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Adaptation and evaluation of generic model
matching strategies

Kelly Johany Garcés-Pernett

Université de Nantes
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I owe my deepest gratitude to Mr. Jérôme Euzenat, Research director at INRIA Grenoble
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Chapter 1

Introduction

Model-Driven Engineering (MDE) has become an important field of software engineering.
For MDE, the first-class concept is model. A model represents a view of a system and is
defined in the language of its metamodel. Metamodels, in turn, conforms to a metameta-
model which is defined in terms of itself. A running program, an XML document, a
database, etc., are representations of systems found in computer science, that is, they are
models.

In addition to model-based organization, MDE introduces the notion of model trans-
formation. That is, a set of executable mappings that indicate how to derive an output
model from an input model. Mappings are written in terms of concepts from the corre-
sponding input and output metamodels. Model transformations enable (semi)automatic
generation of code from models.

MDE has acquired the attention of industry. For instance, the AUTOSAR standard,
developed by the automobile manufacturers and containing around 5000 concepts, defines
a metamodel to specify automotive software architectures [1].

In response to the scalability challenge (the need for large (meta)models and large
model transformations in consequence), academy and industry have invested into tool
support. Therefore, a certain level of maturity has been achieved it for (meta)modeling
and model transformation development. A next stage is to automate these tasks, above
all, the latter. Several approaches have investigated that [2][3][4][5][6]. All of them found
a source of inspiration on the matching operation which has been throughly studied in
databases systems and ontology development.

Instead of manually finding mappings (which is labor intensive and error-prone as
metamodels are large), a matching strategy (also referred to matching algorithm) au-
tomatically discovers an initial version of them. The matching strategy involves a set
of heuristics, each heuristic judges a particular metamodel aspect, for example, concept
names or metamodel structure. The user can manually refine initial mappings, finally, a
program derives a model transformation from them.

Didonet del Fabro’s thesis represents mappings in the form of weaving models [2].
A weaving model contains relationships between (meta)model elements. Furthermore,
a matching strategy is implemented as a chain of ATL matching transformations. ATL
(AtlanMod Transformation Language) is a general purpose model transformation language
[7]. Each matching transformation corresponds to a concrete heuristic. A chain can be
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2 1. Introduction

tuned by selecting appropriate matching transformations and additional parameters. The
AMW (AtlanMod Model Weaver) tool enables the user to refine discovered mappings. At
last, HOTs (Higher-Order Transformations) derive model transformations from weaving
models [8][9].

The results reported by Didonet del Fabro’s thesis and the recently gained importance
of matching in MDE are the motivations of this thesis and its starting point. Our approach
differs from previous work because it focus not only on metamodel matching strategies but
also on model matching strategies, both of them very useful on MDE. We refer to these
kinds of strategies as M2-to-M2 and M1-to-M1, respectively. The former kind of strategy
discovers mappings between pairs of metamodels. A main application of M2-to-M2 is
model transformation generation. The latter kind of algorithm, in turn, determinates
mappings between pairs of models. These mappings are useful in many ways. For example,
they can be taken as input by M2-to-M2 matching algorithms to improve their accuracy
or they can leverage other important MDE operations, e.g., model synchronization.

To support M2-to-M2 and M1-to-M1 matching algorithm development, it is neces-
sary to tackle issues not addressed in Didonet del Fabro’s thesis. The thesis highlights
the importance of adapting matching algorithms since no algorithm perfectly matches
all pairs of models. Early experimentations demonstrate the feasibility of using transfor-
mation chains for such an adaptation. These experimentations nonetheless reveal issues
concerning reusability of matching heuristics and evaluation of customized algorithms.

Firstly, we elaborate on the reusability issue. The ATL matching transformations
contributed by [2] match only metamodels conforming to the Ecore metametamodel [10].
Even though some transformations compare very standard features (e.g., names), they
may be more or less applicable to metamodels conforming to other metametamodels (e.g.,
MOF by OMG [11])1. In contrast, their applicability substantially decreases when one
wants to match models. We call this issue coupling of matching heuristics to metamodel.

Related to the issue of evaluation, it is an essential need in matching. Evaluation
basically compares computed mappings to a gold standard [12]. To evaluate algorithms,
one requires test cases: pairs of meta(models) and gold standards. In MDE, each approach
defines its own test cases and methodology, therefore, it is difficult to establish a consensus
about its real strengths and weaknesses. We refer to these issues as lack of a common set
of test cases and low evaluation efficiency.

This thesis addresses the two issues mentioned above by means of the following con-
tributions.

1.1 Contributions

Below we briefly highlight the four contributions of the thesis and the foundations on
which such contributions are based.

A survey of model matching approaches We provide a broad survey of the recently
emerged MDE matching systems. This contribution complements other surveys mostly
done by the ontology/database community [13][14].

1It is possible by executing a prior step that translates metamodels into the Ecore format.
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Matching heuristics independent of technical space and abstraction level We
propose matching transformations that can be reused in M2-to-M2 or M1-to-M1 matching
algorithms. To achieve reusability, we rely on two notions: technical spaces and Domain
Specific Languages (DSLs).

According to Kurtev et al. [15] a technical space is a broad notion denoting a technol-
ogy, for example, MDE, EBNF [16], RDF/OWL[17][18]. Each technical space has its own
metametamodel. The reuse of M2-to-M2 matching algorithms independently of techni-
cal spaces is possible by using projectors and DSLs. A projector translates metamodels,
built in a concrete technical space, into a format that our matching transformations can
process. We use the projectors available on the AmmA platform [19][15].

DSLs have gained importance due to their benefits in expressiveness, testing, etc.,
over General Purpose Languages (GPLs), e.g., Java [20]. We have designed a new DSL
called the AtlanMod Matching Language (AML). AML notations hide types, therefore, it
is possible to reuse matching transformations in diverse technical spaces and abstraction
levels (i.e., metamodels and/or models). In addition, we have implemented a compiler
that translates AML matching transformations into executable ATL code. AML trans-
formations are substantially less verbose than their corresponding ATL versions.

AML aims at facilitating matching transformation development and algorithm configu-
ration. Like existing approaches, AML enables a coarse-grained customization of matching
algorithms, i.e., how to combine heuristics. Moreover, AML moves a step forward with
respect to previous work: the language allows a fine-grained customization, i.e., AML pro-
vides constructs simplifying matching transformations themselves. Thus, users may get
a quick intuition about what a matching transformation does, its interaction with other
transformations, and its parameters. We have developed AML on top of the AmmA plat-
form. Furthermore, we have contributed a library of linguistic/structure/instance-based
matching transformations along with strategies. These matching transformations have
been mostly inspired by the ontology community. The reason for that is to investigate
the efficiency that heuristics, used in other technical spaces, have in MDE.

To demonstrate that our work goes beyond the MDE technical spaces (e.g., Ecore,
MOF), we have applied our matching strategies to pairs of OWL ontologies. Like meta-
models, ontologies are data representation formalisms. A difference between metamodels
and ontologies is the application domain. Over the last decade, whereas the software
engineering community has promoted metamodels, the Web, and AI communities have
launched ontologies. An ontology is a body of knowledge describing some particular do-
main using a representation vocabulary [21]. For instance, ontologies have been used
to represent Web resources and to make them more understandable by machines. We
have preferred ontologies over other formalisms (e.g., database schemas) for two reasons.
Firstly, ontologies can be translated into metamodels. A second and most important ra-
tionale is that the ontology community has a mature evaluation initiative called OAEI
[22] which systematically evaluates ontology matching systems and publishes their results
on the Web. The availability of these results facilitates the comparison of our approach
to other systems.

Modeling artifacts to automate matching algorithm evaluation We obtain test
cases from modeling repositories which are growing at a constant rate. There, we find
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models and metamodels, and we derive gold standards from transformations. By using a
megamodel, our approach executes matching algorithms over test cases in an automatic
way. Bezivin et al. [23] propose the megamodel term to refer to kind-of map where all
MDE artifacts and their relationships are represented.

Our contribution is to automatically build a megamodel representing the transforma-
tions stored in a given repository, each transformation corresponding to a matching test
case. Both, the built megamodel and an additional script, guide the evaluation execution
by indicating test cases, matching algorithms, and graphics. With respect to graphics,
we have implemented transformations that render matching results in HTML and spread-
sheet format. The automation offered by our approach may reduce the time spent during
evaluations and increase the confidence on results.

As for the previous contribution, we show how to extend our evaluation approach
beyond the MDE technical spaces. For example, we depict how the OAEI may be improved
by using our modeling test cases, megamodels, and metric visualization means. There
exist ways to close the gap between ontologies and modeling technologies. AML, for
example, uses an AmmA-based projector named EMFTriple [24] to transform metamodels
into ontologies. Moreover, we have developed transformations that translate our gold
standards to a format well-known by the OAEI.

Three use cases based on matching Three use cases show how M2-to-M2 and M1-to-
M1 matching algorithms complement other techniques in order to deal with MDE needs.
In addition, the use cases underscore the reuse of matching heuristics independently of
the abstraction level.

The first use case is about co-evolution, an interesting research topic in MDE. Just
as any software artifact, metamodels are likely to evolve. Co-evolution is about adapting
models to its evolving metamodel. Many approaches dealing with co-evolution have re-
cently appeared. Most of them relying on traces of metamodel changes to derive adapting
transformations. In contrast, we propose an M2-to-M2 matching algorithm that discovers
the changes first, and then a HOT derives adapting transformations from them.

The second use case is called pivot metamodel evaluation. The goal is to evaluate
whether a pivot metamodel has been correctly chosen. The interest of pivot metamodels
is to reduce the effort of model transformation development. This use case combines
M2-to-M2 matching algorithms and our matching evaluation approach.

Finally, the third use case is named model synchronization. Its purpose is to bring
models in agreement with code. To this end, the use case employs, among other tech-
niques, M1-to-M1 matching algorithms.

1.2 Outline

Below we list the thesis chapters. They contain a number of shortened forms whose
meaning is in the list of abbreviations.

• Chapter 2 introduces the thesis context, i.e., MDE and DSLs as promoted by the
software engineering community. It outlines criteria concerning the matching oper-
ation.
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• Chapter 3 presents how several approaches tackle the matching operation. More-
over, the chapter compares the approaches with respect to the criteria defined in
Chapter 2. At last, based on this comparison, the chapter describes in detail the
issues tackled by the thesis.

• Chapter 4 depicts the phases we have followed to deliver the AML language: anal-
ysis, design, and implementation. The analysis phase covers the base concepts of
matching. The design part shows how language notations overlap base concepts
and implementation units. Finally, we summarize how AML has been implemented
according to modeling techniques.

• Chapter 5 gives our approach for automatizing matching algorithms evaluation. The
chapter provides a comparison of AML to other ontology/MDE matching systems.
AML has been applied to modeling and ontology test cases.

• Chapter 6 reports how AML algorithms have been incorporated in MDE solutions
to solve problems such as co-evolution, pivot metamodel evaluation, and model
synchronization.

• Chapter 7 revisits the thesis contributions in detail, positions our approach with
respect to the criteria established in Chapter 3, and draws future work.

1.3 Publications associated to the thesis

Chapter 4 and Chapter 5 are adapted versions of the following papers and poster:

1. A Domain Specific Language for Expressing Model Matching. In Actes des Journées
sur l’IDM, 2009 [25].

2. Automatizing the Evaluation of Model Matching Systems. In Workshop on match-
ing and meaning, part of the AISB convention, 2010 [26].

3. AML: A Domain Specific Language to Manage Software Evolution. FLFS Poster.
Journées de l’ANR, 2010.

The results of the co-evolution use case of Chapter 6 have been published in:

1. Adaptation of Models to Evolving Metamodels. Research Report, INRIA, 2008 [27].

2. Managing Model Adaptation by Precise Detection of Metamodel Changes. In Proc.
of ECMDA, 2009 [28].

3. A Comparison of Model Migration Tools. In Proc. of Models, 2010 [29].



Chapter 2

Context

2.1 Model-Driven Engineering

According to [30], MDE can be seen as a generalization of object oriented technology.
The main concepts of object technology are classes and instances and the two associated
relations instanceOf and inheritsFrom. An object is an instance of a class and a class
could inherit from another class. For MDE, the first-class concept is model. A model
represents a view of a system and is defined in the language of its metamodel. In other
words, a model contains elements conforming to concepts and relationships expressed in
its metamodel. The two basic relations are representedBy and conformsTo. A model
represents a system and conforms to a metamodel. Metamodels, in turn, conforms to a
metametamodel which is defined in terms of itself.

Concepts and elements can correspond to classes and instances, respectively. In a first
glance that suggests only similarities between MDE and object technology but not varia-
tions. Looking deep into the definitions nonetheless reveals how MDE complements object
technology. For instance, models enable representation of class-based implementations as
well as other aspects of the systems.

In MDE, models are more than means of communication, they are precise enough
to generate code from. The basic operation applied on models is model transformation.
There exist many implementations of MDE such as MDA by OMG, Model Integrated
Computing (MIC), Software Factories [31], etc. The subsequent sections describe MDA,
the central MDE concepts in detail, and a model management platform.

2.1.1 Model-Driven Architecture

The word models used to be associated to UML models [32]. UML provides diagrams to
represent not only a structural view of software (i.e., class diagrams) but also its behavior
and interaction. UML is part of the Model-Driven Architecture (MDA) initiative made
public by OMG. The goal of MDA is to solve the problems of portability, productivity,
and interoperability happening in software industry. To achieve that, MDA proposes
separation of software in business and platform models and composition of models by
means of model transformations. Besides UML, MDA introduces other technologies such
as MOF, XMI, OCL, etc. MOF [11] is a metametamodel indicating concepts as Classes

6



2.1. Model-Driven Engineering 7

and relationships as Associations and Attributes. XMI [33], in turn, serializes models
in XML format. At last, OCL [34] allows the definition of queries and constraints over
models.

MDA proposes the separation of software into Platform Independent Models (PIMs)
and Platform Specific Models (PSMs). A PIM considers only features of the problem
domain. A PSM, in turn, takes into account implementation issues for the platform
where the system will run [35]. A PIM is transformed into one or more PSMs. At last,
PSMs are transformed into code. MDA proposes the following technologies:

• UML which has been introduced in Chapter 1.

• MOF is a meta-language used to define, among other languages, UML [11].

• XMI for serialization of MOF models in XML format [33].

• OCL to define model constraints [34].

2.1.2 Models, metamodels, metametamodels, and technical spaces

Favre [36] suggests MDA as a concrete incarnation of MDE implemented in the set of spec-
ification defined by OMG. Moreover, Kent [37] identifies various dimensions not covered
by MDA, e.g., a software system involves not only an architecture but also a development
process. Thus, MDE is much more than UML and MDA. MDE is a response to the lacks
of MDA, below we present the concepts which MDE relies on. We will use these concepts
in the remaining chapters.

A model represents a system by using a given notation and captures some character-
istics of interest of that system. [38] gives the following formal definition of model:

Definition 1. A directed multigraph G = (NG, EG,ΓG) consists of a set of nodes NG, a
set of edges EG, and a function ΓG : EG → NGxNG.

Definition 2. A model M is a triple (G,ω, µ) where:

• G = (NG, EG,ΓG) is a directed multigraph.

• ω is itself a model (called the reference model of M) associated to a multigraph
Gω = (Nω, Eω,Γω).

• µ : NG ∪ EG → Nω is a function associating elements (i.e., nodes and edges) of G
to nodes Gω (metaelements or types of the elements).

The relation between a model and its reference model is called conformance. We de-
noted it as conformsTo, or simply (c2) (see Fig. 2.1). Def. 2 allows an infinite number of
upper modeling levels. For practical purposes, MDE has suggested a three-level architec-
ture shown in Fig. 2.2. The M3 level covers a metametamodel. The M2 level, in turn,
includes metamodels. The M1 level embraces models (or terminal models). The system
corresponds to the M0 level. The M0 is not part of the modeling world. Models at every
level conform to a model belonging to the upper level. The metametamodel conforms to
itself.



8 2. Context

Model

ReferenceModel
1

*

conformsTo 

(c2)
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Figure 2.2: An architecture of three levels of abstraction



2.1. Model-Driven Engineering 9

A technical space (denoted as TS) is a model management framework accompanied
by a set of tools that operate on the models definable within the framework [15]. Each
technical space has within a metametamodel. Below we list the metametamodels of diverse
technical spaces. The list is not exhaustive, the selection of items is driven by their
popularity and contributions to IT disciplines. In general, the technical spaces we list
(except SQL-DDL) are based on two formats: XML and/or RDF [17]. One of XML
strengths is its ability to describe strict hierarchies. RDF, in turn, is a standard for
data exchange on the Web. RDF uses URIs to name the relationship between data
sources as well as the two ends of the link (this is usually referred to as a triple). RDF
statements (or triples) can be encoded in a number of different formats, whether XML
based (e.g., RDF/XML) or not (Turtle, N-triples). The usage of URIs makes it very
easy to seamlessly merge triple sets. Thus, RDF is ideal for the integration of possibly
heterogeneous information on the Web.

• SQL-DDL is used to define schemas for relational databases. Relational schemas
contain a set of tables. Tables have a set of columns. The different kinds of rela-
tionships between different tables are defined using foreign keys. SQL-DDL schemas
have a text-based format.

• XSD is used to describe the structure of XML documents1. XSD schemas are based
on XML.

• OWL is a language to define ontologies. OWL is based on RDF and XML. OWL
adds extra vocabulary to RDF, this allows the description of more complex classes
and properties, transitivity properties, or restrictions over properties and classes.
An ontology differs from an XML Schema in that it is a knowledge representation.
On top of it one can plug agents to reason and infer new knowledge [18].

• MOF as mentioned above this is an adopted OMG specification. MOF provides
a metadata management framework, and a set of metadata services to enable the
development and interoperability of model and metadata driven systems [11]. A
number of technologies standardized by OMG, including UML and XMI, use MOF.

• Ecore adapts MOF to the EMF. Ecore allows the specification of metamodels.
MOF and Ecore have equivalent concepts and relationships (EClasses similar to
Classes), a difference is that Ecore incorporates Java notions (e.g., EAnnotation).
One of the main advantages of Ecore is its simplicity and the large number of tools
developed on top of it.

• KM3 is a language for representing metamodels [38]. The KM3 definition corre-
sponds to the metametamodel. The main advantage of KM3 over other languages is
its simplicity, i.e., lightweight textual metamodel definition. Metamodels expressed
in KM3 may be easily converted to/from other notations like Ecore or MOF.

Fig. 2.3 illustrates the concepts mentioned above. It shows the corresponding multi-
graphs of a metametamodel, a metamodel, and a model. Each of them has nodes and

1http://www.w3.org/XML/Schema
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Class
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b1

b2

Reference M3

M2

M1

Legend: c2
Node Edge

Figure 2.3: Example of the KM3 three-level modeling architecture

edges. The metametamodel is KM3, this example illustrates two of its central concepts,
i.e., Class and Reference. The µ function indicates that:

• The metaelement of Bug and Depend is Class. The references between Bug and
Depend have Reference like metaelement.

• The metaelement of b1 and b2 is Bug, b1 and b2 have a dependency whose metaele-
ment is Depend.

• Finally, coming back to the M3 level, note that KM3 is defined in terms of itself.
For example, the metaelement of Class and Reference is Class.

2.1.3 Model transformations

Model transformations bridge the gap between the models representing a system. A
model transformation takes a set of models as input, visits the elements of these models
and produces a set of models as output.

Fig. 2.4 illustrates the base schema of a model transformation. Let us consider a
transformation from the input model MA into the output model MB. MA conforms to
metamodel MMA (as indicated by the c2 arrows). MB conforms to metamodel MMB.

Following the main principle of MDE, ”everything is a model”, one can consider a
transformation such as model too. Thus, the model transformation MT conforms to
the transformation metamodel MMT. MMT defines general-purpose and fixed operations
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Metametamodel
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Figure 2.4: Base schema of a model transformation

which allow model manipulation. The model transformation essentially defines executable
mappings between the concepts of MMA and MMB. All metamodels conform to the same
metametamodel. Fig. 2.4 does not consider multiple input or output models, however,
this schema can be extended to support multiple input and/or output models.

Vara describes different approaches to implement model transformations [39] (pag.
88). Below we summarize the approaches somehow related to the thesis:

• Direct model manipulation. Model transformations are developed by using
GPLs (e.g., a Java API [40]). It is a very low-level approach for model transformation
coding; expressions for navigation and creation of models are too complex.

• XML-based. Since models have a XMI format, XSLT (XML extensible Style-
sheets Language Transformations) can be used to specify model transformations.
XML-based approaches move a step forward with respect to direct manipulation
approaches; one can navigate models by direct referencing of metamodel concepts.
XSLT programs nonetheless remain complex and verbose.

• Graph-based. These approaches see models like pure graphs. A graph-based
transformation takes as input an empty graph, and its rules build the output graph
in a stepwise manner. The rules execution order can be explicitly specified (e.g., by
means of a dataflow).

• Declarative. Provide high-level constructs to manipulate models. Graph-based
and declarative approaches substantially improve user experience about model trans-
formation development. The former often provides graphical interfaces to specify
transformations, the latter mostly provides textual notations.
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The Query/Views/Tranformations (QVT) Request for Proposal (RFP) [41], issued
by OMG, sought a standard model transformation framework compatible with the MDA
suite. The RFP pointed the need for three sublanguages:

• Core allows the specification of transformations as a set of mappings between meta-
model concepts.

• Relations is as declarative as Core. A difference is that the Relations language has
a graphical syntax.

• Operational Mappings extends Core and Relations with imperative constructs and
OCL constructs.

Several formal replies were given to the RFP. Some of them are graph-based approaches
(e.g., VIATRA [42], AGG [43]), others are declarative (e.g., ATL [7], Kermeta [44]). The
OMG has adopted its own model transformation framework, i.e., a declarative language
called QVT MOF 2.0 [45]. The use of most of implementations (included QVT MOF 2.0)
is limited because of their youth [46]. Thus, for practical reasons a user might want to
use languages with better tool support, for example ATL [47].

Typically an MDE development process involves not only a transformation but a set
of transformations chained in a network (i.e., a transformation chain) [48]. To go from
models to executable code, the chain often includes Model-to-Model and Model-to-Text
transformations. We have introduced Model-to-Model transformations at the very begin-
ning of this section, i.e., programs that convert a model (or a set of models) into another
model (or set of models). Model-to-Text transformations convert a model element into
a text-based definition fragment [49]. The languages mentioned in the previous para-
graph are Model-to-Model. Some examples of Model-to-Text transformation languages
are Acceleo [50], MOFScript [51], etc.

2.2 Domain Specific Languages

Many computer languages are domain specific rather than general purpose. Below the
definition of DSL given in [52]:

”A DSL provides notations and constructs tailored toward a particular
application domain, they offer substantial gains in expressiveness and ease of
use compared with GPLs for the domain in question, with corresponding gains
in productivity and reduced maintenance costs.”

Van Deursen et al. [53] mention four key characteristics of DLSs:

1. Focused on a problem domain, that is, a DSL is restricted to a specific area in-
cluding particular objects and operations [54]. For example, a window-management
DSL could include the terms windows, pull-down menus, open windows, etc.

2. Usually small, a DSL offers a restricted set of notations and abstractions.



2.2. Domain Specific Languages 13

3. Declarative, DSL notations capture and mechanize a significant portion of repeti-
tive and mechanical tasks.

4. End-user programming, a DSL enables end-users to perform simple programming
tasks.

Like classical software, a DSL implies the following development phases: decision,
analysis, design, implementation, and deployment.

Decision Since a DSL development is expensive and requires considerable expertise,
the decision phase determinates if a new DSL is actually relevant or not.

Analysis Its purpose is to identify the problem domain and to gather domain knowledge.
The input can be technical documents, knowledge provided by domain experts, existing
GPL code, etc. The output of domain analysis basically consists of terminology. Domain
analysis can be done informally, however there exist well-known methodologies to guide
this phase, e.g., FODA (Feature-Oriented Domain Analysis) [55], DSSA (Domain-Specific
Software Architectures) [56], etc.

Design This step can be carried out in an informal or formal way. An informal design
has within a DSL specification in natural language or/and a set of illustrative DSL pro-
grams. A formal design mostly includes concrete and abstract syntaxes, and semantics.
Whereas there exist a common way to define syntaxes (i.e., grammar-based systems),
there are many semantic specification frameworks but none has been widely established
as a standard [15].

Implementation Mernik et al. characterize the following DSL implementation tech-
niques [52]:

• From scratch

– Interpretation or compilation are classical approaches to implement GPLs or
DSLs. The structure of an interpreter is similar to that of a compiler. Com-
pared to an interpret, a compiler spends more time analyzing and processing
a program. However, the execution of such a program is often faster than
interpret-resulting code [57]. The main advantage of building a compiler or
interpreter is that the implementation of notations is fully tailored toward the
DSL. The disadvantage is the high implementation cost.

• Extending a base language

– Embedded languages, the idea is to build a library of functions by using the
syntactic mechanisms of a base language. Therefore, DSL programs are built
in terms of such functions. The benefit is reusing the base language compiler
(or interpreter). The disadvantage is that the base language may restraint the
new DSL expressiveness.
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Figure 2.5: AmmA toolkit

– Preprocessing, this approach translates new DSL constructs into base language
statements. The main advantage is a modest development effort. A disadvan-
tage is that error reporting messages are in terms of base language concepts
instead of DSL concepts.

Deployment makes a DSL available to end-users. Users write DSL programs and
compile them.

Mernik et al. report DSL development toolkits mostly supporting the implementation
phase. These toolkits generate tools from language specifications. Syntax-directed editor,
pretty-printer, consistency checker, interpreter or compiler, and debugger are examples of
generated tools. Language specifications can be developed in terms of other DSLs. This
work focuses on the DSL implementation support offered by the AmmA toolkit.

The AmmA toolkit demonstrates the potential of MDE in DSLs: a metamodel and a
set of transformations can (correspondingly) describe the abstract syntax and semantics
of a DSL. In addition, projectors bridge MDE and EBNF technical spaces: they derive a
model from a program expressed in the visual/graphical or textual concrete syntax of a
DSL (and vice versa) [19].

2.3 The AtlanMod model management Architecture

(AmmA)

The AmmA toolkit consists of DSLs supporting MDE tasks (e.g., metamodeling, model
transformation) as well as DSL implementation. Fig. 2.5 shows the AmmA DSLs which
are described in the next subsections.

2.3.1 Kernel MetaMetaModel

As mentioned in Section 2.1.2, KM3 allows the definition of metamodels [38]. Fig. 2.6
shows the basic concepts of the KM3 metametamodel. The Package class contains the rest
of concepts. The ModelElement class denotes concepts that have a name. Classifier

extends ModelElement. DataType and Class, in turn, specialize Classifier. Class

consists of a set of StructuralFeatures. There are two kinds of structural features:
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Classifier

Datatype

-isAbstract : Boolean

Class Attribute Reference

-lower : Integer
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StructuralFeature
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-contents*

1

-structuralFeatures
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1
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0..1

-type

1
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Figure 2.6: KM3 concepts

Attribute or Reference. StructuralFeature has type and multiplicity (lower and
upper bound). Reference has opposite which enables the access to the owner and target
of a reference.

Listing. 2.1 and Listing. 2.2 give the KM3 notation corresponding to the MMA and
MMB metamodels illustrated in Fig. 2.7. The A1 and B2 classes contain the v1 attribute
referring to a primitive data type. The B1 class, in turn, has the b2 reference pointing to
the B2 class.

Listing 2.1: MMA metamodel in KM3 notation
1 package MMA {
2

3 class A1 {
4 attribute v1 : S t r ing ;
5 attribute v2 : S t r ing ;

A1

-v1 : String

-v2 : String

(a) MMA
metamodel

B1

-v1 : String

B2

1

-b2

1

(b) MMB metamodel

Figure 2.7: The MMA and MMB metamodels
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6 }
7

8 }

Listing 2.2: MMB metamodel in KM3 notation
1 package MMB {
2

3 class B1 {
4 reference b2 : B2 ;
5 }
6

7 class B2 {
8 attribute v1 : S t r ing ;
9 }
10

11 }

2.3.2 AtlanMod Transformation Language

Section 2.2 mentions how MDE can be productively used in DSLs. ATL is a DSL illus-
trating benefits in the other way around. ATL provides expressions (inspired by OCL)
to navigate input models and to restrict the creation of output model elements. Such
notations save the implementation of complex and verbose GPL code.

ATL allows the specification of declarative and imperative transformation rules in a
textual manner. Let us present some ATL features by means of the MMA2MMB trans-
formation. Its input and output metamodels are the MMA and MMB metamodels listed
above.

Listing. 2.3 shows a matched rule (or declarative rule) named A1toB1. It consists of an
inPattern (lines 2-3) and an outPattern (lines 4-10). The inPattern matches the A1
type (line 3), and the outPattern indicates the type of the generated output model ele-
ments (lines 5-10), i.e., B1 and B2. Types are specified as follows: MetamodelName!Type,
for example, MMA!A1. An outPattern is composed of a set of bindings. A binding is the
way to initialize output elements from matched input elements (line 6). The ATL virtual
machine decides the execution order of declaratives rules.

Listing 2.3: ATL declarative rule
1 rule A1toB1 {
2 from
3 s : MMA ! A1
4 to
5 t1 : MMB ! B1 {
6 b2 <− t2

7 } ,
8 t2 : MMB ! B2 {
9 v1 <− s . v1
10 }
11 }

Listing. 2.4 illustrates how to implement part of A1toB1 by using an imperative rule,
i.e., a called rule (line 10). It is explicitly called from a matched rule (line 6), like a
procedure, and its body may be composed of a declarative outPattern (lines 12-14).

Listing 2.4: ATL imperative rule called from a declarative rule
1 rule A1toB1 {
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2 from
3 s : MMA ! A1
4 to
5 t1 : MMB ! B1 {
6 b1 <− thisModule . A1toB2 ( s )
7 }
8 }
9

10 rule A1toB2 ( s : MMA ! A1 ) {
11 to
12 t2 : MMB ! B2 {
13 v1 <− s . v1
14 }
15 do {
16 t2 ;
17 }
18 }

ATL encourages declarative style instead of imperative. The latter should be only
used when declarative constructs are not enough to support a particular case.

2.3.2.1 Higher-Order Transformations

In MDE, transformations leverage code generation. Transformations can be themselves
generated and handled by model-driven development, exactly like traditional programs.
An approach to generate transformations is the HOT operation [58][8][9]. A HOT is a
model transformation such that its input and/or output models are themselves trans-
formation models. The representation of a transformation as a model conforming to a
transformation metamodel makes HOTs possible. Not all model transformation languages
provide a transformation metamodel. In this work we will mainly refer to HOTs imple-
mented with ATL.

2.3.3 AtlanMod Model Weaver

AMW provides a graphical interface to manipulate weaving models [59]2. Whilst a model
transformation defines executable mappings, a weaving model defines declarative ones.
A weaving model captures the relationships (i.e., links) between (meta)model elements.
Fig. 2.8 depicts a weaving model containing the relationships between Ma and Mb. Each
relationship (i.e., r1 or r2) links a set of elements of Ma to a set of elements of Mb.

Weaving models conforms to a weaving core metamodel. Listing. 2.5 shows the main
weaving concepts, i.e., WModel and WLink. WModel references to woven models. WLink has
to be extended to define the kinds of links that may be created between woven models.
End refers to an arbitrary numbers of elements belonging to the woven models.

Listing 2.5: Excerpt of the AMW core metamodel
1 abstract class WElement {
2 attribute name : S t r ing ;
3 attribute description : S t r ing ;
4 reference model : WModel oppositeOf ownedElement ;
5 }
6

2This notion differs from the term used in Aspect Oriented Programming (AOP) [60]. Whereas the
former refers to weaving between models, AOP weaves (executable) code by means of aspects.
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Figure 2.8: Weaving model

7 abstract class WModel extends WElement {
8 reference ownedElement [ ∗ ] ordered container : WElement oppositeOf model ;
9 reference wovenModel [1−∗ ] container : WModelRef ;
10 }
11

12 abstract class WRef extends WElement {
13 attribute ref : S t r ing ;
14 }
15

16 abstract class WModelRef extends WRef {
17 reference ownedElementRef [ ∗ ] container : WElementRef oppositeOf modelRef ;
18 }
19

20 abstract class WElementRef extends WRef {
21 reference modelRef : WModelRef oppositeOf ownedElementRef ;
22 }
23

24 abstract class WAssociation extends WElement {
25 reference associationEnd [1−∗ ] container : WAssociationEnd oppositeOf association ;
26 }
27

28 abstract class WAssociationEnd extends WElement {
29 reference association : WAssociation oppositeOf associationEnd ;
30 reference relatedLink : WLink ;
31 }
32

33 abstract class WLink extends WElement {
34 reference child [ ∗ ] ordered container : WLink oppositeOf parent ;
35 reference parent : WLink oppositeOf child ;
36 reference end [1−∗ ] container : WLinkEnd oppositeOf link ;
37 }
38

39 abstract class WLinkEnd extends WElement {
40 reference link : WLink oppositeOf end ;
41 reference element : WElementRef ;
42 }

[2] shows how weaving models can address data integration. For the sake of further
illustration, we comment a concrete use case. It focuses on interoperability of different
kinds of sources (e.g., databases, files, tools). The use case presents how to use:

• Metamodels to represent data sources.

• Weaving models for capturing different kinds of semantic relationships required
in data interoperability, e.g., concatenation of database schema properties, name =
firstName + ’_’ + lastName).

• HOTs for producing transformations from weaving models.
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Listing. 2.6 shows how WLink has been extended to support concatenation, i.e., the
Concatenation class. Source refers to the set of properties to be concatenated (e.g.,
firstName and lastName). Separator represents the string used to join the properties
(e.g., ’ ’). Target indicates to what property the concatenation result is assigned (e.g.,
name).

Listing 2.6: Excerpt of the AMW metamodel extension for data interoperability
1 class Concatenation extends WLink {
2 reference source [ ∗ ] ordered container : WLinkEnd ;
3 reference target container : WLinkEnd ;
4 attribute separator : S t r ing ;
5 }

Listing. 2.7 gives an excerpt of the HOT used in the data interoperability use case.
The HOT takes as input a weaving model and the referenced metamodels, and yields as
output an ATL transformation. Listing. 2.7 focuses on the creation of ATL bindings from
concatenation links.

Listing 2.7: Excerpt of a HOT for data interoperability
1 rule ConcatenationBinding {
2 from
3 amw : AMW ! Concatenation
4 to
5 atl : ATL ! Binding (
6 propertyName <− amw . target . getReferredElement ( ) . name
7 )
8 do {
9 atl . value <− thisModule . CreateConcat ( amw , true ) ;
10 }
11 }

2.3.4 Textual Concrete Syntax

The TCS component is devoted to implementation of DSLs in the modeling context [19].
TCS enables the translation from text-based DSL programs to their corresponding model
representation and vice versa. The start point of a DSL development with TCS is to de-
velop a KM3 metamodel containing the domain concepts. Then, one specifies the concrete
syntax by using TCS notations. In this step, one basically associates syntactic elements
(e.g., keywords, special symbols) to metamodel concepts. From the KM3 metamodel and
the concrete syntax, TCS generates three entities:

• An annotated grammar in ANTLR [16].

• An extractor that creates textual representation from models.

• And, an injector doing the opposite to the extractor, i.e., translation of models into
textual programs.

2.3.5 AtlanMod MegaModel Management

The AM3 tool allows efficient management of all the MDE artifacts produced by a software
development process (e.g., models, metamodels, metametamodels, model transformations,
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Figure 2.9: Matching algorithm (Adapted from [12])

weaving models, transformation chains) [23]. The main AM3 artifact is called megamodel.
A megamodel is a specific kind of model whose elements represent models themselves as
well as relationships between such models. For instance, a megamodel can represent
the model transformations associated to a complex MDE system. Here, a megamodel
has an understanding purpose, for example, one knows what are the models consumed
and produced by a transformation and their interactions with other transformations.
Megamodels conforms to a metamodel.

2.4 Model matching

Matching is the more longstanding solution to the heterogeneity problem. In a broad
sense, the matching operation establishes mappings between two formalisms (e.g., meta-
models, ontologies, database schemas) or formalism instances (e.g., models, individuals,
databases). Here we refer to model matching, i.e., discovery of mappings between two
metamodels or models. Since other formalisms can be translated into the modeling con-
text, model matching is generic enough to cover ontology or schema matching. Manu-
ally finding of mappings is labor intensive, researchers have thoroughly studied how to
(semi)automate the task. According to [61], the model matching operation can be sepa-
rated in three phases: representation, calculation, and visualization.

The thesis focuses on mapping calculation and benefits from the work proposed in [2]
to address the remaining matching phases. The calculation phase concerns algorithms
able to establish mappings in a (semi)automatic way. As shown in Fig. 2.9, a matching
algorithm f takes as input two models (m and m′), an initial mapping (A), parameters
(p), and resources (r), and yields as output a new mapping (A′). Notice A can be empty
or contain initial correspondences (either established by the user or pre-calculated in a
previous matching process).

The following aspects characterize matching algorithms (the next sections will describe
these aspects in detail):

• Input refers to what kinds of models a certain algorithm can match.

• Output alludes to the notation for expressing mappings.

• Matching algorithm blocks elaborates on how algorithms are implemented.

• Evaluation calls attention to the need for assessing the quality of matching results.
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Figure 2.10: Families 2 Persons metamodels

Illustrating example

We have chosen an example simple but interesting enough to illustrate the aspects involved
in the calculation phase. The example has been inspired from the Families 2 Persons use
case3. Fig. 2.10 shows the metamodels involved in the example (MM1 and MM2 ).

2.4.1 Input

This criterion classifies a model matching algorithm in regard to its input:

• An M2-to-M2 matching algorithm takes as input pairs of metamodels and is
written in terms of metametamodel concepts. For example, to match KM3 meta-
models, it is necessary to have an M2-to-M2 algorithm comparing the Class concept.

• An M1-to-M1 matching algorithm takes as input a given pair of models and
involves the concepts of its corresponding pair of metamodels. For instance, to
match models conforming to the Fig. 2.10 metamodels, an M1-to-M1 algorithm
comparing the classes Person and NamedEntity is needed.

2.4.2 Output

Given two input modelsm andm′, a matching algorithm yields as output a set of mappings
(also referred to an alignment). A simple mapping (or correspondence) relates an element
of m to an element of m′. A mapping has a similarity value which indicates its plausibility
[62]. A similarity value can be discrete (i.e., 1 or 0, true or false) or continuous (i.e., infinite
number of values between 0 and 1). Mappings can have an endogenous or exogenous
notation. Endogenous means that the output has the same technical space of the input.
Exogenous indicates the opposite.

In a mapping, one or more elements of the first model may be related with one or
more elements of the second model, resulting in different cardinalities 1:1, m:1, 1:n, and

3http://www.eclipse.org/m2m/atl/basicExamples Patterns/
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m:n [62]. Note that one can decorate mappings to represent relations needed in an appli-
cation domain, for example, name = concat(firstName, lastName), it is a n:1 mapping
decorated with concat to indicate a data integration operation.

2.4.3 Matching algorithm blocks

From this subsection, we will use the terms matcher, matching technique and matching
method to refer to matching heuristic.

2.4.3.1 Individual matcher versus combining matcher

Rahm et al. [14] presents a taxonomy to classify schema matchers with regard to what
kind of information is exploited:

• Individual matcher approaches compute mappings based on a single matching cri-
terion.

– Schema-only based

∗ Element-level considers only an element at the finest level of granularity.

· Linguistic-based uses labels and text to find similar elements.

· Constraint-based determines the similarity of elements by regarding
data types, ranges, uniqueness, optionality, relationship types, cardi-
nalities, etc.

∗ Structure-level takes into account combinations of elements that appear
together in a structure.

– Instance-based infers the similarity of elements taking into account the similar-
ity of sets of instances. Instances can be compared as follows:

∗ Constraint-based computes some statistics (e.g., mean, variance, etc.) about
property values found in instances (e.g., size, weight). The hypothesis is
that these measures should be the same for two equivalent properties.

∗ Linguistic-based extracts keywords based on the relative frequencies of
words and combination of words present in instances. Then, the matcher
compares keywords and concludes what property is the better match for
another.

• Combining matcher approaches integrate individual matchers. They can be done in
two ways:

– Hybrid matchers directly combine several matching approaches to determinate
match candidates based on multiple criteria. Hybrid matchers often have a
better performance than composites. Their drawback is the reduction of reuse
capabilities.

– Composite matchers combine the results of independently executed matchers,
including hybrid matchers. Selection, execution order, and combination of
matchers can be done either automatically or manually (by a human user).
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Model matching algorithms

M2-to-M2 M1-to-M1

Metamodel-

only based

Instance-

based

Figure 2.11: Classification of model matching algorithms

Some approaches plug machine learning methods on top of individual or combining
matchers. The idea is to derive mappings from matching data (e.g., mappings, param-
eters). Such approaches operate in two phases: training and matching. In the training
phase, data is manually provided by users, or collected from previous matching operations.
The second phase matches ontologies or schemas using the gathered data. Examples of
matching approaches using learning methods are: bayes learning [63], WHIRL learner
[64], stacked generalization, neural networks [65][66][67], and decision trees [68].

[14] states that an individual matcher is unlikely to achieve as many good match can-
didates as a combining matcher. That is why the research community tends to contribute
combining matchers [69]. Our algorithms belong to this category as well. By extrapolating
Rahm’s combining matchers into MDE, we itemize the classification given in Section 2.4.1
(see Fig. 2.11):

• An M2-to-M2 algorithm can be:

– Metamodel-only based, takes as input a given pair of metamodels and discovers
mappings by exploiting information available in the metamodels. This category
corresponds to schema-only based matchers in Rahm’s taxonomy.

– Instance-based, its purpose is to match pairs of metamodels, to this end, the
matcher judges models conforming to the input metamodels. This item is
similar to Rahm’s instance-based matchers.

– Metamodel-only based and instance-based at once.

• An M1-to-M1 algorithm discovers mappings between pair of models. Rahm’s
taxonomy does not cover this category, however we have included it because M1-to-
M1 matching is essential in MDE.

2.4.3.2 Blocks

Independently of category, M2-to-M2 or M1-to-M1, a model matching algorithm can
involve the following blocks (take a look to Fig. 2.12):

• Normalize data representation.

• Search model elements.
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Figure 2.12: Blocks of a model matching algorithm

• Compute similarity values.

• Aggregate similarity values.

• Select mappings.

• Iterate for refining similarity values.

• Process mappings according to applications needs.

• Involve user.

There are different ways of implementing the blocks above, we present a compilation of
them. The compilation is not extensive, its purpose is to show matching blocks variability.
Please refer to [13][70] for a full compilation.

Normalization This block homogenizes data contained in models. There exist two
kinds of normalization:
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1. Label-based. The normalization reduces a text to a standard form based on its
morphology (form of the words), syntax (grammatical structure of the text), or se-
mantic (one aspect of the words, e.g., their synonyms). For example, let us consider
the comment it saves the annotation name. The standard form could be: it

saves the name of annotation (syntax) or it saves the notation name (se-
mantic).

2. Structure-based. Besides the phase that bridges the gap between technical spaces,
some approaches execute a structure-based normalization. The purpose is to make
models conform to a generic format (typically a graph or a tree). Section 4.2.6
explains this in detail.

Searching This step chooses which mappings the subsequent matching blocks have to
consider [70]. The most common methods for searching model elements are:

1. Cartesian product. Derives mappings by joining all elements of the first model
with all elements of the second model.

2. Fragment-based. In turn, joins only parts of the models, for example, elements
conforming to the same metamodel type.

Similarity computation This step computes similarity values by exploiting a kind of
information.

Linguistic-based

• String-based. Labels are considered strings. The similarity is based on the structure
of strings (i.e., the set of characters).

– String Equality. If strings are identical, then similarity value is 1, otherwise is
0.

– Affix. Evaluates if two strings have common affixes (i.e., prefixes and suffixes).

– SoundEx. Computes the phonetic similarity between labels by taking into
account their corresponding SoundEx index. SoundEx is an algorithm indexing
labels by sound as pronounced in English [71] (pag. 392).

– N-gram. Compares the number of common n-grams (i.e., sequences of n char-
acters) between two strings. For example, the di -grams for type are: ty, yp,
pe.

– Edit-distance. Measures similarity values based on the edition operations that
should be applied to a string to obtain another: more edition operations, lower
similarity value. Some edit-distance implementations are proposed in [72] and
[73].
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– Path comparison. Concatenates names of an element by taking into account
its relationships with other elements (inheritance, association, or containment).
For example, the workOn reference can be identified as NamedEntity:workOn,
because the NamedEntity class contains workOn. Two elements are equivalent
if their corresponding concatenations are equal.

– Token-based distance. Considers a string as a set of words (a bag) and applies
several similarity measures to it. For example, a common applied measure
associates a vector to every bag, a word is a dimension, and the number of its
occurrences in the bag is a position. Once vectors have been computed, usual
metrics (e.g, Euclidean distance) calculate similarity.

• Meaning-based. Labels are considered as terms or texts with meaning. The similarity
assessment is based on meanings and meaning relations.

– Extrinsic meaning. Finds terms associated to labels and compare such terms.
It looks for terms in external resources such as Multi-lingual lexicons and the-
sauris. A multi-lingual lexicon provides equivalent terms in several languages.
For instance, given the English term Person, the lexicon provides Persona and
Personne. That is, the corresponding terms of Person in Spanish or French.
A thesauri provides sets of terms which are hypernym, hyponym4, synonym, or
antonym of a given term. For example, given Person, WordNet [75] provides
the synonyms Individual and Someone.

– Intrinsic meaning. Normalizes terms and compares them by applying string-
based heuristics.

Constraint-based

• Keys. Compares XMI identifiers associated to model elements.

• Datatype. Compares compatibility between data types. The similarity is maximal
when the data types are the same, lower when they are compatible (for instance,
because integer can be casted into float they are compatible), and the lowest when
they are not compatible. This method can not be used in isolation.

• Domain. Compares the domains of properties, for example the age property whose
domain is [6 12].

• Cardinalities. Compares compatibility between cardinalities based on a table look-
up. An example of such a table is given in [76].

4A hyponym is a word whose semantic field is included within that of another word, its hypernym.
For example, scarlet, vermilion, and carmine are all hyponyms of red (their hypernym) [74].
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Structure-level

• Relational structure. Computes similarity values based on the relations between
model elements.

– Taxonomic structure. Compares classes based on hierarchical relations: super-
classOf or subclassOf. There are two variations:

∗ Indirect. Computes similarity based on the taxonomic structure (i.e., hi-
erarchy) of an external resource (e.g., WordNet). The method compares
model elements to such a hierarchy.

∗ Direct. Computes similarity based on the taxonomic structure of the meta-
models themselves.

– Relation. A concrete implementation is the Similarity Flooding (SF) algorithm
[77]. SF assumes that two elements are similar when their adjacent elements
are similar too. The SF algorithm executes two steps. The first step associates
two mappings (m1 and m2 ) if there is a semantic relationship between them.
The second step propagates the similarity value from m1 to m2 because of
the association. In our motivating example, the first step associates (Person,
NamedEntity) and (firstName, name) because Person of MM1 contains the
firstName attribute and NamedEntity of MM2 contains the name attribute.
Then, the second step propagates the similarity value from (Person, Name-

dEntity) to (firstName, name).

Instance-based These techniques can be combined in M2-to-M2 matching algorithms if
models conforming to the input pair of metamodels are available. The techniques assume
that two classes are similar if such classes share the same set of model elements.

• Statistical approach. Calculates statistics about the metamodel properties based on
the models (maximun, minimun, mean, variance, existance of null, values, existence
of decimals, scale, precision, grouping, and number of segments). The heuristic
is practical when a metamodel property represents numerical values (e.g., real).
For instance, the heuristic can deduce that salary and compensation are similar
because the variations, computed from the model elements conforming to these
properties, are similar.

• Similarity-based extension comparison. Two classes are similar if the model elements
conforming to such classes are similar too.

Aggregation The aggregation step integrates the similarity scores produced by the
previous block in order to form a unified score. Some ways of aggregating similarity
values follow:

• Max. Selects the highest similarity value among all the values returned by similarity
heuristics.

• Min. In turn, selects the lowest similarity value.
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• Weighted sum. Multiplies each similarity value by a weight and aggregates the
results into a single value.

Selection The previous steps may have created unwanted mappings (i.e., mappings
with low similarities). The selection step chooses the mappings whose similarity values
satisfy a criterion. Some selection step variants are:

• MaxN. Selects n mappings having the highest similarity values. For example,
given the following set of mappings (Person, NamedEntity, 0.09), (Person, Fe-

malePerson, 0.5), (Male, NamedEntity, 0.18), and (Male, MalePerson, 0.4),
and n = 2, MaxN selects (Person, FemalePerson, 0.5), and (Male, MalePer-

son, 0.4).

• Threshold-based. Selects mappings whose similarity values are higher than a
threshold.

• Strengthening and weakening. Defines functions taking similarity values and
returning a value between 0 and 1. A function filters mappings whose similarity
values are evaluated to 0.

Iteration The iteration block allows the execution of the same matching process n times
given a condition. The output of an iteration can be the input of a next iteration.

1. Manual. It is the user who decides if the next iteration starts or not. The condition
is to get a satisfactory matching result.

2. Automatic. The block automatically aborts the loop when a condition is satisfied.
A condition can be not to exceed a maximal number of iterations.

Mapping manipulation In general, this step yields mappings needed in a given ap-
plication domain. There are application domains more generic (e.g., merging, diff) than
others (e.g., data integration, co-evolution). Below we give a brief description of some
application domains:

1. Merging. Combines information from several models into a single model [78]. A
way of merging is to match model elements that describe the same concepts in the
diverse models. One creates a new model from the matching elements. Such a model
is an integrated view of the concepts.

2. Diff. Returns a sequence of edit actions needed to get one model from another
[78]. The diff problem has been thoroughly studied in many contexts. For example,
the Unix diff compares two text files [79]. It reports a minimal list of line-based
changes. This list may be used to bring either file into agreement with the other (i.e.,
patching the files). Another example is the SiDiff tool which computes a diff between
two (graph-based) diagrams5. The differences between the graphs are computed

5http://pi.informatik.uni-siegen.de/Projekte/sidiff/



2.4. Model matching 29

according to their structure. The tools may display the differences by using different
colors. Model matching can leverage the diff operation; the matching step figures
out the equivalences between models first, then diff creates the corresponding delta
from the previous result.

3. Integration. It is technique of accessing information available in different models
in a uniform way. The interoperability between models is achieved through the
execution of transformations. The matching operation is of help here; once the
users validate the correspondences identified by means of matching, they may derive
integration transformations.

4. Co-evolution. Brings a model into agreement with a new metamodel (which is an
evolved version of its former metamodel). A solution is to perform the diff operation
to discover the changes introduced in the new metamodel version, and to derive an
migrating transformation.

User involvement Users can be involved in a matching process as follows:

1. by providing initial mappings, mismatches, or synonyms.

2. by combining heuristics.

3. by providing feedback to the process in order for it to adapt the results.

4. by indicating threshold, weights, or constraints.

Tools are necessary to facilitate user involvement, for example, a graphical (referred as
GUI ) or textual (referred as TUI ) user interface to manipulate mappings or combine
heuristics.

2.4.4 Evaluation

A crucial issue in matching is to evaluate the results. Fig. 2.13 illustrates a classical
matching evaluation. This aggregates the c block to Fig. 2.9. The c block calculates
matching metrics (M) by comparing R to each A′, where R is a reference mapping (or
gold standard).

The most prominent metrics to assess matching accuracy are precision, recall, and
fscore from information retrieval field [13].

Precision (P), recall (R), and fscore (F) are defined in terms of R and A′.

Precision measures the ratio of found mappings that are actually correct.

Precision(R,A′) =
R ∩ A′

|A′|
(2.1)
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Figure 2.13: Matching algorithm evaluation (adapted from [12])

Recall measures the ratio of correct mappings found in comparison to the total number
of correct existing mappings.

Recall(R,A′) =
|R ∩ A′|
|R|

(2.2)

Fscore represents the harmonic mean of precision and recall. For instance, a precision
and recall of 0.5 leads to a fscore of 0.5 indicating that half of all correct mappings were
found and half of all found mappings are correct.

Fscore(R,A′) =
2 ∗Recall(R,A′) ∗ Precision(R,A′)

Recall(R,A′) + Precision(R,A′)
(2.3)

Test cases quality gives credibility to evaluation. Test cases quality depends on the
features of m, m′, and A′, e.g., size, variety of domains represented by the models. Ref-
erence mappings can be defined from scratch (e.g., by a panel of experts) or derived from
existing software artifacts (e.g., from computed mappings which have been refined by
experts).

2.5 Summary

This chapter has shown the context of the thesis, i.e., MDE, DSLs, and matching. We
revisited the central MDE concepts. Model matching is an operation computing mappings
between models. We have determined the scope of the thesis: mapping calculation, and
we have described its main aspects.



Chapter 3

A survey of matching approaches
and problem statement

In this chapter we present how a set of combining matching approaches supports the cal-
culation phase, in particular, the aspects introduced in Section 2.4. We have classified
the approaches by research community: ontologies (and database schemas), and models.
Whereas our list of schema/ontology approaches is not exhaustive, we mention all ap-
proaches we found in the context of models1. Based on what these approaches do, we
have defined issues on matching calculation. These issues draw the thesis scope.

3.1 Ontology-based and schema-based approaches

3.1.1 Coma++

Coma++ is an ontology (and schema) matching tool2. It provides a extensible library
of Java-based matching algorithms, a framework for combining obtained results, and a
platform for the evaluation of the effectiveness of the different matchers. The matching
operation is described as a workflow that can be graphically edited and processed. Users
can control the workflow execution in a stepwise manner and change execution parame-
ters. Also, they can approve matches and mismatches. Coma++ provides two kinds of
matchers: hybrid and composite. A Coma++ composite matcher may consist of:

• Schema-only based matchers (provided by Do [62]).

– Name considers element names.

– Comment compares element comments.

– Type matches elements based on their data type.

– Path computes similarities between two elements by comparing their complete
name paths.

1The reason is that there already exist quite good surveys about the former approaches that readers
may want to consider [70][13].

2http://dbs.uni-leipzig.de/Research/coma.html
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– Children, Leaves, Parents, or Siblings derive the similarity between elements
from the similarities between neighbor elements, e.g., Children.

– Statistics uses the Euclidean distance function to compute the similarity be-
tween structural statistics, which are determined for single schema elements
using a feature vector uniformly capturing the number of children, parents,
leaves, etc.

• Instance-based matcher (contributed by Engmann et al. [80]).

– Constraint-based describes patterns that the instance data must satisfy. The
pattern can be expressed in terms or letters, numbers or special characters.

– Content-based determines the similarity of two elements by executing a pair-
wise comparison of instance values using a similarity function (typically a string
similarity function). The performance is lower than the performance of the
constraint-based matcher.

3.1.2 Semap

Semap [81] is a system that finds semantic relationships (i.e., not only simple mappings
but also has-a, is-a, associates relationships) between schemas. The Semap architecture
has three components:

• Schema matcher. Consists of a set of basic matchers. Every basic matcher looks
at a particular model aspect:

1. Label evaluates the syntactic similarity of labels (names).

2. Sense compares the meanings that WordNet [75] gives to the labels.

3. Type determines the similarity of schema elements based on data types.

4. Data instances considers the format and distribution of information stored at
instance level.

5. Structure implements the Similarity Flooding algorithm.

The matcher assigns similarity values and saves traces about how the mappings have
been generated (this traces are used by the mapping assembler to discover generic
relationships that schema matchers do not find).

• Match selector. Searches for the best global matchings. It applies a set of domain
constraints (they are establish by the user) and a statistical model to select a subset
of candidate matches. User interaction can greatly improve prediction accuracy.
Semap applies active learning to identify the points in selecting the matches where
user interaction is maximally useful.

• Mapping assembler. Selects an optimal set of mappings, identifies the relation-
ships implicit in the selected matches, and assembles these matches together to
form a final, generic semantic set of mappings. It identifies the relationships by
using rules.
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3.1.3 Learning Source Descriptions (LSD)

LSD [82] finds mappings between schemas. The process is as follows:

• Train learners. The user provides a few semantic mappings. LSD computes
weights for each learner (i.e., matching heuristic) by performing least-squares linear
regression on the dataset. The weights depends on what accuracy the learners
provide. A learner has a high accuracy, when its results correspond to user-provided
mappings. LSD trusts learners which have the highest accuracy. Note that the
learners are applied to schema fragments.

• Match. Having the weights for each learner, LSD applies the learners to the whole
schemas. [82] reports the use of three learners: Name, Content, and Naive Bayes.
Name computes similarity between schema elements using the edit distance of their
names. Content uses edit distance algorithms to find out similarity between schema
data instances, and then propagates such a similarity to the corresponding schema
elements. Naive Bayes, in turn, discovers similarity between schema elements by
taking into account the tokens composing their names.

• Exploit constraints. Domain constraints are applied on the probable mappings
to filter them. Finally, user feedback improves matching accuracy.

3.1.4 MAFRA

MAFRA [83] is a system for bringing instances of a source ontology into agreement with
a target ontology. The idea is to write rules for matching the instances in terms of on-
tologies (concepts and properties). The output mappings conform to the target ontology.
This ontology has two main concepts: SemanticBridge (which represents a mapping) and
Service (which represents matching techniques). The inclusion of the latter concept is pre-
cisely its main drawback, the system does not separate aspects of mapping from services
to obtain them. It makes computed mappings difficult to translate into other formats,
i.e., difficult to be reused.

3.1.5 APFEL

APFEL [68] combines matching learning algorithms, user validation, schema-only based
and instance-based methods. APFEL aligns ontologies by following four steps:

1. Apply a naive strategy that gives an initial set of alignments. The strategy combines
several heuristics. Each of them has a weight and judges an ontology feature.

2. Users select correct alignments.

3. Based on such alignments, a machine learning algorithm suggests weights and heuris-
tics giving the best results.

4. APFEL proposes a new strategy tuned with the weights and heuristics suggested
above. This strategy can be further improved by executing the process iteratively.
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APFEL authors pursued 7 strategies to two scenarios (i.e., string-based, feature simi-
larity combinations and aggregation, three versions of the decision tree learner, neural
networks, and support vector machine). They found that APFEL is as competitive as
other ontology matching systems. However, APFEL highly depends on chosen machine
learning algorithms and training data.

3.1.6 GeromeSuite

GeromeSuite allows the definition of composite matchers [84]. It provides three kinds of
matching blocks: similarity, selection, and aggregation. GeromeSuite furnishes import
and export operators for SQL-DDL, XML schema, and OWL. The m and m′ inputs have
to conform to the Gerome internal representation. GeromeSuite gives a GUI for configur-
ing strategies. GeromeSuite matching operators are implemented in Java. GeromeSuite
provides three kinds of mappings:

1. Informal: simple mappings.

2. Intensional: complex mappings describing a relation between sets of elements (i.e.,
disjointness, equality, and subset).

3. Extensional: complex mappings representing a query for data translation.

3.1.7 An API for ontology alignment

This approach proposes a format for expressing alignments in RDF and a Java API to
manipulate it [85]. In particular, the API provides baseline matching algorithms and
functionalities for refinement/evaluation of alignments and transformation generation.
The Ontology Alignment Evaluation Initiative (OAEI) [12] uses the API evaluation func-
tionalities.

3.2 Model-based approaches

This category groups approaches that have adopted the term model to refer to contem-
porary technical spaces such as MOF or Ecore.

3.2.1 Kompose

This is a framework to compose models conforming to the same metamodel [86]. The
composition implies matching and merging. Whereas the merging algorithm is generic,
one needs to define a new matching algorithm for each metamodel to be composed. The
algorithm specifies the metamodel types to be matched, and associates to each concrete
type an implementation of the operator equals. This operator determinates whether two
model elements, conforming to a given type, are equal or not. Kompose is based on
Kermeta [44].
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3.2.2 Epsilon Comparison Language (ECL)

ECL is a DSL that enables users to specify model matching algorithms [5]. The main
ECL abstraction is MatchRule which specifies two parameters (specifying the types of
matching elements), the guard part (that limits the applicability of the rule), the compare
part (that compares the pairs of elements and decides if they match or not), and the
do part (performing additional required actions). The result of comparing two models
with ECL is a set of mappings with boolean values that indicate if the referred elements
have been found to be mappings or not. ECL has been implemented atop the Epsilon
platform3 and therefore it inherits its syntax and features (e.g., rule inheritance, invoking
native Java code).

3.2.3 EMF Compare

EMF Compare reports differences between two pairs of models conforming to the same
metamodel4. The tool performs two steps, i.e., matching and diff. Matching strategies
are hard-coded into the tool in Java. According to [87], EMF Compare compares model
attributes by judging data types, labels, and IDs. The two strengths of EMF Compare
are its Graphical User Interface and performance.

3.2.4 Generic and Useful Model Matcher (Gumm)

Gumm is a tool that aligns models [88]. The tool represents models by means of labeled
(and directed) graphs. Gumm provides an API to create/manipulate graphs. An available
algorithm is the Similarity Flooding [77]. It seems an early Gumm version has been used
for computing mappings and deriving model transformations [3].

3.2.5 SmartMatcher

SmartMatcher uses matching techniques for transformation generation [4]. Its main fea-
ture is to train candidate mappings by using data instances. For example, to generate a
transformation whose input and output metamodels are MMA and MMB, SmartMatch
proceeds as follows:

1. Build training models by hand, e.g., MA andMB, conforming toMMA andMMB,
respectively.

2. Match MMA and MMB by using third-party ontology systems, e.g., Coma++
[62].

3. Generate a transformation MT from the obtained mappings.

4. Execute MT .

3www.eclipse.org/gmt/epsilon/
4http://wiki.eclipse.org/index.php/EMF Compare
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5. Compare MB′ (yielded by MT ) and MB. The approach compares attributes val-
ues, and model structure (i.e., references). A function, called fitness, verifies if the
elements of MB′ and MB are equal. If the answer is positive, then the mappings
from which the transformation has been generated is accepted.

6. Train incorrect mappings by repeating the process from the step 1.

All SmartMatcher functionalities are implemented in Java. SmartMatcher needs the def-
inition of training models, it may imply more work than mapping discovery from scratch.

3.2.6 MatchBox

Like SmartMatcher, MatchBox [89] computes M2-to-M2 mappings. MatchBox is devel-
oped on top of the SAP Auto Mapping Core (AMC) which is based on Coma++ [62].
MatchBox executes the following steps:

1. Translate metamodels into a tree data representation. To build such a tree, meta-
model properties are flattened in a concrete way.

2. Apply single matchers (i.e., name, name path, children, sibling, parent, and leaf ).

3. Aggregate and combine their results.

3.3 Comparison of approaches

The next 7 tables position revisited approaches with respect to the criteria established at
the very beginning of this chapter. The tables include the AMW tool referring to Marcos
Didonet del Fabro’s approach [90] which has been described in Chapter 1. A discussion
follows each table. The rows represent the criteria. The columns mention the approaches
arranged by community. The possible cell values follow:

• An ‘x’ indicates that a given approach supports a certain criterion.

• An empty space indicates the contrary.

• Text or numbers corresponding to the options or descriptions given in the criteria.

• A question mark (?) means that the approach documentation does not provide
enough information to evaluate the criterion.

Appendix E contains 4 tables positioning our approach with respect to the same
criteria.
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Table 3.1: Comparing related work with respect to the input criterion

Table. 3.1 depicts that most of the approaches provide M2-to-M2 matching algorithms.
In particular, GeromeSuite covers the largest spectrum of technical spaces. GeromeSuite
provides heuristics written in terms of its own metametamodel (called Gerome), and
operators to translate SQL-DDL, XML Schema, or OWL models into Gerome. The
operators are implemented declaratively using a rule-based approach (i.e., SWI-prolog).

On the other hand, only 4 approaches (MAFRA, ECL, Kompose, and EMF Compare)
provide M1-to-M1 matching algorithms. In the case of MAFRA, Kompose, and ECL,
given a new pair of models, developers have to implement a new algorithm. EMF Compare
has a default algorithm that matches models conforming to the same metamodel. The
algorithm mostly relies on linguistic-based similarity heuristics. When the metamodel,
to which models conform to, does not have the name attribute, the algorithm gives low
accuracy results. Recently, EMF Compare came out with a new feature which allows
plugging customizable algorithms. Developers have to implement these algorithms with
Java and Ecore.

3.3.2 Output
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Table 3.2: Comparing related work with respect to the output criterion

According to Table. 3.2, Kompose and ECL enable the specification of comparison
algorithms that render discrete similarity values (0 or 1, equal or not equal). The rest of
approaches instead apply the notion of probabilistic mappings (i.e., continuous similarity
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values), which is closer to real world mappings. The revisited approaches produce en-
dogenous outputs. For instance, if the approach matches ontologies, the matching result
conforms to an ontology as well. Coma++, APFEL, the Alignment API, GeromeSuite,
and AMW support all kinds of mapping cardinalities. At last, Semap and EMF Compare
mark mappings with types needed in different applications domains, data integration and
diff, respectively.

3.3.3 Matching algorithm blocks

Table. 3.3 and Table. 3.4 respectively compare the schema/ontology-based and model-
based approaches in regard to the matching algorithm criteria. Below we discuss each
block.
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Table 3.3: Comparing schema/ontology-based approach with respect to the matching
building blocks criterion
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Table 3.4: Comparing model-based approach with respect to the matching building blocks
criterion

3.3.3.1 Normalization

The approaches documentation does not explicitly indicate what kind of label-based
normalization is applied. However, the Alignment API and AMW code shows a mor-
phological normalization, in particular, a case normalization. It converts each alphabetic
character in the strings into its lower case counterpart [13]. Some XSD and OWL-based
approaches (i.e., Coma++, Semap, LSD, and GeromeSuite) execute a structure-based
normalization. The model-based approaches (except Gumm and MatchBox) do not ex-
ecute this extra step, they directly operate on metamodels conforming to a standard
metamodeling format (e.g., Ecore).

3.3.3.2 Searching

All the revisited approaches execute the searching step. However, from the documen-
tation, it is not possible to determinate the kind of searching applied by Semap, LSD,
APFEL, and GeromeSuite. Coma++ and Gumm provide both Cartesian product and
fragment based. They spell out that a Cartesian product impacts matching algorithm
performance. Coma++ and MatchBox select the elements with respect to a tree struc-
ture (e.g., Children, Leaves, etc.), Gumm exploits a graph structure. Alignment API
hardcodes what kinds of elements are of interest, e.g., Class, Property, Individuals.
MAFRA, ECL, Kompose, and AMW, in turn, choose elements by specifying metamodel
types in an explicit way.

3.3.3.3 Similarity computation

Table. 3.5 classifies the approaches with respect to Rahm’s taxonomy. About the type
of combining matcher, the number of composite approaches corresponds more or less to
the hybrids’ one. Coma++ is the only approach that provides composite and hybrid
matchers.
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In addition, Table. 3.5 shows the number of individual matchers that can be combined
in a composite matcher. Coma++ provides the largest library of individual matchers.
GeromeSuite spells out to provide several element-level and structural level matchers.
However, the authors do not exactly precise what are their functionalities. APFEL uses
techniques taken from the original PROMPT tool [91]. SmartMatcher and MatchBox
reuse (or have been inspired by) the Coma++ techniques.

Based on the approaches documentation, it is difficult to list the individual matchers
that have been combined in hybrid matchers. The Alignment API furnishes 4 hybrid
algorithms combining various element-level (above all String-based) and structure-level
techniques. [5] cites an ECL algorithm matching models that represent trees. The algo-
rithm embeds linguistic-based and structure-level comparison. According to [87], it seems
EMF Compare implements 1 structure-level and 3 element-level techniques.
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Table 3.5: Comparing related work with respect to the similarity criterion

3.3.3.4 Aggregation and selection

In general, the revisited approaches use a weighted sum aggregation. Besides this
technique, Coma++ reports 3 additional aggregation techniques, i.e., Max, Min, and a
special case of weighted sum (see [62] pag. 69).

The approaches involving the selection step often use thresholding. In addition, LSD
filters mappings with domain constraints. The high granularity of constraints suggests
that their definition is a time-consuming task.

The tough part of aggregation and selection is to define weights and thresholds. Al-
though this is not the focus of our work, we want to mention eTuner [69], an automatic
learning approach for finding the best knobs (e.g., thresholds, formula coefficients). Lee
et al. experiment eTuner on four matching systems, among them Coma++ and LSD.

3.3.3.5 Iteration

Five out of fourteen cited approaches draw the iteration as a matching process block.
The iteration is mostly manual. For example, for each iteration, Coma++ enables the user
to select the matchers to combine, and to accept or reject candidate mappings. Semap,
in turn, prompts the user to disambiguate cases where its feedback is maximally useful.
Semap iterates on the matching techniques identifying simple mappings, but not on the
techniques extracting complex relationships. A new LSD iteration starts if the user is
not happy with the results. Moreover, he or she can specify new domain constraints or
manually match elements.
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In contrast to the previously mentioned approaches (which ask the user for mapping
error correction), SmartMatcher and APFEL provide an automatic iteration. Smart-
Matcher derives transformations from the computed mappings, and adjusts the match-
ing algorithm by comparing the transformation output to an output built by the user.
SmartMatcher adapts the mappings based on the identified differences, and starts a new
iteration. APFEL stops a loop when no new alignments are proposed, or if a predefined
number of iterations has been reached.

3.3.3.6 Mapping manipulation

The mapping manipulation block transforms simple mappings into complex mappings
in order to fulfill an application domain request. Most of approaches use GPLs to encode
the manipulation logic.

Coma++ and EMF Compare implement the Merge and Diff operators with Java.
SeMap uses a rule-based language. The authors define rules that translate simple map-
pings into more semantically richer ones. To merge models, Kompose requires the imple-
mentation of a matching algorithm. Merge and Match operators are implemented with
Kermeta [44].

Gumm and SmartMatcher state the use of mapping for generating transformations,
however we have not found what transformation languages they support and how they
perform the generation.

The Alignment API provides the notion of visitor. Each visitor implements the trans-
lation of mappings into a specific format, e.g., HTML, OWL axioms, XSLT, or SWRL.
HTML simply displays mappings in a more friendly way than RDF. OWL axioms merge
the concepts of two aligned ontologies. A SWRL or XSLT file performs data migration.
GeromeSuite translates mappings into query languages such as XQuery and SQL. AMW,
in turn, generates ATL transformations by using ATL HOTs.

3.3.3.7 User involvement

We have implicitly discussed this criterion throughout the previous sections. As men-
tioned in the iteration paragraph, Coma++, Semap, LSD, APFEL, and SmartMatcher
allow the user to provide initial mappings as input. Coma++, LSD, APFEL, the Align-
ment API, GeromeSuite, and AMW allow indicating parameters without going to the
kernel of the matching system but using an interface. Coma++, GeromeSuite, and AMW
enable the combination of matching techniques by using a GUI. APFEL, in turn, provides
a TUI. The Alignment API command-line interface has an option enabling users to choice
a given matching algorithm. Users nonetheless have to go into Java code if they wish to
understand how matching techniques have been combined. Finally, Coma++, Gerome-
Suite, MAFRA, APFEL, the Alignment API, EMF Compare, and AMW contribute TUIs
or GUIs for mapping refinement.

3.3.4 Evaluation

Table. 3.6 and Table. 3.6 correspondingly compare the schema/ontology-based and
model-based approach with respect to the evaluation criteria.
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Table 3.6: Comparing schema/ontology-based approaches with respect to the evaluation
criterion
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Table 3.7: Comparing model-based approaches with respect to the evaluation criterion

MAFRA, Kompose, ECL, GeromeSuite, and EMF Compare do not give details about
the datasets on which algorithms have been applied. The remaining systems evaluate their
algorithms over small or large test cases. The approaches mostly cite validations over pairs
of metamodels but not over models. In particular, Coma++ and MatchBox have the more
extensive benchmarks in terms of pairs and metamodel size. In the schema/ontology con-
text, the domains of tested pairs of metamodels overlap. Besides the purpose of evaluating
matching algorithms over well-known benchmarks, a reason behind the overlapping may
be the reference alignment cost. To reduce such a cost (or workload), the schema/ontology
approaches have used common test cases (i.e., e-business, real state, course information,
bibliographic metadata). Coma++, Semap, and LSD present the highest fscores. All the
revisited approaches use the classical accuracy measures, i.e., precision, recall, and fscore.

Most of approaches use test cases where experts manually determinate reference align-
ments. Only MatchBox benefits from existing software artifacts (i.e., model transforma-
tions) to automatically derive gold standards.
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3.4 Problem statement

As indicated in Section 2.4, the thesis focuses on the calculation phase, and benefits
from the work proposed in [2] to represent and visualize mappings. Because no matching
algorithm exists that is 100% accurate in calculating all mappings between all pairs of
models, it is necessary to provide means to configurate algorithms that yield precise results
as much as possible.

The previous sections mention how previous work addresses the calculation phase with
respect to the criteria defined in Section 2.4. From the comparison, we have figured the
following requirements or research issues:

1. The revisited approaches often provide M2-to-M2 algorithms coupled to a given
metametamodel (e.g., Ecore, OWL). There is a need for M2-to-M2 matching algo-
rithms covering a largest spectrum of metametamodels at once.

2. The comparison associated to the matching algorithm blocks criterion reveals that
heuristics are mostly reused in M2-to-M2 matching algorithms. Is it possible to
straightforwardly reuse these heuristics in M1-to-M1 algorithms too?

3. Table. 3.7 has more question symbols than other tables. This shows the lack of a
systematic matching evaluation, above all, in the MDE context.

Two issues reusability of matching heuristics and evaluation of customized algorithms
cover the items mentioned above. Let us elaborate on them.

3.4.1 Issues on reusability of matching heuristics

Coupling of matching heuristics to reference model Depending on the kind of a
model matching algorithm, M2-to-M2 or M1-to-M1, its heuristics are written in terms of
metametamodels or metamodels, respectively. Even though some heuristics compare very
standard model features (e.g., name), these may be no longer applicable when the inputs
conform to other reference model. To explain the problem in detail, let us recall two
related works that implement M2-to-M2 matching algorithms with GPLs: the Alignment
API [85] and AMW [2].

Fig. 3.1 shows an excerpt of a class diagram for the Alignment API. To implement
a new algorithm, one creates a new Java class (e.g., NameEqAlignment) extending the
Similarity interface. One implements a method for each type of element one wants
to compare, e.g., Class, Property, Individuals. Suppose one wants to match KM3
metamodels using the Alignment API. Besides a prior stage translating KM3 metamodels
into OWL, one would need to modify the Similarity interface and every dependent
class (NameEqAlignment, EditDistNameAlignment). One would have to add methods
comparing other types of elements relevant to KM3, e.g., Package. Thus, for each new
metametamodel one may have to modify the API. As a result, one gets an API that tends
to stray from the planned structure.

We have observed the same problem as one develops matching algorithms with general
purpose model transformation languages (e.g., ATL [7]). Listing. 3.1 shows the excerpt



44 3. A survey of matching approaches and problem statement

+classMeasure()

+propertyMeasure()

+individualMeasure()

Similarity

NameEqAlignment EditDistNameAlignment

Figure 3.1: Excerpt of the Alignment API class diagram [85]

of an ATL matching transformation proposed in [2]. The rule matches two Ecore classes.
Lines 3-5 establish the matching pattern, i.e., metamodel types (i.e., EClass) and con-
dition. Line 7 expresses the output pattern. Since the matching pattern declares Ecore
types, one can not directly use the rule to match (for example) KM3 metamodels. A way
of reusing the rule is to perform a prior translation (for example from KM3 to Ecore).
However, a translation program might fail or not exist at all.

Previous paragraphs illustrate the difficulty of reusing heuristic in M2-to-M2 matching
algorithms. It is also the case for M1-to-M1 algorithms. An ad-hoc solution is to write
the code for each new model representation. As a result, one gets multiple heuristics
encompassing the same matching logic.

Listing 3.1: ATL matching transformation excerpt
1 rule Similarity {
2 from
3 r : RightMetamodel ! EClass in RightModel

4 l : LeftMetamodel ! EClass in LeftModel

5 ( condition ) -- for example , r.name = l.name

6 to
7 e : EqualMM ! Equal
8 }

We have observed further issues about matching algorithm development. For example,
when one executes an algorithm written with the Alignment API, one does not know what
is exactly going on into the algorithm at the first glance; how do heuristics interact to
deliver mappings?, what heuristic is taking what parameter?

On the other hand, looking further into matching transformations shows:

1. Repetitive code devoted to preserve information.

2. Verbosity of existing way of combining matching transformations (e.g., Ant tasks5).

There is a need for constructs that facilitate reasoning about matching process and
factorize portions of code.

5http://wiki.eclipse.org/index.php/AM3 Ant Tasks
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3.4.2 Issues on matching algorithms evaluation

In the context of ontology (or schema) matching, there are two common ways of getting
test cases for performing evaluation. Some approaches develop user studies where experts
define reference alignment between pairs of models [92][62]. Other works use test cases
defined in third-party evaluation initiatives (such as the OAEI [22]). Every year since
2004, the OAEI develops a campaign that involves three phases: preparation, execution,
and evaluation. During the preparation phase, the OAEI defines a set of test cases to
compare matching systems and algorithms on the same basis. A given test case includes
a pair of ontologies (coming from different domains) and their corresponding reference
alignment. In the execution phase, the participants use their algorithms to match test
cases. Finally, the OAEI organizers check the results obtained in the evaluation phase.

In MDE, there is no evaluation initiative yet. Each matching approach establishes its
own test cases and evaluation frameworks. Thus, we have observed the following issues:

Not enough test cases. Whereas it is relatively easy to find out pairs of meta(models),
the availability of reference alignments is restricted. Most of the time one asks experts
for defining reference alignments from scratch. Note this may be an expensive task.

Low evaluation efficiency. Evaluation is a time-consuming, tedious, and error-prone
task.

Although ontology community has made efforts to standardize matching algorithm
evaluation, i.e., definition of test cases, methodologies, and tools. We believe that the
mentioned issues are relevant to ontology community too, in particular, the second one.
For example, the OAEI reports not to have enough time to systematically validate all the
matching results ([93], page 5).

3.5 Summary

This chapter surveyed matching approaches proposed in diverse communities: databases
systems, ontologies, and models. It gave comparative tables that position the approaches
with respect to the criteria defined in Section 2.4, i.e., input, output, matching algorithm,
and evaluation. The tables showed that the approaches have made substantial progress
on all the criteria. However, they are mostly restricted either to the schema/ontology
context or to the modeling context. In addition, most of the approaches provide M2-to-
M2 matching algorithms, a few ones support M1-to-M1 matching algorithms. Finally,
ontology community has moved a step forward with respect to MDE community in the
matter of evaluation. Ontology community has defined common dataset, methodologies,
and tools facilitating evaluation. In contrast, each MDE matching approach uses their
own datasets and ad-hoc methodologies. Thus, it is difficult to known about the real
advantages and disadvantages of these approaches. These issues draw the thesis scope.
Therefore, the thesis investigates how MDE can contribute to matching independent of
technical context (i.e., matching heuristics able to take as input OWL, Ecore metamodels,
etc.) and abstraction level (heuristics applicable to pairs of metamodels or models). We
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have called that the capability of reusing matching heuristics. Moreover, the thesis tackles
the deficiencies on (meta)model matching evaluation.



Chapter 4

The AtlanMod Matching Language

To address the issue on matching heuristic reusability, we propose a DSL-based solution
instead of a GPL-based solution. According to [14], the matching operation has been
investigated from the early 1980s. We promote the use of a DSL which gathers all the
expertise gained over the last 30 years. The DSL has to capture a significant portion
of the repetitive tasks that a expert needs to perform in order to produce an executable
matching algorithm.

A first approximation to such a DSL is the AtlanMod Matching Language (AML)
which is based on the MDE paradigm [25]. The development of AML has covered all
the phases going from decision to deployment. Section 3.4 presents the motivations to
deciding in favor of AML. In regard to the deployment, we have followed guidelines to
make AML available for use in Eclipse.org. This chapter describes the remaining phases
of the AML development, i.e., analysis, design, and implementation.

Section 2.2 mentions variants to carry out analysis, design, and implementation of
DSLs. To develop AML, we have followed an informal analysis, a formal design (i.e., con-
crete and abstract syntaxes have been specified), and a hybrid implementation technique
(i.e., embedding language and preprocessing).

4.1 Analysis: AML base concepts

Unlike hybrid matchers, whose combination of matching techniques is hard-coded, com-
posite matchers allow the selection of constituent techniques [14]. Because composite
matchers maximize reusability, we devote AML to composite matcher development. Be-
low we summarize the terminology of composite matchers in a more or less abstract form.

Definition 3. A composite matcher is an incremental process that takes two models
LeftModel and RightModel, along with optional domain knowledge (e.g., dictionaries,
parameters, reference metamodels, previously computed mappings, user inputs, etc.), and
produces mappings between the models. The matcher executes a heuristic in each step.
Each heuristic takes mappings as input and gives mappings as output.

Definition 4. A mapping links elements of LeftModel to elements of RightModel. A
mapping has a similarity value (between 0 and 1) that represents how similar the linked
elements are.

47
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Each heuristic involved in a composite matcher conforms to one of the following cate-
gories:

• Creation establishes mappings between the elements of LeftModel) and the ele-
ments of RightModel when these elements satisfy a condition. This category corre-
spond to the searching block.

• Similarity computes a similarity value for each mapping prepared by the search
heuristics. A function establishes the similarity values by comparing particular
model aspects: labels, structures, and/or data instances (the latter has sense when
the algorithm is M2-to-M2). In general, a given comparison is direct and/or indirect.
Direct means only comparison between model elements. The indirect comparison
separately examines model elements in relation to a third element from a domain
knowledge resource (e.g., a reference metamodel).

• Aggregation combines similarity values by means of an expression. An expression
often involves:

– n, the number of heuristics providing mappings.

– σ(ai, bi) similarity value computed by the heuristic i

– wi weight or importance of the heuristic i, where
∑n

i=1wi = 1

• Selection selects mappings whose similarity values satisfy a condition.

• User-defined is devoted to mapping manipulation or to functionality beyond the
heuristics mentioned above.

The listed heuristics correspond to some blocks illustrated in Fig. 2.12, a composite
matcher may need the rest of blocks (i.e., normalization, iteration, and user involvement)
as well.

4.2 Design: notations overlapping AML base con-

cepts

4.2.1 Overview

Given a composite matcher S1, the AML functional components operate as follows (see
Fig. 4.1):

• The compiler takes the S1 strategy and generates a chain of matching transfor-
mations (Type, SF, etc.) written in ATL and launched by an Ant script, each
transformation:

– Instruments a heuristic.

– Takes as input a set of models: LeftModel and RightModel, an initial equal
(mapping) model, and a set of additional models (e.g., a parameter model).



4.2. Design: notations overlapping AML base concepts 49

Left Model
Right Model

Additional Models, 

e.g., parameters

HOT 

Co-evolution

...

S1

Composite

Matcher

App.

Model

Transformation

Manual

Refinement

Accuracy

Gold standard

Legenda

Equal Model Flow

Model Transformation Flow

Other Model Flow

 Generated Model Transformation 

Model Transformation from Library

Type SF

ThresholdLevenshtein

<>

________

________

________

</>

S1

L
ib

ra
ry

Compiler

Figure 4.1: AML functional components

– And yields an equal model.

• S1 can import heuristics which are available in a library.

• A component enables the accuracy assessment of S1 by comparing a computed
equal model to a gold standard which also an equal model.

• A component allows manually refinement of equal models.

• HOTs take computed equal models and generate ATL transformations. Each HOT
addresses an application domain, e.g., co-evolution.

The next sections describe in detail the artifacts manipulated by the functional AML
components.

4.2.2 Parameter model

A composite matcher can take as input parameter models which are means for customiz-
ing. Thresholds or dictionaries (for example) can be indicated as parameters. Parameter
models conform to the parameter metamodel given in Listing. 4.1. The main metamodel
concepts are ParameterList and Parameter, a parameter can be a number or a string.
Other kinds of parameters can be indicated by extending the Parameter concept.

Listing 4.1: Excerpt of the parameter metamodel
1 class ParameterList {
2 reference parameters [ ∗ ] container : Parameter oppositeOf list ;
3 }
4 abstract class Parameter {
5 reference list : ParameterList oppositeOf parameters ;
6 attribute name : S t r ing ;
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7 }
8 abstract class NumericParameter extends Parameter {}
9 class RealParameter extends NumericParameter {
10 attribute value : Double ;
11 }
12 class IntegerParameter extends NumericParameter {
13 attribute value : I n t eg e r ;
14 }
15 class StringParameter extends Parameter {
16 attribute value : S t r ing ;
17 }

4.2.3 Equal (mapping) model

Fig. 4.1 depicts how equal models interact with matching transformations (purple lines).
Transformations refine equal models in a stepwise fashion.

An equal model conforms to the equal metamodel1 illustrated in Listing 4.2. Its
main concept is Equal which describes a simple mapping. Equal refers to an element
of LeftModel and an element of RightModel by means of the left and right references,
respectively. Equal has a similarity value.

Listing 4.2: Excerpt of the equal (mapping) metamodel
1 class Equal extends WLink {
2 attribute similarity : Double ;
3 reference left container : LeftElement ;
4 reference right container : RightElement ;
5 }
6 abstract class ReferredElement extends WLinkEnd {}
7 class LeftElement extends ReferredElement {}
8 class RightElement extends ReferredElement {}
9 class Association extends WAssociation {}

To represent a mapping with cardinality different to 1:1, for example m:1, we create
a set of Equal elements referencing the same RightElement and differing LeftElements.
Then, we associate such Equal elements by using an Association. Moreover, we can
extend Equal or WLink to describe further complex mappings.

4.2.4 AML composite matcher

The compiler takes as input files expressing composite matchers in the textual concrete
syntax of the AML language. This section presents the syntax of the language based
on M2-to-M2 matching examples. Appendix A and Appendix B give the abstract and
concrete syntaxes of AML.

4.2.4.1 Overall structure of composite matcher definition

Composite matcher definition form strategies. A strategy contains an import section, a set
of matching methods (going from creation to selection), a models block, and a modelsFlow
block.

1This metamodel extends concepts of the core weaving metamodel [2].
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Listing 4.3: Overall structure of an AML matcher
1 strategy S1 {
2 imports SimilarityFlooding ;
3 create TypeClass ( ) { . . . }
4 . . .
5 se l Threshold ( ) { . . . }
6 models { . . . }
7 modelsFlow { . . . }
8 }

A strategy starts with the keyword strategy followed by the name of the matcher
(e.g., S1). The keyword import declares AML matchers (e.g., SimilarityFlooding)
intended to be fully invoked from the modelsFlow block. The next paragraphs explain the
rest of AML notations.

4.2.4.2 Matching methods

Matching method is the basic construct in AML. It overlaps the notion of heuristic given
in Section 4.1, therefore, a matching method may specify creation, similarity, aggregation,
selection or user-defined functionality.

A matching method starts with the keyword create, sim, aggr, sel, or uses, followed
by a name, a list of models2, a list of ATL and Java libraries to be used in the method,
and a body. In general, the body can include an inpattern and a set of variables. However,
the body contains specificities associated to each kind of matching method.

Create method establishes correspondences between elements of LeftModel and Right-

Model given a condition. The condition begins by the keyword when. To refer to left and
right elements, one can use the constructs thisLeft and thisRight, respectively.

Listing. 4.4 shows a create method called TypeClass. It creates correspondences
between M2-to-M2 elements having the same type, i.e., Class.

Listing 4.4: Type AML method
1 create TypeClass ( ) {
2 when
3 thisLeft . isClass and
4 thisRight . isClass
5 }

If a creation method is devoted to M1-to-M1 matching, then an equal pattern is neces-
sary. An equal pattern allows the declaration of types via the keywords leftType and
rightType. Listing. 6.8 (line 5) gives a concrete example.

Sim method manipulates the similarity values of correspondences. OCL expressions
indicate how to obtain such values. OCL expression is followed by the keyword is.

Listing. 4.5 illustrates the sim method Levenshtein. Similarity values are computed
by the helper simStrings contained in the ATL library Strings. The helper internally
calls an edit-distance function provided by the SimMetrics Java API [94]. The keywords
ATLLibrary and JavaLibrary indicate the helper and Java API used by Levenshtein.

2Note that this list excludes the mapping model manipulated by the method
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Listing 4.5: Levenshtein AML method
1 sim Levenshtein ( )
2 ATLLibraries{
3 ( name=’Strings ’ , path=’../ AMLLibrary/ATL/Helpers ’ )
4 }
5 JavaLibraries{
6 ( name=’match.SimmetricsSimilarity ’ , path=’../ AMLLibrary/Jars/simmetrics.jar’ )
7 }
8 {
9 i s thisLeft . name . simStrings ( thisRight . name )
10 }

Listing. 4.6 depicts a more complex sim method. This method illustrates two aspects:
list of input models and variables. Firstly, line 1 declares the input model list that contains
a mapping model (i.e., prop). Note that prop is additional to the mapping model the
method is supposed to manipulate. This mapping model remains implicit in the method
declaration but has to specified in the modelsFlow block. Secondly, Lines 2-5 indicate a
variable followed by the keyword using.

Listing 4.6: SF AML method
1 sim SF ( prop : EqualModel( m1 : Metametamodel , m2 : Metametamodel ) ) {
2 using {
3 propEdges : Sequence ( OclAny ) = thisModule . propMap . get ( thisEqual . xmiIDs_Equal ) ;
4 }
5 i s
6 i f propEdges . oclIsUndefined ( ) then
7 thisSim
8 else
9 i f propEdges . isEmpty ( ) then
10 thisSim
11 else
12 thisSim
13 +
14 propEdges

15 −>collect ( e | e . propagation ∗ thisModule . mapEqual . get ( e . outgoingLink )
16 −>first ( ) . similarity )
17 −>sum ( )
18 endif
19 endif
20 }

Sel method chooses correspondences that satisfy a condition. The condition starts
with the keyword when. The condition often involves the expression thisSim that refers
to similarity values.

Listing. 4.7 shows a method that select mappings with a similarity value higher than
a given threshold. Line 2 specifies this condition.

Listing 4.7: Threshold
1 se l Threshold ( ) {
2 when thisSim > 0 .7
3 }

Aggr method indicates a function of aggregation of similarity values. The function is
an OCL expression (often) including the following constructs: Summation, thisSim, and
thisWeight.
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Listing. 4.8 illustrates an aggr method. It computes a weighted sum of similarity
values of mapping models. The method needs relative weights associated to input mapping
models. Weights and mapping models are indicated in the method invocation (see line 7).
The method declaration, in turn, shows how the Summation expression adds the results of
the multiplication of similarity values to weights, denoted as thisSim thisWeight (lines
1-3).

Listing 4.8: Weighted Sum
1 aggr WeightedSum ( ) {
2 i s Summation( thisSim ∗ thisWeight )
3 }
4

5 modelsFlow {
6 . . .
7 weighted1 = WeightedSum [ 0 . 5 : lev , 0 . 5 : outSF ]
8 . . .
9 }

User-defined method has a signature but not a body. The reason is that user-defined
functionality is implemented by means of an external ATL transformation. Listing. 4.9
depicts an user-defined method.

Listing 4.9: Propagation
1 uses Propagation [ IN : EqualModel( m1 : Metametamodel , m2 : Metametamodel ) ] ( )

4.2.4.3 Models block

This section specifies the models taken as input by a composite matcher. Three kinds of
models are possible: equal (or mapping) model, weaving model, and input model.

An input model declaration is composed of a name and a metamodel, for example,
m1 : ’%EMF’. As show in Listing. 4.10, equal and weaving model declarations are more
elaborated. To specify an equal model, one uses the keyword EqualModel followed by the
declaration of right and left input models (line 2). A weaving model declaration, in turn,
starts with the keywork WeavingModel following by an AMW core extension and a list of
woven input models. A difference between an equal model and a weaving model is that
the former links two models and the latter links n models.

Listing 4.10: Excerpt of a models block
1 models {
2 map : EqualModel( m1 : ’%EMF’ , m2 : ’%EMF’ )
3 inst : WeavingModel( Trace ) ( m1model : m1 , m2model : m2 )
4 . . .
5 }

4.2.4.4 ModelsFlow block

This block allows us to declare how all kinds of models interact with matching methods.
It consists of matching method invocations.
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An invocation is comprised of an output mapping model, a method name, a list of
mapping models, and an optional list of additional models. Our example respectively
illustrates all these parts: instances, ClassMappingByData, (inst), and [tp].

Listing 4.11: Matching method invocation
1 instances = ClassMappingByData [ tp ] ( inst )

In our example, parenthesis contain the list of additional models. They can be map-
ping, weaving, or input models. This list has to overlap the list of models established by
the method signature.

Brackets, in turn, contain the list of mapping models that a method has to manipulate.
This list is quite flexible because one can directly refer to a mapping model or to a full
method invocation. The list of mapping models for an aggr method differs from others.
Firstly, it contains more than one mapping model. Secondly, it associates a weight to
each mapping model. Listing. 4.12 shows the WeightedSum method taking as input the
mapping models lev and outSF, and their corresponding weights, i.e., 0.5–0.5.

Listing 4.12: Aggr method invocation
1 weighted1 = WeightedSum [ 0 . 5 : lev , 0 . 5 : outSF ]

As a final point, we want to spell out that it is possible to invoke an entire composite
matcher from a modelsFlow block. One refers to the matcher by using its name. The
lists of mapping models and additional models contain no elements. The compiler infers
them if the modelsFlow block elements overlap the matcher definitions.

For illustration purposes, Listing. 4.13 shows the SimilarityFlooding matcher, and
Listing. 4.14 the way of calling it from S1 (line 10).

Listing 4.13: Similarity Flooding as an AML algorithm
1 strategy SimilarityFlooding {
2 models { . . . }
3 modelsFlow {
4 filtered = Threshold [ inSF ]
5 prop = Propagation [ filtered ]
6 sf = SF [ filtered ] ( prop )
7 outSF = Normalization [ sf ]
8 }
9 }

Listing 4.14: The S1 strategy calling the similarity flooding algorithm in a single line
1 strategy S1 {
2 imports SimilarityFlooding ;
3 models { . . . }
4 modelsFlow {
5 tp = TypeClass [ map ]
6 typeRef = TypeReference [ map ]
7 typeAtt = TypeAttribute [ map ]
8 merged = Merge [ 1 . 0 : tp , 1 . 0 : typeRef , 1 . 0 : typeAtt ]
9 inSF = Levenshtein [ merged ]
10 outSF = SimilarityFlooding [ ]
11 instances = ClassMappingByData [ tp ] ( inst )
12 filInst = ThresholdBySample [ instances ]
13 weighted1 = WeightedSum [ 0 . 5 : lev , 0 . 5 : outSF ]
14 thres2 = Threshold [ weighted1 ]
15 weighted2 = WeightedSum [ 0 . 5 : thres2 , 0 . 5 : filInst ]
16 result = BothMaxSim [ weighted2 ]
17 }
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4.2.4.5 Other AML constructs

Besides thisLeft, thisRight, thisSim, Summation and thisWeight, AML provides the
following notations:

• thisEqual and thisEqualModel. Whereas the former refers to the correspondences
contained by a mapping model, the latter alludes to a full mapping model. List-
ing. 4.18 gives examples of these notations.

• thisInstances recovers M1-to-M1 mappings whose linked elements conform to the
metaelements linked by an M2-to-M2 mapping model. See Listing. 4.17 for further
explanations.

Let us present the main differences between AML methods and their corresponding
ATL transformations:

1. AML constructs hide source and target patterns that respectively specify: a) types
of conformance of matching models, and b) mapping metamodel concepts. We can
refer to them using the constructs thisLeft, thisRight, and thisEqual. The
developer uses thisLeft to refer to elements of LeftModel, thisRight to relate to
elements of RightModel, and thisEqual to refer to mapping elements.

2. Exceptions to the 1.a item follow: 1) M1-to-M1 matching algorithms require creation
methods including source patterns, 2) if besides mapping models a rule takes as input
additional models then the rule requires source pattern.

3. In the AML versions only remain conditions and functions modifying similarity
values.

4. AML provides notations that factorize code, e.g., Summation, thisWeight, etc.

At last point, Table. 4.1 illustrates how the analysis concepts given in Section 4.1
overlap implementation units and syntax defined in the design phase.

Concept Notation Implementation unit
Composite matcher, i.e., 
matching strategy, 
matching algorithm modelsFlow Transformation chain, i.e., Ant script

Heuristic, technique
method (create, sim, aggr, sel, 
uses) ATL Transformation

Mapping thisEqualModel Equal model
Correspondence thisEqual Equal element

Table 4.1: Overlapping between analysis concepts, notations, and implementation units
of AML

4.2.5 An AML M2-to-M2 matching algorithm

This subsection presents how to use the main constructs of AML by means of a full com-
posite matcher. The matcher invokes methods that inspect diverse metamodel aspects,
i.e., labels, structure, and data instances. Given the methods, we have configured a mod-

elsFlow block that produces the more accurate correspondences for an illustrating pair
of metamodels, i.e., (UML class diagram, SQL-DDL). Fig. 4.2(a) and Fig. 4.2(b) represent
the concepts of each metamodel: Class, Table, etc.
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4.2.5.1 Models block

Listing. 4.15 shows the S1 models block which takes two models as input; map and
inst. Map is an empty M2-to-M2 mapping model and inst is an M1-to-M1 mapping
model. Map refers to the illustrating pair of metamodels. Inst refers to models con-
forming to the metamodels; LeftModel and RightModel conform to UML class diagram
and SQL-DDL, correspondingly. Fig. 4.3 gives the inst mapping model displayed in
the AMW GUI. Its LeftModel and RightModel represent the domain of online shop-
ping. LeftModel contains (for instance) the Catalog and Product elements conforming
to Class. RightModel has within category and item conforming to Table. The red
rectangle points an M1-to-M1 mapping linking Item and item. The inst mapping model
has been computed by the AMW traceability use case3. This computation is out of the
example scope. We focus now on M2-to-M2 mapping discovery by using, among other
information, M1-to-M1 mappings.

Listing 4.15: Models section of an illustrating strategy
1 strategy S1 {
2 models {
3 map : EqualModel( m1 : ’%EMF’ , m2 : ’%EMF’ )
4 inst : WeavingModel( Trace ) ( m1model : m1 , m2model : m2 )
5 }
6 . . .
7 }

4.2.5.2 ModelsFlow block

Listing. 4.16 illustrates the S1 of modelsFlow block. Every method (except TypeClass,
TypeReference, and TypeAttribute) consumes mapping models produced during the
strategy execution.

4.2.5.3 Matching methods

Below we discuss the methods used in S1 which have not been presented in Section 4.2.4.
Each matching method has an associated code listing. Given the illustrating pair of
metamodels, we depict the output mapping models of some methods by means of figures.
For the sake of readability these figures contain a few correspondences. Each figure shows
LeftModel and RightModel as well as the mappings between their elements. Dotted lines
represent mappings and their respective similarity values.

Listing 4.16: ModelsFlow section of an illustrating strategy
1 modelsFlow {
2 tp = TypeClass [ map2 ]
3 typeRef = TypeReference [ map2 ]
4 typeAtt = TypeAttribute [ map2 ]
5 merged = Merge [ 1 . 0 : tp , 1 . 0 : typeRef , 1 . 0 : typeAtt ]
6 inSF = Levenshtein [ merged ]
7 filtered = Threshold [ inSF ]
8 prop = Propagation [ filtered ]
9 sf = SF [ lev ] ( prop )
10 outSF = Normalization [ sf ]

3http://www.eclipse.org/gmt/amw/usecases/traceability/
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Figure 4.3: Input weaving model
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11 instances = ClassMappingByData [ tp ] ( inst )
12 filInst = ThresholdBySample [ instances ]
13 weighted1 = WeightedSum [ 0 . 5 : lev , 0 . 5 : outSF ]
14 thres2 = Threshold [ weighted1 ]
15 weighted2 = WeightedSum [ 0 . 5 : thres2 , 0 . 5 : filInst ]
16 result = BothMaxSim [ weighted2 ]
17 }

TypeClass, TypeReference, and TypeAttribute create a correspondence for each
pair of model elements having the same type, i.e., Class, Reference, or Attribute. List-
ing. 4.4 shows how TypeClass looks like. The Merge method puts together the mappings
returned by the other heuristics. We have instrumented it by means of an aggregation con-
struct. Fig. 4.4 shows the output mapping model of Merge. Note that the correspondences
similarity value is 0.

SimilarityFlooding (Listing. 4.16, lines 7-10) propagates previously computed sim-
ilarity values. It is inspired by the Similarity Flooding algorithm [77]. We have imple-
mented this algorithm by means of three AML heuristics (Threshold, SF, and Normal-

ization) and an external ATL transformation (Propagation). Below we describe each
of them:

1. Threshold, its purpose is to filter mappings before the propagation. We will give
more details about Threshold later on.

2. Propagation creates an association (i.e., a PropagationEdge) for each pair of map-
pings (m1 and m2 ) whose linked elements are related. For example, Propagation
associates the (DataType, Database) mapping to (name, name) because DataType
contains name, and Database contains name as well.

3. SF propagates a similarity value from m1 to m2 as indicated by the Propaga-

tionEdges.

4. Normalization makes similarity values conform to the range [0,1]. In the example,
SF propagates the similarity values given by Levenshtein. Fig. 4.5 provides the
Normalization output mapping model. The red line indicates the propagation
from (name, name) to (DataType, Database).
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ClassMappingByData (Listing. 4.17) propagates similarity values from M1-to-M1 map-
pings to M2-to-M2 mappings. We use the thisInstances primitive (line 3) to recover,
for each M2-to-M2 mapping, e.g., linking the concepts a and b, the M1-to-M1 mappings
whose linked elements conform to a and b. ClassMappingByData assigns 1 to an M2-
to-M2 mapping if there exists at least a corresponding M1-to-M1 mapping, otherwise
it assigns 0. The ThresholdBySample method filters the M2-to-M2 mappings satisfying
the latter case. Fig. 4.6 gives the ThresholdBySample output mapping model; only two
correspondences remain. The rationale is that the M1-to-M1 mapping model (i.e., inst)
only links elements conforming to (Class, Table) and (Property, Column).

Listing 4.17: Instances
1 sim ClassMappingByData ( mapModel : WeavingModel( Trace ) ( leftModel : m1 , rightModel : m2 ) )
2 {
3 using {
4 mappingsModel : Trace ! Link = Trace ! Link . allInstancesFrom ( ’mapModel ’ ) ;
5 }
6 i s i f thisInstances ( mappingsModel )−>notEmpty ( ) then
7 1
8 else
9 0
10 endif
11 }

BothMaxSim (Listing. 4.18) selects a correspondence (a, b) if its similarity value is
the highest among the values of other correspondences linking either a or b. We have
implemented this heuristic by means of two hashmaps: equalMaxSimByLeft and equal-

MaxSimByRight. In these hashmaps, LeftModel and RightModel elements are keys and
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correspondences with the highest similarity scores are values. BothMaxSim has been in-
spired by [62]. Fig. 4.7 illustrates the BothMaxSim output mapping model. This result
contains a good number of correct correspondences. However, the algorithm introduces a
false negative (DataType, Database).

Listing 4.18: BothMaxSim
1 se l BothMaxSim ( )
2 {
3 when
4 thisEqualModel . equalMaxSimByLeft . get ( thisLeft ) . includes ( thisEqual )
5 and
6 thisEqualModel . equalMaxSimByRight . get ( thisRight ) . includes ( thisEqual )
7 }

This example has shown how AML matching algorithms calculate mappings. In gen-
eral, AML matching algorithms populate and prune mapping models in a stepwise manner.
The next subsection discusses an important decision taken during the AML design.

4.2.6 Compilation strategy: graphs versus models

We want to elaborate on the compilation of create methods because it is related to the
first issue addressed by our thesis. As stated in Section 4.2, create methods use the
thisLeft and thisRight constructs to hide (at design time) metamodel types. Thus, a
given AML create rule may remain useful to match many pairs of models. Even though
these constructs solve the type declaration problem at design time, another solution is
required at compilation time, that is, when AML create rules have to be translated into
executable ATL transformations. We have experimented two solutions to compile this
kind of rules:
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1. Graph-based solution translates a create rule into an ATL transformation writ-
ten in terms of a graph metamodel. In other words, the solution translates the
thisLeft and thisRight constructs into a source pattern involving graph meta-
model concepts, e.g., Node, Edge, etc. Besides ATL transformation generation, the
solution implies two additional steps: pre-translation and translation. The pre-
translation step generates ATL code devoted to make models to be conforming to
the graph metamodel. The translation step executes such a code.

2. Model-based solution aims at keeping the matching models as they are. The
solution varies its modus operandi with respect to the kind of matching algorithm.
Thus, if one has an M2-to-M2 algorithm, the compiler automatically translates a
create rule into an ATL rule whose source pattern has a metametamodel type;
EModelElement for Ecore metamodels or ModelElement for KM3 metamodels. On
the other hand, if one wants an M1-to-M1 matching algorithm, then one has to
develop a create method for each desired pair of metamodel types. The compiler
translates each rule into an ATL transformation containing the indicated types.

Let us discuss the implications of each solution. Suppose the user wants to developed
an AML create rule called MR.

Graph-based solution

1. Source pattern specification is not necessary.

2. The MR rule is compiled once and can be reused many times.

3. If a create condition is not specified, the ATL engine performs a Cartesian product
between the elements of LeftModel and RightModel conforming to Node.

4. The pre-translation and translation steps have to be performed for each new pair
(LeftModel, RightModel) taken by MR.

5. If one wants an external transformation to interact with the generated ATL trans-
formation, the former has to be written in terms of the graph metamodel.

Model-based solution Its implications depends on the kind of matching algorithm.
Thus, the 3 first hints of the graph-based solution apply to the M2-to-M2 matching
algorithms too. With regard to M1-to-M1 matching algorithms, the 3 first hints vary as
follows:

1. The user has to develop create rules specifying source patterns.

2. The MR rule is compiled every time its source pattern changes.

3. Since a source pattern is specified, the ATL engine performs a targeted Cartesian
product. One can define a create condition to further constraint the Cartesian
product. Model-based creation conditions look simpler than graph-based ones.
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The 2 last hints of the graph-based solution have nothing to do with the model-based
solution; Prior (pre)translation of matching models is not necessary and external trans-
formations are written in terms of the metamodels of LeftModel and RightModel.

We have tested the performance of two matching algorithms which have been generated
by the compilation strategies mentioned above. The algorithms have matched models
going from 4 to 250 elements. Some runtimes are:

• The pre-translation and translation steps took 0.19 (s) for small models and 5 (s)
for large models.

• The generation of the ATL matching transformations took the same time.

• The graph-based solution generated low performance ATL matching transforma-
tions. For example, this solution generated a linguistic-based similarity transfor-
mation which took 755 (s) to match large models. In contrast, the model-based
solution generated a corresponding transformation with a runtime of 75 (s).

Based on the numerical results and observations over the AML and ATL code, we
have selected the model-based solution. In a nutshell, its advantages over the graph-
based solution are:

• The compilation of AML rules is less expensive than the pre-translation and trans-
lation steps.

• This solution increases the performance of generated matching algorithms.

• The create conditions and external transformations are easier to develop and to
understand.

We see only a disadvantage in the model-based solution. It comes out if the user
wants an M1-to-M1 matching algorithm; he/she has to develop create rules indicating
metamodel types.

Given the design specification of AML, the next section presents the language from
the implementation point of view.

4.3 Implementation on top of the AmmA suite

4.3.1 Architecture

The previous section has presented AML from a functional point of view. Here we describe
how the language has been implemented on top of the AmmA suite (i.e., ATL, TCS, KM3,
and AMW), EMF, and the Eclipse platform. Fig. 4.8 shows the AML tool components
(white blocks), a component description follows.

4.3.1.1 Wizard

The wizard component enables the creation of AML projects, its extends an Eclipse
wizard. Fig. 4.9 shows a screenshot of the AML project wizard.
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Figure 4.10: AML editor

4.3.1.2 Editor

As its name indicates, this component allows the edition of AML programs. AML an-
notates the programs by adding markers to indicate compilation errors. Moreover, AML
reports such errors in the Eclipse Problems view. We have implemented the AML concrete
syntax by using TCS [19]. TCS generates a Java parser that converts an AML program
from text to model format and vice versa. The parser detects syntactical errors and an
ATL transformation detects semantical ones.

Fig. 4.10 shows an empty AML program in the editor. Note that the keywords are not
highlighted (e.g., modelsFlow). Even tough TCS generates Java code that highlights key
words, the publicly available AML version does not include this particular functionality.
The reason is that the generated Java code is not compatible with ATL 3.0 (the version
below of AML).

4.3.1.3 Compiler

This component takes a given AML program and performs the following tasks:

1. Merge imported code to the AML program declarations. One can import AML
matching rules or full strategies.

2. Generate an ATL matching transformation for each AML matching rule.
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3. Translate the modelsFlow section into an Ant script.

4. Generate a properties file responsible for the Ant script parameterization. That is,
the file indicates full paths associated to input models of the AML program.

We have devoted a HOT to each mentioned task. In particular, the second task
needs Java code because the associated HOT yields one model containing all the ATL
transformations together. The Java code splits the model in a set of small models (one
for each ATL matching transformation). Then, the ATL and XML extractors (available
in the AmmA suite) generate the ATL modules and Ant scripts in a textual format.

4.3.1.4 Metamodel importer

This component brings metamodels into agreement with Ecore or KM3. The compo-
nent internally consists of ATL transformations between a pivot metamodel (i.e., Ecore
or KM3) and other technical spaces (i.e., MOF, UML). These transformations have been
contributed by the m2m community [95]. Notably, the metamodel importer invokes the
AmmA-based EMFTriple tool [24] to translate OWL ontologies into Ecore metamodels
and vice versa. If the users want a technical space not currently supported by the compo-
nent, they need to develop a transformation. If there exist a transformation between the
new technical space (e.g., SQL-DDL) and one of the technical spaces currently supported
(e.g., OWL), users may have translation for free; instead of writing the transformation
SQL-DDL to Ecore, they need to execute a chain of existing transformations, e.g., SQL-
DDL to OWL and OWL to Ecore. Finally, if there is no transformation or transformation
chain, one uses the extension points of the metamodel importer component (see Sec-
tion 4.3.2.3).

4.3.1.5 Menus

This component provides three functionalities:

1. Create empty mapping models (often required by AML programs).

2. Create AMW properties files needed to display mapping models in the AMW GUI.

3. Compute matching metrics.

We have implemented the functionalities mentioned above by using Java. Moreover, the
third functionality requires ATL transformations, among them those contributed by Eric
Vépa in the Table2TabularHTML use case4. Fig. 4.11 shows the first menu functionality
which is available as a mapping model is selected.

4.3.1.6 Charts

The chart component allows drawing charts from matching results. The first AML version
offers line charts, bar charts, and area charts. The chart component consists of a set of

4http://www.eclipse.org/m2m/atl/atlTransformations/
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Figure 4.11: AML menus
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ATL transformations taking matching results as input and generating spreadsheet files
as output. Once the component has generated a spreadsheet (containing only numerical
data), the user has to draw the desired chart by means of (for example) Excel wizards.

4.3.1.7 The AML library

This component is actually an Eclipse project containing artifacts usable for building new
matching algorithms:

• The match package contains Java code called from AML algorithms.

• The AML folder includes the AMLBasis module that declares AML methods. By
default the compiler links such methods to every AML algorithm. As a consequence,
developers can invoke them from a modelsFlow section without any additional dec-
laration.

• The ATL folder has within ATL code arranged in three folders:

– EcoreMetametamodel/KM3Metametamodel have transformations matching
metamodels, their functionality go beyond the AML methods. The separa-
tion of transformations in two folders is to indicate that the transformations
match either Ecore or KM3 metamodels. Note that the KM3Metametamodel
folder is a mirror of the EcoreMetametamodel folder.

– The Helper folder contains ATL helpers invoked from AML methods. The
helpers mostly factorize matching functionality or decouple the access to
metametamodel properties.

– The HOT folder includes HOTs that translate mappings into ATL transfor-
mations for a concrete application domain (e.g., co-evolution).

4.3.2 Extension points

4.3.2.1 Compiler

Developers can extend the compiler to generate code different to ATL and Ant from AML
programs. They have to extend the AmlCompiler class, and implement new HOTs.

4.3.2.2 The AML Library

The library provides extension points related to each kind of contained artifact:

Java To add Java functionality that can be called from an AML method, developers
need to create a class extending the LibExtension interface, and then indicate its use in
the method JavaLibraries section.

AML Besides the AMLBasis module, developers may want to have more AML libraries.
If they want the compiler to link such libraries, it is necessary to modify the AmlBuild-

Visitor#getLibraries method.
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ATL The addition of further external ATL M2-to-M2 transformations is possible. De-
velopers just need to implement the Ecore transformations, and execute the RefactorATL-
TransformationEcoretoKM3 transformation. The latter automatically generate the mir-
ror KM3 transformations.

If a helper is needed for an AML method, developers simply need to create an ATL
library (storing the helper), and indicate its use in the method ATLLibraries section.

In addition to co-evolution transformations, it is certain that other kinds of transfor-
mation (associated to other application domains) can be derived from mappings. To do
that, it is needed:

1. develop an ATL transformation translating simple mappings into complex. An
example is the ConceptualLink transformation used in the co-evolution use case.

2. implement a HOT encoding ATL patterns for each kind of complex mapping. The
HOT has to superimpose HOT match.atl.

3. modify the MatchingMethod-HOT.properties which relates the output files of steps
1 and 2.

4.3.2.3 Metamodel importer

Besides the pivot transformations suggested in Section 4.3.1.4, a way to match metamodels
not conforming to KM3 or Ecore, for example OWL, is the following:

• to implement create methods indicating the types of interest, e.g., Class, Indi-
viduals, Relation in the case of OWL.

• to build matching algorithms using the new create methods.

4.3.3 The AML tool in numbers

Fig. 4.12 and Fig. 4.135 show the AML source code from two different points of view: 1)
what languages have been used to implement the code?, and 2) what has been the effort
invested in each component? Whilst the use of Java is moderate, i.e., 18%, Fig. 4.12
shows an extensive use of the AmmA languages, i.e., 82%. In particular, the ATL source
code corresponds to 66% of the total. Fig. 4.12 shows the percentage of AML source
code, i.e., 3%. It corresponds to the library of heuristics and the algorithms described
Section 4.4.4 and Section 5.5, respectively. Instead of showing a poor use of AML, this
percentage reveals that AML factorizes a considerable portion of ATL code. While we
have implemented more than 20 heuristics in 273 lines with AML, we have implemented
10 user-defined heuristics in 3516 ATL lines6. As explained in Section 4.2.4, the difference
between an AML heuristic and its corresponding ATL transformation is that the latter
needs additional rules to work on. AML keeps such rules implicit.

5The pie does not depict the percentage of the metamodel importer because the component uses
transformations mostly contributed by the m2m community.

6This value includes the heuristics described in Section 4.4.4 and the transformations of the co-
evolution use case Section 6.1.
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Figure 4.12: Distribution of AML source code (languages point of view)
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Figure 4.13: Distribution of AML source code (components point of view)

Fig. 4.13 depicts that most of the efforts have been devoted to implement the compiler
and the AML Library components. Especially, we have dedicated 4310 lines to the com-
piler. We believe that the effort worth because users may develop model transformation-
based matching algorithms with a lowest effort than before.

4.4 AML library

Table. 4.2 lists the implemented AML matching heuristics. The library contains 24 heuris-
tics embedding creation, similarity, selection, aggregation, and user-defined logic. All of
them can be used in M2-to-M2 matching algorithms. Linguistic-based, selection, and ag-
gregation heuristics can be used in M1-to-M1 matching algorithms. Some heuristics listed
in Table. 4.2 have been described in Section 4.2.5, the rest is explained here.

Linguistic-based Constraint-based Instance-based Structure-based
TypeClass Wordnet TypeElement ClassMappingByData Statistics ThresholdMaxSim WeightedAverage
TypeReference MSR Multiplicity AttributeValues SimilarityFlooding BothMaxSim Merge
TypeAttribute Levenshtein SetLinks Threshold
TypeDatatype Name
TypeStrF
TypeEnumeration
TypeEnumLiteral

CreationByFullNameAndType and 
CreationAddedDeleted

8 4 2 3 2 3 2

Similarity
Creation Selection Aggregation
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Table 4.2: AML matching heuristic library

4.4.1 Creation heuristics

TypeStrF, TypeEnumeration, and TypeEnumLiteral create mappings between two
metamodel elements conforming to a given metametamodel type, i.e., StructuralFea-
ture, Enumeration, or EnumLiteral.

Listing 4.19: TypeStrF, TypeEnumeration, and TypeEnumLiteral
1 create TypeStrF ( )
2 {
3 when
4 thisLeft . isStrFeature and
5 thisRight . isStrFeature
6 }
7

8 create TypeEnumeration ( )
9 {
10 when
11 thisLeft . isEnumeration and
12 thisRight . isEnumeration
13 }
14

15 create TypeEnumLiteral ( )
16 {
17 when
18 thisLeft . isEnumLiteral and
19 thisRight . isEnumLiteral
20 }

4.4.2 Similarity heuristics

4.4.2.1 Linguistic-based heuristics

Name implements the string equality heuristic described in Section 2.4.3.2.

Listing 4.20: Name
1 sim Name ( )
2 {
3 i s
4 i f thisLeft . name = thisRight . name then
5 1 .0
6 else
7 0
8 endif
9 }

Measures of Semantic Relatedness (MSR) We have developed AML heuristics
exploiting MSR. This is a computational mean for extracting relatedness between any
two labels based on a large text corpora, e.g., Google or Wikipedia [96]. An effort to
centralize and unify MSR technology is a publicly available Web server7. To request the
server for a specific relateness measure, it is necessary to make a http request passing the
following parameters:

7http://cwl-projects.cogsci.rpi.edu/msr/
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• msr - the name of the text corpora one would like to use.

• terms - list of terms to be compared to terms2.

• terms2 - if terms2 is not specified, terms2 = terms.

The http result is a page containing a link to a progress text file. This file may be
requested at any time at the provided address. It will tell both, the current progress of
the batch, and the address of a (partial or completed) spreadsheet file. The spreadsheet
file has 3 columns: term1, term2, and relateness score.

Our MSR implementation has two matching transformations: an user-defined one
(called RequestMSR) and a similarity method (named MSR). RequestMSR sends the http
request. The user has to recover the spreadsheet file from the address stored in the
progress text file. Then, he/she has to execute the AML MSR similarity method using
LeftModel, RightModel and spreadsheet files as input. Listing. 4.21 presents the code
of RequestMSR and MSR, we explain their functionality below.

Listing 4.21: RequestMSR and MSR
1 uses RequestMSR [ equalM : EqualModel( leftM : Metametamodel , rightM : Metametamodel ) ] ( paramM :

↪→ParameterMM )
2 JavaLibraries {
3 ( name = ’match.MSRSimilarity ’ , path=’’ )
4 }
5

6 sim MSR ( MSRExcel : SpreadsheetMLSimplified , paramM : ParameterMM )
7 ATLLibraries {( name = ’SpreadsheetMSR ’ , path=’../ AMLLibrary/ATL/Helpers/SpreadsheetMSR ’ ) }
8 {
9 i s
10 thisModule . mapExcelResult . get (
11 thisLeft . name . leftProperTerm . buildTerm (
12 thisRight . name . rightProperTerm
13 )
14 )
15 }

RequestMSR builds terms and terms2 containing the labels of LeftModel and
RightModel. RequestMSR sends the lists to the MSRSimilarity Java class. MSRSimi-

larity, in turn, creates and copies the http request in the console. Then, the user has
to copy and send the request to the MSR server. Notice RequestMSR takes as input the
paramM model which indicates the selected msr (e.g. Google) and normalization parame-
ters. The normalization consists of tokenizing labels, and filtering distractor tokens. Thus,
paramM specifies a distractor list and tokenizers suitable for LeftModel and RightModel.
We have implemented tokenizers that break strings into tokens. Each tokenizer specifies
a delimiter character that serves to separate the string:

1. HyphenTokenizer, a hyphen (-).

2. UnderScoreTokenizer, an underscore ( ).

3. UpperCaseTokenizer, an uppercase character [A-Z].

To create a new tokenizer it is necessary to implement the Tokenizer interface. Sec-
tion 6.2.3.1 presents an example of paramM, this model indicates the tokenizers and dis-
tractors used to match a concrete pair of models.
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Once we have the spreadsheet file returned by the MSR server, a transformation
translates it into XMI8. The AML MSR similarity method takes the XMI file, the paramM

model, LeftModel and RightModel as input. For each pair of model elements, the
method searches the corresponding similarity value in the XMI file. The method applies
tokenizers and distractors again.

WordNet uses the Java API for WordNet Searching (JAWS)9. To compare two labels,
the AML heuristic asks JAWS for retrieving their corresponding synsets from the WordNet
database. A synset is a set of synonyms considered semantically equivalent. Having the
synsets, the AML heuristic calculates a Jaccard distance [98]. Like in MSR, we normalize
the labels prior to the comparison.

Listing 4.22: WordNet
1 sim WordNet ( paramM : ParameterMM )
2 ATLLibraries {( name =’ProperTerm ’ ,path=’../ AMLLibrary/ATL/Helpers/’ ) }
3 JavaLibraries {( name = ’match.JWISimilarity ,match.ProperTermSimilarity ’ ,
4 path=’../ AMLLibrary/Jars/jwi.jar’

5 )
6 }
7 {
8 i s
9 i f thisLeft . name = thisRight . name then
10 1 .0
11 else
12 ’’ . jwiSimilarity ( thisLeft . name . properTerm , thisRight . name . properTerm )
13 endif
14 }

4.4.2.2 Constraint-based heuristics

TypeElement compares the types of two properties by means of the isEqualTo helper.
The helper verifies if the method input mapping model contains an equivalence between
the compared types.

Listing 4.23: TypeElement
1 sim TypeElement ( )
2 {
3 i s
4 i f thisEqualModel . isEqualTo ( thisLeft . type , thisRight . type ) then
5 1
6 else
7 0
8 endif
9 }

Multiplicity compares the multiplicity of properties. It has been inspired by the car-
dinalities heuristic described in Section 2.4.3.2.

Listing 4.24: Multiplicity
1 sim Multiplicity ( )

8We have used the transformation proposed in [97].
9http://lyle.smu.edu/ tspell/jaws/index.html
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2 {
3 i s
4 thisModule . multTable . get (
5 Tuple {
6 left = Tuple {lower = thisLeft . lower , upper = thisLeft . upper } ,
7 right = Tuple {lower = thisRight . lower , upper= thisRight . upper}
8 }
9 )
10 }

4.4.2.3 Structure-level heuristics

Statistics has been inspired by [62]. This computes the Euclidean Distance between two
vectors that contain statistical data about classes, i.e, number of superclasses, attributes,
and siblings.

Listing 4.25: Statistics
1 sim Statistics ( )
2 ATLLibraries {
3 ( name = ’Vectors ’ , path = ’../ AMLLibrary/ATL/Helpers ’ ) ,
4 ( name = ’Math’ , path = ’../ AMLLibrary/ATL/Helpers ’ )
5 }
6 {
7 i s
8 thisModule . distance (
9 Sequence{ thisLeft . ParentsStatistic ,
10 thisLeft . ChildrenStatistic ,
11 thisLeft . SiblingsStatistic } ,
12 Sequence{thisRight . ParentsStatistic ,
13 thisRight . ChildrenStatistic ,
14 thisRight . SiblingsStatistic}
15 )
16 }

4.4.2.4 Instance-based heuristics

AttributeValues compares attributes that have the same primitive type, e.g., string,
integer. The similarity of two attributes depends on how similar their corresponding
instances are. We compare attribute instances as simple labels.

Listing 4.26: AttributeValues
1 sim AttributeValues ( left : m1 , right : m2 )
2 ATLLibraries{( name=’Strings ’ , path=’../ AMLLibrary/ATL/Helpers ’ ) }
3 JavaLibraries {( name=’match.SimmetricsSimilarity ’ ,
4 path=’../ AMLLibrary/Jars/simmetrics.jar’

5 )
6 }
7 {
8 i s
9 i f thisLeft . isAttribute and thisRight . isAttribute then
10 i f thisEqual . model . isEqualTo ( thisLeft . type , thisRight . type ) then
11 -- aggregation of similarity of instances

12 thisLeft . owner . allInstancesFrom ( ’left’ )
13 −>iterate ( instClass1 ; acc1 : Real = 0.0 |
14 acc1 + thisRight . owner . allInstancesFrom ( ’right’ )
15 −>iterate ( instClass2 ; acc2 : Real = 0.0 |
16 i f instClass1 . refGetValue ( thisLeft . name ) . oclIsUndefined ( ) or

17 instClass2 . refGetValue ( thisRight . name ) . oclIsUndefined ( ) then
18 0
19 else
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20 i f instClass1 . refGetValue ( thisLeft . name ) . toString ( )
21 =
22 instClass2 . refGetValue ( thisRight . name ) . toString ( ) then
23 1
24 else
25 0
26 endif
27 endif
28 )
29 )
30 else
31 0
32 endif
33 else
34 0
35 endif
36 }

4.4.3 Selection heuristics

ThresholdMaxSim selects a mapping when its similarity satisfies the range of toler-
ance [Threshold−Delta, Threshold]. We have borrowed ThresholdMaxSim (along with
deltas and thresholds) to Do [62]. According to [62] (pag. 114) the best delta and thresh-
old are 0.008 and 0.5, respectively.

Listing 4.27: ThresholdMaxSim
1 se l ThresholdMaxDelta ( )
2 {
3 when
4 thisSim > 0 .5
5 and
6 thisSim >= thisEqualModel . mapRangeByLeft . get ( thisLeft ) . maxD
7 and
8 thisSim <= thisEqualModel . mapRangeByLeft . get ( thisLeft ) . max
9 }

4.4.4 User-defined heuristics

We have implemented the heuristics CreationByFullNameAndType-

CreationAddedDeleted and SetLinks-SetLinksFiltering like external ATL trans-
formations. The former pair of heuristics embeds creation logic, and the latter
instance-based similarity functionality. In particular, CreationByFullNameAndType-

CreationAddedDeleted are useful to match large metamodels.

CreationByFullNameAndType creates mappings when two elements has the same
metametamodel type and full name. A full name is a string similar to the one built by the
path comparison heuristic (see Section 2.4.3.2). For example, the full name of transition
reference is PetriNet|Net|transition because the PetriNet package contains the Net

class, and this class contains the transition reference. The heuristic marks the elements
not satisfying the condition like Added (LeftModel) or Deleted (RightModel).

CreationAddedDeleted performs a Cartesian Product between the Added and Deleted

elements computed by CreationByFullNameAndType.
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SetLinks-SetLinksFiltering have been inspired from [99]. Their purpose is to test
the intersection of instance sets (e.g., A and B). [99] defines 5 kinds of intersection: equal
(A ? B = A = B), contains (A ? B = A), contained in (A ? B = B), disjoint (A ? B = 0),
and overlaps.

4.5 Summary

This chapter presented AML points of view going from its abstract concepts to its im-
plementation details. Below we position AML with respect to the first issue described in
Section 3.4 and some additional features that a DSL has to satisfy.

• Reusability of heuristics. Whereas most of related work uses GPLs for matching
techniques development, we use a DSL. We have developed 24 heuristics, 100% of
these can be used in M2-to-M2 matching algorithms, and 37% can be used in M1-
to-M1 matching algorithms. The AML contructs allow a loosely coupling of code
to reference model. This, in turn, promotes reuse of heuristics.

• Declarativity. AML considerably reduces the number of lines of ATL (or Ant) code
to be written. For each matching heuristic (create, sim, aggr, and sel methods)
included in an algorithm, AML saves the codification of 80 lines of ATL code, and
10 lines of Ant code.

• End-user experience. The m2m newsgroup already shows some activity around
AML. Given the user inquiries posted at the time we wrote the thesis, we can not
judge whether AML improves end-user experience or not. What we can say is
that AML is a first approximation of DSL to facilitate matching techniques reuse.
Since AML is an open-source tool, developers can download it and share their user
experience in newsgroups. User feedback will give us more elements about AML
usability.

• So far, we have widely applied an MDE toolkit (AmmA) to AML development.
Some lessons learned from the experience follow:

– AmmA is a powerful suite to implement domain specific languages. Meta-
models and transformations facilitate the separation of concerns; metamodels
express the concrete syntax of languages, and HOTs bridge the gap between
DSL programs and executable code.

– When regarding HOTs, we believe that it is hard to manipulate them. There
is a need for a DSL that facilitates HOT development.



Chapter 5

Automatic Evaluation of Model
Matching Algorithms

This chapter gives our approach addressing the evaluation issues raised in Section 3.4.2.
Firstly, we describe an approach automatizing the evaluation of model matching algo-
rithms. Just as the OAEI framework [22], our approach covers the preparation, execution,
and evaluation phases. The features of our approach follow: extraction of test cases from
model repositories, execution of AML matching algorithms, and use of megamodels to
automate the whole evaluation process. Moreover, the chapter states how the approach
can be profitable to ontology community. Secondly, we present the approach validation.

5.1 Approach overview

Fig. 5.1 shows the artifacts manipulated by our approach along the evaluation phases.
The artifacts are stored in a model repository.

• Preparation. The approach constitutes a given test case using two metamodels, m
and m′, and a transformation tm2m′ written in terms of these models. A reference
alignment R is extracted from tm2m′ (block e in Fig. 5.1).

• Execution. We develop a matching algorithm f with AML.

• Evaluation. The approach executes f which computes a candidate alignment A′

from m, m′, A, r, and p. Finally, the block c compares A′ to R and derives matching
metrics M(A′, R).

Our approach uses a megamodel to constitute many test cases, launch a set of matching
algorithms, and compute metrics. The next sections describe our approach in detail.

5.2 Preparation: getting test cases from model repos-

itories

In this phase, our approach prepares a set of test cases. Each test case consists of a pair
of metamodels and a reference alignment.

77
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Figure 5.1: A approach to automate matching system evaluation

5.2.1 Discovering test cases

The megamodel is the cornerstone of our approach. Before working with the megamodel
it has to be populated. Since a model repository is continuously growing, we have im-
plemented a strategy to automatically populate the megamodel. The strategy consists of
the following steps:

1. A program parses a set of files containing metadata. The metadata describes, for
example, in terms of what metamodels a transformation is written. The output of
the parsing is a text file.

2. A textual syntax tool translates the text file into a megamodel [100].

3. Because the megamodel refers to more models than the ones we are interested in, a
program refines the megamodel to keep only the records related to transformations
and their corresponding metamodels.

Fig. 5.2 shows the metamodels of an extracted test case. For instance, the Ant meta-
model contains the class Project, the attribute message, and the reference default.

5.2.2 Extracting reference alignments from transformations

Having the megamodel, the approach extracts reference alignments from transformations.
A transformation may be available in various flavors, i.e., being developed by programmers
geographically distributed, or using model transformation languages different each other.
Thus, we should define the extraction scope by answering the questions: 1) in what
language are the available transformations developed?, and 2) what patterns are embedded
in them?

For example, we have found the following patterns in ATL transformations (Listing. 5.1
shows a concrete example):

• Each transformation contains a set of rules (lines 1-9).
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Figure 5.2: Metamodels of a test case
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• Each rule consists of a pair of patterns, i.e., inPattern and outPattern. The
inPattern matches a class of m (line 3), and the outPattern a class (or set of
classes) of m′ (line 5).

• Each outPattern is composed of a set of bindings. A binding initializes a rightClass
property using a structural feature of leftClass. We have characterized four types
of bindings:

1. rightStructuralFeature ← a leftStructuralFeature (line 6).

2. rightStructuralFeature ← an OCL [34] iteration expression which includes
a leftStructuralFeature (line 7).

3. rightStructuralFeature← an operation (i.e., a helper expression) involving
a leftStructuralFeature.

4. rightStructuralFeature ← a variable referring to another rightClass cre-
ated in the outPattern.

Note that the more we figure patterns out, the better is the quality of reference align-
ments. The quality can be further increased by extracting alignments not only from one
transformation but also from a set of transformations tm2m′ if they are available.

Listing 5.1: Excerpt of the transformation Make2Ant
1 rule Makefile2Project{
2 from
3 m : Make ! Makefile
4 to
5 a : Ant ! Project (
6 name <− m . name ,
7 targets <− m . elements −> select ( c | c . oclIsKindOf ( Make ! Rule ) )
8 )
9 }

There are ways to bridge the gap between modeling artifacts and ontologies. Tools
like EMFTriple [24] can translate metamodels to ontologies and vice versa. Moreover, a
transformation can translate our alignments to the format established by the Alignment
API [85]).

5.3 Execution: implementing and testing matching

algorithms with AML

The execution phase typically involves implementation, testing, and deployment1 of match-
ing algorithms. In our approach, the execution only embraces development and testing.
We postpone the deployment to the evaluation phase. The previous chapter has already
presented the development and testing facilities provided by AML.

1We call deployment the stage that executes algorithms in order to produce the final matching results.
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5.4 Evaluation: deploying and assessing AML algo-

rithms

Based on a megamodel, our approach automatically deploys algorithms and computes
metrics. The megamodel indicates the algorithms to be executed, the required inputs,
and the reference alignments. Our approach computes the matching metrics introduced
in Section 2.4.4, i.e., precision, recall, and fscore. Moreover, this approach updates the
megamodel with records associating A′, R, and M(A′, R).

The use of DSLs and megamodels facilitates the evaluation phase. Since there is an
unique programming interface, launching the algorithms become easier. By using the
megamodel, our approach can execute algorithms over a large set of test cases and to
obtain results by itself. This promotes a more confident evaluation of performance and
accuracy.

The ontology community has contributed several tools to compute sophisticated match-
ing metrics (e.g., PrecEvaluator [12]). We can benefit from these tools by translating our
alignments to their formats.

5.5 Validation

This section recapitulates experiments whose objectives are:

1. Show that our approach can automatically extract a large set of matching test cases
from a model repository. Such test cases, named modeling dataset, are useful to
evaluate not only AML strategies but also other matching systems.

2. Demonstrate that AML can be used to customize matching strategies including
diverse kinds of heuristics that exploit, for example, linguistic/structural information
and sample instances.

3. Validate that AML strategies can be applied to modeling datasets but also to on-
tology datasets.

4. Compare the quality of AML strategies with respect to other matching systems
(e.g., MatchBox [6], Aflood [101], Aroma [102]).

The next four subsections address the mentioned objectives. We ran the cited exper-
iments on a Debian GNU/Linux machine with a 3 GHz Intel Xeon processor and 70GB
of RAM.

5.5.1 Modeling dataset

The approach described in Section 5.2 has built a megamodel referring to 68 ATL projects
available on the“ATL Transformation Zoo”. An ATL project consists of one or more model
transformations and a set of models and metamodels. In our approach, each ATL project
corresponds to a matching test case. The ATL Zoo is an open-source model repository
contributed by the m2m Eclipse community [95].
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Figure 5.3: Number of metamodels involved in small, medium, and large series

Our experimentation only exploits 50% of the ATL Zoo (that currently has 103
projects), the reason is that some projects lack metadata necessary to sucessfully extract
test cases from them. However, compared to MatchBox [6], that extracts alignments from
the transformations stored in the same model repository, our approach is more robust;
whereas MatchBox refers to 15 test cases (see [6], pag. 2287, par. 2), our approach
considers 68 2.

Fig. 5.3 shows the number of metamodels involved in the extracted test cases, i.e.,
32. Some metamodels are used in more than 1 test case. We observed that these meta-
models represent more a solution than a problem. For example, the metamodels describe
a concrete technical space (e.g., XML, OWL, UML, SVG, etc.) or a tool (e.g., ATL,
CodeClone). Few metamodels describe synthetic problem spaces (e.g., Families). Here we
find a difference with respect to ontologies which mostly describe a problem space, e.g.,
conference, anatomy, bibliographic.

We have classified each metamodel in a series (small, medium, or large). Fig. 5.3
depicts an interval for each series. The interval establishes the number of elements (i.e.,
Class, Attribute, and Relations) that a metamodel has to have in order to belong to
a given series. Most of metamodels belong to the small series.

Having a precise definition of reference mappings is often impossible [92]. For example,
when experts manually establish reference mappings they have their own intentions. Thus,
their alignments can differ from other experts’ ones. In our case, two aspects can impact
the validity of reference mappings automatically extracted from transformations:

• Complexity means that a given transformation implements imperative patterns
(rules with only an outPattern). In contrast, our mechanism relies on declarative
patterns (as described in Section 5.2.2, rules with inPattern and outPattern).
Examples are the Measure2Table and UML2Measure transformations which mostly

2Test cases available at http://docatlanmod.emn.fr/AML/TestCases/testcases.zip
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contain imperative code. The complexity of these transformations explains why the
extracted reference alignments contain very few correspondences.

• Incompleteness means that a transformation lacks items. The justification is that
developers write transformations in terms of the data instances they expect to have
in source and target models. If the data instances are not relevant, developers do
not written rules associating certain metamodel concepts.

Although these aspects might question the validity of our approach, we believe that
it remains applicable. Our reference alignments have in average 19 correspondences.
Only 1 out of 68 transformations gave an empty reference alignment. Given our large
dataset, having experts to manually check correspondences validity may be expensive.
An alternative would compare our correspondences to the ones extracted by MatchBox.

5.5.2 Diversified matching strategies

We have tested 6 AML algorithms, i.e., 4 metamodel-only based and 2 instance-based.
The algorithms combine heuristics exploiting linguistic, structure, and data instances.
Although we have contributed a library of 24 heuristics, we have experimented in detail
only 10. We have chosen some heuristics because they have given accurate results on
previous work [62][77][3]. The next paragraphs describe the accuracy and performance
obtained by our algorithms when applied to the extracted modeling test cases.

5.5.2.1 Metamodel-only based algorithms

We have applied to the modeling dataset the following metamodel-only based algorithms:
WordNet_SF_Both, Lev_SF_Thres, WordNet_SF_Thres, Lev_SF_Both). Each algorithm
combines 7 heuristics. The algorithms keep the same creation, aggregation, and structure-
level similarity methods and vary linguistic-based and selection ones. Table. 5.1 shows
both, constant and variant methods, and Listing. 5.2 and Listing. 5.3 present how the
heuristics interact to deliver the mappings.

Linguistic-
based Structure-based

CreationByFullNameAndType Levenshtein SimilarityFlooding
ThresMaxSim(0.5) + 
Delta(0.008) WeigthedSum

CreationAddedDeleted WordNet BothMaxSim Merge

Creation

Similarity

Selection Aggregation

Table 5.1: Heuristics combined in metamodel-only based algorithms

Listing 5.2: Lev SF Thres
1 modelsFlow {
2

3 tp = CreationByFullNameAndType [ map ]
4 adddel = CreationAddedDeleted [ tp ]
5 inSF = Levenshtein [ adddel ]
6 outSF = SimilarityFlooding [ ]
7 tmpresult = WeightedAverage [ 0 . 5 : inSF , 0 . 5 : outSF ]
8 result = ThresholdMaxSim [ tmpresult ]
9 merge = Merge [ 1 . 0 : tp , 1 . 0 : result ]
10

11 }
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Figure 5.4: Quality distribution of experiments

Listing 5.3: WordNet SF Both
1 modelsFlow {
2

3 tp = CreationByFullNameAndType [ map ]
4 adddel = CreationAddedDeleted [ tp ]
5 inSF = WordNet [ adddel ] ( param )
6 outSF = SimilarityFlooding [ ]
7 tmpresult = WeightedSum [ 0 . 5 : inSF , 0 . 5 : outSF ]
8 result = BothMaxSim [ tmpresult ]
9 merge = Merge [ 1 . 0 : tp , 1 . 0 : result ]
10

11 }

Fig. 5.4 shows the distribution of the 272 (4 algorithms tested on 68 test cases) per-
formed experiments with respect to different fscore ranges. The line chart indicates that
the algorithms achieved a low fscore (i.e., <0.1) in around 100 experiments and a higher
fscore in 172.

Fig. 5.5, in turn, depicts the distribution of experiments with regarding the fscore of
each strategy. All the strategies have two common behaviors. Firstly, they are represented
in fscores ranging below 0.8. Secondly, whilst the strategies give a good fscore (>=0.5)
to 35% of experiments, they obtained a low fscore (< 0.5) for the rest.

In addition to the average fscore, Fig. 5.6 shows the average recall and precision of
our algorithms. The average fscore tends to 0.3, the Lev_SF_Both fscore is gently up
this value. The Both-based strategies give the highest recalls (i.e., 0.6 and 0.7), and
the Threshold-based strategies give the best precision (i.e., almost 0.3). Looking at the
Lev_SF_Both results in detail shows that the fscores obtained in the small test cases
(going to 0.8) are higher than the large test cases’ ones (going to 0.5). The rationale
is that most of extracted gold standards, associated to large test cases, contained a few
correspondences. If computed correspondences exceed gold standards then precision (and
fscore) goes down. Section 5.5.5 explains why our approach sometimes extracts poor gold
standards. This mostly happens when model transformations are complex or involve large
metamodels.

Table. 5.2 lists the time required for our algorithms for matching the modeling dataset.
The fastest algorithm was Lev_SF_Thres. In general, the runtime values mentioned in
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the chapter include not only the matching process but also the creation of empty input
mapping models, extraction of reference alignments, and metrics computation.

Algorithm Runtime 
Lev_SF_Both 275 min. 57 sec.
WordNet_SF_Thres 122 min. 42 sec.
WordNet_SF_Both 282 min. 27 sec.
Lev_SF_Thres 114 min. 48 sec.

Table 5.2: Runtime metamodel-only based algorithms - modeling dataset

5.5.2.2 Instance-based algorithms

We have applied to the modeling test cases the following instance-based algorithms:
Sets and Sets_Lev_SF_Both. Listing. 5.4 and Listing. 5.5 present the heuristics com-
bined by each algorithm. Unlike the metamodel-only based algorithms, Sets and
Sets_Lev_SF_Both do not invoke the full Similarity Flooding algorithm but two of its
heuristics, i.e., Propagation and SF.

Sets_Lev_SF_Both combines Sets and Lev_SF_Both. Thus, the algorithm executes
SF and Propagation twice; the purpose is to propagate instance-based and linguistic
similarity. Line 8 of Listing. 5.5 presents the weights assigned to each similarity method,
Levenshtein has the highest weight. We have combined Lev_SF_Both to Sets, because
(according to the results) Lev_SF_Both was the more accurate metamodel-only based
algorithm.

Listing 5.4: Sets
1 modelsFlow {
2

3 s = SetLinks [ map ] ( m1model , m2model )
4 f = SetLinksFiltering [ s ]
5 prop = Propagation [ f ]
6 sf = SF [ f ] ( prop )
7 outSets = Threshold [ sf ]
8

9 }

Listing 5.5: Sets Lev SF Thres
1 modelsFlow {
2

3 tp = CreationByFullNameAndType [ map ]
4 adddel = CreationAddedDeleted [ tp ]
5 inSF = Levenshtein [ adddel ]
6 outSF = SimilarityFlooding [ ]
7 outSets = Sets [ ]
8 tmpresult = WeightedSum [ 0 . 4 : inSF , 0 . 3 : outSets , 0 . 3 : outSF ]
9 result = BothMaxSim [ tmpresult ]
10 merge = Merge [ 1 . 0 : tp , 1 . 0 : result ]
11

12 }

We have experimented the instance-based algorithms over a subset of the modeling
dataset described in Section 5.5.1, that is, 22 out of 68. Even though the megamodel
has all the information about the inputs needed for the instance-based algorithms, the
execution of the instance-based algorithms failed in some test cases. The reason is that
such test cases involve models not stored in the repository. For example, some ATL Zoo
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contributors do not post output models which are intended to be generated by transfor-
mations. Because the generation of missing models is an extra workload, we have applied
the instance-based algorithms to only 22 test cases. Note that it remains to be a good
dataset.

In addition to the matching metrics of Sets and Sets_Lev_SF_Both, Fig. 5.7 shows
the metrics of Lev_SF_Both when executed over the same test cases. Fig. 5.7 illustrates
that the use of linguistic information and data instances increases matching algorithm
accuracy. Fscore goes up from 0.35 to 0.4 when the algorithm combines Sets results to
Lev_SF_Both. Finally, the execution of instance-based algorithms took less than 2 min.
Sets and Sets_Lev_SF_Both have been tested on a dataset smaller than the metamodel-
only based algorithms’ one. In addition, they reuse the empty mapping models and the
reference alignments created during the execution of metamodel-only based algorithms.
It partially explains why the performance is high.

5.5.3 Ontology dataset

The AML algorithms have been tested over datasets from the modeling and ontology
community. It is natural to select a modeling dataset since our algorithms were originally
planned to match (meta)models. We have chosen an ontology dataset to show that our
approach can be used in other technical spaces too. We have picked ontologies instead of
(for example) schemas due to the existence of a large ontology dataset and an initiative,
the OAEI, that reports the results of matching systems over the dataset.

The ontology dataset corresponds to the OAEI conference track. We have selected
it because it does not contain individuals within. It facilitates the transformation from
ontologies to metamodels. Note that EMFTriple [24] seems to support the translation
ontology - metamodel, even containing individuals in. However, its developer, Guillaume
Hillairet, has spelled out that further development is necessary to make the tool more
robust in that sense.

Among the 21 test cases provided by the conference track, we have chosen 3, i.e.,
cmt-ekaw, cmt-sigkdd, and ekaw-sigkdd. Translation from the conference ontologies into
metamodels was difficult, as EMFTriple lacks documentation describing its installation
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and functionalities. So that, we have chosen the 3 test cases whose metamodels the
EMFTriple developer was available to provide us.

Table. 5.3 shows the metamodels, involved in the 3 selected test cases, and their
corresponding sizes.

Model Size
sigkdd 93
cmt 100
ekaw 127

Table 5.3: Size of ontologies

Fig. 5.8 depicts the quality of 4 AML algorithms over the ontology dataset. Word-

Net_SF_Thres and Lev_SF_Thres tend to 0.6, i.e., the best fscore.
Fig. 5.9 is a Precision and Recall (PR) curve. It allows us to understand how precision

varies from recall [103]. The graph has been built from the results over the ekaw-sigkdd
test case. For the 4 algorithms, precision remains constant as recall ranges from 0.1 to
0.6. From 0.6, the precision of WordNet_SF_Thres and Lev_SF_Thres dramatically goes
down. This also happens to Lev_SF_Both and WordNet_SF_Both in 0.7 and 1, respectively.
This graph partially differs from a classical PR curve where precision decreases as recall
increases. Instead of that, the curves of our algorithm curves are stable in a range, and
then they decrease. The stabilization means that precision is globally increasing with
recall. Moreover, the PR curve hints what algorithm to choice in what case; if one
wants to obtain a high recall, then WordNet_SF_Both or Lev_SF_Both are useful. On the
other hand, if one wishes a good precision, then one should select WordNet_SF_Thres or
Lev_SF_Thres.

The PR curves of cmt-ekaw and cmt-sigkdd are quite similar to Fig. 5.9. The difference
is the interval where precision stays the same, and the point where precision suddenly
decreases (this corresponds to the maximum value of the interval). For cmt-ekaw, the
interval is [0.1, 0.4], and for cmt-sigkdd is [0.1-0.5]. These results indicates that cmt-ekaw
is the hardest ontology matching task we have experimented. We have used the Alignment
API 4.0 to generate Precision and Recall curves.

Table. 5.4 mentions the time taken by our algorithms for matching the ontology
dataset. In general, the algorithms required less than 1 minute, the fastest was Lev_SF_Both.
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Algorithm Runtime (sec.)
Lev_SF_Both 54
WordNet_SF_Thres 57
WordNet_SF_Both 56
Lev_SF_Thres 55

Table 5.4: Runtime metamodel-only based algorithms - conference track

5.5.4 AML algorithms versus other matching systems

For each kind of dataset (metamodels or ontologies), we have compared AML algorithms
either to MDE matching systems (i.e., MatchBox [6]) or to ontology systems (e.g., Aflood,
Aroma, etc.). We have chosen MatchBox because it has been applied to a modeling dataset
similar to our own dataset. In addition, we have preferred Aflood, Aroma, etc, because
their results over the conference track are publicly available.

5.5.4.1 Modeling dataset comparison

We have taken a look to the MatchBox results over the modeling test cases. Based on
the data mentioned in [6], we have built a histogram showing the fscore that a MatchBox
algorithm obtains on 6 test cases. Although [6] reports the results over more test cases,
our histogram only includes the test cases overlapping our modeling dataset.

For the sake of comparison, the histogram contains the Lev_SF_Both algorithm results
over the same 6 test cases. For 1 test case (i.e., Make-Ant), our algorithm obtains a higher
fscore than MatchBox. For the rest of test cases, our algorithm gives fscores which are
slightly under the MatchBox results; the delta ranges from 0.03 to 0.16. Because the
comparison of AML and MatchBox has been done over a small dataset, we think that
it is premature to say that MatchBox is better than AML in terms of accuracy. It is
necessary to compare AML to MatchBox given the same dataset (it has to be larger). As
stated in [6] (page 2287), this would be possible if MatchBox is extended to cover a larger
spectrum of test cases. Other option would be to merge our reference alignments to the
MatchBox ones. Finally, there is not a formal document reporting MatchBox runtimes, a
future comparison has to consider performance too.

5.5.4.2 Ontology dataset comparison

We have compared our results to those obtained by other systems participating in the
conference track of the OAEI 2009 campaign 3. Aflood [101] provides the best fscore
(=0.6) which is slightly under the WordNet_SF_Thres fscore. In contrast to the AML
algorithms, predisposed toward a good recall, the compared ontology systems tended
toward a high precision. With respect to runtime, [93] does not report the time required
for the systems matching the conference track. Since the comparison has taken into
account only 3 pairs of ontologies (instead of the full track), we can not conclude about
the accuracy of AML algorithms with respect to existing ontology matching systems.
In contrast, this comparison illustrates that AML algorithms can be applied to pairs of
ontologies. For a more robust comparison, future research needs to improve the projectors
(e.g., EMFTriple) that translate ontologies into metamodels.

3Readers interested on these results may want to take a look to [93]
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5.5.5 Discussion

Let us elaborate on the experimented heuristics and algorithms:

• Linguistic-based similarity heuristics. The results of our 4 metamodel-only
based algorithms show that the WordNet and Levenshtein heuristics were both
quite accurate to match ontology test cases. The WordNet heuristic was less accu-
rate to match metamodels. Because the experimented metamodels mostly describe
technological concepts, the WordNet heuristic could not to find concepts in WordNet
which is a general purpose dictionary. This suggests the need for a more specific
dictionary to match the experimented metamodels.

• Related to the selection heuristics, BothMaxSim biases toward a high recall (i.e.,
mapping model completeness) and ThresholdMaxSim toward a good precision (i.e.,
mapping model correctness). Given the concepts a and b, BothMaxSim aligns a to b
if (a, b) has the highest similarity value among all the correspondences involving a
and b. The output mapping model can contain correspondences even if the similarity
values are very low, i.e., 0.1. ThresholdMaxSim, in turn, selects (a, b) if its similarity
value is in the range [0.492, 0.5]. Thus, a BothMaxSim output mapping model tends
to contain more correspondences than a ThresholdMaxSim one. The BothMaxSim

output mapping model keeps not only correct correspondences with a week similarity
but also false negatives. As a result, BothMaxSim promotes a good recall but impacts
precision. ThresholdMaxSim has the opposite behavior. To improve the precision
of our algorithms, we will associated a threshold to BothMaxSim.

• The results of our 2 instance-based algorithms show that the instances are use-
ful to strengthen the results of linguistic-based similarity heuristics. Note that the
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instance-based heuristics use linguistic methods too. Thus, the experimented al-
gorithms mostly rely on linguistic information (i.e., semantical and syntactical) to
discover correspondences.

Metamodel-only based algorithms obtained a good fscore (>=0.5) to 35% of the ex-
perimentation over the modeling dataset. For the remaining test cases, the algorithms
obtained a low fscore. The reasons behind it are:

• The suitability of AML algorithms. We have experimented only 6 algorithms
over a large modeling dataset. Although the algorithms combine heuristics and
thresholds reported as good by previous work [62][77], it is necessary to configure
and test a larger spectrum of algorithms. Thus, one can see better the accuracy of
a given algorithm in regard to others.

• The quality of reference alignments. For some pairs of metamodels, the AML
algorithms gave many correct mappings, however poor reference alignments ex-
tracted by our approach could impact fscore. As explained in Section 5.5.1, it
can happen when transformations are complex or incomplete.

At last, these experimentations validate that our algorithms can match modeling or
ontology datasets:

• For the modeling dataset, the accuracy of our algorithms is gently under the
MatchBox accuracy. From these results, we could not conclude about the quality of
AML M2-to-M2 matching algorithms with respect to other MDE systems. Match-
Box, in turn, reports the accuracy over only 6 out of 68 test cases extracted from
the modeling repository [6]. Thus, we do not know if MatchBox is good for the rest
of test cases. In a nutshell, it is necessary to straightforwardly test MDE algorithms
over a common and large modeling dataset.

• For the ontology dataset, we can neither infer our algorithms are better than other
ontology systems nor worse. More benchmarks over full sets of test cases (even test
cases involving instances) are still necessary. To this end, more efforts have to be
devoted in order to improve existing projectors from ontologies to metamodels and
vice versa. Section 7.2 elaborates on this potential future work. Besides accuracy,
future comparisons have to take into account runtime too.

5.6 Summary

We presented an approach to automate the evaluation of model matching systems. We
conclude the following from the validation of our approach:

• Modeling repositories: a growing and free source of matching test cases.
Our approach extracted 68 test cases from the “ATL Transformation Zoo”. The
number of ATL Zoo test cases raises every year. In addition, MDE community
makes efforts to constitute other open-source model repositories, for example, the
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Repository for Model-Driven Development (ReMoDD)4. Thus, one finds a potential
source of matching test cases in the modeling repositories. Just as MDE community
can benefit from these matching test cases, ontology community can do the same.
We have used the EMFTriple tool to translate metamodels into ontologies, and we
have developed transformations to translate our alignments to the Alignment API
format and vice versa. Complexity and incompleteness of model transformations
can impact the validity of gold standards. A solution would ask experts to validate
such gold standards or to compare them with the reference alignments extracted by
other systems such as MatchBox [6].

• Modeling techniques to increase evaluation efficiency. Our approach auto-
mates the whole evaluation process, going from the discovery of test cases to the
assessment of algorithms accuracy.

• Interoperability. This chapter showed that our approach can interact with ontol-
ogy matching tools to leverage evaluation, notably, the phase of result validation.
For instance, we have used the Alignment API to plot PR curves from our results.
The other way around is feasible as well, i.e., the ontology community may want to
use our tool for drawing various kinds of graphs such as bar chart, area chart, or
line chart.

• Evaluation loosely coupled to programming language. By using a meg-
amodel, our approach automatically evaluated matching algorithms over extracted
test cases. Note that the evaluation is independent of AML; Besides AML algo-
rithms, we have experimented the Java Alignment API methods. Thus, if an Ant
Script can execute an algorithm, developed in a given programming language, then
our approach can evaluate it. The only aspect to be verified is the format yielded by
such an algorithm, if it is different from our format, then it is necessary to develop
a transformation between them.

• Reusable matching heuristics. The experimentation described matching algo-
rithms that reuse the same heuristics in diverse ways. This shows the possibility of
composing and decomposing matching algorithms with AML. For example, whereas
some algorithms used the entire Similarity Flooding algorithm, others used it par-
tially. We have tunned such an algorithm with classical parameters, i.e., threshold
= 0.5 and an iteration.

4http://www.cs.colostate.edu/remodd



Chapter 6

Three matching-based use cases

As mentioned in Section 2.4.3.2 mapping manipulation is very common when the matching
process is ended. Manipulation depends on the application domain. For example, one
may want to generate executable code from M2-to-M2 mappings or analyze mappings for
taking a decision. This chapter presents a use case devoted to the first case (i.e., model
co-evolution) and two use cases belonging to the second one (i.e., pivot metamodels in
the context of interoperability tool and model synchronization).

The main purpose is to show how an approach can combine AML algorithms and other
modeling techniques to solve interesting MDE problems. Whilst the model synchroniza-
tion use case involves an M1-to-M1 matching algorithm, the rest of use cases includes an
M2-to-M2 matching strategy.

The model co-evolution use case proposes a solution that adapts models to evolving
metamodels. The use case includes a modification with respect to the work described in
[28]; whereas [28] reports the use the ATL matching transformations to discover simple and
complex metamodel changes, our use case shows how to implement such transformations
with AML. Note that [28] mentions a family of heuristics which has inspired the AML
constructs.

An MDE solution for tool interoperability typically develops metamodels for each
tool, and transformations between these metamodels and a pivot metamodel. The pivot
should facilitate the construction of transformations. The second use case presents an
M2-to-M2 matching-based approach to evaluate whether a pivot metamodel has been
correctly chosen.

Finally, the third use case depicts how AML algorithms can leverage model synchro-
nization in the context of Software Product Lines [31]. Unlike the use cases mentioned
above, where the prototypes were completely developed by us, we have provided consid-
erable guidance to the contributors of the third use case [104].

Each use case is structured as follows: the addressed problem, a model matching-based
solution, the AML algorithms involved in the solution, and an experimentation.

94
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Figure 6.1: Metamodel evolution and model adaptation

6.1 Model co-evolution1

6.1.1 Problem

Software engineers usually have to adapt computer systems to technological and business
changes. This need is rapidly increasing in systems built using the MDE paradigm. An
MDE system basically consists of metamodels, terminal models, and transformations.
The addition of new features and/or the resolution of bugs may change metamodels. The
changes may break the consistency of related terminal models and transformations. In
this work, we focus on terminal models consistency. Fig. 6.1 illustrates the problem: a
metamodel MM1 evolves into a metamodel MM2 (see the dotted arrow). Our concern
is to adapt any terminal model M1 conforming to MM1 to the new metamodel version
MM2 (see the dashed arrow).

The tough part of the problem is to adapt models when both simple and complex
changes are involved. We explicitly distinguish two kinds of changes because complex
changes need a more insightful adaptation that simple changes. Whereas a simple change
describes the addition, deletion, or update of one metamodel concept, a complex change
integrates a set of actions affecting multiple concepts2. The section proposes an M2-to-M2
matching-based solution to figure out simple and complex changes, and to adapt models
to them.

6.1.2 Running examples

We have investigated the evolution of a Petri Net metamodel and the Netbeans Java
metamodel. This section only describes the Petri Net metamodel, and how to represent
it using the KM3 metametamodel. The Netbeans Java metamodel is fully depicted in our
technical report [27].

This Petri Net example is based on the six metamodel versions provided by [105].
Fig. 6.2 and Fig. 6.3 illustrate versions 0 (MM1 ) and 2 (MM2 ), respectively. MM1 repre-
sents simple Petri Nets. These nets may consist of any number of places and transitions.
A transition has at least one input and one output place. MM2 represents more complex
Petri Nets. The principal changes between MM1 and MM2 are:

1Model co-evolution, model adaptation, and model migration are synonyms.
2The reader interested on examples of simple and complex changes may consult [27].
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Figure 6.3: Petri Net MM2 version 2

• References place and transition change their multiplicity from 0-* to 1-*.

• Classes PTArc and TPArc as well as references in and out are added.

• References src and dst are extracted from classes Place and Transition.

The extraction of the reference dst illustrates a complex change named Extract class.
This implies to add and remove a reference, add a class, and associate classes. In con-
sidering these actions as isolated simple changes, we may skip changes without migrating
involved data from M1 to M2. In contrast, when we distinguish the complex change, we
infer (for instance) that the added property (e.g., dst), contained in the new class PTArc,
actually corresponds to the property dst removed from the class Place. Since we know the
relationship between the properties we can migrate the data. We thus need to explicitly
distinguish complex changes in order to properly derive adaptation transformations.

6.1.3 Solution involving matching

Our model adaptation approach adapts terminal models in three steps (Fig. 6.4).
In the first step, an AML algorithm computes equivalences and changes between the
metamodels MM1 and MM2. In the second step, the AML algorithm output is translated
into an adaptation transformation by using a HOT. Finally, the adaptation transformation
is executed. Below we discuss the three steps in detail.
6.1.3.1 Matching equivalences and changes

Before giving the AML algorithm, we explain how the equal metamodel described Sec-
tion 4.2.3 has been modified to represent simple and complex changes. The metamodel
contains a package devoted to that, the package adds basic concepts such as Deleted and
Added which mark a metamodel element as deleted/added from/into MM1. Equal, Added,
and Deleted have been extended to describe more specific changes. For example, Equal-
Class, EqualStructuralFeature, EqualReference, EqualAttribute indicate the KM3
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types of leftElement and rightElement. The concept AssociatedClassExtracted, in
order, links properties undergoing the change Extract class.

Listing 6.1: Metamodel representing types of changes
1 class Added extends WLink {
2 reference right container : RightElement ;
3 }
4 class Deleted extends WLink {
5 reference left container : LeftElement ;
6 }
7 . . .
8 class EqualStructuralFeature extends Equal {}
9 class AssociatedClassExtracted extends EqualStructuralFeature {
10 reference associatedReference container : RightElement ;
11 }

6.1.3.2 AML M2-to-M2 matching algorithm

Listing. 6.2 gives the AML algorithm delivering equivalences and changes. The al-
gorithm includes heuristics described in Section 4.4.4. Here we elaborate on the new
heuristics (lines 11-15).

Listing 6.2: AML algorithm matching metamodels, co-evolution use case
1 modelsFlow {
2

3 tp = CreationByFullNameAndType [ map ]
4 filtered = CreationAddedDeleted [ tp ]
5 prop = Propagation [ filtered ]
6 sf = SF [ filtered ] ( prop )
7 norm = Normalization [ sf ]
8 tmpresult = WeightedSum [ 0 . 5 : norm , 0 . 5 : filtered ]
9 result = BothMaxSim [ tmpresult ]
10 merge = Merge [ 1 . 0 : tp , 1 . 0 : result ]
11 diff = Differentiation [ merge ]
12 td = TypeDifferentiation [ diff ]
13 cl = ConceptualLink [ td ]
14 rw = Rewriting [ cl ]
15 f = FlattenFeatures [ rw ]
16

17 }

• Differentiation distinguishes between equivalent, deleted, and added metamodel
elements. The heuristic compares metamodel elements to equivalences. The intu-
ition is that not linked elements correspond to deletions and additions. Differen-
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tiation marks unlinked MM1 elements as deleted, and unlinked MM2 elements as
added.

• TypeDifferentiation decorates the input mapping model with the KM3 types of
linked elements. For example, an Equal element associating classes turns into an
EqualClass.

• Rewriting and FlattenFeatures reorganize the equivalences considering the rela-
tionships between the linked concepts: containment and inheritance. For instance,
the Rewriting heuristic rewrites (transition, transition) as a child of (Net,

Net) because of the containment relationship between these elements.

• ConceptualLink infers complex changes from equivalences, additions, and deletions.
For example, Listing 6.3 shows a rule that verifies if the Extract Class change has
happened. The rule assemblies two properties a (AddedStructuralFeature) and
d (DeletedStructuralFeature) using the AssociatedClassExtracted type. The
conditions are: 1) an introduced class owns the property a (line 5), and 2) this class
is associated to other class that contains d (line 7).

Listing 6.3: Complex changes transformation excerpt
1 rule AssociatedClassExtracted {
2 from
3 d : EqualMM ! DeletedStructuralFeature ,
4 a : EqualMM ! AddedStructuralFeature (
5 a . right . target . owner . isNewClass ( )
6 and
7 a . right . target . owner . isAssociatedTo ( d . left . target . owner )
8 )
9 to
10 e : EqualMM ! AssociatedClassExtracted
11 }

6.1.3.3 Translation to adaptation transformations

In this step, equivalences and changes are translated into an executable adaptation
transformation via a HOT. The HOT takes as input the final mapping model, and gen-
erates as output a model transformation written in a particular transformation language
(e.g., ATL, XSLT, SQL-like). The HOT follows the guidelines below:
• Yield a transformation rule for each EqualClass that links no abstract classes. The

HOT takes referred left and right classes to yield input and output patterns.

• Create a binding for each EqualStructuralFeatures attached to an EqualClass.
The binding complexity depends on the Equal type. While a simple EqualStruc-

turalFeature generates a simple binding, EqualStructuralFeature extensions
(e.g., AssociatedClassExtracted) generate more elaborated bindings. In gen-
eral, sophisticated bindings instruments the code that adapt M1 models to complex
changes.

Listing. 6.4 shows an adaptation transformation, written in ATL, which is generated
by a concrete HOT. This creates the transformation rule Place2Place (line 1) from the



6.1. Model co-evolution 99

Table 6.1: Size of metamodel illustrating the co-evolution use case

Example PetriNet Java
Version 0 1 2 1.12 1.13 1.15

Elements 11 11 21 255 256 258

equivalence (Place, Place). The from part matches the elements conforming to Place

(line 3). The to part creates elements conforming to Place. Moreover, the HOT generates
a complex binding (see line 6) from the equivalence (out, dst). The binding calls an
additional rule (i.e., dstPTArc) to initialize dst of PTArc (lines 18) using the values dst

of Place.

Listing 6.4: Transformation excerpt (Petri Net example)
1 rule Place2Place {
2 from
3 pV1 : MM1 ! Place
4 to
5 pV2 : MM2 ! Place (
6 out <− pV1 . dst −> collect ( tV1 | thisModule . dstPTArc ( tV1 , pV1 ) }) )
7 )
8 }
9 unique lazy rule dstPTArc {
10 from
11 transition : MM1 ! Transition ,
12 place : MM1 ! Place
13 to
14 tV2 : MM2 ! PTArc (
15 dst <− transition

16 )
17 }

6.1.3.4 Adaptation transformation execution

This step simply executes the generated adaptation transformation. The transforma-
tion takes any terminal model M1 and generates a terminal model M2.

6.1.4 Experimentation

Section 6.1 gives further details about the running examples. Section 6.1 provides the
metrics to evaluate the results. Section 6.1 discusses the experimentation results. Finally,
Section 6.1 shows the results of applying the EMF Compare tool to the running examples,
and compares them to our results.

6.1.4.1 Dataset

We have results from experimentations which use 8 versions of the Netbeans Java
metamodel, and 6 versions of a Petri Net metamodel provided by [105]. For the sake of
readability, we just present the results in applying our approach on three versions of each
metamodel. These versions are chosen because they contain significant changes. In the
Java example, we choose the versions 1.12, 1.13, and 1.15. In the Petri Net example, we
use the versions 0, 1, and 2. Table 6.1 shows the number of elements (classes, attributes
and references) contained in the versions. We match the following couples of versions: 0
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– 1, 0 – 2, 1.12 – 1.13, and 1.12 – 1.15.
6.1.4.2 Metrics

To measure the AML algorithm accuracy, we have used the classical matching metrics:

Precision(x) =
CorrectFound(x)

TotalFound(x)
(6.1)

Recall(x) =
CorrectFound(x)

TotalCorrect(x)
(6.2)

Fscore(x) =
2 ∗Recall(x) ∗ Precision(x)

Recall(x) + Precision(x)
(6.3)

The x denotes equivalences, additions/deletions, or complex changes. Besides addi-
tions and deletions, we have not evaluated other simple changes because these require no
elaborated adaptation transformations. We have identified the correct equivalences and
changes in two ways. In the Petri Net example, we manually discovered the changes. In
the Java example, we relied on the changes logged in the Netbeans repository. We also
considered other manually discovered changes. We remarked that some repository logs
do not report all the performed changes.

Besides matching accuracy, we have measured the matching process performance. This
has been executed on a machine with Intel Core 2 Duo (2.4 GHz) and 1GB RAM.
6.1.4.3 Results

Matching accuracy Fig. 6.5 gives the prototype accuracy. The histograms display
measures (precision, recall, fcore) for each selected couple of version. The three bars (from
left to right) show the accuracy of equivalences, additions/deletions, and complex changes.
Some bars are missing because certain couples of versions contain no deletions/additions
or complex changes.

The results show that the prototype achieves a high accuracy not only in detecting the
correct equivalences, additions/deletions, but also in detecting complex changes. Taking
fscore as an example, the percentage of correct equivalences, and additions and deletions
ranges from 99%-100%, and 90%-100%, respectively. Averanging accross all experiments,
the fscore of complex changes is 100%. In particular, our prototype fails in identifying
additions/deletions instead of equivalences (1% of cases).

Performance In the Petri Net example, the matching process consumes less than 1
second. In the Java example, the matching process approximately takes 10 seconds. A
table containing the execution times of the heuristics in detail can be find in [27]. Even
if the matching step consumes a relevant amount of resources, we should remember that
this process generates an adaptation transformation that can be used several times.

6.1.4.4 EMF Compare versus our approach

We have compared the metamodel changes computed by EMF Compare to our results.
We chose EMF Compare because this is a completely available prototype. Table 6.2 shows
the fscore that EMF Compare and our approach, denoted by i. and ii., deliver on the
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Figure 6.5: Matching accuracy results
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Table 6.2: Fscore EMF Compare (i.) - Our approach (ii.)

Example PetriNet Java
Couples of versions 0-2 1.12-1.15

Approach i. ii. i. ii.
Additions-Deletions 0.8 1 1 0.9
Complex changes 0 1 0 0

Petri Net (couple 0-2) and Java (couple 1.12 - 1.15) examples. While EMF Compare is
fairly good for identifying additions and deletions, this fails in rendering them as isolated
actions. Because model adaptation automation needs to distinguish complex changes (i.e.,
not only additions and deletions), our approach is more appropriate for this purpose than
EMF Compare.

6.1.5 Related work

We may divide the related approaches according to which of the two main issues
they deal with: 1) discovery of equivalence and changes, or 2) derivation of adaptation
transformations.

Chapter 3 has described most of approaches closer to the first problem. We now
mention some of them. In the context of relational and object-oriented data bases, for ex-
ample, the production of equivalences between two schemas/ontologies has been invested
in [14][62]. In the MDE domain, the approaches of [106][107][108][109] present algo-
rithms for detecting changes between UML models. Sriplakich et al. [110] identify simple
changes in terminal models conforming to any metamodel. Wenzel et al. [111] present
an approach which discovers fine-grained traces between versions of modeling languages,
e.g., UML models, schemas, Web service description languages, and domain specific lan-
guages. The EMF Compare tool [112] reports changes between terminal model pairs or
metamodel pairs. Finally, Falleri et al. [3] automatically detect equivalences between two
metamodels using the algorithm Similarity Flooding described in [77].

In contrast to the first issue, the second one has been addressed by some recent ap-
proaches. The works described in [105][113][114][115][116] assume traces of changes are
available, and derive adaptation transformations from them. In particular, [105], [116],
and [115] apply stepwise automatic transactions on MM1 to obtain MM2. These ap-
proaches then reuse the logs of applied transactions to derive adaptation transformations.
Cicchetti et al. [114] use difference models provided by external tools.

Other model adaptation approaches are [10][117]. [10] needs a mapping model and
hand-written Java code. [117], in turn, automatically copies from original to adapted
model all model elements not impacted by metamodel evolution, and the user has to
specify migration for the remaining elements.

The following items position our approach in comparison with the solutions mentioned
above:

1. Similarly to [111][116], our approach computes equivalences and differences between
any pair of metamodels (e.g., representing schemas, UML models, ontologies, gram-
mars) .
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2. Our solution overlaps the solutions presented in [105][114][115][117] in the sense of
considering both simple and complex changes.

3. As in [3], in our matching process the robust algorithm Similarity Flooding can
be executed. Falleri’s main contribution is to provide 6 graph representation con-
figurations. These configurations generate graphs that contain some metamodel
information or all the metamodel information. Although light metamodel repre-
sentations benefit the algorithm performance, they point out the matching process
accuracy increases when all the metamodel information is represented in the graphs.
This is what our approach exactly does.

4. Unlike existing approaches [105][113][114][115][116], we do not suppose that the
changes are already known. We consider a more general case where the evolution of
metamodels is done without someone explicitly keeping track of the applied changes.

5. Compared to [10][117][115], our approach automatically generates adaptation strate-
gies with the least guidance from the user.

6. An experimentation shows that our approach scales to larger metamodels and mod-
els. This is an improvement on other techniques developed to date.

6.2 Pivot metamodels in the context of tool interop-

erability

6.2.1 Problem

The inability to provide a seamless interchange between tools can be found in many and
various domains [118]. In software development, for instance, geographically distributed
teams working on the same product often use several tools to trace bugs (e.g., Bugzilla,
Mantis, Excel). In addition to integrate the developed modules, the teams have to cen-
tralize all the bugs logged on the diverse tools. How to be able to interoperate tools with
different standards and formats?

Throughout time, varied approaches have been adopted to answer this question. Sun
et al. [118] mention three solutions: XML-based exchange, parsing with GPLs, and
model transformations. The authors explore model transformation as a solution. Their
method basically captures the different formats as metamodels: abstract definitions of
data structure and the mappings between them as transformation rules. Among the paper
conclusions, we find that model transformation allows the separation of concerns (concrete
and abstract syntaxes, and the mappings in between). Moreover, the authors point out
that pivot (intermediate) metamodels often optimize the exchange among different tools.

The work described in [119] upholds the conclusions stated in [118]. Bezivin et al. [119]
proposes an MDE solution to tool interoperability. The solution defines a metamodel for
each tool, along with a pivot metamodel. The pivot metamodel abstracts a certain number
of general concepts about a domain. A model transformation is defined among the pivot
metamodel and every tool metamodel.
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Figure 6.6: Transformations between a pivot metamodel and other metamodels

Just as [119][118] outline the advantages of model transformations in the context of
tool interoperability, they argue the need for implementing a transformation for each new
tool to interoperate with. We believe that the selection of pivot metamodel impacts the
effort and cost for developing such transformations.

Software engineers need to be supported at building/selecting/evaluating pivot meta-
models. Fig. 6.6 illustrates the generic problematic. Let µ1 ... µn be a set of metamodels
representing the same domain. We need a µi for playing the pivot role. Two instances of
the generic problematic follow. The first instance illustrates an early development stage.
Software engineers have to build or select µi from µ1 ... µn so that they begin the trans-
formation development. The second instance, in turn, describes a forward stage, where
the engineers find transformations already developed, and they want to know whether µi

was correctly chosen. This use case describes an M2-to-M2 matching-based approach that
assists software engineers in the second problem: pivot metamodel evaluation. The first
problem is out of its scope.

6.2.2 Running examples

We validate our ideas using three examples about tool interoperability. Each running
example involves three metamodels representing tools and transformations between the
metamodels. These examples have been contributed by the m2m Eclipse community [95].

• Program Building bridges Make, Ant, and Maven tools which automate software
build processes [120].

• Discrete Event Modeling describes how bridges between Grafcet, Petrinet, and
PNML have been built. Grafcet is a French representation support for discrete
systems. Petrinet is a graphical and mathematical representation of discrete dis-
tributed systems. PNML (Petrinet Markup Language) is a XML-based interchange
format for Petrinet.

• Bug Tracing implements bridges between different bug tracking tools like Bugzilla
and Mantis. A third metamodel named Software Quality Control (denoted as SQC)
has been defined.

Table 6.3 shows the size of each metamodel.
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Table 6.3: Size of metamodels illustrating the pivot metamodel use case

Metamodel Size
Ant 169

Make 22
Maven 186

Petrinet 24
Grafcet 27
PNML 31
SQC 33

Bugzilla 56
Mantis 50

6.2.3 Solution involving matching

Let us describe our pivot evaluation solution using a simplification of the generic
problematic. The plain scenario consists of evaluating what is the best pivot of a set of
three metamodels µ1, µ2, µ3

3. A procedure to do that follows:
1. We form three sequences from the set of metamodels. Each sequence has three

metamodels: {µ1, µ2, µ3}, {µ2, µ1, µ3}, and {µ1, µ3, µ2}. The main features of these
sequences are:

• The second metamodel plays the pivot role. For example, µ2 is the candidate
pivot of the sequence {µ1, µ2, µ3}.
• The first and third metamodel are commutative, i.e., {µ1, µ2, µ3} is equal to
{µ3, µ2, µ1}.

2. For each sequence, we match the metamodels with regarding the order. Taking
{µ1, µ2, µ3} as example, we match (µ1, µ2), (µ2, µ3), and (µ1, µ3). We consider µ2

a good pivot metamodel, if the result of stepwise matchings, i.e., map(µ1, µ2) and
map(µ2, µ3), is better that the result of a direct matching, i.e., map(µ1, µ3). (see
Fig. 6.7).

A simple method to determinate mapping quality is to compute the ratio of the con-
cepts having mappings in map(µ1, µ3). We refer to this computation using the abbre-
viation MCR (Mapped Concepts Ratio). For the sequence {µ1, µ2, µ3}, we would com-
pute MCR(map(µ1, µ3)) and MCR(map′(µ1, µ3)), where map′(µ1, µ3) is derived from
map(µ1, µ2) and map(µ2, µ3) by applying transitivity. As in [62], we assume the transi-
tivity of mappings.

At a first glance, the result MCR(map(µ1, µ3)) > MCR(map′(µ1, µ3)) would indicate
that the direct matching is the best. The map(µ1, µ3) may nonetheless contain many
incorrect mappings and only few correct ones. The map′(µ1, µ3) may in turn contain few
mappings but all of them are correct.

3The main reason behind this choice is that available experimental data usually involves three meta-
models. We believe that the approach remains applicable to a set of n metamodels.
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Figure 6.7: Direct matching versus stepwise matching

Because MCR is not a reliable metric, our approach uses the fscore measure. Below
we list the approach steps in terms of the sequence {µ1, µ2, µ3} (see Fig. 6.8). The same
process has to be applied to the other sequences.

1. mapr(µ1, µ3) is automatically extracted from a transformation µ12µ3. µ1 and µ3 are
the source and target metamodels of such a transformation. If the transformation
µ12µ3 is not available, our approach can extract the reference mapping model from
the transformations µ12µ2 and µ22µ3 by applying the transitive and commutative
properties.

2. A set of AML algorithms s1...sn matches the pairs of metamodels (µ1, µ2), (µ2, µ3),
and (µ1, µ3). Each algorithm generatesmapsi(µ1, µ2), mapsi(µ2, µ3), andmapsi(µ1, µ3).

3. A program derives map′si(µ1, µ3) from mapsi(µ1, µ2) and mapsi(µ2, µ3) by applying
transitivity and commutativity.

4. We calculate Fsi(µ1, µ3) and F ′si(µ1, µ3).

5. Having the results over {µ1, µ2, µ3} and the other sequences, we select the algorithm
giving the best fscores for all the sequences, e.g., si.

6. Looking at the fscores of si, we choose µ2 as a good pivot if Fsi(µ1, µ3) < F ′si(µ1, µ3).

Most of the steps above have been described in previous sections. For example, Sec-
tion 5.2 describes the extraction approach used in step 1. Here we elaborate on the new
introduced concepts: the transitivity and commutativity of mappings (involved in step 1)
and the set of algorithms experimented by our approach (step 2).

6.2.3.1 Transitivity and commutativity of mappings

Let us introduce two base notions: C(µ,KM3, Concepts) denotes the concepts defined
by a metamodel µ conforming to KM3, where Concepts is the OCL query:

ModelElement.allInstances()->

select(e | e.oclIsTypeOf(Class) or e.oclIsKindOf(StructuralFeature))
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We restrict C(µ,KM3, Concepts) to classes and properties (i.e., StructuralFeatures)
because transformations are basically written in terms of them [45].

(e, f) is a mapping of e and f , where e ∈ C(µ1, KM3, Concepts) and f ∈
C(µ2, KM3, Concepts). A simple mapping is an equality relationship: e and f have
the same intended meaning [70].

As in [62], we assume the transitivity of mappings. Let g ∈ C(µ3, KM3, Concepts), if
(e, f) and (f, g), then also (e, g). Since mappings represent equivalence relations, we also
suppose that mappings are commutative, i.e., (e, f) = (f, e).

An operator (denoted as P ) can derive mappings from map(µ1, µ2) and map(µ3, µ4)
recalling to transitivity and commutativity of mappings as follows:

• if µ1 = µ3, then P (map(µ1, µ2),map(µ3, µ4)) = map(µ2, µ4)

• if µ2 = µ4, then P (map(µ1, µ2),map(µ3, µ4)) = map(µ1, µ3)

• if µ1 = µ4, then P (map(µ1, µ2),map(µ3, µ4)) = map(µ2, µ3)

• if µ2 = µ3, then P (map(µ1, µ2),map(µ3, µ4)) = map(µ1, µ4)

6.2.3.2 AML M2-to-M2 matching algorithms

Our approach has experimented 4 AML algorithms, i.e., Leven-

shtein_ThresholdMaxSim, Levenshtein_BothMaxSim, MSR_ThresholdMaxSim, and
MSR_BothMaxSim. The two former have been presented in Section 5.5.2.1, we elaborate on
the two latter here. What makes different MSR_ThresholdMaxSim and MSR_BothMaxSim

from the other algorithms is:
• With respect to the included linguistic-based similarity heuristic: the MSR heuristic

Section 4.4.2 instead of the Levenshtein heuristic.

• The use of three creation heuristics: TypeClass, TypeReference, and TypeAttribute,
instead of CreationByFullNameAndType and CreationAddedDeleted.

• The chosen selection method, i.e., BothMaxSim or ThresholdMaxSim.

As indicated in Section 4.4.2, we exploit MSR technologies in two steps. An AML
heuristic (named RequestMSR) recovers similarity scores from the MSR Web server first,
and then another heuristic (called MSR) matches the metamodels by using the server
results. Listing. 6.5 and Listing. 6.7 illustrate how these heuristics interact with others to
leverage each step.

Listing. 6.5 shows the invocation of creation heuristics (lines 3-5) and RequestMSR three
times. Each invocation corresponds to a KM3 metametamodel type (Class, Attribute,
and Reference). This separation allows us to restrict the number the mappings between
the metamodel concepts which in turn improve the MSR heuristics performance.

Listing 6.5: RequestMSR modelsFlow
1 modelsFlow {
2

3 typeClass = TypeClass [ map ]
4 typeRef = TypeReference [ map ]
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5 typeAtt = TypeAttribute [ map ]
6 rClass = RequestMSR [ typeClass ] ( msrParamClass )
7 rRef = RequestMSR [ typeRef ] ( msrParamStrF )
8 rAtt = RequestMSR [ typeAtt ] ( msrParamStrF )
9

10 }

RequestMSR takes as input two models (msrParamClass, msrParamStrF) conforming
to the parameter metamodel described in Section 4.2.2. The models indicate tokenizers
and distractors normalizing class or property names. We have built 2 parameter models for
each running example. For instance, Listing. 6.6 shows the msrParamClass model for the
Bugzilla - Mantis example. Because the class names look like, for example BugzillaRoot

and IdentifiedElt, msrParamClass specifies the distractors root and elt, and selects
the UpperCaseTokenizer.

Listing 6.6: Parameter model for the Bugzilla - Mantis running example
1 <ParameterList xmlns="ParameterMM">
2 <parameters x s i : t y p e="StringParameter" name="MSR" value="NSS -Ggoogle"/>
3 <parameters x s i : t y p e="StringParameter" name="leftDistractor" value="root"/>
4 <parameters x s i : t y p e="StringParameter" name="rightDistractor" value="elt"/>
5 <parameters x s i : t y p e="StringParameter" name="rightTokenizer" value="UpperCaseTokenizer"

↪→/>
6 <parameters x s i : t y p e="StringParameter" name="leftTokenizer" value="UpperScoreTokenizer"

↪→/>
7 </ParameterList>

Listing. 6.7 illustrates the MSR heuristic invocation. It uses the MSR server results
which are stored in spreadsheet files: spreadsheetMSRClass, spreadsheetMSRRef, and
spreadsheetMSRAtt. Afterward, the algorithm merges and filters correspondences, and
propagates similarity (lines 6-8).

Listing 6.7: MSRBothMaxSim model flow
1 modelsFlow {
2

3 msrClass = MSR [ typeClass ] ( spreadsheetMSRClass , msrParamClass )
4 msrRef = MSR [ typeRef ] ( spreadsheetMSRRef , msrParamStrF )
5 msrAtt = MSR [ typeAtt ] ( spreadsheetMSRAtt , msrParamStrF )
6 inSF = Merge [ 1 . 0 : msrAtt , 1 . 0 : msrRef , 1 . 0 : msrClass ]
7 outSF = SimilarityFlooding [ ]
8 both = BothMaxSim [ outSF ]
9

10 }

6.2.4 Experimentation

By following the step 1 of Section 6.1, we obtained the sequences shown in Table 6.4.
We decided the positions of the first and third metamodels by taking into account the
available transformations. Observe that some transformations are not available, i.e.,
Bugzilla2Mantis, Make2Maven, and Grafcet2PNML. We got the corresponding mapr
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Table 6.4: Features of examples illustrating the pivot metamodel use case

Example Metamodels Sequences Transformations

Program building

Ant,
Make,
Maven

{Make, Maven,
Ant}, {Make,
Ant, Maven},
{Ant, Make,
Maven}

Make2Ant,
Ant2Maven

Discrete event modeling

Petrinet,
Grafcet,
PNML

{Petrinet,
Grafcet,
PNML},
{Grafcet,
Petrinet,
PNML},
{Grafcet,
PNML,
Petrinet}

Grafcet2Petrinet,
Petrinet2PNML

Bug tracing

Software
Qual-

ity
Con-
trol

(SQC),
Bugzilla,
Man-

tis

{SQC, Man-
tis, Bugzilla},
{Bugzilla, SQC,
Mantis}, {SQC,
Bugzilla, Man-
tis}

SQC2Bugzilla,
SQC2Mantis
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by applying the P operator.
Section 6.2.3.1 presents the results of applying our approach to the running examples

and Section 6.2.3.1 discusses such results.
6.2.4.1 Results

Program Building Tools Fig. 6.9 shows the results of applying our approach to
the metamodels representing program building tools. In general, the strategy Leven-

shtein_BothMaxSim renders the best fscores for the three sequences. The results suggest
Ant as the best candidate pivot. Observe that the condition Fsi(µ1, µ3) < F ′si(µ1, µ3)
is satisfied, F (Make,Maven) < F ′(Make,Maven), i.e., 0.3 < 0.4. Make is, in turn,
the worst pivot, F (Ant,Maven) > F ′(Ant,Maven), i.e., 0.6 > 0.2. Maven does not
bring further advantages since the fscores are equal, F (Make,Ant) = F ′(Make,Ant) and
0.2 = 0.2.

The reason behind the selection of Ant may have a historical background. The history
reports the emergence of Ant (2000) between Make (1977) and Maven (2002) [120]. We
can imagine that Make inspired the creators of Ant, and that Ant inspired the creators
of Maven. That would explain why Ant is a good pivot between Make and Maven.

It is possible getting more than one strategy that gives good fscores. For example,
Levenshtein_BothMaxSim and MSR_BothMaxSim give valid results at matching the se-
quence {Ant,Make,Maven}. We however chose Levenshtein_BothMaxSim because it
gives good results at matching the other sequences too.

Discrete Event Modeling Tools As in the previous example, the strategy Leven-

shtein_BothMaxSim gives the best fscores for the discrete event modeling example (see
Fig. 6.10). The results indicate that there is not metamodels playing a good pivot role.
Petrinet is better than Grafcet and PNML. However, we can not spell out Petrinet as a
good pivot since F (Grafcet, PNML) is equal to F ′(Grafcet, PNML), i.e., 0.3 = 0.3.
These fscore values may point out the need for improvements over Petrinet to make a
better pivot.

Bug Tracing Tools Fig. 6.11 depicts the results for the bug tracing metamodels. Un-
like the previous cases, the strategy giving the best fscores is MSR_BothMaxSim. Look-
ing at these results shows that SQC is not a good pivot. The reason is that the con-
dition Fsi(µ1, µ3) < F ′si(µ1, µ3) is not satisfied, i.e., F (Bugzilla,Mantis) = 0.4 and
F ′(Bugzilla,Mantis) = 0.2. Mantis is, in order, better pivot than Bugzilla.

This example has a special feature. All the running examples metamodels, except
SQC, were created from tool specifications. Since there was not specification for SQC,
the software engineer may have created SQC inspired by Mantis. This would explain why
SQC is closer to Mantis than to Bugzilla and why Mantis is the best pivot.

6.2.4.2 Discussion

We use the fscore measure for pivot metamodel evaluation based on two premises: 1)
the suitability of an AML algorithm for matching a given pair of metamodels, and 2)
the quality of reference mapping models. In practice, these assumptions might be not
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[Candidate pivot: Maven]

Strategy (s) 
F(map_r(Make,Ant), 

map_s(Make,Ant)) 
F(map_r(Make,Ant), 

map'_s(Make,Ant)) 

MSR_BothMaxSim 0.2 0.1 

Levenshtein_BothMaxSim 0.2 0.2 

Levenshtein_ThresholdMaxDelta 0.1 0.0 

MSR_ThresholdMaxDelta 0.1 0.0 

 

[Candidate pivot: Ant]

Strategy (s) 
F(map_r(Make,Maven), 

map_s(Make,Maven)) 
F(map_r(Make,Maven), 

map'_s(Make,Maven)) 

MSR_BothMaxSim 0.1 0.3 

Levenshtein_BothMaxSim 0.3 0.4 

Levenshtein_ThresholdMaxDelta 0.1 0.0 

MSR_ThresholdMaxDelta 0.2 0.0 

 

[Candidate pivot: Make]

Strategy (s) 
F(map_r(Ant,Maven), 

map_s(Ant,Maven)) 
F(map_r(Ant,Maven), 

map'_s(Ant,Maven)) 

MSR_BothMaxSim 0.6 0.2 

Levenshtein_BothMaxSim 0.6 0.1 

Levenshtein_ThresholdMaxDelta 0.2 0.1 

MSR_ThresholdMaxDelta 0.1 0.0 

 

Figure 6.9: Fscore results: Program building example



6.2. Pivot metamodels in the context of tool interoperability 113

[Candidate pivot: Grafcet]

Strategy (s) 
F(map_r(PetriNet,PNML), 

map_s(PetriNet,PNML)) 
F(map_r(PetriNet,PNML), 

map'_s(PetriNet,PNML)) 

MSR_BothMaxSim 0.4 0.3 

Levenshtein_BothMaxSim 0.5 0.3 

Levenshtein_ThresholdMaxDelta 0.3 0.0 

MSR_ThresholdMaxDelta 0.2 0.0 

 

[Candidate pivot: Petrinet]

Strategy (s) 
F(map_r(Grafcet,PNML), 

map_s(Grafcet,PNML)) 
F(map_r(Grafcet,PNML), 

map'_s(Grafcet,PNML)) 

MSR_BothMaxSim 0.2 0.3 

Levenshtein_BothMaxSim 0.3 0.3 

Levenshtein_ThresholdMaxDelta 0.2 0.0 

MSR_ThresholdMaxDelta 0.2 0.0 

 

[Candidate pivot: PNML]

Strategy (s) 
F(map_r(Grafcet,PetriNet), 

map_s(Grafcet,PetriNet)) 
F(map_r(Grafcet,PetriNet), 

map'_s(Grafcet,PetriNet)) 

MSR_BothMaxSim 0.5 0.5 

Levenshtein_BothMaxSim 0.6 0.2 

Levenshtein_ThresholdMaxDelta 0.3 0.1 

MSR_ThresholdMaxDelta 0.0 0.1 

 

Figure 6.10: Fscore results: Discrete event modeling example
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[Candidate pivot: Mantis]

Strategy (s) 
F(map_r(SQC,Bugzilla), 

map_s(SQC,Bugzilla)) 
F(map_r(SQC,Bugzilla), 

map'_s(SQC,Bugzilla)) 

MSR_BothMaxSim 0.3 0.4 

Levenshtein_BothMaxSim 0.4 0.0 

Levenshtein_ThresholdMaxDelta 0.2 0.0 

MSR_ThresholdMaxDelta 0.2 0.2 

 

[Candidate pivot: SQC]

Strategy (s) 
F(map_r(Bugzilla,Mantis), 

map_s(Bugzilla,Mantis)) 
F(map_r(Bugzilla,Mantis), 

map'_s(Bugzilla,Mantis)) 

MSR_BothMaxSim 0.4 0.2 

Levenshtein_BothMaxSim 0.3 0.0 

Levenshtein_ThresholdMaxDelta 0.3 0.0 

MSR_ThresholdMaxDelta 0.2 0.2 

 

[Candidate pivot: Bugzilla]

Strategy (s) 
F(map_r(SQC,Mantis), 

map_s(SQC,Mantis)) 
F(map_r(SQC,Mantis), 

map'_s(SQC,Mantis)) 

MSR_BothMaxSim 0.3 0.3 

Levenshtein_BothMaxSim 0.2 0.2 

Levenshtein_ThresholdMaxDelta 0.2 0.0 

MSR_ThresholdMaxDelta 0.2 0.2 

 

Figure 6.11: Fscore results: Bug tracing example
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satisfied. Firstly, the space of matching strategies is quite large, and sometimes it is
difficult to find a strategy that accurately matches a pair of metamodels. Secondly, our
approach extracts reference mapping models from transformations. When transformations
are complex or incomplete, the approach extracts only a few correct mappings. Because
the fscore measure depends on strategy and transformation, we might get low fscore values,
and be unable to select the correct pivot.

The current experimentation reports low fscore values and low deltas (around 0.1)
between Fsi(µ1, µ3) and F ′si(µ1, µ3). A reason is the quality of the reference mapping
models. For example, Mapr(Bugzilla,Mantis) only contains 8 reference correspondences,
this might be surprised having metamodels with 50 concepts (in average). Because the
transformation Bugzilla2Mantis was not available, we derived mapr(Bugzilla,Mantis)
from mapr(SQC,Mantis) and mapr(SQC,Bugzilla). Thus, the reference mapping
model mapr(Bugzilla,Mantis) lacks items due to the transformations SQC2Mantis and
SQC2Bugzilla contain a few rules from which we can derive mappings by applying tran-
sitivity and commutativity. In practice, developers write a given transformation in terms
of the data instances that they expect to have in the source and target models. If the data
instances are not relevant, the transformation may lack rules linking certain metamodel
concepts.

The uncertainty of satisfying the two premises mentioned above might question the
validity of our approach. However, the experimental results indicate its applicability to
pivot metamodel evaluation. For two examples, i.e., program building and diagram event
modeling, our solution overlaps the pivots chosen by the running examples contributors,
i.e., Ant and Petrinet. With respect to the bug tracing example, our approach suggests a
pivot metamodel (Mantis) different from the contributor choice (SQC). Remark on SQC
was built for the example purpose, this could explain the lack of bridge concepts needed
in a pivot. In addition, our approach allows us to:

1. Figure out when a given metamodel is closer to certain metamodels than to others,
e.g., SQC is closer to Mantis than to Bugzilla.

2. Identify when a metamodel has to be further refined/enriched to improve its pivot
role, e.g., Petrinet in the discrete event modeling example.

3. Isolate metamodels that have to be not chosen as pivots, e.g., Make in the program
building example.

4. The strategy, providing the more reliable fscores, indicates what is the predominant
kind of similarity existing between the matching metamodels. For example, whereas
Levenshtein_BothMaxSim suggests a syntactic similarity between Ant and Maven,
MSR_BothMaxSim suggests a semantic similarity between Bugzilla and Mantis.

As shown in Fig. 6.9, it is probable to have several strategies rendering fuzzy fscores.
When this happens, the complexity of evaluating pivots increases. A solution may be to
benchmark more than the 4 strategies experimented here. In the near future, we wish to
apply our approach to a large set of examples and matching strategies. It would be ideal
to have transformations developed in both directions.

Although our approach focuses on accuracy, we mention its performance. It depends
on metamodels size, and matching strategy performance. For example, the approach takes
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2 minutes to discover that Mantis is the best candidate pivot for the bug tracing example.
For each sequence, the approach takes 40 seconds: the Levenshtein-based strategies take
around 5 seconds, the MSR-based strategies approximately takes 15 seconds. The latter
time does not include the MSR Web server time response, which fluctuated between 1 and
3 hours. We believe that time spent in evaluation is not spoiled because the evaluation
may suggest a pivot metamodel facilitating the development of further transformations.

As stated in Section 6.1, we concentrate on the second instance of the generic prob-
lematic, the one where transformations have been already implemented. Our approach
indicates the best candidate pivots, but software engineers take the last decision. They
should judge whether implementing new transformations (between the suggested pivot
and the other metamodels) is cheaper than keeping the existent ones. We expect to
extent our approach for addressing the first instance of the generic problematic: pivot
metamodel selection.

6.2.5 Related Work

We mention some works that measure overlapping degree. The works have been pro-
posed in two different disciplines: ontology development and MDE.

[121] presents a survey of approaches that evaluate ontology similarity. The authors
point out four categories of evaluation: 1) compare the ontology to a gold standard, 2)
use the ontology and evaluate its results, 3) involve comparisons with data instances, and
4) include human assistance. Furthermore, they propose an instance of the first category.
The work puts forward a similarity measure for ontologies based on clustering notions.
The idea is to partition the ontologies (a given ontology and a gold standard) into disjoint
subsets. They apply similarity measures at subset level, and sum the partial values. The
aggregation result represents a consolidated similarity value between the ontologies. The
approach supposes the existence of data instances, however it is not always the case.

In MDE, [122] measures lexical similarity between model elements by using WordNet
[75]. This approach counts the number of mappings, and then calculates the percentage
of mapped model elements. On the other hand, [123] generates different candidate meta-
models from a knowledge base and chooses the best one. The authors propose a similarity
measure to make the choice. They basically counts the number of model elements hav-
ing good syntactical proximity. The disadvantage in count-based approaches is that the
counted mappings can include false items, which disrupt the similarity measure. The ad-
vantage is that the approach is independent of gold standards. In contrast to count-based
approach, we rely on the fscore measure that gives a ratio of correct mappings but we
need gold standards (that may be not available).

6.3 Model synchronization

6.3.1 Problem

An interesting challenge in Model Driven Software Product Lines (MD-SPL) is to maintain
code artifacts and models synchronized. An MD-SPL uses as main assets metamodels,
models, and transformations to generate concrete products in the line [31]. Metamodels
represent diverse views of the product line, e.g., business logic, architecture, platform, and
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programming language. Models describe specific details of a product. A transformation
chain closes the gap between models and code.

Implementing transformations that generate 100% of the source code for an application
is very difficult. That is why developers often modify the generated source code by hand.
As a result, models and code become incoherent: models represent the state of the system
during the design phase, but the source code represents the current implementation state.

6.3.2 Solution involving matching

Meneses et al. [104] proposes a (semi)automatic approach to update models as source
code changes. The synchronization process includes the following steps:

1. Obtain an AST (Abstract Syntax Trees) model from the manually modified Java
source code. The authors use Modisco project tools4 to leverage this step.

2. Compare two versions of the AST model: the model generated by the transformation
chain (named MV1 ) to the model obtained in the previous step (called MV2 ). Find
what elements of MV1 change in MV2. Here the authors use an AML M1-to-M1
matching algorithm that gives as a result a diff model. Section 6.3 presents the
algorithm in detail.

3. Identify how the changing MV1 elements are related to elements of other models
yielded by the transformation chain. To do that, the authors use the approach
described in [124]. The approach automatically generates traceability models every
time a transformation chain is executed.

4. Build a reconciliation model from the output models of previous steps: AST models,
diff model, and traces.

5. Update a given business model using the reconciliation model. ATL transformations
perform the 4th and 5th step.

The remaining sections focus on the 2nd step of Meneses’ approach which refers to the
AML M1-to-M1 matching algorithm.

6.3.3 Running example

As indicated so far, Meneses’ approach needs to find the changes that an AST Model
V2 introduces into V1. Meneses wants to track certain kinds of changes, i.e., addition,
elimination, or renaming of attributes, methods, or classes. To identify such changes, it
is necessary to judge attributes, methods, or classes as follows:
• Since a single Java class can not have two attributes with the same name, one

discovers attribute changes by comparing names.

• To detect method changes, one trusts on the method names, return types, and
parameters.

4http://www.eclipse.org/gmt/modisco/
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MethodDeclaration

Name

+fullyQualifiedName : String

SimpleType

SingleVariableDeclaration

SimpleName

Type

1

+returnType

1

1

+parameters

*

1

+name

1

1
+type 1

VariableDeclaration

1

+name

1

1

+name 1

Figure 6.12: Excerpt of the AST Java metamodel

• Class changes are identified by regarding class names as well as the contained at-
tributes and methods.

Let us take a look to the AST metamodel to get a concrete idea about the matching
algorithm implementation Fig. 6.12. We concentrate on the method changes. To match
MethodDeclaration, it is necessary to compare the name, returnType, and parameters

properties. Since the properties are not simple attributes but references, it is needed
to match the referred elements too. Thus, the algorithm has to include matching rules
for SimpleName, Type, and SingleVariableDeclaration. Type requires a comparison
of the name property, and SingleVariableDeclaration a comparison of the name and
type properties. An additional characteristic of the AST metamodel is the presence of the
fullyQualifiedName property instead of the classical name property. This invalidates the
use of the default EMF Compare algorithm which relies on the name property to match
models. In addition, this confirms the need of a customized model matching algorithm
like the one we present below.

6.3.3.1 AML M1-to-M1 matching algorithm

Listing. 6.8 indicates the heuristics delivering MethodDeclaration changes (find the
full algorithm in Appendix C):
• CMethodD creates links between MethodDeclaration elements.

• WeigthedSum and Threshold have the same functionality explained in previous
sections.

• SMethodDName, SMethodDReturnT, and SMethodDParameters compare the name,
returnType, and parameters properties. Note the sim helper, lines 37, 41, and 45.
For example, given a name element of MV1 and a name element of MV2, the sim

helper looks for a correspondence linking such elements in the sSN model. The SSim-
pleName heuristic yields sSN, and reuses the simStrings helper in the same fashion
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as Levenshtein heuristic does. The averSimSets helper has a behavior similar to
sim but for collections of elements. Firstly, averSimSets seeks for correspondences
linking elements of a collection of MV1 and MV2 (e.g., parameters). Then, aver-
SimSets computes an average between the number of correspondences successfully
found in the input mapping model and the total number of correspondences exist-
ing between the collections elements. Listing. 6.9 shows the heuristics computing
the input mapping model of SMethodDParameters, i.e., tSVD. This block involves
the WeightedSum and Threshold heuristics too. In addition, we want to focus on
the CSimpleName heuristic which creates input links for SSimpleName. Since other
fragments of the AST metamodel involve the SimpleName class, the CSimpleName

condition (lines 9-13) has to restraint the creation of links between the SimpleName

elements associated to the MethodDeclaration class: SingleVariableDeclara-

tion and MethodDeclaration.

• JavaASTDifferentiation is an external ATL transformation which marks with
Added and Deleted the MethodDeclaration elements not having correspondences
in the input mapping model.

Listing 6.8: Excerpt of the AML algorithm matching AST Java models
1 strategy JDTAST {
2

3 uses JavaASTDifferentiation [ IN1 :EqualModel( m1 : JavaAST , m2 : JavaAST ) ] ( )
4

5 create CSimpleName ( ) {
6 leftType : SimpleName

7 rightType : SimpleName

8 when
9 thisLeft . refImmediateComposite ( ) . oclIsKindOf ( JavaAST ! SingleVariableDeclaration ) and
10 thisRight . refImmediateComposite ( ) . oclIsKindOf ( JavaAST ! SingleVariableDeclaration )
11 or

12 thisLeft . refImmediateComposite ( ) . oclIsKindOf ( JavaAST ! MethodDeclaration ) and
13 thisRight . refImmediateComposite ( ) . oclIsKindOf ( JavaAST ! MethodDeclaration )
14

15 }
16

17 sim SSimpleName ( )
18 ATLLibraries{
19 ( name=’Strings ’ , path=’../ AMLLibrary/ATL/Helpers ’ )
20 }
21 JavaLibraries{
22 ( name=’match.SimmetricsSimilarity ’ , path=’../ AMLLibrary/Jars/simmetrics.jar’ )
23 }
24 {
25 i s thisLeft . fullyQualifiedName . simStrings ( thisRight . fullyQualifiedName )
26 }
27 . . .
28

29 create CMethodD ( ) {
30 leftType : MethodDeclaration

31 rightType : MethodDeclaration

32 when
33 true

34 }
35

36 sim SMethodDName ( IN1 :EqualModel ( m1 : JavaAST , m2 : JavaAST ) ) {
37 i s thisModule . sim ( thisLeft . name , thisRight . name )
38 }
39
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40 sim SMethodDReturnT ( IN1 :EqualModel ( m1 : JavaAST , m2 : JavaAST ) ) {
41 i s thisModule . sim ( thisLeft . returnType , thisRight . returnType )
42 }
43

44 sim SMethodDParameters ( IN1 :EqualModel ( m1 : JavaAST , m2 : JavaAST ) ) {
45 i s thisModule . averSimSets ( thisLeft . parameters , thisRight . parameters )
46 }
47

48 modelsFlow {
49

50 cSN = CSimpleName [ map ]
51 sSN = SSimpleName [ cSN ]
52

53 . . .
54 cMD = CMethodD [ map ]
55 sMDN = SMethodDName [ cMD ] ( sSN )
56 sMDR = SMethodDReturnT [ cMD ] ( tT )
57 sMDP = SMethodDParameters [ cMD ] ( tSVD )
58

59 wMD = WeightedSum [ 0 . 4 : sMDN , 0 . 3 : sMDR , 0 . 3 : sMDP ]
60 tMD = Threshold [ wMD ]
61

62 d = JavaASTDifferentiation [ tMD ]
63

64 }

Listing 6.9: AML algorithm matching AST models, SingleVariableDeclaration excerpt
1

2 cSVD = CSingleVD [ map ]
3 sSVDN = SSingleVDName [ cSVD ] ( sSN )
4 sSVDT = SSingleVDType [ cSVD ] ( sT )
5 wSVD = WeightedSum [ 0 . 5 : sSVDN , 0 . 5 : sSVDT ]
6 tSVD = Threshold [ wSVD ]

6.3.4 Experimentation

[104] does not report the experimentation dataset. To give an idea of the AML M1-to-
M1 matching algorithm performance, we have applied it to a pair of AST models provided
by Meneses. The AST model V1 has 377 elements and V2 has 426. The algorithm
matched the models in 7 seconds and found the expected changes.

6.4 Summary

Here we summarize the findings of each use case.

Model co-evolution This use case presented how to use AML to leverage model adap-
tation. An AML algorithm computes equivalences and changes between two metamodels.
A Higher-Order Transformation translates equivalences and changes into an executable
adaptation transformation. We reported the accuracy of our algorithm which is pretty
good; our algorithm always discovers the changes, and only fails by identifying simple
changes when in truth there is an equivalence (in 1% of the cases).

Readers interested in the position of AML with respect to other model migration tools
may want to take a look to [125], this paper presents the advantages and disadvantages of
the tools in different situations. In particular, the paper hints AML as a suitable tool for
reverse-engineering model migration (i.e., the case where a trace of changes does not exist).
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AML has a good performance and minimizes hand-written code and guidance from user.
On the other hand, the paper points out that some AML matching transformations have
to be modified in order to support more complex changes. The first AML version tackles
the taxonomy of changes proposed [105], except breaking and non-resolvable changes.

Pivot metamodels in the context of interoperability tool This work showed how
to perform the evaluation of pivot metamodels by using AML algorithms and the as-
sessment approach described in Chapter 5. We applied our approach to three running
examples taken from the ATL Zoo [126]. The experimentation illustrates that the ap-
proach make it possible to figure out 1) what is the metamodel that maps concepts of a
set of metamodels in the best way, 2) when a given metamodel is closer to certain meta-
models than to others, 3) when metamodel has to be further refined/enriched to improve
its pivot role, and 4) when a metamodel must not be chosen as a pivot.

Moreover, this use case compared the accuracy of the MSR matching transformation
to the Levenshtein one. For 2 of the 3 examples, the Levenshtein-based algorithm was
more accurate than the MSR-based one. Note that it is also the case for the test cases
described in Section 5.5; there, Levenshtein-based algorithms reported better fscores
than the WordNet-based ones. In contrast to WordNet, the MSR heuristic found more
relateness between technical concepts. At the same time, the MSR heuristic opened new
possible matches since a large corpora (such as Google) was exploited. Based on these
results, we conclude that the use of a more technical dictionary may improve matching
results over the modeling dataset.

Model synchronization This use case depicted that it is possible to use AML for
M1-to-M1 matching. Again the matching is incremental, a given algorithm matches con-
stituent/related elements first, and then the algorithm uses computed correspondences to
decide if other principal elements are equivalent. AML M1-to-M1 matching algorithms
reuses selection and aggregation heuristics, and similarity helpers typically included in
M2-to-M2 matching algorithms.



Chapter 7

Conclusions

This chapter summarizes the thesis contributions and presents future work related to the
core of the thesis (i.e., model matching calculation) and its associated use cases.

7.1 Contributions

7.1.1 Survey of model matching approaches

In contrast to ontology (or schema) matching approaches, which commenced to appear 30
years ago, (meta)model matching approaches have recently emerged. As a result, there ex-
ist poor surveys of them. We have contributed a broad survey of existing model matching
approaches. We have adapted ontology matching survey criteria to MDE. We have used
such criteria to study and compare existing approaches. The modeling community may
use the adapted criteria to easily classify other emerging approaches and then maintain
this survey up to date.

7.1.2 Matching heuristics independent of technical space and
abstraction level

Looking at existing matching algorithms shows repetitive code. Even if these algorithms
match pairs of (meta)models by taking into account standard features, different fragments
of code have had to be developed to support (for example) either MOF or Ecore meta-
models. This thesis investigated how to promote the reusability of matching heuristics
among technical spaces and abstraction levels (i.e., metamodels and/or models) by using
DSLs and modeling techniques.

Based on a domain analysis, we have proposed five kinds of matching heuristics. A
matching algorithm is the combination of heuristics which are incarnations of such kinds.
Alignments (which refer to Left and Right inputs) and a stepwise process allow the inter-
action among heuristics combined in an algorithm.

We have contributed a DSL (called AML) whose constructs overlap the abstractions
mentioned in the previous paragraph. The constructs aims loosely coupling of matching
heuristics to a given technical space or abstraction level, in addition, they factor code.

122
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We have chosen modeling techniques to make AML programs executable. A compiler
translates AML heuristics and matching process specification into a set of ATL trans-
formations and an Ant transformation chain, correspondingly. (Meta)models and equal
models represent inputs and alignments, respectively. An additional component can trans-
late inputs into the internal AML format (i.e., a contemporary metamodeling format such
as Ecore or KM3) if they differ from it. We have implemented the DSL on top of the
AmmA suite.

By using AML, we have developed a library containing matching heuristics and al-
gorithms. The heuristics exploit linguistic/structural information and sample instances.
Some transformations use external resources such as dictionaries (e.g., WordNet) or online
large corporas (e.g., Google). We have reused existing code to interface AML with these
kinds of resources.

To validate that our M2-to-M2 matching algorithms go beyond the modeling technical
spaces, we have applied them not only to pairs of metamodels but also to pairs of on-
tologies. Moreover, we have implemented an M1-to-M1 matching algorithm to show that
some AML heuristics used in M2-to-M2 algorithms can be reused in M1-to-M1. Therefore,
such matching heuristics are independent of abstraction level.

Our experimentations have demonstrated that one can use AML to build customizable
matching algorithms. Each algorithm involves generic and narrowed matching heuristics.
The former kind matches any pair of (meta)models and the latter is adapted to certain
pairs in order to improve generic heuristics results. Thus, developers just need to focus on
narrowed heuristics and on how to combine, both, generic and narrowed. If the developers
reuse generic matching heuristics, then algorithm development time may be reduced.

We have contributed AML and its library to Eclipse. From there, users can download
the tool for free, and post inquiries in a newsgroup. The decision on implementing a
matching algorithm by using either a DSL (such as AML) or a GPL (such as Java) is
not clear for all cases; it depends on the priorities one has. For example, if software
project managers wish to reduce development effort to short-term, it may be easier to ask
programmers to develop an algorithm with the GPL they use daily. In contrast, if their
goals are: 1) to reduce development effort to medium(or long)-term (i.e., assuming costs
of learning curve for a given DSL), and 2) to facilitate matching algorithm understanding
to users not having a large programming background, DSLs such as AML appear to be a
promising direction for committing such goals.

7.1.3 Modeling artifacts to automate matching algorithm eval-
uation

Evaluation allows the classification of algorithms in terms of strengths and weaknesses.
From evaluation results, the user gets some guidelines about what algorithm to choose
given a pair of (meta)models. Being aware of evaluation importance, we have made
contributions in that sense.

Firstly, our approach addresses the lack of matching evaluation test cases. The ap-
proach extracts reference alignments from model transformations. Having a large set of
pairs of (meta)models and reference alignments, we can perform more extensive bench-
marks.
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Secondly, the approach tackles the issue of low evaluation efficiency. The key is the
generation of Ant scripts from a megamodel; the generated Ant script lists all the test cases
and delegates to another Ant script the execution of actions over them. By modifying the
latter Ant script, one can easily add, delete, or modify actions. For example, one can plot
a special kind of curve from matching results. Note that this may considerably increase
evaluation efficiency, above all, the phase of processing results.

To validate that our evaluation approach is also applicable to diverse technical spaces,
we have tested the quality of our algorithms over ontology test cases. It is possible by
means of the AmmA-based EMFTriple tool that translates the ontologies (involved in the
test cases) into metamodels. We have implemented a transformation that translates the
reference alignments, used by the ontology systems, to our own format. Furthermore, a
bi-directional transformation enables the use of sophisticate tools for matching graphics
(e.g., the Alignment API [85]).

7.1.4 Three uses cases based on matching

We have contributed three uses cases to show matching applicability in diverse do-
mains:

• The co-evolution use case depicts how migrating transformations can be derived
from M2-to-M2 mappings. The solution supports simple and complex migration
tasks.

• The pivot metamodel evaluation use case presents M2-to-M2 mappings as a no-
tion of distance to evaluate what is the best pivot of a set of metamodels. Moreover,
the use case shows the heuristic exploiting Google online corpora in action (i.e., the
MSR heuristic presented in Section 4.4.4).

• The model synchronization use case illustrates how AML can be used to develop
M1-to-M1 matching algorithms as well.

7.2 Future Work

This section presents future work grouped in four aspects: language, evaluation, use cases,
and tools.

7.2.1 Language

7.2.1.1 AML applicability to real contexts

This work showed the feasibility of reusing matching heuristics independently of tech-
nical spaces and abstraction levels. However, it is necessary to validate the approach
applicability to real contexts. Some future trends concerning that follow:

• Configuration of further M2-to-M2 matching algorithms. In addition, the algorithms
have to be tested not only on metamodels (or ontologies) but on other representation
formalisms (e.g., database schemas).
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• Testing AML in more M1-to-M1 matching algorithms. Model transformation gener-
ation has gained interest in modeling community. In response to this, the bulk of our
thesis was devoted to metamodel matching algorithms. In contrast, we have dedi-
cated only one use case (i.e., model synchronization) to model matching, therefore,
a future trend is to study AML model matching capabilities.

7.2.1.2 Mapping manipulation construct

For the use cases requiring complex mappings (e.g., co-evolution), we have developed
user-defined matching transformations, i.e., ATL transformations. As mapping manipula-
tion logic highly depends on the application domains, more work is needed to determinate
whether a set of notations can factorize such a logic.

7.2.1.3 Combining construct

Something concerning (meta)model matching is the risk of low performance when
algorithms take large (meta)models as input. The current AML version executes a trans-
formation for each method combined in an algorithm, this impacts performance. It is
necessary to have a construct whose semantic is the execution of matching heuristics in
a simple step, we imagine a combining construct. The idea would be to keep match-
ing heuristics like they are now (i.e., embedding only a concrete matching logic), and to
combine them in the modelsFlow block by using the combining operator. The AML
compiler would be the responsible for combining the heuristics at compilation time. For
each combining operator, the compiler would generate an ATL transformation including
an and condition that chains heuristics comparison criteria. Like that, one keeps AML
modularity and one increases performance as well. The combining operator is to be im-
plemented in the future, we plan to combine heuristics conforming to the same kind (e.g.,
create, sim, etc).

7.2.1.4 Bootstrapping

For M1-to-M1 matching, AML lets developers explicitly specify create matching
transformations with their respective types. These matching transformations are neces-
sary to define the searching step scope and then take care of the algorithm performance.
A disadvantage is that M1-to-M1 matching algorithms tend to be verbose or complex (as
shown in the model synchronization use case). The user has to develop several create
matching transformations (a heuristic for each pair of types) or only a create matching
transformation containing a large OCL condition (for validating the pairs of types). A
direction to alleviate this issue would be to automate the generation of AML M1-to-M1
create matching transformations. Seeing everything like a model (even AML strategies)
makes bootstrapping possible.

The idea is (firstly) to match the metamodels which input models conform to, (sec-
ondly) the developer marks pairs of correspondences from the output mapping model
(each correspondence indicates a LeftType and RightType). Finally, a HOT generates
an AML program containing a create heuristic for each marked correspondence. This
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idea is to be implemented in the near future.

7.2.2 Evaluation

7.2.2.1 Stretching the spectrum of test cases

To evaluate matching algorithm accuracy, AML can use reference mappings extracted
from model transformations. Our experimentations show that model transformation is a
promising niche to get new test cases from. Although our approach is more robust that
related work (i.e., MatchBox [6]), it would be interesting to have an extension supporting
imperative code. In addition, our reference alignments are inputs that experts may refine
in order to improve their quality. Another way of improvement would be to compare our
reference alignments with the gold standards extracted by other systems such as Match-
Box. In the near future, we want to contribute our test cases to a matching evaluation
initiative such as the OAEI.

The experimented test cases represent diverse domains and sizes. However, it would
be desired to experiment more test cases including larger (meta)models. Even if there
exist open source large (meta)models (e.g., the EAST-ADL metamodel [127]), a problem
is the lack of their gold standards in proper formats. These gold standards are often
informally defined in text documents. A future trend is to exploit this kind of documents
to extract gold standards. Text processing techniques could be useful for that.

7.2.2.2 Further evaluation of model matching systems

Section 5.5 gives the fscores obtained by the AML algorithms. The values give an
idea about AML algorithms accuracy, however further benchmarks have to be done to
really figure out strengths and weakness of model matching systems (among them AML,
MatchBox, etc.). To do that, an important part is to establish common modeling datasets.
Another aspect is to create MDE matching evaluation campaigns or to propose a modeling
track to a mature matching evaluation initiative (such as the OAEI). Note that we have
made efforts in that direction, for example, we have proposed a large modeling dataset.
If we contribute such a dataset to the OAEI (and our transformations from reference
mapping models to the Alignment API format), it would be possible to compare not only
model matching algorithms but also ontology matching systems.

7.2.2.3 Evaluation based on data mining

AML matching algorithms produce intermediate mapping models. In addition, our
evaluation approach yields metric models. It would be interesting to plug a data min-
ing tool on top of metric and mapping models. This could help us to infer interesting
conclusions from matching results, for instance, how to improve an algorithm in terms of
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performance or accuracy.

7.2.3 Use cases

7.2.3.1 Model co-evolution

This use case adapts models to evolving metamodels. An aspect to investigate in the
future would be the impact of metamodel evolution on model transformations.

7.2.3.2 Pivot metamodels in the context of interoperability tool

This use case employs fscore as a notion of distance to evaluate pivot metamodels. A
future direction may be to explore the count-based approach described in Section 6.2.3.1.
Graph visualizations can be built from count-based results: pivot metamodels correspond
to nodes and count-based results represent edges. One could use the visualization as a
mean to assist: 1) pivot selection, 2) pivot metamodel construction, or 3) model transfor-
mation development. An example concerning the third item follows: a graph visualization
could suggest if the development of a transformation chain A → C → B is cheaper than
a direct transformation from A to B, where A, B, C are pivot metamodels.

7.2.3.3 Model synchronization

This use case presented an M1-to-M1 matching algorithm including an external trans-
formation devoted to mark changing model elements. When comparing this transforma-
tion to the Differentiation ATL transformation used in the co-evolution use case, we
figure out common patterns. DSL constructs could be extracted from them. Such DSL
notations would facilitate the implementation of the diff operation.

7.2.4 Tools

7.2.4.1 Projectors

The AML metamodel importer (see Section 4.3.1.4) translates different formalisms
(i.e., OWL, MOF) to Ecore or KM3 (the internal AML formats). Thus, it is possible
to apply AML M2-to-M2 matching transformations to models built in other technical
spaces. However, the experimentation of Section 5.5 revealed that EMFTriple [24] (i.e.,
the AmmA-based projector used to translate OWL ontologies into Ecore metamodels)
needs a few improvements to fully support the translation, above all, when ontology
individuals are involved.

7.2.4.2 User involvement

Our experimentations have shown that efforts are necessary to improve user experience
at mapping refinement with AMW. A direction would be to enhance the AMW GUI or
integrate AML with EMF Compare [87] (whose GUI has been specialized). In the last
case, a transformation from the Equal metamodel to the EMF Compare format is needed.

An AML algorithm generates intermediate mapping models. By regarding such mod-
els, users could understand how mapping models evolve along the matching process, for
example, when a similarity value changes. This could give ideas about how to improve
algorithm accuracy. Here the AM3 tools [128], which are based on megamodels, will be
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useful to navigate mapping models yielded by matching algorithms.
7.2.4.3 Runtime improvements

Instance-based algorithms reported better runtime than metamodel-only based algo-
rithms. A reason is that the experimented metamodel-only based algorithms include
matching transformations invoking Java code which impact performance. Another ra-
tionale is that we have manually captured the runtime from the console, as a result, we
could have introduced errors in the reported times. Some future work concerning runtime
follows:
• Improve runtime when Java code is invoked from AML.

• Create a profiler to automatically log in a model the runtime of AML matching
transformations.



Chapter 8

Résume étendu

8.1 Contexte et problématique

L’Ingénierie Dirigée par les Modèles (IDM) est une branche de l’ingénierie du logiciel.
Selon [30], l’IDM est une généralisation de la programmation orientée objet (OOP). Les
concepts principaux de l’OOP sont les classes et les instances et deux relations instance
de et hérite de. Un objet est une instance d’une classe et une classe peut étendre une
autre classe. Pour l’IDM, le terme fondamental est celui de modèle. Un modèle représente
un point de vue d’un système et il est défini par le langage de son métamodèle. Autrement
dit, un modèle contient des éléments conforment aux concepts et aux relations exprimées
dans le métamodèle.

Les deux relations de base entre un modèle et son métamodèle sont représenté par et
conforme à. Un modèle représente une partie d’un système et il conforme à un métamod-
èle. De même un métamodèle est conforme à un autre métamétamodèle, habituellement
cette régression est stoppée en considérant que le métamodèle “primitif” est conforme
à lui même. Un programme, un document XML, une base de données, etc., sont tous
des représentations de systèmes informatiques, donc ce sont des modèles objets d’intérêts
potentiel pour l’IDM.

Les notions de concepts et d’éléments peuvent correspondre à celles de classes et
d’instances respectivement. Ceci suggère seulement des similarités entre l’IDM et l’OOP.
Mais en regardant cela de plus près on découvre comme l’IDM complémente l’OOP. Par
exemple, les modèles permettent la représentation des classes ainsi que la représentation
d’autres aspects d’un système. En outre, l’IDM introduit la notion de transformation de
modèle, il s’agit relations ou alignements indiquant comme dériver un modèle cible d’un
modèle source. Les alignements sont écrits avec les concepts des métamodèles source et
cible.

La transformation de modèles est utilisée dans les techniques contemporaines de généra-
tion de code.

Le terme modèle est souvent associé aux modèles UML [32]. UML fournit des dia-
grammes pour représenter non seulement la structure du logiciel (diagrammes de classes)
mais également son comportement et ses interactions. UML fait partie de l’initiative
MDA, l’approche de modélisation de l’OMG. MDA est l’acronyme anglais de Model Driven
Architecture signifiant “architecture dirigée par les modèles”. Le but de MDA est de ré-
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soudre les problèmes de portabilité, de productivité et d’interopérabilité concernant les
systèmes logiciels. Afin de résoudre ces problèmes, le MDA propose la séparation du logi-
ciel en modèles PIM (Platform Independent Model) et modèles PSM (Platform Specific
Model). Un modèle PIM considère l’espace du problème et un modèle PSM l’espace de la
solution. Un modèle PIM est transformé en un ou plusieurs modèles PSM. Enfin, un mod-
èle PSM est transformé en code. En plus d’UML, MDA recommande d’autres technologies
comme : MOF [11], XMI [33], OCL [34], etc. MOF est un métamétamodèle définissant
les concepts comme Classes et les relations comme Associations et Attributs. XMI
sérialise des modèles dans le format XML. Finalement, OCL permet la définition des
requêtes et des contraintes sur des modèles.

Favre [36] suggère MDA comme une incarnation de l’IDM implémentée avec l’ensemble
des technologies définies par l’OMG. En outre, Kent [37] trouve que le MDA ne couvre
pas toutes les dimensions de l’ingénierie du logiciels (notamment celle du développement
de logiciels comme un processus). Ainsi, l’IDM est plus qu’UML et MDA. L’IDM s’étend
au delà de l’ingénierie du logiciel pour couvrir d’autres disciplines, dont l’ingénierie de
langages [20]. Les langages dédiés (dénotés DSLs par Domain Specific Languages en
anglais) ont gagné de l’importance en raison des avantages en termes d’expressivité, et de
vérification sur les langages généralistes, e.g. Java.

Kurtev [15] explique le potentiel de l’IDM dans les DSLs : un métamodèle et un ensem-
ble de transformations décrivent la syntaxe abstraite et la sémantique d’un DSL. De plus,
les techniques de projection établissent une passerelle entre des espaces techniques. Un es-
pace technique est une notion dénotant une technologie, par exemple, l’IDM, EBNF [16],
RDF/OWL [17], etc. Chaque espace technique a son métamétamodèle propre. Pour la
modélisation de DSLs, les projecteurs relient les espaces techniques de l’IDM et de l’EBNF
: ils dérivent des modèles à partir des programmes exprimées dans la syntaxe concrète
d’un DSL et vice versa[19]. L’intérêt des projecteurs est de permettre une passerelle sim-
ple et pratique entre des espaces techniques très différents et profitant ainsi des avantages
offerts par chacun.

L’IDM commence à intéresser fortement l’industrie. Par exemple, le standard AU-
TOSAR, développé par les constructeurs automobiles, définit un métamodèle de 5000
concepts pour spécifier les architectures de logiciels dans l’automobile[1]. Dans un sec-
ond temps ce métamodèle a évolué pour répondre à un nouveau cahier des charges. Le
problème est que l’on doit maintenant migrer ou faire le parallèle entre les anciens con-
cepts et ceux du nouveau cahier des charges pour créer un nouveau métamodèle pour
AUTOSAR. Une approche pour la migration est l’implémentation des transformations
de modèles[129]. Toutefois l’industrie a besoin de technologies matures et qui passent à
l’échelle. En réponse au défi de la scalabilité (le besoin de grandes (méta)modèles et de
transformations de modèles), la recherche académique et l’industrie investissent dans des
outils de modélisation. Notamment trois outils actuellement existent : EMF [10], ATL
[7], et AM3 [23]. Ce sont les plus populaire grâce à leur nature “open source” et leur
communauté d’utilisateurs très actifs.

EMF permet la définition, édition et manipulation de métamodèles ainsi que la généra-
tion de code source Java à partir de métamodèles. A l’image de MDA, EMF a son propre
métamétamodèle appelé Ecore. MOF et Ecore ont des concepts et relations équivalentes
(e.g. Classes est similaire à EClasses), une différence entre eux est que Ecore contient
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des notions spécifiques à Java, par exemple, EAnnotation.

Nous avons déjà mentionné comment les résultats de l’IDM peuvent être utilisés dans
les DSLs. Inversement, ATL est un DSL pour la définition des transformations de modèles.
ATL fournit un ensemble de notations (en partie inspirées par OCL) pour naviguer des
modèles source et restreindre la création des éléments cibles. De telles notations sont plus
concises et mieux adaptées à l’expression des transformations qu’un langage généraliste
comme Java. Pour ATL les transformations sont des modèles, ceci augmente le pou-
voir d’automatisation de l’IDM : les transformations de modèles peuvent être générées en
utilisant des transformations d’ordre supérieur (dénotées HOTs par Higher-Order Trans-
formations en anglais)[8][9].

AM3 est un outil validant l’approche de mégamodelisation. Un mégamodèle est une
sorte de carte représentant des artefacts de modélisation ainsi que les relations entre eux.
A titre d’illustration, un mégamodèle peut représenter les transformations de modèles
associés à un système logiciel issue de l’IDM. Un mégamodèle a pour but de faciliter la
compréhension du système, on sait quels sont modèles consommés et produits par les
transformations et comment ces dernières interagissent.

Les outils supportant la modélisation et le développement des transformations de
modèles atteignent aujourd’hui un certain niveau de maturité. Une prochaine étape
est l’automatisation de ces tâches, notamment du développement des transformations.
Plusieurs approches ont étudié ce point et une solution est la découverte des alignements
(nommée matching en anglais) [2, 3, 4, 5, 6]. Cette opération a été étudiée par d’autres
disciplines comme les bases de données, la réécriture de termes ou le développement des
ontologies. Au lieu d’établir des alignements à la main (ce qui est sujet à erreurs et coû-
teux), une stratégie d’alignement (également appelée algorithme d’alignement) découvre
de manière automatique les liens à établir. Toutefois ce calcul d’alignements ne peut
pas être dans les cas réalistes et complexes complètement automatique. Une stratégie
d’alignement repose souvent sur un ensemble d’heuristiques, chaque heuristique juge un
aspect particulier du métamodèles, par exemple, les noms des concepts ou la structure.
Finalement, l’utilisateur peut raffiner les alignements à la main, et à partir d’eux un
programme peut dériver une transformation de modèles.

La thèse de Marcos Didonet del Fabro représente des alignements sous la forme d’un
modèle de tissage[2]. Un modèle de tissage contient des relations entre des éléments de
(méta)modèles. Cette notion diffère du terme utilisé dans la programmation orientée as-
pect (AOP par Aspect Oriented Programming en anglais)[60]. Tandis que la première fait
référence au tissage des modèles, AOP tisse du code source exécutable. De plus, [2] implé-
mente une stratégie d’alignement comme une châıne de transformations d’alignement de
modèles, chaque transformation corresponds à une heuristique particulière et est dévelop-
pées avec le langage ATL. La châıne peut être configurée en sélectionnant des transforma-
tions d’alignement des modèles ou des paramètres appropriés. Un outil, nommé AMW,
permet le raffinement manuel des alignements. Dans la dernière étape, une HOT dérive
une transformation de modèles à partir des alignements découverts et raffinés.

Les résultats de la thèse de Didonet del Fabro et l’intérêt récent de la communauté
de l’IDM par l’alignement sont les motivations de cette thèse et son point du départ.
Nous étendons le travail de[2], nous ne nous concentrons pas seulement sur les stratégies
d’alignement des métamodèles mais aussi sur les stratégies d’alignement des modèles, ap-
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pelées respectivement M2-to-M2 et M1-to-M1. La première sorte de stratégie découvre
des alignements entre deux métamodèles. Les transformations de modèles peuvent être
dérivées à partir de tels alignements. La dernière sorte d’algorithme détermine des aligne-
ments entre deux modèles. Ces alignements sont utiles pour comparer différents points
de vue. Par exemple, ils peuvent améliorer l’exactitude des stratégies d’alignement M2-
to-M2 ou influencer positivement d’autres opérations de l’IDM, comme la synchronisation
de modèlesă: maintenir modèles et code source consistantes lors quŠun système évolue.

Pour supporter le développement des stratégies d’alignement, soit M2-to-M2 or M1-
to-M1, il faut s’attaquer à des problèmes qui ne sont pas discutés dans la thèse de Didonet
del Fabro. Cette thèse remarque l’importance d’améliorer les algorithmes d’alignements
puis qu’aucun algorithme automatique aligne les paires de (méta)modèles d’une manière
parfaite. Les expérimentations faites démontrent la possibilité d’utiliser des châınes de
transformation pour améliorer les algorithmes. Cependant, elles révèlent des problèmes
concernant la réutilisabilité des heuristiques d’alignement et l’évaluation des algorithmes
dŠalignement.

Notre premier point concerne la reutilisabilité. Les transformations ATL définies
par[2] alignent seulement des paires de métamodèles conforment à Ecore. Bien que ces
transformations comparent des caractéristiques standards (e.g. les noms), elles peuvent
être plus ou moins applicables aux métamodèles conforment à d’autres métamétamod-
èles (e.g. MOF). En revanche, son applicabilité substantiellement diminue lors qu’on
souhaite aligner des modèles. Nous nommons ce problème couplement des heuristiques
d’alignement aux métamodèles.

Le deuxième point concerne l’évaluation. Il s’agit d’une tâche essentielle dans l’opération
d’alignement, elle compare des alignements découverts avec des alignements de référence[12].
Pour évaluer les algorithmes, on a besoin de tests d’usage, c’est-à-dire, des paires de
(méta)modèles et des alignements de référence correspondants. Toutes les approches
d’alignements de modèles antérieurs à ce travail définissent leurs propres tests d’usage
et méthodologies. En conséquence il est difficile d’établir un consensus sur leurs qualités
et faiblesses. Nous dénotons ces problèmes comme le manque d’un ensemble commun de
tests d’usage et une évaluation déficiente.

Cette thèse adresse les deux problèmes mentionnés ci-dessus. De plus, pour démontrer
que notre travail dépasse les espaces techniques typiques de l’IDM (Ecore, MOF, etc.),
nous appliquons nos stratégies d’alignement aux paires des ontologies OWL. Comme les
métamodèles, les ontologies sont des formalismes de représentations de données. Une
différence entre les metamodèles et les ontologies est le domaine d’application. Dans
la dernière décennie, la communauté de l’ingénierie du logiciel a promu les metamod-
èles alors que les communautés du Web sémantique et de l’intelligence artificielle ont
vu émerger les ontologies. Une ontologie est un corpus de connaissances décrivant un
domaine particulier au travers d’un vocabulaire de représentation[21]. Par exemple, les
ontologies peuvent représenter des ressources Web afin de les rendre manipulables par des
programmes. Deux raisons justifient notre choix des ontologies par rapport à d’autres
formalismes de représentation (e.g. des schémas de bases de données). Tout d’abord,
les ontologies peuvent être traduites en métamodèles. La deuxième et plus importante
raison est que la communauté des ontologies a une procédure mature d’évaluation appelée
OAEI[22] qui systématiquement évalue des systèmes d’alignements d’ontologies et publie
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leurs résultats sur internet. La disponibilité de tels résultats facilite la comparaison de
notre travail avec d’autres systèmes.

8.2 Contributions de la thèse

Notre contribution dans cette thèse se décline en quatre points détaillés ci-dessous.

8.2.1 État de l’art des approches d’alignement des modèles

À la différence des approches d’alignement des ontologies (ou des schémas de base de
données) qui ont commencé à apparâıtre il y a 30 ans, les approches d’alignement des
(méta)modèles ont fait leur apparition récemment, par conséquence il y a peu d’études.
Nous avons contribué à un large état de l’art des approches d’alignement des (méta)modèles.
Nous avons adapté les critères d’alignement d’ontologies à l’IDM et nous avons étudié et
comparé les approches existantes en utilisant ce critères. La communauté de l’IDM pourra
utiliser les critères adaptés pour facilement classifier d’autres approches et faire la mise à
jour du de cet état de l’art.

8.2.2 Heuristiques d’alignements de modèles indépendantes des
espaces techniques et des niveaux d’abstraction

En regardant les algorithmes existants d’alignements on découvre du code source avec
des duplications de code. Même si les algorithmes alignent des (méta)modèles se basent
sur des caractéristiques similaires, il faut différents fragments de code pour supporter
l’alignement des métamodèles Ecore ou des métamodèles MOF. Cette thèse a étudié com-
ment promouvoir la reutilisabilité des heuristiques d’alignement parmi différents espaces
techniques et niveaux d’abstraction (i.e. métamodèles ou modèles) en utilisant un DSL
et quelques techniques de modélisation.

Sur la base d’une analyse de domaine, nous avons proposé cinq types d’heuristiques
d’alignement. Un algorithme d’alignement est la combinaison d’heuristiques, dont chaque
heuristique est l’incarnation d’un type. Des alignements (référençant les modèles source
objet de l’alignement) et un processus graduel permettant l’interaction des heuristiques
combinées dans un algorithme.

Nous avons contribué à un DSL (nommé AML) dont les notations recouvrent les
abstractions mentionnées dans le paragraphe précédent. Leur but est d’autoriser un
faible couplage entre les heuristiques d’alignement et un espace technique ou un niveau
d’abstraction donné.

Ces notations peuvent être facilement traduites en code exécutable. Nous avons choisi
quelques techniques de modélisation pour traduire les programmes AML en modules
exécutables. Un compilateur traduit les heuristiques d’alignement AML et le processus
graduel en plusieurs transformations ATL et en une châıne de transformations spécifiées
avec Ant[130]. Des (méta)modèles et des comparaisons de modèles représentent modèles
source et alignements. Un composant additionnel traduit les modèles source dans le for-
mat interne d’AML (i.e. un format de modélisation standard comme Ecore) si nécessaire.
Nous avons implémenté AML au-dessus de la plate-forme AmmA[15].

En utilisant AML, nous avons développé une bibliothèque d’heuristiques et
d’algorithmes. Les heuristiques exploitent l’information linguistique, la structure ou les
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instances de données des méta(modèles). Quelques heuristiques utilisent des ressources
externes comme un dictionnaire (e.g. WordNet [75]) ou un corpus linguistiques en ligne
(e.g. Google). Nous avons réutilisé du code source existant pour interfacer AML avec des
ressources externes.

Pour valider que nos algorithmes d’alignement M2-to-M2 dépassent les espaces tech-
niques typiques de l’IDM, nous avons testé les algorithmes non seulement sur des pairs
de métamodèles mais aussi sur des pairs d’ontologies. Par ailleurs, nous avons développé
un algorithme d’alignement M1-to-M1 pour montrer que quelques heuristiques AML util-
isées dans les algorithmes M2-to-M2 sont également réutilisables dans les algorithmes
M1-to-M1. Donc, des heuristiques sont indépendantes de l’espace technique et du niveau
d’abstraction.

Nos expérimentations ont démontré qu’on peut utiliser AML pour construire
des algorithmes d’alignement paramétrables. Chaque algorithme inclus des heuris-
tiques d’alignement génériques et spécifiques. La première sorte d’heuristique aligne
n’importe quelle paire de (méta)modèles, la deuxième est adaptée à certaines paires de
(méta)modèles et son but est d’affiner les résultats des heuristiques génériques. De cette
manière, les développeurs doivent juste se concentrer sur les heuristiques spécifiques et sur
la combinaison des heuristiques génériques et spécifiques. Si les développeurs réutilisent
les heuristiques génériques, alors le temps du développement des algorithmes peut être
réduit.

AML et sa bibliothèque sont entièrement disponibles sur le site d’Eclipse. Des util-
isateurs peuvent télécharger l’outil gratuitement depuis le site et poser des questions sur
les forums de discussion. La décision d’implémenter un algorithme d’alignement en util-
isant soit un DSL ou un langage généraliste n’est pas claire dans tous les cas. Ceci
dépend des priorités. Par exemple, si un chef de projets informatiques souhaite réduire
l’effort du développement à court terme, il serait peut-être plus simple de demander aux
programmeurs de développer des algorithmes avec un langage généraliste qu’ils utilisent
quotidiennement. Par contre, si le but est : 1) de réduire l’effort du développement à long
terme (prenant en charge le coût d’apprentissage d’un DSL), et 2) de faciliter aux util-
isateurs débutants la compréhension des algorithmes d’alignement, les DSLs, dont AML,
semblent une direction prometteuse pour accomplir de tels objectifs.

8.2.3 Artefacts de modélisation pour automatiser l’évaluation
des algorithmes d’alignement

L’évaluation permet la classification des algorithmes en termes de qualités et faiblesses.
A partir des résultats d’une évaluation les utilisateurs obtiennent des indications sur quel
algorithme choisir pour aligner certaines paires de (méta)modèles. Tout d’abord nous pro-
posons une approche pour remédier au problème du manque de test d’usage requis pour
l’évaluation des algorithmes. Cette approche extrait des tests d’usage depuis les transfor-
mations des modèles : les transformations indiquant les (méta)modèles à aligner ainsi que
les alignements de référence. En ayant une large collection de tests d’usage nous pouvons
faire des comparaisons plus solides. Ensuite l’approche s’occupe du deuxième problème
concernant le performance de l’évaluation. Notre approche exécute automatiquement des
algorithmes d’alignement sur des tests d’usage. La clef est de générer un script Ant à
partir d’un mégamodèle listant tous les tests d’usages extraits. Ce script Ant fait appel
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à un autre script Ant indiquant les actions à exécuter sur les tests. On peut facilement
modifier le dernier script pour ajouter, supprimer ou modifier les actions. Par exemple, on
peut faire un graphique spécial à partir des résultats d’alignement. Ceci peut augmenter
considérablement l’efficacité de l’évaluation, surtout, l’étape du traitement des résultats.

Pour valider que notre approche d’évaluation est applicable dans des espaces techniques
différents, nous avons testé la qualité des nos algorithmes sur des tests d’usage des on-
tologies existantes. Ceci est possible grâce à l’outil AmmA/EMFTriple[24] qui traduit les
ontologies (indiquées par les tests) en métamodèles. De plus, nous avons implémenté une
transformation pour traduire les alignements de référence dans le format reconnu par notre
système. Notamment la transformation bidirectionnelle respective permet l’utilisation des
outils de rendérisation des métriques d’alignement (e.g. the Alignment API [85]).

8.2.4 Trois cas d’étude basés sur l’alignement des (méta)modèles

Nous avons contribué à trois cas d’utilisation pour montrer l’applicabilité de
l’alignement des (méta)modèles dans plusieurs domaines :

1. La coévolution consiste à adapter les modèles conformes à un métamodèle et qui
évoluent dans le temps. Le premier cas d’étude propose une solution de coévolution
: un algorithme d’alignement M2-to-M2 découvre les changements simples et com-
plexes entre deux versions d’un métamodèle donné. Ensuite, une HOT dérive une
transformation d’adaptation à partir des changements découverts. Rose et al. [29]
offre une comparaison d’outils de coévolution de modèles, parmi eux on y trouve
AML. Cet article remarque AML comme un outil performant et réducteur de l’effort
requit de la part de l’utilisateur pour faire une tâche de coévolution.

2. Le deuxième cas d’étude présente des alignements M2-to-M2 comme une notion de
distance pour évaluer quel est le meilleur pivot parmi une collection de métamodèles.
Par ailleurs, ce cas d’étude montre le fonctionnement d’une heuristique qu’exploite
le corpus linguistique de Google.

3. Finalement, le troisième cas d’étude illustre comment AML peut être utilisé pour
développer un algorithme d’alignement M1-to-M1.

8.3 Publications associées à la thèse

1. A Domain Specific Language for Expressing Model Matching. In Actes des Journées
sur l’IDM, 2009 [25].

2. Automatizing the Evaluation of Model Matching Systems. In Workshop on match-
ing and meaning, part of the AISB convention, 2010 [26].

3. AML: A Domain Specific Language to Manage Software Evolution. FLFS Poster.
Journées de l’ANR, 2010.

4. Adaptation of Models to Evolving Metamodels. Research Report, INRIA, 2008 [27].

5. Managing Model Adaptation by Precise Detection of Metamodel Changes. In Proc.
of ECMDA, 2009 [28].
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6. A Comparison of Model Migration Tools. In Proc. of Models, 2010 [29].

8.4 Bilan de perspectives

Voici les principales perspectives de recherche qui apparaissent à l’issue de cette thèse
:

8.4.1 Diversifier les heuristiques et algorithmes d’alignement

Nos expérimentations montrent que les algorithmes d’alignement M2-to-M2 sont ap-
plicables dans plusieurs espaces techniques de l’IDM et également dans des ontologies.
Cependant il faudrait tester les algorithmes sur d’autres espaces techniques (e.g. les sché-
mas de bases de données) et améliorer les outils qui traduisent les ontologies en métamod-
èles, notamment lors-qu’une ontologie contient des instances de données. À l’exception du
troisième cas d’étude, la thèse est consacrée à l’alignement M2-to-M2, donc il serait néces-
saire de regarder de plus près l’efficacité d’AML dans le développement des algorithmes
M1-to-M1. Nous avons contribué à une bibliothèque d’heuristiques que ne dépasse pas en
taille les bibliothèques existantes (e.g. Coma++ [62]). La justification est que nous avons
voulu tester l’efficacité que les heuristiques, proposées dans d’autres contextes, ont dans
l’IDM. Il serait souhaitable d’explorer d’autres heuristiques. Notamment les heuristiques
exploitant les instances de données et les remarques de la part des utilisateurs.

8.4.2 Élargir la collection de tests d’usage

Nos expérimentations démontrent que les transformations de modèles sont une source
prometteuse de tests d’usage, dont, des alignements de référence et des pairs de
(méta)modèles. Notre approche exploite surtout la partie déclarative des transforma-
tions. Afin de profiter au maximum des transformations, il faudra exploiter également la
partie impérative. Par ailleurs, des experts pourraient raffiner les alignements de référence
extraits et donc augmenter leur qualité.

Les tests d’usage extraits couvrent des domaines et des tailles diverses, cependant,
il serait intéressant d’expérimenter des tests d’usage encore plus larges. Même si des
métamodèles larges sont disponibles en ’open source’ (e.g. EAST-ADL [127]), un problème
est le manque d’alignements de référence dans un format approprié. Ces alignements de
référence sont fréquemment définis dans des documents textuels. Une perspective serait
d’exploiter ce type de documents pour obtenir des alignements. Là, des techniques de
traitement de texte peuvent être utiles.

8.4.3 Évaluer d’avantage les systèmes d’alignement existants

Nos expérimentations donnent une idée de l’exactitude des algorithmes AML par rap-
port à deux systèmes d’alignement (i.e. the Alignment API [85] et MatchBox [6]). Pour-
tant, il serait souhaitable de comparer d’avantage les systèmes d’alignement existants (y
compris AML, the alignment API et MatchBox) pour approfondir nos connaissances sur
leurs qualités et faiblesses lors qu’on aligne des (méta)modèles. Pour accomplir cet ob-
jectif il faudrait établir une très large collection de tests d’usage ainsi qu’une procédure
d’évaluation. Nous avons fait des efforts dans cette direction : nous avons généré une col-
lection de tests d’usage et nous comptons contribuer à une initiative d’évaluation mature,
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par exemple l’OAEI[22].

8.4.4 Perspectives sur les cas d’étude

8.4.4.1 Coévolution des modèles

La première version d’AML supporte la plupart des changements complexes fixés par
la classification de Wachsmuth [105] à l’exception des changements nommés“breaking and
non resolvable changes”. Une perspective serait de supporter tous les types de changement
ainsi que leur impact sur les transformations de modèles.
8.4.4.2 Évaluation des métamodèles pivots

Nous avons utilisé une métrique pour mesurer le niveau de superposition entre un
ensemble de métamodèles et donc évaluer le meilleur métamodèle pivot. Il serait intéres-
sant de tester d’autres métriques et d’analyser non seulement l’évaluation mais aussi la
sélection et la construction des métamodèles pivots.
8.4.4.3 Synchronisation des modèles

A l’image du première cas d’étude, le troisième cas a requis une transformation de
différentiation. Nous avons comparé de telles transformations et nous avons remarqué
du code source commun, donc nous envisageons un nouveau DSL que faciliterait leur
développement.
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Appendix A: AML abstract syntax

This appendix gives the AML abstract syntax in two formats: class diagrams and KM3
code. The KM3 version contains comments (highlighted in green) indicating where the
code of the main AML constructs (i.e., import, models block, matching method, and models
flow block) stars and ends.

Listing 1: AML abstract syntax in KM3 notation
1 class Matcher extends MElement {
2 reference methods [ ∗ ] container : Method oppositeOf matcher ;
3 reference matchers [ ∗ ] container : MatcherRef oppositeOf unit ;
4 reference modelsBlock [0−1] container : ModelsBlock oppositeOf matcher ;
5 reference modelsFlowsBlock [0−1] container : ModelsFlowsBlock oppositeOf matcher ;
6 reference referenceModels [ ∗ ] container : ReferenceModel oppositeOf matcher ;
7 }
8

9 -- @begin Import

10

11 class MatcherRef extends LocatedElement {
12 reference unit : Matcher oppositeOf matchers ;
13 attribute name : S t r ing ;
14 }
15

16 -- @begin Import

17

18 -- @begin Models block

19

20 class ModelsBlock extends LocatedElement {
21 reference models [ ∗ ] ordered container : Model ;
22 reference matcher : Matcher oppositeOf modelsBlock ;
23 }
24

25 abstract class Model extends LocatedElement {
26 attribute name : S t r ing ;
27 reference referenceModel container : ReferenceModel oppositeOf models ;
28 }
29

30 class WeavingModel extends Model {
31 reference wovenModels [ ∗ ] container : InputModel ;
32 }
33

34 class MappingModel extends Model {
35 reference leftModel [0−1] container : InputModel ;
36 reference rightModel [0−1] container : InputModel ;
37 }
38

39 class InputModel extends Model {}
40

41 class ReferenceModel extends LocatedElement {
42 attribute name : S t r ing ;
43 reference elements [ ∗ ] : MetaElement oppositeOf referenceModel ;
44 reference models [ ∗ ] : Model oppositeOf referenceModel ;
45 reference matcher : Matcher oppositeOf referenceModels ;
46 }
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Figure 1: AML metamodel
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47

48 -- @end Models block

49

50 -- @begin Matching methods

51

52 class Method extends MElement {
53 reference inMappingModel [1−∗ ] container : MappingModel ;
54 reference arguments [ ∗ ] container : Model ;
55 reference inPattern container : InPattern oppositeOf method ;
56 reference outPattern container : OutPattern oppositeOf method ;
57 reference sim [0−1] container : Sim oppositeOf method ;
58 reference variables [ ∗ ] ordered container : RuleVariableDeclaration oppositeOf method ;
59 reference matcher : Matcher oppositeOf methods ;
60 reference ATLLibraries [ ∗ ] container : ATLLibraryRef oppositeOf method ;
61 reference javaLibraries [ ∗ ] container : JavaLibraryRef oppositeOf method ;
62 }
63

64 class CreateEqual extends Method {
65 reference equalInPattern [0−1] container : EqualInPattern oppositeOf method ;
66 }
67

68 class SimEqual extends Method {}
69

70 class AggrEqual extends Method {}
71

72 class SelEqual extends Method {}
73

74 class ExternalMethod extends Method {}
75

76 abstract class LibraryRef extends LocatedElement {
77 attribute name : S t r ing ;
78 attribute path : S t r ing ;
79 }
80

81 class ATLLibraryRef extends LibraryRef {
82 reference method : Method oppositeOf ATLLibraries ;
83 }
84

85 class JavaLibraryRef extends LibraryRef {
86 reference method : Method oppositeOf javaLibraries ;
87 }
88

89 class InPattern extends LocatedElement {
90 reference elements [1−∗ ] container : InPatternElement oppositeOf inPattern ;
91 reference method : Method oppositeOf inPattern ;
92 reference filter [0−1] container : OclExpression ;
93 }
94

95 class EqualInPattern extends LocatedElement {
96 reference rightElement container : EqualMetaElement ;
97 reference leftElement container : EqualMetaElement ;
98 reference method : CreateEqual oppositeOf equalInPattern ;
99 }
100

101 abstract class PatternElement extends VariableDeclaration {}
102

103 abstract class InPatternElement extends PatternElement {
104 reference mapsTo : OutPatternElement oppositeOf sourceElement ;
105 reference inPattern : InPattern oppositeOf elements ;
106 reference models [0−∗ ] : Model ;
107 }
108

109 class SimpleInPatternElement extends InPatternElement {}
110

111

112 class Sim extends LocatedElement {
113 reference value container : OclExpression ;
114 }
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115

116 -- @end Matching methods

117

118 -- @begin ModelsFlow block

119

120 class ModelsFlowsBlock extends LocatedElement {
121 reference matcher : Matcher oppositeOf modelsFlowsBlock ;
122 reference modelsFlows [ ∗ ] ordered container : MethodCall oppositeOf block ;
123 }
124

125 abstract class ModelFlowExpression extends LocatedElement {}
126

127 class MappingModelRefExp extends ModelFlowExpression {
128 reference referredMappingModel : MappingModel ;
129 }
130

131 class ModelRefExp extends LocatedElement {
132 reference methodCall : MethodCall oppositeOf arguments ;
133 reference referredModel : Model ;
134 }
135

136 class MethodCall extends ModelFlowExpression {
137 reference method : Method ;
138 reference outMappingModel [0−1] container : MappingModel ;
139 reference inMappingModel [1−∗ ] container : ModelFlowExpression ;
140 reference arguments [ ∗ ] ordered container : ModelRefExp oppositeOf methodCall ;
141 reference block : ModelsFlowsBlock oppositeOf modelsFlows ;
142 }
143

144 class WeightedModelExp extends ModelFlowExpression {
145 attribute weight : Double ;
146 reference modelFlowExp container : ModelFlowExpression ;
147 }
148

149 -- @end ModelsFlow block

150

151 -- @begin OCL

152

153 abstract class OclExpression extends LocatedElement {}
154

155 class ThisModuleExp extends OclExpression {}
156

157 class ThisEqualExp extends OclExpression {}
158

159 class ThisSimExp extends OclExpression {}
160

161 class ThisInstancesExp extends OclExpression {
162 reference instancesOp container : OclExpression ;
163 }
164

165 abstract class ThisNodeExp extends OclExpression {}
166

167 class ThisRightExp extends ThisNodeExp {}
168

169 class ThisLeftExp extends ThisNodeExp {}
170

171 class EqualSim extends OclExpression {}
172

173 class ThisWeightExp extends OclExpression {}
174

175 class ThisEqualModelExp extends OclExpression {}
176

177 class SummationExp extends OclExpression {
178 reference sumExpression container : OclExpression ;
179 }
180

181 -- @end OCL



Appendix B: AML concrete syntax

This appendix gives the AML concrete syntax written with TCS. Comments (highlighted
in green) indicate where the code of the main AML constructs (i.e., import, models block,
matching method, and models flow block) stars and ends.

Listing 2: AML concrete syntax in TCS notation
1 template Matcher main context
2 : "strategy" name "{"

3 [
4 matchers

5 methods

6 ( isDefined ( modelsBlock ) ? [ modelsBlock ] )
7 ( isDefined ( modelsFlowsBlock ) ? [ modelsFlowsBlock ] )
8 ]
9 "}"

10 ;
11

12 -- @begin Import

13

14 template MatcherRef

15 : "imports" name

16 ;
17

18 -- @end Import

19

20 -- @begin Models block

21

22 template ModelsBlock

23 : "models" "{" [
24 models

25 ] "}"

26 ;
27 template Model abstract ;
28

29 template InputModel addToContext
30 : name ":" referenceModel{refersTo = name , lookIn = #all , autoCreate = ifmissing } ;
31

32 template MappingModel addToContext
33 : name

34 ( isDefined ( leftModel ) and isDefined ( rightModel ) ?
35 ":" "EqualModel" "(" leftModel "," rightModel ")"

36 )
37 ;
38

39 template WeavingModel addToContext
40 : name

41 ":" "WeavingModel"

42 "(" referenceModel ")"

43 "(" wovenModels {separator = ","} ")" ;
44

45 template ReferenceModel

46 : name{autoCreate = ifmissing , createIn = ’#context ’ . referenceModels}
47 ;

157
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48

49 template MetaElement

50 : referenceModel{refersTo = name , lookIn = #all , autoCreate = ifmissing} "!" name

51 ;
52

53 template EqualMetaElement

54 : name

55 ;
56

57 -- @end Models block

58

59 -- @begin Matching methods

60

61 template Method abstract addToContext ;
62

63 template CreateEqual context
64 : "create" name "(" arguments{separator = ","} ")"

65 ( isDefined ( ATLLibraries ) ? "ATLLibraries" "{" [ ATLLibraries {separator = ","} ] "}" )
66 ( isDefined ( javaLibraries ) ? "JavaLibraries" "{" [ javaLibraries {separator = ","} ] "}"

↪→)
67 "{" [
68 ( isDefined ( equalInPattern ) ?
69 equalInPattern

70 )
71 inPattern

72 ( isDefined ( variables ) ?
73 "using" "{" [
74 variables

75 ] "}"

76 )
77 ] "}"

78 ;
79

80 template SimEqual context
81 : "sim" name "(" arguments{separator = ","} ")"

82 ( isDefined ( ATLLibraries ) ? "ATLLibraries" "{" [ ATLLibraries {separator = ","} ] "}" )
83 ( isDefined ( javaLibraries ) ? "JavaLibraries" "{" [ javaLibraries {separator = ","} ] "}"

↪→)
84 "{" [
85 inPattern

86 ( isDefined ( variables ) ?
87 "using" "{" [
88 variables

89 ] "}"

90 )
91 sim

92 ] "}"

93 ;
94

95 template AggrEqual context
96 : "aggr" name "(" arguments{separator = ","} ")"

97 ( isDefined ( ATLLibraries ) ? "ATLLibraries" "{" [ ATLLibraries {separator = ","} ] "}" )
98 ( isDefined ( javaLibraries ) ? "JavaLibraries" "{" [ javaLibraries {separator = ","} ] "}"

↪→)
99 "{" [
100 inPattern

101 ( isDefined ( variables ) ?
102 "using" "{" [
103 variables

104 ] "}"

105 )
106 sim

107 ] "}"

108 ;
109

110 template SelEqual context
111 : "sel" name "(" arguments{separator = ","} ")"

112 ( isDefined ( ATLLibraries ) ? "ATLLibraries" "{" [ ATLLibraries {separator = ","} ] "}" )
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113 ( isDefined ( javaLibraries ) ? "JavaLibraries" "{" [ javaLibraries {separator = ","} ] "}"

↪→)
114 "{" [
115 inPattern

116 ( isDefined ( variables ) ?
117 "using" "{" [
118 variables

119 ] "}"

120 )
121 ] "}"

122 ;
123

124 template ExternalMethod context
125 : "uses" name "[" inMappingModel{separator = ","} "]" "(" arguments{separator = ","} ")

↪→"

126 ( isDefined ( ATLLibraries ) ? "ATLLibraries" "{" [ ATLLibraries {separator = ","} ] "}" )
127 ( isDefined ( javaLibraries ) ? "JavaLibraries" "{" [ javaLibraries {separator = ","} ] "}

↪→" )
128 ;
129

130 template LibraryRef abstract ;
131

132 template ATLLibraryRef

133 : "(" "name" "=" name{as = stringSymbol} "," "path" "=" path{as = stringSymbol} ")"

134 ;
135

136 template JavaLibraryRef

137 : "(" "name" "=" name{as = stringSymbol} "," "path" "=" path{as = stringSymbol} ")"

138 ;
139

140 template InPattern

141 : ( isDefined ( elements ) ?
142 "from" [
143 elements{separator = ","}
144 ]
145 )
146 ( isDefined ( filter ) ?
147 "when" [
148 filter

149 ]
150 )
151 ;
152

153 template EqualInPattern

154 : "leftType" ":" leftElement

155 "rightType" ":" rightElement

156 ;
157

158 template InPatternElement abstract addToContext ;
159

160 template SimpleInPatternElement

161 : varName ":" type

162 ( isDefined ( models ) ? "in" models{separator = "," , refersTo = name , lookIn = #all })
163 ;
164

165 template Sim

166 : "is" ’ value ’
167 ;
168

169 -- @end Matching methods

170

171 -- @begin ModelsFlow block

172

173 template ModelsFlowsBlock

174 : "modelsFlow" "{" [
175 modelsFlows

176 ] "}"

177 ;
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178

179 template ModelFlowExpression abstract ;
180

181 template WeightedModelExp

182 : weight ":" modelFlowExp ;
183

184 template MethodCall

185 : ( isDefined ( outMappingModel ) ? [ outMappingModel "=" ] )
186 method{refersTo = name , lookIn = #all , autoCreate = ifmissing , createIn = ’#context

↪→ ’ . methods}
187 "[" ( isDefined ( inMappingModel ) ? inMappingModel{separator = "," }) "]"

188 ( isDefined ( arguments ) ? "(" arguments{separator = ","} ")" )
189 ;
190

191 template ModelRefExp

192 : referredModel{refersTo = name}
193 ;
194

195 template MappingModelRefExp

196 : referredMappingModel{refersTo = name}
197 ;
198

199 -- @end ModelsFlow block

200

201 -- @begin OCL

202

203 template OclExpression abstract operatored ;
204

205 template ThisModuleExp

206 : "thisModule"

207 ;
208

209 template ThisNodeExp abstract ;
210

211 template ThisRightExp

212 : "thisRight"

213 ;
214

215 template ThisLeftExp

216 : "thisLeft"

217 ;
218

219 template ThisEqualExp

220 : "thisEqual"

221 ;
222

223 template ThisWeightExp

224 : "thisWeight"

225 ;
226

227 template ThisSimExp

228 : "thisSim"

229 ;
230

231 template ThisInstancesExp

232 : "thisInstances" "(" instancesOp ")"

233 ;
234

235 template SummationExp

236 : "Summation" "(" sumExpression ")"

237 ;
238

239 template ThisEqualModelExp

240 : "thisEqualModel"

241 ;
242

243 -- @end OCL



Appendix C: An M1-to-M1
matching algorithm for AST models

Listing 3: AML algorithm matching AST models
1 strategy JDTAST {
2

3 uses JavaASTDifferentiation [ IN1 :EqualModel( m1 : JavaAST , m2 : JavaAST ) ] ( )
4

5 create CMethodD ( ) {
6 leftType : MethodDeclaration

7 rightType : MethodDeclaration

8 when
9 true

10 }
11

12 create CName ( ) {
13 leftType : Name

14 rightType : Name

15 when
16 thisLeft . refImmediateComposite ( ) . oclIsTypeOf ( JavaAST ! Type ) and
17 thisRight . refImmediateComposite ( ) . oclIsTypeOf ( JavaAST ! Type )
18 }
19

20 create CType ( ) {
21 leftType : SimpleType

22 rightType : SimpleType

23 when
24 thisLeft . refImmediateComposite ( ) . oclIsTypeOf ( JavaAST ! MethodDeclaration ) and
25 thisRight . refImmediateComposite ( ) . oclIsTypeOf ( JavaAST ! MethodDeclaration )
26 }
27

28 create CSingleVD ( ) {
29 leftType : SingleVariableDeclaration

30 rightType : SingleVariableDeclaration

31 when
32 thisLeft . refImmediateComposite ( ) . oclIsTypeOf ( JavaAST ! MethodDeclaration ) and
33 thisRight . refImmediateComposite ( ) . oclIsTypeOf ( JavaAST ! MethodDeclaration )
34 }
35

36 create CSimpleName ( ) {
37 leftType : SimpleName

38 rightType : SimpleName

39 when
40 thisLeft . refImmediateComposite ( ) . oclIsTypeOf ( JavaAST ! SingleVariableDeclaration ) and
41 thisRight . refImmediateComposite ( ) . oclIsTypeOf ( JavaAST ! SingleVariableDeclaration )
42 or

43 thisLeft . refImmediateComposite ( ) . oclIsTypeOf ( JavaAST ! MethodDeclaration ) and
44 thisRight . refImmediateComposite ( ) . oclIsTypeOf ( JavaAST ! MethodDeclaration )
45 }
46

47 sim SName ( )
48 ATLLibraries{

161
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49 ( name=’Strings ’ , path=’../ AMLLibrary/ATL/Helpers ’ )
50 }
51 JavaLibraries{
52 ( name=’match.SimmetricsSimilarity ’ , path=’../ AMLLibrary/Jars/simmetrics.jar’ )
53 }
54 {
55 i s thisLeft . fullyQualifiedName . simStrings ( thisRight . fullyQualifiedName )
56 }
57

58 sim SType ( IN1 :EqualModel ( m1 : JavaAST , m2 : JavaAST ) ) {
59 i s thisModule . sim ( thisLeft . name , thisRight . name )
60 }
61

62 sim SSimpleName ( )
63 ATLLibraries{
64 ( name=’Strings ’ , path=’../ AMLLibrary/ATL/Helpers ’ )
65 }
66 JavaLibraries{
67 ( name=’match.SimmetricsSimilarity ’ , path=’../ AMLLibrary/Jars/simmetrics.jar’ )
68 }
69 {
70 i s thisLeft . fullyQualifiedName . simStrings ( thisRight . fullyQualifiedName )
71 }
72

73

74 sim SSingleVDName ( IN1 :EqualModel ( m1 : JavaAST , m2 : JavaAST ) ) {
75 i s thisModule . sim ( thisLeft . name , thisRight . name )
76 }
77

78 sim SSingleVDType ( IN1 :EqualModel ( m1 : JavaAST , m2 : JavaAST ) ) {
79 i s thisModule . sim ( thisLeft . type , thisRight . type )
80 }
81

82 sim SMethodDName ( IN1 :EqualModel ( m1 : JavaAST , m2 : JavaAST ) ) {
83 i s thisModule . sim ( thisLeft . name , thisRight . name )
84 }
85

86 sim SMethodDParameters ( IN1 :EqualModel ( m1 : JavaAST , m2 : JavaAST ) ) {
87 i s thisModule . averSimSets ( thisLeft . parameters , thisRight . parameters )
88 }
89

90 models {
91

92 map : EqualModel ( m1 : JavaAST , m2 : JavaAST )
93

94 }
95

96 modelsFlow {
97

98 cSN = CSimpleName [ map ]
99 sSN = SSimpleName [ cSN ]
100

101 cT = CType [ map ]
102 sN = SName [ CName [ map ] ]
103 sT = SType [ cT ] ( sN )
104

105 cSVD = CSingleVD [ map ]
106 sSVDN = SSingleVDName [ cSVD ] ( sSN )
107 sSVDT = SSingleVDType [ cSVD ] ( sT )
108

109 wSVD = WeightedAverage [ 0 . 5 : sSVDN , 0 . 5 : sSVDT ]
110 tSVD = Threshold [ wSVD ]
111

112 cMD = CMethodD [ map ]
113 sMDP = SMethodDParameters [ cMD ] ( tSVD )
114 sMDN = SMethodDName [ cMD ] ( sSN )
115

116 wMD = WeightedAverage [ 0 . 5 : sMDP , 0 . 5 : sMDN ]
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117 tMD = Threshold [ wMD ]
118

119 d = JavaASTDifferentiation [ tMD ]
120

121 }
122 }



Appendix D: AML Web resources

A set of key Web resources about AML is listed below.

Wiki http://wiki.eclipse.org/AML

The AML wiki introduces the tool and explains its installation process. Note that
AML has been contributed to Eclipse.org. Thus, interested users can get access to the
AML source code for free.

AML use cases Model co-evolution. http://www.eclipse.org/m2m/atl/usecases/
ModelAdaptation/

AML demo Interested readers may want to see a demo showing the functionalities of
each AML component. The demo is available at http://www.eclipse.org/m2m/atl/

usecases/ModelAdaptation/AMLEdited_1024x720.htm
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Appendix E: AML Positioning

This appendix positions AML with respect to the criteria given in Section 2.4, i.e., input,
output, matching algorithm blocks, and evaluation. For each criteria, we summarize what
AML currently does.

Input

SQL-DDL
XSD a

OWL a

MOF (XMI) a

Ecore a

Others KM3
a

M2-to-M2

M1-to-M1

A
M

LCriteria

Table 1: Positioning AML with respect to the input criterion

The AML metamodel importer (see Section 4.3.1.4) translates inputs from different
technical spaces (i.e., OWL, MOF) to Ecore or KM3 (the internal AML formats). Thus,
it is possible to apply AML M2-to-M2 matching transformations to models built in other
technical spaces. The experimentation explained in Section 5.5 however revealed that
EMFTriple [24] (i.e., the AmmA-based tool used to translate OWL ontologies into Ecore
metamodels) needs a few improvements to fully support the translation, above all, when
ontology individuals are involved.

Section 3.3 shows GeromeSuite as the approach supporting the largest spectrum of
technical spaces. AML supports a large number of technical spaces as well. Moreover,
it has an advantage over GeromeSuite; unlike GeromeSuite, AML uses a standard to
represent models, i.e., Ecore, which allows the manipulation of large models (around
250000 elements [131]). Therefore, by using Ecore, AML promotes its integration with
recent EMF-based tools and even with early frameworks which make efforts in closing the
gap between them and EMF.

The comparison of Table. 3.1 to Table. 1 shows that AML is the only approach allowing
heuristics reusable in M2-to-M2 and M1-to-M1 matching algorithms. The implementation
of several M2-to-M2 algorithms and an M1-to-M1 program supports this affirmation.
EMF Compare has reusable heuristics too, however they match models conforming to same
metamodel. In AML, LeftModel and RightModel can conform to differing metamodels.

Output

165
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Discrete
Continuous a

Endogenous a

Exogeneous
1:1 a

1:n a

m:1 a

m:n a

aApp. domain relationships

A
M

LCriteria

Similarity value

Notation

Cardinality

Table 2: Positioning AML with respect to the output criterion

AML inherits the genericity of AMW [2] to represent simple and complex mappings
associated to several application domains. The current AML matching transformations
however only yield simple mappings; there is not a notation for explicit translation of
simple mappings into complex. Although there exist this limitation, AML remains appli-
cable.

Matching algorithm blocks

Label-based a

Structure-based
Cartesian product a

Fragment-based a

a

a

a

Manual a

Automatic
Diff, Co-
evolution, 
Model 
Synchronizati
on
a

a

a

T
G

A
M

L

User Involvement

Initial mappingsInitial parameters, e.g., thresholds, weights, 
constraints

Additional inputs, e.g, mismatches, synonyms 
Combination of heuristics

Mapping refinement

Aggregation
Selection

Iteration

Mapping manipulation

Criteria

Normalization

Searching
Similarity computation

Table 3: Positioning AML with respect to the matching building blocks criterion

Normalization Label-based. The AML library provides tokenizers that normalize the
morphology of labels (see Section 4.4.4.

Structure-based. Unlike other MDE approaches applying this kind of normalization
[6][88][84], we keep models conforming to their original metamodels. Section 4.2.6 de-
scribed an experimentation supporting this choice. According to our experimentations,
the translation of models into graphs or trees has the following disadvantages: 1) imposes
an extra step to matching algorithms, 2) impacts their performance (the algorithms pro-
cess verbose data structures) and development (the code navigating the data structure
becomes complex).
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Searching AML algorithms perform a fragment-based searching. AML provides a con-
struct devoted to it, i.e., create. This construct allows the declaration of types repre-
senting LeftModel and RightModel elements.

For M2-to-M2 matching, the AML library provides pre-defined matching transforma-
tions which focus on certain types, e.g., Class, Relation, etc.

For M1-to-M1 matching, AML lets developers explicitly specify create matching
transformations with their respective types.

Similarity The AML library contains 4 linguistic-based, 2 constraint-based, 3 instance-
based, and 2 structure-level techniques (see Section 4.4.4 for more details).

Currently, the number of AML similarity matching transformations do not overcome
the contributed one in early work (in particular Coma++ [62]). The rationale is that the
thesis mainly investigated the efficiency that techniques, used in other technical spaces,
have in MDE. Thus, we have implemented only the techniques that related work reports
like good (e.g., Similarity Flooding [77][3]) or techniques exploiting Web resources (e.g.,
Google MSR [96]).

Aggregation and Selection AML only provides 1 aggregation and 3 selection tech-
niques. These techniques (along with the thresholds) have been borrowed from Coma++
[62]. It would be interesting to test other techniques and thresholds, for example, constraint-
based selection techniques.

Iteration The current version of AML allows manual iteration. AML can be extended
to incorporate an automatic iteration construct. It is necessary to add a for or/and
while construct into the AML concrete syntax, and modify the compiler to translate the
construct into a for Ant task. To support simple (e.g., n < 5) and complex (e.g., OCL
expressions) iteration conditions, the for Ant task has to be extended too.

Mapping manipulation AML manipulates mappings by means of user-defined match-
ing transformations and HOTs. The output criteria elaborates on the first mean, we now
refer to the second one. The AML library provides the HOT_match transformation that
translates M2-to-M2 simple mappings into ATL code. To support the translation of
complex mappings into ATL code, it is necessary to develop a new HOT superimposing
HOT_match (Section 6.1 illustrates that). Since a good knowledge of ATL is required,
we believe that it is hard to implement HOTs. Future research has to practice Tisi’s
guidelines about HOT development [9].

User involvement The user can provide initial mappings to AML programs. The aggr
construct explicitly allows users to associate weights to matching transformation results
as well. By using parameter models, the user can select the dictionary (or resource) that
a linguistic-based similarity heuristic may need. Thus, AML algorithms can take a large
spectrum of inputs provided by the user. The only constraint is that inputs have to be
models or XML files (from which models can be extracted).
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The user specifies the combination of AML matching transformations in a textual
manner. They can manually refine mapping models by using the AMW editor [2].

Evaluation

Number of 
pairs Metamodels: 68, Ontologies: 3

Size
Largest metamodel: 865, Largest 
ontology: 127

Domains
The ATL Zoo, The OAEI Conference 
track

Exec. Time 
(min.)

Metamodels: ranges from 2 to 280 min, 
Ontologies: < 1 min

Fscore
Metamodels: >=0.5 for 35% of 
experimentations, Ontologies: >=0.5 for 
41% of experimentations

Experts a

Existing 
software 
artifacts a

Criteria

Determination of reference alignments

Dataset (Metamodels)

A
M

L

Table 4: Positioning AML with respect to the evaluation criterion

We have applied AML algorithms to datasets from diverse domains, sizes, and formats.
Table. 4 gives an idea about the accuracy and performance obtained by the algorithms.
Finally, the table shows that AML uses expected mappings defined from scratch or ex-
tracted from existing software artifacts (i.e., model transformations).



Une approche pour l’adaptation et l’évaluation de stratégies génériques
d’alignement de modèles

Kelly Johany Garcés-Pernett

Mots-clés: Génie des Modèles, Transformation de modèles, Alignement de modèles.

L’alignement de modèles est devenu un sujet d’intérêt pour la communauté de l’Ingénierie Dirigée par
les Modèles. Le but est d’identifier des correspondances entre les éléments de deux métamodèles ou de
deux modèles. Un scénario d’application important est la dérivation des transformations à partir des cor-
respondances entre métamodèles. De plus, les correspondances entre modèles offrent un grand potentiel
pour adresser d’autres besoins. L’établissement manuel de ces correspondances sur des (méta)modèles
de grande taille demande une grande quantité de travail et est source d’erreurs. La communauté tra-
vaille donc à automatiser le processus en proposant plusieurs stratégies d’alignement formulées comme
la combinaison d’un ensemble d’heuristiques. Un premier problème est alors que ces heuristiques sont
limitées à certains formalismes de représentation au lieu d’être réutilisables. Un second problème réside
dans la difficulté à évaluer systématiquement la qualité des stratégies. Cette thèse propose une approche
pour résoudre les problèmes ci-dessus. Cette approche développe des stratégies dont les heuristiques
sont faiblement couplées aux formalismes. Elle extrait un jeu de tests d’usage à partir d’un répertoire
de modèles et elle utilise finalement un mégamodèle pour automatiser l’évaluation. Pour valider cette
approche, nous développons le langage dédié AML construit sur la plateforme AmmA. Nous contribuons
à la définition d’une bibliothèque d’heuristiques et de stratégies AML. Pour montrer que notre approche
n’est pas limitée au domaine de l’IDM nous testons celle-ci dans le domaine des ontologies. Finalement,
nous proposons trois cas d’étude attestant l’applicabilité des stratégies AML dans les domaines de la
coévolution des modèles, de l’évaluation des métamodèles pivots et de la synchronisation des modèles.

Adaptation and evaluation of generic model matching strategies
Kelly Johany Garcés-Pernett

Keywords: Model-Driven Engineering, Model transformation, Model matching.

Model matching is gaining importance in Model-Driven Engineering (MDE). The goal of model matching
is to identify correspondences between the elements of two metamodels or two models. One of the
main application scenarios is the derivation of model transformations from metamodel correspondences.
Model correspondences, in turn, offer a potential to address other MDE needs. Manually finding of
correspondences is labor intensive and error-prone when (meta)models are large. To automate the process,
research community proposes matching strategies combining multiple heuristics. A problem is that the
heuristics are limited to certain representation formalisms instead of being reusable. Another problem
is the difficulty to systematically evaluate the quality of matching strategies. This work contributes an
approach to deal with the mentioned issues. To promote reusability, the approach consists of strategies
whose heuristics are loosely coupled to a given formalism. To systematize model matching evaluation,
the approach automatically extracts a large set of modeling test cases from model repositories, and
uses megamodels to guide strategy execution. We have validated the approach by developing the AML
domain specific language on top of the AmmA platform. By using AML, we have implemented a library
of strategies and heuristics. To demonstrate that our approach goes beyond the modeling context, we
have tested our strategies on ontology test cases as well. At last, we have contributed three use cases that
show the applicability of (meta)model matching to interesting MDE topics: model co-evolution, pivot
metamodel evaluation, and model synchronization.


	Contents
	Acknowledgments
	Introduction
	Contributions
	Outline
	Publications associated to the thesis

	Context
	Model-Driven Engineering
	Model-Driven Architecture
	Models, metamodels, metametamodels, and technical spaces
	Model transformations

	Domain Specific Languages
	The AtlanMod model management Architecture (AmmA)
	Kernel MetaMetaModel
	AtlanMod Transformation Language
	AtlanMod Model Weaver
	Textual Concrete Syntax
	AtlanMod MegaModel Management

	Model matching
	Input
	Output
	Matching algorithm blocks
	Evaluation

	Summary

	A survey of matching approaches and problem statement
	Ontology-based and schema-based approaches
	Coma++
	Semap
	Learning Source Descriptions (LSD)
	MAFRA
	APFEL
	GeromeSuite
	An API for ontology alignment

	Model-based approaches
	Kompose
	Epsilon Comparison Language (ECL)
	EMF Compare
	Generic and Useful Model Matcher (Gumm)
	SmartMatcher
	MatchBox

	Comparison of approaches
	Problem statement
	Issues on reusability of matching heuristics
	Issues on matching algorithms evaluation

	Summary

	The AtlanMod Matching Language
	Analysis: AML base concepts
	Design: notations overlapping AML base concepts
	Overview
	Parameter model
	Equal (mapping) model
	AML composite matcher
	An AML M2-to-M2 matching algorithm
	Compilation strategy: graphs versus models

	Implementation on top of the AmmA suite
	Architecture
	Extension points
	The AML tool in numbers

	AML library
	Creation heuristics
	Similarity heuristics
	Selection heuristics
	User-defined heuristics

	Summary

	Automatic evaluation of model matching algorithms
	Approach overview
	Preparation: getting test cases from model repositories
	Discovering test cases
	Extracting reference alignments from transformations

	Execution: implementing and testing matching algorithms with AML
	Evaluation: deploying and assessing AML algorithms
	Validation
	Modeling dataset
	Diversified matching strategies
	Ontology dataset
	AML algorithms versus other matching systems
	Discussion

	Summary

	Three matching-based use cases
	Model co-evolution
	Pivot metamodels in the context of tool interoperability
	Model synchronization
	Summary

	Conclusions
	Contributions
	Future Work

	Résume étendu
	Bibliography
	List of abbreviations
	List of figures
	List of tables
	List of listings
	Appendix A: AML abstract syntax
	Appendix B: AML concrete syntax
	Appendix C: An M1-to-M1 matching algorithm for AST models
	Appendix D: AML Web resources
	Appendix E: AML Positioning
	Summary

