hermitian matrix, which allows us to

estimate the DOA and range separately with one single matrix and one single EVD, reducing

the computational complexity. The simulation results show that the proposed method can main-

tain the excellent performance of the high-order MUSIC even though its complexity is lower

than other high-order MUSIC methods. Then we notice that the orthogonal subspace can be

obtained directly through a propagator and propose a further improvement to the first proposal.

Compared to the first proposal, the propagator-based method no longer needs the EVD and re-

duces the corresponding computational complexity. The last improvement is to enlarge the array

aperture virtually for the range estimation, achieving therefore a better resolution and accuracy.
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In Chapter 4 we propose to apply the newly developed CS theory to near-field source local-

ization. Similar to the modified 2DMUSIC, we estimate the two position parameters separately

in order to avoid the construction of the 2D overcomplete basis, which would result in a extreme-

ly huge computational complexity. Furthermore, we also introduce a pairing method based on

the clustering theory, which helps to make full use of the CS technique. The position of the

non-zero reconstructed signal allows the estimation of the parameters, and the reconstructed

signal contains the information that can be used to pair different parameters. In this case, we

only need to apply the sparse signal reconstruction twice, and the unnecessary complexity can

be eliminated.

In Chapter 5, we propose to enhance the GPR signal for TDE in low SNR environment.

It is based on a subspace method and a clustering technique. The proposed method makes it

possible to improve the estimation accuracy in a noisy context. It is used with the CS method

to estimate the time delay of layered media backscattered echoes coming from the GPR signal.

Some simulation results and an experiment are presented to show the effectiveness of signal

enhancement.

The last chapter gives the conclusions of the whole dissertation, and our plan for the future

work.
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Chapter 2

Modeling and Localizing Near-field Sources
In this chapter, the signal models are firstly introduced. According to the distance between

the signal source and the array, source localization can be classified into far-field source local-

ization and near-field source localization. The wavefronts of incoming signals are different in

these two situations, thus leading to different signal models, of which the near-field situation is

the heart of this dissertation.

Some existing methods are presented to localize sources. There are many kinds of methods

for source localization, such as subspace-based methods, maximum-likelihood algorithm and so

on. All these methods can be divided into two groups according to the different mathematical

tools that they used. Some methods are developed based on the second-order statistics and

some are proposed with the high-order statistics foundation. Some definitions and methods are

introduced in detail along with the analysis of them.

At last, a theoretical bound is introduced, which is called the Cramer-Rao Bound (CRB).

The definition of the CRB is recalled and particularly, the CRB for near-field source localiza-

tion is derived with simplified expressions. It helps to evaluate the estimation performance of

different estimation methods.

2.1 Far-field Signal Model and the Corresponding Localization

Methods
Here we firstly present a brief introduction of the basic knowledge of far-field source local-

ization. The main reason of this introduction is that many near-field techniques are developed

from far-field methods. The introduction from far-field situation to the near-field would leads

to a better comprehension of the localization methods.
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2.1.1 Far-field Source Model

For far-field source localization, the wavefront of the incoming signal can be considered as

plane. Therefore, only its direction-of-arrival (DOA) is enough to describe its position [53–55].

kth 
source

1M2M0 1 2 3

k

Fig. 2-1 ULA for far-field source localization

As shown in Fig. 2-1, consider K far-field narrow-band signals impinging on a Uniform

Linear Array (ULA). Narrow-band means that the bandwidth of the baseband signals is much

smaller than the reciprocal of the travelling time of the wavefront across the array [23]. This

condition is commonly used in the source localization problem and remains true for most prac-

tical applications in telecommunications and radars. In this case, the source signal s(t) can be

approximated as follows:

s(t− τ0) ≈ s(t− τ1) ≈ . . . ≈ s(t− τM−1) ≈ s(t), (2-1)

where τm is the signal time-delay betwwen the signals received at the mth sensor and the ref-

erence sensor. Here we select the left sensor of the array as the reference point, i.e. 0th sensor.

Suppose that the distance between two adjacent elements is d and there areM elements in the

ULA. Assume that the sampling frequency has been normalized, and then the sampled baseband
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output of themth sensor of the ULA can be written as

ym(t) =
K∑
k=1

sk(t)e
jφmk + nm(t), t = 1, 2, . . . , T, (2-2)

where T is the number of samples, m ∈ [0,M − 1], nm(t) is additive white Gaussian noise,

sk(t) is the signal from the kth source and received by the 0th sensor, and φmk is the phase

difference between the signals received at themth sensor and 0th sensor, due to the propagation

of the signal from the kth source, given by

φmk = ωkm. (2-3)

with

ωk = −2πd

ν
sin θk, (2-4)

where θk represents the azimuth of the kth source.

2.1.2 Far-field Source localization

2.1.2.1 Classical Beamforming (BF)

Classical BeamForming (BF), or spatial filtering, is an important research topic in array

signal processing. It controls the weighting factors of all the sensors of the array to fix the array

output in a desired direction. BF allows to estimate the DOA of source signal. The classical BF

system can be seen in Fig. 2-2.

+

...

...

Fig. 2-2 Beamforming system

In the figure, v0, v1, . . . , vM−1 are the weighting coefficients of the outputs of theM sensors
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of the array. In order to estimate the DOA, themth weighting coefficient is set as a function of

θ:

vm = ejωm. (2-5)

The output of the system can be written as

yBF (t) =
M−1∑
m=0

v∗mym(t). (2-6)

The power of the system output is

PBF (θ) = E[|yBF (t)|2]. (2-7)

TheDOAestimation can be achieved by finding θ for theweighting coefficients v0, v1, . . . , vM−1

that can maximize the output power:

θ̂ = max
θ
PBF (θ). (2-8)

2.1.2.2 Linear Prediction (LP)

The LP estimator is a technique that can predict the unknown data with existing ones. Its

system is shown in Fig. 2-3.

...

+
-
++

Fig. 2-3 Linear prediction system

As we can see, the data at time t can be predicted by the ones at t−1, t−2, . . . , t−(M−1),
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and y(t) is a weighted linear combination of the past data. Actually, LP estimation is a problem

about searching the optimal weighting vector v = [v0, v1, . . . , vM−2]
T so that

y(t) =
M−2∑
m=0

y(t−m− 1)v∗m. (2-9)

In 1967, Burg J. P. firstly proposed to use LP technique to estimate DOAs of far-field sources

[56]. Let us look at Fig. 2-1. According to the LP technique, the received signal of the (M−1)th

sensor can be predicted by those of the firstM − 1 ones, y0(t), y1(t), . . . , yM−2(t), and it can be

expressed in the following matrix form:

yM−1(t) = [y0(t), y1(t), . . . , yM−2(t)][v0, v1, . . . , vM−2]
H . (2-10)

By applying the conjugate operation, and premultiplying yleft(t) = [y0(t), y1(t), . . . , yM−2(t)]
T ,

we have

ylefty
∗
M−1(t) = yleft(t)y

H
left(t)v. (2-11)

Take the expectation and the weighting vector can be obtained as

v = (E[yleft(t)y
H
left(t)])

−1E[yleft(t)y
∗
M(t)], (2-12)

where E[·] denotes the ensemble average. The DOA estimation can be achieved with the fol-

lowing spectrum:

θ̂k = argmax
θ

1

aH(θ)

 −1

v

 −1

v

H a(θ)

, (2-13)

where

a(θ) = [1, ejω, ej2ω, . . . , ej(M−1)ω]T . (2-14)

2.1.2.3 MUSIC

The MUSIC algorithm was firstly proposed by Schmidt [16], which started the era of high

resolution technique. Unlike LP, which directly process the covariance matrix of the received

signal, MUSIC applies the EVD to the covariance matrix and gets its signal subspace and noise

subspace. According to the orthogonality between these two subspaces, the MUSIC algorithm

can successfully estimate the position parameters.

Let us assume that

y(t) = [y0(t), y1(t), . . . , yM−1(t)]
T (2-15)
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The covariance matrix of y(t) is

R = E[y(t)yH(t)]

= A(θ)RsAH(θ) + σ2
nI, (2-16)

where

Rs = E[s(t)sH(t)], (2-17)

the kth column of A(θ) (also called steering vector) is

a(θk) = [1, ejωk , ej2ωk , . . . , ej(M−1)ωk ]T , (2-18)

σ2
n is the power of the spatially and temporally independent white Gaussian noise, and I is the

identity matrix. Applying the EVD to R leads to

RD = DΛ, (2-19)

where Λ is a diagonal matrix of eigenvalues arranging in decreasing order, and D the matrix

formed by the corresponding eigenvectors:

Λ = diag(λ1, λ2, . . . , λK , λK+1, . . . , λM), (2-20)

D = [d1, d2, . . . , dK ,dK+1, . . . dM ]. (2-21)

We define the noise subspace asUn containing theM−K eigenvectors associated to theM−K

smallest eigenvalues: Un = [dK+1, . . . dM ]. A(θ) is orthogonal with Un whose proof is given

below.

Proof : Let us assume a situation without noise. Equation 2-16 can be written as

R0 = A(θ)RsAH(θ). (2-22)

The EVD of R0 is

R0D = DΛ. (2-23)

In Λ, there areK nonzero eigenvalues: λ1, λ2, . . . , λK , and λK+1 = . . . = λM = 0. According

to the definition of eigenvectors, R0dm = λmdm = 0 when K + 1 ≤ m ≤ M . Therefore,

A(θ) ⊥ Un.

When the additive white Gaussian noise is considered in the signal, the covariance matrix

is written as

R = R0 + σ2
nI. (2-24)
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Let λ and d be a pair of eigenvalue and eigenvector of R0.

Rd = (R0 + σ2
nI)d

= R0d+ σ2
nId

= λd+ σ2
nd

= (λ+ σ2
n)d (2-25)

We can see that the additive white Gaussian noise only changes the eigenvalue. The eigenvectors

of R0 are also the eigenvectors of R. Thus, the orthogonality between A(θ) and Un still holds

when the white Gaussian noise exists and the estimation of DOA can be achieved through the

following MUSIC spectrum

θ̂k = argmax
θ

1

aH(θ)UnUH
n a(θ)

. (2-26)

2.1.2.4 ESPRIT

ESPRIT is another subspace-basedmethod. UnlikeMUSIC, which is based on the orthogo-

nality between the steering matrix and the noise subspace, it uses the signal subspace to estimate

parameters. There is no requirement for spectrum search for ESPRIT, and the computational

complexity is therefore reduced.

Firstly, we get the covariance matrix of the received signal from the array in Fig. 2-1:

R = E[y(t)yH(t)]

= A(θ)RsAH(θ) + σ2
nI, (2-27)

Apply the EVD to R, and we can get the signal subspace Us composed of the K eigenvectors

associated with the K biggest eigenvalues. The signal subspace Us can be divided into two

(M − 1)×K sub-matrices:

Us =

 Usup

−

 =

 −

Usdown

 . (2-28)

Divide A(θ) into two (M − 1)×K parts:

A(θ) =

 Aup(θ)

−

 =

 −

Adown(θ)

 . (2-29)

The kth columns of Aup(θ) and Adown(θ) are [1, ejωk , ej2ωk , . . . , ej(M−2)ωk ]T and
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[ejωk , ej2ωk , . . . , ej(M−2)ωk , ej(M−1)ωk ]T respectively. We can easily observe that

Adown(θ) = Aup(θ)Ω, (2-30)

where

Ω = diag{ejω1 , . . . , ejωK}. (2-31)

There must be a non-singular matrix T that satisfies

Usup = Aup(θ)T, (2-32)

and

Usdown
= Adown(θ)T. (2-33)

The diagonal matrixΩ contains the DOA information and therefore we can obtain the DOA

by estimating Ω. By substituting Equation 2-30 and 2-32 into Equation 2-33, we have

Usdown
= Adown(θ)T

= Aup(θ)ΩT

= UsupT−1ΩT. (2-34)

Apply the EVD to U♯
supUsdown

(♯ denotes the pseudoinverse), and Ω can be estimated with the

eigenvalue matrix of U♯
supUsdown

.

2.2 Near-field Source Model
As shown in Fig. 2-4, when sources are close to the array (i.e. in near-field situation), the

plane wavefront assumption can no longer hold. In this case, the ranges of sources are supposed

to be in the Fresnel region [0.62(R3/ν)0.5, 2R2/ν]withR being the aperture of the ULA [10, 57]

and ν being the wavelength. The signal wavefront is spherical, and both the DOAs and ranges

will be necessary to localize near-field sources. Consider K near-field narrow-band signals,

impinging on the ULA. Suppose that the distance between two adjacent elements is d and there

are 2M +2 elements in the ULA, whereM ≥ 1. Then the sampled baseband output of themth

sensor of the ULA can be written as

ym(t) =
K∑
k=1

sk(t)e
jφmk + nm(t), t = 1, 2, . . . , T, (2-35)

where T is the number of samples, m ∈ [−M,M + 1], nm(t) is an additive Gaussian noise

which may be coloured, sk(t) is the signal from the kth source and received by the 0th sensor,
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Fig. 2-4 Source localization in near-field with ULA

and φmk is the phase difference between the signals received at the mth sensor and 0th sensor,

due to the propagation of the signal from the kth source, given by

φmk =
2π

ν
(
√
r2k + (md)2 − 2rkmd sin θk − rk), (2-36)

where θk represents the azimuth of the kth source and rk its range. The wavelength should

satisfy ν ≥ 4d [58]. By using the second-order Taylor expansion to (2-36), the phase difference

φmk can be written as [59]

φmk = (−2πd

ν
sin θk)m+ (

πd2

νrk
cos2 θk)m2 + o(

d2

r2k
)

≈ ωkm+ ϕkm
2, (2-37)

with

ωk = −2πd

ν
sin θk, (2-38)

and

ϕk =
πd2

νrk
cos2 θk. (2-39)
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The array output of (2-35) at time t could be expressed as

y−M(t)

y−M+1(t)

...

yM+1(t)


=



ejφ−M1 . . . ejφ−MK

ejφ(−M+1)1 . . . ejφ(−M+1)K

... . . . ...

ejφ(M+1)1 . . . ejφ(M+1)K





s1(t)

s2(t)

...

sK(t)


+



n−M(t)

n−M+1(t)

...

nM+1(t)


(2-40)

y(t) = A(θ, r)s(t) + n(t), (2-41)

where A(θ, r) is the steering matrix formed by steering vectors

a(θk, rk) = [ej(ωk(−M)+ϕk(−M)2), . . . , ej(ωk(M+1)+ϕk(M+1)2)]T . (2-42)

s(t) and n(t) are the signal and noise vectors respectively:

s(t) = [s1(t), s2(t), . . . , sK(t)]
T , (2-43)

n(t) = [n−M(t), n−M+1(t), . . . , nM+1(t)]
T . (2-44)

The whole received signal matrix is

Y = A(θ, r)S+ N, (2-45)

where

Y = [y(1), y(2), . . . , y(T )] (2-46)

S = [s(1), s(2), . . . , s(T )] (2-47)

N = [n(1),n(2), . . . , n(T )]. (2-48)

2.3 Second-order Statistics Methods
Second-order statistics are often used in traditional localization methods. The most signif-

icant advantage is its low complexity. Based on second-order statistics, many researches have

been carried out for near-field source localization, such as the 2D LP estimator [58], the 2D

MUSIC method [23] and the modified 2D MUSIC algorithm [8].
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2.3.1 2D LP Estimator

Based on the LP algorithm, Grosicki E. proposed a 2D LP estimator for near-field source

localization [58]. Consider the array output in the near-field situation in Equation 2-35. Denote

r(p, q) the spatial correlation coefficient:

r(p, q) = E[yp(t)y
∗
q (t)]. (2-49)

Particularly, we have (for convenient illustration, assume that there is no noise)

r(−p, p) =
K∑
k=1

σ2
sk
e−2jpωk , (2-50)

r(−p− 1, p) =
K∑
k=1

σ2
sk
e−j(ωk−ϕk)(2p+1), (2-51)

r(−p+ 1, p) =
K∑
k=1

σ2
sk
e−j(ωk+ϕk)(2p−1). (2-52)

There must be a unique (K +1)-length vector vα = [vα(0), vα(1), . . . , vα(K)]T satisfying [60]
K∑
k=0

vα(k)r(−(p− k) + α, p− k) = 0. (2-53)

Then we have the roots of the polynomial f(z) = vα(0)z
K + vα(1)z

K−1, . . . , vα(K):

zk = e−2jωk , α = 0 (2-54)

zk = e−2j(ωk−ϕk), α = −1 (2-55)

zk = e−2j(ωk+ϕk), α = 1 (2-56)

The DOA estimation can be achieved directly with ω̂k in Equation 2-54, but the range estimation

requires the correct paring of ωk and ϕk. We know that

ωk =
1

2
[(ωk + ϕk) + (ωk − ϕk)]

ϕk =
1

2
[(ωk + ϕk)− (ωk − ϕk)].

The correct estimate of ϕk for ω̂k is decided by

ϕ̂k =
1

2
[(ωp0 + ϕp0)− (ωq0 − ϕq0)] (2-57)
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with (p0, q0) given by

(p0, q0) = argmin
p,q

|ω̂k −
1

2
[(ωp + ϕp) + (ωq − ϕq)]|. (2-58)

2.3.2 2D MUSIC

Due to the high resolution ability and estimation accuracy, MUSIC algorithm has attracted

a lot of attention and become the most well-known algorithm of the spatial spectrum estimation

theory. The earlier study of MUSICmainly concentrated on DOA estimation for far-field source

localization. However, as the localization of near-field sources grewmore attractive, the demand

for the estimation of multiple parameters was drawing attention from many researchers. How to

adjust MUSIC algorithm to multiple parameter estimation became a hot topic. In [23, 61], 2D

MUSIC method was proposed for near-field source localization. Like in the far-field situation,

the joint range and DOA estimation can be achieved via the noise subspace.

Let us form the covariance matrix:

R = E[y(t)yH(t)]

= A(θ, r)RsAH(θ, r) + σ2
nI, (2-59)

Applying the EVD to R leads to

RD = DΛ, (2-60)

where Λ is a diagonal matrix of eigenvalues, and D the matrix formed by the corresponding

eigenvectors:

Λ = diag(λ1, λ2, . . . , λK , λK+1, . . . , λ2M+2), (2-61)

D = [d1,d2, . . . , dK , dK+1, . . . d2M+2]. (2-62)

We define the noise subspace as Un containing 2M + 2 − K eigenvectors: Un =

[dK+1, . . . d2M+2]. Similar to the proof of the 1D MUSIC algorithm, we can also prove that

A(θ, r) is orthogonal with Un.

The estimation of DOA and range can be gained through the following 2D MUSIC spec-

trum

(θ̂k, r̂k) = argmax
θ,r

1

aH(θ, r)UnUH
n a(θ, r)

. (2-63)

A 2DMUSIC spectrum for two near-field sources is shown in Fig. 2-5. It is clear that there are
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Fig. 2-5 2D MUSIC spectrum

two peaks which indicate the position of the two sources.

2D MUSIC maintains the high resolution and estimation accuracy. It can directly estimate

the DOAs and ranges for all the near-field sources simultaneously without paring algorithms.

However, as we can see from the figure, 2D MUSIC requires a 2D search for both the DOA and

range.

2.3.3 Modified 2D MUSIC

To avoid the 2D search of near-field source localization, Jin He in [8] proposed to use

the anti-diagonal information of the covariance matrix. The information is enough to form a

Hermitian matrix for DOA estimation, but with the cost of aperture loss. This method can

reduce the 2D search toK + 1 1D ones.

Jin He firstly calculated the covariance matrixR of the received signal from the first 2M+1

sensors. Then, he took the anti-diagonal elements to form a (2M + 1)× 1 vector as follows:

rx = [R(1, 2M + 1),R(2, 2M), . . . ,R(2M + 1, 1)]T (2-64)

= Ax(θ)px, (2-65)
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where px is a K × 1 vector given by

px = [σ2
s1
, . . . , σ2

sK
]T , (2-66)

with σ2
sk
being the power of the kth source, and

Ax(θ) = [ax(θ1), ax(θ2), . . . , ax(θK)], (2-67)

with ax(θk) being a (2M + 1)× 1 vector designed as follows:

ax(θk) = [ej2(−M)ωk , ej2(−M+1)ωk , . . . , ej2Mωk ]T . (2-68)

He divided rx into G overlapping sub-vectors, with each sub-vector containing L elements

(2M + 1 = G+ L− 1):

rxg = [rx(g), . . . , rx(g + L− 1)]T (2-69)

= AxL(θ)pxg, (2-70)

where g = 1, 2, . . . , G. The kth column of AxL(θ) is given by

axL(θk) = [e−j2ωk(M+1), e−j2ωkM , . . . , e−j2ωk(−M+G)]T , (2-71)

and

pxg = [σ2
s1
ej2gω1 , . . . , σ2

sK
ej2gωK ]T (2-72)

With a total of G groups, he computed the L× L covariance matrix of rxg as

Rx =
1

G

G∑
g=1

rxgrHxg. (2-73)

Apply the EVD to Rx and get the noise-subspace Unx. The DOA can be obtained from the

following 1D spectrum function:

θ̂k = argmax
θ

1

aHxL(θ)UnxUH
nxaxL(θ)

. (2-74)

With the estimated DOA, the range estimation can be achieved by substituting each θ̂k into the

following spectrum:

r̂k = argmax
r

1

aH(θ̂k, r)UnUH
n a(θ̂k, r)

, (2-75)

where Un is the noise subspace obtained after applying the EVD to R. Unlike the DOA esti-

mation, this spectrum would yield only one peak, which represents the range estimate for the

substituted kth DOA estimate θ̂k, reducing the 2D search toK + 1 1D ones.

However, Rx is of the size L × L. It is smaller than the size of the traditional covariance

matrix, which is (2M + 1) × (2M + 1). The lower computational load is achieved at the cost
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of aperture loss. The number of sub-vectors G is the tradeoff between the performance and the

maximumnumber of the sources that can be localized. WhenG is small, this method can localize

more sources, but the accuracy will degrade. When G is large, it can achieve a high accuracy,

but is only capable of localizing a smaller number of sources. This aperture loss directly results

in low resolution.

2.4 High-order Cumulant Methods
Traditional narrow-band array signal processing techniques are developed using the

second-order information (the covariance matrix) of the received signals. When the received

signals are non-Gaussian, it is reasonable to develop array processing methods based on higher-

order cumulant, for its resistance to Gaussian noise [24]. These high-order cumulant methods

can be applied in many situations. Actually, they are suitable for any application where the

received signal is non-Gaussian. The application includes object reconstruction [62], signal

reconstruction in sonar [63], estimation of frequency response [64] and other fields [65–71].

2.4.1 High-order Cumulant

Assume that x is a random variable with probability density function f(x). Its kth-order

moment is defined as:

mk = E[xk]

=

∫ ∞

−∞
xkf(x)dx. (2-76)

Let F (ϖ) denote the characteristic function of f(x):

F (ϖ) =

∫ ∞

−∞
e−jϖxf(x)dx. (2-77)

If the kth moment of x exists, the Taylor expansion of the characteristic function F (ϖ) is given

by

F (ϖ) = 1 +
n∑
k=1

mk

k!
(−jϖ)k + o(ϖn). (2-78)

The kth-order moment can also be given with the characteristic function F (ϖ):

mk = (−j)k ∂
kF (ϖ)

∂ϖk
|ϖ=0 . (2-79)

Denote lnF (ϖ) the cumulant-generating function of x and its Taylor expansion is written as

lnF (ϖ) =
n∑
k=1

ck
k!
(−jϖ)k + o(ϖn). (2-80)
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Based on the above equation, the definition of kth-order cumulant can be given in a simple way:

ck = (−j)k ∂
k lnF (ϖ)

∂ϖk
|ϖ=0 . (2-81)

If x is Gaussian distributed: x ∼ N(x̄, σ2
x), the probability density function can be ex-

pressed as:

f(x) =
1√
2πσx

e
− (x−x̄)2

2σ2
x . (2-82)

The kth order cumulant of the Gaussian variable x is:

ck =


x̄, (k = 1)

σ2
x, (k = 2)

0, (k ≥ 3)

(2-83)

The first-order cumulant of a Gaussian variable is its average, and the second-order cumulant

is its variance. But when k ≥ 3, its kth-order cumulant is always zero, which means that high-

order cumulant methods has a natural resistance to Gaussian noise.

When there are several variables x = [x1, x2, . . . , xN ] with the joint probability density

function f(x), the joint characteristic function becomes

F (ϖ) =

∫
e−jϖxf(x)dx

=

∫ ∞

−∞

∫ ∞

−∞
. . .

∫ ∞

−∞
e−j(ϖ1x1+ϖ2x2+...+ϖNxN )

f(x1, x2, . . . , xN)dx1dx2 . . . dxN (2-84)

By analysing the Taylor expansion of F (ϖ) and its cumulant-generating function lnF (ϖ), we

can get the joint kth (k = k1 + k2 + . . .+ kN ) moment and cumulant of x:

mk = E[xk11 x
k2
2 . . . xkNN ]

= (−j)k ∂kF (ϖ)

∂ϖk1
1 ∂ϖ

k2
2 . . . ∂ϖkN

N

|ϖ1=ϖ2=...=ϖN=0 . (2-85)

ck = (−j)k ∂k lnF (ϖ)

∂ϖk1
1 ∂ϖ

k2
2 . . . ∂ϖkN

N

|ϖ1=ϖ2=...=ϖN=0 . (2-86)

The general expression of kth-order cumulant is very complicated. For convenient illustration,

we here only show the expression when k = 2, 3, 4 with k1 = k2 = k3 = k4 = 1.

c2 = cum(x1, x2)

= E(x1x2). (2-87)
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c3 = cum(x1, x2, x3)

= E(x1x2x3). (2-88)

c4 = cum(x1, x2, x3, x4)

= E(x1x2x3x4)− E(x1x2)E(x3x4)

−E(x1x3)E(x2x4)− E(x1x4)E(x2x3) (2-89)

Besides the resistance to Gaussian noise, there are several properties about high-order cumu-

lants, which can achieve convenient solution for different applications.

A. Assume that there are N constant pk (k ∈ [1, N ]), and we have

cum(p1x1, p2x2, . . . , pNxN) =
N∏
k=1

pkcum(x1, x2, . . . , xN).

B. When some parameters are the sum of several independent variables, the cumulant can be

written as

cum(x1 + y1, x2, . . . , xN) = cum(x1, x2, . . . , xN) + cum(y1, x2, . . . , xN),

where x1 and y1 are independent from each other.

C. If p is a constant, we have

cum(x1 + p, x2, . . . , xN) = cum(x1, x2, . . . , xN).

D. If two variable vectors x = [x1, x2, . . . , xN ] and y = [y1, y2, . . . , yN ] are independent from

each other, we have

cum(x1 + y1, x2 + y2, . . . , xN + yN) = cum(x1, x2, . . . , xN) + cum(y1, y2, . . . , yN).

E. When there exists one variable xp (p ∈ [1, N ]) that is independent from all the other variables

and has a zero mean, we have

cum(x1, x2, . . . , xN) = 0.

2.4.2 ESPRIT-like Based On High-order Cumulant

The applications of high-order cumulant to source localization have been considered by

many scholars, such as [72, 73] for far-field source localization. For near-field source local-

ization, a category of ESPRIT-like methods based on fourth-order cumulant were proposed in

[9, 74, 75].

With the high degrees of freedom, they designed four cumulant matrices in order to con-
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struct the one suitable to carry out ESPRIT-like algorithm. With the properties of the high-order

cumulant, we can obtain

cum{s∗i (t), sj(t), s∗k(t), sl(t)} =

 c4sk , (i = j = k = l)

0, (others)
(2-90)

where c4sk is the fourth-order cumulant of the kth signal. By selecting different groups of param-

eters for the fourth-order cumulant, the four desired matrices are given in the following table,

where 0 ≤ m,n ≤M , Ω = diag{ej2ω1 , . . . , ej2ωK}, and Φ = diag{ej2ϕ1 , . . . , ej2ϕK}:

Tab. 2-1 Cumulant matrices

Sensor lags Cumulant matrix

m,m+1,n+1,n C1 = A(ϕ)C4sAH(ϕ)

m-1,m,-n,1-n C2 = A(ϕ)C4sΩ
HAH(ϕ)

m,m+1,-n,1-n C3 = A(ϕ)ΦC4sΩ
HAH(ϕ)

m-1,m,n+1,n C4 = A(ϕ)C4sΦ
HAH(ϕ)

Arrange these four matrices as follows and form a new cumulant matrix:

C =


C1 C4 C2

CH
4 C1 C3

CH
2 CH

3 C1

 = A1C4sAH
1 , (2-91)

with

AH
1 = [AH(ϕ) ΦHAH(ϕ) ΩHAH(ϕ)]. (2-92)

Therefore, ESPRIT algorithm can be used to estimate the parametersΦ andΩ. For the practical

situation with finite samples, the TLS version can be used [9]. The DOA estimation can be

achieved directly from the estimated Ω. But the range estimation needs both the Ω and Φ,

which means that ESPRIT-like method needs a parameter paring step.

2.4.3 Modified 2D MUSIC based on High-Order Cumulant

Similarly, Junli Liang in [25, 52] used fourth-order cumulant to localize near-field sources.

A Hermitian matrix is constructed containing only the information of DOA, which has the same

form as the covariance matrix for far-field source localization. The DOA is estimated after

applying the EVD to the constructed matrix and finding the corresponding noise subspace. And
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then another cumulant matrix is built with four sub-matrices and the EVD is applied again for

estimating the ranges one by one.

For the desired matrix, they defined the element of it as follows:

C1(m̄, n̄) = cum{ym(t), y∗−m(t), y−n(t), y∗n(t)}

=
K∑
k=1

c4ske
2jmωke−2jnωk (2-93)

where m̄ = m+M +1, n̄ = n+M +1 andm,n ∈ [−M,M ]. Written in matrix form, C1 can

be written as:

C1 = A1(θ)C4sAH
1 (θ), (2-94)

where

A1(θ) = [a1(θ1), a1(θ2), . . . , a1(θK)], (2-95)

with a1(θk) being (2M + 1)× 1 vector designed as follows:

a1(θk) = [ej2(−M)ωk , ej2(−M+1)ωk , . . . , ej2Mωk ]T . (2-96)

C1 can be regarded as a virtual covariance matrix, and 1D MUSIC can be applied to it for only

the DOA estimation:

θ̂k = argmax
θ

1

aH1 (θ)Un1UH
n1a1(θ)

, (2-97)

where Un1 is the noise subspace formed by the (K + 1)th to (2M + 1)th eigenvectors of C1.

Compared with the modified 2D MUSIC based on second-order statistics in Section 2.3.3, C1

is of the size (2M + 1)× (2M + 1) and it would estimate the DOAs without any aperture loss.

With the high degrees of freedom, Liang constructed four different cumulant matrices to

form another matrix C2 for estimating the ranges:

C21(m− n+ 2M + 1, p− q + 2M + 1)

= cum{ym, y∗M , y∗p, yM} (2-98)

(m = −M, . . . ,M ;n =M ; p = −M, . . . ,M ; q =M)

C22(m− n+ 2M + 1, p− q)

= cum{ym, y∗M , y∗M , yq} (2-99)

(m = −M, . . . ,M ;n =M ; p =M ; q =M − 1, . . . ,−M)

C23(m− n, p− q + 2M + 1)
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= cum{yM , y∗n, y∗p, yM} (2-100)

(m =M ;n =M − 1, . . . ,−M ; p = −M, . . . ,M ; q =M)

C24(m− n, p− q)

= cum{yM , y∗n, y∗M , yq} (2-101)

(m =M ;n =M − 1, . . . ,−M ; p =M ; q =M − 1, . . . ,−M)

Combining C21, C22, C23 and C24, a (4M + 1) × (4M + 1) matrix C2 can be constructed as

follows:

C2 =

 C21 C22

C23 C24

 = A2(θ, r)C4sAH
2 (θ, r), (2-102)

where the virtual steering matrix

A2(θ, r) = [a2(θ1, r1), a2(θ2, r2), . . . , a2(θK , rK)]. (2-103)

with

a2(θk, rk)

= [ej{−2Mωk+[(−M)2−M2]ϕk}, ej{(−2M+1)ωk+[(−M+1)2−M2]ϕk}, . . . , ej{−Mωk+[02−M2]ϕk},

ej{(−M+1)ωk+[12−M2]ϕk}, ej{(−M+2)ωk+[22−M2]ϕk}, . . . , ej{(0)ωk+[M2−M2]ϕk},

ej{(1)ωk+[M2−(M−1)2]ϕk}, ej{(2)ωk+[M2−(M−2)2]ϕk}, . . . , ej{(2M−1)ωk+[(M)2−(−M+1)2]ϕk},

ej{(2M)ωk+[M2−(−M)2]ϕk}]T . (2-104)

Apply the EVD to C2 and form another noise subspace Un2 with the eigenvectors associated

with the zero eigenvalues. The kth range estimation can be obtained with Un2 by substituting

the kth estimated DOA θ̂k:

r̂k = argmax
r

1

a2(θ̂k, rk)HUn2UH
n2a2(θ̂k, rk)

. (2-105)

2.5 CRB
The CRB is a very important criterion for parameter estimation problem. It provides the

minimum estimation Mean Square Error (MSE) that can be achieved with the received samples.

No matter what kind of method is applied, the MSE can not be lower than the CRB. A method

would be evaluated to have a better estimation accuracy when its MSE is closer to the CRB. The

CRB can be obtained through the Fisher Information Matrix (FIM).
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In [76, 77], the CRB for far-field source localization has been studied and the near-field

case has also been investigated in [58, 78]. In [78], the elements of the FIM of near-field source

localization are given by

FIMpq = TTrace(
∂R
∂αp

R−1 ∂R
∂αq

R−1), (2-106)

where R = ARsAH + σ2
nI is the covariance matrix and α is a vector consist of the unknown

parameters:

α = [θ1, θ2, . . . , θK , r1, r2, . . . , rK , σ
2
s1
, σ2

s2
, . . . , σ2

sK
, σ2

n]
T (2-107)

with σ2
sk
being the power of the kth source signal. But in the source localization problem, only

the CRB of the DOAs and ranges are desired. Grosicki E. in [58] provided simplified version

of the CRB for the near-field source localization, which has a similar expression to that for the

far-field localization in [76]:

CRB =
σ2
n

2T

{
Re

(
(BHΠ⊥

AB)⊙ (J⊗ (RsAHR−1ARs)T )
)}−1 (2-108)

where ⊙ and ⊗ means the Hadamard-Schur and the Kronecker product respectively and

Π⊥
A = I−ΠA (2-109)

ΠA = A(AHA)−1AH (2-110)

J =

 1 1

1 1

 (2-111)

B = [bθ(θ1, r1),bθ(θ2, r2), . . . , bθ(θK , rK),

br(θ1, r1),br(θ2, r2), . . . , br(θK , rK)] (2-112)

bθ(θk, rk) =
∂a(θk, rk)

∂θ
(2-113)

br(θk, rk) =
∂a(θk, rk)

∂r
(2-114)

2.6 Conclusion
In this chapter, we introduce two signal models and several methods for localizing near-

field sources such as ESPRIT and MUSIC. The literature distinguishes two main families of

34



Chapter Modeling and Localizing Near-field Sources

methods: second-order statistics and high-order cumulant. Their principle is recalled with the

essential formulations. At last, we introduce an important criterion for parameter estimation, the

CRB, and particularly show the simplified CRB expression for near-field source localization.
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Chapter 3

Proposed High-order Methods for Near-field

Source Localization

3.1 Introduction
ForMUSIC-based methods, the near-field source localization requires a 2D search for both

the DOA and range, which results in a huge computational complexity. The modified 2D MU-

SIC based on second-order statistics manages to reduce this complexity [8], but causes an aper-

ture loss. Compared to the second-order statistics, the high degrees of freedom of high-order

cumulant provide a lot of possibilities that can eliminate the constraints of traditional second-

order statistics methods, for example, avoiding the aperture loss, which has a great impact on

the resolution. Besides, the natural resistance to Gaussian noise is another extraordinary prop-

erty. However, accompanied with these benefits, one of the disadvantage is the construction

of the cumulant matrices, which would result in a higher computational complexity than the

second-order statistics based methods. It may not be suitable for some real-time applications.

Therefore, how to reduce the computational load of high-order cumulant-based methods is a

reasonable research subject.

3.2 Mix-order MUSIC for Near-field Source Localization
Bo Wang in [10] proposed to improve the method of [25] by reducing the number of the

required cumulant matrices. Similar to [25], they used fourth-order cumulant to construct a

Hermitian matrix containing only the information of DOA, which has the same form as the

covariance matrix for far-field source localization. The DOA is estimated after applying the

EVD to the constructed cumulant matrix and finding the corresponding noise subspace. Then

a covariance matrix is built and the EVD is applied again for estimating the ranges one by one.
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This method is denoted as MOS in this dissertation.

The array is firstly divided into three subarrays. Subarray 1 is from Sensor −M1 to M1,

Subarray 2 from −M1 − M2 to −M1 − 1 and Subarray 3 from M1 + 1 to M1 + M2, where

M1 +M2 = M . With these subarrays, two M2(M1 + 1) × 1 cumulant vectors c1 and c2 are

designed as

c1((M1 +M2 −m)(M1 + 1) +M1 + n− 1)

= cum{y−m(t), y∗m(t), y−n(t), y∗n(t)}

=
K∑
k=1

c4ske
j[−2(m−M1)(M1+1)ωk−2nωk], (3-1)

c2((m−M1 − 1)(M1 + 1) + n+ 1)

= cum{ym(t), y∗−m(t), yn(t), y∗−n(t)}

=
K∑
k=1

c4ske
j[2(m−M1)(M1+1)ωk+2nωk], (3-2)

where m ∈ [M1 + 1,M1 +M2] and n ∈ [0,M1]. Then a (2M1 + 1) × 1 cumulant vector c3 is

also constructed.

c3(m+M1 + 1)

= cum{y0(t), y∗0(t), ym(t), y∗−m(t)}

=
K∑
k=1

c4ske
j2mωk , (3-3)

wherem ∈ [−M1,M1]. Two cumulants are defined as

cL = cum{y−M1−M2(t), y
∗
M1+M2

(t), y−M1−1(t), y
∗
M1+1(t)}

=
K∑
k=1

c4ske
j2(−M2−1)(M1+1)ωk , (3-4)

cR = cum{yM1+M2(t), y
∗
−M1−M2

(t), yM1+1(t), y
∗
−M1−1(t)}

=
K∑
k=1

c4ske
j2(M2+1)(M1+1)ωk . (3-5)

With the above definitions, a (2(M1 + 1)(M2 + 1) + 1)× 1 vector c can be written as follows:

c = [cL, cT1 , cT3 , cT2 , cR]T . (3-6)

Similar to [8], this vector can be used to form a ((M1+1)(M2+1)+1)×((M1+1)(M2+1)+1)

matrixC, whosemth column is formed of the ((M1+1)(M2+1)+2−m)th to (2(M1+1)(M2+
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1) + 2−m)th elements and it can be expressed as

C = A1(θ)C4sAH
1 (θ), (3-7)

where

A1(θ) = [a1(θ1), a1(θ2), . . . , a1(θK)], (3-8)

with a1(θk) being ((M1 + 1)(M2 + 1) + 1)× 1 vector designed as follows:

a1(θk) = [1, ej2ωk , . . . , ej2(M1+1)(M2+1)ωk ]T . (3-9)

Apply the EVD to C and form its noise subspace with the eigenvectors associated with the

non-zero eigenvalues. The DOA estimation can be achieved through MUSIC spectrum.

In order to reduce the computational complexity, the covariance matrix is selected to esti-

mate the ranges, which is exactly the same as that in Section 2.3.3.

3.3 Proposed Low-Complexity MUSIC (LCM)
For all the existing modified 2D MUSIC, two matrices are constructed and two EVDs are

applied [8, 10, 25]. We notice that in the existing modified 2D MUSIC, a Hermitian matrix is

often constructed (see Equation (3-7) as an example). For high-order cumulant-based methods,

the cumulant matrix has only K non-zero eigenvalues and the Hermitian matrix is orthogonal

with the noise subspace, which is formed of the eigenvectors corresponding to the zero eigenval-

ues, leading to the parameter estimation with the MUSIC spectrum. However, the orthogonality

between the steering matrix and the eigenvectors associated with the zero eigenvalues is the re-

sult of that the two matricesA1(θ) andC4s are full column rank, no matter whether the cumulant

matrix is Hermitian or not.

Unlike all the other modified 2DMUSIC, we propose a simplified method that can estimate

the DOA and range separately with only one single matrix and one single EVD, reducing the

computational complexity. Firstly, we construct a specific fourth-order cumulant matrix. Part

of its eigenvectors allows the direct DOA estimation, and the other part contains the information

related to both the range and DOA. 1D MUSIC is applied for estimating the DOA with the first

part, and the ranges are estimated with the second part by substituting each estimated DOA.
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3.3.1 Signal Model

In the proposed methods of this chapter, we use the same signal model in Fig. 2-4. But we

take the output of only 2M + 1 sensors as the received signal (see Fig. 3-1), which means that

the received signal vector is written as

y(t) = [y−M(t), y−M+1(t), . . . , yM(t)]. (3-10)

Without loss of generality, we make the following assumptions.

(1) All signals are mutually independent, non-Gaussian, nonzero kurtosis and stationary pro-

cesses.

(2) The signals come from different directions, that is θp ̸= θq, when p ̸= q.

(3) The zero-mean noise nm(t) is complex Gaussian distributed, which may be coloured, and is

independent from all the sources.

(4) The number of sources K satisfies K < 2M + 1.
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3.3.2 DOA Estimation

In this section, we use the fourth-order cumulant of signal to form a new square matrix of

dimension (2M + 1)× (2M + 1). The elements of the desired matrix are defined as follows:

C(m̄, n̄) = cum{ym(t), y∗0(t), y−n(t), y∗n(t)}

= E[ym(t)y
∗
0(t)y−n(t)y

∗
n(t)]

− E[ym(t)y
∗
0(t)]E[y−n(t)y

∗
n(t)]

− E[ym(t)y−n(t)]E[y
∗
0(t)y

∗
n(t)]

− E[ym(t)y
∗
n(t)]E[y

∗
0(t)y−n(t)]

=
K∑
k=1

c4ske
j(ωkm+ϕkm

2)e−j2ωkn, (3-11)

where m̄ = m +M + 1, n̄ = n +M + 1 and m,n ∈ [−M,M ]. In matrix form, the matrix C

can be expressed as:

C = A2(θ, r)C4sAH
1 (θ), (3-12)

where

C4s = diag[c4s1 , c4s2 , . . . , c4sK ], (3-13)

and A1(θ) and A2(θ, r) are (2M + 1)×K matrices defined as

A1(θ) = [a1(θ1), a1(θ2), . . . , a1(θK)], (3-14)

A2(θ, r) = [a2(θ1, r1), a2(θ2, r2), . . . , a2(θK , rK)], (3-15)

with a1(θk) and a2(θk, rk) being (2M + 1)× 1 vectors defined as follows:

a1(θk) = [ej2(−M)ωk , ej2(−M+1)ωk , . . . , ej2Mωk ]T , (3-16)

a2(θk, rk) = [ej[(−M)ωk+(−M)2ϕk], ej[(−M+1)ωk+(−M+1)2ϕk],

. . . , ej[(M−1)ωk+(M−1)2ϕk], ej(Mωk+M
2ϕk)]T . (3-17)

Since the source signal sk(t) has nonzero fourth-order cumulant, the rank of the diagonal matrix

C4s isK. According to Assumption (2), rank(A1(θ)) = rank(A2(θ, r)) = K.

The EVD to C leads to

CD = DΛ, (3-18)
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whereΛ is the diagonal eigenvalue matrix, andD the matrix formed of the corresponding eigen-

vectors:

Λ = diag(λ1, λ2, . . . , λK , λK+1, . . . , λ2M+1), (3-19)

D = [d1,d2, . . . , dK , dK+1, . . . d2M+1]. (3-20)

Arrange the eigenvalues in decreasing order: λ1 ≥ λ2 ≥ . . . ≥ λK ≥ λK+1 ≥ . . . ≥ λ2M+1.

From the discussion above, the rank of C is K. There are only K non-zero values in Λ and

λK+1 = λK+2 = . . . = λ2M+1 = 0. Thus, we have

CdK+1 = CdK+2 = . . . = Cd2M+1 = 0, (3-21)

where 0 is a (2M+1)×1 zero vector. As discussed before, the rank ofA2(θ, r)C4s isK, which

means it is of full column rank. Then the following equations can hold:

AH
1 (θ)dK+1 = . . . = AH

1 (θ)d2M+1 = 0. (3-22)

Therefore, MUSIC algorithm can be applied. Denote Un by

Un = [dK+1,dK+2, . . . , d2M+1]. (3-23)

The estimate of θk can be obtained with the following MUSIC spectrum:

θ̂k = argmax
θ

1

aH1 (θ)UnUH
n a1(θ)

. (3-24)

This spectrum would yield simultaneously K peaks corresponding to the K DOA estimates,

which is shown in Fig. 3-2. The proposed method and [10, 25] estimate the kth DOA with a

steering vector whose mth element is ej2mω. To ensure the uniqueness of the DOA estimation,

it is necessary that −π ≤ 2ω = −4πd
ν
sin θk ≤ π which yields d ≤ ν

4
.

3.3.3 Range Estimation

A2(θ, r) is amatrix associatedwith both the ranges andDOAs. Therefore, the range estima-

tion can be achieved if its orthogonal subspace can be determined. Define another fourth-order

cumulant matrix

C2 = CH . (3-25)

Apply the EVD to C2, we can get

C2D2 = D2Λ
H , (3-26)
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whereΛ is the same eigenvalue matrix as that of C1, D2 is the matrix formed of the correspond-

ing eigenvectors. According to Section 3.3.2, there are only K non-zero eigenvalues, which

means that for C2, the following character can also hold:

C2d2,K+1 = C2d2,K+2 = . . . = C2d2,2M+1 = 0. (3-27)

As A1(θ)CH
4s is also of full column rank, MUSIC algorithm can be applied to the estimation of

the range after substituting the θ̂k. The estimate of rk can be obtained with the followingMUSIC

spectrum:

r̂k = argmax
r

1

aH2 (θ̂k, r)Un2UH
n2a2(θ̂k, r)

. (3-28)

After applying the EVD to C2 = CH , the range can also be estimated with the same proce-

dure as that for the DOA estimation. However, another EVD would increase the computational

complexity and in fact, it is unnecessary. With the definition of eigenvector:

A2(θ, r)C4sAH
1 (θ)dk = λkdk, (3-29)

we can observe that when λk ̸= 0, dk is a linear combination of the columns ofA2(θ, r), and the

K coefficients are in the K-element column of the product of C4sAH
1 (θ)dk. For 1 ≤ k ≤ K,
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the eigenvector dk can be expressed as [79]

dk =
K∑
l=1

βk(l)a2(θl, rl), (3-30)

where βk(l) is the coefficient of the lth steering vector for the kth eigenvector. This means that

the vectors [d1, d2, . . . , dK ] span the same subspace as that of theK columns of A2(θ, r). How-

ever, we can not use these vectors directly to estimate the range, because C is not a Hermitian

matrix and the columns of [d1, d2, . . . , dK ] are not necessarily orthogonal to each other. We

propose to apply Gram-Schmidt orthogonalization to [d1,d2, . . . , dK ] and get its orthonormal

form Us. Let us assume an orthonormal matrix Un2, which has the noise subspace related with

A2(θ, r), and we have the property A2(θ, r)⊥Un2. Then the following principle is satisfied:

[Us,Un2][Us,Un2]
H = I, (3-31)

where I is a (2M + 1) × (2M + 1) identity matrix. The kth range estimation can be obtained

through the following spectrum after substituting each DOA estimated from Section 3.3.2:

r̂k = argmax
r

1

aH2 (θ̂k, r)(Un2UH
n2)a2(θ̂k, r)

= argmax
r

1

aH2 (θ̂k, r)(I− UsUH
s )a2(θ̂k, r)

. (3-32)

Unlike the DOA estimation in Section 3.3.2, this spectrum would yield only one peak, which

represents the range estimate for the substituted kth DOA estimate θ̂k (see Fig. 3-3). Therefore,

the range andDOA estimates are paired automatically, and there is no need for pairing algorithm,

reducing the complexity of the algorithm.

The proposed method can be concluded as shown in Algorithm 3-1.

In traditional MUSIC-based methods such as [25] and [10], the EVD is applied to a Her-

mitian matrix, and the eigenvectors are orthogonal to each other. In this case, each eigenvector

matrix contains the information about only one steering matrix and they had to carry out the sep-

arate estimation for the DOA and range with two matrices and two EVDs. The cumulant matrix

C that we constructed is non-Hermitian. Therefore, the orthogonality among d1,d2, . . . , d2M+1

does not necessarily hold. But it provides the feasibility to estimate the DOA and range sepa-

rately with different parts of the eigenvector matrix D.

In Equation 3-11, we choose the parameters {m, 0,−n, n} to construct the fourth-order

cumulant matrix C for two main reasons. With the last two parameters {−n, n}, we can get
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A1(θ) to ensure that the DOA estimation is decoupled from the range estimation. For range es-

timation, we select the first two parameters {m, 0} to get A2(θ, r), whose columns are the same

with the steering vectors of the covariance matrix in [10]. Such steering vectors can guarantee

the uniqueness of the range estimation for a given DOA, which has already been studied in [10].

SVD is a good choice to be applied to non-Hermitian matrices for singular vectors, which

are orthogonal to each other. In some particular situation, the cumulant matrix C may not be

diagonalizable. We should apply the SVD instead of EVD toC in this case. The DOA estimation

can be achieved through the right singular vector matrix, and the range can be estimated with

the left singular vector matrix. It allows the direct application of MUSIC algorithm, but it also

accompanies with a higher computational complexity than EVD.

With respect to the computational complexity, the most time-consuming parts of al-

l MUSIC-based methods are MUSIC spectral search, the construction of the required matrices

and their corresponding EVD. The major burden involved in LCM and MOS is listed in detail

in Tab. 3-1.

Both MOS and LCM need to do K + 1 spectral searches. Here we mainly compare the
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Algorithm 3-1: The proposed low-complexity MUSIC algorithm
Input: Y

Initialize: k = 1.

Output: the DOAs and ranges: θ1, . . . , θK and r1, . . . , rK

1) Calculate the cumulant matrix C with the equation

C(m̄, n̄) = cum{ym(t), y∗0(t), y−n(t), y∗n(t)}.

2) Apply the EVD to C and get its eigenvector matrix D.

3) Form the matrix Un as

Un = [dK+1,dK+2, . . . , d2M+1].

4) Estimate the DOA with MUSIC spectrum

θ̂k = argmax
θ

1

aH1 (θ)UnUH
n a1(θ)

.

5) Apply Gram-Schmidt orthogonalization to [d1, d2, . . . , dK ] and get its orthonormal

form Us.

while k ≤ K do

6) Substitute the kth DOA estimate θ̂k into a2(θ, r).

7) Estimate the kth range with MUSIC spectrum

r̂k = argmax
r

1

aH2 (θ̂k, r)(I− UsUH
s )a2(θ̂k, r)

.

8) k = k + 1.

end while

Tab. 3-1 Major computational burden involved in different methods

LCM MOS

Require matrices 1 cumulant matrix 1 cumulant matrix

1 covariance matrix

EVD 1 for the cumulant matrix 1 for the cumulant matrix

1 for the covariance matrix

Spectral searches 1 for DOA estimation 1 for DOA estimation

K for range estimation K for range estimation

Gram-Schmidt orthogonalization 1 0
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different parts of the two methods. The major computational burden involved in MOS contains

the construction of one cumulant matrix with dimension [(M
2
+ 1)2 + 1]× [(M

2
+ 1)2 + 1] and

a (2M + 1)× (2M + 1) covariance matrix. Then two corresponding EVDs are applied in their

method. The corresponding load is O(9[(M
2
+ 1)2 + 1]T + (2M + 1)2T + 4

3
[(M

2
+ 1)2 + 1]3 +

4
3
(2M + 1)3)[10, 25]. For LCM, a (2M + 1) × (2M + 1) cumulant matrix is constructed.

Then we perform the EVD to the matrix and apply Gram-Schmidt orthogonalization to its K

eigenvectors. The corresponding complexity isO(9(2M+1)2T+ 4
3
(2M+1)3+ 1

2
(K−1)KM).

3.3.4 Simulation

In this section, some simulations have been carried out to verify the performance of LCM.

For the ULA, the inter-element distance d is set as ν
4
. The source signal is ejψ(t), where the phase

ψ(t) is i.i.d. uniformly distributed in [0, 2π] [25]. The SNR is defined as

SNR = 10 log10

∑K
k=1 σ

2
sk

σ2
n

, (3-33)

where σ2
n is the noise variance and σ2

sk
is the power of the kth signal.

In the first experiment, we analyse the computation burden of LCM and MOS by simula-

tion. For two sources, 200 simulations of LCM and MOS are run with a 9-sensor array. The

numbers of snapshots and grids for MUSIC search are 100 and 1080 respectively. The aver-

age time for one single simulation is shown in Tab. 3-2. We can tell from the table that by

constructing one less matrix and applying the EVD only once, LCM is faster than MOS.

Tab. 3-2 Average processing time for different methods

LCM MOS

Time (seconds) 0.0848235 0.1078845

For the second experiment, we examine the resolution probabilities of LCM and MOS as

well as ESPRIT-like method in [9]. The resolution probability is the ratio between the number

of successful estimations and the number of total experiments. For the two-source situation, we

consider that the ith estimation is successful if |θ̂i − θtrue| < ∆θ
2
, where θ̂i is the estimate of the

ith trial, θtrue is the true value, and ∆θ = |θ1 − θ2| [10]. A 9-sensor array is chosen and two

closely positioned sources localized in [17◦, 2.8ν] and [25◦, 2.8ν] are considered. Assume 400

snapshots are received and the resolution probabilities versus SNR are provided in Fig. 3-4.
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Fig. 3-4 Resolution probabilities of different methods with 9 sensors and 400 snapshots

It can be seen that the resolution probabilities of LCM and MOS are very similar to each

other and both reach 100% around 4 dB. They are much better than that of ESPRIT-like method,

which gets its perfect estimation around 16 dB.MUSIC-based methods outperform ESPRIT-like

method although all of them used the fourth-order cumulant.

In the third simulation, the relationship between the Root Mean Square Error (RMSE) and

SNR is studied. We consider two well-separated sources localized in [10◦, 2.2ν] and [25◦, 2.8ν]

respectively. An array of 5 sensors and 300 snapshots are used. Let SNR vary from 0 dB to 30

dB and we choose RMSE to evaluate the methods, which is defined as

RMSE =

√∑P
p=1 | α̂p − αtrue |2

P
, (3-34)

where αtrue is the true value of θ or r, α̂p is the corresponding estimate of the pth trial, and

P is the number of independent Monte Carlo trials. Besides, the performance of the proposed

methods is also compared with the CRB proposed in [58]. The results of Figs. 3-5 to 3-8 are

carried out with P = 200.

Clearly, LCM and MOS perform better than ESPRIT-like method. For DOA estimation,
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LCM has a similar outcome to that of MOS. But for the range estimation, MOS constructed

a second-order covariance matrix. LCM still uses the same fourth-order cumulant matrix to

estimate the ranges, which leads to a higher estimation accuracy. It is well known that a high-

order cumulant can effectively resist Gaussian noise, which is a property not available with

second-order statistics.

The fourth simulation studies the relationship between the RMSE and range rk of LCM.

We set the SNR 7 dB and fix the DOA at 45◦. Let the range of the source vary from 0.8ν to

4ν, and the result is shown in Fig. 3-9. We can see that the DOA estimation improves only a

little if the source gets closer to the array. In fact, the RMSE are nearly the same. But the range

estimation depends a lot on the distance between the source and array. When the source gets

further, the range accuracy will deteriorate apparently.
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Fig. 3-5 RMSE versus SNR for the first source: DOA

3.4 Proposed Propagator-based Method
The traditional subspace-based methods, such as MUSIC and ESPRIT, require the EVD

or SVD of the covariance matrix. In order to avoid the use of the EVD or SVD and to reduce
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Fig. 3-6 RMSE versus SNR for the first source: range
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Fig. 3-7 RMSE versus SNR for the second source: DOA
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Fig. 3-8 RMSE versus SNR for the second source: range
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Fig. 3-9 RMSE versus range
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the computational complexity, [80] proposed a method called propagator, which can estimate

the parameters without the EVD or SVD. [81] and [82] proposed 2D propagator methods for

multiple parameter estimation. [83] proposed a rank-reduction propagator method. They used

the first K columns of a special covariance matrix to form a propagator, which can be used

to estimate the DOA. In our first proposal, LCM, we have already improved the high-order

modified 2DMUSIC with constructing only one single cumulant matrix and applying one EVD.

Here we propose a further improvement by obtaining the subspace with the propagator method,

which can avoid the computational burden of the EVD.

3.4.1 DOA Estimation

Like the LCM method, we take the output of only 2M + 1 sensors as the received signal.

Thus, the received signal vector can be written as

y(t) = [y−M(t), y−M+1(t), . . . , yM(t)]. (3-35)

Then, we can construct a new cumulant matrix, whose elements are defined as

C(m̄, n̄) = cum{ym(t), y∗−m(t), y0(t), y∗n(t)}

= E[ym(t)y
∗
−m(t)y0(t)y

∗
n(t)]

− E[ym(t)y
∗
−m(t)]E[y0(t)y

∗
n(t)]

− E[ym(t)y0(t)]E[y
∗
−m(t)y

∗
n(t)]

− E[ym(t)y
∗
n(t)]E[y

∗
−m(t)y0(t)]

=
K∑
k=1

c4ske
j2ωkme−j(ωkn+ϕkn

2). (3-36)

It can be expressed in matrix form as:

C = A1(θ)C4sAH
2 (θ, r). (3-37)

The definitions of A1(θ), C4s and A2(θ, r) are given by:

C4s = diag[c4s1 , c4s2 , . . . , c4sK ], (3-38)

A1(θ) = [a1(θ1), a1(θ2), . . . , a1(θK)], (3-39)

A2(θ, r) = [a2(θ1, r1), a2(θ2, r2), . . . , a2(θK , rK)], (3-40)
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with a1(θk) and a2(θk, rk) being (2M + 1)× 1 vectors defined as follows:

a1(θk) = [ej2(−M)ωk , ej2(−M+1)ωk , . . . , ej2Mωk ]T , (3-41)

a2(θk, rk) = [ ej[(−M)ωk+(−M)2ϕk], ej[(−M+1)ωk+(−M+1)2ϕk],

. . . , ej[(M−1)ωk+(M−1)2ϕk], ej(Mωk+M
2ϕk)]T . (3-42)

According to the matrix theory, the columns of C are the linear combination of those of A1(θ)

and the coefficients are the products of C4sAH
2 (θ, r). Let us take the first K columns of C and

form a matrix:

Us1 = [c1, c2, . . . , cK ]. (3-43)

The rank of Us1 is K [83]. This means that Us1 spans the same column subspace as that of the

K columns of A1(θ).

Define

Un1 = I− Us1(UH
s1Us1)

−1UH
s1, (3-44)

where I is the (2M + 1)× (2M + 1) identity matrix. We have

UH
s1Un1 = UH

s1(I− Us1(UH
s Us1)

−1UH
s1)

= UH
s1 − UH

s1Us1(UH
s Us1)

−1UH
s1

= UH
s1 − UH

s1

= 0K×(2M+1), (3-45)

where 0p×q is a p × q zero matrix. From the discussion above, this orthogonality is equivalent

to

AH
1 (θ)Un1 = 0K×(2M+1). (3-46)

Therefore, we can estimate the DOA through the following spectrum:

θ̂k = argmax
θ

1

aH1 (θ)Un1UH
n1a1(θ)

. (3-47)

3.4.2 Range Estimation

Let us look at the cumulant matrix C = A1(θ)C4sAH
2 (θ, r). We can also know that the

rows of C are the linear combination of those of AH
2 (θ, r), and the coefficients are the products

of A1(θ)C4s.
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Let cH21, cH22, . . . , cH2K denote the firstK rows of C and form a matrix:

Us2 = [c21, c22, . . . , c2K ]. (3-48)

The rank of Us2 is alsoK, which means that Us2 spans the same column subspace as that of the

K columns of A2(θ, r).

Define

Un2 = I− Us2(UH
s2Us2)

−1UH
s2. (3-49)

We have

UH
s2Un2 = UH

s2(I− Us2(UH
s2Us2)

−1UH
s2)

= UH
s2 − UH

s2Us2(UH
s2Us2)

−1UH
s2

= UH
s2 − UH

s2

= 0K×(2M+1) (3-50)

Therefore, by substituting the kth DOA estimate, we can estimate the kth range through the

following spectrum:

r̂k = argmax
r

1

aH2 (θ̂k, r)Un2UH
n2a2(θ̂k, r)

. (3-51)

The proposed method can be summarized as shown in Algorithm 3-2.

Similar to the LCM, the proposed propagator-based method is also based on the orthogo-

nality between the steering vectors and specific subspaces. The difference is the way that the

subspaces are formed. The LCM applies the EVD to get the desired subspaces. Noticing that

the columns or rows of the cumulant matrix are the linear combination of those of the steering

matrices, the propagator-based method directly constructs two subspaces orthogonal with two

steering matrices respectively. The EVD is no longer necessary.

3.4.3 Simulation

In this section, we examine the performance of the proposed propagator-based method.

Theoretically, the RMSEs of the propagator-based method are the same with those of LCM. But

due to the existence of the estimation noise, there would be some fluctuation in the estimation of

the orthogonal subspaces. This fluctuation would have a greater impact to the propagator-based

method than LCM, because only K columns or rows are used in the method. This phenomena

will be examined by the following simulation.
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Algorithm 3-2: The proposed propagator-based method
Input: Y

Initialize: k = 1.

Output: the DOAs and ranges: θ1, . . . , θK and r1, . . . , rK

1) Calculate the cumulant matrix C with the equation

C(m̄, n̄) = cum{ym(t), y∗−m(t), y0(t), y∗n(t)}.

2) Form the matrix Us1 as

Us1 = [c1, c2, . . . , cK ].

3) Form the matrix Un1 as

Un1 = I− Us1(UH
s1Us1)

−1UH
s1.

4) Estimate the DOA with MUSIC spectrum

θ̂k = argmax
θ

1

aH1 (θ)UnUH
n a1(θ)

.

5) Form the matrix Us2 as

Us1 = [c21, c22, . . . , c2K ].

6) Form the matrix Un2 as

Un2 = I− Us2(UH
s2Us2)

−1UH
s2.

while k ≤ K do

7) Substitute the kth DOA estimate θ̂k into a2(θ, r).

8) Estimate the kth range with MUSIC spectrum:

r̂k = argmax
r

1

aH2 (θ̂k, r)Un2UH
n2a2(θ̂k, r)

.

9) k = k + 1.

end while

For the simulation, the inter-element distance d is set as ν
4
and the source signal is ejψ(t),

where the phase ψ(t) is i.i.d. uniformly distributed in [0, 2π] [25]. We consider two well-

separated sources localized in [5◦, 1.2ν] and [20◦, 1.6ν] respectively. An array of 5 sensors and

200 snapshots are used. The RMSEs are shown in Fig. 3-10 and 3-11.
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Fig. 3-10 RMSEs of DOA estimation

When SNR is low, LCM outperforms the propagator-based method for both the DOA and

range estimation. The propagator-based method only uses the first K columns or rows to form

the subspaces. The accuracy would be affected by the estimation noise more seriously than

LCM. When SNR is higher, the propagator-based method can achieve similar estimation results

to those of LCM.
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Fig. 3-11 RMSEs of range estimation

3.5 Proposed Aperture-Expanded MUSIC (AEM)
The aperture of the ULA depends on the distance between two adjacent elements d as well

as the number of sensors (2M + 1), and is defined as

R = (2M + 1− 1)d

= 2dM. (3-52)

The estimation accuracy improves when the value of the aperture gets larger. There are two

methods to achieve a larger aperture. The first one is to set the sensors further away from each

other, enlarging the distance d. But there are usually a constrain for the selection of d to ensure

the uniqueness of the localization: d ≤ ν
2
for the 2D MUSIC in [23], or d ≤ ν

4
for the modified

2DMUSIC [8, 10, 25, 52] and ESPRIT-like methods [9, 74, 75]. The other method is to increase

the number of sensors. In this case, more sources can be localized with a higher accuracy, but it

also aggravates the computational burden.

One of the important applications of high-order cumulant is to expand the aperture of the
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array [84], which can hence improve the accuracy of the estimation. The high-order cumulant

can be used to build a ULA with virtual sensor outputs. By selecting suitable parameters for the

cumulant, it is possible to create more virtual sensors than real ones. [85, 86] have achieved the

goal and managed to localize more far-field sources with a small number of sensors. In their

methods, the assumption is no more necessary that the number of sources should be smaller

than that of sensors. The performance is also better than traditional methods due to the aperture

expansion. Here, we propose a direct way for expanding the aperture, which will lead to an

extremely large scale.

3.5.1 DOA Estimation

Here we construct a (2M +1)2 × (2M +1) cumulant matrix, whose element is defined as

C((m̄− 1) ∗ (2M + 1) + p̄, n̄) = cum{ym, y∗p, y−n, y∗n}

= E[ym(t)y
∗
p(t)y−n(t)y

∗
n(t)]

− E[ym(t)y
∗
p(t)]E[y−n(t)y

∗
n(t)]

− E[ym(t)y−n(t)]E[y
∗
p(t)y

∗
n(t)]

− E[ym(t)y
∗
n(t)]E[y

∗
p(t)y−n(t)]

=
K∑
k

c4ske
j[(m−p)ωk+(m2−p2)ϕk]ej(−2nωk), (3-53)

where p̄ = p +M + 1, m̄ = m +M + 1, n̄ = n +M + 1 and p,m, n ∈ [−M,M ]. C can be

expressed as

C = A2(θ, r)C4sAH
1 (θ). (3-54)

The definitions of A1(θ), C4s and A2(θ, r) are given by:

C4s = diag[c4s1 , c4s2 , . . . , c4sK ], (3-55)

A1(θ) = [a1(θ1), a1(θ2), . . . , a1(θK)], (3-56)

A2(θ, r) = [a2(θ1, r1), a2(θ2, r2), . . . , a2(θK , rK)], (3-57)

with a1(θk) being a (2M + 1)× 1 vector:

a1(θk) = [ej2(−M)ωk , ej2(−M+1)ωk , . . . , ej2Mωk ]T , (3-58)
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and a2(θk, rk) a (2M + 1)2 × 1 vector:

a2(θk, rk) = [ ej((−M+M)ωk+((−M)2−(−M)2)ϕk), ej((−M+M−1)ωk+((−M)2−(−M+1)2)ϕk), . . .

ej((−M−M)ωk+((−M)2−(M)2)ϕk), ej((−M+1+M)ωk+((−M+1)2−(−M)2)ϕk),

ej((−M+1+M−1)ωk+((−M+1)2−(−M+1)2)ϕk), . . .

ej((M−M)ωk+((M)2−(M)2)ϕk)]T . (3-59)

Applying the SVD to C leads to

C = UΛVH , (3-60)

whereU is the (2M+1)2×(2M+1)2 left singular vector matrix andV is the (2M+1)×(2M+1)

right singular vector matrix. We can form a noise subspace Vn = [vK+1, . . . , v2M+1]. Instead

of applying MUSIC, We prefer to use root-MUSIC in order to avoid a spatial search and to get

better accuracy [87]. When the number of the sources is known, the computation burden can

be reduced further [88]. We divide the noise subspace into a K × (2M + 1−K) matrix and a

(2M + 1−K)× (2M + 1−K) one as follows:

Vn1 = Vn(1 : K, 1 : (2M + 1−K)), (3-61)

Vn2 = Vn((K + 1) : (2M + 1), 1 : (2M + 1−K)). (3-62)

The coefficient vector of the polynomial is set as g = Vn1V−1
n2 o and o = [1, 0, 0, . . . , 0]T is a

(2M + 1 −K) × 1 vector. Consequently, the DOA estimation can be achieved by solving the

following problem:
K+1∑
i=1

giz
i−1 = 0, gK+1 = 1. (3-63)

The kth solution is zk = e2jωk .

3.5.2 Range Estimation

Denote the left-hand noise subspace as

Un = [uK+1,uK+2, . . . , u(2M+1)2 ]. (3-64)

As we can see, Un is of the size (2M + 1)2 × [(2M + 1)2 −K]. It can be regarded as a noise

subspace of a (2M + 1)2 × (2M + 1)2 matrix. The virtual aperture is

Rvir = d[(2M + 1)2 − 1]. (3-65)
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Compared with Equation 3-52, the aperture has been expanded significantly. More sources

can be localized theoretically, but the aperture for DOA estimation is still 2dM . Therefore,

this expansion only provides an improvement for the accuracy of the range estimation. By

substituting the K estimated DOA, the corresponding range estimation can be achieved by the

following 1D MUSIC spectrum one by one:

r̂k = argmax
r

1

aH2 (θ̂k, r)UnUH
n a2(θ̂k, r)

. (3-66)

The proposed method can be concluded as shown in Algorithm 3-3.

Algorithm 3-3: The proposed expanded-aperture MUSIC algorithm
Input: Y

Initialize: k = 1.

Output: the DOAs and ranges: θ1, . . . , θK and r1, . . . , rK

1) Calculate the cumulant matrix C with the equation

C((m̄− 1) ∗ (2M + 1) + p̄, n̄) = cum{ym(t), y∗p(t), y−n(t), y∗n(t)}.

2) Apply the SVD to C and get its singular matrices U and V.

3) Form the matrix Vn as

Vn = [vK+1, vK+2, . . . , v2M+1].

4) Estimate the DOA with root-MUSIC.

5) Form the matrix Un as

Un = [uK+1,uK+2, . . . , u(2M+1)2 ].

while k ≤ K do

6) Substitute the kth DOA estimate θ̂k into a2(θ, r).

7) Estimate the kth range with MUSIC spectrum

r̂k = argmax
r

1

aH2 (θ̂k, r)UnUH
n a2(θ̂k, r)

.

8) k = k + 1.

end while

The noise subspaces can be obtained with the propagator-based method of Section 3.4. But

as we have discussed before, the estimation noise would have a greater impact on it. The SVD is

accompanied with a higher computational, but it can improve the accuracy for range estimation
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at the greatest extent.

3.5.3 Simulations

In this section, we carry out some simulations to verify the performance of AEM. We con-

sider two well-separated sources localized in [5◦, 0.8ν] and [20◦, 1.2ν] respectively. An array of

5 sensors and 300 snapshots are used. The first experiment is carried out with SNR = 5 dB.

It aims to show the effectiveness of the aperture expansion. The DOA estimation of AEM is

theoretically almost the same as other high-order cumulant MUSIC (such as MOS and LCM).

Thus we only show the results of the range estimation.
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Fig. 3-12 Spectra of range estimation: LCM

Fig. 3-12 and 3-13 show the results of the range estimation without and with aperture

enlargement. As we can see in Fig. 3-12, the range estimation can not be achieved precisely.

There is some obvious bias in the spectra. Their spectra peak widths are also very large, which

means that the accuracy could be very poor. After expanding the aperture, the spectra in Fig.

3-13 accurately reveal the true range. In conclusion, the spectra of the proposed AEM shows a

higher accuracy especially for the second source.
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The performance of AEM is studied from the Monte Carlo simulation. We run the simula-

tion for 200 times and the results of the range estimation are shown in Fig. 3-14.

In the simulation, AEM has expanded the aperture from 4d to 24d. The noise subspace

size is 23 × 25 for the range estimation. This remarkable expansion has greatly improved the

performance.

3.6 Conclusion
In this chapter, we have proposed three kinds of high-order cumulant-based methods. First-

ly, we propose the LCM algorithm to reduce the computational complexity by reducing the num-

ber of constructed cumulant matrices. We prove that the range and DOA of near-field sources

can be estimated with different parts of the eigenvector matrix of a cumulant matrix. Then we

propose a further improvement of LCM based on propagator methods. It allows to avoid the

EVD and therefore leads to a even lower computational complexity. Both these two proposed

methods maintain the excellent performance. At last, we propose to make full use of the high

degrees of freedom and increase the number of effective virtual sensors for the range estimation.

The AEM expands the aperture and achieves a notable improvement for the range estimation

accuracy.
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Chapter 4

Joint DOA and Range Estimation based on

Compressive Sensing

4.1 Introduction
Although the high resolution method MUSIC can achieve high accuracy, it requires a mod-

erately high SNR and a sufficient number of snapshots. In recent years, some new parameter

estimation methods, based on sparse signal reconstruction, have been gradually emerging and

applied in various fields. This family of methods is also called Compressive Sensing (CS).

Malioutov et al. [38], Xu et al. [42] and Hu et al. [89] studied the source localisation based on

the signal-reconstruction techniques and the results show the excellent resolution and accuracy

of this new type of methods.

For simplicity, we consider DOA estimation to illustrate the basic principle of compressive

sensing. As shown in Fig. 4-1, the whole space can be divided into N0 sections, among which

there are onlyK sections containing sources (marked by dark points) withK ≪ N0. The output

of the ULA can be written as the product of an overcomplete basis and a sparse signal:

y(t) = Γs0(t), (4-1)

where Γ is a overcomplete dictionary composed of N0 steering vectors and s0(t) is the sparse

form of the signal with onlyK non-zero values. In this case, the DOA estimation can be regarded

as a sparsity reconstruction problem:

ŝ0(t) = min ∥s0(t)∥0 subject to ∥y(t)− Γs0(t)∥22 ≤ ϵ, (4-2)

where ϵ is the error tolerance and ∥s0(t)∥0 is the ℓ0 norm of s0(t), referring to the number of

its nonzero values. However, this problem is NP-hard (Non-deterministic Polynomial-time)

[90]. It is intractable even for moderately sized problems [38]. Researchers have tried to use
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Fig. 4-1 The sparse form of DOA estimation

some approximations to solve this optimization problem, among which the most famous two is

Orthogonal Matching Pursuit (OMP) [35] and ℓp≤1 norm [91].

4.1.1 Orthogonal Matching Pursuit (OMP)

OMP is an improvement of Matching Pursuit (MP) [35]. MP is an iterative algorithm for

representing signal, whose basic principle is to select suitable atoms in a given dictionary. For

each iteration, it can find an atom in the dictionary that best matches the signal. The iteration

stops when the inner product of the residual of the signal and the next atom is smaller than a

threshold, and then we can represent the received signal with the atoms we have found. MP

algorithm can well guarantee the asymptotic convergence. However, it may derive a suboptimal

result and there may be a large error for the approximation, because the signal residual of each

iteration is orthogonal only with the last selected atom. After finite iteration, the representation

with these selected atoms is still suboptimal, and the error may be very serious [35]. OMP

develops MP with an additional orthogonalizing step, maintaining the orthogonality between

the signal residual and all the selected atoms, which can leads to an improved convergence.

64



Chapter Joint DOA and Range Estimation based on Compressive Sensing

4.1.2 ℓp∈(0,1] Norm

After a finite number of iterations, OMP can guarantee the asymptotic convergence and

represent the received signal with the selected atoms. However, its performance may still not

be a satisfactory in some applications which require high resolution and accuracy. In fact, OMP

may fail to reconstruct some special signals [92, 93]. In order to avoid the disadvantage of OMP,

a true global optimization can be considered to replace the matching pursuit.

Another way to find the solution of Equation 4-2 is that the ℓ0 norm can be replaced with ℓp

norm (p > 0) under some certain conditions. This kind of methods are also called Basis Pursuit

(BP). Here, ∥xi∥p (p > 0) is the ℓp-norm of xi given by

∥xi∥p = (|xi(1)|p + |xi(2)|p + . . .+ |xi(2M + 1)|p)
1
p (4-3)

Specially, as presented before, the ℓ0 norm of a vector is defined as the number of its non-zero

elements.
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Fig. 4-2 The unit ball for ℓp norm
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The unit balls for different ℓp norms are given in Fig. 4-2. Some research proposed to

select p = 2 [29, 39, 40]. But the main problem is that its solution is only the average of all the

possible solutions. Therefore, the sparsity of the solution is very poor and it also fails to achieve

super resolution [94].

4.1.2.1 p ∈ (0, 1)

Some researchers focused on the situation when 0 < p < 1 and gained some satisfying

results [95, 96]. From Fig. 4-2 we can see that as p gets smaller and closer to 0, the curves

would more approach the x1 and x2 axes. It indicates the solution would be sparser and the

signal representation would be more precise when p decreases [97]. In this case, Equation 4-2

can be replaced by

ŝ0(t) = argmin
s0(t)

∥s0(t)∥p, p ∈ (0, 1) subject to ∥y(t)− Γs0(t)∥22 ≤ ϵ. (4-4)

Taking advantage of the ℓp cost function, Leahy in [95] pointed out that the search for the sparse

solution can be restricted to a finite set of possible optimal solution vectors.

4.1.2.2 p = 1

The ℓ0<p<1 norm can well approximate the ℓ0 cost function and lead to some excellent

outcomes. However, ℓp norm is neither convex nor concave when 0 < p < 1. It is only a

quasi-norm [98] and the triangle inequality can not hold. There are many strong local minima

and Equation 4-4 is still a very difficult optimization problem.

As shown in Fig. 4-2, when p ≥ 1, ℓp norm is convex. It has been proved that when the

signal is sparse enough, the ℓ0 norm can be replaced by the ℓ1 norm, which is possible to be

solved. The method uses the ℓ1 penalty for sparsity and the ℓ2 penalty for noise.

ŝ0(t) = argmin
s0(t)

∥s0(t)∥1 subject to ∥y(t)− Γs0(t)∥22 ≤ ϵ. (4-5)

The optimization problem can also be written in an unconstrained form:

ŝ0(t) = argmin
s0(t)

β∥y(t)− Γs0(t)∥22 + (1− β)∥s0(t)∥1. (4-6)

where β is the regularization parameter controlling the tradeoff between the quality of fit ∥y(t)−

Γs0(t)∥2 and the degree of sparsity. The ℓ1-term ensures the sparsity of the optimization solution

while the small residual is guaranteed by the ℓ2-term. This optimization problem is a convex

optimization problem and can be solved by Second-Order Cone (SOC) programming [38]. There
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are already many studies about reconstructing sparse signals using this objective function: [91,

99] used it to reconstruct real-value signal and [38] applied it to representing complex-value

signal.

4.2 Far-field Source Localization based on Compressive Sensing
There are already several studies about localizing far-field sources with sparse signal re-

construction [42, 89, 100]. Consider the far-field model introduced in Chapter 2:

ym(t) =
K∑
k=1

sk(t)e
jm(− 2πd

ν
sin θk) + nm(t)

=
K∑
k=1

sk(t)e
jmωk + nm(t), t = 1, 2, . . . , T. (4-7)

Written in matrix form, it can be expressed as

y(t) = A(θ)s(t) + n(t). (4-8)

4.2.1 ℓ1 Norm Optimization

The unknown position information is contained in the steering matrix A(θ). According to

the CS technique, we need to firstly construct an overcomplete basis about the DOA.

Let θ̄ = [θ̄1, θ̄2, . . . , θ̄N0 ] be the sampled direction in the whole space. Generally we as-

sume its size is large enough so that the unknown sources are localized in some of the sampled

direction. With the sampled direction, an overcomplete dictionary formed of steering vectors

can be constructed:

A(θ̄) = [a(θ̄1), a(θ̄2), . . . , a(θ̄N0)]. (4-9)

In this case, A(θ̄) is known and the array output can be written as

y(t) = A(θ̄)s̄0(t) + n(t), (4-10)

where s̄0(t) is an unknown sparse signal with only K nonzero elements (K ≪ N0) and the

corresponding positions in A(θ̄) reveal the DOAs.

Consider the single sample situation, that is T = 1. The optimization problem is

ŝ0 = argmin
s0
β∥y− A(θ̄)s0∥22 + (1− β)∥s0∥1, (4-11)

Solving the problem and the DOA estimation can be achieved through finding the position of

the nonzero element.

But in practical applications, multiple-snapshot source localization is more common and
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important. For multiple sample situation, there are two methods to solve the optimization prob-

lem. The first method is to treat every snapshot separately. T optimization problems associated

with T received signal vectors y(t) would be solved and T groups of DOA estimation can be

get. This method is very effective when the sources are moving fast. It provides real-time lo-

calization, but it also requires that the processing speed to be high enough. When the sources

are stationary, the final estimation is the combination of these separate groups, by averaging or

clustering them. In this case, another method would seem to be more effective by combining all

the snapshots into only one optimization problem.

Ŝ0 = argmin
S0

β∥Y− A(θ̄)S0∥2f + (1− β)∥s(ℓ2)0 ∥1, (4-12)

whereY and S0 are made of the T vectors of y(t) and s0(t) respectively. s(ℓ2)0 is given as follows:

s(ℓ2)0 = [s
(ℓ2)
1 , s

(ℓ2)
2 , . . . , s

(ℓ2)
N0

]T (4-13)

with

s
(ℓ2)
i = ∥[si(1), si(2), . . . , si(T )]∥2, (4-14)

where si is the ith row of S0. The Frobenius norm ∥ · ∥2F is defined as

∥Y− A(θ̄)S0∥2F = ∥vec(Y− A(θ̄)S0)∥22. (4-15)

4.2.2 ℓ1-SVD

The main problem of the ℓ1 norm method is that when the number of snapshots is large,

solving the optimization is computationally inefficient. Therefore, [38] also provides the ℓ1-

SVD solution.

Apply the SVD to Y and we can get

Y = UΣVH . (4-16)

We know that YSV D = UΣOK = YVOK contains most of the signal power, with

OK =

 IK

0

 , (4-17)

where IK is a K ×K identity matrix and 0 a (T −K)×K zero matrix. Let SSV D = S0VOK

and NSV D = NVOK and we can have

YSV D = A(θ̄)SSV D + NSV D. (4-18)
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Each column of this equation is

ySV D(k) = A(θ̄)sSV D(k) + NSV D(k), (4-19)

where k ∈ [1, K]. We can see that the ℓ1-SVD can simplify the optimization problem of Equation

4-12, replacing the reconstruction of T snapshots with K ones.

ŜSV D = arg min
SSV D

β∥YSV D − A(θ̄)SSV D∥2f + (1− β)∥s(ℓ2)SV D∥1. (4-20)

Although we form a signal subspace with K singular vectors (the number of sources K should

be known), it is also stated in [38] that it would not much impact the performance of the ℓ1-SVD.

There are also many similar studies about localizing far-field sources with sparse signal

reconstruction [101–104]. Unlike the methods mentioned above, they represent the covariance

matrix instead of the the received signal. The covariance matrix R = ARsAH can be regarded

as a virtual array output, where A is still the steering matrix and RsAH the virtual signal.

4.3 Proposed CS-based Algorithm for Near-field Source Local-

ization
Although the DOA estimation via CS has been studied by many scholars, there are very

few works about localizing near-field sources with this technique. In general, an overcomplete

basis, formed by DOA and range, is required if we want to localize near-field sources with

CS-based methods. In this case, the overcomplete basis would be extremely huge, resulting in

an unwanted computational burden. Observing that the parameter ωk depends only on θk, the

modified 2DMUSICmethod was proposed. Firstly this estimator eliminates the near-field term,

the parameter ϕk, with second order statistics and applies the 1D MUSIC to the estimation of

θk. In the second step, by substituting each θ̂k, the corresponding range can be obtained after

applying the 1D MUSIC method.

Based on the principle of the modified 2D MUSIC, we can first estimate the DOAs with

a 1D overcomplete basis matrix formed by DOA, and then get the ranges with a reduced 2D

overcomplete basis matrix formed by range and only K estimated DOA grids. However, here

we propose a further improvement of the approach by separating the two parameters with high

order statistics of signals, which needs to construct only two 1D overcomplete basis matrices.
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4.3.1 Estimation of Parameter ϕk

Let us consider the signal model for the near-field situation in Fig. 2-4.

ym(t) =
K∑
k=1

sk(t)e
j(mωk+m

2ϕk) + nm(t), t = 1, 2, . . . , T. (4-21)

High order statistics of signals are used in this method. Besides separating parameters, the

proposed method is not sensitive to colored Gaussian noise and allows the parameters ϕk and

ωk to be paired efficiently. Define the fourth-order cumulant matrix as follows:

C1(m̄, n̄) = cum{y∗m(t), ym+1(t), y
∗
−n(t), yn(t)}

= E[y∗m(t)ym+1(t)y
∗
−n(t)yn(t)]

− E[y∗m(t)ym+1(t)]E[y
∗
−n(t)yn(t)]

− E[y∗m(t)y
∗
−n(t)]E[ym+1(t)yn(t)]

− E[y∗m(t)yn(t)]E[ym+1(t)y
∗
−n(t)]

=
K∑
k=1

c4ske
j(2m+1)ϕkej(2n+1)ωk , (4-22)

where m̄ = m + M + 1, n̄ = n + M + 1, m,n ∈ [−M,M ]. Then the n̄th column of the

cumulant matrix C1 can be expressed as:

C1(n̄) =
K∑
k=1

aϕ(ϕk)c4ske
j(2n+1)ωk

= Aϕ(ϕ)sv1(n̄). (4-23)

Aϕ(ϕ) is a (2M + 1)×K matrix:

Aϕ(ϕ) = [a(ϕ1), a(ϕ2), . . . , a(ϕK)], (4-24)

where a(ϕk) is a (2M + 1)× 1 vector:

a(ϕk) = [ej(−2M+1)ϕk , . . . , ej(2×0+1)ϕk , . . . , ej(2M+1)ϕk ]T . (4-25)

sv1(n̄) is a K × 1 vector:

sv1(n̄) = [c4s1e
j(2n+1)ω1 , c4s2e

j(2n+1)ω2 , . . . , c4sKe
j(2n+1)ωK ]T

= [c1,4s1(n̄), c1,4s2(n̄), . . . , c1,4sK (n̄)]
T . (4-26)

From Equation 4-23, we can know that the cumulant matrix C1 could be regarded as a virtual

array output, with sv1(n̄) being the virtual signals and a(ϕk) the steering vector, which depends

only on ϕk. Near-field sources are in the Fresnel region, with ranges rk being in the inter-

70



Chapter Joint DOA and Range Estimation based on Compressive Sensing

val [0.62(R3/ν)0.5, 2R2/ν] [57], where R is the aperture of the ULA. Then ϕk should lie in

[0, πd2/0.62(R3ν)0.5]. In order to obtain the estimation of ϕk, the whole domain should be sam-

pled. Let us form the set Φ̄ = [ϕ̄1, ϕ̄2, . . . , ϕ̄N0 ] with N0 ≫ K, where ϕ̄i = (i−1)πd2

0.62(N0−1)(R3ν)0.5
,

and assume that the values of all ϕk (k = 1, 2, . . . , K) are included in the N0 grids. Then the

sparse form of C1 can be expressed as:

C1 = Aϕ(Φ̄)X1, (4-27)

where Aϕ(Φ̄) of dimension (2M + 1) × N0 is the overcomplete basis, and X1 =

[x1,1, x1,2, . . . , x1,N0 ]
T of dimension N0 × (2M + 1) is the sparse form of Sv1, with only

K nonzero rows, and Sv1 = [sv1(1), sv1(2), . . . , sv1(2M + 1)]. It means that only when

a(ϕ̄i) = a(ϕj), we can get x1,i = c1,4sj , where c1,4sj is the transpose of the jth row of Sv1,

given by c1,4sj = [c1,4sj(1), c1,4sj(2), . . . , c1,4sj(2M + 1)]T . Therefore, the estimation of ϕk

could be realized by solving the following optimization problem [38]:

X̂1 = argmin
X1

(1− β)∥Aϕ(Φ̄)X1 − C1∥2F + β∥x(ℓ2)1 ∥1. (4-28)

With the reconstruction of X1, we can find out where the non-zero rows of X̂1 are, and the

corresponding positions in matrix Aϕ(Φ̄) reveal the values of ϕ̂k (k = 1, 2, . . . , K).

The selection of the regularization parameter β is a very important problem. In [38], the

automatical selection of β was proposed under the assumption that the noise is known or can be

modeled. They ran several simulations and found that their method can lead to a proper value

for β when ∥n∥22 has a χ2 distribution. When there is no priori information about the noise or

the number of the sources, [105] has made an attempt to apply L-curve to a subset selection

problem. However, another assumption that the SNR is known has to be made. Indeed, the

selection of the optimal value of β is still an open problem if no assumption is made.

In our method, we mainly exploit the application of CS to near-field source localization.

The selection of β is not our main research interest. In the future, we will try to do a deep

research into how to find a suitable value for any application.

4.3.2 Estimation of Parameter ωk

Although the reconstructed non-zero signal x̂1,i contains information about ωk, it is still

difficult to estimate ωk with traditional methods (for example, Fourier transform based method-

s), because traditional methods require a big enough number of measurements [106] while the

71



Investigation on Near-field Source Localization and the Corresponding Applications

length of x̂1,i, 2M +1, which is equal to the number of sensors of ULA, is quite small in reality.

Similar to ϕk, ωk could be estimated by the following steps. Let us define another fourth-order

cumulant matrix as follows:

C2 = CT
1 . (4-29)

And then we get

C2(m̄, n̄) =
K∑
k=1

c4ske
j(2m+1)ωkej(2n+1)ϕk , (4-30)

where m̄ = m +M + 1, n̄ = n +M + 1, m,n ∈ [−M,M ]. The n̄th column of the cumulant

matrix C2 could be expressed as:

C2(n̄) =
K∑
k=1

aω(ωk)c4ske
j(2n+1)ϕk

= Aω(ω)sv2(n̄). (4-31)

Aω(ω) is a (2M + 1)×K matrix:

Aω(ω) = [a(ω1), a(ω2), . . . , a(ωK)], (4-32)

where a(ωk) is a (2M + 1)× 1 virtual steering vector:

a(ωk) = [ej(−2M+1)ωk , . . . , ej(2×0+1)ωk , . . . , ej(2M+1)ωk ]T . (4-33)

The virtual signal sv2(n̄) is a K × 1 vector:

sv2(n̄) = [c4s1e
j(2n+1)ϕ1 , c4s2e

j(2n+1)ϕ2 , . . . , c4sKe
j(2n+1)ϕK ]T

= [c2,4s1(n̄), c2,4s2(n̄), . . . , c2,4sK (n̄)]
T . (4-34)

With θk being in the interval [−π
2
, π
2
], ωk should lie in the interval [−2πd

ν
, 2πd
ν
]. Again, let us

sample the whole domain of ωk and form the set Ω̄ = [ω̄1, ω̄2, . . . , ω̄N0 ], which has the same

size as Φ̄, and ω̄i = [(i−1)−(N0−1)/2]4πd
(N0−1)ν

. We assume that the values of all ωk (k = 1, 2, . . . , K)

lie within the N0 domain. Then the sparse representation of C2 is

C2 = Aω(Ω̄)X2, (4-35)

where Aω(Ω̄) of dimension (2M + 1) × N0 is the overcomplete basis, and X2 =

[x2,1, x2,2, . . . , x2,N0 ]
T of dimension N0 × (2M + 1) is the sparse form of Sv2, with only K

nonzero rows, and Sv2 = [sv2(1), sv2(2), . . . , sv2(2M +1)]. ω̂k could be obtained by solving the

following optimization problem

X̂2 = argmin
X2

(1− β)∥Aω(Ω̄)X2 − C2∥2F + β∥x(ℓ2)2 ∥1, (4-36)

72



Chapter Joint DOA and Range Estimation based on Compressive Sensing

which will provide the positions of the non-zero rows of X̂2, and the corresponding positions in

Aω(Ω̄) represent the values of ω̂k (k = 1, 2, . . . , K).

4.3.3 Parameter Pairing

To localize near-field sources, we need to know the azimuths θk and ranges rk (k =

1, 2, . . . , K). θk could be obtained through ωk, but it needs to combine ϕk and ωk together

when estimating rk, which means that the pairing of the two parameters is necessary [9]. Since

the two parameters are both obtained via the reconstruction of the cumulant of signals, we can

make full use of the information of the fourth-order cumulant.

We have reconstructed the signal c1,4sj (j = 1, 2, . . . , K) as the transpose of the nonze-

ro rows of X̂1, x̂T1,i (i = 1, 2, . . . , K) in Section 4.3.1 and obtained ω̂k in Section 4.3.2. As

mentioned in Section 4.3.2, ω̂k can not be obtained correctly with x̂1,i, but the information in it

is enough for pairing. With the obtained ω̂k (k = 1, 2, . . . , K), we form the clustering center

M = [m1,m2, . . . ,mK ], where mk of dimension (2M + 1)× 1 is given by

mk = [ej(−2M+1)ω̂k , ej[2(−M+1)+1]ω̂k , · · · , ej(2M+1)ω̂k ]T . (4-37)

Let x0i be the normalization form of x̂1,i. If mj = x0i, ω̂j can be combined with ϕ̂i to estimate

the corresponding range. In practice, however, the estimation performance is not high enough,

because the reconstruction of c1,4sj is not perfect. It is better to add an additional principle of

pairing. According to the clustering technology, we say ϕ̂i is paired with ω̂j (i, j = 1, 2, . . . , K)

if the following principle is satisfied

∥x0i −mj∥2 ≤ ∥x0i −mp∥2, 1 ≤ j, p ≤ K (4-38)

With the pairing of ϕ̂i and ω̂j , we can estimate the DOAs and ranges, realizing the localization

of the near-field sources.

In our proposed method, we used the basic ℓ1 norm to represent the cumulant matrix instead

of the ℓ1-SVD. On the one hand, the length of the virtual signal is quite small. On the other hand,

the virtual signal provides the information for parameters paring, which is not available if the

ℓ1-SVD is applied.

The proposed method can be summarized as shown in Algorithm 4-1.

The CS technique is capable of handling coherent signals, which has been verified in the

experiments of [38]. The DOA estimation can be carried out for far-field coherent signals with-
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Algorithm 4-1: The proposed low-complexity MUSIC algorithm
Input: Y

Initialize: k = 1.

Output: the DOAs and ranges: θ1, . . . , θK and r1, . . . , rK

1) Calculate the cumulant matrix C with the equation

C1(m̄, n̄) = cum{y∗m(t), ym+1(t), y
∗
−n(t), yn(t)}.

2) Form the set Φ̄ as

Φ̄ = [ϕ̄1, ϕ̄2, . . . , ϕ̄N0 ].

3) Estimate ϕk by solving the optimization problem

X̂1 = argmin
X1

(1− β)∥Aϕ(Φ̄)X1 − C1∥2F + β∥x(ℓ2)1 ∥1.

4) Take C2 = CT
1 .

5) Form the set Ω̄ as

Ω̄ = [ω̄1, ω̄2, . . . , ω̄N0 ].

6) Estimate ωk by solving the optimization problem

X̂2 = argmin
X2

(1− β)∥Aω(Ω̄)X2 − C2∥2F + β∥x(ℓ2)2 ∥1.

7) Pair ϕi and ωj , where (i, j) are given by

(i, j) = argmin
i,j

∥x0i −mj∥2.

out any decorrelation algorithm. In the proposed method, in order to avoid the construction of

the huge 2D overcomplete basis, we use the fourth-order cumulant to separate the two param-

eters and estimate them one by one. However, the constructed cumulant matrix C1 is based on

the assumption that the signals are independent from each other. When the near-field signals

are coherent, one way to localize them is to directly apply the CS technique to the received sig-

nals, with an overcomplete basis formed by DOA and range. This would of course result in a

huge computational complexity. The problem to estimate separately the position parameters of

coherent near-field signals still remains an open discussion.
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4.4 Simulation
In this section, we show the results that verify the effectiveness of the proposed CS-based

method. We suppose that a ULA is made of 6 sensors with d = ν
4
. The azimuths are all between

[−π
2
, π
2
]. The source signals are ejωt , where the phases ωt are uniformly distributed in [0, 2π].
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Fig. 4-3 Spatial spectra of the proposed CS-based and MUSIC-based methods: 15dB

Experiment 1: The resolution ability of the proposed CS-based method is studied in this ex-

periment. Consider two sources close to each other. They are located at (10◦, 2ν) and (15◦, 2ν).

Here, we set SNR to 15 dB and 5 dB, and the spatial spectra of the proposed CS-based method

and MUSIC-based method are shown in Figs. 4-3 and 4-4. Only the spectra of DOA are shown

here, because the DOA can be directly obtained with ωk.

We can see from Fig. 4-3 that when SNR is 15 dB, both the two methods can resolve the

sources. However, the effectiveness of MUSIC-based method ceases rapidly as the SNR de-

creases. When the SNR is 5 dB, the proposed CS-based method can still resolve the two sources

correctly, while the compared MUSIC-based method can no longer distinguish the two peaks.
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Fig. 4-4 Spatial spectra of the proposed CS-based and MUSIC-based methods: 5dB

Experiment 2: Set SNR to 15 dB. Consider two sources located at [45◦, 2ν] and [60◦, 3ν],

and we can get [ϕ̂1, ϕ̂2] and [ω̂1, ω̂2] respectively with the methods described in Section 4.3.1 and

Section 4.3.2. The pairing result is shown below. ∥x01 −m1∥2 ∥x01 −m2∥2

∥x02 −m1∥2 ∥x02 −m2∥2


=

 0.1250 1.9138

1.8708 0.1114


It shows that the dissimilarity between x̂k and mk is very small. The reconstruction of

c1,4s is effective, and the estimation of parameter ϕk can achieve high accuracy. The result of

Experiment 2 shows that ϕ̂1 could be paired with ω̂1 , and ϕ̂2 with ω̂2.

Experiment 3: Let SNR vary from 0 dB to 30 dB. Here, we choose RMSE to compare the

performance of the proposed method with the methods that are discussed in Chapter 3 as well

as the CRB given in [58]. Consider two sources located at [−5◦, 0.6ν] and [10◦, 1.1ν] and 50

snapshots are taken into account. After obtaining the two parameters and finishing the pairing,
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we then compute the RMSE of them, and the following figures show the simulation result.
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Fig. 4-5 RMSE versus SNR for the first source: DOA

As shown from Fig. 4-5 to Fig. 4-8, the proposed CS-based method has better performance

than all MUSIC-based and ESPRIT-like methods for any SNR. And we can also observe that

the estimation becomes more accurate as the range gets smaller.

4.5 Conclusion
In this chapter, we firstly introduce some background of compressive sensing. The OMP

and ℓp (0 ≤ p ≤ 1) norm algorithms are illustrated in detail. Then we have compared the

advantage of these methods and selected ℓ1 norm to achieve the solution of the optimization

problem, which is efficient and easy to solve. Based on these factors, we propose a new method

based on CS for near-field source localization. The procedure of the proposed CS-based method

is similar to that of the higher-order subspace based algorithm in [9], but with different methods

for estimating and pairing the parameters. Firstly, in the proposed CS-based method, the two

parameters which are related to the DOAs and ranges are separated in the cumulant domain. And
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Fig. 4-6 RMSE versus SNR for the first source: range

0 5 10 15 20 25 30
10

−2

10
−1

10
0

10
1

10
2

R
M

S
E

(d
eg

re
e)

SNR(dB)

 

 

CS
LCM
AEM
ESPRIT−like
CRB

Fig. 4-7 RMSE versus SNR for the second source: DOA
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Fig. 4-8 RMSE versus SNR for the second source: range

then we construct two overcomplete bases to reconstruct the fourth-order cumulant matrices,

in order to estimate the two parameters separately. At last, the parameters are paired with a

clustering approach. The results of simulation show that the proposed CS-based method can

resolve closer sources and achieve better accuracy than the comparedMUSIC-based algorithms.
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Chapter 5

GPR Applications in Low-SNR Scenario

5.1 Introduction and Signal Model
Ground Penetrating Radar (GPR) is a non-destructive probing tool, which has a wide range

of application in the field of defense (landmine detection [107]) and civil engineering [108, 109].

It is used to measure different probed media parameters or to detect, localize and characterize

the buried objects (pipes, cables). It is also able to carry out rapid data collection.

For GPR, two kinds of sources can be found in the medium: active sources and passive

sources. The active sources, for example Radio Frequency Identification (RFID) tags which can

be glued on the buried objects, emit signals. The receivers can be passive and in this situation,

the source localization can be carried out. The active source system is shown in Fig. 5-1.

GPR receivers

Tag 1

Tag 2

Tag 3

Tag 4

Tag 5

Fig. 5-1 Active source system

If the received signals are mutually independent with each other, the methods proposed in

Chapters 3 and 4 as well as other traditional source localization methods can be directly applied.

But more generally, the buried objects or interface do not emit any signals directly: the

sources can be considered as passive. In this case, the GPR system is composed of both the

transmitter and the receiver antennas, which is shown in Fig. 5-2.
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GPR receivers

Tag 

GPR transmitter

Fig. 5-2 Passive source system

The received signals are the backscattered echoes from objects or interface. When there

are more than one tag, the echoes are coherent. Indeed, the echoes represent the same original

signal from different paths.

Here, we focus on horizontally stratified media (such as roadways, walls, etc.). The ver-

tical structure of the media can be deduced from GPR profiles by means of echo detection and

amplitude estimation. Echo detection provides the time delay estimation (TDE) associated with

each interface, whereas amplitude estimation is used to retrieve the wave speed within each layer

[108].

Assume that a GPR is positioned at nadir in far-field condition to probe the medium which

is considered as horizontal stratified medium with K1 − 1 layers. Like [110], we consider that

in frequency domain, the received signal can be written as a linear combination of cisoids mod-

ulated by the radar pulse. ForM discrete frequencies within bandwidth B, the received signal

y can be written in the following matrix form:

y = ΛrAs+ n, (5-1)

with the following notations:

• y = [y(f1), y(f2), . . . , y(fM)]T is the data vector representing either the Fourier trans-

form of the GPR signal or the measurements from a step frequency radar;

• Λr = diag(p(f1), p(f2), . . . , p(fM)) is a diagonal matrix whose diagonal elements are

the amplitudes of the Fourier tranform of the radar pulse;

• A = [a1, a2, . . . , aK1 , aK1+1, . . . , aK1+K2 ] is the mode matrix whose columns are de-

fined as follows;
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• ak = [e−j2πf1τk , e−j2πf2τk , . . . , e−j2πfM τk ]T is the steering vector with τk the time-delay

of the kth reflection echo: for 1 ≤ k ≤ K1, it refers to the primary reflection echo and for

K1 + 1 ≤ k ≤ K1 +K2, the multiple reflection echo;

• s = [s1, s2, . . . , sK1 , sK1+1, . . . , sK1+K2 ]
T is the vector composed of reflection echo

amplitudes sk, including K1 reflection echoes directly from the K1 − 1 layers and K2

multiple reflection echoes, and without loss of generality,K1, K2 and K = K1 +K2 are

assumed to be known;

• n = [n(f1), n(f2), . . . , n(fM)]T is the complex noise vector in which all the element

n(fm) are complexwhite Gaussian noisewith zeromean and variance σ2
n, and independent

from each other;

• fm = f1+(m−1)∆f , where f1 is the beginning of the bandwidth and∆f the frequency

difference between two adjacent frequency samples.

We propose to estimate the medium parameters with TDE, which is very similar to the

DOA estimation for far-field source localization as shown in Tab. 5-1.

Tab. 5-1 The comparison of different signal models

Application Far-field source localization TDE by GPR Near-field source localization

Estimated parameters DOA θ time-delay τ DOA θ, range r

Signal model y(t) = As(t) + n(t) y = ΛrAs+ n y(t) = As(t) + n(t)

M Number of sensors Number of frequencies Number of sensors

K Number of sources Number of echoes Number of sources

Tab. 5-1 shows the features and differences of source localization and the TDE by GPR.

We can observe that these three models are nearly the same. For TDE, it is usually performed

using conventional Fast Fourier Transform (FFT) based methods (inverse FFT, matched filter

or cross-correlation methods). When enhanced time resolution is required (for example, for

low thicknesses [48]), TDE is carried out by advanced signal processing methods such as sub-

space methods [48] or deconvolution methods [49–51]. The subspace-based methods (MUSIC,

ESPRIT, etc.) cannot directly handle the coherent signals and some decorrelation algorithms

are necessary [110]. Furthermore, to use the subspace methods, the radar pulse is assumed to

be known or measured as the backscattered signal from a metallic plane. Blind deconvolution

methods do not require the knowledge of the pulse [49–51], but the SNR should be sufficiently

high. Machine learning algorithms (e.g. neural networks, support vector regression) have also
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been introduced in the GPR community [111, 112] to estimate the medium parameters (TDE,

permittivity). But this family of methods requires an experimental training data step which may

be difficult to implement.

As we mentioned before, some new parameter estimation methods, based on CS, have

been proposed in recent years to estimate the DOA of incoming waves [38] and to carry out

the subsurface imaging with GPR [113]. The results show that these methods can achieve very

high accuracy, and more significantly, they can process the coherent signals and overlapping

echoes directly. However, all these methods suffer terrible degradation in low SNR scenarios,

especially when some of the signals are comparatively weak. Here, we focus on the roadway

survey with GPR in a low SNR environment. Anxing Zhao in [114] proposed to enhance the

received signal with the Karhunen-Loève Transform (KLT) [115]. Similar to [114], we propose

an enhanced-signal-based method, but with the noise variance being estimated by a clustering

technique which leads to an improved robustness. Moreover, we also perform the TDE of over-

lapped backscattered echoes through CS.

5.2 Subspace-based Methods with SSP for TDE

Fig. 5-3 Overlapping frequency sub-bands of the SSP technique

Traditional methods for parameter estimation such as ESPRIT are based on the fact that
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the received signals are independent from each other, or at least they are not totally coherent.

However, the received GPR signals are coherent and the rank of the covariance matrix is not

K (the number of the echoes). A decorrelation algorithm must be applied before the parameter

estimation methods, of which the Spatial Smoothing Preprocessing (SSP) is very widely used

[116]. SSP was firstly proposed by Evans [117, 118] and has gained an important development

in [119, 120]. Some improved SSP were also proposed in [110, 121]. For simplicity, we present

here the basic SSP. It divides the whole band into several sub-bands and decorrelates the received

signals by taking the average of sub-band output covariance matrices.

For convenient illustration of SSP, we ignore here the noise and the radar pulse matrixΛr.

Assume that the whole band of the received GPR signal y is divided intoG groups of sub-bands

and each sub-band contains L frequencies (shown in Fig. 5-3,M = G+L− 1). The gth group

can be written as

yg = [y(fg), y(fg+1), . . . , y(fg+L−1)]
T . (5-2)

The covariance matrix of the gth group is

Rag = E(ygy
H
g )

= ALΨ
g−1Rs(Ψ

g−1)HAH
L , (5-3)

where the kth column of AL andΨ can be expressed as follows:

aL = [e−j2πf1τk , e−j2πf2τk , . . . , e−j2πfLτk ]T , (5-4)

Ψ = diag[e−j2π∆fτ1 , e−j2π∆fτ2 , . . . , e−j2π∆fτK ]. (5-5)

The average of all the covariance matrices of the G groups is written as follows:

Rave =
1

G

G∑
g=1

Rag

= AL
1

G

G∑
g=1

[Ψg−1Rs(Ψ
g−1)H ]AH

L . (5-6)

After this preprocessing, the rank of the covariance matrix would be K and the traditional

subspace-based methods, such as MUSIC and ESPRIT, can be applied to estimate the time-

delay.

The effectiveness of decorrelation would be improved when the number of groups G is
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larger, which is beneficial to the estimation accuracy. However, the number of the effective

frequencies, which can be used for estimation, becomes smaller. This fact would on the contrary

degrade the estimation accuracy. Therefore, the value of G is a tradeoff for the time-delay

estimation.

5.3 Proposed Algorithm for Time-delay Estimation in Low SNR

5.3.1 Signal Enhancement

By using the compressive sensing methods [122], we can estimate the time-delay directly,

regardless of the coherence of the signal. However, the roadway is a stratified medium which

is composed of layers, of which the dielectric contrast between the layers is weak. Indeed, the

layers dielectric constant of roadway is about 4 − 8 [123]. Thus, the amplitude of the second

echo, the third echo and so on could be very weak, which means the noise can have a great

impact on the TDE. The proposal of the method of signal enhancement becomes an interesting

solution to this kind of applications, especially in the environment with a low SNR.

Here, we propose to use the subspace-based method of [115], which is based on KLT with

the clustering principle to enhance the noisy signal. [124] presented a detailed discussion about

signal enhancement. It aims to improve the performance of speech communication systems in

noisy environments and many scholars have developed this technique [125–129].

According to the signal model and assuming the noise to be independent of the echoes, the

covariance matrixR can be written as

R = E(yyH)

= ΛrARsAHΛH
r + σ2

nI, (5-7)

where E(·) denotes the ensemble average, Rs is the (K1 + K2) × (K1 + K2) dimensional

covariance matrix of vector s and I is the identity matrix.

By applying EVD toR defined in Equation 5-7, we can get

R = DΛD−1, (5-8)

with

D = [d1,d2, . . . , dM ], (5-9)
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and

Λ = diag(λ1, λ2, . . . , λM), (5-10)

where di is the ith eigenvector and λi the corresponding eigenvalue. In our application, the

sources (echoes) are coherent and therefore, the signal subspace only contains one eigenvector

corresponding to the largest eigen value. For convenience, the eigenvalues are sorted as follows:

λ1 = λmax, (5-11)

and

λ2 = λ3 = . . . = λM = σ2
n. (5-12)

However, in practical application, the relationship λ2 = λ3 = . . . = λM = σ2
n is not verified

due to the limited number of snapshots. In order to obtain improved robustness, we propose to

estimate the noise variance with the possibilistic clustering principle [130]. By applying this

principle, that with the largest possibility among {λ2, λ3, . . . , λM} is declared as the estimated

variance.

Set up P groups, i.e., G1,G2, . . . ,GP . The interval between adjacent groups is given by

d = (λ2 − λM)/P. (5-13)

Then, for i ∈ [2,M ], we define λi ∈ Gl if the following principle is satisfied.

l = argmin
k

|λi − [λM + (k − 1)d]|, k ∈ [1, P ]. (5-14)

Therefore, we can get

σ̂2
n = λM + (l̂ − 1)d, (5-15)

where

l̂ = argmax
l

∥Gl∥0, l ∈ [1, P ], (5-16)

Thus, the enhanced signal can be obtained by the KLT

yen = d1(λ1 − σ̂2
n)(λ1 + µσ̂2

n)
−1dH1 y. (5-17)

where µ ∈ [−1,+∞] is a regularization parameter.
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5.3.2 Compressive Sensing for TDE

In order to obtain the estimation of τk, the whole domain should be sampled [122]. Let us

form the set

Γ = [τ 0, τ 1, . . . , τN0 ], (5-18)

withN0 ≫ K, and assume that the values of all τk (k = 1, 2, . . . , K) are included in theN0+1

grids. Then the sparse form of yen is given by

yen = ΛrAτx+ n̂, (5-19)

where n̂ is the noise after the signal enhancement and Aτ of dimension M × (N0 + 1) is the

overcomplete basis

Aτ = [aτ0 , aτ1 , . . . , aτN0
], (5-20)

with

aτk = [e−j2πf1τk , e−j2πf2τk , . . . , e−j2πfN τk ]T , (5-21)

and

x = [x0, x1, . . . , xN0 ]
T , (5-22)

which is an (N0 + 1) × 1 dimension vector that is the sparse form of s with only K non-zero

elements. This means only when aτ i = ak, we can get

xi = sk. (5-23)

The most direct way to get the non-zero value of x is to achieve the minimum of its ℓ0 norm.

However, searching argmin ∥x∥0 for Equation 5-19 is an intractable optimization problem. In

the research of [131] and [132], the authors have shown that when the vector x is sparse enough,

the ℓ0 norm can be replaced by the ℓ1 norm. For the roadway survey, the echo number K is

very small compared withN0. Therefore, we can assume that the required condition is satisfied

here. Then, the estimation of τk (time-delay) and sk (amplitude) could be achieved by solving

the following optimization problem [38]

x̂ = argmin
x
(1− β)∥ΛrAτx− yen∥22 + β∥x∥1, (5-24)

where β ∈ [0, 1] is the regularisation parameter controlling the tradeoff between the quality of fit

|ΛrAτx− yen∥2 and the degree of sparsity, which is very important to the estimation accuracy.

87



Investigation on Near-field Source Localization and the Corresponding Applications

With the reconstruction of x, we can thus find out the positions of nonzero elements in x̂ and the

corresponding positions in Aτ , which represent the values of τ̂k.

5.4 Simulation and Experiment

5.4.1 Simulation

Fig. 5-4 Horizontal stratified medium

Tab. 5-2 Values of the permittivities and thicknesses

{ϵr,1, ϵr,2, ϵr,3, ϵr,4} (1, 3, 7, 9)

{H1, H2} mm (26, 62)

In this section, the behavior of the proposed method is analyzed. We assume a horizontal

stratified medium composed of three layers as shown in Fig. 5-4. The data represent the radar

backscattered signal at nadir from a pavement made up of three interfaces separating homoge-

neous media with parameters defined in Tab. 5-2. The media are assumed to be non-dispersive.

The GPR system has an air-coupled monostatic measurement configuration. The frequency

band is 0.5− 2.5 GHz [133], with 21 frequency samples and the covariance matrix is estimated

from 100 independent snapshots. With these simulation parameters, four echoes are present:

three primary echoes ([τ1,τ2, τ3] = [1, 1.3, 2.4] ns) and one multiple echo (τM1 = 1.6 ns) as

shown in Fig. 5-4. For the regularization parameters µ and β, some papers deal with the op-

timization of parameter β [38]. Here, different simulations have been carried out and the best
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result is obtained with µ = −0.9 and β = 0.1. According to the product of B∆τ , [τ1,τ2,τM1],

the first three echoes slightly overlap. The SNR is defined as the ratio between the power of the

first echo and the noise variance as follows:

SNR = 10 log10
s21
σ2
.

Firstly, Figs. 5-5 and 5-6 show the absolute amplitude of noiseless, noisy and enhanced backscat-

tered data above a metallic plate in frequency domain for SNR of 20 dB and 10 dB respectively.

When the SNR is high, compared with the noiseless signal, the enhanced signal is only a little

better than the noisy one (Fig. 5-5). But when the SNR gets lower (Fig. 5-6), the effect of the

signal enhancement becomes more and more significant.

Secondly, to verify the effectiveness of the signal enhancement, Fig. 5-7 and 5-8 show the

TDE obtained by CS with the noisy and enhanced signals respectively for SNR = 10 dB. Fig.

5-8 shows that the TDE can be still accurately achieved with the enhanced signal. Howerver, the

TDEwith the noisy signals is not correct as shown in Fig. 5-7. On the one hand some false peaks

appear and on the other hand the estimated values are biased (τ̂2,τ̂3,τ̂M1). In the situation where

the number of layers can be known, we can easily infer from the time delays and amplitudes that

the third echo of 1.6 ns is the multiple echo.
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Fig. 5-5 Noisy, enhanced and noiseless signal versus frequency, SNR=20 dB
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Fig. 5-6 Same as for Figure5-5 but with SNR=10 dB
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Fig. 5-7 TDE with CS for noisy signal, SNR=10 dB
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Fig. 5-8 TDE with CS for enhanced signal, SNR=10 dB

In order to analyze the computational burden of the proposed method, 100 simulations have

been run with number of grids for CS being 181. The average time for one single simulation

using the proposed method is 0.1793 s, and that using CS with noisy signal directly is 0.1732

s, which means that signal enhancement can greatly improve the performance with only a very

small additional computational burden.

In order to analyze the behavior of the proposed method with noise, let SNR vary from−10

to 20 dB. The Relative RootMean Square Error (RRMSE) is chosen to compare the performance

of the proposed method, ESPRIT algorithm with SSP and the Cramer-Rao bound (CRB). For

ESPRIT algorithm, 100 independent snapshots are used to perform the covariance matrix and

the sub-band number is equal to 13. The RRMSE is defined as

RRMSE =


√√√√1

I

I∑
i=1

(α̂i − αtrue)2

 /αtrue, (5-25)

where αtrue is the true value of the parameter, α̂i is the estimated value in the ith simulation and

I is the number of Monte Carlo trials. Here, I is set to 200. The RRMSEs of the four echoes

are shown in Figs. 5-9 to Figs. 5-12. These figures show that the CS-based method with the

enhanced signal has a better performance and is closer to the CRB for any SNR, than the CS-
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based method with noisy signal and ESPRIT method with SSP. We can also see that the echo

with a bigger amplitude has a better accuracy.
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Fig. 5-9 RRMSEs of TDE versus SNR, first primary echo
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Fig. 5-10 RRMSEs of TDE versus SNR, second primary echo
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Fig. 5-11 RRMSEs of TDE versus SNR, first multiple echo, third echo

−10 −5 0 5 10 15 20
10

−2

10
−1

10
0

10
1

10
2

SNR (dB)

R
R

M
S

E
 (

%
)

 

 

Enhanced signal
Noisy signal
ESPRIT
CRB

Fig. 5-12 RRMSEs of TDE versus SNR, third primary echo, fourth echo
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5.4.2 Experiment

We have also tested the performance of the proposed algorithm on a smooth PVC slab,

whose relative permittivty is

εr = 2.97 + 0.015j,

and whose thickness is 4 cm. The setup is shown in Figs. 5-13. In this case, there would be

only two echoes. A GPR with a monostatic device is used. The height of the antenna is about 70

cm. To test the proposed method, only the frequency band of 1−1.8 GHz is used. We therefore

have a B∆τ ≈ 0.386, which means that the two echoes overlap. The GPR pulse was measured

with a metal plane as in [109].

PVC, thickness = 4cm, ε= 2.97+0.015j

70

cm

60cm

Fig. 5-13 Experiment instruments

Fig. 5-14 presents the result of the TDE using the proposed method. The dotted lines

represent the true value of the time-delays. Although the two echoes overlap, the proposed

method can perfectly find the two echoes and estimate the two time delays with an relative error

about 0.43%.
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Fig. 5-14 TDE using the proposed method with real data, frequency band B=[1-1.8] GHz and (β, µ)=(0.14,

-0.9)

5.5 Conclusion
In this chapter, we have introduced the TDE with GPR to estimate the medium parameter,

whose signal model is very similar to that of source localization. We have proposed a new

method based on CS and signal enhancement. Unlike traditional subspace-based methods, CS

can be applied to correlated echoes. More significantly, the proposed method can carry out the

TDE effectively even when the SNR is low. The simulation and the experiment results show

that the proposed method has a much lower RRMSE than the traditional methods.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion
Source localization with a sensor array is a very important research topic in array signal

processing. It is widely applied in radar, geologic prospecting, sonar, electronic surveillance,

medical electronics, and other fields. According to the distance between the source and the

array, the source localization problem can be modeled in two ways. When its range is beyond

the Fresnel region, a source is considered to be far-field. The problem must be modeled as near-

field when a source lies within the Fresnel region. Our research is mainly based on the more

complicated near-field situation and the corresponding applications.

Our research concentrates on three aspects. The first one is to improve the existingmethods,

either for a lower computational complexity or for a higher resolution and accuracy. The second

one is to apply the CS technique to near-field source localization. The last one is to carry out

TDE without decorrelation algorithms in a noisy environment. Specially, we have made the

following contributions.

• For improving the existing MUSIC-based methods, we mainly study about how to re-

duce the computational complexity or to improve the resolution and accuracy. Therefore,

we have three proposals.

– The first proposal is to simplify the high-order modified 2DMUSIC for near-field

source localization. MUSIC algorithm has been proved to be able to be applied to a

non-Hermitian matrix. Besides, the non-Hermitian matrix also provides the feasibil-

ity to estimate the DOA and range separately with different parts of the eigenvector

matrix. The DOA estimation is achieved with the eigenvectors associated with the

zero eigenvalues. By orthogonalizing the remaining eigenvectors associated with

the non-zero eigenvalues, we are able to estimate the range. The effectiveness of the
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proposed method has been proved by the simulation results. This Low-Complexity

MUSIC (LCM) allows to achieve the same accuracy as other high-order MUSIC

methods, but with a lower computational complexity and higher processing speed.

– The second proposal is to make a further improvement to LCM. Based on the

fact that the high-order cumulant is free from the Gaussian noise, we show that the

columns or rows of the cumulant matrix are the linear combinations of the columns

or rows of different steering matrices. The columns and rows can be used to build

two propagators. The propagators can be directly used to construct two subspaces,

which are orthogonal with the two steering matrices. Then the DOA and range es-

timation can be achieved. This propagator-based method reduces the computational

complexity of LCM by avoiding the application of the EVD. However, the accuracy

is a little lower than that of LCM because of the estimation noise.

– The third proposal is to expand the array aperture virtually, which is a very im-

portant factor for the resolution and accuracy. By doing a deeper research on the

high-order cumulant, we have taken full advantage of its high degrees of freedom.

Two parameters of the fourth-order cumulant are to ensure the prior DOA estimation

independent from the range. We then use the other two to make an extreme aperture

expansion for range estimation. Although the computational complexity would be

much higher, the aperture expansion allows to improve the accuracy for the range

estimation.

• The successful application of the CS technique to near-field source localization is an-

other main contribution. Inspired by the modified 2D MUSIC, we have managed to es-

timate the parameters separately, avoiding the construction of the high-complexity 2D

overcomplete dictionary. But unlike the modified 2D MUSIC, which carries out several

1D MUSIC, we only need to reconstruct signals twice by introducing a pairing method

based on the clustering theory.

• At last, we have applied the CS technique to estimate the time-delays of echoes with

the GPR. Unlike traditional signal processing methods, which require the decorrelation

algorithm to deal with the coherence among the echoes, the CS technique can directly carry

out the TDE. Furthermore, we have proposed to apply the signal enhancement, which was

97



Investigation on Near-field Source Localization and the Corresponding Applications

originally used in the communication system. The signal enhancement allows that the

TDE can still be accurate enough even when the SNR is low.

6.2 Future work
Due to the time limitation, there are still some incomplete parts of the research. In the

future, the corresponding research activities will be continued and they concentrate on the fol-

lowing directions:

• For LCM, the spectral search still exists. The root-MUSIC method is a well-known

search-free algorithm that can achieve a very high estimation accuracy. However, it re-

quires that the phase shifts linearly along the elements of the steering vector [87], which

is not valid for near-field source situation. In order to achieve a more impressive compu-

tational complexity reduction, the spectral search should be avoided, and the root-MUSIC

is undoubtedly a good choice. The challenge is to apply the root-MUSIC to the near-field

source localization.

• The researches for near-field source localization in the dissertation are carried out only

for narrow-band signals. In practice, there are many situations where the signals are wide-

band. The signal model would be different and themethods, which are suitable for narrow-

band situation, should be modified. For some extreme situations, the methods may be

ineffective. The signal model for wide-band signals will be studied and compared with

that for narrow-band signals. Adapting the proposed methods for wide-band signal is a

practicable subject.

• The researches for near-field source localization in the dissertation are based on the

assumption that the signals are independent from each other. For far-field source local-

ization, there have been already some studies about how to deal with coherent signals.

The most famous method to decorrelate the signal is Spatial Smoothing Preprocessing

(SSP). However, as far as we know, there are very few achievement for near-field source

localization for totally coherent signals.

• The proposed source localization methods are verified only by computer simulations.

The platform building is also a main target, in order to provide a practical test with the

proposed methods. It is an important step to verify the practicabilities of the proposed
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methods.

• The GPR application in the dissertation is only to estimate the thickness of each layer

according to the time-delay estimation. In fact, the TDE is far from enough to provide

intuitive results for dispersive media. Thus, multi-parameters (time-delay and permittiv-

ities) methods are necessary. CS-based methods with a lower computational complexity

is also another research perspective. Furthermore, the imaging technique with GPR is an

interesting topic in the detection scheme, which can directly show the situation inside the

roads, the buildings or other structures. This topic has attracted a lot of attention. How to

provide high quality images would be one of the future plans.
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Investigation sur la localisation de sources en champ proche et sur des
applications équivalentes

Investigation on Near-field Source Localization and the Corresponding
Applications

Résumé
Mes travaux de recherche se sont focalisés sur le

traitement d’antenne multi-capteurs et plus particuliè-
rement sur la localisation de sources en champ proche.
La localisation de sources a pour objectif d’estimer
les paramètres de position des sources. Quand les
sources sont proches du réseau de capteurs (situa-
tion de champ proche), le front d’onde du signal est
sphérique et deux paramètres sont alors nécessaires
pour localiser les sources : la direction d’arrivée et la
distance entre la source et le réseau de capteurs.

Tout d’abord, trois nouvelles méthodes à sous-
espace basées sur les statistiques d’ordre supérieur
ont été proposées. La première proposition est basée
sur une matrice cumulant (du quatrième ordre) non-
Hermitienne. Cette méthode permet d’estimer séparé-
ment les DDA et les distances avec une seule matrice
spécifique et une seule décomposition en éléments
propres. Ensuite, nous introduisons dans cette méth-
ode, le principe des méthodes à sous-espace linéaires.
Enfin, nous avons proposé d’agrandir virtuellement
l’ouverture du réseau de capteurs afin d’améliorer la
résolution et la précision dans l’estimation de la dis-
tance.

Dans un second temps, une nouvelle méthode CS
basée sur les statistiques d’ordre supérieur a été pro-
posée. Les simulations ont montré que la méthode pro-
posée possédait une meilleure résolution et une plus
grande précision que les méthodes traditionnelles.

Enfin, une méthode CS associée à une nouvelle
méthode de réduction de bruit a été proposée pour
mesurer les épaisseurs d’un milieu stratifié. Plusieurs
simulations et une expérimentation ont montré l’effica-
cité de notre proposition.

Abstract
Source localization is a key technology in array sig-

nal processing, which is widely applied in radar, geo-
logic prospecting, sonar, electronic surveillance, medi-
cal electronics and other fields. Source localization can
be classified into far-field source localization and near-
field source localization according to the distance be-
tween the sources and the array. Unlike the far-field
situation, where each source is parameterized by only
the DOA, the near-field signal wavefront is spherical,
and both the DOAs and ranges are required to localize
near-field sources.

First, this dissertation concentrates on the im-
provements of the MUSIC-based method for near-field
source localization. By making full use of the EVD, we
make the proposal to estimate the DOAs and ranges in
a decoupled way with only one matrix and one EVD.
Then we propose a further improvement based on
propagator methods. It allows to avoid the EVD and
therefore leads to an even lower computational comple-
xity. The third improvement is to increase the number of
effective virtual sensors for the range estimation, which
expands the aperture and achieves a notable improve-
ment for the range estimation accuracy.

In order to apply CS to near-field source localiza-
tion, we propose a high-order CS method with a pairing
step based on clustering. The proposed method can
achieve better accuracy and resolution than traditional
methods.

This work ends with the application of GPR. An en-
hanced CS method is proposed to carry out the TDE
directly in low SNR scenario.

Mots clés
Localisation de sources, champ proche,
statistiques d’ordre supérieur, MUSIC,
optimisation parcimonieuse, radar géophysique.

Key Words
Source localization, near-field, high-order
cumulant, MUSIC, compressive sensing, ground
penetrating radar.
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